S .Enﬁ-cbing Game Content with Physics-based Realism

-
K
4

OREILLY*

",qf'-

h-ﬁf ”HNN {%- Mﬂ’;}’}iWﬁF)A f{’!u/fn?ﬁ: MEANE :/{“"f’ G 7//)' 0». ".;—*1”/ if.\vi Iy ‘}

T’hysms for Game Developers

Physics for Game Developers

David M. Bourg

i O’REILLY"

“‘Bﬂeijing « Cambridge + Farnham - Kéln - Paris - Sebastopol - Taipei - Tokyo

Physics for Game Developers
by David M. Bourg

o g
Copyright © 2002 O'Reilly & Associates, Inc. All tights teserved. 1
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

OReilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rober: Denn
Production Editor: Darren Kelly
Cover Designer: Ellie Volckhausen
Interior Designer; David Furato
Printing History:

January 2002: First Ediion.

Nurshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacrurers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designarions
have been printed in caps or inirial caps. The association between the image of a cat and mouse
and the topic of physics for game developers is a trademark of O'Reilly & Associates, Inc.

While every precantion has been taken in the preparation of this book, the publisher assumes no
responsibility for etrors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 0-596-00006-5
[(M]

Table of Contents

Preface ix
T. BasicConcepts o i 1
Newton’s Laws of Motion 1
Units and Measures 2
Coordinate System 4
Vectors . 5
Mass, Center of Mass, and Moment of Inertia 5
Newton'’s Second Law of Motion 15
Inertia Tensor 19

2. Kinematics 25
Introduction 25
Velocity and Acceleration 26
Constant Acceleration 28
Nenconstant Acceleration 30

2D Particle Kinematics 31

3D Parricle Kinematics 33
Kinematic Particle Explosion _ 43
Rigid Body Kinematics 49
Local Coordinate Axes 49
Angular Velocity and Acceleration 50

3. BOICR . e 57
Introducrion 57
Force Fields 58
Friction 59

Fluid Dynamic Drag 60

A Note on Pressure 2 62
Buoyancy ‘ 62
Springs and Dampers ' 64
Force and Torque : 65
CKinetics L. 69
Particle Kinetics in 2D 70
Particle Kinetics in 3D 75
Rigid Body Kinetics 82
Collisions 87
Impulse-Momentum Principle 88
Impact 89
Linear and Angular Impulse 95
Friction . 98
Projectiles i, 101
Simple Trajectories 102
Drag 106
Magnus Effect 114
Variable Mass 118
Aircraft ... e 121
Geometry 122
Lift and Drag 124
Other Forces 129
Control , 130
Modeling 132
SRS . . 146
Flotation 147
Volume 149
Resistance 159
Virtual Mass 161
Hovercraft 163
How They Work 163
Resistance 165
vi Table of Contents

10.

11.

12.

13.

14.

15.

16.

17.

Resistance

Power

Stopping Distance
Roadway Banking

Real-Time Simulations T

Integrating the Equations of Motion
Euler's Method
Other Methods

2D Rigid Body SIMUIALOro\ oo

Model
Integration
Flight Controls
Rendering

Implementing CollisionResponse.o

Linear Collision Response
Angular Effects

RigidBodyRotation i

Rotation Matrices
Quaternions

3DRigid BodySimulator

Model
Integration
Flight Controls
Rendering

Multiple Bodiesin3D, e

Model

Integration
Collision Response
Tuning

Particle Systems

Model
Integration

168
169
170
171

172
173
174
180

184
185
191
194
198

206
211

224
227

231
235
238
242

250
264
266
269

272
281

Table of Contents

| il

Collision Response 282

Tuning | - 283
Appendix A: Vector Operationscoivvuieieiinnas, 285
Appendix B: MatrixOperations i, 295
Appendix C: Quaternion Operations 303
Bibliography 313
INAEX .o 319

vii | Tableof Contents

Preface |

Who Is This Book For?

Simply put, this book is targeted at computer game developers who do not have a strong
mechanics or physics background but are charged with the task of incorporating real
physics in their games,

As a game developer, and very likely as a gamer yourself, you’ve seen products being
advertised as “ultra-realistic” or as using “real-world physics.” At the same time you, or
perhaps your company’s marketing department, are wondering how you can spice up
your own games with such realism. Or perhaps you want to try something completely
new that requires you to explore real physics. The only problem is that you threw your
college physics textbook in the lake after final exams and haven’t touched the subject
since. Maybe you licensed a really cool physics engine but you have no idea how the
underlying principles work and how they will affect what you’re trying to model. Or
perhaps you are charged with the task of cuning someone else’s physics code but you
really don’t understand how it works. Well then, this book is for you.

Sure you could scour the Internet, wade journals, and magazines for information and
how-to’s on adding physics-based realism to your games. You could even fish out that
old physics text and start from scratch. However, you're likely to find that the material
is either too general to be applied directly or too advanced, requiring you to search
for other sources to get up to speed on the basics. This book will pull together the
information you need and will serve as the starting point for you, the game developer,
in your effort to enrich your game’s content with physics-based realism.

This book is not a recipe book that simply gives sample code for a miscellaneous set
of problems. The Internet is full of such example programs (including some very good
ones, I might add). Rather than giving you a collection of specific solutions to specific
problems, my aim is to arm you with a thorough and fundamental understanding
of the relevant topics so that you can formulate your own solutions to a variety of
problems. I'll do this by explaining, in detail, the principles of physics applicable to

el

game development and by providing complementary hand calculation examples in
addition to sample programs.

- ’I'ﬁ‘

What | Assume You Know

Although 1 don’t assume that vou are a physics expert, I do assume that you have at
least a basic college-level understanding of classical physics typical of non-physics and
non-engineering majors. It is not essential that your physics background is fresh in your
mind, as the first several chaprers of this book review the subjects relevant to game
physics.

1 also assume that you are proficient in trigonometry, vector math, and matrix math,
although I do include reference material in the appendices. Further, | assume that you
have at least a basic college-level understanding of calculus, including integration and
differentiation of explicit functions. Numerical integration and differentiation are a
different story, and 1 cover these techniques in detail in the later chapters of this book.

Mechanics

Most people that I've talked to when I was developing the concept for this book im-
mediately thought of flight simulators when the phrases “real physics” and “real-time
simulation” came up. Certainly, cuting-edge flight simulations are relevant in this
context; however, many different types of games and specific game elements stand to
benefit from physics-based realism.

Consider this example: you're working on the next blockbuster hunting game, com-
plete with first-person 3D, beautiful textures, and an awesome soundtrack to set the
mood, but something is missing. That something is realism. Specifically, you want the
game to “feel” more real by challenging the gamer’s marksmanship, and you want to
do this by adding considerations such as distance to target, wind speed and direction,
and muzzle velocity, among others. Moreover, you don’t want to fake these elements;
rather, you would like to model them realistically based on the principles of pliysics.
Gary Powell, with MathEngine Pl¢, put it like this: “The iltusion and immersive expe-
rience of the virtual world, so carefully built up with high polygon models, detailed
textures and advanced lighting, is so often shattered as soon as objects start to move
and interact.”® “It’s all about interactivity and immersiveness,” says Dr. Steven Collins,
CEQ of Havok.com.! I think both these guys are right on target. Why invest so much
time and effort making your game world look as realistic as possible but not take the
extra step to make it behave just as realistically?

* Gary Powell works for MathEngine Plc. Their products include Dynamics Toolkir 2 and Collision Toolkit 1,
which handle single- and muldiple-body dynamics. Their web site is at www.mathengire.com if yowd like
morte information abour their products.

t Dr. Collins is the CEO of Havok.com. Their technelogy handles rigid bedy, soft bedy, cloth, and fluid and
particle dynamics. You can check their stuff out at www.havok.com.

x | Preface

Here are a few examples of specific game elements that stand to benefit, in terms of
realism, from the use of real physics:

* The trajectory of rockets and missiles, including the effects of fuel burn-off
* The collision of objects such as billiard balls

The effects of gravitaton berween large objects such as planets and battle stations
* The stability of cars racing around tight curves

* Tie dynamics of boats and other waterborne vehicles

The flight path of a baseball after it is struck by a bat
* The flight of a playing card being tossed into a hat

This is by no means an exhaustive list, but just a few examples to get you in the
right frame of mind. Pretty much anything in your games that bounces around, flies,
rolls, slides, or isn’t sitting dead still can be realistically modeled to create compelling,
believable content for your games.

So how can this realism be achieved? By using physics, of course, which brings us back
to the title of this section: the subject of mechanics. Physics is a vast field of science
that covers many different, but related subjects. The subject most applicable to realistic
game content is the subject of mechanics, which is really what’s meanc by “real physics.”

By definition, mechanics is the study of bodies ar rest and in motion and of the effecr of
forces on them. The subject of mechanics is subdivided inro statics, which specifically
focuses on bodies at rest, and dynamics, which focuses on bodies in motion. One of
the oldest and most studied subjects of physics, the formal origins of mechanics, can
be traced back more than 2000 years to Aristotle. An even earlier treatment of the
subject was formalized in Problems of Mechanics, but the origins of this work are
unknown. Although some of these early works attributed some physical phenomena
to magical elements, the contributions of such great minds as Galileo, Kepler, Euler,
Lagrange, d’Alembert, Newton, and Einstein, to name a few, have helped to develop
our understanding of this subject to such a degree that we have been able to achieve
the remarkable state of technological advancement that we see today.

Because you want your game content to be alive and active, I'll look primarily at bodies
in motion and will therefore delve into the details of the subject of dynamics. Within
the subject of dynamics there are even more specific subjects to investigate, namely,
kinematics, which focuses on the motion of bodies without regard to the forces that act
on the body, and kinetics, which considers both the motion of bodies and the forces that
act on ot otherwise affect bodies in motion. I'll be taking a very close look at these two
subjects throughout this book.

Arrangement of this Book

Physics-based realism is not new to gaming; in fact, many games on the shelves these
days advertise their physics engines. Also, many 3D modeling and animation tools have
physics engines built in to help realistically animate specific types of motion. Naturally,

‘;,rll;

Preface | «xi

magazine articles appear every now and then that discuss various aspects of physics-
based game content. In parallel, but at a different level, research in the area of real-time
rigid body* simulation has been active for many years, and the techiical journals are full
of papers that deal with various aspects of this subject. You'll find papers on subjects
ranging from the simulation of muldple, connected rigid bodies to the simulation
of cloth. However, while these are fascinating subjects and valuable resources, as 1
hinted earlier, many of them are of limited immediate use to the game developer, as
they first require a solid understanding of the subject of mechanics, requiring you to
learn the basics from other sources. Furthermore, many of them focus primarily on
the mathematics involved in solving the equations of motion and don’t address the
practical treatment of the forces acting on the body or system being simulated. I asked
John Nagle, with Animats, what is, in his opinion, the most difficult part of developing
a physics-based simulation for games, and his response was developing numerically
stable, robust code.” Gary Powell echoed this when he told me that minimizing the
amount of parameter tuning to produce stable, realistic behavior was one of the most
difficult challenges. 1 agree that speed and robustness in dealing with the mathematics of
bodies in motion are crucial elements of a simulator. On top of that, so are completeness
and accuracy in representing the interacting forces that initiate and perpetuate the
simulation in the first place. As you'll see later in this book, forces govern the behavior
of objects in your simulation, and you need to model them accurately if your objects
are to behave realistcally

This prerequisite understanding of mechanics and the real-world nature of forces that
may act on a particular body or system have governed the organization of this book.

Chapters 1 through 5 are essentially a mechanics primer and will start off by reviewing
basic concepts and progress by gradually building on these concepts addressing the
more challenging aspects of rigid body dynamics. The aim here is to give you enough of
a refresher course in mechanics that you can move on to more advanced reading where
these fundamentals are prerequisite. If you are already up to speed on the subject of
mechanics, you might want to skip directly to Chapter 6.

Chapter 1, Basic Concepts
This warm-up chapter covers the most basic of principles that are used and referred
to throughout this book. The specific topics addressed include mass and center of
mass, Newton's laws, inercia, units and measures, and vectors,

Chapter 2, Kinematics
This chapter covers such topics as linear and angular velocity, acceleration, mo-
mentum, and the general motion of particles and rigid bodies in two and three
dimensions.

* A rigid body is formally defined as a body, composed of a system of particles, whose particles remain at fixed
distances from each other with no relative translatior: or rotation among particles. Although the subject of
mechanics deals with flexible bodies and even fluids such as water, we’ll focus our attention on bodies that
are rigid.

i Jolin Nagle is the developer of Falling Bodies, a dynamics plug-in for Softimage 3D, You can check out his
patented technology at www.animats.com.

xi | Preface

Chapter 3, Force
The principles of force and torque are covered in this chapter, which serves as a
bridge from the subject of kinematics to that of kinetics. General Categorles of forces
are discussed, including drag forces, force fields, and pressure.

Chapter 4, Kinetics
This chapter combines elements of Chapters 2 and 3 to address the subject of kinet- -
ics and explains the difference between kinematics and kinetics. Further discussion
treats the kinetics of particles and rigid bodies in two and three dimensions.

Chapter 5, Collisions
In this chapter I cover particle and rigid body collision response, that is, what
happens after two objects run in to each other,

Chapters 6 through 10 take a look at some real-world problems. These chapters focus
on modeling with the aim of arming you with a solid understanding of the nature of
certain physical systems, specifically the forces involved, such that these systems can be
accurately modeled in real-time simulators if you choose to pursue that subject further.
The example topics in this part are not meant to be all-inclusive of every system you
might try to model in a game. Rather, they were selected to best illustrate the specific
physical phenomenon and concepts that aré relevant to a wide variety of problems.

Chapter 6, Projectiles
Chapter 6 is the first in a series of chapters addressing specific problems that can
be modeled in a game to provide physically realistic content. This first chapter
addresses the subject of projectiles and discusses the forces acting on projectiles in
flight as well as factors that influence speed and trajectory.

Chapter 7, Aircraft
This chapter focuses on the elements of flight, including propulsor forces, drag,
geometry, mass, and, most important, lift. It also serves as the starting point for a
working 3D real-time simulation that will be developed in Chapter 15.

Chapter 8, Ships
The fundamental elements of floating vehicles are discussed in this chapter, includ-
ing floatation, stability, volume, drag, and speed.

Chapter 9, Hovercraft
Hovercraft have some of the characteristics of both aircraft and boats. This chapter
considers the characteristics that distinguish the hovercraft as a unique vehicle.
Topics covered include hovering flight, aerostatic lift, and directional control.

Chapter 10, Cars
In this chapter, specific aspects of autornobile performance are addressed, including
aerodynamic drag, rolling resistance, skidding distance, and roadway banking.

Chapters 11 through 17, along with the three appendices, offer an introduction to real-
time simulations. These chapters introduce the subject of real-time simulatons and
discuss various aspects of this field as applicable to computer games. The subject of
real-time simulators is vast and deserves an entire book on its own, so this book focuses

!
-“rl"_'

Preface | i

on the fundamentals. I walk you through the development of a 2D simulation of a
couple of hovercraft, a 3D flight simulation, a generic multibody simulation in 3D with
collision response, and a simulation of cloth using particles and springs.

1

Chapter 11, Real-Time Simulations
This chapter introduces the subject of real-time simulations and covers several
numerical integration methods for solving the differential equations of motion.

Chapter 12, 2D Rigid Body Simulator
This chapter addresses the practical aspects of implementing a simple 2D particle
and rigid body simulator. A simple real-time simulation of a couple of hovercraft
is developed in this chapier.

Chapter 13, Implementing Collision Response
This chapter shows you how to implement collision response, as discussed in
Chapter 5, in a real-time simulation. Specifically, collision response is added to the
hovercraft simulation developed in Chapter 12.

Chapter 14, Rigid Body Rotation
Before moving to 3D simulators, the issue of representing rotational orientation for
rigid bodies in three dimensions is addressed. Here, Euler angles, rotation matrices,
and quaternions are considered.

Chapter 15, 3D Rigid Body Simulator
This chapter combines all of the material contained in Chapters 11 through 14 and.
looks at the practical aspects of implementing a simple 3D rigid body simulator.
Here, 1 show you how to develop a simple flight simulator based on the aerodynamic
model discussed in Chapter 7.

Chapter 16, Multiple Bodies in 3D
This chapter extends the example program presented in Chapter 15 by adding the
ability to handle several rigid bodies as well as collision detection and response in
3D. The example presented here consists of a car crashing into a couple of test blocks.

Chapter 17, Particle Systems
This chapter illustrates what you can achieve with simple particle simulations.
Specifically, this chapter presents an example simulation that uses a system of
particles and springs to mimic cloth. The example program simulates a cloth flag
fluttering in the wind while hanging from a flagpole.

Appendix A, Vector Operations
This appendix shows you how to implement a C++ class that caprures all of the
vector operations that you’ll need when writing 2D or 3D simulations.

Appendix B, Matrix Operations
This appendix implements a class that captures all of the operations you need to
" handle 3x3 matrices.
Appendix C, Quaternion Operations
This appendix implements a class that captures all of the operations you need to
handle quaternions when writing 3D rigid body simulations.

xiv | Preface

In addition to resources pertaining to real-time simulations, the bibliography at the end
of this book provides sources of information on mechanics, mathematics, and other
specific technical subjects, such as books on aerodynamics.

Conventions in This Book

The following typographical conventions are used in this book:

Constant width)
is used to indicate command-line computer output, code examples, and keyboard
accelerators.

Constant width italic .
is used to indicate variables in code examples.

Italic
is used to introduce new terms and to indicate URLs, variables, filenames and
directories, commands, and file extensions.

Bold
is used to indicate vector variables.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please
let us know about ertors you may find, as well as your suggestions for future editions,
by writing to:

O'Reilly & Assoctates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

{800} 998-9938 (in the U.S. or Canada)
{707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list examples, errata, and any plans for
future editions. You can access this information at:

http:/fwww.oreilly.com/catalog/physicsgame

You can also send messages using email. To be put on our mailing list or request a
catalog, send email to:

info@oreilly.com
To comment on the book, send email to:

bookquestions@oreilly.com

-g’rli_

Preface | v

Acknowledgments

Iwant to thank Robert Denn, the editor of this book, for his skiliful-geview of my writing
and his insightful comments and suggestions, not to mention his patience. | also want
to express my appreciation to O’Reilly & Associates for agreeing to take on this project,
giving me the opportunity to develop an idea I had been tossing around for over a year.
Further, special thanks goes to all of the production and technical staff at O’Reilly

Thanks goes to Gary Powell, with MathEngine Ple, Dr. Steven Collins, with Havok.com,
and John Nagle, with Animats, for their expert comments and answers my various
questions regarding game physics and real-time simulators. I can’t forget the technical
reviewers, Sam Kalat, Mike Keith, and Michelle McDonald, for their thoughtful and
expert comments and suggestions. Also, special thanks goes to my business partner and
long-time friend, Glenn Seemann, who got me started in computer game development.
Finally, I want to thank my loving wife and best friend, Helena, for her endless support
and encouragement, and our new baby girl, Natalia, for making every day special.

xi | Preface

CHAPTER 1
Basic Concepts

+
A

As a warm-up, this chapter will cover the most basic of principles that will be used and
referred to throughout the remainder of this book. First, I'll introduce Newton’s laws
of motion, which are very important in the study of mechanics. Then I'll discuss units
and measures and explain the importance of keeping track of units in your calculations.
You'll also have a look at the unics associated with various physical quantdes thatyou'll
be studying. After discussing units, I'll define our general coordinate system, which will
serve as our standard frame of reference. Then 'l explain the concepes of mass, center
of mass, and moment of inertia and show you how o calculate these quantities for
a collection, or combination, of masses. Finally, I'll discuss Newton’s second law of
motion in greater detail and take a quick look at vectors.

Newton’s Laws of Motion

In the late 1600s (around 1687), Sir Isaac Newton put forth his philosophies on me-
chanics in his Philosophiae Naturalis Principia Mathematia. In this work, Newton stated
the now-famous laws of motion, which are summarized here:

Lawl
A body tends to remain at rest or continue to move in a straight line at constant
velocity unless it is acted upon by an external force. This is the concept of inertia.
Law I
The acceleration of a body is proportional to the resultant force acting on the body,
and this acceleration is in the same direction as the resultant force.
Law III
For every force acting on a body (action) there is an equal and opposite reacting
force (reaction) in which the reaction is collinear to the acting force.

These laws form the basis for much of the analysis in the field of mechanics. Of particular
interest to us in the study of dynamics is the second law, which is written

F =ma

kL

where F is the resultant force acting on the body, m is the mass of the body, and a is the
linear acceleration of the body’s center of gravity. I'll discuss this second law in greater
detail later in this chapter, but before that there are some more fun‘démental issues that
‘must be addressed.

Units and Measures

Over the years of teaching various engineering courses, I've observed that one of the
most common mistakes my studen:, make when performing calculations is using the
wrong units for a quantity, thus failing to maintain consistent units, resulting in some
pretty wacky answers. For example, in the field of ship performance the most commonly
misused unit is that for speed, when people forget to convert speed in knots to speed
in ft/s or m/s. One knot is equal to 169 ft/s, and considering that many quantities
of interest in this field are proportional to speed squared, this mistake could result in
answers that are as much as 185% off target! So if some of your results look suspicious
later on, the first thing you need to do is go back to your formulas and check their
dimensional consistency.

To check dimensional consistency, you must take a closer look at your units of measure
and consider their component dimensions. I am not talking about 2D or 3D type
dimensions here, but rather the basic measurable dimensions that will make up various
derived units for the physical quaritities that we will be using. These basic dimensions
are mass, length, and time.

It is important for you to be aware of these dimensions, as well as the combinations
of these dimensions that make up the other derived units, so that you can ensure
dimensional consistency in your calculations. For example, you know that the weight
of an object is measured in units of force, which can be broken down into component
dimensions:

F ={(M)(L/T?

where M is mass, L is length, and T is time. Does this look familiar? Well, if you
consider that the component units for acceleration are (L/T?), let a be the symbol for
acceleration, and let m be the symbol for the mass of an object, you get

F =ma

which is the famous expression of Newton's second law of motion. I will take a closer
look at this equation later.

By no means did I just derive this famous formula. What I did was check its dimensional
consistency, albeit in reverse. All it means is that any formulas you develop to represent
a force acting on a body had better come out to a consistent set of units in the form of
(M)(L/T?). This might seem trivial at the moment; however, when you start looking
at more complicated formulas for the forces acting on a body, you'll want to be able
to break down these formulas into their component dimensions so that you can check
their dimensional consistency. Later, we will be using actual units, either the English

2 | Chapter1: Basic Concepts

system or the SI (Systéme International), for our physical quantities, and unless you
want to show these values to your gamers, it really does not martter which system you
use in your games. Again, what is important is consistency.

To help clarify this point, consider the formula for the friction drag on a body moving
through a fluid, such as water:

Ri= 1/5pV*SC;

In this formula, Ry represents resistance (a force) due to friction, p is the density of
water, V is the speed of the moving body, $ is the submerged surface area of the body,
and Cs is an empirical (experimentally determined) drag coefficient for the body. Now
tewriting this formula in terms of basic dimensions instead of variables will show thar
the dimensions on the left side of the formula match exactly the dimensions on the
right side. Since Rs is a force, its basic dimensions are of the form

(MY(L/TY

as discussed earlier, which implies that the dimensions of all the terms on the right side
of the equation, when combined, must yield an equivalent form. Considering the basic
units for density, speed, and surface area:

Density
(M)/(L?)
Speed
(L)/(T)
Area
(L3
and combining these dimensions for the terms p V2 S as follows:
(M) (LAY ALY

and collecting the dimensions in the numerator and denominator, we get the following
form:

(ML?L) /(LT
Canceling dimensions that appear in both the numerator and denominator yields
M(L/T?)

which is consistent with the form shown earlier for resistance, Rs. This exercise also
reveals that the empirical term, Ci, for the coefficient of friction must be nondimen-
sional, that is, it is a constant number with no units.

With that, let’s take a look at some more common physical quantities that you will be
using, along with their corresponding symbols, component dimensions, and units in
both the English and SI systems. This information is summarized in Table 1-1

.ﬁ,l.‘_'

Units and Measures | 3

Table 1-1. Common Physical Quantities and Units

L4 W s s i s
i % H

a
Acteleration, angular o radian/T2 radian/s? radian/s*
Density P Mii slug/fe kg/m?
Force f MILITY paund, lb newton, N
Kinematic viscosity v tur /s m/fs
Length Lorx, v, 2) { feet, ft meters, m
Mass m M Slug kilogram, kg
Moment {torque) M (see footnote®) MEYTH ft-Ib N-m
Mass Moment of Inertia / M2 Ib-fi-s? kg-m?
Prassure P ML) b/t N/m?
Time T T seconds, 5 seconds, §
Velodity, linear v ur ft/s m/s
Velocity, angular w radian/T radian/s radian/s
Viscosity M MALT) b s/ft2 Ns/m?

2 | general, | will use a capital M to represent a moment (torque) acting on a bady and a lowercase m to represent the mass of a
body. If ¥m refeming to the basic dimension of mass ina general sense, that s, referring to the dimensional components of derived
units of measure, [use a capital M. Usually, the meanings of these symhals will be obvious based on the cantext in which they
are used; however, | will specify their meanings in cases in which ambiguity may exist.

Coordinate System

Throughout this book I will refer to a standard right-handed Cartesian coordinate
system when specifying position in 2D or 3D space. In two dimensions I will use
the coordinate system shown in Figure 1-1a, in which rotations are measured positive
counterclockwise. '

a. Two dimensions b. Three dimensions

Figure 1-1. Right-Handed Coordinate System

4 | Chapter1: BasicConcepts

In three dimensions I will use the coordinate system shown in Figure 1-1b, in which
rotations about the x-axis are positive from positive y to positive z, rotations about
the y-axis are positive from positive z to positive x, and rotations about t_he z-axis are -
positive from positive x to positive y.

Vectors

Let me take you back for a moment to your high school math class and review the
concept of vectors. Essentially, a vector is a quantity that has both magnituae and
direction. Recall that a scalar, unlike a vector, has only magnitude and no direction. It:
mechanics, quantities such as force, velocity, acceleration, and momentum are vectors,
and you must consider both their magnitude and direction. Quantities such as distance,
density, and viscosity are scalars.

With regard to notation, I'll use boldface type to indicate a vector quantity, such as
force, F. When referring to the magnitude only of a vector quantity, I'll use lightface
type. For example, the magnitude of the vector force, F, is F with components alotg the
coordinate axes, Fy, Fy, and F,. In the code samples throughout the book, I'll use the *
symbol to indicate vector dot product or scalar product operations, depending on the
context, and I'll use the ~ symbol to indicate vector cross product operations.

Because we will be using vectors throughout this book, it is important that you refresh
your memory on the basic vector operations, such as vector addition, dot product,
and cross product. For your convenience, so that you don’t have to drag out that old
math book, I've included a summary of the basic vector operations in Appendix A.
This appendix provides code for a Vector class that contains all the important vector
math functionality. Further, I explain how to use specific vector operations, such as
the dot product and cross product operations, to perform some commeon and useful
calculations. For example, in dynamics you'll often have to find a vector perpendicular,
or normal, to a plane or contacting surface; you use the cross product operation for this
task. Another common calculation involves finding the shortest distance from a point
to a plane in space; here you use the dot product operation. Both of these tasks are
described in Appendix A, and I encourage you to review it before delving too deeply in
the example code presented throughout the remainder of this book.

Mass, Center of Mass, and Moment of Inertia

The properties of a body, mass, center of mass, and moment of intertia, collectively
called mass properties, are absolutely crucial to the study of mechanics, as the linear
and angular* motion of a body and a body’s response to a given force are functions
of these mass properties. Thus, to accurately model a body in motion, you need to

* Linear motion refers to motion in space without regard to rotation; angular motion specifically refers to the
rotation of a body abour any axis (the body may or may not be undergping linear motion ar the same time).

s

Mass, Center of Mass, and Moment of Inertia | 5

know or be capable of calculating these mass properties. Let’s look at a few definitions
first.

In general, people think of mass as a measure of the amount of Hateer in a body: For
our purposes in the study of mechanics, we can also think of mass as a measure of a
body’s resistance to motion or a change in its motion. Thus, the greater a body’s mass,
the harder it will be to set it in motion or change its motion.

In laymen’s terms, the center of mass (also known as center of gravity) is the poincin a
body around which the mass of the body is evenly distributed. In mechanics, the center
of mass is the point through which any force can act on the body without resulting in
a rotation of the body

Although most people are familiar with the terms mass and center of gravity, the term
moment of inertia is not so familiar; however, in mechanics it is equally important. The
mass moment of inertia of a body is a quantitative measure of the radial distribution of
the mass of a body about a given axis of rotation. Analogous to mass being a measure
of a body’s resistance to linear motion, mass moment of inertia is a measure of a body's
resistance to rotational motion.

Now that you know what these properties mean, let’s look at how to calculate each.

For a given body made up of a number of particles, the total mass of the body is
simply the sum of the masses of all elemental particles making up the body, where the
mass of each elemental particle is its mass density tmes its volume. Assuming that
the body is of uniform density, then the roral mass of the body is simply the density
of the body times the total volume of the body This is expressed in the following

equation:
m=fpdV=p[dV

In practice, you rarely need to take the volume integral to find the mass of a body,
especially considering that many of the bodies we will consider, for example, cars
and planes, are not of uniform density. You will simplify these complicated bodies
by breaking them down into an ensemble of component bodies of known or easily
calculable mass and simply sum the masses of all components to arrive at the total
mass.

The calculation of the center of gravity of a body is a little more involved. First, divide
the body into an infinite number of elemental masses with the center of each mass
specified relative to the reference coordinate system axes. Next, take the first moment
of each mass about the reference axes and then add up all of these moments. The first
moment is the product of the mass times the distance along a given coordinate axis
from the origin to the center of mass. Finally, divide this sum of moments by the total
mass of the body, yielding the coordinates to the center of mass of the body relative to
the reference axes. You must perform this calculation once for each dimension, that is,
twice when working in 2D and three times when working in 3D. Here are the equations

6 | Chapter1: BasicConcepts

for the 3D coordinates of the center of mass of a body:

= {[retn) /o
| s
o~ ([win] /m

where (x, y, z)c are the coordinates of the center of mass for the body and (x, y, z),
are the coordinates to the center of mass of each elemental mass. The quantities x, dm,
¥, dm, and z, dm represent the first moments of the elemental mass, dm, about each of
the coordinate axes. E

Here again, don’t worry roo much about the integrals in these equations. In practice you
will be summing finite numbers of masses, and the formulas will take on the [riendlier
forms shown here:

= [Sen) /(S
=[S /(2
o= [Sen] /[0

Note that you can easily substicute weights for masses in these formulas since the
constant acceleration due to gravity, g, would appear in both the numerators and de-
nominators, thus dropping out of the equations. Recall that the weight of an object is its
mass times the acceleration due to gravity, g, which is 32174 ft/s? (9.8 m/s?) at sea level.

The formulas for calculating the total mass and center of gravity for a system of discrete
point masses can conveniently be written in vector notation as follows:

m, = Zmi
CG =Y (cgtm] /m,

where m, is the total mass, m; is the mass of each point mass in the system, CG is the
combined center of gravity, and cg; is the location of the center of gravity of each point
mass in design, or reference, coordinates. Notice that CG and cg; are shown as vectors,
since they denote position in Cartesian coordinates. This is a matter of convenience,
since it allows you to take care of the x, y, and z (or just x and y in two dimensions)
components in one shot.

In the code samples thar follow, let’s assume that the point masses making up the body
are represented by an array of structures in which each structure contains the point

|
el

Wa

Mass, Center of Mass, and Moment of Inertia | 7

mass’s design coordinates and mass. The structure will also contain an element to hold
the cootdinates of the point mass relative to the combined center of gravity of the rigid
body, which will be calculated later. i

typedef struct _PointMass

float mass;

Vector designPosition;

Vector correctedPosition;
} PointMass;

// Assume that _NUMELEMENTS has been defined
PointMass Elements{_NUMELEMENTS];

Here’s some code that illustrates how to calculate the total mass and combined center
of gravity of the elements:

int i

float TotalMass;

Vector CombinedCG;
Vector FirstMoment;

TotalMass = 0;
for(i=0; i< NUMELEMENTS; i++)
TotalMass+= Elements[I].mass;

FirstMoment = Vector{o, 0, 0);
for{i=0; i<_NUMELEMENTS; i++)

FirstMoment += Element[i].mass * Element{i].designPosition;

}
CombinedCG = FirstMoment / TotalMass;

Now that the combined center of gravity location has been found, you can calculate the
relative position of each point mass as follows:

for(i=0; i<_NUMELEMENTS; i++)

Element[i].correctedPosition = Element[i].designPosition -
CombinedCG;
}

To calculate the mass moment of inertia, you need to take the second moment of each
elemental mass making up the body abouteach coordinate axis. Here, the lever isnot the
distance to the elemental mass centroid along the coordinate axis, as in the calculation
for center of mass; it is the perpendicular distance from the coordinate axis, about
which we want to calculate the moment of inertia, o the elemental mass centroid. The
second moment is then the product of the mass times this distance squared.

Referring to Figure 1-2 for an arbitrary body in three dimensions, when calculating
moment of inertia about the x-axis, I, this distance, r, will be in the yz-plane such
thatr2 = y* + 22, Similarly, for the moment of inertia about the y-axis, Iy, 7y = 22 + x%,
and for the moment of inertia about the z-axis, ., r> = x* + ¥%.

z

8 | Chapter1: BasicConcepts

X

" XY-Plane . XZ-Plane

Figure 1-2. Arbitrary Body in 3D
N

The equations for mass moment of inertia about the coordinate axes in 3D are:
 — f ridm= f(y2 + 25 dm
Iy =fr§dm‘#f(zl+xz)dm
I.= frzzdm = f(x2 +y2)dm

lLet's look for a moment at a commeon situation that arises in practice. Say you are
given the moment of inertia, I, of a body about an axis, called the neutral axis, passing
through the center of mass of the body, but you want to know the moment of inertia,
I, about an axis some distance from, but parallel to, this neutral axis. In this case, you
can use the ransfer of axes, or parallel axis theorem, to determine the moment of inertia
about this new axis. The formula to use is

I=1,+md?

where m is the mass of the body and d is the perpendicular distance between the parallel
axes.

There is an important practical observation to make here: the new moment of inertia is
a function of the distance separating the axes squared. This means that in cases in which
I, is known to be relatively small and d relatvely large, you can safely ignore I, since
the md? term will dominate. You must use your judgment here, of course. This formula
for transfer of axes also indicates that the moment of inertia of a body will be at its
minimum when calculated about an axis passing through the body’s center of graviry.
The body’s moment of inertia about any parallel axis wilt always increase by an amount
md? when calculated about an axis that does not pass through the body’s center of
mass.

In practice, calculating mass moment of inertia for all but the simplest shapes of uniform
density is a complicated endeavor, so we will often approximate the moment of inertia

-g’rli‘_'

Mass, Center of Mass, and Moment of nertia 2 9

of a body about axes passing through its center of mass by using simple formulas for
basic shapes that approximate the object. Further, we will break down complicated
bodies into smaller components and take advantage of the fact thatyf, may be negligible
for certain components, considering its md? contribution to the total body’s moment
of inerta.

Figures 1-3 through 1-7 show some simple solid geometries for which you can easily
calculate mass moments of inertia. The mass moment of inertia formulas for each of
these simple geometries of homogenous density about the three coordinate axes are
shown in the figure captions. Similar formulas for other basic geometries can readily be
found in college-level dynamics texts (see the bibliography at the end of this book for
a few sources).

Figure 1-4. Circular Cylindrical Shell; L, = Iy = (1/2)mr? + (1/ 2yml?; I, = mr?

As you can see, these formulas are relatively simple to implement. The trick here is to
break up a complex body into a number of smaller, simpler representative geometries
whose combination will approximate the complex body’s inertia properties. This exer-
cise is largely a matter of judgment considering the desired level of accuracy.

10 | Chapter1: BasicConcepts

t

Figure 1-5. Rectangular Cylinder; I, = (1/12)mia® +1%); I,, = (1/Rm(? +19); L. = (/1)
mla? -+ b2 S .

Figure 1-6. Sphere; I, = I, = I, = @/5)mr?

Mass, Center of Mass, and Moment of Inertla | 11

Let’s look at a simple 2D example demonstrating how to apply the formulas discussed
in this section. Suppose you’re working on a top-down view auto racing game in which
you want to simulate the automobile sprite based on 2D rigid bogy dynamics. At the
start of the game the player’s car is at the starting line, full of fuel and ready to go. Before
starting the simulation, you need to calculate the mass properties of the car, driver, and
fuel load at this initial state. In this case, the body is made up of three components: the
car, driver, and full load of fuel. Later on during the game, however, the mass of this
body will change as fuel burns off and the driver gets thrown after a crash. For now,
let’s focus on the initial condition as illustrated in Figure 1-8.

Car

Driver

Fuel Tank

0.0) X NOTTOSCALE

Figure 1-8. Example Body Consisting of Car, Driver, and Fuel

The properties of each component in this example are given in Table 1-2. Note that
length is measured along the x-axis, width is measured along the y-axis, and height
would be coming out of the paper. Also note that the coordinates, in the form {x,), to
the centroid of each component are referenced to the global origin.

Table 1-2. Example Properties

Z : river (seated
Length = 15.5 ft length = 3.0t length = 1.5ft
Width == 6.0ft Width = 1.5t Width =3.0ft
Height == 4.1 ft Height =35t Height = 1.0 ft
Weight = 3913.01b Weight = 190.0Ib Density of Fuel = 1.45 slug/f’

Centroid = (100,100} ft Centroid = (103, 105)ft Centrold = (93, 100} ft

The first mass property we want to calculate is the mass of the body. This is a simple
calculation, since we are already given the weight of the car and the driver. The only
other component of weight we need is that of the fuel. Since we are given the mass
density of the fuel and the geometry of the tank, we can calculate the volume of the
tank and multiply by the density and the acceleration due to gravity to get the weight

12 | Chapter1: Basic Concepts

of the fuel in the tank. This yields 210 Ib of fuel as shown here:

Wil = pvg = (1.45 slug/f*) (1.5 f) (3 £O) (1 Fo)(32.174 fi/s?) = 210 b

Now, the total weight of the body is

‘Vtotal = Mar + ‘Vdriver + “jfuel
Wioeal = 391316+ 1901b 4+ 2101b = 4317 b

To get the mass of the bodj; you simply divide the weight by the acceleration due to
gravity:

L

Mol = Wigal Jg=43171b/(32.174 fr/s?) = 134.2 slugs

A slug is a strange-sounding unit that you might not feel comfortable using, so con-
verting to SI units for mass, we get 1958.2 kg, nearly 2 metric tons.

The next mass property we want is the location of the center of gravity of the body. In
this example we will calculate the centroid relative to the global origin and will apply the
first moment formula twice, once for the x-coordinate and again for the y-coordinate,
as shown here:

Xcgbody = {(xcgcar)(‘vcar) + (xcgdrivar)(wdriver) + (xcgfuel)(Muel)}/ Wetal
Xegbody = ({100 fr)(3913 1b) + (103 f£) (190 Ib) + (100 fr)(2101b)} /4317 Ib
Xcgbody =99.7ft

chbody = {(ycgcar)(“Jcar) + (ycgdriver)(Wdriver) + (ngfuel)(Muel)}/‘fthal
Yegbody = {{100 £}(3913 Ib) + (105 ££) (190 tb) + (100 ft)(2101b)} /4317 Ib
chbody = 100.1 ft

Notice that we used weight in these equations instead of mass. Remember that we can
do this because the acceleration due to gravity built into the weight value is constant
and appears in both the numerator and denominator, thus canceling out.

Now it’s time to calculate the mass moment of inertia of the body. This is easy enough
in this 2D example, since we have only one rotational axis, coming out of the paper,
and therefore need to perform the calculation only once. The first step is to calculate
the local moment of inertia of each component about its own neutral axis. Given the
limited information we have on the geometry and mass distribution of each compo-
nent, we will make a simplifying approximation by assuming that each component
can be represented by a rectangular cylinder and will therefore use the correspond-
ing formula for moment of inerta. In the equations that follow, I'll use a lowercase

Mass, Center of Mass, and Moment of Inertia | 13

* w to represent width so as to not confuse it with weight, for which I've been using a
capital W.

)
St
¥

Iocar = (m/u)(wl + LZ)
Iy ewr = ((39131b/32.174 ft/s2)/12) (6.0 £)? + (15.5 f)2) = 2800 1b-s7-ft
Iodriver = (m/lz)(w:! + LZ)
L griver = ((1901b/32.174 ft/52)/120((1.5 £0)2 4+ (3.0 f)?) = 5.51b-s"ft
Iofue} = (m/lz)(.WZ + Ll)
L ga = ((2101b/32.174 fi/s2)/12) (3.0 f0)2 4+ (1.5f9%) = 6.11b-s>-ft

Since these are the moments of inertia of each component about its own neutral axis, we
now need to use the parallel axis theorem to transfer these moments to the neutral axis
of the body, which is located at the body center of gravity that we recently calculated.
To do this, the distance from the body center of gravity to each component’s center of
gravity must be found. The distances squared from each component to the body center
of gravity are :

dclar = (Xegear — Xcg)2 + (Yegear — ch)2
d2. = (100t — 99.7 ft)? + (100 fr — 100.1 f)> = 0.1 fc"
dﬁriver = (xCSdfi"’er - Cg)2 + ()’cgdriver - cg)z

42 = (103 ft — 99.7 ft)* + (105 fr — 100.1 f)? = 34,91t

driver

dfzuel = (Xcgfuel — Xcg)l + (Yegfuel — ch)z
dZ | = (93 fr — 99.7 f9) + (100 ft — 100.1ft)* = 449 fr*

Now we can apply the parallel axis theorem as follows:

Jgear = I + md?
Legear = 2800 Ib-s-ft + (3913 1b/32.174 £t/s7)(0.1 fr%) = 2812 Ib-s™-ft
gdriver = Io + md?
Iegariver = 5.5 Ib-s-ft + (190 1b/32.174 ft/s*) (34.9 ft*) = 211.6 Ib-s"-ft
Legtuel = I, + md?
Legiuel = 6.11b-s-ft + (210 1b/32.174 ft/s")(44.9 ft”) = 299.2 1b-s"-ft

Notice the obvious relatively large contribution to I, for the driver and the fuel due to
the md? terms. In this example, the local inertia of the driver and fuel are only 2.7% and
21%; respectively, of their corresponding md” terms.

14 | Chapter1: Basic Concepts

Finally, we can obtain the total moment of inertia of the body about its own neutral
axis by summing the I, contributions of each component as follows:

Icg total = Icgcar + Icgdriver + Icgfuel "_‘7
Tegrot = 2812 Th-s*-ft + 211.6 b-s*-ft + 299.2 Ib-s?-ft = 3322.8 Ib-s>-ft

In summary, the mass properties of the body, that is, the combination of the car, driver
and full tank of fuel, are shown in Table 1-3.

Table 1-3. Example Summary of Mass Properties

;Property oinn Computed Value -
Total Mass (weight) 134.2 slugs (4317 ib)
Combined Center of Mass Location (¥, y] =(99.7 ,100.1ft)
Mass Moment of Inertia 33228 b-s2-ft

Itis important that the concepts illustrated in this example are well understood because

as we move on to mote complicated systems and especially to general motion in 3D,

these calculations are only going to get more complicated. Moreover, the motion of
the bodies to be simulated are functions of these mass properties, in that mass will

determine how these bodies are affected by forces, center of mass will be used to track.
position, and mass moment of inertia will determine how these bodies rotate under the

action of noncentroidal forces.

So far, we have looked at moments of inertia about the three coordinace axes in 3D
space. However, in general 3D rigid body dynamics, the body may rotate about any
axis, not necessarily one of the coordinate axes, even if the local coordinate axes pass
through the body center of mass. This complication implies that we must add a few
more terms to our set of I’s for a body to handle this generalized rotation. I will address
this topic further in the last section of this chapter, but before I do that, I need to go
over Newton'’s second law of motion in detail.

Newton’s Second Law of Motion

As [stated in the first section of this chapter, Newrton’s second law of motion is of
particular interest in the study of mechanics. Recall that the equation form of Newton’s
second law is

F =ma
where F is the resultant force acting on the body, m is the mass of the body, and a is the
linear acceleration of the body center of gravity,
If you rearrange this equation as

F/im=a
you can see how the mass of a body acts as measure of resistance to motion. Observe
here that as mass increases in the denominator for a constant applied force, the resulting

.ﬁ,l.‘_'

Newton's Second Law of Motion | 15

acceleration of the body will decrease. It can be said that the body of greater mass offers
greater resistance to motion. Similarly, as the mass decreases for a constant applied force,
the resulting acceleration of the body will increase, and it can be sdid that the body of
smaller mass offers lower resistance to motion.

Newton’s second law also states that the resulting acceleration is in the same direction

as the resultant force on the body; therefore, force and acceleration must be treated as

vector quantities. In general, there may be more than one force acting on the body at a

given time, which means that the resultant force is the vector sum of all forces acting on

the body. Thus, you can now write '
Z F=ma

where a represents the acceleration vector.

In 3D, the force and acceleration vectors will have x, y,and z componentsin the Car tesian
reference system. In this case, the component equations of motion are written as follows:

ZF" = Mdy
ZFY = may
ZFZ = Ma;

An alternative way to interpret Newton’s second law is that the sum of all forces acting
on a body is equal to the rate of change of the body’s momentum over time, which is the
derivative of momentum with respect to time. Momentum equals mass times velocity,
and since velocity is a vector quantity, so is momentum. Thus,

G=mv

where G is linear momentum of the body, 71 is the body’s mass, and v is velocity of the
center of gravity of the body. The time rate of change of momentum is the derivative of
momentum with respect to time:

dG/dt = d/dt(mv)
Assuming that the body mass is constant (for now), you can write
dG/dt =mdv/dt
Observing that the time rate of change of velocity, dv/dt, is acceleration, we arrive at
dG/dt = ma
and
ZF =dG/dt = ma.

S6 far, we have considered only translation of the body without rotation. In generalized
3D motion, you must account for the rotational motion of the body and will therefore
need some additional equations to fully describe the body’s motion. Specifically, you
will require analogous formulas relating the sum of all moments (torque) on a body

16 | Chapter1: BasicConcepts

to the rate of change in its angular momentum over time or the derivative of angular
momentum with respect to time. Thus,

Y Mg =d/dt(He,)
where 3~ M, is the sum of all moments about the body center of gravity, and H is the
angular momentum of the body. M, can be expressed as
Mg =rxF

where F is a force acting on the body, r is the distance vector from F, perpendicular to
the line of action of F, to the center of gravity of the body, and x is the vector cross
product operator.

The angular momentum of the body is the sum of the moments of the momentum of
all particles in the body about the axis of rotation, which in this case we assume passes
through the center of gravity of the body: This can be expressed as

H, = Zri x mi{w X 1)

where i represents the ith particle making up the body, is the angular velocity of the
body about the axis under consideration, and (& x r;) is the angular momentum of the
ith particle, which has a magnitude of wr;. For rotation about a given axis this equation
can be rewritten in the form

He, :fwrzdm

Given that the angular velocity is the same for all particles making up the rigid body,
we have

HrCg = w f rzdm
and recalling that moment of inertia, I, equals {r* dm, we get
Hy = low
Taking the derivative with respect to time, we obtain
dHg/dt = d/dt(le) = ldw/dt = I

where « is the angular acceleration of the body abour a given axis.

Z Mcg =l

As | stated in our discussion on mass moment of inertia, we will have to further gen-
eralize our formulas for moment of inertia and angular moment to account for general
rotation about any body axis. Generally, M and & will be vector quantities, while I will
be a tensor,* since the magnitude of moment of inertia for a body may vary depending
on the axis of rotation.

Finally we can write

* In this case, 1 will be a second rank tensor, which is essentially a 3 x 3 matrix. A vecror is acrually a tensor of
rank 1, and a scalar is acrually a tensor of rank zero.

‘“rli'_'

Newton's Second Law of Metion | 17

Tensors

A tensor is a mathematical expression that has magnitude and di¥éction, but its mag-
nitude might not be unique, depending on the direction. Tensors are usually used to
represeni properties of materials when these properties have different magnitudes in dif-
ferent directions. Materials with propertes that vary depending on direction are called
anisotropic (isotropic implies the same magnitude in all directions). For example, con-
sider the elasticity (or strength) of rwo common materials, a sheet of plain paper and a
piece of woven or knitted cloth. Take the sheet of paper and, holding it flat, pull on it
softly from opposing ends. Try this lengthwise, widthwise, and then along a diagonal.
You should observe that the paper seems just as strong, or stretches about the same,
in all directions. It is isotropic; therefore, only a single scalar constant is required to
represent its strength for all directions.

Now try to find a piece of cloth with a simple, relatively loose weave in which the
threads in one direction are perpendicular to the threads in the other direction. Most
neckdes will do. Try the same pull test that you conducted with the sheet of paper,
pulling the cloth along each thread direction and then at a diagonal to the threads. You
should observe that the cloth stretches more when you pull it along a diagonal to the
threads than when you pull it along the direction of the run of the threads. The cloth is
anisotropic in that it exhibits different elastic (or strength) properties depending on the
direction of pull; thus, a cotlection of vector quantities (a tensor) is required to represent
its strength for all directions.

In the context of the subject of this book, the property under consideration is a body’s
moment of inertia, which in 3D requires nine components to fully describe it for any
arbitrary rotation. Moment of inertia is not a strength property as in the paper and cloth
example, but it is a property of the body that varies with the axis of rotation. Since nine
components are required, moment of inertia will be generalized in the form ofa 3 x 3
matrix (second-rank tensor) later in this book.

I need to mention a few things at this point regarding coordinates, which will become
important when you're writing your real-time simulator. Both the equations of motion
have, so far, been written in terms of global coordinates and not body-fixed coordinates.
That’s okay for the linear equation of motion, in which you can track the body’s location
and velocity in the global coordinate system. However, from a computational point of
view, you don’t want to do that for the angular equation of motion for bodies that
rotate in three dimensions.* The reason why is because the moment of inertia term,
when calculated with respect to global coordinates, actually changes depending on the
body’s position and orientation. This means that during your simulation you’ll have to
recalculate the inertia matrix (and its inverse) a lot, which is computationally inefficient.
It’s better to rewrite the equations of motion in terms of local (attached to the body)
coordinates so that you have to calculate the inertia matrix (and its inverse) only once,
at the start of your simulation.

* In two dimensions it’s okay to leave the angular equation of motion as it is shown here, since the moment of
inertia term is simply 2 constant scalar quantity.

18 | Chapter1: Basic Concepts

In general, the time derjvative of a vector, V, in a fixed (nonrotating) coordinate system
is related to its time derivative in a rotating coordinate system by the following equation:

(dv/dt)ﬁxed = (dv/dt)mt + (w x V)

The (w x V) term represents the difference between V’s time derivative as measured
in the fixed coordinate system and V’s time derivative as measured in the rotating
coordinate system. We can use this reladon to rewrite the angular equation of motion
in terms of local, or body-fixed, coordinates. Further, the vector to consider is the angular
momentum vector Hgg. Recall that He; = Iw, and its time derivative is equal to the sum
of moments about wue body’s center of gravity These are the pieces you need for the
angular equation of motion, and you can get to that equaton by substituting H, in
place of V in the derivative transform relation as follows:

3 M= dHe/dt = 1dew/dt) + @ x (w) — *

where the moments, inertia tensor, and angular velocity are all expressed in local (body}
coordinates. Although this equation looks a bit more complicated than the one I showed
you earlier, it is much more convenient to use, since I will be constant throughout your
simulation (unless your body’s mass or geometry changes for some reason during your
simulation) and the moments are relatively easy to calculate in local coordinates. You’ll
put this equation to use later, in'Chapter 15, when I show you how to develop a simple
3D rigid body simulator. '

Inertia Tensor

Take another look at the angular equation of motion and notice that [wrote the inertia
term, I, in bold, implying thar it is a vector. You've already seen that for 2D problems,
this inertia rerm reduces to a scalar quantity representing the moment of inertia about
the single axis of rotaton. However, in three dimensions there are three coordinate axes

- about which the body can rotate. Moreover, in generalized three dimensions the body
“can rotate about any arbitrary axis. Thus, for 3D problems, I, is actually a 3 x 3 matrix,

a second-rank tensor.

To understand where this inertia matrix comes from, you must look again at the angular
momentum equation:

Hcg=f(rxuxr)dm

where w is the angular velocity of the body, r (see Figure 1-9) is the distance from
the body’s center of gravity to each elemental mass, dm, and {(wx r) is the angular
momentum of each elemental mass. The term in parentheses is called a wriple vector
product and can be expanded by taking the vector cross products; r and w are vectors
that can be written as follows:

r=xi+y+zk
w = wyl +w,j+wk

el

InertiaTensor | 19

Expanding the triple vector product term yields
Hy = f (L2 + Py — xyw, — xzw i+ [=ymw, + (@ 4wy — yzw,lj
+ [—zxwy = Zyw, + (6% + ywzlk} dm

To simplify this equation, let’s replace a few terms by letting

Ly = f(y2+z1)dm
Iy, = f(:»:2 + x%) dm
L, = f(x2 +y?dm
Ly =lx= f (xy) dm
Ly =l = f(xz}dm

I, =1, = f(yz)dm

Substituting these I -variables, some of which should look familiar to you, back into the
expanded equation yields

Hcg = [Lopwx — Lywy — Law|i+ [_Iyxwx + Iyy‘-"’y - Iyzwz]j
+ [_szwx - Izywy + Izzwz]k

Simplifying this a step further by letting I be a matrix:

Loo— by ~ Lz

I= _IYX Iyy_ Iyz - sz - IZY IZZ-
yields the following equaton:
H, =l

You already know that I represents the moment of inertia, and the terms that should
look familiar to you already are the moment of inertia terms about the three coordinate
axes, Lix, Iy, and I ;. The other terms are called products of inertia:

Ix}, = IYX = f(xy) dm
Lo = I = f (x2) dm

Ipy=1I;= f(yz)dm

20 | Chapter1: Basic Concepts

z

Figure 1-9. Products of Inertia

Just like the parallel axis theorem, there’s a similar transfer of axis formula that applies
to products of inertia:

Ixy = ID(XY) + mdxdy

Ixz = Io(xz) + mdxdz

Iyz = Io(yz) + mdydz
where the I, terms represent the local products of inertia, that is, the products of inertia
of the object about axes that pass through its own center of gravity, m is the object’s mass,

and the d terms are the distances between the coordinate axes that pass through the
object’s center of gravity and a parallel set of axes some distance away (see Figure 1-10).

Yo

dm

X
/ ‘ dz

yd dx
z

Figure 1-10. Transfer of Axes

‘u,i.‘

InertiaTensor | 21

You'll notice that I did not give you any product of inertia formulas for the simple shapes
shown earlier. The reason is that the given moments of inertia were about the principal
axes for these shapes. For any body there exists a set of axes orienféﬁ with respect to the
body such that the product of inertia terms in the inerta tensor are all zero.

For the simple geometries shown earlier, each coordinate axis represented a plane
of symmetry, and products of inertia go to zero about axes that represent planes of
symmetry. You can see this by examining the product of inertia formulas, where,
for example, all of the (xy) terms in the integral will be cancelled out by each cor-
responding —(xy) term if the body is symmetric about the y-axis as illustrated in
Figure 1-11.

Figure 1-1. Symmetry

For composite bodies, however, there might not be any planes of symmetry, and the
orientation of the principal axes will not be obvious. Further, you might not even want
to use the principal axes as your local coordinate axes for a given rigid body, since it
might be awkward to do so. For example, take the airplane in the FlightSim example that
I discuss in Chapter 7, in which you’ll have the local coordinate design axes running,
relative to the pilot, fore and aft, up and down, and left and right. This orientation is
convenient for locating the parts of the wings, tail, elevators, and so on with respect to
each other, but these axes don’t necessarily represent the principal axes of the airplane.
The result is that you’ll use axes that are convenient and deal with the nonzero preducts
of inertia (which, by the way, can be either positive or negative).

I already showed you how to calculate the combined moments of inertia for a composite
body made up of a few smaller elements. Accounting for the product of inertia terms
follows the same procedure except that, typically, your elements are such that their local
product of inertia terms are zero. This is the case only if you represent your elements by

22 | Chapter1: Basic Concepts

simple geometries such as point masses, spheres, rectangles, and the like. That being
the case, the main contribution to the rigid body’s products of inertia will be due the
transfer of axes terms for each element.

Before looking at some sample code, let’s first revise the element structure to include a
new term to hold the element’sTocal moment of inerna as follows:

typedef struct _PointMass

float mass;
Vector designPosition;
Vector correctedPosition;
Vector locallnertia;

} PointMass;

Here, I'm using a vector to represent the three local moment of inertia terms, and I'm
also assuming that the local products of inertia are zero for each element.

The following code sample shows how to calculate the inertia tensor given the compo-
nent elements:

float Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
Matrix3x3 InertiaTensor;

Ixx
Ixy

0; Izz
0; Iyz

0; Iyy
0; Ixz

0;
9;

for (i=0

{

1¢_NUMELEMENTS; i++)

fory

Ixx += Element[i].Locallnertia.x +

Element[i].mass * (Element[i].correctedPosition.y *
Element[i].correctedPosition.y +
Element[i].correctedPosition.z *

Element[i].correctedPosition.z);

+
[}

Element[i].Locallnertia.y +

Element[i}.mass * (Elementfi].correctedPosition.z *
Element[i].correctedPosition.z +
Element[i}.correctedPosition.x *
Element[1].correctedPosition.x);

Iyy

Izz += Element[i].Llocallnertia.z +
Element[i].mass * {Element[i}.correctedPosition.x *
Element[i].correctedPosition.x +
Element[1i].correctedPosition.y *
Element[i].correctedPosition.y);

Ixy

-
H

Element{i].mass * (Element[i].correctedPosition.x *
Element{i].correctedPosition.y);

Ixz +

n

Element[i].mass * {(Element{i].correctedPosition.x *
Element[i].correctedPosition.z);

Iyz +

Element[i].mass * (Element[i].correctedPosition.y *
Element[1].correctedPosition.z);

}

// e11 stands for element on row 1 column 1, el2 for row 1 column 2, etc.

s

InertiaTensor | 23

InertiaTenscr.ell
InertiaTenscr.e12 :
InertiaTensor.el3 = -Ixz;

non
=
bo3
>
-

InertiaTensor.e2l = -Ixy;

InertiaTensor.e22 = Lyy;
InertiaTensor.e23 = -Iyz;
InertiaTensor.e3l = -Ixz;
InertiaTensor.e32 = -Iyz;

InertiaTensor.e33 = Izz;

Note that the inertia tensor is calculated about axes that pass through the combined
center of gravity for the rigid body, so be sure to use the corrected coordinates for each
element relative to the combined center of gravity when applying the transfer of axes
formulas.

I should zlso mention that this calculation is for the inertia tensor in body-fixed coor-
dinates, or local coordinates. As I discussed earlier in this chapter, it is better to rewrite
the angular equation of motion in terms of local coordinates and use the local inertia
tensor to save some number crunching in your real-time simulation.

24 | Chapter1: Basic Concepts

CHAPTER 2
Kinematics

.

In this chapter I'll explain the fundzmental aspects of the subject of kinematics. Specif-
ically, I'll explain the concepts of linear and angular displacement, velocity, and ac-
celeration. I've prepared an example program for this chapter that shows you how to
implement the kinematic equations for particle motion. After discussing particle mo-
tion, I go on to explain the specific aspects of rigid body motion. This chapter, along
with the next chapter on force, are prerequisites to understanding the subjéct of kinetics,
which you’ll study in Chapter 4. '

Introduction

In the preface I told vou that kinematics is the study of the motion of bodies without
regard to the forces acring on the body: Therefore, in kinematics attention will be focused
on position, velocity, and acceleradon of a body; how these properties are related; and
how they change over dme.

- Here, you'll look at two types of bodies: parnicles and rigid bodies. In the preface 1
stated that a rigid body is a system of particles that remain at fixed distances from
each other with no relatve translation or rotation among them. In other words, a rigid
body does not change its shape as it moves, or any changes in the body’s shape are so
small or unimportant that they can safely be neglected. When considering a rigid body;
its dimensions and orientation are important, and you rmust consider both the body’s
linear motion and its angular motdion.

On the other hand, a particle is a body that has mass, but its dimensions are negligible
or unimportant in the problem being investgated. For example, when considering the
path of a projectile or a rocket over a great distance, you can safely ignore the body’s
dimensions in analyzing its trajectory. When you are considering a particle, its linear
motion is important, but the angular motion of the particle itself is not. It’s as though,
when looking at a problem, you are zooming way out, looking at the big picture, so to
speak, as opposed to zooming in on the body as you do when looking at the rotation
of rigid bodies.

ekl

25

Whether you are looking at problems involving particles or rigid bodies, there are
some important kinematic properties common to both. These are, of course, the ob-
ject’s position, velocity, and acceleration. The next section discusges these properties in
detail. ‘

Velocity and Acceleration

In general, velocity is a vector quantity that has magnitude and direction. Themagnitude
of velocity is speed. Speed is a familiar term: it’s how fast your speedometer says you're
going when you drive your car down the highway. Formally, speed is the rate of travel,
or the ratio of distance traveled to the time it took to travel that distance. In math terms
_ you can write

v = As/At

where v is speed, the magnitude of velocity v, and As is distance traveled over the time
interval At. Note that this reladon reveals that the units for speed are composed of the
basic dimensions length divided by time, L/ T. Some common units for speed are feet
per second, ft/s; miles per hour, mi/h; and meters per second, m/s.

‘Here’s 2 simple example: A car is driving down a straight road; it passes marker 1 at
time #; and marker 2 at time t,, where t; equals 0 s and #; equals 1.136 s. The distance
between these two markers, s, is 100 ft (see Figure 2-1). Calculate the speed of the car.

Figure 2-1. Example: Car Speed

You are given that s equals 100 ft; therefore, As equals 100 ft, and A, equals t, — 1, or
1.136 5. The speed of the car over this distance is

v = As/At = 100ft/1.136 s = 88.03 fu/s

which is approximately 60 mi/h. This is a simple one-dimensional example, but it
brings up an important point, which is that the speed just calculated is the average
speed of the car over that distance. You don’t know anything at this point about the
car’s acceleration or whether or not it is traveling at a constant 60 mi/h. It could very
well be that the car was accelerating (or decelerating) over that 100-ft distance.

26 | Chapter2: Kinematics

To more precisely analyze the motion of the car in this example, you need to understand
the concept of instantaneous velocity. Instantaneous velocity is the specific velocity at a
given instant in time, not over a large time interval as in the car example. This means
that you need to look at very small A#’s. In math terms, you must consider the limit as
At approaches zero, that is, as At gets infinitesimally small. This is written as follows:

v = limaro(As/AL)

In differential terms, velocity is the derivadve of displacement {(charze in position) with
respect to time,

v = ds/dt

You can rearrange this relationship and integrate over the intervals from s; to's; and f;
to t as shown here: "

vdt =ds

52 [%3
f ds = f vdt
51 1]

i
§3 —51 = As :f vdf
]
This relation shows that displacement is the integral of velocity over time. This gives
you a way of working back and forth between displacement and velocity.

In kinematics an important distinction is made between displacement and distance
traveled. In one dimension, displacement s the same as distance traveled; however, when
considering vectors in space, displacement is actually the vector from the initial position
to the final position without regard to the path traveled; displacement is the difference
between the starting position coordinates and the ending position coordinates. Thus,
you need to be careful when calculating average velocity given displacement if the path
from the starting position to the final position is not a straight line. When At is very
small (as it approaches zero), displacement and distance traveled are the same.

Another important kinematic property is acceleration, which should also be familiar
to you. Referring to your driving experience, you know that acceleration is the rate
at which you can increase your speed. Your friend who boasts that his brand-new
XYZ 2001 can go from 0 o 60 in 4.2 seconds is referring to acceleration. Specifically, he
is referring to average acceleration.

Formally, average acceleration is the rate of change in velocity, or Av over At:
a=Av/At
Taking the limit as At goes to zero gives the instantaneous acceleration:
a = limaso Av/AL
a=dv/dt

Thus, acceleration is the time rate of change in velocity, or the derivative of velocity with
respect to time.
e

fhat

Velodty and Acceleration | 27

Rearranging and integrating yield

dv=adt ol

Vi 5] 1
f d‘b’-—mf adt
vy 131
t -
vz—vlev=f adt
5

This relationship provides a means to work back and forth between velocity and
acceleration. :

Thus, the relationships between displacement, velocity, and acceleration are
a = dv/di = d*sjdt*

and
vdv =ads

This is the kinematic differential equation of motion. In the next few sections you'll
have a look at some examples of the application of these equations for some common
classes of problems in kinematics. e

Constant Acceleration

One of the simplest classes of problems in kinematics involves constant acceleration.
A good example of this sort of problem involves the acceleration due to gravity, g, on
objects moving relatively near the earth’s surface where the gravitational acceleration is
a constant 32.174 ft/s* (9.8 m/s?). Having constant acceleration makes integration over
time relatively easy, since you can pull the acceleration constant out of the integrand,
leaving just dt.

Integrating the reladonship between velocity and acceleration described earlier when
acceleration is constant yields the following equation for instantaneous velocity:

vy 5
[dv :f adt
vy £
v 15
f dv = af dt
V] f
i3
V) — Vv = a[di
f1

v — v = alt; - 1)

Vo == aly —aty + 1
When #, equals zero, you can rewrite this equation in the following form:

vy =at; +1;

vy = vy +atk

28 | Chapter2: Kinematics

This simple equation allows you to calculate the instantaneous velocity at any given
time by knowing the elapsed time, the initial velocity, and the constant acceleration.

You can also derive an equation for velocity as a function of displacement instead of
time by considering the kinemadc differential equation of motion:

vdv =ads

Integraring both sides of this equation yields an alternatve function for instantaneous

velocity as follows:
vz 52
f vdv =a f ds
[y Vi L

“(vi—vi)/2=als; — s
vi=2als; —s1) +vi

You can derive a similar formula for displacement as a function of velocity, acceleration,
and dme by integrating the differental equation

vdt = d‘s
with the formula derived earlier for instantaneous velocity,
v =v; fat
substituted for v. Doing so yields the formula
s3 =51+t + (at?)/2
In summary, the three kinematc equations derived above are

v =V +ab
v% = 2a(s; —$1) + v%
s3=s1 + Vit + (at?)/2

Remember, these equations are valid only when acceleration is constant. Note that
acceleration can be zero or even negative in cases in which the body is deceleratdng,

You can rearrange these equations by algebraically solving for different variables,
and you can also derive other handy equations using the same approach that T just
showed you. For your convenience I've provided some other useful kinematic equations,
for constant acceleration problems, in Table 2-1.

In cases in which acceleration is not constant but is some function of time, velocity, or
position, you can subsdrute the functon for acceleration into the differential equations
shown earlier to derive new equations for instantaneous velocity and displacement. The
next section considers such a problem.

e

Constant Acceleration | 29

Table 2-1. Constant Acceleration Kinematic Formulas

a Atv,n a={yp—v)/

At !

a At w, As 7 == 205 — I A /(A

a ¥y, vy, As a={v; —vj}/(2As3)

As a, v,y As= (2 —})/0a)

As Arr ¥, ¥2 As = (At/ 2](V~| + VZ)

At a,v,¥s At=(y —wlfa

At a, vy, As At= (,/v} + 0As — v1)/a
At Y1, ¥, As At = {2AS)/(V1 =+ 'r'z)

¥ Al a,n vy = ¥, — oAt

v Atg As n=As/ At oAl /2

¥ a,vy, As W= ,/vlz — 20As

Nonconstant Acceleration

A common situation that arises in real-world problems is one in which drag forces
act on a body in motion. Typically, drag forces are proportional to velocity squared.
Recalling the equation of Newton’s second law of motion, F = ma, you can deduce
that the acceleration induced by these drag forces is also proportional to velocity
squared.

Later, I'll show you some techniques that will allow you to calculate this sort of drag
force, but for now, let the functional form of drag-induced acceleration be

a=—kv

where & is 2 constant and the negative sign indicates that this acceleration acts in the
direction opposing the body’s velocity. Now substituting this formula for acceleration
into the equation above and then rearranging yields

a =dv/di
—kv? = dv/dt
—kdt =dv/v?

If you integrate the right side of this equation from v, to v, and the left side from 0 to
¢ and then solve for v,, you'll get a formula for the instantaneous velocity as a function
of the initial velocity and time as shown here:

f V2
—kf dt=f (1/v3) dv
0 N

—kt=1/vy -1/
vy = v /{1 + v1kt)

30 | Chapter2: Kinematics

If you substitute this equation for v in the relation v = ds/dt and integrate again, you’ll
end up with a new equation for displacement as a function of initial velocity and time.
This procedure is shown below:

vdt =ds, where v=1v;/(1+vikt)

¢ Sz
f vdt = f ds
0 5

f:[vl/(l + vk dt =] ds
’ In(l + vikt)/ k=5 —5;1
If 5, equals zero, then
s =1In(1 T vikt)/ k
Note that in this equation In is the natural logarithm operator.

This example demonstrates the relative complexity of nonconstant acceleration prob-
lems versus constant acceleration problems. It’s a fairly simple example in which you are
able to derive closed-form equations for velocity and displacement. In practice, however,
there may be several different types of forces acting on a given body in motion, which
could make the expression for induced acceleration quite complicated. This complexiry
would render a closed-form solution like the one above impossible to obtain unless
you impose some simplifying restrictions on the problem, forcing you to rely on other
solution techniques such as numerical integration. I'll talk about this sort of problem
in greater depth in Chaprer 1L

2D Particle Kinematics

* When considering motion in one dimension, that is, when the motion is restricted to a
straight line, it is easy enough to directly apply the formulas derived earlier to determine
instanraneous velocity, acceleration, and displacement. However, in two dimensions,
with motion possible in any direction in a given plane, you must consider the kinematic
properties of velocity, acceleration, and displacement as vectors.

Using rectangular coordinates in the standard Cartesian coordinate system, you must
account for the x- and y-components of displacement, velocity, and acceleration. Es-
sentially; you can treat the x- and y-componenis separately and then superimpose these
components to define the corresponding vector quantities.

To help keep track of these x- and y-components, let i and j be unit vectors in the x- and
y-directions, respectively. Now you can write the kinemaiic property vectors in terms
of their components as follows:

v=vdi+vj

a=a,d+aj

20 Particle Kinematics | 31

If x is the displacement in the xdirection and y is the displacement in the ydirection,
then the displacement vector is

. . o
s = xi+ yj ‘

Tt then follows that

v=ds/dt =dx/dti+ dy/dt]j
a = dv/dt = d®s/dt = d*x/dti+ d*y/dt]

Consider a simple example in which you're writing a hunting game and you need to
figure out the vertical drop in a fired bullet from its aim point to the point at which it
actually hits the target. In this example, assume that there is no wind and no drag on the
bullet as it flies through the air (I'll deal with wind and drag on projectiles in Chapter 6).
These assumptions reduce the problem to one of constant acceleration, which in this
case is that due to gravity It is this gravitational acceleration that is responsible for
the drop in the bullet as it travels from the rifle to the target. Figure 2-2 illustrates the
problem.

Figure 2-2. 2D Kinematics Example Problem

Let the origin of the 2D coordinate system be at the end of the rifle, with the x-axis
pointing toward the target and the y-axis pointing upward. Positive displacements along
the x-axis are toward the target, and positive displacements along the y-axis are upward.
This implies that the gravitational acceleration will act in the negative y-direction.

Treating the x- and y-components separately allows you to break the problem up into
small, easy-to-manage pieces. Looking at the x-component first, you know that the
bullet will leave the rifle with an initial muzzle velocity vy, in the x-direction, and since
we are neglecting drag, this speed will be constant. Thus,

a, =0
Vy =Vm

X =vd =vgt

Now looking at the y-component, you know that the initial speed in the y-direction,

32 | Chapter2: Xinematics

as the bullet leaves the rifle, is zero, but the y acceleration is —g (due to gravity). Thus,

ay=—g= d‘uy/dt
vy = a,,t = —gt
y = (1/a,t? = —{1/2)gt* -

The displacement, velocity, and acceleration vectors can now be written as follows:

s = (Ui — (1/2gt2)j
v = (vpu)i — (gt)j
A= —(g)j
These equations give the'instantaneous displacement, velocity, and acceleration for
any given time instant between the time the bullet leaves the rifle and the time it hits

the target. The magnitudes of these vectors give the total displacement, velocity, and
acceleration at a given time. For example,

s = /(vpt)? 4+ (1/2gt2)2
v=+/(vm)* + (gt)?*
a=.gl=¢g
To calculate the bullet’s vertical drop at the instant the bullet hits the target, you must
first calculate the time required to reach the target, and then you can use that time to

calculate the y-component of displacement, which is the vertical drop. Here are the
formulas to use:

thit = Xpie/Vm = 1/Vm
d= Yhit = _(l/z)g(thit)2
- where n is the distance from the rifle to the target and d is the vertical drop of the bullet
at the targer.
I the distance to the target, 7, equals 500 meters {m) and the muzzle velocity, vy, equals
800 m/s, then the equations for #;, and d give
thie = 0.625 5
d=19m

These results tell you that to hit the intended target at that range, you’ll need to aim for
a point about 2 m above it.

3D Particle Kinematics

Extending the kinematic property vectors to three dimensions is not very difficult.
It simply involves the addition of one more component to the vector representations

|
‘ﬁrli_'

3D Particle Kinematics | 33

shown in the previous section on 2D kinematics. Introducing k as the unit vector in the
z-direction, you can NOW Write
k3

s=xi+y+zk
v =ds/dt = dx/dti+dy/dtj+dz/dtk
a = d¥s/dt = dx/dti+d y/dtj+ d*z/dik

Instead of treating two corponents separately and then superimposing them, you now
treat three components separately and superimpose these. This is best illustrated by an
example.

Suppose that instead of a hunting game, you're now writing a game that involves the
firing of a cannon from, say, a battleship onto a target some distance away, for example,
another ship or an inland rarget such as a building, To add complexity to this activity
for your user, you'll want to give him control of several factors that affect the shell’s
trajectory, namely, the firing angle of the cannon, both horizontal and vertical angles,
and the muzzle velocity of the shell, which is controlled by the amount of powder packed
behind the shell when it is loaded into the cannon. The situation is set up in Figure 2-3.

Figure 2-3. 3D Kinematics Example Problem

I'll show you how to set up the kinematic equations for this problem by treating each
vector component separately at first and then combining these components.

x-Components

The x-components here are similar to that shown in the rifle example of the previ-
ous section in that there is no drag force acting on the shell; thus, the x-component
of acceleration is zero, which means that the x-component of velocity is constant
and equal to the x-component of the muzzle velocity as the shell leaves the cannon.
Note that since the cannon barrel may not be horizontal, you'll have to compute the
x-component of the muzzle velocity, which is a function of the direction in which the
cannon is aimed.

34 | Chapter2: Kinematics

The muzzle velocity vector is

Vi == Vid + mej + VK

%

and you are given only the direction of vy, as determined by the direction in which
the user points the cannon and its magnitude as determined by the amount of powder -
the user chooses to pack into the cannon. To calculate the components of the muzzle
velocity, you need to develop some equations for these components in terms of the
direction angles of the cannon and the magnitude of the muzzle velocity.

You can use the direction cosines of a vector to determine the velocity components as
follows:

. cos 8y = Vi /Vim
cos8y = Vi /Vm

oS = Viyz/ Vi

Refer to Appendix A for a description and illustration of vector direction cosines.

Since the initial muzzle velocity vector direction is the same as the direction in which
the cannon is aimed, you can treat the cannon as a vector with a magnitude of L, its
length, and pointing in a direction defined by the angles given in this problem. Using
the cannon length, L, and its components instead of muzzle velocity in the equations
for direction cosines gives

cosfy = Ly/L
cosfy = L,/L
cosf, = L,/L

In this example you are given the angles @ and y (see Figure 2-4) that define the cannon
orientation.

Z

Figure 2-4. Cannon Orientation

b

30 Partide Kinematics | 35

| Using these angles, it follows that the projection, b, of the cannon length, L, onto the
xz-plane is

g
!

b =L cos(90° -)

and the components of the cannon length, L, on each coordinate axis are =
L.=bcosy
Ly=Lcosa
L,=bsiny

Now that you have the information required to compute direction cosines, you can
write equations for the initial muzzle velocity components as follows:

Vox = Vm COS By
Vmy = Vi €050y
Vmz = Vm COS 6,

Finally, you can write the x-components of displacement, velocity, and acceleration as
follows:

a, = 0
Vy = Vmyx = Vm COS Oy

X =Vt = (Vv cos0,)t

y-Components

The y-components are just like the previous rifle example, again with the exception
here of the initial velocity in the y-direction:

Vmy = Vim COS 6y
Thus,
ay = —g
Vy = Vpy +at = (v cosfy) — gt

Before writing the equation for the y-component of displacement, you need to consider
the elevation of the base of the cannon, plus the height of the end of the cannon barrel
to calculate the initial y-component of displacement when the shell leaves the cannon.
Let y3, be the elevation of the base of the cannon, and let L be the length of the cannon
barrel; then the inital y-component of displacement, y, is

Yo=yb+ Lcosa
Now you can write the equation for y as

Y = Yo + Vayt + (1/2)at?
y = (3 + Lcosa)+ (vpcosd)t — (1/2)gt

36 | Chapter2: Kinematics

z-Components

The z-components are largely analogous to the x-components and can be written as
follows: '

d; = 0
Vo = Vmz = Vp COS 0,

Z=1, t = Uy cos)i

The Vectors

With the components all worked out, you can now combine them to form the vector

. . N 0 - . - .
for each kinemaric property. Doing so for this example gives the displacement, velocity,
and acceleration vectors shown here:

$ = [(vmcos G)t]i + [(vp + L cos @) + (v cos)t — (1/2)gt?]j + [(ve cos @)t Tk
V= [V cos Ox)i + [(vm cos 6)) — gtlj + [vm cos b,]k
a=—gj

Observe here that the displacement vector essentially gives the position of the center of
mass of the shel! at any given instant in time; thus, you can use this vector to plot the
trajectory of the shell from the cannon to the target.

Hitting the Target

Now that you have the equations fully describing the shell’s trajectory, you need to
consider the locadon of the target to determine when a direct hit occurs. To show how
this is done, I've prepared a sample program that implements these kinematic equations
along with a simple bounding box collision detection method for checking whether or
.not the shell has struck the target. Basically, at each time step at which 1 calculate the
position of the shell after it has left the cannon, I check to see whether this posidon falls
within the bounding dimensions of the target object represented by a cube.

The sample program is set up such that you can change all of the variables in the
simulation and view the effects of your changes. This program is a simple dialog-based
application, written in standard C, using the Windows API functions. The executable
file name is cannon.exe. There is only one source file, cannon.c, and one header file,
cannon.h, for this example. I used Microsoft’s Developer Studio to compile and build
this application.

Figure 2-5 shows the main screen for the cannon example program, in which the govern-
ing variables are shown on the left. The upper illustration is a bird’s-eye view looking
down on the cannon and the target; the lower illustradon is a profile (side) view:

You can change any of the variables shown in the main window and press the fire
burtron to see the resulting flight path of the shell. A message box will appear when

ye

]

3D Partidle Kinematics | 37

Cannon Example

Figure 2-5. Cannon Sample Program Main Window

you hit the target or when the shell hits the ground. The program is set up so that you
can repeatedly change the variables and press fire to see the result without erasing the
previous trial. This allows you to gauge how much you need to adjust each variable to
hit the target. Press the refresh button to redraw the views when they get too cluttered.

Figure 2-6 shows a few trial shots that I made before finally hitting the target.

Figurfe 2-6. Trial Shots (Profile View)

38 | Chapter2: Kinematics

The code for this example is really quite simple. Aside from the overhead of setting up
the window, controls, and illustrations, all of the action takes place when the fire button
is pressed. Here’s the event handler that gets executed when the fire button is pressed;
it’s contained in the main window message handler function, DemoDlgProc: -

case IDC_FIRE:
// update the variables with
// the values shown in the edit controls
GetDlgItemText(hDlg, IDC.VM, str, 15);
Vm = atof(str);

GetDlgitemText{hDlg, IDC_ALPHA, str, 15);
Alpha = atof{str);

GetDlgItemText(hD]g, IDC_GAMMA, str, 15);
Gamma = atof(str);

 GetDlgItemText(hDlg, IDC_L, str, 15);
L = atof{str);

GetDlgItemText(hDlg, IDC.YB, str, 15);
Yb = atof(str);

GetDlgItemText(hDlg, IDC_X, str, 15);
X = atof{str);

GetDlgItemText(hDlg, IDC.Y, str, 15);
Y = atof(str};

GetDlgitemText(hDlg, IDC_Z, str, 15);
Z = atof(str);

GetDlgltemText(hDlg, IDC_LENGTH, str, 15);
Length = atof(str);

GetDlgItemText{hDlg, IDC_WIDTH, str, 15);
Width = atof(str);

GetDlgItemText{hDlg, IDC_HEIGHT, str, 15);
Height = atof(str);

// initialize the time and status variables
status = 0;
time = 0;

// start stepping through time for the sim.
// until the target is hit, the shell hits
// the ground, or the sim. times out.
while(status == 0)

// do the next time step
status = DoSimulation();

// update the views

hde = GetDC(hTopView);
GetClientRect(hTopView, &r);
DrawTopView(hdc, &r);
ReleaseDC(hTopView, hdc);

'uﬁl;;'

3D Particle Kinematics | 39

hdc = GetDC{hSideView);
GetClientRect(hSideView, &1);
Drawsideview(hdc, &r);
ReleaseDC(hSideView, hdc);

}

// Report results
if (status == 1)
MessageBox(NULL, “Direct Hit”, “Scorel”, MB_OK};

if (status == 2)
MessageBox{NULL, “Missed Target”, “No Score.”, MB_0K);

if (status == 3)
MessageBox(NULL, “Timed Dut”, “Error”, MB_CK);
break;

The first several lines simply get the new values for the variables shown on the main
window. After that the program enters a while loop, stepping through increments of
time and recalculating the position of the shell projectile using the formula for the dis-
placement vector, s, shown earlier. The shell position at the current time is calculated in
the function Dosimulation. Immediately after calling Dosimulation, the program updates
the illustrations in the main window showing the shell’s trajectory DoSimulation returns
0, keeping the while loop going, if there has not yet been a collision or if the time has
not yet reached the preset time-out value.

Once the while loop terminates, by DoSimulation returning nenzero, the rerurn value
from this function call is checked to see whether a hit has occurred between the shell
and the ground or the shell and the target. Just so that the program does not getstuck in
this while loop, DoSimulation will return a value of 3, indicating that it is taking too long.

Now let’s take a look at what’s happing in the function DoSimulation (I've also included
here the global variables that are used in DoSimulation).

// Define a custom type to represent

// the three components of a 3D vector, ‘where
// i represents the x-component, j represents
// the y-component, and k represents the z-
// component

typedef struct TVectorTag

double i;

double j;

double k;
} Tvector;
e b ittt 7
/7 Now define the variables required for this simulation
2 e D e e e b b bbbttt H
double vin; // Magnitude of muzzle velocity, m/s
double Alpha; // Angle from y-axis (upward) te the cannen.

/7 When this angle is zero, the cannon is pointing

; #/ straight up; when it is 90 degrees, the cannon

// is horizontal

40 | Chapter2: Kinematics

double Gamma; // Angle from x-axis, in the xz-plane to the cannon.
// When this angle is zero the cannen is pointing in
// the positive x-direction; positive values of this angle
// are toward the positive z-axis .

double L; // This is the length of the cannon, m
double Yb; // This is the base elevation of the cannon, m
double X; // The x-position of the center of the target, m
double Y; // The y-position of the center of the target, m
double Z; // The z-position of the center of the target, m
double Length; // The length of the target measured along the x-axis, m
double Width; // The width of the target measured along the z-axis, m
double Height; // The height of the target measure along the y-axis, m
TVector 5; // The shell position {displacement) vector
double time; // The time from the instant the shell leaves
// the cannon, seconds
double tInc; // The time increment to use when stepping through
/{ the simulation, seconds
double g; // acceleration due to gravity, m/s"2
T T /"

// This function steps the simulation ahead in time. This is where the kinematic
// properties are calculated. The function will return 1 when the target is hit
// and 2 when the shell hits the ground (xz-plane) before hitting the target;

// otherwise, the function returns o.

e s 7
int DoSimulation{void)

e e e 7
{

double cosX;

double cosY;

double cosZ;

double xe, ze;

double b, Lx, ty, Lz;

double tx1, tx2, ty1, tyz, tz1, tz2;

// step to the next time in the simulation
time+=tInc;

// First caleulate the direction cosines for the cannon orientation,

// In a real game you would not want to put this calculation in this

// function, since it is a waste of CPU time to calculate these values

// at each time step as they never change during the sim. I put them

// here in this case only so that you can see all the calculation steps in a
// single function.

b = L * cos{{90-Alpha} *3.14/180); // projection of barrel onto xz-plane

Lx = b * cos{Camma * 3.14/180); // x-component of barrel length

Ly = L * cos(Alpha * 3.14/180); // y-component of barrel length
Lz = b * sin(Camma * 3.14/180); // z-component of barrel length
cosX = Lx/L;
cosY = Ly/L;
cosi = Lz/L;

// These are the x- and z-coordinates of the very end of the cannon barrel
// we’ll use these as the initial x and z displacements

xe = L * cos({90-Alpha) *3.14/1B0) * cos(Camma * 3.14/180);

ze = L * cos({90-Alpha) *3.14/180) * sin{Gamma * 3.14/180);

i

(]

3D Particle Kinematics | 41

// Now we can calculate the position vector at this time

s.i=Vm * cosX * time + xe;

s.j = {Yb + L * cos{Alpha*3.14/180)) + {Vm * cosY * time) -
(0.5 * g * time * time); i

s.k = Vm * cosZ * time + ze;

/7 Check for collision with target
// Get extents (bounding coordinates} of the target

tx1 = X - Length/2;
tx2 = X + Length/2;
tyl = ¥ - Height/2;
ty2 = Y + Height/2;
tz1 = Z - Width/2;
tz2 = 7 + Width/2;

// Now check to see whether the shell has passed through the target
// I°m using a rudimentary collision detection scheme here in which
/4 T simply check to see whether the shell’s coordinates are within the
// bounding box of the target. This works for demo purposes, but
// a practical problem is that you might miss a collision if for a given
// time step the shell’s change in position is large enough te allow
/4 it to “skip” over the target.
// A better approach is to look at the previous time step’s position data
// and to check the line from the previous position to the current position
// to see whether that line intersects the target bounding box.
if((s.i »= tx1 & s.i ¢= tx2) B&

(5.3 >= tyt & s.j <= ty2) B&

{s.k >= tz1 B& s.k <= tz2})}

return 1;

/7 Check for collision with ground (xz-plane)
if(s.j ¢=0)
return 2;

// Cut off the simulation if it's taking too long
// This is so the program does not get stuck in the while loop
if(time>3600)

return 3;

return 0O;

}

've commented the code so that you can readily see what's going on. This function
essentially does four things:

e increments the time variable by the specified time increment;

e calculates the initial muzzle velocity components in the x-, y-, and z-directions;

s calculates the shell’s new position;

o checks for a collision with the target, using a bounding box scheme or the ground.
Here is the code that computes the shell’s posttion:

// Now we can calculate the position vector at this time

5.1 = Vm * cosX * time + xe;

s.j = {Yb + L * cos{Alpha’3.14/180)) + (Vm * cosY * time) -
; (0.5 * g * time * time);

s.k = Vm * cosZ * time + ze;

42 | Chapter2: Kinematics

This code calculates the three components of the displacement vector, s, using the
formulas that I gave you earlier. If you wanted to compute the velocity and acceleraton
vectors as well, just to see their values, you should do so in this section of the program.
You can set up a couple of new global variables to represent the velocity and acceleratdon
vectors, just as I did with the displacement vector, and apply the velocity and acceleration
formulas that I gave you.

That’s all there is to it. It’s obvious by playing with this sample program that the shell’s
trajectory is parabolic in shape, which is typical projectile motion. You'll take a more
detailed look at this sort of motion in Chapter 6.

Even though I puta comment in the source code, I must reiterate a warning here regard-
ing the collision detection scheme that I used in this example. Because I'm checking the
current position coordinate dply to see whether it falls within the bounding dimensions
of the target cube, I run the risk of skipping over the target if, for a given time step, the
change in position is too large. A better approach would be to keep track of the shell’s
previous position and check to see whether the line connecting the previous position to
the new one intersects the target cube.

Kinematic Particle Explosion

At this point you might be wondering how particle kinematics can help you create
realistic game content unless you're writing a game that involves shooting a gun or a
cannon. If you are, let me offer you a few ideas and then show you an example. Say
you're writing a football simulation game. You can use particle kinematics to model the
trajectory of the football after it is thrown or kicked. You can also treat the wide receivers
as particles when calculating whether or not they’ll be able to catch the thrown ball. In
this scenario you’ll have two particles, the receiver and the ball, traveling independently,
and youw’ll have to calculate when a collision occurs between these two particles, indi-
cating a catch (unless, of course, your player is all thumbs and fumbles the ball after it
hits his hands). You can find similar applications for other sports-based games as well.

What about a 3D shoot-"em-up game? How could you use particle kinematics in this
genre aside from bullets, cannons, grenades, and the like? Well, you could use particle
kinematics to model your player when he or she jumps into the air either running or
standing still. For example, your player reaches the middle of a catwalk only to find
a section missing, and you have the player immediartely back up a few paces to get a
running head start before leaping into the air, hoping to clear the gap. This long jump
scenario is perfect for using particle kinematics. All you really need to do is define your
player’s initial velocity, both speed and take-off angle, and then apply the vector formula
for displacement to calculate whether or not he or she makes the jump. You can also
use the displacement formula to calculate the player’s trajecrory so that you can move
the player’s viewpoint accordingly, giving the illusion of leaping into the air. You may
in fact already be using these principles to model this action in your games, or at least
you've seen it done if you play games of this genre, If your player happens to fall short

.ﬁ,l;‘_'

Kinematic Particle Explosion | 43

on the jump, you can use the formulas for velocity to calculate the impact velocity of
the player when he or she hits the ground below. On the basis of this impact velocity
you can determine an appropriate amount of damage to deduct fighm the player’s health
score, or if the velocity is over a certain threshold, you can say goodbye to your would-be
adventurer!

Another use for simple particle kinematics is for certain special effects such as particle
explosions. This sort of effect is quite simple o implement and really adds a sense of
realism to explosion effects. The particles don’tjust fly off in random, straight-line tra-
jectories. Instead, they rise and fall under the influence of their initial velocity, angle, and
the acceleration due to gravity, which gives the impression that the particles have mass.

So let me show you an example of a kinematic particle explosion. The code for this
example is taken from the cannon example discussed previously, so a lot of it should
look familiar to you. Figure 2-7 shows this program’s main window.

k Particle Explosion Example .-

Figure 2-7. Particle Explosion Program

The explosion effect takes place in the large rectangular area on the right. I didn’t show
the exploston in this screen shot, since all you would see are a bunch of dots, which
don’t do justice to the effect; it’s the motion of those dots that make the effect.

44 | Chapter2: Kinematics

In the edit controls on the left, you specify an x- and a y-position for the effect, along
with the initial velocity of the particles, which is a measure of the explosion’s strength, a
duration in milliseconds, a gravity factor, and finally an angle. The angle parameter can
be any number between 0 and 360 degrees or 999. When you specify an angle in the
range of 0 to 360 degrees, all the particles in the explosion will be launched generally in
that direction. If you specify a value of 999, then all the particles will shoot off in random
directions. The duration parameter is essentially the life of the effect. The particles will
fade out as they approach that life.

The first thing you need to do for this eaample is set up some structures and global
variables to represent the particle effect and the individual particles making up the effect
along with the initial parameters describing the behavior of the effect as discussed in
the previous paragraph. Here’s the code:

e e e 1
// Define a custom type to represent each particle in the effect.
E e T T T TSP //
typedef struct _TParticle

fleat X; // x-coordinate of the particle

fleat ¥; // y-coordinate of the particle

float vi; // initial velocity.

fleat angle; // initial trajectory (direction)

int life; // duration in milliseconds

int T; // red component of particle’s coler

int g; // green component of particle’s coler

int b; // blue component of particle’s color

int time; // keeps track of the effect’s time

float gravity; // gravity factor

BOOL Active; // indicates whether this particle

// is active or dead
} TParticle;

#idefine _MAXPARTICLES 50

typedef struct _TParticlekxplosion

TParticle p[-MAXPARTICLES]; // list of particles

// making up this effect
int Vo; // initial velocity, or strength, of the effect
int x; // initial x location
int y; // initial y location
BOGL Active; // indicates whether this effect is

//active or dead
} TParticleExplosion;

L e i L LR T T /i
// Now define the variables required for this simulation
e T e L LR LR PP PR e 1/
TParticleExplesion Explosion;
int XC; // x-coordinate of the effect
int yC; // y-coordinate of the effect
int Vo; /7 initial velocity
int Duration; // life in milliseconds
float Gravity; // gravity factor (acceleration)
float Angle; /7 indicates particles’ direction
.%,I;‘_'

Kinematic Particle Explosion | 45

You can see from this code that the particle explosion effect is made up of a collection
of particles. The behavior of each partcle is determined by kinematics and the initial
parameters set for each particle. W

Whenever you press the GO button, the initial parameters that you specified are used
to initialize the particle explosion (if you press the Random button, the program ran-
domly selects these initial values for you). This takes place in the function called
CreateParticleExplosion:

JETLEEEEITIII IR EF I IEEEREEiTII I EFEbEiLEidEEEiriiiididiitriiiiits

/* This function creates a new particle explosion effect.
X,y: starting point of the effect
Vinit: a measure of how fast the particles will be sent flying
(it’s actually the initial velocity of the particles)
life: life of the particles in milliseconds; particles will

fade and die out as they approach their specified life
gravity: the acceleration due to gravity which controls the
rate at which particles will fall as they fly
angle: initial trajectory angle of the particles,
specify 999 to create a particle explosion
that emits particles in all directions; otherwise,
o right, 90 up, 180 left, etc.
*f
void CreateParticlefxplosion(int x, int y, int Vinit, int life,
float gravity, float angle)

{
int i;
int m;
float f;

Explosion.Active = TRUE;
Explosion.x = x;
Explosion.y = y;
Explosion.Vo = Vinit;

for(i=0; i< MAXPARTICLES; i++)
{
Explosion.p[i].x = 0;

Explosion.p[i].y = ©; -
Explosion.p[i].vi = tb_Rnd(Vinit/2, vinit);

i1

if(angle ¢ 999)

1f(tb_Rknd(0,1) == 0)
m=-1;
else
m=1;
Explosion.p{i].angle = -angle + m * tb_Rnd(0,10);
} else
Explosion.p[i].angle = tb_Rnd(0,360);

f = (float) tb_Rnd{80, 100) / 100.0f;
Explosion.p[i].life = tb_Round(life * f);
Explosion.p[i].r = 255;//tb_Rnd(225, 255);
Explosion.p[i].g = 255;//tb_Rnd(B5, 115);
Explosion.p[i].b = 255;//tb_Rnd(15, 45);

46 | Chapter2: Kinematics

Explosion.p[i].time = oj
Explosion.p{i].Active = TRUE;
Explosion.p[i].gravity = gravity;

}

Here you can see that all the particles are set to start off in the same position as specified
by the x- and y-coordinates that you provide; however, you’ll notice that the initial
velocity of each particle is actually randomly selected from a range of Vinit/2 to Vinit.
I do this to give the particle behavior some variety. I do the same thing for the life
parameter of each particie so that they don’t all fade out and die at the exact same
time.

After the particle explosion is created, the program enters a loop to ptopagate and draw
the effect. The loop is a whilg loop as shown here:

while{status)

DrawRectangle(hBufferDC, &r, 1, RGB{p,0,0});

status = DrawParticleExplosion{hBufferDC);

hdc = GetDC{hSideView);

if(1BitBlt(hdc, 0, 0, r.right, r.bottom, hBufferDC, 0, 0, SRCCOPY)}

MessageBox(NULL, “BitBlt failed”, “Error”, MB.OK);
status = FALSE;

h
ReleaseDC{hSideView, hdc};
}

Thewhileloop continues as iongas status remains true, which indicates that the particle
effect is still alive. After all the particles in the effect reach their set life, then the effect
is dead and status will be set to false. All the calculations for the particle behavior
actually take place in the function called DrawParticleExplosion; the rest of the code
in this while loop is for clearing the offscreen buffer and then copying it to the main
window.

DrawParticleExplosion, updates the state of each particle in the effect by calling another
function, UpdateParticleState, and then draws the effect to the offscreen buffer passed
in as a parameter. Here’s what these two functions look like:

F R LT b T T ——— I/
BOOL DrawParticleExplosion(HDC hdc)
{

int i;

BOOL finished = TRUE;

float r;

COLORREF clr;

if(Explosion.Active)
for(i=0; 1<_MAXPARTICLES; i++)

if(Explosion.p[i].Active}

‘gh

Kinematic Particle Explosion | 47

finished = FALSE;
1 = ((float)(Explosion.p[i].life- o
Explosion.p[i].time)/(float)(Explosion.p[i].fife});
clr = RGB{tb_Round(r*Explosion.p[i].1),
tb_Round{r*Explosion.p[i].g),
tb_Round(r*Explosion.p[i].b});
DrawCircle(hdc,
Explosion.x+th_Round(Explosion.p[i].x},
Explc‘ion.y+tb_Round(Explosion.p[i].y),

2,
clr);
Explasion.p[i}.Active = UpdateParticleState(&(Explosion.p[i]),
10);
}
¥
if(finished}
Explosion.Active = FALSE;
return !finished;
}
ettt it ettt /!
/* This is generic function to update the state of a given particle.
p: pointer to a particle structure
dtime: time increment in milliseconds to
advance the state of the particle
If the total elapsed time for this particle has exceeded the particle’s
set life, then this function returns FALSE, indicating that the particle
should expire.
*/
BOOL UpdateParticleState{TParticle* p, int dtime)
{
BOOL retval;
float t;
p->time+=dtime;
t = {float)p->time/1000.0f;
p->x = p-ovi * cos(p-rangle*PI/180.0f) * t;
p->y = p-ovi * sin{p->angle*PI/180.0F) * T + (p-»gravity*t*t)/2.of;
if (p->time »>= p-»life)
retval = FALSE;
glse
retval = TRUE;
return retval;
¥

UpdateParticleState uses the kinematic formulas that I've already shown you to update
the particle’s position as a function of its initial velocity, time, and the acceleration due to
gravity. After UpdateParticleState is called, DrawParticleExplosion scales each particle’s
color down, fading it to black, based on the life of each particle and elapsed time. The
fade effect is to show the particles dying slowly over time instead of simply disappearing
from the screen. The effect resembles the behavior of fireworks as they explode in the
night sky.

43 | ChapterZ: Kinematics

Rigid Body Kinematics

The formulas for displacement, velocity, and acceleration discussed in the previous
sections apply as well for rigid bodies as for particles. The difference is that when
considering rigid bodies, the point on the rigid body that you track, in terms of linear
motion, is the body’s center of mass (gravity).

When a rigid body translates with no rotation, all of the particles making up the rigid
body move on parallel paths, since the body does not change its shape. Further, when
‘a rigid body does rotate, it generally rotates about axes that pass through its center of
mass, unless the body is hinged at some other point about which it is forced to rorate.
These facts make the center of mass a convenient point to use to track its linear motion.
This is good news for you because you can use all of the material you learned on parricle
kinematics here in your study of rigid body kinematics.

The procedure for dealing with rigid bodies involves two distinct aspects:

o tracking the translation of the body’s center of mass and
» tracking the body’s rotation.

The first aspect is old hat by now—just treat the body as a particle; however, the second
aspect requires you to consider a few more concepts, namely, local coordinates, angular
displacement, angular velocity, and angular acceleration. '

For most of the remainder of this chapter I'll discuss plane kinematics of rigid bodies.
Plane motion simply means that the body’s motion is restricted to a flat plane in space
where the only axis of rotation about which the body can rotate is perpendicular to the
plane. Plane motion is essentially two-dimensional. This allows us to focus on the new
kinematic concepts of angular displacement, velocity, and acceleration without getring
lost in the math required to describe arbitrary rotation in three dimensions.

You might be surprised by how many problems lend themselves to plane kinematic
solutions. For example, in some popular 3D shoot-’em-up games, your character is able
to push objects, such as boxes and barrels, around on the floor. Although the game
world is three dimensions, these particular objects are restricted to sliding on the floor,
a plane, and thus can be treated like a 2D problem. Even if the player pushes on these
objects at some angle instead of straight on, you’ll be able to simulate the sliding and
rotation of these objects using 2D kinematics (and kinetics) techniques.

Local Coordinate Axes

Earlier, I defined the Cartesian coordinate system to use for your fixed global reference,
or world coordinates. This world coordinate system is all that’s required when you're
treating particles; however, for rigid bodies you’ll also use a set of local coordinates fixed
to the body: Specifically, this local coordinate system will be fixed at the body’s center
of mass location. You’ll use this coordinate system to track the orientation of the body
as it rotates.

rs

Local Coordinate Axes | 49

For plane motion we require only one scalar quantity to describe the body’s orientation.
This is illustrated in Figure 2-B. :

World Axes

Figure 2-8. Local Coordinate Axes

Here, the orientation, €2, is defined as the angular difference between the two sets of co-
ordinate axes: the fixed world axes and the local body axes. This is the so-called Euler
angle. In general 3D motion there is a total of three Euler angles, which are usually called
yaw, pitch, and roll in aerodynamic and hydrodynamic jargon. While these angular
representations are easy to visualize in terms of their physical meaning, they aren’tsonice
from a numerical point of view, and you'll have to look for alternative representations
when writing your 3D real-time simulator, These issues are addressed in Chapter 14.

Angular Velocity and Acceleration

In 2D plane motion, as the body rotates, £ will change, and the rateat which €2 changesis
the angular velocity, . Likewise, the rate at which @ changes is the angular acceleration,
a. These angular properties are analogous to the linear properties of displacement,
velocity, and acceleration. The units for angular displacement, velocity, and acceleration
are radians (rad), radians per second (rad/s), and radians per second-squared (rad/s?),
respectively

Mathematically, you can write these relations between angular displacement, angular
velocity, and angular acceleration:

= dQ/dt
a = dw/dt = d*Q/de?

w=fcxdt
Q:fwdt

wdw=od

50 | Chapter2: Kinematics

In fact, you can substtute the angular properties, £, &, and & for the linear proper ties,
s, v and a in the equations derived earlier for particle kinemarics o obtain similar
kinemartic equations for rotation. For constant angular acceleration you'll end up with
the following equations:

wy = o + ol
a)% = CD% + 2&?(92 — Ql)
Qs = Q| + ot + {1/2)at?

When a rigid body rotates about a given axis, every point on the rigid body sweeps
out a circular path around the axis of rotation. You can think of the body’s rotation
as causing additional linear motion of each particle making up the body. This linear
motion is in addition to the linear motion of the body’s center of mass. To get the total
linear motion of any particlé or point on the rigid body, you must be able to relate the
angular motion of the body to the linear motion of the particle or point as it sweeps its
circular path about the axis of rotation.

Before I show you how to do this, let me first explain why you would even want
to perform such a calculation. Basically, in dynamics, knowing that two objects have
collided is not always enough, and you’ll often want to know how hard, so to speak,
these two objects have collided. When you're dealing with interacting rigid bodies that
may at some point make contact with one another or with other fixed objects, you need
to determine not only the location of the points of contact, but also the relative velocity
or acceleration between the contact points. This information will allow you to calculaze
the interaction forces between the colliding bodies.

The arc length of the path swept by a particle on the rigid body is a function of the
distance from the axis of rotation to the particle and the angular displacement, 2. I'll use
c rodenote arclength and r to denote the distance from the axis of rotation to the particle,
as shown in Figure 2-9. The formula relating arc length to angular displacement is

c=r

World Axes

Figure 2-8. Circular Path of Particles Making Up a Rigid Body
A

(e

Angular Velocity and Acceteration | 51

where © must be in radians, not degrees. If you differentiate this formula with respect '
to time:

i

defdt =rdQ/dt !
you get an equation relating the linear velocity of the par ticle as it moves along its circular
path to the angular velocity of the rigid body. This equation is written as follows:

vV =rw

This velocity as a vector is tangent to the circular path swept by the particle. If you can
imagine this particle as a ball at the end of a rod whose other end is fixed 10 a rotating
axis, then if the ball is released from the end of the rod as it rotates, the ball will fly off
in a direction tangent to the circular path it was taking when attached to the rod. This
is in the same direction as the tangential linear velocity given by the above equation.
Figure 2-10 illustrates the tangential velocity

¥

World Axes

Figure 2-10. Linear Velocity Due to Angular Velocity

Differentiating the equation, v = fo:
dvjdt = rde/dt

vields a formula for the tangental linear acceleration as a function of angular
acceleration:

a, = ree

Note that there is another component of acceleration for the particle that results from the
rotation of the rigid body. This component is normal, or perpendicular, to the circular
path of the particle and is the so-called centripetal acceleration, which is always directed
toward the axis of rotation (see Figure 2-11). Remember that velocity is a vector, and
since acceleration is the rate of change in the velocity vector, there are two ways in which
acceleration can be produced. One way is by a change in the magnitude of the velocity
vector, that is, 2 change in speed; the other way is a change in the direction of the velocity
vector. The change in speed gives rise to the tangential acceleration component, while

52 | Chapter2: Kinematics

the direction change gives rise to the centripetal acceleration component. The resultant
acceleradon vector is the vector sum of the tangential and centripetal accelerations.
Centripetal acceleration is what you feel when you take your car around a tight curve
even though your speed is constant. "

World Axes

Figure 2-11. Tangeniial and Centripetal Acceleration

The formula for the magnitude of centripetal acceletation, ag, is
an =v/r

where v is the tangential velocity Substituting the equation for tangential velocity into
this equation for centripetal acceleration gives the following alternative form:

ay, =T

In two dimensions you can easily get away with using these scalar equations; however,
in three dimensions you’ll have to use the vector forms of these equations. Angular
velocity as a vector is parallel with the axis of rotation. In Figure 2-10 the angular
velocity would be pointing out of the page directly at you. Its sense, or direction of
rotation, is determined by the righthand rule. If you take your right hand and curl
your fingers in an arc around the axis of rotation with your fingers pointing toward the
direction in which the body is rotating, your thumb will stick up in the direction of the
angular velocity vecror.

If you take the vector cross product (refer to Appendix A for a review of vector math) of
the angular velocity vector and the vector from the axis of rotation to the particle under
consideration, you’ll end up with the linear, tangential velocity vector. This is written as

Y=WwWXTr

Note that this gives both the magnitude and direction of the linear, tangential velocity.
Also, be sure to preserve the order of the vectors when taking the cross product, that
is, w cross r, not the other way around, which would give the wrong direction for v.

-“rll_'

Angular Velocity and Acceleration | 53

Vector Cross Product

i
Given any two vectors A and B, the cross product A x B is defifled by a third vector
C with a magnitude equal to AB sin 6, where 6 is the angle between the two vectors A
and B.

A

C=AxB
C = ABsind

The direction of C is determined by the righthand rule. The righthand rule is a simple
trick to help keep track of vector directions. Assume that A and B lie in a plane, and
let an axis of rotation extend perpendicular to this plane through a point located at
the tail of A. Take your right hand and pretend to curl your fingers around the axis of
rotation from vector A toward B. Now extend your thumb, as though you are giving a
thumbs up, while keeping your fingers curled around the axis. The direction in which
your thumb is pointing indicates rhe direcrion of vector C.

In the figure above, a parallelogram is formed by A and B (the shaded region). The area
of this parallelogram is the magnitude of C, which is AB sin &.

There are two equations that you’ll need in order to derermine the vectors for tangential
and centripetal acceleration:

a, = wx (wxr)

a = XTI

Another way to look at the quantities v, an, and a; is that they are the velocity and
acceleration of the particle under consideration on the rigid body relative to the point
about which the rigid body is rotating, for example, the body’s center of mass location.
This is very convenient, since, as I said earlier, you'll want to track the motion of the
rigid body as a particle when looking at the big picture without having to worry about
what each particle making up the rigid body is doing all the time. Therefore, you treat
the rigid body’s linear motion and its angular motion separately When you do need
to take a close look at specific particles of, or points on, the rigid body, you can do so
by taking the motion of the rigid body as a particle and then adding to it the relative
motion of the point under consideration.

54 | Chapter2: Kinematics

Figure 2-12 shows a rigid body that is traveling at a speed v, where v is the speed
of the center of mass (or center of gravity) of the rigid body. Remember, the center of
mass is the point to track when treating a rigid body as a particle. This rigid body is
also rotating with an angular velocity w about an axis that passes through the center of
mass of the body. The vector r is the vector from the center of mass of the rigid body to
the particular point of interest, P, located on the rigid body.

Vector sum, resulfant velocity of point P

Path of body center of mass

World Axes

Figure 2-12. Relative Velocity

In this case the resultant velocity of point P can be found by taking the vector sum of
the velocity of the center of mass of the body and the tangential velocity of point P due
to the body’s angular velocity w. Here’s what the vector equation looks like:

YR = Vep + V¢
or
VR = Ve + (W xT)

You can do the same thing with acceleration to determine point P’s resultant acceler-
ation. Here, you'll take the vector sum of the acceleration of the rigid body’s center of
mass, the rangential acceleraton due 1o the body’s angular acceleration, and the cen-
triperal acceleration due to the change in direction of the tangential velocity: In equation
form, this looks like '

ap = a.; +a, +a,

Figure 2-13 illustrates what’s happening here.

i

(]

Angular Velocity and Acceleration | 55

Path of body center of mass

World Axes

Figure 2-13. Relative Acceleration

You can rewrite the equation for the resultant acceleration in the following form:
ap = a; + (wx {(wxr)+ (@xT)

As you can see, using these principles of relative velocity and acceleration allows you
to calculate the resultant kinematic properties of any point on your rigid body at any
given time by knowing what the center of mass of the body is doing along with how
the body is rotating,

56 | Chapter2: Kinematics

CHAPTER 3
Force

\

This chapter is prerequisite for Chapter 4, which addresses the subject of kinetics. The
aim here is to provide you with enough of a background on forces that you can readily
appreciate the subject of kinetics. This chapter is not meant to be the final word on the
subject of force. In fact, I believe that the subject of force is so important to realistic
simulations that I'll revisit the subject several times in various contexts throughout the
remainder of this book. In this chapter I'll discuss the two fundamental categories of
force and briefly explain some important specific types of force. I'll also explain the
relationship between force and torque.

Introduction

As I mentioned at the end of Chapter 2, you need 1o understand the concept of force
before you can fully understand the subject of kinetics. Kinematics is only half the battle.
You are already familiar with the concept of force from your daily experiences. You exert
a force on this book as you hold it in your hands counteracting gravity. You exert force
on your mouse as you move it from one point to another. When you play soccer, you
exert force on the ball as you kick it. In general, force is that which makes an object move
ot, more precisely, changes the acceleration of the object. Even as you hold this book,
although it might not be moving, you have effectively changed its acceleration from that
due to gravity to zero. When you kick that soccer ball, you change its acceleration from,
say, zero when the ball is at rest to some positive value as the ball leaves your foot. These
are some examples of externally applied contact forces.

There's another broad category of forces, in addition to contact forces, called field forces
or sometimes force-at-a-distance forces. These forces can act on a body without actually
having to make contact with it. A good example of this is the gravitational attraction
between objects. Another example is the electromagnetic attraction between charged
particles. The concept of a force field was developed long ago to help visualize the
interaction between objects subject to forces at a distance. You can say thart an object is
subjected to the gravitational field of another object. Thinking in terms of force fields

b

57

is supposed to help you grasp the fact that an object can exerta force on another object
without having to physically touch it.

Within these two broad categories of forces, there are specificn"@pes of forces related
to various physical phenomena-—forces due to friction, buoyancy, and pressure among
others. I discuss idealizations of several of these types of forces in this chapter. Later in
this book, T'll revisit these forces from a more practical point of view.

Before going further, I need to explain the implications of Newton’s third law as intro-
duced in Chaprer I. Remember, Newton’s third law states that for every force acting on
a body, there is an equal and opposite reacting force. This means that forces must exist
in pairs: a single force can’t exist by itself.

Consider the gravitational attraction between the earth and yourself. The earth is exert-
ing a force—your weight—on you, accelerating you toward its center. Likewise, you are
exerting a force on the earth, accelerating it toward you. The huge difference between
your mass and the earth’s makes the acceleration of the earth in this case so small that
it’s negligible. Earlier, | said that you are exerting a force on this book to hold it up;
likewise, this book is exerting a force on your hands equal in magnitude but opposite
in direction to the force you are exerting on the book. You feel this reaction force as the
book’s weight.

This phenomenon of action-reaction is the basis for rocket propulsion. A rocket engine
exerts force on the fuel molecules that are accelerated out of the engine exhaust nozzle.
The force that is required to accelerate these molecules is exerted back against the rocket
a5 2 reaction force called chrust. Throughout the remainder of this book yow'll see many
other examples of action-reaction, which is an important phenomenon in rigid body
dynamics. It is especially important in dealing with collisions and objects in contact,
as you'll see later.

Force Fields

The best example of a force field or force at a distance is the gravitational attraction
between objects. Newton's law of gravitation states that the force of attraction between
two masses is directly proportional o the product of the masses and inversely propor-
tional to the square of the distances separating the centers of each mass. Further, this
law states that the line of action of the force of attraction is along the line that connects
the centers of the two masses. This is written as follows:

F. = (Gmymy)/r?

where G is the gravitational constant, Newton’s so-called universal constant. G was
first measured experimentally by Sir Henry Cavendish in 1798 and equals 6,673 x 1071
(N-m?)/kg’ in metric units or 3.436 x 108 ft*/(Ib-s*) in English units.

So far in this book I've been using the acceleration due to gravity, g, as a constant
9.8 m/s? (32.174ft/s%). This is true when you are near the earth’s surface, for example,

58 | Chapter3: Force

at sea level. In reality, g varies with altitude—maybe not by much for our purposes, bur
it does. Consider Newton’s second law along with the law of gravitation for a body near
the earth. Equating these two laws, in equation form, yields

ma = (GM.m)/(R. + h)*

where m is the mass of the body, a is the acceleration of the body due to the gravitational
attraction between it and the earth, M, is the earth’s mass, R, is the radius of the earth,
and h is the altitude of the body. If you solve this equation for a, you’ll have a formula
f~r the acceleration due to gravity as a function of altitude:

a=g = {GM.)/{R.+ h)*

The radius of the earth is approximately 6.38 x 10° m, and its mass is about 5.98 x
10* kg. Substituting these values in the above equation and assuming zero altitude (sea
ievel) yields the constant g that we’ve been using so far; that is, g at sea level equals
9.8 m/s?.

Friction

Frictional forces {friction) always resist motion and are due to the interaction berween

.contacting surfaces. Thus, friction is a contact force. Friction is always parallel to the

contacting surfaces at the point of contact, that is, it is tangential to the contacting
surfaces. The magnitude of the frictional force is a function of the normal force between
the contacting surfaces and the surface roughness.

This is easiest to visualize by looking at a simple block on a horizontal surface as shown
in Figure 3-1.

Figure 3-1. Friction, Block in Contact with Horizontal Surface

In this figure the block is resting on the horizonral surface with a small force, F,, applied
to the block on a line of action through the block’s center of mass. As this applied force
increases, a frictional force will develop between the block and the horizontal surface
tending to resist the motion of the block. The maximum value of this frictional force is

Fl'max = PtfsN

Friction | 59

where ps is the experimentally determined coefficient of static” fricdon and N is the
normal (perpendicular) force berween the block and the surface, which equals the
weight of the block in this case. As the applied force increases buﬁié-sﬁll less than Frmax,
the Block will remain static, and F; will be equal in magnitude to the applied force. The
block is in static equilibrium. When the applied force becomes greater than Finax, the
frictional force can no longer impede the block’s motion, and the block will accelerate
under the influence of the applied force. Immediately after the block starts its moton,
the frictional force will decrease from Fimax to Fr, where Fa is

Fae = N

Here, k means kinetic, since the block is in motion, and g, the coefficient of kinetic
friction,! is less than p.. Like the static coefficient of friction, the kinetic coefficient of
friction is determined experimentally. Table 3-1 shows typical coefficients of friction for
several surfaces in contact.

Table 3-1. Coefficients of Friction of Common Surfaces

Dry glass on glass 0.94 04 54%

Dryiron on iron 11 0.15 B6%
Dry rubber on pavement 0.55 0.4 27%
Dry steei on steel 0.78 0.42 46%
Dry Teflon on Teflon 0.04 0.04 —
Dry wood on wood 0.38 0.2 A%
lee onice 0.1 0.03 70%
Olled steel on steel 0.10 0.08 20%

The data in Table 3-1 are provided here to show you the magnitude of some typical fric-
tion coefficients and the relative difference between the static and kinetic coefficients
for certain surface conditions. Other data are available for these and other surface
conditions in the technical literature (see the bibliography for sources). Note that ex-
perimentally determined friction coefficient dara will vary, even for the same surface
conditions, depending on the specific condition of the material used in the experiments
and the execution of the experiment itself.

Fluid Dynamic Drag

Fluid dynamic drag forces oppose motion as friction does. In fact, a major componerit of
fluid dynamic drag is friction thar results from the relative flow of the fluid over (and in
contact with) the body’s surface. Friction is not the only component of fluid dynamic
drag, though. Depending on the shape of the body, its speed, and the nature of the

* Static here implies that there is no motion; the block is sitting still with all forces balancing
1 The term dynamic is sometimes used here instead of kinetic.

60 | Chapter3: Force

fluid, fluid dynamic drag will have additional components due to pressure variations in
the fluid as it flows around the body. If the body is located at the interface between two
fluids (like a ship on the ocean, where the two fluids are air and water), an additional
component of drag will exist due to the wave generation.

In general, fluid dynamic drag is a complicated phenomenon that is a function of several -
factors. I won't go into detail in this section on all these factors, since I'll be revisiting
this subject later. However, | do want to discuss how the viscous (frictional) component
of these drag forces is typically idealized.

Ideal viscous drag is a function of velocity and some experimentally determined drag
coefficient that is supposed to take into accounr the surface conditions of the body, the
fluid properties {(density and viscosiry), and the flow conditions. You'll typically see a
formula for viscous drag force in the form

F, = —-Cpv

where C; is the drag coefficient, v the body’s speed, and the minus sign means that the
force opposes motion. This formula is valid for slow-moving objects in a viscous fluid.
Slow-moving implies that the flow around the body is laminar, which means that the
flow streamlines are undisturbed and parallel.

For fast-moving objects, you’ll use the formula for F, written as function of speed
squared as follows:

F. = —Cp*

Fast-moving implies that the flow around the object is turbulent, which means that
the flow streamlines are no longer parallel and there is a sort of mixing effect in the
tlow around the object. Note that the values of C; are generally not the same for these
two equations. In addition to the factors mentioned earlier, C; depends significantly on
whether the flow is laminar or turbulent.

Both of these equations are very simplified and are not adequate for practical analysis
of fluid flow problems. However, they do offer certain advantages in computer game
simulations. Most obviously, these formulas are easy to implement; you need only
know the velocity of the body under consideration, which you get from your kinematic
equartions, and an assumed value for the drag coefficient. This is convenient, as your
game world will typically have many different types of objects of all sizes and shapes
that would make rigorous analysis of each of their drag properties impractical. If the
illusion of realism is all you need, and not real-life accuracy, then these formulas might
be all you need.

Another advantage of using these idealized formulas is that you can tweak the drag co-
efficients as you see fit to help reduce numerical instabilities when solving the equations
of motion while still maintaining the illusion of realistic behavior. If real-life accuracy is
what you're going for, then you’ll have no choice but to consider a more involved (read
“complicated”) approach for determining fluid dynamic drag. 'll talk more about drag
in Chapters 6 through 10.

e

Fluid DynamicDrag | 61

A Noteon Pressure

Many people confuse pressure with force. I've often heard peoplgsay, when explaining
a phenomenon, something like “It pushed with a force of 100 pounds per square inch.”
Although you understand what they mean, technically speaking they are referring to
pressure not force. Pressure is force per unit area; therefore, the units are pounds per
square inch (psi) or pounds per square foot (psh) and so on. Given the pressure, you'll
need to know the toral area acted on by this pressure to determine the resultant force.
Force equals pressure times area:

F=PA

This formula tells you that for constant pressure, the greater the area acted upon, the
greater the resultant force. If you rearrange this equation, solving for pressure, you'll see
that pressure is inversely proportional to area; that is, the greater the area for a given
applied force, the smaller the resulting pressure and vice versa:

P = F/A

Animportant characteristic of pressure is that it always acts normally (perpendicularly)
to the surface of the body or object it is acting on. This fact gives you a clue as to the
direction of the resultant force vector.

I wanted to mention pressure here because you’ll be working with pressure to calculate
forces when you get to the chapters in this book that cover the mechanics of ships,
boats, and hovercraft. There, the pressures that you'll consider are hydrostatic pressure
(buoyancy) and aerostatic lift. Youll also take a brief look at buoyancy in this chapter.

Buoyancy

You have no doubt felt the effects of buoyancy when immersing yourself in the bathtub.
Buoyancy is why you feel lighter in water than you do in air and why some people can
float on their backs in a swimming pool.

Buoyancy is a force that develops when an object is immersed in a fluid. It's a function
of the volume of the object and the density of the fluid and results from the pressure
differential between the fluid just above the object and the fluid just below the object.
Pressure increases, the deeper you go in a fluid; thus, the pressure is greater at the bottom
of an object of a given height than it is at the top of the object. Consider the cube shown
in Figure 3-2.

Let s denote the cube’s length, width, and height, which are all equal. Further, let h,
denote the depth to the top of the cube and hy, the depth to the bottom of the cube. The
pressure at the top of the cube is P, = pgh:, which acts over the entire surface area of
the top of the cube, normal to the surface in the downward direction. The pressure at the
bottom of the cube is P, = pghu, which acts over the entire surface area of the bottom of
the cube, normal to the surface in the upward direction. Note that the pressure acting on
the sides of the cube increases linearly with submergence, from P to Py. Also, note that

62 | Chapter3: Force

Figure 3-2. Immersed Cube

since the side pressure is symmetric, equal, and opposite, the net side pressure is zero,
which means that the net side force (due to pressure) is also zero, The same is not true of
the top and bottom pressures, which are obviously not equal, although they are opposite.

The force acting down on the top of the cube is equal to the pressure at the top of the
cube times the surface area of the top. This can be written as follows:

F, = P/A,
F, = (pghy)(s%)

Similarly, the force acting up on the bottom of the cube is equal to the pressure at the
bottom times the surface area of the bottom:

Fy, = PLAp
Fy = (oghy)(s?)

The net vertical force (buoyancy) equals the difference berween the top and bottom
forces:

Fg = Fp — F,
Fp = (pghp)(s?) — (pghy)(s*)
Fp = {0g) D (hy — b

This formula gives the magnitude of the buoyancy force. Its direction is straight up,
counteracting the weight of the object.

There is an important observation to be made here. Notice that (hy, — h,) is simply the
height of the cube, which is s in this case. Substituting s in place of (hy — h,) reveals
that the buoyancy force is a function of the volume of the cube:

Fp = (pg)(s™}

ki

Buoyancy | 63

This is great, since it means thatall you need todoto calculate buoyancy is first calculate
the volume of the object and then multiply that volume by the specific weight* (og) of the
fluid. In truth, that's a little easier said than done for all but the:gimplest geomeries. if
you're dealing with spheres, cubes, cylinders, and the like, then calculating volume is
easy, However, if you're dealing with any arbitrary geometry, then the volume calculation
becomes more difficult. There are two ways to handle this difficulty. The first way is to
simply divide the object into a number of smaller objects of simpler geometry, calculate
their volumes, and then add them all up. The second way is to use numerical intesration
techniques to calculate volume by integrating over the surface of the object.

You should also note that buoyancy is a function of fluid density, and you don't have
t0 be in a fluid as dense as water to experience the force of buoyancy. In fact, there are
buoyant forces acting on you right now, although they are very small, due to the fact
that you are immersed in air. Water is many times more dense than air, which is why
you notice the force of buoyancy when in water and not when in air. Keep in mind,
though, that for very light objects with relatively large volumes, the buoyant forces in
air may be significant. For example, consider simulating a large balloon.

Springs and Dampers

Springs are structural elements that, when connected between two objects, apply equal
and opposite forces to each object. This spring force follows Hook’s law and isa function
of the stretched or compressed length of the spring relative to the rest length of the spring
and the spring constant of the spring. The spring constant is a quantity that relates the
force exerted by the spring to its deflection:

FSSk{,(L—T)

Here, F, is the spring force, ks is the spring constant, L is the stretched or compressed
Jength of the spring, and r is the rest length of the spring. In the metric system of units,
F, would be measured in newtons (1 N = 1 kg-m/s?), with L and 7 in meters and ks
in kg/s?. If the spring is connected between two objects, it exerts a force of F; on one
object and —F; on the other; these are equal and opposite forces.

Dampers are usually used in conjunction with springs in numerical simulations. They
act like viscous drag in that dampers act against velocity. In this case, if the damper is
connected between two objects that are moving toward or away from one another, the
damper acts to slow the relative velocity between the two objects. The force developed by
a damper is proportional to the relative velocity of the connected objects and a damping
constant, k4, that relates relative velocity 1o damping force:

Fy = kalvy —12)
This equation shows the damping force, F4, as a function of the damping constant and

the relative velocity of the connected points on the two connected bodies. In metric

* Specific weight is density times the acceleration due to gravity. Typical units are Ib/ft® and N/m?.

64 | Chapter3: Force

units, where the damping force is measured in newtons and velocity in m/s, kq has units

of kg/s.

Typically, springs and dampers are combined into a single spring-damper element in
which a single formula is used to represent the combined force. Using vector notation,
the formula for a sprmg -damper element connecting two bodies is as follows:

= —{ks(L —r} + ka[(vi—v2) - L}/L}L/L
Here, F is the force exerted on body 1, and the force F; exerted on body 2 is
F» = -F;

L is the length of the spring-damper (L, not in bold print, is the magnitude of the
vector L), which is equal to the vector difference in position between the connected
points on bodies I and 2.'If the connected objects are particles, then L is equal to rhe
position of body 1 minus the position of body 2. Similarly, v, and v, are the velocities of
the connected points on bodies 1 and 2. The quantity (v; — v;) represents the relative
velocity between the connected bodies.

Springs and dampers are useful when you want to simulate collections of connected
particles or rigid bodies. The spring force provides the structure, or glue, that holds
the bodies together (or keeps them separated by a certain distance), while the damper
helps smooth out the motion between the connected bodies so that it’s not too jerky
or springy. These dampers are also very important from a numerical stability point

of view in that they help keep your simulations from blowing up. I'm getting a litte
ahead of myself here, bur I'll show you how to use these spring-dampers in a real-time
simulation of cloth in Chapter 17,

Force and Torque

Ineed to make the distinction here between force and torque.* Force is that which causes
linear acceleration, while torque is that which causes rotational acceleration. Torque is
force times distance. Specifically, to calculate the torque applied by a force acting on an
object, you need to calculate the perpendicular distance from the axis of rotation to the
line of action of the force and then multiply this distance by the magnitude of the force,
This calculation gives the magnitude of the torque. Typical units for force are pounds,
newtons, and tons. Since torque is force times a distance, its units take the form of a
length unit times a force unit such as foot-pounds, newton-meters, or foot-tons.

Since both force and torque are vector quantities, you must also determine the direction
of the torque vector. The force vector is easy to visualize: its line of action passes through
the point of application of the force with its direction determined by the direction in
which the force is applied. As a vector, the line of actiou of torque is along the axis of
rotation, with the direction determined by the direction of rotation and the righthand
rule (see Figure 3-3). The righthand rule is a simple trick to help keep track of vector

* Another common term for torque is moment.

‘“,I;‘_'

Forceand Torque | 65

World Axes

zZ

Figure 3-3. Force and Torque

directions—in this case the torque vector. Take your right hand and pretend to curl
your fingers around the axis of rotation with your finger tips pointing in the direction
of rotation. Now extend your thumb, as though you are giving a thumbs up, while
keeping your fingers curled around the axis. The direction in which your thumb is
pointing indicates the direction of the torque vector. Note that this makes the torque
vector perpendicular to the applied force vector, as shown in Figure 3-3.

I said earlier that the magnitude of torque is found by muldplying the magnitude of
the applied force times the perpendicular distance berween the axis of rotation and the
line of action of the force. This calculation is easy to perform in two dimensions, where
the perpendicular distance (d in Figure 3-3) is readily calculable.

However, in three dimensions you'll want to be able to calculate torque by knowing
only the force vector and the coordinates of its point of application on the body relative
to the axis of rotation. You can accomplish this by using the following formula:

M=rxF
The torque, M, is the vector cross product of the position vector, r, and the force vector, F.

In rectangular coordinates you can write the distance, force, and torque vectors as
follows:

r=xi+yj+2zk
F=Fd+ Fj+Fk
M = M,i+ Mj+ Mk

The scalar components of ¥ (x, y, and 2) are the coordinate distances from the axis of
rotation to the point of application of the force, F. The scalar components of the torque

66 | Chapter3: Force

vector, M, are defined by the following:

My = yF, - zF;
M, = zF, — xF,
M, =xF, - vF

Consider the rigid body shown in Figure 3-4 acted upon by the force F at a point away
from the body’s center of mass.

Y F

World Axes

z

Figure 3-4. Torque Example

In this example F, a, and b are given and are as follows:
F = (—901b)i + (156 1b)j -+ (0)k
a=0.661t
b=10.5251
Calculate the torque about the body’s center of mass due to the force F.

The first step is to put together the distance vector from the point of application of F to
the body’s center of mass. Since the local coordinates a and b are given, r is simply

r = (0.66f0i 4+ (0.523 f)j + (O)k

Now; using the formula M = r x F (or the formulas for the components of the torque
vector shown earlier), you can write

M = [(0.66f0)i + (0.525 f0)j + (O)k] x (—901b)i + (156 1b)j + (k]
M = [(0.66{t)(156 Ib) — (0.325 ft)(—901b)]k
M = (150.2 fr-Ib)k

Forceand Torque | 67

Note that the x- and y-components of the torque vector are zero; therefore, the torque
moment is pointing directly along the z-axis. The worque vector would be pointing out
of the page of this book in this case. iy

In dynamics you need to consider the sum, or total, of all forces acting on an object
separately from the sum of all torques acting on a body. When summing forces, you
simply add, vectorally, all of the forces without regard to their point of application.
However, when summing torgues, you must take into account the point of application
of the forces to calculate the torques as shown in the previous example. Then you can
take the vector sum of all rorques acting on the body.

When considering rigid bodies that are not physically constrained to rotate about a
fixed axis, any force acting through the body's center of mass will not produce a rorque
on the body about its center of gravity. In this case the axis of rotation passes through
the center of mass of the body, and the vector r would be zero (all components 2e10).
When a force acts through a point on the body some distance away from its center of
mass, a torque on the body will develop, and the angular motion of the body will be
affected. Generally, field forces, forces at a distance, are assumed to act through a body’s
center of mass; thus, only the body’s linear motion will be affected unless the body is
constrained to rotate about a fixed point. Other contact forces, however, generally do
not act through a body’s center of mass {they could but aren’t necessarily assumed to)
and tend to affect the body’s angular motion as well as its linear motion.

68 | Chapter3: Force

CHAPTER 4
Kinetics

Recall that kinetics is the study of the motion of bodies, including the forces that act on
them. It’s now time that I combine the material presented in the earlier chapters, namely,
kinematics and forces, to study the subject of kinetics. As in the chapter on kinematics,
I'll first discuss particle kinetics and then go on to discuss rigid body kinetics.

In kinetics the most important equation that you must consider is Newton’s second
law:

F =ma

When rigid bodies are involved, you must also consider that the forces acting on the body
will tend to cause rotaton of the body in addition to translation. The basic relatdonship
here is

M = Il

where M is the vector sum of all moments (torques) acting on the body, I is the body
moment of inertia tensor, and e is the angular acceleration.

Collectively, these two equations are referred to as the equations of motion.

You will encounter two types of problems in kinetics. One type is when you know the
body’s acceleration or it can be readily determined by using kinematics, and you must
solve for the force(s) acting on the body. The other type is when you know the force(s)
acting on the body or you can estimate these, and you must solve for the resulting
acceleration of the body (and subsequently its velocity and displacement). Obviously,
it's this second type of problem that is most applicable to game physics, so that’s
primarily what I’ll be discussing from here on.

Let me stress that you must consider the sum of all of the forces acting on the body
when solving kinetics problems. These include all applied forces and all reaction
forces. Aside from the computational difficulties in solving the equations of motion,
one of the more challenging aspects of kinetics is identifying and properly account-
ing for all of these forces. In the next several chapters you'll look at specific prob-
lems in which the particular forces involved will be investigated. For now, and for the

.ﬁ,l;‘_'

69

purpose of generality, let’s stick with the idealized forces introduced in the previous
chapter. -

\ - + .|‘ ﬂ -
The general procedure for solving kinetics problems of interest tofus is as follows:

1. Calculate the body’s mass properties (mass, center of mass, and moment of inertia).
2. Identify and quantify all forces and moments acting on the body.

3, Take the vector sum of all forces and moments.

4, Solve the equations of motion for linear and angular accelerations.

5. Integrate with respect to time to find linear and angular velocity.

6. Integrate again with respect to time to find linear and angular displacement.

This outline makes the solution to kinetics problems seem easier than it actually is
because there are a number of complicating factors that you'll have to overcome. For
example, in many cases the forces acting on a body are functions of displacement,
velocity, or acceleration. This means that you'll have to use iterative techniques to solve
the equations of motion. Further, since you most likely will not be able to derive closed-
form solutions for acceleration, yowll have to numerically integrate to estimate velocity
and displacement at each instant of time under consideration. These computational
‘aspects will be addressed further in Chapters 11 through 17.

Particle Kinetics in 2D

As in particle kinematics, in particle kinetics you need to consider only the linear
motion of the particle. Thus, the equations of motion will consist of equations of the
form F = ma, in which motion in each coordinate direction will have its own equation.
The equations for 2D particle motion are

EF, = My
ZFy = May

where Y F, means the sum of al! forces in the x-direction, 3 F, means the sum of
all forces in the y-direction, a, is the acceleration in the x-direction, and ay is the
acceleration in the y-direction.

The resultant force and acceleration vectors are
a = a.i+ a,j

a= fal+al
Y F=) Fi+) Fj
NS I

Let’s look at a simple illustrative example. A ship floating in water, initially at rest,
starts up its propeller, generating a thrust T, which starts the ship moving forward.

70 | Chapterd: Kinetics

Assume that the ship’s forward speed is slow and the resistance to its motion can be
approximarted by

R=-Cv

where R is the total resistance, C is a drag coefficient, v is the ship speed, and the
minus sign indicates that this resistive force opposes the forward motion of the ship.
Find formulas for the ship’s speed, acceleration, and distance traveled as functions of
time, assuming that the propeller thrust and resistance force vectors act on a line of
action passing through the center of gravity of the ship. (This assumption lets you treat
the ship as a particle instead of a rigid body)

The tirst step in solving this problem is to identify all of the forces acting on the
ship. Figure 4-1 shows a free-body diagram of the ship with all of the forces acting on
it, namety, the propeller thrust, T; resistance, R; the ship’s weight, W; and buoy-
ancy, B.

Figure 4-1. Free-Body Diagram of Ship

Notice here that the buoyancy force is exactly equal in magnitude to the ship’s weight
and opposite in direction; thus, these forces cancel each other, and there will be no
motion in the y-direction. This must be the case if the ship is to stay afloat. This
observation effectively reduces the problem to a one-dimensional problem with motion
in the x-direction only where the forces acting in the x-direction are the propeller thrust
and resistance.

Now vou can write the equation (for motion in the x-direction), using Newton’s second

law, as follows:
Z F=ma
T—R=ma
T-— (Clﬁ') = mMa

where a is the acceleration in the x-direction and v is the speed in the x-direction.

Particle Kineticsin2D | 71

The next step is to take this equation of motion and integrate it to derive a formula for
the speed of the ship as a function of time. To do this, you must make the substitution
a = dv/dt, rearrange, integrate, and then solve for speed as followss

1

T — (Cv) = midv/dt)
dt = [m/{(T —Cw)jdv

fot dt = f:l[m/(T — Cv)ldv

t—0=—(=(m/C)In(T — C}|]
t=—(m/C)YIn(T — Cvy) + (m/CYIn(T — Cvy)
t = (m/O)In(T = Cvy) — (T — Cv2)]
(C/m)t = In[(T — Cv)) /(T — Cv)]
p(Cimit — fzln[(l'w(?vl)/’(T—Cvz)]

eC/mt = (T — Cv) /(T — Cvy)

(T — Cvy) = (T — Cvp)e ©/mt
vs = (T/C) — e &/mM(T/C —v1)

where v is the initial ship speed (which is constant) and v; is the ship speed at rime
t. v; is what you're after here, since it telis you how fast the ship is traveling at any

instant of dme.

Now that you have an equation for speed as a function of rime, you can derive an
equation for displacement (distance traveled in this case) as a function of time. Here,
you'll have to recall the formula v dt = ds, substitute the above formula for speed,
integrate, rearrange, and solve for distance traveled. These steps are shown below:

vdt=ds
v dt =ds
(T/C) — e C/mHT/C —vi)dt =ds

¢ 53
f (T/C) — e C/mNT/C —v1) dt = f ds
B s

4 t
(T/C}f dt — (T/C -vl)f e~ Cimigy — 55 — 5y
o o

((T/C)t + UT/C) = i)m/ Qe I} =5, — 51
[T/ Ot + [(T/C) = vil(m/Cle™ C/M} — (0 + [(T/C) = nil(m/ Oy = $2= 51
(T/C)t + (T/C — v1)(m/ Cle~ /™ —(T/C —vi}mjC) =52 — 51
2= 53 + (T/C)t + (T/C — v)m/Cle™ /™t —(T]C —v1)(m/ C)

72 | Chapterd: Kinetics

Finally, you can write an equation for acceleration by going back to the original equation
of motion and solving for acceleration:
T —(Cv) =ma
a=(T—(Cv)}}/m
wherev = v; = (T/C) — e~ “/™NT/C — vy)

Insummary, the equations for velocity, distance traveled, and acceleration are as follows:

vy = (T/C) — e /MY (T/C —vy)
sy =581+ (T/C+(T/C —v1)(m/Cle™ /M _(T/C — v1)(m/C)
a=[T—-({Cwl/m

LY

To illustrate the motion of the ship further, I've plotted the ship’s speed, distance
traveled, and acceleration versus time as shown in Figures 4-2, 4-3, and 4-4. To facilitate
these illustrations, I've assumed the following:

® The inital ship speed and displacement are zero at time zero.

¢ The propeller thrust is 20000 thrust units,

* The ship’s mass is 10,000 mass units.

¢ The drag coefficient is 1000.
You’ll notice that the ship’s speed approaches the steady state speed of 20 speed units,
assuming that the propeller thrust remains constant. This corresponds to a reduction

in acceleration from a maximum acceleration at time zero to no acceleration once the
steady speed is achieved.

25

20

5 /
12 /

1 4 7 10

Speed

19 22 25 28 31 34 37 40 43

Time

13 16

Figure 4-2. Speed versus Time

ekl

Particle Kineticsin2D | 73

800

700

600

&
[=r]
(=]

Distance
N
=
o

Time

300
200
100
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Figure 4-3. Distance versus Time

Acceleration

Time

0.6 AN
0.4
14 7 10 13 16 19 22 25 28 31 34 37 40 43

Figure 4-4. Acceleration versus Time

74 | Chapter4: Kinetics

This example illustrates how to setup the differential equations of motion and integrate
them to find velocity, displacement, and acceleration. In this case you were able to find
a closed-form solution; that is, you were able to integrate the equations symbolically
to derive new ones. You could do this because I imposed enough constraints on the
problem to make it manageable. But you can readily see that if there were more forces
acting on the ship, or if the thrust were not held constant but was some function of
speed, or if the resistance were a function of speed squared, and so on, the problem
would get increasingly complicated, making a closed-form solution much more difficult
if possible at all.

Particle Kineticsin 3D

As in kinematics, extending the equations of motion for a particle to three dimensions
is easy to do. You simply need to add one more component and will end up with three
equations as follows:

ZPX = ma,
ZPJ’ '=may
Zl:zzmaZ

The resultant force and acceleration vectors are now

a=a,i+aj+ak

a=,ja;+a;+a?
D> F=) Fi+) Fj+) Fk
S F=\JY F:+) Fi+y E?

To hammer these concepts home, I want to present another example.

Let’s go back to the cannon program discussed in Chapter 2. In that example I made
some simplifying assumptions so that I could focus on the kinematics of the problem
without complicating it too much. One of the more significant assumptions I made was
that there was no drag acting on the projectile as it flew through the air. Physically, this
would be valid only if the projectile were moving through a vacuum, which of course,
is unlikely here on the earth. Another significant assumption I made was that there was
no wind to act on the projectile, affecting its course. These two considerations, drag
and wind, are important in real-life projectile problems, so to make this example a little
more interesting, and more challenging to the user if this were an actual game, I'll now
go ahead and add these two considerations.

First, assume that the projectile is a sphere and that the drag force acting on it as it flies
through the air is a function of some drag coefficient and the speed of the projectile.

.“,11“

Particle Kineticsin3D [75

This drag force can be written as follows:
Fg = —Cyv
Fg = —Cyv,i — Cavyj — Cavk

- 'I";ﬁ‘

where Cg is the drag coefficient, v is the velocity of the projectile (v, vy, and v, are
its components), and the minus sign means that this drag force opposes the projectile’s
motion. Actually, I'm cheating a bit here, since in reality the fluid dynamic drag would
be more a function of speed squared. I'm doing this here to facilitate a closed-form
solution.

Second, assume that the projectile is subjected to a blowing wind and that the force of
this wind on the projectile is a function of some drag coefficient and the wind speed.
This force can be written as follows:

F, =—-Cuvy

F, = —CyVu,d — CuVusk
where C,, is thedrag coefficient, v, isthe wind speed, and the minus sigh means that this
force opposes the projectile’s motion when the wind is blowing in a direction opposite
of the projectile’s direction of motion. When the wind is blowing with the projectile, say,
from behind it, then the wind will actually help the projectile along instead of impede
its motion. In general, Cy is not necessarily equal to Cy4 shown in the drag formula.
Referring to Figure 2-3, 'll défine the wind direction as measured by the angle y . The x-
and z-components of the wind force can now be written in terms of the wind direction,
v, as follows:

Fu. = Fycosy = —~{Cyv,)cosy
F.. = F,cosy = —(Cyvy) siny

Finally, let’s apply a gravitational force to the projectile instead of specifying the effect
of gravity as a constant acceleration, as was done in Chapter 2. This allows you 0
include the force due to gravity in the equations of motion. Assuming that the projectile
is relatively close to sea level, the gravitational force can be written as

F, = —mngj

where the minus sign indicates that it acts in the negative y-direction (pulling the
projectile toward the earth), and g on the right side of this equation is the acceleration
due to gravity at sea level.

Now that all of the forces have been identified, you can write the equations of motion
in each coordinate direction:

ZF:: = —Fu .- Fye = m(dﬁx/dt)
Z Fy = —de — ng = m(dvy/dt)
Z F,=—F,;— Fi; = m{dv,/dt)

76 | Chapter4: Kinetics

Note here that I already made the substitudon dv/dt for acceleration in each equation.
Following the same procedure shown in the previous section, you now need to integrate
each equation of motion twice: once to find an equation for velocity as a function of
dme and again to find an equation for displacement as a function of time. As before,
I'll show you how this is done component by component.

You might be asking yourself now, “Where's the thrust force from the cannon thart
propels the projectile in the first place?” In this example I'm looking specifically at the
motion of the projectile after it has left .ne muzzle of the cannon where there is no longer
a thrust force acting on the projectile {it isn’t self-propelled}. To account for the effect of
the cannon thrust force, which acts over a very short period of time while the projectile
is within the cannon, you have to consider the muzzle velocity of the projectile when
it initially leaves the cannon. The components of the muzzle velocity in the coordinarte
directions will become initial velocities in each direction, and they will be included
in the equations of motion once they have been integrated. The initial velocities will
show up in the velocity and displacement equadons just as they did in the example in
Chapter 2. You'll see this in the following sections.

x-Components

The firsc step is to make the appropriate substitutions for the force terms in the equation
of motion and then integraze to find an equation for velocity:

—Fyr — Fyp = mldv,/dt)
—(Cpvycosy) — Cav, = mdv, /dt
dt = mdv,/[—(Cpvy cosy) — Cavyl

4 155
f dt B f “m/[(cu'vlt' Cos }/) + Cdvx] dl/'_\-
G vx]

t = —(m/Ca) In[(Cuvy cos y) + Cavil [

t = —(m/Cya) In[(Cyvw cos) + Cavy.] + (m/ Ca) In{(Covy cos y) + Cyvy,]
(Cd/m)t = In{[(Cyva 05 ¥) + Cavi | /I{Cuvy cOs ¥) + Cavi:]}
£Cd/mit — Inll(Cw vw cos y)+Cavay) {(Cwvw cos y)+C vl
St = [(Cyvy, cos y) + Cavy 1/ [(Cuva cos ¥} + Cavy,]

[(Cuvi €05 ¥) + Caviy] = [(Cuvg O ¥) + Cavy Je (CHm
vy, = (1/Ca)[eC4 ™ (covy, cos y + Cavay) — (Cuvu o8)]

To getan equation for displacement as a function of time, you need to recall the equation
vdt = ds, make the substruton for v (using the above equation), and then integrate

gk

Partide Kineticsin3D | 77

one more time:
v,:?dt = ds, »
(I/Cd)[e(_cfi/”")£ (CuVi cOS ¥ + CaVyx,) — (Cuvi COS 2l dr = ds,

t 5X;
[(1/C)le" 4™ (¢ vy, cosy + Cavy) — (Cwvu cos y)] dt = [1 dsy
0 $x1
55, = {(m/Cd)g(~Cd/m)t[——(vaw cosy)/ Ca — vy] — [(Cuvw cos ¥)/Calt)
—{(m/C)[—(Cyvy cos yi/Cgq — Vxl]} + 53

Yes, these equations are ugly Just imagine if 1 hadn’t made the simplifying assumption
that drag is proportional to speed and not speed squared! You would have ended up
with some really nice equations with an arctan term or two thrown in.

y-Components

For the y-components you need to follow the same procedure shown earlier for the
x-components, but with the appropriate y-direction forces. Here’s what it looks like:

—(Cqvy) — mg = m(dv,/dt)
f VY2
[dt = —m[1/{Cqvy + mgldv,
0 vyl
vy, = (1/Ca)e=CY™HCyvy, +mg) — (mg)/ Ca

Now that you have an equation for velocity, you can proceed on to get an equarion for
displacement as before:

vy,dt =ds,
[(1/ C)et~C4™H (C vy, + mg) — (mg)/Ca] dt = ds,
t ¥z
[0 [(1/Cpet =™ (Cavy, + mg) — (mg)/Ca] dt = dsy
3

Sy2 = Sy, {— vy, + (mg)/ Calm/ Ca)e=C4m* — tmg)/Ca}
+ {(m/ C)vy, + (mg)/ Cal)

Okay, that’s two down and only one more to go.

z-Components

With the z-component you get a break. You'll notice that the equations of motion for the
x- and z-components look almost the same with the'exception of the x and z subscripts
and the sine versus cosine terms. Taking advantage of this fact you can simply copy the
x-component equations and replace the x subscript with a z and the cosine terms with

78 | Chapter4: Kinetics

sines and be done with it:

vy, = (1/Ca)[e=C4 ™ (¢, vy siny + Cyvyy) — (cuvu siny)] .
Sz = {(m) Ce =4 [—(Cyvy, siny)/ Cy = vg] = [(Cuvy siny)/ Calt}
— {m/Ca)[—(Cyvy siny)/Cq —val} + s .

Cannon Revised

Now that you have some new equations for the projectile’s displacement in each
coordinate direction, you can go to the cannon example source code and replace the
old displacement calculatiqn formulas with the new ones. Make the changes in the
DoSimulation function as follows:

// new local variables:

double sx1, vxi;
double syl, vyl;
double szl1, vzl;

// Mow we can calculate the pesition vector at this time

// 01d position vector commented out:

//s.i = Vm * cosX * time + xe;

f/s.3 = (Yb + L * cos{Alpha * 3.14/180)) + (Vm * cosY * time) -
/7 (0.5 * g * time * time);

//s.k = ¥m * cosZ * time + ze;

// New position vector calculations:

5x1 = xe;

vxl = Vm * cosX;

syl = Yb + L * cos(Alpha * 3.14/180);

vyl = Vm * cosY;

sz1 = ze;

vzl = Vm * cosZ;

s.i = ({m/cd) * exp(-(Cd * time)/m} * {(-Cw * Vw * cos(GammaW * 3.14/180))/Cd

vx1) - (Cw * Vw * cos{GammaW * 3.14/180) * time) / Cd) -
((m/Cd} * {(-Cw ® Vw * cos(GammaW * 3.14/180))/Cd - vx1}) + sxi;

.ﬁ,l;;

Partide Kineticsin 30 | 79

$.j ; syl + (-(wy1+ (m* g)/Cd) * (m/Cd) * exp(-(Cd*time}/m) -
(m g* time) 7 Cd)+ ({mcd) = (vytl + (m* g)/Cd));

s.k = ({m/Cd) * exp(-(Cd * time}/m) * {(-Cw * Vw * sin(GammﬁaN * 3.14/180))/Cd

vz1) - {Cw * Vw * sin{GammaW * 3.14/180) * time) / Cd) -
((m/Cdy * {(-Cw * Vw * sin(Gammal * 3.14/180))/Cd - vz1)) + s21;

}

To take into account the cross wind and drag, you'll need to add some new global
variables to store the wind speed and direction, the mass of the projectile, and the drag
coefficients. You'll also have to add some controls in the dialog window so that you can
change these variables when you run the program. Figure 4-5 shows how | added these
interface controls in the upper right corner of the main window.

Taop View

cannen
!r __ﬂ——’ﬁ_mﬂﬂﬁz__._u—~v“‘ &mger\&

Side View

Figure 4-5. Revised Cannon Example Screen Shot

1 also added these lines to the DemoDlgProc function to handle the new wind speed and
direction values:

80 | Chapterd: Kinetics

case

WM_INITDIALOG:

// New variables:
sprintf{ str, “%f", m);
SetDlgItemText(nblg, IDC_M, str);

sprintf{ str, “%f”, d);
SetDlgItemText(hblg, IDC_CD, str);

sprintf(str, “%f7, Vu);
SetDlgItemText (hDlg, IDC_VW, str);

sprintf(stz, “#f”, GammaW);
. SetDlgYtemText (hDlg, IDC_GAMMAW, str);

sprintf(str, “%f”, Cw);
SetDlgltemText{hDlg, IDC_CW, str);

case

case

IDC_REFRESH:

// New yariables:
GetDlgItemText(hDlg,
m = atof(str);

GetDlgItemText(hDlg,
Cd = atof(str);

GetDlgitemText(hDlg,
Vw = atof(str);

GetDigitemText(hDlg,
GammaW = atof(str);

GetDlgItemText({hDlg,
Cw = atof(str};

IDC_FIRE:

/7 New variables:
GetDlgItemText(hDlg,
n = atof(str);

GetDlgItemText(hDlg,
Cd = atof(str);

IDC_M, str, 15};

IDC_CD, str, 15);

IDC_VMW, str, 15);

IDC_GAMMAW, str, 15);

IDC_CW, str, 15);

IDC_M, str, 15);

IDC_CD, str, 15);

Particle Kinetics in 3D

GetDlgTtemText(hDlg, IDC_VW, str, 15);
Vw = atof(str);

GetDlgTtemText (hDlg, IDC_GAMMAW, str, 1575
Gammaw = atof{str);

GetDlgTtemText(hDlg, IDC_CW, str, 15);
Cw = atof(str);

}

After playing with this example program, you should readily see that the trajectory of the
projectile is noticeably different from that typically obtained in the original example.
By adjusting the values of wind speed, direction, and the drag coefficients, you can
dramatically affect the projectile’s trajectory. If you set the wind speed to zero and the
drag coefficients to 1, the trajectory will look like that obtained in the original example,
in which wind and drag were not taken into account. Be careful though; don't set the
drag coefficient to zero because this will result in a divide-by-zero error. I didn’t put
the exception handler in the program, but you can see that it will happen by looking at
the displacement vector formulas where the drag coefficient appears in the denominator
of several terms.

From a user’s perspective, if this were a video game, the problem of hitring the target
becomes much more challenging when wind and drag are taken into account. The wind
element is particularly interesting because you can change the wind speed and direction
during game play, forcing the user to pay careful attention to the wind in order to hit
the target accurately.

Rigid Body Kinetics

You already know from your study of kinematics in Chapeer 2 that dealing with rigid
bodies adds rotation, or angular motion, into the mix of things to consider. As I stated
carlier, the equations of motion now consist of a set of equations relating forces to linear
accelerations and another set of equations relating moments to angular accelerations.
Alternatively, you can think of the equations of motion as relating forces to the rate of
change in linear momentum and moments to the rate of change in angular momentum
as discussed in Chapter 1.

As in kinematics, the procedure for dealing with rigid body kinetics problems involves
two distinct aspects: tracking the translation of the body’s center of mass, where the
body is treated as a particle, and tracking the body’s rotation, in which you’ll utilize
the principles of local coordinates and relative angular velocity and acceleration as
discussed in Chapter 2. Really, the only difference between rigid body kinematics and
kinetics problems is that in kinetics problems we have forces to consider (including
their resulting moments).

82 | Chapterd: Kinetics

The vector equations are repeated here for convenience:

F =ma
M = Iv

where, in two dimensions,
S F=) Fi+) Fj
NN TSN

Going from two-dimensional particle problems to two-dimensional rigid body prob-
lems involves only the addition of one more equation. This equation is, of course, the
moment equation relatirig the sum of all moments acting on the body to the body’s
moment of inertia and its angular acceleration. In plane motion the axis of roration of
the rigid body is always perpendicular to the coordinate plane. And since there is only
one axis of rotarion, there is only one inertia term and one angular acceleration term to
consider. Thus, you can write

M, = la

where M, is the toral moment and is calculated by using the formulas discussed in the
section entitled “Force and Torque” in Chapter 3 and [is calculated about the axis of
rotation using the techniques discussed in the section entitled “Mass, Center of Mass,
and Moment of Inerta” in Chapter 1.

Tn their component forms, the set of equations of motion for two-dimensional kinetics
problems are

Since these equations indicate linear motion on the xy-plane, the angular acceleration
will be about the z-axis perpendicular to the xy-plane. Likewise, the moment of inertia,
I, will be taken about the z-axis.

Recall (from Chaprer 3) that moment is calculated by taking the cross product of the
position vector for the force under consideration and the force vector. This means that,
unlike in partficle kinetics, you now have to keep track of exactly where on the body
each force is applied. This is best illustrated with an example.

Consider the box of uniform density shown in Figure 4-6. Uniform density means
that its center of gravity is at the box’s geometric center. Find the value of the mini-
mum force, Fy, applied at the upper edge of the box, required to start tipping the box
over.

Rigid Body Kinetics | 83

Figure 4-6. Box Free-Body Diagram

In this figure, F, is the applied force, R and R, are the reaction forces at supports 1
and 2, Fy; and Fp, are the forces due to friction at points 1 and 2, and mg is the weight
of the box. '

This is an example of the type of problem in which you know something about the
motion of the object and have to find the value of one or more forces acting on it. To
find the value of the force that will be just enough to start the box tipping, you need to
look at the instant when the reaction force at support 2 is zero. This implies that all of
the weight of the box is now supported at point 1 and the box is starting to rotate over.
At this instant, just before it starts to rotate, the angular acceleration of the box is zero.
Note that the box’s linear acceleration isn’t necessarily zero; that is, you can push on
the box and it may slide without actually tipping over.

The equations of motion for this problem are

E F.=Fp, = may
> Fy=Ri+ R —mg =may =0
ZMCs = Fp(h/2) + Ry(w/2) — Riw/2) + Fi,(h/2) + Fy, h/Dy=Ie=0
Rewriting the second equation {above) when R; is zero shows that R, is equal to the
weight of the box. Further, when R; is zero, the R, (w/2) term drops out of the moment

equation, which can be rewritten by solving for F in terms of R;. Note that when Rz
goes to zero, so does Fr,. After some algebra the equation looks as follows:

F, = mg(w/h) — Fyg,

84 | Chapter4: Kinetics

Here, you can see that the tipping force, applied to the upper edge, is proportional to
the weight and size of the box (actually, the ratio of its width to its height), which you
can readily appreciate from a physical point of view. The fricton term is important here
because the existence of the fricdon force actually helps the box to tip. If the box were
on a frictionless surface, it would tend to slide rather than dp.

Let’s take a look at another example. Consider a circular cylinder on an inclined plane,
as shown in Figure 4-7. If the cylinder is set at the top of the plane and released, it will
start rolling down the plane. Develop equations for the cylinder’s linear acceleration
and angular velocity as it rolls dc wn. Note that the cylinder will roll because of the
torque created by the friction force that’s developed between the cylinder and the plane.
If this were a frictionless problem, then the cylinder would not roll down the plane; it
would simply slide down the plane, and its angular velocity would be zero.

Figure 4-7. Cylinder on an Inclined Plane

In this problem I've set up the coordinate system with the x-axis parallel to the inclined
plane. This makes the equations cleaner and allows you to effectively eliminate the
y-component, since the cylinder is not moving into or away from (perpendicularly)
the plane. Setting up the equations of motion in the y-direction indicates that the
two y-direction forces, in this case the component of the weight of the cylinder in the
y-direction and the reaction force normal to the plane, are equal and opposite and thus
cancel our:

ZFY =mgcos@ —mgcos@ =0

That was easy. Now look at the forces in the x-direction. The equation of motion is
2 F, = (mgsin@) — Ff = ma,

where Fyis the force due to friction, and a, is the linear acceleration (in the x-direction)
of the center of gravity of the cylinder. Assuming that the cylinder rolls without slipping,
the friction force is equal to us N, where p is the coefficient of static friction and N is

.t’,i;“

Rigid Body Kinetics | 85

the normal reaction force between the cylinder and the plane.* Making this substitution
for F; and solving for a, yields
-

(mg sin @) — usN = may i

a, = g{sin® — s cosf)

Notice that this acceleration is constant for a given plane angle and coefficient of
friction.

To find the angular velocity, you need to sum all of the moments (torques) about the
center of gravity, make the substituion dw/dt for e, integrate and solve for w, the
angular velocity:

> My = Fir = Igo
Fir =1y dex/dt
dt = I/(F¢r) do

t -
] dt = 1g/(Fi 1)] dew
D ®)

wy = [{Fy 1)/ It +en

You could have skipped the integration here by observing that this is a constant accel-
eration problem and recalling the equation (from Chapter 2} w; = ot + w).

These two examples illustrate a very important aspect of rigid body kinetics: you must
consider the point of application of forces in addition to their magnitudes and directions
to properly account for angular motion.

In the case of plane motion, or 2D motion, of rigid bodies as discussed here, you are
able to readily set up the equations of motion and investigate both the linear and an-
gular motion of the body. In generalized 3D motion the linear motion of rigid bodies
is no different from that of particles; you simply track the motion of the rigid body’s
center of gravity. In three dimensions, however, rotation gives us some grief, as it is no
longer a simple matter of treating rotation about a single axis as in plane motion. In
3D you'll have to consider rotation about any axis, which leads to some difficulties in
representing arbitrary rotations {Euler angles won’t work for us) as well as to compli-
cations determining moments of inertia for rotation about any axis. I'll discuss these
issues in Chapters 11 through 15.

* If the cylinder were ralling and slipping. then you would use the coefficient of kinetic friction instead of the
coefficient of static friction.

86 | Chapter4: Kinetics

Y.y

CHAPTER 5
Collisions

Now that you understand the motion of particles and rigid bodies, you next need to
consider what happens when they run into each other. That’s what I'll address in this
chapter. Specifically, I'll show you how to handle particle and, more interestingly, rigid
body collision response.

Before moving forward, I need to make a distinction between collision detection and

collision response. Collision detection is a computational geometry problem involving

the determination of whether and where two or more objects have collided. Collision
response is a physics problem involving the motion of two or more objects after they
have collided. Although the two problems are intimately related, in this chapter I'll be
ﬂi(‘)cusing solely on the problem of collision response. Suppose. ; H

fluriet

I must say, however, that collision detection is not to be taken lightly; it is a crucial
aspect of any real-time simulation in which objects are not supposed to be able to
pass through each other. Your collision response algorithms rely on the results of your
collision detection algorithms to accurately determine the appropriate response to any
collision; therefore, you should take care in making sure your collision detection schemes
are accurate and reliable. Thar said, collision detection is no easy task. I personally find
it much more difficult to implement robustly than the physics aspects of rigid body
simulations. For game applications, speed is also a major issue, as I'm sure you are
aware, and very accurate collision detection can be slow. For the sake of speed and
simplicity I'll use a bounding sphere scheme along with bounding box and vertex edge
and vertex face collision detection schemes in the examples that you’ll see later in this
book. I'll ralk more about this subject in Chapters 13 and 16 when 1 show you some

example simuladons. |
m}‘um% soOnviaevy)) i .
My treatment of rigid body collision response in this chapter is based on classical

(Newtonian) impact principles. Here, bodies that are colliding are treated as rigid irres-
pective of their construction and material. As in earlier chapters, the rigid bodies dis-
cussed here do not change shape even upon impact. This, of course, is an idealization.
You know from your everyday experience that when objects collide, they dent, bend,
compress, or crumple. For example, when a baseball strikes a bat, the ball may compress

re

87

[PtV

as much as three quarters of an inch during the millisecond of impact. Notwithstanding
this reality, we’ll rely on well established analytical and empirical methods to approxi-
mate rigid body collisions. Y

This classical approach is widely used in engineering machine design, analysis, and
simulations; however, for rigid body simulations there is another class of methods,
knowr as penalty methods, at your disposal.” In penalty methods the force at impact
is represented By fefporary spring that gets Compressed between the objects at the
mpring compresses over a very short time and applies equal and
oppostte forces to the colliding bodies to simulate collision response. Proponents of this
method say that it has the advantage of ease of implementation. However, one of the
difficulties encountered in its implementation is numerical instability. There are other
arguments for and against the use of penalty methods, but I won't get into the debate
here. Instead, T've included several references in the bibliography for you to review if
you are so inclined.

Impulse-Momentum Principle

Impulse is defined as a force chat acts over, avery short period of time. For example, the
force exerted on a bullet when fired from a gun is an impulse force. The collision forces
between two colliding objects are impulse forces, as when you kick a football or hit a

baseball with a bat.

More specifically, impulse is a vector quantity equal to the change in momentum. The
so-called impulse-momentum principle says that the change in moment is equal to the
applied impulse. For problems involving constant mass and moment of inertia, you can
write :

t+
Linear impulse = [Fdt=m{vy —v_)

t—

t+
Angular impulse = f Mdt=T{w, —w._)
: .

In these equations F is the impulsive force, M is the impulsive torque (or moment}, t
is time, v is velocity, the subscript — refers to the instant just prior to impact, and the
subscript + refers to the instant just after impact. You can calculate the average impulse
force and torque using the following equations:

F = m(V+ - Vg)/(ﬁ_ - t,)
M=Tw, — w.)/ —t)

* [use the classical apptoach in this book and am mentioning penalty methods enly to let you know that
the method I'm going to show is not the only one. Roughly speaking, the “penalty” in “penalty methods™
refers to the numerical spring constants, which are usually large, that are used to represent the sriffness of the
springs and thus the hardness (or softness) of the colliding bodies. These constants are used in the system of
equations of motion describing the motion of ail the bodies under consideration before and after the collision.

88 | Chapter5: Collisions

Consider this simple example: A 150-g (0.01028-slug) bullet is fired from a gun at a
muzzle velocity of 2480 ft/s. The bullet takes 0.008 s to wavel through the 24-in. rifle
barrel. Calculate the impulse and the average impulsive force exerted on the bullet. In
this example the bullet’s mass is a constant 150 g, and its initial velocity is zero; thus, its
initial momentum is zero. Immediately after the gun is fired, the bullet’s momentum is
its mass times the muzzle velocity of 2480 ft/s, which yields a momentum of 25.5 slug-
ft/s. The impulse is equal to the change in momentum and is simply 25.5 slug-ft/s. The
average impulse force is equal to the impulse divided by the duration of application of
the force, or, in this case,

Average impulse force = (25.5 slug-ft/s)/(0.0008s)
Average impulse force = 3187 Ib

This is a simple but impo\rl:ant illustration of the concept of impulse, and you’ll use
the same principle when dealing with rigid body impacts. During impacts, the forces of
impact are usually very high, and the duration of impact is usually very short. When
two objects collide, each applies an impulse force to the other; these forces are equal in
magnitude but opposite in direction. In the gun example the impulse that is applied to
the bullet to set it in motion is also applied in the opposite direction to the gun to give
you a nice kick in the shoulder. This is simply Newton’s third law in action.

impact

In addition to the impulse momenrum principle discussed in the previous section, our
classical impact, or collision response, analysis relies on another fundamental principle:
Newton'’s principle of conservation of mementum, which states that when a system of
rigid bodies collide, momentum is conserved. This means that for bodies of constant
mass, the sum of their masses times their respective velocities before the impact is equal
to the sum of their masses times their respective velocities after the impact:

mivi— +myva_ = mvi4 + mavay

Here, m refers to mass, v refers to velocity, subscript 1 refers to body 1, subscript 2 refers
to body 2, subscript — refers to the instant just before impact, and subscript + refers to
the instant just after impact.

A crucial assumption of this method is that during the instant of impact, the only force
that matters is the impact force; all other forces are assumed te be negligible over that
very short duration. Remember this assumption because later, in Chapter 13, I'll rely
on it when implementing collision response in an example 2D real-time simulation.

I've already stated that rigid bodies don’t change shape during impacts, and you know
from your own experience that real objects do change shape during impacts. What’s
happening in real life is that kinetic energy is being converted to strain energy, causing
the objects to deform. When the deformation in the objects is permanent, energy is lost,
and thus kinetic energy is not conserved.

gkl

[mpact | 8¢

Kinetic Energy

Kinetic energy is a form of energy associated with moving bodies. Kinetic energy is
equal to the energy required to accelerate the body from rest, which is also equal to the
energy required to bring the moving body to a stop. As you might expect, kinetic energy

_ is a function of the body’s speed, or velocity, in addition to its mass. The formula for
linear kinetic energy is

i

KEjinear = (I/Z)mvz
Angular, or rotational, kinetic energy is a function of the body’s inertia and angular
velocity:

KEangular = (1/2}1(92

Conservation of kinetic energy between two colliding bodies means that the sum of
kinetic energy of both bodies before impact is equal to the sum of the kinetic energy of
both bodies after impact:

2
mivi_ + mz”%_ = mwﬂ + mzv%Jr

Collisions that involve losses in kinetic energy are said to be inelastic, or plastic, colli-
sions. For example, if you throw two clay balls against each other, their kinetic energy
is converted to permanent strain energy in deforming the clay balls, and their collision
response, that is, their motion after jmpact, is less than spectacular. If the collision is
perfectly inelastic, then the two balls of clay will stick to each other and 1 move, together
at the same velocity after impact. @Wh kinetic energy is conserved are
called perfectly elastic. In these collisions the sum of kinetic energy of all objects before
theTimpact 1s equal to the sum of kinetic energy of all objects after the impact. A good
example of elastic impact (though not perfectly elastic) is the collision between two
billiard balls, in which the ball deformation is negligible and certainly not permanent
under normal circamstances.

Of course, in reality, impacts are somewhere between perfectly elastic and perfectly
inelastic. This means that for rigid bodies, which don’t change shape ac all, we’ll have
to rely on an empirical reladion to quantify the degree of elasticity of the impact(s) that
we're trying to simulate. The relation that we’ll use is the ratio of the relative separation
velocity to the relative approach velocity of the colliding objects:

e =~y —vay) /(v —v2-)

Here, e is known as the coefficient of restitutionand isa function of the colliding objects’
material, construction, and geometry. This coefficient can be experimentally determined
for specific impact scenarios, for example, the collision between a baseball and bat or
a golf club and ball. For perfectly inelastic collisions, e is zero; and for perfectly elastic
collisions, e is 1. For collisions that are neither perfectly inelastic nor perfectly elastic,
e can be any value between zero and 1. In this regard, the velocities that are considered
are along the line of action of the collision.

90 |. Chapter5: Collisions

In frictionless collisions the line of action of impact is a line perEendicular (or normal)

to the colliding surfaces. When the velocity of the bodies is along the line of acton,

¢ impact is said to be direct. When the line of action passes through the center of
mass of the bodies, the collision is said to be central. Particles and spheres of upiform
mass distribution always experience central impact. Direct central impact occurs when
the line of action passes through the centers of mass of the colliding bodies and their
velocity is along the line of action. When the velocities of the bodies are not along
the line of action, the impact is s~id to be oblique. You can analyze oblique impacts
in terms of component coordinates where the component parallel to the line of action
experiences the impact, but the component perpendicular to the line of action does not.
Figure 5-1 illustrates these impacts.

Cenlral Impact Direct Impact Dbligue Impact

Line of action—s Velocity

Figure 5-1. Types of Impact

As an example, consider the collision between two billiard balls as illustrated in
Figure 5-2.

n i

velocity aftar fmpak‘__

valocity be:mre impact

Figure 5-2. Billiard Ball Collision Example

.ﬁ,l;‘“

impact | 91

Both balls are a standard 2.25 in. in diameter, and each weighs 5.5 oz. Assume that
the collision is nearly perfectly elastic and that the coefficient of restitution is 0.9. If
the velocity of ball 1 when it strikes ball 2 is 20 ft/s in the xsdirection as shown in
Figure 5-2, calculate the velocities of both balls after the collision, assuming that this is
a frictionless collision.

The first thing you need to do is recognize that the line of action of impact is along the
line connecting the centers of gravity of both balls, which, since these are spheres, is
also normal to both surfaces. You can then write the unit normal vector as follows:

n=(/(@2 -r)i-) /Inl
n = (0.864)i — (0.5)f
where 1 is the unit normal vector, r is the ball radius, and i and j represent unit vectors
in the x- and y-directions, respectively.

Now that you have the line of action of the collision, or the unit normal vector, you can
calculate the relative normal velocity between the balls at the instant of collision:

Ve = [Vi- —v2-1-m
vy = (20 ft/s)i + (0 fr/s)j] - [(0.864)i - (0.5))]
Vo = 17.28 ft/s
Notice here that since ball 2 is initially at rest, v2- is zero.
Now you can apply the principle of conservarion of momentum in the normal direction
as follows:
M1Vin— + M2Von = M1Vine + P2Vint
Noting that m; equals m;, since the balls are identical, and that vz, is zero and then
solving for vin4+ yields
Vin+ = Vip- — Vint+
To actually solve for these velocities, you need 10 use the equation. for coefficient of
restitution and make the substitution for v1,.. Then you’'ll be able to solve for vans.-
Here’s how to proceed:
e = (—Vips + Vaos)/ Vin- — Van-)
evin- = —(Vin- — Van4) + Vant
Vins = Vin-{e + 1)/2
vany == (17.28 ft/5)(1.9)/2 = 16.43 fu/s

Using this result and the formula for via+ yields
Ving = 17.28ft/s — 16.42ft/s = 0.86 ft/s

Since the collision is frictionless, there is no impulse acting in the tangential direction.
This means that momentum is conserved in that direction too and that the final tan-
gential speed of ball 1 is equal to its initial tangential speed, which in this case is equal

952 | Chapter5: Coliisions

. i

to 10 ft/s (this equals (20 ft/s} sin 30°). Since ball 2 had no initial tangentiat speed, its
velocity after impact is solely in the normal direction. Converting these results back
to xy-coordinates instead of normal and tangential coordinates yields the following
velocities for each ball after impact:

vay = (16.42 ft/s) sin 60° 1 — (16.42 {t/s} cos 60°

vi+ = [(0.86ft/s) cos 30° + {10 ft/s) sin 30°]i
+ [(~0.86{t/s) sin 30° 4 (10 ft/s) cos 30%)]j

vis = (5.43 ft/s)i + (8.23 fi/s)j
To further illustrate the application of these collision response principles, consider

another example, this time the collision between a baseball bat and basebal! as shown
in Figure 5-3.

/ j velocity after impact
4

n

valocity before impact =

Figure 5-3> Baseball and Bat Collision Example

To areasonable degree of accuracy the motion of a baseball bat at the instant of collision
can be described as independent of the batter; that is, you can assume that the bat
is moving freely and pivoting about a point located near the handle end of the bar.
Assume that the ball strikes the bat on the sweet spot, that is, a point near the center of
percussion.* Further assume that the bat is swung in the horizontal plane and that the
baseballis traveling in the horizontal plane when it strikes the bat. The bat is of standard
dimensions with a maximum diameter of 2.75 in. and a weight of 36 oz (mass equals
0.07 slug). The ball is also of standard dimensions with a radius of 1.47 in. and a weight
of 5.125 oz (mass equals 9.96 x 1077 slug). The ball reaches a speed of 132 ft/s (90 mph)
at the instant it strikes the bat, and the speed of the bat at the point of impact is 103 ft/s
{70.2 mph). For this collision the coefficient of restitution is 0.46. In the millisecond of

* The center of percussion is a point located near one of the nodes of natural vibration and is the point ar
which, when the bat is struck by the ball, no force is ransmitted to the handle of the bar. If you have ever hit
a baseball incorrectly and experienced a painful vibrating sensation in your hands, then you know what it
feels like 1o miss the center of percussion.

.ﬁ,l;‘_'

Impact | 93

impact that occurs, the baseball compresses quite a bic; however, in this analysis assume
that both the bat and the ball are rigid. Finally, assume that this impact is frictionless.

w8
+ . . . I3 . LC - -
As in the previous example, the line of action of impact is along the line connecting the
centers of gravity of the bat and ball; thus, the unit normal vector is

n= (, / ((r1 +) — r%)i — rlj)/|n|

n = (0.875) + (0.484)]
Here the subscripts 1 and 2 denote the bat and ball, respectively.

The relative normal velocity between the bat and ball is

Vi = [V]__ _VZ—] -
v = [(235 fv/s)i + (0 fu/s)j] - [(0.875) — (0.484)j]
v = 205.6ft/s

The velocity components of the bat and ball in the normal direction are

Vine = v1— -0 = 90.125fv/s
Vip—m =—m V2 DL = —115.5f/s
Applying the principle of conservation of momentum in the normal direction and
solving for v1n.. yields
M Vin_ + MaVin— = MiVint + F2V204+

(0.07 slug){90.125 ft/s) + (9.96 x 1073 slug)(—115.5 ft/s)
= (0.07 slug)viny + (9.96 x 107 slug)vaay

Ving = 73.691 ft/s — (0.142 ft/s)vny

As in the previous example, applying the formula for coefficient of restitution with the
above formula for vy, yields

e = (_v1n+ + V2n+/{vln— - 1f'lnA-)l
0.46 = [—73.691 f/s + (0.142 ft/s)vany + Vane/([90.125 ft/s + 115.5 ft/s)
Viny = 147.341t/s and Vigy = .77 ft/s

Here again, since this impact is frictionless, each object rerains its original tangential
velocity component. For the bat this component is 4978 ft/s; for the ballit’s —63.8 ft/s.
Taking these normal and tangential components and converting them to xy-coordinates
yields the following bat and ball velocities for the instant just after impact:

Vi = 70.251 — 18]
vae = 9820+ 127§
Both of these examples illustrate fundamental impact analysis using the classical ap-

proach. They also share an important assumption: that the impacts are frictionless.
In reality you know that billiard balls and baseballs and bats collide with friction;

94 | Chaptet5: Collisions

otherwise, you would not be able to apply English in billiards or create lift-generating
spin on baseballs, Later in this chapter I'll discuss how to include friction in your impact
analysis. : R

Linear and Angular Impulse

In the previous section you were able to work through the specific examples by hand,
using the principle of conservation of momentum and the coefficient of restitution.
This approach will suffice if you’re writing games in which the collision eveiits are well
defined and anticipated. However, if you’re writing a real-time simulation in which
objects, especially arbitrarily shaped rigid bodies, may or may not collide, then you’ll
want to use a more general, approach. This approach involves the use of formulas to
calculate the actual impulse between colliding objects so that you can apply this impulse
to each object, instantly changing its velocity. In this secrion I'll derive the equations for
impulse, both linear and angular, and I'll show you how to implement these equations
in code in Chapter 13,

In dealing with partcles or spheres, the only impulse formula that you'll need is that
for linear impulse, which will allow you to calculate the new linear velocities of the.
objects after impact. So the first formula that I'll derive for you is that for linear impulse .
between two colliding objects as shown in Figure 5-4.

velocity after impact

- velocity before impact

velocity before fmpact

Figure 5-4. Two Colliding Particles (or Spheres)

For now, assume that the collision is frictionless and that the line of action of the impulse
is along the line connecting the centers of mass of the two objects. This line is normal
to the surfaces of both objects.

To derive the formula for linear impulse, you have to consider the formula from the
definition of impulse along with the formula for coefficient of restitution. Here, let |

e

Linear and Angular impulse] 95

represent the impulse:

J=mvy —v.)
e = —(viy —v20)/(vi- —12-)
In these equadons the velocides are those along the line of action of the impact, which
in this case is a line connecting the centers of mass of the two objects. Since the same

impulse applies to each object, just in opposite directions, you actually have three
equations to deal with:

J =mvi —v1}
-] =mavae —v2-)
e = —Vis — V24)/ (Vi — Vv2-)
Notice I've assumed that | acts positively on body 1 and that its negation, —J , acts on
body 2. Also notice that there are three unknowns in these equations: the impulse and
the velocities of both bodies after the impact. Since there are three equations and three
unknowns, you can solve for each unknown by rearranging the two impulse equations
and substituting them into the equation for e. After some algebra you'll end up with a
formula for] that you can then use to determine the velocities of each body just after
impact. Here’s how that’s done:
Forbody 1: vy = J/my +- vy
Forbody 2: vyp = —J/my+va

Substituting v14+ and v2 into the equation for e yields
e(vi— — va-) = —[(J/my +v12) — (=J/ma +v2)]
efvi- —vao) +vie —va. = —J(U/my + V)
Let v, = {v1- — vo_); then
evy + v = —J(1/my + 1/my)
J = —v.le + 1)/ (1/my + 1/my)

Since the line of action is normal to the colliding surfaces, v, is the relative velocity along
the line of action of impact and | acts along the line of action of impact, which in this
case is normal to the surfaces, as I've already stated.

Now that you have a formula for the impulse, you can use the definition of impulse
along with this formula to calculate the change in linear velocity of the objects involved
in the impact. Here’s how that’s done in the case of two objects colliding:

Vit = Vi- + (Jn)/my
Vay = V2 + (= Jm)/my

Notice that for the second object, the negative of the impulse is applied, since it acts on
both objects equally but in opposite directions.

96 | Chapter5: Colfisians

When dealing with rigid bodies that rotate, you’ll have to derive a new equation for
impulse that includes angular effects. You’ll use this impulse to calculate new linear and
- angular velocities of the objects just after impact. Consider the two objects colliding at
point P as shown in Figure 5-5.

Line of action normal to surfaces

Bady 1. Angular
EAe vgloc_iy

B2

“\} : . o
Linear vetocity Linear velocity

Figure 5-5. Two Colliding Rigid Bodies

There’s a crucial distinction between this collision and that discussed earlier. In this
case the velocity at the point of contact on each body is a function of not only the
objects’ linear velocity but also their angular velocities, and you’ll have to recall the
following formula to calculate the velocides at the impact point on each body:

vp =V + (wxr)
In this relation, r is the vector from the body’s center of gravity to the point P.
Using this formula, you can rewrite the two formulas relating the linear velocity after
impact to the impulse and initial velocity as follows:
Forbody1: wig + (wip x11) =J/my +vig- + (wi- x179)
For bOdy 2: Vit + (wrq x 1) = —J/my + v + (wo X 1)
There are two additional unknowns here, the angular velocities after impact, which

means that you need two additional equations. You can get these equations from the
definition of angular impulse:

Forbedy 1: (r xJ) =L (w1 —wi)
Forbody 2: (r2 x —J) = Li{way —w3)
Here, the moment due to the impulse is calculated by taking the vector cross product of

the impulse with the distance from the body’s center of gravity to the point of application
of the impulse.

By combining all of these equations with the equation for ¢ and following the same
procedure that’s used in deriving the linear impulse formula, you’ll end up with a
formula for J thart takes into account both linear and angular effects, which you can
then use to find the linear and angular velocities of each body immediately afrer impact.

" “r I“ -

Linear and Angular Impulse | 97

Here’s the result:

J=—vl+1)/{1/m+1/m+n- [(r; x m)/11] x r; +n - [{r; x m)/I] X w2}

"__.-}5‘
Here v, is the relative velocity along the line of action at the impactJ point P, and misa
unit vector along the line of action at the impact point pointing out from body .

With this new formula for J, you can calculate the change in linear and angular velocities
of the objects involved in the collision using these formulas:

viy = vio + (n)/m
Vip = Vi + (—_)Tn)/m?.
wip =wi- + T x o)/
W =wr +{m X —_)Tn)/lcg

As [said earlier, I'll show you how to implement these formulas for impulse in code
when you get to Chapter 13.

Friction

Friction acts between contacting surfaces to resist motion. When objects collide in
any type of collision except direct impact, for that very brief moment of contact they
will experience a friction force that acts tangendally to the contacting surfaces. Not
only will this rangential force change the linear velocities of the coliiding objects in
the tangential direction, it will also creare a moment (torque) on the objects tending
to change their angular velocities. This tangential impulse combined with the normal
impulse results in an effective line of action of the total collision impulse that is no
longer perpendicular to the contacting surfaces.

In practice, it is very difficult to quantify this collision friction force due to the fact that
the friction force is not necessarily constant if the collision is such that the friction force
does not develop beyond the maximum static friction force. Further complications stem
from the fact that objects do tend to deform when they collide, creating an additional
source of resistance. That said, since the friction force is a function of the normal force
between the contacting surfaces, you know that the ratio of the normal force to the
friction force is equal to the coefficient of friction. If you assume that the collisions are
such that the kinetic coefficient of friction is applicable, then this ratio is constant:

u = FgfFq
Here, F;is the tangential friction force and F,, isthe normal impact force. You can extend

this to say that the ratio of the tangental impulse to normal impulse is.equal to the
coefficient of friction.

Consider the collision between the club head of a golf club and a golf ball as illustrated
in Figure 5-6.

In the velocity diagram on the left, v_ represents the relative velocity between the ball
and club head at the instant of impact, v.. represents the velocity of the ball just after

98 | Chapter5: Collisions

Club head

Resultant force \ ’

"
Figure 5-6. Golf Chub-Ball Collision

impact, and v,. and v, represent the tangential components of the ball velocity at and
just after the instant of impact, respectively.

If this were a fricdonless collision, v.— and v, would be equal, as would the angles «
and 9. However, with friction the tangential velocity of the ball is reduced, making v,
less than v,_, which also means that & will be less than 6. :

The force diagram on the right in Figure 5-6 illustrates the forces involved in this collision
with friction. Since the ratio of the tangential friction force to the normal collision force
is equal to the coefficient of friction, you can develop an equation relating the angle ¢
to the coefficient of friction:

tang = Fi/Fr =p

In addition to this friction force changing the linear velocity of the ball in the tangential

direction, it will also change the angular velocity of the ball. Since the friction force is
acting on the ball’s surface some distance from its center of gravity, it creates a moment
(torque) about the ball’s center of gravity that causes the ball to spin. If you use an
approach similar to the rolling cylinder example back in Chapter 4, you can develop an
equation for the new angular velocity of the ball in terms of the normal impact force
or impulse:

Y My = Fir = Igdo/dt
puFyr = I dw/di
pFrdt = Igde

t+ o+
f Fodt = I /(ur) f wdt
. _

Notice here that the integral on the left is the normal impulse; thus,
Impulse = I, /{ur){wy — w-)
Cwy = (Impulse)(ur) /Iy + @

Fiction | 99

This relation looks very similar to the angular impulse equation that T showed you
earlier in this chapter, and you can use it to approximate the friction-induced spin in
specific collision problems. 2o

Turn back to the equation for impulse,], in the preceding section that includes both
linear and angular effects. Here it is again for convenience: x g,

J=—vle+1/[1/m +1/m+n-(rx n)/Ii +n - (r; x n)/IZL]

This formula gives you the collision impulse in the normal direction. To see how friction
fits in, you must keep in mind that friction acts tangentially to the contacting surfaces,
that combining the friction force with the normal impact force yields a new effective
line of action for the collision, and that the friction force (and impulse) is a function of
the normal force (impulse) and coefficient of friction. Considering all these factors, the
new equations to calculate the change in linear and angular velocities of two colliding
objects are as follows:

Vie =vio+ o+ (u]tl/m
vy =voo + [+ (u])t]/m;
Wiy =wi-+ {r;1 x [Jn+ (ﬂj)t]}/lcg .
why = wa- + {2 x (—fn+ @t]}/Le
In these equations, t is the unit tangent vector, which is tangent to the collision surfaces
and at a right angle to the unit normal vector. You can calculate the tangent vector if

you know the unit normal vector and the relative velocity vector in the same plane as
the normal vector:

t=mxv)xXn MP\/LG V]K(hy‘:jr)
t=1t/|t|

For many problems that you'll face, you may be able to reasonably neglect friction in
your collision response routines, since its effect may be smallin comparison to the effect
of the normal impulse itself. However, for some types of problems, friction is crucial.
For example, the flight trajectory of a golf ball depends greatly on the spin imparied to
it as a result of the club-ball collision. I'll discuss how spin affects trajectory in the next
chapter, which covers projectile motion.

100 | Chapter5: Collisions

CHAPTER 6
Projectiles

.7\.‘

This chapteris the first in a series of chapters that discuss specific real-world phenomena
and systems, such as projectile motion and airplanes, with the idea of giving you a
solid understanding of their real-life behavior. This understanding will help you to
model these or similar systems accurately in your games. Instead of relying on purely
idealized formulas, I'll present a wide variety of practical formulas and data that you
can use. I've chosen the examples in this and the next several chapters to illustrate
common forces and phenomena that exists in many systems, not just the ones I'll be -
discussing here. For example, while Chapter 8 on ships discusses buoyancy in detail,
buoyancy is not limited to ships; any object immersed in a fluid experiences buoyant

forces. The same applies for the ropics discussed in this chapter and Chapters 7, 9,
and 10.

Once you understand what’s supposed to happen with these and similar systems, ygu'll
be in a better position to interpret your simulation results to determine whether they
make sense, that is, whether they are realistic enough. You'll also be better educated
on what factors are most important for a given system such that you can make appro-

 priate simplifying assumptions o help ease your effort. Basically, when designing and
optimizing your code, you'll know where t cut things out without sacrificing realism.
This gets into the subject of parameter tuning.

Over the next few chapters I wanr to give you enough of an understanding of certain
physical phenomena that you can tune your models for the desired behavior. If you are
modeling several similar objects in your simulation but want each one to behave slightly
differently; then you have to tune the forces that get applied to each object to achieve the
varying behavior. Since forces govern the behavior of objects in your simulations, I'i
be focusing on force calculations with the intent of showing you how and why certain
forces are what they are instead of simply using the idealized formulas that I showed you
in Chapter 3. Parameter tuning isn’t just limited o tuning your model’s behavior; italso
involves dealing with numerical issues, such as numerical stability in your integration
algoritchms. I'll discuss these issues more when 1 show you several simulation examples
in Chapters 12 through 17

-‘_rli‘_'

101

Pve devoted this entire chapter to projectile motion because so many physical prob-
lems that may find their way into your games fall into this category. Further, the forces
governing projectile motion affect many other systems that -gren’t necessarily projec-
tiles; for example, the drag force experienced by projeciiles is similar to that experi-
enced by airplanes, cars, or any other object moving through a fluid such as air or
walter.

Aprojectile is an object that is placed in motion by a force acting over a very short period
of time, which you know from Chapter 5 is also called an impulse. After the projectile
is set in motion by the initial impuise, during the launching phase, the projectile enters
into the projectile motion phase, in which there is no longer a thrust or propulsive force
acting on it. As you know already from the examples presented in Chapters 2 and 4,
there are other forces that act on projectiles. (For the moment I'm not talking about
self-propelled “projectiles” such as rockets, since, owing to their propulsive force, they
don’t follow what I'll refer to as classical projectile motion undil after they’ve expended
their fuel)

In the simplest case, neglecting aerodynarmic effects, the only force acting on a pro-
jectile other than the initial impulsive force is gravitation. For situations in which the
projectile is near the earth’s surface, the problem reduces to a'constant acceleration
problem. Assuming that the earth’s surface is flat, that is, that its curvature is large in
comparison to the range of the projectile, the following statements describe projectile
motion: -

e The trajectory is parabolic.

e The maximum range, for a given launch velocity, occurs when the launch angle
is 45°.

o The velocity at impact is equal to the launch velocity when the launch point and
impact point are at the same level,

o The vertical component of velocity is zero at the apex of the trajectory.

e The time required to reach the apex is equal to the time required to descend from
the apex to the point of impact, assuming that the launch point and impact point
are at the same level.

« The time required to descend from the apex to the point of impact equals the ime
required for an object to fall the same vertical distance when dropped straight down
from a height equal to the height of the apex.

Simple Trajectories
There are four simple classes of projectile motion problems that I'll summarize:

« When the targer and launch point are at the same level
* When the target is at a level higher than the launch point

102 | Chapter6: Projectiles

¢ When the target is at a level lower than the launch point

s When the projectile is dropped from a moving system (such as an airplane) above
the target

In the first type of problem the launch point and the target point are located on the
same horizontal plane. Referring to Figure 6-1, vg is the initial velocity of the projectile at -
the time of launch, ¢ is the launch angle, R is the range of the projectile, and # is the
height of the apex of the wajectory.

Figure 6-1. Target and Launch Point at the Same Level

To solve this type of problem, use the formulas shown in Table 6-1. Note that in these
formulas, ¢ represents any rime instant after launch and T represents the total time from
launch to impact.

Tuble 6-1. Formulas: Target and Launch Point at Same Level

Hec *Use This Formula:

e C waselt

¥t {vp sin o)t—1{gt?) /2
Ve () ¥y €05 (2
vy (1) vy sin—gt
Vi) \/vg — 2ty sin g + gt
h (v} sin’¢0) / (29)
vy Teos ¢

T (2vysin¢p) /g

Remember to keep your units consistent when applying these formulas. If you are
working in the English system, all your length and distance values should be in feet (ft),
time should be in seconds (s}, speed should be in feet per second {ft/s), and acceleration

-ﬁrlr‘_,

SimpleTrajectories | 103

should be in feet per second squared (fi/s?). If you are using the SI (metric) system, length
and distance values should be in meters (m), time should be in seconds (s), speed should
be in meters per second (m/s), and acceleration should be in metersiper second squared
(m/s2). In the English system, g is 32.2 ft/s%; in the SL system, g is 98 m/s?.

In the second type of problem the launch point is located on a lower horizontal plane
than the target. Referring to Figure 6-2, the launch point’s y-coordinate is lower than
the target’s y-coordinate.

Figure 6-2. Target Higher than Launch Point

Tor this type of problem, use the formulas shown in Table 6-2. Notice that most of these
formulas are the same as those shown in Table 6-1.

Table 6-2, Formulas Target Higher than Launch Point

his Form
xif) (vp cos o1t
¥ (v sin o}t — (gt?) /2
v () ¥ €05 2
vy (f) Yo sin yo— gt
¥ \/vﬁ — gty singg + g
h (v sine0) / (26)
vo Tcosep
7 tnsin) /g-+ T2 — B)l/g

Actually, the only formula that has changed is that for T, which has been revised to
account for the difference in elevation between the target and the launch point.

In the third type of problem the target is located on a plane lower than the launch point;
the target’s y-coordinate is lower than the launch point’s y-coordinate (see Figure 6-3).

104 | Chapteré: Projectiles

Figure 6-3. Target Lower than Launch Point

Table 6-3 shows the formulas to use for this type of problem. Here again, almost all of
the formulas are the same as those shown in Table 6-1.

Table &-3. Formulas: Target Lower than Launch Point

:Tc_p Calculate: Use This Formula:
(e} v cos i)t
o (i sin ¢ Jt—(gt*) /2
Ve (1) ¥p 05
K vy Sih o— gt
! Vi = gty sing + ¢
h b+ vy sin'ep) /(29)
R Vo Teos o

T . vsing)/g+/(2h) /g

As in the second type of problem, the only formula that has changed is the formula for
T, which has been revised to account for the difference in elevation between the target
and the launch point (except this time the target is lower than the launch point).

Finally, the fourth type of problem involves dropping the projectile from a moving sys-
tem, such as an airplane. In this case the initial velocity of the projectile is horizontal and
equal to the speed of the vehicle dropping it. Figure 6-4 illustrates this type of problem.

Table 6-4 shows the formulas to use to solve this type of problem. Note here that when
vo is zero, the problem reduces to a simple free-fall problem in which the projectle
simply drops straight down.

Simpla Trajectories | 105

Figure 6-4. Projectile Dropped from a Moving System

Table 6-4. Formulas: Projectile Dropped from a
Moving System

PN 1]

ToLatcula
x(t)

¥

¥y (t) ¥y

vy (f) —gt

¥(f) Jh+gr
h {gt?)/2

R VOT

T @m/g

These formulas are useful if you’re writing a game that does not require a more accurate
treatment of projectile motion, that is, if you don't need or want to consider the other
forces that can act on a projectile when in motion. If you are going for more accuracy, then-
you'll have to consider these other forces and treat the problem as we did in Chapter 4’s
example.

Drag

In Chapters 3 and 41 showed you the idealized formulas for viscous fluid dynamic drag
as well as how to implement drag in the equations of motion for a projectile. This was
illustrated in the example program discussed in Chapter 4. Recall that the drag forceis a
vector just like any other force and that it acts on the line of action of the velocity vector
but in a direction opposing velocity. While those formulas work in a game simulation,
as I said before, they don’t tell the whole story. Although we can’t treat the subject of

106 | Chapter6: Projectiles

fluid dynamics in its entrety in this book, I do want to give you a better understanding
of drag than just the simple idealized equation presented earlier.

It can be shown by analytical methods that the drag on an object moving through a fluid
is proportional to its speed, size, and shape and the density and viscosity of the fluid
through which it is moving. You can also come to these conclusions by drawing on your
own real-life experience. For example, when waving your hand through the air, you feel
very little resistance; however, if you put your hand out of a car window traveling at
60 mph, then you feel much greater resistance (drag force) on your hand. Thisisbecause
drag is speed dependent. When you wave your hand under water, say, in a swimming
pool, you'll feel a greater drag force on your hand than you do when waving it in the
air. This is because water is more dense and viscous than air. As you wave your hand
under water, you'll notice a significant difference in drag depending on the orientaton
of your hand. If your hand ts,such that your palm is in line with the direction of motion,
that is, you are leading with your palm, then you’ll feel a greater drag force than you

- would if your hand were turned 90 degrees as though you were executing a knife hand
karate chop through the water. This tells you that drag is a function of the shape of the
object. You get the idea.

To facilitate our discussion of fluid dynamic drag, let’s look at the fiow around a sphere
moving through a fluid such as air or water. If the sphere is moving slowly through
the fiuid, the flow pattern around the sphere would look something like that shown in
Figure 6-5.

Figure 6-5. Flow Pattern Around a Slowly Moving Sphere

Bernoulli’s equation, which relates pressure o velocity in fluid flow, says that as the
fluid goes around the sphere and speeds up, the pressure in the fluid (locally) will
go down. The equation, presented by Daniel Bernoulli in 1738, applies to frictionless
incompressible fluid flow and looks like this*:

P/y +24 V?*/(2g) = constant

where P is the pressure at a point in the fluid volume under consideration, y is the
specific weight of the fluid, z is the elevation of the point under consideration, V is the
fluid velocity at that point, and g is the acceleration due to gravity. As you can see, if

* In a real fluid with friction, this equation will have extra rerms that account for energy losses due o friction.

: ‘_rl'_,

Drag | 107

the expression on the left is to remain constant, and assuming that z is constant, then if
velocity increases, pressure must decrease. Likewise, if pressure increases, then velocity

must decrease. >~

Referring to Figure 6-5, the pressure will be greatest at the stagnation point, Sy, and
will decrease around the leading side of the sphere and then start to increase again
around the back of the sphere. In an ideal fluid with no friction, the pressure is fully
recovered behind the sphere, and there is a trailing stagnation point, S;, whose pres-
sure is equal to the pressure at the leading stagnation point. Since th~ pressure fore
and aft of the sphere is equal and opposite, there is no net drag force acting on the
sphere.

The pressure on the top and bottom of the sphere will be lower than that at the stagnation
points, since the {luid velocity is greater over the top and bottom. Since this is a case of
symmetric flow around the sphere, there will be no net pressure difference berween the
top and bottom of the sphere.

In a real fluid there is friction, which affects the flow around ihe sphere such that the
pressure is never fully recovered on the aft side of the sphere, As the fluid flows around
the sphere, a thin layer sticks to the surface of the sphere due to friction. In this boundary
layer the speed of the fluid varies from zero at the sphere surface to the ideal free stream
velocity as illustrated in Figure 6-6.

|

Figure 6-6. Velocity Gradient within a Boundary Layer

This velocity gradient represents a momentum transfer from the sphere to the fluid
and gives rise to the fricional component of drag. Since a certain amount of fluid is
sticking to the sphere, you can think of this as the energy required to accelerate the fluid
and move it along with the sphere. (If the flow within this boundary layer is laminar,
then the viscous shear stress between fluid “layers” gives rise to friction drag. When the
flow is turbulent, the velocity gradient, and thus the transfer of momentum gives rise
to friction drag.)

Moving further aft along the sphere, the boundary layer grows in thickness and will not
be able to maintain its adherence to the sphere surface, and it will separate at some point.
Beyond this separation point, the flow will be turbulent, and this is called the turbulent
-wake. In this region the fluid pressure is lower than that at the front of the sphere. This

108 | Chapter6: Projectiles

pressure differential gives rise to the pressure component of drag. Figure 6-7 shows how
the flow might look.

Figure 6-7. Flow Pattern Around a Sphere Showing Separation

For a slowly moving sphere the separation point will be approximately 80° from the
leading edge.

Now, if you roughen the surface of the sphere, you’ll affect the flow around it. As
you would expect, this roughened sphere will have a higher friction drag component.
However, more important, the flow will adhere to the sphere longer, and the separaton
point will be pushed further back to approximately 115°, as shown in Figure 6-8.

Figure 6-8. Flow Around a Roughened Sphere

This will reduce the size of the turbulent wake and the pressure differential, thus de-
creasing the pressure drag. It’s paradoxical but true that, all other things being equal,
a slightly roughened sphere will have less total drag than a smooth one. Have you ever
wondered why golf balls have dimples? If so, there’s your answer.

The total drag on the sphere depends very much on the nature of the flow around
the sphere, that is, whether the flow is laminar or turbulent. This is best illustrated by
looking at some experimental data. Figure 6-9 shows a typical curve of the total drag
coefficient for a sphere plotied as a function of Reynold’s number.

Reynold’s number (commonly denoted N; or R,) is a dimensionless number that rep-
resents the speed of fluid flow around an object. It’s a little more than just a speed
measure, since Reynold’s number includes a characteristic length for the object and the
viscosity and density of the fluid. The formula for Reynold’s number is

Ry = wL)/v
or

Ra=WwLo)/1u

k.

Dray | 109

100

10\

&
S
o

Figure 6-9. Total Drag Coefficient for a Smooth Sphere Versus Reynold’s Number*

where v is speed, L. is a characteristic length of the object (diameter for a sphere), v is
the kinematic viscosity of the fluid, p is the fluid mass densicy, and w is the absolute
viscosity of the fluid. For Reynold’s number to work out as a dimensionless number,
velocity, length, and kinematic viscosity must have units of ft/s, ft, and ft*/s, respectively
when working in the English system. In the S system their units must be m/s, m, and
m?/s, respectively.

This number is useful for nondimensionalizing data measured from tests on an object
of given size (such as a model} such that the data can be scaled to estimate the data for
similar objects of differenc size. Here, “similar” means that the objects are geometrically
similar, just different scales, and that the flow pattern around the objects is similar. For
a sphere the characreristic length is diameter, so you can use drag data obrained from
a small model sphere of a given diameter to estimate the drag for a larger sphere of a
different diameter. A more useful application of this scaling technique is estimating the
viscous drag on ship or airplane appendages on the basis of model test data obtained
from wind tunnel or tow tank experimenis.

Reynold’s number is used as an indicator of the nature of fluid flow. A low Reynold’s
number generally indicates laminar flow, while a high Reynold’s number generally in-
dicates turbulent flow. Somewhere in between, there is a wansition range where the
flow makes the transition from laminar to turbulent flow. For carefully conuolled ex-
periments, this transition (critical) Reynold’s number can consistently be determined.
However, in general the ambient flow field around an object, that is, whether it has
low or high turbulence, will affect when this ransition occurs. Further, the transitdon
Reynold’s number is specific to the type of problem being investigated, for example,

* The curve shown here is intended to show the trend of Cg versus Ey; for a smooth sphere. For more accurate
drag coefficient data for spheres and other shapes, refer to any college-leve! fluid mechanics texr, such as Fluid
Mechanics with Engineering Applications by Daugherty, Franzini, and Finemore.

110 | Chapter6: Projectiles

.S‘E'b.

whether you're looking at flow within pipes, the flow around a ship, or the flow around
an airplane, and so on. .

The total drag coefficient, Cq, is calculated by measuring the total resistance, R,, from
tests and using the following formula:

Ca = R /(0.5p1% A)

where A1is a characteristic area that depends on the object being studied. For a sphere, A
is typically the projected frcaral area of the sphere, which is equal to the area of a circle of
diameter equal to that of the sphere. By comparison, for ship hulls, A is typically taken
as the underwater surface area of the hull. If you work out the units on the righthand
side of this equation, you'll see that the drag coefficient is nondimensional, that is, it
has no units.

Given the total drag coefficient, you can estimate the total resistance (drag) using the
following formula:

R, = (0.5pv* A)Cy

This is a better equation to use than the ones given in Chaprter 3, assuming that you have
sufficient information available, namely, the total drag coefficient, density, velocity, and
area. Note the dependence of rotal resistance on velocity squared. To get R; in unirts of
pounds (Ib), you must have velocity in ft/s, areain ft?, and density in slug/fc® (remember,
Cq is dimensionless). In the S1 system you'll get R, in newtons (N) if you have velocity
in m/s, area in m, and density in kg/m>. :

Turning back now to Figure 6-9, you can make a couple of observations. First you can see
that the total drag coefficient decreases as Reynold’s number increases. This is due to the
formation of the separation point and its subsequent move aft on the sphere as Reynold’s
number increases and the relative reduction in pressure drag as discussed previously.
At a Reynold’s number of approximately 250000 there is a dramatic reduction in drag.
This is a result of the flow becoming fully turbulent with a corresponding reduction in
pressure drag,

In the Cannonz example in Chapter 4, I implemented the ideal formula for air drag
on the projectile. In thar case 1 used a constant value of drag coefficient that was
arbitrarily defined. As I said earlier, it would be bétter to use the formula presented in
this chapter for total drag along with the total drag coefficient data shown in Figure 6-9
to estimate the drag on the projectile. While this is more “accurate,” it does complicate
matters for you. Specifically, the drag coefficient is now a function of Reynold’s number,
which is a function of velocity. You'll have to set up a table of drag coefficients versus
Reynold’s number and inrerpolate this table given Reynold’s number calculated at
each time step. As an alternative, you can fit the drag coefficient data to a curve to
derive a formula that you can use instead; however, the drag coefficient data may
be such that you’ll have to use a piecewise approach and derive curve fits for each
segment of the drag coefficient curve. The sphere data presented herein is one such
case. The data do not lend themselves nicely to a single polynomial curve fit over

-ﬁrlr_,

Drag | 111

the full range of Reynold’s number. In such cases you'll end up with a handful of
formulas for drag coefficient with each formula valid over a limited range of Reynold’s

numbers. 5

y
While the Cannon2 example does have its limitations, it is useful to see the effects of drag
on the trajectory of the projectile. The obvious effect is that the trajectory is no longer
parabolic. You can see that the trajectory appears to drop off much more sharply when

the projectile is making its descent after reaching its apex height.

_ Trajectory

Figure 6-10. Cannon2 Example, Trajectories

Another important effect of drag on trajectory {this applies to objects in free fall as well)
is the fact that drag will limit the maximum vertical velocity attainable. This limit is
the so-called ‘terminal velocity. Take an object in free fall for a moment. As the object
accelerates toward the earth at the gravitation acceleration, its velocity increases. As
velocity increases, so does drag, since drag is a function of velocity. At some speed the
drag force retarding the object’s motion will increase to a point at which it is equal to
the gravitational force that’s pulling the object toward the earth. In the absence of any
other forces that may affect motion, the net acceleration on the object is zero, and it
continues its descent at the constant terminal velocity.

Let me illustrate this further. Go back to the formula I derived for the y-component
(vertical component) of velocity for the projectile modeled in the Cannon2 example. Here
it is again so that you don’t have to flip back to Chapter 4:

vy = (1/Ca)e /™ Cyvyy +mg) — (mg)/ Cy

It isn’t obvious from looking at this equation, but the velocity component, vyz, asymp-
totes to some constant value as time increases. To help visualize this, I've plotted this
equation as shown in Figure 6-11.

As you can seg, over time the velocity reaches a maximum absolute value of about
—107.25 speed units. The negative velocities indicate that the velocity is in the negative

112 | Chapteré: Projectiles

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
Time

Figure 6-11. Terminal Velocity

y-direction, that s, the object is falling toward the earth in this case. (For this calculation
larbitrarily assumed a mass of 100, a drag coefficient of 30, and an initial velocity of zero.)

Assuming an initial velocity of zero and equaring the formula for total resistance shown
earlier to the weight of an object, you can derive the following formula for terminal
velocity for an object in free fall:

v =/ (2mg)/(Cap A)

The trick in applying this formula is in determining the right value for the drag co-
efficient. Just for fun, le’s assume a drag coefficient of 0.5 and calculate the terminal
velocity for several different objects. This exercise will allow you to see the influence of
the object’s size on terminal velocity. Table 6-5 gives the terminal velocities for various
objects in free fall using an air density of 237 x107 slug/ft® (air at standard atmo-
spheric pressure at 60°F). Using this equation with density in slug/ft’ means that m
must be in slugs, g in ft/s?, and A in ft to get the terminal speed in ft/s. [went ahead
and converted from ft/s to miles per hour (mph} to present the results in Table 6-5. The
weight of each object shown in this table is simply its mass, m, times g.

Table 6-3. Terminal Velocities for Various Objects

o Teminal
 Object ‘Weight (Ib)- “Area(ft}). Velocity (mph)
Skydiver in free fall 180 9 125
Skydiver with open parachute 180 T 26 25
Baseball {2.88-in. diameter} 0.32 0.045 75
Golfball (1.65-in. diameter) 0.10 0.015 72

Ralndrop (0.16-in. diameter) ~ 75% 10~ 139x107% 20

gl

Drrg | 113

Although I've talked mostly about spheres in this section, the discussions on fluid flow
generally apply to any object moving through a fluid. Of course, the more complex
the object’s geometry, the harder it is to analyze the drag forces on it. Other factors such
as surface condition and whether ornot the object is at the interfade between two fluids
(such a ship in the ocean) further complicate the analysis. In practice, scale model tests
are particularly useful. In the bibliography I give several sources where you can find
more practical drag data for objects other than spheres.

Magnus Effect

The Magnus effect (also known as the Robbins effect) is quite an interesting phenomenon.
You know from the previous section that an object moving through a fluid encounters
drag. What would happen if that object were spinning as it moved through the fluid. For
example, consider the sphere that I talked about earlier and assume that while moving
through a fluid such as air or water, it spins about an axis passing through its center of
mass. What happens when the sphere spins is the interesting part: it actually generates
lift! That's right—Iift. From everyday experience, most people usually associate lift
with a winglike shape such as an airplane wing or a hydrofoil. It is far less well known
that cylinders and spheres can produce lift as well—that is, as long as they are spinning.
I'll use the moving sphere to explain what’s happening here.

From the previous section on drag, you know that for a fast-moving sphere there will be
some point on the sphere where the flow separates, creating a turbulent wake behind
the sphere. Recall that the pressure acting on the sphere within this turbulent wake is
lower than the pressure acting on the leading surface of the sphere, and this pressure
differendal gives rise to the pressure drag component. When the sphere is spinning, say.
clockwise about a horizontal axis passing through its center as shown in Figure 6-12,
the fluid passing over the top of the sphere will be sped up, while the fluid passing
under the sphere will be retarded.

Figure 6-12. Spinning Sphere

114 | Chapters: Projectiles

Remember, because of friction, there is a thin boundary layer of fluid that attaches to the
sphere’s surface. At the sphere’s surface the velocity of the fluid in the boundary layer is
zero relative to the sphere. The velocity increases within the boundary layer as you move .
farther away from the sphere’s surface. In the case of the spinning sphere'there is now
a difference in fluid pressure above and below the sphere due to the increase in velocity
above the sphere and the decrease in velocity below the sphere. Further, the separation
point on the top side of the sphere will be pushed farther back along the sphere. The
result is an asymmetric flow pattern around the sphere with a net lift force (due to the
pressure differential) perpendicular to the direction of flow. If the surface of the sphere is
roughened a little, not only will fricrional drag increase, but this lift effecc will increase
as well.

Don’t fet the term “lift” confuse yvou into thinking that this force always acts to lift, or
elevate, the sphere. The effect of this lift force on the sphere’s trajectory is very much
tied to the axis of rotation about which the sphere is spinning as related to the direction
in which the sphere is traveling, that is, its angular velocity.

The magnitude of the Magnus force is proporrional to the speed of travel, the rate of
spin, density of fluid, the size of the object, and the nature of the fluid flow. This force is
noteasy to calculate analyrically, and as with many problems in fluid dynamics you must
rely on experimental data to accurately estimate this force for a specific object under
specific conditions. There are, however, some analytical techniques that will allow you
approximate the Magnus force. Without going into the theoretical derails, you can apply
the Kutta-Joukouski theroem to estimate the lift force on rotating objects such as cylinders
and spheres. The Kutta-Joukouski theorem is based on a frictionless idealization of fluid
flow involving the concept of circularion around the object {such as a vortex around
the object). You can find the details of this theory in any fluid dynamics text (I give
some references in the bibliography), so I won’t go into the details here. However, I will
give you some results.

For a spinning circular cylinder moving through a fluid you can use this formula to
estimate the Magnus lift force:

FL = 2npLlvrie

where v is speed of travel, L is the length of the cylinder, r is its radius, and @ is its
angular velocity in radians per second (rad/s). If you have spin, #, in revolutions per
second (rps), then @ = 2mn. If you have spin, n, in revolutions per minute (rpm), then
= {2mn) /60,

For a spinning sphere moving through a fluid you can use this formula:
FL = @rpvriw)/@r)

where r is the radius of the sphere. Consistent units for these equations would yield lift
force in pounds in the English system or newtons in the Sl system. In the English system
density, speed, length, and radius have units of slugs/ft?, ft/s, and ft, respectively. In the S
system the appropriate units are for these quantities are kg/m?>, m/s, and m, respectively.

e

Magnus Effect | 115

Keep in mind that these formulas only approximate the Magnus force; they’ll get you
in the ballpark, but they are not exact and could be off by up to 50% depending on
the situation, These formulas assume that there is no slip between the fluid and the
rotating surface of the object, there is no friction, surface roughness is not taken into
account, and there is no boundary layer.

At any rate, these equations will allow you to approximate the Magnus effect for flying
objects in your games, where you’ll be able t0 model the relative differences between
objects of different size that may be traveling at different speeds with different spin rates.
You'll get the look right. If numerical accuracy is what you’re lookine for, then you'll
have to turn to experimental data for your specific problem.

Similar to the drag data shown in the previous section, experimental lift data are gener-
ally presented in terms of lift coefficient. Using an equation similar to the drag equation,
you can calculate the lift force with the following equation:

FL = (0.5pv*A)CL

As usual, it’s not as simple as this equation makes it appear. The trick is in determining
the lift coefficient, C;, which is a funcdon of surface conditions, Reynold’s number,
velocity, and spin rate. Further, experiments show that the drag coefficient is also affected
by spin. ‘

For example, consider a golf ball struck perfectly (1 wish) such that the ball spins about
a horizontal axis perpendicular to its direction of travel while in flight. In this case the
Magnus force will tend to lift the ball higher in the air, increasing its flight dme and
range. For a golf ball struck such that it initial velocity is 190 ft/s with a takeoff angle of
10 degrees the increase in range due to Magnus lift is on the order of 65 yards; thus, it’s
clear that this effect is significant. In fact, over the long history of the game of golf there
has been an attempt to maximize this effect. In the late 1800s, when golf balls were still
made with smooth surfaces, people observed that used balls with roughened surfaces
flew even better than smooth balls. This observation prompted people to start making
balls with rough surfaces so as to maximize the Magnus lift effect. The dimples that
you see on modern golf balls are the result of many decades of experience and research
and are thought to be optimurm. -

Typically, a golf ball takes off from the club with an initial velocity on the order of
250 ft/s, with a backspin on the order of 60 revolutons per second (rps). For these
initial conditions the corresponding Magnus lift coefficient is within the range from 0.1
to 0.35. Depending on the spin rate, this lift coefficient can be as high as 045, and the
lift force acting on the ball can be as much as 50% of the ball’s weight.

If the golf ball is struck with a less than perfect stroke, the Magnus lift force may work
against you. For example, if your swing is such that the ball leaves the club head spinning
about an axis that is not horizontal, then the ball’s trajectory will curve, resultng in a
slice or a draw, If you top the ball such that the upper surface of the ball is spinning away
from you, then the ball will tend to curve downward much more rapidly, significantly
reducing the range of your shot.

116 | Chapteré: Projectiles

As another example, consider a baseball that is pitched such that it is spinning with
topspin abouta horizontal axis perpendicular to its direction of travel, Here, the Magnus
force will tend to cause the ball to curve in a downward direction, making it drop more
rapidly than it would without spin. If the pitcher spins the ball such that the axis of
rotation is not horizonral, then the ball will curve out of the vertical plane. Another
trick that pitchers use is to give the ball backspin, making it appear (to the batter) to
actually rise. This rising fast ball does not actually rise, but because of the Magnus lift
force, it falls much less rapidly than it would without spin.

For a typical pitched speed and spin rate of 148 ft/s and 30 rps, respectively, the lift
force can be up to 33% of the ball’s weight. For a rypical curve ball the lift coefficient
is within the range of 01 to 0.2, and for fly balls it can be up to 04.

These are only two examples, however; you need not look far to find other examples
of the Magnus force in action. Think about the behavior of cricket balls, soccer balls,
tennis balls, or Ping-Pong balls when they spin in flight. Bullets fired from a gun with
a rifling barrel also spin and are affected by this Magnus force. There have even been
sailboats built with tall vertical rotating cylindrical “sails” that use the Magnus force
for propulsion. I've also seen technical articles describing a propeller with spmnmg
cylindrical blades instead of airfoil-type blades.

To further illustrate the Magnus effect, | have prepared a simple program that simulates
a ball being thrown with varying amounts of backspin (or topspin). This example is
based on the cannon example, so here again, the code should look familiar to you.
In this example I've neglected drag, so the only forces that the ball will see are due o
gravity and the Magnus effect. I did this to isolate the lift-generating effect of spin and
to keep the equarions of motion clearer.

Since most of the code for this example isidentical, or very similar, to that in the previous
cannon examples, [won'’t repeat it here. I will, however, show you the global variables
used in this simulation along with a revised DoSimulation function that takes care of the
equations of motion:

F] e e e e e e e e e /
// Global variables required for this simulation
F o mmmm o e e e e e e e s /
TVector vi; // Initial Velocity (given), m/s
TVecter V2; // Velocity vector at time t, m/s
double m; // Projectile mass (given), kg
Tvector 51; // Initial position {given), m
TVector 52; // The projectile’s position (displacement} vector, m
double time; // The time from the instant the projectile
// is launched, s
double tInc; // The time increment to use when stepping
// through the simulation, s
double £; // acceleration due to gravity (given), m/s"2
double spin; // spin in rpm {given)
double omega; // spin in radians per second
double radius; // radius of projectile (given), m
#define PI 3.14159f
#define REO 1.225¢ /7 kg/m™3

Magnus Effect | 117

int DoSimulation(void)
T R NEREREEEPE PR PEEREEEEEEEEEES /1
{ =it

double C = PI * RHO * RHO * radius * radius * radius * omega;

double t;

// step to the next time in the simulation
time+=tInc;
t = time;

/4 Calc. V2:

V2.1 = 1.0F/(1.0F-(t/m)*(t/m)*C*C) * (Vi.i + C * V1. * (t/m) -
C* g * (t¥t)/m);

¥2.j = Vi.j + (t/mp*CW2.i - gt

// Calc, S2:
62.1 = s1.1 + VL.1 * £ + (1.0f/2.0F) * {C/m * v2.3) * (t*t);
52,7 = s1.3 + VL] * t + (1.0f/2.0f) * { ({c*v2.i} - m*g)/m) * (t*t);

// Check for collision with ground (xz-plane)
if{s2.j <= 0}
return 2;

// Cut off the simulation if it’s taking too long
// This is so the program does not get stuck in the while loop
if(time>60)

return 3;

return 0;
1
The heart of this simulation are lines that calculate v2 and s2, the instantaneous velocity
and positon of the projectile, respectively. The equations of motion here come from the
2D kinetic equations of motion including gravity, as discussed in Chapter 4, combined
with the following formula (shown earlier) for estimating the Magnus lift on a spinning
sphere:

FL = @n?pvriew)/(@2r)

You can see the effect of spin on the projectile’s trajectory by providing the sample
program with different values for spin in revolutions per minute. The program converts
this to radians per second and stores this value in the variable omega. A posirive spin
value indicates bottom spin such that the bottom of the sphere is spinning away from
you; a negative spin indicates topspin, in which the top of the ball spins away from
you. Bottom spin generates a positive lift force that will tend to extend the range of the
projectile; topspin generates negative lift that will force the projectile toward the ground,
shortening its range. (Note thar this example assumes that the spin axis is horizontal
and perpendicular to the plane of the screen)) Figure 6-13 illustrates this behavior.

Variable Mass

Earlier in this book I mentioned that some problems in dynamics involve variable
mass. We'll look at variable mass here, since it applies to self-propelled projectiles such

118 | (hapteré: Projectiles

Magnus Effect Example

Side View

E71.1 36000

i 200

200 tpra bottorn spin
\ 0 spin

X
Figure 6-13. Magnus Effect Sample Program

as rockets. When a rocket is producing thrust to accelerate itself, it loses mass (fuel} at
some rate. When all of the fuel is consumed (burnout), the rocket no longer produces
thrust and has reached its maximum speed.. After burnout you can trear the trajectory
of the rocket just as you would a.non-self-propelled projectile, as discussed earlier.
However, while the rocket is producing thrust, you need to consider its mass change,
since this will affect its motion.

In cases in which the mass change of the object under consideration is such that the
mass being expelled or taken in has zero absolute velocity, like a ship consuming fuel,
for example, you can set up the equadons of motion as you normally would, where the
sum of the forces equals the rate of change in momentum. However, in this case mass
will be a function of time, and your equations of motion will look like this:

> F = ma = d/dtimv) = m(dv/dt) + (dm/dt)

You can proceed to solve them just as you would normally but keeping in mind the time
dependence of mass.

A rocket, on the other hand, expels mass at some nonzero velocity, and you can’t use
the above approach to properly account for its mass change. In this case you need to
consider the relative velocity between the expelled mass and the rocket itself. The linear
equation of motion now looks like this:

> F =mdv/dt +dm/dtu

where u is the relative velocity between the expelled mass and the object (the rocket, in
this case).

For a rocket traveling straight up, neglecting air resistance and the pressure at the exhaust
nozzle, the only force acting on the rocket is due to gravity. But the rocket is expelling
mass (burning fuel). How it expels this mass is not important here, since the forces
involved there are internal o the rocket; we need only consider the external forces. Let

-%rl‘h .

Variable Mass | 119

the fuel burn rate be —nt’. The equation of motion (in the vertical directon) for the
rocket is as follows: ‘

Y F = mdv/dt + dm/dtu -
—mg =mdv/dt —m'u ‘

If you rearrange this so that it looks as though there’s only an ma term on the right of
the equation, you get

mu —mg =mdvfdt =ma

Here you can see that the thrust that propels the rocket into the air is equal to m'u. Since
the fuel burn rate is constant, the mass of the rocket at any instant in time is equal 1o

m=my—mt

where my is the initial mass and the burn rate, m’, is in the form mass per unit ime.

120 | Chapteré6: Projectiles

CHAPTER 7
Aircraft

AN
\".

If you are going to write a flight simulation game, one of the most important aspects of
your game engine will be your flight model. Yes, your 3D graphics, user interface, story,
avionics system simulation, and coding are all important, but what really defines the
behavior of the aircraft that you are simulating is your flight model. Basically, this is
your simplified version of the physics of aircraft flight, that is, your assumptions, your
approximations, and all the formulas you’ll use to calculate mass, inertia, and lift and
drag forces and moments.

There are four major forces that act on an airplane in {light: gravity, thrust, lift, and
drag. Gravity, of course, is the force that tends to pull the aircraft to the ground, while
lift is the force generated by the wings (or lifting surfaces) of the aircraft to counteract
gravity and enable it to stay aloft. The thrust force generated by the aircraft’s propulsor
(jet engine or propeller) increases the aircraft’s velocity and enables the lifting surfaces
to generate lift. Finally, drag counteracts the thrust force tending to impede the aircraft’s
motion. Figure 7-1 illustrates these forces.

P

S

=

w“

4
g

AR

Gravily

Figure 7-1. Forces on an Aircraft in Flight

I've already discussed the force due to gravity in earlier chapters so [won’t address it
again in this chaprer except to say that when looking at all of the forces acting on an

b

21

aircraft, the total of all lift forces must be greater than or equal to the gravitational force
if the aircraft is to maintain flight.

To address the other three forces acting on an aircraft, I'll refer to’a’simplified, generic
model of an airplane and use it as an illustrative example. There are far too many aircraft
types and configurations to treat them all in this short chapter. Moreover, the subject
of aerodynamics is too broad and complex. Therefore, the model that we’ll look at will
be of a typical subsonic configuration as shown in Figure 7-2.

Straight, rectangular wing

Tail/Rudder

Figure 7-2. Model Configuration

In this configuration the main lifting surfaces (the large wings) are located forward on
the aircraft, with relatively smaller lifting surfaces located toward the tail. This is the
basic arrangement of most aircraft in existence today

I'll have to make some further simplifying assumptions to make even this simplified
model manageable. Further, I'll rely on empirical data and formulas for the calculation
of lift and drag forces.

Geometry

Before getting into lift, drag, and thrust, I need to go over some basic geometry and
terms to make sure we are speaking the same language. Familiarity with these terms

122 | Chapter7: Aircraft

will also help you quickly find what you are looking for when searching through the
references that I'll provide later.

First, take another lookaat the arrangement of our model aircraft in Figure 7-2. The main
body of the aircraft, the part usually occupied by cargo and people, is called the fuselage.
The wings are the large rectangular lifting surfaces protruding from the fuselage near
the forward end. The longer dimension of the wing is called its span, and its shorter
dimension is called its chord length, or simply chord. The ratio of span squared to wing
area is called the aspect ratio, and for rectangular wings this reduces to the ratio of span
to chord.

In our model, the ailerons are located on the outboard ends of the ﬁdngs. The flaps are
also located on the wings inboard of the ailerons. The small winglike surfaces located

.near the tail are called elevators. And the vertical flap located on the aft end of the tail

is the rudder. I'll talk more about what these control surfaces do later.

Taking a close look at a cross section of the wing as shown in Figure 7-3 helps to define -
a few more terms.

Gord line

Leading edge g

Reiative air velocity Mean camber line

Attack angle
Traifing edge

Figure 7-3. Airfoil Section

The airfoil shown in Figure 7-3 is a typical cambered airfoil. Camber represents the
curvature of the airfoil. If you draw a straight line from the trailing edge to the leading
edge, you end up with what’s called the chord line. Now if you divide the airfoil into a
number of cross sections, like slicesin a loaf of bread, going from the trailing edge to the
leading edge and then draw a curved line passing through the midpoint of each section’s
thickness, you end up with the mean camber line. The maximum difference between
the mean camber line and the chord line is a measure of the camber of the airfoil. The
angle measured between the direction of travel of the airfoil (the relative velocity vector
of the airfoil as it passes through the air), and the chord line is called the absolute angle
of attack.

When an aircraft is in flight, it may rotate about any axis. It is standard practice
always (o refer to an aircraft’s rotations about three axes relatve to the pilot. Thus,
these axes are fixed to the aircraft, so to speak, irrespective of its actual orientation in
three-dimensional space; they are the pitch axis, the roll axis, and the yaw axis.

Geometry | 123

The pitch axis runs transversely across the aircraft, that is, in the port-starboard
direction.* Pitch rotation is when the nose of the aircraft is raised or lowered from the
pilot’s perspective. The roll axis runs longitudinally through the.center of the aircraft.
Roll motions (rotations) about this axis result in the wingtips being raised or lowered
on either side of the pilot. Finally, the yaw axis is a vertical axis about which the nose
of the aircraft rotates in the left-to-right (or right-to-left) direction with respect to the
pilot. These rotations are illustrated in Figure 7-4. ‘

‘ ,

Figure 7-4. Aircraft Rotations

Lift and Drag

When an airfoil moves through a fluid such as air, lift is produced. The mechanisms by
which this occurs are similar to those in the case of the Magnus lift force discussed in
the previous chapter, in that Bernoulli’s law is still in effect. However, this time, instead
of rotation, it is the airfoil’s shape and angle of attack that affect the flow of air so as to
create lift.

Figure 7-5 shows an airfoil section moving through air at a speed V. V is the relative
velocity between the foil and the undisturbed air ahead of the foil. As the air hits and

* Part is to the piloC’s left and starbeard is to the pilot’s right when sitting in the cockpit facing forward.

124 | Chapter?: Aireraft

Velocity vector
Relative air velocity i

F)

Lit| / Resultant

Pitching moment

v,

A

Velocity

Figure 7-5. Airfoil Moving through Air

moves around the foil, it splits at the forward stagnation point located near the foil
leading edge such that air flows both over and under the foil. The air that flows under
the foil gets deflected downward, while the air that flows over the foil speeds up asitgoes
around the leading edge and over the surface of the foil. The air then flows smoothly
off the trailing edge; this is the so-called Kutta condition. Ideally, the boundary layer
remains “attached” to the foil without separaring as in the case of the sphere discussed
in the preceding chaprer. :

The relatively fast-moving air above the foil results in a region of low pressure above the
foil (remember, Bernoulli’s equation that shows pressure is inversely proportional to
velocity in fluid flow). The air hitting and moving along the underside of the foil creates
a region of relatively high pressure. The combined effect of this flow pattern is to create
regions of relatively low and high pressure above and below the airfoil. It's this pressure
differential chat gives rise to the lift force. By definition the lift force is perpendicular to
the line of flight, that is, the velocity vector.

Note that the airfoil does not have to be cambered to generate lifr; a flat plate oriented
at an angle of attack relative to the air flow will also generate lift. Likewise, an airfoil
does not have to have an angle of attack. Cambered airfoils can generate lift at zero, even
negative, angles of attack. Thus, in general, the total lift force on an airfoil is composed -
of two components: the lift due to camber and the lift due to attack angle.

Theoretically, the thickness of an airfoil does not contribute to lift. You can, after all,
have a thin curved wing, as in the case of wings made of fabric such as those used for
hang gliders. In practice, thickness is utilized for structural reasons. Further, thickness
at the leading edge can help to delay stall (more on this in a moment).

LiftandDrag | 125

The pressure differential between the upper and lower surfaces of the airfoil also gives
rise to a drag force that acts in line with but opposing the velocity vector. The lift and
drag forces are perpendicular to each other and lie in the plane defined by the velocity
vector and the vector normal (perpendicular) to the airfoil chord line. These two force
components, lift and drag, when combined yield the resultant force acting on the airfoil
in flight. This is illustrated in Figure 7-5.

Both lift and drag are functions of air densicy, speed, viscosity, surface area, aspect rato,
and angle of attack. Traditionally, the lift and drag properties of a given foil design are
expressed in terms of nondimensional coefficients:

CL = L/[(1/2)pV2S]
Cp = D/[(1/2)pV*S]

where S is the wing planform area (span times chord for rectangular wings), L is the
lift force, D is the drag force, V is the speed through the air, and p is air density. These
coefficients are experimentally determined from wind tunnel tests of model airfoil
designs at various angles of atrack. The results of these tests are usually presented as
graphs of lift and drag coefficient versus attack angle. Figure 7-6 illustrates some typical
lift and drag charts for a wing section.

2
1.5
1 -
- 4
g ‘
£ /]
'?g 0.5
[’
= |4
0
8|40
V
-05
Attack Angle (degrees)
—
= = = =y with flap delected 15 degress

Figure 7-6. Typical Cr, Cp, and Cp versus Attack Angle

126 | Chapter7: Aircraft

0.045

0.04

0.035

0.03

0.025

0.02

Drag Coefficient

0.015

0.0

0.006

.. ,0 P .5& " "
Allack Angle {degrees)

Cp
= = = = (i with flap defected 15 degrees

0.18

- ™

0.16—=

0.14

012

0.1

0.08

Moment Coeflicient

0.06

0.04

0.02

40 -5 o 5 10 15
Altack Angle (degrees)

Cm
= = = = Cpawith flap delected 15 degrees

Figure 7-6. Continued

-ﬁrll“,

LiftandDrag | 127

The most widely known family of foil secdon designs and test data are the NACA foil
sections. Theory of Wing Sections by Ira H. Abbott and Albert E. Von Doenhoff contains
a wealth of lift and drag data for practical airfoil designs (see the bibliography for a
complete reference to this work).* T

In practice, the flow of air around a wing is not strictly two-dimensional, that is, flowing
uniformly over each parallel cross section of the wing, and there exists a spanwise
flow of air along the wing. The flow is said to be three-dimensional. The more three-
dimensional the flow, the less efficient the wing.! This effect is reduced on longer,
high-aspect-ratio wings (and wings with end plates where the effective aspect ratio is
increased); thus, high-aspect-ratio wings are compatatively more efficient.

To account for the effect of aspect ratio, wing sections of various aspect ratio for a given
foil design are usually tested so as w produce a family of lifc and drag curves versus
attack angle. There are other geometrical factors that affect the flow around wings,
and for a rigorous treatment of these I'll refer you to the Theory of Wing Sections and
Fluid-Dynamic Lift.}

Turning back to Figure 7-6, you'll notice that the drag coefficient increases sharply with
attack angle. This is reasonable, as you would expect the wing to produce the most drag
when oriented flat against or perpendicular to the flow of air.

A look ar the lift coefficient curve, which initially increases linearly with attack angle,
shows that at some attack angle the lift coefficient reaches a maximum value. This angle
is called the critical attack angle. For angles beyond the critical, the lift coeficient drops
off rapidly, and the airfoil (or wing) will stall and cease to produce lift. This is bad.
When an aircraft stalls in the air, it will begin to drop rapidly until the pilot corrects the
stall situation by, for example, reducing pitch and increasing thrust. When stall occurs,
the air no longer flows smoothly over the trailing edge, and the corresponding high
angle of attack results in flow separation, as illustrated in Figure 7-7. This loss in lift is
also accompanied by an increase in drag.

Theoretically, the resultant force acting on an airfoil acts through a point located at one-
fourth the chord length aft of the leading edge. This is called the quarter-chord point.
In reality, the resultant force line of action will vary depending on attack angle, pressure
distribution, and speed, among other factors. However, in practice, it is reasonable
to assume that the line of action passes through the quarter-chord point for typical
operational conditions. To account for the difference between the actual line of action
of the resultant and the quarter-chord point, the pitching moment about the quarter-
chord point must be considered. This pitching moment usually tends to tilt the leading

* Theory of Wing Sections includes standard foil section geometry and performance data, including the well-
known NACA family of foil sections. The appendixes to Theory of Wing Sections have all the data you need
ta collect lift and drag coefficient data for various airfoil designs, including these with flaps.

t Lifting efficiency can be expressed in terms of lift-to-drag rario. The higher the lift-to-drag ratio the more
efficient the wing or foil section.
t Fluid-Dynamic Lift, by Sighard E Hoerner and Henry V. Borst, and Fluid-Dynamic Drag, by Sighard F. Hoerner,

contain tons of practical charts, tables, and formulas for virrually every aspect of aircraft aerodynamics. They
even include material that is appropriate for high-speed boats and automobiles.

128 | Chapter7: Alrcrait

A) Velocity vector ...
Relative air velacity ly vect

Figure 7;7. Stalled Airfoil
N,

edge of the foil downward. In some cases this moment is relatively small in comparison
to the other moments acting on the aircraft and may be neglected.* An exception may

be when the foil has deflected flaps.

Flaps are control devices that are used to alter the shape of the foil so as to change
its lift characteristics. Figure 7-6 also shows typical lift, drag, and moment coefficients
for an airfoil fitted with a plain flap deflected downward at 15 degrees. Notice the
significant increase in lift, drag, and pitch moment when the flap is deflected. Theory
of Wing Sections also provides data for flapped airfoils for flap angles between —15 and
60 degrees.

Other Forces

The most notable force that I've yet to discuss is thrust—the propulsion force. Thrust
provides forward motion, and without it, the aircraft’s wings can’t generate lift and the
aircraft won’c fly. Thrust, whether generated by a propeller or a jet engine, is usually
expressed in pounds, and a common ratic that's used to compare the relative merits
of aircraft powering is the thrusi-to-weight ratio. The thrust-to-weight ratio is the
maximum thrust deliverable by the propulsion plant divided by the aircraft’s total
weight. When the thrust-to-weight ratio is greater than 1, the aircraft is capable of
overcoming gravity in a verdeal climb. In this case the lift generared by the wings does
not aid in maintaining (or increasing) aldtude; however, lift is still being generated,
which tends to pull the aircraft away from a vertical trajectory.

Thrust, whether produced by a propeller or a jet engine, is a function of air density. At
high altitudes the air density (and oxygen content) is reduced, and thrust will decrease
accordingly. At some point the engines will stall and cease 1o propel the aircraft higher.
If you’ve ever been to an air show, you’ve probably seen this sort of stunt performed on
purpose.

* Aircraft designers must always consider this pirching moment when designing the aircraft’s strucrure, as this
moment tends to want to twist the wings off the fuselage.

't-rll“'

OtherForces | 129

Besides gravity, thrust, and wingliftand drag, there are other forces thatact on an aircraft
in flight. These are drag forces (and lift in some cases) on the various components of
the aircraft besides the wings. For example, the fuselage contribufes to the overall drag
acting on the aircraft. Additionally, anything sticking out of the fuselage will contribute
to the overall drag, If they aren’t wings, anything sticking out of the fuselage is typically
called an appendage. Some examples of appendages are the aircraftlanding gear, canopy,
bombs, missiles, fuel pods, and air intakes. '

Typically drag data for fuselages and appendages are expressed in terms of a drag
coefficient similar to that discussed in Chapter 6, where experimentally determined drag
forces are nondimensionalized by projected frontal area (S), density (p), and velocity
squared (V2). This means that the experimentally measured drag force is divided by the
quantity (1/2)p V28 to get the dimensionless drag coefficient. Depending on the object
under consideration, the drag coefficient data will be presented as a function of some
important geometric parameter, such as attack angle in the case of airfoils or length-
to-height ratio in the case of canopies. Here again, Hoerner's Fluid Dynamic Drag is an
excellent source of practical data for all sorts of fuselage shapes and appendages.

For example, when an aircraft’s landing gear is down, the wheels (as well as associated
mechanical gear) contribute to the overall drag force on the aircraft. Hoerner reports
drag coefficients based on frontal area of some small plane landing gear designs to be in
the range of 0.25 to 0.55. By comparison, drag coefficients for typical external storage
pods (such-as for fuel), which are usually streamlined, can range from 0.06 to 0.26.

Another component of the total drag force acting on aircraft in flight is due 1o skin
{riction. Aircraft wings, fuselages, and appendages are not completely smooth. Weld
seems, rivets and even paint cause surface imperfections that increase frictional drag. As
in the case of the sphere data presented in Chapter 6, this frictional drag is dependent
on the nature of the flow around the part of the aircraft under consideration, that is,
whether the flow is laminar or turbulent. This implies that frictional drag coefficients
for specific surfaces will generally be a function of Reynold’s number.

In a rigorous analysis of a specific aircraft’s flight, you would of course want to consider
all these additional drag components. If you're interested in seeing the nitty-gritty details
of such calculations, I suggest you take a look at Hoerner's Fluid Dynamic Drag, in which
he gives a detailed example calculation of the total drag force on a fighter aircraft in his
Chapter 14. '

Control

The flaps located on the inboard trailing edge of the wing in our model are used to alter
the chord and camber of the wing section to increase lift at a given speed. Flaps are used
primarily to increase lift during slow-speed flight, such as when taking off or landing.
When landing, flaps are typically deployed at a high downward angle (downward flap
deflections are considered positive) on the order of 30 to 60 degrees. This increases both
the lift and drag of the wings. When landing, this increase in drag also assists in slowing

130 | Chapter7: Aircraft

the aircraft to a suitable landing speed. When taking off, this increase in drag works
against you in that it necessitates higher thrust to get up to speed; thus, flaps may not
be deployed 1o as great an angle as when landing.

Ailerons control or induce roll motion by means of producing differential lifr berween
the port and starboard wing sections. The basic aileron is nothing more than a pair of
trailing edge flaps fitted to the tips of the wings. These flaps move opposite each other,
one deflecting upward while the other deflects downward, to create a lift differential
between the port and starboard wings. This lift differential, separated by the distance
between the ailerons, creates a torque that rolls the aircraft. To roll the aircraft to the.
port side (the pilot’s left), the starboard aileron would be deflected in a downward
direction while the port aileron was deflected in an upward direction relative to the
pilot. Likewise, the opposite deflections of the ailerons would induce a roll to the
starboard side. In a real aireraft the ailerons are controlled by moving the flight stick to
either the left or right.

Elevators, the rail “wings,” are used to control the pitch of the aircraft. (Elevators can be
flaps, as shown in Figure 7-2, or the entire tail wing can rotate, as on the Lockheed Martin
F-16)) When the elevators are deflected such that their trailing edge goes downward with
respect to the pilot, a nose-down pitch rotation will be induced; that is, the tail of the
aircraft will tend to rise relative to its nose, and the aircraft will dive. In an acrual aircraft
this is achieved by pushing the flight stick forward. When elevators are deflected such
that their tailing edge goes upward, a nose-up pizch roration will be induced.

Elevators are very important for rimming (adjusting the pitch of) the aircraft. Generally,
the center of gravity of the aircraft is located above the mean quarter-chord line of the
aircraft wings such that the center of gravity is in line with the main lift force. However,
as I explained earlier, the lift force does not always pass through the quarter-chord
point. Eurther, the center of gravity of the aircralt may very well change during flight,
for example, as fuel is burned off and when ordnance is released. By controlling the
elevators, the pilot is able to adjust the attitude of the aircraft such that all of the forces
balance and the aircraft flies at the desired orientation (pitch angle).

Finally, the rudder is used to control yaw. The pilot uses foot pedals to control the
rudder; pushing the left (port) pedal yaws left, and pushing the right pedals yaws
right (starboard). The rudder is useful for fine-tuning the alignment of the aircraft for
approach on landing or when sighting up a target. Typically, large rudder action tends
also to induce roll motion that must be compensated for by proper use of the ailerons.

In some cases the rudder consists of a flap on the wailing edge of the vertical tail; in
other cases there is no rudder flap, and the entire vertical tail rotates. In both cases
the vertical tail, which also provides directional stability, will usually have a symmetric
airfoil shape; that is, its mean camber line will be coincident with its chord line. When
the aircraft is flying straight and level, the tail will not generate lift, since itis symmetric
and its attack angle will be zero. However, if the plane sideslips {vaws relative to its flight
direction), then the tail will be at an angle of attack and will generate lift, tending to
push the plane back to its original orientation.

"fl.“'

Controf | 131

Modeling

Although we’ve yet to cover a lot of the material required to implglgpenc a real-time flight
simulator, I'd like to go ahead and outline some of the steps necessary o calculate the
lift and drag forces on your model aircraft. Here are the steps:

1. Discretize the lifting surfaces into a number of smaller wing sections.
2. Collect geometric and foit performance data.

3. Calculate the relative air velocity over each wing section.

4. Calculate the attack angle for each wing section.

5. Determine the appropriate lift and drag coefficients, and calculate lift and drag
forces.

The first step is relatively straightforward in that you need to divide the aircraft into
smaller sections, each of which is approximately uniform in characteristics. Performing
this step for the model shown in Figure 7-2, you might divide the wing into four sections:
one for each wing section thac’s fitted with an aileron and one for each section that's
firted with a flap. You could also use two sections to model the elevators—one port and
one starboard—and another section to model the tail/rudder. Finally, you could tump
the entire fuselage together as one additional section or further subdivide it into smaller
sections, depending on how detailed you want to get.

If you're going to model your aircraft as a rigid body, you'll have to account for all of
the forces and moments acting on the aircraft while it is in flight. Since the aircraft is
composed of a number of different components, each contributing to the total lift and
drag, you'll have to break your calculations up inio a number of smaller chunks and
then sum all contributions to get the resultant lift and drag forces. You can chen use
these resultant forces alonig with thrust and gravity in the equations of motion for your
aircraft. You can, of course, refine your model further by adding more components for
such items as the cockpit canopy, landing gear, external fuel pods, and bombs. The level
of detail to which you go depends on the degree of accuracy you're going for. If you are
trying to mimic the flight performance of a specific aircraft, then you need to sharpen
your pencil.

Once you have defined each secrion, you must prepare the appropriate geometric and
performance data. For example, for the wings and other lifting surfaces you'll need to
determine each section’s initial incidence angle (its fixed pitch or attack angle relative
to the aircraft reference system), span, chord length, aspect ratio, planform area, and
quarter-chord location relative to the aircraft’s center of gravity. You'll also have to
prepare a table of lift and drag coefficients versus attack angle appropriate for the
section under consideration. Since this data is usually presented in graphical form,
you'll have to pull data from the charts to build your lookup table for use in your game.
Finally, you'll need to calculate the unit normal vector perpendicular to the plane of
each wing section. (You'll need this later when calculating angle of attack.)

132 | Chapter7: Aircraft

These first two steps need be performed only once at the beginning of your game or
simulation, since the data will remain constant (unless your plane changes shape or its
center of gravity shifts during your simulation).

The third step involves calculating the relative velocity between the air and the each
component so that you can calculate lift and drag forces: At first glance this might seem
trivial, since the aircraft will be traveling at an air speed that will be known to you
during your simulation. However, you must also remember that the aircraft is a rigid
body, and in addition to the linear velocity of its center of gravity; you must also account
for its rotational velocity.

Back in Chapter 2, I gave you a formula to calculate the relative velocity of any point on
a rigid body that was undergoing both linear and rotational motion:

N VR = Ve + {w x 1)

This is the formula you’ll need to calculate the relative velocity at each component in
your model. In this case v is the vector representing the air speed and flight direction
of the aircraft, w is the angular velocity vector of the aircraft, and r is the distance vector
from the aircraft center of gravity to the component under consideration.

When dealing with wings, once you have the relative velocity vector, you can proceed to
calculate the ateack angle for each wing section. The drag force vector will be parallel to
the relative velocity vector, while the lift force vector will be perpendicular to the velocity
vector. Angle of attack is then the angle between the lift force vector and the normal
vector perpendicular to the plane of the wing section. This involves taking the dot
product of these two vectors.

Once you have the attack angle, you can go to your coefficienc of lift and drag versus
attack angle tables to determine the lift and drag coefficients to use at this instant in
your simulation. With these coefficients you can use the following formulas to estimate
the magnitudes of lift and drag forces on the wing section under consideration:

Lift = CL(1/2)pV2S
Drag = Cp(1/2)pV?S§

The approach outlined here is a very simplified approach that only approximates the
lift and drag characteristics. This approach does not account for spanwise flow effects,
or the flow effects between adjacent wing sections. Nor does this approach account for
air disturbances, such as downwash, that may affect the relative angle of attack for a
wing section. Further, the air flow over each wing section is assumed to be steady and
uniform.

Asa simple example, consider wing panel 1, which is the starboard aileron wing section.
Assume that the wing is set at an initial incidence angle of 3.5 degrees and that the plane
is traveling at a speed of 75 knots in level flight at low altitude with a pitch angle of
4.5 degrees. This wing section has a chord length of 5.2 ft, and the span of this section
is 6 ft. Using the lift and drag data presented in Figure 7-6, calculate the lift and drag

-;’rl",

Modeling | 133

on this wing section, assurning that the ailerons are not deflected and that the density
of air 2.37 x 102 slug/ft’.

The first step is to calculate the angle of attack, which is 8 defyrees, based on the
information provided. Now looking at Figure 7-6, you can find the airfoil lift and drag
coefficients to be 0.92 and 0.013, respectively.

Next, you'll need to calculate the planform area of this section, which is simply its
chord times its span. This yields 312 ft*. Now you have enough information to calculate

lift and drag as follows (don’t forget to convert the speed in knots to ft/s; 1 knot =
1.688 ft/s):

Lifc = CL(1/2)pV?S
Lift = 0.92(1/2)(2.37 % 107 slug/fe%)[(75 k) (1.688 fu/s/ke)|*(31.2 fe*)
Lift = 542.21b
Drag = Cp(1/2)pV?*S
Drag = 0.0B3(1/2)(2.37 x 10~ shug /) [(75 kt) (1.688 fr/s/kn)]*(3L.2 ft)
Drag = 8.0lb

In your simulation you'll have to perform a similar set of calculations for every compo-
nent that you've definéd. As you can see, using this sort of empirical data and formulas,
although only approximate, lends itself to fairly easy calculations. The hard part is de-
ciding what to model and finding the right data; after that the lift and drag calculations
are pretty simple.

I've prepared an example program to show you how to model a simple airplane using
the method shown here. The program is named FlightSim.exe and is a real-time, 3D flight
simulator.* The small aircraft that is simulated resembles the one shown in Figure 7-2.

This program includes the following source files along with a text file (Instructions.txt)
that explains the flight controls:

* Physics.cpp and Physics.h

e D3dstuff.cpp and D3dstuffh
* Mymath.h

o Winmain.cpp

As I said, this program is a real-time simulation, and it treats the aircraftasa rigid body.
We have yet to cover real-rime simulations in this book, so a lot of the code may be
confusing at this point. Don’t worry, though; later in this book I'll cover all you need
to know to fully understand this program. For now, however, I want you to focus on a
few specific functions that implement the flight model. These functions are contained
in the source file, Physics.cpp.

* Ive used Microsoft’s Direct3D for this program, so o rur ir, you'll have to make sure Direct3D s instalied
ON YOUr Systetn.

134 | Chapter7: Aircraft

The first function I wanr you to look at is CalcAirplaneMassProperties:

// This model uses a set of eight discrete elements to represent the
// airplane. The elements are described below:

/!

/ Element 1: Outboard, Port (left) wing section fitted with ailerons
/ Element 2: Inboard, Port wing section fitted with landing flaps
/ Element 3: Inboard, Starboard (right) wing section fitted wlth

/ landing flaps

i Element 4: Outboard, Starboard wing section fitted with ailerons
/" Element 5: Port elevator fitted with flap

/I Element 6: Starboard elevator fitted with flap

/! Element 7: Vertical tail/rudder (no flap the whole thing rotates)
/ Element 8: The fuselage

/7

// This function first'sets up each element and then goes on to calculate

// the combined weight, center of gravity, and inertia tensor for the plane.
// Some other properties of each element are also calculated which you’ll

/! need when calculating the lift and drag ferces on the plane.

L e LT e /7
void CalcAirplaneMassProperties(void)

float mass;

Vector vMoment ;

Vector CG;

int i;

float Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
float in, di;

// Initialize the elements here
// Initially, the coordinates of each element are referenced from
// a design coordinates system located at the very tail end of the plane,
// its baseline, and its centerline. Later, these coordinates will be
// adjusted so that each element is referenced to the combined center of
// gravity of the airplane.
* Element[0].fMass = 6.56f;
Element[0].vDCoords = Vactor{14.5f,12.0f,2.5f};
Element[0].vlocalInertia = Vector(13.9z2f,10.50F,24.00F);
Element[C].fIncidence = -3.5f;
Element[0].fDihedral = 0.0f;
Element[0].fArea = 31.2f;
Element{0].iFlap = 0;

Elementi1].fMass = 7.31f;

Element[1].vDCoords = Vector(14.5f,5.5f,2.5f);
Element{1].vlocallnertia = Vector(21.95f,12.22f,33.67F);
Element[1].fIncidence = -3.5f;

Element[1].fDibedral = 0.0f;

Element[1].fArea = 36.4f;

Element[1].iFlap = O;

mon

Element[2].fMass = 7.31f;

Element[2].vDCoords = Vector(i4.sf,-5.5f,2.5f);
Element[2].vLlocallnertia = Vector(21.95f,12.22f,33.671);
Element[2].fIncidence = -3.5f;

Element[2].fDihedral = 0.0f;

Element[2].fArea = 36.4f;

Element[2}.iFlap = 0;

Modeling | 135

Element[3].fMass = 6.56f;

Element[3].vDCoords = Vector(14.5f,-12.0f,2.5f);
Element[3].vLocalInertia = Vector(13.92f,10.50f,24.00f);
Element[3].fIncidence = -3.5f;

Element[3).fDihedral = 0.0f; i
Element[3].fArea = 31.2f; :
Element[3].iFlap = O;

Element[4].fMass = 2.62f;

Element{4].vDCoords = Vector(3.o03f,2.5f,3.0f);
Element[4].vLocalInertia = Vector{0.837f,0.385f,1.206f);
Element[4].fIncidence = 0.0f;

Element[4].fDihedral = 0.0f;

Element[4].fArea = 10.8f;

Element[4].iFlap = 0;

Element[5].fMass = 2.62f;

Element[5].vDCocrds = Vector(3.03%,-2.5f,3.0f);
Element[5].viocallnertia = Vector(0.837f,0.385f,1.206f);
Element]5].fIncidence = 0.0f;

Element[5].fDihedral = 0.0f;

Element[5].fATea = 10.8f;

Element{s].iFlap = 0;

a1 n

Element[6].fMass = 2.93f;

Element[6].vDCoords = Vector(z.25f,0.0f,5.0f);
Elementf6].viocallnertia = Vector(1.262f,1.942f,0.718f);
Element{6].fIncidence = 0.0f;

Element{6].fDihedral = 90.0f;

Element[6].fArea = 12.0f;

Element[6].iFlap = O;

Element[7].fMass = 31.8f;

Element{7].vDCoords = Vector(15.25f,0.0f,1.5F);
Element[7].vLocalInertia = Vector(66.30f,861.9f,861.97);
Element[7].fIncidence = 0.0F;

Element[7].fDihedral = 0.0f;

"Element[7].fArea = 84.0f;

Element{7].iFlap = 0;

Hon

// Calculate the vector normal (perpendicular) to each lifting surface.
/¢ This is required when calculating the relative air velocity for

// lift and drag calculations.

for {i = 0; i< 8; i++)

{
in = DegreesToRadians(Element[i].fIncidence);
di = DegreesToRadians(Element[i].fDihedral};
Element[i].uwNormal = Vector({float}sin(in), (float)(cos{in)*sin(di}),
{float){cos{in)*cos{di}));
Element[i].vNormal.Normalize(};
1
/¢ Calculate total mass
mass = 0;

for (i = 0; i< 8; i++)
mass += Element[i].fMass;

// Calculate combined center of gravity location
vMoment = Vector(o.of, o.of, 0.0f);
for (i = 0; i< 8; i++)

136 | Chapter7: Aircraft

vMoment += Element{i].fMass*Element[i].vDCoords;-
€6 = vMoment/mass;

// Calculate coordinates of each element with respect to the combined.CG
for (i = 0; i< 8; i)

Element[i].vCGCoords = Element[i}.vDCoords - CG;

// Now calculate the moments and preducts of inertia for the
// combined elements.
/f (This inertia matrix (tensor) is in body coordinates)
Ixx = 0; Iyy = 0; Izz = 0;
Ixy = 0; Ixz = 0; Iyz = 0;
for (i = 0; i< 8; i++)
S

Ixx += Element[i].vLocalInertia.x + Element[i].fMass *
(Element[i].vC(GCoords.y*Element[i].vCGCoords.y +
Element[i].vCGCoords.z*Element[i].vCGCoords,z);

Iyy += Element[i].vliocalInertia.y + Element[i].fMass *
(Element[1].vCGCoords.z*Element{i].vCGCoords.z +
Element[i].vCGCoords.x*Element(1].vCGCoozds.x);

Izz += Element[i].vLocallnertia.z + Element[i].fMass *
{Elementfi].vCGCoords.x*Element[i].vCGCoords.x +
Element[i].vCGCoords.y*Element[i].v(GCoords.y);

Ixy += Element[i].fMass * (Element[i].vCGCoords.x *
Element[i].vCGCoords.y);

Ixz += Element{i].fMass * {Element[i].vCGCoords.x *
Elementfi].vCGCoords.z);)

Iyz += Element[i].fMass * (Element{i}.v(GCoords.y *
Element[i].vCGCoords.z);

}

// Finally, set up the airplane’s mass and its inertia matrix and take the
// inverse of the inertia matrix
Airplane,fMass = mass;

Airplane.mInertia.e1l = Ixx;
Airplane.mInertia.el2 = -Ixy;
Airplane.mInertia.e13 = -Ixz;
Airplane.mInertia.e2l = -Ixy;
Airplane.mInertia.e22 = Iyy;
Airplane.mInertia.e23 = -Iyz;
Airplane.mInertia.e31 = -Ixz;
Airplane.mInertia.e32 = -Iyz;
Airplane.mInertia.e33 = Izz;

Airplane.mInertialnverse = Airplane.mInertia.Inversa();

Among other things, this function essentially completes step 1 (and part of step 2) of
our modeling method: discretize the airplane into a number of smaller pieces, each with
its own mass and lift and drag properties. For this model I chose to use eight pieces,
or elements, to describe the aircraft. My comments at the beginning of the function
explain what each element represents.

‘g“l‘;'

Modeling | 137

The very first thing this function does is initialize the elements with the properties that
I've defined to approximate the aircraft. Each element is given a mass, a set of design
coordinates to its center of mass, a set of moments of inertia aboyit each element’s center
of mass, an initial incidence angle, a planform area, and a dihedral angle.

The design coordinates are the coordinates of the element with respect to an origin
located at the very tip of the aircraft’s tail, on its centerline, and at its baseline. The
x-axis of this system points toward the nose of the aircraft, and the y-axis poinis toward
the port side. The z-axis points upward. You have to set up your lements in this design
coordinate system first because you don’t yet know the location of the whole aircraft’s
center of mass, which is the combined center of mass of all of the elements. Ultimately,
you want each element referenced from the combined center of mass because it’s the
center of mass that you'll be tracking during the simulation. (Recall that we discussed
this in Chapters 2 and 4.

The dihedral angle is the angle abouc the x-axis at which the element is initially set. For
our model, all of the elements have a zero dihedral angle, that is, they are horizontal,
except for the tail rudder, which has a 90-degree dihedral, since it is oriented vertically.

After you set up the elements, the first calculation that this function performs is to
find the unit normal vector to each element’s surface based on the element’s incidence
and dihedral angles, You need this direction vector to help calculate the angle of attack
berween the air flow and the element.

The next calculation is the total mass catculation, which is simply the sum of all element
masses. Immediately following that, the combined center of gravity location is deter-
mined using the technique 1 discussed in Chapter 1. The coordinates to the combined
center of gravity are referenced to the design coordinate system. You need to subtract
this coordinate from the design coordinate of each element to determine each element’s
coordinates relatve to the combined center of gravity. After that you're all set, with the
exception of the combined moment of inertia tensor, which T'll wait until Chapter 11 to
discuss.

Step 2 of our modeling method says that you need to collect the airfoil performance
data. For the example program I used a cambered airfoil with plain flaps to model
the wings and elevators, and T used a symmetric airfoil without flaps to model the tail
rudder. 1 didn’t use flaps for the tail rudder, since 1 just made the whole thing rotate
about a vertical axis to provide rudder action.

For the wings, I set up two functions to handle the lift and drag coetficients:

Jf oo mmm e o mmm e mmmmm eSS mmosoossssooo-sssoosoes i
// Given the attack angle and the status of the flaps, this function

// returns the appropriate lift coefficient for a cambered airfeil with

// a plain trailing edge flap (+/- 15 degree deflection}.

float LiftCoefficient(float angle, int flaps)

float clfo[9] = {-0.54f, -0.2f, o.2f, 0.57f, 0.92f, 1.21f, 1.43f, 1.4f,
1.0f};

138 | Chapter7: Aircraft

float clfd[9] = {0.0f, 0.45F, 0.85F, 1.02f, 1.39f, 1.65Ff, 1.75F, 1.38f,

1.17F};

float clfu[9] = {-0.74f, -0.4f, 0.0f, 0.27f, 0.63f, 0.92f, 1.03f, 1.1f,
0.78F};

float a[9] = {-8.0f, -4.0f, 0.0f, 4.0f, 8.0f, 12.0f, 16.0f, 20.0f,

‘ 24.0f};

float cl;

int i;

cl = 0;

for (i=0; 1<8; i++)
if{ (a[i] <= angle) BB {(a[i+1] > angle) }
switch(flaps})
{

case 0:// flaps not deflected
cl = clfoli] - (a[i] - angle) * (clfo[i] - c1f0[1+1}) /
@ali] - a[i+1]);
break;
case -1: // flaps down-
cl = clfd[i] - (a[i] - angle) * (clfd[i] - clfd[i+1]} /
(ali] - a[i+1]);
break;
case 1 // flaps up
= clfu[i] - (a[i] - angle) * (clfu[i] - clfuli+1]) /
(ali] - ali+1]);
break;

break;

}

return cl;

/! Given the attack angle and the status of the flaps, this function
// returns the appropriate drag coefficient for a cambered airfeil with
// a plain trailing edge flap (+/- 15 degree deflection).

float DragCoefficient(float angle, int flaps}
{
float cdfo[9] = {0.01f, 0.0074f, 0.004f, 0.009f, 0.013f, 0.023f, 0.05%,
0.12f, 0.21f};
float cdfd[9] = {0.0065f, 0.0043f, 0.0055f, 0.0153f, 0.0221f, 0.0391f, 0.1f,
0.195f, 0.3f};
float cdfu[9] = {0.005f, 0.0043f, 0.0055f, 0.02601f, 0.03757f, 0.06647f,
0.13f, 0.18f, 0.25f};

float af9] = {-8.0f, -4.0f, o0.0f, 4.0f, 8.0f, 12.0f, 16.0f, 20.0f,
24.0f};

float cd;

int i

cd = 0.5;

for (i=0; i<8; i++)
if((a[i] <= angle) 8& {a[i+1] > angle} }

switch{¥laps)

-“rll“,

Modeling | 139

case 0:// flaps not deflected
: ed = cdfo[i] - (a[i] - amgle} * (cdfo[i] - cdfo[is1]) /
(a[i] - a[i+a]); K
break;
case -1: // flaps down
cd = cdfd[i] - (a[i] - angle) * {cdfd[i] - cdfd[i+1]} /
(ali] - a[i+1]);
break; ’
. case 1: // flaps up
cd = cdfu[i] - (a[i] - angle) * (cdfu[i] - cdfu[i+1]) /
(ald] - alina]);

break;
break;

}

return cd;

Each of these functions takes the angle of attack as a parameter along with a flag used to
indicate the state of the flaps, that is, whether the flaps are in neutral position, deflected
downward, or deflected upward. Notice that the lift and drag coefficient data are given
for a set of discrete attack angles; thus, linear interpolation is used to determine the
coefficients for attack angles that fall between the discrete angles.

The functions for determining the tail rudder lift and drag coefficients are similar to
those shown here for the wings, the only differences being the coefficients themselves
and the fact that the tail rudder does not include flaps. Here are the functions:

RIS LSS S 1
// Given the attack angle this function returns the proper lift coefficient
/¢ for a symmetric (no camber)} airfoil without flaps.

7 2 it 1
float RudderLiftCoefficient(float angle)
{
float clfo[7] = {0.16F, 0.456f, 0.736F, 0.968F, 1.144f, 1.12f, 0.8%};
float a[7} = {0.0f, 4.0f, 8.0f, 12.0f, 16.0f, 20.0f, 24.0f};
float cl;
int i;

float a; = (float) fabs{angle};

cl = 0;
for (i=0; i<B; i++)

iff (a[i] <= aa) &B (a[i+1] > aa))

¢l = clfo[i] - (a[i] - aa) * (clfo[i] - clfo[isn])} /
{a[i] - a[i+1]); :

if (angle < 0} cl = -cl;

break;

}

return cl;

140 | Chapter?: Airaraft

/¢ Given the attack angle this function returns the proper drag coefficient
// for a symmetric {no camber) airfoil without flaps.

float RudderDragCoefficient(float angle)

{
float cdfo[7] = {0.0032f, 0.0072f, 0.0104f, 0.0184f, 0.04f, 0.096f, 0.168f};

float a[7] {o.0f, 4.0f, 8.0f, 12.0f, 16.0f, 20.0f, 24.0f};
float cd;

int i

float aa = (float) fabs(angle);

cd = 0.5;
for (i=0; 1<8; i++)

if{ (a[i] <= =2a) && (af[i+1] > =aa})
{

cd = ca¥o[i] - (a[i] - aa) * (cdfo[i] - cdfo[i+1]) /
{ali] - aii+t]);
break;

}

return cd;
}
With steps 1 and 2 out of the way, steps 3, 4, and 5 are handled in 2 single function

called calcairplaneloads:
U R 7

// This function calculates 11 of the forces and moments acting on the
/{ plane at any given time.
void CalcAirplanetoads(void)

Vector fb, Mb;

// reset forces and moments:

Airplane.vForces.x = 0.0f;
Airplane.vForces.y = 0.0f;
Airplane.vForces.z = C.0f;
Airplane.vMoments.x = 0.0f;
Airplane.vMoments.y = 0.0f;
Airplane.vMoments.z = 0.0f;
Fb.x = 0.0f; Mb.x = 0.0f;
Fb.y = 0.0f; Hb.y = 0.0f;
Fb.z = 0.0f; Mb.z = 0.0f;
// Define the thrust vector, which acts through the plane’s CG
Thrust.x = 1.0f;

Thrust.y = 0.0f;

Thrust.z = 0.0F;

Thrust *= ThrustForce;

// Calculate forces and moments in body space:

Vector viocalVelocity;
float fLocalSpeed;
Vector vDragVector;
Vector vLiftVector;

float fattackangle;

"»‘vﬁl“"

Modeling | 1M

float tmp;

Vector vResultant;
int i3
Vector vimp; ot

Stalling = false;

for(i=o; i¢7; i++) // loop through the seven lifting elements
// skipping the fuselage
{

if /i == 6) // The tail/rudder is a special case, since it can rotate;
{ // therefore, you have to recalculate the normal vector
float in, di;
in = DegreesToRadians(Element{i].fIncidence); // incidence angle
di = DegreesToRadians(Element[i].fDihedral}; // dihedral angle
Element[i].vNormal = Vector({float)sin(in),
{float)(cos{in)*sin(di)},
{float}(cos{in)*cos(di)));
Element[i].vNormal.Normalize();

}

// Calculate local velocity at element

// The local velocity includes the velocity due to linear
// motion of the airplane,

// plus the velocity at each element due to the

// rotation of the airplane.

// Here’s the rotational part
vimp = Airplane.vAngularVelocityElement [1].vCGCoords;

vlocalvelocity = Airplane.vwWelocityBody + vimp;

// Calculate local air speed .
flocalSpeed = vLocalVelocity.Magnitude();

// Find the direction in which drag will act.
/4 Drag always acts inline with the relative
/7 velocity but in the opposing direction
if(flLocalSpeed > 1.}

vDragVector = -vLocalVelecity/flLocalSpeed;

// Find the direction in which 1lift will act.

// Lift is always perpendicular to the drag vector
vLiftVector = (vDragvector Element[i].vNormal)"vDragVector;
tmp = vLiftVector.Magnitude();

vLiftVector.Normalize(});

// Find the angle of attack.

// The attack angle is the angle between the lift vector and the
// element normal vector. Note that the sine of the attack angle,
/¢ is equal to the cosine of the angle between the drag vector and
// the normal vector.

tmp = vDragVector*Element[i}.vNormal;

if(tmp > 1.) tmp = 1;

if(tmp < -1) tmp = -1;

fAttackAngle = RadiansToDegrees((float) asin(tmp));

// Determine the resultant force {lift and drag) on the element.
tmp = 0.5F * rho * flLocalSpeed*flocalSpeed * Element[i].fATea;
if (i == 6} // Tail/rudder

142 | Chapter7: Aircraft

vResultant = (vLiftVector*RudderliftCoefficient(fAttackangle) +
vDragVector*RudderDragCoefficient{fAttackAngle))
* tmp;
} else
vResultant = (vLiftVector*LiftCoefficient({fAttackAngle,
Element[i].iFlap) +
vDragVector*OragCoefficient(fAttackangle,
Element[i].iFlap)) * tmp;
/7 Check for stall.
// We can easily determine when stalled by noting when the coefficient
/f of 1ift is zero. In reality stall warning devices give warnings well
// before the lift goes to zero to give the pilot time to correct.
if (i<=0)

if (LiftCoefficient(fAttackAngle, Elementfi].iFlap} == 0)
Stalligg = true;
} N

// Keep a running total of these resultant forces (total force)
Fb += vResultant;

// Calculate the moment about the CG of this element’s force
// and keep a running total of these mements (total moment)
vimp = Element[i].vCGCoords vResultant;

Mb += vimp;

}

/{ Now add the thrust
Fb += Thrust;

// Convert forces from model space te earth space
Airplane.vForces = QVRotate(Airplane.gOrientation, Fb);

// Apply gravity (g is defined as -32.174 ft/s 2)
Airplane.vForces.z += g * Airplane.fMass;

¥
Airplane.vMoments += Mb;

The first thing this function does is reset the variables that hold the total force and
" moment acting on the aircraft. Next, the thrust vector is set up. This is trivial in this
example, since 'm assuming that the thrust vector always points in the plus x-axis
direction (toward the nose) and passes through the aircraft center of gravity (so it does
not create a moment).

After calculating the thrust vector, the funcdon loops over the model elements to cal-
culate the lift and drag forces on each element. I've skipped the fuselage in this model;
however, if you want to account for its drag in your model, this is the place to add the
drag calculadion.

Going into the loop, the first thing the function does is check to see whether the current
element is element number 6, the tail rudder. If it is, then the rudder’s normal vector
is recalculated on the basis of the current incidence angle. The incidence angle for the
rudder is altered when you press the X or C key to apply rudder acrion.

b

Modeling | 143

The next calculation is to determine the relative velocity between the air and the element
under consideration, As I stated earlier, this relative velocity consists of the linear velocity
as the airplane moves through the air plus the velocity of gdch element due to the
airplane’s rotation. Once this vector has been obtained, you calculate the relative air
speed by taking the magnitude of the relative velocity vector.

The next step is to determine the direction in which drag will act, Since drag opposes
motion, it acts in line with but opposite to the relative velocity vector; thus, all you
need to do is take the negative of the relative velocity vector and normalize the result
(divide it by its magnitude) to obtain the drag direction vector. Since this vector was
normalized, its length is equal to 1 (unity), so you can multiply it by the drag force that
will be calculated later to get the drag force vector.

After obtaining the drag direction vector, this function uses it to determine the lift
direction vector, The lift force vector is always perpendicular to the drag force vector,
s0 to calculate its direction, you first take the cross product of the drag direction vector
with the element normal vector and then cross the result with the drag direction vector
again. Here again, the function normalizes the lift direction vector.

Now that the lift and drag direction vectors have been obtained, the function proceeds

to caleulate the angle of attack for the current element. The attack angle is the angle

berween the lift vector and the element normal. You can calculate the angle by taking:
the inverse cosine of the vector dot product of the lift direction vector with the element

normal vector, Since the drag vector is perpendicular to the lift vector, you can get the

same result by taking the inverse sine of the vector dot product of the drag direction

vector with the element normal vector.

Now with all the lift and drag vector stuff out of the way, the function goes on to
calculate the resultant force acting on the element. The resultant force vector is simply
the vector sum of the lift and drag force vectors, Notice that this is where the lift and
drag coefficient functions are called and where the empirical lift and drag formulas
previously discussed are applied.

After calculating the resultant force, the function checks to see whether the calculated
lift coefficient is zero. If the lift coefficient is zero, then the stall flag is set to warn us
that the plane is in a stalled situation.

Finally, the resultant force is accumulated in the total force vector variable, and the
moment is calculated by taking the cross product of the element coordinate vector with
the resultant force. The resulting moment is accumulated in the toral moment vector
variable. After exiting the loop, the function adds the thrust vector to the total force.

So far, all of these forces and moments have been referenced in the body fixed coordinate
system. The only thing left to do now is apply the gravity force, but this force acts in the
negative y-axis direction in the earth fixed coordinate system. To apply the gravity force,
the function must first rotate the body force vector from body space to earth space coordi-
nates. [used a quaternion rotation technique in this example, which I'll discuss later on.

144 | Chapter7: Aircraft

That’s pretty much it for the flight model. The rest of the code in this example will be
discussed later in this book where appropriate. About the only thing I won’t get into
detail on is the code to implement the Direct3D aspects of this program. Iw111 give you
some good references in the bibliography, though.

I encourage you to play with the flight model in this program. Go ahead and tweak
element properties and watch to see what happens. Even though this is a rough model,
the flight resulis look quite realistic.

Modeling | 145

CHAPTERS
ShlpS 7

The purpose of this chapter is not to teach you how to design ships, but to explain
by way of example some fundamental physical principles, such as buoyancy, stability,
virtual mass, and resistance, that you may need to consider when writing physics-based
games or simulations. The typical displacement-type ship lends itself well to illustrating
these principles; however, many of these principles apply equally to other objects that
are submerged or partially submerged in a fluid, such as submarines and air balloons.
Remember, air ts considered a fluid, too, when talking about buoyancy.

While surface ships, that is, ships that operate on the water’s surface (at the air-water
interface), are similar to fully submerged objects such as submarines or air balloons,
in that they all experience buoyancy, there are some very distinct differences in their
physical nature that I'll highlight it this chapter. These differences affect their behavior,
s0 you need to be aware of them if you intend to simulate such objects accurately.

Since the examples in this chapter irvolve ships, 1 need to go over some terms and
geometry so that we are speaking the same language. As 1 said, I'll discuss a typical
displacement ship in this chapter. The term displacement in this context means that the
ship is supported solely by buoyancy, that is, without dynamic or aerostatic lift such as
you would see on a high-speed racing boat or a hovercraft. The word “displacement” ~
itself refers to the volume of water that is displaced, that is, pushed out of the way by
the ship as it sits floating in the water (more on this in the next section).

The hull of the ship is the watertight part of the ship that actually displaces the water.
Everything in or on the ship is contained within the hull, which is par tially submerged
in the water. The length of the ship is the distance measured from the bow to the stern.
In practice, there are several lengths that are used to denote the length of a ship, but
here I'll refer to the overall length of the hull. The bow is the front of the ship, and the
stern is the aft part. When you are on the ship facing the bow, the port side is to your
Jefc and the starboard side is to your right. The overall height of the hull is called the
depth, and its width is called beam. When a ship is floating in the water, the distance
from the water surface to the bottom of the hull is called the draft. Figure 8-1 illustrates
these terms.

146

o
Beam [
=3 o
Starboard
Length |
Plan f
|

Figﬁre 8-1. Ship Geometry

Flotation

The absolutely most important thing a ship must do is float. Not only that—it must
tloat upright.

In Chapter 3 | introduced the concept of buoyancy and stated that the force on a
submerged object due to buoyancy is a function of the submerged volume of the object.
Archimedes' principle states that the weight of an object floating in a fluid is equal t
the weight of the volume of fluid displaced by the object. This is an important principle.
It says that a ship of a given weight must have sufficient volume to displace enough
water, an amount equal to the weight of the ship, for it to float. Further, this principle
provides a clever way of determining the weight of a ship: simply measure or calculate
the amount of water displaced by the ship and you can calculate the weight of the ship.
In the marine field, displacement is synonymous with the weight of the ship.

The buoyant force on any object can be calculated using the following formula:
Fy=pgvy

Here, ¥ is the submerged volume of the object, p is the density of the fluid within
which the object is submerged, and g is the acceleration due to gravity. Since buoyancy
is a force, it has both magnitude and direction and always acts straight up through the
center of buoyancy. The center of buoyancy is the geometric center of the submerged
part of the object.

When a shipis floating in equilibrium on the surface of the water, its center of buoyancy
must be located directly below the center of gravity of the ship. The weight o: the ship,
a force, acts straight down through the center of gravity opposing the force due to

-';:rli‘_'

Flotation | 147

buoyancy. When the ship is in equilibrium, these two forces—weight and buoyancy—
are equal in magnitude and opposite in direction.

Now, when the ship rolls, or pitches, the portion of the hull belowfthe water is changed,
and the center of buoyancy moves to the new geometric centroid of the underwater
portion of the hull. For example, if the ship rolls to the starboard side, then the center of
buoyancy shifts out toward the starboard side. When this happens, the lines of action
of the weight of the ship and the buoyant force are no longer in line, which results
in a moment (torque) that acts on the ship. This torque is =qual to the perpendicular
distance between the lines of action of the forces times the weight of the ship.

Now here’s where we get to the floating upright part that I mentioned earlier. When a
ship rolls, for example, you don’t want it to keep rolling until it capsizes. No, you want it
to return itself gently to the upright position after whatever force caused it to roll—the
wind, for example—has been removed. In short, you want the ship to be stable. For a
ship to be stable, the line of action of the buoyant force must cross the vessel’s centerline
at a point, called the metacenter, above the center of gravity. When this happens, the
moment that is developed when the ship rolls tends to restore the ship to the upright
position. If the metacenter is located below the center of gravity, then the moment that
is developed would tend to capsize the ship. Figure 8-2 illustrates these two scenarios.

Stable

‘.'v

Metacenter ™,

% Restoring moment

Uinstahie
~ Center of gravity

Metacenter

Overturning moment §

Figure 8-2. Ship Stability

148 | Chapterd: Ships

If you're a sailor, then you know how important it is to keep the center of gravity of
your boat low. This helps to increase the height of the metacenter above the center of
gravity and thus helps with stability.

In the case of fully submerged objects, such as submarines or air balloons, the sit-
uation is different. The buoyant force sill acts through the geometric centroid of
the object, but for stability the center of buoyancy must be located above the cen-
ter of gravity This way, when the object rotates, the lines of action of the weight
of the object and the buoyant force are separated and form a moment that tends to
restore the object to its upright posidon. If it’s the other way around, then the ob-
ject would be unstable, like trying to balance one bowling ball on top of another.
In this case the slightest disturbance would upser the balance, and the object would
flip upside-down such that the center of gravity would be located below the center of
buoyancy. hS

The tricky part to these calcularions is determining the submerged volume and geomet-
ric centroid for all but the simplest of geometries. For example, ship hulls are generally
complicated shapes with a lot of curvature, in many cases with recesses or appendages.
Calculating the displaced volume for a ship requires the use of numerical integration
techniques. I'll show you such a method in the next section.

Volume

There are various techniques and algorithms for calculating volume that arise from
various fields of science and engineering. The techniques tend to be optimized for
the particular task at hand and the nature or format of the geomery defining the
object of which the volume is to be determined. For example, in the world of computer
graphics, objects are typically represented by triangulated polyhedra, or polytopes, and
there are various algorithms for calculating the volume of such polytopes by essentally
constructing a number of tetrahedrons out of the surface wriangles and calculating,
and then summing, the volume of all of the tetrahedrons. (This is the technique that
I'll show you in a moment.) Yet another volume calculation technique comes from
the field of chemistry, in which the volume of certain molecules must be calculated.
Here, techniques have been developed that are specifically optimized for calculating the
volume of multiple interesting spheres.

The field of ship design, formally known as naval architecture, is no different. For
ships the traditional technique of calculating volume involves integrating cross-sectional
areas over the length of the ship hull. It is important to note, however, that while the
implementation of these techniques are different, they are all essentially numerical
integration techniques that involve discretizing the object under consideration into a
number of smaller, simpler geometries whose volumes are easily calculated and then
summing up all the volumes to get the total volume.

Let’s look at a rather simple example of how to calculate the volume and center of
volume for a triangulated cube. Figure 8-3 shows the cube under consideration.

-;’rl'_,

Volume | 149

Figure 8-3. Triangulated Cube

The reason we’re considering a cube is because its volume and centroid are readily
verifiable by using simple hand calculations. Keep in mind, though, that the method
I'm about to show you applies equally well to more complicated geometries as long as
the object you are considering is a simple, triangulated polyhedron. This means thar all
of the following must be satisfied:

« All of the faces making up the object must be triangles.
¢ The object may not have any holes in it.
s The object must enclose a volume. This means that there can be no dangling faces

or edges; each edge must connect two vertices, and each edge must be shared by
exactly two faces.

e The object must satisfy Euler’s formula, which states that the number of vertices
minus the number of edges plus the number of faces must equal 2: No. of vertices —
No. of edges + No. of faces = 2.

As 1 said earlier, the idea behind this method is to divide the object into a bunch of
tetrahedrons, calculate the volume of each tetrahedron, and then sumall the tetrahedron
volumes to obtain the total volume of the object. You can also use these tetrahedrons

150 | Chapter8: Ships

to determine the object’s geornetric center (center of volume) using a technique similar
to that for finding the center of mass of a collection of masses. (I showed you how o
do that in Chapter 1) In this case you’ll use the tetrahedron’s volume instead of mass.
Figure 8-4 illustrates how a tetrahedron is constructed from a triangular face.

(0,0,0)

Figure 8-4. Tetrahedron

Here, the origin {0, 0, 0) is used along with the three vertices of the triangular face to
define the four vertices of the tetrahedron. You can think of the edges of the terahedron
that connect to the origin as vectors from the origin to each vertex of the face. Note that
the vertices of the face are specified in counterclockwise order when viewing the face
from the outside of the object.

To calculate the volume of such a tetrahedron, you can use the vector triple scalar
product (see Appendix A for a code sample). Let vectors a, b, and ¢ be the vectors
shown in Figure 8-4; then the vector triple scalar product of these three vectors is

a-(bxc

It just so happens that a handy physical interpretation of the triple scalar product is
that it is equal to the volume of the parallelepiped formed by the three vectors as shown
in Figure 8-5:*

More important for us is that the volume of the wetrahedron formed by these three
vectors {as shown in Figure 8-4) is one sixth of the volume of the parallelepiped. Thus,
the formula for calculating the volume of the tetrahedron is

la-(bxc)]/6

Determining the tetrahedron’s geometric center is relatively easy: you simply take the
average of all four vertex coordinates. Note that even if one of the vertices is located at
the origin, you still have to include it in the average. Referring to Figure 8-4 and using

* A parallelepiped is a solid thar has three pairs of parallel sides. A box is a parallelepiped with perpendicular
sides. A cube is also a parallelepiped but with all edges equal in length.

‘Y’r’i“,

Volume | 151

{0,0,0)

Figure 8-5. Parallelepiped

vector notation, the centroid, d, of the tetrahedron is
d=(a+b+tc)/4

This equation assumes that the fourth vertex is located at the origin with coordinates
(0, 0, 0); that’s why you see only three vectors in the formula even though we are dividing
by 4.

For this example I've prepared a simpte class called Body3D that stores the object’s vertex
and face data and implements a method to read the object data from a file and another
to actually calculate the object’s volume and centroid:

#define MAX_NUM_VERTICES 100
#define MAX_NUM_FACES 100
typedef struct VertexTag {
float x; {/ x-coord of vertex
float y; // y-coord of vertex
float z; // z-coord of vertex
} TVertex;

typedef struct FaceTag {
/7 vertices defining the face are in counterclockwise
// order when looking at the face {rom outside the object

int a; // 1st vertex (index of vertex in vertex list)
int b: // 2nd vertex {index of vertex in vertex list}
int ¢; // 3rd vertex {(index of vertex in vertex list)

} TFace;

e e e e e oo —ammm oo oo 1
// Body3D class that represents a simple, triangulated polyhedron
e L R e 1

class Body3D {

152 | Chapter8: Ships

public:

int nFaces; // number of triangular faces
int nVertices; // number of vertices

TVertex Vertex[MAX_NUM_VERTICES]; // vertex list
TFace Face[MAX_NUM_VERTICES]; // face list
float Volume; // total volume

Vector Centroid; // center of total volume

Body3D(void); // constructor

void ReédData(char *filename); // reads vertex/face data
void CalculateProperties{void); // calculates Volume B Centroid

b

Each member of this class is readily identifiable from the comments in the code sam-
ple, so | won’t elaboratepn them. However, let me show you the two methods (the
constructor is trivial, as it just sets everything to zeroj.

ReadData simply reads the object data in from a texz file:

void Body3D: :ReadData(char *filename)

{
FILE *fptr;
int i;

fptr = fopen(filename, “r”);

fscanf(fptr, “%d\n”, &nVertices);
for{i=0; i< nVertices; i++)

fscanf(fptr,
“%f A\,
B(Vertex[i].x),
B{vertex[i].y),
B{vertex[i].z));
Y}
fscanf(fptr, “4d\n”, &nFaces);
for(i=0; i< nFaces; i++)

fscanf(fptr,
“%d %d ¥d\n”,
B(Face[i].a),
&(Face[i].b),
B(Face[i].c)}; // counterclockwise order

}
fclose(fptr);

The first line of the file is an integer that represents the number of vertices to follow:
The next set of lines are the actual vertices with the x-, y-, and z-coordinates (floats)
for each vertex on a single line. After all the vertices are read in, another integer is read
that represents the number of faces. The next set of lines conrain the face data, where
each line contains three numbers representing the vertex numbers (in counterclockwise
order) that make up the face. Here’s a sample object file defining the a cube that is 2

't-ﬁl“"

Volume | 153

units tall, 2 units wide, and 2 units deep and located at the origin with its base on the
xy-plane as shown in Figure 8-3:

8 T
-1.000000 -1.000000 0.000000

~-1.000000 -1.000000 2.000000

1.000000 -1,000000 9.000000

1.000000 -1.000000 2.000000

-1.000000 1.000000 0.000000

1.000000 1.000000 0.000000

1.000000 1.000000 2.000000

-1.000000 1.000000 2.000000

12

RRrROORROE BN
Ieomd B U7 R R R T W
ORMBAWRUVNONGDR

The next method, CalculateProperties, is really the heart of this example. This method
goes through the process of discretizing the object into a bunch of tetrahedrons to
calculate the total volume and centroid, as I discussed earlier. I'll show the code here
and then discuss it in detail:

void Body3D: :CalculateProperties(void)

{
Vector a;
Vector b;
Vector c;
int i;
float dv = 0;
float vel = 0;
Vector d;
Vector dmom;

for(i=0; i<nFaces; i++)

a.x = Vertex[Face[i].a}.x;
a.y = Vertex[Face[i].a].y;
a.z = Vertex[Face[i].a].z;
b.x = Vertex[Face[i].b].x;
b.y = Vertex[Face[i].b].y;
b.z = Vertex[Face[i].b].z;
c.x = Vertex[Face[i].c].x;
c.y = Vertex{Face[i].c].y;
c.z = Vertex[Face[i].c].z;

dv = (TripleScalarProduct(a, b, c)) / 6.0f;
vol += dv;

154 | Chapter8: Ships

d=({a+b+c)/4);
dmom += (d * dv};

}
Volume = vol; x
Centroid = dmom / vol; '

}

Note that this function defines a few local variables, a, b, and ¢, of type Vector to represent
the vectors from the origin to each vertex of each face that will form a tetrahedron. vector
is defined in Appendix A. The integer variable i is just a counter. The float variables dv
and vol are the volume of a single tetrahedron and the running total volume ¥ the object,
respectively. The Vector types d and dmom are the coordinates of a single tetrahedron and
the running total first moment of volume of all the terrahedrons, respectively.

After inidalizing all the lpcal variables, the method iterates through the list of faces
making up the object and constructs the vectors a, b, and ¢ for the tetrahedron formed
by the origin and the current face, Face[1]. Next, the triple scalar product of these three
vectors is computed, and the result is divided by 6. This calculation yields the volume
of the terrahedron, dv, which gets added to the running total, vol. The method then
goes on to caleulate the center of the tetrahedron, d; multiplies it by the tewrahedron’s
volume, dv; and adds the result to dmom (the running total of first moments of volume).
Finally, after iterating through all the faces, the total volume is vol and the centroid is
the sum of first moments divided by the total volume, dmom/vol. '

That’s all there is to it. To test this class, I prepared a simple console application that
instantiated Body3D, read the cube data in, and calculated the volume properties. Here's
how my main funcdon looks:

int main(int argc, char* argv[])

{
. Body3D body = Body3D(};
float volume = 0;
int i;
Vector centroid;

/f read the object data
body.ReadData(“cube.txt"};

// echo the data to the console
printf{“Number of vertices = #d\n”, body.nVertices);
for(i=0; icbody.nVertices; i++)

printf({ “Vertex %d: x=%f y=¥f z=%f\n",

1,
body.Vertex[i].x,
body.Vertex[il.y,
body.Vertex{i].z);

printf(“Number of faces = %d\n", body.nFaces);
for(i=0; ic<body.nFaces; i++}
printf{ “Face %d: a=%d b=%d c=%d\n",
i,
body.Face[i].a,
body.Face[i].b,
body.Face[i].c);

-l

1

Volume | 155

// calculate the volume and centroid
body.CalculateProperties();

// display the results to the console
printf(*“\n”); !
printf(“volume = %f\n”, body.Volume};

printf{“\n"};

printf{“Centroid:\n");

printf(“x=%f y=¢f z=%f\n”, body.Centroid.x, body.Centroid.y, body.Centroid.z);
printf{“\n”);

printf({“Done.\n");

return 0;

}

If you rebuild this console application and run it, you should see that the volume of
the cube is 8.0 units® with the centroid located at (G, O, 1).

For a more interesting test, I prepared an object that resembles a generic boat hull
(although not a very pretty one!) and ran it through the test program.

Figure 8-6. Boat hull

Figure 8-6 shows the hull object and the corresponding data file is as follows:

36
-5.500000 -0,693775 0.281525

156 | Chapter8: Ships

-5.500000 -0.693775 2.000000
3.888562 0.000000 1.700000
3.888562 -0.100000 1.991344
-5.500000 0.693775 0.281525
3.888562 0.000000 1.700000
3.888562 0.100000 1.991344
-5.500000 0.693775 2.000000
.000000 0.900000 0.105572
.000000 0.950000 2.000000
.000000 -0.950000 2.000000
.000000 -0.900000 0.105572
.500000 0.724000 0.219941
.500000 0.900000 2.000000
.500000 -0.900000 2.000000
.500000 -0.793988 0.219941
.000000 0.680000 0.387096
.000000 0.870000 2.000000
.000000 -0.870381 2.000000
2,000000 -~0.680000 0.387006
2.500000 0.538000 0.633431
2.500000 0.747000 2.000000
2.500000 -0.747214 2.000000
2,500000 -0.538416 0.633431
-1.000000 -1.000000 0.000000
-1.00000C -1,000000 2.000000
-1.000000 1.000000 2.000000
-1.00000C 1,000000 0.000000
-3.000000 -1.000000 0.070381
-3.00000¢ -1,000000 2.000000
-3.000000 1.000000 2.000000
-3.000000 1.000000 0.070381
-5.000000 -0,864029 0.211143
-5.000000 -0,864029 2.000000
-5.000000 0.864029 2.000000
-5.000000 0,864029 0,211143
68

MNNRNR R R RS

05 23

L S
RN |
O b
w o =y
o ~

ml—‘mml—‘wl—“dhw

w

[STREY]
w o o

PP ORWWWWWW R P GOOWOSO U N
L
€N

wou

-l

¥ a

Volume | 157

The results of this test yield a volume of 28.67 units? with irs centroid located at (—1.43,
0.00, 1.08).

1 should point out that I did not include any error checking in these code samples so
as to niot complicate the purpose and simplicity of the method being demonstrated. As
always, you should include error checking in your production work. Some things you'll
want to do if you use this code include checks on the input data to make sure the object
is a simple, triangulated polyhedron and catching any potential divide-by-zero errors
in CalculateProperties.

158 | Chapters: Ships

Resistance

In Chapter 6 I discussed drag forces on objects moving through a fluid. Specifically, I
discussed frictional and pressure drag. Ships moving on the water’s surface experience
these drag forces too; however, at the air-water interface, there are other drag components
that you have to consider. If you were to write an equation breaking up the total resistance
acting on a ship into its three main components, that equation would look something
like this:

Rice-t = Rricgon + Rpreassure + Ruwaves

I'll describe each of these components and give you some empirical formulas in just
a moment. First, however, [want to qualify the material to follow by saying that it
is very general in natureq\and applicable only when little detail is known about the
complete geometry of the particular ship under consideration. In the practice of ship
design, these formulas would be used only in the very early stages of the design process
to approximate resistance. That said, they are very useful for getting in the ballpark, so
to speak, and are sometimes more important in performing parametric studies to see
the effects of changes in major parameters.

The first resistance component is the frictional drag on the underwater surface of the
hull as it moves through the warer. This is the same as the frictional drag that I discussed
in Chapter 6. However, for ships there is a convenient set of empirical formulas that you
can use to calculate this force:

Re= (1/2)pV*8C;

In this formula, p is the density of water, V is the speed of the ship, 5 is the surface area
of the underwater portion of the hull, and C; is the coefficient of frictional resistance.
You can use this empirical formula to calculate Cy:

Ct = 0.075/(log 10R, — 2)*

Here, R, is the Reynolds number, as defined in Chapter 6, based on the length of
the ship’s hull. This formula was adopted in 1957 by the International Towing Tank
Conference (ITTC) and is widely used in the field of naval architecture for estimating
frictional resistance coefficients for ships.

To apply the formula for Ry, you'll also have to know the surface area of the underwater
pordon of the hull, 5. You can directly calculate this area using numerical integration
techniques, similar to those for calculating volume, or you can use yet another empirical
formula:

S :C“'SV 'L

In this formula, ¥ is the displaced volume, L the length of the ship, and C is the wetted
surface coefficient. This coefficient is a function of the ship’s shape, its beam-to-draft
ratio, and statistically it ranges from 2.6 to 2.9 for typical displacement hull forms.

gl

Resistance | 159

The pressure drag experienced by a ship is the same as that experienced by projectiles
as discussed in Chapter 6. Remember, this drag is due to the viscous effects causing a
region of relatively low pressure behind the ship. Quantifying this force is difficult for
ships of arbitrary geometry. Computational fluid dynamics algd{'ithms can be used to
approximate this force, but this requires detailed knowledge of the hull geometry and
a whole lot of time-consuming computations. An alternative is to rely on scale model
test data in which results from the model test are extrapolated to approximate drag on
the full-size ship.

Just like nressure drag, wave drag is difficult to compute, and model testing is usually
relied on in practice. Wave drag is due to the energy transfer, or momentum transfer,
from the ship to the fluid; in other words, it is a function of the work done by the ship
on the surrounding fluid to generate the waves. The visible presence of wave resistarce
is seen as the large bow wave that builds up at the front of the ship as well as the wave
system that originates at the stern of the ship as it moves through the water. These
waves affect the pressure distribution around the ship and thus affect the pressure drag,
which makes it difficult to separate the wave drag component from pressure drag in
performing an analysis.

‘When scale mode! tests are performed, pressure drag and wave drag are usually lumped
togetherin what's known as residual resistance. Analogous to the coefficient of frictional
drag, you can determine a coefficient of residual resistance, such that

R, = Rpre:‘isure + Ryave = (1/2)p VZSCr
Here, R, is the total residual resistance, and C; is the coefficient of residual resistance.

There are many resistance estimation methods available that allow you to estimate
the coefficient of residual resistance for a ship; however, they are usually presented for
specific ship types. For example, one method might give empirical formulas for C; for
destroyer-type ships, while another might give formulas for C; for large oil tankers.
The trick, of course, is to choose a method appropriate for the type of ship you are
analyzing.* Generally, C; increases as the displacement and speed of the ship increase.
A typical range for C; for large displacement hulls is from 1.0e = to 3.0e 2.

While these three resistance components—friction, pressure and wave—are the most
important for typical displacement-type ships, they aren’t the only ones. Since a ship
operates at the air-water interface, a large part of its structure is above the water surface,
exposed to the air. This means that the ship will also experience air resistance. You can
approximate this air resistance using the following formula:

Rair = (l/z)pvapCair

Here, C.i, is the coefficient of air resistance, p is the density of air, V is the speed of the
ship, and A, is the projected transverse (profile) area of the ship. Gy, typically ranges
from 0.6 to 1.1 depending on the type of ship. Tankers and large cargo ships tend to be

* These methods are quite involved, and there are far too many to discuss here, so I've included some references
in the bibliography for you.

160 | Chapter8: Ships

near the upper end of the range, while combatant ships tend to be near the lower end.
In lieu of enough informaton to calculate the projected transverse area of the ship, you
can approximate it by

A, = B2
where B is the beam (width) of the ship.

Ships experience other forms of resistance as well depending on their age, the sea
conditions, and their type of service. For example, when a ship has been operating in
seawater for a long time without having its hull cleaned, it will build up a layer of marine
growth that will increase its frictional resistance. If a ship were (o operate in shallow
water or a restricted channel, its resistance might be increased owing to restricted flow
effects, which cause the ship to sink deeper in the water. If the sea conditions are very
rough, with heavy winds and large waves, then the ship will experience greater resistance
as it encournters these sea conditions. For some ships with lots of appendages sticking
out of the hull underwater, its resistance can be increased by 10% to 15% above its
bare-hull resistance. All of these components are very specific to the situation under
consideration and must be treated on a case-by-case basis.

Virtual Mass

The concept of virtual mass is important in calculating the acceleration of a ship in a
real-time simulator. Virtual mass is equal to the mass of the ship plus the mass of the
water that is accelerated with the ship.

Back in Chapter 6 I told you about the viscous boundary layer, and 1 said that the
relative velocity (relative to the moving body) of the fluid particles near the moving
body’s surface is zero at the body surface and increases to the free stream velocity as
distance from the body surface increases. Essentially, some of the fluid sticks to the
body as it moves and is accelerated with the body. Since the velocity of the fluid varies
within the boundary layer, so does the acceleration. The added mass, the mass of water
that gets accelerated, is a weighted integration of the entire mass of fluid that is affected
by the body’s acceleration.

For a ship the viscous boundary layer can be quite thick, up to several feet near the
end of the ship depending on its length, and the mass of water that gets accelerated is
significant. Therefore, when doing any sort of analysis that involves the acceleration
of the ship, you need to consider added mass too. The calculation of added mass is
beyond the scope of this book. I should also point out that, unlike mass, added mass is
a tensor, that is, it depends on the direction of acceleration. Further, added mass applies
to both linear and angular motion.

Added mass is typically expressed in terms of an added mass coefficient, which equals
the added mass divided by the mass of the ship. Calculations for added mass are well
beyond the scope of this book. Some methods integrate over the actual hull surface,
while others approximate the hull as an ellipsoid with proportions matching rhe ship’s.

.g’,lx‘“

Virtual Mass {161

Using this approximation, the ellipsoid’s length corresponds to the ship’s length, while
its width corresponds to the ship’s beam. For longitudinal motion, that s, linear motion
along an axis parallel to the ship’s length, the added mass coefficient varies nearly
linearly from zero at a beam-to-length ratio of zero (the ship is iflfinitely thin) up one
half at a beam-to-length ratio of 1 (a sphere).

When the added mass coefficient is expressed as a percentage of the ship’s mass, vir-
tual mass can be calculated as m, = m{I + x,), where m is mass and x, is the added
mass coeficient, for example, 0.2 for 20%. For typical displacement ship proportions
the longitudinal added mass ranges from about 4% to 15% of the mass of the ship.
Conservative estimates generally use 20%.

162 | Chapter3: Ships

CHAPTER 9
Hovercraft

N

Hovercraft, or air cushion vehicles (ACVs), have made their way into a video game or
two recently. Their appeal seems to stem from their futuristic aura, high speed, and
levitating ability, which lets them go anywhere. If you slap a couple of large-~caliber guns
on one of these craft and throw in a couple of bad guys, you then have yourself the
makings of an exciting round of shoot-’em-up bumper cars. In real life, hovercraft have
been around since the 1950s and have been used in combat, search and rescue, cargo
transport, ferrying, and recreational roles. They come in all shapes and sizes, but they
all work pretty much the same, with the basic idea of getting the craft up off of the land
or water to reduce its drag. In this chapter I'll explain the basics of how hovercraft work
and discuss the main forces you'll want to consider if you try to simulate them in your
games.

How They Work

I'was fortunate enough to work on several hovercraft designs when I was a junior naval
architect at Textron Marine Systems.* While some of the craft that I worked on turned
out to be quite complicated systems, owing to military requirements, the basic principle
of how hovercraft work is quite simple.

The first hovercraft designs pumped air through an annular nozzle around the periphery
of the craft (see the top diagram in Figure 9-1). Large fans are used to feed the air through
the nozzle under the craft. This jet of air creates a region of relatively high pressure over
the area underneath the craft, which results in a net lifting force. The lifting force must
equal the weight of the craft if the craft is to attain hovering flight. This sort of lifting
is known as aerostatic lift. The hover height is limited by the amount of power available
and the lifting fan’s ability to pump enough air through the nozzle; the higher the hover
height, the greater the power demand.

* Textron is located in New Qrleans, Louisiana. When [was there, I worked on several hovergraft, one of which
is the US. Navy’s LCAC, which s used by the Marines for amphibious operations.

b

163

YooYy vy
Fan |

3 imndensigp t

| Skirt

e P

Air cushion

i

Figure 9-1. Hovercraft Configurations

This approach proved impracrical because hover heights were very limited and made the
clearance between the hard structure of the craft and the ground (or water) too small to
overcome all but the smallest obstacles. The solution to this problem was tofita flexible
skirt around the craft to contain the ait cushion in what’s called the plenum chamber
(see the bottom diagram in Figure 9-1). This approach extended the clearance between
the ground and the hard structure of the craft significantly even though the gap between
the bottom of the skirt and the ground was very small. This is the basic configuration
of most hovercraft in operation today, although there are all sorts of skirt designs. Some
of these skirts are simple curtains, while others are sophisticated pressurized bag and
finger arrangements. The result is that hovercraft fitted with skirts can clear relatively
large obstacles without damage to their hard structure; the skirt simply distorts and
conforms to the terrain over which the craft operates.

The actual calculation of the aerostatic lift force is fairly complicated because the pres-
sure distribution within the air cushion is nonuniform and because you must also take
into account the performance of the lift fan system. There are theories available to treat
both the annular jet and plenum chamber configurations, but they are beyond the scope
of this book. Besides, for a game simulation, what's important is that you realize that
the lift force must equal the weight of the craft in order for it to maintain equilibrium
in hovering flight.

164 | Chapter: Hovercraft

Ideally, the ability of hovercraft to eliminate contact with the ground (or water) over
which it operates means that it can travel relatively fast, since it no longer experiences
contact drag forces. Notice I said “ideally” In reality, hovercraft often pitch and roll,
causing parts of the skirt to drag, and any obstacle that comes into contact with the
skirt will cause more drag. At any rate, while eliminating ground contact is good for
speed, it’s not so good for maneuverability. ;

Hovercraft are notoriously difficult to control, since they glide across the ground. They
tend to continue on their original trajectory even after you try to turn them. Currently,
several means are employed in various configurations for directional control. Some
hovercraft use vertical tail rudders much like an airplane, while others actually vector
their propulsion thrust. Still others use bow thrusters, which offer very good control.
All of these means are fairly easy t0 model in a simulation; they are all simply forces
acting on the craft at some distance from its center of gravity so as to create a yawing
moment. The 2D simulation thar I'l walk you through in Chapter 12 shows how to
handle bow thrusters. You can handle vertical tail rudders as I showed you in Chapter 7.

Resistance

Let’s take a look now at the some of the drag forces acting on a hovercraft during flight.
To do this, I'll handie operation over land separately from operation over water, since
there are some specific differences in the drag forces experienced by.the hovercraft.

When operating over smooth land, the total drag acting against the hovercraft is aero-
dynamic in nature. This assumes that drag induced by dragging the skirt or hitting
obstacles is ignored. The three components of aerodynamic drag are

¢ Skin friction and viscous pressure drag on the body of the craft
» Induced drag when the craft is pitched
* Momentum drag

In equation form, the total drag is as follows:
R[utal = Rviscuus + Rinduced + Rmomemum

The first of these components, the viscous drag on the body of the craft, is the same
sort of drag as is experienced by projectiles when flying through the air, as explained
in Chapter 6. This drag is estimated usmg the by now famlhar formula:

:’]vascous = (I/Z)PV S Cd

Here, p is the mass density of air, V is the speed of the hovercraft, S, is the projected
frontal area of the craft normal to the direction of V, and (4 is the dr_ag coefficient.
Typical values of Cq4 for craft in operation today range from 0.25 to 0.4.

The next drag component, the induced drag, is a result of the craft assuming a piecched
atticude when moving. When the bow of the craft pitcches upward by an angle 7, there

i

Resistance | 165

will be a component of the aerostatic lift vector that acts in a direction opposing V.
This component is approximately equal to the weight of the craft times the tangent of
the pitch angle: '

':..I-ﬁ
Ringucead = Witan)

Finally, momentum drag results from the destruction of horizontal momentum of air,
relative to the craft, entering the lift fan intake. This component is difficult to compute
unless you know the properties of the entire lifting system such that the mass flow rate
of air into the fan is known. Given the mass flow rate, Ryomenmwm 1S equal to the mass
flow rate times the velocity of the craft:

Rmomentum = (dmfan/d I) v

Mass flow rate is expressed in units such as slugs/s, which when multiplied by velocity
in ft/s yields pounds.

In addition to these three drag components, hovercraft will experience other forms of
resistance when operating over water. These additional components are wave drag and
what’s called wetted drag. The equation for total drag can thus be revised for operation
over water as follows: '

Riowl = Rviscous + Rinduced + Rmomentum + Ruvave + Rietted

When a hovercraft operates over water, its air cushion creates a depression in the water
surface due the cushion pressure (see Figure 9-2). At zero to low speeds the weight of
this displaced volume of water is equal to the weight of the craft just as if the craft
were floating in the water supported by buoyancy. As the craft starts to move forward,
it tends to pitch upward by the bow. When that happens, the surface of the water in the
depressed region is approximately parallel 1o the bottom of the craft. As speed increases,
the depression is reduced, and the pitch angle tends to decrease.

Figure 9-2. Hovercraft over Water

Wave drag is a result of this depression and is equal to the horizontal components of
pressure forces acting on the water surface in the depressed region. As it turns out, for

166 | Chapter9: Hovercraft

small pitch angles and at low speeds, wave drag is on the same order of magnitude as
the induced drag:

Ryave = W(tan 1)

Since wave drag is proportional to the size of the depression, it tends to be highest at
low speeds and is reduced at higher operational speeds. If you were to plot the wave -
drag curve as a function of speed for a typical hovercraft, you’d find that it is not a
straight line or even a parabolic curve but has a hump in the curve at the lower speed
range as illustraced in Figure 9-3.

Wave Drag

Speed

Figure 9-3. Wave Drag

There are several theoretical treatments of wave drag in the literature thar aim to predict
the speed at which this hump occurs along with its magnitude. These theories indicat-
ed that the hump depends on the planform geometry of the hovercraft, and it tends to
occur at speeds in the range of /gL/2 to /gL, where g is the acceleration due to gravity
and L is the length of the air cushion. In practice, the characteristics of a particular
hovercraft’s wave drag are usually best determined through scale modet testing,

The so-called wetted drag is a function of several things:
® The fact that parts of the hull and skirt tend to hit the water surface during flight
* The impact of spray on the hull and skirt

* The increase in weight as the hovercraft gets wet and sometimes takes on water.

Wetted drag is difficult to predict, and in practice, model tests are relied on to determine
its magnitude for a particular design. It’s important to note, however, that this tends
to be a significant drag component, sometimes accounting for as much as 30% of the
total drag force. -

Resistance | 167

CHAPTER10
Cars

In this chapter I want to discuss certain aspects of the physics behind automobile
motion. As in the previous four chaprers, the purpose of this chapter is o explain, by
example, certain physical phenomena. I also want to give you a basic understanding of
the mechanics involved in automobile motion in case you want to simulate one in your
games. In keeping with the theme of this book, I'll be talking about mechanics in the
sense of rigid body motion and not in the sense of how an internal combustion engine
works, how power is ransferred through the transmission system to the wheels, and so
on. Those are all internal to the car as a rigid body, and I'li focus on the external forces.
I will, however, discuss how the torque applied to the drive wheel is ranslated to a force
that pushes the car along,

Resistance

When a car drives down a road, it experiences two main components of resistance that
try to slow it down. The first component is aerodynamic drag, and the second is called
rolling resistance. The total resistance felt by the car is the sum of these two components:

Rl = Ry + Rrolling

The aerodynamic drag is primarily skin friction and pressure drag similar to that ex-
perienced by projectiles discussed in Chapter 6 and the planes, boats, and hovercraft
discussed in Chapters 7, 8, and 9. Here again, you can use the familiar drag formula of

the form
Rair - (I/Z)Pvzspcd

Here, p is the mass density of air, V is the speed of the car, S is the projected frontal area
of the car normal to the direction of V, and Cy is the drag coefficient. Typical ranges of
drag coefficients for different cypes of vehicles are 0.29 to 0.4 for sports cars, 0.43t0 0.5
for pickup trucks, 0.6 to 0.9 for tractor-trailers, and 0.4 10 0.5 for the average economy car.
Drag coefficient is a function of the shape of the vehicle, that s, the degree of boxiness

168

or streamline. Streamlined body styles have lower drag coefficients; for example, the
Chevy Corvette has a low drag coefficient of 0.29, while the typical tractor-trailer
without fairings has a high drag coefficient of up to 0.9. You can use these coefficients
in your simulations to tune the behavior of different types and shapes of vehicles.

When a dre rolls on a road, it experiences what's known as rolling resistance, which
tends to retard its motion. Rolling resistance is not frictional resistance but instead has
to do with the deformation of the tire while it is rolling, It’s a difficult quantity to
calculate theoretically, since it is a function of a number of complicated factors, such
as tire and road deformation, the pressure over the contact area of the tire, the elastic
properties of the tire and road materials, the roughness of the tire and road surfaces,
and tire pressure, to name a few, so instead you’ll have to rely on an empirical formula.
The formula to use is as follows:

AN

) Rrol]ing = Cw

This gives you the rolling resistance per tire, where w is the weight supported by the tire
and C, is the coefficient of rolling resistance. C; is simply the ratio of the rolling resistance
force to the weight supported by the tire. Luckily for you, tire manufacturers generally
provide the coefficient of rolling resistance for their tires under design conditions. Typical
car tires have a C; of about 0.015, while truck tires fall within the range of 0.006 to 0.01.
If you assume that a car has four identical tires, then you can estimate the total rolling
resistance for the car by substituting the total car weight for w in the above equation.

Power

Now that you know how to calculate the total resistance on your car, you can easily
calculate the power required to overcome the resistance at a given speed. Power is a
measure of the amount of work done by a force, or torque, over time. Mechanical work
done by a force is equal to the force times the distance an object moves under the action
of that force. It is expressed in units such as foot-pounds. Since power is a measure
of work done over time, its units are, for example, foot-pounds per second. Power in
the context of ¢car engine output is usually expressed in units of horsepower, where 1
horsepower equals 550 ft-1b/s.

To calculate the horsepower required to overcome toral resistance at a give speed, you
simply use this formula:

P = (Rtotaiv)/SSO

Here, P is power in units of horsepower, and Ryo; is the total resistance corresponding
to the car’s speed, V. Note that in this equation Ry must be in pounds and V must
be in units of ft/s.

Now this is not the engine output power required to reach the speed V for your car; it
is the required power delivered by the drive wheel to reach the speed V. The installed
engine power will be higher for several reasons. First, there will be mechanical losses

e

f

Power | 169

associated with delivering the power from the engine through the transmission and
drive train to the tire. The power will actually reach the tire in the form of torque,
which, given the radius of the tire, will create a force F,, that will overcome the total
resistance. This force is calculated as follows: ki

Fo=Ty/r

Here, F, is the force delivered by the tire to the road to push the car along, T is the
torque on the tire, and 7 is the radius of the tire. The second reason why the installed
engine power will be greater is because some engine power will be transferred to other
systems in the car. For example, power is required to charge the battery and 0 run the
air conditdoner.

Stopping Distance

Under normal conditions stopping distance is a function of the braking system and
how hard the driver applies the brakes; the harder the brakes are applied, the shorter
the stopping distance. That’s not the case when the tires start to skid. Under skidding
conditions, stopping distance is a function of the frictional force that develops between
the tires and. the road and the inclination of the roadway. If the car is traveling uphill,
then the skidding distance will be shorter because gravity helps to slow the car, while
‘it will tend to accelerate the car and increase the skidding distance when the car is
traveling downhill.

There’s a simple formula that considers these factors that you can use to calculate
skidding distance:

dy = V?/[2g{w cos ¢ 4 sin)]

Here, d. is the skidding distance, g is the acceleration due to gravity, 4 is the coefficient
of friction between the tires and road, V is the initial speed of the car, and ¢ is the
inclination of the roadway, where a positive angle means uphill and a negative angle
means downhill. Note that this equation does not take into account any aerodynamic
drag that will help to slow the car down.

The coefficient of friction will vary depending on the condition of the tires and the
surface of the toad, but for rubber on pavement the dynamic friction coefficient is
typically around 0.4, while the static coefficient is around 0.55.

When calculating the actual frictional force between the tire and road, say in a real-time
simulation, you’ll use the same formula that I showed you in Chapter 4:

Fr=uW

Here, Fy is the friction force applied to each tire, assuming that they are not rolling,
and W is the weight supported by each tire. If you assume that all tires are identical,
then you can use the total weight of the car in the formula above to determine the total
friction force applied to all tires.

170 | Chapter10: Cars

Roadway Banking

When you turn the steering wheel of a car, the front wheels exert a side force such that
the car starts to turn. In terms of Euler angles, this would be yaw, although Euler angles
aren't usually used in ralking about turning cars. Even if the car’s speed is constant, it
experiences acceleration due to the fact that its velocity vector has changed direction.
Remember, acceleration is the time rate of change in velocity, which has both magnitude
and direction.

For a car to maintain its curved path, there must be a centripesal force (“center-seeking”
in Greek) that acts on the car. This force can result from either the side friction between
the tires and the road or the roadway bank, which is called superelevation, or both.
When riding in a turning car, you feel an apparent centrifugal acceleration or force
directed away from the center of the turn. This acceleration is really a result of inertia,
the tendency of your body and the car to continue on its original path, and is not a real
force acting on the car or your body. The real force is the centripetal force, and without
it your car would conrtinue on its straight path and not along the curve.

If a car is trying to turn too quickly, the side friction between the tires and road might
not be enough to hold the car in the turn. This is why roads are banked around turns.
The superelevation helps to keep the car in the turn because as the caris inclined, a force
componentdevelops that acts toward the center of curvature of the turn (see Figure 10-1).

Fn Reaction force between car and road #

Weight Fn

Gentripetal force

Figure 10-1. Superelevation

There’s a simple formula that relates the superelevation angle of a roadway to the speed
of the car and the coefficient of friction berween the tires and road:

tang = V2/(gr) — p

Here ¢ is the superelevation angle as shown in Figure 10-1, V is the tangential component
of velocity of the car going around the turn, g is the acceleration due to gravity, r is the
radius of the curve, and g is the coefficient of friction between the tires and the road. If
you know ¢, r, and 4, then you can calculate the speed at which the car will begin to
slip out of the turn and off the road.

!
'.;:FI';.

Roadway Banking | 171

CHAPTER 11
Real-Time Simulations

.-'«S‘

This chapter is the first in a series of chapters designed to give you a thorough intro-
duction to the subject of real-ime simulation. I say “introduction” because the subject
is too vast and complex to treat adequately in a few chapters; however, I say “thorough”
because I'll do more than talk about real-time simulations. In fact, I'lt walk you through
the development of two simple simulations, one in two dimensions and the other in
three dimensions.

What I hope to do is give you enough of an understanding of this subject that you
can pursue it further with confidence. What I mean is that T want you to have a solid
understanding of the fundamentals before jumping in to use someone else’s physics
engine oI venturing out to wWrite your owr.

In the context of this book, a real-time simulation is a process whereby you calculate
the state of the object (or objects) you're trying to represent on the fly. You don’trely on
pre-scripted motion sequences to animate your object; instead, you rely on your physics
model, the equations of motion, and your differential equation solver to take care of the
motion of your object as the simulation progresses.

This sort of simulation can be used to model rigid bodies such as the airplane in our
FlightSim example or flexible bodies such as cloth and human figures. Perhaps one
of the most fundamental aspects of implementing a real-time rigid body simulator is
solving the equations of motion using numerical integration techniques. Because of
this, I'll spend this entire chapter explaining the numerical integration techniques that
youw’ll use later in the 2D and 3D simulators that we’ll develop.

If you refer back to Chapter 4 for a moment, where I outlined a generic procedure
for solving kinetics problems, you'll see that we've covered a lot of ground so far. The
preceding chapters showed you how to estimate mass properties, develop the govern-
ing equations of motion, and accurately model forces and torques. This chapter will
show you how to solve the equations of motion to determine acceleration, velocity, and
displacement.

172

Integrating the Equations of Motion

By now you should have a thorough understanding of the dynamic equations of motion
for particles and rigid bodies. If not, you might want to go back and review Chapters 1
through 4 before reading this one. The next aspect of dealing with the equations of
motion is actually solving them in your simulation. The equations of motion that we’ve
been discussing can be classified as ordinary differential equations. In Chapters 2 and 4
you were able to solve these differential equations explicitly, since you were dealing with
simple functions for acceleration, velocity, and displacement. This won’t be the case
for your simulations. As you’ve seen already in previous chapters, force and moment
calculations for your system can get pretty complicated and may even rely on tabulated
empirical data, which will prevent you from writing simple mathematical functions
that can be easily integrated. This means that you have to use numerical integration
techniques to approximat(;ly integrate the equations of motion. I say “approximately”
because solutions based on numerical integration won'’t be exact and will have a certain
amount of error depending on the chosen method.

I'm going to start with a rather informal explanadon of how we’ll apply numerical -
integration because it will be easier to grasp. Later I'll get into some of the formal mathe-
matics. Take a look at the differential equation of linear motion for a particle (or rigid
body’s center of mass):

F =mdv/dt

In the simple examples of the earlier chapters of this book, I rewrote this equation in
the following form so that it could be integrated explicitly:

dv/dt = F/m
dv=(F/m)dt

\
One way to interpret this equation is that an infinitesimally small change in velocity,
dv, is equal to (F /m) times an infinitesimally small change in time. In earlier examples
I integrated explicitly by taking the definite integral of the left side of this equation
with respect to velocity and the right side with respect to time. In numerical integra-
tion you have to take finite steps in time; thus, df goes from being infinitely small to
some discrete time increment, At, and you end up with a discrete change in velocity,
Av:

Av = (F/m) At

It is important to notice here that this does not give a formula for instantaneous veloc-
ity; it only gives you an approximation of the change in velocity. Thus, to approximate
the actual velocity of your particle (or rigid body), you have to know what its veloc-
ity was before the time change At. At the start of your simuladon, at tme zero, you
have to know the starting velocity of your particle. This is an initial condition and is
required to uniquely define your particle’s velocity as you step through time using this

b

Integrating the Equations of Mation | 173

equation:™
Verar = v + (F/m) At

where the initial condition is

Vi=g = Vg

Here, v; is velocity at some time ¢, Ve as is velocity at some time plus the time step. At
is the time step, and vp is the initial velocity at dime zero.

You can integrate the linear equation of motion one more time t© approximate vour
particle’s displacement (or position). Once you've determined the new velocity value,
at time ¢ + At, you can approximate displacement using

Strar = 5t + AtVirar)
where the initial condition on displacement is
St=0 = 50

The integration technique discussed here is known as Euler’s method, andicis the most
basic integration method. While Euler’s method is easy to grasp and fairly straightfor-
ward to implement, it isn’t necessarily the most accurate method.

You can reason that the smaller you make your time step, that is, as At approaches dt,
the closer you'll get to the exact solution. However, there are computational problems
associated with using very small time steps. Specifically, youw'll need a huge number of
calculations at very small At’s, and since your calculations won’t be exact (depending
on numerical precision, you’ll be rounding off and truncating numbers), you'll end
up with a buildup of round-off error. This means that there is a practical iimit as to
how small a time step you can take. Fortunately, there are several numerical integration
techniques at your disposal that are designed to increase accuracy for reasonable step
sizes.

Even though I used the linear equation of motion for a particle, this integration technique
(and the ones 'l show you later) applies equally well to the angular equations of motion.

Euler's Method

The preceding explanation of Euler’s method was, as I said, informal. To treat Euler’s
method in a more mathematically rigorous way, it’s helpful to have a look at the Taylor
series expansion of a general function, y(x). Taylor’s theorem lets you approximate
the value of a function at some point by knowing something about that funcrion
and its derivatives at some other point. This approximation is expressed as an infinite
polynomial series of the form

y(x + Ax) = y(x) + (Ax)y' (x) + [(Ax)?/21]y" (x) + [(Ax)°/31)y" () + -

* In mathematics this sort of problem is termed an initial value problem.

174 | Chapter 11: Real-Time Simulations

where y is some functon of x, (x + Ax) is the new value of x at which you want to
approximate y, y' is the first derivative of y, y" is the second derivative of v, and so on.

In the case of the equation of motion discussed in the preceding section, the function -
that you are trying to approximate is the velocity as function of ime. Thus, you can
write v(¢) instead of y(x), which yields the Taylor expansion: '

vt + Af) = v(t) + (A) + [(ADH /2007 () + (A 3" @) + - -+

Note here that v'{t) is equal to dv/dt, which equals F/m in the example equation of
motion discussed in the preceding section. Note also that you know the value of v at
time t. What you want to find is the value of v at time ¢t + At knowing v at time t and
its derivative at time t. As a first approximation, and since you don’t know anything
about v’s second, third, or higher derivatives, you can truncate the polynomial series
after the term (A#) v'(¢), which yields

vit + At = v(t) + (A1)

Thisis the Euler integration formula that you saw in the preceding section. Since Euler’s
formula goes out only to the term that includes the first derivative, the rest of the series
that was left off is the truncation error. These terms that were left off are called higher-
order terms, and getting rid of them results in a first-order approximation. The rationale
behind this approximation is that the further you go in the series, the smaller the terms
and the less influence they have on the approximation. Since At is presumed to be a
small number, At* is even smaller, A* even smaller, and so on, and since these At
terms appear in the numerators, each successively higher-order term gets smaller and
smaller. In this case the first truncated term, {(A8)%/2!]v" (¢), dominates the truncation
error, and this method is said to have an error of order (A2,

Geometrically, Euler’s method approximates a new value, at the current step, for the
functior under consideration by extrapolating in the direction of the derivarive of the
function at the previous step. This is illustrated in Figure 11-1.

Exact_o:
Error

Estimate

Figure 11-1. Euler Integration Step

b

Euler'sMethod | 175

Figure 11-1 illustrates the truncation error and shows that Euler’s method will result
in a polygonal approximation of the smooth function under consideration. Clearly, if
you decrease the step size, you increase the number of polygongl segments and better
approximate the function. As I said before, though, thisisn’t alwhys efficient to do, since
the number of computations in your simulation will increase, and round-off error will
accumulate more rapidly. -

To illustrate Euler’s method in practice, let’s examine the linear equation of motion for
the ship example of Chapter 4:

T —(Cv) =2

where T is the propeller’s thrust, C is a drag coefficient, v is the ship’s velocity, m its
mass, and a its acceleration.

Figure 11-2 shows the Euler integration solution superimposed over the exact soluion
derived in Chapter 4 for the ship’s speed over time.

18
16 I
14
- 12 T
2 1w . — Exact
S - === Euler

Time

Figure 11-2. Euler Integration Comparison

Zooming in on this graph allows you to see the error in the Euler approximation. This
is shown in Figure 11-3.

Table 11-1 shows the numerical values of speed versus time for the range shown in
Figure 11-3. Also shown in Table 11-1 is the percent difference, the error, between the
exact solution and the Euler solution at each time step.

As you can see, the truncation error in this example isn’t too bad. It could be better,
though, and I'll show you some more accurate methods in a moment. Before that,
however, you should notice that in this example Euler’s method is also stable, that is,
it converges well with the exact solution as shown in Figure 11-4, where I've carried the
time range out farther.

176 | Chapter11: Real-Time Simulations

6.5 9.559084

7 10.06829
7.5 10.55267
8 11.01342
8.5 11.4517

o
5.733158

10.2465

10.73418

11.19747

11.63759

1.82%
1.77%
1.72%
1.67%
1.62%

Time

Speed

Time

Figure 11-4. Convergence

Euler'sMethod | 177

Here’s a code snippet that implements Euler’s method for this example:

// Global Variables

float T; // thrust .
float C; // drag coefficient R
float V; // velocity
float M; // mass

H // displacement

float

// This function progresses the simulaticn by dt seconds using
// Euler’s basic methed
void StepSimulation(float dt)
{
float F; // total force
float A; // acceleration
float Vnew; // new velocity at time t + dt
float Snew; // new position at time t + dt

// Calculate the total force
F=(T-(C*WV));

// Calculate the acceleration
A=F /M

// Calculate the new velocity at time t + dt
// where V¥ is the velocity at time t
Vnew = V + A * dt;

// Calculate the new displacement at time t + dt
// where S is the displacement at time t
Snew = S + Vnew * dt;

// Update old velocity and displacement with the new ones
V = Vnew;
S = Snew;

o

}

Although Euler’s method is stable in this example, it isn’t always so, depending on the
problem you’re trying to solve. This is something that you must keep in mind when
implementing any numerical integration scheme. What I mean here by “stable” is that
in this case the Euler solution converges with the exact. If it weren’t stable, it would
diverge from the exagr solutior, and the error would grow as you stepped through time.
Instability can also gﬁ'f_fé_st_ itself in the form of the numerical solution oscillating above

and below the exact solution and never quite converging on it.
O AR A
. - _ e . —
Often, your choice of step size affects stability when[smaller step sizes tend to eliminare

or minimize instability and larger step sizes aggravate the problem. If you're working
with a particularly unwieldy functdon, you might find that you have to decrease your
step size substantally to achieve stability. This, however, increases the number of com-
putations you need to make. One way around this difficulty is to employ what’s called
an adaptive step size method, in which you change your step size on the fly depending
on the magnitude of a predicted amount of truncation error from one step to the next.
If the runcation error is too large, then you back up a step, decrease your step size, and
try again.

178 | Chapter11: Real-Time Simulations

One way to implement this for Euler’s method is to first take a step size, At, to obtain
an estimate at time ¢ 4 At, and then take two steps (startng from time ¢ again) of size
At/2 to obtain another estimate at time t 4 At. Since we’ve been talking about velocity
in the examples so far, let’s call the first estimate v; and the second estimate vo* A
measure of the truncation error is then

e = |vi —vaf
Ifitis desired to keep the truncation error within a specified limit, o, then you can use

the following formula to find out what your step size should be to maintain the desired
accuracy:

1/2)
hoew = hold(em/et)(/>

Here, hqud is the old time step and Ay is the new one that you should use to maintain
the desired accuracy. You'll'have to make this check for each time step, and if you find
that the error warrants a smaller time step, then you’ll have to back up a step and repeat
it with the new time step.

Here’s a revised StepSimulation function that implements this adaptive step size tech-
nique, checking the truncation error on the velocity integration:

// New global variable
float eto; //} truncation error tolerance

// This function progresses the simulation by dt seconds using
// Euler’s basic method with an adaptive step size
void StepSimulation(float dt)

float F; // total force

float A; // acceleration

float Vnew; // new velocity at time t + dt

float Snew; // new position at time t + dt

float V1, V2; // temporary velocity variables
‘float dtnew; // new time step

float et; // truncation errcr

// Take cne step of size dt te estimate the new ve10c1ty
FeAT - (C7V));

A=F /M

Vi=V+ A *dt;

// Take two steps of size dt/2 to estimate the new velocity
F=(T-(C*V)),

A=F /M

v

2=V + A* (dt/2);
{T - (C *v2));
F

Pas (dt/2);

i

F
A
V2
// Estimate the truncation.-error
t = absf(vi - V2);
* Even though I'm talking about velocity and time here, these techniques apply to any function, for example,

displacement versus time.

'vf"‘"

Euler'sMethed | 179

// Estimate a new step size
dtnew = dt * SQRT(eto/et});

if (dtnew < dt) ot
{ // take at step at the new smaller step size '?
F=(T-(C*V))
A=F /M
Vnew = V + A * dtnew;
Snew = S + Vnew * dtnew;
} else
{ // original step size is okay
Vnew = V1;
R Snew = S5 + Vnew * dt;
}
// Update old velocity and displacement with the new ones
V = Vnew;
S = Snew;

}
Other Methods

At this point you might be wondering why you can’t simply use more terms in the
Taylor series to reduce the truncation error of Euler’s method. In fact, this is the basis
for several integration methods that offer greater accuracy than Euler’s basic method
for a given step size. Part of the difficulty associated with picking up more terms in
the Taylor's series expansion is in being able to determine the second, third, fourth,
and higher derivatives of the function you're trying to integrate. The way around this
problem is to perform additional Taylor series expansions to approximate the derivatives
of the function under consideration and then substitute those values back into your
original expansion.

Taking this approach to include one more Taylor term beyond the basic Euler method
yields a so-called improved Euler method that has a reduced truncation error, on the
order of (A)? instead of (Af)?. The formulas for this method are as follows:

k) = (Ax)y'(x, y)
ky = (Ax)y' (x + Ax, y + k1)
y(x + Ax) = y(x) + 1/2(k; + k2)

Here y is a function of x, y' is the derivative as a function of x and possibly of ¥, and
Ax the step size.

To make this clearer for vou, I'll show these formulas in terms of the ship example
equation of motion of Chapter 4, the same example that I discussed in the preceding
section. In this case velocity is approximated by the following formulas:

k= AI[I/M{T — Cvt)']
ky = At{1/m[T — Clv; + k1)]}
Vigar = vy + 1/2(ky + ko)

where v, is the velocity at time ¢, and v,y a; is the new velocity at ime t + At.

180 | Chapter1%: Real-Time Simulations

Here is the revised StepSimulation function showing how to implement this method in
code:

// This function progresses the simulation by dt seconds using
/7 the “improved” fuler methed
void StepSimulation{float dt}
{
float F; // total force
float A; // acceleration
float Vnew; // new velocity at time t + dt
float Srew; // new positior at time t + dt
float k1, k2;

T~
—

L 4
—

> (@]
*

-

o

~—

-

// Calculate the new velocity at time t + dt
// where V is the velocity at time t
Vnew = ¥V + (k1 + k2) / 2;

// Calculate the new displacement at time t + dt
// where S is the displacement at time t
Snew = S + Vnew * dt;

// Update old velocity and displacement with the new ones
V = Vnew;
S = Snew;

This procedure of raking on more Taylor terms can be carried out even further. The
popular Runge-Kutta method takes such an approach to reduce the truncation error to
the order of (At)”. The integration formulas for this method are as follows:

ky = (Ax)y'{x, y)
ky = (Ax)y {x+ Ax/2, y + ki /2)
ky = (Ax)y'(c + Ax/2, y + Ry /2)
ke = (Ax)y (x + Ax, y+ k3)
ylx + Ax) = y(x) + 1/6[k; + 2(ka) + 2{ks) + k4]

Applying these formulas to our ship example yields

ki = At{l/m(T — Cv)]
ky = At{1/m[T — Clv, + ky /2)]}
ks = At{l/m[T — C(v; + ko /2)]}
ky = At{1/m[(T — C(v; + k3)]}
Vigar = Vi + 1/6[{k1 + 2(kz) + 2{k3) + k4]

'.;""..

Other Methods | 181

For our example the Runge-Kutta method is implemented as follows:

// This function progresses the simulation by dt seconds using
/7 the Runge-Kutta method
-void StepSimulation({float dt)

- .I-.\"“

float F; // total force
float A; // acceleration
float Vnew; // new velocity at time t + dt
float Snew; // new position at time t + dt

float ki, k2, k3, k4;

F=(T-{C*V));

A = F/M;

ki = dt * A;

E= (T - (C* (V+k1/2)));
A = F/M;

k2 = dt * A;
F=(T-{C*(V+k2/2)));
A = F/M;

k3 = dt * A;
F=(T-(C*(V+k3)});
A = F/M;

ka = dt * A;

// Calculate the new velocity at time ¢ + dt
// where V is the velocity at time t
Vnew = V + (ki + 2°k2 + 2*k3 + k4) / &;

// Calculate the new displacement at time t + dt
// where S is the displacement at time t
Snew = 5 + Vnew * dt;

/7 Update old velocity and displacement with the new ones
V = Vnew;
S = Snew;

}

To show you how accuracy is improved over the basic Euler method, I've superimposed
integration results for the ship example using these two methods over those shown
in Figures 11-2 and 11-3. Figures 11-5 and 11-6 show the results, where Figure 11-6 is a
zoomed view of 11-5.

As you can see from these figures, it’s difficult to discern the curves for the improved
Euler and Runge-Kutta methods from the exact solution because they fall aimost right
on top of each other. These resulis clearly show the improvement in accuracy over the
basic Euler method, whose curve is distinct from the other three. Over the interval from
65 to 8.5 seconds, the average truncation error is 172%, 003%, and 36 x 107° % for
Euler’s method, the improved Euler method, and the Runge-Kutta method, respectively.
It obvious, on the basis of these results, that for this problem the Runge-Kutta method
yields substantially better results for a given step size than the other two methods. Of
course, you pay for this accuracy; since you have several more computations per step in
the Runge-Kutta method.

182 | Chapter1%: Real-Time Simulations

18
16
14
< 2 o
& 10 E —— Dact
o o - o= Euler
8 Improved
A A-K
5 4
4
0
\' Time
Figure 11-5. Method Comparison
11.5
11
- Exact
& 105 - Fuier
& L e B Improved
- RK
10
6.5 7 75 8 8.5
Time

Figure 11-6. A Closer Look

These methods aren’t the only ones at your disposal; however, they are the most com-
mon. Other methods attempt to improve computational efficiency even further; that
is, they are designed to minimize truncation error while still allowing you to take rel-
atively large step sizes so as to reduce the number of steps you have to take in your
integration. I cite some pretty good references for further reading on this subject in the
bibliography.

ke

Other Methods | 183

CHAPTER12
2D Rigid Body Simulator

Now it’s time to put all of what you’ve learned so far to work and implement an actual
real-time simulator, I chose to model two vehicles in this example so that in the next
chapter I can show you how to handle collision response between these two vehicles
when they run into each other. For now, though, I'll keep it simple to clearly illustrate
the material that you studied in the earlier chapters. -

Although the source code for this example is available on O'Reilly’s web site, I'm going
to include just about all of it in this chapter. For the most part I'll concentrate on the code
that implements the physics part of the simulator, and I'}] refer you to O'Reilly’s web
site for the rest of the code that implements rendering the simulation using Microsoft’s
Direct3D technology.

There are four main elements to this simulation:

Model :
The model refers to your idealization of the thing, in this case a hovercraft, that
you are trying to simulate.

Integrator
The integrator refers to the method by which you integrate the differential equations
of motion. :

User Input
User input refers to how you'll allow the user to interact with your simulation.

Rendering
Finally, rendering refers to how you’ll allow the user to view your simulation.

In this simulation the world coordinate system has its x-axis poineng into the screen, its
y-axis pointing to the left of your screen, and its z-axis pointng upward. Even though
this is a 2D example, in which all motion is confined to the xy-plane, you still need a
z-axis about which the hovercraft will rotate. Also, the local, or body-fixed, coordinate
system has its x-axis poinring toward the front of the hovercraft, its y-axis pointing to
the port side, and its z-axis pointing upward.

184

Model

The wvehicles that are modeled in this simulation are a couple of generic hovercraft
operating over smooth land. The two vehicles are identical and have the properties
shown in Table 12-1

Table 12-1. Hovercraft Properties

Property Value

Length 70ft

Width 50ft

Average projected area of entire vehicle 1500 ft?

Center of draq lecation 2.5 ftaftof the (G

Weight . 10tons (20,000 1b)

Mass 621.6 slugs

Center of gravity ((G) location 35 ft aft of the bow on the centerline
{assumed to be in the center of the
craft)

Mass moment of inertia? 383,320 [p-ft-s?

Max thrust (air propelier) 2000 1

Propeller location 30 ft aft of the (G on centerline

Bow thrustars one to port and one to starhoard, each

30ft forward of the (G and 25 ftof{ the
centerline to either side
Bow thruster thrust 5001b
Top speed 40kt {67.51 ft/s)
2 Remember, in two dimensions the moment of inertia term is a scaar. In this case it's the
moment of inertia for rotation about the local z-axis passing through the center of gravity.

Each craft is fitted with a single air screw propeller that provides forward {or reverse)
thrust located toward the aft end of the craft. For controllability each craft is fitted with
two bow thrusters, one to port and the other to starboard, each capable of delivering
500 Ib of thrust to either side. These bow thrusters are used to steer the hovercraft.

I've used a simplified drag model in which the only drag component is due to aerody-
namic drag on the endre craft. For these calculations I've assumed a mean projected
area of 1300 ft and a drag coefficient of 0.25. A more rigorous model would consider
the acrua! projected area of the craft as a function of the direction of relatve velocity,
as in the flight simulator example discussed in Chapter 7, as well as the frictional drag
between the bottom of the craft’s skirt and the ground. I've also assumed that the center
of drag is 2.5 ft aft of the center of gravity so as to give a little directional stability, that is,
to counteract rotation. This serves the same function as the verrical tail fins on aircraft.

In code, the first thing you need to do to represent these vehicles is define a rigid
body structure that contains all of the information you'll need to track the vehicles and
calculate the forces and moments acting on them. Here’s how 1 did it:

-;’rll“,

Model | 185

typedef struct _RigidBody {

fleat fMass; f/ total mass (constant)

float fInertia; // mass moment of inertia in body cobfdinates
float finertialnverse; // inverse of mass moment of inertia
Vector vPosition; /7 position in earth coordinates
Vector vVelocity; // velocity in earth coordinates
Vector welocityBody; // velocity in body coordinates
Vector vAngularVelocity; // angular velocity in

// body coordinates
float fSpeed; // speed (magnitude of the velocity}
float fOrientation; // orientation
Vector vForces; // total force on body
Vector vMoment; // total moment (torque) on body

/7 (2D: about z-axis only)

Vector CD; // location of the center of
// drag relative to the center
/4 of gravity

Vector (T; // location of center of thrust
// relative to the center of gravity
Vector CPT; /¢ location of the port bow thruster
// relative to the center of gravity
Vector CST; // location of the starboard bow

// thruster relative to the center
// of gravity

float ProjectedArea; // mean projected area
// {for drag calcs.)
float ThrustForce; // magnitude of the thrust force

Vector PThrust, SThrust;f /{ bow thruster vectors

float fWidth; // bounding dimensions
float flength;

} RigidBody2D, *pRigidBedy2D;
This structure contains all the information you'll need to wack the state of each craft.

The next step in defining the model is to write an initialization function to initialize the
states of these hovercraft when the program first starts up. Here’s what that function
looks like:

void InitializeHovercraft{pRigidBody2D body)

// Set initial position

body->vPosition.x = 0.0f;

body->vPosition.y = 0.0f;

body->vPosition.z = 0.0F; // set all z’s to zero b/c this is 20

// Set initial velocity

body->vVelocity.x = 0.07;

body->vVelocity.y = ©.0f;

body->welocity.z = 0.0f; // set all z's to zero b/c this is 2D
body->fSpeed = 0.0f;

n oan

// Set initial angular velocity

body->vAngularvelocity.x = 0.0f; // will always be zero in 2D
bedy->vAngularvelocity.y = 0.0f; // will always be zero in 2D
body->vAngularvVelocity.z = 0.0f; /7 in 20 only this component

/! with be used

186 | Chapter12: 20 Rigid Body Simulator

// Set the initial thrust, forces, and moments

body->vForces.x = 0.0f;

body-»vForces.y = 0.0f;

body->vForces.z = 0.0f; // set all z’s to zero
body->vMoment.x = 0,0f; // will always be zerc in 2D
body->vMoment.y = 0.0f; // will always be zere in 2D
body->vMoment.z = 0.0f; // in 2D only this component

// with be used

// Zero the velocity in body space coordinates
body->v¥elocityBody.x = 0.0f;
body->vvelocityBody.y = 0.0f;
body->v¥elocityBody.z = 0.0%;

// Set the initial orientation
body->f0rientation = 0.0;

// Now define the mass properties

body->fMass = 621.6;

body->fInertia = 383320;
body->fInertiaInverse = 1.0f / body->flnertia;

// coordinates of the body center of drag
body->CD.x = -2.5f; body->CD.y = 0.0f;

// coordinates of the propeller thrust vector
body->CT.x = -30.0f; body->{T.y = 0.0f;

// coordinates of the port bow thruster
body->CPT.x = 30.0f; body-»>CPT.y = 25.0f;

// coordinates of the starboard bow thruster
body->CST.x = 30.0f; body->CST.y = -25.0f;

body->ProjectedArea = 1500.0f; // mean projected area
body->ThrustForce - 0; /7 initial thrust force

' body->fWidth = 50; // width of the body (measured along y-axis)
body->fLength = 70; // length of the body (measured along x-axis)

You'll notice here that the Vector class that I've used is actually a triple, that is, it has
three components: x, y, and z. Since this is a 2D example, the z-components will always
be zero, except in the case of the angular velocity vector, in which only the z-component
will be used {since rotation occurs only ahout the z-axis). The class that I've used in this
example is discussed in Appendix A, so I won’t give the source code here. The reason I
didn’t write a separate 2D vector class, one with only x- and y-components, is because
I’ll be extending this code to 3D later and wanted to get you used to using the 3D vector
class. Besides, ir’s pretty easy to create a 2D vector class from the 3D class by simply
stripping out the z-component,

Notice that this function takes as a parameter a pointer to a RigidBody structure. This
way, you can call this same function to initialize each hovercraft, and then later, if you
want to make some changes to a particular hovercraft’s initial state, you can do so by
changing only the property of interest. For example, here’s how I initialized the two
hovercraft in this example:

-ﬁrl‘-“,

Model | 187

void Initialize(void)

{
InitializeHovercraft(&Hovercrafti};
InitializeHovercraft(8Hovercrafta); -
1
Hovercraft2.vPosition.y = -50;
Hovercraft2.vPosition.x = 1500;
Hovercraft2.fOrientation = 1BO;
}
Here, Hovercraft1 and Hovercraft2 are defined as global variables:
Rigid8ody2D Hovercrafti, Hovercraftz; // our two hovercraft rigid
bedies

You can see here that I didn’t wanc to start the program with both hovercraft occupying
the same position, one on top of the other. Instead, I set Hovercraft2 some distance
away from the first and then rotated it 180 degrees so that it faces the first hovercraft.

This Initialize function is called at the very start of the program. I found it convenient
to make the call right after the application’s main window is created and shown, in this
case in the standard Windows API InitInstance function as shown here:

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow}

{
hlnst = hInstance;

nShowCmd = nCmdShow;

hTheMainWindow = CreateWindow{szAppName,
szTitle,
WS_OVERLAPPEDWINDOW |
WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
0, 0, 640, 480,
NULL, NULL, hlnst, NULL);

if (lCreateD3DRMObject())
return (FALSE);

if {1CreateD3DRMCLipperObject{hTheMainkindow))
return (FALSE);

if (!CreateViewPort(hTheMainWindow})
return {FALSE);

ShowWindow(hTheMainWindow, nCmdShow};
UpdateWindow(hTheMainWindow);

Ipitialize(};

return (TRUE);
}
Now that everything is initialized, you need to develop a function to calculate the forees
and moments that will act on the hovercraft throughout the simulation. Withoutrsucha
function, the Hovercraft will just sit there and do nothing, so obviously, this funcdon is
crucial. Let me also say that while most of the code that I'll show you in this chapter can
be reused without much modification for your own rigid body simulations, the same
is not true of this function. You’ll need a function to calculate forces and moments for

188 | Chapter12: 2D Rigid Body Simulator

whatever you're simulating, but the body of the function will likely be very different
depending on what you are modeling and how you have idealized your physical model. .
That said, here’s the function that I've developed for the hovercraft:

void CalclLoads{pRigidBody2D body)

{
Vector Fb; // stores the sum of forces
Vector Mb; /! stores the sum of moments
Vector Thrust; // thrust vector

// reset forces and moments:

body->vForces.x = 0.0f;

body->vForces.y = 0.0f;

body->vForces.z = 0.0f; // always zero in 2D

n uwn

body - >vMoment. x
body->vMoment.y
body->vMoment.z

of; // always zero in 2D
10f; /f always zero in 2D
of

Bonon
000

2

Fb.x = 0.0f;
Fb.y = 0.0f;
Fb.z = 0.0

¥

n o n

Mb.x
Mb.y
Mb.z

0.07;
0.0f;
0.0

1

// Define the thrust vector, which acts through the craft’s (G
Thrust.x = 1.0f; .

Thrust.y = 0.0f;

Thrust.z = 0.0f; // zero in 2D

Thrust *= body->ThrustForce;

// Calculate forces and moments in body space:

Vector vLocalVelocity;
float flocalSpeed;
Vector vDragVector;
float tmp;

Vector vResultant;
Vector vimp;

// Calculate the aerodynamic drag force:

// Calculate local velocity:

// The local velocity includes the velocity due to

/{ linear motion of the craft,

// plus the velocity at each element due to the rotation
// of the craft.

vimp = body-»>vAngularVelocity body->CD; // rotational part
vlocalVelocity = body->vVelocityBody + vimp;

// Calculate local air speed
flocalSpeed = vlocalVelocity.Magnitude();

// Find the direction in which drag will act.

// Drag always acts inline with the relative velocity
// but in the opposing direction

if(flocalSpeed > tol)

{

vlocalVelocity.Normalize();
vDragVector = -vlocalVelocity;

.&,l;‘“

Mode! | 189

// Determine the resultant force on the element.

tmp = 0.5F * rho * fLocalSpeed*flocalSpeed *
body-»ProjectedArea; :

vResultant = vDragVector * LINEARDRAGCOEFFICIENT *-ﬁmp;

/7 Keep a tunning total of these resultamt

/4 forces (total force)

Fb += vResultant;

// Calculate the moment about the CG of this
// element’s force
// and keep a running total of these moments (total moment}
vtmp = body-»>CD"vResultant;
Mb += vimp;
}

// Calculate the port and starboard bow thruster forces:
/7 Keep a running total of these resultant forces {total force}
Fb += body-»>PThrust;

.4/ Calculate the moment about the CG of this element’s force
// and keep a running total of these moments (total moment)
vtmp = body->CPT body->PThrust;

Mb += vimp;

// Keep a running total of these resultant forces (total force)
Fb += body->5Thrust; :

// Calculate the moment about the CG of this element’s force
// and keep a running total of these moments (total moment)
vtmp = body->CST body-»SThrust;

Mb += vtmp;

// Now add the propulsicn thrust
Fb += Thrust; // no moment, since line of action is through CG

// Convert forces from model space to earth space
body-»vForces = VRotate2D(body->fOrientation, Fb);

body-»>vMoment += Mb;
}

Since the two hovercraft are identical, this same function is used to calculate the loads
on each by passing this function a pointer to the RigidBody structure for the hovercraft
under consideration.

"The first thing that CalcLoads does is initialize the force and moment variables that will
contain the total of all forces and moments acting on the craft at any instant in time.

The function then goes on to define a vector representing the propelier thrust. In this
case the thrust vector acts in the positive (local) x-directon and has a magnitude defined
by ThrustForce, which is set by the user via the keyboard interface. (I'll get to that later.}
Note that if ThrustForce is negative, then the thrust will actually be a reversing thrust
instead of a forward thrust.

After defining the thrust vector, this function goes on to calculate the aerodynamic
drag acting on the hovercraft. These calculations are very similar to those discussed in
Chapter 7. The first thing to do is determine the relative velocity at the center of drag,

190 | Chapter12: 2D Rigid Body Simulator

considering both linear and angular modon. You'll need the magnitude of the relative
velocity vector when calculating the magnitude of the drag force, and you'll need the
direcdon of the relative velocity vector to determine the direcdon of the drag force,
since it always opposes the velocity vector. Once the drag force has been determined,
the funcdon adds it to the running total of forces and then calculates the moment
about the center of gravity of the drag force and adds that moment to the running
total of moments. Note that the drag coefficient, LINEARDRAGCOEFFICIENT, is defined as
follows:

#define LINEARDRAGCOEFFICIENT 0.25f

With the drag calculation complete, the function proceeds to calculate the forces and
moments due to the bow thrusters, which may be active or inactive at any given time.

Next, the propeller thrust force is added to the running total of forces. Remember, since
the propeller thrust force actsthrough the center of graviry, there is no moment to worry
about.

Finally, the rotal force is converted from local coordinates 1o world coordinates via a
vector rotation given the orientation of the hovercraft, and the total forces and moments
are stored in the RigidBody structure for the given hovercraft. These values are stored so
that they are available when it comes time to integrate the equations of motion at each
time step throughout the simuiation.

Integration

Now that the code to define, initialize, and calculate loads on the rigid bodies is complete,
you need to develop the code to actually integrate the equations of motion so that the
simulation can progress through time. The first thing you need to do is decide on the
integration scheme that you want to use, as discussed in Chapter 11 For this example I've
chosen the improved Euler method. To that end, I've developed the function UpdateBody
that takes as parameters a pointer to a RigidBody and the time step to take (in seconds):

void UpdateBody(pRigidBody20 craft, float dtime)

{
Vector Ae;
float Aa;
RigidBodyzD body;
Vector ki, k2;
float kia, kz2a;
float dt = dtime;

// make a copy of the hovercraft’s state
memcpy(&body, craft, sizeof(RigidBodyzD));

// calculate the ki terms for both linear and angular velocity

CalcLoads{&body);
Ae = body.vForces / body.fMass;
ki = Ae * dt;

Aa = body.vMoment.z / body.fInertia;
kia = Aa * dt;

-g’rli‘_,

Integration | 191

// add the ki terms to the respective initial velocities
body.vVelocity += ki;
body.vAngularVelocity.z += kia;

7/ calculate new loads and the k2 terms

CalcLoads(&body);
Ae = body.vForces / body.fMass;
k2 = Ae * dt;

Aa = body.vMoment.z / body.fInertia;
k2a = Aa * dt;

// now calculate the hovercraft’s new velocities at time t + dt
craft->vVelocity += (ki + k2) / 2.0f;
craft->vAngularVelocity.z += (kia + kza) / 2.0f;

// calculate the new position
craft-svPosition += craft->vvelocity * dt;
craft->fSpeed = craft->welocity.Magnitude(};

// calculate the new orientation
craft->fOrientation +=
RadiansToDegrees{craft->vAngularvelocity.z * dt);

craft->welocityBody =
VRotate2D(-craft->fOrientation, craft->welocity);

}

By passing this function a pointer to a RigidBody, we can reuse this same function
regardless of the particular body that is under consideration. Further, passing the rime
step allows us to vary the size of the time step as we see fit. I'll do just that in the next
chapter when 1 show you how to handie collision response.

The first thing that UpdateBody does is to make a temporary copy of the current state
of the rigid body under consideration. This has to be done because in the improved
Euler method you have to take the intermediate step of adding the k1 terms to the initial
velocities before completing the integration, and you don’t want to corrupt the inidal
velocity values of the rigid body, since you’ll need them to finish the integration step.

The next thing to do is calculate the loads (forces and moments} acting on the rigid
body by passing a pointer to the temporary copy to the CalcLoads functon. With the
loads calculated, the function proceeds to calculate the k1 terms for both linear and
angular velocity These k1 terms are then added to the initial velocities, which are then
used during another call to CalcLoads. The k2 terms are calculated after this second call
to Calcloads.

Now that the k1 and k2 terms have been calculated, the new velocities are calculated
by using the improved Euler formula. Next, the function integrates the new velocities,
usitg Euler’s method, to determine the new position and orientation of the rigid body.

The last thing that UpdateBody does is calculate the rigid body’s velocity in local co-
ordinates by applying a vector rotation of the world space velocity by the body’s new
orientation. You need the velocity in local coordinates when calculating drag in the
CalcLoads function, and this is a convenient place to calculate it.

192 | Chapter12: 2D Rigid Body Simulator

Since there are two rigid bodies--the two hovercraft—in this simulation, UpdateBody
must be called twice, once for each hovercraft. I do this in the StepSimulation function:

void StepSimulation(float dt)
{

UpdateBody(&Hovercrafti, dt);
UpdateBody(BHovercraft2, dt);

StepSimulation is trivial in this simulation, since there are only two rigid bodies and
there’s no collision response mechanism in the simulation yet. If you had several rigid
" bodies in your own simulation, you could set up an array of RigidBody structures and
then loop through your array in StepSimulation t update each rigid body.

StepSimulation is called once per game loop cycle. In this example I set up another
function call Null€vent that gets called every time through the main window message
loop as shown here:
int APIENTRY WinMain{HINSTANCE hInstance,
HINSTANCE hPrevInstance,

LPSTR 1pCmdiine,
int nCmdShow)

{
0ldTime = timeGetTime();
NewTime = 01ldTime;
// Main message loop:
while (1) {
while(PeekMessage{&msg, NULL, 0, 0, PM_REMOVE)) {
if (msg.message == WM_QUIT) {
5 return msg.wParam;
}
TranslateMessage (Bmsg);
DispatchMessage(&msg);
NullEvent();
}
}

When NullEvent calls StepSimulation, it passes the size of the time step in as the dt
parameter. You don’t have to do it this way. I chose to because [was experimenting with
having the time step calculated in real time as the difference in time between the last
call to StepSimulation and the current time as shown here:

void NullEvent(void}
{

Integration | 193

NewTime = timeGetTime();
dt = (float) (NewTime - 0ldTime)/1000;
01dTime = NewTime;

if (dt > 0.016) dt = 0.016;
if (dt < 0.001f) dt = 0.001f;

StepSimulation(dt);

}

This approach progresses the simulation in realistically scaled time. The problem is that
if the program spends too much doing something else during one cycle, then the next
time step may be too large relative to the last time step, and the motion of the rigid body
will be less smooth, not to mention that too large a time step could result in inaccuracies
and instability during integration. As you can see, I put in a little check to prevent the
time step from getting too large. 1 also put in a check to keep the time increment from
falling below 1 millisecond (ms). timeGetTime has a documented accuracy resolution of
1 ms, but I found that it would sometimes return values less than that. So I put the
1-ms check in there to keep things consistent and to make sure we’re within the stated
accuracy of timeGetTime.

As an alternative, you can fix the time step in your simulations so that each step is the
same as the last, regardless of any delay encountered in your game loop. You'll have to
experiment here to determine a good step size. If you choose one that’s too small, your
simulation will seem to move in slow motion. Conversely, if the step is too large, your
simulation will seem as though it’s in fast-forward mode, and of course, you’ll increase
the likelihood of numerical problems.

Flight Controls

If you were to run the program as we have it so far, you would find that even though our
model and integrator are in place, the hovercraft would still sit there and do nothing,
That is, of course, because there is no control mechanism built in yet. The user input
code that I'li show you next is your way to interact with the hovercraft and control their
behavior. Specifically, I'll associate certain keys on the keyboard with certain forces
that will be applied to the model. I've already mentioned what those forces are: the
propeller’s thrust and the bow thrusters’ thrust. In this way you don’t directly push or
turn the hovercraft; you can only apply forces and let the integrator take care of how
the hovercraft will behave under the action of those forces.

The flight controls in this example are pretty simple. For hovercraft 1, the up arrow
key increments the propeller thrust by 100-1b increments up to a maximum of 2000 1b;
the down arrow key decrements the propeller thrust by 100-Ib increments down to a
minimum of —2000 1b (for reversing); the left arrow key applies the starboard bow
thruster to yaw (turn) the craft to port (the left); and the right arrow key applies the

194 | Chapter12: 20 Rigid Body Simulator

port bow thruster to yaw the craft to starboard. For hovercraft 2, the W, Z, A, and §
keys perform the same functions, respectively.

I've prepared several functions to handle the propeller and bow thrusters that should
be called whenever the user is pressing the flight control keys. The first two functions
handle the propelier:

void IncThrust{int craft)

{
if{craft == 1)
{

Hovercrafti.ThrustForce += _DTHRUST;
if(Hovercrafti.ThrustForce > _MAXTHRUST)
Hovercratti.ThrustForce = _MAXTHRUST;
} else { .
Hovercraftl. ThrustForce += _DTHRUST;

if(Hovercraft2.ThrustForce > _MAXTHRUST)
Hovercraft2.ThrustForce = _MAXTHRUST;

}
h
void DecThrust{int craft)
{
if{craft == 1)
{ Bovercrafti.ThrustForce -= _DTHRUST;
if(Hovercrafti.ThrustForce ¢ -_MAXTHRUST}
Hovercrafti.Thrustforce = -_MAXTHRUST; -
} else {
Hovercraftz.ThrustForce -= _DTHRUST;
if(Hovercraft2.ThrustForce < -_MAXTHRUST)
Hovercraft2.ThrustForce = -_MAXTHRUST;
h
}

IncThrust simply increases the thrust by _OTHRUST checking to make sure it does not
exceed _MAXTHRUST. I've defined _DTHRUST and _MAXTHRUST as follows:

#define _DTHRUST 100.0f
#define _MAXTHRUST 2000.0f

DecThrust, on the other hand, decreases the thrust by _DTHRUST, checking to make sure it
does not fall below -_MAXTHRUST. Both of these funcrions take as a paramerer an integer
identifying the hovercraft, Hovercraft1 or Hovercraft2, to which the changes are to be
applied.

The next few functions handle the bow thrusters:

void PortThruster{int craft)
{
if{craft == 1) -
Hovercrafti.PThrust.y = -500.0f;
else

Hovercraftz.PThrust.y = -500.0f;

b

Flight Controls | 195

void STBOThruster(int craft)

{
if(craft == 1) .
Hovercrafti.SThrust.y = 500.0f; ¥
else
Hovercraftz.SThrust.y = 500.0f;
}
void ZeroThrusters{int craft)
{
if(craft == 1)
{
Hovercrafti.PThrust.x = 0.0f;
Hovercrafti.PThrust.y = 0.0f;
Hovercrafii.PThrust.z = 0.0T;
Hovercrafti.SThrust.x = 0.0f;
Hovercraftl.SThrust.y = 0.0f;
Hovercrafti.5Thrust.z = 0.0f;
} else {
Hovercraftz.PThrust.x = 0.0f;
Hovercraftz.PThrust.y = 0.0f;
Hovercraftz.PThrust.z = 0.0f;
Hovercraftz.SThrust.x = 0.0f;
Hovercraft2.SThrust.y = 0.0f;
Hovercraftz.SThrust.z = 0.0F;
}
}

PartThruster simply sets the thrust of the port bow thruster to —500, which is 500 1b
toward the starboard to turn the craft 1o starboard. The minus 500 means that the
port thrust vector points in the negative (local) y-direction. Similarly, STBCThruster
sets the thrust of the starboard bow thruster o 500 b, which turns the craft to
port, In this case the starboard thrust vector points in the positive {local} y-direction.
ZeroThrusters simply turns off the port and starboard bow thrusters. All three of these
functions take an integer parameter identifying the craft to which the changes will
apply.

As I said, these functions should be called when the user is pressing the flight control
keys. Further, they need to be called before the StepSimulation function is called so that
they can be included in the current time step’s forces and moments calculations. Since 1
put the Stepsimulation call in my NullEvent funcrion, it makes sense to handle the flight
controls in that function as well. Here's how I did ir:

void NullEvent{void)
{

// figure out which flight control keys are down
ZeroThrusters(1);

if (IsKeyDown{VK_UP))
IncThrust{1};

196 | Chapter12: 20 Rigid Body Simulator

if (IsKeyDown{VK_DOWN))
DecThrust(1);

if (IsKeyDown(VK_RIGHT))

ZeroThrusters(1);
PortThruster{1);

if (IsKeyDown(VK_LEFT))

ZeroThrusters{1);
STBDThruster(1);
}
ZeroThrusters(2);

R
if (IsKeyDown(0x57)) // W key
IncThrust{2);

if (TsKeyDown(0x5A)) // Z key
DecThrust(2);

if (IsKeyDown{ox53)) // S key
{

ZeroThrusters(2);
PortThruster(2);

if (IsKeyDown(0x41)) // A key
{

ZeroThrusters(2);
STBOThruster(2);

NewTime = timeGetTime(};
dt = (float) (NewTime - OldTime)/1000;
0ldTime = NewTime;

if (dt » 0.016) dt = 0.016;
if (dt < 0.001F) dt = 0.001f;
StepSimulation(dt);

)
Before StepSimulation is called, each of the flight control keys for each hovercraft is

checked to see whether it is being pressed. If so, then the appropriate thrust or thruster
function is called.

The function IskeyDown that checks whether a certain key is pressed looks like this:
BOOL IsKeyDown{short KeyCode)
{

SHORT retval;

retval = GetAsyncKeyState(KeyCode);

.ﬁ,!;‘“

Flight Controls | 197

if (HIBYTE(retval)}
return TRUE;

return FALSE; 1?ﬁ

}

I used this function because it is possible that more than one key will be pressed at any
given time, and I wanted to handle them all simultaneously instead of one at a time in
the standard window message processing function.

The addition of flight control code pretty much completes the physics part of the
simulation. So far, you have the model, the integrator, and the user input or flight control
elements completed. All that remains is setting up the application’s main window and
actually drawing something to look at that represents what you're simulating.

Rendering

Setting up the main window and drawing something interesting to look at aren’t really
related to physics; however, for completeness I'll briefly present the code that I used in
this example to set up the main window and render the simulation using Direct3D.*

Starting with the main window, 1 used standard Windows API code to initialize the
application, create and update the main window, and handle window messages and
user input. I assume that you're are familiar with Windows API programming, so [
won’t go into a detailed explanation of the code.

I've already shown you part of the WinMain function; here’s the whole thing:

int APTENTRY WinMain{HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
1pCmdLine, int nCmdShow)
{

M5G msg;

HANDLE hAccelTable;

if (!hPrevinstance) {
// Perform instance initialization:
if (tInitApplication(hInstance}) {
return (FALSE);
}

}

// Perform application initialization:
if (!Initinstance(hInstance, nCmdShow}) {
return (FALSE);

}

haccelTable = LoadAccelerators (hInstance, szAppName);
OldTime = timeGetTime()};

NewTime = 0ldTime;

* If you aren’t already familiar with programming Direct3D, you should check out the beok entitled The
Awesomne Power of Direct3D/DirectX by Peter]. Kovack. Simply put, it’s very useful.

198 | Chapter12: 2D Rigid Body Simulator

// Main message loop:
while (1) {

while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
if {msg.message == WM_QUIT) {
return msg.wParam;

TranslateMessage(&msg);
DispatchMessage{finsg};

NullEvent();

return (msg.wParam);

}

b
WinMain makes calls to InitInstance and InitApplication. I've already shown you
InitInstance, so here’s InitApplication:

BOOL InitApplication(HINSTANCE hinstance)}
{

WNDCLASS wc;
HWND hwnd;

hwnd = FindWindow {szAppName, NULL};
if (hwnd) {
if {IsIconic(hwnd)) {
Showkindow(hwnd, SW_RESTORE);
}
SetForegroundWindow (hwnd};

return FALSE;

}
¢ wc.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;
- We.1pfokndProc = (WNDPROC)WndProc;

We.cbClsExtra = 0;

W . cbWndExtra = 0;

wc. hInstance = hInstance;

wc.hIcon = NULL;

we.hCursor = toadCursor(NULL, IDC_ARROW);

we . hbrBackground = (HBRUSH)GetStockObject (BLACK_BRUSH);

wc. lpszMenuName = NULL;
wc.1pszClassName = szAppiName;

return RegisterClass(8mwc);

3

So far, this API code creates a window class for the main window, registers that class,
creates and displays a 640 x 480 window, creates a couple of Direct3D objects that are
needed to render into a Direct3D view port (these calls are in InitInstance), and starts
the main program loop calling NullEvent each time.

The only other API function that’s needed is the window message processing function,
WndProc:

e

Rendering | 199

LRESULT CALLBACK WndProc{HWND hknd,
UINT message,
WPARAM wParam,
LPARAM 1Param)

{
int wmld, wmEvent;
BOOL validmenu = FALSE;
int selection =0;
PAINTSTRUCT ps;
HDC pDC;
WPARAM key;

switch (message) {
case WM_ACTIVATE:
if (SUCCEEDED({D3D.Device->QueryInterface(
1ID_IDirect3DRMWinDevice,
(void **) &WinDev))}

{
if (FAILED(WinOev->HandleActivate(wParam)))
WinDev->Release(};
}
break;

case WM_DESTROY:
CleanUp();
PostQuitMessage(0);
break;

case WM_KEYDOWN:
key = {(int) wParam;

if (key == 0x31) // 1
SetCamerai();

if (key == 0x32) // 2
setCamera2();

if (key == 0x33) // 3
SetCamera3();

if (key == 0x34) // 4
SetCamerad();

if (key == 0x35) // 5
SetCameras();

if (key == 0x36) // &
SetCamerab();

break;

case WM_PAINT:
pDC = BeginPaint(hTheMainWindow, {LPPAINTSTRUCT) &ps);

if (SUCCEEDED(D3D.Device->QueryInterface(
1I0_IDirect3DRMWinDevice,
(void **) &WinDev)))

200 | Chapter12: 2D Rigid Body Simulator

if (FAILED(WinDev->HandtePaint(ps.hdc)})
WinDev->Release();

}

EndPaint{hTheMainkindow, {LPPAINTSTRUCT) &ps);
return (0);
break;
default:
return (DefWindowProc(hind, message, wParam, lParanm));

}
return {0};

In response to WM_ACTIVATE, this funcrion acquires a IDirect3DRMWinDevice that's
needed for using Direct3D retained mode.
N

In response to WM_KEYDOWN, this function switches to one of the six cameras that I've
set up to view the simulation from different perspectives. Camera 1 is a view from -
the cockpit of hovercraft 1, camera 2 is a view from outside and just behind hover-
craft 1, and camera 3 is a view from directly above looking down on hovercraft 1.
Cameras 4, 5, and 6 are similar to cameras 1, 2, and 3 except that they are relative to
hovercraft 2.

The response to WM_PAINT handles painting the scene to the main window. Finally, the
response o WM_DESTROY cleans up all the Direct3D stuff and quits the application.

Before showing you the Direct3D code that I used, I need to show you yet another
version of my NullEvent function:

void NullEvent(void)
{ .

Vector vZ, VX;
. char buf[256];
char s[256];
// figure out which flight control keys are down
ZeroThrusters(1);

if (IsKeyDown{VK_UP}})
IncThrust(1);

if (IsKeyDown(VK_DOWN))
DecThrust(1);

if (IsKeyDown({VK_RIGHT))

ZeroThrusters(1);
PortThruster(1);
}
if (IsKeyDown{VK_LEFT)} .
{
ZeroThrusters{1);
STBOThruster(1);
}
ZeroThrusters(z);

.';:,l;‘_'

Rendering | 201

if (IsKeyDown{0x57}) // W key
IncThrust(2);

if (IsKeyDown{Ox5A)) // Z key Ed
DecThrust(2);

if (IsKeyDown{0x53)) // S key

ZeroThrusters(2);
PortThruster(2);

}

if (IsKeyDown(ox41)) // A key
ZeroThrusters(2);
STBDThrustex{2);

}

NewTime = timeGetTime();
dt = {float) (MewTime - D1dTime}/:000;
01dTime = NewTime;

if (dt > 0.016) dt = 0.016;
if {dt < 0.001f) dt = 0.001f;

StepSimulation(dt);
if(FrameCounter »>= RENDER_FRAME_COUNT)}

SetCameraPosition(-Hovercrafti.vPosition.y,
Hovercraftl.vPosition.z,
Hovercrafti,vPosition.x);

vz = GetBodyZAxisVectoer(); . // pointing up in
// our coordinate system
vx = GetBodyXaxisVector(1); // pointing forward in
// our coordinate system

SetCameraOrientation{-vx.y, vx.Z, vx.x,
-VZ.y, VZ.Z, VZ.X)}

SetCameraPosition2({-Hovercraftz.vPosition.y,
Hovercraft2.vPositicn.z,
Hovercraft2.vPosition.x};

vz = GetBodyZAxisVector(); // pointing up in
// our coordinate system
GetBodyXAxisvector(2); // pointing forward in
// our coordinate system

VX

u

SetCamera0rientation2(-vx.y, vX.z, vX.X,
-vz.y, V2.2, VZ.X);

Render();

sprintf(buf, “Craft 1 (blue): 7= %.0f ; 7,
Hovercraft1.ThrustForce);

strepy(s, buf);

sprintf{ buf, “s= ¥.0f 7,

202 | Chapter12: 2D Rigid Body Simulator

Hovercrafti.fSpeed/1.688); // divide by 1.688
// to convert ft/s to knots
strcat(s, buf); .

sprintf{ buf,
“ Craft z (red): T= %.0f ; 7,
Hovercraft2.ThrustForce);
strcat{s, buf);
sprintf(buf,
“s= %.0f ¥,
Hovercraft2.fSpeed/1.683);
// divide by 1.688 to convert ft/s to knots

strcat(s, buf};

SetWindowText (hTheMainWindow, s);
} else .
FrameCounter++;

t

The code that you have not seen yet appears just after the call to StepSimulation. There
are several things going on here.

First, I put in a frame counter check such thar the rendering code is not executed as
often as the physics code. This technique allows vou to advance the physics simulation
at a smaller time step without the overhead of updating the display at each time step.
For this simulation I have RENDER_FRAME_COUNT set to 300 as follows:

#define RENDER_FRAME_COUNT 300

This means that the physics simulation will take 300 rime steps for every screen up-
date. 300 works here, but it’s not a practical number for production simulations. This
simulation has only two bodies in it and, so far, no collision detection, so the physics
calculations are fairlvy minimal. You’ll have to tune this value to get the desired frame
rate or physics-update-to-screen-update ratio for your specific simulations.

Next, the camera positions have to be updated to reflect to new location of each hov-
ercraft. That’s pretty easy to do, but you have to take note that the coordinate system
used by Direct3D is not the same as the one used in the simulation. Direct3D uses a
lefr-handed coordinate system with the x-axis pointing to the right, the y-axis pointing
upward, and the z-axis pointing into the screen. Thus, Direct3D’s x-axis is our negative
y-axis, its y-axis is our z-axis, and its z-axis is our x-axis,

In addition to setting the proper location for each camera, you also have to make sure
its orientation is correct. To do that, Direct3D requires a couple of vectors, one defining
the frame’s new z-axis and the other defining its new y-axis. To make things easier,
I've prepared a coupie of functions to get the correct x- and z-axis vectors for each
hovercraft so that they can be used for Direct3D’s z- and y-axis vectors, respectively,
when setting the camera orientation to align with the orientation of each hovercraft.
You'll want to do this, for example, when looking out of camera 1, which is a cockpit
view from hovercraft 1; as the hovercraft rotares, you'll want the scene that you are
viewing to reflect that rotation as if you were sitting in the hovercraft.

.g’,l;;

Rendering | 203

Vector GetBodyZAxisVector{void)

{
-t
Vector v; ¥
v.x = 0.0f;
v.y = 0.0f;
v.z = 1.0f;
return v;
}
Vector GetBodyXAxisvector(int craft)
{
Vector v;
v.X = 1.0f;
v.y = 0.0f;
v.z = 0.0f;
if{craft == 1)
return VRotate2D(Hovercrafti.fOrientation, v);
else
return VRotate2D(Hovercraft2.fOrientation, v};
}

Getting back to the NullEvent function, after the cameras are positioned, the scene is
actually rendered to the main window by calling the Render funcdon. Once that’s done,
the window caption is changed to show a few statstics for each hovercraft, namely: each
hovercraft’s thrust setting in pounds and its speed in knots.

The rest of the code required for this simulation is related to rendering using Direct3D
and has nothing directly to do with physics, so I have not included that code here.
However, you can obtain the full source code for this example from O'Reilly’s web site
at www.oreilly.com.

204 | Chapter12: 20 Rigid Body Simulator

CHAPTER 13

Implementing Collision
Response

k“\

In this chapter I'll show you how 0 add a lirde excitement to the hovercraft example
discussed in Chapter 12. Specifically, I'll show you how to add collision response so
that the hovercraft can crash into each other and bounce off like a couple of bumper
cars. This is an important element for many types of games, so it’s important that
you understand the code that I'll present here. Now would be a good time to go back
and review Chapter 5 to refresh your memory on the fundamentals of rigid body
collision response, since I'll use the principles and formulas discussed there o develop
the collision response algorithms for the hovercraft simuladon.

. To start simply, I'll first show you how to implement colliston response as if the hov-
ercraft were a couple of particles—or a couple of spheres, to be more accurate. This
approach uses only linear impulse and does not include angular effects, so the results
will be somewhat unrealistic for these hovercraft, However, this approach is applicable
to other types of problems that you might be interested in, such as billiard ball collisions.

After we get the linear impulse approach implemented, I'll go back and show you what
you need to do to capture angular effects. This will make the simulation much more
realistic. When the hovercraft crash into each other, not only will they bounce off of
each other, but they will also spin, depending on the nature of the colilision.

To get this stuff to work, I'll have to add a couple of new functions and make some
significant changes to the StepSimulation function discussed in the preceding chapter.
There’s not a whole lot of new code, but it is alittle more complicated, so I'll go through
each new piece of code step by step to explain whar's going on.

I also want to emphasize that the objective of this chapter is to show you how to im-
plement basic collision response, which is a distinct subject, separate from collision
detection. While collision detection is a necessary part of any collision response algo-
rithm, collision detection is more of a computational geometry problem than a physics
problem. Here, I will focus on physics—collision response—and will implement only
the bare necessities in way of collision detection in order to get the simulation to work.
If you’re interested in more in-depth discussion on collision detection, I'll refer you to

.;’F!r“'

205

the computatonal geomerry technical literature, where there is a wealth of information

to be found.

‘,,155‘

Linear Collision Response

In this section I'll show you how to implement simple collision response assuming that
the two hovercraft are particles (or spheres). I'm going to implement only bare minimum
collision detectionin this simulation; however, regardless of the level of sophistication of
your collision detection routines, there are very specific pieces of information that must
be collected from your collision detection routine(s) for your physics-based collision
response rourres to work.

To revise the hovercraft example of the previous chapter to include simple cotlision re-
sponse, you'll have to modify the StepSimulation function and add a few more functions:
CheckForCollision and ApplyImpulse. Let’s take a good look ar these functions now.

Before showing you CheckForCollision, I want to explain what your collision detection
function must do. First, it must let vou know whether or not a collision is oceurring
between the hovercrafe. Second, it must let you know whether the hovercraft are pene-
trating each other. Third, if the hovercraft are colliding, itmust tell you what the collision
normal vector is and what the relative velocity is berween the colliding hovercraft.

To determine whether or not there is a collision, you need to consider two factors:

¢ Whether or not the objects are close enough, within numerical tolerances, to be
considered in colliding contact

o What the relative normal velocity is between the objects

1f the objects aren’t close to each other, they obviously have not collided. If they are
within your tolerance for contact, then they may be colliding, and if they are touching
and overlapping such that they are moving inside each other, they are penetrating, as
illustrated in Figure 13-1. 1f your collision detection routine finds that the two objects

§ (is negative)

No contact Contact Penetrafing

Figure 13-1. Collision Nomenclature

206 | Chapter13: Implementing Collision Response

are indeed close enough to be in colliding contact, then you have to do another check
on the relarive normal velocity to see whether they are moving away from each other or
toward each other. A collision occurs when the objects are in contact and the contact
points are moving toward each other.

Penewation is important because if your objects overlap during the simulation, the re-
sults won’tlook realistic—you’ll have one hovercraft moving inside the other as they did
in the preceding chapter. What you have to do is detect this penetration condition and
thett back up your simulation, reduce the time step, and try again. You keey doing thisun-
til they are no longer penetrating or they are within tolerance to be considered colliding,

You need to determine the normal velocity vector of the collision to calculate the collision
impulse that will be used to simulate their response to the collision. For simple cases,
determining this normal vector is fairly straightforward. In the case of particies or
spheres the collision normal’is simply along the line that connects the centers of gravity
of each colliding object; this is central impact, as discussed in Chapter 5. This is the
situation you have here, since you are considering each hovercraft asa particle or sphere.

Now take a look at the function I've prepared for this simulation to check for collisions:
int CheckForCollision (pRigidBody2D bodyi, pRipidBody2D body2)
{

Vector d;

float r;
int retval =
float S;

Vector vl, vi;
Tloat vrn;

r = body1->flLength/2 + body2->flLength/2;
bodyi->vPosition - body2->vPosition;
d.Magnitude() - r;

Bonon

S

.d.Normalize{);
vCollisionNormal = d;

= body1->wWelocity;
= body2->vVelocity;
vRelat1veVe10c1ty vl - v2;

Vrn = vRelativeVelocity * vCollisionNormal;
if({fabs(s) <= ctol) & (Vn < 0.0))
{

retval = 1; // collision
} else if(s < ~ctol)
{

retval = -1; // interpenetrating
} else

retval = 0; // no collision
return retval;

}

This function uses a simple bounding circle check to determine whether or not the
hovercraft are colliding. The first thing it does is calculate the distance, x, that represents
the absolute minimum separation between these hovercraft when they are in contact.

i
'tfli“'

Linear Collision Response | 207

I'm assuming that the bounding circle for each hovercraft has a diameter equal to the
craft’s length.

Next, the distance separating the hovercraft at the time this fundfion is called is deter-
mined and stored in the variable d. Since I'm assuming that these hovercraft are particles,
determining d is simply a matter of calculating the distance between the coordinates of
the center of gravity of each craft. Using vectors, this is simply the position vector of
one craft minus the position vector of the other.

Once the function has d and r, it needs to determine the actual amount of space, s,
separating the hovercrafts” bounding circles. After this separation is determined, the
function normalizes the vector d. Since the vector d is along the line that separates the
centers of gravity of the hovercraft, normalizing it yields the collision normal vector that
we need for our collision response calculations. The collision normal vector is saved in
the global variable vCollisionNormal,

After calculating the collision normal, this function goes on to determine the relative
velocity between the hovercraft. In vector form, this is simply the difference between
the velocity vectors of each craft. Note that the velocity vectors that are used here must
be in global coordinates, not body-fixed (local) coordinates. Since what's really needed
to determine whether a collision is made is the relative normal velocity, the function
proceeds to take the vector dot product of the relative velocity and the collision normal
vectors, saving the result in the variable vrn.

At this point, all of the calculations are complete, and the only thing left to do is make
the appropriate checks to determine whether there is a collision, a penetration, or no
collision at all.

The first check is to see whether the hovercraft are colliding. This is determined by
comparing the absolute value of the separation between the hovercraft, s, with adistance
tolerance, ctol. If the absolute value of s is less than ctol, a collision might be occurring.
The second requirement is that the relative normal velocity be negative, which implies
that the points of impact on the hovercraft are moving toward each other, If there is a
collision, the function returns a 1 to indicate that collision response is necessary.

If the hovercraft are found not to be colliding, then a second check is performed to see
whether they have moved so close together that they are penetrating each other. In this
case, if s is less than -ctol, the hovercraft are penetrating and the function returns a -1.
If the hovercraft are not colliding and not penetrating, then the function simply returns
a 0, indicating thart no further action is required.

Take a look now at the other new function, ApplyImpulse:

void ApplyImpulse{pRigidBody2D body1, pRigidBody20 body2)
float j;
j= (-(1+fCr) * (vRelativeVelocity*vCollisionhormal}) /

{ (vCollisionNormal*vCollisionNormal) *
(1/body1->fMass + 1/body2->TMass));

208 | Chapter13: Implementing Coflision Response

body1->vWelocity += (j * vCollisionNormal) / bodyli->fMass;
body2-»>vVeleocity -= (j * vCollisionNormal) / body2->fMass;
}

This is a simple but crucial function for collision response. What it does is calculate
the linear collision impulse as a function of the colliding hovercrafts’ relative normal
velocity, masses, and coefficient of restitution, using the formula that I showed you in
Chapter 5. Further, it applies this impulse to each hovercraft, effectively changing their
velocities in response to the collision. Note that the impulse is applied to one hovercraft,
and then the negative impulse is applied to the other.

With those rwo new functions complete, i’s now time to revise StepSimulation to handle
collision detection and response as the simulation steps through time. Here’s what the
new StepSimulation function looks like:

void StepSimulation(float dt)
{
float dtime = dt;
bool tryAgain = true;
int check=0;
RigidBody2D crattifopy, craft2Copy;
bool didPen = false;
int count = 0;

while{tryAgain &% dtime > tol)
{

tryAgain = false;
memcpy{&craftiCopy, &Hovercrafti, 51zeof(ngldBody2D)),
memcpy{&craft2Copy, &Hovercraftz, sizeof(RigidBody2D));

UpdateBody{&craftiCopy, dtime);
UpdateBody(&craft2Copy, dtime);

CollisionBodyl
CellisionBody2 =
check = CheckForColllslon(&craftltopy, &craft2Copy);

"

0:

if{check == PENETRATING)

dtime = dtime/2;
tryAgain = true;
didPen = true;
} else if{check == COLLISION)
{

if{CollisionBodyl != 0 && CollisionBody2 f= 0)
ApplyImpulse(CollisionBodyl, CollisionBody2);

}
if(1didpen)
{

memcpy(&Hovercrafti, &craftiCopy, sizeof(RigidBodyaD)};
memcpy (&Hovercraft2, &craft2Copy, sizeof(RigidBody2D));

}

Obviously, this version is more complicated than the original version. There’s one main
reason for this: penetration could occur because the hovercraft can move far enough

.&le‘a

Linear Collision Response | 209

within a single time step to become overlapped. Visually, this situation is unappealing
and looks unrealistic, so you need to try to prevent it.

The first thing this function does is go into a while loop: ks

while(tryAgain && dtime > tol)
{

1

This loop is used to back up the simulation if penetration has occurred on the init-
ial time step. What happens is this: the function first tries to update the hovercraft and
then checks to see whether there is a collision. If there is a collision, then it gets handled
by applying the impulse. If there is penetration, however, then you know the time step
was too big, and you have to try again. When this occurs, tryAgain is set 1o true, the
tie step is cut in half, and another attempt is made. The function stays in this loop
as long as there is penetration or until the time step has been reduced to a size small
enough to force an exit from the loop. The purpose of this looping is to find the largest
step size, less than or equal to dt, that can be taken and stll avoid penetrarion. You want
either a collision or no collision. '

Looking inside this while loop reveals what’s going on. First, tryAgain is set to false,
optimistically assuming that there will be no penetration, and copies are made of the
states of the hovercraft reflecting the last successful call to StepSimulation.

Next, the usual call to UpdateBody is made for each copy of the hovercraft. Then a call to
the collision detection function, CheckForCollision, is made to see whether Hovercrafti
is colliding with or penetrating Hovercraft2. If there is penetration, then tryAgainisset to
true, dtimeis cut in half, didPen is set to true, and the function takes another lap through
the while loop. didPen is a flag that lets us know that a penetration condition did occur.

If there was a collision, che function handles it by applying the appropriate impulse:

if(CollisionBodyi != 0 && CollisionBody2 != 0)
ApplyImpulse(CollisionBodyl, CollisionBody2);

After gerting through the while loop, the updated hovercraft states are saved, and
StepSimulatien is complete.

The last bit of code you need to add includes a few new global variables and defines:

#define LINEARDRAGCOEFFICIENT 0.25f
#tdefine COEFFICIENTOFRESTITUTION o.5f
#tdefine COLLISIONTOLERANCE 2.0f

Vector vCollisionNormal; // the collision normal

Vector vRelativeVelocity; // the world space relative velecity of the
: // two bodies at the point of collision

float fCr = COEFFICIENTOFRESTITUTION; // the coefficient of

restitution
float const ctol = COLLISIONTOLERANCE; // the collision

(distance) tolerance

210 | Chapter13: implementing Collision Response

The only one I haven’t mentioned so far, although you’ve seen it in ApplyImpulse,
is fCr, the coefficient of restitution. Here, I have it set to 0.5, which means that the
collisions are halfway between perfectly elastic and perfectly inelastic. (Refer back to
my earlier discussions on coefficients of restitution in Chapter 5 if you've forgotten
these terms.) This is one of those parameters that you’ll have to tune to get the desired
behavior.

While I'm on the subject of tuning, I should mention that you’ll also have to play with
the linear drag coefficient that is used to calculate the drag force on the hovercraft.
While this coefficient is used to simulate fluid dynamic drag, it also plays an important
role in terms of numerical stability. You need some damping in your simulation so that
your integrator does not blow up, that is, diverge away from the theoretical solution to
the governing equations of motion. When that happens, your simulator can become
quite unrealistic and unpredictable. In Chapter 17, when I show you how to simulaie
cloth, the imporcance of damping will become quite ciear.

That’s pretty much it as far as implementing basic collision response. If you run this
example, you'll be able to drive the hovercraft into each other and bounce off according]v.
You can play around with the mass of each hovercraft and the coefficient of restitution to
see how the craft behave when one is more massive than the other or when the collision
is somewhere in between perfectly elastic and perfectly inelastic.

You might notice that the collision response in this example sometimes looks a little
strange. Keep in mind that this is because this collision response algorithm, so far,
assumes that the hovercraft are round when in fact they are'rectangular. This approach
will work just fine for round objects such as billiard balls, but to ger the level of realism
required for nonround rigid bodies, you need to include angular effects. I'll show you
that in the next section.

.

Anguiar Effects

Including angular effects will yield more realistic collision response for these rigid
bodies, the hovercraft. To get this to work, you'll have to make several changes to
ApplyImpulse and CheckForCollision; StepSimulation will remain unchanged. The more
extensive changes are in CheckForCollision, so I'll discuss that one first,

The new version of CheckForCollision will do more than a simple bounding circle check.
Here, each hovercraft will be represented by a polygon with four edges and four vertices,
and the types of contact that will be checked for are vertex-vertex and vertex-edge contact
(see Figure 13-2).*

In addition to the tasks discussed in the preceding section, this new version of Check-
ForCollision must also determine the exact point of contact between the hovercraft.
This is a very important distinction between this new version and the last. You need to

* Note thar this funcrion does not handle multiple contact points.

.ﬁ,lx‘“

AngularEffects | 211

Vertex-Vertex Contact

Bk

Contact
Vertex Point

Vertex-£dge Contact

Figure 13-2. Types of Collision

know the point of contact because to affect the angular velocity, you need to apply the
impulse at the point of contact. In the preceding section the normal to the contact point
always passed through the center of gravity of the hovercraft because we assumed that
they were spheres, and that's not the case here.

This now brings up the chailenge of finding the collision normal. There are two cases
to consider here. In edge-vertex collisions the normal is always perpendicular to the
edge that is involved in the collision. In vertex-vertex collisions, however, the normal
is ambiguous, so what I've done is resort to taking the norma! parallel o the line
connecting the centers of gravity of the hovercraft.

All of these considerations make CheckForCollisions a little more involved than it was
in the previous section. The following code listing shows what [méan:

int CheckForCollision{pRigidBody2D body1, pRigidBody20 body2}
{

Vector d;

float I;

int retval = 0;

212 | Chapter13; Implementing Collision Response

float s;
Vector vListi[4], vList2[4];
float wd, lg;

int i,3;

bool naveNodeNode = false;
bool interpenetrating = false;
bool haveNodeEdge = false;

Vector vl, v2, u;
Vector edge, p, proj;
float dist, dot;
float Vrn;

/ First check to see if the boundir circles are c0111d1ng
body1->flength/2 + body2->flength/2;
body1->vPosition ~ body2->vPosition;

/
T
d
s = d.Magnitude() - r;

if(s <= ctol)
{ 7/ We have a pnsslble collision, check further
/7 build vertex lists for each hovercraft
wd = body1l->fWidth;
= body1->flength;

vListi[o].y = wd/2; vlisti[o}.x = 1g/2;
vListi[1].y = -wd/2: viisti[1].x = 1g/2;
vListif2].y = -wd/2; vlisti[2].x = -1g/2;
vList1[3].y = wd/2; vList1f3].x = -1g/2;

for(i=0; i<4; i++)

VRotate2d{body1->fOrientation, vLiStl[i]);
vListifi] = vlist1[i] + body1->vPosition;

= body2->fWidth;
= body2- >FLength;

vL15t2[0] Yy = wd/z; vlist2[o].x = 1g/2;
vLista[1].y = -wd/l; viist2[1].x = 1g/2;
vList2[z].y = -wd/2; viist2[2].x = -1g/2;
vlist2[3].y = wd/2; vList2f3].x = -1g/2;

for(i=0; i¢4; i++)

VRotate2D{body2->fOrientation, vList2[i]);
vList2fi] = vList2[i] + body2-3>vPosition;

}

// Check for vertex-vertex collision
for(i=0; i<4 8% !haveNodeNode; i++)

for(j=0; j<4 && !haveNodeNode; j++)
{
vCollisicnPoint = vlisti[i];
body1->vCollisionPoint = vCollisionPoint -
body1->vPosition;

body2->vCollisionPoint = vCollisionPoint -
body2->vPosition;

vCollisionNormal = bodyl->vPosition -
body2->vPosition;

Angular Effects

| 213

vCollisionNormal.Normalize();

vl = body1l-s>wWelocityBody +
(bodyi—>vAngularVelocity‘body1->vColli§ionPoint);

v2 = body2->vVelocityBody +
(bodyz—>vAngu1arVelocity”body2->vCollisionPoint);

vl
v2

VRotate2D({bodyl->fOrientation, vi};
VRotate2D(body2->fOrientation, v2);

vRelativeVelocity = vl - v2;
yrn = vRelativevVelocity * vCollisionNormal;

if(ArePointsEqual(vlisti[i],
viist2[]]) &&

{Vn < 0.0))
haveNodeNode = true;

}

// Check for vertex-edge collision
if(!haveNodeNode)

“for(i=0; i<4 &% !nhaveNodeEdge; it+)

A
for(j=0; j<¥ 8& IhaveNodebdge; j++)

if(j==3)

edge = vList2[0] - vList2[jl;
else

edge = viist2[j+1] - viist2[j];
u = edge;

u,Normalize();

p = vListi[i] - vList2[j];
proj = {p * u) * u;

d=pu;
dist = d.Magnitude(};

vCollisionPoint = vlisti[il;
body1-»>vCollisionPoint = vCollisionPoint -
body1-»>vPosition;

body2-»vCollisionPoint = vCollisionPoint -
body2->vPosition;

vCollisionNormal = {(u"p)~u);
vCollisionNormal.Normalize();

vl = body1-»welocityBody +
{body1->vAngularVelocity ~
body1-»vCollisionPoint};

v? = body2->vVelocityBody +
(body2->vAngularvelocity ~
pody2->vCollisionPoint);

714 | Chapter13: Implementing Collision Response

vl = VRotate2D(bedy1->fOrientation, vi1);
v2 = VRotate2D(body2->fOrientation, v2);
S LN
vRelativeVelocity = (vi - v2); PR mvi g
Vrn = vRelativeVelocity * vCollisionNormal;.
> Checle 2l V6 S rdae - drAOTLAR
if((proj.Magnitude(} > 0.6f) 8& w9 B edge R o
(proj.Magnitude{) <= edge.Magnitude()). 3& P-,—‘.J:‘-c"} -"“agr tude O
(dist <= ctol) 8& - , .-, -
o 9 L O k7] -
{¥rn < 0.0)) » E-Ari‘ B T
haveNodeEdge = trie; ~ . e ‘/r'??&” fw—~‘¢-:u
} } C e wus B ’

}

// Check for penetration
if(!haveNodeNode && !haveNodeEdge)

for{i=0; i§4 8% linterpenetrating; i++)

{
for(j=0; j<4 8& linterpenetrating; j++)
if(j==3)
edge = vlList2[o] - vList2[j];
else
edge = vlist2[j+1] - viist2[j];
p = vlista{i] - vlist2[j};
dot = p * edge;
if(dot < 0)
{
interpenetrating = true;
}
}
}
if(interpenetrating}

retval = -1;
} else if{haveNodeNode !| haveNodeEdge)

{
retval = 1;
} else
retval = 0;
} else
{
retval = 0;

return retval;

The first thing that CheckForCollision does is perform a quick bounding circle check to
see whether there is a possible collision. If no coliision is detected, the function simply
exists returning (. This is the same bounding circle check that was performed in the

Angular Effects | 215

earlier version:

body1->flength/2 + bodyz->flength/2;
body1->vPosition - body2->vPosition; B4
d.Magnitude() - 1;

I
d
s

if(s <= ctol)

{
} elsé

retval = 0;
}

If the bounding circle check indicates the possibility of a collision, then CheckForColli-
sion proceeds by setting up a couple of polygons, represented by vertex lists, for each
hovercraft:

wd = bodyl->¥Width;
1g = body1->flength;

vListijol.y = wd/2; viisti[o].x = lg/2;
viisti[1].y = -wd/2; vlist1f1l.x = 1g/2;
vListaf2}.y = -wd/2; vlist1[2].x = -1g/2;
vlist1[3].y = wd/2; vList1[3].x = -1g/2;

for(i=0; i<4; i+s)

VRotate2D (hodyi->fOrientation, vListi[i]);
vList1[i] = vlist1[i] + bodyi->vPesition;

}

wd = body2->fWidth;

lg = body2->flength;

vList2[0].y = wd/2; viist2[0].x = 1g/2;
viistz[1].y = -wd/2; viistz[1].x = 1g/2;
viistz[2].y = -wd/2; vList2[2].x = -1g/2;
viist2[3].y = wd/2; viist2[3].x = -1g/2;

for(i=0; i<4; i+4)

VRotate2D(body2->fOrientation, vlist2[i]);
vlist2[i] = viist2[i] + body2->vPosition;
}
The vertex lists are initialized in unrotated body-fixed (local) coordinates based on the
length and width of the hovercraft. The vertices are then rotated to reflect the orientation
of each hovercraft. After that, the position of each hovercraft is added to each vertex to
convert from local coordinates to global coordinates.

Checking first for vertex-vertex collisions, the function iterates through each vertex in
one list, comparing it with each vertex in the other list to see whether the points are
coincident: '

/7 Check for vertex-vertex collision
for(i=0; i<4 8& !haveNodeNode; i++)

for(j=0; j<4 B& !haveNodeNode; j++)

216 | Chapter13: implementing Collision Response

vCollisionPeint = viListi[i];
bedyl->vCollisionPoint = vCollisionPoint -
body1->vPosition;

body2->vCollisienPoint = wCollisionPoint -
body2->vPosition;

v{ollisionNormal = bodyi->vPosition -
body2->vPosition;

vCollisionNormal.Normalize(};

vl = body1->vVelocityBody +
(body1->vAngularVelocity body1->vCollisionPoint);

v2 = body2->vwWelocityBody +
{body2->vAngularVelocitybodyz->vCollisionPoint);
b

VRotatezD(bodyl—>f0fientation, vi);
VRotate2D(body2->fOrientation, v2);

vl =
V2 =
vRelativeVelocity = vi - v2;

Vrn = vRelativeVelocity * vCollisionNormal;

if(ArePointsEqual{vListi[i],
vList2[j]) &&
(VIn < 0.0))
haveNodeNode = true;

}

This comparison makes a call to another new function, ArePointsEqual:

if(ArePointsEqual(vListi[i],
vList2[j]) &&
{Vrn < 0.0))
haveNedeNode = true;

ArePointsEqual simply checks to see whether the points are within a specified distance
from each other as shown here:

bool ArePointsEqual(Vector pi, Vector p2)

// Points are equal if each component is within ctol of each other

if({fabs{pi.x - p2.x} <= 0.1) &&
(fabs{pl.y - p2.y} <= 0.1) 8&
(fabs(pi.z - p2.2) <= 0.1))
Teturn true;

else
return false;

}

Within the nested for loops of the vertex-vertex check, a number of important calcula-
tions are performed to determine the collision normal vector and relative velocity that
are required for collision response.

First, the collision point is calculated, which is simply the coordinates of a vertex that
is involved in the collision. Note that this point will be in global coordinates, so it will

.;’,lg‘“

Angular Effects | 217

have to be converted to local coordinates for each hovercraft to be useful for collision
response. Here is how that’s done:
vCollisionPoint = vlisti[i]; B

body1->vCellisionPeint = vCollisionPoint -
body1->vPosition;

body2-svCollisionPoint = vCollisionPoint -
body2-»vPosition;
The second calculation is aimed at determining the collision normal vector, whi~h for
vertex-vertex collisions I've assumed is along the line connecting the centers of gravity
of each hovercraft. The calculation is the same as that shown in the earlier version of
CheckForCollision:

vCollisionNormal = bodyl->vPosition -
body2->vPosition;

vCollisionNormal.Normalize();

The third and final calculation is aimed at determining the relative velocity between
the points of impact. This is an imporrant distinction from the earlier version, since the
velocities of the points of impact on each body are functions of the linear and angular
velocities of the hovercraft:

vl = bodyl->wVelocityBody +
(bodyl—>vAngularVelocity“budy1->vCollisionPoint);

v2 = body2->vVelocityBody +
(bodyz->vAngu1arVelocity“bodyl-)vCollisionPoint);

vl
v2

VRotate2D(body1->fOrientation, vi);
VRotatezD(body2->fOrientation, v2);

vRelativeVelocity = vl - vZ;
Vrn = vRelativeVelocity * vCollisionNormal;

Here, v and vz represent the velocities of the points of collision relative to each hovercraft
in Iocal coordinates, which are then converted to global coordinates. Once the relative
velocity is obtained, vRelativevelocity, the relative normal velocity, Vrn, is obtained by
taking the dot product of the relative velocity with the collision normal vector.

If there is nio vertex-vertex collision, CheckForCollision proceeds to check for vertex-edge
collisions:

// Check for vertex-edge ccllision
if(!haveNodeNode)
{

for(i=0; i<4 & lhaveNodeEdge; i++)
for(j=0; j<3 && !haveNodeEdge; Jt)
1F(3==3)

edge = vlista{o] - viist2[j];
else

218 | Chapter13: Implementing Collision Response

edge = vlist2[j+1] - vList2[j];
u = edge;
u.Normalize();

p = vlistifi] - vList2[j];
proj = (p * u) * u;

d = pTu;
dist = d.Magnitude();

vCollisionPoint = vlisti[i];
body:->vCollisionPoint = vCoilisionPoint -
body1->vPosition;

body2->vCollisionPoint = vCollisionPoint -
body2->vPosition;

vCollisidaNormal = ({u"p}~u);
vCollisionNormal .Normalize();

vi = bodyi->vVelocityBody +
{body1->vAngularVelocity ~
bodyi-»>vCollisionPoint);

vZ = body2->wWelocityBody +
(body2->vAngularVelocity ~
body2->vCollisionPoint);

vi
v2

VRotate2D(body1->fOrientation, vi);
VRotatezD(body2->f0rientation, v2);

vRelativeVelocity = {vi - v2);
vIn = vRelativeVelocity * vCollisionNormal;

if{ (proj.Magnitude{) > 0.0f) &&
(proj.Magnitude() <= edge.Magnitude()) 8&
(dist <= ctol) &&
(Vrn ¢ 0.0))
haveNodeEdge = frue;

Here, the nested for ioops check each vertex in one list to see whetheritis in contact with
each edge built from the vertices in the other list. After the edge under consideration is
built, a copy of it is saved and normalized to represent a unit vector pointing along the
edge:

if(j==3)

edge = vlist2[o] - vlist2[j];
else

edge = vlist2[j+1] - viist2[]];
u = edge;

u.Normalize()};

Variable u represents that unit vector, and it will be used in subsequent calculations. The
next set of calculations determines the location of the projection of the vertex under

.ﬁ,lr‘“

Angular Effects | 219

consideration onto the edge under consideration, as well as the minimum distance from
the vertex to the edge:

p = vList1[i] - vList2[]]; f?S
proj = (p * u) * y; ‘
d =

pou;
dist = d.Magnitude(};
Variable p is a vector from the first vertex on the edge to the vertex under consideration,
and proj is the distance from the first edge vertex, along the edge, to the point upon
which the vertex projects. Jist is the minimum distance from the vertex to the edge.
Figure 13-3 illustrates this geometry.

Vertex
Edge vertex 2

Edge vertex 1

Figure 13-3. Vertex-Edge Check

If there is a collision, the global location of the point of impact is equal to the vertex
under consideration, which must be converted to local coordinates for each hovercraft
as shown here:

vCollisionPoint = vList1[i];

body1->vCollisionPeint = vCollisionPoint -
body1->vPosition;

body2->vCollisionPoint = vCollisionPoint -
body2->vPosition;

Since in this type of collision, the collision normal vector is perpendicular to the edge,
you can determine it by taking the result of the cross product of uand p and crossing it
with u as follows:

vCollisionNormal = ({u"p)"u);

vCollisionNormal.Normalize();
These calculations give you a unit length vector in the plane of vectors u and p and
perpendicular to the edge.

Next, the relative velocity between the points of impact on each hovercraftis determined,
just as in the vertex-vertex collision check:
vi = bodyi->vVelocityBody +

(body1->vAngularVelocity ~
body1->vCollisionPoint);

220 | Chapter13: Implementing Collision Response

v2 = body2->vVelocityBody +
{body2->vAngularVelocity *
body2->vCollisionPoint);

vl
v2

VRotate2D(body1->fOrientation, vi};
VRotate2D(body2->fOrientation, v2);

non

vRelativeVelocity = (vi - v2);
Vrn = vRelativeVelocity * vCollisionNormal;

In determining whether or not the vertex under consideration is in fact colliding with
an edge, you have 10 check to see whether the distance from the vertex is within your
collision tolerance, and you also have to make sure the vertex actually projects onto the
edge (that is, it does not project beyond the endpoints of the edge). Additionally, you
need to make sure the relagve normal velocity indicates that the poinrs of contact are
moving toward each other. Here’s how this check looks:

if((proj.Magnitude() » 0.0f) 8%
(proj.Magnitude() <= edge.Magnitude()) &&
(dist ¢= ctol) B&

{V¥rn < 0.0) }
haveNodeEdge = true;

After CheckForCollision checks for vertex-vertex and vertex-edge collisions, it goes on
to check for penetration:

if(!haveNodeNode && !haveNodeEdge)
for(i=o; i<4 B& !interpenetrating; i++)

for(j=0; j<4 8& linterpenetrating; j++)

if(j==3)

edge = vlist2[o] - vlist2[jl;
else

edge = vlist2[j+1] - vList2[j];

p = vlist1[i] - vList2{{];
dot = p * edge;
if{dot ¢ 0}

interpenetrating = true;

}

This check is a standard point-in-polygon check using the vector dot product to deter-
mine whether any vertex of one polygon lies within the bounds of the other polygon.
After this check, the function simply returns the appropriate result. Here again, 0 indi-
- cates no collision or penetration, 1 indicates a collision, and -1 indicates penetration.

With CheckForCollision out of the way, turn your attention to ApplyImpulse, which also
has to be revised to include angular effects. Specifically, you need to use the impulse

.ﬁ,l;‘“

Angular Effects | 221

formula thar includes angular as well as linear effects (see Chapter 5), and you also have
to apply the impulse to the hovercrafts’ angular velocides in addition to their linear
velocities. Here’s how the new ApplyImpulse function looks: it

|

void ApplyImpulse(pRigidBody2D body1, pRigidBody2D body2)
float j;

j = (-(1+fCr) * (vRelativeVelocity*vCollisionNormal)} /
{ (1/body1l->TMass + 1/body2->fMass) +
(vCollisionNormal * ({(bedy1->vCollisionPoint "
vCollisionNormal)/bodyi-)fInertia)‘body1->vCollisionPoint)) +
(vCollisionNormal * {{{body2->vCallisionPoint ~
vCollisionNorma1)/b0dy2->fInertia)'body2—>vCollisionPoint))

);

body1-s>wWelocity += (j * vCollisionNormal) / body1->fMass;
body1->vAngularVelocity += (body1->vCollisionPoint ~
{j * vCollisionNormal}) /
body1->fInertia;

bodyz-ywelocity -= (j * vCollisionNormzl) / body2->fMass;
body2-»vAngularVelocity -= (body2->vCollisionPoint ~
{j * vCollisiocnNormal}) /
body2->fInertia;

}

Remember, the impulse is applied to one hovercraft while its negatiﬁe is applied to the
other.

That does it for this new version of the hovercraft simulation. If you run the program
now, you'll see that you can crash the hovercraft into each other and they will bounce
and rotate accordingly. This makes for a much more realistic simulation than the simple
linear collision response approach of the preceding section. Here again, you can play
with the mass of each hovercraft and the coefficient of restitution w see how these
parameters affect the collision response between the hovercraft.

222 | Chapteri3: Implementing Collision Response

CHAPTER 14
Rigid Body Rotation

Before showing you how to implement a 3D simulator, as Pl do in the next chapter,
Ineed to discuss the issue of expressing orientation, or rotation, in three dimensions. In
two dimensions it’s quite easy to express the orientation of a rigid body; vou need only
a single scalar to represent the body’s rotation about a single axis. In three dimensions,
however, there are three primary coordinate axes, and a rigid body may rotate about
each of them. Moreover, a rigid body in three dimensions may rotate about any arbitrary
axis, not necessarily one of the coordinate axes.

In two dimensions we say that a rigid body has only one rotational degree of freedom,
whereas in three dimensions we say that a rigid body has three rotational degrees of
freedom. This might lead you to infer that in three dimensions you need to have three
scalar quanrities to represent a body’s rotation. Indeed, this is a minimum requirement,
and you've already seen a set of angles that represent the orientation of a rigid body in
3D—the three Euler angles that I talked about in Chapter 7: roll, pitch, and yaw.

These three angles—roll, pitch, and yaw—are very intuitive and easy to visualize. For
example, in an airplane the nose pitches up or down, the plane rolls (or banks) left or
right, and the yaw (or heading) changes to the left or right. Unfortunately, there’s a
problem with using these three Euler angles in rigid body simulations. The problem
is a numerical one that occurs when the pitch angle reaches plus or minus 90 degrees
(/2). When this happens, roll and yaw become ambiguous. Worse yet, the angular
equations of motion written in terms of Euler angles contain terms involving the cosine
of the pitch angle in the denominator, which means that when the pitch angle is plus
or minus 90 degrees, the equations become singular (there is division by zero). If this
happens in your simulation, the results would be unpredictable, to say the least. Given
this problem with Euler angles, you must use some other means of keeping track of
orientation in your simulation. I'll discuss two such means in this chapter: rotation
matrices and quaternions.

Virtually every computer graphics book that I've read cotitains a chapter or section
on using rotation matrices. Far fewer discuss quaternions, but if you're familiar with
quaternions, it's probably in the same context as rotation matrices, that is, how they

|
.o

T

223

are used to rotate 3D points, objects, scenes, points of view, and so on. In a simulation,
however, you need to get a little more out of rotation matrices or quaternions and will
use them in a different context that what you might be used to,Specifically, you need
to keep track of abody’s orientation in space and, moreover, the change in orientation
over time. So it's in this light that I'll discuss rotation matrices and quaternions in
the remainder of this chapter. I'll try to be as concise as possible so as not to cloud
the water with the proofs and derivations that you can find in the texts [refer to in the
bibliography.

Rotation Matrices

A rotation matrix is a 3 x 3 marrix that, when multiplied by a point, or vector, results
in the rotation of that peint about some axis, yielding a new set of coordinates. You can
rotate points about axes in one coordinate system, O you carl use rotarion matrices to
convert points from one coordinate system to another, where one is rotated relative to

the other.

Rotating a vector by a rotation matrix is typically written as follows: If v is a vector and
R is a rotation matrix, then v’ is v rotated by R according to the following formula:

v =Ry

Muldple rotation matrices reflecting multiple sequential rotations can be combined
into a single rotation matrix using usual matrix multiplication. If the rotation ma-
trices are expressed in terms of fixed, giobal coordinates, then they are combined as
follows:

R, =R:R;

Here, R, is the combined rotation matrix reflecting a rotation first by R; and then by
R,. If the rotation matrices are expressed in terms of rotating, body-fixed coordinates,
then they are combined in the reverse order as follows:

R. =Rk

I won't go into the proof of this relation, but the reason it’s different, depending on
how you have defined your roration matrices, is that rotation matrices that are defined
in fixed coordinates are unaffected by the rotation itself, since the coordinate axes stay
fixed. On the other hand, if the rotaton matrices are defined relative to a coordinate
system that is rotating because of sequential application of rotation matrices, then all
rotation matrices after the first will be affected, since they were first defined relarive to
the original state of the coordinate system, before the first rotation matrix was applied.
This means that before the subsequent rotation matrices can be correctly applied, they
must be corrected to reflect the new system as affected by the previous rotation. In other
words, you have to rotate R; by Ry to get a new Ry before applying it. All this happens
to work outin such a way that you reverse the order of multiplication of rotation matrices
when they are defined in a rotating coordinate system.

224 | Chapter14: Rigid Body Rotation

I'm sure that you've seen how rotation matrices are put together to reflect rotatons
about the three coordinate axes. However, I'll show you these matrices here just in case.

Figure 14-1 shows a right-handed coordinate system that illustrates the directions of
positive rotation about each coordinate axis.

Z

Figure 14-1. Right-Handed Coordinate System

Let’s consider rotation around the z-axis where the point shown in Figure 14-2 is rotated
through an angle 4.

y

X ¥ Z
(.2

)ﬁ, (x4 2)

(0, 0

Figure 14-2. Rotation Around the z-axis

The coordinates of the point before the rotadon are (x, v, z), and after the rotation the
coordinates are (x;, ¥y, z;). The rotated coordinates are related to the original coordlnates
and the rotation angle by the following:

X, = xcosf + ysind
hd ¥ = —xsin@ + ycosf
=2z

Nodce that since the point is rotating about the z-axis, its z-coordinate remains un-
changed. To write this in vector matrix notation, v = Rv, let v = [x y z] and lec R be

.';:,!.‘“

Rotation Matrices | 225

the matrix

cos(@,) —sin(@,) O
it
sin{@,) cos(@;y O ¥
0 0 1

Here, v will be the new, rotated vector, v/ = [x; yr Z].

Rotation about the x- and y-axes is similar to rotation about the z-axis; however, in
those cases the x- and y-coordinates remain constant during rotations about each axis.
Looking at rotation about each axis separately will yield three rotation matrices similar
to the one I just showed you for rotation about the z-axis.

For rotation abour the x-axis, the matrix is

1 0 0
0 cosl@) —sin{fy)
0 sin{@,) cos{fy)

And for rotation about the y-axis, the matrix is

cos(By) O sin(6y)
0 1 0]
—-sin(f,) 0 cos{Oy)

These are the rotation matrices that you typically see in computer graphics texts in the
context of matrix transforms, such as translation, scaling, and rotadon. You can com-
bine all three of these matrices into a single rotation matrix to represent combinations
of rotations about each coordinate axis, using matrix multiplication as I mentioned
earlier.

In rigid body simulations you can use a rotation matrix to represent the orientation of
a rigid body. Another way to think of it is that the rotation matrix, when applied to the
unrotated rigid body aligned with the fixed global coordinate system, will rotate the
rigid body’s coordinates so as to resemble the body’s current orientation at any given
time. This leads me to another important consideration when using rotation matrices
to keep track of orientation in rigid body simulations: the fact that the rotaton matrix
will be a function of time.

Once you set up your initial rotation matrix for the rigid body, you'll never directly
calculate it again from orientation angles; instead, the forces and moments applied to
the rigid body will change the body’s angular velocity, likewise causing small changes
it orientation at each time step throughout the simulation. Thus, you can see that you
must have a means of relating the rotation matrix to angular velocity so that you can
update the orientation accordingly. The formula you need is as follows:

dR/dt = QR

226 | Chapter14: Rigid Body Rotation

Here, £ is a skew symmetric matrix built from the angular velocity vector components
as follows:

Q=| 0 -w o
oy 0 —w,
—ty wy 0

Notwithstanding a rigorous proof of this relation, it’s easy to see its beauty, which is that
you can differentate the rotation matrix by simply matrix multiplying by the angular
velocity (in the form of £2). In a simulation you’ll know your initial rotation matrix, and
you'll calculate the angular velocity at each time step; thus, you can easily progress, or
integrate, the rotation matrix.

You should be able to see here that since you'll explicitly calculate the rotation matrix
only once and will update with a matrix multiplication, you won’t have to use compu-
tationally expensive trigonometric functions during each time step. Further, you avoid
the singularity problem that I mentioned in the introduction to this chapter.

Itshould also be obvious that you gain these benefits at some price. First, you have to deal
with nine parameters in the rotation matrix (¢ach element in the 3 x 3 rotation matrix)
to represent three angular degrees of freedom. Second, to do that, you need to impose
constraints on the rotation matrix; specifically;, you need to enforce the constraint that
the matrix be orthogonal with a determinant of 1 such that it satisfies the following
(each column in the matrix represents a unit vector and they are ail at right angles to
each other)*:

R'R=1

Here, RTis the transpose of R, and I is the idenrity matrix. Owing to numerical errors
such as round-off and truncation, you'll have o enforce this constraint very often in
your simulation. Otherwise, your rotation matrix will do more than rotate your objects;
it might scale or translate them too,

Instead of dealing with nine parameters and trying to constrain six degrees of freedom so
that only the three you want can be represented, you could take an alternative approach
that lets you keep the advantages that rotation matrices offer, but at a cheaper price.
That alternative is the subject of the next section: quaternions.

Quaternions

Quaternions are somewhat of a mathematical oddity. They were developed over 100
years ago by William Hamilton through his work in complex (imaginary) math but
have found very little practical use. A quaternion is a quantity, somewhat like a vector

* Two vectors are orthogonal if their dot product is zero.

'.;:Fl‘;.

Quatemions | 227

but made up of four components. It is typically written in the form

q = qo+ g + gy + ¢k »

A quaternion is really a four-dimensional quantity in complex space and, unfortunately,
does not lend itself to visualization. Don't worry, though; our use of quaternions to
represent orientation in three dimensions does atlow us to attach a physical meaning
to them, as you’ll see in a moment.

Of particular interest to us is what's known as a unit quaternion that satisties the
following:

G+aqrra+a=1

This is analogous to a normalized, or unit, vector.

Rigid body

Figure 14-3. Quaternion Rotation

You can also writea quaternion in the formq = [4o. v], where v is the vector, ¢,d + gyj +
g.k, and gp is a scalar. In the context of rotation, v represents the direction in which the
axis of rotation points. For a given rotation, @, about an arbitrary axis represented by
the unit vector u, the representative quaternion can be written as follows:

q = [cos(6/2), sin(@/2)u]

This is illustrated in Figure 14-3 for an arbitrary rigid body rotating about an axis
passing through its center of gravity. Here, the unit vector u is the vector v normalized
to unit length.

You can readily see that quaternions, when used to represent rotation or orientation,
require you to deal with only four parameters instead of nine, subject to the easily
satisfied constraint that the quaternion be a unit quaternion. In my opinion this makes
quaternions the preferred choice over rotation matrices to represent crientation in rigid
body simulations. [n fact, this is the approach I take in the nex: chapter.

The use of quaternions to represent orientation is similar to how you would use rotation
matrices. First, you set up a quaternion that represents the inital orientation of the
rigid body at time zero. (This is the only time you’ll calculate the quaternion explicitly)
Then you update the orientation to reflect the new orientation at a given instant in
time, using the angular velocities that are calculated for that instant. The differental

228 | Chapter14: Rigid Body Rotation

equation relating an orientatdon quaternion to angular velocity is very similar to that
for rotation matrices and is as follows:

dq/dt = (1/2)wq Coh

Here, the angular velocity is written in quaternions form as [0, w] and is expressed in
fixed, global coordinates. If w is expressed in rotating, body-fixed coordinates, then you

need to use this equation:
dq/dt = (1/0qw —— " i

As can be done with rotation matrices, you ¢an use quaternion to rotate points, or
vectors. If v is a vector, then v’ is the rotated vector subject to the quaternion q:

v = qvq*
Here, q* is the conjugate of the quaternion q, defined as
. . .

Q" = go — gxi — qyj — -k
You can also use the above formula to convert vectors from one coordinate system
to another, where one is rotated relative to the other. You might have to do this, for
example, in your simulations when you are converting forces defined in fixed, global
coordinates to rotating, body-fixed coordinates so that you can apply the forces to the

body. Or you might have to convert a body’s velocity defined in global coordinates to
body coordinates so that you can use the velocity in force calculations.

As with vectors and matrices, quaternions have their own rules for the various operations
that you’ll need, such as multiplication, addition, and subtwraction. To make it easy on
you, I've included sample code in Appendix C that implements all of the quaternion
operations you'll need.

Quatemions | 229

CHAPTER 15
3D Rigid Body Simulator

In this chapter I'll show you how to make the leap from 2D to 3D by implementing a
rigid body simulation of an airplane. Specifically, this is a simulation of the hypothetical
airplane model that I discussed extensively in Chaprer 7. Recall thar this airplane is of
typical configuration with its large wings forward, its elevators aft, a single vertical tail,
and plain flaps fitted on the wings. '

Here again, the source code for this example is available on O’Reilly’s web site, but I'll
still include most of it in this chapter. As with the 2D simulator of Chapters 12 and 13,
I'll concentrate on the code that implements the physics part of the simulator, and 'l
* refer you to O'Reilly’s web site for the rest of the code that implements rendering using
Microsoft's Direct3D technology.

Even though this is a 3D simulation, its implementation is very similar to the 2D
hovercraft simulation that I showed you earlier. When I started talking about that 2D
simulation, I mentioned that I was going to use a 3D vector class to represent the vectors
even though they were 2D, to make the transition to 3D easier. Well, as it turns out,
since I've done that, there’s very little obvious difference—with the exception of the
model, of course—between the code in the 2D simulation and the code in the 3D one
that we’ll be discussing here. Thus, you’ll be familiar with a lot of the code presented
herein after having already gone through Chapter 12.

Asin 2D, there are four main elements to this 3D simulation: the model, integrator, user
input, and rendering, Remember, the model refers to your idealization of the thing—an
airplane, in this case—that you are trying to simulate, while the integrator refers to the
method by which you integrate the differential equations of motion. These two elements
take care of most of the physics of the simulation. The user input and rendering elements
refer to how you'll allow the user to interact wich and view your simulation. Here again,
I'll use keyboard input for control and, as before, I'll use Direct3D for rendering.

In this simuladon the world coordinate system has its x-axis pointing into the screen,
its y-axis pointing to the left of your screen, and the z-axis pointing upward. Also, the
local, or body-fixed, coordinate system has its x-axis pointing toward the front of the

230

airplane, its y-axis pointing to the port side, and its z-axis pointing upward. Since this
is a 3D simulation of an airplane, once you get it running, you'll be able to fly in any
direction, looping, banking, diving, and, climbing, or performing any other aerobatic
maneuver you desire.

Model

One of the most important aspects of this simulation is the flight model. I spent all
of Chapter 7 discussing the physics behind this flight model, so 1 won’t repeat the
discussion here, except to refresh your memory on the pertnent source code. If you
have not already read Chapter 7, then I suggest you go back now and take a look at it,
at least the section entitled “Modeling.”

To implement the flight model, you first need to prepare a rigid body structure to
encapsulate all of the data required to completely define the state of the rigid body at any
instant during the simulation. I've defined a structure called RigidBody for this purpose:

typedef struct _RigidBody {

float fMass; // total mass
Matrix3x3 mInertia; // mass moment of inertia
// in body coordinates

Matrix3x3 mInertialnverse; // inverse of mass moment of inertia
Vector vPosition; // position in earth coordinates
Vector velocity; /7 velocity in earth coordinates
Vector welocityBody; // velocity in body coordinates

Vector vAngularVelocity; // angular velocity in body coordinates
Vector vEulerAngles; // Euler angles in body coordinates
float fSpeed; // speed (magnitude of the velocity)
Quaternion qOrientation; // orientation in earth coordinates
Vector vForces; // total force on bedy

Vector vMoments; // total moment (torque) on body

} RigidBody, *pRigidBody;

You’ll notice that it is very similar to the RigidBody2D structure that I used in the 2D
hovercraft simulation. One significant difference, however, is that in the 2D case,
orientation was a single float value, and now in 3D it’s a quaternion of type Quaternion.
I discussed the use of quarernions for tracking rigid body orientation in the preceding
chapter, and Appendix C contains a complete definition of the Quaternion class.

The next step in defining the flight model is to prepare an initialization function to
initialize the airplane at the start of the simuladon. For this purpose I've prepared a
function called InitializeAirplane:

RigidBody Airplane; // global variable representing the airplane

void InitializeAirplane(void)

float iRoll, iPitch, iYaw;

Model { 237

// Set initial pesition

Airplane.vPosition.x = -5000.0f;
Airplane.vPosition.y = 0.0f;
Airplane.vPosition.z = 2000.0f; P

// Set initial velocity

Airplane.vwVelocity.x = 60.0f;
Airplane.welocity.y = 0.0f;
Airplane.welocity.z = 0.0f;

Airplane.fSpeed = 60.0f;

/7 Set initial angular velocity

Airplane.vAngularVelocity.x = 0.0f;
Airplane.vAngularVelocity.y = 0.0f;
Airplane.vAngularVelocity.z = 0.0f;

// Set the initial thrust, forces, and moments

Airplane.vForces.x = 500.0f;
Airplane.vForces.y = 0.0f;
Airplane.vForces.z = 0.0f;
ThrustForce = 500.0;
Airplane.vMoments.x = 0.0f;
Airplane.vMoments.y = 0.0f;
Alrplane.vMoments.z = 0.0f;

// Zero the velocity in body space coordinates

Airplane.vVelocityBedy.x = 0.0f;
Airplane.welocityBody.y = 0.0f;
Airplane.welocityBody.z = 0.0f;

// Set these to false at first,

//you can control later using the keyboard
Stalling = false;

Flaps = false;

// Set the initial orientation

iRoll = 0.0f;

iPitch = 0.0f;

iYaw = 0.0f;

Airplane.gOrientation = MakeQFromEulerAngles{iRell, iPitch, iYaw);

// Now go ahead and calculate the plane’s mass properties
CalcAirplaneMassProperties({);

+
This function sets the initial location, speed, attitude, and thrust for the airplane and
goes on to calculate its mass properties by making a call to CalcAirplaneMassProperties.
You've already seen this function in Chapter 7, where I discussed it in detail. I won't
show the whole thing again here, but I do want to poiut out a portion of the code that
is distinctly different from what you do in a 2D simulation, and that’s the calculation
of the moment of inertia tensor:

void CalcAirplaneMassProperties{void)

{

232 | Chapter15: 30 Rigid Body Simulator

// Now calculate the moments and products of inertia for the
// combined elements.
// (This inertia matrix (tensor) is in body coordinates)

Ixx = 0; Iyy = 0; Izz = 0;
Ixy = 0; Ixz = 0; Iyz = 0;
for (i = 0; i< B; it+}

{

Ixx += Element{i].vlocallnertia.x + Element[i].fMass *
(Element[1].vCGCoords.y*Element[1].vCGCoords.y +
Element{i].vCGCoords.z*Element[i].v(GCoords.z);

Iyy += Element[i].vLocallnertia.y + Element[i].fMass *
(Element{i].vCGCoords,z*Element[i].v(GCoords.z +
Element[i].v(GCoords.x*Element{i].vCGCoords.x);

Izz += Element[i].vLocalInertia.z + Element[i].fMass *
(Element[i].vCGCoords.x*Element{i].vCGCoords.x +
Element[i].vCGCoords.y*Element[i].vCGCoords.y);

Ixy += Element[i].fMass * (Element[i].vCGCoords.x *
Element[i].v(GCoords.y);

Ixz += Element[i].fMass * (Element[i].vCGCoords.x *
Element[i].vCGCoords.z);

Iyz += Element[i].fMass * (Element[i].vCGCoords.y *
Element[i].vCGCoords.z);

I

// Finally, set up the airplane’s mass and its inertia matrix and take
// the inverse of the inertia matrix
Airplane,fMass = mass; '

Airplane.mInertia.e1il = Ixx;
Alrplane.mInertia.ei2 = -Ixy;
Adrplane.mlnertia.e13 = -Ixz;
Airplane.mInertia.e21l = -Ixy;
- Alrplane.mInertia.e2z = Iyy;
Airplane.mInertia.e23 = -Iyz;
Airplane.mInertia.e31 = -Ixz;
Airplane.mInertia.e32 = -Iyz;
Airplane.mInertia.e33 = Izz;

" pirplane.mInertialnverse = Airplane.mInertia.Inverse();

s

Recall thatthe airplane is modeled by a number of elements, each representing a different
part of the airplane’s structure—for example, the tail rudder, elevators, wings, and
fuselage. The code highlighted here takes the mass properties of each element and
combines them using the techniques discussed in Chapter 11 to come up with the
combined inertia tensor for the entire aircraft. The important distinction between these
calculations in a 3D simulation and the 2ID simulation is that here the inertia is a tensor,
and in 2D it is a single scalar.

InitializeAirplane is called at the very start of the program. I found it convenient to
make the call right after the application’s main window is created and shown, in this
case in the standard Windows API InitInstance function as shown here:

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)

hInst = hInstance;
nShowCmd = nCmdShow;

Meodel | 233

hTheMainWindow = CreateWindow(szAppName,
szTitle,
WS_OVERLAPPEDWINDOW |
WS_CLIPCHILDREN | NS_CLIPSI'B‘EQINGS,
0, 0, 640, 480, ‘
NULL, NULL, hInst, NULL);

if (ICreateD3DRMDbject())
return (FALSE};

if {1CreateDIDRMClipperObject{hTheMainWindow))
return (FALSE);

if ({CreateviewPort(hTheMainkindow})
return {FALSE);

ShowWindow({hTheMainWindow, nCmdShow);
UpdateWindow(hTheMainWindow);

InitializeAirplane();

return (TRUE};
} _

The final part of the flight model has to do with calculating the forces and moments
that act on the airplane at any given instant in time during the simulation. As in the
2D hovercraft simulation, without this sort of function, the airplane will do nothing,
For this purpose I've defined a function called CalcAirplaneloads, which is called at
every step through the simulation. This function relies on a few other functions, namely,
LiftCoefficient, DragCoefficient,RudderLi ftCoefficient, and RudderDragCoefficient. All
of these functions are shown and discussed in detail in the section of Chapter 7 entitled
“Modeling.”

For the most part, the code contained in CalcAirplaneloads is similar to the code you
saw in the Calcloads function of the hovercraft simulation. CalcAirplanloads is a little
more involved, since the airplane is modeled by a number of elements that contribute
to the total lift and drag on the airplane. There’s also another difference, which I've
highlight here:

veid CalcAirplanelLoads{void)

{

// Convert forces from model space to earth space
Airplane.vForces = QVRotate(Airplane.qOrientation, Fb);

/¢ Apply gravity {g is defined as -32.174 ft/s°2)
Airplane.vForces.z += g * Alrplane.fMass;

}

Just about all of the forces acting on the airplane are first calculated in body-fixed
coordinates and then converted to earth coordinates before the gravity force is applied.

84 | Chapter15: 3D Rigid Body Simulator

The coordinate conversion is effected through the use of the functon OvRotate, which
rotates the force vector based on the airplane’s current orientation represented by a
quaternion.*

Integration

Now that the code to define, initialize, and calculate loads on the airplane is com-
plete, you need to develop the ~ode to actually integrate the equations of motion so
that the simulation can progress through time. The first thing you need to do is decide
on the integration scheme thar you want to use. In this example I decided to go with
the basic Euler method. I've already discussed some better methods in Chapter 11 and
indeed implemented one of those methods in the 2D simulation of Chapters 12 and 13.
P’m going with Euler’s method here because it’s simple, and 1 didn’t want to make the
code here overly complex, burying some key code that I need to point out to you. That
said, I've prepared a function called StepSimulation that handles all of the integration
necessary ro actually propagate the simulation.

void StepSimulation(float dt)

// Take care of translation first:
/7 (If this body were a particle, this is all you would need to do.)

Vector Ae;

// calculate all of the forces and moments on the airplane:
CalcAirplanetoads();

// calculate the acceleration of the airplane in earth space:
Ae = Airplane.vForces / Airplane.fMass;

// calculate the velocity of the airplane in earth space:
Airplane.vwelocity += Ae * dt;

// calculate the position of the airplane in earth space:
Airplane.vPosition += Airplane.vVelocity * dt;

// Now handle the rotations:
float mag;

// calculate the angular velocity of the airplane in body space:
Airplane.vAngularVelocity += Airplane.mlnertialnverse *
(Airplane.vMoments -
(Airplane.vangularvelocity”
(Airplane.mInertia *
Airplane.vAngularVelocity)))
* dt;

// calculate the new rotation quaternion:

Airplane.qOrientation += (Airplane.qOrientation *
Airplane.vAngularVelocity) *
{0.5f * dt); -

* QVRotate is defined in Appendix C.

Integration | 235

// now normalize the orientatien quaternion:

mag = Airplane.qdrientation.Magnitude(};

if (mag != 0) s
Airplane.qOrientation /= mag; b

/¢ calculate the velocity in body space:

// (we’ll need this to calculate lift and drag forces)

Airplane.wWelocityBody = QVRotate(~Airplane.qUrientation,
Airplane.welocity);

// calculate the air speed:
Airplane.fSpeed = Airplane.welocity.Magnitude();

// get the Euler angles for our information
Vector u;

u = MakeFulerAnglesFromQ{Airplane.qOrientation);

Airplane.vEulerAngles.x = u.x; // roll
Airplane.vEulerAngles.y = u.y; // pitch
Airplane,vEulerAngles.z = u.z; /i oyaw

}

The very first thing that Stepsimulation does is call CalcAirplaneloads to calculate the
loads acting on the airplane at the current instant in time. StepSimulation then goes
on to calculate the linear acceleration of the airplane based on current loads. Next,
the function goes on to integrate, using Euler’s method, once to calculate the air-
plane’s linear velocity and then a second time to calculate the airplane’s position. As
Pve commented in the code, if you were simulating a particle, then this is all you
would have to do. However, since this is not a particle, you need to handle angular
motion.

The first step in handling angular motion is to calculate the new angular velocity at this
time step, using Euler integration, based on the previously calculated moments acting
on the airplane and its mass properties. This is done in body coordinates by using the
equation of motion that I discussed previously:

ZML‘E‘ = dH/dt = l{dw/dt) + [w x (Iw)]

The next step is to integrate again to update the airplane’s orientation, which is ex-
pressed as a quaternion. Here, you need to use the differendal equation relating an
orientation quaternion to angular velocity that I showed you in the preceding chapter:

dq/dt = {1/2wq

Next to enforce the constraint that this orientation quaternion be a unit quaternion,
the function normalizes the orientaion quaternion.

Since the linear velocity was previously calculated in global coordinates (the fixed coor-
dinate system), and since CalcAirplaneLoads needs the velocity in the body-fixed (rotat-
ing) coordinates system, the function rotates the velocity vector, storing the body-fixed
vector in the welocityBody member of the RigidBody structure. This is done here as a
matter of convenience and uses the quaternion rotation function QvRetate to rotate the

236 | Chapter15: 3D Rigid Body Simulator

vector on the basis of the airplane’s current orientation. Notice here that the conjugate
of the orientation quaternion is used, since we’re now rotating from global coordinates
to body coordinates.

As another convenience, the air speed is calculated, which is simply the magnitude of

the linear velocity vector. This is used to report the air speed in the main window title
bar.

Finally, the three Euler angles—roll, pitch, and yaw—are extracted from the orientation
quaternion so that they can also be reported in the main window title bar. The function
to use here is MakeEulerAnglesFromQ, which is defined in Appendix C.

StepsSimulation is called once per game loop cycle. In this example I set up another
function called NullEvent that gets called every time through the main window message
loop as shown here: E

int APIENTRY WinMain{HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdiine,
int nCmdShow)

{
0ldTime = timeGetTime(};
NewTime = OldTime;
/{ Main message loop:
while (1) {
while(PeekMessage(Bmsg, NULL, 0, 0, PM_REMOVE)} {
if (msg.message == WM_QUIT) {
return msg.wParam;
}
TranslateMessage(fmsg);
DispatchMessage({&msg);
NullEvent();
}
}

When NullEvent calls StepSimulation, it passes the size of the time step in as the dt
parameter. As with the hovercraft example, you don’t have to do it this way, I chose to
because I was experimenting with having the time step calculated in real time as the
difference in time between the last call to StepSimulation and the current time as shown
here:

void NullEvent(void)

Integration | 237

NewTime = timeGetTime()};
gt = (float) (NewTime - 0ldTime}/1000;
0ldTime = NewTime;

if (dt » {0.016f)) dt = (0.016f);
if (dt < 0.001f) dt = 0.001f;

StepSimulation(dt);

}
Here again, [bracket the time step with the upper limit governed by numerical stability

and the lower limit by the timer accuracy You'll have to tune these limits for your
simulations on the basis of your integration technique and chosen timer.

Flight Controls

At this point, the simulation still won’t work right because you have not implemented
the flight controls. The flight controls allow you to interact with the airplane’s various
controls surfaces to actually fly the plane. I'll use the keyboard as the main input device
for the flight controls. Remember, in a physics-based simulation such as this one, you
don’t directly control the motion of the airplane; you control only how various forces
are applied to the airplane, which then, by integration over time, affect the motion of
the airplane.

For this simulation the flight stick is simulated by the arrow keys. The down arrow
pulls back on the stick, raising the nose; the up arrow pushes the stick forward, causing
the nose to dive; the left acrow rolls the plane to the left (port side); and the right arrow
rolls the plane to the right (starboard side). The X key applies left rudder action to cause
the nose of the plane to yaw toward the left, and the C key applies right rudder action
to cause the nose to yaw toward the right. Thrust is controlled by the A and Z keys. The
Akey increments the propeller thrust by 100 1b, and the Z key decrements the thrust by
100 1b. The minimurm thrust is zero, and the maximum available thrust is 3000 ib. The
F key activates the landing flaps to increase lift at low speed, and the D key deactivates
the landing flaps.

Pitch is affected by deflecting the flaps on the aft elevators; for example, to pitch the nose
up, the aft elevator flaps are deflected upward, that is, the trailing edge of the elevator
is raised with respect to the leading edge. Roll is affected in this simulation by applying
the flaps differentially; for example, to roll right, the right {lap deflects upward and
the left flap deflects downward. Yaw is affected by deflecting the vertical tail rudder;
for example, to yaw left, the trailing edge of the tail rudder is deflected toward the
left.

I’ve prepared several functions to handle the flight controls that should be called when-
ever the user is pressing one of the flight control keys. There are two functions for the

238 | Chapter15: 3D Rigid Body Simulator

propeller thrust:
void IncThrust(void)

ThrustForce += _DTHRUST;
if(ThrustForce > _MAXTHRUST)
ThrustForce = _MAXTHRUST;

}
void DecThrust(void)
ThrustForce -= _DTHRUST:
if(ThrustForce < 0)
ThrustForce = 0;
}

IncThrust simply increases the thrust by _DTHRUST checking to make sure it does not
exceed _MAXTHRUST, I've defined _DTHRUST and _MAXTHRUST as follows:

#define _DTHRUST 100.0f
#define _MAXTHRUST 3000.0f

DecThrust, on the other hand, decreases the thrust by _DTHRUST, checking to make sure
it does not fall below zero.

To control yaw, I've prepared three functions that manipulate the rudder:

void LeftRudder(void)
Element{6].fIncidence = 16;
void RightRudder(void)
* Element[6].fIncidence = -15;
void ZeroRudder(void)
Element[€].fIncidence = 0;

LeftRudder changes the incidence angle of Element[6], the vertical tail rudder, to 16 deg-
rees; RightRudder changes the incidence angle to —16 degrees. ZeroRudder centers the
rudder at zero degrees.

The ailerons, or flaps, are manipulated by these functions to control roll:
void RollLeft{void)

Element[0].iFlap
Element[3].3iFlap

1;

nn
'
[
we

}

void RollRight{void)

ek

Flight Controls | 239

Element[0].iFlap = -1;
Element{3].iFlap = 1; s
e
h !
void ZeroAilerons{void)

Element[0].iflap = O;
, Element[3].iFlap = 0;
RollLeft deflects the portaileron, located on the port wing section (Element[0]), upward
and deflects the starboard aileron, located on the starboard wing section (Element[3]),
downward. RollRight does just the opposite, and Zeroilerons resets the flaps back to
their undeflected positions.

I've defined yet another set of functions to control the aft elevators so asto control pitch:

void PitchUp(void)

Element[4].iFlap = 1;
Element[5].iFlap = 1;

}

void PitchDown{void)
Element[4].iFlap = -1;
Element[5].iFlap = -1;

}

void ZeroElevators{void)
Element[4].iFlap = O;
Element[5].iFlap = 0;

}

Element[4] and Element[5] are the elevators. PitchUp deflects their flaps upward, and
PitchDown deflects their flaps downward. ZeroElevators resets their flaps back to their
undeflected positions.

Finally, there are two more functions to control the landing flaps:

void FlapsDown{veid)
Element{1].iFlap = -1;
Element[2].iFlap = -1;
Flaps = true;

}

void ZeroFlaps(void)
Elementi1].iFlap = 0;
Element{2].iFlap = O;
Flaps = false;

}

The landing flaps are fitted on the inboard wings sections, port and starboard, which
are Element{1] and Element[2], respectively. FlapsDown deflects the flaps downward, and
ZeroFlaps resets them back to their undeflected position.

240 | Chapter15: 3D Rigid Body Simulator

As I sajd, these functions should be called when the user is pressing the flight control
keys. Further, they need to be called before StepSimulation is called so that they can
be included in the current time step’s forces and moments calculations. Since I put the
StepSimulation call in my NullEvent function, it makes sense to handle the flight controls
in that function as well. Here’s how I did it:

void NullEvent(vcid)
{

ZeroRudder()};
Zerohilerons();
ZeroElevaters();

// pitch down
if (IsKeyDown{VK_UP})
PitchDown();

// pitch up
if (IsKeyDown(VK_DOWN)}
PitchUp(};

// roll left
if (IsKeyDown{VK_LEFT))
Rollleft();

// roll right
if {IsKeyDown{VK_RIGHT})
RollRight(};

// Increase thrust
if (IsKeyDown{0x41}) // A
IncThrust();

~// Decrease thrust
if (IsKeyDown{OxSA)) // Z
DecThrust(};

1/ yaw left
if (IsKeyDown{Ox58)) // x
LeftRudder{);

// yaw right
if {IsKeyDown{(0x43)) // ¢
RightRudder()};

// landing flaps down
if (IsKeyDown{0x46)) //f
FlapsDown();

// landing flaps up
if {(IsKeyDown(0ox44)} // d
ZeroFlaps();

NewTime = timeGetTime();
dt = (float) (NewTime - OldTime)/1000;
0ldTime = NewTime;

.%,lu_'

Fiight Controls | 241

*

if (dt > (0.016f))} dt = (0.016f);
if (dt ¢ 0.001f) dt = 0.001f;

StepSimulation(dt); oo

}
Before StepSimulation is called, each of the flight control keys is checked to see whether
it is being pressed. If so, then the appropriate function is called.

The function IsKeybown that checks whether a certain key is pressed looks like this:

BOOL IsKeyDown(short KeyCode)

SHORT retval;
retval = GetAsyncKeyState({KeyCode);

if (HIBYTE(retval))
return TRUE;

return FALSE;
}

I used this function because it is possible that more than one key will be pressed at any
given time, and I wanted to handle them all simultaneously instead of one at a time in
the standard window message processing function.

The addition of flight control code pretty much completes the physics part of the
simulaton. So far, you have the model, the integrator, and the user input or flight
control elements completed. All that remains is setting up the application’s main
window and actually drawing something to look at that represents what you're
simulating.

Rendering

Setting up the main window and drawing something interesting to look at isn’t re-
ally related to physics. However, for completeness I'll briefly present the code that 1
used in this example to set up the main window and render the simulation using
Direct3D.*

Starting with the main window; I used standard Windows API code to initialize the
application, create and update the main window, and handle window messages and
user input. I assume that you're are familiar with Windows API programining, so I
won’t go into derailed explanation of the code.

* If you aren’t already familiar with programming Direct3D, you should check out the book entitled The
Awesome Power of Direct3D/DirectX by Perer . Kovack. Simply put, it’s very useful.

242 | Chapter 15: 3D Rigid Body Simulator

I've already shown you part of the WinMain function, but here’s the whole thing:

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
1pCmdline, int nCmdShow}
{

MSG msg;

HANDLE hAccelTable;

if (IhPrevInstance) {
// Perform instance initialization:
if (!InitApplication(hInstance)) {
return (FALSE};
}

h

// Perform application initialization:
if (!InitInstance(hInstance, nCmdShow)} {
return (FALSE};

hAccelTable = LoadAccelerators (hInstance, szAppName);

0ldTime = timeGetTime(};
NewTime = 01dTime;

// Main message loop:
while (1) {

Il

while(PeekMessage(8msg, NULL, 0, 0, PM_REMOVE)} {
if {msg.message == WM_QUIT)} {
return msg.wParam;

TranslateMessage(&msg);
DispatchMessage(&msg);

NullEvent{);

~

return {msg.wParam);

}

WinMain makes callsto InitInstance and InitApplication. I've already shown you InitIn-
stance, so here’s InitApplication:

BOOL InitApplication(HINSTANCE hInstance)

WNDCLASS wc;
HWND hwnd;

hwnd = FindWindow (szAppName, NULL);
if (hwnd} {
if {IsIconic(hwnd)} {
Showlindow{hwnd, SW_RESTORE);
) .

SetForegroundWindow (hwnd);

return FALSE;
h

Rendering | 243

we.style CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

we.lpfriWndProc = {WNDPROC)WndProc;

wc.cbClsExtra = 0; i
wc.cbWndExtra = 03 '?’
wc.hInstance = hInstance;

we.hIcon = NULL;

wc. hCursor = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);

wc. lpszMenuName = NULL;
wc.lpszClassName = szAppName;

return RegisterClass(&wc};

}

So far this AP] code creates a window class for the main window, registers that class,
creates and displays a 640 x 480 window, creates a couple of Direct3D objects that are
needed to render into a Direct3D view port (these calls are in InitInstance), and starts
the main program loop, calling NullEvent each time.

The only other API function that’s needed is the window message processing function,
WndProc:

LRESULT CALLBACK WndProc(HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM 1Param}

{
int winld, wmEvent;
BOOL validmenu = FALSE;
int selection = 0;
PAINTSTRUCT -ps;
HOC pDC;
WPARAM key;

switch (message) {
case WM_ACTIVATE:
if (SUCCEEDED(D3D.Device->QueryInterface(
IID_IDirect3DRMWinDevice,
{void **) &4inDev)))

if (FAILED{WinDev->HandleActivate{wParam)))
WinDev->Release();

}

break;

case WM_DESTROY:

Cleanlp(};
PostQuitMessage(0);
break;

case WM_KEYDOWN:
key = (int} wParam;

if (key == 0x31) // 1 key
SetCameral();

244 | Chapter15: 3D Rigid Body Simulator

if (key == 0x32) // 2 key
SetCameraz(};

if (key == 0x33) // 3 key
SetCamera3();

break;

case WM_PAINT:
pDC = BeginPaint(hTheMainWindow, (LPPAINTSTRUCT) &ps);

if (SUCCEEDED{D3D.Device->QueryInterface(
IID_IDirect3DRMWinDevice,
(void **) &WinDev)))

if (FATLED(WinDev->HandlePaint(ps.hdc)))
. WinDev-»Release();

}
EndPaint(hTheMainWindow, {LPPAINTSTRUCT} &ps);

return (0);
break;

default:
return (DefWindowProc(hWnd, message, wParam, lParam));

return (0});

In response to WM_ACTIVATE, this function acquires a IDirect3DRMWinDevice that’s
needed for using Direct3D retained mode.

In response to WM_KEYBOWN, this function switches to one of the three cameras that I’ve
set up to view the simulation from different perspectives. Camera 1 is a view from the
cockpit of the airplane, camera 2 is a view from outside and just behind plane, and
camera 3 is a view from the global origin that always looks at the airplane and follows
its movement.

The response to WM_PAINT handles painting the scene to the main window. Finally, the
response to WM_DESTROY cleans up all the Direct3D stuff and quits the application.

Now I need to show you yet another version of my NullEvent function:

void NullEvent(void)
{

Vector vz, vx;
char buf[256];
char s[256];

ZeroRudder();
ZeroAilerons();
ZeroElevators();

// pitch down
if (IsKeyDown(VK_UP))
PitchDown();

Rendering | 245

1" pitch up
if {IsKeyDown{VK_DOWN})}
Pitchup();

// roll left
if (IsKeyDown{VK_LEFT})
Rollleft(};

/{ 1oll right
if (IsKeyDown{VK_RIGHT))
RollRight(};

// Increase thrust
if {IsKeyDown(0x41)) // A
IncThrust();

// Decrease thrust
if (IsKeyDown{Ox5A)) // Z
DecThrust();

/7 yaw left
if (IsKeyDown(0x58)) // x
LeftRudder();

// yaw tight
if (IsKeyDown(0x43)) // ¢
RightRudder();

// landing flaps down
if {IsKeyDown(Ox46)) //f
FlapsDown();

// landing flaps up
if (IsKeyDown{0x44)) // d
ZeroFlaps(};

NewTime = timeGetTime{);
dt = {float) (NewTime - 01dTime}/1000;
0ldTime = NewTime;

if (dt > (0.016f)) dt = (0.016f);
if (dt < 0.001f) dt = 0.001f;

StepSimulation(dt);

if(FrameCounter »= RENDER_FRAME_COUNT)
{
// Direct3D x = - our y
// Direct3D y = our z
// Direct3D z = our x
SetCameraPosition{ -Airplane.vPosition.y,
Airplane.vPosition.z,
Airplane.vPosition.x);

VZ
VX

GetBodyZAxisVector(); // pointing up in our coordinate system
GetBodyXAxisVector(); // pointing forward
’ // in our coordinate system

SetCameraOrientation{-vx.y, vX.z, VX.X, -VZ.Yy, VZ.Z, VI.X);
Render();

246 | Chapter1S: 3D Rigid Bedy Simulator

0ldTime = NewTime;

// Report stats in window title

sprintf(buf, “Roll= ¥.2f ; ”, Airplane.vEulerAngles.x);

strcpy(s, buf);

/{ take negative here, since pilots like to see

//positive pitch as nose up:

sprintf(buf, “Pitch= %.2f ; *, -Airplane.vEulerAngles.y);

strcat(s, buf);

sprintf(buf, “Yaw= %.2f ; ®, Airplane.vEulerAngles.z);

strcat(s, buf);

sprintf(buf, “Alt= %.0f ; *, Airplane.vPosition.z);

strcat(s, buf);

sprintf(buf, “T= %.0f ; *, ThrustForce);

strcat(s, buf};

sprintf(buf, “S= %.of ”, Airplane,fSpeed/1.688); // divide by 1.688
// to convert
/f ft/s to knots

strcat(s, buf);

if(Flaps)

strcat(s, “; Flaps®);

if(Stalling)
{

strcat(s, “; Stalll”);
Beep (10000, 250);

SetWindowText(hTheMainWindow, s);
} else
FrameCounter++;

The code that you have not seen yet appears just after the call to Stepsimulation. There
are several things going on here,

First, the camera positions have to be updated to reflect to new location of the plane.
That’s pretty easy to do, but remember from the 2D hovercraft example that you have to
take note that the coordinate system used by Direct3D is not the same as the one used in
the simulation. Direct3D uses a left-handed coordinate system with the x-axis pointing
to the right, the y-axis pointing upward, and the z-axis pointing into the screen. Thus,
Direct3D’s x-axis is our negative y-axis, its y-axis is our z-axis, and its z-axis is our
x-axis.

In addirion to setting the proper location for each camera, you also have to make sure
its orientation is correct. To do that, Direct3D requires a couple of vectors, one defining
the frame’s new z-axis and the other defining its new y-axis. To make things easier, I've
prepared a couple of functions to get the correct x- and z-axis vectors for the airplane
so that they can be used for Direct3D’s z- and y-axis vectors, respectively, when setting
the camera orientation to align with the orfentation of airplane, You’ll want to do this,
for example, when looking out of camera 1, which is a cockpit view; as the plane rolls,
pitches, or yaws, you'll want the scene that you are viewing to reflect that movement as
if you were sitting in the airplane:

o

Rendering | 247

Vector GetBodyZAxisVector{void)

{
Vector V3 7§§
v.Xx = 0.0f;
v.y = 0.0f;
v.z = 1.0F;
return QvRotate(airplane.qOrientation, v);
}
Vector GetBodyXaxisvector{void)
{
Vector v;
v.x = 1.0f;
v.y = 0.,0f;
v.z = 0.0f;
return QVRotate(Airplane.gOrientation, v);
}

Getting back to the NullEvent function, after the cameras are po_sitioned, the scene is
actually rendered to the main window by calling the Render function, Once that’s done,
the window caption is changed to show a few statistics, namely, the three Euler angles,
propeller thrust, and air speed. Further, if the landing flaps are down, then the word
“flaps” will appear in the title bar, and if a stall condition is encountered, the word
“stall” will appear.

Notice here that I'm using the same technique that I applied in the 2D hovercraft
example of advancing the physics simulation more often than the display. Again, you'll
have to adjust the physics update to display update for you own specific simulations.

The rest of the code required for this simulation is related to rendering using Direce3D
and has nothing directly to do with physics, so I have not included that code here.
However, you can obtain the full source code for this example from O’Reilly’s web site
at wunw.oreilly.com.

248 | Chapter15: 30 Rigid Body Simulator

CHAPTER 16
Multiple Bodies in 3D

In this chapter I'll show you how to handle multiple rigid bodies along with collision
response in three dimensions. The example that I'll show you here is a simulation of a
car crashing into a couple of test blocks, Figure 16-1 is a snapshot of the simulation just
after impact.

This example is set up to automatically cycle through three different crash scenarios
corresponding to different block arrangements.” You can view the simulation from
different camera angles by pressing the keyboard buttons 1, 2, and 3 corresponding to
views from the car’s center of gravity, from ourside and behmd the car, and from outside
on the left side of the car, respectively.

This example uses a lot of the same code as the flight simulation example presented in
the previous chapter, so I won’t repeat the shared code here. Instead, I'll highlight the
specific sections of code thar are unique to this example. The procedure for handling
this simulation is very similar to the simulations that I've already discussed; the steps
are as follows:

* Set up a rigid body structure to store the state information for each object.
¢ Setup an array of rigid bodies.

* Inigalize the objects.

* Calculate the forces on each object at each time step.

* Integrate to update each object’s velocity and position.

Handle any collisions.

In the next several sections I'll address each of these steps. After that I'll discuss tuning
the simulation. I'll also discuss the limitations of this simulation and recommend some
improvements.

* I want 1o remind you that the source and executable files for all the examples discussed in this book are
available on the O'Reilly web site.

.%,L‘_'

248

TotalTime= 0.6

Figure 16-1. Impact Simulation - }

ot < £ 3
AT I N A

Model

The purpose of this simulation is not to show you how to model specific objects in
detail, like the flight simulation of the last chapter, so I'm going o use simple models
in this example. What I want to emphasize here is how w handle multiple objects,
and 1 don’t want to clutter that issue with complex initialization and force calculations.
Later, in your own simulations, you cau develop highly detailed models of the specific
object(s) that you're trying to simulate using the techniques that I've discussed earlier
in this book combined wich those presented in this chapter.

Initialization

Let’s start by taking a look at the RigidBody structure that will be used to keep track of
the state of each object in the simulation:

i

// Rigid body structure

et ettt
1/

typedef struct _RigidBedy {

250 | Chapter 16: Multiple Bodies in 3D

float fMass; // total mass (constant)

Matrix3x3 mInertia; // mass moment of inertia
// in body coordinates
Matrix3x3 mInertialnverse; // inverse of mass

/7 moment of inertia matrix

Vector vPosition; // position in earth coordinates
Vector vVelocity; // velocity in earth coordinates
Vector vWelocityBody; // velocity in body coordinates
Vector vAcceleration; // acceleration of cg

// in earth space
Vector vAngularAcceleration; // angular acceleration

// in body coordinates

Vector vAngularVelocity; // angulsr velocity in

// body coordinates
Vector vEulerAngles; // Euler angles in body coordinates
float tSpeed; // speed
Quaternion glrientation; // orientation in earth coordinates
Vector vForces; // total force on body
Vector vMoments; /7 total moment {torgque) on body
Matrix3x3 mleInverse; // inverse of moment of

// inertia in earth coordinates

float fRadius;
Vector vwertexlList[8];

} RigidBody, *pRigidSody;

For the most part, this structure is idenrical to the one shown in Chapter 15°s flight
simulation example but with a few additions. Since we’ll be handling collisions in the
simuiation, I've added fRadius and vWertexList[8] to the structure. fRadius stores the
radius of the minimum bounding sphere for the object, which is used in an initial
boundmg sphere &olhs:on check, and wertexList[8] is a list of vertices that will be
used to represent the body s hard points, that is, the points that will be used for collision

detection.

I've also added Mglg;ayon and vAngularAccelergnon to store the object’s linear and
angular acceleration, respectively. We’'ll need these values to handle the contact forces
between the objects and the ground when they are sitting on the ground bur not colhdlng
with it. I'll talk more about this in 2 moment.

Now that you have the structure defined, you can go ahead and set up an array of rigid
bodies as follows:

#define NUMBODIES 3
RigidBody Bodies[NUMBODIES];

At the start of the simulation you need to initialize all the objects. In this example I've
set up a function called Initializedbjects for this purpose:

e e e . 7
// This function sets the initial state of the objects
P P 17
void InitializeGbjects{int configuration)

.g,li‘_'

Model | 251

float iRell, iPitch, iYaw;

int i;
float Ixx, Iyy, Izz; 1¢ﬁ
float s;

// Initialize the car:
// Set initial position
Bodies[0].vPosition.x
Bodies[0].vPosition.y
Bodies{[0].vPosition.z

-50.0%;
0.0f;
CARHEIGHT/2.0F;

// Set initial velocity
switch{configuration)

{
case 0: s = 110.0f; brea<; // Tt/s
case 1: s = 120,0f; brea«<; // ft/s
case 2: s = 115.0F; brea<; // ft/s
}
Bodies[0].vvelocity.x = §;
Bodies{o].vvelocity.y = 0.0f;
Bodies[o].vvelocity.z = 0.0F;

Bodies[0].fSpeed = s;

/! Set initial angular velocity

Bodies[0].vAngularvelocity.x = 0.07F;
Bodiesfo].vAngularVelocity.y = 0.0%;
Bodies{o].vAngularvelocity.z = 0.0%;
Bodies[0].vAngularAcceleraticr.x = 0.0f;
Bodies{0].vAngularacceleraticr.y = 0.0f;
Bodies[0].vAngularAcceleratior.z = 0.0f;
Bodies[0].vAcceleration.x = 0.0f;
Bodiesf0].vAcceleration.y = 0.0f;
Bodies{0].vAcceleration.z = 0.0f;

/4 Set the initial thrust, ferces, and moments
Bodies[0].vForces.x = 0.0f;

Bodies[0].vForces.y = 0.0f;
Bodies[0].vForces.z = 0.07;
ThrustForce = 0.0;
Bodies[0].vMoments.x = 0.0f;
Bodies[o}.vMoments.y = 0.0f;
Bodies[0].vMoments.z = 0.0f;

// Zero the velocity in body space coordinates

Bodies{0].vWelocityBody.x = ¢.GfF;
Bodies[0].vVelocityBody.y = C.0f;
Bodies[0}.vVelocityBoedy.z = C.0f;

/! Set the initial orientatic-

iRoll = o.0f;

iPitch = 0.0f;

iYaw = 0.0f;

Bodies[0].qOrientation = MakeQfromfulerAngles(iRall, iPitch, iYaw};

// Set the mass properties
Bodies[0].fMass = 2000.0F/(-g);

252 | Chapter16: Multiple Bodies in 3D

Ixx = Bodies[o].fMass/12.0f *

(CARWIDTH*CARWIDTH + CARHEIGHT*CARHEIGHT);
Iyy = Bodies{o].fMass/12.0f *

{CARHEIGHT*CARHEIGHT + CARLENGTH*CARLENGTH);
Izz = Bodies[0].fMass/12.0f *

(CARWIDTH*CARWIDTH + CARLENGTH*CARLENGTH);

Bodies{o].mInertia.e11 = Ixx;
Bodies[o].mInertia.e12 = 0;
Bodiesfo].mInertia.e13 = o;
Bodies[0].mInertia.e21 = 0;
Bodies[0].mInertia.e22 = Iyy;
Bodies!o].mInertia.e23 = 0;
Bodies[0].mInertia.e31 = 0;
Bodies[0].mInextia.e32 = 0;
Bodies[0].mInertia.e33 = Izz;

Bodies[0].mInertisInverse = Bodies[0].mInertia.Inverse();
Bodies[0].fRadius = CARLENGTH/2; // for bounding sphere check

// bounding verteces relative to CG {assumed centered here for now)
Bodies[o].vwWertexList[0].x = CARLENGTH/2.0f;
Bodies[o0].wWertexList[0].y = CARWIDTH/2.0f;
Bodies[0].vwVertexList[0].z = -CARHEIGHT/2.0f;

nmoun

Bodies[0].vwWertexlist[1].x
Bodies[o].vVertexList[1]}.y
Bodies[0].vwVertexList[1].z

CARLENGTH/z.0f; .
CARWIDTH/2.07; <
CARHEIGHT/z.0%;

Bodies{0].vVertexList[2].x
Bodies[o].vVertexList[2].y
Bodies[0].vVertexList{2].z

CARLENGTH/2.0f;
~CARWIDTH/2.0f;
CARHEIGHT/2.0f;

oo

CARLENGTH/2.07;
-CARWIDTH/2.0f;
-CARHEIGHT/2.0f;

Bodies[0].vVertexList[3].x
Bodies[o].vVertexList[3].y
Bodies[0].vVertexList[3].z

oo i

. Bodies[o].vwVertexlist[4].x
Bodies[0].vVertexList[4].y
Bodies[o].vVertexList[4].z

t
-CARLENGTH/2.0f; o L
CARWIDTH/2.0f;

-CARHEIGHT /2.0f;

Bodies[0].vVertexList[5].x
Bodies[0].vVertexList[5].y
Bodies[0].vwVertexList[5].z

-CARLENGTH/2.0f;
CARWIDTH/z.0f;
CARHEIGHT/2.0f;

oo

Bodies[0].vVertexList[6].x
Bodies[0].vVertexList[6].y
Bodies[0].vwVertexList[6].z

~CARLENGTH/2.0f;
-CARWIDTH/2.0f;
CARHEIGHT/2.0f;

noae o

Bodies[o].wWertexList[7].x
Bodies[0].wWertexList[7].y
Bodiesfo].wWertextist[7].z

-CARLENGTH/2.0f;
~CARWIDTH/2.0f;
-CARHEICHT/2.0f;

nman

ThrustForce = 0.0f;
// Initialize the blocks

for{i=1; i<NUMBODIES; i++)

Model [253

// Set initial pesition
switch{configuration)

case 2:
1f(i==1)

Bodies[i].vPosition.x
Bodies[i].vPosition.y
Bodies[i].vPosition.z
} else {
Bodies[i].vPosition.x
Bodies[i].vPosition.y
Bodies[i].vPosition.z

noa

Y

break;

case 1:
if(i==1)

1

Bodies[i].vPosition.x
Bodies[i].vPosition.y
Bodies[i].vPosition.z
} else {
Bodies[i].vPosition.x
Bodies[i].vPosition.y
Bodies[i].vPosition.z

i

}

break;

case 0O:
if(i==1)

Bodies[i].vPosition.x
Bodies[i].vPosition.y
Bodies[i].vPosition.z
} else {
Bodies{i].vPosition.x
Bodies{i].vPosition.y
Bodies[i].vPosition.z

}

break;

Y

// Set initial velocity

Bodies[i].wvelocity.x = C.Cf;
Bodies[i].welocity.y = 0.0f;
Bodies[il.vvelocity.z = 0.0f;
Bodies[i].fSpeed = 0.0f;

// Set initial angular velocity

Bodies[i].vAngularvelocity.x = 0.0f;
Bodies[i].vAngularVelocity.y = 0.0f;
Bodies[i].vAngularvelocity.z = 0.0F;
Bodies[i].vAngularAcceleration.x = 0.0f;
Bodies[i].vAngularAcceleration.y = 0.0f;
Bodies{i].vAngularAcceleration.z = 0.0f;
Bodies[i].vAcceleration.x = 0.0f;
Bodies[i].vAcceleration.y = 0.0F;
Bodies[i].vAcceleration.z = 0.0f;

BLOCKSIZE*4;
- (BLOCKSIZE/2.0F+1.0F);
BLOCKSIZE/2.0F;

0.0f;
0.of;
BLOCKSIZE/2.0f;

BLOCKSIZE*4;
-(BLOCKSIZE/2.0F+1,0F);
BLOCKSIZE/2.0F;

c.0f;
BLOCKSIZE/2.0f+1.0f;
= BLOCKSIZE/2.0f;

BLOCKSIZE+1.07F;
BLOCKSIZE/2.0f+1.0F;
BLOCKSIZE/2.0f;

0.0F;
BLOCKSIZE/2.0f+1.0f;
BLOCKSIZE/2.0f;

254 | Chapter16: Multiple Bodiesin 3D

// Set the initial thrust, forces and moments
Bodies[i].vForces.x = 0.0f;
Bodies[i].vForces.y = 0.0f;
Bodies[i].vForces.z = 0.0f;

hon

0.0f;
0.0f;
0.0f;

Bodies[i].vMoments.x
Bodies[i}.vMoments.y
Bodies[i].vMoments.z

nn qn

// Zero the velocity in body space coordinates

Bodies[i].vwVelocityBody.x = 0.0f;
Bodies[i].vVelocityBody.y = 0.0f;
Bodiesfi].vwvelocityBody.z = 0.0f;

// Set the initial crientation
iRoll = 0.0f;
iPitch = 0.0f;
if{configuratian == 2}

iYaw = 45.0f;

else
iYaw = 0.0f;
Bodies[i].qO0rientation = MakeQFromEulerAngles(i%ell,
iPitch,
iYaw);

// Set the mass properties

Bodies[i].fMass = 500.0f/(-g);

Ixx = Iyy = Izz = Bodies[i].fMass/12.0f *
(BLOCKSIZE*BLOCKSIZE + BLOCKSIZE*BLOCKSIZE);

Bodies[i].mInertia.e11 = Ixx;
Bodies[i].mInertia.e12 = o;
Bedies[i].mInertia.e13 = 0;
Bodies[i].mInertia.e21 = 0;
Bodies[i].minertia.e22 = Iyy;
Bodies[i].mInertia.e23 = 0;
Bodies[i].mInertia.e31 = 0;
Bodies[i].mInertia.e32 = 03
Bodies{i].mInertia.e33 = Izz;

Bodies[i].mInertialnverse = Bodies[i].mInertia.Inverse();
Bodies[i].fRadius = BLOCKSIZE/2; // for bounding sphere check

// bounding verteces relative to CG (assumed centered)
Bodies[1].vVertexList[0}.x = BLOCKSIZE/2.0f;
Bodies[i].vVertexList[0].y = BLOCKSIZE/2.0f;
Bodies[i].vVertextist[0].z = -BLOCKSIZE/2.0f;

Bodies[i].wWertexList[1].x = BLOCKSIZE/2.0f;
Bodies[i].vVertexList[1].y = BLOCKSIZE/2.0f;
Bodies[i].vVertexList{1].z = BLOCKSIZE/2.0f;
Bodiesii].vwWertexList[2].x = BLOCKSIZE/2.0f;
Bodies[i].wertexList[2].y = -BLOCKSIZE/2.0f;
Bodies[i].wVertexList[2].z = BLOCKSIZE/2.0f;
Bodies[i].vVertexList[3].x = BLOCKSIZE/z.0f;
Bodies[i]j.vVertexList[3].y = -BLOCKSIZE/2.0f;
Bodies[i].wWertexlist[3].z = -BLOCKSIZE/2.0f;

Model

| 255

Bodies[i].vWertextist[4].x = -BLOCKSIZE/2.0f;
Bodies[1].vwWertexlist{a].y = BLOCKSIZE/2.0f;
Bodies[i].vVertexList[4].z = -BLOCKSIZE/2.0f;
- _Q‘
< Bodiesi].vertexList[5].x = -BLOCKSIZE/2.0f; ¥ .

Bodies[i].vVertexList[5].y
Bodies[i].vVertexList[5].z

BLOCKSIZE/2.0f; "
BLOCKSIZE/2.0F;

Bodies[i].vVertexList{6].x
Bodies[i].vVertexList{6].y
Bodies[i].vWertexList[6].z

-BLOCKSLZE/2.0f;
-BLOCKSIZE/2.0f;
BLOCKSIZE/2.0;

Bodies[i].vVertexList|7].x
Bodies[i]}.vVertexList[7].y
Bodies[1i].vVertexList[7].z

-BLOCKSIZE/2.0f;
-BLOCKSIZE/2.0F;
-BLOCKSIZE/2.0F;

Honoq

1

This is a long function, butit’s really quite simple. All it does is initialize each parameter
in the RigidBody structure for each body, where body To] is the car.

The configuration parameter that’s passed into the function is used to control which of
the three different crash scenarios is initialized.

I would also like to point out that I'm assuming that each object’s moment of inertia,
including the car’s, can beapproximated asa receangular cylinder {a box). Therefore, you
can use the inertia formulas for a rectangular cylinder that I gave you back in Chaprer 1.

Forces and Moments

As 1 said earlier, I'm using a simplified approach o handling the forces thac act the
objects in this simulation. There are four basic loads that1 consider:

Thrust (for the car only)

» Aerodynamic drag (linear and angular)

¢ Gravity

* Contact with the ground plane
All of these loads are taken care of in the function CalcObjectForces:
1 .

// This function calculates all of the forces and moments acting on the objects at
/4 any given time.

F L et e e e T bl El bbb el

//

void CalcObjectForces{void) = -

{ T R A N A T . ’)i‘
Vector Fo, Mb; - e sumol Mo el
Vector vOragVector;

Vector vAngularDragVector;
int i, i

Vector ContactForce;
Vector pt;

int check = NOCOLLISION;

256 | Chapter16: Multiple Bodiesin 3D

pCollision pCollisionData; // used for contact forces here
Vector FrictionForce;
Vector fDir;

for(i=0; i<NUMBODIES; i++)
{

// reset forces and moments:
Bodies{i].vForces.x = 0,0f;

Bodies[i].vForces.y = 0.0f;
Bodies[i].vForces.z = 0.0F;
Bodies[i].vMoments.x = 0.0f; ”
Bodies[i].vMoments.y = 0.0f;
Bodies[i].vMoments.z = 0.0f;

Fb.x = 0.0f; Mb.x = 0.0f;

Fb.y = 0.0f; Mb.y = 0.0f;

Fb.z = 0.0f;, Mb.z = 0.0f;

// Define the thrust vector, which acts through the CG
if(i==0)
{

Thrust.x = 1.0f;
Thrust.y = 0.0f;
Thrust.z = 0.0%;

Thrust *= ThrustForce;
Fb += Thrust;

}

// Do drag force

vDragVector = -Bodies[i].welocityBody;

vDragVector.Normalize();

Fb += vDragVector * (Bodies{i].{Speed * Bodie5[i].fSpeed * rho *
LINEARDRAGCOEFFICIENT * Bodies[i].fRadius *
Bodies[i].fRadius);

vAngularDragVector = -Bodies[i].vAngularVelocity;

vAngularDragVector.Normalize();

Mb += vAngularDragVector *
(Bodies[i].vAngularVelocity.Magnitude() *
Bodies[i].vAngularVelocity.Magnitude{) * rho *
ANGULARDRAGCOEFFICIENT * Bodies[i].fRadius *
Bodies[i].fRadius);

// Convert forces from model space to earth space
Bodies[i].vForces = QVRotate(Bodies[i].q0rientation, Fb);

// Apply gravity
Bodies[1i].vForces.z += GRAVITY * Bodies[i].fMass;

// Save the moments
Bodies[i].vMoments += Mb;

// Handle contacts with ground plane
Bodies[i].vAcceleration = Bodies[i].vForces / Bodies[i].fMass;

r% Bodies[i].vAngularAcceleration = Bodies[i].mInertialnverse *

. .
Fatt qis

(Bodies[1i].vMoments -
(Bodies[i].vAngularvelocity -
(Bodies[i].mInertia *
Bodies[i].vAngularVelocity)));

1a

Model

| 257

pCollisionData = Collisions;

NumCollisions = 0;

check = CheckGroundPlaneContacts(pCollisionData, i};

if(check == CONTACT) "

{// have contact.... ¥
for(j=0; j<NumCollisions; j++)

ContactForce = {Bodies[i].fMass/NumCollisions * (
-Collisions[j}.vRelativeAcceleration *
Collisions[j].vCollisienNoxmal)) *
Collisions[]].vCollisionNormal;
FrictionForce = {ContactForce.Magnitude() *
FRICTIONCOEFFICIENT) *
Collisionsj].vCollisienTangent;
Bodies[i].vForces += ContactForce;
Bodies[i].vForces += FrictionForce;
ContactForce = QVRotate{~Bodies[i].qOrientation,
ContactForce);
frictionForce = QVRotate(~Bodies[i].qOrientation,
FrictionForce);
pt = Collisions[j].vCollisionPoint -
Bodies[i].vPosition;
Bodies[i].vMoments += pt ~ ContactForce;
Bodies[i].vMoments += pt ~ FrictionForce;

}
}
}
For the most part, the calculations within this function should look familiar to you, that
is, with the exception of contact forces. Also, you'll notice that here, the function inidally
enters a loop to cycle through all the objects in the rigid body array so that foads are
calculated for all of the objects in the simulation with a single call t CalcObjectForces.

Upon entering the loop, this function first applies the thruast force 1o the car object only.
This thrust force is assumed to act through the object’s center of gravity and therefore
does not create a moment, Next, the linear and angular drag forces are calculated. Once
these loads have been determined, the function converts the accumulated forces to world
coordinates and applies the force due to gravity. All of these calculations so far are very
similar, although simplified, to those shown in the previous simulation.

The last part of this function takes care of contact forces between the objects and the
ground plane.

Contact

Contact forces are forces that exist between objects that are in physical contact but are
not colliding. You've already seen that objects are considered colliding when they are in
contact and the relative velocity between contacting points is such that the points are
moving toward each other. In resting contact, the contacting points are indeed touching;
however, they are not moving toward each other. Instead, they are accelerating toward
each other, and there exists a force that keeps the objects from penetrating each other.
This force is an action-reaction, or equal and opposite, force that acts on each body with
identical magnitude but applied in the opposite directions.

258 | Chapter16: Muitiple Bodiesin 3D

In this simulation, since the objects are initially sitting on the ground, contact forces
must exist between the objects and the ground to counter the gravitational pull on
the objects that would tend to pull them down through the ground plane. When the
objects are sitting still on the ground, the only force acting them is that due to gravity,
where the magnitude of this force is equal to the objects’ mass times the acceleration
due to gravity. Thus, the contact force that opposes the objects’ penetration through
the ground plane must be equal in magnitude to the force due to gravity but opposite
in direction. In this way, the two forces cancel each other out, and the objects sit there
on the ground plane.

In realiry, caleulating contact forces is a difficult proposition because of several compli-
cating tactors: there could be any number of contacting points located at various points
relative ro the object’s center of gravity that share the contact loads, though not necessar-
ily equally; and the body may be accelerating due to other factors in addition to gravity,
such as angular acceleration. There are methods that have been developed to handle
contact forces, and I give several references in the Bibliography that deal with the subject.
Some methods handle contact using temporary springs inserted at the contact points_
(penalty methods), while others assume that they can be handled by using impulses
(impulse methods) in.a manner similar to how we handle collisions; still other methods
use analytical approaches to deal with contact. I'll show you a simplified, approximate

approach in this simulation that really does not fit nicely in any of these categories.

Here’s how this method works: first you determine which points are actually mak-
ing contact; then you determine whether or not they are in resting contact; then you
must determine the acceleration of each point; finally, assuming a mass of each point
as though the object s an assembly connected point masses, you can determine the
required contact force. '

Determining which points are close enough to be considered in contact involves the
same sort of calculation that you must perform to determine whether two objects are
colliding. I've set up a function called CheckGroundPlaneContacts that is nearly identical to
the function I use to check for collisions; the purpose of this one is to check for possible
contact between the object and the ground plane. In fact the two functions are so similar
that you could actually just use a single function with some slight modificadons to
indicate whether you are checking for contact or collisions. I kept them separate here
for clarity. Here's the code for CheckGroundPlaneContacts:

int CheckiroundPlaneContacts(pCollision CollisionData, int body1)

{
int i
Vector vi[8];
Vector tmp;
Vector u, v;
fleat ;
Vector f4];
Vector vell;
Vecter pt1;
Vector Vr;
float VIn;

ll
ke

Model | 259

Vector n;

int status = NOCOLLISION;
Vector Ar;
float Arn; o

//rotate bounding vertices and covert to global coordinates
for(i=0; i<8; i++)

tmp = Bodies[body1].vwVertexList[i];
vi[i] = QVRotate(Bodies[body1].qOrientation, tmp);
v1[i] += Bodies[body1].vPosition;

}

//check each vertex of bodyl against the ground plane
for(i=0; i<8; i++)

u.x = 1.0f;

u.y = 0.0f;

u.z = 0.0f;

v.x = 0.0f;

v.y = 1.0f;

v.Z = 0.0f;

tmp.x = 0.0f;

tmp.y = 0.0F;

tmp.z = 0.0f;

d = CalcDistancefromPointToPlane(vi{i], u, v, tmp);

if(d < COLLISIONTOLERANCE)

{

. // Calculate relative velocity

pt1 = vi[i] - Bodies[body1i].vPosition; - Oy q .
" vel1l = Bodies[body1].vVelocityBody + -

- (Bodiesfbody1}.vAngularvelocity pti};

vell = QVRotate(Bodies[body1].qOrientation, vell);
n=u'v;
n.Normalize(};
Vr = vell; g
Vrn = Vr * n; (o8 "
i

i
if(fabs(vrn} <= VELOCITYTOLERANCE) // at rest

// Now check the relative acceleration
_+ Ar = Bodies[body1].vAcceleration +
(Bodies[body1}.vangularVelocity
" (Bodies[body1].vAngularVelocity“pt1)) +
(Bodies[body1].vAngularAcceleration ~ pti};

Arn = AT * n;

if(Arn <= 0.0f)
// We have a contact, fill the data
//{ structure and return
assert(NumCollisions < (NUMBODIES*8)};
if(NumCollisions < (NUMBODIES*8))

CollisionData->bodyl = bodyl;

260 | Chapter16: Multiple Bodiesin 3D

2 s gy e

CollisionData-»bodyz = -1;
CollisionData-»>vCollisionNormal = n;
CollisionData-»vCollisionPoint = vafi];
CollisionData->vRelativeVelocity = vr;
CollisionData->vRelativeAcceleration = AT; . 1y 4

¢ CollisionData->vCollisionTangent = -(Vr--
‘ ((vr*n)*n));
// note the negative of the tangent vector
// indicates that it opposes the tangential
// velocity; this is so we can handle
// friction later
CollisionData->vCollisionTangent.Normalize(};
CollisionData++;
NumCollisions++;
status = CONTACT;
} }- e
}"“ oo d s o
}'I"D~£.;Jr et e

|

return status;

ey
}

Since ’m representing each object with a collection of hard points for collisions and
contact that were initialized in body fixed coordinates, the first thing that this function
must do is rotate these points to reflect the current orientation of the object and then
convert them to world coordinates.

Next comes the part where each vertex, or hard point, is checked against the ground
plane to see whether it is close enough to be considered in contact. This is accom-
plished via the call to CalcDistanceFromPointToPlane. vi is the point that is being checked,
and the vectors u, v, and tmp describe the ground plane. u and v are axis-aligned vectors
in the plane of the ground, and tmp is any point on the ground plane, which in this case
is the origin. CalcDistanceFromPointToPlane is a short function that simply returns the
closest distance (perpendicular to the plane) from the point to the plane. Here's what
it looks like:

float . CalcDistanceFromPointToPlane(Vector pt, Vector u, Vector v,
Vector ptOnPlane)

Vector n = u”v;
Vector PQ = pt - ptOnPlane;

n.Normalize();

return PQ*n;

}

As you can see, it first determines the ground plane’s normal vector by taking the cross
product of vectors u and v and then normalizing the result. Next, a vector is constructed
from any point on the plane, in this case tmp, to the point under consideration. Finally,
this vector is dotted with the normal vector to find the projected distance, perpendicular
to the plane, from the point to the plane and returns the result.

. %‘.I'L‘_'

Model | 261

If the distance returned from CalcDistanceFronPointToPlane is within the collision oler-
ance, then CheckGroundPlaneContacts goes on to perform two crucial checks to determine
whether the point is in resting contact: 5

Relative Velocity
The relative velocity must be zero or within some minimum velocity threshold.

Relative Acceleration
The relative acceleration must be such thart the object is accelerating toward the
ground plane. ’

If either of these checks fails, then there is no resting contact, If the relative velocity 1is
such that the object is moving toward the ground, then this is a collision and will be
handled later. If the relative velocity or acceleration is such that the object is moving or
accelerating away from the ground, then there is neither a collision nor testing contact,
and no action is required.

I've already shown you how to calculate relative velocity and acceleration of a point on
a rigid body, so I won’t go into it again here, except 1o remind vou that you must not
forget to consider both linear velocity and acceleration along with angular velocity and
acceleration when performing such calculations for any point on the rigid body object.

If the check was such that the point is indeed in contact, then you need to save the
contact data in the collision data structure. I've used the same data structure £ handle
collision data and contact data, so don’t let the name of the strucrure confuse you.
Furthermore, I've set up an array ot such structures so that multiple collision and
contact points can be accounted for. Here’s what the data structure looks like, along
with the global array that I've set up:

typedef struct _Collisicn {
int body1; // index to body 1 (-1 used to indicate
// the ground plane)
int body2; // index te body 2 (-1 used to indicate
// ground plane)}
Vector vCollisionNormal; 7/ normal vector outward from
/f face of body2
Vector vCollisionPoint; // contact point in global
// coordinates
Vector vRelativevelocity;// relative velocity
Vector vRelativeAcceleration; // relative acceleration
Vectox vCollisionTangent; // tangent vector opposing
7/ relative velocity tangent
/7 to contacting plane
} Collision, *pCollision;
Collision Collisions[NUMBODIES*S];
int NumCollisions = O;

The elements in the Collision data structure are commented to indicate the purpose
of each one. Since there are eight hard points defined for each object, there can be a
total of NUMBODIES * 8 possible or collisions or contacts at any given time. This sets the
size of the collisions array NumCollisicns is used to keep track of the current number
of collisions or contacts at any given time.

262 | Chapter16: Multiple Bodiesin 3D

Getting back now to CalcObjectForces, you can see down toward the bottom where
the contact check and calculations are made. This is the part of CalcObjectForces after
gravity isapplied and the sum of momentsis stored in the object’s data structure. Here’s
that bit of code again for convenience:

// Handle contacts with ground plane

Bodies[i].vAcceleration = Bodies[i].vForces / Bodies[i].¥Mass;

Bodies[i].vAngularAcceleration = Bodies{i].mInertiaInverse *
(Bodies{i].vMoments -
(Bodies[i}.vAngularVelocity °
(Bodies[i}.mInertia *
Bodies[1].vAngularVelocity)));

pCollisionData = Collisions;
NumCollisions = Q;
check = CheckGroundPlaneContacts{pCollisionData, i);
if{check == CONTACT)
{// have contact....
for(j=0; j<NumCollisioms; j++)

ContactForce = (Bodies[i].fMass/NumCollisions *
-Collisions[j].vRelativeAcceleration *
Collisions[j].vCollisionNormal)) *
Collisions[j}.vCollisionNormal;

FrictionForce = (ContactForce.Magnitude() *
FRICTIONCOEFFICIENT) *
Collisions[j].vCollisionTangent;

Bodies[i].vForces += ContactForce;

Bodies[i].vForces += Frictionforce;

ContactForce = QVRotate({~Bodies[i].q0rientatiocn,

ContactForce);
FrictionForce = QVRotate(~Bodies[i].qOrientation,
FrictionForce);
pt = Collisions[j].vCallisionPoint -
Bodies[i].vPosition;

Bodies[i].vMoments += pt“ContactForce;
Bodies[i].vMoments += pt~FrictionForce;

Before making any checks ar all, the object’s acceleration, both linear and angular,
is calculated and stored. This is the same calculation that you've seen already in the
StepSimulation function of the flight simulation example and that you will see again
later in this example. After the call is made to CheckGroundPlaneContacts, if the value
returned in the variable check indicates a contact, thet the contace forces are calculated
for each contact stored in the Collisions array.

ContactForce is the normal force of contact between the point and the plane and is
equal to the mass of the contacting particle tmes the acceleration of that particle.
Here I’'m assuming that the object is made up of a collection of equal-sized particles

b

Model | 263

located at each of the hard points that were defined earlier. I'm also considering fric-
tion here, which acts tangential to the contact plane, FrictionForce is the force due
to friction and is equal to the magnitude of the normal force tmges the coefficient of
friction times the collision tangent of unit length. This gives us a friction force that
opposes the tangendal velocity of the contacting point. Note that the collision tan-
gent was already negated in function CheckGroundPlaneContacts such that it opposes
the tangental velocity of the contacting point. Also note that this is a simplified
friction model in that it assumes that the friction is kinetic and ignores the static
case.

Once these two forces have been determined, they are applied to the body in the usual
manner: that is, the forces are accumulated in the object’s data structure, and any
resulting moments are accounted for.

Integration

Turning now to integrating the equations of motion, I want to show you the StepSim-
ulation function for this example. For the most part, it’s similar to the StepSimulation
functions shown in the previous examples; however, here I've added a loop to cycle
through all the objects in the rigid body array Here’s the new function:

et T e el niel
1
// Using Euler’s method
et bl
I .
void StepSimulation(float dtime)
{

Vector Ae;

int i;

float dt = dtime;

/7 Calculate all of the forces and moments on all objects
CalcObjectForces();

/{ Integrate

for{i=0; i<NUMBODIES; i++)

{
// calculate acceleration earth space:
fe = Bodies[i].vForces / Bodies[i].fMass;
Bodies[i].vAcceleration = Ae;

// calculate velocity in earth space:
Bodies[i].welocity += Ae * di;

// calculate position in earth space:
Bodies[i].vPositicn += Bodies[i].wWelocity * dt;

// Now handle the rctations:
float mag;

264 | Chapter16: Multiple Bodiasin 3D

Bodies{i].vAngularAcceleration = Bodiesfi].mInertialnverse *
(Bodies[i].vMoments -
(Bodies[i].vAngularVelocity~
(Bodiesfi].mInertia *
Bodies[i].vAngularVelocity)));

Bodies{i}.vAngularVelocity += Bodies[i].vAngulaTrAcceleration *
dt;

/{ calculate the new rotation quaternion:

Bodies[i].qOrientation += (Bedies[i].q0rientation *
Bodies[i].vAngularVelocity) *
(0.5F * dt};

/{ now normalize the orientation quaternion:
mag = Bodies{i].qOrientation.Magnitude(};
if (mag !'= o)

Bodies[i].q0rientation /= mag;

// calculate the velocity in body space:
Bodies[i].welocityBody = QVRotate(~Bodies[i].qOrientation,
Bodies[i].vVelocity);

// calculate speed:
Bedies[i].fSpeed = Bodies[i].vVelocity.Magnitude();

// get the Euler angles for our information
Vector u;

4 = MakeEulerAnglesFromQ{Bodies[i].q0rientation);
Bodies[i].vEulerdngles.x = u.x; // roll
Bodies[i].vEulerAngles.y = u.y; // pitch
Bodies[i].vEulerAngles.z = u.z; /7 yaw

w un

}

// Handle Cecllisions
if{ChackforCollisicns(}) == COLLISION)
ResolveCollisions(};

I'm using Euler’s method here for simplicity, not because it’s necessarily the best
choice in terms of numerical stability. The first thing that StepSimulation does is make
a call to CalcObjectForces to update the forces and moments acting on each object.
Then the function enters a loop o cycle through all the objects and integrate so
as to update each object’s velocity, position, and orientation. All of this integration
code is taken directly from the flight simulation example, so it should be familiar to
you.

* After all of the object loads have been updated and the integration is complete, the last
thing that StepSimulation does is handle any collisions by making a call to CheckFor-
Collisions and then ResolveCollisions if appropriate, that is, if there were indeed any
collisions. Remember, these are collisions that are being checked for; contact forces have
already been accounted for and included in the force and moment computations before
integration of the equations of motion.

Integration | 265

Collision Response

As you know already, there are two parts to handling collisio;ls; collision detection
and response. As | said earlier, collision detection, while not exactly physics, is very
important in terms of being able to respond to collisions in your simulations. One of
the difficult aspects of collision detecrion for your game simulations will be balancing
speed and accuracy. You have no doubt come across very accurate collision detection
routines in various computational geometry sources; however, you'll probably find that
such methods would be too slow for your games, or perhaps they get to a level of detail
that your simulations don’t require. At any rate, whatever collision detection scheme you
use, it needs to give you some specific pieces of information about the collision. These
pieces of information are the ones that I've included in the Collision dara structure that
1 showed you earlier, in the section discussing conract forces.

While the method of collision detection that I've used in this simulation is not perfect —
it’s not super accurate and does not catch pernetration——it is simple and serves its pur-
pose here, which is to show you how to handle collision response in three dimensions. |
won't go into the collision detection code in dertail here, since it’s similar to the method
I showed you in Chapter 13 and you can find the source code on O'Reilly’s web site;
however, I will outline the procedure 1 use so that you will at least know where the
collision data are coming from.

Basically, I first make a bounding sphere check to check for possible collisions between
objects. If this check passes, indicating a porential collision, I go on to check each hard
point on one body with each bounding box face on the other body. If the check indicates
that the hard point is within the collision tolerance, then I go on to calculate the relative
velocities between the potentially colliding points to see whether theyare indeed moving
toward each other. If they are, then we have a collision, and the appropriate collision
data are stored, which include the array indices of the two colliding bodies, the collision
normal and tangent vectors, the actual point of collision in earth coordinates, and the
relative velocity between colliding points. The data for each collision get stored in the
same collision data array I used earlier to handle contacts so that they can be iterated
through when handling the response to each collision. Note, however, that the collision
data overwrite any contact data previously stored in the array, since the contact data are
no longer needed {at least not until the next time forces are calculated, at which point
new contace data will be generated).

Now, to handle collision response, you need to cycle through each collision dara struc-
ture and calculate and then apply the appropriate impulse, since we are using impulse-
based response as discussed in Chaprers 5 and 13. The funcrion I've set up to handle
collision response is called ResolveCollisions:

void ResolveCollisions{void)

{

int i;
Vector pt1, ptz;
float J;

266 | Chapter16: Muitiple Bodies in 3D

float fCr = COEFFICIENTOFRESTITUTION;
int b1, b2;

float Vrt;

float mu = FRICTIONCOEFFICIENT;

for(i=0; i<NumCollisions; i++)
{
b1
b2

Collisions[i].body1;
Collisions[i}.body2;

if(b2 1= -1) // not ground plane
{
pt1
pt2

Collisions[i].vCollisionPoint - Bodies{b1].vPosition;
Collisions[i].vCollisionPoint - Bodies[bz].vPosition;

n o

/7 calculate impulse
J = {-(1+fCr) * {Collisions[i].vRelativevelocity *
* Collisions[i].vCollisionNormal}) /

((1/Bodiesfbi1].fMass + 1/Bodies[b2].fMass) +
(Collisionsfi].vCollisionNormal * (((pt1 "
Collisions[i].vCollisionNormal) *
Bodies[bi].mInertialnverse) pt1)) +
(Collisions[i].vCollisionNoxmal * { { {pt2 "
Collisions[i].vCollisionNormal) *
Bodies[bz].mInertialnverse) pt2)}));

Vrt = Collisions[i}.vRelativeVelocity *
Collisions{i].vCollisionTangent;
- Y
if(fabs(vrt) > 0.0} { Lo
Bodies[b1].vwWelocity += ((j *
Collisions[i].vCollisicnNormal) + ({mu * j) 1=p.. -,
* Collisions[i}.vCollisionTangent)) / : ’
Bodiesfb1].fMass; Traie, S

Bodies[b1].vAngularVelocity += (pt1 “{(j *
Collisionsii].vCollisionNormal) + ((mu * j)
* Collisions[i].vCollisionTangent)}) *
Bodies[b1i].mInertialnverse;

Bodies[b2].vVelocity -= ({(j *
Collisions[i].vCollisionNotmal) + ((mu * §}
* Collisions[i].vCollisionTangent)) /
Bodies[b2].fMass;

Bodies[b2].vAngularVelocity -= (pt2 “({j *
Collisions[i}.vCollisionNormal) + ({mu * j)
* Collisions[i].vCollisionTangent))) *
Bodies[bz].mInertialnverse;

] else |
// apply impulse
Bodies[b1].vVelocity += (j *
Collisions{i].vCollisionNormal) /
-Bodies[b1].fMass;

Bodies[bi].vAngularvelocity += (pt2 “(j *

Cellisions[i].vCollisionNormal}) *
- Bodies[b1].mInertialnverse;

ke

Collision Response | 267

Bodies[b2].vVelocity -= (j *
Collisions[i].vCollisionNormal) /
Bodies{b2].fMass;

s

Bodies[b2].vAngularvelocity -= (ptz "(j *
Collisions[i].vCollisionNormal)) *
Bodies[b2].mInertialnverse;

)
} élse { // ground plane
fCr = COEFFICIENTOFRESTITUTIONGROUND;
pt1 = Collisions[i].vCollisionPoint - Bodies[bi].vPosition;

// calculate impulse
§ = (-(1+fCr) * (Collisions{i].vRelativeVelocity *
Collisions[i].vCollisionNoxmal)}) /
{ (1/Bodies{b1].fMass) +
{Collisions[i].vCollisionNormal * (((pt1
Collisions[i].vCollisionNormal) *
Bodies[b1i].mInertialnverse) “pt1)));

vrt = Cellisions[i].vRelativeVelocity *

Collisions[i].vCollisionTangent;

if(fabs(vrt) » 0.0) {

Bodies[b1].vWelocity += { (j *
Collisions[i].vCollisionNormal) + ({mu * J) *
Collisions[i].vCollisionTangent)) /
Bodies[b1l.fMass;

Bodies{b1].vAngularVelocity += {(pt1 “({j *
Collisions[i].vCollisionNormal) + ((mu * j) *
Collisions[i].vCollisionTangent})) *
Bodies[b1].mInertialnverse;

} else {
/7 apply impulse
Bodiesib1].vvelocity += (j *
Collisions[i].vCollisionNormal) /
Bodies{b1l.fMass;

Bodies[b1].vAngularVelocity += {pt1 “(j *
Collisions[i].vCollisicnNoxmal)) *
Bodies[b1].mInertialnverse;

}

This function looks more complicated that it really is because T have two sections in there
to separately handle collisions between objects and collisions between objects and the
ground plane.

Upon entering this function, a loop is entered to cycle through each collision thar is
stored in the global collision data array. Since all the information for each collision has
been precalculated and stored in this array, all this function has to do is calculate the
appropriate impulse and apply it t each colliding object.

In the case of two colliding objects, the function first calculates the impulse and then
determines whether or not the magnitude of the relative rangential velocity is greater

268 | Chapter16: Multiple Bodiesin 3D

than zero. If it is, then the formulas for applying impulse with fricion are used when
updating each object’s linear and angular velocities; otherwise, the formulas that don’t
account for friction are used. Both sets of formulas are presented in Chapter 5, and
you might want to go back and refresh your memory if you’ve forgotten the differences
between the two sets.

In the case of an object colliding with the ground, I take the same approach by first
calculating impulse and then checking the tangential relative velocity and update the
object accordingly. There is one notable difference in the way I calculate the impulse and
update the objects that are colliding with the ground. First, when calculating impulse,
I assume that the ground plane is infinitely massive with infinite inerda such that the
terms for Bodies[b2] that include mass or inertia in the denominator go to zero and drop
out of the impulse equation. Second, since the ground plane is static, there’s no need
to update its velocities, and that’s why you see only calculations to update Bodies[b1].
Note that my collision detection scheme assumes that when an object collides with the
ground, the ground is always body2, which is set to -1 in the Collisions data array.

All these calculations are performed for each set of collision data stored in the Collisions
darta array up to the index NumCollisions-1, inclusive, After each one is handled, the
function returns and the simulation progresses to the next time step.

Tuning

I must admit thar the first time I tried to run this simulation after setting everything
up, it didn’t work—that is to say, the results were less that realistic. The main reason for
this was because of my initially assumed parameters, such as coefficient of restitution
for collision response, coefficients of drag, and time step size, among others. I had to go
through and tune each of these parameters to get the simulation to work correctly. As
I discussed earlier in this book, parameter tuning is an important part of simulaton
development. You'll often find that you need to balance realism and accuracy for nu-
merical stability and speed. Of course, depending on your application, one or more of
these issues may take precedence over the others.

In this simulation I was not too concerned about speed, and since I didn’t implement
penetration in my collision detection routines, T was not very concerned about penerra-
tion. These factors led me to small time step sizes and large collision tolerances. At the
same time, since I implemented Euler’s method instead of the improved Euler method
or Runge-Kutta method, I found that T had to increase my drag coefficients to provide
enough damping for numerical stability.

To make it easy on myself, I included all the important parameters that were the subject
of tuning as global defines. Here they are:

#define GRAVITY -32.174f
#tdefine LINEARDRAGCOEFFICIENT 5.0f
#define ANGULARDRAGCOEFFICIENT 1200.0f
#define COLLTSIONTOLERANCE 0.9f

.%,I.‘_'

Tuning | 269

#define COEFFICIENTOFRESTITUTION o0.5f

#fdefine COEFFICIENTOFRESTITUTIONGROUND 0.025F
#define VELOCITYTOLERANCE 0.05f
#define FRICTIONCOEFFICEENT o.9f 1Tﬁ

You can modify each of these on your own if you would like to see how the simulation
is affected. You probably won’t have to change them too much to get things to go astray
in the simulation. For example, if you change the collision tolerance to something
too small, then it’s likely that you will see objects pass through each other owing to
penetration’s not being accounted for. Also, if you increase the coefficients of restitution
and decrease the drag factors, you're likely to == things bounce around wildly owing
to numerical instability.

There are some things that I recommend you try in order to improve the simuladon.
First, implement a better collision detection system. By “better,” Idon’t necessarily mean
that you must check each vertex on a polyhedron with each face on other polyhedrons
or do triangle-triangle intersections. I mean implementing the penetration check, as 1
showed you in Chapter 13, or adding some more hard points to each object (the ones
that are not shaped like boxes) to use during collision detection. In the bibliography I
give several references that discuss collision detection in detail.

The next thing I’d recommend is that you implement is the improved Euler method that
I showed you in Chapter 11, instead of Euler’s method. This will help with numerical
stability and perhaps allow you get away with larger step sizes.

Finally, the last thing I'd recommend is that you fine-tune the force calculations to suit
the system that you are trying to model. You can use techniques similar to those Ishowed
in the previous examples—for example, the flight simulation, in which I showed you
how to accurately calculate mass properties using an assembly of point masses and
showed you how to accurately deal with lift and drag forces.

270 | Chapter16: Multiple Bodiesin 3D

CHAPTER 17

Particle Systems

This chapter is somewhat of a departure from the rigid body simulations that ve
been discussing in that here, I'll show you how to implement a simulation of a flexible
object. Specifically, the example presented in this chapter will be a simulation of a cloth
flag, atrached to a flagpole, waving in the wind. Figure 17-1 shows a snapshot of the
simulation.

Figure 17-1. Cloth Simulation

mn

The aim of this example is not to show you how to handle cloth specifically, but rather
to show you what you can do with collections of particles and springs instead of rigid
bodies. Particle systems can be used to simulate a wide variety of things such as cloth,
smoke, and fire. What’s nice about using particles is that thej?)are much simpler to
handle than rigid bodies, in that you don’t have to deal with rotation and the angular
equations of motion. Not only does this simplify force calculations and integration, but
collision response also becomes easier, since you need only deal with linear impulse.

When you first run this simulation, youw'll be facine, the flag, as shown in Figure 171,
and it will be waving in a moderate wind. You can use keys 1 through 6 to control the
strength of the wind, 1 being low and 6 being high. Press the 0 key for no wind, and
watch as the flag drapes down under its own weight. If you press the R key, the flag will
be released from the pole and fall to the ground. If the wind setting is 0, then it will fall
straight down; otherwise, it will be carried away by the wind. You can navigate through
the simulation using the arrow keys, where the up and down arrows move the camera
forward and back, respectively, and the left and right arrows turn the camera to the left
and right, respectively.

Here again, you can find the executable and source files for this simulation on O'Reilly’s
web site. Much of the code for this simulation is identical, or very similar, to code that
you've seen in the past several examples, and I won’t repeat that code here. Instead, I
will show you the code that is unique to this example.

Model

To simulate the flag in this example, I'm using a collection of particles that are initially
arranged in a gridlike pattern and then connected by several springs. The springs act as
structural elements that resist loads and hold the particles together. Figure 17-2, is a wire
frame view of the flag that shows the gridlike arrangement of particles and connecting
springs.

Each line in the wire frame flag represents a spring-damper element, while the nodes
where these springs intersect represent the particles. The springs are modeled by using
the spring-damper formulas that T showed you back in Chapter 3. The (initially) hor-
izontal and vertical springs provide the basic structure for the flag, and the diagonal
springs are there to resist shear forces and lend further strength to the cloth. Without
these shear springs, the cloth would be quite stretchy. Note that there are no particles
located at the intersecrion of the diagonal springs.

To handle the particles, I've set up an array of Particle structures to hold the state

information for each particle during the simulation. Actually, I made the array mulddi-

mensional, since it’s easier to visualize the grid position of each particle when setting

up the connecting springs. Here’s the code for the Particle structure and global array:
typedef struct _Particle {

float fMass;
float fInvMass;

272 | Chapter i7: Partica Systems

Figure 17-2. Particle-Spring System

Vector vPosition;
Vector welocity;
Yector vhcceleration;
Vector vForces;
BOOL bLocked;
} Particle, *pParticle;
/¢ NUMROWS is the number of spaces between the rows of particles
/7 NUMCOLUMNS is the number of spaces between the columns of particles

Particle Particles [NUMROWS+1] [NUMCOLUMNS+1];

Each element in the Particle structure is fairly self-explanatory and should already be
familiar to you. Essentially, these parameters include the mass properties of the particle
along with its position, velocity, acceleration, and total force acting on it at any given
instant in time.

The only parameter that might not be obvious is blocked. This parameter is used to
indicate wherher or not the particle is fixed, that is, whether or not it will be allowed
to move under the influence of force. If bLocked is true, then the particle is locked and
skipped when the equations of motion are integrated. In this simulation I initially lock
the upper and lower left particles to attach them to the flagpole. When you press the
R key to release the flag, the blocked parameter for these two particles gets reset to false,
and they are allowed to move.

e

Model | 273

To handle the springs, I've set up another structure along with a global array to hold
all the spring data during the simulation: -

typedef struct _ParticleRef { - o
int I; /1 ToW index ‘
int c; /7 column index

} ParticleRef;

typedef struct _Spring {
ParticleRef p1; // teference to connected particle #1
ParticleRef pi; // teference to connected particle #2
float N k; // tensile spring constant
float d; // damping factor
float L; /# rest length of spring

} Spring, *pSpring;

#define NUMSTRUCTURALSPRINGS (NUMCOLUMNS*(NUMROWS+1) +
NUMROWS* {NUMCOLUMNS+1) +
NUMCOLUMNS* NUMROWS*2)

Spring StructuralSprings[NUMSTRUCTURALSPRINGSJ;

Elements p1 and pz in the spring data structure are references to particles in the grid.
They are of type ParticleRef, shown above, that holds the row and column position
(zero-based array indices) of the particle in the Particles array. The other three pa-
rameters, k, d, and L, hold information describing the spring that will be used in
calculating the spring force berween each connected particle pair; k, d, and L are the
spring constant, damping factor, and unstretched (or compressed} length of the spring,
respectively.

Since the geometry of the flag will change continuously throughout the simulation, you
must rebuild its vertex and face data on the basis of the particle states at each time step.
“To keep track of the flag geometry, I set up two additional global arrays to hold vertex
and face data that will be used in constructing the 3D object using Direct3D. Here are
those arrays:

unsigned int ClothFaces[NUMFACES*3*2];

float ClothVertices[NUMVERTICES*3*2];
Each face is actually a triangle consisting, of course, of three nodes. Note here this it
appears as though I have twice the number of faces and nodes required to represent
the flag (see the *2 in the array size calculation). I had to do this because I'm using
Direct3D retained mode, which automatically performs back face culling. Thus, I ac-
tually construct two sides of the flag so that it will be visible from either side. Had I
used immediate mode, or perhaps OpenGL, instead, I would have turned off back face
culling.

To set up the start of the simulation, I've prepared a function called Initialize that fills
all the data structures for the particles, springs, and cloth geometry:

#define MASSPERFACE (CLOTHMASS/ (float) NUMFACES}
#define CSTEP ((float) CLOTHWIDTH / (float) NUMCOLUMNS)
#define RSTEP {(float) CLOTHHEIGHT / (float) NUMROWS)

274 | (Chapter17: Partide Systems

void Initialize(void}

{
int T, C;
float f;
unsigned int *faceVertex;
float *vertices;
Vector L;
int count;
int n;

for(r=0; r<=NUMROWS; r++)
for(c=0; c<=NUMCOLUMNS; c++)

// calc mass of this particle
if({x == 0) & (c == 0))

f=1;

else if({r == NUMROWS) && (c == 0))
f=2;

else if((x == 0) && (c == NUMCOLUMNS)}
f=2;

else if({r == NUMROWS) && (c == NUMCOLUMNS})
f=1;

else if({(r == 0) || (xr == NUMROWS)) && ({c != 0) 8&
(c I= NUMCOLUMNSYY)

f = 3; .
else

f=6;

Particles[r}[c].fMass = {f * MASSPERFACE} / 3;
Particles[r][c].fInvMass = 1 / Particles[r][c].fMass;

// set initial position of this particle
Particles[r]ic].vPosition.x = c * CSTEP;
Particles[r]fc].vPosition.y = {CLOTHHEICHT - (r * RSTEP)) +
YOFFSET;
Particles[r][c].vPosition.z = 0.0F;

// set initial velocity and forces to zero
Particlesfr][c].vVelocity.x = o0.0f;
Particles[r][c].vVelocity.y = 0.0f;
Particles[r}[c].vVelecity.z = 0.0f;

o

Particlesfr][c].vAcceleration.x
Particlesfr][c].vAcceleration.y
Particlesfr][c].vAcceleration.z

+ —h
ol

e

(LI It
000
[e B]

Particles[r][c].vForces.x
Particles[r][c].vForces.y = 0.0f;
Particles[z]{c].vForces.z = 0.07;
1f({c == 0) && (1 == 0 || T == NUMROWS))
Particles[r]{c}.bLocked = TRUE;
else
Particles[ri[c].bLocked = FALSE;

0.0f;

nounn

}

vertices = ClothVertices;
for(r=0; r<=NUMROWS; T++)

Model | 275

for(c=0; c<=NUMCOLUMNS;
{ .
// setup vertices
*vertices =
*vertices =
*vertices =

}
for{r=0; r<=NUMROWS; T++}

for{c=0; c<=NUMCOLUMNS;

¢ // setup vertices

*vertices =

*yertices =
*vertices =

}

faceVertex = ClothFaces;
for(r=0; T<NUMROWS; T++)

for(c=0; cC=NUMCOLUMNS;

// setup faces

if{c == 0)

{
*faceVertex =
faceVertex++;
*faceVertex =
faceVertex++;

*faceVertex = ((NUMCOLUMNS+1)*T}

faceVertex++;
} else if(c
*faceVertex =
faceVertex++;

*faceVertex =
faceVertex++;

*faceVertex =

faceVertex++;
} else {

*faceVertex =

faceVertex++;

*faceVertex =
facevVertex++;

*faceVertex =
faceVertex++;

*faceVertex =
faceVertex++;

particles[r][c].vPosition.
particles[r]{c}.vPosition.
Particles[r][c].vPosition.

Particles[r][c].vPosition.
particles[r]{c].vPositicn.
Particles[r][c].vPosition.

CH)

o
verticas++;
vertices++;
vertices++;

X
¥i
Z;

CH++)

vertices++;
vertices++;
vertices++;

X}
Y;
Z;

C++)

({NUMCOLUMNS+1)™1)
// vertex 1

+ G

{ (NUMCOLUMNS+1)" 1)
// vertex 2

+ (c+1);

+ (NUMCOLUMNS+1) + ¢;
// vertex 3

NUMCOLUMNS) {

{ (NUMCOLUMNS+1)*1)
// vertex 1

+C;

((NUMCOLUMNS+1)*T) + (NUMCOLUMNS+1) + €;
// vertex 2

((NUMCOLUMNS+1)*1) + (NUMCOLUMNS+1) +
{c-1);

// vertex 3

{ (NUMCOLUMNS+1)*1) + C;
/7 vertex 1

{ (NUMCOLUMNS+1)™1) + {NUMCOLUMNS+1) + ¢;
// vertex 2

((NUMCOLUMNS+1}~1) + (NUMCOLUMNS+1) +
(c-1);

// vertex 3

{ (NUMCOLUMNS+1)=1) + €;
// vertex 1

276 | Chapter17: Particle Systems

}

*faceVertex =
faceVertex++;

*faceVertex =
faceVertex++;

for{r=0; rT<NUMROWS; T++)

for(c=0; c¢=NUMCOLUMNS;

// setup faces
if{c == 0)

{

*faceVertex =
faceVertex++;
*faceVertex -
faceVertex++;

*faceVertex =
TfaceVertex++;

{ (NUMCOLUMNS+1)*1) + (c+1);
// vertex 2

{ (NUMCOLUMNS+1)*r) + (NUMCOLUMNS+1) + c;

// vertex 3

c++}

NUMVERTICES + ((NUMCOLUMNS+1)*r) +
(NUMCOLUMNS+1) + c;
// vertex 3

NUMVERTICES + ((NUMCOLUMNS+1)*r) +
(c41);
// vertex 2

NUMVERTICES + ({NUMCOLUMNS+1)*r) +
/7 vertex 1

} else if(c == NUMCOLUMNS) {

*faceVertex =
faceVertex++;
*faceVertex =
faceVertex++;

*faceVertex =
faceVertex++;

} else {

s

*faceVertex =
faceVertext+;
*faceVertex =
faceVertex++;

*faceVertex =
faceVertex++;

*faceVertex =
faceVertex++;
*faceVertex =

faceVertex++;

NUMVERTICES + ({NUMCOLUMNS+1)*1) +
(NUMCOLUMNS+1) + (c-1);
/7 vertex 3

NUMVERTICES + ({NUMCOLUMNS+1)*1) +
{NUMCOLUMNS+1) + c;
/7 vertex 2

NUMVERTICES + {(NUMCOLUMNS+1)*r) +
// vertex 1

NUMVERTICES + ((NUMCOLUMNS+1}*r) +
(NUMCOLUMNS+1) + (c-1);
// vertex 3

NUMVERTICES + {(NUMCOLUMNS+1)*r) +
(NUMCOLUMNS+1) + c;
// vertex 2

NUMVERTICES + ((NUMCOLUMNS+1)*r) +
// vertex 1

NUMVERTICES + ((NUMCOLUMNS+1)*I) +
(NUMCOLUMNS+1) + ¢;
// vertex 3

NUMVERTICES + ((NUMCOLUMNS+1)*1) +
(c+1);
// vertex 2

<

c;

Model

| 277

*faceVertex = NUMVERTICES + ((NUMCOLUMNS+1)*1) + ¢;
faceVertex++; // vertex 1

}

// Create a D3D object to represent the cloth
CreateCloth(“test.bmp”, ClothFaces, NUMFACES*2, ClothVertices,
NUMVERTICES*2, FALSE);
// setup the structural springs
// connect springs between each adjacent vertex
count = 0;
= NUMSTRUCTURALSPRINGS;
for(r=0; T<=NUMROWS; r++)

for(c=0; c<=NUMCOLUMNS; c++)

1F{c<NUMCOLUMNS)
StructuralSprings[count].pl.T = 1;
StructuralSprings[count].pl.c = c;
StructuralSprings[count}.p2.1 = I;
StructuralSprings[count].p2.c = c+1;

StructuralSprings{count].k = SPRINGTENSIONCONSTANT;

StructuralSprlngs[count] d = SPRINGDAMPINGCONSTANT;
= Particles[r][c].vPosition -
Particles[r][c+1].vPosition;

StructuralSprings[counti.l = L.Magnitude()};

count++;

!

£ (T<NUMROWS)
StructuralSprings[count].pl.T = I;
StructuralSprings[count].pl.c = c;
StructuralSprings[count].p2.T = r+1
StructuralSprings[count].p2.c =

StructuralSprings[count].k = PRINGTENSIONCONSTANT
StructuralSprlngs[count] d = SPRINGDAMPINGCONSTANT;
= Particles[r][c].vPosition -
Particles[r+1][c}.vPosition;
StructuralSprings[count].L = L.Magnitude(};
count++;

}
1T(r<NUMROWS && C<NUMCOLUMNS)

{
StructuralSprings[count].pl.T = T;
StructuralSprings[count].pl.c = c;
StructuralSprings[count].p2.1 = 1+1;
StructuralSprings[count].p2.c = c+1;

StructuralSprings[count].k = SPRINGSHEARCONSTANT;
StructuralSprings[count].d = SPRINGDAMPINGCONSTANT;
L = Particles[r][c].vPosition -

Particles[r+1][c+1].vPosition;
StructuralSpringsicount].L = L.Magnitude();
count++;

}
1f{c>0 && r<NUMROWS)

StructuralSprings[counti.pl.T = r;
StructuraiSprings[count].pl.c = ¢;

278 | Chapter17: Particle Systems

StructuralSprings[count].p2z.r = r+t;
StructuralSprings[count].p2.c = c-1;
StructuralSprings[counti.k = SPRINGSHEARCONSTANT;
StructuralSprings[count}.d = SPRINGDAMPINGCONSTANT;
L = Particles[r][c].vPosition -
Particles[r+1][c-1].vPosition;
StructuralSprings{count].l = L.Magnitude();

H

count++;
}
}
}
WindVector.x = 10.0;
WindVector.y = 0.0;
WindVector.z = 1.0;

The first set of nested for loops you see in this function iterate through the entire list of
particles and fill their data structures. The position of each particle is calculated so as to
arrange them in a grid, as I explained earlier. Each particle is assigned a mass calculated
as one third the sum of masses of each face that shares that particle.

The next series of loops, up to the call to Createcioth, set up the flag’s face and vertex
data, which will be passed to Direct3D. Createcloth actually constructs the flag object
using Direct3D. Since it is Direct3D-specific code I won't show it here, but you can get
it from the O’Reilly web site.

The last set of nested loops sets up the springs that give the flag its structure. This
is a somewhar trivial operation in this case, as most of the spring data are fixed, and
determining the indices to each particle is made easy by the fact that the Particles array
is multidimensional, corresponding to the rows and columns in the grid.

The very last thing that gets initialized is the vector, Windvector, that is used to represent
the direction of the wind. windvector is a global variable declared as follows:

Vector WindVector;
fleat WindForceFactor = WINDFACTOR;

I've also shown here the variable WindForcefactor that gets multiplied by windvector when
determining the wind force acting on the flag.

In the model I've put together here, there are several other forces, in addition to the wind
force, that act on the particles making up the flag. You already know that the springs
will exert forces on the particles to provide structure for the flag. Further, I've modeled
in gravity as well as viscous drag. Al of these forces are taken care of in the function
CalcForces:

// I'm using Oirect3D’s coordinate system in this example, where the z-
// axis points into the screen, the x-axis points to the zight, and the y-
// axis points upward.

void CalcForces(Particle particles[NUMROWS+1][NUMCOLUMNS+1])

e

Model | 279

int T, ¢, i, ri, c1, 12, c2;

Vector dragVector;

Vector f1, f2, d, v; TR
float L; ‘

// zexo all forces ‘
for{r=0; r<=NUMROWS; r++)

for(c=0; c<=NUMCOLUMNS; C++)

particles[r][c].vForces.x = 0;
particles[r][c].vForces.y = 0;
particles{r][c].vForces.z = 0;

}

// process gravity and drag forces
for(r=0; T<=NUMROWS; r++)

for{c=0; c<=NUMCOLUMNS; c++)

if(particles{r][c].bLocked == FALSE)
{

// gravity T
parficles[r][c].vForces.y += (float) (GRAVITY *
. particles[r][c].fMass);

// viscous drag

dragvector = -particles{rj[c].welocity;

dragVector.Normalize(};

particles[r]{c].vForces += dragVector ~
(particles[r]{c].welocity.Magnitude(} *
particles[r][c].welocity.Magnitude())
* DRAGCOEFFICIENT;

// wind

SetWindVector{tb_Rnd(0, 10), 0, tb_Rnd(o, 1));

WindVector.Normalize();

particles[r][c].vForces += WindVector *

’ th_Rnd(0, WindForceFactor);

}

/! Process spring forces
for{i = 0; i<NUMSTRUCTURALSPRINGS; i++)
{

11 = StructuralSprings[i].pi.r;

¢l = StructuralSprings[i].pi.c;

r2 = StructuralSprings{i].pz.r;

€2 = StructuralSprings[i].p2.c;

d = particles[r1}[c1].vPosition - particles[r2]{c2].vPosition;

v = particles[rij[c1].welocity - particles[r2][c2].wWelocity;

L. = StructuralSprings[i].L;

f1 = -(StructuralSprings[i].k * {d.Magnitude() - L) +
StructuralSprings[i].d * { (v * d) / d.Magnitude())) *
(d / d.Magnitude(}); '

f2 = -f1;

280 | Chapteri7: Particle Systems

if(particles[r1][c1].bLocked == FALSE)
particles[ri]{ci].vForces += f1;

if(particles[r2}[c2].blocked == FALSE)
particles{r2][c2].vForces += f2;

The first thing this funcdon does is zero the forces acting on each particle. Next, the
function goes on to calculate the gravity, viscous drag, and wind force acting on each
particle. These calculations are all very similar to those you've seen in the previous
examples. Note, however, that I've included a little randomness in the wind force cal-
culation. I did this to ensure that that flag is perturbed enough out of the verdcal plane
that it’s initialized in so as to flutter more realistically.

The last loop in this function handtes all the spring forces acting on each particle. Since
all the spring data are set up during inidalization, it’s a simple matter of extracting
the data for each spring and applying the spring-damper force to the attached pardcles
using the spring-damper force formulas that I gave you in Chapter 3.

Notice that within all these calculations, checks are made to see whether any given
particle is locked. If it is locked, forces don’t get applied to it, so it remains static.

Integration

For this example I again use Euler’s method because of its simplicity. As with the
previous examples, I've set up a function called stepsimulation that handles integration
- of the equations of motion. In this particular case the function is quite simple:

void StepSimulation(float dt)

{
Vector Ae;
int I, C;
int check = 03

// Calculate all of the forces
CalcForces(Particles);

// Integrate
for{r=0; r<=NUMROWS; r++)

for{c=0; c<=NUMCOLUMNS; ce+)

Ae = Particles[r][c].vForces * Particles[r][c].fInvMass;
Particles[r][c].vAcceleration = Ae;
Particles{r][c].vVelocity += Ae * dt;
Particles[r][c].vPosition += Particles[r][c].wvelocity *
dt;
¢

// Check for collisions
check = CheckForCollisions{Particles);

.%ALJ_’

Integration | 281

if{check == COLLISION)
ResolveCollisions{Particles};

// Update the D3D cloth object’s geometry ' £
UpdateClothGeometry(); *
}

Since we're dealing only with pardcles here and not rigid bodies, the equations of
motion are limited to linear motion. After making the call to Calcforces, the func-
tion cycles through all of the particles and updates each one’s position, velocity, and
acceleration.

After that, a call to CheckForCollisions is made to see whether any of the particles has
collided with the flagpole or the ground plane. If so, then a call to ResolveCollisions is
made to apply the appropriate impulse to any particle involved in a coliision.

Finally, UpdateClothGeometry is called to provide Direct3D the new face and vertex infor-
mation, based on the updated particles, for the flag object.

Collision Response

In this example I check for collisions between the particles and the flagpole and the
particles and the ground plane. If you set the wind to zero, the flag will drape down
against the flagpole. If you release the locked particies (by pressing the R key), the flag
will drop to the ground and either sit there or be blown away, depending on the wind
setring,

Since there are a number of particles making up the flag object, you have to be able to
account for multiple collisions. In this case the maximum number of possible collisions
is equal to the number of particles (assuming that a particle cannot collide with the
flagpole and ground at the same time). To store the collision data, I've set up a Collision
structure along with a global array of these structures:

typedef struct _Collision {
ParticleRef pi;
Vector n;
} Collision, *pCollision;
Collision Collisions[NUMVERTICES];

The first parameter in the Collision structure, p1, is simply a reference to the particle that
is involved in the collision. The second parameter, », is the collision normal vector that
will be used to calculate the linear impulse.

Whenever the call to CheckForCollisions is made, the array elements in the Collisions
array are filled with collision data. Any unfilled elements will have their p1 set to -1 to
indicate the absence of collision data.

After all of the collisions, if any, have been identified, a call to ResolveCollisions is made.
Here's what that function looks like:

282 | Chapter17: Partide Systems

ResolveCollisions(Particle p{NUMROWS+1][NUMCOLUMNS+1])

void

{
int i;
int r, C;
Vecter Vn, Vt;

for(i=0; i<NUMVERTICES; i++)

if(Collisions[i].pl.r 1= -1)

H

= Collisions{i].pl.r;
¢ = Collisions{i].pi.c;
vn = (Collisions[i].n * p[r]ic].vWelocity) *
Collisions[i].n;
vt = pir]ic].vwelocity - Vn;
plr][c].welocity = {-(KRESTITUTION+1) * Vn) +
{ FRICTIONFACTOR*V1);

As you can see, the function is quite short, owing to the fact that we're dealing with
particles colliding with nonmovable objects; that is, I'm assuming that the flagpole and
ground are infinitely massive relative to each parricle. In this case, all we really need
to do is calculate the normal component of the colliding particle’s velocity, reverse it,
and scale it by the coefficient of restitution to get the particle’s normal velocity after
impact. Next, you can determine the rangendal component of velocity and scale it by
a friction factor to simutate sliding {riction. Adding these new normal and tangential
velocity components yields the new velocity of the particle at the instant just after
collision.

Tuning

Just as in the previous example, I've placed all the important, controlling parameters in
a set of global defines so that I can tune the simulaton. Here are those defines:

#define GRAVITY -32.174
#define SPRINGTENSIONCONSTANT 500.0f
#define SPRINGSHEARCONSTANT 300.0f
#define SPRINGDAMPINGCONSTANT 2.0f
#define YOFFSET) 120.0f
#detine DRAGCOEFFICIENT o.01f
#define WINDFACTOR 100
#define FLAGPOLEHEIGHT 200
#detine FLAGPOLERADIUS 10
#define COLLISIONTOLERANCE 0.05f
#define KRESTITUTION 0.25F
#define FRICTIONFACTOR 0.5

In spite of using Euler’s method instead of, say, the improved Euler method, I found
this simulation to be quite robust as long as the springs were tuned properly. For this
example I fixed the step size to 16 milliseconds and set the physics update-to-display
update rate at 10 to L

.{L‘_’

Tuning | 283

As you can see, I've defined two different spring constants to represent the main struc-
tural springs and the shear springs. I did this so that I could tune the shear springs
independent of the tension springs to see how they affect theyéverall behavior of the
flag. If you play around with these numbers, you'll see that if the shear spring constant
is set very low, then the flag appears very rubbery. On the other hand, if you set this
constant to a very high number, the flag appears quite inelastic in that it does not stretch
so much under the wind load.

You have to be careful, though, when increasing these spring constants. If you set either
of these spring constants too high ir. an effort to eliminate any stretchiness, you'llend up
with what are called stiff equations, and you’re likely to run into numerical instability.
Damping can help you a litdle here. In fact, you should always include a little damping,
whether it’s viscous damping or spring damping, to help alleviate instability.

If you want to see the effect of damping, change the spring damping constant to a lower
number. What you’ll find is that the particles making up the cloth jump around and
oscillate quite unreatistically. This is especially evident if you release the flag and let it
fall to the ground, where the particles start colliding with the ground.

Speaking of collisions, you'll probably want to try implementing the penetration check
‘that I showed you back in Chapter 13. I was not too concerned about penetration here,
since the particles could collide only with the flagpole and the ground; however, if you
are going to implement a system in which your cloth model may collide with arbitrarily
shaped objects, you should handle penetration.

284 | Chapter17: Partide Systems

APPENDIX A
Vector Operations

This appendix implements a class called Vector that encapsulates all of the vector
operations thar vou need when writing 2D or 3D rigid body simulations. Although,
Vector represents 3D vectors, you can easily reduce it to handle 2D vectors by eliminating
all of the z-terms or simply constraining the z-terms to zero where appropriate in your
implementation. ‘

Vector Class

The vector class is defined with three components, x, y, and z, along with several
methods and operators that implement basic vector operations. The class has two
constructors, one of which initializes the vector components to zero and the other of
which inidalizes the vector components to those passed to the constructor.

class Vector {
public:
float x;
float v;
float z;

Vector{void);
Vecter(float xi, float yi, float zi);

float Magnitude(void};
void Normalize(veid);
void Reverse(void);

Vectork operator+={Vector u);
Vector& operator-=(Vector u);
Vector® operator*=(float s);
Vectork operator/=(float s);

Vector operator-{void);

b

285

/¢ Constructor
inline Vector::Vector(veid)

X =0; rI»’
y = 0;
z = 0;

¥

// Constructor
inline Vector::Vector(float xi, float yi, fleat zi)

{ r
X = xi;
y = yi;
z = Zi;
}
Magnitude

The Magnitude method simply calculates the scalar magnitude of the vector according

to the formula
tv| = /x2 +y? +2*

“This is for a zero-based vector in which the components are specified relative to the
origin. The magnitude of a vector is equal to its length, as illustrated in Figure A-L

\ﬁa@\\ x ¥ 2)
%

z

Figure A-1. Vector Length (Magnitude)

Here’s the code that calculates the vector magnitude for our vector class:

inline float Vector::Magnitude({void)

return (float) sqrt(x*x + y*y + z*z);

286 | AppendixA: Vector Dperations

Note that you can calculate the components of a vector if you know its length and
direction angles. Direction angles are the angles between each coordinate axis and the
vector, as shown in Figure A-2.

oy
\ox

(.74

Figure A-2. Direction Angles

The components of the vector shown in this figure are as follows:
vy = |v| cos ¢,
vy = |v|cos gy,
v, = |[v|cosg;

The cosines of the direction angles seen in these equations are known as direction cosines.
The sum of the squares of the direction cosines is always equal to 1:

cos? @ + cos” oy + cos? P, =1

Normalize

The Normalize method normalizes the vector, or converis it to a unit vector satisfying

the following equation:
V=vx2+yt+22=1

In other words, the length of the normalized vector is 1 unit. If v is a nonunit vec-
tor with components x, y, and z, then the unit vector u can be calculated from v as
follows: '

u =v/lv| = (x/[vDI+ (y/Iv])j + {z/IvDk

Here, |v| is simply the magnitude, or length, of vector v as described eatlier.

VectorClass | 287

Here’s the code that converts our Vector class vector to a unit vector:
inline void Vector::Normalize{void}

float m = {float) sqrt(x*x + y*y + z*z);
if(m <= tol) m = 1;

X /= m;
y /=m;
Z /=m;
if (fabs(x) ¢ tol) x = 0.0f;
if (fabs(y) < tol) y = 0.0f;
if (fabs{z) < tol) z = 0.0f;

}

In this function tol is a float type tolerance, for example,

float const tol = 0.0001f;

Reverse)

The Reverse method reverses the direction of the vector, which is accomplished by
simply taking the negative of each component. After calling Reverse, the vector will
point in a direction opposite to the direction in which it was pointing before Reverse was
called.

inline void Vector::Reverse{void)
X = -X;
y=-%
z=-2;

}

This operation is illustrated in Figure A-3.

z v z

Figure A-3. Vector Reversal

288 | AppendixA: VectorOperations

Vector Addition: The += Operator

This summation operator is used for vector addition, whereby the passed vector is
added to the current vector component by component. Graphically, vectors are added
in tip-to-tail fashion as illustrated in Figure A-4.

Figure A-4. Vector Addition

Here’s the code that adds the vector u to our Vector class vector:

inline Vectord Vector::operator+=(Vector u)

X += L.X}

Y += U.Y;
Z += u.z}
return *this;

Vector Subtraction: The —= Qperator

This subtraction operator is used to subtract the passed vector from the current one,
which is performed on a component-by-component basis. Vector subtraction is very
similar to vector addition except that you take the reverse of the second vector and add
it to the first as illustrated in Figure A-5.

Figure A-5. Vector Subtraction

ks

VectorClass | 289

Here's the code that subtracts vector u from our Vector class vector:

inline Vector® Vector::operator-=(Vector u} -
{
X -= U.X;
y -= u.Y;
Z -= U.Z;

return *this;

Scalar Multiplication: The *= Operator

This is the scalar multiplication operator that’s used to multiply a vector by a scalar,
effectively scaling the vector’s length. When you multiply a vector by a scalar, you simply
multiply each vector component by the scalar guantity to obtain the new vector. The
new vector points in the same direction as the unscaled one, but its length will be
different (unless the scale factor is 1). This is illustrated in Figure A-6.

/ ! V'S

Figure A-6. Scalar Multiplication

Here’s the code that scales our Vector class vector:

inline Vector®k Vector::operator*=(float s)
{

X *=5;

y *=s;

2 *=s;

return *this;

}

Scalar Division: The /= Operator

This scalar division operator is similar to the scalar multiplication operator except that
each vector component is divided by the passed scalar quantity.

inline Vector& Vector::operator/=(float s)
{

X /=5;

y /=5;

z /=s;

return *this;

}
Conjugate: The — Operator

The conjugate operator simply takes the negative of each vector component and can
be used when subtracting one vector from another or for reversing the direction of the

290 | AppendixA: Vector Operations

vector. Applying the conjugate operator is the same as reversing a vector, as discussed
earlier.

inline Vector Vector::operator-(void)

{
}

return Vector(-x, -y, -z);

Vector Functions and Operators

The functions and overloaded operators that follow are useful in performing operations
with two vectors, or with a vector and a scalar, where the vector is based on the Vector
class.

Vector Addition: The + Operator

This addition operator adds vector v to vector u according to the formula
u+v = +vdi+ @y +vj+ @+ vk

Here's the code:

inline Vector operator+(Vector u, Vector v)

{
}

return Vector(u.x + v.X, U.¥ + V.y, U.Z2 + V.Z);

Vector Subtraction: The — Operator

This subtraction o'perator subtracts vector v from vector u according to the formuta
u—v=(t, —vi+ (W, —vy)j + (4, — v)k

Here’s the code:

inline Vector operator-(Vector u, Vector v)

{
}

return Vector{u.x - v.x, u.y - v.y, u.z - v.z);

Vector Cross Product: The " Operator

This cross product operator takes the vector cross product between vectors u and v,
u X v, and returns a vector perpendicular to both u and v according to the formula

uXv={(u v = v (v b u v+ vy — uytudk

The resulting vector is perpendicular to the plane that contains vectors u and v. The
direction in which this resulting vector points can be determined by the righthand rule.
If you place the two vectors, u and v, tail to tail as shown in Figure A-7 and curl your
fingers (of your right hand) in the direction from u to v, your thumb will point in the

direction of the resulting vector.
-l
gl

Vector Functions and Operators | 291

(u+v)

z

Figure A-7. Vector Cross Product

In this case the resulting vector points out of the page along the z-axis, since the vectors
u and v lie in the plane formed by the x- and y-axes.

If two vectors are parallel, then their cross product will be zero. This is useful when you
need to determine whether or not two vector are indeed parallel.

The cross product operation is distributive; however, it is not commutative:

uxvEvxu
uXv=—{vxmu
sfuxv)={s)u) X v=u X (s){v)
uX (v+p)=(Xv)+ uXxp)
Here’s the code that takes the cross product of vectors u and v:

inline Vector operator”(Vector u, Vector v)

{ return Vector(Uy v,z - u.z*vuy,
SULXTVLZ 4 ULZRVLX,
ux*vey - wy*vux);
}
Vector cross products are handy when you need to find normal (perpendicular) vectors.
For example, when performing collision detection, you often need to find the vector
normal to the face of a polygon. You can construct two vectors in the plane of the polygon
using the polygon’s vertices and then take the cross product of these two vectors to get
normal vector.

Vector Dot Product: The * Operator

This operator takes the vector dot product between the vectors u and v, according to
the formula

u-v = (u, vy + (" vy) + U va)

292 | AppendixA: Vector Operations

The dot product represents the projection of the vector u onto the vector v as illustrated
in Figure A-8.

Figure A-8. Vector Dot Product

In this figure, P is the result of the dot product, and it is a scalar. You can also calculate
the dot product if you the know the angle between the vectors:

P=u-v=|ul|v|jcosé
Here’s the code that takes the dot product of u and v:

// Vector dot preduct
inline float operator*(Vector u, Vector v)’

return (u.oxX*vox + uyvey + u.z*v.z);
Y .

Vector dot products are handy when you need to find the magnitude of a vector projected
onto another one. Going back to collision detection as an example, you often have to
determine the closest distance from a point, which may be a polygon vertex on one
body (body 1), to a polygon face on another body (body 2. If you construct a vector
from the face under consideration on body 2, using any of its vertices, to the point under
consideration from body 1, then you can find the closest distance of that point from the
plane of body 2’s face by taking the dot product of that point with the normal vector
to the plane. (If the normal vector is not of unit length, you'll have to divide the result
by the magnitude of the normal vector)

Scalar Multiplication: The * Qperator

This operator multiplies the vector u by the scalar s on a component-by-component
basis. There are two versions of this overloaded operator depending on the order in
which the vector and scalar are encountered:

inline Vector operator*(float s, Vector u)
{

return Vector(u.x*s, u.y*s, u.z*s);
}
inline Vector operator*(vector u, float s)
{

return Vector(u.x*s, u.y*s, u.z*s};

£
Ao

Vector Functions and Operators | 293

Scalar Division: The / Operator

This operator divides the vector u by the scalar s on a component-by-component basis:

inline Vector operator/(Vector u, fleat s)

{
}

return Vector{u.x/s, u.y/s, u.z/s);

Triple Scalar Product

This function takes the triple scalar product of the vectorsw, v, and w according to the
formula

s=u-{vxw)
Here, the result, s, is a scalar. The code is as follows:
inline float TripleScalarProduct(Vector u, Vector v, Vector w)
return float({uox * (v.y*w.z - vozheLy)) +

(uy * (-v.oxfw.z + v.zhex)) +
(u.z * (voxtuy - v.y*u.x)))5

294 | AppendixA: Vector Operations

APPENDIX B
Matrix Operations

This appendix implements a class called Matrix3x3 that encapsulates all of the oper-
ations you need to handle 3 x 3 (nine-element} matrices when writing 3D rigid body
simulations.

Matrix3x3 Class

The Matrix3x3 class is defined with nine elements, e; j» where i represents the ith row
and j represents the jth column. For example, e, refers to the element on the second
row in the first column. Here’s how all of the elements are arranged:

En €n €p
M=le, e, ey
€a €n €n

The class has two constructors, one of which initializes the matrix elements to zero and
the other of which initializes the elements to those passed to the constructor:

class Matrixix3 {

public:
// elements eij: i -> row, j -> column
float ell, e1z, e13, e21, e22, e23, e31i, e32, e33;
Matrix3x3(void);

Matrix3x3(fleat ric1, float ric2, float ric3,
float r2c1, float r2c2, float ric3,
float r3ci, fleat r3cz, float r3c3);

float det{void);
Matrix3x3 Transpose(void);
Matrix3x3 Inverse{void};

Matrix3x3& operator+=(Matrix3x3 m);
Matrix3x3& operator-=(Matrix3x3 m);
Matrix3x3% operator*=(float s});
Matrix3x3& operator/=(float s);

IH

295

/f Constructor

inline Matrix3x3: :Matrix3x3{void}
{ ‘-’Pﬁ‘
ell = 0; i
el = 0;
e13 = 0;
el = 0;
e12 = 0;
€23 = 0;
e3l = 0;
e32 = 0;
e33 = 0;
}
/¢ Constructor
inline Matrix3x3::Matrix3x3(float rici, float ric2, float ric3,

float r2ci, float r2cz, float rac3,
float r3ci, float r3c2, float 1r3c3)

{
e11 = ricl;
e12 = ric?;
e13 = ric3;
e21 = r2cl;
822 = r2c2;
€23 = 12c3;
e31 = ricl;
€32 = 13¢2;
e33 = I3¢3;
}
Determinant

The method, det, returns the determinant of the matrix. The determinantof a 2 x 2
matrix,

€y En
€y €x

m=

is as follows:
det[m] = e en — exeér

The determinant of a 3 x 3 matrix is found by first expanding the matrix by minors,
and then resolving the determinants of the 2 x 2 minors. Here’s how you expand a
3 x 3 matix by minors:

€ En

en €p
€3 Exn

€ e
M=e¢, —e, 2 2
€5 En

ey

€y B
Here’s how this all looks in code:

inline float Matrix3x3::det{void)
{
return e11*e22%e33 -
el1*e32%e23 +
e21%*e32%*e13 -

296 | AppendixB: Matrix Operations

e21%e12%e33 +
e31*e12%e23 -
e31*e22%e13;

Transpose

The method, Transpose, transposes the matrix by swapping rows with columns, that
is, the elements in the first row become the elements in the first column and so on for
the second and third rows and columns. The following relations are true for transpose
operatons:

M) =M
(sM)" = s(M")
(MN)! = N‘M'

(M 4+ N)t = M! + Nt
det[M!] = det[M]
Here, M and N are matrices, ¢ is the transpose operator, and s is a scalar.

Here’s the Transpose method for our Matrix3x3 class:
inline Matrix3x3 Matrix3x3::Transpose(void)

{

return Matrixix3(ei1,e2i,e3l,elz,e22,e32,e13,e23,e33);

Inverse

The method Inverse computes the inverse matrix such that the following relarion is
satisfied:

MM '=MM=1

Here, M~ is the inverse of matrix M, and I is the identity matrix. For a 3 x 3 matrix,
the inverse is found as follows:

Ell EL’. E]J
M~ ! =1/det]M|E;, E, E,
Ey Ey Ey

Here, Ejj represents the cofactor of element ¢;;, which can be found by taking the
determinant of the minor of each element. Only square matrices, those with the same
number of rows as columns, can be inverted. Note, however, that not all square matrices
can be inverted. A matrix can be inverted only if its determinant is nonzero.

.%AL‘_'

Matricdx3Class | 297

The follow relation applies to matrix inversion:

(MN)_I — N—IM—I -:’F\‘i‘

Here’s how matrix inversion looks in code for our Matrix3x3 class:

inline

float

Matrix3x3 Matrix3x3::Inverse{void)

d = e11¥e22%a33 -

el1*e32%e23 +
e21*e32%e13 -
e21%e12%e33 +
ejl*el2%e23 -
e31*e22%e13;

if (d==0)d=1;

return

Matrix3ix3{ {e22%a313-e23%e32)/d,

-(e12*e33-e13*e32)/d,
(e12*e23-e13*%e22)/d,
-{e21*e33-e23%e31}/d,
(e11%*e33-e13*e31)/d,
-{e11*e23-e13%224)/d,
(e21*e32-e22%e31)/d,
-(e11*e32-e12%e31)/d,
{e11%e22-e12*e21)/d);

Matrix Addition: The += Operator

This operator simply adds the passed matrix to the current one on an element-by-
element basis. For two matrices to be added, they must be of the same order, that is,
they must have the same number of rows and columns.

inline

ell
el2
ei3
e21
e22
e23
e3l
e32
e33

Matrix3x3& Matrix3x3::operator+=(Matrix3x3 m}

=

+=
+=
+=
4=
4=
+=
+=

refurn

}

m.e11;
m.el2;
m,el3;
m.e21;
m.e22;
m.e23;
m.e31;
m.e32;
m.e33;
*this;

Matrix addition (and subtraction) is commutative, associative, and distributive; thus,

M+N=N+M
M+(N+P)=M+N)+P
M(N 4+ P) = MN + MP
(N+PM=NM+PM

298 | AppendixB: Matrix Operations

Matrix Subtraction: The -= Operator

This operator simply subtracts the passed matrix from the current one on an element-
by-element basis. For two matrices to be subtracted, they must be of the same order,
that is, they must have the same number of rows and columns.

inline Matrix3x3& Matrix3x3::operator-={Matrix3x3 m)

{
ell -= m.ell;
e12 -= m.e1z;
e13 -= m.e13;
e21 -= m.e2l;
€22 -= m.e23;
e23 -= m.ei3;
e31 -= m.e31;
e32 -= m.e3z;
€33 -= m.e33;

return *this;

}

Scalar Multiplication: The *= Operator

This operator simply multiplies each element by the scalar, s:

inline Matrix3x3& Matrix3x3::operator*=({float s)

{
ell *= s;
el12 *= s;
e13 *= g;
e21 *= s;
e22 *= 5;
e23 *= s;
e3l *= s;
el2 *= s;
e33 *= 5;

return *this;

}
The following relation applies for scalar multiplication (and division):

s(MN) = (sM)N = M(sN)

Scalar Division: The /= Operator

This operator simply divides each element by the scalar, s:

inline Matrix3x3& Matrix3ix3::operator/=(float s)
{

ell /= 5;

e12 /= s;

el3 /= s5;

e2l /= s5;

e12 /= s5;

e23 /= 53

e31 /= s;

e32 /= s;

e33 /= s;

return *this;

Matrix3x3 Class | 299

Matrix Functions and Operators

The functions and overloaded operators that follow are useful in"j:'j’ﬁtzrforming operations
with two matrices, with 2 matrix and a scalar, or with a matrix and a vector. Here, the
matrices are assumed to be of the type Matrix3x3 and vectors of the type Vector as
discussed in Appendix A.

Matrix Addition: The + Operator

This operator adds the two matrices together on an element-by-element basis:

inline Matrix3x3 operator+(Matrix3x3 mi, Matrix3x3 m2)
{
return Matrix3x3(mi.el1+m2.e1l,

ml.el24m2.e12,
mi.e13+m2.e13,
mil.e21+m2.e21,
mi,e22+m2,e22,
ml.e23+m2.e23,
mi.e31+m2.e31,
mi.e32+m2.e32,
ml.e33em2.e33);

}
Matrix Subtraction: The — Operator

This operator subtracts matrix m2 from m1 on an element-by-element basis:

inline Matrix3x3 operator-(Matrix3x3 m1, Matrix3x3 m2)
{
return Matrix3x3(mi.el1l-m2.ell,
mi.e1l2-m2.el2,
mi.ei3-m2.e13,
mi,e21-m2.e21,
ml.e22-m2.e22,
mil.e23-m2.e23,
mi.e31-m2.e31,
mil.e32-m2,.e32,
mi.e33-m2.e33);

Scalar Divide: The / Operator

This operator divides every element in the matrix, m, by the scalar, s:

inline Matrix3x3 operator/(Matrix3x3 m, fleat s)
{
return Matrix3x3{ m.eld/s,

m.el2/s,
m.el13/s,
m.e2l1/s,
m.e22/s,
m.e23/s,
m.e31/s,
m.e32/s,
m.e33/5);

300 | AppendixB: Matrix Operations

Matrix Multiplication: The * Operator

This operator, when applied between two matrices, performs a matrix multiplication.
In matrix multplication, each element, e, is determined by the product of the ith row
in the first matrix and the jth column of the second matrix:

inline Matrix3x3 operator*(Matrix3x3 mi, Matrix3x3 m2)

ml.ei2*m2.e21
ml.el2*mz,e22

return Matrix3x3{mi.eli*m2.e11
ml.ell*m2.e12
ml.el1¥*m2.e13 +.ml.e12%m2.e23
mi.e21*m2.ell + ml.e22*m2.e21

+ ml.e13*m2.e31,
¥
¥
¥
mi,e21*m2.e12 + ml.e22*m2.e22
4
+
+
+

mi.e13*m2.e32,
ml.e13*m2.e33,
ml.e23*mz.e31,
mi.e23*m2.e3z2,
mi.e23*m2.e33,
ml.e33%m2.e31,
mi.e33*m2.e32,
mi.edij*m2.e33 };

ml.e21*m2.e13 + ml.e22*m2.e23
ml.e31*m2.el1 ml.e32*m2.e21
ml.e31*m2.e12 + ml.e32*m2.e22
mil.e31*m2.e13 ml,.e32*mz2.e23

++ + o+ + 4+

}

Two matrices can be multiplied only if one has the same number of columns as the
other has rows. Matrix multiplication is not commutative, but it is assocociative; thus,

MN £ NM
(MN)P = M(NP)

Scalar Multiplication: The * Operator

This operator, when applied between a matrix and a scalar, multiplies each element
in the matrix, m, by the scalar, s. Two forms are given here depending on the order in
which the matrix and scalar are encountered:

inline Matrix3x3 cperator*(Matrix3x3 m, fleat s)
{

return Matrixax3(m.eil*s,

m.el2¥s,

.e13*s,
e2l¥*s,
.e22%g,
.e23*%s,
.e31%s,
Le32¥g,
m.e33*s);

=2E3=2=23 3

}

iniine Matrix3x3 operator*{float s, Matrix3x3 m)
{
return Matrix3x3(m.eil*s,

m.e12*s,

m.el3*s,

m.e21%s,

m.e22%s,

m.e23%s,

m.e31*s,

m.e32%s,

m.e33*s);

Matrix Functions and Operators | 301

Vector Multiplication: The * Operator

This operator, when applied between a vector and a matrix, Hgarforms a vector multi-
plication in which the ith column in the matrix is multiplied by the ith component in
the vector. Two forms are given here depending on the order in which the mairix and
vector are encountered.

inline Vector operator*(Matrixix3 m, Vector u)

return Vector(m.eli*u.x + m.el2*u,y + m.ei3*u.z,
m.e21*u.x + m.e22*u.y + m.e23*u.z,
m.e31¥u.x + m.e32¥u.y + m.e33*u.z);

}
inline Vector operator*(Vector u, Matrix3x3 m)
return Vector(uom.ell + u.y*m.e21 # u.z*m.e31,
u.x*m.e12 + u.y*m.e22 + u.z*m.e3z,
u.xm.e13 + u.ytm.e23 + u.z¥*m.e33);
}

302 | Appendix8: Matrix Operations

APPENDIX C
Quaternion Operations

This appendix implements a class called Quaternion that encapsulates all of the oper-
arions you need ro handle quaternions when writing 3D rigid body simulations.

Quaternion Class

The Quaternion class is defined with a scalar cofnponent, n, and vector component, v,
where v is the vector xi + yj + zk. The class has two constructors, one that initializes
the quaternion to zero and one that initializes the elements to those passed to the
COnstructor:

class Quaternion {

public:
float n; /4 number (scalar) part
Vector v // vector part: v.x, v.y, v.z
Quaternion{void);

Quaternion(float e0, float e1, float e2, fleat e3);

float Magnitude{void);
Vector GetVector(void);
float GetScalar(void);

Quaternion operator+=(Quaternion q};

Quaternion operator-=(Quaternion q);

Quaternion operator*=(float s);

Quaternion aperator/=(float s);

Quaternion operator~(void) const { return Quaternion{ n,

-V.X,
-y,
-v.z);}
b
// Constructor .
inline Quaternion: :Quaternion(void)
{
n =290;
v.X = 0;
vy = 0;
v.z = 0;
}

303

// Constructor

inline Quaternion: :Quaternion{float e0, float e1l, float e2, float e3}
{ ' w
n =ed; '?ﬂ
v.X = el;
v.y = e2;
v.Z = e3;
}
Magnitude

The method, Magnitude, returns the magnitude of the quaternion according to the
following formula:

lql = V/n? + 22 +y? + 2

This is similar to calculating the magnitude of a vector except that for quaternions you
have to take the fourth term, the scalar n, into account.

Here’s the code that calculates the magnitude for our Quaternion class:

inline float Quaternion: :Magnitude(veid)

return (fleat) sqrt(n*n + v.x*v.x + v.y*v.y + v.z*v.7);

GetVector

The method, GetVector, returns the vector part of the quaternion. This method uses the
Vector class defined in Appendix A:

inline Vector Quaternion: :GetVector(void)
{
return Vector{v.x, v.y, v.z);
}
GetScalar
The method GetScalar returns the scalar part of the quaternion:
inline float Quaternion::GetScalar(void)
{
return n;
}

Quaternion Addition: The -+= Operator

This operator performs quaternion addition by simply adding the quaternion, g, to the
current quaternion on a component-by-component basis.

If g and p are two quaternions, then

q+p = [ng + np, (g + xp)i + (g + ¥p)i + (29 + p)ki

304 | AppendixC: Quaternion Operations

Here, nq+1; is the scalar part of the resulting quaternion, while (xq 4 x,)i +
(¥q + ¥p)i + (2 + zp)k is the vector part.

Quaternion addition is both associatve and commutative; thus,
q+{p+h)=(q+p)+h
q+p=p+q

Here’s the code that adds the quaternion q to our Quaternion class:

inline Quaternion Quaternion: :operator+=(Quaternion q)
{

n += q.n;

VX 4= Q.V.X;

V.Y += g.V.Y;

V.Z = 0.V.Z;
return *this;

Quaternion Subtraction: The —= Operator

This operator performs quaternion subtracrion by simply subtracting the quaternion,
q, from the current quaternion on a component-by-component basis.

If q and p are two quaternions, then
q-p=4q+ (—P) = [nq — o, (xq - xp)i + (yq - yP)J + (Zq - Zp)k]

Here, ny—n; is the scalar part of the resuling quaternion, while (xq — x)i +
(¥q — ¥p)j + (zg — zp)k is the vector part.

Here’s the code that subtracts the quaternion q from our Quaternion class:

inline Quaternicn Quaternion::operator-={Quaternion q)
n-= q.n;
VX - LV.X;
VoY -= guVay;
V.Z -= (.V.Z}

retuxn *this;

Scalar Multiplication: The *= Operator

This operator simply multiplies each component in the quaternion by the scalar, 5. This
operation is similar to scaling a vector as described in Appendix A.

inline Quaternion Quaternion::operator*={float s)
n *= s;
V.X *= 55
v,y *= s;
Vv.Z *= 5;

return *this;

.{lk;

Quaternion Class | 305

Scalar Division: The /= Operator

This operator simply divides each component in the quaterniol?,ﬁby the scalar, s:

inlire Quaternion Quaternion::operator/=({float s)
{

n/=s;

v.x /= s;

v.y /= s;

v.Z /= 5;

return *this;

Conjugate: The ~ Operator

This operator takes the conjugate of the quaternion, ~q, which is simply the negative
of the vector part. If ¢ = [, xi + yj + 2k], then ~q = [n, (=x)i + (=y)j + (—2)k].

The conjugate of the product of quaternions is equal to the product of the quaternion
conjugates, but in reverse order:

~(gp) = (~p){~q)

Here’s the code that computes the conjugate for our Quaternion class:

Quaternion operator~{void) const { return Quaternion(n,
-V X,

V.Y,

-v.z};}

Quaternion Functions and Operators

The functions and overloaded operators that follow are useful when performing oper-
ations with two quaternions, with a quaternion and a scalar, or with a quaternion and
a vector. Here, the quaternions are assumed to be of the type Quaternion, and vectors
are assumed to be of the type Vector as discussed in Appendix A.

Quaternion Addition: The + Operator

This operator performs quaternion addition by simply adding the quaternion q1 to
quaternion g2 on a component-by-component basis:

inline Quaternion operater+(Quaternion q1, Quaternion q2)
{
return Quaternion(gl.n + g2.n,
ql.v.x + q2.V.X,
ql.v.y + q2.v.y,
qi.v.z + q2.v.Z);

306 | AppendixC Quaternion Operations

Quaternion Subtraction: The — Operator

This operator performs quaternion subtraction by simply subtracting the quaternion
q2 from quaternion q1 on a component-by-component basis:

inline Quaternion operator-{Quaternien g1, Quaternion q2)

return Quaternion(ql.n - q2.n,
ql.v.X - g2.v.x,

ql.v.y - g2.v.y,
ql.v.z - g2.v.7);

Quaternion Multiplication: The * Operator

This operator performs quaternion multiplication according to the following formula:
QP = ngflp — Vq* Vp + nqvp + 1pvg + (v X vp)

Here, nqny — vy + vy is the scalar part of the result and nqVp + npVq + {¥q X vy,) is the
vector part. Also note that v, and v, are the vector parts of q and p, respectively, - is the
vector dot product operator, and x is the vector cross product operator.

Quaternion multiplication is associative but not commutative; therefore,

q(ph) = {qp}h
qpP # Pq
Here’s the code that multiplies two quaternions g1 and q2:

inline Quaternion operator*{Quaternion q1, Quaternion q2)

return Cuaternion{q1.n*q2.n - qi.v.x*q2.v.x
- ql.v.y*q2.v.y - gil.v.z*q2.v.z,
gl.n*q2.v.x + ql.v.x*q2.n
+ ql.v.y*q2.v.z - ql.v.z%g2.v.y,
ql.n*g2.v.y + gl.v.y*qi.n
+ gql.v.z¥q2.v.x - qil.v.X*q2.v.z,
qi.n*q2.v.z + ql.v.z*q2.n
+ ql.v.x®q2.v.y - ql.v.y*q2.v.x);

Scalar Multiplication: The * Operator

This operator simply multiplies each component in the quaternion by the scalar, s.
There are two forms of this operartor depending on the order in which the quaternion
and scalar are encountered: :

inline Quaternion operator*(Quaternion g, float s)

return Quaternion{q.n*s, q.v.x*s, q.v.y*s, q.v.z*s};

ke

Quaternion Functions and Operators | 307

inline Quaternion operator*(fleat s, .Quaternion q)

{

return Quaternion{g.n*s, q.v.x*s, q.v.y*s, q.v.z¥s);
} e
Vector Multiplication: The * Operator

This operator multiplies the quaternion q by the vector v as though the vector vwerea
quaternion with its scalar component equal to zero. There are two forms of this operator
depending on thé order in which the quaternion and vector are encountered. Since v is
assumes to be a quaternion with its scalar part equal to zero, the rules of multiplication
follow those outlined earlier for quaternion multiplication.
inline Quaternion operator*(Quaternion g, Vector v)
return Quaternion(S{g.v. Xt + quvaytuLy + quvaziviaz),
q.0*V.X + Qv yF.Z - quv.zivay,
q.n*v.y + q.V.Z.X - quv.xtv.z,
q.m*v.Z + q.v XtV - QuV.YRVLX);
inline Quaternion operator*(Vector v, Quaternion q)
return Quaternion(“(Q.V. XX+ QuVLYFVLY + g.veZh.Z),
q.n*v.x + q.v.z¥vey - quv.ytv.z,

q.0Fv.y + Q.V.XV.Z - g.v.z¥VLY,
Q.N*v.Z + q.v.yRV.X - q.v.XtLY);

Scalar Division: The / Operator

This operator simply divides each component in the quaternion by the scalar, s:

inline Quaternion operator/(Quaternion q, fleat s)

{

return Quaternion{q.n/s, q.v.x/s, q.v.y/s, q.v.z/s);

QGetAngle*

This function extracts the angle of rotation about the axis represented by the vector
part of the quaternion:

inline float QGetAngle(Quaternion q)
{

return (float) (2*acos(q.n)};

* For a description of how quaternions are used to represent rotation, refer to the section entitled “Quarernions™
in Chapter ¥.

308 | AppendixC: Quaternion Operations

QGetAxis

This function returns a unic vector along the axis of rotation represented by the vector
part of the quaternion, ¢

inline Vector QGetAxis{Quaternion q)

Vector v;
float m;

v
n

g.GetVector();
v.Magnitude{);

nn

if (m ¢= tol}

return Vectoz();
else

return v/m;

QRotate
This function rotates the quaternion p by q according to the formula
P'=(@P(~q

Here, ~q is the conjugate of the unit quaternion, q. Here’s the code:

inline Quaternion QRotate(Quaternion g1, Quaternion g2)
{
return ql*q2*(~q1};
}
QVRotate

This function rotates the vector v by the unit quaternion q according to the formula
p’ = (@(v)(~q)
Here, ~q is the conjugate of the unit quaternion, q, Here's the code:
inline Vector QVRotate(Quaternion g, Vector v)

A

Quaternion t;

t = gtv*(~q);
return t.GetVector();

MakeQFromEulerAngles
This function constructs a quaternion from a set of Euler angles.

Fora given set of Euler angles, yaw (), pitch (1), and roll () defining rotation about the
z-axis, then the y-axis, and then the z-axis, you can construct the representative rotation
quaternion. You do this by first constructing a quaternion for each Euler angle and then

.{L;

Quaternion Functions and Operators | 309

multplying the three quaternions following the rules of quaternion multiplication. Here
are the three quaternions representing each Euler rotation angle:
- 6‘

Qoll = {cos(ip/2). [sinle/2))i + 0f + ok}
Qpicch = {cos(z/2}, 0i + [sin(z/2)]j + Ok}
Qyaw = {c0s(¥/2), 0i + 0j + [sin{y/2)]k}

Each one of these quaternions is of unit length.*

Now you can multiply these quaternions to obtain a single one that represents the
rotation, or orientation, defined by the three Euler angles:

q = Qvaw Qpirch Groll

Performing this muldplicarion yields

q = {[cos(p/2) cos(t/2) cos(ir/2) + sin(p/2) sin(z/2) sin(y¥/2)],

[sin(g/2) cos(t/2) cos(¥r/2) — cos{g/2) sin(t/2) sin(yr/2}]i
+ [cos{p/2) sin{z/2) cos(¥/2) + sin(p/2) cos(t/2) sin{¥/2)] j
+ [cos(e/2) cos(t/2) sin{¥r/2) — sin{p/2) sin(z/2) cos(y/2)] k}

Here’s the code that takes three Euler angles and returns a quaternion:

inline Quaternion MakeQFromEulerAngles(float x, float y, float z)
{

Quaternion q;

double roll = DegreesToRadians(x);

double pitch = DegreesToRadians(y);

double yaw = DegreesToRadians(z);

double cyaw, cpitch, croll, syaw, spitch, sroll;
double cyawcpitch, syawspitch, cyawspitch, syawcpitch;

cyaw = cos(0.5F * yaw);
cpitch = cos(0.5F * pitch);
croll = cos(p.5f * roll);
syaw = sin{0.5F * yaw);
spitch = sin{0.5f * pitch);
stoll = sin{0.5f * 10ll);

cyawcpitch = «<yaw*cpitch;
syawspitch = syaw*spitch;
cyawspitch = cyaw*spitch;
syawcpitch = syaw*cpitch;

LI |

{float) {cyawcpitch * sroll - syawspitch * croll);
(float) (cyawspitch * croll + syawcpitch * sroll);

{(float) (cyawcpitch * croll + syawspitch * stoll);
= (float) (syawcpitch * croll - cyawspitch * sroll);

* You can verify this by recalling the wigenemerric relation cos? § + sinfd = 1.

310 | AppendixC: Quaternion Operations

MakeEulerAnglesFromQ
This function extracts the three Euler angles from a given quaternion.

You can extract the three Euler angles from a quaternion by first converting the quater-
nion to a rotation matrix and then extracting the Euler angles from the rotation matrix.
Let R be a nine-element rotation matrix,

fu 'z "3
R=|ra rm m™
fa T3
and let q be a quaternion,
q = [n, xi+ yj+ zK]
Then each element in R is calculated from q as follows:

m:nz+x2—yz—z2

ty = 2xy + 2zn
r3 = 22x — 2yn
iz = ij — 221
=1l — x4yt
ry = 2zy + 2xn
i3 =2xz+ 2yn
rn =2yz — 2xn
rp=nt—xl -y 422
To extract the Euler angles, yaw (¢), pitch (z), and roll (), from R, you can use these
relations:
sint = —rg
tang = ry /13
tanyr = rn/ry
Here’s the code that extracts the three Euler angles, returned in the form of a vector,
from a given quatetnion:

inline Vector MakeEulerAnglesFromQ{Quaternion q)
{
double ril, r2l, r3i, r3z2, r33, ri2, ri3;
double q00, q11, 922, q33;
double tmp;

Vector u;

qo0 = g.n * g.n;

q11 = q.v.x * g.v.X;

q22 = q.v.y * g.v.y;

g33 = q.v.z * q.v.z;

r1l = q00 + q11 - g22 - g33;

121 = 2 * (q.v.x*q.v.y + q.n*q.v.z};

,%,lu_'

Quaternion Functions and Operators | 311

131 = 2 * (q.v.x¥q.v.z - q.n*q.v.y);
132 = 2 * {q.v.¥y*q.v.Z + q.n*q.v.X);
r33 = q00 - qli - q22 + q33;

tmp = fabs(r31);
%-F(tmp > 0.999999)

12 = 2 * {q.v.x*q.v.y - q.n*q.v.z);
13 = 2 * (q.v.x*q.v.Z + q.n*q.v.y);
u.x = RadiansToDegrees{0.0f}; //roll
u.y = RadiansToDegrees({float) (-(pi/2) * z31/tmp)); // pitch
u.z = RadiansToDegrees((float) atan2(-r12, -r31*r13)}; // yaw
return u;

}

u.x = RadiansToDegrees{(float) atan2(r32, ¥33)); // roll

u.y = RadiansToDegrees{(float) asin{-r31}); // pitch

u.z = RadiansToDegrees((float) atanz2(rz1, ri1)); // yaw

return u;

Conversion Functions

These two functions are used to convert angles from degrees to radians and radians to
degrees. They are not specific to quaternions but are used in some of the code samples
shown earlier.

inline float DegreesToRadians(float deg)

return deg * pi / 180.0%;

}
inline float RadiansToDegrees(float rad)
{
return rad * 18c.0f / pi;
}

312 | AppendixC: Quaternion Operations

Bibliography |

A wise old professor once told me that it is not important to know the answers to
everything as long as you know where to find the answers when you need them, In that
spirit, I've compiled a list of references to books, articles, and Internet resources that
you might find useful when looking for additional information on the various topics
discussed throughout this book. I've tried to categorize them as best I could. However,
keep in mind that several references cover more than just the subject matter referred to
in the category headings I've assigned.

General Physics and Dynamics

Anand, D. K, and P. F. Cunniff. Engineering Mechanics: Dynamics. Boston: Houghton
Mifflin, 1973.

Beer, Ferdinand P, and E. Russell Johnston, Jr. Vector Mechanics for Engineers. New
York: McGraw-Hill, 1988.

Dugas, Rene. A History of Mechanics. New York: Dover, 1988,

Ginsberg, Jerry H. Advanced Engineering Dynamics. New York: Cambridge University
Press, 1995,

Lindeburg, Michael R. Engineer-in-Training Reference Manual. Belmont, Calif.:
Professional Publications, 1990.

Meriam, J. L, and L. G. Kraige. Engineering Mechanics, Vol. 2, Dynamics. New York:
John Wiley & Sons, 1987.

Rothbart, Harold A., ed. Mechanical Design Handbook. New York: McGraw—Hili,‘ 1996.

Serway, Raymond A. Physics for Scientists and Engineers. New York: Saunders College
Publishing, 1986.

Mathematics and Numerical Methods

Boyce, William E, and Richard C. DiPrima, Elementary Differential Equations. New
York: John Wiley & Sons, 1986.

e

313

kg,

Kreyszig, Erwin. Advanced Engineering Mathematics. New York: John Wiley & Sons,
1988.

Larson, Roland E., and Robert P. Hostetler. Calculus with Anab;i’i’:‘: Geomelry. Lexington,
Mass.: D C. Heath, 1986.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vertterling.
Numerical Recipes in Pascal: The Art of Scientific Computing. New York: Cambridge
University Press, 1989.

Computational Geometry

Arvo, James, ed. Graphics Gems II. New York: Academic Press, 1991

Bobic, Nick. “Advanced Collision Detection. Technigues,” Gamasutra, March 2000.
URL: http://www.gamasutm.com/features/20000330/bobir:_OI.htm _

DaLoura, Mark, ed. Game Programming Gems, Chap. 4.5. Hingham, Mass.: Charles
River Media, 2000. '

Foley, James, Andries van Dam, Steven Feiner, and John Hughes. Computer Graphics:
Principles and Practice. Reading, Mass.: Addison-Wesley, 1996.

Glassner, Andrew, ed. Graphics Gems. New York: Academic Press, 1990.

Goodman, J. E, and J. O'Rourke, eds. Handbook of Discrete and Computational
Geometry. Boca Raton, Fla.: CRC Press, 1997.

Heckbert, Paul, ed. Graphics Gems IV. New York: Academic Press, 1994.
Kirk, David, ed. Graphics Gems III. Academic Press, New York, 1992

Mirtich, Brian. “Fast and Accurate Computation of Polyhedral Mass Pr erties,”
Journal of Graphics Tools 1, no. 2: 31-50, 1996. URL: http:/fwww.merl.com/people/
mirtich/pubs.html

Mirtich, Brian. “Rigid Body Contact: Collision Detection to Force Compuiation,”
MERL Technical Report 98-01, Proceedings o] Workshop on Contact Analysis and
Simulation, IEEE International Conference on Robotics and Automation, May 1998,
URL: http:/fwww.merl.com/peoplé/mirtich/pubs.html

Mirrich, Brian. “Efficient QMLMWMW@” MERL
Technical Report 97-23, Practical Motion Planning in Robotics: Current Approaches
and Future Directions, edited by K. Gupta and A. P. del Pobil, 1998 URL:
http:/fwww.merl.com/people/mirtich/pubs.himl

Mirtch, Brian. “V-Clip: Fastand Robust Polyhedral Collision Detection,” MERL
Technical Report 97-05, ACM Transactions on Graphics 17, no. 3: 177-208, July 1998.
URL: hitp:/fwww.merl.com/people/mirtich/pubs.html

“ (O’Rourke, Joseph. “comp.graphics.algorithms Frequently Asked Questions,” Copy- ‘

right 2000 by Joseph O’Rourke. URL: htip://jupiter.felk.cvut. cz/FAQ/articles/al834.
hitml

314 | Bibliography

O’Rourke, Joseph. Computational Geomeiry in C. New York: Cambridge University
Press, 1998.

Paeth, Alan, ed. Graphics Gems V. New York: Academic Press, 1995.

Projectiles

Power, H. L. and Iversen, J. D. “Magnus Effect on Spinning Bodies of Revolution,” AIAA
Journal 11, no. 4, April 1973,

Sports Ball Physics

Adair, Robert K. The Physics of Baseball. New York: Harper Perennial, 1994.

Davies, John M. “The Aerodynamics of Golf Balls,” Journal of Applied Physics 20, no. 9,
September 1949,

Jorgensen, Theodore P. The Physics of Golf. New York: Springer, 1999,

MacDonald, William M., “The Physics of the Drive in Golf,” American Journal of Physics
59 no. 3, March 1991

McPhee, John], and Gordon C. Andrews. “Effect of Sidespin and Wind on Projectile
Trajectory, with Particular Application w0 Golf,” American Journal of Physics 56,
no. 10, October 1988,

Mehta, Rabindra D. “Aerodynamics of Sports Balls,” Annual Review of Fluid Mechanics
17: 151-189, 1985

Shepard, Ron. Amateur Physics for the Amateur Pool Player, copyright Ron Shepard,
1997

Watts, Robert G., and Steven Baroni. “Baseball-Bat Collisions and the Resulting
Trajectories of Spinning Balls,” American Journal of Physics 57, no. 1, January 1989.

Watts, Robert G, and Eric Sawyer. “Aerodynamics of a Knuckleball,” American Journal
of Physics 43, no. 11, November 1975, :

Aerodynamics

Abbot, Ira H., and Alberc E. Von Doenhoff. Theory of Wing Sections. New York: Dover,
1959

Hoerner, Sighard F, and Henry V. Borst. Fluid Dynamic Lift. Bakersfield, Calif.: Hoerner
Fluid Dynamics, 1985.

Hoerner, Sighard F. Fluid Dynamic Drag, Bakersfield, Calif.: Hoerner Fluid Dynamics,
1992,

Thwaites, Bryan, ed. Incompressible Aerodynamics, New York: Dover, 1960.

‘;::'

Bibliography | 315

Hydrostatics and Hydrodynamics

Clayton, B. R., and R. E. D, Bishop. Mechanics of Marine VehidéfHouston, Texas: Gulf,
1982.

Daugherty, Robert L., Joseph B. Franzini, and E. John Finnemore. Fluid Mechanics
with Engineering Applications. New York: McGraw-Hill, 1985.

Gillmer, Thomas C., and Bruce Johnson. Introduction to Naval Architecture. Annapolis,
Md.: Naval Insdrute Press, 1982.

Lewis, Edward V, ed. Principles of Naval Architecture, Second Revision, Vol. 1, Stability
and Strength. Jersey City, N.J.: The Society of Naval Architects and Marine
Engineers, 1988,

Lewis, Edward V, ed. Principles of Naval Architecture, Second Revision, Vol. II, Resistance,
Propulsion and Vibration. Jersey City, N.J.: The Society of Naval Architects and
Marine Engineers, 1988. '

Newman, John Nicholas. Marine Hydrodynamics. Cambridge, Mass.: The MIT Press,
1989.

Zubaly, Robert B, Applied Naval Architecture. Jersey City, N.J.: The Society of Naval
Architects and Marine Engineers, 1996. '

Automobile Physics

Beckman, Brian, Physics of Racing Series, Copyright 1991 by Brian Beckman, Stuttgart-
West, 1998. URL: http:/fwww.autopedia.com/stuttgart-west/StuttPhysics.html

Real-Time Physics Simulations

DaLoura, Mark, ed. Game Programming Gems, Section 2. Hingham, Mass.: Charles
River Media, 2000.

Hecker, Chris. “Physics, The Next Frontier,” Game Developer, October/November 1996.

Hecker, Chris. “Physics, Part 2: Angular Effects,” Game Developer, December 1996/
January 1997.

Hecker, Chris. “Physics, Part 3: Collision Response,” Game Developer, March 1997,
Hecker, Chris. “Physics, Part 4: The Third Dimension,” Game Developer, June 1997,
Katz, Amnon. Computational Rigid Vehicle Dynamics. Malabar, Fla.: Krieger, 1997,

Lander, Jeff. “Collision Response: Bouncy, Trouncy, Fun,” Gamasutra, February 8, 2000.
URL: hitp:/fwww.gamasutra.com/features/20000208/lander_01. htm

Lander, Jeff. “Crashing into the New Year,” Gamasutra, February 10, 2000. URL:
http:/hww.gamasutra.com/features/20000210/lander 01 htm

Lander, Jeff. “Lone Game Developer Batties Physics Simulator,” Gamasutra, Febru-
ary 15, 2000. URL: http://www.gamasutra.com/features/20000214/lander OLhtm

316 | Bibliography

Lander, Jeff. “Trials and Tribuladons of Tribology,” Gamasutra, May 10, 2000. URL:
htip:/fwuni: gamasutra.com/features/20000510/lander _01. htm

Lander, Jeff. “Physics on the Back of a Cocktail Napkin,” Gamasutra, May 16, 2000.
URL: http:/fwww.gamasutra.com/features/20000516/lander 01 htm

Mirtich, Briar. “Impulse-Based Dynamic Simulation of Rigid Body Systems.”
Ph.D. thesis, University of California, Berkeley, December 1996. URL:
http:/fwwi.merl.com/people/mirtich/pubs.htm]

Mirtich, Briar. and John Canny “Impulse-based Simulation of Rigid Bodies,”
Proceedings of the 1995 Symposium on Interactive 3D Graphics, April 1995, URL:
hitp:/fwwe merl.com/peoplefmirtich/pubs. himl

Mirtich, Briar. and John Canny. “Impulse-Based Dynamic Simulation,” Proceedings
of Workskop on Algorithmic Foundations of Robotics, February 1994. URL:
http:/fwwae. merl.com/peoplefmirtich/pubs html

Witkin, Andrew: and David Baraff. “An Introduction to Physically Based Modeling,”
1997, URL: http:/iwww.cs.cmu.edulafs/cstuser/baraffwww/pbm/pbm.html (see also
SIGGRAFPH "95 course entitled “An Introduction to Physically Based Modeling”).

ekl

Bibliography | 317

Symbols

* Operator
in matrix operadons
marrix muldplicadon, 301
scalar muldplicadon, 301
vector multiplication, 302
in quaternion operations
quaternion muldplication, 307
scalar multiplication, 307-308
vector multiplication, 308
in vector operations
scalar muldplicaton, 293
vector dot product, 292-293
%= gperator
in mawrix operations, 299
in quaternion operations, 305
in vector operations, 290
~+ operator
in marix operations, 300
in quaternion operations, 306
in vector operations, 291
~+= operator
in mawrix operarions, 298
in quaternion operatons, 304305
in vector operations, 289
— operator
in mawoix operations, 300
in quaternion operations, 307
in vector operations
conjugate, 250251
vector substraction, 291
—= operator
in matrix operations, 299
in quaternion operadons, 305
in vector operations, 289-250

e

Index

/operator
in matrix operatons, 300
in quarernion operadons, 308
in vector operadons, 294

. /= operator

in matrix operations, 299
in quaternion operations, 306
in vector operations, 290
operator, in quaternion operadons,
306
A Operaror, in vector operations,
291-292

A

acceleration
angular, 4, 50-56
centripetal, 52-53
concepis, 27-28
constant, 28-30
equations for, 72-73
linear, units and symbel for, 4
nonconstant, 30-31
relative, 5556
tangential, 52—533
velocity and, 2528

acceleration vector, in law of motion, 16

aerodynamic drag, 165-167
in cars, 168
compornents of, 165
induced, 165-166
momentum, 166
viscous, 165
wetted, 166—167

aerostatic Jlift, 163

ailerons, in aircraft, 131

31%

aircraft, 121-145
airfoil, 123)
angle of artack, 123
chord line, 123
control, 130-131
ailerons, 131
elevators, 131
flaps, 130-131
rudders, 131
fluid dynamic drag, 125, 128
forces on, 121-122
geomertry of, 122-124
lift, 124-125
mean camber line, 123
modeling, 132-145, 231-235

fluid dynamic drag, 133-134

lifs, 133134
sample code, 135-143
sample program, 134
steps in, 132
parts of, 122, 123
pitch axis, 124
roll axis, 124
thrust, 129, 143
yaw axis, 124
airfoil, 123
moving through air, 124-125
stalled, 128, 129
angle of atrack, 123
crirical, 128
in lift and drag, 126-127
stalls and, 128, 129
angular acceleration, 50-56, 83
angular impulse, 88
in collisions, 96-98
angular momentum
equation, 19-20
in law of motion, 17
angular motion
defined, 5 <
in rigid body kinerics, 82-85
angular velocity, 5036, 86
aspect raiio, 123

B

banking, in cars, 171
baseball
as collision example, 9395
as Magnus effect example, 116
Bernoulli’s equation, 107, 125

billiard ball game, as collision example, 91-93

boat (See ships)
boundary layer, in fluid dynamic drag, 108
buoyancy force, 6364, 71

in ship flotation, 147-148

C

cannon ball game, fluid dynamic drag
example, 111-112
cars, 168171
power, 165-170
resistance, 168-169
roadway banking, 171
stopping distance, 170
Cartesian coordinate systetn, 4, 4950
center of gravity
in ship flotation, 147-148 (See also mass)
centripetal acceleration, 52-53
equation for, 54
centripetal force, in car banking, 171
cloth simuladon, 271-284
coefficient of restiturion, 90
collision detection, 87, 205-206
collision response, 87
angular effects, 211222
check for coilision, 211—221
collision impulse, 221-222
penerraton, 215, 221
vertex-edge, 214-215, 218-221
vertex lists, 216
vertex-vertex, 213214, 216-218
defined, 205
in 3D multiple body simulation,
266-269
implemendng, 205-222
linear, 206-211
check for collision, 207
collision impulse, 209-210
determination of collision, 206—208
in parricle systems, 282283
collisions, 87-100
angular impulse in, 96-98
ball and bai example, 93-95
billiard ball example, 91-93
friction and, 98-100
golf example, 98-100
impact, 89-95
impulse-momentum principle, 8889
linear impulse in, 95-96, 209-210
line of acrion of, 90
of particles, 95-96
of rigid bodies, 96-98

320 | Index

types of
inelasdc, 90
penetration, 206—207, 212
plasdc, 90
vertex-edge, 211-212
vertex-vertex, 211-212
conjugate
in quaternion operations, 306
in vector operations, 290-291
in vector operations class, 290-291
constant acceleration, 2830
conversion functions, in quaternion
operations, 312
coordinate system, 4-5
right-handed Cartesian, 4, 49-50

D

dampers
defined, 64
equaton for, 64-65
uses for, 64
density, units and symbol for, 4
determinant, in matrix operations, 296-297
dihedral angle, 138
displacement
in angular velocity and acceleration, 30
concepts, 27
ships and, 146
vs. distance traveled, 27
distance
skidding, 170
stopping, 170
distance traveled
equations for, 7273
vs. displacement, 27
drag (See aerodynamic drag; fluid dynamic
drag)
drag coefficienr, 61, 111, 130

E

elevators, in ajrcraft, 131
equations of motion, 69
in real-time simulations, 173—174
for two-dimensional kinetics, 83
error
Euler, 176, 177
of order, 175
truncation, 175
Euler’s angles, in banking of cars, 171
Euler’s method
in 3D rigid body simuladon, 235-236

o

improved
Hovercraft example, 191-192
for real-time simulations, 180-183
with multiple bedies in 3D, 264-265
in real-time simulations, 174-180
Euler error, 176, 177
integration comparison, 176
integration step, 175
sample code, 178-180
explosion, 43-48
sample code, 4548
sample program, 44-45

F

flight controls
2D rigid body simulator, 194-198
3D rigid body simulator, 238242
flotation, in ships, 147-14%
fluid dynamic drag, 60--61
in aircraft, 125, 128
around a sphere, 107-109
boundary layer, 108
cannon ball example, 111-112
drag coefficient, 61, 111
fast-moving, 61
in projectiles, 106114
Reynold’s number, 109-110
separation point in, 108109
slow-moving, 61
of spinning sphere, 114-118
turbulent wake, 108109
force-at-a-distance, 57
force(s), 57-68
on aircraft in flight, 121-122
buoyancy and, 62-64
concepts, 57-38
contact, 57
defined, 65
field, 57, 58-59 .
fluid dynamic drag, 60-61
friction, 59-60
impulse, 88
pressure and, 62
springs and dampers, 64—65
torque and, 65-68
units and symbol for, 4
friction, 5960
calculaton of, 59-60
coefficients of, for commeon surfaces, 60
collisions and, 98100
friction drag, on body through fluid, 3

Index | 321

G
GetScalar, in quaternion operations, 304
GetVector, in quaternion operations, 304
golf

as collision example, 98--100

as Magnus effect example, 116

H

Hamilton, William, 227
Hook’s law, 64
horsepower, in cars, 169-170
hovercraft, 163—167
aerodynamic drag, 165-167
components of, 165
induced, 165-166
momentum, 166
viscous, 165
wetted, 166—167
concepts, 163-165
aerostatic lift, 163—165
skirts for, 164
2D rigid body simulation, 184204
linear collision response in, 206-211
over water, 165-167
resistance, 165—167

impact of collision, 89-95, 91
impulse

angular, 88

collision

angular, 96-98, 221-222
linear, 95-96, 209-210

force, 88

linear, 88

torque, 88 ¢
impulse-momentum principle, 88—89
inelastic collisions, 90
inertia, products of, 20-21
inertia tensors, 19—24

angular momentum equation, 19-20

products of inerta, 20-21

sample code, 23-24

symmetry, 22

transfer of axes, 21
instantaneous velocity, 27

calculation for, 28—-29
inverse, in matrix operations, 297-298

K

kinematics, 25-56 .
* angular velocity andl acceleration, 50--56
constant acceleration, 28-30
2D particle, 31-33
3D particle, 3343
local coordinate axes, 49-50
nenconstant acceleration, 30-31
particle explosion, 43—48
rigid body, 49
velocity and acceleration, 25-28 .
kinematic viscosity, units and symbol for, 4
kinetic energy
collision impact and, 89
concepts, 89
kinetics, 6986
2D particle, 70-75
3D partcle, 75-82
problem solving guidelines, 70
rigid body, 82-86
Kutta-Joukouiski theorem, 115, 125

L

length, units and symbol for, 4
lift force, 114118
in aircraft, 124—125
equation for, 116
linear acceleration, 4
linear collision response, simulation, 206-211
check for collision, 207
collision impulse, 209-210
determination of collision, 206—208
linear impulse, 88
in collisions, 9596, 209-210
linear momentum, in law of motion, 16
linear motion, defined, 5
linear velocirty, 4 '

M

magnitude
in quaternion operations, 304
in vector operations, 286-287
magnus effect, 114-119
MakeFulerAnglesFrom(, in quaternion
operations, 311-312
MakeQFromEulerAngles, in quaternion
operations, 309-310
mass
calculation of, 6-8
defined, &

322 | Index

2D example, 12-13
units and symbol for, 4
variable, projectiles of, 118-120
virtual, of a ship, 161-162
mass moment of inertia
calculation of, 8—11
defined, 6
2D example, 13-15
units and symbol for, 4
mass properties, 5-14
matrix add:.on, 298-300
matrix functions and operators, 300-302
matrix muldplication, 301
matrix operarions, 295—302
martrix funcuons and operators, 300-302
matrix addicdon, 300
matrix multplication, 301
matrix substracton, 300
scalar division, 300
scalar multiplication, 301
vector muldplication, 302
matrix3x3 class, 224, 295299
determinant, 296-297
inverse, 297-298
matrix addition, 298-299
matrix subrraction, 299
scalar division, 299
scalar multplication, 299
transpose, 297
matrix subtracton, 299-300
matrix3x3 class, 224, 205-299
measures and units, 2—4
metacenter, in ship flotation, 148
modeling
aircraft flight, 132-145, 231-235
fluid dynamic drag, 133—134
lift, 133-134
sample code, 135-143
sample program, 134
steps in, 132
steps in, 132
model(s)
aircraft flight, 132-145, 231-235
2D rigid body simulation, 185-1%1
3D rigid body simulaton, 231-235
of muldple bodies in 3D, 250-264
of particle systems, 272-281
moment (See torque)
muldple bodies in 3D, simulation, 249270
collision response, 266269
integraton, 264265
model, 250-264

contact, 258—-264
forces and moments, 256258
inidalizadon, 250-256

steps in, 249

tuning of, 269-270

N

Newton’s Law
of conservatdon of momentum, 8%
first, 1
of gravitation, 58-59
second (mortion), -2, 15-19, 6%
third, 1
nonconstant acceleration, 30-31
normalize, in vector operations, 287-288

P -~
parallelepiped, volume of, 151-152

particle explosion, kinematic, 43—48 (See also

explosion}
particles
collisions between, 95-96
concepts, 25
particle systems, 271-284
collision response, 282-283
integradon, 281-282
model, 272281
inidalizadon, 274-281
particle-spring system, 272—-274
tuning, 283-284
penaley methods, 88
pitch angles, 124, 223
plastic collisions, 90
plenum chamber, 163
pressure
force and, 62
units and symbol for, 4
products of inerda, 2021
projectiles, 101-120
characterisdcs of, 102
drag and, 106—114
magnus effect, 114-119
simple trajectories, 102—-106
launch point lower, 104
projectile is dropped, 103-106
target and launch at same level, 103-104
target point lower, 104-105
terminal velocity, 112-113
variable mass, 118-120 (See also shooting
game}

index | 323

Q

QGetAngle, in quaternion.operations, 308
QGetAxis, in quaternion operations, 309
QRotate, in quaternion operations, 309
quaternion addition, 304306
quaternion class, 303-306
quaternion functions and operators,
306-312
quaternion multptication, 307
quaternion operations, 303-312
quaterhion class, 303-306
conjugate, 306
GetScalar, 304
GetVecror, 304
magnitude, 304
quaternion addition, 304—305
quaternion substraction, 305
scalar division, 306
scalar multiplication, 303
quaternion functions and operators,
306312
conversion functions, 312
MakeEulerAnglesFromQ, 311312
MakeQFromEulerAngles, 309-310
QGetAngle, 308
QGetAxis, 309
QRotate, 309
quaternion addition, 306
quaternion multiplication, 307
quaternion substraction, 307
(QQVRotate, 309
scalar division, 308
scalar multplicadon, 307-308
vector multiplication, 308
for rigid body rotation, 227-229
quaternion substraciion, 303, 307
QVRotate, in quaternion operations, 309

R «

real-time simulations, 172-183
concepts, 172
equations of motion and, 173-174
Euler’s method, 174—180
improved Euler method for, 180-183
Runge-Kutta method for, 181-182
Taylor’s theorem in, 174175, 180-182
relative acceleradon, 55-56
relative velocity, 35
rendering
for 2D rigid body simuladon, 198-204
for 3D rigid body simuladon, 242248

resistance
in cars, 168—-169
equation for, 71 . 5
in hovercraft, 165-167
rolling, 168-160
in ships, 159-161
restitution, coefficient of, 90
Ieverse, in vector operations, 288
Reynold’s number, 109-110
rigid body(ies)
circular path of particles making up a, 51
collisions of, 96-98
concepts, 25
kinemadics of, 49
kinetics of, 8286
multiple, in 3D, 249-270 (See also multple
bodies in 3D)
rigid body rotation, 223-229
in 2D, 223
in 3D, 223
quaternions, 227229
rotation matrices, 224227
Robins effect, 14—118
roli angles, 124, 223
rolling resistance, 168—169
coefficient of, 169
rotaton matrices, 224-227 (See also matri
operations) -
rudders, in aircraft, 131
Runge-Kutta method, for real-time
simulations, 181-182

5

scalar division
in mairix operations, 299-300
in quarernion operadons, 306, 308
in vector operadons, 290, 294
scalar multiplication
in matrix operations, 299, 301
in quaternion operations, 305, 307-308
in vector operations, 290, 293
scalar product, triple, in vector operations, 294
scalars, 5
ships, 146-162
displacemenr and, 146
2D particle kinetics example, 71
flotation, 147-149
geometry of, 146, 147
resistance, 159-161
virtual mass, 161-162
volume, 149-158

324 | Index

shooting game
2D particle kinematics example, 32-33
3D particle kinematics example, 33—43
sample code, 3943
sample program, 37-38
3D particle kinetics example, 71-82
program screen, 80
sample code, 79-82 (See also projectiles)
simulation(s)
cloth, 271-284
2D rigid body, 184-204
3D rigid body, 230-248
linear collision response, 206-211
muldple bodies in 30, 249-270
partcle systems, 271-284
real-ime, 172183
rigid body rotarion, 223-229
tuning, 269-270
skidding distance, 170
speed
calculaton of, 26
defined, 26
springs
defined, 64
equation for, 64
uses for, 65
stopping distance, in cars, 170

T

tangential acceleration, 52-53
equation for, 54
Taylot’s theotem, in real-time simulations,
174-175, 180182

Nsors
concepts, 18
inertia, 19-24

rerminal velocity, 112-113

tetrahedron, volume of, 150—152

3D, multiple bodies in, 249-270 (See also

muldple bodies in 3D)

3D particle kinematics, 33—43
vectors, 37
x-components, 34-36
y-components, 36
Z-components, 37

3D pardcle kinetics, 75-82
x-components, 7 7—78
y-compotients, 78
z-components, 78—79

3D rigid body simulator, 230-248
{light controls, 238-242

b

integration, 235-238
model, 231-235
rendering, 242248
thrust, in aircraft, 129, 143
time, units and symbol for, 4
torque
calculadon of, 65-67
defined, 65
in 2D rigid body kinerics, 83
force and, 6568
impulse, 88
units and symbol for, 4
transpose, in matrix operatons, 297
triangulated polyhedron, simple, 150
triple scalar product, in vector operations, 294
truncation error, 175
sample code for checking, 179-180
turbulent wake, 108-109
2D particle kinematics, 31-33
2D particle kinetics, 70-75
2D rigid body simulator, 184-204
flight controls, 194-198
bow thrusters, 195196
propeller, 195
integradon, 191-194
main elements of, 184
model, 185191
calculation of forces on vehicle,
188--191
define vehicle structure, 185186
initialization, 186—188
rendering, 198-204

u

uniform density, defined, 83
unirs

derived, 2

and measures, 2—4
universal constant, 58

v

vector addition, 289, 291
vector class, 285-291
vector cross product, 54, 251-292
vector direction cosines, 33
vector dot product, 292-293
vector functions and operators, 291-294
vector muldplication
in matrix operations, 302
in quaternion operations, 308

index | 325

vector operations, 285-294
vector class, 285-291 .

conjugate, 290-291
magnitude, 286-287
normalize, 287-288
reverse, 288
scalar division, 280
scalar muldplicadon, 290
vector addidon, 289
vector substraction, 289-250

vector funcdons and operators, 291-294

scalar division, 294
scalar muldplicadon, 293
wriple scalar product, 294
vector addition, 291
vector cross product, 291-292
vector dot producr, 292-293
vector substraction, 291
VECIOrS, 5
vector substraction, 289291
velocity
acceleration and, 25-28

angular, 50--36, 86
equadons for, 73
instantaneous, 27,28
magnitude of, 26
relative, 35
terminal, 112~113
units and symbol for
angular, 4
Yinear, 4
virtual mass, of a ship, 161162
viscosity, units and symbol for, 4
volume
of a cube, 149-150
of parallelepiped, 130-152
sample code for finding,
152-158
of a ship, 149-158
of a tetrahedron, 150-152

Y
yaw angles, 124, 223

326 | index

About the Author

As a naval architect and marine engineer, David M. Bourg performs computer simula-
tions and develops analysis tools that measure such things as hovercraft performance
and the effect of waves on the motion of ships and boats. He teaches at the college
level in the areas of ship design, construction, and analysis. On occasion, David also
lectures at high schools on topics such as naval architecture and software develop-
ment. In addition to his practical engineering background, David is professionally
involved in computer game developinent and consulting through his company, Cres-
cent Vision Interactive (http:/www.crescentvision.com). Current projects include a
massive multiplayer online role-playing game, several Java-based multiplayer games,
and a couple of PC-to-Macintosh game ports. David is currently working on his Ph.D.
in Engineering and Applied Sciences.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentally dry subjects.

The animals on the cover of Physics for Game Developers are a cat and a mouse. The
age-old rivalry between cat and mouse has been the topic of many children’s books
and Saturday cartoons. From traditional folk tales, such as Aesop’s fables and
Grimm Brothers’ fairy tales, to today’s cartoons, such as Tom & Jerry, the cat has
chased and bullied the mouse and the mouse has avoided becoming lunch. The cat
may be bigger and stronger, but the mouse is small, fast, and can fit in tight spaces,
so the end result is often a battle of wits. '

Darren Kelly was the production editor, Barbara Willette was the copyeditor, and
Donna Leik, Larry Hykes, and Charles Snyder were the proofreaders for Physics for
Game Developers. Claire Cloutier provided quality control. Angie Wiley wrote the
index. .

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1, using
Adobe’s ITC Garamond font.

David Futato designed the interior layout. Techbooks, Inc. implemented the design.
The illustrations that appear in the bock were produced by Robert Romano and
Jessamyn Read, using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Linley
Dolby.

Whenever possible, our books use a durable and flexible lay-flat binding.

.%AL‘_'

More Titles from O’Reilly

C and C++ Programming

C++: The Core Language

R By Gregory Sativ & Doug Brown
Ist Edition Oclober 1995

228 pages, ISBN 1-56592-116-X

A first book for C programmers transitioning
to C++, an object-oriented enhancement of
the C programming language. Designed to get
readers up to speed quickly, this book thor-
oughly explains the important concepts and
features and gives brief overviews of the rest
of the language. Covers features common to all C++ cempilers,
including those on Unix, Windows NT, Windows, DOS, and Macs.

TR

Programming Embedded Systems in C and C+

[= | By Michael Barr

Ist Edition Jarnuary 1999

194 pages, ISBN 1-56592-354-5

This book introduces embedded systems to G
and C++ programmers. Topics inchude test-
ing memory devices, wriling and erasing
Flash memory, verifying nonvolatile memory
contents, controtling on-chip peripherals,
device driver design and implementation,
optimizing embedded code for size and speed, and making the
most of C++ without a performance penalty.

oMy —

High Performance Computing, 2nd Edition

By Revine Dowd & Charles Severance

2nd Edition July 1998

466 prages, ISBN 1-56592-312-X

This new edition of High Performance
Computing gives a thorough overview of the
latest workstation and PG architectures and
the trends that will influence the nex1 genera-
tion. It pays special attention to memory
design, tuning code for the best performance,
multiprocessors, and benchmarking.

Practical C++ Programming

e By Steve Oualline
st Edition September 1995
584 pages, ISBN 1-56592-139-9

A complete introduction to the C++ language
for the beginning programmer and ¢ pro-
grammers transitioning to C++. This book
emphasizes a practical, real-world approach,
including how to debug, how to make your

] code understandable to others, and how to
understand other people’s code. Covers good programming style,
C++ syntax (what to use and what not to use), G++ class desigu,
debugging and optimization, and common programming mistakes.

Practical € Programming, 3rd Edition

By Steve Ouatline —

3rd Edition August 1997

434 pages, SBN 1-56592-306-5

Practical G Programming teaches you not

only the mechanics of programming, but also

how to create programs (hat are easy to read,

maintain, and debug. This third edition intro-

" duces popular Integrated Development Envi-
ronments on Windows systems, as well as

Unix propramming utilities, and features a large statistics-

generaling program (o pull together the concepts and features in

the language.

Mastering Algorithms with €

By Kyle Loudon

Ist Edition August 1999
560 pages, Includes Diskelte
[SBN 1-56592-453-3

This book offers robust solutions for every-
day programming tasks, providing all the
necessary information to understand and use
common programeming techniques. It
includes tnplementations and real-world
examples of each data structure in the text and full source code
on the accompanying disk. Intended for anyone with a basic
understanding of the C language.

o O’REILLY*®

T0 nRoeR: 800-998-9938 » order@oreiily.com « www.oreilly.com
ONLIKE EDITIONS OF MOST O'REILLY TITLES ARE AVAILABLE BY SUBSCRIPTION AT Salari. oreilly.com
ALSO AVAILABLE AT MOST RETAIL AND ONLINE BOOKSTORES

Visual Basic Programming

Visual Basic Shell Programming VBScript in a Nuishell

T By J. B Hamillon

Ist Edition July 2000

392 pages, ISBN 1-56592-670-6

Visual Basic Shell Programming ventures
where none have gone before by showing
how to develop shell extensions that more
closely integrate an application with the
Windows shell, while at the same time pro-
viding an advanced wtorial-style treatment of
COM programming with Visual Basic. Each mzjor type of shell
extension gels attention, including customized context menu han-
dlers, per instance icons, and customized property sheets.

By Paul Lomax, Mali Childs & Ron Petrusha
1st Edition M.y 2000

512 pages, SBN 1-56593-720-5

Whether you're using YBScript to create
client-side scripts, ASP applications, WSH
scripts, or programmable Qutlook forms,
VBScript in @ Nuishell is (he only book
you'll need by your side—a complete and
easy-to-use language reference.

COM+ Programming with Visual Basic

== By jose Mefica

gy | 15 Edition June 2001
L),O\H _""' .:. 304 pages, ISBN 1-56592-840-7
SRR | There's simply no other documentation avail-
-2 able for much of what's in COM+ Program-

ﬁ ming with Visual Basic; this book draws

from ke anthor’s wide experience as 2
COM+ developer and instructor. The first
part delivers information that's indispensable
for creating robust, efficient, high-performance COM+ applica-
tions. The second focuses on incorporaling individual COM+
services, like Lransaction suppont, security, and asynchronous
operations, into applications.

v oy

Wr:tmg Word Macros

By Stevent Roman

2nd Edition Oclober 1999

410 pages, BN 1-56592-725-7

This no-nonsense book delves into VBA pro-
gramning and tells how you can use VBA to
awlomate all the tedious, repetitive jobs you
never thought you could do in Microsoft
Word. It takes the reader step-by-step
through writing VBA macros and programs.

VB & VBA in a Nutshell: The Language
By Paul Lomax

I'st Edition Oclober 1998

656 pages, SBN 1-56592-358-8

For Visual Basic and VBA programmers, this
book boils downf:the essentials of the VB and
VBA languages into a single volume, includ-
ing undocumented and little-documented
areas essential 1o everyday programming,
‘The convenient alphabetical reference to all
functions, procedures, statements, and key-
words allows programmers 1o use this book both as a standard
reference guide and as 2 tool for troubleshooting and identifying
programming problems.

O’REILLY"

VBScript Pocket Reference

By Paul Lomay, Makt Childs & Ron Pefrusba
Ist Edition January 2001
126 pages, ISBN 0-596-00126-6

Based on the bestselling VBScript in a Nut-
shell, this small book details every VBScript
language element—every statement, function,
and object—both in VBScript itself and in
the Microsoft Scripting Runtime Library.
Entries are arranged alphabetically by topic.

In addition, appendixes list VBScript opera-
tors and YBScripd intrinsic constants.

70 ORDER: B00-998-9938 » order@oreilly.com « www.orgilly.cam
ONLINE EDITIONS OF MOST O'REILLY TITLES ARE AVAILABLE BY SUBSCRIPTION AT Safari.oreilly.cam
ALSO AVAILABLE AT MOST RETAIL AND ONLINE BOOKSTORES

Visual Basic Programming

ASP in a Nutshell, Znd Edition

By 4. Keylon Weissinger

2nd Edition july 2000

492 pages, ISBN 1-56592-843-1

ASP in g Nutshell, 20d Edition, provides the
high-quality reference documentation that
web application developers really need 1o
create effective Active Server Pages. It focuses
on bow features are used in a real applica-
tion and highlights little-lmown or undocu-
mented features.

1N A NLUFSHELL

Win32 API Programming with Visual Basic

By Steve Roman

1st Edition November 1999

534 pages, Indudes CD-ROM

ISBN 1-56592-631-5

This book provides the missing documenta-
tion for YB proprammers who want to har-
ness the power of accessing the Win32 API
within Visual Basic. 1t shows how to create
powerful and unique applications without
needing a background in Visual C++ or Win32 API programming,

Subclassing & Hooking with Visual Basic
= By Stephen Teilhet

15t Edition June 2001

704 pages, ISBN 0-596-00118-5

Subclassing and the Windows hooking mech-
anisin (“hooks™) allow developers to manip-
ulate, modify, or even discard messages
bound for other objects within the operating
system, in the process changing the way in
which the system behaves. This book opens
up 2 wealth of possibilities to the Visual Basic devefoper——possi-
hilities that ordinarily are completely unavailable, or at least not
easy to implement,

ADO: ActiveX Data Objects

By Jason T. Roff

Ist Edition May 2001

618 pages, ISBN 1-56592-415-0

The architecture of ADO, Microsofi’s newest
form of darabase communication, is simple,

. concise, and efficient. This indispensable ref-
erence takes a comprehensive look at every
object, collection, method, and property of
ADO for developers who want to get a feg up
on this excitng new technology.

CD0 & MAP! Programming with Visual Basic

Developing ASP Components, 2nd Edition

By Sheiley Powers

2nd Edition March 2001

832 pages, ISBN 1-56592-750-8

Microsoft’s Active Server Pages (ASP) contin-
ue to prow in popularity with web develop-
ers—especially as web applications replace
web pages. Developing ASP Components,
2nd Edition, provides developers with the
information and real world examples they
need to create custom ASP components.

By Dave Grundgeiger

Ist Edifion October 2000

384 pages, [SEN 1-56592-665-X

CDO and MAPI Programming with Visual
Basic dives deep into Microsoft's Collabora-
tion Data Objects (CDO) and the Messaging
Application Programming Interface (MAPI),

CHO& MAPT
Programniing

then moves into succinct explanations of the
types of useful messaging applications that
can be written in Yisual Basic.

e O’REILLY*®

10 0RDER: BOB-398-9938 « order@oreilly.com » www.oreilly.com
ONLINE EDITIONS OF MOST O'REILLY TITLES ARE AVAILABLE BY SUBSCRIPTION AT Safari.areilfy.com
ALSD AVAILABLE AT MOST RETAIL AND ONLINE BOOKSTORES

Power Users

Windows Me: The Missing Manual

NWindows Me By David Pogue

Ist Edition Seplember 2000

423 pages, ISBN 0-596-00006-X

In Windows Me: The Missing Manual,
author David Pogue provides the friendly,
authoritative book that should have been in
the box. It's the ideal user’s guide for the
world's most popular operating system.

Outlook 2000 in a Nuishell
=" By fom Syrvid & Bo Leuf
st Edition May 2000
660 pages. [SBN 1-56592-702-4
. Outlook 2000 in a Nutshell fills the need for
* an up-to-date and comprehensive reference
" book for sophisticated users who want to get
< all they can out of this powerful and versaiile
program.

Ry

PG Hardware in a Nutshell
(== By Rober! Bruce Mhonpson
. & Barbara Frichiman Thomgpson
1st Edfition October 2000
526 pages, [SBN 1-36592-599-8
PC Hardware in a Nuishell is a comprehen-
sive guide to buying, buiiding, upgrading, and
¢ repairing Intel-based FCs for novices and
seasoned professionals alike. It features buy-
"~ ing guidelines, how-to advice on instafling,

configuring. and troubleshooting specific
components, pius ample reference material and a complete case
study on building a PC from componexs.

<

Werd 2000 in a Nuishell

s

WORD

By Waller Glenn

Isp Edition August 2000

520 pages, ISBN 1-56592-469-4

Word 2000 in a Nutshel is a clear, concise,
and complete reference to the most popular
word-processing program in the world. This
book is the first choice of the Word power
user who needs help completing a specific
task or understanding 2 command or topic.
1t's also an invaluable resource that uncovers

Word 2000's undocumented features and shares powerful time-

saving tips.

Optimizing Windows for Games,
Graphics, and Multimedia

By David L. Farqubar

15t Edition December 1999

291 pages, ISBN 1-56592-677-3

Every Windows user has spent many frustras-
ing hours trying to figure out ways to opti-
mize system performance. Opiimizing
Windows for Games, Graphics, and Mulii-
media gives you tips and tricks you won't
find in any Windows documentation to make

your system run faster than ever before. J¢ will answer your ques-
tions and save you wasted hours of searching and experimenting
to find the practical solutions you're looking for.

Excel 2000 in a Nulshelf

FYCRL2000

aRpur [

By Jinfer Sinon

Ist Edition August 2000

G60G Pages, ISBN 1-56592-714-1

Excel 2000 in a Nuishell is a one-stop refer-
ence to every one of Excel's menu options
and functions, for both professional and
power users of Excel 2000. In typical Nut-
shell fashion, information is organized for
gmick and easy access, providing readers
with everything they need to know about the

premier spreadsheet application.

O’REILLY"

10 0RDER: BO0-998-9938 « order@orpifly.com » www.oreilly.com
ONLINE EDITIONS GF MOST O'REILLY TITLES ARE AVAILABLE BY SUBSCRIPTION AT safari.orellly.com
ALS0 AVAILABLE AT MOST RETAIL AND ONLINE BOOKSTORES

Power Users

Windows 2000 Pro: The Missing Manual

By Sharon Crawford

Ist Bdition Avugust 2000

450 pages, [SBN 0-596-00010-3

In Windows 2000 Pro: The Missing Manual,
best-selling Windows NT author Sharon
Crawford provides the friendly, authoritative
book that should have been in the box. It's
the ideal (and desperately needed) user’s
guide for the world's most popular corporate

Windaws 2000 Pro

operating system.

Windows 2000 Quick Fixes

By Jim Bayee

15t Edition: December 2000

304 pages, ISBN 0-596-00017-0

Windows 2000 Quick Fixes provides fixes to
common preblems in a clear, well-organized
fashion. H extensively troubleshoots both the
Windows 2000 Professional and the Windows
2000 Server editions, laking power users
1 through installation, complex networking
configuration problems, and important back-
up and security concerns. When the pressure is on and there's no
time to waste hunting for Windows 2000 solutions, this is the
book to reach for.

quick fixes

WIKDOWS
0

MP3; The Defipitive Guide

By Scof Hacker

Ist Edition March 2000

400 pages, ISBN [-56592-661-7

MP3: The Definitive Guide introduces the
power user to just about all aspects of MP3
technology: It deives inio detail on obtaining,
recording, and oplimizing MP3 files using
both commercial and open source methods.

onmy [

Coverage is complete for fonr platforms: Win-

dows, Macintosh, Linux, and BeQS. Readers will learn how to test
their equipment, evaluate their playback options, control and
organize 4 collection, even burn their own CDs or distribute their
own music lo a massive worldwide audience over the Internet.
Everything you need to know to enjoy MP3 today and tomorrow is
contained in this single volume.

PalmPiloi: The Ultimate Guide, 2nd Editfon
By David Pogue

2nd Edition June 1999

624 pages, Includes CD-ROM

15BN 1-56592-600-5

This new edition of O'Reilly's runaway best-
seller is densely packed with previously
undocumented information. The bible for
users of Palm VII and all other Palm mnodels,
it contains hundreds of timesaving tips and
surprising tricks, plus an all-new CD-ROM (for Windows 9x, NT,
or Macintosh} containing over 3,100 PalmPilot programs from
the collection of palmecentral.com, the Internet’s largest Palm sofi-
ware site,

- Windows Me Annoyances

T By David A. Karp
st Edition March 2001

472 pages, ISBN 0-596-00060-X

Based on the author’s popular
Annoyances.org web sites, Windows Me
Annoyances is an authoritative collection of
techniques for customizing Windows Me.
Packed with creative and sefdom-documented
ways to quickly identify and fix a particular
annoyance or customize Windows for individual needs, it’s the
definilive resource for dealing with crashes, unintelligible error
messages, unwanted icons, and much more.

Dreamweaver 4: The Missing Manual

By Dave McFarland
Dream 4
| Ist Bdition july 2001
; ﬂfzggagtz | 480 pages, BN 0-596-00097-9
ey

Dreamweaver 4 The Missing Manual is the
ideal companion to this complex software.
Following an anatomical tour of a web page
%5 | 1o orient new users, author Dave McFarland
walks you through the process of creating
and designing a complete web site. Armed
with this handbook, both first-lime and expe-
rienced web designers can easily use Dreamweaver to bring stun-
ning, interactive web sites to life.

i O’REILLY®

T0 ORDER: 800-938-9338 » order@oreilly.com » www. areilly.com
ONLINE EDITIONS DF MOST (VREILLY TITLES ARE AVAILABLE BY SUBSCRIFTION AT Safari.areifly.com
ALSO AVAILABLE AT MOST RETAIL AND ONLINE BOOKSTORES

1.

Sa

How to stay in touch with O’Reilly

Visit Our Award-Winning Web Site
hitp://www.oreilly.com/

% “Top 100 Sites on the Web” —PC Magazine
* “Top 5% Web sites” —Point Communications
* “3.8tar site” —The McKinley Group

Our web site contains a library of comprehensive product
information (including book excerpts and tables of con-
tenls), downloadable software, background articles, inter-
views with technology leaders, links to relevant sites, book
covlir art, and more. File us in your Bookmarks or

Holist!

. Join Our Email Mailing Lists

New Product Releases

To receive automatic email with brief descriptions of all
new O'Reilly products as they are released, send email to:
ora-news-subscribe@lists.oreilly.com

Put the following information in the first line of your
message (not in the Subject field):

subscribe ora-news

O’Reilly Events

1f you'd also like us o send information about trade show
events, special promotions, and other O'Reilly eveats,
send email to:

ora-news-subscribe@lists,oreilly.com

Put the following information in (he first line of your
message (not in the Subject field):

subscribe ora-events

Get Examples from Our Books
via FTP

There are two ways to access an archive of example files
from cur books:

Regular FTP
* fip fo:
ftp.oreilly.com
(login: anonymous
password: your email address) *
« Point your web browser to:
ftp/fip.oreilly.com/

FTPMAIL

* Send an email message fo:
ftpmail @ online.oreilly.com
(Write “help” in the message body)

4. Contact Us vid Email

order@oreilly.com
To place a book or software order online. Good for
North American and inlernational customers.

subscriptions@oreilly.com
To place an order for any of our newsletters or
periodicals.

books@oreilly.com
General questions about any of our books.

cs@oreilly.com
For answers to problems regarding your order or our
producls.

booktech@oreilly.com
For book content technical questions or corrections.

proposals@oreilly.com
To submit new book or software proposals to our
editors and product managers.

international @ oreilly.com
For information about our international distributors
or (ranslation queries. For a list of our distributors
outside of Norﬂ't America check out:
http//www.oreilly.com/distributors.hitml

5, Work with Us

Check out our website for current employment
opportunites:
hup/fobs.oreilly.com/

O’Reilly & Associates, Inc.

1005 Gravenstein Hwy Norih

Sebastopol, CA 95472 USA

TEL 707-829-0515 or 800-998-9938
(6am to 5pm PST)

FAX 707-829-0104

O’REILLY"

70 ORDER: 800-998-9938 « order@oreiily.com + www.areilly.com
ONLINE EDITIONS OF MOST (VREILLY TITLES ARE AVAILABLE BY SUBSGRIPTION AT safari.oreifly.com
ALS0 AVAILABLE AT MOST RETAIL ANO ONLINE BOOKSTORES

PROGRAMMING
C++: The Core Language
Practical C++ Programming
Practical C Programming, 3rd Ed.
High Performance Computing,
2nd Ed.
Programming Embedded Systems in
Cand G++
M 1stering Algorithms in C
Advanced C++ Techiniques
POSIX 4: Programming for
the Real World
POSIX Programmier’s Guide
Power Programming with RPC
DNIX Systems Programming
for SYR4
Pthreads Programming
CVS Pocket Reference
Advanced Gracle PL/SGL
Oracle PL/SQL Guide to Oracle8i
Features
Oracle PL/SQL Programming.
2nd Ed.
Oracle Built-in Packages
Oracle PL/SQL Developer's
Workbook
Oracle Web Applicadons
Oracle PL/SQL Language
Pocket Reference
Oracle PL/SQL Built-ins
Pocket Reference
Oracle SQL*Flus:
The Defimitive Guide
Oracle $QL*Plus Pocket Reference
Oracle Essentials
Oracle Database Adminismadon
Oracle Inernal Services
Oracle SAP
Guide to Writing DCE Applications
Understanding DCE
Visual Basic Shell Programming
VB/VBA in a Nutshell: The Language
Access Database Design
& Programmiug, 2nd Ed.
Wriling Word Macros
Applying RCS and 5CCs
Checking C Programs with Lint
VB Conlrols in 2 Nuishetl
Developing Asp Componeuts,
2nd Ed. :
Leaming WML & WMLScript
Wriling Exce{ Macros
Windows 32 API Programming with
Visual Basic
ADO: The Delinitive Guide

USING THE INTERNET
Internet in a Nulshel]
Smileys

Managing Maiting Lists

Titles from O’Reilly

Wes
Apache: The Definitive Guide,

2nd Ed.
Apache Pocket Reference
ASP in a Nutshell, Znd Ed.
Cascading Style Sheets
Designing Web Audic
Designing with JavaScript, 2nd Ed.
DocBook: The Definitive Guide
Dynamic HTML:

The Definitive Reference
HTML Pocket Reference
Informalion Architecture

for the WWW
JavaScript: The Definitive Guide,

3rd Ed.

Java & XML, 2nd Ed.

JavaScript Application Cookbook
TJavaScript Packet Reference
Practical Internet Groupware
PHP Pocket Reference

Program ming Coldfusion
Photashap for the Web, Znd Ed.
Web Design in 2 Nutshell, 2nd Ed.
Webmaster in 2 Nueshell, 2ud Ed.
Web Navigation: Designing Lhe

User Experience
Web Perfonnance Tuning
Web Security & Commerce
Writing Apache Modules

with Per]l and G

Unix
$CO UNIX in 2 Nutshell
Tel/Tk in a Nutshell
The Cnix CD Booksheif, 2nd Ed.
[iNTX int 2 Nutshell,
System V Edition, 3rd Ed.
Learning the Unix Operating System,
4th Ed,
Learning vi, 6th Ed.
Learniug the Korn Shell
Learning GNU Emacs, 2nd Ed.
Using csh & tesh
Learning the bash Shell, 2od Ed.
GNIJ Emacs Pocket Relerence
Exploring Expect
Tcl/Tk Tools
Tel/Tk in a Nutshels
Mython Pocket Reference

Ustws Winoows
Windows Me: The Missing Manual
PC Hardware in a Nutshell
Optimizing Windows for Games,
Graphies, and Multimedia
Outlook 2000 u a Nutshell
Word 20060 in a Nuishell
Excel 2000 in a Nushell
Windows 2000 Pro:
The Missing Manual

JAVA SERIES

Developing Java Beans
Crealing Effective JavaHelp
Enterprise JavaBeans, 3¢d Ed.
Java Cryptography

Java Distributed Computing
Java Enterprise in a Nutshell

Java Examples in a Nutshell, 2nd Bd.

Java Foundation Classes
in a Ruishell

Java in a Nutshell, 3rd Ed.

Java Internalionalization

Java /O

Java Native Methods

Java Newwork Programming, 2nd Ed.

Java Performance Tuning

Java Security

Java Servlet Programming

Java ServerPages

Java Threads, 2nd Ed.

Jini in a Nutshell

Learning Java

GRapricS & MuttimMEara

. MP3; The Defimitive Guide

Director in a Nutshell
Lingo in a Nurshell

X Winoow

Val. I: Xlib Prograrming Manual

Vol. 2; Xlib Reference Manual

Vol. 4M: X Toolkit Lntrinsics
Programming Manual, Molii Ed.

Yol. 5: X Toolkit Intrinsics Réference
Manual

Yol. 6A: Motil Programming Manual

Yol. 6B: Motil Reference Manual,
2nd Fd. .

Prar

Advanced Perl Propramming
CG1 Programming wilh Perl, 2nd Ed.
Learning Perl, 2Znd Ed.

Learniug Perl for Win32 Systems
Learniug Perl/Tk

Mastering Algorithms with Perl
Mastering Regular Expressions
Perl Cookbook

Per] in a Nuishell

Programming Perl, 3rd Ed.

Pesl CD Boekshell

Per] Resolrce Kit — Win32 Ed.
Perl/Tk Pocket Reference

Perl 5 Pocket Tteference, 3rd Ed.

b O’REILLY"

T0 ORDER: 800-998-9938 » order@oreiify.com » www.oreilly.com

Mac

AppleScript in a Nutshell
AppleWorks 6: The Missing Manual
Crossing Plaforms

iMovie: The Missing Manual

Mac 08 in a Nutshell

Mac 05 9: The Missing Manual
REALbasic: The Definitive Guide

Linix

Eearning Red Hat Linzx

Linux Device Drivers, 2nd Ed.

Linux Network Administrator's
Guide, 2nd Ed.

Running Linux, 3rd Ed.

Linux in a Nuishell, 3rd Ed.

Linmux Mulimedia Guide

SYSrEm AomiNisTRATION

Practical UNTX & Internet Securiry,
2ud Ed.

Building Internet Firewalls, 2nd Ed.

PGP Prelty Good Privacy

SSH, The Secure Shell:
The Definiuve Guide

DNS and BIND, 3rd Ed.

The Networldng CD Bookshell

Yirtual Private Networks, 2nd Bd.

TCP/IP Network Administration,
2nd Ed.

sendmail Deskiop Reference

Managing Usenet

Using & Managing PFP

Managing IP Networks
with Cisco Routers

Networking Personal Computers
with TCP/TP

Unix Backup & Recovery

Essential System Administration,
2ud Ed.

Perl for System Administration

Managing NFS and NIS

Vol. 8: X Window System
Administrator’s Guide

Usiug Samba

UNIX Power Tools, 2nd Ed.

DNS on Windows NT

Windows NT TCP/IP Network
Administration

DHCP for Windows 2000

Essental Windows NT System
Administration

Managing Wtudows NT Logons

Managing the Wmdows 2000
Registry

Oren TiTLes

PalmPilot: The Ultimate Guide,
2ud Ed.

Palm Programming:
The Developer's Guide

ONLINE EDITIONS OF MOST O'REILLY TITLES ARE AVAILABLE BY SUBSGRIPTION AT safari.oreiify.com
ALS0 AVANLABLE AT MDST RETAIL AND ONLINE BOOKSTGRES

~ International Distributors

hitp:/7international. oreilly. com/distributors.biml « international@oreslly.com

UK, Europe, MipDLE EAST, AND
AFRICA (EXCEPT FRANCE, GERMANY,
AUSTAIA, SWITZERLAND, LUXEMBOURS,
AND LIECHTENSTEIN)

INQUERIES

O'Reilly UK Limited

4 Castle Sireet

Farnham

Surrey, GU9 7HS

United Kingdom |

Telephone: 44-1252-711776

Fax: 44-1252-734211

Email: information@oreilly.co.uk

DORDERS .

Wiley Distribution Services Ltd.

1 Oldlands Way

Bognor Regis

West Sussex PO22 95A

United Kingdom

Telephone: 44-1243-843294

UK Freephone: 0800-243207

Fax: 44-1243-843302 (Europe/Ell orders)
or 44-1243-843274 (Middle East/Africa)
Email: cs-books@wiley.co.uk

FRANCE

INQUIRIES & ORDERS
Editions O'Reilly

18 rue Séguier

75006 Paris, France
Tel: 33-1-40-51-71-8%
&ax: 33-1-40-51-72-26
Email: france@oreillyfr

GERMANY, SWITZERLAND,
Avstaia, Luxembouse,
AND LIECHTENSTEIN

INQUIRIES & ORDERS

O'Reilly Yerlag

Balthasarstr. 81

D-50670 Kdln, Germany

Telephone: 49-221-973160-91

Fax: 49-221-973160-8

Email: anfragen@oreillyde {inquiries)
Email: order@oreillyde (orders)

CanspA

{FRENCH LANGUAGE BOOKS)
Les Editions Flammarion ltée
375, Avenue Lauvrier Quest
Montréal (Québec) H2V 2K3
Tel: 1-514-277-8807

Fax: 1-514-278-2085

Email: info@flammarion.ge.ca

Howe Kowg

City Discount Subscription Service, Ltd.
Unit A, 6th Floor, Yan's Tower

27 Wong Chuk Hang Road

Aberdeen, Hong Kong

Tel: 852-2580-3539

Fax: 852-2580-6463

Email: citedis@ppn.com.hk

Koren

Hanbit Media, Inc.

Chungmu Bldg. 210

Yornam-dong 568-33

Mapo-gu

Seoul, Korea

Tel: 822-325-0397

Fax; 822-325-9697

Email: hant93@chollian.dacom.co.kr

PHILIPPINES

Global Publishing

/T Benavides Garden

1186 Benavides Street

Manila, Philippines

Tel: 632-254-8949/632-252-2582
Fax: 632-734-5060/632-232-2733
Email: plobalp@pacific.net.ph

Tawan

O’Reilly Taiwan

1st Floor, No. 21, Lane 295
Section 1, Fu-Shing South Road
Taipei, 106 Taiwan

Tel: 886-2-27099669

Fax: 886-2-27038802

Email: mori@oreilly.com

Inpia

Shroff Publishers & Distributors Pyt. Itd.
12, “Roseland”, 2rd Floor

180, Waterfield Road, Bandra (West)
Mumbat 400 050

Tel: 91-22-641-1800/643-9910

Fax: 91-22-643.2422

Email: spd@vsnl.com

CHinA

O'Reilly Beijing

SIGMA Building, Suite B80S
No. 49 Zhichun Road
Haidian District

Beijing, China PR 100080
Tel: 856-10-8809-7475

Fax: 86-10-8809-7463
Email: beijing@oreilly.com

O'REILLY"

Jnpan
O'Reilly Japan, Inc.

" Yotsuya ¥'s Building

7 Banch 6, Honshio-cho
Shinfuku-ku

Tokyo 160-0003 Japan
Tel: 81-3-3356-5227

Fax: 81-3-3356-5261
Email: japan@oreilly.com

SiNGAPORE, INOONESIA,

Maraysia, AND THAILAND
TransQuest Publishers Pie Lid

30 0ld Toh Tuck Road #05-02
Sembawang Kimtrans Logistics Centre
Singapore 597654

Tel: 65-4623112

Fax: 65-4625761

Email: wendiw@transquest.com.sg

AUSTRALIA

Woodslane Pty., Led.

7/5 Vuko Place

Warriewood NSW 2102
Australia

Tel: 61-2-9970-5111

Fax: 61-2-9970-5002

Email; info@woodslane.com,au

New Zeaiano

Woodslane New Zealand, Ltd,
21 Cooks Street (P.O. Box 575)
Waganui, New Zealand

Tel: 64-6-347-6543

Fax: 64-6-345-4840

Email: info@woodslane.com.au

T - 1o

2ég

ARGENTINA

Distribuidora Cuspide
Suipacha 764

1008 Buenos Aires
Argentina

Phone: 54-11-4322-8868
Fax: 54-11-4322-3456
Email: libros@cuspide.com

AL OTHER COUNTRIES
O'Reilly & Associates, Inc.
1005 Gravenstein Hwy North
Sebastapol, CA 95472 USA
Tek: 707-829-0515

Fax: 707-829-0104

Email: order@oreilly.com

70 ORDER: B00-998-9938 « order@creilly.com » www.orellly.com

ONLINE EDTIONS OF MOST (VREILLY TITLES ARE AVAILABLE BY SUBSCRIPTION-AT safari.oreilly.com
ALSD AVAILABLE AT MOST RETAIL AND ONLINE BOOKSTORES

	Enriching Game Content with Physics-based Realism
	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	APPENDIX A
	APPENDIX B
	APPENDIX C
	Bibliography
	Index

