O’REILLY"

Per] & LWP

by Sean M. Burke

ISBN 0-596-00178-9

First Edition, published June 2002.
(See the catalog page for this book.)

Search the text of Perl & LWP.

Table of Contents

Copyright Page
Foreword
Preface

Chapter 1: Introduction to Web Automation

Chapter 2: Web Basics

Chapter 3: The LWP Class Model

Chapter 4: URLs

Chapter 5: Forms

Chapter 6: Smple HTML Processing with Regular Expressions
Chapter 7: HTML Processing with Tokens

Chapter 8: Tokenizing Walkthrough

Chapter 9: HTML Processing with Trees

Chapter 10: Modifying HTML with Trees

Chapter 11: Cookies, Authentication, and Advanced Requests
Chapter 12: Spiders

Appendix A: LWP Modules

Appendix B: HTTP Satus Codes

Appendix C: Common MIME Types

Appendix D: Language Tags

Appendix E: Common Content Encodings

Appendix F: ASCII Table

Appendix G: User's View of Object-Oriented Modules

Index

Colophon

R

| Y

i Vo ! ~ [N A MUTSHELL
PERL & LWP - LEARMIMNG PERL 2nd Edition MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://www.oreilly.com/catalog/perllwp
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

Search

i { RL : i
il N y B L b INANUTSHELL | PROGRAMMING
BOOKSHELF PERL&LWP~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are

also available for most titles (http://safari.oreilly.com). For more information contact our corporate/institutional sales
department: 800-998-9938 or cor porate@or eilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Rellly &
Associates, Inc. Many of the designations used by manufacturers and sellersto distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of atrademark
claim, the designations have been printed in caps or initial caps. The association between the image of blesbok and the
the topic of Perl and LWP isatrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

4 PREVIOUS HOME MEXT o
Table of Contents BOOK INDEX Foreword

n | &

RL
Y LL IN A NUTSHELL
LEARNING PERL 2nd Edition PEAL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://safari.oreilly.com/
mailto:corporate@oreilly.com
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY* | SEARCH |
Perl & LWP
Foreword

| started playing around with the Web along time ago—at least, it feels that way. Thefirst versions of Mosaic had just
showed up, Gopher and Wais were still hot technology, and | discovered an HTTP server program called Plexus. What
was different was it was implemented in Perl. That made it easy to extend. CGI was not invented yet, so all we had were
servlets (although we didn't call them that then). Over time, | moved from hacking on the server side to the client side
but stayed with Perl as the programming language of choice. Asaresult, | got involved in LWP, the Perl web client
library.

A lot has happened to the web since then. These days there is amost no end to the information at our fingertips: news,
stock quotes, weather, government info, shopping, discussion groups, product info, reviews, games, and other
entertainment. And the good news is that LWP can help automate them all.

This book tells you how you can write your own useful web client applications with LWP and itsrelated HTML
modules. Sean's done a great job of showing how this powerful library can be used to make tools that automate various
tasks on the Web. If you are like me, you probably have many examples of web forms that you find yourself filling out
over and over again. Why not write a simple LWP-based tool that does it al for you? Or atool that does research for you
by collecting data from many web pages without you having to spend a single mouse click? After reading this book, you
should be well prepared for tasks such as these.

This book's focus is to teach you how to write scripts against services that are set up to serve traditional web browsers.
This means services exposed through HTML. Even in aworld where people eventually have discovered that the Web
can provide real program-to-program interfaces (the current "web services' craze), it islikely that HTML scraping will
continue to be a valuable way to extract information from the Web. | strongly believe that Perl and LWP is one of the
best tools to get that job done. Reading Perl and LWP is agood way get you started.

It has been fun writing and maintaining the LWP codebase, and Sean's written afine book about using it. Enjoy!

—GideAas

Primary author and maintainer of LWP

4 PREVIOUS HOME NEXT B
Copyright Page BOOK INDEX Preface
G &
o ._- :I ---':.-I .‘I_!. J I ‘.* "‘EI’
b ,‘I'J '] { PERL J &] i
L I) e LL INANUTSHELL | PROGRAMMING :
BOOKSHELF PERL &LWP~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK N
HOME 3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

T Perl & WP -
Index

bollk

st i Y Yool INANUTSHELL | PROGRAMMING &
BOOKSHELF PERL&LWP~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK .
HOME 3rd Edition 3rd Edition PERL/TK '

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY* - X
Perl & LWP ¢
Preface

Perl soared to popularity as alanguage for creating and managing web content. Perl is equally adept at consuming
information on the Web. Most web sites are created for people, but quite often you want to automate tasks that involve
accessing aweb site in arepetitive way. Such tasks could be as simple as saying "here's alist of URLS; | want to be
emailed if any of them stop working," or they could involve more complex processing of any number of pages. This
book is about using LWP (the Library for World Wide Web in Perl) and Perl to fetch and process web pages.

For example, if you want to compare the prices of al O'Reilly books on Amazon.com and bn.com, you could look at
each page yourself and keep track of the prices. Or you could write an LWP program to fetch the product pages, extract
the prices, and generate areport. O'Reilly has alot of booksin print, and after reading this one, you'll be able to write
and run the program much more quickly than you could visit every catalog page.

Consider also asituation in which a particular page has links to several dozen files (images, music, and so on) that you
want to download. Y ou could download each individually, by monotonously selecting each link in your browser and
choosing Save as..., or you could dash off a short LWP program that scans for URLs in that page and downloads each,
unattended.

Besides extracting data from web pages, you can also automate submitting data through web forms. Whether thisisa
matter of uploading 50 image files through your company's intranet interface, or searching the local library's online card
catalog every week for any new books with "Navajo" in the title, it's worth the time and piece of mind to automate
repetitive processes by writing LWP programs to submit data into forms and scan the resulting data.

0.1. Audience for This Book

This book isaimed at someone who already knows Perl and HTML, but | don't assume you're an expert at either. | give
quick refreshers on some of the quirkier aspects of HTML (e.g., forms), but in general, | assume you know what each of
the HTML tags means. If you know basic regular expressions and are familiar with references and maybe even objects,
you have al the Perl skills you need to use this book.

If you're new to Perl, consider reading Learning Perl (O'Reilly) and maybe also The Perl Cookbook (O'Reilly). If your
HTML isshaky, try the HTML Pocket Reference or HTML: The Definitive Guide (O'Reilly). If you don't feel
comfortable using objects in Perl, reading Appendix G, "User's View of Object-Oriented Modules' in this book should

be enough to bring you up to speed.

41 PREVIOUS HOME HEXT o
Foreword BOOK INDEX 0.2. Structure of This Book
Ls Z‘-\.;.
T
; RL x| j PE
it y 3, . [N A MUTSHELL PROGRAMMING \ &KL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK N
HOME 3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS

G.8. The Gory Details

HEXT

For sake of clarity of explanation, | had to oversimplify some of the facts about objects. Here's afew of the gorier

details:

. Every example | gave of a constructor was a class method. But object methods can be constructors, too, if the
class was written to work that way: $new= $ol d- >copy, $node_y = $node_x- >new_subnode, or the

like.

. I'vegiven theimpression that there's two kinds of methods: object methods and class methods. In fact, the same
method can be both, because it's not the kind of method it is, but the kind of callsit's written to accept—calls that
pass an object, or callsthat pass a class name.

. Theterm "object value" isn't something you'll find used much anywhere else. It's just my shorthand for what
would properly be called an "object reference” or "reference to ablessed item.” In fact, people usually say

"object" when they properly mean areference to that object.

. | mentioned creating objects with constructors, but | didn't mention destroying them with destructor—a destructor
isakind of method that you call to tidy up the object once you're done with it, and want it to neatly go away
(close connections, delete temporary files, free up memory, etc.). But because of the way Perl handles memory,
most modules won't require the user to know about destructors.

. | said that class method syntax has to have the class name, asin $sessi on = Net : : FTP- >new($host) .
Actually, you can instead use any expression that returnsaclassname: $ft p_cl ass ="' Net: : FTP' ;
$session =$ft p_cl ass- >new $host) . Moreover, instead of the method name for object- or class-
method calls, you can use a scalar holding the method name: $f oo- >$net hod($host) . But, in practice, these

syntaxes are rarely useful.

And finally, to learn about objects from the perspective of writing your own classes, see the perltoot documentation, or
Damian Conway's exhaustive and clear book Object Oriented Perl (Manning Publications, 1999).

41 PREVIOUS

G.7. So Why Do Some Modules Use
Objects?

HOME
BOOK INDEX

HEXT o
Index

A L
LEARMIMNG PERL
3rd Edition

o5

L
BOOKSHELF
HOME

i 4
PERL & LWF -~

AL - -
IN A MUTSHELL PROCRAMM ING
Yad Edithon PERL
3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PE
& XML

S

ol

MASTERING
PERL/TH

PERL COOKBOOK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animals on the cover of Perl and LWP are blesbok. Blesbok are African antel opes related to the hartebeest. These
grazing animals, native to Africa’s grasslands are extinct in the wild but preserved in farms and parks.

Blesbok have slender, horselike bodies that are shorter than four feet at the shoulder. They are deep red, with white
patches on their faces and rumps. A white blaze extends from between a blesbok's horns to the end of its nose, broken
only by abrown band above the eyes. The blesbok's horns sweep back, up, and inward. Both male and female blesbok
have horns, though the males' are thicker.

Blesbok are diurnal, most active in the morning and evening. They sleep in the shade during the hottest part of the day,
asthey are very susceptible to the heat. They travel from place to place in long single-file lines, leaving distinct paths.
Their life span is about 13 years.

Linley Dolby was the production editor and copyeditor for Perl and LWP, and Sarah Sherman was the proofreader.
Rachel Wheeler and Claire Cloutier provided quality control. Johnna VanHoose Dinse wrote the index. Emily Quill
provided production support.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover imageisa 19th-
century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was converted to
FrameMaker 5.5.6 with aformat conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by
Linley Dolby.

41 PREVIOUS HOME
Index BOOK INDEX

1%
PROGRAMMING]

i PERL
i y ! -\'. S 1M A MUTSHELL 5
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: Symbols & Numbers

There are no index entries for this | etter.

i Yo
BOOKSHELF PERL & LWF
HOME

AL
) IN A MUTSHELL
LEARMING PERL 2nd Edition
3rd Edition

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

PERL COOKBOOK

& XML

=

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: A

Aas, Gisle: 0. Foreword
ABEBooks.com POST request examples: 5.6. POST Example: ABEBooks.com

absolute URLs
converting from relative: 4.4. Converting Relative URL sto Absolute

converting to relative: 4.3. Converting Absolute URL s to Relative
absolute base URL path: 4.3. Converting Absolute URL s to Relative
ActivePerl for Windows: 1.3. Installing LWP
agent() attribute, User-Agent header: 3.4.2. Request Parameters
AltaVista document fetch example: 2.5. Example: AltaVista
analysis, forms: 5.3. Automating Form Analysis
applets, tokenizing and: 8.6.2. Images and Applets
as HTML() method: 10. Modifying HTML with Trees
attributes
atering: 4.1. Parsing URLs
HTML::Element methods: 10.1. Changing Attributes
modifying, code for: 10.1. Changing Attributes
nodes: 9.3.2. Attributes of a Node
authentication: 1.5.4. Authentication
11.3. Authentication
Authorization header: 11.3. Authentication
cookies and: 11.3.1. Comparing Cookies with Basic Authentication
credentials() method: 11.3.2. Authenticating viaLWP
security and: 11.3.3. Security
Unicode mailing archive example: 11.4. An HTTP Authentication Example: The Unicode Mailing Archive
user agents: 3.4.5. Authentication

e

PE

A L1 T PERL & XML
o ! i y) . IN A MUTSHELL
BOOKSHELF PERL & LWP -~ LEARMIMG PERL 2nd Edithon MASTERING PERL COOKBOOK R,
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: B

Babelfish, POST query example: 2.7. Example: Babelfish

BBC headlines token example: 7.4.1. Example: BBC Headlines

BBC News headline extraction, HTML::TreeBuilder: 9.4. Example: BBC News
bookmark files, link extraction: 6.5. Example: Extracting Linksfrom a Bookmark File
brittleness: 1.1.2. Brittleness

browsers (see user agents)

buttons
radio buttons; 5.4.5. Radio Buttons

reset: 5.4.8. Reset Buttons
submit buttons: 5.4.6. Submit Buttons

N y

oy = i y ol , B IM A MUTSHELL &L
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edition MASTERING PERL COOKBOOK)
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: C

can() method: 4.1.4. Components of a URL
canonical, calling: 4.1.2. Output
CGI (command gateway interface), formpairs.pl: 5.3. Automating Form Analysis
Check tags code: 7.3.1. Checking Image Tags
checkboxes: 5.4.4. Checkboxes
children elements, siblings: 9.1. Introduction to Trees
classes
HTTP::Cookies::Netscape: 11.1.2. Loading Cookies from aFile
HTTP::Response: 3.1. The Basic Classes
LWP class model: 3.1. The Basic Classes
LWP::ConnCache: 3.4.1. Connection Parameters
LWP::UserAgent: 3.1. The Basic Classes
URI class: 4.1.1. Constructors
cleanup, HTML::TreeBuilder: 9.2.4. Cleanup
clone() method: 3.4. User Agents
4.1.1. Constructors

code
check tags. 7.3.1. Checking Image Tags
detaching/reattaching nodes: 10.3. Detaching and Reattaching
HTML::TreeBuilder: 9.2. HTML ::TreeBuilder
modifying attributes: 10.1. Changing Attributes
tree example: 9.1. Introduction to Trees
command-line utilities, formpairs.pl: 5.3. Automating Form Analysis
comment tokens: 7.2.4. Comment Tokens

comments
accessto, HTML:: TreeBuilder: 10.4.2. Accessing Comments

content, adding: 10.4.3. Attaching Content
storage: 10.4.1. Retaining Comments
comparing URLSs: 4.1.3. Comparison
components of regular expressions: 6.2.7. Develop from Components
conn_cache() method: 3.4.1. Connection Parameters
connection cache object: 3.4.1. Connection Parameters
connection parameters, LWP::UserAgent class and: 3.4.1. Connection Parameters
consider_response() function: 12.3.3. HEAD Response Processing
12.3.4. Redirects
constructors: 4.1.1. Constructors
HTML::TreeBuilder: 9.2.1. Constructors
LWP::UserAgent class: 3.4. User Agents
new(): 4.1.1. Constructors
new_from_lol(): 10.5.2. New Nodes from Lists
relative URLs and: 4.1.1. Constructors
content() method: 3.5.2. Content
content, adding to comments: 10.4.3. Attaching Content
cookies: 11.1. Cookies

authentication and: 11.3.1. Comparing Cookies with Basic Authentication
enabling: 11.1.1. Enabling Cookies
HTTP::Cookies
new method: 11.1.2. Loading Cookies from aFile
loading from file: 11.1.2. Loading Cookies from aFile
New York Times site example: 11.1.4. Cookies and the New Y ork Times Site
saving tofile: 11.1.3. Saving Cookiesto aFile
Set-Cookieline: 11.1. Cookies
copyrights, distributions: 1.4.2. Copyright
CPAN (Comprehensive Perl Archive Network): 1.3. Installing LWP
CPAN shell, LWP instalation: 1.3.1. Installing LWP from the CPAN Shell
credentials() method: 3.4.5. Authentication
current_age() method: 3.5.4. Expiration Times

L I i FI ’ IN A MUTSHELL
BOOKSHELF PERL & LWF - LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: D

data extraction: 1.1.2. Brittleness
regular expressions; 6.1. Automating Data Extraction
troubleshooting: 6.3. Troubleshooting
walkthrough: 8. Tokenizing Walkthrough
data sources, Web as: 1.1. The Web as Data Source
DEBUG constant: 8.6.1. Debuggability
debug levels. 8.6. Rewrite for Features
debugging
HTML: 3.5.6. Debugging
regular expressions: 6.3. Troubleshooting
declaration tokens: 7.2.5. Markup Declaration Tokens
decode_entities() method: 7.2.3. Text Tokens
detach_content() method: 10.3.1. The detach content() Method
diary-link-checker code, link extraction and: 6.6. Example: Extracting Linksfrom Arbitrary HTML
distributions
acceptable use policies: 1.4.3. Acceptable Use
copyright issues: 1.4.2. Copyright
LWP: 1.3.2.1. Download distributions
document fetching: 2.4. Fetching Documents Without LWP::Simple
AltaVistaexample: 2.5. Example: AltaVista
do_GET() function: 2.4. Fetching Documents Without LWP::Simple
3.3. Insidethedo GET and do POST Functions
do_POST() function: 3.3. Insidethedo GET and do POST Functions
dump() method: 9.2. HTML ::TreeBuilder

B

PE

! ; ! PERL & XML
o - R Vo ! IN A MUTSHELL
EOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK e,
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: E

elements
HTML::Element: 10.5. Creating New Elements

trees, attaching to other trees: 10.4. Attaching in Another Tree
elements, trees; 9.1. Introduction to Trees

children: 9.1. Introduction to Trees

li elements: 9.1. Introduction to Trees

tag comparison: 9.1. Introduction to Trees

ul elements: 9.1. Introduction to Trees
end-tag token: 7.1. HTML as Tokens

7.2.2. End-Tag Tokens
end-tags, get_trimmed_text() method and: 7.5.4.2. End-tags
env_proxy() method: 3.4.6. Proxies
eq() method: 4.1.3. Comparison
expressions (see regular expressions)
extracted text, uses: 7.6. Using Extracted Text
extracting datac 1.1.2. Brittleness

regular expressions: 6.1. Automating Data Extraction
extracting links, link-checking spider example: 12.3.5. Link Extraction

A AR,

<4 ! .
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

PE
& XML

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: F

false negatives, data extraction and: 6.3. Troubleshooting
false positives, data extraction and: 6.3. Troubleshooting
files

bookmarks, link extraction: 6.5. Example: Extracting Linksfrom a Bookmark File
opening, HTML forms and: 5.4.9. File Selection Elements
parsing from: 9.2.3. Parsing
uploading: 5.7. File Uploads
filters, HTML::TokeParser as: 7.3.2. HTML Filters
firewalls, enabling proxies. 3.3. Insidethe do GET and do_POST Functions
fixed URLS, GET formsand: 5.2.1. GETting Fixed URLS
<form>HTML tag: 5.1. Elements of an HTML Form
formpairs.pl program: 5.3. Automating Form Analysis
adding features. 5.6.3. Adding Features
POST request examples: 5.5.2. Use formpairs.pl
forms: 1.5.2. Forms
5. Forms
analysis automation: 5.3. Automating Form Analysis
file uploads: 5.7. File Uploads
GET forms: 5.2. LWP and GET Requests
HTML elements: 5.1. Elements of an HTML Form
limitations: 5.8. Limits on Forms
POST request examples: 5.5.1. The Form
5.6.1. The Form
fragment() method: 4.1.4. Components of a URL
4.1.4. Components of a URL
fragment-only relative URLS: 4.2. Relative URLS
Fresh Air data extraction example, HTML:: TreeBuilder: 9.5. Example: Fresh Air
freshness_lifetime() method: 3.5.4. Expiration Times
from() attribute: 3.4.2. Request Parameters
FTPURLs: 2.1. URLsS
functions
consider_response(): 12.3.3. HEAD Response Processing
12.3.4. Redirects
do_GET(): 2.4. Fetching Documents Without LWP::Simple
3.3. Insidethedo GET and do POST Functions
do_POST(): 3.3. Insidethedo GET and do_POST Functions
get(): 1.5. LWPin Action
2.3.1. Basic Document Fetch
getprint(): 2.3.3. Fetch and Print
getstore(): 2.3.2. Fetch and Store
head(): 2.3.4. Previewing with HEAD
mutter(): 12.3.2. Overall Design in the Spider
near_url(): 12.3.2. Overall Design in the Spider
next_scheduled url(): 12.3.2. Overall Design in the Spider

note_error_response(): 12.3.3. HEAD Response Processing
parse fresh stream(): 8.6. Rewrite for Features
process far_url(): 12.3.2. Overal Design in the Spider
process near_url(): 12.3.2. Overall Design in the Spider
put_into_template(): 10.4.3. Attaching Content
say(): 12.3.2. Overall Design in the Spider
scan_bbc_stream(): 7.4.3. Bundling into a Program
schedule_count(): 12.3.2. Overall Design in the Spider
uri_escape(): 2.1. URLs

5.2.1. GETting Fixed URLs
url_scan(): 7.4.3. Bundling into a Program

o
BOOK
HO

i i

i Yol : IM A MUTSHELL
SHELF PERL & LWP - LEARMING PERL 2nd Edition
ME 3rd Edition

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

MASTERING
PERL/TK

PERL COOKBOOK

=

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: G

get() function: 1.5. LWPin Action
2.3.1. Basic Document Fetch
GET forms: 5.2. LWP and GET Requests
fixed URLsand: 5.2.1. GETting Fixed URLS
GET query, HTTP: 2.5. Example: AltaVista
getprint() function: 2.3.3. Fetch and Print
getstore() function: 2.3.2. Fetch and Store
get_tag() method: 7.5. More HTML :: TokeParser Methods
7.5.4. The get_tag() Method
parameters. 7.5.5. The get tag() Method with Parameters
get_text() method: 7.5. More HTML :: TokeParser Methods
7.5.1. The get_text() Method
applet elements and: 8.6.2. Images and Applets
img elements and: 8.6.2. Images and Applets
parameters. 7.5.2. The get text() Method with Parameters
get_token() method: 8.5. Narrowing In
get_trimmed_text() method: 7.5. More HTML :: TokeParser M ethods
7.5.3. Theget trimmed text() Method
applet elements and: 8.6.2. Images and Applets
img elements: 8.6.2. Images and Applets
greedy matches, regular expressions. 6.2.4. Minimal and Greedy Matches

A I

PERL & LWF ~ LEARNING PERL 2nd Edition PERL MASTERING = PERL COOKBOOK
3rd Edition 3rd Edition PERL/THK

PE
& XML

i,

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: H

head() function: 2.3.4. Previewing with HEAD
HEAD request
link-checking spider example: 12.3.3. HEAD Response Processing
spider link-checking example and: 12.3.1. The Basic Spider Logic
header() method: 3.5.3. Headers
headers; 11.2. Adding Extra Request Header Lines
HTTP requests: 2.2.1. Request
HTTP responses: 2.2.2. Response
Referer header value: 11.2.2. Referer
WWW-Authentication: 11.3. Authentication
headline detector, Netscape imitator: 11.2.1. Pretending to Be Netscape
host() method: 4.1. Parsing URLS
HTML: 2. Web Basics
comments, HTML structure: 6.2.8. Use M ultiple Steps
debugging: 3.5.6. Debugging
documents, relative URLs: 3.5.5. Base for Relative URLS
links, extracting from remote files: 6.6. Example: Extracting Linksfrom Arbitrary HTML
metatags: 3.4.8. Advanced Methods
parsing: 1.5.3. Parsing HTML
HTML entities
decode_entities(): 7.2.3. Text Tokens
HTML forms
data extraction: 5.2.2. GETting aquery form() URL
elements: 5.1. Elements of an HTML Form
file opening: 5.4.9. File Selection Elements
option element: 5.4.11. Select Elements and Option Elements
select element: 5.4.11. Select Elements and Option Elements
textarea element: 5.4.10. Textarea Elements
HTML::Element: 9. HTML Processing with Trees
attributes, changing: 10.1. Changing Attributes
detach_content() method: 10.3.1. The detach _content() Method
element creation: 10.5. Creating New Elements
images, deleting: 10.2. Deleting Images
literals: 10.5.1. Literals
nodes

creating from lists: 10.5.2. New Nodes from Lists
deleting: 10.2. Deleting Images
detaching/reattaching: 10.3. Detaching and Reattaching
pseudoelements: 10.4.2. Accessing Comments
replace_with() method constraints: 10.3.2. Constraints
HTML::Parser: 6.4. When Regular Expressions Aren't Enough
HTML::TokeParser: 6.4. When Regular Expressions Aren't Enough
7. HTML Processing with Tokens
asfilter: 7.3.2. HTML Filters

methods:. 7.5. More HTML ::TokeParser Methods
New Y ork Times cookie example: 11.1.4. Cookies and the New Y ork Times Site
streams and: 7.2. Basic HTML ::TokeParser Use
HTML::TreeBuilder: 6.4. When Regular Expressions Aren't Enough
9.2. HTML ::TreeBuilder
BBC News headline extraction: 9.4. Example: BBC News
cleanup: 9.2.4. Cleanup
comment access: 10.4.2. Accessing Comments
constructors: 9.2.1. Constructors
dump() method: 9.2. HTML ::TreeBuilder
Fresh Air data extraction example: 9.5. Example: Fresh Air
parse() method: 9.2. HTML :: TreeBuilder
parsing options: 9.2.2. Parse Options
searches: 9.3.1. Methods for Searching the Tree
store_comments(): 10.4.1. Retaining Comments
whitespace: 10.1.1. Whitespace
HTTP Basic Authentication: 11.3. Authentication
HTTP GET query: 2.5. Example: AltaVista
HTTP (Hypertext Transfer Protocol): 2. Web Basics
2.2. AN HTTP Transaction
HTTP POST query: 2.6. HTTP POST
Babelfish example: 2.7. Example: Babelfish
HTTP requests: 2.2.1. Request
HTTP responses: 2.2.2. Response
HTTPURLs: 2.1. URLs
HTTP::Cookies: 11.1.2. L oading Cookies from a File
HTTP::Cookies::Netscape class: 11.1.2. L oading Cookies from a File
HTTP::Response class: 3.1. The Basic Classes
HTTP::Response object: 3.5. HTTP::Response Objects
content: 3.5.2. Content
expiration times: 3.5.4. Expiration Times
header values: 3.5.3. Headers

| b
= I A NUTSHELL .}

M \ .
BEDKSHEI_F PERL & LWP ~ LEARMIMG PERL 2nd Edithon MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: |

if statements, loops: 7.3. Individual Tokens
image tags, checking: 7.3.1. Checking Image Tags
images
deleting: 10.2. Deleting Images
inline images: 5.4.7. Image Buttons
tokenizing and: 8.6.2. Images and Applets
individual tokens: 7.3. Individual Tokens
inline images: 5.4.7. Image Buttons

input elements, HTML forms
type=checkbox: 5.4.4. Checkboxes

type=file: 5.4.9. File Selection Elements
5.7. File Uploads

type=hidden: 5.4.1. Hidden Elements

type=image: 5.4.7. Image Buttons

type=password: 5.4.3. Password Elements

type=radio: 5.4.5. Radio Buttons

type=reset: 5.4.8. Reset Buttons

type=submit: 5.4.6. Submit Buttons

type=text: 5.4.2. Text Elements
<input> HTML tag: 5.1. Elements of an HTML Form
installation, LWP: 1.3. Installing LWP

CPAN shell: 1.3.1. Ingtalling LWP from the CPAN Shell

manual: 1.3.2. Installing LWP Manually
interfaces, object-oriented: 1.5.1. The Object-Oriented Interface

| g?‘ %
L INANUTSHELL | PROCRAMMING j

4 i y)
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

PE
& XML

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: J

There are no index entries for this | etter.

b

h PE

i { RL ; a

g i MR B s INANUTSHELL | PROGRAMMING ‘ & XL

BOOKSHELF PERL&LWP~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK S
HOME 3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: K

There are no index entries for this | etter.

b

H PE

i RL ;. -

i 4 ,] ;- IN A NUTSHELL PROGRAMMING ‘ & XML

PERL & LWF - LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK N
3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: L

li elements: 9.1. Introduction to Trees

libwww-perl project: 1.2. History of LWP

license plate example: 5.5. POST Example: License Plates
link-checking spider example: 12.3. Example: A Link-Checking Spider
links

extracting
from bookmark files: 6.5. Example: Extracting Linksfrom a Bookmark File
from remote files: 6.6. Example: Extracting Linksfrom Arbitrary HTML
link-checking spider example: 12.3.5. Link Extraction
Weather Underground web site, extracting: 6.7. Example: Extracting Temperatures from Weather Underground
literals, HTML::Element: 10.5.1. Literals
look_down(') method: 10.2. Deleting Images
loops, if statementsand: 7.3. Individual Tokens
LWP

distributions: 1.3.2.1. Download distributions
Google search: 1.2. History of LWP
history of: 1.2. History of LWP
installation: 1.3. Installing LWP
CPAN shell: 1.3.1. Installing LWP from the CPAN Shell
manual: 1.3.2. Installing LWP Manually
sample code: 1.5. LWPin Action
LWP class model, basic classes: 3.1. The Basic Classes
LWP:: module namespace: 1.2. History of LWP
LWP::ConnCache class: 3.4.1. Connection Parameters
LWP::RobotUA: 12.2. A User Agent for Robots
LWP::Simple module: 2.3. LWP::Simple
document fetch: 2.3.1. Basic Document Fetch
get() function: 2.3.1. Basic Document Fetch
getprint() function: 2.3.3. Fetch and Print
getstore() function: 2.3.2. Fetch and Store
head() function: 2.3.4. Previewing with HEAD
previewing and: 2.3.4. Previewing with HEAD
LWP::UserAgent class: 3.1. The Basic Classes
3.4. User Agents
connection parameters: 3.4.1. Connection Parameters
constructor options. 3.4. User Agents
cookies: 11.1. Cookies
enabling: 11.1.1. Enabling Cookies
request header lines: 11.2. Adding Extra Request Header Lines

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: M

MacPerl: 1.3. Installing LWP
mailing archive authentication example: 11.4. An HTTP Authentication Example: The Unicode Mailing Archive
mailto:, host() method: 4.1.4. Components of a URL
Makefile.PL, distributions: 1.3.2.2. Unpack and configure
matches, regular expressions
anchors: 6.2.1. Anchor Y our Match
capture: 6.2.5. Capture
repeated: 6.2.6. Repeated Matches
max_size() method: 3.4.1. Connection Parameters
metatags, HTML: 3.4.8. Advanced Methods
method calls: 3.2. Programming with LWP Classes
methods: 4.1.4. Components of a URL
as HTML(): 10. Modifying HTML with Trees
calling, no arguments: 3.4.3. Protocols
can(): 4.1.4. Components of aURL
clone(): 3.4. User Agents
4.1.1. Constructors
conn_cache(): 3.4.1. Connection Parameters
content(): 3.5.2. Content
credentials(): 3.4.5. Authentication
11.3.2. Authenticating viaLWP
current_age(): 3.5.4. Expiration Times
detach_content(): 10.3.1. The detach content() Method
dump(): 9.2. HTML::TreeBuilder
env_proxy(): 3.4.6. Proxies
eq(): 4.1.3. Comparison
freshness_lifetime(): 3.5.4. Expiration Times
get_tag(): 7.5. More HTML :: TokeParser Methods
7.5.4. Theget tag() Method
parameters: 7.5.5. The get tag() Method with Parameters
get_text(): 7.5. More HTML :: TokeParser Methods
7.5.1. The get_text() Method
parameters. 7.5.2. The get text() Method with Parameters
get_token(): 8.5. Narrowing In
get_trimmed_text(): 7.5. More HTML :: TokeParser Methods
7.5.3. The get_trimmed text() Method
header(): 3.5.3. Headers
host(): 4.1. Parsing URLS
HTML::TokeParser: 7.5. More HTML :: TokeParser M ethods
HTTP requests: 2.2.1. Request
look_down(): 10.2. Deleting Images
max_size(): 3.4.1. Connection Parameters
new_abs(): 4.4. Converting Relative URL s to Absolute
node attributes: 9.3.2. Attributes of a Node

no_proxy(): 3.4.6. Proxies

parse(): 9.2. HTML::TreeBuilder
parse file(): 9.2.3. Parsing

path(): 4.1.4. Components of a URL
path_query(): 4.1.5. Queries

port(): 4.1.4. Components of a URL
post(): 5.2. LWP and GET Requests
protocols_allowed(): 3.4.3. Protocols
protocols_forbidden(): 3.4.3. Protocols
query(): 4.1.4. Components of a URL

4.1.5. Queries

query_form(): 4.1.5. Queries
5.2. LWP and GET Reguests

5.2.2. GETting aquery form() URL
query_keywords(): 4.1.5. Queries
redirect_ok(): 3.4.4. Redirection
rel(): 4.3. Converting Absolute URL s to Relative
replace with(): 10.3.2. Constraints
request methods: 3.4.7. Request Methods
scheme(): 4.1.4. Components of a URL
server(): 4.1.4. Components of a URL
status ling(): 3.5.1. StatusLine
traverse(): 9.3.3. Traversing
unget_token(): 7.4. Token Sequences
8.5. Narrowing In
URI->new_abs: 4.1.1. Constructors
userinfo(): 4.1.4. Components of a URL
MIME types, file uploads and: 5.7. File Uploads
minimal matches, regular expressions: 6.2.4. Minimal and Greedy Matches
MOMspider: 1.2. History of LWP
mutter() function: 12.3.2. Overall Design in the Spider

PE

PERL

e

L i VB . IN A NUTSHELL & KL
BOOKSHELF PERL & LWF - LEARNING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK =
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: N

named values, queries: 4.1.5. Queries

name=string attribute, option element and: 5.4.11. Select Elements and Option Elements
near_url() function: 12.3.2. Overall Design in the Spider

nested structures, regular expressions and: 6.4. When Regular Expressions Aren't Enough
Netscape, imitating in headline detector: 11.2.1. Pretending to Be Netscape

network load: 1.4.1. Network and Server L oad

new() construction, user agents and: 3.4. User Agents

new() constructor: 4.1.1. Constructors

new() method, HTTP::Cookies: 11.1.2. Loading Cookies from aFile

New Y ork Times site cookies example: 11.1.4. Cookies and the New Y ork Times Site
new_abs() method: 4.4. Converting Relative URL s to Absolute

new_from_lol() constructor: 10.5.2. New Nodes from Lists

newlines, regular expressions and: 6.2.3. Embedded Newlines

newspaper information cookie example: 11.1.4. Cookies and the New Y ork Times Site
next_scheduled _url() function: 12.3.2. Overall Design in the Spider

nodes
attributes; 9.3.2. Attributes of a Node

callbacks: 9.3.3. Traversing
creating from lists: 10.5.2. New Nodes from Lists
deleting: 10.2. Deleting Images
detaching/reattaching, HTML ::Element: 10.3. Detaching and Reattaching
traversal: 9.3.3. Traversing
trees: 9.1. Introduction to Trees
no_proxy() method: 3.4.6. Proxies
note_error_response() function: 12.3.3. HEAD Response Processing
NPR Fresh Air data extraction walkthrough: 8.1. The Problem

e

I | PERL
L i y A . IN A NUTSHELL
BOOKSHELF PERL & LWF - LEARNING PERL 2nd Edition MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: O

object-oriented interface: 1.5.1. The Object-Oriented Interface
objects
connection cache object: 3.4.1. Connection Parameters
HTTP::Response: 3.5. HTTP::Response Objects
URI: 4.1. Parsing URLs
Ogg Vorbisfile, spider and: 12.3.1. The Basic Spider Logic
</option> HTML tag: 5.4.11. Select Elements and Option Elements
option element, HTML forms: 5.4.11. Select Elements and Option Elements
ora-temps code, web site link extraction: 6.7. Example: Extracting Temperatures from Weather Underground
output, URI objects as strings: 4.1.2. Output

N y

oy = i y ol , B IM A MUTSHELL &L
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edition MASTERING PERL COOKBOOK)
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: P

parse() method: 9.2. HTML ::TreeBuilder
parsetrees: 1.1.1. Screen Scraping
parse_file() method: 9.2.3. Parsing
parse_fresh_stream() function: 8.6. Rewrite for Features
parsing
fromfiles: 9.2.3. Parsing
HTML: 1.5.3. Parsing HTML
HTML::TreeBuilder: 9.2.2. Parse Options
from strings: 9.2.3. Parsing
URLSs: 4.1. Parsing URLs
passwords: 5.4.3. Password Elements
security: 11.3.3. Security
path() method: 4.1.4. Components of a URL
path_query() method: 4.1.5. Queries
paths, HTTP requests. 2.2.1. Request
perlmodinstall document: 1.3.2. Installing LWP Manually
PI's (see processing instruction tokens)
port() method: 4.1.4. Components of a URL
post() method: 5.2. LWP and GET Requests
POST query: 2.6. HTTP POST
Babelfish example: 2.7. Example: Babelfish
POST request
examples: 5.5. POST Example: License Plates
5.6. POST Example: ABEBooks.com
formpairs.pl: 5.5.2. Use formpairs.pl
forms: 5.5.1. The Form
5.6.1. The Form
postorder traversals: 9.3.3. Traversing
preorder traversals: 9.3.3. Traversing
process far_url() function: 12.3.2. Overall Design in the Spider
processing instruction tokens: 7.2.6. Processing Instruction Tokens
process near_url() function: 12.3.2. Overall Design in the Spider
protocols, user agents: 3.4.3. Protocols
protocols_allowed() method: 3.4.3. Protocols
protocols_forbidden() method: 3.4.3. Protocols
proxies
settings, checking for: 3.2. Programming with LWP Classes
user agents: 3.4.6. Proxies
pseudoelements, HTML ::Element: 10.4.2. Accessing Comments
put_into_template() function: 10.4.3. Attaching Content

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY?

Per] & LWP

Index: Q

queries
named values: 4.1.5. Queries
URI class: 4.1.5. Queries

query() method: 4.1.4. Components of a URL
4.1.5. Queries

query form() method: 4.1.5. Queries
5.2. LWP and GET Reguests

5.2.2. GETting aquery form() URL
query_keywords() method: 4.1.5. Queries

A \ i
i H i
BOOKSHELF PERL & LWP ~
HOME

s e
RL
A B IN A MUTSHELL
LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: R

radio buttons. 5.4.5. Radio Buttons
Real Audio URLS, data extraction example: 8.1. The Problem
redirection
link-checking spider example: 12.3.4. Redirects
user agents: 3.4.4. Redirection
redirect_ok() method: 3.4.4. Redirection
Referer header value: 11.2.2. Referer
regexps, query_form() method: 5.2.2. GETting aquery form() URL
regular expressions
components:. 6.2.7. Develop from Components
data extraction: 6.1. Automating Data Extraction
debugging: 6.3. Troubleshooting
matches. 6.2.4. Minimal and Greedy Matches
anchoring: 6.2.1. Anchor Y our Match
capture: 6.2.5. Capture
greedy: 6.2.4. Minimal and Greedy Matches
repeated: 6.2.6. Repeated Matches
multiple steps: 6.2.8. Use Multiple Steps
nested structures and: 6.4. When Regular Expressions Aren't Enough
newlines and: 6.2.3. Embedded Newlines
techniques for: 6.2. Regular Expression Techniques
whitespace and: 6.2.2. Whitespace
rel() method: 4.3. Converting Absolute URLSto Relative
relative URLs: 4.2. Relative URLS
constructors and: 4.1.1. Constructors
converting from absolute: 4.3. Converting Absolute URL s to Relative
converting to absolute: 4.4. Converting Relative URL s to Absolute
fragment-only: 4.2. Relative URLs
implicit information: 4.2. Relative URLs
repeated matches, regular expressions:. 6.2.6. Repeated Matches
replace with()) method, constraints: 10.3.2. Constraints
request methods, user agents and: 3.4.7. Request M ethods
request parameters. 3.4.2. Request Parameters
regquests
adding: 11.2. Adding Extra Request Header Lines
header lines, adding: 11.2. Adding Extra Request Header Lines
requests _redirectable() attribute: 3.4.4. Redirection
reset button: 5.4.8. Reset Buttons

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: S

say() function: 12.3.2. Overall Design in the Spider

scan_bbc_stream() function: 7.4.3. Bundling into a Program
schedule_count() function: 12.3.2. Overall Design in the Spider

scheme() method: 4.1.4. Components of a URL

schemes, URLSs: 4.2. Relative URLS

screen scraping: 1.1.1. Screen Scraping

searches, trees: 9.3.1. Methods for Searching the Tree

security: 11.3.3. Security

select element, HTML forms: 5.4.11. Select Elements and Option Elements
server() method: 4.1.4. Components of a URL

servers
load: 1.4.1. Network and Server Load

response time: 3.4.1. Connection Parameters
Set-Cookieline: 11.1. Cookies
SGML constructs, processing instructions; 7.2.6. Processing I nstruction Tokens
SOAP: 1.1.3. Web Services
spiders: 12. Spiders
link-checking example: 12.3. Example: A Link-Checking Spider
MOMspider: 1.2. History of LWP
Type Four Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs
Type One Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs
Type Three Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs
Type Two Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs
start-tag tokens: 7.1. HTML as Tokens
7.2.1. Start-Tag Tokens
status line, HTTP response: 2.2.2. Response
status ling() method: 3.5.1. Status Line
steps, regular expressions and: 6.2.8. Use Multiple Steps
story URLs: 7.4.1. Example: BBC Headlines
streams, HTML::TokeParser and: 7.2. Basic HTML :: TokeParser Use
strings
URI objects as, output: 4.1.2. Output
strings, parsing from: 9.2.3. Parsing
submit buttons: 5.4.6. Submit Buttons

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: T

tags
element comparison: 9.1. Introduction to Trees

image tags, checking: 7.3.1. Checking Image Tags
text, extracted: 7.6. Using Extracted Text
text nodes, trees: 9.1. Introduction to Trees
text token: 7.1. HTML as Tokens
7.2.3. Text Tokens
decoding: 7.2.3. Text Tokens
textarea element, HTML forms; 5.4.10. Textarea Elements
timeout() attribute: 3.4.1. Connection Parameters
tokens: 1.1.1. Screen Scraping
7. HTML Processing with Tokens
applets and: 8.6.2. Images and Applets
BBC headlines example: 7.4.1. Example: BBC Headlines
comment tokens: 7.2.4. Comment Tokens
declaration tokens: 7.2.5. Markup Declaration Tokens
end-tag tokens: 7.1. HTML as Tokens
7.2.2. End-Tag Tokens
images and: 8.6.2. Images and Applets
individual: 7.3. Individual Tokens
live data: 8.6.4. Live Data
processing instructions: 7.2.6. Processing Instruction Tokens
start-tag tokens: 7.1. HTML as Tokens
7.2.1. Start-Tag Tokens
text tokens. 7.1. HTML as Tokens
7.2.3. Text Tokens
token sequences:. 7.4. Token Sequences
types: 7.2. Basic HTML ::TokeParser Use
walkthrough: 8. Tokenizing Walkthrough
trace levels. 8.6. Rewrite for Features
trandlate() subroutine: 2.7. Example: Babelfish
traversal, tree nodes: 9.3.3. Traversing
traverse() method: 9.3.3. Traversing
trees: 9. HTML Processing with Trees
code example: 9.1. Introduction to Trees
elements: 9.1. Introduction to Trees
attaching to other trees: 10.4. Attaching in Another Tree
HTML::Element: 9. HTML Processing with Trees
HTML::TreeBuilder: 9.2. HTML::TreeBuilder
nodes. 9.1. Introduction to Trees
callbacks: 9.3.3. Traversing
traversal: 9.3.3. Traversing
searches; 9.3.1. Methods for Searching the Tree
text nodes: 9.1. Introduction to Trees

Type Four Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

Type One Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

Type Three Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

Type Two Requester: 12.1. Types of Web-Querying Programs
12.1. Types of Web-Querying Programs

type=checkbox, HTML input element: 5.4.4. Checkboxes

type=file HTML input element: 5.7. File Uploads

type=hidden, HTML input element: 5.4.1. Hidden Elements

type=image, HTML input element: 5.4.7. Image Buttons

type=password, HTML input element: 5.4.3. Password Elements

type=radio, HTML input element: 5.4.5. Radio Buttons

type=reset, HTML input element: 5.4.8. Reset Buttons

type=submit, HTML input element: 5.4.6. Submit Buttons

type=text, HTML input element: 5.4.2. Text Elements

e | |]

LEARNING PERL 2nd Edition PERAL MASTERING = PERL CODKBOOK
3rd Edition 3rd Edition PERL/TK

i \ .-I
PERL & LWF -

b
BOOKSHELF
HOME

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: U

ul elements: 9.1. Introduction to Trees
unget_token() method: 7.4. Token Sequences
8.5. Narrowing In
Unicode mailing archive authentication example: 11.4. An HTTP Authentication Example: The Unicode Mailing Archive
uploading files: 5.7. File Uploads
URI class
characters, URL standard: 4.1.1. Constructors

component access, URLs: 4.1.4. Components of a URL
objects: 4.1.1. Constructors
queries: 4.1.5. Queries

URI->new_abs method: 4.1.1. Constructors

URI modules
URL brackets: 4.1.1. Constructors

URL quotes: 4.1.1. Constructors
URL whitespace: 4.1.1. Constructors
URI objects: 4.1. Parsing URLS
cloning: 4.1.1. Constructors
as strings. 4.1.2. Output
uri_escape() function: 2.1. URLs
5.2.1. GETting Fixed URLS
URI::Escape module: 2.1. URLs
URL encoded characters: 2.1. URLsS
URLSs (Uniform Resource Locators): 2. Web Basics
2.1.URLs

absolute
converting from relative: 4.4. Converting Relative URL s to Absolute

converting to relative: 4.3. Converting Absolute URL s to Relative
brackets, stripping: 4.1.1. Constructors
characters allowed: 2.1. URLs
comparing: 4.1.3. Comparison
components: 4.1.4. Components of a URL
extracting all in document: 4.1.4. Components of a URL
fixed, GET formsand: 5.2.1. GETting Fixed URLs
normalizing: 4.1.2. Output
parsing: 4.1. Parsing URLs
quotes, stripping: 4.1.1. Constructors
relative: 3.5.5. Base for Relative URLS
4.2. Relative URLs
constructors and: 4.1.1. Constructors
converting from absolute URLs: 4.3. Converting Absolute URL s to Relative
converting to absolute URLs: 4.4. Converting Relative URL s to Absolute
fragments: 4.2. Relative URLs
implicit information: 4.2. Relative URLs
scheduling: 12.3.6. Fleshing Out the URL Scheduling

schemes: 4.2. Relative URLS

story URLs: 7.4.1. Example: BBC Headlines

whitespace, stripping: 4.1.1. Constructors
url_scan() function: 7.4.3. Bundling into a Program
User-Agent header: 3.4.2. Request Parameters
user agents: 3.4. User Agents

authentication: 3.4.5. Authentication

imitating others: 11.2.1. Pretending to Be Netscape

LWP::RobotUA: 12.2. A User Agent for Robots

protocols: 3.4.3. Protocols

proxies: 3.4.6. Proxies

redirection: 3.4.4. Redirection

reguest methods: 3.4.7. Request Methods
userinfo() method: 4.1.4. Components of a URL

N m; . IN A NUTSHELL
PERL & LWP LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK

3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY?

Per] & LWP

Index: V

values, queriesin named values: 4.1.5. Queries
value=string attribute, option element: 5.4.11. Select Elements and Option Elements

RL
, IN A MUTSHELL
LEARMIMNG PERL 2nd Edition PERL
3rd Edition 3rd Edition

it \

BODKSHELF PERL & LWF™~
HOME

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

PERL COOKBOOK

& XML

=

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY’

Per] & LWP

Index: W

Weather Underground web site, link extraction: 6.7. Example: Extracting Temperatures from Weather Underground
Web as data source: 1.1. The Web as Data Source
web automation: 1.1. The Web as Data Source
web services: 1.1.3. Web Services
while loop, link extraction and: 6.6. Example: Extracting Linksfrom Arbitrary HTML
whitespace
HTML::TreeBuider: 10.1.1. Whitespace
regular expressions and: 6.2.2. Whitespace
WWW-Authentication header: 11.3. Authentication

LEARNING PERL 2nd Edition PERL MASTERING = PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

i M \
BOOKSHELF PERL & LWF -
HOME

PE
& XML
d"\

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: X

XML-RPC: 1.1.3. Web Services

{ PERL P
N B . LA INANUTSHELL | PROGRAMMING i i ; & XML
PERL&LWP~ ' LEARNING PERL and Edition PERL MASTERING = PERL COOKBODK %,
3rd Edition 3rd Edition PERL/TK -

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: Y

There are no index entries for this | etter.

b

H PE

i RL ;. -

i 4 ,] ;- IN A NUTSHELL PROGRAMMING ‘ & XML

PERL & LWF - LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK N
3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O'REILLY"

Per] & LWP

Index: Z

There are no index entries for this | etter.

b

H PE

i RL ;. -

i 4 ,] ;- IN A NUTSHELL PROGRAMMING ‘ & XML

PERL & LWF - LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK N
3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates, Inc. All Rights Reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

0.2. Structure of This Book

The book is divided into 12 chapters and 7 appendixes, as follows:

Chapter 1, "Introduction to Web Automation” coversin general termswhat LWP does, the alternatives to using LWP,
and when you shouldn't use LWP.

Chapter 2, "Web Basics' explains how the Web works and some easy-to-use yet limited functions for accessing it.

Chapter 3, "The LWP Class Model" covers the more powerful interface to the Web.

Chapter 4, "URLS' shows how to parse URLs with the URI class, and how to convert between relative and absolute
URLs.

Chapter 5, "Forms' describes how to submit GET and POST forms.

Chapter 6, "Simple HTML Processing with Regular Expressions' shows how to extract information from HTML using
regular expressions.

Chapter 7, "HTML Processing with Tokens" provides an aternative approach to extracting datafrom HTML using the
HTML::TokeParser module.

Chapter 8, "Tokenizing Walkthrough" is a case study of data extraction using tokens.

Chapter 9, "HTML Processing with Trees' shows how to extract datafrom HTML using the HTML :: TreeBuilder
module.

Chapter 10, "Modifying HTML with Trees' coversthe use of HTML::TreeBuilder to modify HTML files.

Chapter 11, "Cookies, Authentication,and Advanced Requests’ deals with the tougher parts of requests.

Chapter 12, "Spiders' explores the technological issues involved in automating the download of more than one page
from asite.

Appendix A, "LWP Modules' is acomplete list of the LWP modules.

Appendix B, "HTTP Status Codes"' isalist of HTTP codes, what they mean, and whether LWP considers them error or
SUCCESS.

Appendix C, "Common MIME Types' contains the most common MIME types and what they mean.

Appendix D, "Language Tags' lists the most common language tags and their meanings (e.g., "zh-cn" means Mainland
Chinese, while "sv" is Swedish).

Appendix E, "Common Content Encodings” isalist of the most common character encodings (character sets) and the
tags that identify them.

Appendix F, "ASCII Table" isatable to help you make sense of the most common Unicode characters. It shows each

character, its numeric code (in decimal, octal, and hex), and any HTML escapes there may be for it.

Appendix G, "User's View of Object-Oriented Modules' is an introduction to the use of Perl's object-oriented

programming features.

41 PREVIOUS HOME

0. Preface BOOK INDEX

HEXT B
0.3. Order of Chapters

e
okl

RL
IM A MUTSHELL

2 i \ - PROGRAMMING
BOOKSHELF PERL & LWF -~ LEARNING PERL 2nd Edition PERL
HOME 3rd Edition 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

& XML

=

MASTERING PERL COOKBOOK
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Appendix G. User's View of Object-Oriented Modules

Contents:

A User's View of Object-Oriented Modules
Modules and Their Functional |nterfaces
Modules with Object-Oriented I nterfaces
What Can Y ou Do with Objects?

What'sin an Object?

What |s an Object Value?

So Why Do Some Modules Use Objects?
The Gory Details

The following article by Sean M. Burke first appeared in The Perl Journal #17 and is copyright 2000, The Perl Journal.
It appears courtesy of Jon Orwant and The Perl Journal. This document may be distributed under the same terms as Perl
itself.

G.1. A User's View of Object-Oriented Modules

The first time that most Perl programmers run into object-oriented programming is when they need to use a module
whose interface is object-oriented. Thisis often a mystifying experience, since talk of "methods" and "constructors” is
unintelligible to programmers who thought that functions and variables was al there was to worry about.

Articles and books that explain object-oriented programming (OOP), do so in terms of how to program that way. That's
understandable, and if you learn to write object-oriented code of your own, you'd find it easy to use object-oriented code
that others write. But this approach is the long way around for people whose immediate goal is just to use existing object-
oriented modules, but who don't yet want to know all the gory details of having to write such modules for themselves.

Thisarticle is for those programmers—programmers who want to know about objects from the perspective of using
object-oriented modules.

48 PREVIOUS HOME MEXT
F. ASCII| Table BOOK INDEX G.2. Modules and Their Functional
Interfaces

‘l ‘ | | gi% ‘
PROGRAMMING j

g RL
e e y YL IN A NUTSHELL _
EOOKSHELF PERL & LWP ~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

G.7. So Why Do Some Modules Use Objects?

All these details of using objects are definitely enough to make you wonder—is it worth the bother? If you're a module
author, writing your module with an object-oriented interface restricts the audience of potential users to those who
understand the basic concepts of objects and object values, as well as Perl's syntax for calling methods. Why complicate
things by having an object-oriented interface?

A somewhat esoteric answer is that a module has an object-oriented interface because the module's insides are written in
an object-oriented style. This article is about the basics of object-oriented interfaces, and it'd be going far afield to
explain what object-oriented design is. But the short story is that object-oriented design is just one way of attacking
messy problems. It's away that many programmers find very helpful (and which others happen to find to be far more of
a hassle than it's worth, incidentally), and it just happens to show up for you, the module user, as merely the style of
interface.

4 PREVIOUS HOME HEXT B
G.6. What Is an Object Vaue? BOOK INDEX G.8. The Gory Details

n | &

RL
L N » 1L IN A NUTSHELL
EOOKSHELF PERL & LWP LEARNING PERL Ind Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

5.6. POST Example: ABEBooks.com

ABEBooks.com is aweb site that allows users to search the database of the books for sale at hundreds of used
bookstores mostly in the U.S. and Canada. An eagle-eyed user can find anything from a $2 used copy of Swahili for
Travellers, to an €11,000 complete set of the 1777 edition of Diderot's Encyclopédie. The trick, as with any kind of
bargain hunting, isto always keep looking, because one never knows when something new and interesting will arrive.
The manual way of doing thisisto fastidiously keep alist of titles, authors, and subjects for which you're keeping an eye
out, and to routinely visit the ABEBooks site, key in each of your searchesinto the HTML search form, and ook for
anything new. However, thisis precisely the kind of drudgery that computers were meant to do for us; so we'll now
consider how to automate that task.

Aswith the license plate form in the previous section, the first step in automating form submission is to understand the
form in question. ABEBooks's "Advanced Search" system consists of one form, which is shown in Figure 5-3.

¥ Book Search - Netscape =|0] %
Eile Edit Wew Go Communicster Hal
: " Booknarks PR Pl iy cogbest. sbebook s comdabe/Book Sems

abebooks.cam o o o o o ol
advanced search

Enter compiste wonds such as "Stephen® or use a raling wildcard such a5 "Ste™

Author A T O e A e Start Search

Tide [Sgrer sttt R Reset Fisids

Publisher | R T e R R Clear Fields |

ORI i i s Searh o |

Bookstore [T -

Country At Countries [

Binding [5y Binding [Ql|

Atributes M First Edition M Signed M Dust Jacket

ussprice | v v I -« -

Order results by © Newest ® Lowest Price ® Highest Price

Fesults per page -]

; =
& = Dormmmrt Cone Sh g oS [a]

Figure 5-3. ABEBooks query form

The process of searching with thisform is just a matter of filling in the applicable fields and hitting " Start Search"; the
web site then returns aweb page listing the results. For example, entering "Codex Seraphinianus’ in the "Title" field
returns the web page shown in Figure 5-4.

#: Search Results - Netscape _[O]=

Eile Edit ‘ew Go Communicaior Help
ﬁ"Bnﬂm:k: sy Locaton |l

finding books just got easier =

abebooks.Com ... o i e e bt e e

lick Zes

search results
Wi Fovend 8 tosatcbeng books =oour datsbasze for
Title: Codex Seraphinkans

| help | refine search | p: | glogsay

Heze are books 1-8:

I Serafied, Lukgl CODEX SERAPHINIANUS
MV Abkawnle 1955 First Amencan Edibon Folin, Fine in Akeut Feme [0]| 2 nice copy,
color dhez. on every page, an anstomy of & imegnery ciwkzation (S152) . Bookseler
Iawectacy # G845
Prce: USS SD0.D0 cocvert ey
Presented by MUDEL BOOE,
e apbog

Hew Tork MY, 5.4

L Berafied, ngj Codex Servaplinianns
Mewr Viegle Ahbeaanla Press 19585 Cloth, 1ot Armemean Fobo - ower 2% - 15" tall Searce
Wheat i there to 2ay abouf thes book? The jacket copy says itie . a book shout, and for,
o age, the 'age of mformabian), & ime of cading and decodng of messages, & time when
the best mands in Gelds as disparate a5 genefics, compater stience, and bberary cohcssm
are questondg our nost fundamental notene of language, translation, and
commaucabon” Whatever else it moght be, 5 a uly remarkable achievement, a book
writien in cods (et on-decoded, to the best of my kmowledpe), and hoetrated with the
mest fartaste ‘mvestons’ ad ‘construchons’. Scarce, truly, me-of-a-land. This copy 13 5 -
Bloma Vlieh = o - b o memn - T I e e P Y

DO PR ISR U R e ke i - Al Fen

& = | Sh Mo AW [%
Figure 5-4. ABEBooks results page

5.6.1. The Form

In the previous section, the form's source was simple enough that we could tell at a glance what form pairsit would
produce, and our use of formpairs.pl merely confirmed that we understood it. However, this ABEBooks form is
obviously much more complex, so let's start with using formpairs.pl and look to the details of the form source only as
necessary. Save alocal copy of the form and change its form action attribute from this:

<FORM ACTI ON=" BookSear ch" METHOD=post >
to this:
<FORM ACTI ON="htt p: //someserver.int/cgi-bin/fornpairs. pl" METHOD=post >
or to whatever URL you've put a copy of formpairs.pl at. If you then open that newly altered HTML filein a browser,

fill in "Codex Seraphinianus’ in the "Title" blank, set "Order results by" to "Newest," set "Results per page" to "100,"
and hit "Start Search," our formpairs.pl program shows the form pairs that the browser sends:

PCOST dat a:
(
"ph" => "2",
"an" => "",
"tn" => "Codex Seraphi ni anus",
"pn" => "
"sn' => ""

"gpnm' => "ALL",
n Ct yll => nn ,

"hit = v,
"prit o=> ",
"prh" =>"",
"sorthby" => "0",
"ds" => "30",

"bu" => "Start Search",

5.6.2. Translating This into LWP

These form pairs can be pasted into a simple program for saving the result of that search, using acall to $br owser -
>post (url,pairs_arrayref) suchasyoull recognize from the previous section. Example 5-4 demonstrates.

Example 5-4. seraph.pl

#!/usr/ bin/perl -w

seraph.pl - search for Codex Seraphini anus on abebooks
use strict;

ny $out _file = "result_seraph.htm"; # where to save it
use LWpP;

ny $browser = LWP:: User Agent - >new,
ny $response = $browser - >post (
"http://dogbert. abebooks. conif abe/ BookSear ch',
That's the URL that the real formsubnmts to.

[

n phll => n 2Il ,

"an' =>"",

"tn" => "Codex Seraphini anus",
mn pnll :> mn ,

"sp" => ""

"gpnm' => "All Book Stores",
"cty" => "All Countries",
"bi" => "Any Binding",

"prito=>n"",
"prht o =>"",
"sorthy" => "0",
"ds" => "100",
"bu" => "Start Search",
]
)
die "Error: ", $response->status _line, "\n"

unl ess $response->i s_success;

open(QUT, ">%out _file") || die "Can't wite-open $out file: $!";
bi nnode(QUT) ;

print OUT $response->content;

cl ose(QUT);

print "Bytes saved: ", -s $out file, " in $out_file\n";

When run, this program successfully savesto result_seraph.html all the HTML that results from running a 100-newest-
items search on the title "Codex Seraphinianus”.

5.6.3. Adding Features

A little more experimentation with the form would show that a search on an author's name, instead of the title name,
shows up inthe an=aut hor _narme form pair, instead of thet n=t i t | e_nane form pair. That iswhat we see if we
go sifting through the HTML source to the search form:

<TR><TH AL| GN=LEFT>Aut hor </ TH>
<TD><I NPUT TYPE=t ext NAME=an VALUE="" Sl ZE=35 MAXLENGTH=254></ TD></ TR>
<TR><TH ALI GN=LEFT>Ti t| e</ TH>

<TD><I NPUT TYPE=t ext NAME=tn VALUE="" S| ZE=35 MAXLENGTH=254></ TD></ TR>
We could alter our program to set the form pairs with something like this:

“an" => $author || "",
"tn" :> $t|t|e || "non

Moreover, if we wanted to alow the search to specify that only first editions should be shown, some experimentation
with formpairs.pl and our local copy of the form shows that checking the "First Edition" checkbox produces a new form
pair f e=on, between the bi = and pr | = pairs, where previoudly there was nothing. This jibes with the HTML source
code:

<I NPUT TYPE=CHECKBOX NAME=f e>First Edition

This could be modeled in our program with avariable $f i r st _edi ti on, which, if set to atrue value, produces that
form pair; otherwise, it produces nothing:

n bi " => nn

$first_edition ? ("fe" => "on") : (),

Ilprlll => IIII,

This can al be bundled up in asingle routine that runs a search based on three given parameters. author, title, and
whether only first editions should be shown:

sub run_search {
ny($author, $title, $first_edition) = @;
nmy $response = $browser - >post (
"http://dogbert. abebooks. conf abe/ BookSear ch',
[
"ph" => "2",
"an" => S$aut hor || ,
"tn" => S$title || "7,
"pnt =>
"sn" => "",
"gpnnt => "All Book Stores",
"cty" => "All Countries",
"bi" => "Any Bi nding",
$first_edition ? ("fe" => "on") : (),

nn

nn

"prito=>"",
"prh" =>"",
"sortby" => "0",
"ds" => "100",

"bu" => "Start Search",
]
)
return $response;

}

That run_sear ch() routine takesal we know about how any new-books query to ABEBooks needs to be
performed and putsit al in asingle place. From here, we need only apply initialization code and code to call the
run_sear ch routine, and do whatever needs doing with it:

use strict;

use LWP
ny $browser = LWP:: User Agent - >new;
do_stuff();

sub do_stuff {
ny $response = run_search(# author, title, first edition
"', ' Codex Seraphinianus',
);

process_sear ch($response, 'result_seraph. htm');

}

sub process_search {
ny($response, $out file) = @;
die "Error: ", $response->status_line, "\n"
unl ess $response->i s_success;
open(QUT, ">$out _file") || die "Can't wite-open $out_file: $!'"

bi nnmode(OUT) ;

print OUT $response->content;

cl ose(QUT);

print "Bytes saved: ", -s $out_file, " in $out file\n";
return;

}
5.6.4. Generalizing the Program

This program still just runs an ABEBooks search for books with thetitle "Codex Seraphinianus’, and saves the results to
result_seraph.html. But the benefit of reshuffling the code as we did is that now, by just changing do_st uf f dightly,
we change our program from being dedicated to running one search, to being a generic tool for running any number of
searches:

my @earches = (# outfile, author, title, first_edition

["result_seraph.htm "', "', ' Codex Seraphinianus', ''],
['result_vidal _l1green.htm', 'Gore Vidal', 'Dark Geen Bright Red',
1],
['result_marchand. htm ', 'Hans Marchand', 'Categories', ''],
["result_origins.htm"', "Eric Partridge', "Oigins', "'],
['result _navajo.htm ', "', '"Navajo',],
['result _navaho. htm ', "', '"Navaho',],
['result irog.htm", "', "lroquois', ''],
["result_tibetan.htm "', "', "Tibetan', ''],
);
do_stuff();

sub do_stuff {
foreach ny $search (@earches) ({
ny $out file = shift @search;
ny $resp = run_search(@search);
sleep 3; # Don't rudely query the ABEbooks server too fast!
process_search($resp, $out _file);
}
}

Running this program saves each of those searchesin turn:

% perl -w abesear ch03. pl

Bytes saved: 15452 in result_seraph. htm

Byt es saved: 57693 in result_vidal 1green. htni
Byt es saved: 8009 in result_marchand. htm

Byt es saved: 25322 in result_origins.htm
Byt es saved: 125337 in result_navajo. htm
Byt es saved: 128665 in result_navaho. htm
Byt es saved: 127475 in result_iroq. htm
Byt es saved: 130941 in result _tibetan. htni

The user can then open each file and skim it for interesting new titles. Each book listed there comes with aworking
absolute URL to abook detail page on the ABEBooKs server, which can be used for buying the book. For some of the
gueries that generate large numbers of results, it would be particularly convenient to havedo_st uf f () actually track
which books it has seen before (using the book-detail URL of each) and report only on new ones:

ny $is first_tine;
ny (%seen_last_tine, %een_this_tinme, @ew.urls);
sub do_stuff {
if (-e '"seen_last_tine.dat') {
CGet URLs seen last tine.
open(LAST_TIME, "<seen_last_tine.dat") || die $!;
while (<LAST_TIME>) { chonp; $seen last time{$ } =1 };
cl ose(LAST_TI ME) ;
} else {
$is first_ tine = 1;

}

foreach ny $search (@earches) {
ny $out file = shift @search;
ny $resp = run_search(@search);
process_search($resp, $out _file);

foreach nmy $url ($resp->content =~
Extract URLs of book-detail pages:
n{" (http://dogbert.abebooks. coml abe/ BookDet ai | s\ ?bi =["\s\"]+)"}g
) {
push @ew urls, $url unless $seen_last _tinme{$url}
or $seen_this tinme{S$url};
$seen_this_ time{$url} = 1;

}
}
Save URLs for conparison next time.
open(LAST _TIME, ">seen_last _tine.dat") || die $!;

for (keys %seen_this_ tine) { print LAST._TIME $_, "\n" }
cl ose(LAST_TI ME) ;

if($is first_tine) {
print "(This was the first time this programwas run.)\n";
} elsif (@ew_urls) {
print "\nURLs of new books:\n";
for (@ew_urls) { print $_, "\n" }
} else {
print "No new books to report.\n";
}
}

A typical run of thiswill produce output as above, but with this addendum:

URLs of new books:

http://dogbert. abebooks. coni abe/ BookDet ai | s?bi =24017010
http://dogbert. abebooks. conl abe/ BookDet ai | s?bi =4766571
http://dogbert. abebooks. coni abe/ BookDet ai | s?bi =110543730

http://dogbert.
http://dogbert.
http://dogbert.
http://dogbert.

abebooks. cont abe/ BookDet ai | s?bi
abebooks. conm abe/ BookDet ai | s?bi
abebooks. cont abe/ BookDet ai | s?bi
abebooks. com abe/ BookDet ai | s?bi

=58703369
=93298753
=93204427
=24086008

41 PREVIOUS HOME NEXT &
5.5. POST Example: License Plates BOOK INDEX 5.7. File Uploads
:..ﬂ.:;' ’g_ - .
e e W - IN A NUTSHELL &L
BOOKSHELF PERL & LWP ~ LEARNING PERL 2nd Edition MASTERING PERL COOKBOOK N
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

4.4. Converting Relative URLs to Absolute

By far the most common task involving URL s is converting relative URL s to absolute ones. Thenew_abs() method
does al the hard work:

$abs_url = URI->new abs(rel ative, base);

Ifrel _url isactualy an absolute URL, base_ur| isignored. Thisletsyou pass all URLSs from a document through
new_abs(), rather than trying to work out which are relative and which are absolute. So if you processthe HTML at
http://mamww.oreilly.com/catalog/ and you find alink to pperl3/toc.html, you can get the full URL like this:

$abs_url = URI->new_abs(' pperl3/toc.htm', "http://ww.oreilly.com
catal og/');

Another example:

use URIl;

ny $base_url = "http://wW3.thing.int/stuff/diary.htm";
ny $rel _url = "../mnesweeper_hints/";

ny $abs_url = URI->new abs($rel url, $base_url);
print $abs_url, "\n";

http://w3.thing.int/mnesweeper hints/

Y ou can even pass the output of new_abs to thecanoni cal method that we discussed earlier, to get the normalized
absolute representation of aURL. So if you're parsing possibly relative, oddly escaped URLs in adocument (eachin
$hr ef , suchasyou'd get froman tag), the expression to remember isthis:

$new _abs = URI - >new_abs($href, $abs_base)->canoni cal ;

Y ou'll see this expression come up often in the rest of the book.

41 PREVIOUS HOME NEXT B
4.3. Converting Absolute URLsto BOOK INDEX 5. Forms
Relative

n | &

; | RL
L it , 1L IN A NUTSHELL
BOOKSHELF PERL & LWP -~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

4.3. Converting Absolute URLs to Relative

A relative URL path assumes you're in a directory and the path elements are relative to that directory. For example, if
you'rein /staff/, these are the same:

roster/search. cgi
[staff/roster/search. cgi

If you're in /studentd/, thisis the path to /staff/roster/search.cgi:
../staff/roster/search. cgi

The URI classincludesamethod r el (), which creates arelative URL out of an absolute goal URI object. The newly
created relative URL is how you could get to that original URL, starting from the absolute base URL .

$rel ati ve = $absol ut e_goal - >rel (absol ut e_base);

Theabsol ut e_base isthe URL path in which you're assumed to be; it can be a string, or areal URI object. But
$absol ut e_goal must beaURI object. Ther el () method returns a URI object.

For example:

use URI;

ny $base = URI->new(' http://phee. phye. phoe. fnfthi ngamajig/zing. xm");
ny $goal URI - >new(' http:// phee. phye. phoe.fnf hi _there.jpg');

print $goal ->rel ($base), "\n";

../hi_there.jpg

If you start with normal strings, simplify thisto URI - >new($abs_goal) - >r el ($base) , as shown here:

use URIl;
ny $base = 'http://phee. phye. phoe. fm thingamajig/zing. xm";
ny $goal = 'http://phee. phye. phoe.fmhi _there.jpg';

print URI->new($goal)->rel ($base), "\n";
../ hi_there.jpg

Incidentally, the trailing slash in abase URL can be very important. Consider:

use URl;
ny $base = 'http://phee. phye. phoe. fm engli shnen/ bl ood' ;
ny $goal = 'http://phee. phye. phoe. fnfenglishnmen/tony.|pg";

print URl->new($goal)->rel ($base), "\n";
tony.j pg

But add a slash to the base URL and see the change:

use URI;
ny $base = 'http://phee. phye. phoe. fni engli shrmen/ bl ood/" ;
ny $goal = 'http://phee. phye. phoe.fm englishnmen/tony.jpg";

print URI->new $goal)->rel ($base), "\n";
../tony.|pg

That's because in the first case, "blood" is not considered a directory, whereas in the second casg, it is. You may be
accustomed to treating /blood and /blood/ as the same, when blood is a directory. Web servers maintain your illusion by
invisibly redirecting requests for /blood to /blood/, but you can't ever tell when thisis actually going to happen just by

looking at a URL.
41 PREVIOUS HOME MEXT m
4.2. Relative URLs BOOK INDEX 4.4, Converting Relative URLsto
Absolute
' ! \ i j PE
o iy v . IM A NUTSHELL &L
BOOKSHELF PERL & LWP ~ LEARNING PERL 2nd Edition MASTERING = PERL COOKBOOK =,
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

1.3. Installing LWP

LWP and the associated modules are available in various distributions free from the Comprehensive Perl Archive
Network (CPAN). The main distributions are listed at the start of Appendix A, "LWP Modules', although the details of

which modules are in which distributions change occasionaly.

If you're using ActivePerl for Windows or MacPerl for Mac OS 9, you aready have LWP. If you're on Unix and you
don't already have LWP installed, you'll need to install it from CPAN using instructions given in the next section.

To test whether you already have LWP installed:

% perl -MWP -le "print(LWP->VERSI ON) "
(The second character in- | e isalowercase L, not adigit one.)
If you see:

Can't locate LWP in @NC (@NC contains: ...lots of paths...).
BEG N fail ed--conpil ati on aborted.

or if you see aversion number lower than 5.64, you need to install LWP on your system.
There are two ways to install modules. using the CPAN shell or the old-fashioned manual way.
1.3.1. Installing LWP from the CPAN Shell

The CPAN shell is a command-line environment for automatically downloading, building, and installing modules from
CPAN.

1.3.1.1. Configuring

If you have never used the CPAN shell, you will need to configure it before you can useit. It will prompt you for some
information before building its configuration file.

Invoke the CPAN shell by entering the following command at a system shell prompt:
% per|l -MCPAN -eshel |
If you've never run it before, you'll see this:

We have to reconfigure CPAN. pmdue to following uninitialized
par anet ers:

followed by a number of questions. For each question, the default answer istypically fine, but you may answer otherwise
if you know that the default setting iswrong or not optimal. Once you've answered all the questions, a configuration file
is created and you can start working with the CPAN shell.

1.3.1.2. Obtaining help

If you need help at any time, you can read the CPAN shell's manual page by typing per | doc CPAN or by starting up

the CPAN shell (with per| - MCPAN - eshel | at asystem shell prompt) and entering h at the cpan> prompt:
cpan> h

Di splay Information

command ar gunent descri ption

a,b,d,m WORD or /REGEXP/ about authors, bundles, distributions,
nodul es

[WORD or /REGEXP/ about anything of above

r NONE reinstall recomendati ons

l's AUTHOR about files in the author's directory
Downl oad, Test, Mdke, Install...

get downl oad

make make (inplies get)

t est MODULES, make test (inplies nake)

i nstall DI STS, BUNDLES nmke install (inplies test)

cl ean make cl ean

| ook open subshell in these dists' directories
readne di splay these dists' README files
O her

h, ? di splay this nmenu I perl-code eval a perl
conmmand

o conf [opt] set and query options q guit the cpan
shel |

rel oad cpan | oad CPAN. pm agai n rel oad i ndex |oad newer indices
aut obundl e Snhapshot force cnd uncondi tionally
do cnd

1.3.1.3. Installing LWP
All you have to do is enter:
cpan> install Bundle::LWP

The CPAN shell will show messages explaining what it's up to. Y ou may need to answer questionsto configure the
various modules (e.g., libnet asks for mail hosts and so on for testing purposes).

After much activity, you should then have afresh copy of LWP on your system, with far lesswork than installing it
manually one distribution at atime. At thetime of thiswriting, i nst al | Bundl e: : LWP installs not just the libwww-
perl distribution, but also URI and HTML-Parser. It does not install the HTML-Tree distribution that we'll usein Chapter

9, "HTML Processing with Trees' and Chapter 10, "Modifying HTML with Trees'. To do that, enter:

cpan> install HTM.::Tree

These commands do not install the HTML-Format distribution, which was also once part of the LWP distribution. | do
not discuss HTML-Format in this book, but if you want to install it so that you have a complete LWP installation, enter
this command:

cpan> install HTM.:: For mat
Remember, LWP may be just about the most popular distribution in CPAN, but that's not all thereis! Look around the

web-related parts of CPAN (I prefer the interface at http://search.cpan.org, but you can aso try http://kobesearch.cpan.
org) as there are dozens of modules, from WWW::Automate to SOAP::Lite, that can simplify your web-related tasks.

1.3.2. Installing LWP Manually

http://search.cpan.org/
http://kobesearch.cpan.org/
http://kobesearch.cpan.org/

The normal Perl module installation procedure is summed up in the document perlmodinstall. Y ou can read this by
running per | doc per | nodi nst al | at ashell prompt or online at http://theoryx5.uwinnipeq.ca/ CPAN/perl/pod/

perlmodinstall.html.

CPAN isanetwork of alarge collection of Perl software and documentation. See the CPAN FAQ at http://www.cpan.
org/misc/cpan-fag.html for more information about CPAN and modules.

1.3.2.1. Download distributions

First, download the module distributions. LWP requires several other modules to operate successfully. You'll need to
install the distributions given in Table 1-1, in the order in which they are listed.

Table 1-1. Modules used in this book

Distribution CPAN directory

MIME-Base64 | authorg/id/G/GA/IGAAS

libnet authors/id/G/GB/GBAAR

HTML-Tagset |authorsid/SSBURKE

HTML-Parser |authors/id/G/GA/GAAS

URI authorg/id/G/GA/GAASURI

Compress-Zlib | authorg/id/P/IPM/PMQS/ Compress-Zli

(o3

Digest-MD5 |authors/id/G/GA/GAASDigest-MD5

libwww-perl | authors/id/G/GAIGAAS i bwww-per|

HTML-Tree authors/id/SYB/BURKE/HTML-Tree

Fetch these modules from one of the FTP or web sites that form CPAN, listed at http://www.cpan.org/SITES.html and
http://mirror.cpan.org. Sometimes CPAN has several versions of a module in the authors directory. Be sure to check the
version number and get the latest.

For example to install MIME-Base64, you might first fetch http://www.cpan.org/authors/id/G/GA/GAAS to see which
versions are there, then fetch http://www.cpan.org/authors/id/G/GA/GAAS/ MIME-Base64-2.12.tar.gz and install that.

1.3.2.2. Unpack and configure

The distributions are gzipped tar archives of source code. Extracting a distribution creates a directory, and in that
directory is a Makefile.PL Perl program that builds a Makefile for you.

%tar xzf M ME-Base64-2.12.tar.gz

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmodinstall.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmodinstall.html
http://www.cpan.org/misc/cpan-faq.html
http://www.cpan.org/misc/cpan-faq.html
http://www.cpan.org/SITES.html
http://mirror.cpan.org/
http://www.cpan.org/authors/id/G/GA/GAAS/
http://www.cpan.org/authors/id/G/GA/GAAS/MIME-Base64-2.12.tar.gz

% cd M ME- Base64-2. 12

% per| Makefile.PL

Checking if your kit is conplete...
Looks good

Witing Makefile for M ME: : Base64

1.3.2.3. Make, test, and install

Compile the code with the nake command:

% make

cp Base64.pm blib/lib/M VE/ Base64. pm

cp QuotedPrint.pmblib/lib/ MM QuotedPrint. pm

fusr/bin/perl -1/opt/perl5/5.6.1/i386-freebsd -1/opt/perl5/5.6.1

/opt/perl5/5.6.1/ExtUtils/xsubpp -typemap

[opt/perl5/5.6.1/ExtUtils/typemap Base64.xs > Base64.xsc && nmv
Base64. xsc Base64.c

cc -¢ -fno-strict-aliasing -I1/usr/local/include -0O -DVERSI ON=\ " 2. 12
\ n

-DXS_VERSION=\"2. 12\" -DPIC -fpic -1/opt/perl5/5.6.1/i386-freebsd/
CORE
Baseb64. c

Runni ng Mkbootstrap for M ME: : Base64 ()

chnod 644 Base64. bs

rm-f blib/arch/auto/ M Me/ Base64/ Base64. so

LD RUN PATH="" cc -0 blib/arch/auto/ M VE/ Base64/ Base64. so -shared
-L/ opt Base64.o0

chrmod 755 bl i b/arch/ aut o/ M ME/ Base64/ Base64. so

cp Base64.bs blib/arch/auto/ M ME/ Base64/ Base64. bs

chrmod 644 blib/arch/ aut o/ M ME/ Base64/ Base64. bs

Mani fyi ng bli b/ man3/ M ME: : Base64. 3

Mani fyi ng bli b/ man3/ M ME: : Quot edPrint. 3

Then make sure everything works on your system with make t est :
% make test

PERL DL NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
-1/opt/perl5/5.6.1/i386-freebsd -1/opt/perl5/5.6.1 -e 'use Test::

Har ness
gwMm & unt ests $verbose); $verbose=0; runtests @\RGV;' t/*.t
t/base64d.......... ok
t/quoted-print....ok
t/unicode......... ski pped test on this platform

Al'l tests successful, 1 test skipped.
Fil es=3, Tests=306, 1 wallclock secs (0.52 cusr + 0.06 csys = 0.58
CPU)

If it passesthe tests, install it with make i nst al | (asthe superuser):

make install
Installing /opt/perl5/site perl/5.6.1/i386-freebsd/ aut o/ M ME/ Base64/
Base64. so
Installing /opt/perl5/site perl/5.6.1/i386-freebsd/ aut o/ M ME/ Base64/
Base64. bs
Files found in blib/arch: installing files in blib/lib into
architecture

dependent library tree
Installing /opt/perl5/site_perl/5.6.1/i386-freebsd/ M VE/ Base64. pm

Installing /opt/perl5/site_perl/5.6.1/i386-freebsd/ M ME/ Quot edPrint.pm
Installing /usr/local/man/ man3/ M ME: : Base64. 3

Installing /usr/local/man/ man3/ M ME: : Quot edPrint. 3

Witing /opt/perl5/site_perl/5.6.1/i386-freebsd/ aut o/ M VE/ Base64/ .

packl i st

Appending installation info to /opt/perl5/5.6.1/i386-freebsd/perllocal.

pod
4 PREVIOUS HOME NEXT B
1.2. History of LWP BOOK INDEX 1.4. Words of Caution

PERL

o Y Ly , IN A& NUTSHELL
BOOKSHELF PERL & LWP -~ LEARMIMNG PERL 2ad Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PERL
3rd Edition

b

& XML

,g-

: :) :
MASTERING PERL COOKBOOK =%
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

3.4. User Agents

Thefirst and simplest use of LWP'stwo basic classesis LWP::UserAgent, which manages HTTP connections and
performs requests for you. Thenew() constructor makes a user agent object:

$browser = LWP:: User Agent - >new Yopt i ons) ;

Theopt i ons and their default values are summarized in Table 3-1. The options are attributes whose values can be
fetched or altered by the method calls described in the next section.

Table 3-1. Constructor options and default values for LWP::UserAgent

Key Default
agent "I bwww per |/ #. ###"
conn_cache undef
cookie_j ar undef
from undef
max_si ze undef
par se_head 1
protocol s_al | owed undef
prot ocol s_f or bi dden undef
requests_redirectabl e ['GET', 'HEAD]
ti meout 180

If you have a user agent object and want a copy of it (for example, you want to run the same requests over two
connections, one persistent with KeepAlive and one without) use thecl one() method:

$copy = $browser->clone();

This object represents a browser and has attributes you can get and set by calling methods on the object. Attributes
modify future connections (e.g., proxying, timeouts, and whether the HT TP connection can be persistent) or the requests
sent over the connection (e.g., authentication and cookies, or HTTP headers).

3.4.1. Connection Parameters
Theti meout () attribute represents how long LWP will wait for a server to respond to a request:
$ol dval = $browser->tineout ([newal]);
That is, if you want to set the value, you'd do it like so:
$browser - >t i neout (newal) ;
And if you wanted to read the value, you'd do it like this:
$val ue = $browser->tineout();
And you could even set the value and get back the old value at the same time:
$previously = $browser->ti meout (newal);

The default value of thet i meout attribute is 180 seconds. If you're spidering, you might want to change thisto alower
number to prevent your spider from wasting alot of time on unreachable sites:

$ol dval = $browser->tinmeout ();
$br owser - >t i meout (10);
print "Changed tineout from $oldval to 10\ n";
Changed tinmeout from 180 to 10
Themax_si ze() method limits the number of bytes of an HTTP response that the user agent will read:

$si ze = $browser->max_si ze([byt es])

The default value of themax_si ze() attributeisundef , signifying no limit. If the maximum size is exceeded, the
response will havead i ent - Abor t ed header. Here's how to test for that:

$response = $browser - >request ($req);

i f ($response->header("Client-Aborted")) {
war n "Response exceeded maxi mum si ze."

}

To have your browser object support HTTP Keep- Al i ve, call theconn_cache() method to a connection cache
object, of class LWP::ConnCache. Thisis done like so:

use LWP:: ConnCache;
$cache = $browser->conn_cache(LWP: : ConnCache->newW());

The newly created connection cache object will cache only one connection at atime. To have it cache more, you access
itst ot al _capaci ty attribute. Here's how to increase that cache to 10 connections:

$browser - >conn_cache- >t ot al _capaci ty(10);
To cache al connections (no limits):

$br owser - >conn_cache- >t ot al _capaci ty(undef);
3.4.2. Request Parameters

Theagent () attribute gets and sets the string that LWP sends for the User - Agent header:

$ol dval = $browser->agent ([agent _string]);

Some web sites use this string to identify the browser. To pretend to be Netscape to get past web servers that check to see
whether you're using a "supported browser,” do this:

print "My user agent name is ", $browser->agent(), ".\n";
$browser->agent ("Mzilla/4.76 [en] (Wndows NT 5.0; U");
print "And now |I'mcalling nyself ", $browser->agent(), "!\n";

My user agent name is |ibww*-perl/5.60.
And now I'mcalling nyself Mzilla/4.76 [en] (Wndows NT 5.0; U!

Thefron() attribute controlsthe Fr omheader, which contains the email address of the user making the request:
$ol d_address = $browser->fronm([email _address]);
The default valueisundef , which indicates no Fr omheader should be sent.

The user agent object can manage the sending and receiving of cookies for you. Control thiswith thecooki e_j ar ()
method:

$ol d_cj _obj = $browser->cookie_jar([cj_obj])

Thisreads or setsthe HTTP::Cookies object that's used for holding all this browser's cookies. By default, thereis no
cookie jar, in which case the user agent ignores cookies.

To create atemporary cookie jar, which will keep cookies only for the duration of the user agent object:
$br owser - >cooki e_j ar (HTTP: : Cooki es- >new) ;

To use afile as a persistent store for cookies:
ny $sonme_file = "'/hone/ noj oj oj o/ cooki es. | wp';
$br owser - >cooki e_j ar (HTTP: : Cooki es- >new(

"file' => $sone_file, 'autosave' =>1

)

Cookies are discussed in more detail in Chapter 11, "Cookies, Authentication,and Advanced Requests'.

3.4.3. Protocols

LWP alows you to control the protocols with which a user agent can fetch documents. Y ou can choose to allow only a
certain set of protocols, or alow al but afew. You can also test a protocol to see whether it's supported by LWP and by
this particular browser object.

Theprotocol s_all owed() andprotocol s_forbi dden() methods explicitly permit or forbid certain
protocols (e.g., FTP or HTTP) from being used by this user agent:

$ar ef _maybe
$ar ef _maybe

= $browser->protocol s_al | owed([\ @r ot ocol s]);

= $browser - >prot ocol s_f orbi dden([\ @r ot ocol s]);

Call the methods with no arguments to get an array reference containing the allowed or forbidden protocols, or undef if
the attribute isn't set. By default, neither is set, which means that this browser supports all the protocols that your
installation of LWP supports.

For example, if you're processing alist of URLs and don't want to parse them to weed out the FTP URLSs, you could

write this:
$br owser - >prot ocol s_forbidden(["ftp"]);

Then you can blindly execute requests, and any f t p URLswill fail automatically. That is, if you requestanft p URL,
the browser object returns an error response without performing any actual request.

Instead of forbidden protocols, you can specify which to allow by using the pr ot ocol s_al | owed method. For
example, to set this browser object to support only ht t p and gopher URLS, you could write this:

$br owser - >prot ocol s_al | owed(["http", "gopher"]);

To check if LWP and this particular browser support a particular URL protocol, usethei s_pr ot ocol _support ed
() method. It returnstrue if LWP supports the protocol, isn'tin pr ot ocol s_f or bi dden, and it has been alowed
inaprotocol s_al | owed list set. You call it like this:

$bool ean = $browser->i s_protocol _supported(schene);
For example:

unl ess ($browser->is_protocol _supported("https")) {
warn "Cannot process https:// URLs.\n";

}
3.4.4. Redirection

A server can reply to arequest with aresponse that redirects the user agent to anew location. A user agent can
automatically follow redirections for you. By default, LWP::UserAgent objects follow GET and HEAD method
redirections.

Ther equests_redirectabl e() attribute controlsthe list of methods for which the user agent will automatically
follow redirections:

$aref = $browser->requests_redirectabl e([\ @ret hods]);
To disable the automatic following of redirections, passin areference to an empty array:
$browser - >requests_redirectabl e([]);
To add POST to the list of redirectable methods:
push @ $browser->requests_redirectable}, 'POST;
Y ou can test arequest to see whether the method in that request is one for which the user agent will follow redirections:
$bool ean = $browser->redirect _ok(request);
Ther edi rect _ok() method returnstrueif redirections are permitted for the method in the request.
3.4.5. Authentication

The user agent can manage authentication information for a series of requeststo the sasme site. Thecr edenti al s()
method sets a username and password for a particular realm on a site:

$browser - >credenti al s(host _port, realm unane, pass);

A realmisastring that's used to identify the locked-off area on the given server and port. In interactive browsers, the
realm is the string that's displayed as part of the pop-up window that appears. For example, if the pop-up window says
"Enter username for Unicode-MailList-Archives at www.unicode.org," then the realm string isUni code- Mai | Li st -
Ar chi ves, andthehost _port valueiswww. uni code. or g: 80. (The browser doesn't typically show the: 80 part
for HTTP, nor the : 443 part for HTTPS, as those are the default port numbers.)

The username, password, and realm can be sent for every request whose hosthame and port match the one given in
host _port, and that require authorization. For example:

$browser - >credenti al s("i ntranet. exanple.int:80", "Finances",
"fred", "311t3");

From that point on, any requests this browser makes to port 80 that require authentication with a realm name of
"Finances," will be tried with a username "fred" and a password "311t3."

For more information on authentication, see Chapter 11, "Cookies, Authentication,and Advanced Requests'.

3.4.6. Proxies

One potentially important function of the user agent object is managing proxies. Theenv_pr oxy() method
configures the proxy settings:

$browser - >env_proxy();

This method inspects proxy settings from environment variablessuch asht t p_pr oxy, gopher _pr oxy, and
no_pr oxy. If you don't use a proxy, those environment variables aren't set, and the call toenv_pr oxy() hasno
effect.

To set proxying from within your program, usethe pr oxy() andno_pr oxy() methods. The pr oxy() method
sets or retrieves the proxy for a particular scheme:

$browser - >pr oxy(schene, proxy);
$browser - >pr oxy(\ @chenes, proxy);
$proxy = $browser->proxy(schene);

The first two forms set the proxy for one or more schemes. The third form returns the proxy for a particular scheme. For
example:

$p = $browser->proxy("ftp");

$browser ->proxy("ftp", "http://firewall:8001/");

print "Changed proxy from$p to our firewall.\n";
Theno_proxy() method letsyou disable proxying for particular domains:

$browser->no_proxy([domain, ...]);

Passalist of domainsto no_pr oxy() toadd them to thelist of domainsthat are not proxied (e.g., those within your
corporate firewall). For example:

$browser - >no_proxy("c64. exanmple.int”, "local host", "server");
Call no_proxy() with noargumentsto clear the list of unproxied domains:
$browser->no_proxy(); # no exceptions to proxying

3.4.7. Request Methods

There are three basic request methods:

$resp = $browser->get(url);
$resp = $browser->head(url);
$resp = $browser->post(url, \@ormdata);

If you're specifying extra header lines to be sent with the request, do it like this:

$resp = $browser->get(url, Headerl => Val uel, Header2 => Value2, ...);
$resp = $browser->head(url, Headerl => Val uel, Header2 => Value2, ...);
$resp = $browser->post(url, \ @ orm dat a,
Header 1 => Val uel, Header2 => Value2, ...);
For example:

$resp = $browser->get("http://ww. nato.int",
' Accept - Language' => 'en-US',
"Accept-Charset' => 'is0-8859-1,*, utf-8',
" Accept - Encodi ng' => 'gzip',
"Accept' =>
"image/ gi f, imagel/ x-xbitmap, imnmage/jpeg, inmagel/pjpeg, imagel/png, */

*xn

)

3.4.7.1. Saving response content to afile

With normal requests, the body of the response is stored in the response object's $r esponse- >cont ent () attribute
by default. That's fine when the response body is a moderately small piece of data such as a 20-kilobyte HTML file. But
a 6-megabyte MP3 file should probably be saved to disk without saving it in memory first.

The request methods support this by providing sort of fake header lines that don't turn into real headers in the request but
act as options for LWP's handling of the request. Each option/header startswith a":" character, a character that no real
HTTP header name could contain. The simplest optionis' : content _file' =>fil enane.

$resp = $browser->get (url, ':content _file" => filenane, ...);
$resp = $browser->head(url, ':content file' => filenane, ...);
$resp = $browser->post(url, \ @ormdata,

‘:content_file' => filenane, ...);

With this option, the content of the response is saved to the given filename, overwriting whatever might be in that file
already. (In theory, no response to a HEAD request should ever have content, so it seems odd to specify where content
should be saved. However, in practice, some strange servers and many CGls on otherwise normal servers do respond to
HEAD requests asif they were GET requests.)

A typical example:

ny $out = 'weather_satellite.jpg';

ny $resp = $browser->get (' http://weathersys.int/'
":content file" => $out,

);

die "Couldn't get the weather picture: ", $response->status_|ine
unl ess $response->i s_success;

Thisfeature is also useful for cases in which you were planning on saving the content to that file anyway. Also see the
m rror() method described below, which does something similar to $br owser - >get ($ur |,
content file' =>filenane, ...).

3.4.7.2. Sending response content to a callback

If you instead provide an option/header pair consisting of ' : cont ent _cb' and a subroutine reference, LWP won't
save the content in memory or to afile but will instead call the subroutine every so often, as new data comesin over the
connection to the remote server. Thisis the syntax for specifying such a callback routine:

$resp = $browser->get(url, ':content_cb' => \&nysub, ...);
$resp = $browser->head(url, ':content_cb' =>\&mysub, ...);
$resp = $browser->post(url, \ @ormdata,

":content_cb' => \&mysub, ...);

Whatever subroutine you define will get chunks of the newly received data passed in as the first parameter, and the
second parameter will be the new HTTP::Response object that will eventually get returned from the current get /head/
post call. So you should probably start every callback routine like this:

sub cal | backnane {
ny($data, $response) = @;
Here, for example, is aroutine that hex-dumps whatever datais received as a response to this request:

ny $resp = $browser->get (' http://ww. perl.com
':content_cb' => \ &hexy,

);
sub hexy {
ny($data, $resp) = @;
print length($data), " bytes:\n";
print ' ', unpack('H', substr($data,0,16,'')), "\n"
whil e | ength $dat a;
return;
}

In fact, you can pass an anonymous routine as the callback. The above could just as well be expressed like this:

ny $resp = $browser->get (' http://ww. perl.conl’
‘:content_cb' => sub {
ny($data, $resp) = @;
print |length($data), " bytes:\n";

print ' ', unpack('H', substr($data,0,16,'')), "\n"
whil e | ength $dat a;
return;

}
)

The size of the $dat a string is unpredictable. If it mattersto you how big each is, you can specify another option, :
read_si ze_hi nt =>byte_count, which LWP will take as a hint for how many bytes you want the typical $dat a
string to be:

$resp = $browser->get (url
":content_cb' => \&mysub,
‘:read_size_hint' => byte_count,

);

$resp = $browser->head(url
":content_cb' => \&mysub,
‘:read_size_hint' => byte_count,

);”

$resp = $browser->post(url, \ @ormdata,
":content_cb' => \&mysub,
":read_size hint' => byte count,

);
We can modify our hex-dumper routine to be called like this:

ny $resp = $browser->get (' http://ww. perl.comn
":content_cbh' => \&hexy,
":read_size_ hint' => 1024,

)

However, there is no guarantee that's how big the $dat a string will actualy be. It is merely a hint, which LWP may
disregard.

3.4.7.3. Mirroring a URL to afile
Them rror() method GETsaURL and stores the result to afile:
$response = $browser->mirror(url _to_get, filenane)

But it has the added feature that it usesan HTTP | f - Modi f i ed- Si nce header line on the request it performs, to
avoid transferring the remote file unless it has changed since the local file (f i | enane) was last changed. Themi rr or
() method returns anew HTTP::Response object but without acont ent attribute (any interesting content will have
been written to the local file). Y ou should at least check $r esponse->is_error():

$response = $browser->mrror("http://ww. cpan.org/",
"cpan_hone. htm ");
i f($response->is_error()){
die "Couldn't access the CPAN hone page:
$response->status_li ne;

}
3.4.8. Advanced Methods

The HTML specification permits met a tagsin the head of a document, some of which are aternativesto HTTP
headers. By default, if the Response object isan HTML object, itshead section is parsed, and some of the content of the
head tagsis copied into the HTTP::Response object's headers. For example, consider an HTML document that starts
likethis:

<htm >
<head><title>Kiki's Pie Page</title>
<base href="http://cakecity.int/">

<meta nanme="Notes" content="1 |ike pie!">
<neta http-equi v="Description" content="PlE RECI PES FROM KI KI " >
</ head>

If you request that document and call pri nt $r esponse- >header s_as_stri ng onit, you'll seethis:

Date: Fri, 05 Apr 2002 11:19:51 GVr

Accept - Ranges: bytes

Server: Apache/ 1. 3. 23

Cont ent - Base: http://cakecity.int/

Content - Lengt h: 204

Content - Type: text/htm

Last-Modified: Fri, 05 Apr 2002 11:19:38 GV

Client-Date: Fri, 05 Apr 2002 11:19:51 GWr
Description: Pl E RECI PES FROM Kl Ki

Title: Kiki's Pie Page

X-Meta-Notes: | |ike piel

Y ou can access those headers individually with $r esponse- >header (' Cont ent - Base'), $r esponse-
>header (' Descri ption'),$response->header (' Title'),and$response- >header (' X- Met a-
Not es'), respectively, aswe shall seein the next section.

The documentation for the HTML ::HeadParser module, which LWP uses to implement this feature, explains the exact
details.

41 PREVIOUS HOME NEXT B
3.3.Insidethe do_GET and do_POST BOOK INDEX 3.5. HTTP::Response Objects
Functions

o

RL
i " . LA IN A NUTSHELL
PERL&LWF~ LEARNING PERL 2nd Edition PERAL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

2.5. Example: AltaVista

Every so often, two people, somewhere, somehow, will come to argue over a point of English spelling—one of them will
hold up adictionary recommending one spelling, and the other will hold up a dictionary recommending something else.
In olden times, such conflicts were tidily settled with afight to the death, but in these days of overspecialization, it is
common for one of the spelling combatants to say "Let's ask alinguist. He'll know I'm right and you're wrong!" And so |
am contacted, and my supposedly expert opinion is requested. And if | happen to be answering mail that month, my
response is often something like:

Dear Mr. Hing:

| have read with intense interest your letter detailing your struggle with the question of whether your favorite savory
spice should be spelled in English as "asafoetida" or whether you should heed your secretary's admonishment that all the
kidstoday are spelling it "asafetida.”

I could note various factors potentially involved here; notably, the fact that in many cases, British/Commonwealth
spelling retains many "ae"/"oe" digraphs whereas U.S./Canadian spelling strongly prefersan "e" ("foetus'/"fetus,” etc.).
But | will instead be (merely) democratic about this and note that if you use AltaVista (http://atavista.com, awell-known
search engine) to run a search on "asafetida,” it will say that across all the pages that AltaVista has indexed, there are
"about 4,170" matched; whereas for "asafoetida” there are many more, "about 8,720."

So you, with the "oe," are apparently in the maority.

To automate the task of producing such reports, I've written a small program called alta_count, which queries AltaVista
for each term given and reports the count of documents matched:

% alta_count asafetida asafoetida
asafetida: 4,170 matches
asafoetida: 8,720 natches

At time of this writing, going to http://atavista.com, putting aword or phrase in the search box, and hitting the Submit
button yields a result page with a URL that looks like this:

http://ww. al tavi sta. cont sites/search/ web?g=%2asaf eti da%@228&kl =XX
Now, you could construct these URLs for any phrase with something like:

$url = "http://ww. al tavi sta.conl sites/search/ web?q=%22'
$phrase
"OR28&KI =XX'

But that doesn't take into account the need to encode characters such as spacesin URLSs. If | want to run a search on the
frequency of "boy toy" (as compared to the alternate spelling "boytoy"), the space in that phrase needs to be encoded as %
20, and if | want to run a search on the frequency of "résumé," each "é" needs to be encoded as %&9.

The correct way to generate the query stringsisto use the URI::Escape module:

use URI:: Escape; # That gives us the uri_escape function
$url = "http://ww. al tavi sta. conisites/search/ web?q=%2'

uri _escape($phrase)

"UR2&KI =XX'

http://altavista.com/
http://altavista.com/

Now we just have to request that URL and skim the returned content for AltaVista's standard phrase "We found
[number] results." (That's assuming the response comes with an okay status code, as we should get unless AltaVistais
somehow down or inaccessible.)

Example 2-6 is the complete alta_count program.

Example 2-6. The alta_count program

#!/usr/ bin/perl -w
use strict;
use URI:: Escape;
foreach ny $word (@RGV) {
next unless |length $word; # sanity-checking
ny $url = "http://ww. al tavi sta.conf sites/search/ web?q=%22'
uri _escape($word) . ' 9R28&KkI =XX';
ny ($content, $status, $is_success) = do GET(S$url);
if (!$is_success) {
print "Sorry, failed: $status\n";

} elsif ($content =~ m>We found ([0-9,]+) results?/) { # like
"1, 952"
print "$word: $1 matches\n";
} else {
print "$word: Page not processable, at $url\n";
}
sleep 2; # Be nice to AltaVista's servers!!!

}

And then ny favorite do_GET routine:
use LWP; # |oads lots of necessary cl asses.
nmy $browser;
sub do_ GET {
$br owser LWP: : User Agent - >new unl ess $br owser
nmy $resp = $browser->get (@) ;
return ($resp->content, $resp->status_|ine, $resp->is_success, $resp)
i f wantarray;
return unl ess $resp->i s_success;
return $resp->content;

}

With that, | can run:

% al ta_count boytoy 'boy toy'
boytoy: 6,290 matches
boy toy: 26,100 matches

knowing that when it searches for the frequency of "boy toy," it is duly URL-encoding the space character.

This approach to HTTP GET query parameters, where we insert one or two values into an otherwise precooked URL,
works fine for most cases. For a more general approach (where we produce the part after the ? completely from scratch
inthe URL), see Chapter 5, "Forms".

41 PREVIOUS HOME HEXT

2.4. Fetching Documents Without BOOK INDEX 2.6. HTTP POST
LWP::Simple

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

5.3. Automating Form Analysis

Rather than searching through HTML hoping that you've found al the form components, you can automate the task.
Example 5-2 contains a program, formpairs.pl, that extracts the names and values from GET or POST requests.

Example 5-2. formpairs.pl

#!/usr/local/bin/perl -w
fornpairs.pl - extract nanes and val ues from HTTP requests

use strict;
ny $dat a;
if(! $ENV{' REQUEST_METHOD }) { # not run as a Cd
die "Usage: $0 \"url\"\n" unless $ARGV[0];
$data = $ARGV[0] ;
$data = $1 if $data =~ s/MN\w\: . *2A?2(.+)//;
print "Data fromthat URL:\n(\n";
} elsif($ENV{' REQUEST _METHOD } eq ' PCST') {
read(STDI N, $data, $ENV{' CONTENT LENGTH });
print "Content-type: text/plain\n\nPOST data:\n(\n";
} else {
$data = $ENV{' QUERY_STRI NG };
print "Content-type: text/plain\n\nCGET data:\n(\n";
}
for (split '&, $data, -1) { # Assunmes proper URLencoded i nput
trl+ /; s/"I\\"/qg; s/=/\" =>\"/; s/ %20/ /gq;
s/ %\\x/g; # so %d => \x0d
print " \"$ \" \n";
}
print ")\n";

That program, when run as a command-line utility, takes a URL as its one argument, decodes the encoded GET query,
and printsit in more Perlish terms:

% perl fornpairs.pl "http://ww. census. gov/cgi -bi n/ gazetteer?city=I EG

&st at e=&zi p="

Data fromthat URL:

(
"city" => "I EG,
"state" => "",
"zip" =>"",

)

Using amore complex URL (wrapped here for readability) illustrates the benefit of it:

% perl -w fornmpairs.pl http://ww. al tavista.com sites/search/ web?q=
pi e+AND+r hubar b+AND+st r awber r y %O DYOAAND+NOT+cr unb &kl =en&r =&dt =t nperi od
&d2=0&d0=&d1=&sc=0n&nbq=30&pg=aqg&sear ch=Sear ch
Data fromthat URL:
(
"q" => "pie AND rhubarb AND strawberry\x0D\ xOAAND NOT crunb",
"kl => "en",

n r " :> nmn ,
“dt" => "tnperiod",

"d2" => "0",
"do" =>"",
"d1t o=> ",
"sc" => "on",
"nbg" => "30",
"pg" => "aq",

"search" => "Search",

)

The same program also functions as a CGl, so if you want to see what data a given form ends up submitting, you can
simply change the form element'sact i on attribute to a URL where you've set up that program asa CGl. Asa CGl, it
accepts both GET and POST methods.

For example:

<f orm met hod="post" action="http://nyhost.int/cgi-bin/fornpairs.pl">
Kind of pie: <input nane="what pie" size=15>

<i nput type="submt" val ue="Mm pie">

</ formp

When you fill the one blank out with "tasty pie!" and press the "Mmm pie" button, the CGI will print:

POST dat a:
(

)

"what pie" => "tasty pie\x21",

A more ad hoc solution that doesn't involve bothering with a CGl isto take the local copy of the form, set the form tag's
nmet hod attributeto get , setitsact i on attributeto dunmry. t xt , and create afile dummy.txt consisting of the text
"Look at my URL!" or the like. Then, when you submit the form, you will see only the"Look at my URL!" page, but the
browser's "Location"/"Address'/"URL" window will show a URL like this:

file://]1CaC formwork/dumry. t xt 2what +pi e=t ast y+pi e%21
Y ou can then copy that URL into a shell window as the argument to formpairs.pl:
% perl formpairs.pl "file:///C%C formwork/dumy.txt ?what +pi e=t asty
+pi e%21"
Data fromthat URL:
(

)

"what pie" => "tasty pie\x21",

41 PREVIOUS HOME NEXT B
5.2. LWP and GET Requests BOOK INDEX 5.4. Idiosyncrasies of HTML Forms

S|

PERL

il it . 1 WL IN A NUTSHELL .
BOOKSHELF PERL & LWP -~ LEARNING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

8.6. Rewrite for Features

My core approach in these cases is to pick some set of assumptions and stick with it, but also to assume that they will
fail. So I write the code so that when it does fail, the point of failure will be easy to isolate. | do thisiswith debug levels,
also called trace levels. Consider this expanded version of our code:

use strict;
use constant DEBUG => 0;

use HTM.:: TokePar ser;

parse_fresh_strean
HTM.: : TokePar ser->new(' freshl. htm ') || die($!),
"http://freshair.npr.org/dayFA. cf n?t odayDat e=07%2F02%2F2001"

);

sub parse_fresh_stream {
use URI;
ny($stream $base url) = @;
DEBUG and print "About to parse streamw th base $base url\n";

while(nmy $a tag = $stream >get _tag('a')) {
DEBUG > 1 and printf "Considering {%}\n", $a_tag->[3];
ny $url = URI->new abs(($a_tag->[1]{ " href'} || next), $base url);
unl ess($url ->schene eq 'http') {
DEBUG > 1 and print "Schene is no good in $url\n";
next ;
}
unl ess($url - >host =~ mwwh . npr\.org/) {
DEBUG > 1 and print "Host is no good in $url\n";
next ;
}
unl ess($url->path =~ n{/ranfiles/.*\.ran}) {
DEBUG > 1 and print "Path is no good in $url\n";

next ;

}
DEBUG > 1 and print "IT'S GOODI\n";
ny $text = $stream >get trimred_text('/a) || "??";
printf "%\n %\n", $text, S$url;

}

DEBUG and print "End of streamn”;

return;

}

Among the notable changes here, I'm making a URI object for each URL I'm scrutinizing, and to make a new absolute
URI object out of each potentialy relative URL, | have to pass the base URL as a parameter to the
parse_fresh_stream) function. Oncel do that, | get to isolate parts of URLs the proper way, using URI
methods such ashost () andpat h(), instead of by applying regexp matches to the bare URL.

8.6.1. Debuggability

The greatest change is the introduction of al the links with "DEBUG" in them. Because the DEBUG constant is declared
with value 0, al the tests of whether DEBUG is nonzero are obviously always false, and so all these lines are never run;

in fact, the Perl compiler removes them from the parse tree of this program, so they're discarded the moment they're
parsed. (Incidentally, there's nothing magic about the name "DEBUG"; you can call it "TRACE" or "Takytalky" or

" _mumbles" or whatever you want. However, using all capsis amatter of convention.) So, with a DEBUG value of 0,
when you run this program, it smply printsthis:

Listen to Current Show

http://ww. npr.org/ranfiles/fa/20011011. fa.ram
Listen to Monday - July 2, 2001

http://ww. npr.org/ranfil es/fal20010702. fa.ram
Listen to Editor and witer Walter Kirn

http://ww. npr.org/ranfil es/fal20010702. fa. 01l. ram
Listen to Casting director and actress Joanna Merlin

http://ww. npr.org/ranfil es/fal20010702. fa. 02.ram

(That first link is superfluous, but we'll deal with that in a bit; otherwise, it al works okay.) So these DEBUG lines do
nothing. And when we deploy the above program with some code that harvests the pages instead of working from the
local test page, the DEBUG lines will continue to do nothing. But suppose that, months later, the program just stops
working. That is, it runs, but prints nothing, and we don't know why. Did NPR change the Fresh Air site so much that the
old program listings URLs are no longer serve any content? Or has some part of the format changed? If we just change
DEBUG=> 0 to DEBUG=> 1 and rerun the program, we can see that par se_fresh_strean{) isdefinitely being
called on a stream from an HTML page, because we see the messages from the print statementsin that routine:

About to parse s
http://freshair.
End of stream

Change the DEBUG level to 2,

About to parse s
http://freshair.
Consi dering {<A
Host is no good
Consi dering {<A
pr ok" >}

Path is no good
Consi dering {<A
[...]

Consi dering {<A
pr ok" >}

Path is no good
Consi deri ng {<A
prok" >}

Path is no good
Consi dering {<A
name=wal t er ki rn
Host is no good
name=wal t er ki rn
Consi dering {<A
pr ok" >}

Path is no good
Consi dering {<A
name=j oannaner |
Host is no good
name=j oannaner |
Consi dering {<A
Host is no good
2F2001

Consi deri ng {<A
Host is no good

treamw th base
npr. or g/ dayFA. cf n?t odayDat e=07%2F02%2F2001

and we get more detailed output:

treamw th base

npr. or g/ dayFA. cf n?t odayDat e=07%2F02%2F2001
HREF="i ndex. cf nf >}

in http://freshair.npr.org/index.cfm

HREF="htt p: // ww. npr.org/ranfil es/fa/20011011. f a.

in http://ww.npr.org/ranfiles/fa/20011011. fa. prok
HREF="dayFA. cf nf’t odayDat e=current " >}

HREF="htt p: // ww. npr.org/ranfil es/fa/20010702. f a.

in http://ww. npr.org/ranfiles/fa/20010702. fa. prok
HREF="htt p://ww. npr.org/ranfil es/fal20010702. fa. 01.

in http://ww. npr.org/ranfiles/fal/20010702.fa. 01. prok
HREF="htt p: //freshair. npr.org/ guest| nf oFA. cf n?

")

in http://freshair.npr.org/guestlnfoFA. cfn?
HREF="htt p: // www. npr.org/ranfil es/fa/20010702. fa. 02.

in http://ww. npr.org/ranfiles/fa/20010702. fa. 02. pr ok
HREF="htt p://freshair.npr.org/ guest| nfoFA. cfnf

n" >}

in http://freshair.npr.org/guestlnfoFA. cfnf

n

HREF="dayFA. cf n?t odayDat e=06%2F29%2F2001" >}

in http://freshair.npr.org/dayFA. cf nt odayDat e=06%2F29%

HREF="dayFA. cf nf’t odayDat e=07%2F03%2F2001" >}
in http://freshair.npr.org/dayFA. cfn?t odayDat e=07%2F03%

2F2001
End of stream

Our parse_fresh_stream() routineisstill correctly reecting index.cfm and the like, for having a"no good" host
(i.e., not www.npr.org). And we can see that it's happening on those "ramfiles" links, and it's not rejecting their host,
because they are on www.npr.org. But it rejects their paths. When we look back at the code that triggers rejection based
on the path, it kicksin only when the path failsto matchm{ / ranf i | es/. *\ . r an$} . Why don't our ramfiles paths
match that regexp anymore? Ah ha, because they don't end in .ram anymore; they end in .prok, some new audio format
that NPR has switched to! Thisisevident at the end of the lines beginning "Path is no good." Change our regexp to
accept .prok, rerun the program, and go about our business. Similarly, if the audio files moved to a different server, we'd
be alerted to their host being "no good" now, and we could adjust the regexp that checks that.

We had to make some fragile assumptions to tell interesting links apart from uninteresting ones, but having al these
DEBUG statements means that when the assumptions no longer hold, we can quickly isolate the problem.

8.6.2. Images and Applets

Speaking of assumptions, what about the fact that (back to our pre-.prok local test file and setting DEBUG back to 0) we
get an extralink at the start of the output here?

Listen to Current Show

http://ww. npr.org/ranfiles/fal20011011. fa.ram
Listen to Monday - July 2, 2001

http://ww. npr.org/ranfil es/fal20010702. fa.ram
Listen to Editor and witer Walter Kirn

http://ww. npr.org/ranfiles/fal20010702. fa. 01l.ram
Listen to Casting director and actress Joanna Merlin

http://ww. npr.org/ranfil es/fal20010702. fa. 02.ram

If we go to our browser and use the "Find in Page" function to see where "Listen to Current Show" appearsin the
rendered page, we'll probably find no match. So where's it coming from? Try the same search on the source, and you'll
see:

<I MG SRC="i mages/listen.gif" ALT="Listen to Current Show'
W DTH="124" HEl GHT="47" BORDER="0" HSPACE="0" VSPACE="0">
</ A>

Recall that get _text() andget _text _tri mred() givespecia treatment toi ng and appl et elements; they
treat them as virtual text tags with contents from their al t values (or in the absence of any al t value, the strings

[MZ or[APPLET]). That might be a useful feature normally, but it's bothersome now. So we turn it off by adding
thisline just before our whi | e loop starts reading from the stream:

$stream>{'textify'} = {};

We know that's the line to use partly because | mentioned it as an aside much earlier, and partly because it'sin the
HTML::TokeParser manpage (where you can also read about how to do thingswith thet ext i f y feature other than just
turn it off). With that change made, our program prints this:

2?2
http://ww. npr.org/ranfiles/fal20011011. fa.ram
Listen to Monday - July 2, 2001
http://ww. npr.org/ranfiles/fal20010702. fa.ram
Listen to Editor and witer Walter Kirn
http://ww. npr.org/ranfiles/fal20010702. fa. 01l.ram
Listen to Casting director and actress Joanna Merlin
http://ww. npr.org/ranfil es/fal20010702. fa. 02.ram

That ?7? isthere because when the first link had no link text (and we're no longer counting al t text), it caused
get _trinmed text() toreturnanempty string. That isafasevaluein Perl, so it causes the fallthrough to ??
here:

ny $text = $stream >get _trimed_text('/a") || "??";
If we want to explicitly skip things with no link text, we change that to:

ny $text = $stream >get _trimred_text('/a");

unl ess(length $text) {
DEBUG > 1 and print "Skipping link with no link-text\n";
next ;

}

That makes the program give this output, as we wanted it:

Listen to Monday - July 2, 2001

http://ww. npr.org/ranfiles/fal20010702. fa.ram
Listen to Editor and witer Walter Kirn

http://ww. npr.org/ranfiles/fal20010702. fa. 01.ram
Listen to Casting director and actress Joanna Merlin

http://ww. npr.org/ranfil es/fal20010702. fa. 02.ram

8.6.3. Link Text

Now that everything else is working, remember that we didn't want all this"Listen to" stuff starting every single link.
Moreover, remember that the presence of a"Listen to" at the start of the link text was one of our prospective criteriafor
whether it's an interesting link. We didn't implement that, but we can implement it now:

unl ess($text =~ s/~ Listen to //) {

DEBUG > 1 and print "Odd, \"$text\" doesn't start with \"Listen to
\'oLovn";

next ;
}

Monday - July 2, 2001

http://ww. npr.org/ranfiles/fa/20010702.fa.ram
Editor and witer Walter Kirn

http://ww. npr.org/ranfiles/fa/20010702.fa.01l.ram
Casting director and actress Joanna Merlin

http://ww. npr.org/ranfiles/fal20010702.fa.02.ram

In other words, unless the link next startswith a"Listen to" that we can strip off, thislink isrejected. And incidentally,
you might notice that with all these little changes we've made, our program now works perfectly!

8.6.4. Live Data

All it needs to actually pull datafrom the Fresh Air web site, isto comment out the code that calls the local test file and
substitute some simple code to get the datafor ablock of days. Here's is the whole program source, with those changes
and additions:

use strict;
use constant DEBUG => O0;
use HTM.:: TokePar ser ;

#parse_fresh_strean(
HTM.:: TokeParser->new(' freshl.htm ') || die($!),
'http://freshair.npr.org/dayFA. cf n?t odayDat e=07%2F02%2F2001'

#)]
scan_l ast_nonth();

sub scan_last_nonth {
use LWP: : User Agent ;
ny $browser = LWP:: User Agent - >new();
foreach ny $date_ndy (weekdays_last_month()) {
ny $url = sprintf(
"http://freshair.npr.org/dayFA. cf n?t odayDat e=%92d%2f %92d%&2f %
04d',
@dat e_ndy
);
DEBUG and print "Getting @date ndy URL $url\n";
sleep 3; # Don't hammer the NPR server!
ny $response = $browser->get ($url);
unl ess($response->i s_success) {
print "Error getting $url: ", $response->status_line, "\n";
next ;
}
ny $stream = HTM.:: TokePar ser - >new $r esponse- >cont ent _ref)
|| die "Wat, couldn't nake a streanf!"”;
parse_fresh_strean($stream $response->base);

}
}

sub weekdays | ast _nonth { # Boring date handling. Feel free to skip.
ny($now) = tine;
my $this nonth = (gntinme $now)[4];
ny(@ut, $last_nonth, $that_nonth);

do { # Get to end of last nonth.
$now -= (24 * 60 * 60); # go back a day
$that_nmonth = (gntime $now)|[4];

} while($that_nonth == $this_nonth);

$l ast _nmonth = $t hat _nont h;

do { # Go backwards thru last nonth
ny(@hen) = (gntinme $now);
unshift @ut, [$then[4] + 1 , $then[3], $then[5] + 1900] # md, yyyy

unl ess $then[6] == 0 or $then[6] == 6;

$now -= (24 * 60 * 60); # go back one day
$that _nmonth = (gntinme $now)|[4];

} while($that_nonth == $l ast _nonth);

return @ut;

}

Unchanged since you last sawit:
sub parse _fresh_stream {
use URI;
my($stream $base url) = @;
DEBUG and print "About to parse streamw th base $base_url\n";

while(nmy $a tag = $stream >get _tag('a')) {
DEBUG > 1 and printf "Considering {%}\n", $a tag->[3];
ny $url = URI ->new abs(($a_tag->[1]{ ' href'} || next), $base_url);
unl ess($url ->schene eq "http') {
DEBUG > 1 and print "Schene is no good in $url\n";
next ;

}
unl ess($url - >host =~ mwwh . npr\.org/) {

DEBUG > 1 and print "Host is no good in $url\n";

next ;

}

unl ess($url->path =~ n{/ranfiles/.*\.ran}) {

DEBUG > 1 and print "Path is no good in $url\n";

next ;
}
DEBUG > 1 and print "IT"S GOOD!\ n";
ny $text = $stream >get trinmmed text('/a')
printf "%\n 9%\n", $text, S$url;

n ??II ;

}
DEBUG and print "End of streamn";
return;
}
41 PREVIOUS HOME MEXT
8.5. Narrowing In BOOK INDEX 8.7. Alternatives
’g_ . e
! . - ' J'% ; PE
i \ B . IN A NUTSHELL 4) l i j &
PERL & LWP™~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK =%
3rd Edlition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 10. Modifying HTML with Trees

Contents:

Changing Attributes
Deleting Images
Detaching and Reattaching
Attaching in Another Tree
Creating New Elements

In Chapter 9, "HTML Processing with Trees"’, we saw how to extract information from HTML trees. But that's not the
only thing you can use trees for. HTML::TreeBuilder trees can be altered and can even be written back out asHTML,
usingtheas_HTM.() method. There are four waysin which atree can be altered: you can ater anode's attributes;
you can delete a node; you can detach a node and reattach it elsewhere; and you can add a new node. Wel'll treat each of
thesein turn.

10.1. Changing Attributes

Suppose that in your new role as fixer of large sets of HTML documents, you are given a bunch of documents that have
headings like this:

<h3 al i gn=cent er >Fr ee Monkey</ h3>
<h3 col or=red>l nquire Wt hin</h3>

that need to be changed like this:

<h2 cl ass=screanpFree Mnkey</ h2>
<h4 class=nmutter>lnquire Wthin</h4>

Before you start phrasing thisin terms of HTML ::Element methods, you should consider whether this can be done with a
search-and-replace operation in an editor. In this case, it cannot, because you're not just changing every <h3

al i gn=cent er >to<h2 cl ass=scr ean® and every <h4 col or =r ed>to<h3 cl ass=nut t er > (which are
apparently simple search-and-replace operations), you also have to change </ h3> to </ h2> or to </ h4>, depending on
what you did to the element that it closes. That sort of context dependency puts this well outside the realm of simple
search-and-replace operations. One could try to implement this with HTML :: TokeParser, reading every token and
printing it back out, after having possibly altered it. In such aprogram, every timewe seean <h3. . . > and maybe alter
it, we'd have to set aflag indicating what the next </ h3> should be changed to.

So far, you've seen the method $el enent - >at t r (at t r nane) to get the value of an attribute (returning undef if
there is no such attribute). To alter attribute values, you need only two additional syntaxes. $el ement - >at tr
(attrnane, newal) setsavalue (regardless of whether that attribute had a previous value), and $el enent -
>attr(attrnanme, undef) deletesan attribute. That works even for changing the _t ag attribute (for which the
$el enent - >t ag method is a shortcut).

That said, it's just amatter of knowing what nodes to change and then changing them, asin Example 10-1.
Example 10-1. Modifying attributes

use strict;

use HTM.:: TreeBui l der;
ny $root = HTM.:: TreeBui | der->new,

$root->parse_file('rewitersl/inl.htm")

print "Before:\n";
$r oot - >dunp;

ny @3_center = $root->l ook_down(' _tag'
= $root->| ook_down(' _tag',

my @3 red

foreach ny $h3c (@3_center) {
$h3c->attr (' _tag', 'h2");
$h3c->attr('style', 'scream);
$h3c->attr('align', undef);

}

foreach nmy $h3r (@3 _red) {
$h3r->attr(' _tag', 'h4");
$h3r->attr (' style', 'munble');
$h3r->attr (' color', undef);

}

print "\ n\nAfter:\n";
$r oot - >dunp;

Suppose that the input file consists of this:

<ht M ><body>

<h3 al i gn=cent er >Free Monkey</ h3>
<h3 col or=red>I nquire Wt hin</h3>

|| die $';
"h3'", "align',
"h3', 'color',

<p>It's a nonkey! <enpAnd it's freel</enmp</htnl>

Bef or e:
<htm > @
<head> @.0 (IMPLICIT)
<body> @. 1
<h3 align="center"> @. 1.0

"Free Monkey"
<h3 color="red"> @.1.1
"Inquire Wthin"
<p> @. 1.2
"It's a nonkey!
<enr @.1.2.1
"And it's freel”

After:
<htm > @
<head> @.0 (IMPLICIT)
<body> @. 1
<h2 style="screant> @. 1.0

"Free Monkey"
<h4 style="munble"> @. 1.1
"Inquire Wthin"
<p> @. 1.2
"It's a nonkey!
<enr @.1.2.1
"And it's freel”

‘center');
"red');

When we run the program, we can see the tree dump before and after the modifications happen:

The changes applied correctly, so we can go ahead and add this code to the end of the program, to dump the tree to disk:

open(QUT, ">rewritersl/outl.htm™") || die "Can't wite: $'";
print OUT $root->as_ HTM;
cl ose(QUT);

$root ->del ete; # done with it, so delete it

10.1.1. Whitespace
Examining the output file shows it to be one single line, consisting of this (wrapped so it will fit on the page):

<ht nl ><head></ head><body><h2 styl e="scr eani >Free Mnkey</ h2><h4
styl e="nmunbl e">lI nquire Wthin</h4><p>It's a nonkey! <enpAnd it's
free! </ enp</ body></htm >

Where did al the nice whitespace from the original go, such as the newline after each </ h3>?

Whitespacein HTML (except in pr e elements and afew others) isn't contrastive. That is, any amount of whitespaceis
as good as just one space. So whenever HTML :: TreeBuilder sees whitespace tokens asit is parsing the HTML source, it
compacts each group into a single space. Furthermore, whitespace between some kinds of tags (such as between </ h3>
and <h3>, or between </ h3> and <p>) isn't meaningful at all, so when HTML::TreeBuilder sees such whitespace, it
just discardsit.

This whitespace mangling is the default behavior of an HTML:: TreeBuilder tree and can be changed by two options that
you set before parsing from afile:

nmy $root = HTM.:: Tr eeBui | der - >new,

$root - >i gnore_i gnor abl e_whi t espace(0);
Don't try to del ete whitespace between bl ock-1evel el enents.

$r oot - >no_space_conpacting(1);
Don't smash every whitespace sequences into a single space.

With those lines added to our program, the parse tree output file ends up with the appropriate whitespace.

<ht nl ><head></ head><body>

<h2 styl e="screani >Free Mnkey</h2>
<h4 styl e="nunbl e">I nquire Wt hin</h4>

<p>It's a nonkey! <enpAnd it's free!</enp</body>
</htm >

An dternativeisto havetheas_HTM_() method try to indent the HTML asit printsit. Thisis achieved by calling
as_HTM like so:

print OUT $root->as_HTM.(undef, " ");

Thisfeature is still somewhat experimental, and its implementation might change, but at time of this writing, this makes
the output file's code look like this:

<htm >
<head>
</ head>

<body>
<h2 styl e="screani >Free Mnkey</h2>
<h4 styl e="nmunbl e">l nqui re Wt hin</h4>
<p>It's a nonkey! <enpAnd it's free!</enp</body>
</htm >

10.1.2. Other HTML Options

Besides thisindenting option, there are further optionstoas_ HTM_(), asdescribed in Chapter 9, "HTML Processing
with Trees". One option controls whether omissible end-tags (such as</ p>and </ | i >) are printed.

Another controls what characters are escaped using & 00; sequences. Notably, by default, this encodes all characters
over ASCII 126, so for example, as_HTM. will print an é in the parsetree as &eacut e; (whether it came from a
literal é or from an &acut e;). Thisisaways safe, but in cases where you're dealing with text with alot of Latin-1 or
Unicode characters, having every one of those characters encoded as a &f 00; sequence might be bothersome to any
people looking at the HTML markup output.

In that case, your call to as_HTM. can consist of $r oot - >as_HTM_(' <>&'), in which case only the minimum of
characters (<, >, and &) will be escaped. There's no point is using these options (or in preserving whitespace with

i gnor e_i gnor abl e_whi t espace andno_space_conpact i ng) if you're reasonably sure nobody will ever be
looking at the resulting HTML. But for cases where people might need to look at the HTML, these options will make the
code more inviting than just one huge block of HTML.

4a PREVIOUS HOME HEXT np
9.5. Example: Fresh Air BOOK INDEX 10.2. Deleting Images
#hh
2 N \ 1, L INANUTSHELL | PROGRAMMING]
EOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/THK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Chapter 4. URLSs

Contents:

Parsing URLsS
Relative URLSs

Converting Absolute URLs to Relative
Converting Relative URL s to Absolute

Now that you've seen how LWP models HTTP requests and responses, |et's study the facilitiesit provides for working
with URLs. A URL tells you how to get to something: "use HT TP with this host and request this," "connect via FTP to
this host and retrieve thisfile," or "send email to this address."

The great variety inherent in URLsis both ablessing and a curse. On one hand, you can stretch the URL syntax to
address almost any type of network resource. However, this very flexibility means attempts to parse arbitrary URLs with
regular expressions rapidly run into a quagmire of special cases.

The LWP suite of modules provides the URI class to manage URLSs. This chapter describes how to create objects that
represent URLSs, extract information from those objects, and convert between absolute and relative URLs. Thislast task
is particularly useful for link checkers and spiders, which take partial URLs from HTML links and turn those into
absolute URL s to request.

4.1. Parsing URLs

Rather than attempt to pull apart URLs with regular expressions, which is difficult to do in away that works with all the
many types of URLSs, you should use the URI class. When you create an object representing a URL, it has attributes for
each part of a URL (scheme, username, hostname, port, etc.). Make method calls to get and set these attributes.

Example 4-1 creates a URI object representing a complex URL, then calls methods to discover the various components
of the URL.

Example 4-1. Decomposing a URL

use URI;

ny $url = URI->new(' http://user: pass@xanpl e.int: 4345/ hel | 0. php?
user=12");

print "Schene: ", $url->scheme(), "\n";

print "Userinfo: ", $url->userinfo(), "\n";

print "Hostname: ", $url->host(), "\n";

print "Port: ", $url->port(), "\n";

print "Path: ", $url->path(), "\n";

print "Query: ", $url->query(), "\n";

Example 4-1 prints:

Schene: http
Userinfo: user: pass
Host nane: exanpl e.int
Port: 4345

Pat h: /hell o. php

Query: user=12

Besides reading the parts of a URL, methods such ashost () can aso alter the parts of a URL, using the familiar
convention that $obj ect - >mret hod reads an attribute's value and $obj ect - >net hod(newval ue) altersan
attribute:

use URl;

ny $uri = URI ->new("http://ww. perl.com I/like/pie. htm");
$uri->host('testing.perl.com);

print $uri,"\n";

http://testing.perl.comlI/like/pie.htm

Now let's look at the methods in more depth.

4.1.1. Constructors

An object of the URI classrepresentsa URL. (Actually, a URI object can also represent akind of URL-like string called
aURN, but you're unlikely to run into one of those any time soon.) To create a URI object from a string containing a
URL, usethenew() constructor:

$url = URI->new(url [, schene]);
If url isarelative URL (afragment suchasst af f/ al i ci a. ht m), schemne determines the scheme you plan for
thisURL to have (ht t p, f t p, etc.). But in most cases, you call URI - >new only when you know you won't have a

relative URL; for relative URLs or URLsthat just might be relative, use the URI - >new_abs method, discussed below.

The URI module strips out quotes, angle brackets, and whitespace from the new URL. So these statements all create
identical URI objects:

$url = URI->new ' <http://www oreilly.conm >");
$url = URI->new ' "http://ww. oreilly.com"");
$url = URI ->new(’ http://ww. oreilly.conl');
$url = URI->new ' http://ww.oreilly.conl "),

The URI class automatically escapes any characters that the URL standard (RFC 2396) says can't appear inaURL. So
these two are equivalent:

$ur |
$url

URI ->new(' http://ww. oreilly.com bad page');
URI - >new(' http://ww. oreilly.com bad¥20page');

If you aready have aURI object, thecl one() method will produce another URI object with identical attributes:
$copy = $url->clone();

Example 4-2 clones a URI object and changes an attribute.

Example 4-2. Cloning a URI

use URI;

ny $url = URI ->new(' http://ww oreilly.confcatal og/');
$dup = $Surl->clone();

$url - >pat h(' / webl ogs') ;

print "Changed path: ", $url->path(), "\n";

print "Original path: ", $dup->path(), "\n";

When run, Example 4-2 prints:

Changed pat h: /webl ogs
Original path: /catal og/

4.1.2. Output
Treat a URI object as astring and you'll get the URL :

$url = URI->new(' http://ww. exanple.int');

$url ->path('/search.cgi');

print "The URL is now. $url\n";

The URL is now. http://ww.exanple.int/search.cgi

Y ou might find it useful to normalize the URL before printing it:
$url ->canonical ();

Exactly what this does depends on the specific type of URL, but it typically converts the hosthname to lowercase,
removes the port if it's the default port (for example, http://imww.eXample.int: 80 becomes http: //mww.example.int),
makes escape sequences uppercase (e.g., ¥2e becomes %2 E), and unescapes characters that don't need to be escaped (e.
g., %41 becomes A). In Chapter 12, "Spiders’, we'll walk through a program that harvests data but avoids harvesting the
same URL more than once. It keeps track of the URLsit'svisited in ahash called %seen_ur | _bef or e; if theresan
entry for agiven URL, it's been harvested. Thetrick isto call canoni cal onal URLSs before entering them into that
hash and before checking whether one existsin that hash. If not for calling canoni cal , you might have visited http://
www.example.int: 80 in the past, and might be planning to visit http://mww.EXample.int, and you would see no
duplication there. But when you call canoni cal on both, they both become http://www.example.int, so you can tell
you'd be harvesting the same URL twice. If you think such duplication problems might arise in your programs, when in
doubt, call canoni cal right when you construct the URL, like so:

$url = URI->new ' http://ww. exanpl e.int')->canonical;
4.1.3. Comparison
To compare two URLSs, usetheeq() method:

if ($url_one->eq(url _two)) { ... }
For example:

use URI;

nmy $url_one = URI->new' http://ww. exanple.int');

ny $url _two = URI->new' http://ww. exanpl e.int/search.cgi');

$url _one->path('/search.cgi');

if ($url_one->eq($url _two)) {

print "The two URLs are equal .\n";
}

The two URLs are equal .

Two URLs are equal if they are represented by the same string when normalized. Theeq() method is faster than the
eq string operator:

if ($url_one eq $url _two) { ... } # inefficient!
To seeif two values refer not just to the same URL, but to the same URI object, use the == operator:

if ($url_one == $url _two) { ... }

For example:

use URI;
ny $url = URlI->new(' http://ww. exanple.int');
$t hat _one = S$url;
if ($that_one == $url) {
print "Sane object.\n";

}

Same obj ect.
4.1.4. Components of a URL

A generic URL looks like Figure 4-1.

http://joeshmoe@stuft.int:8012/hooboy/things.html?yikes=3#results
L] L J L J L | | L

I | |
| | | |
Ef.'lgmf [Jzer info “.:lh'r Farf Path Query fFrogment

Figure 4-1. Components of a URL

The URI class provides methods to access each component. Some components are available only on some schemes (for
example, mai | t o: URLsdo not support theuser i nf o,server, or port components).

In addition to the obviousschene(),userinfo(),server(),port(),path(),query(),and
fragment () methods, there are some useful but less-intuitive ones.

$url - >pat h_query([newal]);
The path and query components as asingle string, e.g., / hel | 0. php?user =21.

$url ->pat h_segnent s([segnent, ...]);
In scalar context, it isthe sameaspat h(), butinlist context, it returnsalist of path segments (directories and
maybe afilename). For example:

$url = URI->new ' http://ww. exanpl e.int/eyel/ sea/ ewe.cgi');
@its = $url->path_segnents();
for ($i=0; $i < @its; $i++) {
print "$i {$bits[$i]}\n";
}

print "\n\n";
0 {}

1 {eye}

2 {sea}

3 {ewe.cgi}

$url ->host _port ([newal])

The hostname and port as one value, e.g., wmv. exanpl e. i nt : 8080.
$url ->default_port();

The default port for this scheme (e.g., 80 for ht t p and 21 for f t p).

For aURL that simply lacks one of those parts, the method for that part generally returnsundef :

use URl;

ny $uri = URI ->new("http://stuff.int/things.htm");

ny $query = $uri->query;

print defined($query) ? "Query: <$query>\n" : "No query\n";
No query

However, some kinds of URLscan' t have certain components. For example, anai | t 0: URL doesn't have ahost

component, so code that callshost () onanai | t 0: URL will die. For example:

use URI;

ny $uri = URI->new(' nmailto: hey-you@mil.int');

print $uri->host;

Can't | ocate object nethod "host" via package "URl::mailto"

This has real-world implications. Consider extracting all the URL s in adocument and going through them like this:

foreach ny $url (@irls) {
$url = URI->new(S$url);
ny $host nane = $url - >host;
next unl ess $Hosts_to_i gnore{$host nane};
...otherw se ...

}

Thiswill dieonamai | t 0o: URL, which doesn't haveahost () method. Y ou can avoid thisby usingcan() tosee
if you can call a given method:

foreach ny $url (@irls) {
$url = URI ->new($url);
next unl ess $uri->can(' host');
ny $host name = $url - >host;

or abit lessdirectly:

foreach nmy $url (@rls) {
$url = URI ->new($url);
unl ess(' http' eq $uri->schene) {
print "Odd, $url is not an http url! Skipping.\n";
next ;

}

ny $host name = $url - >host;
...and so forth. ..

Because dl URIs offer aschenme method, and al ht t p: URIsprovideahost () method, thisis assuredly safe.[1]
For the curious, what URI schemes alow for what is explained in the documentation for the URI class, aswell asthe
documentation for some specific subclasses like URI::ldap.
[1]Of the methods illustrated above, schene, pat h, and f r agnent are the only ones that are always
provided. It would be surprising to find afragment on amai | t o: URL—and who knows what it would

mean—~but it's syntactically possible. In practical terms, this means even if you haveamai | t o: URL,
you can call $ur | - >f ragnent without it being an error.

4.1.5. Queries

The URI class has two methods for dealing with query data above and beyond the quer y() and pat h_query()
methods we've already discussed.

In the very early days of the web, queries were simply text strings. Spaces were encoded as plus (+) characters:
htt p: // www. exanpl e. i nt/search?i +l i ke+pi e
Thequery_keywor ds() method works with these types of queries, accepting and returning alist of keywords:

@wrds = $url ->query_keywords([keywords, ...]);

For example:

use URI;

ny $url = URI ->new(' http://ww. exanpl e.int/search?i +like+pie');
@wrds = $url->query_keywords();

print $words[-1], "\n";

pi e

More modern queries accept alist of named values. A name and its value are separated by an equals sign (=), and such
pairs are separated from each other with ampersands (&):

http://ww. exanpl e. i nt/sear ch?f ood=pi e&acti on=li ke

Thequery_forn() method letsyou treat each such query asalist of keys and values:

@arans = $url->query_forn([key, value,...);
For example:
use URI;
ny $url = URI ->new(' http://ww. exanpl e.int/search?

f ood=pi e&action=like');

@aranms = $url->query_forn();

for ($i=0; $i < @arans; $i++) {
print "$i {$parans[$i]}\n";

}

0 {food}

1 {pie}

2 {action}

3 {like}
41 PREVIOUS HOME HEXT o
3.6. LWP Classes: Behind the Scenes BOOK INDEX 4.2. Relative URLSs

JK

i PERL
S M , 1L IN A NUTSHELL
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

9.3. Processing

Once you have parsed some HTML, you need to processit. Exactly what you do will depend on the nature of your
problem. Two common models are extracting information and producing atransformed version of the HTML (for
example, to remove banner advertisements).

Whether extracting or transforming, you'll probably want to find the bits of the document you're interested in. They
might be all headings, al bold italic regions, or all paragraphswith cl ass=" Dbl i nki ng". HTML::Element provides
several functions for searching the tree.

9.3.1. Methods for Searching the Tree

In scalar context, these methods return the first node that satisfies the criteria. In list context, all such nodes are returned.
The methods can be called on the root of the tree or any nodein it.

$node->find_by tag nane(tag[, ...])
Return node(s) for tags of the names listed. For example, tofind all h1 and h2 nodes:

@eadi ngs = $root->find_by tag_nane('hl', 'h2");

$node->find_by_attribute(attribute,val ue)
Returns the node(s) with the given attribute set to the given value. For example, to find all nodes with
cl ass="Dbl i nki ng":

@l inkers = $root->find_by_ attribute("class",
"blinking");

$node- >l ook_down(...)

$node- >l ook _up(...)
These two methods search $node and its children (and children's children, and so on) in the case of
| ook_down, or its parent (and the parent's parent, and so on) in the case of | ook _up, looking for nodes that
match whatever criteriayou specify. The parameters are either at t r i but e => val ue pairs (where the special
attribute _t ag represents the tag name), or a subroutine that is passed a current node and returns true to indicate
that thisnode is of interest.

For example, to find al h2 nodesin thetreewith cl ass="bl i nki ng":
@l i nkers = $root->l ook_down(_tag => 'h2', class => 'blinking');
Welll discuss| ook _down in greater detail later.
9.3.2. Attributes of a Node

Four methods give access to the basic information in a node:

$node- >t ag()
The tag name string of this element. Example values: ht mi , i ng, bl ockquot e. Note that thisis always
lowercase.

$node- >parent ()
This returns the node object that is the parent of this node. If $node istheroot of the tree, $node- >par ent

() will returnundef .
$node- >content |ist()
This returns the (potentially empty) list of hodes that are this node's children.
$node->attr (attri butenane)
Thisreturns the value of the HTML at t r i but enane attribute for this element. If there is no such attribute for
this element, this returnsundef . For example: if $node is parsed from <i ng src="x1. j pg"
al t ="Looky! ">, then $node->attr ("src") will returnthestringx1. j pg.

Four more methods convert atree or part of atree into another format, such as HTML or text.

$node->as_HTM.([entities[,indent_char [,optional _end_tags]]]);
Returns a string consisting of the node and its childrenasHTML. Theent i ti es parameter isastring
containing characters that should be entity escaped (if empty, al potentially unsafe characters are encoded as
entities; if you pass just <>&, just those characters will get encoded—a bare minimum for valid HTML). The
i ndent _char parameter isastring used for indenting the HTML. Theopt i onal _end_t ags parameter isa
reference to a hash that has atrue value for every key that is the name of atag whose closing tag is optional. The
most common value for this parameter is{ } to force all tagsto be closed:

$htm = $node->as HTML("", "", {});:

For example, thiswill emit </ | i > tagsfor any | i nodes under $node, even though </ | i > tags are technically
optional, according to the HTML specification.

Using $node- >as_HTM_() with no parameters should be fine for most purposes.

$node- >as_text()
Returns a string consisting of all the text nodes from this element and its children.
$node->starttag([entities])
Returnsthe HTML for the start-tag for thisnode. Theent i t i es parameter isastring of charactersto entity
escape, asintheas_HTM_() method; you can omit this. For example, if this node came from parsing <TD
cl ass=l oud>Hooboy</ TD>, then $node- >startt ag() returns<td cl ass="1| oud" >. Note that the
original sourcetext is not reproduced exactly, because insignificant differences, such as the capitalization of the
tag name or attribute names, will have been discarded during parsing.
$node- >endt ag()
Returnsthe HTML for the end-tag for this node. For example, if this node came from parsing <TD
cl ass=l oud>Hooboy</ TD>, then $node- >endt ag() returns</t d>.

These methods are useful once you've found the desired content. Example 9-4 prints al the bold italic text in a
document.

Example 9-4. Bold-italic headline printer

#!/usr/ bin/perl -w

use HTM.:: TreeBui l der;
use strict;

nmy $root = HTM.:: TreeBuil der->new _from content (<<"ECHTM.");
<i >Shat ner wi ns Award! </i >

Today in Hol | ywood ...

<i >End of World Predicted! </i>

Today in Washi ngton ...

EOHTML

$root ->eof () ;

print contents of <i>. ..</i>
ny @olds = $root->find_by tag name('b');
foreach ny $node (@ol ds) {

ny @ids = $node->content list();
if (@&ids and ref $kids[0] and $kids[O]->tag() eq "i"') {
print $kids[0]->as_text(), "\n";
}
}

Example 9-4 isfairly straightforward. Having parsed the string into a new tree, we get alist of al the bold nodes. Some

of these will be the headlines we want, while others will simply be bolded text. In this case, we can identify headlines by
checking that the node that it containsrepresents<i >. . . </ i >. If itisanitalic node, we print its text content.

The only complicated part of Example 9-4 isthe test to see whether it's an interesting node. This test has three parts:

@i ds
Trueif there are children of this node. An empty </ b> would fail thistest.

ref $kids[0]
Trueif the first child of thisnode is an element. Thisisfalsein cases such as Washi ngt on</ b>, where the
first (and here, only) child istext. If we fail to check this, the next expression, $ki ds[0] - >t ag(), would
produce an error when $ki ds[0] isn't an object value.

$kids[0]->tag() eq 'i'
Trueif thefirst child of thisnodeisani element. Thiswould weed out anything like <i ngy
src="shat ner. j pg" ></ b>, where $ki ds[0] - >t ag() would returni ng, or <st r ong>Yes,
Shat ner ! </ st r ong></ b>, where $ki ds[0] - >t ag() would return st r ong.

9.3.3. Traversing

For many tasks, you can use the built-in search functions. Sometimes, though, you'd like to visit every node of the tree.
Y ou have two choices: you can usethe existingt r aver se() function or write your own using either recursion or
your own stack.

The act of visiting every node in atreeis called atraversal. Traversals can either be preorder (where you process the
current node before processing its children) or postorder (where you process the current node after processing its
children). Thet r aver se() method lets you both:

$node- >t raverse(cal | backs [, ignore_text]);

Thetraverse() method calls acallback before processing the children and again afterward. If thecal | backs
parameter is a single function reference, the same function is called before and after processing the children. If the

cal | backs parameter is an array reference, the first element is areference to afunction called before the children are
processed, and the second element is similarly called after the children are processed, unless this node is atext segment
or an element that is prototypically empty, such asbr or hr . (Thislast quirk of thet r aver se() method is one of the
reasons that | discourageits use.)

Callbacks get called with three values:

sub cal | back
my ($node, $startflag, $depth,
$parent, $ny_index) = @;
...
}

The current node is the first parameter. The next is a Boolean value indicating whether we're being called before (true) or
after (false) the children, and the third is a number indicating how deep into the traversal we are. The fourth and fifth
parameters are supplied only for text elements: the parent node object and the index of the current nodein its parent's list
of children.

A callback can return any of the following values:

HTML: : El enent : : OK (or any true value)
Continue traversing.
HTML.: : El enrent : : PRUNE (or any false value)
Do not go into the children. The postorder callback is not called. (Ignored if returned by a postorder callback.)
HTM.: : El ement : : ABORT
Abort the traversal immediately.
HTML: : El enment : : PRUNE_UP
Do not go into this node's children or into its parent node.
HTM.: : El enent : : PRUNE_SOFTLY
Do not go into the children, but do call this node's postorder callback.

For example, to extract text from anode but not gointot abl e elements:

ny $text;

sub text_no_tables {
return if ref $ [0] & $ [0]->tag eq 'table';
$text .= $ [0] unless ref $ [0]; # only append text nodex
return 1; # all is copacetic

}

$root->traverse([\ & ext_no_tabl es]);
This prevents descent into the contents of tables, while accumulating the text nodesin $t ext .

It can be hard to think in terms of callbacks, though, and the multiplicity of return values and calling parameters you get
witht raver se() makesfor confusing code, as you will likely note when you come across its usein existing
programs that use HTML ::TreeBuilder.

Instead, it's usually easier and clearer to simply write your own recursive subroutine, like this one:

ny $text ="'";
sub scan_for_non_table text {
ny $element = $ [0];
return if $elenent->tag eq 'table'; # prune!
foreach ny $child ($el ement->content_list) {
if (ref $child) { # it's an el enent
scan_for_non_table_text($child); # recurse!
} else { #it's a text node!
$text .= S$child;
}
}

return;

}

scan_for_non_tabl e_text($root);
Alternatively, implement it using a stack, doing the same work:

ny $text ="'"';
ny @tack = ($root); # where to start

while (@tack) {
ny $node = shift @t ack;

next if ref $node and $node->tag eq 'table'; # skip tables
if (ref $node) ({

unshi ft @tack, $node->content |ist; # add children
} else {

$text .= $node; # add text

}

}

Thewhi | e() loop version can be faster than the recursive version, but at the cost of being much less clear to people
who are unfamiliar with this technique. If speed is a concern, you should always benchmark the two versions to make
sure you really need the speedup and that thewhi | e() loop version actually delivers. The speed differenceis
sometimes insignificant. The manual page per | doc HTM.: : El enent : : t r aver se discusses writing more complex
traverser routines, in the rare cases where you might find this necessary.

41 PREVIOUS HOME NEXT B
9.2. HTML::TreeBuilder BOOK INDEX 9.4. Example: BBC News

i
INA I'I.I!I':LSIIELL -}

lEH.II..HIHG PERL 2nd Edition MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

1 i \
PERL & LWF -

=
BOOKSHELF
HOME

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

1.5. LWP in Action

Enough of why you should be careful when you automate the Web. Let's look at the types of things you'll belearning in
this book. Chapter 2, "Web Basics' introduces web automation and LWP, presenting straightforward functionsto let you
fetch web pages. Example 1-1 shows how to fetch the O'Reilly home page and count the number of times Perl is
mentioned.

Example 1-1. Count "Perl" in the O'Reilly catalog

#!/usr/bin/perl -w
use strict;
use LWP:: Si npl e;

ny $catalog = get("http://ww.oreilly.conlcatal 0og");
ny $count = O;

$count ++ whil e $catal og =~ m{Perl}gi;

print "$count\n";

The LWP::Simple module'sget () function returns the document at a given URL or undef if an error occurred. A
regular expression match in aloop counts the number of occurrences.

1.5.1. The Object-Oriented Interface

Chapter 3, "The LWP Class Model" goes beyond LWP::Simple to show larger LWP's powerful object-oriented interface.
Most useful of all the featuresit covers are how to set headers in requests and check the headers of responses. Example 1-
2 prints the identifying string that every server returns.

Example 1-2. Identify a server

#!/usr/bin/perl -w
use strict;
use LWP;

ny $browser = LWP:: User Agent - >new();
ny $response = $browser->get ("http://ww. oreilly.com");
print $response->header("Server"), "\n";

The two variables, $br owser and $r esponse, are references to objects. LWP::UserAgent object $br owser makes
requests of a server and creates HT TP::Response objects such as $r esponse to represent the server'sreply. In
Example 1-2, we call theheader () method on the response to check one of the HTTP header values.

1.5.2. Forms

Chapter 5, "Forms' shows how to analyze and submit forms with LWP, including both GET and POST submissions.
Example 1-3 makes queries of the Californialicense plate database to see whether a personalized plate is available.

Example 1-3. Query California license plate database

#!/usr/bin/perl -w
pl8.pl - query California |license plate database

use strict;
use LWP: : User Agent;
ny $plate = $ARGV[0] || die "Plate to search for?\n";
$plate = uc $pl ate;
$plate =~ tr/Q0/; # we use zero for letter-oh
die "$plate is invalid.\n"
unl ess $plate =~ m"[A-Z0-9]1{2, 7} $/
and $plate !~ m™M\d+$/; # no all-digit plates

ny $browser = LWP:: User Agent - >new,
ny $response = $browser - >post (
"http://plates. ca. gov/ search/search. php3',
[
"plate’ => $pl ate,
"search' => 'Check Plate Availability’
1,
);
die "Error: ", $response->status_|ine
unl ess $response->i s_success;

i f($response->content =~ niis unavailable/) {
print "$plate is already taken.\n";
} elsif($response->content =~ mand available/) {
print "$plate is AVAI LABLE'\n";
} else {
print "$plate... Can't nmke sense of response?!\n";
} .
exit;

Here's how you might useit:

% pl 8. pl knee

KNEE i s al ready taken.
% pl 8. pl ankl e

ANKLE i s AVAI LABLE!

Weusethepost () method on an LWP::UserAgent object to POST form parameters to a page.

1.5.3. Parsing HTML

The regular expression techniques in Examples Example 1-1 and Example 1-3 are discussed in detail in Chapter 6,
"Simple HTML Processing with Regular Expressions’. Chapter 7, "HTML Processing with Tokens' shows a different
approach, where the HTML :: TokeParser module turns astring of HTML into a stream of chunks ("start-tag,” "text,"
"close-tag,” and so on). Chapter 8, "Tokenizing Walkthrough” is a detailed step-by-step walkthrough showing how to
solve a problem using HTML :: TokeParser. Example 1-4 uses HTML::TokeParser to extract thesr ¢ partsof al i ng
tags in the O'Reilly home page.

Example 1-4. Extract image locations
#!/usr/bin/perl -w
use strict;
use LWP:: Si npl e;
use HTM.:: TokePar ser;

ny $ht m
ny $stream

get("http://ww.oreilly.com");
HTML: : TokePar ser - >new(\ $ht nl) ;

my % mge = ();

while (ny $token = $stream >get _t oken) {
if ($token->[0] eq 'S && $token->[1] eq 'ing') {
store src value in % nage
$i mage{ $token->[2]{'src'} }++;

}

foreach ny $pic (sort keys % mage) ({
print "$pic\n";
}

Theget _t oken() method on our HTML::TokeParser object returns an array reference, representing atoken. If the
first array element is S, it's atoken representing the start of atag. The second array element is the type of tag, and the
third array element is a hash mapping attribute to value. The % mage hash holds the images we find.

Chapter 9, "HTML Processing with Trees' and Chapter 10, "Modifying HTML with Trees' show how to use tree data

structures to represent HTML. The HTML ::TreeBuilder module constructs such trees and provides operations for
searching and manipulating them. Example 1-5 extracts image locations using a tree.

Example 1-5. Extracting image locations with a tree

#!/usr/bin/perl -w

use strict;
use LWP:: Si npl e;
use HTM.:: TreeBui |l der;

ny $htm = get("http://ww. oreilly.conm");
ny $root = HTM.:: TreeBuil der->new from content($htm);
my % nmages;
foreach ny $node ($root->find_by tag name('ing')) {
$i mages{ $node->attr('src') }++;

}

foreach ny $pic (sort keys % mages) {
print "$pic\n";
}

We create a new tree from the HTML in the O'Reilly home page. The tree has methods to help us search, such as
find_by tag nane(),whichreturnsalist of nodes corresponding to those tags. We use that to find the img tags,
thenusetheat tr () method to get their sr ¢ attributes.

1.5.4. Authentication
Chapter 11, "Cookies, Authentication,and Advanced Requests' talks about advanced request features such as cookies

(used to identify a user between web page accesses) and authentication. Example 1-6 shows how easy it isto request a
protected page with LWP.

Example 1-6. Authenticating

#!/usr/ bin/perl -w

use strict;
use LWpP;

ny $browser = LWP:: User Agent - >new();

$browser - >credenti al s("ww. exanpl e. com 80", "nusic", "fred" =>
"133t1");

ny $response = $browser->get ("http://ww. exanpl e. conf np3s");

...

Thecredenti al s() method on an LWP::UserAgent adds the authentication information (the host, realm, and
username/password pair are the parameters). The realm identifies which username and password are expected if there are
multiple protected areas on a single host. When we request a document using that LWP::UserAgent object, the
authentication information is used if necessary.

41 PREVIOUS HOME MEXT B
1.4. Words of Caution BOOK INDEX 2. Web Basics

e

PE

A ¥ LN PERL & XML
o ! i y) . IN A MUTSHELL
BOOKSHELF PERL & LWP - LEARMIMNG PERL 2nd Edition PERL MASTERING PERL COOKBOOK R,
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

11.3. Authentication

HTTP Basic Authentication is the most common type of authentication supported at the level of HTTP. The exchange
workslikethis:

1. The browser makes arequest for aURL.

2. The pageis protected by Basic Authentication, so the server replies with a 401 Unauthorized status code. The
response has a WWM Aut hent i cat e header that specifies the authentication method ("basic") and the realm.
"Ream" hereisjargon for a string that identifies the locked-off area, which the browser is about to use in the next

step.

3. The browser displays an "enter your username and password for r eal m' dialog box. Figure 11-1 shows the
dialog box for a part of www.unicode.org whose realm name is "Unicode-MailList-Archives."

4. The browser requests the URL again, thistime with an Aut hor i zat i on header that encodes the username and
password.

5. If the username and password are verified, the server sends the document in anormal successful HT TP response.
If the username and password aren't correct, we go back to step 2.

v

L

_ Hame Search Metscape Secunty 5

b ¢ Bo aks 4] ithp v, unicode. ongfnaikarchfunicode-ml g 2002-m01 /
Bookmak: 0 Go b [de=mi/y 20 0

Foidiaiod

Username and Password Requi...E1

S
[R
[ok] conen |

Figure 11-1. Authentication dialog box
11.3.1. Comparing Cookies with Basic Authentication

Like cookies, LWP implements HTTP Basic Authentication with attributes of an LWP::UserAgent object. There are
basic differences, however.

There's no such thing as an explicit HTTP error message that means "you needed to send me a proper cookie, so try
again!". The "Register Now!" page that the New York Times site returned is not an error in any HTTP sense; asfar asthe
browser is concerned, it asked for something, and got it.

LWPsinterface for HTTP cookies and HTTP Basic Authentication is different. To get an LWP::UserAgent browser
object to implement cookies, one assigns it an object of class HTTP::Cookies (or a subclass), which represents alittle
database of cookies that this browser knows about. But there is no corresponding class for groups of username/password
pairs, although | informally refer to the set of passwords that a user agent can consult asits "key ring."

11.3.2. Authenticating via LWP
To add a username and password to a browser object's key ring, call thecr edent i al s method on a user agent object:

$br owser - >credent i al s(
' server nane: port nunber"',
"real mnane',
'usernane' => 'password'

)
In most cases, the port number is 80, the default TCP/IP port for HTTP. For example:

ny $browser = LWP:: User Agent - >new;
$br owser - >nane(' ReportsBot/1.01");

$browser - >credenti al s(
"reports. nybazouki.com 80",
"web_server_usage_reports',
"plinky' =>"'banjol23

);

nmy $response = $browser - >get (
"http://reports. nybazouki.conlthis_week/'
);

Onecan cal thecr edent i al s method any number of times, to add al the server-port-real m-username-password keys
to the browser's key ring, regardless of whether they'll actually be needed. For example, you could read them all in from
adatafile at startup:

ny $browser = LWP:: User Agent - >new();
i f (open(KEYS, "< keyring.dat")) {
whi | e(<KEYS>) {
chonp;
my @nfo = split "\t", $_, -1;
$browser->credential (@nfo) if @nfo ==
b
cl ose(KEYS) ;
}

11.3.3. Security

Clearly, storing lots of passwordsin aplain text file is not terribly good security practice, but the obvious adternative is
not much better: storing the same datain plain text in a Perl file. One could make a point of prompting the user for the
information every time,[5] instead of storing it anywhere at all, but clearly thisis useful only for interactive programs (as

opposed to a programs run by crontab, for example).

[5]In fact, Ave Wrigley wrote a module to do exactly that. It's not part of the LWP distribution, but it's
available in CPAN as LWP::AuthenAgent. The author describesit as"a simple subclass of LWP::
UserAgent to allow the user to type in username/password information if required for authentication."

In any case, HTTP Basic Authentication is not the height of security: the username and password are normally sent
unencrypted. This and other security shortcomings with HTTP Basic Authentication are explained in greater detail in
RFC 2617. See the the Preface for information on where to get a copy of RFC 2617.

4 PREVIOUS HOME MEXT B

11.2. Adding Extra Request Header BOOK INDEX 11.4. An HTTP Authentication
Lines Example:The Unicode Mailing Archive

r RL
N . . bW IN A NUTSHELL
PERL & LWP -~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/THK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

11.4. An HTTP Authentication Example:The Unicode Mailing Archive

Most password-protected sites (whether protected viaHTTP Basic Authentication or otherwise) are that way because the
sites owners don't want just anyone to look at the content. And it would be abit odd if | gave away such a username and
password by mentioning it in this book! However, there is one well-known site whose content is password protected
without being secret: the mailing list archive of the Unicode mailing lists.

In an effort to keep email-harvesting bots from finding the Unicode mailing list archive while spidering the Web for
fresh email addresses, the Unicode.org sysadmins have put a password on that part of their site. But to allow people
(actua not-bot humans) to access the site, the site administrators publicly state the password, on an unprotected page, at
http://www.unicode.org/mail-arch/, which links to the protected part, but also states the username and password you
should use.

The main Unicode mailing list (called unicode) once in awhile has athread that isreally very interesting and you really
must read, but it's buried in a thousand other messages that are not even worth downloading, even in digest form.
Luckily, this problem meets atidy solution with LWP: |'ve written a short program that, on the first of every month,
downloads the index of al the previous month's messages and reports the number of messages that has each topic asits
subject.

Thetrick isthat the web pages that list thisinformation are password protected. Moreover, the URL for the index of last
month's posts is different every month, but in afairly obviousway. The URL for March 2002, for example, is:

http://ww. uni code. org/ mai | -arch/ uni code-m /y2002- nD3/
Deducing the URL for the month that has just ended is simple enough:

To be run on the first of every nonth...

use POSI X ("strftinme');

ny $last_nmonth = strftime("y%w-nmet, localtime(tine - 24 * 60 * 60));
Since today is the first, one day ago (24*60*60 seconds) is in

last nonth.

ny $url = "http://ww. uni code. org/ mai |l -arch/ uni code-m /$l ast _nonth/";

But getting the contents of that URL involvesfirst providing the username and password and realm name. The Unicode
web site doesn't publicly declare the realm name, because it's an irrelevant detail for users with interactive browsers, but
we need to know it for our call tothecr edent i al method. To find out the realm name, try accessing the URL in an
interactive browser. The realm will be shown in the authentication dialog box, as shown in Figure 11-1.

Inthiscase, it's "Unicode-MailList-Archives," which is all we needed to make our request:

ny $browser = LWP:: User Agent - >new;
$browser - >credent i al s(
"www. uni code.org: 80', # Don't forget the ":80"!
This is no secret...
" Uni code- Mai | Li st-Archives',
"uni code-m "' => "uni code’
);
print "Getting topics for last nonth, $last_nonth\n",
" from3$url\n";
ny $response = $browser->get ($url);
die "Error getting $url: ", $response->status_line

http://www.unicode.org/mail-arch/

if $response->is_error;

If thisfails (if the Unicode site's admins have changed the username or password or even the realm name), that will di e
with this error message:

Error getting http://ww. uni code. org/ mail -arch/uni code-nm /y2002- mD3/:
401 Aut hori zation Required at unicode_|ist00l.pl line 21.

But assuming the authorization data is correct, the pageisretrieved asif it were anormal, unprotected page. From there,
counting the topics and noting the absolute URL of the first message of each thread is a matter of extracting data from
the HTML source and reporting it concisely.

my(%posts, %irst_url);
whil e(${ $response->content _ref }
=~ m{(.*?)}g
Like: Kl i ngon</ strong>

) |
ny($url, $topic) = (%1, $2);

Strip any nunber of "Re:" prefixes.
while($topic =~ s/*Re:\s+/ /i) {}

++$post s{ $t opi c};
use URI; # For absolutizing URLs. ..
$first _url{$topic} ||= URI->new abs($url, $response->base);

}

print "Topics:\n", reverse sort nap # Most comon first:
sprintf("%5s %\n %8\ n",
$posts{$_}, $_, $first_url{$_}
), keys %posts;

Typical output starts out like this:

Getting topics for last nonth, y2002-n0D2
fromhttp://ww. uni code. org/ mail -arch/uni code-m /y2002- n02/
Topi cs:
86 Uni code and Security
http://ww. uni code. org/ mai | -arch/ uni code-m /y2002- n02/ 0021. ht m
47 1SO 3166 (country codes) Mai ntenance Agency Wb pages nove
htt p://ww. uni code. or g/ mai | - arch/ uni code-m / y2002- n02/ 0390. ht m
41 Uni code and end users
http://ww. uni code. org/ mai | -arch/ uni code-m /y2002- nmD2/ 0260. ht m
27 Uni code Search Engi nes
http://ww. uni code. org/ mai | -arch/ uni code-m /y2002- mD2/ 0360. ht m
22 Smles, faces, etc
http://ww. uni code. org/ mai | -arch/ uni code-m /y2002- D2/ 0275. ht m
18 This spoofing and security thread
http://ww. uni code. org/ mai | -arch/ uni code-m /y2002- nD2/ 0216. ht m
16 Standard Conventions and euro
http://ww. uni code. org/ mai | - arch/ uni code-m /y2002- nD2/ 0418. ht m

This continues for afew pages.

4 PREVIOUS HOME NEXT B
11.3. Authentication BOOK INDEX 12. Spiders

] i

- ‘] y
PERL & LWP -~

N ; N IM A MUTSHELL
BOOKSHELF LEARMING PERL 2nd Edition
HOME

3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

MASTERING
PERL/TK

PERL COOKBOOK

PE
& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

2.7. Example: Babelfish
Submitting a POST query to Babelfish isas simple as:

ny ($content, $nmessage, $is_success) = do_POST(
"http://babel fish.altavista.conltransl ate. dyn',
["urltext' =>"1 like pie", "Ip" =>"en_fr", "enc' => "utf8 1],

)

If the request succeeded ($i s_success will tell usthis), $cont ent will bean HTML page that contains the
trandation text. At time of thiswriting, the trandation isinside the only t ext ar ea element on the page, so it can be
extracted with just this regexp:

$content =~ n{<textarea.*?>(.*?)</textarea>}is;
Thetrandated text isnow in $1, if the match succeeded.

Knowing this, it's easy to wrap this whole procedure up in afunction that takes the text to translate and a specification of
what language from and to, and returns the trandation. Example 2-8 is such afunction.

Example 2-8. Using Babelfish to translate

sub translate {
my ($text, $language_path) = @;

ny ($content, $message, $is_success) = do_POST(
"http://babel fish.altavista.comtranslate.dyn',
["urltext' => $text, 'lIp'" => $language_path, 'enc’' => 'utf8'],
);
die "Error in translation $l anguage_pat h: $nessage\n"
unl ess $i s_success;

if ($content =~ m{<textarea.*?>(.*?)</textarea>}is) {
ny $translation;
$transl ati on = $1;
Tri m whitespace:

$transl ation =~ s/\s+/ /g;
$translation =~ s/™ //s;
$transl ation =~ s/ $//s;
return $translation;
} else {
die "Can't find translation in response to $l anguage_pat h";
}
}

Thetransl at e() subroutine constructs the request and extracts the translation from the response, cleaning up any
whitespace that may surround it. If the request couldn't be completed, the subroutine throws an exception by calling di e

().

Thetransl at e() subroutine could be used to automate on-demand trand ation of important content from one
language to another. But machine tranglation is still afairly new technology, and the real value of it isto befound in

trandating from English into another language and then back into English, just for fun. (Incidentally, there'sa CPAN
module that takes care of al these details for you, called Lingua:: Translate, but here we're interested in how to carry out
the task, rather than whether someone's already figured it out and posted it to CPAN.)

The alienate program given in Example 2-9 doesjust this (the definitionsof t r ansl at e() anddo_POST() have
been omitted from the listing for brevity).

Example 2-9. The alienate program

#!/usr/ bin/perl -w
alienate - translate text
use strict;
ny $l ang;
if (@GARGV and $ARGV[0] =~ m - (\ww) $/s) {
|If the language is specified as a switch like "-fr"
$lang = I c $1;
shift @Q\RGV;
} else {
Ot herwi se just pick a |anguage at random
nmy @anguages = gwmit fr de es ja pt);
1.e.: Italian, French, German, Spanish, Japanese, Portugese.
$l ang = $l anguages[rand @ anguages];

}

die "What to translate?\n" unl ess @\RGV;
ny $in =join(" ', @RGY);
print " =>via $lang => ",
transl at e(
translate($in, 'en_' . $lang),
$lang . ' _en'
), "\n";
exit;
definitions of do_POST() and translate() go here
Call the aienate program like this:

% al i enate [-1ang] phrase

Specify alanguage with -1 ang, for example- f r to trandate via French. If you don't specify alanguage, one will be
randomly chosen for you. The phrase to trandate is taken from the command line following any switches.

Here are some runs of alienate:

% al i enate -de "Pearls before sw ne!"
=> via de => Beads before pigs!

% al i enate "Bond, Janes Bond"
=> via fr => Link, Link O Janes

% al i enat e "Shaken, not stirred"
=> via pt => Agitated, not agitated

% alienate -it "Shaken, not stirred"
=>via it => Mental patient, not stirred

% alienate -it "Guess what! |'ma conputer!"”

=> via it => Conjecture that what! They are a cal cul ati ng!

% alienate 'It was nore fun than a barrel
=>via de => |t was nore fun than a barrel

%alienate -ja 'It was nore fun than a barrel

of nonkeys'
drop hammrer

of nonkeys'

=> via ja => That the barrel of nobnkey at tinmes was nmany pl easures

41 PREVIOUS HOME

2.6. HTTP POST EOOK INDEX

MEXT o
3. The LWP Class Model

o Y Ly , IN A& NUTSHELL
BOOKSHELF PERL & LWP -~ LEARMIMNG PERL 2ad Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PROGRAMMING
PERL
3rd Edition

%? " o

MASTERING PERL COOKBOOK N
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

7.4. Token Sequences

Some problems cannot be solved with a single-token approach. Often you need to scan for a sequence of tokens. For
examplein Chapter 4, "URLS', we extracted the Amazon sales rank from HTML like this:

Amazon. com Sal es Rank: 4,070

Here we're looking for the text Amazon. comSal es Rank: , an end-tag for b, and the next token as a text token with
the sales rank. To solve this, we need to check the next few tokens while being able to put them back if they're not what
we expect.

To put tokens back into the stream, usetheunget _t oken() method:
$st ream >unget _t oken(@ext);
The tokens stored in @ext will be returned to the stream. For example, to solve our Amazon problem:

while (ny $token = $stream >get _token()) {
if ($token->[0] eq 'T" and
$t oken->[1] eq ' Amazon.com Sal es Rank: ') {
my @ext;
push @ext, $stream >get_token();
ny $found = O;
if ($next[0][0] eq 'E and $next[0][1] eq 'b") {
push @ext, $stream >get_token();
if ($next[1][0] eq 'T") {
$sal es_rank = $next[1][1];
$f ound = 1;
}
}
$stream >unget _t oken(@ext) unl ess $f ound;
}
}

If it's the text we're looking for, we cautiously explore the next tokens. If the next oneisa </ b> end-tag, check the next
token to ensure that it'stext. If it is, then that's the sales rank. If any of the testsfail, put the tokens back on the stream
and go back to processing.

7.4.1. Example: BBC Headlines

Suppose, for example, that your morning ritual is to have the help come and wake you at about 11 am. as they bring two
serving trays to your bed. On one tray there's a croissant, some pain au chocolat, and of course some café au lait, and on
the other tray, your laptop with a browser window already open on each story from BBC News's front page (http://news.
bbc.co.uk). However, the help have been getting mixed up lately and opening the stories on The Guardian's web site, and

that's a bit awkward, since clearly The Guardian is an after-lunch paper. You'd say something about it, but one doesn't
want to make a scene, so you just decide to write a program that the help can run on the laptop to find all the BBC story
URLSs.

So you look at the source of http://news.bbc.co.uk and discover that each headline link is wrapped in one of two kinds of
code. There are lots of headlines in code such as these:

http://news.bbc.co.uk/
http://news.bbc.co.uk/
http://news.bbc.co.uk/

<B CLASS="h3"><A href="/hi/english/business/newsid 1576000/ 1576290.
st i >Bank
of England nmulls rate cut

<B CLASS="h3"><A href="/hi/english/uk_politics/newsid_1576000/1576541.
st nf' >Eur o
battl e revived by Blair speech</ B>

and also some headlinesin code like this:

<B cl ass="h2"> Swi ssair shares w ped out </ B>

</ A>

<B class="h1">M d-East blow to US anti-terror drive

</ A>

(Note that the a start-tag's class value can be hl or h2.)
Studying this, you realize that thisis how you find the story URLSs:

. Every timethere's a B start-tag with class value of h3, and then an A start-tag with an hr ef value, save that
hr ef .

. Every timethere's an A start-tag with an hr ef value, atext token consisting of just whitespace, and then a B start-
tag with aclassvalue of h1 or h2, save thefirst token'shr ef value.

7.4.2. Translating the Problem into Code

We can take some shortcuts when tranglating thisinto $st r eam >unget _t oken($t oken) code. The following
HTML istypical:

<B CLASS="h3">Top Stories

<B CLASS="h3"><A href="/hi/english/business/newsid 1576000/ 1576290.
st m’ >Bank
of England mulls rate cut

When we see thefirst B- h3 start-tag token, we think it might be the start of a B- h3- A- hr ef pattern. So we get
another token and seeif it'san A- hr ef token. It's not (it'sthe text token Top St or i es), so we put it back into the
stream (useful in case some other pattern we're looking for involves that being the first token), and we keep looping.
Later, we see another B- h3, we get another token, and we inspect it to see if it'san A- hr ef token. Thistimeitis, so we
processits hr ef value and resume [ooping. There's no reason for us to put that a- hr ef back, so the next iteration of
the loop will resume with the next token being Bank of Engl and nul I s rat e cut .

sub scan_bbc_stream {
my($stream $dochbase) = @;

Token:
whi | e(my $t oken = $stream >get _t oken) ({

if ($token->[0] eq 'S and $token->[1] eq 'b'" and
($token->[2]{'class'} || "") eq 'h3") {
The href we want is in the NEXT token... probably.
Li ke: <B CLASS="h3">

ny(@ext) = ($stream >get _token);

if ($next[0] and $next[0][0] eq 'S and $next[0][1] eqg 'a" and
defined $next[0][2]{ href'}) {
W found ! This rule matches!
print URI->new abs($next[0][2]{"' href'}, $docbase), "\n";
next Token;
}
W get here only if we've given up on this rule:
$st r eam >unget _t oken(@ext);

}

fall thru to subsequent rules here...

}

return;

}

The general form of the rule aboveisthis: if the current token looks promising, pull off atoken and see if that looks
promising too. If, at any point, we see an unexpected token or hit the end of the stream, we restore what we've pulled off
(held in the temporary array @ext), and continue to try other rules. But if all the expectationsin this rule are met, we
make it to the part that processes this bunch of tokens (hereit's just asingle line, which prints the URL), and then call
next Token to start another iteration of thisloop without restoring the tokens that have matched this pattern. (If you
are disturbed by this use of anamed block and | ast ing and next ing around, consider that this could be written asa
gianti f /el se statement at the risk of potentially greater damage to what's left of your sanity.)

Each such rule, then, can pull from the stream however many tokens it needs to either match or reject the pattern it's
after. Either it matches and starts another iteration of thisloop, or it restores the stream to exactly the way it was before
this rule started pulling from it. This business of atemporary @ext list may seem like overkill when we only have to
look one token ahead, only ever looking at $next [0] . However, thei f block for the next pattern (which requires
looking two tokens ahead) shows how the same framework can be accommaodating:

Add this right after the first if-block ends.

i f($token->[0] eq 'S and $token->[1] eq 'a" and
defined $token->[2]{" href'}) {
Like: <B cl ass="h2">

ny(@ext) = ($stream >get _t oken);
if ($next[0] and $next[0][0] eq 'T and $next[0][1] =~ mMNs+/s) {
W found whitespace.
push @ext, $stream >get token;
if ($next[1] and $next[1][0] eq 'S and $next[1][1] eq 'b' and
($next[1][2]{'class'} || '") ==~ m~h[12]%/s) {
We found <b class="h2">! This rule matches!
print URI->new abs($token->[2]{' href'}, $docbase), "\n";
next Token;
}
}

We get here only if we've given up on this rule:
$stream >unget _t oken(@ext);

}
7.4.3. Bundling into a Program

With al that wrapped up in a pure function scan_bbc_strean(), wecantestit by first saving the contents of
http://news.bbc.co.uk locally as bbc.html (which we probably already did to scrutinize its source code and figure out
what HTML patterns surround headlines), and then calling this:

use strict;

use HTM.:: TokePar ser;
use URI;

scan_bbc_strean
HTM.: : TokePar ser->new' bbc. htm ') || die($!),
"http://news. bbc.co.uk/' # base URL

);
When run, this merrily scans the local copy and say:

http:// news. bbc. co. uk/ hi /engl i sh/worl d/ m ddl e_east/

newsi d_1576000/ 1576113. st m

http:// news. bbc. co. uk/ hi/engl i sh/worl d/ south_asi a/

newsi d_1576000/ 1576186. st m

http:// news. bbc. co. uk/ hi/english/uk _politics/newsid 1576000/ 1576051. stm
htt p: // news. bbc. co. uk/ hi / engl i sh/ uk/ newsi d_1576000/ 1576379. st m
http:// news. bbc. co. uk/ hi/engl i sh/ busi ness/ newsi d 1576000/ 1576636. st m
http:// news. bbc. co. uk/ sport/hi/english/in_depth/2001/

engl and_i n_zi mbabwe/ newsi d_

1574000/ 1574824. st m

http:// news. bbc. co. uk/ hi/engl i sh/ busi ness/ newsi d_1576000/ 1576546. st m
http:// news. bbc. co. uk/ hi / engl i sh/ uk/ newsi d_1576000/ 1576313. st m
http:// news. bbc. co. uk/ hi/english/uk_politics/newsid_ 1576000/ 1576541. st m
http:// news. bbc. co. uk/ hi/engl i sh/busi ness/ newsi d 1576000/ 1576290. st m
http:// news. bbc. co. uk/ hi/engli sh/entertai nnent/ nusic/

newsi d_ 1576000/ 1576599. st m

http:// news. bbc. co. uk/ hi/english/sci/tech/ newsi d_1574000/ 1574048. st m
http:// news. bbc. co. uk/ hi /english/ heal th/ newsi d 1576000/ 1576776. st m
http:// news. bbc. co. uk/ hi/english/in_depth/uk_politics/2001/

conf erences_2001/ 1 abour/

newsi d_1576000/ 1576086. st m

At least that's what the program said once |l got scan_bbc_strean() initsfina working state shown above. As|
was writing it and testing bits of it, | could run and re-run the program, scanning the same local file. Then onceit's
working on the local file (or files, depending on how many test cases you have), you can write the routine that gets
what's at a URL, makes a stream pointing to its content, and runs a given scanner routine (such asscan_bbc_stream

())onit:

ny $browser;
BEG N {
use LWP:: User Agent;
$browser = LWP:: User Agent - >new,
and any ot her $browser initialization code here

}

sub url _scan {
ny($scanner, $url) = @;
di e "What scanner function?" unless $scanner and ref($scanner) eq
' CODE' ;
di e "What URL?" unl ess $url;
nmy $resp = $browser->get ($url);
die "Error getting $url: ", $resp->status_line
unl ess $resp->i s_success;
die "It's not HTM,, it's ", $resp->content_type
unl ess $resp->content _type eq 'text/htm";

ny $stream = HTM.:: TokePar ser- >new($resp->content_ref)
|| die "Couldn't rmake a streamfrom $url\'s content!?";
new() on a string wants a reference, and so that's what

we give it! HITP:: Response objects just happen to
offer a nethod that returns a reference to the content.

$scanner - >($stream $resp->base);

}

If you thought the contents of $ur | could be very large, you could save the contents to atemporary file, and start the
stream off with HTML: : TokePar ser - >new $t enpfi | e) . Withtheaboveur| _scan(), toretrievethe BBC
main page and scan it, you heed only replace our test statement that scans the input stream, with this:

url _scan(\ &scan_bbc_stream 'http://news. bbc.co.uk/");

And then the program outputs the URLs from the live BBC main page (or will die with an error message if it can't get it).
To actually complete the task of getting the printed URL s to each open a new browser instance, well, this depends on
your browser and OS, but for my MS Windows laptop and Netscape, this Perl program will do it:

nmy $ns = "c:\\programfiles\\netscape\\comuni cator\\ program\ net scape.

exe";
die "$ns doesn't exist" unless -e $ns;
die "$ns isn't executable" unless -x $ns;

while (<>) { chonp; m\S/ and system($ns, $) and die $!; }

Thisisthen called as.
C\perlstuff> perl bbc_urls.pl | perl urls2ns.pl
Under Unix, the correct syst em() command is:

systen("netscape '$url' &")

41 PREVIOUS HOME
7.3. Individual Tokens BOOK INDEX

HEXT B
7.5. More HTML :: TokeParser Methods

_ ; AL 4N
! = Ity \ YL IN A NUTSHELL PROGRAMMING
BOOKSHELF PERL & LWP -~ LEARNING PERL 2nd Edition PERL
HOME 3rd Edition 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

MASTERING PERL COOKBOOK
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

9.4. Example: BBC News

In Chapter 7, "HTML Processing with Tokens', we considered the task of extracting the headline link URLs from the
BBC News main page, and we implemented it in terms of HTML ::TokeParser. Here, we'll consider the same problem
from the perspective of HTML:: TreeBuilder.

To review the problem: when you look at the source of http://news.bbc.co.uk, you discover that each headlinelink is
wrapped in one of two kinds of code. There are alot of headlines expressed with code like this:

<B CLASS="h3"><A href="/hi/english/business/newsid 1576000/ 1576290.
st m' >Bank
of England mulls rate cut

<B CLASS="h3"><A href="/hi/english/uk _politics/newsid 1576000/ 1576541.
st nf' >Eur o
battle revived by Blair speech

and some headlines expressed with code like this:

<B class="h2"> Swi ssair shares wi ped out </ B>

</ A>

<B class="hl1">M d-East blow to US anti-terror drive

</ A>

(Note that in this second case, the B element's class value can be h1 or h2.)

In both cases, we can find what we want by first looking for B elements. We then look for the hr ef attribute either on
the A element that's a child of this B element, or on the A element that's this B element's parent. Whether we look for a
parent A node or a child A node depends on the class attribute of the B element. To make sure we're on the right track, we
can code up something to formalize our idea of what sorts of nodes we want, and call the dunp method on each of them.

use strict;
use HTM.:: TreeBuil der 3;

ny $tree = HTM.:: Tr eeBui | der->new();

$tree->parse_file('bbc.htm') || die $'; # the saved source from BBC
News

scan_bbc_tree($tree, 'http://news.bbc.co.uk/');

$tree->delete();

sub scan_bbc_tree {
ny($root, $dochbase) = @;

$docbase will be needed if we want to absolutize the URL
foreach ny $b ($root->find by tag nane('b')) {
ny $class = $b->attr('class') || next;

if($class eq 'h3") {
expect one 'a' elenment as a child
print "Found a b-h3. Dunping it:\n";
$b- >dunp;

http://news.bbc.co.uk/

} elsif($class eq 'hl' or $class eq 'h2') {
expect the parent to be an 'a'
print "Found a b-h[1-2]. Dunping its parent:\n";
$b- >par ent - >dunp;
}
}

return;
}

When run on the full file, that program produces this outpult:

Found a b-h3. Dunping it:
<b class="h3"> @.1.2.2.0.0.3.2.0.3.0.0.0.0.6
<a href="/sport/hi/english/in_depth/2001/engl and_i n_zi mbabwe/
newsi d_1574000/
1574824.stnm'> @.1.2.2.0.0.3.2.0.3.0.0.0.0.6.0
"Zi mbabwe suffer treble bl ow

Found a b-h3. Dunping it:
<b class="h3"> @.1.2.2.0.0.3.2.0.6.1.0

@.1.2.2.0.0.3.2.0.6.1.0.0
"UK housi ng market stalls"”

Found a b-h[1-2]. Dunping its parent:

@.1.2.2.0.0.1.2.0.14.2
<b class="hl1"> @.1.2.2.0.0.1.2.0.14.2.1
"UK hate crine laws to be tightened"

 @.1.2.2.0.0.1.2.0.14.2.2

Found a b-h[1-2]. Dunping its parent:

@.1.2.2.0.0.1.2.0.18.2

<b class="h2"> @.1.2.2.0.0.1.2.0.18.2.1
"Leeds footballers' trial begins"

 @.1.2.2.0.0.1.2.0.18.2.2

[...and others just like those...]

This output shows all the sorts of nodes from which we'll want to extract data and contains no other kinds of nodes. With
the situation we see in the first two cases, the b element with the cl ass="h3" attribute indeed has only one child node,
which isan a element whose hr ef we want, and in the latter two cases, we need only look to the hr ef attribute on the
parent of the b element (which hasacl ass="h1" orcl ass="h2" attribute). So because we're identifying things
correctly, we can go ahead and change our code so that instead of dumping nodes, it will actually pull the hr ef sout,
absolutize them, and print them:

sub scan_bbc tree {
ny($root, $dochase) = @;
foreach ny $b ($root->find_by tag nanme('b')) {
ny $class = $b->attr('class') || next;
if($class eq 'h3') {
Expect one 'a' elenent as a child
ny @hildren = $b->content |ist;
if(@hildren == 1 and ref $children[0] and $children[0]->tag eq
‘a')
print URI->new abs(

$children[0]->attr (' href') || next,
$dochase
), "\n";
}
} elsif($class eq 'hl' or $class eq 'h2') {
Expect an 'a' elenment as a parent
ny $parent = $b->parent;
i f($parent and $parent->tag eq 'a') {
print URI->new abs(

$parent->attr (' href') || next,
$docbase
), "\n";
}
}
}
return;

}

When run, this correctly reports al the URLs in the document:

http:// news. bbc. co. uk/ sport/hi/english/in_depth/2001/

engl and_i n_zi nbabwe/ newsi d_

1574000/ 1574824. st m

htt p: // news. bbc. co. uk/ hi / engl i sh/ busi ness/ newsi d_1576000/ 1576546. st m
http:// news. bbc. co. uk/ hi/english/uk_politics/newsid 1576000/ 1576051. stm
http:// news. bbc. co. uk/ hi /engl i sh/ uk/ newsi d 1576000/ 1576379. st m
[...etc...]

If we want to make our program also capture the text inside the link, that's straightforward too; we need only change
each occurrence of:

print URI->new abs(...
to:

print $b->as text(), "\n ", URI->new abs(...
Then you'll get output like this:

UK housing market stalls

http: // news. bbc. co. uk/ hi / engl i sh/ busi ness/ newsi d_1576000/ 1576546. st m
UK hate crine laws to be tightened

http:// news. bbc. co. uk/ hi/english/uk_politics/newsid_1576000/ 1576051
stm
Leeds footballers' trial begins

http:// news. bbc. co. uk/ hi/engli sh/uk/ newsi d_1576000/ 1576379. st m

Swi ssair shares w ped out

http:// news. bbc. co. uk/ hi/engl i sh/busi ness/ newsi d 1576000/ 1576636. st m

[...]

Notice that in the fourth link there, we have a space at the start. Wanting to not have whitespace at the start or end of
as_text() iscommon enough that there's amethod just for that: as_t ri mmed_t ext (), which wraps around
as_text(),removesany whitespace at the start or end, and collapses any whitespace nodes on the inside.[3] When
wereplaceour callstoget _text () withcalstoget tri med_text(),thatlast link changesto this:

[3]Thisisexactly the same asthe $st r eam >get _t ext () versus$st r eam
>get _trimred_text() distinctionin HTML::TokeParser.

[-.-]
Swi ssair shares w ped out
http:// news. bbc. co. uk/ hi/engl i sh/busi ness/ newsi d_1576000/ 1576636. st m

[...]

that is, without the space at the start of the line.

4 PREVIOUS HOME NEXT B
9.3. Processing BOOK INDEX 9.5. Example: Fresh Air

PROGRAMMING ‘

') PERL & XML
i Yol i “ IN A MUTSHELL
BOOKSHELF PERL & LWF - LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK Y
HOME 3rd Edition 3rd Edition PERL/TK .

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

6.5. Example: Extracting Linksfrom a Bookmark File

Suppose we want to delegate to a Perl program the task of checking URLs in my Netscape bookmark file. I'm told that
thisisn't the same format asis used in newer Netscapes. But, antiquarian that | am, | still use Netscape 4.76, and thisis
what the file looks like:

<! DOCTYPE NETSCAPE- Bookmar k-fil e-1>

<I-- This is an autonatically generated file.
It will be read and overwitten.

Do Not Edit! -->

<Tl TLE>Booknmar ks for Sean M Burke</ Tl TLE>
<H1>Booknar ks for Sean M Burke</H1>

<DL><p>
<DT><H3 ADD DATE="911669103">Per sonal Tool bar Fol der </ H3>
<DL><p>
<DT><A HREF="http://libros.unm edu/" ADD DATE="908672224"
<DT><A HREF="http://ww. nel vyl . ucop. edu/" ADD_DATE="900184542"
<DT><A HREF="htt p: //ww. guar di an. co. uk/" ADD DATE="935897798"
<DT><A HREF="htt p://ww. bookt v. or g/ schedul e/ "
ADD_DATE="935897798"
<DT><A HREF="http://ww. suck. com " ADD DATE="942604862"
...and so on...

There are three important things we should note here:

. Each bookmark itemison aline of its own. This means we can use the handy Perl idioms for line-at-a-time
processing suchaswhi | e(<IN>) {...} or @i nes =<I N>.

. Every URL isabsolute. There are no relative URLs such asHREF="". . / st uf f . ht m " . That means we don't
have to bother with making URL s absolute (not yet, at least).

. Theonly thing we want from thisfileisthe URL inthe HREF="". . . ur| .. ." part of the line—and if thereis
no HREF on the line, we can ignore thisline. This practically begs us to use a Perl regexp!

So we scan thefileoneline at atime, find URLsin linesthat haveaHREF="". . . url ... " inthem, then check those
URLSs. Example 6-4 shows such a program.

Example 6-4. bookmark-checker

#!/usr/ bin/perl -w
booknmar k- checker - check URLs in Netscape bookmark file

use strict;
use LWP;
ny $browser;
ny $bnk _file = $ARGV 0]
|| "c:/Program Fil es/ Net scape/ user s/ sburke/ bookmark. ht m ;
open(BMK, "<$bnk file") or die "Can't read-open $bnk file: $'";

while (<BMK>) {

check url ($1) if m HREF="([""\s]+)" /;
}

print "# Done after ", tine - $"T, "s\n";
exit;

nmy %een; # for tracking which URLs we've al ready checked

sub check_url {
Try to fetch the page and report failure if it can't be found
This routine even specially reports if the URL has changed
to be on a different host.

my $url = URI->new $_[0])->canonical

Skip mailto: links, and in fact anything not http:..
return unl ess $url->scheme() eq 'http';

Kill anything like "#staff' in "http://luddites.int/themtxt#staff’
$ur | - >f ragnent (undef) ;

Kill anything like the currently quite usel ess but
occasionally occurring 'jschnmo@ in

‘'http://jschnro@uddites.int/themtxt'

(It's usel ess because it doesn't actually show up
in the request to the server in any way.)

$url - >useri nfo(undef);

return if $seen{$url}; # silently skip duplicates
$seen{Surl} = 1;

init_browser() unless $browser;

ny $response = $browser->head($url);

ny $found = URI->new $response->request->url)->canonical;
$seen{$found} = 1; # so we don't check it later.

If the server conplains that it doesn't understand "HEAD
(405 is "Method Not Allowed"), then retry it with "GET":
$response = $browser->get ($f ound) if $response->code == 405;

i f($found ne $url) {
i f($response->is_success) {
Report the nove, only if it's a very different URL.
That is, different schenes, or different hosts.
i f(
$f ound- >schene ne $url - >schene

or
| c($found->can('host') ? $found->host : '')
ne
I c($url->can('host') ? $url->host : "')
) {
print "MOVED: $url\n -> $f ound\ n",
}
} else {
print "MOED: $url\n -> $f ound\ n",

but that new URL is bad: ",
$response->status_line(), "\n"

} elsif($response->is_success) {
print "## okay: $url\n";
} else {

print "$url is bad! ", $response->status_line, "\n";
}

return;

}

sub init_browser {
$browser = LWP:: User Agent - >new;

Speak only HTTP - no nmailto or FTP or anything.
$browser->protocols_allowed(["http']);

And any other initialization we mght need to do.

return $browser;

}
And for thisrigidly formatted input file, our line-at-a-time regexp-based approach works just fine; our simple loop:
while (<BMK>) { check_url ($1) if m HREF="([~"\s]+)" [}

really does catch every URL in my Netscape bookmark file.

4a PREVIOUS HOME NEXT %
6.4. When Regular Expressions Aren't BOOK INDEX 6.6. Example: Extracting Linksfrom
Enough Arbitrary HTML

JK

RL
N » AN IN A NUTSHELL
PERL & WP~ LEARNING PERL 2nd Edition PERL MASTERING PERL CODKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 1. Introduction to Web Automation

Contents:

The Web as Data Source

History of LWP

Installing LWP
Words of Caution

LWPin Action

LWP (short for "Library for World Wide Web in Perl") is a set of Perl modules and object-oriented classes for getting
data from the Web and for extracting information from HTML. This chapter provides essential background on the LWP
suite. It describes the nature and history of LWP, which platformsit runs on, and how to download and install it. This
chapter ends with a quick walkthrough of several LWP programs that illustrate common tasks, such as fetching web
pages, extracting information using regular expressions, and submitting forms.

1.1. The Web as Data Source

Most web sites are designed for people. User Interface gurus consult for large sums of money to build HTML code that
is easy to use and displays correctly on all browsers. User Experience gurus wag their fingers and tell web designersto
study their users, so they know the human foibles and desires of the ape descendents who will be viewing the web site.

Fundamentally, though, aweb site is home to data and services. A stockbroker has stock prices and the value of your
portfolio (data) and forms that let you buy and sell stock (services). Amazon has book | SBNs, titles, authors, reviews,
prices, and rankings (data) and forms that let you order those books (services).

It's assumed that the data and services will be accessed by people viewing the rendered HTML. But many a programmer
has eyed those data sources and services on the Web and thought "1'd like to use those in a program!” For example, they
could page you when your portfolio falls past a certain point or could calculate the "best" book on Perl based on the ratio
of its price to its average reader review.

LWP lets you do this kind of web automation. With it, you can fetch web pages, submit forms, authenticate, and extract
information from HTML. Once you've used it to grab news headlines or check links, you'll never view the Web in the
same way again.

Aswith everything in Perl, there's more than one way to automate accessing the Web. In this book, we'll show you
everything from the basic way to access the Web (via the LWP::Simple module), through forms, all the way to the gory
details of cookies, authentication, and other types of complex requests.

1.1.1. Screen Scraping

Once you've tackled the fundamentals of how to ask aweb server for a particular page, you still have to find the
information you want, buried in the HTML response. Most often you won't need more than regular expressions to
achieve this. Chapter 6, "Simple HTML Processing with Regular Expressions’ describes the art of extracting information
from HTML using regular expressions, although you'll see the beginnings of it as early as Chapter 2, "Web Basics’,
where we query AltaVistafor aword, and use a regexp to match the number in the response that says "We found
[number] results.”

The more discerning LWP connoisseur, however, treats the HTML document as a stream of tokens (Chapter 7, "HTML

Processing with Tokens', with an extended example in Chapter 8, "Tokenizing Walkthrough') or as a parse tree (Chapter
9, "HTML Processing with Trees"). For example, you'll use atoken view and atree view to consider such tasks as how

to catch <i ng. . . > tags that are missing some of their attributes, how to get the absolute URL s of al the headlines on
the BBC News main page, and how to extract content from one web page and insert it into a different template.

In the old days of 80x24 terminals, "screen scraping” referred to the art of programmatically extracting information from
the screens of interactive applications. That term has been carried over to mean the act of automatically extracting data
from the output of any system that was basically designed for interactive use. That's the term used for getting data out of
HTML that was meant to be looked at in a browser, not necessarily extracted for your programs' use.

1.1.2. Brittleness

In some lucky cases, your LWP-related task consists of downloading afile without requiring your program to parseitin
any way. But most tasks involve having to extract a piece of data from some part of the returned document, using the
screen-scraping tactics as mentioned earlier. An unavoidable problem is that the format of most web content can change
at any time. For example in Chapter 8, "Tokenizing Walkthrough”, | discuss the task of extracting data from the program
listings at the web site for the radio show Fresh Air. The principle | demonstrate for that specific caseistruefor al
extraction tasks: no pattern in the datais permanent and so any data-parsing program will be "brittle."

For example, if you want to match text in section headings, you can write your program to depend on them being inside
<h2>. .. </ h2> tags, but tomorrow the site's template could be redesigned, and headings could then bein <h3
class="hdl n' >. .. </ h3> tags, at which point your program won't see anything it considers a section heading. In
practice, any given site's template won't change on adaily basis (nor even yearly, for most sites), but as you read this
book and see examples of data extraction, bear in mind that each solution can't be the solution, but is just a solution, and
atemporary and brittle one at that.

As somewhat of alesson in brittleness, in this book | show you data from various web sites (Amazon.com, the BBC
News web site, and many others) and show how to write programs to extract data from them. However, that code is
fragile. Some sites get redesigned only every few years; Amazon.com seems to change something every few weeks. So
while I've made every effort to provide accurate code for the web sites as they exist at the time of thiswriting, | hope you
will consider the programsin this book valuable as |earning tools even after the sites will have changed beyond
recognition.

1.1.3. Web Services

Programmers have begun to realize the great value in automating transactions over the Web. There is now a booming
industry in web services, which is the buzzword for data or services offered over the Web. What differentiates web
services from web sitesis that web services don't emit HTML for the ultimate reading pleasure of humans, they emit
XML for programs.

This removes the need to scrape information out of HTML, neatly solving the problem of ever-changing web sites made
brittle by the fickle tastes of the web-browsing public. Some web services standards (SOAP and XML-RPC) even make
the remote web service appear to be a set of functions you call from within your program—if you use a SOAP or XML-

RPC toolkit, you don't even have to parse XML!

However, there will always be information on the Web that isn't accessible as aweb service. For that information, screen
scraping is the only choice.

4 PREVIOUS HOME NEXT B
0.7. Acknowledgments BOOK INDEX 1.2. History of LWP

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

5.4. Idiosyncrasies of HTML Forms

This section explains how the various form fields (hidden data, text boxes, etc.) are turned into data that is sent to the
server. For information on the cosmetic features, such as the attributes that control how big the form object appears on
the screen, see Web Design in a Nutshell (O'Reilly), HTML & XHTML: The Definitive Guide (O'Reilly), or the W3C's
explanation of HTML 4.01 forms at http://www.w3.org/TR/html401/interact/forms.

5.4.1. Hidden Elements

Aninput element witht ype=hi dden creates aform pair consisting of the value of its nane attribute and the value of
itsval ue attribute. For example, this element:

<i nput type=hi dden nane="pi e" val ue="neri ngue">
This doesn't display anything to the user, but when submitted, creates aform pair pi e=ner i ngue.
5.4.2. Text Elements

Aninput element witht ype=t ext (or withnot ype attribute at all) creates a one-line form box in which the user can
type whatever she wants to send on thisform. If theresaval ue attribute, its value iswhat's filled in when the formis
first rendered, or when the user hits a Reset form button.

For example, this element:
<i nput type=text nane="pie_filling" value="cherry">

creates aform box with "cherry" filled in. If the user submits the form asis, thiswill make aform pair
pi e _filling=cherry.Iftheuser changesthistocr énme br Ul ée, thiswill make aform pair
pie_filling=creéme brU ée, or, after it gets URL encoded, pi e_fi | | i ng=cr ¥&E8ne+br %Bl %E9e.

5.4.3. Password Elements

Aninput element witht ype=passwor d works exactly asif it hadt ype=t ext , except the characters on screen in
that box are made unreadabl e to anyone who might be looking over the user's shoulder. Thisistypically done by
showing every character of the current value as * . For example:

<i nput type=password nanme="pie_filling" value="cherry">

Thiswill have theinitial valuecher ry, except it will appear as* ** * * * | If the user enterscr éne br Ul ée, that will
be the current value, but it will display as* *********x* Theaform pairs submitted are just asif it were
t ype=t ext ,thatis pi e _filling=cherryorpie _filling=creéme brU ée.

5.4.4. Checkboxes

Aninput element witht ype=checkbox creates an on/off form button. The user cannot change the value of the
element beyond just turning it on or off. For example:

<i nput type=checkbox nane="a | a node" val ue="Pretty pl ease!">

If the user checks this box and submits the form, it will send the form pair consisting of the element'snane and val ue

http://www.w3.org/TR/html401/interact/forms

attribute'svalues. In thiscase, thepairisa |l a node=Pretty pl ease!, or, after it gets URL encoded, 0+ a
+node=Pr et t y+pl ease%21. Notethat if thereisno val ue attribute, you get the pair name=on, asif therewerea
val ue="on" inthiselement. Incidentally, the user doesn't typically see whatever is specified for theval ue attribute.

Note that this differsfromt ype=t ext input elementsin thisway: int ype=t ext input elements, theval ue attribute
sets the default value of the form, but int ype=checkbox elements, theval ue attribute controls what value is sent if
the checkbox is turned on when the form is submitted. By default, a checkbox is off upon rendering a new form (or when
the user hits Reset); to make a checkbox element on by default, add the checked attribute:

<i nput type=checkbox nanme="a |a node" ivalue="Pretty please!" checked>

5.4.5. Radio Buttons

Input elementswitht ype=r adi o behave like checkboxes, except that turning one radio button element on will turn off
any other radio button elements with the same nane valuein that form. As the name "radio button" suggests, thisis
meant to be like the station preset buttons on many models of old car radios, where pressing in one button would make
any selected one pop out.

Moreover, thereistypically no way to turn off aradio button except by selecting another in the same group. An example
group of radio buttons:

<i nput type=radi o name="a | a node" val ue="nope" checked>
nope

<i nput type=radi o name="a | a node" val ue="w | enmon" >
with | enron sorbet

<i nput type=radi o nane="a | a node" value="wvanilla" >
with vanilla ice creanxbr>

<i nput type=radi o nane="a | a node" val ue="w chocol ate" >
wi th chocol ate ice cream

By default, the nope element is on. If the user submits this form unchanged, thiswill send the form paira | a
node=nope. Selecting the second option ("with lemon sorbet") also deselects the first one (or whatever other "ala
mode" element is selected), and if the user submitsthis, it well send theformpaira |1 a node=w/ | enon.

Note that the checked attribute can be used to turn at ype=r adi o element on by default, just as with

t ype=checkbox elements. Different browsers behave differently when aradio button group has no checked element
init, or more than one. If you need to emulate the behavior of a particular browser in that case, experiment with the
formpairs.pl program explained earlier, to see what form pair(s) are sent.

5.4.6. Submit Buttons

Aninput element witht ype=submi t produces a button that, when pressed, submits the form data. There are two types
of submit buttons: with or without anamne attribute.

<i nput type=submit val ue="Go!">
The name-less element forms a button on screen that says "Go!". When pressed, that button submits the form data.
<i nput type=subnit value="Go!" nane="verb">

This displays the same as the nae-less element, but when pressed, it also creates aform pair in the form it submits,
consisting of ver b=Go! (or after URL encoding, ver b=Go%21). Note that the val ue attribute is doing double duty
here, supplying both the value to be submitted as well as what should be displayed on the face of the button.

The purpose of this sort of button is to distinguish which of several submit buttonsis pressed. Consider aform that
contains these three submit buttons:

<i nput type=subnit name="what to_do" val ue="Continue Shopping">
<i nput type=submt nanme="what_to_do" val ue="Check Qut">
<i nput type=subnit name="what to_do" val ue="Erase Order">

All of these will submit the form, but only if the first oneis pressed will there beawhat _t o_do=Cont i nue
Shoppi ng pair in the form data; only if the second one is pressed will there beawhat _t o_do=Check Qut pairin
the form data; and only if the third oneis pressed will there beawhat _t o_do=Er ase Or der pair in the form data.

Note, incidentally, that in some cases, it is possible to submit aform without pressing a submit button! Thisis not
specified in the HTML standard, but many browsers have the feature that if aform contains only onet ype=t ext field,
if the user hits Enter while the cursor isin that field, the form is submitted. For example, consider this form:

<formtype=get action="searcher.cgi">
<i nput type=hi dden nane="sessi on" val ue="3.14159">
<i nput type=text nane="key" val ue="">
<i nput type=subnit name="verb" val ue="Search!">

</ forme

If the user types "meringue” in the input box, then hits the " Search!" button with the mouse pointer, there will be three
form pairs submitted: sessi on=3. 14159, key=ner i ngue, and ver b=Sear ch! . But if the user merely types
"meringue” in the input box and hits the Enter key, there will be only two form pairs submitted: sessi on=3. 14159
and key=ner i ngue. No form pair for the submit button is sent then, because it wasn't actually pressed.

5.4.7. Image Buttons

Aninput element witht ype=i mage is somewhat likeat ype=subm t element, except instead of producing a button
that the user pressesin order to submit the form, it produces an inline image that the user clicks on to submit the form.

Also, whereasat ype=subm t button generates one form pair when pressed, nane=val ue, from the element's name
and val ue attributes, at ype=i nage element generates two form pairs when pressed: nane. x=acr oss and nane.
y=down, reflecting the point in the image where the user's pointer was when he clicked on it. An example of typical

t ype=i mage element syntax will illustrate this:

<i nput type=i mage nanme="woohah" src="do_it.gif">

And suppose that do_it.gif is an image 100 pixels wide by 40 high, and looks like the image in Figure 5-1.

S NTTY

AN T

Figure 5-1. A sample submit button

If the user clicks the pointer over the absolute top-leftmost pixel of that image as drawn by the above <i nput

type=i mage . .. > eement inside alarger form element, it will submit the form along with two form pairs: woohah.
x=0 and woohah. y=0. If the user instead clicks the pointer over the four-corners design in the middle of the"O" in
"DO IT!", this happens to be 38 pixels from the left edge of the image, and 19 pixels from the top edge of the image, the
form is submitted with the two form pairswoohah. x=38 and woohah. y=19.

While this imagemap-like feature of input t ype=i mage elements would obviously be quite useful for, say, click-to-
zoom maps, most uses of input t ype=i mage elements are actually merely cosmetic, and the inlined image isjust a

fancy-looking version of the submit button. As such, the programs that process most such forms will just ignore the
values of the nane. x and nane. y form pairs.

Consider this simple form:

<form type=post action="searcher.cgi">

<i nput type=hi dden name="session" val ue="3.14159">

<i nput type=text name="key" val ue="">

<i nput type=i nage nane="in-english" src="usa flag.png">

<i nput type=i nage name="in-spani sh" src="nmex_fl ag. png">
</ fornme

Thiswill render an input box followed by aU.S. flag image, then a Mexican flag image. There are three possible ways
this can be submitted. First, if the user selects the input box to plant the cursor there, types "chocolate”, and presses
Enter, thiswill submit the form (viaa POST method) to the form searcher.cgi with just two form pairs:

sessi on=3. 14159 and key=chocol at e.

Secondly, if the user types "chocolate”, then puts the pointer over the U.S. flag and clicksit, it will submit the form with
four form pairs: sessi on=3. 14159, key=chocol at e,i n-engl i sh. x=12,andi n- engl i sh. y=34, where
12 and 34 are the across and down coordinates of the point in the U.S. flag where the user clicked.

Or thirdly, if the user types "chocolate", then puts the pointer over the Mexican flag and clicksit, it will submit the form
with four form pairs: sessi on=3. 14159, key=chocol at e, i n- spani sh. x=12,andi n- spani sh. y=34,
where 12 and 34 are the across and down coordinates of the point in the Mexican flag where the user clicked.

Incidentally, the HTML specifications do not say how browsers should behave when there isno nane=what ever
attribute present in an input t ype=i mage element, but common practiceisto create form pairs with keys named x and
y (i.e, x=38 andy=19).

5.4.8. Reset Buttons

A type=r eset input element produces no form pair and does not submit the form. It merely creates a button that the
user can press to reset the form's contents to their default values, back to the way they were when the form was first
rendered. Theval ue attribute is used only to put text on the button's face. For example:

<i nput type=reset val ue="Neverm nd">
This creates areset button with the text "Nevermind” on it. It has no other effect.
5.4.9. File Selection Elements

A type=fi | e input element provides some set of controls with which the user can select alocal file. Usually this
appears asa"Browse..." button that brings up an "Open File..." window and atext box that lists the name of whatever
fileis selected. When afileis selected, it sets the value of the form pair as the content of the file. File parameters,
however, work in quite a different way from regular forms, and we deal with them in the Section 5.7, "File Uploads'

section later in this chapter.

5.4.10. Textarea Elements

At ext ar ea elementislikean <i nput type=t ext ... > element, except the user can enter many lines of text
instead of just one. Moreover, the syntax is different. Whereasan <i nput t ype=t ext . .. > element consists of just
one tag, with the default content in the val ue attribute, like so:

<i nput type=text name="pairnanme" value="default content">
at ext ar ea e ement consists of a start-tag, default content, and an end-tag:

<t ext area nane="pai rnane">Default content, first |ine.
Anot her |i ne.
The | ast line.</textarea>

5.4.11. Select Elements and Option Elements

Onefinal construct for expressing form controlsisasel ect element containing some number of opt i on elements.
Thisisusually rendered as a drop-down/pop-up menu or occasionaly as a scrollablelist. In either case, the behavior is
the same: the user selects an option from the list. The syntax is:

<sel ect name="a | a node">
<opti on val ue="nope" >Nope</ opti on>
<option value="wlenmn">w th | enmon sorbet </ option>
<option value="w vanilla">wth vanilla ice creanx/option>
<option val ue="w chocol ate">with chocol ate ice creanx/opti on>
</ sel ect >

That is, onesel ect element with ananme=st r i ng attribute contains some opt i on elements, each of which hasa
val ue=stri ng attribute. The sel ect element generates one form pair, using the select element's nanme=st r i ng
attribute and the val ue=st r i ng attribute from the chosen opt i on element. So in the example above, if the user
chooses the option that showed on the screen as "with lemon sorbet”, this sends the form pair & | a node=w/ | enon,
or, onceit's URL encoded, &0+ a+node=w2F| enon.

Any opt i on elementsthat have no val ue=st r i ng attribute get their values from the content of the element. So these
opt i on elements:

<option>Thi s &anp; That </ option>
<option>And the other

mean the same thing as:

<option value="This &anp; That">This &anp; That</option>
<option value="And the other">And the other</option>

When the form isfirst rendered, the first element istypically selected by default, and selecting any other deselectsit. By
providing a selected attribute in an opt i on element, you can force it to be the selected one when the form first renders,
just asthe checked attribute does for checkbox input elements. Also, the </ opt i on> end-tag is optional.

Putting all that together, this code:

<sel ect nane="pie filling">
<opti on>Appl e crunch
<option sel ect ed>Punpki n
<option val ue="M nce-neat">M nce
<opti on>Bl ueberry
<opti on>Qui nce
</ sel ect >

means the same thing as this code:

<sel ect nanme="pie filling">
<option val ue="Appl e crunch">Appl e crunch</opti on>
<option val ue="Punpki n" >Punpki n</ opti on>
<opti on val ue="M nce-neat " >M nce</ opti on>
<option val ue="Bl ueberry" sel ect ed>Bl ueberry</option>
<option val ue="Qui nce">Qui nce</ opti on>

</ sel ect >

with the single exception that when the first one is rendered on the screen, it starts out with "Pumpkin” selected by
default, whereas in the second one, "Blueberry" is selected by default.

There are two other kinds of differencesin the code: the latter has </ opt i on> tags, but the former does not, and the
former leaves out someval ue="..." atributes where the |atter always has them. However, neither of these two kinds

of differences are significant; the browser sees both blocks of code as meaning the same thing.

If thesel ect element hasanul ti pl e attribute, as here:

<sel ect nanme="a | a node" nultiple>
<option val ue="nope" >Nope</ opti on>

<option value="w | enon">wi th | enon sorbet</option>
<option value="w vanilla">with vanilla ice creanx/option>
<option val ue="w chocol ate">w th chocol ate i ce creanx/option>

</ sel ect >

the user is allowed to select more than one option at atime. (And incidentally, this typically forces the options to appear
asascrollablelist instead of as a drop-down/pop-up menu.) Thisnul ti pl e featureisrarely used in practice.

41 PREVIOUS HOME
5.3. Automating Form Analysis BOOK INDEX

MEXT m
5.5. POST Example: License Plates

\ AL
i i ‘i_. g IN A MUTSHELL
PERL & LWP -~ LEARMING PERL 2nd Edition PERL
3rd Edition 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

&
A

MASTERING PERL COOKBOOK
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

7.3. Individual Tokens

Now that you know the composition of the various types of tokens, let's see how to use HTML :: TokeParser to write
useful programs. Many problems are quite ssmple and require only one token at atime. Programs to solve these problems
consist of aloop over al the tokens, with ani f statement in the body of the loop identifying the interesting parts of the
HTML:

use HTM.:: TokePar ser;
ny $stream = HTM.:: TokePar ser - >new $f i | enane)
|| die "Couldn't read HTML file $filenane: $!'";
For a string: HTM.::TokeParser->new \$string_of_htm);

while (ny $token = $stream >get _t oken) {
if ($token->[0] eq 'T'") { # text
process the text in $text->[1]

} elsif ($token->[0] eq 'S) { # start-tag
ny($t agnanme, $attr) = @token[1, 2];
consider this start-tag...

} elsif ($token->[0] eq 'E) {
ny $tagname = $token->[1];
consider this end-tag

}

ignoring coments, declarations, and Pls

}
7.3.1. Checking Image Tags
Example 7-1 complains about any i ng tagsin adocument that are missing al t , hei ght , or wi dt h attributes:
Example 7-1. Check tags

whil e(my $token = $stream >get _token) {
i f($token->[0] eq 'S and $token->[1] eq 'ing') {
ny $i = $token->[2]; # attributes of this ing tag
ny @ack = grep !exists $i->{$_}, gmalt height wdth);
print "Mssing for ", $i->{"src'} || "????", ": @ack\n" if @ ack;
}
}

When run on an HTML stream (whether from afile or a string), this outputs:

M ssing for liza.jpg: height width
M ssing for ainee.jpg: alt
M ssing for laurie.jpg: alt height w dth

Identifying images has many applications. making HEAD requests to ensure the URL s are valid, or making a GET
request to fetch the image and using Image::Size from CPAN to check or insert the hei ght and wi dt h attributes.

7.3.2. HTML Filters

A similar whi | e loop can use HTML ::TokeParser as a simple code filter. Y ou just pass through the $sour ce from
each token you don't mean to alter. Here's one that passes through every tag that it sees (by just printing its source as
HTML::TokeParser passesit in), except for i ng start-tags, which get replaced with the content of their al t attributes:

while (ny $token = $stream >get _t oken) {
if ($token->[0] eq 'S) {
if ($token->[1] eq "imy') {
print $token->[2]{'alt'} ||

} else {
print $token->[4];

}
}
el sif($token->[0] eq 'E) { print $token->[2] }
el sif($token->[0] eq 'T") { print $token->[1] }
el sif($token->[0] eq 'C) { print $token->[1] }
el sif($token->[0] eq 'D) { print $token->[1] }
el sif($token->[0] eq 'PI') { print $token->[2] }

}

So, for example, a document consisting just of this:

<l-- newentry -->

<p>Dear Di ary,

This is nme &anp; ny bal al ai ka, at Bal al ai kaCon 1998:
 Rock on! </ p>

isthen spat out asthis:

<I-- newentry -->

<p>Dear Di ary,

This is me &anp; ny bal al ai ka, at Bal al ai kaCon 1998:
BC1998! WHOOO Rock on! </ p>

48 PREVIOUS HOME MEXT B
7.2. Basic HTML::TokeParser Use BOOK INDEX 7.4. Token Sequences

PROGRAMMING ‘

] AL
- I i H) ‘- IM A NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition PERL
HOME 3rd Edition 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Chapter 9. HTML Processing with Trees

Contents:

Introduction to Trees
HTML::TreeBuilder
Processing

Example: BBC News
Example: Fresh Air

Treating HTML as a stream of tokensis an imperfect solution to the problem of extracting information from HTML. In
particular, the token model obscures the hierarchical nature of markup. Nested structures such as lists within lists or
tables within tables are difficult to process as just tokens. Such structures are best represented as trees, and the HTML ::
Element class does just this.

This chapter teaches you how to use the HTML.:: TreeBuilder module to construct trees from HTML, and how to process
those trees to extract information. Chapter 10, "Modifying HTML with Trees" shows how to modify HTML using trees.

9.1. Introduction to Trees
The HTML in Example 9-1 can be represented by the treein Figure 9-1.

Example 9-1. Simple HTML

lce cream
<l i >Whi pped cream
Hot apple pie
(mmpie)</Ili>

</ ul >
html
head body
ul
|
I T 1
li li li
| |
| |
“lce cream”™ “Whipped cream” “Hot apple pie” br “{mmm pie)”
Figure 9-1. HTML tree
In the language of trees, each part of thetree (suchashtm ,li,1 ce cream ,andbr) isanode There aretwo kinds

of nodesin an HTML tree: text nodes,which are strings with no tags, and elements, which symbolize not mere strings,

but things that can have attributes (such asal i gn=I ef t), and which generally came from an open tag (such as<l i >),
and were possibly closed by an end-tag (such as</ | i >).

When several nodes are contained by ancther, asthel i elements are contained by the ul element, the contained ones
are called children. Children of the same element are called siblings. For example, head and body are siblings, as they
are both children of the ht m element. Text nodes can't have children; only elements can have children.

Example 9-1 shows the difference between atag and an element. A tag is a piece of markup source, such asthe string

<l i >. An element is afeature of the tree that you get by parsing the source that contains tags. The relationship between
the two isn't lways easy to figure out by just looking at the source, because HTML lets you omit closing tags (such as </
[i >) and in some cases omit entire groups of tags (such as <ht m ><head></ head><body>. . . </ body></

ht m >, aswere omitted above but showed up in the tree anyway). Thisis unlike XML, where there are exactly as many
elementsin thetree asthereare <f 00>. . . </ f 00> tag pairsin the source.

Trees let you work with elements and ignore the way the HTML was marked up. If you're processing the tree shown in
Figure 9-1, you don't need to worry about whether the </ | i > tag was or was not present.

In LWP, each element in atreeisan HTML::Element object. The HTML:: TreeBuilder module parses HTML and
constructs atree for you. The parsing optionsin agiven HTML:: TreeBuilder object control the nature of the final tree
(for example, whether comments are ignored or represented in the tree). Once you have atree, you can call methods on it
that search for bits of content and emit parts of it asHTML or text. In the next chapter, we even see how to move nodes
around within the tree, and from tree to tree.

4 PREVIOUS HOME MEXT np
8.7. Alternatives BOOK INDEX 9.2. HTML::TreeBuilder
et Y
=L i) 3 - I A NUTSHELL PROGRAMMING \ & Xl
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK N
HOME 3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 11. Cookies, Authentication, and Advanced
Requests

Contents:

Cookies

Adding Extra Request Header Lines

Authentication

An HTTP Authentication Example:The Unicode Mailing Archive

Not every document can be fetched with asimple GET or POST request. Many pages require authentication before you
can access them, some use cookies to keep track of the different users, and still others want special valuesin the

Ref er er or User - Agent headers. This chapter shows you how to set arbitrary headers, manage cookies, and even
authenticate using LWP. You'll be able to make your LWP programs appear to be Netscape or Internet Explorer, log in
to a protected site, and work with sites that use cookies.

For example, suppose you're automating a web-based purchasing system. The server requires you to log in, then issues
you a cookie to prove you've been authenticated. Y ou must then send this cookie back to the server with every request
you make.

Or, more mundanely, suppose you're extracting information from one of the many web sites that check the User -

Agent header in your requests. If your User - Agent doesn't identify yours as a recent version of Netscape or Internet
Explorer, the server sends you back an "Upgrade your browser" page. Y ou need to set the User - Agent header to make
it appear that you are using Netscape or Internet Explorer.

11.1. Cookies

HTTP was originally designed as a statel ess protocol, meaning that each request is totally independent of other requests.
But web site designers felt the need for something to help them identify the user of a particular session. The mechanism
that does thisis called a cookie. This section gives some background on cookies so you know what LWP is doing for
you.

AnHTTP cookieisastring that an HTTP server can send to a client, which the client is supposed to put in the headers of
any future requests that it makesto that server. Suppose a client makes a request to a given server, and the response
headers consist of this:

Date: Thu, 28 Feb 2002 04:29:13 GV

Server: Apache/1.3.23 (W n32)

Content - Type: text/htm

Set - Cooki e: foo=bar; expires=Thu, 20 May 2010 01: 23:45 GMI; pat h=/

This means that the server wants all further requests from this client to anywhere on this site (i.e., under /) to be
accompanied by this header line:

Cooki e: f oo=bar

That header should be present in al this browser's requests to this site, until May 20, 2010 (at 1:23:45 in the morning),
after which time the client should never send that cookie again.

A Set - Cooki e line can fail to specify an expiration time, in which case this cookie ends at the end of this "session,"
where "session” is generally seen as ending when the user closes all browser windows. Moreover, the path can be
something more specific than / . It can be, for example, /dahut/, in which case a cookie will be sent only for URLs that
begin http://thishost/dahut/. Finally, a cookie can specify that this site is not just on this one host, but also on all other
hosts in this subdomain, so that if this host is search.mybazouki.com, cookies should be sent to any hostname under
mybazouki.com, including images.mybazouki.com, ads.mybazouki.com, extra.stuff.mybazouki.com, and so on.

All those details are handled by LWP, and you need only make afew decisions for a given LWP::UserAgent object:

. Should it implement cookies at al? If not, it will just ignore any Set - Cooki e: headers from the server and will
never send any Cooki e: headers.

. Should it load cookies when it starts up? If not, it will start out with no cookies.

. Should it save cookies to some file when the browser object is destroyed? If not, whatever cookiesit has
accumulated will be lost.

. What format should the cookies file be in? Currently the choices are either aformat particular to LWP, or
Netscape cookies files.

11.1.1. Enabling Cookies

By default, an LWP::UserAgent object doesn't implement cookies. To make an LWP::UserAgent object that implements
cookiesisas simple asthis:

ny $browser = LWP:: User Agent - >new();
$browser->cookie jar({});

However, that browser object's cookie jar (aswe call its HTTP cookie database) will start out empty, and its contents
won't be saved anywhere when the object is destroyed. Incidentally, the above code is a convenient shortcut for what one
previously had to do:

Load LWP class for "cookie jar" objects
use HTTP: : Cooki es;

ny $browser = LWP:: User Agent - >new();

ny $cookie_jar = HITP:: Cooki es->new);
$br owser - >cooki e_j ar($cookie_jar);

There's not much point to using the long form when you could use the short form instead, but the longer form becomes
preferable when you're adding options to the cookie jar.

11.1.2. Loading Cookies from a File
To start the cookie jar by loading from a particular file, usethef i | e option tothe HTTP: : Cooki es new method:

use HTTP: : Cooki es;
ny $cookie_jar = HTTP: : Cooki es- >new

file => "/ sone/ wher e/ cooki es. | wp",
);
ny $browser = LWP:: User Agent - >new;
$browser - >cooki e_j ar($cookie_jar);

In that case, the fileis read when the cookie jar is created, but it's never updated with any new cookies that the
$br owser object will have accumulated.

To read the cookies from a Netscape cookies file instead of from an LWP-format cookie file, use a different class,
HTTP::Cookies::Netscape, which isjust like HTTP::Cookies, except for the format that it reads and writes:

use HTTP: : Cooki es: : Net scape;
ny $cookie_jar = HTTP:: Cooki es: : Net scape- >new(

file => "c:/program fil es/ netscape/users/shazbot/cookies.txt",
);

ny $browser = LWP:: User Agent - >new,
$browser - >cooki e_j ar($cookie_jar);

11.1.3. Saving Cookies to a File

To make LWP write out its potentially changed cookie jar to a file when the object is no longer in use, add an
aut osave => 1 parameter:

use HTTP: : Cooki es;

ny $cookie_jar = HTTP:: Cooki es- >new
file => "/ sone/ wher e/ cooki es. | wp",
aut osave => 1,

);

ny $browser = LWP:: User Agent - >new,

$br owser - >cooki e_j ar($cookie_jar);

At time of thiswriting, using aut osave => 1 with HTTP::Cookies::Netscape has not been sufficiently tested and is not
recommended.

11.1.4. Cookies and the New York Times Site

Suppose that you have felt personally emboldened and empowered by al the previous chapters examples of pulling data
off of news sites, especially the examples of simplifying HTML in Chapter 10, "Modifying HTML with Trees". You
decide that a great test of your skill would be to write LWP code that downloads the stories off various newspapers web
sites and savesthem all in aformat (either plain text, highly simplified HTML, or even WML, if you have an

ht m 2w tool around) that your ancient but trusty 2001-era PDA can read. Thus, you can spend your commute time
onthetrain (or bus, tube, el, metro, jitney, T, etc.) merrily flipping through the day's news stories from papers al over
the world.

Suppose a'so that you have the basic HTML-simplifying code in place (so we shall not discussit further), and the LWP
code that downloads stories from all the newspapers is working fine—except for the New York Times site. And you can't
imagine why it's not working! Y ou have asimple HTML :: TokeParser program that gets the main page, finds all the
URLsto storiesin it, and downloads them one at atime. Y ou verify that those routines are working fine. But when you
look at the files that it claims to be successfully fetching and saving ($r esponse- >i s_success returnstrue and
everything!), all you see for each oneis a page that says "Welcome to the New Y ork Times on the Web! Already a
member? Log in!" When you look at the exact same URL in Netscape, you don't see that page at all, but instead you see
the news story that you want your LWP program to be accessing.

Then it hits you: years ago, the first time you accessed the New York Times site, it wanted you to register with an email
address and a password. But you haven't seen that screen again, because of... HTTP cookies! Y ou riffle through your
Netscape HTTP cookiesfile, and lo, there you find:

.nytimes.com TRUE / FALSE 1343279235 RM D 809acOadlcff 9a6b

Whatever this means to the New York Times site, it's apparently what differentiates your copy of Netscape whenit's
accessing astory URL, from your LWP program when it's accessing that URL.

Now, you could simply hardwire that cookie into the headers of the $br owser - >get () request's headers, but that
involves recalling exactly how lines in Netscape cookie databases trandate into headersin HTTP request. The optimally
lazy solution isto simply enable cookie support in this LWP::UserAgent object and have it read your Netscape cookie
database. So just after where you started off the program with this:

use LWpP;
ny $browser = LWP:: User Agent - >new();

Add this:

use HTTP: : Cooki es: : Net scape;
ny $cookie_jar = HTTP:: Cooki es: : Net scape- >new(

"file' =>"'c:/programfil es/netscapel/users/ne/cookies.txt'
);

$br owser - >cooki e_j ar ($cookie_jar);

With those five lines of code added, your LWP program's reguests to the New York Times's server will carry the cookie
that saysthat you're aregistered user. So instead of giving your LWP program the "Log in!" page ad infinitum, the New
York Times's server now merrily serves your program the news stories. Success!

41 PREVIOUS HOME NEXT B
10.5. Creating New Elements BOOK INDEX 11.2. Adding Extra Request Header
Lines

e

1 5 u
N A B A IN A NUTSHELL
PERL & LWP~ LEARNING PERL 2nd Edition PERL MASTERING = PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 3. The LWP Class Model

Contents:

The Basic Classes

Programming with LWP Classes
Insidethedo GET and do POST Functions
User Agents

HTTP::Response Objects

LWP Classes. Behind the Scenes

For full accessto every part of an HTTP transaction—request headers and body, response status line, headers and body—
you have to go beyond LWP::Simple, to the object-oriented modules that form the heart of the LWP suite. This chapter
introduces the classes that LWP uses to represent browser objects (which you use for making requests) and response
objects (which are the result of making arequest). Y ou'll learn the basic mechanics of customizing requests and
inspecting responses, which we'll usein later chapters for cookies, language selection, spidering, and more.

3.1. The Basic Classes

In LWP's object model, you perform GET, HEAD, and POST requests via a browser object (a.k.a. auser agent object) of
class LWP::UserAgent, and the result isan HTTP response of the aptly named class HTTP::Response. These are the two
main classes, with other incidental classes providing features such as cookie management and user agents that act as
spiders. Still more classes deal with non-HTTP aspects of the Web, such asHTML. In this chapter, we'll deal with the
classes needed to perform web requests.

The classes can be loaded individually:

use LWP:: User Agent ;
use HITP: : Response;

But it's easiest to simply use the LWP convenience class, which loads LWP::UserAgent and HTTP::Response for you:
use LWP; # sane as previous two |ines

If you're familiar with object-oriented programming in Perl, the LWP classes will hold few real surprisesfor you. All
you heed isto learn the names of the basic classes and accessors. If you're not familiar with object-oriented programming
in any language, you have some catching up to do. Appendix G, "User's View of Object-Oriented Modules' will give
you abit of conceptual background on the object-oriented approach to things. To learn more (including information on
how to write your own classes), check out Programming Perl (O'Reilly).

4 PREVIOUS HOME NEXT
2.7. Example: Babelfish BOOK INDEX 3.2. Programming with LWP Classes

file:///I|/Carti/Temp/perl3/prog/index.htm

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

9.2. HTML:: TreeBuilder

There arefive stepsto an HTML:: TreeBuilder program:

Create the HTML:: TreeBuilder object.

Set the parse options.

Parsethe HTML.

Process it according to the needs of your problem.
Deletethe HTML:: TreeBuilder object.

agrwbdE

Example 9-2 isasimple HTML::TreeBuilder program.

Example 9-2. Simple HTML::TreeBuilder program

#!/usr/ bin/perl -w

use strict;

use HTM.:: TreeBuil der 3; # make sure our version isn't ancient
ny $root = HTM.:: Tr eeBui | der - >new,

$root ->parse(# parse a string...

a{

lce cream

<l i >\Whi pped cream

Hot apple pie
(mmpie)</Ili>

</ ul >

1)
$root->eof (); # done parsing for this tree
$r oot - >dunp; # print() a representation of the tree
$root->del ete; # erase this tree because we're done with it

Four of the five steps are shown here. The HTML.::TreeBuilder classsnew() constructor creates a new object. We
don't set parse options, preferring instead to use the defaults. The par se() method parsesHTML from a string. It's
designed to let you supply HTML in chunks, so you usethe eof () method to tell the parser when there's no more
HTML. Thedunp() method is our processing here, printing a string form of the tree (the output is given in Example

9-3). Andfinally wedel et e() thetreeto free the memory it used.
Example 9-3. Output of

Example 9-2

<htm> @ (IMPLICIT)
<head> @.0 (IMPLICIT)
<body> @.1 (I MPLICIT)

 @.1.0
 @.1.0.0
"l ce cream"”

 @.1.0.1
"Whi pped cream
 @.1.0.2
"Hot apple pie "

 @.1.0.2.1

"(mm pie)"

Each line in the dump represents either an element or text. Each element isidentified by a dotted sequence of numbers (e.
0., 0.1.0.2). This sequence identifies the position of the element in the tree (2nd child of the Oth child of the 1st child of
the Oth child of the root of the tree). The dump aso identifies some nodesas (| MPLI ClI T) , meaning they weren't
present in the HTML fragment but have been inferred to make a valid document parse tree.

9.2.1. Constructors

To create anew empty tree, usethenew() method:
$root = HTM.:: TreeBuil der->new);

To create anew tree and parse the HTML in one go, pass one or more strings to thenew_f r om cont ent () method:
$root = HTM.:: TreeBui |l der->new fromcontent([string, ...]);

To create anew HTML :: TreeBuilder object and parse HTML from afile, pass the filename or afilehandle to the
new fromfil e() method:

HTM_.: : TreeBui | der->new from fil e(fil enane);
HTM.: : TreeBui | der->new _from fil e(fil ehandl e);

$r oot
$r oot

If youusenew fromfile() ornew_fromcontent(),theparseiscarried out with the default parsing
options. To parse with any nondefault options, you must usethe new() constructor and call parse_file() or
parse().

9.2.2. Parse Options

Set options for the parse by calling methods on the HTML.:: TreeBuilder object. These methods return the old value for
the option and set the value if passed a parameter. For example:

$coments = $root->strict_coment();
print "Strict comrent processing is ";
print $coments ? "on\n" : "off\n";
$root->strict_conment s(0); # di sabl e

Some options affect the way the HTML standard is ignored or obeyed, while others affect the internal behavior of the
parser. The full list of parser options follows.

$root->strict_conment s([bool ean]);
The HTML standard says that a comment is terminated by an even number of - - s between the opening < and the
closing >, and there must be nothing but whitespace between even and odd - - s. That part of the HTML standard
islittle known, little understood, and little obeyed. So most browsers simply accept any - - > asthe end of a
comment. If enabled via atrue value, this option makes the HTML :: TreeBuilder recognize only those comments
that obey the HTML standard. By default, this option is off, so that HTML::TreeBuilder will parse comments as
normal browsers do.

$root ->strict_nanmes([bool ean]);
Some HTML has unquoted attribute values that include spaces, e.g., <i ng al t =bi g dog! src="dog.
j pg" >. If this option is enabled, that tag would be reported as text, because it doesn't obey the standard (dog! is
not avalid attribute name). If the option isdisabled, asit is by default, source such asthisis parsed as atag, with
aBoolean attribute called dog! set.

$root->inplicit_tags([bool ean]);
Enabled by default, this option makes the parser create nodes for missing start- or end-tags. If disabled, the parse
tree simply reflects the input text, which israrely useful.

$root->inplicit_body_p_tag([bool ean]);
This option controls what happensto text or phrasal tags (such as<i >. . . </ i >) that aredirectly ina<body>,

without a containing <p>. By default, the text or phrasal tag nodes are children of the <body>. If enabled, an
implicit <p> is created to contain the text or phrasal tags.

$r oot - >i gnor e_unknown([bool ean]) ;
By default, unknown tags, such as <f oot er >, are ignored. Enable thisto create nodes in the parse tree for
unknown tags.

$r oot - >i gnore_t ext ([bool ean]);
By default, text in elements appears in the parse tree. Enable this option to create parse trees without the text from
the document.

$r oot - >i gnor e_i gnor abl e_whi t espace([bool ean]);
Whitespace between most tags is ignorable, and multiple whitespace characters are collapsed to one. If you want
to preserve the whitespace present in the original HTML, enable this option.

9.2.3. Parsing
There are two ways of parsing HTML: from afile or from strings.
Passtheparse_fil e() method afilename or filehandle to parsethe HTML in that file:

$success
$success

$root->parse_file(filenane);
$root ->parse_file(filehandle);

For example, to parse HTML from STDIN:
$root->parse file(*STDIN) or die "Can't parse STDI N';

Theparse_fil e() method returnsthe HTML::TreeBuilder object if successful or undef if an error occurred.

Thepar se() method takes achunk of HTML and parsesit. Call par se() on each chunk, then call theeof ()
method when there's no more HTML to come.

$success = $root - >par se(chunk) ;
$success = $root->eof ();

This method is designed for situations where you are acquiring your HTML one chunk at atime. It's also useful when
you're extracting HTML from alarger file and can't smply parse the entire filewith par se_fil e(). Inmany cases,

you could usenew _from content (), butrecall that new from cont ent () doesn't give you an opportunity
to set nondefault parsing options.

9.2.4. Cleanup
Thedel et e() method freesthe tree and its elements, giving the memory it used back to Perl:
$root ->del ete();

Use this method in persistent environments such as mod_perl or when your program will parse alot of HTML files. It's
not enough to simply have $r oot be a private variable that goes out of scope, or to assign anew valueto $r oot . Perl's
current memory-management system fails on the kinds of data structures that HTML ::Element uses.

4 PREVIOUS HOME NEXT B
9. HTML Processing with Trees BOOK INDEX 9.3. Processing

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS

10.3. Detaching and Reattaching

Suppose that the output of our above rewriter is not satisfactory. While its output contains an apparently harmless one-
cell one-row table, thisis somehow troublesome when the president of the company tries viewing that web page on his
cellphone/PDA, which has atypically limited understanding of HTML. Some experimentation shows that any web pages

with tablesin them will deeply confuse the boss's PDA.

So your task should be changed to this: find the one interesting cell in the table (thet d withcl ass="st ory"), detach
it, then replace the table with the t d, and delete the table. Thisis acomplex series of actions, but luckily every one of

them isdirectly trandatable into an HTML ::Element method. The result is Example 10-2.

Example 10-2. Detaching and reattaching nodes

use strict;
use HTM.:: TreeBui l der;
ny $root = HTM.:: Tr eeBui | der - >new,

$root->parse_file('rewitersl/in002.htm"') || die $!;
nmy $good_td = $root->l ook _down(' _tag', 'td', ‘'class', 'story',
die "No good td?!'" unl ess $good td; # sanity checki ng

ny $big_table = $root->l ook_down(' _tag', 'table);
die "No big table?!'" unless $big table; # sanity checking

$good_t d- >det ach;
$bi g_t abl e->repl ace_wi t h($good_td);

),

Yes, there's even a nethod for replacing one node with anot her!

open(QUT, ">rewitersl/out002b.htm ") || die "Can't wite: $'";

print OUT $root->as HTM.(undef, ' '); # two-space indent in output

cl ose(QUT);
$root->delete; # done with it, so delete it

The resulting document looks like this:

<htm >
<head>
<title>Shatner and Kunis Sweep the Oscars</title>
</ head>
<body>
<td class="story">
<hl>Shat ner and Kunis Sweep the Oscars</hl>

<p>Stars of <cite>American Psycho II</cite> walked [...] </td>

<hr >Copyri ght 2002, United Lies Syndicate </body>
</htm >

One problem, though: we have at d outside of atable. Simply change it from at d element into something innocuous,

such asadi v, and while we're at it, delete that class attribute:

$good _td->tag('div');
$good_td->attr('class', undef);

That makes the output look like this:

<ht m >
<head>
<title>Shatner and Kunis Sweep the Oscars</title>
</ head>
<body>
<di v>
<hl>Shat ner and Kunis Sweep the Oscars</hl>
<p>Stars of <cite>American Psycho ll</cite> walked [...] </div>
<hr >Copyri ght 2002, United Lies Syndicate </body>
</htm >

An aternative is not to detach and save thet d in the first place, but to detach and save only its content. That's simple
enough:

ny @ood_content = $good_td->content _|ist;
foreach ny $c (@ood_content) {
$c->detach if ref $c;
text nodes aren't objects, so aren't really "attached" anyhow

}
10.3.1. The detach_content() Method

The above task is so common that there's amethod for it, called det ach_cont ent (), which detaches and returns
the content of the node on which it's called. So we can simply modify our program to read:

ny @ood_content = $good_t d->detach_content;

$bi g_tabl e->replace_w th(@ood_content);
$bi g_t abl e- >del et e;

However you chose to express the node-moving operations, the parse tree looks like this:

<htm >
<head>
<title>Shatner and Kunis Sweep the Oscars</title>
</ head>
<body>
<hl>Shat ner and Kunis Sweep the Oscars</hl>
<p>Stars of <cite>Anerican Psycho IlI</cite> walked [...]
<hr >Copyri ght 2002, United Lies Syndicate </body>
</htm >

In fact, every HTML::Element method that allows you to attach a node someplace (asr epl ace_wi t h does) will first
detach that node if it's already attached elsewhere. So you could actually skip thewholedet ach_cont ent ()
process step and just write this:

$bi g_t abl e->repl ace_wi t h($good_td->content_list);
$bi g_t abl e- >del et €;

It does the same thing and results in the same output.
10.3.2. Constraints

There are some constraints on what you can expect r epl ace_wi t h() to do, but these are just three constraints
against fairly odd things that you would probably not try anyway. Namely, the documentation says you can't replace an
element with multiple instances of itself; you can't replace an element with one (or more) of its siblings; and you can't

replace an element that has no parent, because replacing an element inherently means altering the content list of its
parent.

Many methods in the HTML ::Element documentation have similar constraints spelled out, although the typical
programmer will never find them to be an abstacle in and of themselves. If one of those constraintsisviolated, it is
typically asign that something is conceptually wrong elsewhere in the program.

For example, if youtry $el ement - >repl ace_wi t h(. ..) and are surprised by an error message that "the target
node has no parent,” it is almost definitely because you either already replaced the element with something (leaving it
parentless) or deleted it (leaving it parentless, contentless, and attributel ess). For example, that error message would
result if our program had this:

$bi g_t abl e- >del et e;
$bi g_tabl e->repl ace_wi t h($good_td->content_list);
Wong!

instead of this:

$bi g_t abl e->repl ace_wi t h($good_td->content_list);
$bi g_t abl e- >del et e;

Ri ght.
48 PREVIOUS HOME MEXT B
10.2. Deleting Images BOOK INDEX 10.4. Attaching in Another Tree

S|

iy K \ 1, LU IN A NUTSHELL .
BOOKSHELF PERLALWP~ LEARNING PERL 2nd Edition PERL MASTERING = PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT o

7.2. Basic HTML::TokeParser Use

The HTML:: TokeParser moduleisaclassfor accessing HTML as tokens. An HTML:: TokeParser abject gives you one token at a
time, much as afilehandle gives you one line at atime from afile. The HTML can be tokenized from afile or string. The tokenizer
decodes entities in attributes, but not entitiesin text.

Create atoken stream object using one of these two constructors:

ny $stream = HTM.:: TokePar ser - >new $f i | enane)
|| die "Couldn't read HTM. file $fil ename: $!";

or:
nmy $stream = HTM.:: TokeParser->new(\$string of htm);
Once you have that stream object, you get the next token by calling:
ny $token = $stream >get token();

The $t oken variable then holds an array reference, or undef if there's nothing left in the stream's file or string. This code
processes every token in a document:

ny $stream = HTM.:: TokePar ser - >new $f i | enane)
|| die "Couldn't read HTML file $fil ename: $!'";

whi | e(ny $token = $stream >get _token) {
... consider $token ...
}

The $t oken can have one of six kinds of values, distinguished first by the value of $t oken- >[0] , asshownin Table 7-1.

Table 7-1. Token types

Token Values
Start-tag [*S", $tag, $attribute_hashref, $attri bute_order_arrayref, $source]
End-tag ["E*, S$tag, $source]
Text ["T", S$text, $shoul d_not decode]
Comment ["C', $source]
Declaration ["D', $source]
m;ﬁgg ["PI", $content, $source]

7.2.1. Start-Tag Tokens

If $t oken- >[0] is" S", the token represents a start-tag:
["S", $tag, Pattribute_hash, $attribute_order_arrayref, $source]
The components of this token are:

$t ag
The tag name, in lowercase.
$attribute_hashr ef
A reference to a hash encoding the attributes of thistag. The (lowercase) attribute names are the keys of the hash.
$attribute_order_arrayref
A reference to an array of (lowercase) attribute names, in case you need to access elementsin order.
$sour ce
The original HTML for this token.

Thefirst three values are the most interesting ones, for most purposes.
For example, parsing thisHTML.:
<IM5G SRC="Kirk.jpg" alt="Shatner in rôle of Kirk" WDTH=352 hei ght =522>

givesthistoken:

[
ISI,
Iirrgl,
{ '"alt' => '"Shatner in réle of Kirk',
"height' => '522", 'src' => 'kirk.jpg', '"width" =>"'352

}1

["src', "alt', "width', 'height'],

"<IM5 SRC="Kirk.jpg" alt="Shatner in rôle of Kirk" WDITH=352
hei ght =522>'

]
Notice that the tag and attribute names have been lowercased, and the &oci r ¢; entity decoded withintheal t attribute.
7.2.2. End-Tag Tokens
When $t oken- >[0] is" E", the token represents an end-tag:
["E", $tag, $source]
The components of thistag are:

$t ag

The lowercase name of the tag being closed.
$sour ce

The original HTML for this token.

Parsing thisHTML:

</ A>
givesthistoken:

['E, 'a, '<IA]
7.2.3. Text Tokens

When $t oken- >[0] is" T", the token represents text:

["T", $text, $shoul d not_decode]
The elements of thisarray are:

$t ext
The text, which may have entities.
$shoul d_not _decode
A Boolean value true indicating that you should not decode the entitiesin $t ext .

Tokenizing thisHTML.:
&anp; the
gives this token:

[ITII
" &anp; the',

]

The empty string is afalse value, indicating that there's nothing stopping us from decoding $t ext withdecode_enti ti es
() from HTML::Entities:

decode_entities($token->[1]) if S$token->[2];

Textinside<scri pt >, <styl e>, <xnp>, <l i sti ng>, and <pl ai nt ext > tagsis not supposed to be entity-decoded. It isfor
such text that $shoul d_not _decode istrue.

7.2.4. Comment Tokens
When $t oken->[0] is" C', you have a comment token:
["C', $source]

The $sour ce component of the token holds the original HTML of the comment. Most programs that process HTML simply
ignore comments.

Parsing thisHTML
<!-- Shatner's best known rôle -->
gives usthis $t oken vaue:

['C, #0: we're a coment
"<l-- Shatner's best known réôle -->" #1: source

]

7.2.5. Markup Declaration Tokens

When $t oken->[0] is" D", you have a declaration token:
["D', $source]

The $sour ce element of the array isthe HTML of the declaration. Declarations rarely occur in HTML, and when they do, they
arerarely of any interest. AlImost all programs that process HTML ignore declarations.

ThisHTML:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 3.2 Final//EN'>

givesthistoken:
['D,
' <I DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 3.2 Final//EN'>'
]
7.2.6. Processing Instruction Tokens
When $t oken- >[0] is" Pl ", the token represents a processing instruction:
["PI", S$instruction, $source]
The components are:
$i nstruction
The processing instruction stripped of initial <? and trailing >.
$sour ce
The original HTML for the processing instruction.
A processing instruction is an SGML construct rarely used in HTML. Most programs extracting information from HTML ignore
processing instructions. If you do handle processing instructions, be warned that in SGML (and thus HTML) a processing
instruction ends with a greater-than (>), but in XML (and thus XHTML), a processing instruction ends with a question mark and a
greater-than sign (?>).

Tokenizing:

<?subl i mi nal message>

gives:

["PI', '"sublimnal nessage', '<?sublimnal nessage>']
41 PREVIOUS HOME HEXT B
7. HTML Processing with Tokens BOOK INDEX 7.3. Individual Tokens

2
il

RL
IM A MUTSHELL

1] N
] Fats | \ L
BEDHSHEI.F PERL & LWP LEARMNING PERL 2nd Edithon MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

10.4. Attaching in Another Tree

So far we've detached elements from one part of atree and attached them elsewhere in the same tree. But there's nothing
stopping you from attaching them in other trees.

For example, consider a case like the above example, where we extract thetext inthe<t d cl ass="story"> ...
</ t d> element, but thistime, instead of attaching it elsewhere in the same document tree, we're attaching it at a certain
point in adifferent tree that we're using as atemplate. The template document looks like this;

<ht ml ><head><titl e>Put the title here</title></head>
<body><!-- printable version -->

<bl ockquot e>

<l-- start -->

...put the content here...

<l-- end -->

<hr >Copyright 2002. Printed fromthe United Lies Syndicate web site.
</ font>

</ bl ockquot e>
</ body></ ht m >

Y ou'll note that the web designers have helpfully inserted comments to denote where the inserted content should start
and end. But when you have HTML :: TreeBuilder parse the document with default parse options and dump the tree, you
don't see any sign of the comments:

<htm > @
<head> @. 0
<title> @.0.0
"Put the title here"
<body> @. 1
<bl ockquote> @. 1.0
 @.1.0.0
" ...put the content here..
<hr> @.1.0.0.1
"Copyright 2002. Printed fromthe United Lies Syndicate web

site.

10.4.1. Retaining Comments

However, storing commentsis controlled by an HTML::TreeBuilder parse option, st or e_conment s(), which is off
by default. If we parse the file like so:

use strict;

use HTM.:: TreeBui l der;

ny $tenplate_root = HIM.:: TreeBui |l der - >new;,

$tenpl ate_root->store_conment s(1);

$tenpl ate_root->parse_file('rewitersl/tenplatel. htm ")
|| die "Can't read tenplate file: $!";

$t enpl at e_r oot - >dunp;

the comments now show up in the parse tree:

<htm > @
<head> @. 0
<title> @.0.0
"Put the title here"
<body> @. 1
<I-- printable version --> @.1.0
<bl ockquote> @. 1.1
 @.1.1.0
<l-- start --> @.1.1.0.0
" ...put the content here...
<l-- end --> @.1.1.0.2
<hr> @.1.1.0.3
"Copyright 2002. Printed fromthe United Lies Syndicate web

site.

10.4.2. Accessing Comments

What's | eft is to figure out how to take out what's betweenthe<! - - start -->and<!-- end -->comments, to
insert whatever content needs to be put in there, then to write out the document. First we need to find the comments, and
to do that we need to figure out how comments are stored in the tree, because so far we've only dealt with elements and
bits of text.

Mercifully, what we know about element objects in trees still applies, because that's how comments are stored: as
element objects. But because comments aren't actual elements, the HTML ::Element documentation refers to them as
pseudoel ements, and they are given atag name that no real element could have: ~comrment . The actual content of the
comment (st art) isstored asthevalue of thet ext attribute. In other words, <! - - start -->isstored asif it were
<~coment text=' start ' ></ ~coment >. So finding commentsis straightforward:

foreach ny $c ($tenplate_root->find_by tag name(' ~comment')) {
print "A coment has text [", $c->attr('text'), "].\n";

}

That printsthis:

A comrent has text [printable version]
A comment has text [start]
A comrent has text [end]

Finding the start and end comments is a matter of filtering those comments:

use strict;

use HTM.:: TreeBui l der;

ny $tenplate_root = HTM.:: TreeBui |l der - >new;,

$tenpl ate_root->store_conment s(1);

$tenpl ate_root->parse _file('rewitersl/tenplatel. htm")
|| die "Can't read tenplate file: $!";

ny($start_conmment, $end_conmment) ;
foreach nmy $c ($tenplate_root->find_by tag name(' ~comment')) ({
if($c->attr('text') =~ m"Ms*start\s*$/) {
$start_comment = $c;
} elsif($c->attr("text') =~ m™Ms*end\s*$/) {
$end_coment = $c;
}
}

die "Couldn't find tenplate's '"start' comment!" unless $start_conment;

die "Couldn't find tenplate's 'end" coment!" unl ess $end_comment ;

die "start and end comments don't have the sane parent?!"
unl ess $start_comment - >parent eq $end_conment - >par ent ;
Make sure things are sane.

10.4.3. Attaching Content

Once that's done, we need some way of taking some new content (which we'll get elsewhere) and putting that in place of
what's between the "start" comment and the "end" comment. There are many ways of doing this, but thisis the most
straightforward in terms of the methods we've already seen in this chapter:

sub put _into tenplate {
ny @o_insert = @;
ny $parent = $start_comment - >parent;
ny @l d_content = $parent->detach_content;
nmy @ew content;

Copy everything up to the $start_comment into @ew content,
and then everything starting at $end_conment, and ignore
everything i nbetween and instead drop in things from @o_insert.

my $am saving = 1;
foreach ny $node (@l d_content) {
i f($am savi ng) {
push @ew content, $node;
i f($node eq $start_comment) {
push @ew content, @o_insert;
$am saving = O; # and start ignoring nodes.
}
} else { # I'msnipping out things to ignore
i f ($node eq $end_comment) {
push @ew content, $node;
$am saving = 1;
} else{ # It's an elenent to ignore, and to destroy.
$node->del ete if ref $node;
}

}
}

$par ent - >push_cont ent (@ew_content); # attach new children
return;

}

This seems abit long, but it's mostly the work of just tracking whether we're in the mode of saving things from the old
content list or ignoring (and in fact deleting) things from the old content list. With that subroutine in our program, we can
test whether it works:

put _into_tenplate("Testing 1 2 3.");
$t enpl at e_r oot - >dunp;

put _into_tenplate("Is this mc on?");
$t enpl at e_r oot - >dunp;

That printsthis:

<htnl > @
<head> @. 0
<title> @.0.0
"Put the title here"

<body> @. 1
<I-- printable version --> @.1.0
<bl ockquote> @. 1.1
 @.1.1.0
<l-- start --> @.1.1.0.0
"Testing 1 2 3."
<l-- end --> @.1.1.0.2
<hr> @.1.1.0.3
"Copyright 2002. Printed fromthe United Lies Syndicate web
site. "
<htm > @
<head> @. 0
<title> @.0.0
"Put the title here"
<body> @. 1
<l-- printable version --> @.1.0
<bl ockquote> @.1.1
 @.1.1.0
<l-- start --> @.1.1.0.0
"I's this mc on?"
<l-- end --> @.1.1.0.2
<hr> @.1.1.0.3
"Copyright 2002. Printed fromthe United Lies Syndicate web
site. "

This shows that not only did we manage to replace the template's origina . . . put t he cont ent here. .. text node
withaTest i ng 1 2 3. node, but also another call to replaceit with| s t hi s m ¢ on? worked too. From there, it's
just amatter of adapting the code from the last section, which found the content in afile. Except this time we use our
new put _i nto_t enpl ate() function on that content:

Read an individual file for its content now.
ny $content file_root = HTM.:: TreeBui |l der - >new;,
ny $input_filespec = 'rewitersl/in002.htm"; # or what ever i nput
file
$content _file root->parse file($input filespec)
|| die "Can't read input file $input_filespec: $!"

Find its real content:

ny $good td = $content file root->look dowm(' _tag', 'td, 'class',
"story',);

die "No good td?!'" unless $good td;

put _into_tenpl ate($good_td->content |ist);
$content _file_root->delete; # We don't need it anynore.

open(QUT, ">rewritersl/out003a.htm ") || die "Can't wite: $!"
or whatever output filespec
print OUT $tenplate_root->as_HTM_(undef, ' '); # two-space indent in
out put
cl ose(QUT);

When this runs, we see can see in the output file that the content was successfully inserted into the template and written
out:

<htm >
<head>
<title>Put the title here</title>
</ head>
<body>

<l-- printable version -->
<bl ockquot e>
<l-- start -->
<hl1>Shat ner and Kunis Sweep the Oscars</hl>
<p>Stars of <cite>American Psycho Il</cite> wal ked away with
four Acadeny

Awar ds. . .
<l-- end -->
<hr >Copyri ght 2002. Printed fromthe United Lies Syndicate web
site.
</ f ont ></ bl ockquot e>
</ body>
</htm >

All iswell, except the titleis no good. It still says " Put the title here". All that's |eft is to replace the content of the
template'stitle with the content of the current file'stitle. We just find thet i t | e element in each, and swap content:

ny $tenplate title = $tenplate_root->find by tag name('title")
|| die "No title in tenplate?!"”;
$tenplate title->del ete_content;
ny $content _title = $content _file_root->find_by tag name('title");
i f($content _title) {
$tenplate_title->push_content($content _title->content_list);

This nmethod, like all nethods, automatically detaches
elenents fromwhere they are currently, as necessary.
} else {

$tenplate title->push _content('"No title');
}

We put that code in our program anywhere between when we read the fileinto $cont ent _fi | e_r oot and when we
destroy it; it works happily and puts the right content into the output file's title element:

<htm >
<head>
<title>Shatner and Kunis Sweep the Oscars</title>
</ head>

[...]

Because thisworks for asingle given input file, and because we tested earlier to make sureour put _i nt o_t enpl at e
() routineworksfor al subsequent invocations as well as for the first, that means we have the main building block
for a system that does template extraction and insertion for any number of files. All we haveto do isturn that into a
function, and call it as many times as needed. For example:

...read in $tenplate_root...

...get names of files to change into @nput_files...
foreach ny $input_filespec (@nput_files) {

tenpl ate_redo($i nput _filespec, "../printables/$input filespec");
}

sub tenplate redo {
ny($i nput _fil espec, $output fil espec) = @;
ny $content _file_root = HTM.:: TreeBui |l der->new,
$content _file_root->parse_file($input_filespec)
|| die "Can't read input file $input_filespec: $!";

...then extract content and put into the tenplate tree, as
above. ..

$content _file_root->delete; # W don't need it anynore.
open(OQUT, ">$output filespec") || die "Can't wite $output file: $!'";

print OUT $tenplate_root->as_HTM.(undef, ' ');
cl ose(QUT);
}
4 PREVIOUS HOME NEXT B
10.3. Detaching and Resttaching BOOK INDEX 10.5. Creating New Elements

N ! INANUTSHELL | PROGRAMMING ‘
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

6.2. Regular Expression Techniques

Web pages are designed to be easy for humansto read, not for programs. Humans are very flexible in what they can

read, and they can easily adapt to a new look and feel of the web page. But if the underlying HTML changes, a program
written to extract information from the page will no longer work. Y our challenge when writing a data-extraction program
isto get afeel for the amount of natural variation between pages you'll want to download.

The following are a set of techniques for you to use when creating regular expressions to extract data from web pages. If
you're an experienced Perl programmer, you probably know most or all of them and can skip ahead to Section 6.3

"Troubleshooting".

6.2.1. Anchor Your Match

An important decision is how much surrounding text you put into your regular expression. Put in too much of this
context and you run the risk of being too specific—the natural variation from page to page causes your program to fail to
extract some information it should have been able to get. Similarly, put in too little context and you run the risk of your
regular expression erroneously matching elsewhere on the page.

6.2.2. Whitespace

Many HTML pages have whitespace added to make the source easier to read or as a side effect of how they were
produced. For example, notice the spaces around the number in thisline:

Amazon. com Sal es Rank: 4,070

Without checking, it's hard to guess whether every page has that space. Y ou could check, or you could simply be flexible
in what you accept:

$htm =~ n{ Amazon\.com Sal es Rank: \s*([\d,]+)\s*
} ||
di e;

Now we can match the number regardless of the amount of whitespace around it. The\ s wildcard matches any
whitespace character.

6.2.3. Embedded Newlines

Beware of using\ s when you are matching across multiple lines, because\ s matches newlines. Y ou can construct a
character class to represent "any whitespace but newlines':

[S\n]

Asafurther caveat, the regexp dot "." normally matches any character except a newline. To make the dot match newlines
aswell, usethe/ s option. Now you can say mi{ . * ?</ b>} s and find the bold text even if it includes newlines. But
this/ s option doesn't change the meaning of and $ from their usual "start of string" and "end of string, or right before
the newline at the end of the string if present." To change that, use the / moption, which makes” and $ match the
beginning and end of lines within the string. That is, with/ m a” matches the start of the string or right after any
newlinein the string; and a$ then matches the end of the string, or right before any newline in the string.

For example, to match the ISBN that starts out aline while ignoring any other occurrences of "ISBN" in the page, you
might say:

n{"l SBN. ([-0-9A-Za-z]+)}m
Incidentally, you might expect that because an ISBN is called a number, we'd use\ d+ to match it. However, ISBNs

occasionaly have lettersin them and are sometimes shown with dashes; hence the[- 0- 9A- Za- z] rangeinstead of the
overly restrictive\ d+ range, which would fail to match an ISBN such as 038079439X or 0-8248-1898-9.

6.2.4. Minimal and Greedy Matches

If you want to extract everything between two tags, there are two approaches.

n{ (.*?) </ b>}i
m{ (["<] *) </ b>}i

The former uses minimal matching to match as little as possible between the and the </ b>. The latter uses greedy
matching to match as much text that doesn't contain a greater-than sign as possible between and </ b>. The latter is
marginally faster but won't successfully match text such as <i >hi </ i ></ b>, whereas the former will.

6.2.5. Capture

To extract information from aregular expression match, surround part of the regular expression in parentheses. This
causes the regular expression engineto set the $1, $2, etc. variables to contain the portions of the string that match those
parts of the pattern. For example:

$string = 'go here now </ a>';
$string =~ nm{ href="(.*?)"}i; # extract destination of |ink
$url = $1;

A match in scalar context returns true or false depending on whether the regular expression matched the string. A match
inlist context returnsalist of $1, $2, ... captured text.

$mat ched
@mat ches

$string
$string

~ M{ RE};
~ M{ RE};

To group parts of aregular expression together without capturing, use the (?:RE) construct:

$string = '<ing src="big.gif">";
@inks = $string =~ m{(?: href|src)="(.*?)"}0;

print "Found @i nks\n";

Found junbo.htm big.gif

6.2.6. Repeated Matches

The/ g modifier causes the match to be repeated. In scalar context, the match continues from where the last match left
off. Use this to extract information one match at atime. For example:

$string = '<ing src="big.gif"><ing src="small.gif">";
while ($string =~ m{src="(.*?)"}9g) {

print "Found: $1\n";
}

Found: big.gif
Found: small.gif

In list context, / g causes all matching captured strings to be returned. Use this to extract all matches at once. For
example:

$string = '<ing src="big.gif"><ing src="small.gif">";

@ix = $string =~ m{src="(.*?)"}g;
print "Found @ix\n";
Found big.gif snall.gif

If your regular expression doesn't use capturing parentheses, the entire text that matchesis returned:

$string = '<ing src="big.gif"><inmg src="small.gif">";
@ifs = $string =~ m{\w+\.gif}g;

print "Found @i fs\n";

Found big.gif small.qgif

6.2.7. Develop from Components

There are many reasons to break regular expressions into components—it makes them easier to develop, debug, and
maintain. Usethegr// operator to compile a chunk of aregular expression, then interpolate it into alarger regular
expression without sacrificing performance:

$string = '<ing src="big.gif">";
$ATTRI BUTE = qr/ href|src/;

$I NSI DE_QUOTES = qr/.*?/;

@iles = $string =~ n{(?: $ATTRI BUTE) =" ($I NSI DE_QUOTES) "} g;
print "Found @il es\n";

Found junbo. htm big.gif

6.2.8. Use Multiple Steps

A common conceit in programmersisto try to do everything with one regular expression. Don't be afraid to use two or
more. This has the same advantages as building your regular expression from components: by only attempting to solve
one part of the problem at each step, the final solution can be easier to read, debug, and maintain.

For example, the front page of http://www.oreillynet.com/ has several articles on it. Inspecting the HTML with View
Source on the browser shows that each story looks like this:

<l-- itemenplate -->

<p class="nedlist"><a href="http://ww. oreillynet.com pub/a/

dot net/ 2002/ 03/ 04

/rotor.htm ">Uncovering Rotor -- A Shared Source CLI *M
Recently, David Stutz and Stephen Walli hosted an informal,

unannounced BOF at

BSDCon 2002 about M crosoft's Shared Source inplenentation of the ECVA

CLI, also

known as Rotor. Although the source code for the Shared Source CLI

wasn't yet

avail abl e, the BOF offered a preview of what's to cone, as well as

details about its

i npl enentation and the notivation behind it. [<a href="http://

www. orei |l | ynet.

com dotnet/">. NET DevCenter]</p>

That is, the article startswith thei t ent enpl at e comment and ends with the </ p> tag. This suggests a main loop of:

while ($htm =~ m{<!-- itentenplate -->(.*?)</p>}gs) {
$chunk = $1;
extract URL, title, and summary from $chunk

}

It's surprisingly common to see HTML comments indicating the structure of the HTML. Most dynamic web sites are

http://www.oreillynet.com/

generated from templates, the comments help the people who maintain the templates keep track of the various sections.

Extracting the URL, title, and summary is straightforward. It's even a simple matter to use the standard Text::Wrap
modul e to reformat the summary to make it easy to read:

use Text::Wap;

while ($htm =~ n{<!-- itentenplate -->(.*?)</p>}gs) {
$chunk = $1;

(URL, Stitle, $summary) =
$chunk =~ n{href="(.*?)">(.*?)</ b>\ s*&bsp; \ s*(. *?)\[}i

or next;
$summary =~ s{ }{ }g;
print "$URL\n$title\n", wap(" ", " ", $summary), "\n\n";

}

Running this, however, shows HTML still in the summary. Remove the tags with:
$sumary =~ s{<.*?>}{}sg;
The complete program is shown in Example 6-3.

Example 6-3. orn-summary
#!/usr/bin/perl -w

use LWP:: Si npl e;
use Text::Wap;

$htm = get("http://ww. oreillynet.com") || die;

while ($htm =~ n{<!-- itentenplate -->(.*?)</p>}gs) {
$chunk = $1;

(SURL, $title, $summary) =
$Chunk =~ n{href:"(-*?)">(.*?)\S*&anp;\S*(.*?)\[}i

or next;
$summary =~ s{ }{ }g;
$summary =~ s{<.*?>}{}sg;
print "$URL\nS$title\n", wap(" ", " ", $summary), "\n\n";
}
4 PREVIOUS HOME HEXT &
6. Simple HTML Processing with BOOK INDEX 6.3. Troubleshooting

Regular Expressions

) | o
PROGRAMMING j

. : RL
Fit) 3, L IM A NUTSHELL ,
PERL & LWF™~ LEARNING PERL 2nd Edition PERL MASTERING = PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

12.3. Example: A Link-Checking Spider

So far in the book, we've produced little single-use programs that are for specific tasks. In this section, we will diverge
from that approach by walking through the development of a Type Three Requester robot whose internals are modular
enough that with only minor modification, it could be used as any sort of Type Three or Type Four Requester.

12.3.1. The Basic Spider Logic

The specific task for our program is checking all the links in a given web site. This means spidering the site, i.e.,
requesting every page in the site. To do that, we request a page in the site (or afew pages), then consider each link on
that page. If it'salink to somewhere offsite, we should just check it. If it'salink to a URL that'sin this site, we will not
just check that the URL isretrievable, but in fact retrieve it and see what links it has, and so on, until we have gotten
every page on the site and checked every link.

So, for example, if | start the spider out at http: //mww.mybalalaika.com/oggd/, it will request that page, get back HTML,
and analyze that HTML for links. Suppose that page contains only three links:

htt p:// bazouki -consortiumint/
htt p: // ww. mybal al ai ka. conf oggs/ studi o_credits. htm
http://ww. nybal al ai ka. conf oggs/ pl i nky. ogg

We can tell that the first URL is not part of thissite; in fact, we will define "site”" in terms of URLS, so aURL is part of
thissiteif starts with this site's URL. So because http://bazouki-consortium.int doesn't start with http://mww.mybalal aika.
com/oggy, it's not part of thissite. As such, we can check it (viaan HTTP HEAD request), but we won't actually look at
its contents for links. However, the second URL, which is http://www.mybalalaika.com/oggs/studio_credits.html,
actually does start with http://Mmww.mybal alaika.com/oggy/, so it's part of this site and can be retrieved and scanned for
links. Similarly, the third link, http://www.mybalal aika.con/oggs/plinky.ogg, does start with http: //mww.mybal alaika.
com/oggy, so it's part of this site and can be retrieved, and its HTML checked for links.

But | happen to know that http://mww.mybal alaika.conv/oggs/plinky.ogg is a 90-megabyte Ogg Vorbis (compressed
audio) file of a50-minute long balalaika solo, and it would be a very bad idea for our user agent to go getting thisfile,
much lessto try scanning it as HTML! So the way we'll save our robot from this bother is by having it HEAD any URLS
before it GETs them. If HEAD reports that the URL is gettable (i.e., doesn't have an error status, nor aredirect) and that
its Cont ent - Type header saysit'sHTML (t ext / ht mi), only then will we actually get it and scan its HTML for
links.

We could always hardcode a list of strings such as .gif, .jpg, etc., including .ogg, such that any URL ending in any such
string will be assumed to not be HTML. However, we could never know that our list is complete, so we must carefully
avoid the possibility of ever downloading a massive binary file that our suffix list just didn't happen to catch.

Now, what to do if we check (or try to get) a URL, and we get an error status? We will have to make note of thisin some
way. Now, at bare minimum we could do something like have a hash called %mot abl e_ur| _err or, and when we
see an error, we could do:

$notabl e_url _error{$url} = $response->status_code;

In fact, we will be a bit more ambitious in our program, by also making note of what links to what, so that in the end,
instead of saying "something links to http://somebadurl.int, but it's 404 Not Found,” we can list the URLsthat link to it,
so that those links can be fixed.

Incidentally, when we get http://mww.mybalalaika.com/oggs/studio_credits.html and scan its HTML, suppose it contains

alink to http://mww.mybalalaika.com/oggs/. We shouldn't go and request that URL, because we've already been there.
So we'll need to keep track of what we've already seen. Thisisassimple as having ahash %seen_ur | _bef or e, and
whenwe seeaURL, if wesee $seen_ur | _bef or e{ $url } istrue, well skipit. But if it's false, we know we haven't
dealt with this URL before, so we can set $seen_ur| _before{$url} = 1 andgo dea withit, for what we can be
sure will be the only time this session.

12.3.2. Overall Design in the Spider

Now that we've settled on the basic logic behind the spider, we can start coding. For example, our idea of how to process
aURL isexpressed as this simple routine:

sub process_url {
ny $url = $ [0];
if(near_url ($url)) { process_near _url ($url) }
el se { process_far_url ($url) }
return;

}

Thisisthefirst of the two dozen routines (mostly small) that make up this spider framework, and clearly it requires us to
write three more routines, near _url (),process_near _url(),andprocess_far_url ().Butbeforewe
go further, we must consider the question of how we would interact with the program. Ideally, we can just writeit asa
command-line utility that we start up and let run, and in the end it will email us. So, in theory, we could call it like so:

% t hat dar nedbot http://nybazouki.com | mail $USER &

Then we don't have to think about it again until the program finishes and the report it generates comes to our mailbox.
But that is like tightrope-walking without a net, because suppose we get email from someone saying "Hey, wassamatta
you? A bot from your host just spent a solid hour hammering my server, checking the same links over and over again!
Fix it!" Butif all we haveisabad links report, we'll have no ideawhy the bot visited his site, whether it did indeed
request "the same links" over and over, or even what URLSs it visited (aside from the ones we see in our bad links report),
so we'd have no idea how to fix the problem.

To avoid that situation, we must build logging into the spider right from the beginning. We'll implement this with two
basic routines: say(), used for important messages, and mut t er (), used for lessimportant messages. When we
have a part of the program call say(), like so:

say("HEADi ng $url\n");

That is amessage that we'll savein alog file, aswell aswriteto STDOUT for the edification of the user who's watching
the process. Wecancall mutter (), likeso:

mutter(" That was hit #$hit_count\n");

That message will be saved to the log file (in case we need it), but isn't considered important enough to send to
STDOUT, unless of course the user is running this program with a switch that means "say everything to STDOUT, no
matter how trivial."

And because it's helpful to know not just what happened but when, well makesay() andmutter() emita
timestamp, unlessiit's the same time as the last thing we said or muttered. Here are the routines:

ny $l ast _tinme_anythi ng_said;

sub say {
Add tinestanps as needed:
unl ess(tinme() == ($last_tinme_anything _said || 0)) {

$last _tine_anything said =tinme();
unshift @, "[T$last_tinme_anything said =" .
localtinme($last_tinme_anything said) . "]J\n";

}
print LOG @ if $log;
print @;

}

ny $l ast_tine_anything_nuttered,
sub rutter {
Add tinestanps as needed:
unl ess(time() == ($last_tine_anything nmuttered || 0)) {
$last _time_anything_nuttered = tinme();
unshift @, "[T$last_tinme_anything nmuttered ="
local tine($last_tine_anything nuttered) . "]\n";
}
print LOG @ if $log;
print @ if $verbose;
}

Thisrelieson aflag $| og (indicating whether we're logging), a filehandle LOG (open on our log file, if we are logging),
and aflag $ver bose that signals whether mut t er messages should go to STDOUT too. These variables will be set by
code that you'll see in the complete listing at the end of this chapter, which simply gets those values from @ARGV using
the standard Perl module Getopt:: Std.

With those two logging routines in place, we can return to our first substantial routine, here repeated:

sub process_url {
my $url = $ [0];
if (near _url ($url)) { process_near _url ($url) }
el se { process_far_url ($url) }
return;

}

Not only doesthisimplicatenear _url (),process_near _url (),andprocess_far _url (), butitasobegs
the question: what will actually call pr ocess_ur | () ? We will implement the basic control of this program in terms of
aschedule (or queue) of URLs that need to be processed. Three things need to be done with the schedule: we need away
to see how many entriesthere arein it (at least so we can know when it's empty); we need to be able to pull aURL from
it, to be processed now; and we need away to feed a URL into the schedule. Call those functionsschedul e_count

(),next_schedul ed_url (),andschedul e($url) (with codethat we'll define later on), and we'rein
business. We can now write the main loop of this spider:

ny $QUI T_NOW
a flag we can set to indicate that we stop now

sub mai n_| oop {
whi | e(
schedul e_count ()
and $hit_count < $hit _limt
and time() < $expiration
and ! $QUI T_NOW
) {

process_url (next_scheduled_url());
}

return;
}

Thisassumesweveset $hit _|im t (amaximum number of hitsthat this bot is allowed to perform on the network)
and $expi r at i on (atime after which this bot must stop running), and indeed our GARGV processing will get those
from the command line. But once we know that's the program's main loop, we know that the program's main code will
just be the processing of switchesin @GARGV, followed by this code:

initialize();
process_starting url s(@RGY);
mai n_I oop();

report() if $hit_count;
say("Qitting.\n");

exit;

And from this point on, the design of the program is strictly top-down stepwise refinement, just fleshing out the details
of the remaining routines that we have mentioned but not yet defined.

12.3.3. HEAD Response Processing
Consider our basic routine, repeated again:

sub process_url {
my $url = $ [0];
if(near_url ($url)) { process_near _url ($url) }
el se { process_far_url ($url) }
return;

}

The first thing this needs in afunction that, given a URL, can tell whether it's "near” or naot, i.e., whether it's part of this
site. Because we've decided that a URL is part of thissite only if it starts with any of the URL s with which we started
this program, just as http://www.mybal alaika.com/oggs/studio_credits.html starts with http: //mmww.mybal alaika.conv
0gg9/, but http://bazouki-consortium.int/ doesn't. Thisis asimple matter of using substr():

my @tarting urls;

sub near _url { # Is the given URL "near"?
my $url = $ [0];
foreach ny $starting url (@tarting urls) {
if(substr($url, 0, length($starting url))
eq $starting url
We assume that all URLs are in canonical form

) {
mutter(" So $url is near\n");
return 1;
}
}
mutter(" So $url is far\n");
return O;

}

We will have to have fed thingsinto @t arti ng_url s first, and wecan do that inthepr ocess_starting urls
() routinethat gets called right before we start off the program's main loop. That routine needn't do anything more
than this:

sub process_starting_urls {
foreach ny $url (@) {
ny $u = URI ->new $url) - >canoni cal ;
schedul e($u) ;
push @tarting urls, $u;

}

return;
}

Note that we feed URL s through the canoni cal method, which converts a URL to its single most "proper" form; i.e.,

turning any capital lettersin the hostname into lowercase, removing aredundant : 80 port specification at the end of the
hostname, and so on. Welll usethe canoni cal method throughout this program when dealing with URLSs. If we had
failed to use the canoni cal method, we would, for example, not know that ht t p: // nat o. i nt,http:// NATO
int/ andhttp://nato.int: 80/ al certainly denote the same thing, in that they all trandlate to exactly the same
request to exactly the same server.

Togetprocess_url () fleshed out fully, we need to define pr ocess_near _url ($url) and

process_far _url ($url).Well start with the first and simplest one. Processing a"far" URL (one that's not part of
any site we're spidering, but isinstead a URL we're merely checking the validity of), is a simple matter of HEADing the
URL.

ny $robot;

sub process_far_url {
ny $url = $ [0];
say("HEADi ng $url\n");
++$hi t _count;
nmy $response = $robot->head($url, refer($url));
mutter(" That was hit #$hit_count\n");
consi der _response($response); # that's all we do!
return;

}

The minor routiner ef er ($ur |) should generate a Ref er er header for this request (or no header at al, if none can
be generated). Thisis so if our request produces a 404 and this shows up in the remote server's hit logs, that server's
webmaster won't be left wondering "What on Earth links to that broken URL?" This routine merely checks the hash-of-
hashes $poi nt s_t o{ $url }{$any_from url }, and either returns empty list (for no header) if there's no entry for
$url ,or Ref erer =>$sone_ur| if thereisan entry.

my %points_to;

sub refer {
Generate a good Referer header for requesting this URL.
my $url = $ [0];
ny $links_to_it = $points_to{$url};
the set (hash) of all things that link to $url
return() unless $links to it and keys %l inks to it;

ny @Qrls = keys %links to_it; # in no special order!
mutter " For $url, Referer => $urls[0]\n";
return "Referer" => $urls[0];

}

The more important routine consi der _response() iswherewewill have to mull over the results of
process_far _url () 'shaving headed the given URL. This routine should decide what HT TP statuses are errors,
and not all errors are created equal. Some are merely "405 Method Not Allowed" errors from servers or CGlsthat don't
understand HEAD requests; these apparent errors should presumably not be reported to the user as broken links. We
could just define this routine like so:

sub consi der_response {
Return 1 if it's successful, otherwise return O
ny $response = $ [0];
mutter(" ", $response->status_line, "\n");
return 1 if $response->is_success;
not e_error_response($response);
return O,

We then further break down the task of deciding what errors are worthy of reporting and delegate that to a
note_error_response() routine

my %motable url _error; # URL => error nessageS

sub note_error_response {
ny $response = $ [0];
return unl ess $response->is_error;

ny $code = $response->code;
ny $url = URI->new($response->request->uri)->canonical;

if($code == 404 or $code == 410 or $code == 500) {
mutter(sprintf "Noting {¥%} error at %\n",
$response->status _line, $url);
$notabl e _url _error{$url} = $response->status_line;
} else {
mutter(sprintf "Not really noting {%} error at %\n",
$response->status_line, $url);
}

return;

}

Thisnot e_error _response() onlyreally notes (in %mot abl e_ur| _error) error messages that are 404 "Not
Found", 410 "Gone", or 500 (which could be any number of things, from LWP having been unable to DNS the
hostname, to the server actually reporting areal 500 error on a CGl). Among the errors that thisis meant to avoid
reporting isthe 403 "Forbidden™ error, which iswhat LWP::RobotUA generates if we try accessing a URL that we are
forbidden from accessing by that server's robots.txt file. In practice, if you base a spider on this code, you should
routinely consult the logs (as generated by the above callsto mut t er) to see what errors are being noted, versus what
kinds of errors are being "not really noted.” Thisis an example of how each will show up in the log:

[T1017138941 = Tue Mar 26 03:35:41 2002]
For http://ww. altculture.confaentries/alabsolutely.htm, Referer \
=> http://ww. speech. cs. cnu. edu/ ~sbur ke/
[T1017139042 = Tue Mar 26 03:37:22 2002]
That was hit #10
500 Can't connect to www. altcul ture.com 80 (Tinmeout)
Noting {500 Can't connect to www. altculture.com80 (Tinmeout)} error \
at http://ww. altculture.com aentries/al/absolutely. htm
[T1017139392 = Tue Mar 26 03:43:12 2002]
HEADI ng http://ww. amazon. com exec/ obi dos/ ASI N 1565922840
For http://ww. amazon. com exec/ obi dos/ ASI N 1565922840, Referer \
=> http://ww. speech. cs. crmu. edu/ ~sbur ke/ pub/ perl . ht nm
[T1017139404 = Tue Mar 26 03:43:24 2002]
That was hit #51
405 Met hod Not Al'l owed
Not really noting {405 Method Not All owed} error at \
http://ww. amazon. com exec/ obi dos/ ASI N 1565922840

12.3.4. Redirects

Implicitinour consi der _r equest () function, above, isthe ideathat something either succeeded or was an error.
However, there is an important and frequent middle-ground in HTTP status codes: redirection status codes.

Normally, these are handled internally by the LWP::UserAgent/L WP::RobotUA object, assuming that we have |eft that
object with its default setting of following redirects wherever possible. But do we want it following redirects at all?

There's abig problem with such automatic redirect processing: if we request a URL with options appropriate for a"far"
URL, and it redirects to a URL that's part of our site, we've done the wrong thing. Or, going the other way, if we GET a

URL that's part of our site, and it redirectsto a"far" URL, we'll have broken our policy of never GETting "far" URLS.

The solution is to turn off automatic redirect following for the $r obot that we use for HEADing and GETting (by
caling $r obot - >request s_redirect abl e([]) whenweinitializeit), and to deal with redirects ourselves, in an
expanded consi der _response() routine, like so:

sub consi der_response {
Return 1 if it's successful, otherwise return O
nmy $response = $ [0];
mutter(" ", $response->status_line, "\n");
return 1 if $response->i s_success;

i f($response->is_redirect) {
ny $to_url = $response->header (' Location');
i f(defined $to_url and length $to_url and
$to_url '~ nm\s/
) A
ny $fromurl = $response->request->uri;
$to_url = URI->new abs($to_url, $fromurl);
mutter("Noting redirection\n from$fromurl\n",
to $to_url\n");
note link to($fromurl => $to_url);
}
} else {
not e_error_response($response);

}

return O;

}

By now we have completely fleshed out pr ocess_ur | () and everything it calls, except for pr ocess_near _ur |
() andtheless-important not e _|i nk_t o() routine. Processing "near" (in-site) URLsisjust an elaboration of
what we do to "far" URLs. Asdiscussed earlier, we will HEAD this URL, and if it's a successful URL (as shown by the
return value of consi der _response(), remember!), and if it will contain HTML, we GET it and scan its content
for links. The fully defined function seems long, but only because of our many callstosay() andrmutter(),and
all our sanity checking, such as not bothering to GET the URL if the HEAD actually returned content, as happens now
and then.

sub process_near _url {
ny $url = $ [0];
mutter ("HEAD ng $url\n");
++$hit _count;
ny $response = $robot->head(Surl, refer(S$url));
mutter (" That was hit #$hit_count\n");
return unl ess consi der_response($response);

i f ($response->content_type ne "text/htm"') {
mutter (" HEAD-response says it's not HTM.! Skipping ",
$response->content _type, "\n");
return;
}
if(length ${ $response->content _ref }) {
mutter(" Hm that had content! Using it...\n");
say("Usi ng head-gotten $url\n");
} else {
mutter("It's HIMI\nN");
say("Getting $url\n");
++$hit _count;
$response = $robot->get ($url, refer($url));

mutter(" That was hit #$hit _count\n");
return unl ess consi der_response($response);

}

i f($response->content _type eq 'text/htm"') {
mutter (" Scanning the gotten HIM....\n");
extract _links_fromresponse($response);

} else {
mutter (" Skipping the gotten non-HTM. (",

$response->content _type, ") content.\n");

}

return;

}

All the routines this uses are already familiar, except ext ract _| i nks_from response().
12.3.5. Link Extraction

Ourextract _|inks_fromresponse() routine hasto take a successful HTTP::Response object containing
HTML and extract the URLs from thelinksin it. But in practice, "link" can be an imprecise term. Clearly, this
constitutes alink:
l like pie!
But what about the ar ea element here?
<map>
<ar ea shape="rect" href="pie.htm" coords="0,0, 80, 21">
</ map>
Or what about the f r ame element here?
<franeset rows="*,6 76">
.<1.‘.rarre src="pie.htm" name="eat _it">
<} f r aneset >
And what about the backgr ound attribute value here?
<body bgcol or ="#000066" background="i mages/bg.gif" ... >
Y ou will have to decide for each kind of spider task what sort of linksit should be interested in and implement a
differentextract _|i nks_from response() accordingly. For purposes of simplicity, well consider only tagstobelinks. Thisis easy to implement using the HTML :: TokeParser approach we covered in
Chapter 7, "HTML Processing with Tokens' and using the URI class we covered in Chapter 4, "URLS".

use HTM.:: TokePar ser ;
use URI;

sub extract _Iinks_fromresponse {
ny $response = $ [0];

ny $base = URI ->new($response->base)->canoni cal;
"canonical" returns it in the one "official" tidy form

ny $stream = HTM.: : TokePar ser- >new($response->content _ref);
ny $page_url = URI->new $response->request->uri);

mutter("Extracting links from $page_url\n");
ny(tag, Slink_ url);

while($tag = $stream >get _tag('a')) {
next unl ess defined($link url = $tag->[1]{ href'});

next if $link url =~ m\s/; # If it's got whitespace, it's a bad
URL.
next unless length $link_url; # sanity check
$link_url = URl ->new_abs($link_url, $base)->canonical;
next unless $link_url->schene eq '"http'; # sanity
$link_url->fragment (undef); # chop off any "#foo" part
note_link_to($page_url => $link_url)
unl ess $link_url->eq($page_url); # Don't note links to itself!
}
return;
}

This does lots of sanity checking on the hr ef attribute value but endsup feedingtonote_| i nk_to() new
(absolute) URI objects for URL s such as http://bazouki-consortium.int/ or http://Mmww.mybal alaika.com/oggs/
studio_credits.html, while skipping non-HTTP URLs such as mailto:info@mybalalaika.com, aswell asinvalid URLs
that might arise from parsing bad HTML.

Thisisabout as complex as our spider code gets, and it's easy from here on.
12.3.6. Fleshing Out the URL Scheduling

Sofar weveusedanote | i nk_to() routinetwice. That routine need only do abit of accounting to update the %
poi nt s_t o hash we mentioned earlier and schedule this URL to be visited.

sub note link_to {
ny($fromurl => $to url) = @;

$points_to{ $to_url }{ $from_1url } o= 1;

mutter("Noting link\n from$fromurl\n to $to_url\n");
schedul e($to_url);
return;

}

That leavesroutines such asschedul e() left to write. Asareminder, three things need to be done with the schedule
(aswe're calling the big set of URL s that need to be visited). We heed away to see how many entries there arein it with
schedul e_count () (atleastsonmai n_I oop() can know when it's empty). We'll need to pull aURL from the
schedule withnext _schedul ed_url (),somai n_I oop() canfeedittoprocess_url () .Andweneed away
to feed a URL into the schedule, with schedul e($url), ascalledfromnote | ink_to() and
process_starting_urls().

A simple Perl array is a perfectly sufficient data structure for our schedule, so we can writeschedul e_count () like
SO:

nmy @chedul e;
sub schedul e_count { return scalar @chedul e }

The implementation of next _schedul ed_ur| () depends on exactly what we mean by "next." If our @chedul e
isaproper stack, scheduling a URL meanswe push @chedul e, $url,andnext _schedul ed_url () isjusta
matter of Surl = pop @chedul e. If our @chedul e isaproper queue, then scheduling a URL meanswe push

@chedul e, $url,andnext _schedul ed_url () isjustamatter of $url = shift @chedul e.

Both of these approaches make our spider quite predictable, in the sense that when run on the same site, it will aways do
the same things in the same order. This could theoretically be an advantage for debugging, and would be a necessary
feature if we were trying to debug without the benefit of the logging we've written into the spider.

However, that predictability is also a problem: if the spider happens on a page with dozens of slow-responding URLS, it
could spend therest of itslifetrying to check those links; i.e., until mai n_| oop() quitsbecause $hit _count
reaches$hit _|imt orbecauseti me() reaches$expi rati on.In practice, thisproblem isgreatly aleviated
(although not completely eliminated) by pulling URLs not from the beginning or end of @chedul e, but instead from a
random pointin it:

sub next _schedul ed_url {
ny $url = splice @chedule, rand(@chedule), 1;
mutter("\nPulling fromschedule: ", $url || "[nil]",
"\'n with ", scalar(@chedul e),
items left in schedule.\n");
return $url;

}

Thisleaves uswith the schedul e($ur |) routineto flesh out. It would be as simple as:

sub schedul e {
ny $url = $ [0];
push @chedul e, URI->new $url);
return;

}

However, we don't do much sanity checking on URL s everywhere else, so we need to do lots of it all here. First off, we
need to make sure we don't schedule a URL that we've scheduled before. Not only does this keep there from being
duplicatesin @chedul e at any onetime, it means we never process the same URL twice in any given session.

Second off, we want to skip non-HTTP URLSs, because other schemes (well, except HTTPS) aren't HEADable and don't
have MIME types, two things our whole spider logic depends on. Moreover, we probably want to skip URL s that have
queries (http://foo.bar/thing?baz) because those are usually CGls, which typically don't understand HEAD requests.
Moreover, we probably want to skip HTTP URL s that inexplicably have userinfo components (http://joeschmo@foo.bar/
thing), which are typically typos for FTP URLS, besides just being bizarre.

We also want to regularize the hostname, so we won't think http://Amww.Perl.com, http://mww.perl.comV, and http://Amww.
perl.com./ are al different hosts, to be visited separately. We also want to skip URL s that are too "deep," such as http://
www.foo.int/docs/docs/docs/docs/docs/docs/about.html, which are typically asign of awild symlink or some other
similar problem. We also want to skip unqualified hostnames, such as http://mww/ or http://mailhost/, and URLs with
path weirdness, such as http://thing.conv./././l/foo.html. Then we chop off any #foo fragment at the end of the URL, and
finally add the URL to @ chedul e if it's new.

All that sort of sanity checking adds up to this:

ny %een_url _before;

sub schedul e {
Add these URLs to the schedul e
foreach ny $url (@) {
ny $u = ref($url) ? $url : URI->new $url);
$u = $u->canonical; # force canonical form

next unless 'http' eq ($u->scheme || '');
next if defined $u->query;

next if defined $u->userinfo;

$u- >host (regul ari ze_host nane($u->host()));
return unl ess $u->host() =~ m\./;

next if url_path_count($u) > 6;
next if $u->path =~ nx//> or $u->path =~ nx/\.+(/|$)>;

$u- >f ragnent (undef) ;

i f($seen_url_before{ $u->as_string }++) {
nmutter (" Skipping the already-seen $u\n");
} else {
mutter(" Scheduling $u\n");
push @chedul e, $u;
}
}

return;

}

All we need is the routine that regularizes a given hostname:

sub regul ari ze_host nane {
ny $host = 1c $ [0];

$host =~ s/\.+/\./g; # foo..com=> foo.com
$host =~ s/ ™M\ .//; # .foo.com=> foo.com
$host =~ s/\.$//; # foo.com => foo.com

return 'local host' if $host =~ m ~0*127\.0+\.0+\.0*1%/;
return $host;

}

then aroutine that counts the number of / -separated partsin the URL path:

sub url _path_count {
Return 4 for "http://foo.int/feel/fielfoelfunt
1 2 3 4
my $url = $ [0];
ny @arts = $url->path_segnents;
shift ©@arts if @arts and $parts[0] eq '’
pop @arts if @arts and $parts[-1] eq '';
return scal ar @arts;

}

12.3.7. The Rest of the Code

That's afully functioning checker-spider—at least once you add in the boring switch processing, i niti ali ze(),
andther eport () that dumpsthe contents of %ot abl e_url _error, which are asfollows:

use strict;
use war ni ngs;
use URI;

use LWpP;

Swi tch processing:

my %eoption;
use Cetopt:: Std,
getopts('mn:t:l:e:u:t:d:hv', \%ption) || usage quit(l);

usage_quit(0) if $option{'h'} or not @ARGY;

sub usage_quit {
Emit usage nmessage, then exit with given error code.
print <<"END OF MESSAGE"; exit($_[0] || 0);

Usage:

$0 [switches] [urls]
This will spider for bad links, starting at the given URLs.

Swi t ches:

-h di splay this hel p nessage

-V be verbose in nmessages to STDOUT (default off)
-m 123 run for at nost 123 mnutes. (default 20)

-n 456 cause at nost 456 network hits. (default 500)
-d 7 delay for 7 seconds between hits. (default 10)

-l x.log log to text file x.log. (default is to not | og)
-e y\@.b set bot admin address to y\@.b (no default!)
-u Xyz set bot name to Xyz. (default: Verifactrola)

-t 34 set request tineout to 34 seconds. (default 15)

END_OF MESSAGE

}
ny $expiration = ($option{'m} || 20) * 60 + time();
nmy $hit Ilimt = S$option{"h"} || 500;
ny $l og = Soption{'|"'};
ny $verbose = S$option{'vVv'};
ny $bot nane = $option{'u"'} || '"Verifactrola/1l.0";
ny $bot_emnil = S$option{'e'} || '';
ny $ti meout = S$option{'t'} || 15;
ny $del ay = $option{'d} || 10;
die "Specify your email address with -e\n"
unl ess $bot _ennil and $bot _email =~ nM\ @;

ny $hit_count = 0;
ny $robot; # the user-agent itself

Then the top-level code we' ve already seen
initialize();

process_starting_url s(@ARG);

mai n_l oop();

report() if $hit_count;

say("Quitting.\n");

exit;

sub initialize {
init_logging();
init_robot();
init_signals();
return;

}

sub init_Ilogging {
nmy $sel ected = sel ect (STDERR);
$| = 1; # Make STDERR unbuf f ered.
i f($log) {
open LOG ">>%$log" or die "Can't append-open $log: $!"
sel ect (LOG ;
$| = 1; # Make LOG unbuffered

}

}

sel ect ($sel ected);
print "Logging to $log\n" if $log;
return;

sub init_robot {

}

use LWP: : Robot UA;
$robot = LWP: : Robot UA- >new($bot _nane, $bot _emai l);
$robot - >del ay($del ay/ 60); # "/60" to do seconds->ni nutes
$robot - >t i neout ($ti meout) ;
$robot - >requests_redirectable([]);

don't follow any sort of redirects
$robot - >protocols_allowed([' http']); # disabling all others
say("$bot _nanme ($bot_enmil) starting at ", scalar(localtine),
return;

sub init_signals { # catch control-C s

}

$SIG'INT'} = sub { $SQU T _NOW= 1; return;};
That might not be enul ated right under NMSWn.
return;

sub report { # This that gets run at the end.

}

say(
"\n\nEnding at ", scalar(localtine),
"after ", time() - $T,
"s of runtine and $hit_count hits.\n\n",
)
unl ess(keys %otable url _error) {
say("\nNo bad |inks seen!\n");
return;

}

say("BAD LINKS SEEN:\n");
foreach ny $url (sort keys %otable_url _error) {
say("\n$url\n Error: $notable_url _error{$url}\n");
foreach ny $linker (sort keys % $points_to{$url} }) {
say(" < $linker\n");
}
}

return;

And that's all of it!

')

41 PREVIOUS HOME

HEXT

12.2. A User Agent for Robots BOOK INDEX 12.4. Ideas for Further Expansion

]

= i .:, ; ~-
BDHDHSHEI.F PERL & LWP -~ LEARMING PERL 2nd Edithon
HOME

)
i

-*- m—
IN A MUTSHELL

3rd Edition 3rd Edition PERL/TK

MASTERING PERL COOKBOOK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

10.5. Creating New Elements

So far we haven't directly created any new HTML::Element objects. All the elements that have appeared thus far were
created by HTML::TreeBuilder as part of its delegated task of building whole trees. But suppose that we actually do need
to add something to atree that never existed elsewhere in that or any other tree. In the above section, we actually snuck
in creating a new node in this statement:

$tenplate title->push_content('No title');

But that's hardly an amazing feat, because that node isn't areal object. Y ou can actually create a new object by calling
HTM_: : El enent - >new(' t agnane') . Sothiswould add an hr element to a given paragraph object:

ny $hr = HTM.:: El enent - >new' hr');
$par agr aph- >push_cont ent ($hr) ;

And you could create anew i ng node with given attributes:
ny $ing = HTM.:: El enent - >new(' i ng');
$ing->attr('src', 'hooboy.png');
$ing->attr('alt', 'Lookit that!');
$par agr aph- >push_cont ent ($i ng) ;
Incidentally, the setting of attributes can be done in the constructor call:
ny $inmg = HTM.: : El ement - >new(' i ng', # plus any key,value pairs...
"src¢' => 'hooboy. png',
"alt' => 'Lookit that!"',
);
$par agr aph- >push_cont ent ($i ng) ;

Thisis simple enough, but it becomes rather annoying when you want to construct several linked nodes. For example,
suppose you wanted to construct objects equivalent to what you'd get if you parsed this:

<l i >See here. I</I|i>
Even thislittle treelet isfairly tedious to produce using normal constructor calls:

use HTM.: : El ement;

ny $li = HTM.:: El enent->new('i');
ny $b = HTM.:: El enent - >new(' b');
ny $a = HTM.:: El enent->new('a', 'href' => 'page.htnml"');

$a- >push_content (' here.");
$b- >push_cont ent ($a) ;
$li->push _content("See ", $b, "!'");

Have a | ook:
print $li->as HTM, "\n":
$| i ->dunp;

That indeed shows us that we succeeded in constructing what we wanted:

<l i >See here. </ a></ b>!

 @
" See
 @.1
 @.1.0
"here."

nwyn

10.5.1. Literals

If you try manually constructing and linking every element in alarger structure such as atable, the code will be
maddening. One solution is not to create the elements at al, but to create asingle element, calleda~1 i t er al

pseudoel ement, that contains the raw source you want to appear when that part of the tree is dumped. These sorts of
objects are very much like the ~comment pseudoelements we saw in the last section; their real content isin their t ext
attribute:

ny $li = HTM.:: El enent->new('~literal",
"text', 'See here. !</|i>'

)

This constructs something that will appear as that chunk of text whenas_ HTM.() iscaled onit, but it's nothing like a
normal HTML element—you can't put other elements or text under it, and you can't see it with| ook _down or
find_by tag nanme() (unlessyourelookingfora~literal element, whichyou're probably not).

10.5.2. New Nodes from Lists

Literals are fine for cases where you just want to drop arbitrarily large amounts of undigested HTML source into atree
right beforeyou call as_ HTML() . But when you want to really make new, full-fledged elements, you can do that with
afriendlier syntax with thenew from | ol () constructor.

Withnew from | ol (), you can specify an element with alist reference whose first item should be the tag name,
which then specifies attributes with an optional hash reference, and then contains any other nodes, either as bits of text,
preexisting element objects, or more list references. Thisis best shown by example:

ny $li = HTM.:: El enent->new_from|l ol (
["1,
"See ",
["b",
[o,
{"href' => 'page.htm'},
“here."
]
],
II!II
]
); # or indent it however you prefer -- probably nore concisely

And this produces exactly the same tree as when we called HTM_: : El enent - >newthree times then linked up the
resulting el ements.

The benefits of thenew _from | ol () approach are you can easily specify children at construction time, and it's very
hard to produce mis-nested trees, because if the number of ['s above doesn't match the number of] 's, it won't parse as
valid Perl. Moreover, it can actually be arelatively concise format. The above code, with some whitespace removed,
basically fits happily on oneline:

ny $li = HTM.:: El enent->new_from| ol (

["ri+, "see ™", ['b', ['a', {"'href' => "page.htm'}, "here."]],
S
);

So, for example, consider returning to the template-insertion problem in the previous section, and suppose that besides
dumping the article's content into a template, we should also preface the content with something like this:

<p>The origi nal version of the following story is to found at:

$orig_url</p>
<hr >
This can be done by replacing:
put _into_tenpl ate($good_td->content list);

with this;

Assum ng $orig_url has been set sonmewhere...

put _i nto_t enpl at e(
HTM.: : El enent - >new_from | ol (

["p', "The original version of the following story is to found
at: ",
["a", {"href', $orig_url}, S$orig_ url],
]
).
HTM.: : El ement - >new_from.lol (['hr']),
$good_td->content |ist,
)

If youfindnew_from | ol () notation to be an unnecessary elaboration, you can still manually construct each
element with HTML: : El enent - >newand link them up before passing themto put _i nt o_t enpl ate(). Oryou
could just aswell createa~l i t er al pseudoelement containing the raw source:

put _i nto_tenpl at e(
HTM.: : El enent->new(' ~literal', '"text' => qq{
<p>The original version of the followng story is to found at:

$orig_url </ a></p>
<hr >
1.

$good_t d->content _|ist,

);

Whilethenew from | ol () syntax isan expressive shorthand for the general form of element construction, you
may well prefer the directness of creating asingle~l i t er al or the simplicity of normal - >newcalls. Asthe Perl
saying goes, there is more than one way to do it.

41 PREVIOUS HOME HEXT

10.4. Attaching in Another Tree BOOK INDEX 11. Cookies, Authentication,and
Advanced Reguests

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

3.5. HTTP::Response Objects

Y ou have to manually create most objects your programs work with by calling an explicit constructor, with the syntax

C assNane- >new) .HTTP::Response objects are a notable exception. Y ou never need to call HTTP: :

Response- >new() tomake them; instead, you just get them back as the result of arequest made with one of the
request methods (get (), post (),andhead()).

That is, when writing web clients, you never need to create a response yourself. Instead, a user agent createsit for you, to
encapsulate the results of arequest it made. Y ou do, however, interrogate a response object’s attributes. For example, the
code() method returnsthe HTTP status code:

print "HTTP status: ", $response->code(), "\n";
HTTP status: 404

HTTP::Response objects a so have convenience methods. For example, i s_success() returnsatruevaueif the
response had a successful HTTP status code, or falseif it didn't (e.g., 404, 403, 500, etc.). Always check your responses,
like so:

die "Couldn't get the docunent™
unl ess $response->i s_success();

Y ou might prefer something a bit more verbose, like this:

G ven $response and $url
die "Error getting $url\n", $response->status_line
unl ess $response->i s_success();

3.5.1. Status Line

Thest atus_| i ne() method returns the entire HTTP status line:
$sl = $response->status_line();

Thisincludes both the numeric code and the explanation. For example:
$resp = $browser->get ("http://ww. cpan. org/ nonesuch");
print $response->status_line();

404 Not Found

To get only the status code, use thecode() method:
$code = $response->code();

To access only the explanatory message, usethe message() method:
$nsg = $response->nessage();

For example:

$resp = $browser->get ("http://ww. cpan. or g/ nonesuch");

print $response->code(), (that nmeans ", $response->nessage(), ")
\n";
404 (that neans Not Found)

Four methods test for types of status codesintheresponse:i s_error(),is_success(),is_redirect(),
andi s_i nfo().Theyreturntrueif the status code corresponds to an error, a successful fetch, aredirection, or
informational (e.g., "102 Processing").

$bool ean = $response->is_error();
$bool ean = $response->i s_success();
$bool ean = $response->is_redirect();
$bool ean = $response->is_info();

Exactly what codes count as what sort of status, is explained in greater detail in Appendix B, "HTTP Status Codes".

3.5.2. Content
Most responses contain content after their headers. This content is accessible withthecont ent () method:
$the file_data = $response->content();

In some cases, it's easier (and more efficient) to get a scalar reference to the content, instead of the value of the content
itself. For that, usethecont ent _ref () method:

$data_ref = $response->content_ref();

For example in Chapter 7, "HTML Processing with Tokens', we use a class called HTML :: TokeParser that parses
HTML starting with areference to a big block of HTML source. We could use that module to parsethe HTML in an
HTTP::Response object by usingdo{ nmy $x = $r esponse- >content (); \ $x}, but we could avoid the
unnecessary copying by just using $r esponse- >content _ref ().

3.5.3. Headers
To fetch the value of an HTTP header in the response, use the header () method:
$val ue = $response- >header (header _nane) ;

For example, if you know there will be useful datain aheader called Descri pti on, accessit as$r esponse-
>header (' Description').Theheader() method returnsundef if thereisno such header in this response.

HTTP::Response provides some methods for accessing the most commonly used header fields:
$type = $response->content _type();

The Cont ent - Type header contains the MIME type of the body. Thisis "text/html" for HTML files, "image/jpeg" for
JPEG files, and so on. Appendix C, "Common MIME Types' contains alist of common MIME types.

$l ength = $response->content _| ength();

The Cont ent - Lengt h header contains the size of the body (in bytes) sent from the browser but is not always present.
If you need the real length of the response, usel engt h($r esponse- >content).

$l m = $response->l ast_nodi fied();

TheLast - Modi f i ed header contains a timestamp indicating when the content was last modified, but it is sometimes
not present.

$encodi ng = response->cont ent _encodi ng();

The Cont ent - Encodi ng header contains the name of the character set this document is declared as using. The most
common valueisi so- 8859- 1 meaning Latin-1. Anincreasingly common runner-up isut f - 8, meaning Unicode
expressed in the UTF-8 encoding. Less-common encodings are listed in Appendix E, "Common Content Encodings’.
But be warned: this header is occasionally inaccurate, in cases where content is clearly in one encoding, but the
document fails to declare it as such. For example, a document might be in Chinese in the bi g5 encoding but might
erroneously report itself asbeingini so- 8859- 1.

This brings usto aregrettably even less-used header:
$l anguage = $response->content _| anguage();

Rarely present, the Cont ent - Language header contains the language tag(s) for the document's content. Appendix D,
"Language Tags' lists common language tags.

If you want to get all the headers as one string, call $r esponse- >header s_as_st ri ng. Thisisuseful for
debugging, asin:

print "Weird response!!\n",
$response- >headers_as_string, "\n\n"
unl ess $response->content _type();

3.5.4. Expiration Times

Most servers send a Dat e header aswell asan Expi r es or Last - Modi f i ed header with their responses. Four
methods on HTTP::Response objects use these headers to cal culate the age of the document and various caching
statistics.

Thecurrent _age() method returns the number of seconds since the server sent the document:
$age = $response->current _age();
For example:

$age = $response->current _age();

$days = int($age/ 86400); $age -= $days * 86400;

$hours = int($age/ 3600); $age -= $hours * 3600;

$m ns = int($age/ 60); $age -= $m nutes * 60;

$secs = $age;

print "The docunment is $days days, $hours hours, $m ns m nutes, and
$secs

seconds ol d.\n";
The docunent is 0 days, O hours, 5 ninutes, and 33
seconds ol d.

Thefreshness_lifetime() method returnsthe number of seconds until the document expires:
$lifetime = $response->freshness_lifetinme();
For example:

$time = $response->freshness_lifetime();

$days = int($tine/86400); $tine -= $days * 86400;
$hours = int($tine/ 3600); $tinme -= $hours * 3600;
$mns = int($tine/60); $tine -= $mins * 60;

$secs = int($tine);

print "The docunent expires in $days days, $hours hours, $mins

m nut es, and

$secs seconds.\n";

The docunent expires in 0 days, 23 hours, 6 mnutes, and 15 seconds.

Thei s_fresh() method returnstrue if the document has not expired yet:
$bool ean = $response->is_fresh();

If the document is not fresh, your program should reissue the request to the server. Thisis an issue only if your program
runs for along time and you keep responses for later interrogation.

Thefresh_until () entry returnsthe time when the document expires:
$expires = $response->fresh_until ();
For example:

$expires = $response->fresh_until ();

print "This docunent is good until ", scalar(localtine($expires)),
"\'n";

Thi s docunent is good until Tue Feb 26 07:36: 08 2004

3.5.5. Base for Relative URLs
An HTML document can haverelative URLsin it. For example:
<inmg src="mny_face.gif">

This generally refersto the my_face.gif that's located in the same directory asthe HTML page. Turning these relative
URLs into absolute URL s that can be requested via LWP is covered in the next chapter. To do that, you must know the
URL of the current page.

Thebase() method returns the URL of the document in the response.
$url = $response->base();

Thisbase URL is normally the URL you requested but can sometimes differ: if there was aredirection (which LWP
normally follows through on), the URL of the final response isn't the same as the requested URL.. Moreover, the Base,
Cont ent - Base, and Cont ent - Locat i on headersin aresponse specify the address against which you resolve
relative URLs. And finally, if the response content isan HTML document and hasa<base href="...">taginits
head, that definitively setsthe base URL.

3.5.6. Debugging

When an error occurs (asindicated by thei s_error () method), error _as_ HTM.() returnsan error pagein
HTML:

$error_page = $response->error_as_HIM.();
print "The server said:\n<bl ockquot e>$error_page</ bl ockquot e>\ n";

Because a user agent can follow redirections and automatically answer authentication challenges, the request you gave to
the user agent object might not be the request represented by your abject. That is, you could have said to get one URL,
but that could have directed to another, which could have redirected to another, producing not one response but a chain
of responses. For the sake of simplicity, you get back only the one $r esponse object, which isthe last in the chain.
But if you need to, you can work your way back, using the pr evi ous() method:

$previ ous_response = $response->previous();

Theprevi ous() method returnsundef when there is no previous method (i.e., on the response to the request you
gave the user agent, at the head of the chain). Moreover, each response stores the HTTP::Request object that LWP used
for making the request, and you can access it with the $r esponse- >r equest () . HTTP::Request objects support
most of the same methods as HTTP::Response objects, notably $r equest - >as_st ri ng, whichisuseful in
debugging.

From each response, you can get the corresponding request and recreate the HTTP dialog. For example:

$l ast = $response;
whi |l e ($response) {
print $response->code(), " after ";

O you could print even dunp the whol e
thing, with $response->as_string()

$l ast = $response;
$response = $response->previ ous();

}

print "the original request, which was:\n",
$l ast - >request - >as_stri ng;

200 after 401 after 301 after the original request, which was:
CET http://sone.crazy.redirector.int/thing. htm
User - Agent: | i bwww perl/5.5394

4 PREVIOUS HOME NEXT
3.4. User Agents BOOK INDEX 3.6. LWP Classes: Behind the Scenes

PROGRAMMING ‘

: AL
< = i H ! g IN A MUTSHELL
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edition PERL
HOME 3rd Edition srd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

1.4. Words of Caution

In theory, the underlying mechanisms of the Web make no difference between a browser getting data and displaying it to
you, and your LWP-based program getting data and doing something else with it. However, in practice, amost all the
data on the Web was put there with the assumption (sometimes implicit, sometimes explicit) that it would be looked at
directly in abrowser. When you write an LWP program that downloads that data, you are working against that
assumption. Thetrick isto do thisin as considerate away as possible.

1.4.1. Network and Server Load

When you access aweb server, you are using scarce resources. Y ou are using your bandwidth and the web server's
bandwidth. Moreover, processing your regquest places aload on the remote server, particularly if the page you're
reguesting has to be dynamically generated, and especially if that dynamic generation involves database access. If you're
writing a program that requests several pages from a given server but you don't need the pages immediately, you should
write delays into your program (such assl eep 60; to sleep for one minute), so that the load that you're placing on the
network and on the web server is spread unobtrusively over alonger period of time.

If possible, you might even want to consider having your program run in the middle of the night (modulo the relevant
time zones), when network usage is low and the web server is not likely to be busy handling alot of requests. Do this
only if you know thereis no risk of your program behaving unpredictably. In Chapter 12, "Spiders", we discuss programs
with definite risk of that happening; do not let such programs run unattended until you have added appropriate
safeguards and carefully checked that they behave as you expect them to.

1.4.2. Copyright

While the complexities of national and international copyright law can't be covered in a page or two (or even alibrary or
two), the short story isthat just because you can get some data off the Web doesn't mean you can do whatever you want
with it. The things you do with data on the Web form a continuum, as far as their relation to copyright law. At the one
end is direct use, where you sit at your browser, downloading and reading pages as the site owners clearly intended. At
the other end isillegal use, where you run a program that hammers a remote server as it copies and saves copyrighted
data that was not meant for free public consumption, then savesit all to your public web server, which you then
encourage people to visit so that you can make money off of the ad banners you've put there. Between these extremes,
there are many gray areas involving considerations of "fair use," atricky concept. The safest guide in trying to stay on
the right side of copyright law isto ask, by using the data this way, could | possibly be depriving the original web site of
some money that it would/could otherwise get?

For example, suppose that you set up a program that copies data every hour from the Y ahoo! Weather site, for the 50
most populous towns in your state. Y ou then copy the data directly to your public web site and encourage everyone to
vigit it. Even though "no one owns the weather," even if any particular bit of weather dataisin the public domain (which
it may be, depending on its source), Y ahoo! Weather put time and effort into making a collection of that data, presented
in a certain way. And as such, the collection of datais copyrighted.

Moreover, by posting the data publicly, you are almost definitely taking viewers away from Y ahoo! Weather, which
means less ad revenue for them. Even if Yahoo! Wesather didn't have any ads and so wasn't obviously making any money
off of viewers, your having the data online elsewhere means that if Y ahoo! Weather wanted to start having ads
tomorrow, they'd be unable to make as much money at it, because there would be people in the habit of looking at your
web site's weather data instead of at theirs.

1.4.3. Acceptable Use

Besides the protection provided by copyright law, many web sites have "terms of use" or "acceptable use" policies,

where the web site owners basically say "as a user, you may do this and this, but not that or that, and if you don't abide
by these terms, then we don't want you using this web site." For example, a search engine's terms of use might stipulate
that you should not make "automated queries’ to their system, nor should you show the search data on another site.

Before you start pulling data off of aweb site, you should put good effort into looking around for its terms of service
document, and take the timeto read it and reasonably interpret what it says. When in doubt, ask the web site's

administrators whether what you have in mind would bother them.

4 PREVIOUS HOME
1.3. Installing LWP BOOK INDEX

MEXT o
1.5. LWPin Action

PROGRAMMING ‘

RL
1{. N IN A MUTSHELL
LEARMING PERL 2nd Edition PERL
3rd Edition srd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

&
)

MASTERING PERL COOKBOOK
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 6. Simple HTML Processing with Regular
Expressions

Contents:

Automating Data Extraction

Regular Expression Technigues

Troubleshooting

When Regular Expressions Aren't Enough

Example: Extracting Linksfrom a Bookmark File

Example: Extracting Linksfrom Arbitrary HTML

Example: Extracting Temperatures from Weather Underground

The preceding chapters have been about getting things from the Web. But once you get afile, you have to processit. If
you get a GIF, you'll use some module or external program that reads GIFs and likewise if you get aPNG, an RSSfile,
an MP3, or whatever. However, most of the interesting processabl e information on the Web isin HTML, so much of the
rest of this book will focus on getting information out of HTML specifically.

In this chapter, we will use a rudimentary approach to processing HTML source: Perl regular expressions. This technique
is powerful and most web sites can be mined in this fashion. We present the techniques of using regular expressions to
extract data and show you how to debug those regular expressions. Examples from Amazon, the O'Reilly Network,
Netscape bookmark files, and the Weather Underground web site demonstrate the techniques.

6.1. Automating Data Extraction

Suppose we want to extract information from an Amazon book page. The first problem is getting the HTML. Browsing
Amazon shows that the URL for abook page is http://www.amazon.con/exec/obidosyASIN/I SBN, where | SBNisthe
book's unique International Standard Book Number. So to fetch the Perl Cookbook's page, for example:

#!/usr/ bin/perl -w
use strict;
use LWP:: Si npl e;

ny $htm = get("http://ww. anazon. conl exec/ obi dos/ ASI N 1565922433")
or die "Couldn't fetch the Perl Cookbook's page.";

The relevant piece of HTML looks like this:

<br clear="left">

Paper back</ b>
- 794 pages (August 1998)

O Reilly &anp; Associates;

| SBN: 1565922433

Di mrensions (in inches): 1.55 x 9.22 x 7.08

</ f ont >

</ span>

Amazon. com Sal es Rank: 4,070

The easiest way to extract information hereisto use regular expressions. For example:

$ht M =~ n{ Amazon\.com Sal es Rank: ([\d,]+)
};
$sal es_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becones 4070

This regular expression describes the information we want (a string of digits and commas), as well as the text around the
text we're after (Amazon. comSal es Rank: and </ f ont >
). We use curly braces to delimit the regular
expression to avoid problems with the slash in </ f ont >, and we use parentheses to capture the desired information. We
save that information to $sal es_r ank, then modify the variable's value to clean up the data we extracted.

The final program appearsin Example 6-1.

Example 6-1. cookbook-rank

#!/usr/ bin/perl -w
cookbook-rank - find rank of Perl Cookbook on Anmzon

use LWP:: Si npl e;

ny $htm = get("http://ww. anmazon. conl exec/ obi dos/ ASI N 1565922433")
or die "Couldn't fetch the Perl Cookbook's page.";

$htmM =~ n{Amazon\.com Sal es Rank: ([\d,]+)
} || die;
ny $sal es_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becones 4070

print "$sal es_rank\n";

It's then straightforward to generalize the program by allowing the user to provide the ISBN on the command line, as
shown in Example 6-2.

Example 6-2. amazon-rank

#!/usr/ bin/perl -w
amazon-rank: fetch Amazon rank given |ISBN on cndline

use LWP:: Si npl e;

ny $isbn = shift
or die "usage:\n$0 | SB\\ n";
ny $htm = get("http://ww. anazon. coni exec/ obi dos/ ASI N $i sbn") ;
$htm =~ n{ Amazon\.com Sal es Rank: ([\d,]+)
} || die;
ny $sal es rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becomes 4070
print "$sal es_rank\n";

We could take this program in any direction we wanted. For example, it would be a simple enhancement to take alist of
ISBNs from the command line or from STDIN, if none were given on the command line. It would be trickier, but more
useful, to have the program accept book titles instead of just ISBNs. A more elaborate version of thisbasic programis
one of O'Reilly's actual market research tools.

41 PREVIOUS HOME

5.8. Limits on Forms BOOK INDEX

HEXT B
6.2. Regular Expression Techniques

i | PERL
i Y g - b IM A NUTSHELL
PERL & LWP LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PROGRAMMING
PERL
3rd Edition

& XML

MASTERING PERL COOKBOOK .
PERL/TK :

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

6.3. Troubleshooting

Both when devel oping and maintaining data extraction programs, things can go wrong. Suddenly, instead of an article
summary, you see a huge mass of HTML, or you don't get any output at all. Several things might cause this. For
example, the web site's HTML changed, or your program wasn't flexible enough to deal with all the naturally occurring
variationsinthe HTML.

There are two basic types of problems: false positives and false negatives. A false positive is when your regular
expression identifies something it thinksis the information you're after, but it isn't realy. For example, if the O'Reilly
Network used thei t ent enpl at e and summary format for things that aren't articles, the summary extraction program
in Example 6-3 would report headlines that aren't really headlines.

There are two ways to deal with false positives. Y ou can tighten your regular expression to prevent the uninteresting
piece of HTML from matching. For example, matching text with / [<] */ instead of / . *?/ ensures the text has no
HTML. The other way to prevent afalse positive isto inspect the results of the match to ensure they're relevant to your
search. For example, in Example 6-3, we checked that the URL, title, and summary were found when we decompaosed
the chunk.

A false negative is where your program failsto find information for which it is looking. There are also two waysto fix
this. Thefirst isto relax your regular expression. For example, replace asingle spacewith/ \ s*/ to allow for any
amount of whitespace. The second way is to make another pass through the document with a separate regular expression
or processing technique, to catch the data you missed the first time around. For example, extract into an array al the
things that look like news headlines, then remove the first element from the array if you know it's always going to be an
advertisement instead of an actual headline.

Often the hardest part of debugging aregular expression islocating which part isn't matching or is matching too much.
There are some simple steps you can take to identify where your regular expression is going wrong.

First, print the text you're matching against. Print it immediately before the match, so you are totally certain what the
regular expression is being applied to. Y ou'd be surprised at the number of subtle ways the page your program fetches
can differ from the page for which you designed the regular expression.

Second, put capturing parentheses around every chunk of the regular expression to see what's matching. Thisletsyou
find runaway matches, i.e., places where a quantifier matches too much. For example, the/ . */ intended to skip just the
formatting HTML might instead skip the formatting HTML, three entries, and another piece of formatting HTML. In
such situations, it'stypically because either the thing being quantified was too general (e.g., instead of the dot, we should
have had / [*<]/ toavoid matching HTML), or because the literal text after the quantifier wasn't enough to identify the
stop point. For example, / <f ont / instead of / <f ont si ze=- 1/ might make aminimal quantifier stop too soon (at
thefirst f ont tag, instead of the correct f ont tag) or agreedy quantifier match too much (at thelast f ont tag, instead
of thelastsi ze=-1 font tag).

If the regular expression you've created isn't matching at all, repeatedly take the last chunk off the regular expression
until it does match. The last bit you removed was causing the match to fail, so inspect it to see why.

For example, let's find out why this isn't matching:
$text = qqg(Dog</ b></ a>Wof \ nWhof </ p>) ;
($file, $title, $sumary) =

$text =~ n{(.*?)\s*(.*?)</p>};

Taking the last piece off yields this regular expression:

(.*?)\ s*(.*?)

This matches. Thistellsusthat / </ p>/ wasn't being found after / (. *?) / matched. We're not going to see much if we
print $3 at this point, as we're matching minimally, and without something forcing the quantifier to match more than 0,

it'll be happy to match nothing.

The way around thisis to remove the minimal matching—how much could it match?

(.*?)\s*(.*)

Printing $3 now show usthat / . */ ismatching only Whof , instead of Wbof \ nWbof . The newline should be the
giveaway—we need to add the / s modifier to the original regular expression (be sureto changethe/ . */ back to/ .

*?/ 1) to ensure that summaries with embedded newlines are correctly located.

41 PREVIOUS HOME
6.2. Regular Expression Techniques BOOK INDEX

HEXT B
6.4. When Regular Expressions Aren't

PROGRAMMING ‘

s y oL IN A NUTSHELL
PERL & LWP -~ LEARNING PERL 2nd Edition PERL
HOME 3rd Edition 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

Enough
%
™|

MASTERING PERL COOKBOOK
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Chapter 8. Tokenizing Walkthrough

Contents:

The Problem

Getting the Data
Inspecting the HTML
First Code
Narrowing In
Rewrite for Features
Alternatives

So far, I've been showing examples of datain a particular format, then presenting code for extracting the data out of that
format, as anillustration of newly introduced HTML ::TokeParser methods. But in real life, you do not proceed tidily
from the problem to an immediate and fully formed solution. And ideally, the task of data extraction is simple: identify
patterns surrounding the data you're after and write a program that matches those patterns and extracts the embedded
data.

In practice, however, you write programs bit by bit and in fits and starts, and with data extraction specifically; this
involves a good amount of trying one pattern, finding that its matching is too narrow or too broad, trying to amend it,
possibly having to backtrack and try another pattern, and so on. Moreover, even equally effective patterns are not equal;
some patterns are easier to capture in code than others, and some patterns are more temporary than others.

In this section, I'll try to make these points by walking though the implementation of a data extraction task, with all
alternatives considered, and even a misstep or two.

8.1. The Problem

As a starting point, consider the task of harvesting a month's worth of listings and corresponding Real Audio URLs from
the web site of the National Public Radio program Fresh Air, at http://freshair.npr.org. Fresh Air is on NPR stations each
weekday, and on every show, different guests are interviewed. The show's web site lists which guests appear on the show
each day and has links to the Real Audio files for each segment of each show. If your particular weekday schedule doesn't
have you listening to Fresh Air every night or afternoon, you would find it useful to have a program tell you who had
been on in the past month, so you could make a point of listening to the Real Audio files for the guests you find
interesting. Such a data-extraction program could be scheduled with crontab to run on the first or second day of every
month, to harvest the past month's program data.

4a PREVIOUS HOME HEXT »
7.6. Using Extracted Text BOOK INDEX 8.2. Getting the Data

1%
PROGRAMMING]

PE

b kS t RL & XML
L i H : - IN A NUTSHELL)
EOOKSHELE PERL & LWP -~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK N
HOME 3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://freshair.npr.org/
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

6.6. Example: Extracting Linksfrom Arbitrary HTML

Suppose that the links we want to check are in aremote HTML file that's not quite as rigidly formatted as my local
bookmark file. Suppose, in fact, that a representative section looks like this:

<p>Dear Di ary,

l was listening to Fresh
Air the other day and they had Li nus Torval ds on,
and he was goi ng on about how he wote sone ki nda

progranx/a> or sonething. |If
he's so smart, why didn't he wite sonething useful, |like Tetris or <a href="../

m nesweeper _hints/"
>M nesweeper </ a>, huh?

In the case of the bookmarks, we noted that links were each alone on aline, al absolute, and each capturable with ni
HREF="([~"\s] +)" /. But none of those things are true here! Some links (such as

href="why | love_tetris.htm ") arerelative, some lines have more than one link in them, and one link even
has a newline between its hr ef attribute nameandits=". .. " attribute value.

Regexps are still usable, though—it's just a matter of applying them to awhole document (instead of to individual lines)
and also making the regexp abit more permissive:

while ($document =~ mf\s+href\s*=\s*"([*"\s]+)"/gi) {
ny $url = $1;

}

(The/ g modifier ("g" originaly for "globally") on the regexp tries to match the pattern as many times asit can, each
time picking up where the last match left off.)

Example 6-5 shows this basic idea fleshed out to include support for fetching a remote document, matching each link in
it, making each absolute, and calling a checker routine (currently a placeholder) on it.

Example 6-5. diary-link-checker

#!/usr/ bin/perl -w
diary-1ink-checker - check Iinks fromdiary page

use strict;
use LWP;

ny $doc_url = "http://chichi.diaries.int/stuff/diary.htm";
ny $docunent;

ny $browser;

init_browser();

{ # Cet the page whose |inks we want to check:
ny 3$response = $browser->get ($doc_url);
die "Couldn't get $doc url: ", $resp->status_line

unl ess $response->i s_success;
$docunent = $response->content;
$doc_url = $response->request - >base;
In case we need to resolve relative URLs | ater

}

whil e ($docunent =~ mfhref\s*=\s*"([""\s]+)"/gi) {

nmy $absol ute_

url = absol utize($1, $doc_url);

check_url ($absol ute_url);

}

sub absol uti ze

{

ny($url, $base) = @;

use URI;

return URl ->new_abs($url, $base)->canonical;

}

sub init_browser {
$browser = LWP: : User Agent - >new,

...And any

other initialization we night need to do...

return $browser;

}

sub check_url

A tenporary placehol der. ..
print "I should check $ [0]\n";

}

When run, this prints:

I shoul d check
I shoul d check
| shoul d check
I shoul d check
| shoul d check

http://ww. freshair.com

http://ww. cs. Hel sinki.Fl/u/torval ds/
http://ww. | inux.org/
http://chichi.diaries.int/stuff/why_ | _love_tetris.htm
http://chichi.diaries.int/mnesweeper_hints/

So our whi | e (regexp) loop isindeed successfully matching al five links in the document. (Note that our

absol uti ze routineis correctly making the URLs absolute, as with turning why | love tetris.html into http://chichi.
diaries.int/stuff/why_| _love tetris.html and ../minesweeper _hints/ into http://chichi.diaries.int/minesweeper _hints/ by
using the URI class that we explained in Chapter 4, "URLS".)

Now that we're satisfied that our program is matching and absolutizing links correctly, we can drop inthe check _ur |
routine from the Example 6-4, and it will actually check the URL s that the our placeholder check_ur | routine

promised we'd check.
4 PREVIOUS HOME NEXT B
6.5. Example: Extracting Linksfrom a BOOK INDEX 6.7. Example: Extracting
Bookmark File Temperatures from Weather
Underground

H

HOME

PERL & LWP -~

' Z‘q.
§ PERL . i]
. . IN A MUTSHELL PROCRAMMING)
LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

2.4. Fetching Documents Without LWP::Simple

LWP::Simple is convenient but not all powerful. In particular, we can't make POST requests or set request headers or
query response headers. To do these things, we need to go beyond LWP::Simple.

The genera al-purpose way to do HTTP GET queriesisby usingthedo_ GET() subroutine shown in Example 2-5.
Example 2-5. The do_GET subroutine

use LWpP;
ny $browser;
sub do_ GET {
Paraneters: the URL,
and then, optionally, any header lines: (key,value, key,val ue)
$browser = LWP: : User Agent - >new() unl ess $browser;
ny $resp = $browser->get (@) ;
return ($resp->content, $resp->status_line, $resp->is_success, $resp)
if wantarray;
return unl ess $resp->i s_success;
return $resp->content;

}

A full explanation of theinternals of do_GET() isgivenin Chapter 3, "The LWP Class Model". Until then, we'll be
using it without fully understanding how it works.

You can cal thedo_GET() function in either scalar or list context:

doc = do_CGET(URL [header, value, ...]);
(doc, status, successful, response) = do_GET(URL [header, value, ...]);

In scalar context, it returns the document or undef if thereisan error. Inlist context, it returns the document (if any),
the status line from the HT TP response, a Boolean value indicating whether the status code indicates a successful
response, and an abject we can interrogate to find out more about the response.

Recall that assigning to undef discardsthat value. For example, thisis how you fetch a document into a string and learn
whether it is successful:

($doc, undef, $successful, undef) = do_GET(' http://ww.suck.conl"');

The optional header and value argumentsto do_GET() let you add headersto the request. For example, to attempt to
fetch the German language version of the European Union home page:

$body = do_CET("http://europa.eu.int/",
"Accept - | anguage" => "de",

)

Thedo_GET() function that we'll use in this chapter provides the same basic convenience as LWP::Simple'sget ()
but without the limitations.

4 PREVIOUS HOME HEXT %
2.3. LWP::Simple BOOK INDEX 2.5. Example: AltaVista

PE

AL
s L IN A NUTSHELL h
LEARNING PERL 2nd Edition PERL PERL COOKBOOK 2,
3rd Edition 3rd Edition PERL/TK :

{
I \ ,]
PERL & LWP -

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

3.3. Inside the do_GET and do_POST Functions

Y ou now know enough to follow thedo_GET() anddo_POST() functionsintroduced in Chapter 2, "Web Basics'.
Let'slook at do_CGET() first.

Start by loading the module, then declare the $br owser variable that will hold the user agent. It's declared outside the
scope of thedo_GET() subrouting, soit's essentially a static variable, retaining its value between calls to the
subroutine. For example, if you turn on support for HTTP cookies, this browser could persist between callsto do_GET
(), and cookies set by the server in one call would be sent back in a subsequent call.

use LWP;
ny $browser;
sub do_GET {

Next, create the user agent if it doesn't already exist:

$browser = LWP:: User Agent ->new() unl ess $browser;
Enable proxying, if you're behind afirewall:

$browser - >env_proxy();
Then perform a GET request based on the subroutine's parameters:

nmy $response = $browser->request(@) ;

In list context, you return information provided by the response object: the content, status line, a Boolean indicating
whether the status meant success, and the response object itself:

return($response->content, $response->status_|ine, $response-
>j s_success, $response)
if wantarray;

If there was a problem and you called in scalar context, we return undef :
return unl ess $response->i s_success;
Otherwise we return the content:

return $r esponse->cont ent;

}

Thedo_POST() subroutineisjustlikedo GET(), onlyitusesthepost () method instead of get ().

Therest of this chapter is a detailed reference to the two classes we've covered so far: LWP::UserAgent and HTTP::
Response.

41 PREVIOUS HOME NEXT B
3.2. Programming with LWP Classes BOOK INDEX 3.4. User Agents

| '
i Y ,‘ . B IM A MUTSHELL

PERL & LWP LEARMIMG PERL 2nd Edition
3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

MASTERING
PERL/TK

PERL COOKBOOK

PE
& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 7. HTML Processing with Tokens

Contents:

HTML as Tokens

Basic HTML ::TokeParser Use
Individual Tokens

Token Sequences

More HTML :: TokeParser Methods
Using Extracted Text

Regular expressions are powerful, but they're a painfully low-level way of dealing with HTML. Y ou're forced to worry
about spaces and newlines, single and double quotes, HTML comments, and alot more. The next step up from aregular
expression isan HTML tokenizer. In this chapter, we'll use HTML ::TokeParser to extract information from HTML files.
Using these techniques, you can extract information from any HTML file, and never again have to worry about character-
level triviaof HTML markup.

7.1. HTML as Tokens

Y our experience with HTML code probably involves seeing raw text such as this:

<p>Dear Di ary,

|'m gonna be a superstar, because I'mlearning to play

the bal al ai ka</ a> &anp; the bazouki </ a>!!!

The HTML::TokeParser module dividesthe HTML into units called tokens, which means units of parsing. The above
source code is parsed as this series of tokens:

start-tag token
p with no attributes
text token
Dear Diary,\n
start-tag token
br with no attributes
text token
I''mgonna be a superstar, because |I'mlearning to play\nthe
start-tag token
a, with attribute hr ef whosevalueishtt p:// MyBal al ai ka. com
text token
bal al ai ka
end-tag token
a
text token
&anp; the,whichmeans& t he
start-tag token
a, with attribute hr ef equalsht t p: / / MyBazouki . com
text token
bazouki
end-tag token

a
text token
111\n

This representation of things is more abstract, focusing on markup concepts and not individual characters. So whereas
the two <a> tags have different types of quotes around their attribute values in the raw HTML, as tokens each has a start-
tag of type a, withan hr ef attribute of a particular value. A program that extracts information by working with a stream
of tokens doesn't have to worry about the idiosyncrasies of entity encoding, whitespace, quotes, and trying to work out

where atag ends.

4 PREVIOUS HOME NEXT B
6.7. Example: Extracting BOOK INDEX 7.2. Basic HTML:: TokeParser Use
Temperatures from Weather

Underground

5
INA I'IJ!I'I-SHELL 4)

LEARNING PERL 2nd Edition PEAL MASTERING = PERL COOKBOOK
3rd Edition Srd Edition PERL/TK

I \ .-I
PERL & LWP -~

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

7.5. More HTML:: TokeParser Methods

Example 7-1 illustrates that often you aren't interested in every kind of token in a stream, but care only about tokens of a

certain kind. The HTML::TokeParser interface supports this with three methods, get _tag(),get _text(),and
get _trinmed_text() that dosomething other than simply get the next token.

$text _string = $stream >get _text();
If the next token is text, return its value.

$text_string = $stream >get _text (' foo');
Return all text up to the next f oo start-tag.

$text _string = $stream >get _text('/bar');
Return all text up to the next / bar end-tag.

$text = $stream >get _trinmred_text();
$text = $stream >get _trinmed_text (' foo');
$text = $stream >get _trinmed_text('/bar');

Likeget text() cals, except withinitial and final whitespace removed, and al other whitespace collapsed.
$tag ref = $stream >get _tag();

Return the next start-tag or end-tag token.
$tag ref = $stream >get _tag('foo', '/bar', 'baz');

Return the next f oo start-tag, / bar end-tag, or baz start-tag.

We will explain these methods in detail in the following sections.

7.5.1. The get_text() Method
Theget _text() syntaxis
$text _string = $stream >get _text();

If $st r eanis next token istext, this gets it, resolves any entitiesin it, and returns its string value. Otherwise, this returns
an empty string.

For example, if you are parsing this snippet:
<hl | ang='en- GB' >Shat ner Reprises Kirk Rô|e</hl>

and have just parsed the token for h1, $st r eam >get _t ext () returns"Shatner Reprises Kirk Role." If you call it
again (and again and again), it will return the empty string, because the next token waiting is not atext token but an h1
end-tag token.

7.5.2. The get_text() Method with Parameters
The syntax for get _t ext () with parametersis:

$text _string
$text_string

= $stream >get _text('foo');

= $stream >get _text('/bar');

Specifying af oo or / bar parameter changes the meaning of get _t ext () . If you specify atag, you get all the text
up to the next time that tag occurs (or until the end of thefile, if that tag never occurs).

For however many text tokens are found, their text values are taken, entity sequences are resolved, and they are
combined and returned. (All the other sorts of tokens seen along the way are just ignored.)

Note that the tag name that you specify (whether f 0o or / bar) must bein lowercase.
This sounds complex, but it works out well in real use. For example, imagine you've got this snippet:

<hl | ang="en-GB >Star of <cite>Star Trek</cite> in New Rô|e</hl>
<ci te>Anerican Psycho Il</cite> in Production.
<l-- I"mnot making this up, folks. -->

Shatner to play FBI profiler.

and that you've just parsed the token for h1. Calling $st r eam >get _t ext (), simply gets St ar of . If, however,
the task you're performing is the extraction of the text content of <h1> elements, then what's called for is:

$stream >get _text('/hl")
ThisreturnsSt ar of Star Trek in New ROl e.
Cdlling:

$stream >get _text (' br')
returns:

"Star of Star Trek in New R6le\n Anerican Psycho Il in Production.
\n \n "

And if you instead called $st r eam >get _t ext (' schl ock') andthereisno<schl ock. . . >intherest of the
document, you will get St ar of Star Trek i n NewR68l e\ n Ameri can Psycho |l i nProduction.\n\n
Shat ner to pl ay FBI profil er.\n,pluswhatever text thereisin the rest of the document.
Note that this never introduces whitespace where it's not there in the original. So if you're parsing this:

<t abl e>

<t r ><t h>Hei ght <t h>Wéi ght <t h>Shoe Si ze</tr>

<tr><th>6" 2"<th>180l bs<th>n/a</tr>

</t abl e>
and you've just parsed thet abl e token, if you call:

$stream >get _text('/table")
you'll get back:

"\ nHei ght Wi ght Shoe Si ze\n6' 2"180I bsn/a\n"
Not al nontext tokens areignored by $st r eam >get _t ext () . Some tags receive special treatment: if ani g or
appl et tagisseen, itistreated asif it were atext token; if it hasan al t attribute, its value is used as the content of the
virtual text token; otherwise, you get just the uppercase tag namein brackets: [| MG or [APPLET] . For further
information on atering and expanding this feature, see perldoc HTML ::TokeParser in the documentation for the
get _t ext method, and possibly even the surprisingly short HTML ::TokeParser source code.

If you just want to turn off such special treatment for all tags:

$stream>{'textify'} = {}

Thisisthe only case of the $obj ect - >{' t hi ng' } syntax we'll discussin this book. In no other case does an object
require usto accessitsinternals directly like this, because it has no method for more normal access. For more
information on this particular syntax, see perldoc perlref's documentation on hash references.

7.5.3. The get_trimmed_text() Method
The syntax for theget _tri med_t ext () methodis:

$text = $stream >get _trimred_text();
$text = $stream >get _trimred_text('foo');

$t ext $stream >get _trinmed_text('/bar');

These work exactly like the corresponding $st r eam >get _t ext () calls, except any leading and trailing
whitespace is removed and each sequence of whitespace is replaced with a single space.

Returning to our news example:
$htm = <<<ECF ;

<hl lang="en-@B >Star of <cite>Star Trek</cite> in New Rôle</hl>
<cite>Aneri can Psycho Il</cite> in Production.

<I-- I"'mnot making this up, folks. -->

Shatner to play FBI profiler.

EOF

$stream = HTM.: : TokePar ser - >new \ $htm) ;

$stream >get _token(); # skip hl

Theget _text() method would return St ar of (with thetrailing space), whiletheget _tri nmed_text()
method would return St ar of (no trailing space).

Similarly, $st ream >get _text (' br') would return:

"Star of Star Trek in New Rdle\n American Psycho Il in Production.
\n \n

whereas $st r eam >get _trinmed_text ('br') would return:
"Star of Star Trek in New Rdle Anmerican Psycho Il in Production.”

Notice that the media newline-space-space became a single space, and the final newline-space-space-newline-space-
space was simply removed.

The caveat that get _t ext () doesnot introduce any new whitespace appliesalsotoget _trimed text().So
where, inthelast exampleinget _t ext (), youwould have gotten\ nHei ght Wi ght Shoe Si ze\ n6'
2" 180l bsn/a\ n,get _tri med_t ext() wouldreturn Hei ght Wi ght Shoe Si ze 6' 2" 180l bsn/ a.

7.5.4. The get_tag() Method
The syntax for theget _tag() methodis:
$tag_reference = $stream >get _tag();

This returns the next start-tag or end-tag token (throwing out anything else it hasto skip to get there), except while
get _token() would return start and end-tags in these formats:

['S, "hr', {'class',"Gnornmous'}, ['class'], '<hr class=G nornous>']
[E.'p . <P

get _tag() instead returnsthem in thisformat:

["hr', {'class',"Gnornous'}, ['class'], '<hr class=G nornous>']
[/p . <P

That is, the first item has been taken away, and end-tag names start with/ .

7.5.4.1. Start-tags
Unless $t ag- >[0] beginswith a/ , the tag represents a start-tag:

[$tag, $attribute_hash, $attribute _order_arrayref, $source]
The components of this token are:

$t ag
The tag name, in lowercase.
$attribute_hashref
A reference to a hash encoding the attributes of thistag. The (lowercase) attribute names are the keys of the hash.
$attri bute_order_arrayref
A reference to an array of (lowercase) attribute names, in case you need to access elementsin order.
$source
Theoriginal HTML for this token.

Thefirst two values are the most interesting ones, for most purposes.
For example, parsing thisHTML with $st r eam >get _tag() :

<I MG SRC="Kirk.jpg" alt="Shatner in réôle of Kirk" WDTH=352
hei ght =522>

givesthistag:

[
"ing',
{ "alt' => "Shatner in rdéle of Kirk',
"height' => '522', '"src¢' => 'kirk.jpg', "width' => '352

b

["src', "alt', "width', "height'],

"<IM5 SRC="kirk.jpg" alt="Shatner in rôle of Kirk"™ WDTH=352
hei ght =522>"

]
Notice that the tag and attribute names have been lowercased, and the &oci r ¢; entity decoded withintheal t attribute.
7.5.4.2. End-tags
When $t ag- >[0] does begin with a/ , the token represents an end-tag:
["/$tag", $source]
The components of thistag are:

$t ag
The lowercase name of the tag being closed, with aleading / .
$source

Theoriginal HTML for this token.
Parsing thisHTML with $str eam >get _tag() :
</ A>
givesthistag:
["/a", "<IA"]
Notethat if get _t ag() readsto the end of the stream and finds no tag tokens, it will return undef .
7.5.5. The get_tag() Method with Parameters
Pass alist of tags, to skip through the tokens until a matching tag is found:
$tag_reference = $stream >get _tag('foo', '/bar', 'baz');

This returns the next start-tag or end-tag that matches any of the strings you provide (throwing out anything it has to skip
to get there). Note that the tag name(s) that you provide as parameters must be in lowercase.

If get _tag() readsto the end of the stream and finds no matching tag tokens, it will return undef . For example,
thiscode'sget _tag() looksfori ng start-tags:

while (ny $ing_tag = $stream >get _tag('ing')) {

ny $i = $ing_tag->[1]; # attributes of this ing tag
ny @ack = grep !exists $i->{$_}, gmMalt height w dth);
print "Mssing for ", $i->{"src'} || "????", ": @ack\n" if @ ack;
}
4 PREVIOUS HOME MEXT
7.4. Token Seguences BOOK INDEX 7.6. Using Extracted Text
g.ixﬁ
' [1 Y RL - | - j}
e I) A INANUTSHELL | PROGRAMMING ‘ _ ‘
BEOOKSHELF PERL & LWF -~ LEARMING PERL 2nd Editbon PEAL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

7.6. Using Extracted Text

Consider the BBC story-link extractor introduced earlier. Itstask wasto find links to stories, in either of these kinds of
patterns:

<B CLASS="h3"><A href="/hi/english/business/newsid 1576000/ 1576290.
st m' >Bank
of England nulls rate cut

<B class="h1">M d-East blow to US anti-terror drive

</ A>

and then to isolate the URL, absolutize it, and print it. But it ignores the actual link text, which starts with the next token
in the stream. If we want that text, we could get the next token by callingget _text ():

print $stream >get text(), "\n ",
URIl - >new_abs($next[0][2]{' href'}, $docbase), "\n";

That printsthe text like this:

Bank
of England mulls rate cut
http:// news. bbc. co. uk/ hi/ engl i sh/ busi ness/ newsi d_1576000/ 1576290. st m

Note that the newline (and any indenting, if there was any) in the source hasn't been filtered out. For some applications,
this makes no difference, but for neatness sake, let's keep headlines to one line each. Changing get _text() to
get _trinmmred_text() makesthat happen:

print $stream >get _trimred_text(), "\n ",
URI - >new_abs($next[0][2]{' href'}, $docbase), "\n";
Bank of England mulls rate cut
http:// news. bbc. co. uk/ hi/engl i sh/ busi ness/ newsi d_1576000/ 1576290. st m

If the headlines are potentially quite long, we can pass them through Text::Wrap, to wrap them at 72 columns.

There's atrickier problem that occurs oftenwithget _text() orget trimred_text().Whatif theHTML
we're parsing looks like this?

<B CLASS="h3">Shat ner &anp; Kunis wn
Gscars
for <cite>Anerican Psycho Il</cite> rô|es

If we've just parsed the b and the a, the next token in the stream is atext token, Shat ner & Kuni s wi n Gscar s

for ,that'swhat get _text() returns(get _tri nmred_text() returnsthe samething, minusthe final space).
But we don't want only the first text token in the headline, we want the whole headline. So instead of defining the
headline as "the next text token," we could define it as "all the text tokens until the next </ a>." So the program changes
to:

print $stream >get trinmed_text('/a), "\n ",
URI - >new_abs($next[0][2]{' href'}, $docbase), "\n";

That happily prints:

Shatner & Kunis win Gscars for American Psycho Il rdles
http:// news. bbc. co. uk/unli kel y/ 2468. stm

Note that the &anp; and &oci r c; entity references were resolved to & and 6. If you were using such a program to spit
out something other than plain text (such as XML or RTF), abare & and/or a bare high-hit character such as 6 might be
unacceptable, and might need escaping in some fashion. Even if you are emitting plain text, the\ x AO (nonbreaking
space) or \ X AD (soft hyphen) characters may not be happily interpreted by whatever application you're reading the text
with, inwhichcaseat r/\ xAO0/ / andtr/\ xAD/ / d are called for. If you're taking the output of get _text () or
get _trinmred_text() andsendingittoasystem that understandsonly U.S. ASCII, then passing the text through a
module such as Text::Unidecode might be called for to turn the 6 into an 0. Thisis not really an HTML or HTML::
TokeParser matter at al, but is the sort of problem that commonly arises when extracting content from HTML and
putting it into other formats.

4 PREVIOUS HOME NEXT
7.5. More HTML :: TokeParser Methods BOOK INDEX 8. Tokenizing Walkthrough

S|

S M \ 1L IN A NUTSHELL .
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

5.7. File Uploads

So far we've discussed users entering text data that they type (or paste) into forms. But there's another way to submit
data: with at ype=f i | e form element, which allows users to select afile on their local systems to upload when the
form is submitted.

Currently, three things have to happen for a user to upload afile viaaform. First, the program that will be processing the
form has to be expecting afile to be uploaded (you can't just alter the HTML for any form and stick at ype=fi | e field
into it). Second, the form hasto have an <i nput t ype=fi | e name=what ever > element. And third, thef or m
element has to have its attributes set like so:

<f or m nmet hod=post enctype="nultipart/formdata" action="url">

Thisis necessary because file-upload fields can't be conveyed by the normal form-data encoding system, but instead
havetousethe” nmul ti part/form data" encoding system (which, incidentally, can be conveyed only across
POST requests, not across GET requests).

Suppose, for example, that you were automating interaction with an HTML form that looked like this:

<form enctype="nul tipart/formdata" nethod=post
action="http://pastel.int/feedback.pl">

Subj ect : <i nput nanme="subject" type="text">

File to process -- <input name="saywhat" type="file">

Your Nane - - <i nput nane="user" type="text">

<i nput type="submt" val ue="Send!"></fornp

Modeling the first and third fields is as we've seen before -- a simple matter of $br owser - >post ($url
['subject'=>..., "user'=>...]).Butthefile-upload part involves some doing. First off, you have to add a
header lineof ' Cont ent _Type' => 'form data' tomeanthat yes, yourealy meanthistobea" nmul ti part/
f orm dat a" POSTing. And secondly, where you would have astringin' saywhat ' =>t ext , you instead have an
array reference where thefirst array item is the path to the file you want to upload. So it ends up looking like this:

ny $response = $browser - >post (
"http://pastel.int/feedback.pl"',
["subject' => 'Demand for pie.',
"saywhat' => ["./today/earth_piesl.dm "],
‘user' => '"Adm Kang',

]

ntent _Type' => 'formdata',
...any other header lines...
)
Assume that ./today/earth_piesl.dml looks like this:

<?xm version="1.0" encodi ng="iso-8859-1" standal one="yes"?>

<Denmand xm : | ang="i-klingon">
DaH chabmneyraj tunob!
</ Demand>

The request that the above program actually sends will look like this:

--xXYzZY
Content-Di sposition: formdata; nane="subject"”

Demand for pie.

--xYzzZY

Content-Di sposition: formdata; name="saywhat"; filenanme="earth_piesl.
dm "

Content-Length: 131

Content - Type: text/plain

<?xm version="1.0" encodi ng="iso-8859-1" standal one="yes"?>

<Demand xm : | ang="i-klingon">
DaH chabneyraj tunob!

</ Demand>

--xXYzZY

Content-Di sposition: formdata; nanme="user"

Adm Kang
--XYzZY- -

Note that each form-field islike alittle HT TP message of its own, with its own set of headers and its own body. For the
"normal” fields (the first and third fields), the header basically expresses that thisis ordinary datafor a particular field
name, and the body expresses the form data. But for thet ype=fi | e field, we get the file's content as the body. Take a
look at the header again:

Content-Di sposition: formdata; nane="saywhat"; filenanme="earth_piesl.
dm "

Content-Lengt h: 131

Content - Type: text/plain

Thenanme="saywhat " expresseswhat thenanme="..." attributewasonthe<i nput type=file...>eement
to which this corresponds, which we coded into our program inthe saywhat =>[. . .] line. But note that LWP aso
tells the remote host the basename of the file we're uploading by default (i.e., the filename minus directory names) as
well asits best guess at the MIME type for that file. Because LWP (specificaly, the LWP::MediaTypes module) has
never heard of the .dml extension, it fallsback ont ext / pl ai n. (If thisfile had clearly been abinary file, LWP would
cal itappl i cati on/ oct et - st r eam the MIME type for general binary files.) In case you want to change the name
that LWP presents to the remote server, you can provide that name as a second item in the arrayref:

fieldname => [local _fil espec => as_what nange],
So if you change the saywhat line in the above program to this:
"saywhat' => ["./today/earth_piesl.dnm"™ => "allyourpie.xm"],
Then the resulting headers on its part of the POST request would look like this:
Content-Di sposition: formdata; nane="saywhat"; filenanme="all yourpie.
)C(:?ntent—Length: 131
Content - Type: text/plain

Although most applications that take file uploads across the Web pay no attention to the MIME types (because so many
browsers get them wrong), if you want to specify aMIME type for a particular file upload, you could do so with athird
item in the array reference:

fieldname => [l ocal _filespec => as_what_name => M ME_type],

Like so:

"saywhat' => ["./today/earth_piesl.dm " => "allyourpie.xm"
=> "application/angry-ultinmatuni],

Then the resulting headers on its part of the POST request would look like this:

Content - Di sposition: formdata; name="saywhat"; filenanme="all yourpie.
xm "

Content-Length: 131

Cont ent - Type: application/angry-ultimatum

All these file-upload options work just as well for binary files (such as JPEGs) asfor text files. Note, however, that when
LWP constructs and sends the request, it currently has to read into memory all filesyou're sending in this request. If
you're sending a 20-megabyte MP3 file, this might be a problem! Y ou can tell LWP not to read the files into memory by
setting $HTTP: : Request : : Cormon: : DYNAM C_FI LE_UPLQAD = 1 (it bears explaining that HTTP::Request::
Common isthe library that LWP uses for creating these file-upload requests), but unfortunately, at the time of this
writing, many servers and CGls do not understand the resulting HTTP POST request.

One especially neat trick isthat you don't even need to have afile to upload to send a"file upload” request. To send
content from a string in memory instead of from afile on disk, use this syntax:

fieldname => |
undef , # yes, undef!
as_what nane,
"Content _Type' => M ME_type,
"Content' => data_to_send

1

For example, we could change our saywhat linein the above program to read:

"saywhat' => |
undef ,
"al lyourpie.xm",
"Content _Type' => "application/angry-ultimtun,
"Content' => "All your pies are belong to nme!\nG\NAR! "
1,

The resulting request will contain this chunk of data for the saywhat field:

Content-Di sposition: formdata;, nane="saywhat"; fil enane="all yourpie.
xm "
Content - Type: application/angry-ultinmatum

Al'l your pies are belong to ne!

GNAR!
4@ PREVIOUS HOME MEXT
5.6. POST Example: ABEBooks.com BOOK INDEX 5.8. Limits on Forms

PE
& XML

=

N

‘ | gi‘%
' 3 INA mﬁnimzu j

i Y ; ey :
PERL & LWP -~ LEARMING PERL 2nd Edithon MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

5.2. LWP and GET Requests

The way you submit form data with LWP depends on whether the form's action is GET or POST. If it'sa GET form, you
construct a URL with encoded form data (possibly using the $ur | - >query_f or m() method) and call $br owser -
>get (). If it'saPOST form, you call to call $br owser - >post () and pass areferenceto an array of form
parameters. We cover POST later in this chapter.

5.2.1. GETting Fixed URLs

If you know everything about the GET form ahead of time, and you know everything about what you'd be typing (as if
you're always searching on the name "Dulce"), you know the URL! Because the same data from the same GET form
aways makes for the same URL, you can just hardcode that:

$resp = $browser - >get (
"http://ww. census. gov/ cgi - bi n/ gazetteer?city=Dul ce&st at e=&zi p='

)

And if thereisagreat big URL in which only one thing ever changes, you could just drop in the value, after URL-
encoding it:

use URI:: Escape ('uri_escape');

$resp = $browser - >get (

"http://ww. census. gov/ cgi - bi n/ gazetteer?city='
uri _escape($city)

' &st at e=&zi p='

);

Note that you should not simply interpolate araw unencoded value, like this:

$resp = $browser - >get (
"http://ww. census. gov/ cgi - bi n/ gazetteer?city='
$city . # wong!
' &st at e=&zi p='

);

The problem with doing it that way isthat you have no real assurance that $ci t y's value doesn't need URL encoding.
Y ou may "know" that no unencoded town name ever needs escaping, but it's better to escape it anyway.

If you're piecing together the parts of URLs and you find yourself calling ur i _escape more than once per URL, then
you should use the next method, quer y_f or m which is simpler for URLs with lots of variable data.

5.2.2. GETting a query_form() URL

Thetidiest way to submit GET form datais to make a new URI object, then add in the form pairs using the
guery_f or mmethod, before performing a$br owser - >get ($ur |) request:

$url ->query_form nane => val ue, nane => value, ...);
For example:

use URI;

nmy $url = URI->new('http://ww. census. gov/cgi-bin/gazetteer');
ny($city, $state, $zip) = ("Sone City","Sone State","Sone Zip");
$url ->query_forn(

Al formpairs:

‘city' => S$city,

"state' => $state,

‘zip' => $zi p,

);

print $url, "\n"; # so we can see it
Prints:

http://ww. census. gov/ cgi - bi n/ gazetteer ?cit y=Sone+Ci t y&st at e=Sone
+St at e&zi p=Sone+Zi p

From this, it's easy to write a small program (shown in Example 5-1) to perform arequest on this URL and use some
simple regexps to extract the data from the HTML.

Example 5-1. gazetteer.pl

#!/usr/bin/perl -w
gazetteer.pl - query the US Cenus Gazetteer database

use strict;
use URI;
use LWP: : User Agent;

die "Usage: $0 \"That Town\"\n" unless @RGV == 1,
ny $name = $ARGV[0];

ny $url = URI->new(' http://ww. census. gov/ cgi - bi n/ gazetteer');
$url ->query_form('city' => $nane, 'state’ =>"'"', 'zip'" =>"");
print $url, "\n";

ny $response = LWP:: User Agent - >new >get ($url);
die "Error: ", $response->status_line unless $response->i s_success;
extract _and_sort ($response->content);

sub extract_and_sort { # A sinple data extractor routine
die "No ...in content" unless $ [0] =~ n{(.*?)}s;
nmy @op_and_t own;
foreach ny $entry (split //, $1) {
next unless $entry =~ n{"(.*?)(.*?)
}s;
my $town = "$1 $2";
next unless $entry =~ n{"Population \(.*?\): (\d+)
}m
push @op_and_town, sprintf "%0s %\n", $1, $town;
}

print reverse sort @op_and_town;
}

Then run it from a prompt:

% perl gazetteer.pl Dulce
http://ww. census. gov/ cgi - bi n/ gazetteer ?ci t y=Dul ce&st at e=&zi p=
2438 Dul ce, NM (cdp)
794 Agua Dulce, TX (city)
136 Guayabo Dul ce Barrio, PR (county subdi vision)

% perl gazetteer.pl |EG
http://ww. census. gov/ cgi - bi n/ gazetteer ?city=l EG&st at e=&zi p=
2498016 San Di ego County, CA (county)
1886748 San Di ego Division, CA (county subdivision)
1110549 San Diego, CA (city)
67229 Boca Ciega Division, FL (county subdivision)
6977 Rancho San Di ego, CA (cdp)
6874 San Di ego Country Estates, CA (cdp)
5018 San Diego Division, TX (county subdivision)
4983 San Diego, TX (city)
1110 Di ego Herna] Ndez Barrio, PR (county subdivision)
912 Riegelsville, PA (county subdivision)
912 Ri egelsville, PA (borough)
298 New Riegel, OH (village)

41 PREVIOUS HOME MEXT
5. Forms BOOK INDEX 5.3. Automating Form Analysis
l 1: f‘Z -
oy
m | j) PE
MR . INANUTSHELL | PROGRAMMING & L
PERL & LWP -~ LEARNING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK S,
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 5. Forms

Contents:

Elements of an HTML Form
LWP and GET Requests
Automating Form Analysis
Idiosyncrasies of HTML Forms
POST Example: License Plates
POST Example: ABEBooks.com

File Uploads
Limits on Forms

Much of the interesting data of the Web is accessible only through HTML forms. This chapter shows you how to write
programs to submit form data and get the resulting page. In covering this unavoidably complex topic, we consider
packing form datainto GET and POST requests, how each type of HTML form element produces form data, and how to
automate the process of submitting form data and processing the responses.

The basic model for the Web isthat the typical item isa"document” with aknown URL, and when you want to access it
(whether it's the Rhoda episode guide, or the front page of today's Boston Globe), you just get it, no questions asked.
Even when there are cookies or HTTP authentication involved, these are basically just addenda to the process of
reguesting the known URL from the appropriate server. But some web resources require parameters beyond just their
URL, parameters that are generally fed in by the user through HTML forms, and that the browser then sends either as
dynamic parts of aURL (in the case of a GET request) or as content of a POST request.

A program on the receiving end of form data may simply use it as aquery for searching other data, such as scanning all
the RFCs and listing the ones by specific authors. Or a program may store the data, as with taking the user's data and
saving it as anew post to a message base. Or a program may do grander things with the user-provided data, such as
debiting the credit card number provided, logging the products being ordered, and putting them on the roster of itemsto
be sent out. The details of writing those kinds of programs are covered in uncountable books on CGI, mod_perl, ASP,
and the like. Y ou are probably familiar with writing server-side programsin at least one of these frameworks, probably
through having written CGlsin Perl, maybe with the huge and hugely popular Perl library, CGI.pm.

But what we are interested in here is the process of data getting from HTML forms into those server-side programs.
Once you understand that process, you can write LWP programs that simulate that process, by providing the same kind
of dataasarea live user would provide keying datainto areal live browser.

5.1. Elements of an HTML Form

A good example of a straightforward form is the U.S. Census Bureau's Gazetteer (geographical index) system. The
search form, at http://www.census.gov/cgi-bin/gazetteer, consists of:

<f orm met hod=get acti on=/cgi-bi n/ gazetteer>

<hr noshade>

<h3>

Search for a P|lace in the
US

</ h3>

<p>

Nane: <input nane="city" size=15>

http://www.census.gov/cgi-bin/gazetteer

State (optional): <input name="state" size=3><bhr>
or a 5-digit zip code: <input name="zip" size=8>
<p>

<i nput type="submt" val ue="Search">

</ fornme

We've highlighted the interesting bits. The method attribute of the <f or n tag says whether to use GET or POST to
submit the form data. The action attribute gives the URL to receive the form data. The components of aform are text
fields, drop-down lists, checkboxes, and so on, each identified by a name. Here the <i nput > tags define text fields with
thenamesci t y and st at e, and asubmit button called zi p. The browser submits the state of the form components
(what's been typed into the text boxes, which checkboxes are checked, which submit button you pressed) as a set of

name=val ue pairs. If you typed "Dulce" intotheci t y field, part of the browser's request for /cgi-bin/gazetteer would
beci t y=Dul ce.

Which part of the request contains the submitted nane=val ue pairs depends on whether it'sa GET or POST request.
GET requests encode the pairsin the URL being requested, each pair separated by an ampersand (&) character, while

POST requests encode them in the body of the request, one pair per line. In both cases the names and values are URL
encoded.

41 PREVIOUS HOME HEXT

4.4. Converting Relative URL s to BOOK INDEX 5.2. LWP and GET Requests

Absolute
Pmﬁmmfm j

PERL

iy M \ 1L IN A NUTSHELL .
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

5.5. POST Example: License Plates

Second only to the issues surrounding tattooing and tattoo removal, the hardest decision one ever hasto makeis, upon
moving to California and buying a convertible, what personalized license plate should one get? In the past, thiswas a
slow and embarrassing process, requiring one to go to the Motor Vehicles office, shuffle up to the clerk, and meekly
request "HOTBABE," only to receive the crushing news that someone else has, somehow, aready thought of that and
taken it as her own personalized license plate. While there are 66,220,518,000 possible combinations,[2] it is apparently
adevoted pursuit of the state's 30-odd million residents to think of personalized license plates. Aswith Internet domain
names, if you can think of it, someone probably already hasit.

[2]Thisisbased ontheformula: $¢c +=35** $_- 10** $_for 2.. 7; print $c;.(The35is
because letter O istreated as digit zero. The 10 is because all-digit plates are not allowed.)

But now the California Department of Motor Vehicles has understood our plight, and has put up the web site plates.ca.
gov so that we can sit at home and use the Web to see which of our license plate ideasis available. It hasasimple HTML
form interface, shown in Figure 5-2.

=13
File Edit “iesw Go Communicator Help

¢ Bookmak: PR WS T Filp platecs ca povfzeaich)
I ol i

To Search the Database; EIZETIITE -

1. Enter a configuration in the plate. » -Enter 2 to 7 letters
or letters and
AT [#8] mumbers {number
only plates are no

ELEDV A . '
longer offered).
2. Choose a search option. + Omit spaces and
Kids Plate symbols
Check Flate Availability | {ww#+) because
= RAPS Al 1 RAMF <AArd) Rar I .’;I
o =l Dacumerd: Done R (o Y

Figure 5-2. California License Plate Search

However, it's so draining to have to plant the mouse in the search box, type "PL8DV 8" or whatever other license plate
you want, mouse over to the submit button and pressiit, see the next screen report either "Plate configuration PL8DV8 is
unavailable" or "this plate is tentatively acceptable and available," then mouse over to the Back button, pressit, and so
on for every possibility that occurs to us. Just as atrue power user would never use the web interface to whois but would
instead insist on the command-line tool, we too would be happiest with a command-line interface to this license plate
search form.

5.5.1. The Form

Viewing the source of the search form at http://plates.ca.gov/search/ shows that, omitting some table-formatting codes, it
really just consists of:

<f or m net hod=POST acti on="sear ch. php3">
<i nput type=text size=7 nane=pl ate naxl engt h=7>

http://plates.ca.gov/search/

2. Choose a search option.

<i nput type=submt val ue="Check Pl ate Availability" nane="search">

Use this method to see if your exact configuration is avail able.

<i nput type=subnit val ue="See Existing Sinilar Plates" name="search">

Enter 2 to 7 letters or letters and nunbers (nunber only plates are no
| onger of fered)

</ formp
From what we learned earlier about how different kinds of form elements produce different kinds of pairs, we can

deduce that filling "PL8DV8" inthet ype=t ext box, then pressing the "Check Plate Availability" button will cause
two form pairs to be submitted: pl at e=PL8DV8 and sear ch=Check Pl ate Availability.

In each case, the first part of the form pair comes from the element's nane attribute. With the first pair, we follow the
rule for text input elements, and get the val ue from whatever the user has typed into that box (or whatever is there by
default). With either submit button, we follow the rule for t ype=subm t elements and make aform pair from the

val ue attribute (if there is such an attribute and if this is the button that the user is pressing in order to submit the form).

5.5.2. Use formpairs.pl

We can save alocal copy of the form's HTML source and edit the form element'sact i on attribute to point to some
server where we've set up as a CGl the formpairs.pl program from earlier in this chapter. The form element will then
read:

<f or m net hod=POST action="http://soneserver.int/cgi-bin/fornpairs.pl">

If we then open the local copy of the form in our browser, fill in"PL8DV8" in the search box, and hit the first Submit
button, formpairs.pl will report:

POST dat a:

(
"plate" => "PL8DV8",

"search" => "Check Plate Availability",

)

Our idea of what form pairs get sent was correct! (The second button would predictably send a™ sear ch” value of
"See Exi sting Sinlar Plates", butthat function is outside the scope of our interest.)

5.5.3. Translating This into LWP

Simply put that list of form pairsinto acall to $br owser - >post (url ,pai rs_arrayr ef) . Specificaly, the cal
will look like this:

ny $response = $browser - >post (
"http://plates. ca. gov/search/search. php3',
[
"plate’ => $plate,
'search' => 'Check Plate Availability’
1.
);

Knowing this, it's simple to write code that takes an argument from the command line and putsit into $pl at e, performs
the above POST request, then checks the response. Example 5-3 is the complete program.

Example 5-3. pl8.pl

#!/usr/ bin/perl -w
pl8.pl - query California |license plate database

use strict;
use LWP:: User Agent ;
ny $plate = $SARGV[0] || die "Plate to search for?\n";
$plate = uc $pl ate;
$plate =~ tr/ A 0/; # we use zero for letter-oh
die "$plate is invalid.\n"
unl ess $plate =~ m"[A-Z0-9]1{2, 7} %/
and $plate '~ m™M\d+$/; # no all-digit plates

ny $browser = LWP:: User Agent - >new,
ny 3$response = $browser - >post (
"http://plates. ca. gov/ search/ search. php3',
[
"plate’ => $pl ate,
'search' => 'Check Plate Availability'
1,
);
die "Error: ", $response->status_line
unl ess $response->i s_success;

i f($response->content =~ niis unavailable/) {
print "$plate is already taken.\n";
} elsif($response->content =~ mand avail able/) {
print "$plate is AVAI LABLE'\n";
} else {
print "$plate... Can't nmke sense of response?!'\n";
} .
exit;

Saved into pl8.pl, it runs happily from the command line:

% perl pl 8. pl

Plate to search for?

% perl pl8.pl 314159
314159 is invalid.

% per| pl 8.pl pl8dv8
PL8DV8 i s AVAI LABLE!

% perl pl8.pl elbarto
ELBARTO i s al ready taken.
% perl pl8.pl ilikepie
ILIKEPIE is invalid.

% perl pl 8.pl pieman

Pl EMAN i s al ready taken.
% per| pl 8. pl pielady

Pl ELADY is al ready taken.
% perl pl 8. pl pieboy

PI EBOY i s AVAI LABLE!

% perl pl8.pl piegirl
PIEG RL i s AVAI LABLE!

% perl pl8.pl shazbot
SHAZBOT i s al ready taken.
% perl pl 8. pl |wpbot
LWPBOT i s AVAI LABLE!

41 PREVIOUS HOME

5.4. Idiosyncrasies of HTML Forms BOOK INDEX

NEXT B
5.6. POST Example: ABEBooks.com

4 PERL
L i FI " g IM A NUTSHELL
BOOKSHELF PERL & LWP LEARMING PERL 2nd Edition

HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PROGRAMMING
PERL
3rd Edition

& XML

MASTERING PERL COOKBOOK N
PERL/TK :

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

5.8. Limits on Forms

The examplesin this chapter use approaches to form-data submission that work well for almost all form systems that
you'd run into, namely, systems where the form data is meant to be keyed into HTML forms that do not change. Some
form systems can't be treated with that approach because they contain JavaScript code that can do just about anything,
such as manipulate the form data in arbitrary ways before sending it to the server. The best one can do in such casesis
write Perl code that replicates what the JavaScript code does, as needed.

Some form systems are problematic not because of JavaScript, but because the forms into which users are meant to key
data are not always the same each time they're loaded. In most cases, the extent of change is merely a hidden form
variable containing a session ID. These you can code around by using LWP to download the form, extracting the session
ID or other hidden fields, and submitting those along with your other values.

In afew remaining cases where the form in question is predictable enough for a program to manipulate it, but
unpredictable enough that your program needs to carefully scrutinize its contents each time before choosing what form
data to submit, you may be able put to good use either of the two CPAN modules that provide an abstracted interface to
forms and the fields in them, HTML ::Form and HTTP::Request::Form.

HTML::Formisan LWP class for objects representing HTML forms. That is, it parses HTML source that you give it and
builds an object for the form, each form containing an object for each input element in the form. HTML ::Request::Form
isquite similar, except it takes asinput an HTML:: TreeBuilder tree, not HTML source text. In practice, however, those
modules are needed in very few cases, and the simpler strategies in this chapter will be enough for submitting just about
any form on the Web and processing the result.

4 PREVIOUS HOME NEXT B
5.7. File Uploads BOOK INDEX 6. Simple HTML Processing with

Regular Expressions
ﬁ ‘ § ri%
PROGRAMMING]

PE

5 % R & XML
e i Y ! b IM A NUTSHELL ;
BOOKSHELF FERL & LWF - LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK T‘w
HOME 3rd Edition 3rd Edition PERL/TK .

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

4.2. Relative URLs

URL paths are either absolute or relative. An absolute URL starts with a scheme, then has whatever data this scheme
requires. For an HTTP URL, this means a hostname and a path:

http:// phee. phye. phoe. fni t hi ngamaj i g/ stuff. htm

Any URL that doesn't start with a schemeisrelative. To interpret arelative URL, you need abase URL that is absolute
(just as you don't know the GPS coordinates of "800 miles west of here" unless you know the GPS coordinates of
"here").

A relative URL leaves some information implicit, which you look to its base URL for. For example, if your base URL is
http: //phee.phye.phoe.fm/thingamayjig/stuff.ntml, and you see arelative URL of /also.html, then the implicit information
is "with the same scheme (ht t p)" and "on the same host (phee.phye.phoe.fm)," and the explicit information is "with the
path /also.html." So thisis equivaent to an absolute URL of:

http:// phee. phye. phoe. fnf al so. ht ni
Some kinds of relative URLs require information from the path of the base URL in away that closely mirrorsrelative
filespecsin Unix filesystems, where". . " means "up one level", . " means"in thislevel", and anything else means "in
thisdirectory". So arelative URL of just zing.xml interpreted relative to http://phee.phye.phoe.frm/thingamajig/stuff.htm
yields this absolute URL:

http:// phee. phye. phoe. f nf t hi ngamaj i g/ zi ng. xm
That is, we use al but the last bit of the absolute URL's path, then append the new component.

Similarly, arelative URL of ../hi_there.jpg interpreted against the absolute URL http://phee.phye.phoe.fm/thingamajig/
stuff.html gives usthis URL:

http:// phee. phye. phoe.fn hi _there.jpg

In figuring this out, start with http://phee.phye.phoe.fmv/thingamajig/ and the ". . " tells usto go up one level, giving us
http://phee.phye.phoe.fnv. Append hi_there.jpg giving us the URL you see above.

There'sathird kind of relative URL, which consists entirely of afragment, such as #endnotes. Thisis commonly met
with in HTML documents, in code like so:

See the endnotes for the full citation

Interpreting afragment-only relative URL involves taking the base URL, stripping off any fragment that's already there,
and adding the new one. So if the base URL isthis:

http: // phee. phye. phoe. f i t hi ngamaj i g/ stuff. htm
and the relative URL is #endnotes, then the new absolute URL isthis:
http:// phee. phye. phoe. fmi t hi ngamaj i g/ st uf f. ht nl #endnot es

We've looked at relative URLs from the perspective of starting with arelative URL and an absolute base, and getting the

equivaent absolute URL. But you can also look at it the other way: starting with an absolute URL and asking "what is
the relative URL that gets me there, relative to an absolute base URL?". Thisis best explained by putting the URLs one
on top of the other:

Base: http://phee. phye. phoe. fnithingamajig/stuff.xm
Goal : http://phee. phye. phoe. fnm t hi ngamaji g/ zi ng. ht m

To get from the base to the goal, the shortest relative URL is simply zing.xml. However, if the goal is adirectory higher:

Base: http://phee. phye. phoe. fnfthi ngamjig/stuff.xm
Goal : http://phee. phye. phoe.fnl hi_there.jpg

then arelative path is../hi_there,jpg. And in this case, simply starting from the document root and having arelative path
of /hi_there.jpg would also get you there.

Thelogic behind parsing relative URL s and converting between them and absolute URL s is hot simple and is very easy
to get wrong. The fact that the URI class provides functions for doing it al for usis one of its greatest benefits. You are
likely to have two kinds of dealings with relative URLs: wanting to turn an absolute URL into arelative URL and
wanting to turn arelative URL into an absolute URL.

48 PREVIOUS HOME MEXT
4. URLs BOOK INDEX 4.3. Converting Absolute URLSsto
Relative

‘l ‘ | | gi% ‘
PROGRAMMING j

MR 1L IN A NUTSHELL :
PERL & LWP -~ LEARMIMG PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

9.5. Example: Fresh Air

Another HTML::TokeParser problem (in Chapter 8, "Tokenizing Walkthrough") was extracting relevant links from the
program descriptions from the Fresh Air web site. There were aspects of the task that we will not review here (such as
how to request a month's worth of weekday listings at atime), but we will instead focus on the heart of the program,
which is how to take HTML source from alocal file, feed it to HTML::TreeBuilder, and pull the interesting links out of
the resulting tree.

If we save the HTML source of a program description page as freshl.html and sift through its source, we get a 12-KB
file. Only about one 1 KB of that isreal content, like this:

Li sten to Monday - July 2, 2001
</ FONT>
</ A>

Li sten

to

 Editor and witer Walter Kirn </ B>
</ FONT></ A>

<BLOCKQUOTE>Edi tor and witer Wlter
Kirn</ A>'s new novel <I>Up in the Air</1> (Doubl eday) is about

</ BLOCKQUOTE></ FONT>

Listen to

 Casting director and actress Joanna Merlin </ B>

</ FONT></ A>

<BLOCKQUOTE>Casting director and actress Joanna
Merlin has witten a new guide for actors, <l>Auditioning: An

</ BLOCKQUOTE></ FONT>

Therest of thefile is mostly taken up by some JavaScript, some search box forms, and code for a button bar, which
contains image links like this:

<I MG SRC="i nages/ nav_ar chi ved_on.
gif"

ALT="Archi ved Shows" W DTH="124" HElI GHT="36" BORDER="0" HSPACE="0"
VSPACE=" 0" ></ A>

<I MG SRC="i mages/ nav_comentators_off.gif"
ALT=" Conment at or s"

W DTH="124" HEl GHT="36" BORDER="0" HSPACE="0" VSPACE="0">

<I MG SRC="i nages/ nav_about _off. gi f" ALT="About
Fresh Air"

W DTH="124" HEl GHT="36" BORDER="0" HSPACE="0" VSPACE="0">

<I MG SRC="i mages/ nav_stations_off.gif"
ALT="Find a Station"

W DTH="124" HEl GHT="36" BORDER="0" HSPACE="0" VSPACE="0">

Then, after the real program description text, there is code that links to the description pages for the previous and next
shows:

<TD WDTH="50% ALIG\="left" BGCOLOR="#4F4F85" >

 «
</ FONT>

<FONT FACE="Verdana, Charcoal, Sans Serif" SIZE="2"
COLOR="#FFCC00" >
Pr evi ous show
</ FONT>
</ A>
</ TD>
<TD WDTH="50% ALI G\="right" BGCOLOR="#4F4F85" >

<FONT FACE="Verdana, Charcoal, Sans Serif" S|ZE="2"
COLOR="#FFCC00" >
Next show
</ FONT>
</ A>

 »
</ FONT>
</ TD>

Thetrick isin capturing the URLs and link text from each program link in the main text, while ignoring the button bar
links and the "Previous Show" and "Next Show" links. Two criteria distinguish the links we want from the links we
don't: First, each link that we want (i.e., each a element with an hr ef attribute) hasaf ont element asachild; and
secondly, the text content of the a element starts with "Listen to" (which we incidentally want to leave out when we print
thelink text). Thisis directly implementable with callsto HTML ::Element methods:

use HTM.:: TreeBui |l der;

nmy $tree = HTM.:: Tr eeBui | der - >new,

$tree->parse_file('freshl.htm') || die $!;

ny $base url = "http://ww.freshair.com what ever';
for resolving relative URLs

foreach ny $a ($tree->find_by tag name('a')) {

my $href = $a->attr(' href') || next;
Make sure it has an href attribute

next unless grep ref($_) && $_->tag eq 'font', $a->content_|ist;
Make sure (at least) one of its children is a font el enment

ny $text content = $a->as_text;
next unl ess $text content =~ s/™\ s*Listen to\s+//s;
Make sure its text content starts with that (and renove it)

1t's good! Print it:

use URI
print "$text_content\n ", URl->new_abs($href, $base url), "\n"
}
$tree->delete; # Delete tree from
menory
4a PREVIOUS HOME HEXT
9.4. Example: BBC News BOOK INDEX 10. Modifying HTML with Trees

PE

e e W - INANUTSHELL | PROGRAMMING & XhiL
BOOKSHELF PERL & LWP - LEARMIMNG PERL 2nd Edition PERL MASTERING PERL COOKBOOK R,
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 2. Web Basics

Contents:

URLs

An HTTP Transaction

LWP::Simple

Fetching Documents Without LWP::Simple
Example: AltaVista

HTTP POST

Example: Babelfish

Three things made the Web possible: HTML for encoding documents, HTTP for transferring them, and URLs for
identifying them. To fetch and extract information from web pages, you must know all three—you construct a URL for
the page you wish to fetch, make an HTTP request for it and decode the HT TP response, then parse the HTML to extract
information. This chapter covers the construction of URLs and the concepts behind HTTP. HTML parsing istricky and
getsits own chapters later, as does the module that lets you manipulate URLS.

You'll aso learn how to automate the most basic web tasks with the LWP::Simple module. As its name suggests, this

module has avery simple interface. You'll learn the limitations of that interface and see how to use other LWP modules
to fetch web pages without the limitations of LWP::Simple.

2.1. URLs

A Uniform Resource Locator (URL) is the address of something on the Web. For example:
http://lwww.oreilly.com/news/bikeweek_day1.html

URL s have a structure, given in RFC 2396. That RFC runs to 40 pages, largely because of the wide variety of things for

which you can construct URLs. Because we are interested only in HTTP and FTP URLs, the components of a URL, with

the delimiters that separate them, are:

schene: // user nanme@er ver: port/ pat h?query

In the case of our example URL, the scheme is http, the server iswww.oreilly.com, and the path is /news/bikeweek dayl.
html.

Thisisan FTPURL:
ftp://ftp.is.co.zalrfc/rfc1808.txt

The scheme isftp, the host is ftp.is.co.za, and the path is /rfc/rfc1808.txt. The scheme and the hosthame are not case
sensitive, but therest is. That is, ftp:/ftp.is.co.za/rfc/rfc1808.txt and fTp://ftp.Is.cO.ZA/rfc/rfc1808.txt are the same, but
ftp://ftp.is.co.zalrfc/rfc1808.txt and ftp://ftp.is.co.zalrfc/RFC1808.txt are not, unless that server happens to forgive case
differencesin requests.

We'reignoring the URL s that don't designate things that aweb client can retrieve. For example, telnet://melvyl.ucop.edu/
designates a host with which you can start a Telnet session, and mailto: mojo@jojo.int designates an email addressto
which you can send.

The only characters allowed in the path portions of a URL are the US-ASCII characters A through Z, athrough z, and O-
9 (but excluding extended ASCII characters such as Ui and Unicode characters such as < or <), and these permitted
punctuation characters:

@ & + $ () /
For a query component, the same rule holds, except that the only punctuation characters allowed are these:

- 3 . ! ~ * ' ()

Any other characters must be URL encoded, i.e., expressed as a percent sign followed by the two hexadecimal digits for
that character. So if you wanted to use aspace in a URL, it would have to be expressed as %20, because spaceis
character 32 in ASCII, and the number 32 expressed in hexadecimal is 20.

Incidentally, sometimes you might also see some of these charactersin a URL:

{ } I \ " []

But the document that defines URLSs, RFC 2396, refers to the use of these as unreliable and "unwise." When in doubt,
encodeit!

The query portion of a URL assigns values to parameters:
nanme=Hi r anP20Veebl ef eet zer +age=35+count r y=Madagascar

There are three parameters in that query string: name, with thevalue" Hi r am Veebl ef eet zer " (the space has been
encoded); age, with the value 35; and country, with the value " Madagascar " .

The URI::Escape module providestheuri _escape() functionto help you build URLSs:

use URI:: Escape;
encoded _string = uri_escape(raw string);

For example, to build the name, age, and country query string:

$n = uri_escape("H ram Veebl ef eet zer");
$a = uri _escape(35);
$c = uri_escape("Madagascar");

$query = "name=$n+age=%a+count ry=$c";
print $query;
name=Hi r anP20Veebl ef eet zer +age=35+count r y=Madagascar

4 PREVIOUS HOME MEXT
1.5.LWPin Action BOOK INDEX 2.2. An HTTP Transaction
L2 Z‘\;
| o
! N . 1, L INANUTSHELL | PROGRAMMING j
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/THK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

2.3. LWP::Simple

GET isthe simplest and most common type of HTTP request. Form parameters may be supplied in the URL, but thereis
never a body to the request. The LWP::Simple module has several functions for quickly fetching a document with a GET
request. Some functions return the document, others save or pr i nt the document.

2.3.1. Basic Document Fetch
The LWP::Simple module'sget () function takes a URL and returns the body of the document:
$docunment = get ("http://ww. suck. com dai |l y/ 2001/ 01/05/ 1. htm");

If the document can't be fetched, get () returnsundef . Incidentally, if LWP requests that URL and the server replies
that it has moved to some other URL, LWP requests that other URL and returns that.

With LWP::Simple'sget () function, there's no way to set headers to be sent with the GET request or get more
information about the response, such as the status code. These are important things, because some web servers have
copies of documents in different languages and use the HT TP language header to determine which document to return.
Likewise, the HTTP response code can let us distinguish between permanent failures (e.g., "404 Not Found") and
temporary failures ("505 Service [Temporarily] Unavailable").

Even the most common type of nontrivial web robot (alink checker), benefits from access to response codes. A 403
("Forbidden," usually because of file permissions) could be automatically corrected, whereas a 404 (*Not Found") error
implies an out-of-date link that requires fixing. But if you want access to these codes or other parts of the response
besides just the main content, your task is no longer a simple one, and so you shouldn't use LWP::Simple for it. The
"simple" in LWP::Simple refers not just to the style of its interface, but also to the kind of tasks for which it's meant.

2.3.2. Fetch and Store

One way to get the status codeisto use LWP::Simple'sget st or e() function, which writes the document to afile
and returns the status code from the response:

$status = getstore("http://ww. suck. com dai |l y/2001/01/05/ 1. htm ",
"/tnp/web. htm");

There are two problems with this. Thefirst is that the document is now stored in afile instead of in avariable where you
can process it (extract information, convert to another format, etc.). Thisis readily solved by reading the file using Perl's
built-inopen() and <FH> operators; see below for an example.

The other problem is that a status code by itself isn't very useful: how do you know whether it was successful? That is,
does the file contain a document? LWP::Simple offersthei s_success() andis_error() functionsto answer
that question:

$successf ul
$fail ed

= is_success(status);

= is_error(status);

If the status code st at us indicates a successful request (isin the 200-299 range), i s_success() returnstrue. If
st at us isan error (400-599),i s_error() returnstrue. For example, thishit of code savesthe BookTV (CSPAN2)
listings schedule and emits a message if Gore Vidal is mentioned:

use strict;

use war ni ngs;
use LWP:: Sinpl e;
ny $url = "http://ww. booktv. org/schedul e/';
ny $file = 'booktv.htm';
ny $status = getstore(Surl, $file);
die "Error $status on $url" unless is_success($status);
open(IN, "<$file") || die "Can't open $file: $!'";
while (<IN>) {
if (m Gore\s+Vidal/) {
print "Look! Gore Vidal! S$url\n";
| ast;
}

}
close(IN);

2.3.3. Fetch and Print
LWP::Simple also exportstheget pri nt () function:
$status = getprint(url);

The document is printed to the currently selected output filehandle (usually STDOUT). In other respects, it behaves like
get store(). Thiscanbevery handy in one-liners such as.

% perl -MWP.:Sinple -e "getprint('http://cpan.org/ RECENT")| | die" |
grep Apache

That retrieves http://cpan.org/RECENT, which lists the past week's uploadsin CPAN (it'saplain text file, not HTML),
then sendsit to STDOUT, where gr ep passes through the lines that contain "Apache.”

2.3.4. Previewing with HEAD

LWP::Simple also exportsthe head() function, which asks the server, "If | were to request thisitem with GET, what
headers would it have?' Thisis useful when you are checking links. Although, not all servers support HEAD requests
properly, if head() saysthe document isretrievable, then it almost definitely is. (However, if head() saysit'snot,
that might just be because the server doesn't support HEAD requests.)

Thereturn value of head() depends on whether you call it in scalar context or list context. In scalar context, it is
simply:

$i s_success = head(url);

If the server answers the HEAD request with a successful status code, this returns atrue value. Otherwise, it returns a
false value. You can use thislike so:

die "I don't think I'Il be able to get $url" unless head($url);

Regrettably, however, some old servers, and most CGIs running on newer servers, do not understand HEAD requests. In
that case, they should reply with a"405 Method Not Allowed" message, but some actually respond asif you had
performed a GET request. With the minimal interface that head() provides, you can't really deal with either of those
cases, because you can't get the status code on unsuccessful reguests, nor can you get the content (which, in theory, there
should never be any).

Inlist context, head() returnsalist of five values, if the request is successful:

(content _type, docunment | ength, nodified_tine, expires, server)
= head(url);

http://cpan.org/RECENT

Thecont ent _t ype valueisthe MIME type string of theformt ype/ subt ype; the most common MIME types are
listed in Appendix C, "Common MIME Types'. Thedocunent _| engt h valueiswhatever isin the Cont ent -
Lengt h header, which, if present, should be the number of bytes in the document that you would have gotten if you'd
performed a GET request. Thenodi fi ed_ti me valueisthe contents of the Last - Modi fi ed header converted to a
number like you would get from Perl'st i me() function. For normal files (GIFs, HTML files, etc.), the Last -

Modi f i ed valueisjust the modification time of that file, but dynamically generated content will not typically have a
Last - Mbdi f i ed header.

Thelast two values are rarely useful; the expi r es valueisatime (expressed as a number like you would get from
Perl'st i me() function) from the seldom used Expi r es header, indicating when the data should no longer be
considered valid. Theser ver valueisthe contents of the Ser ver header line that the server can send, to tell you what
kind of softwareit's running. A typical valueis Apache/ 1. 3. 22 (Uni x) .

An unsuccessful request, in list context, returns an empty list. So when you're copying the return list into a bunch of
scalars, they will each get assigned undef . Note also that you don't need to save al the values—you can save just the

first few, asin Example 2-4.
Example 2-4. Link checking with HEAD

use strict;

use LWP:: Sinpl e;

foreach ny S$url (
"http://us.al.ying.comus.ying.comi/wwnbv9o.gif',
"http://hooboy. no-such-host.int/",
"http://ww. yahoo. con ,
"http://ww. ora. com ask_tinifgraphics/askti mheader nain.gif',
"http://ww. guardian. co. uk/",
"http://ww. pi xunlinted. co. uk/siteheaders/ Guardian.gif',

) |

print "\ n$url\n";

ny ($type, $length, $nod) = head(S$url);

so we don't even save the expires or server val ues!

unl ess (defined $type) {

print "Couldn't get $url\n";

next ;
}
print "That $type docunent is ", $length || "???", " bytes long.\n";
if ($nmod) {

ny $ago = tine() - $nod

print "It was nodified $ago seconds ago; that's about "

int(.5 + $ago / (24 * 60 * 60)), " days ago, at "

scal ar (1l ocal ti me($nod)), "!\n";
} else {
print "I don't know when it was |ast nodified.\n";

}
}

Currently, that program prints the following, when run:

http://us.al.ying.comus.ying.coni/ww nbv9. gi f

That inmage/gif docunent is 5611 bytes | ong.

It was nodified 251207569 seconds ago; that's about 2907 days ago, at
Thu Apr 14 18:00: 00 1994!

http://hooboy. no-such-host.int/

Coul dn't get http://hooboy. no-such-host.int/

http://ww. yahoo. com

That text/htm docunment is ??? bytes |ong.

| don't know when it was | ast nodifi ed.

http://ww. ora. conf ask_ti m graphi cs/askti m header _main. gi f
That inmage/ gif docunment is 8588 bytes | ong.

It was nodified 62185120 seconds ago;
Mon Apr 10 12:14:13 2000!

http://ww. guardi an. co. uk/

That text/htm docunment is ??? bytes |ong.

| don't know when it was | ast nodifi ed.

that's about 720 days ago, at

http://ww. pi xunlimted. co.uk/siteheaders/ Guardi an. gi f
That inmage/gif docunment is 4659 bytes | ong.

It was nodified 24518302 seconds ago;
Wed Jun 20 11:14:33 2001!

that's about 284 days ago, at

Incidentally, if you are using the very popular CGIl.pm module, be aware that it exports afunction called head() too.
To avoid aclash, you can just tell LWP::Simple to export every function it normally would except for head():

use LWP:: Sinple gw! head);
use CA gw :standard);

If not for that qw(! head) , LWP::Simple would export head(), then CGI would export head() (asit'sinthat
module's: st andar d group), which would clash, producing a mildly cryptic warning such as "Prototype mismatch: sub
main::head ($) vs none." Because any program using the CGlI library is ailmost definitely a CGI script, any such warning
(or, in fact, any message to STDERR) is usually enough to abort that CGI with a"500 Internal Server Error" message.

41 PREVIOUS HOME

2.2. AN HTTP Transaction BOOK INDEX

HEXT B
2.4. Fetching Documents Without

J Tt
] \ PERL
& i i YL IN A NUTSHELL
BOOKSHELF FERL & LWP -~ LEARMIMG PERL 2nd Edithon
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PROGRAMMING
PERL
3rd Edition

LWP::Simple
ol

MASTERING PERL COOKBOOK
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

8.5. Narrowing In

Now, we could try excluding every kind of thing we know we don't want. We could excludethe mai | t o: link by
excluding al URLs that start with mailto:; we could exclude the guest bio URLs by excluding URLSs that contain
guestinfo; we could exclude the "Previous' and "Next" links by ignoring any URLs with dayFA in them; and we could
think of away to exclude the image URLs. However, tomorrow the people at Fresh Air might add thisto their genera
template:

<ing alt="Buy the Terry G oss nug"
src="/nmug.jpg" w dt h=450 wei ght =90></ a>

Because that isn't explicitly excluded, it would make its way through and appear as a segment link in every program
listed.

It isavalid approach to come up with criteriafor the kinds of things we don't want to see, but it's usually easier to come
up with criteria to capture what we do want to see. So thisiswhat we'll do.

We could characterize the links we're after in several ways:
1. Theselinksall containa<font...> ... sequenceanda ... sequence.
2. They dl havean<a ... >tagwithanhr ef attribute pointingtoaURL.
3. The URL they point to looks like http://www.npr.org/ramfiles/fa/20010702.fa.ram.

4. Notably, the URL'sschemeisht t p, it'son the server wwv. npr . or g, itspath includesr anf i | es, and it ends
in.ram

5. The (trimmed) link text up to/ a always beginswithLi sten to.

Now, of these, the first criterion is most reminiscent of the sort of things we did earlier with the BBC news extractor. But
in this case, it's actually sort of a bother, because we can't specify that the next token after the<a . . . > start-tagisa
<font...>tag.

If, by thisfirst criterion, we smply mean that calling $x- >get _tag('/a', 'font', 'b"') shouldgiveyou
<font...>or beforeyou hit </ a>, well, thisistrue. But in either case, you'll have skipped over all the tokens
between the current point in the stream and the next tag you find, and once you've skipped them, you can't get them back.
In this case, we can get away with throwing out the content of <a . . . >. . . </ a> sequences that don't meet this one
criterion, but in many situations you run into, you won't have that luxury. Moreover, in jumping fromthe<a . .. > dtart-
tag tothefirst <f ont . . . > tag, we may be jumping over text that we want but will never be able to get.

We could try implementing this all with the same approach we used with the BBC extractor in Chapter 7, "HTML
Processing with Tokens', where we cook up severa patterns (such asan <a hr ef . . . > start-tag, atext token Li st en
to,a<font...> start-tag, some whitespace, and a start-tag) and base our pattern matcher on get _t oken()
so we can dwayscal unget _t oken() ontokensthat don't match the pattern. Thisisfeasible, but it's sounding like
the hardest of the criteriato formalize, at least under HTML :: TokeParser. (But testing whether atag sequence contains
another is easy with HTML::TreeBuilder, as we see in later chapters.) So we'll try to make do without this one criterion
and consider it alast resort.

Winding irrevocably past thingsis a problem not just withget _tag(). It'salsoaproblemwithget text() and
get _trinmmred_text().Onceyou useany of these methods to skip past tags and/or comments, they're gone for

good. Unless you did something particularly perverse, such as read a huge chunk of the stream with get _t oken()
and then stuffed it back in withunget _t oken() while still keeping a copy around. If you're even contemplating
something like that, it's a definite sign that your program is outgrowing what you can do with HTML :: TokeParser, and
you should either write a new searcher method that'slikeget _t ext () but that can restore tokens to the buffer, or
more likely move on to a parsing model based on HTML::TreeBuilder.

The next criteria (numbers 3 and 4 in the list above) are easy to formalize. These involve characteristics of the URL. We
simply add alineto our whi | e loop, like so:

while(nmy $a tag = $stream >get _tag('a')) {
my $url = $a tag->[1]{ ' href'} || next;
next unless $url =~ n{*http:}s and $url =~ nfwwh\.npr\.org/i
and $url =~ n{/ranfiles/} and $url =~ nm\.rant/;
(There's many ot her ways of doing the above.)
ny $text = $stream >get _trinmed_text('/a');
printf "%\n 9%\n", $text, S$url;
}

But thisraises a point on which many programmers will, legitimately, diverge. Currently, we can say "it's interesting
only if the URL endsin.ram," like so:

next unless $url =~ nm\.ran®/;
It works! But what if, tomorrow, some code like the following is added to the normal template?

Happy Hol i days
fromTerry oss!
<I-- just a short RAfile of Terry saying "Happy NATO Day!" -->

WEe'l be annoyed we didn't make our link extractor check $ur | =~nf ww\ . npr\.org/i and$url =~n{/
ranfil es/}.Ontheother hand, if we do check those additional facts about the URL, and tomorrow all the .ramfiles
are moved off of www.npr.org and onto archive.npr.org, or onto terrygross.com or whatever, then it'll look like there
were no links for this program! Then we'll be annoyed that we did make our link extractor check those additional things
about the URL. Moreover, tomorrow NPR could switch to a better audio format than Real Audio, and all the .ram files
could turn into something else, such that even mi \ . r ants/ isno longer true. It could even be something served across a
protocol other than HTTP! In other words, no part of the URL isreliably stable. On one hand, National Public Radio is
not normally characterized by lavish budgets for web design (and redesign, and re-redesign), so you can expect some
measure of stability. But on the other hand, you never know!

4 PREVIOUS HOME MEXT o
8.4. First Code BOOK INDEX 8.6. Rewrite for Features
! e | 1L INANUTSHELL | PROGRAMMING -2
BOOKSHELF PERL & LWP -~ LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

11.2. Adding Extra Request Header Lines

Here's some simplistic debugging advice: if your browser sees one thing at a given URL, but your LWP program sees
another, first try just turning on cookie support, with an empty cookie jar. If that fails, have it read in your browser's
cookiefile[4] Andif that fails, it's time to start wondering what means the remote site is using for distinguishing your

LWP program's requests from your browser's requests.

[4]Currently there is support for only Netscape cookie files. But check CPAN; someone might write
support for other browsers cookie files.

Every kind of browser sends different HT TP headers besides the very minimal headers that LWP::UserAgent typically
sends. For example, whereas an LWP::UserAgent browser by default sends this header line:

User - Agent: | i bwwwperl/5.5394
Netscape 4.76 sends a header line like this:
User-Agent: Mozilla/4.76 [en] (Wn98; U
And also sends these header fields that an LWP::UserAgent browser doesn't send normally at all:

Accept: image/gif, image/x-xbitmap, inmage/jpeg, image/pjpeg, inmage/
png’ */*

Accept - Charset: iso0-8859-1,*, utf-8

Accept - Encodi ng: gzip

Accept - Language: en-US

(That's assuming you've set your language preferences to U.S. English). That's on top of any Connecti on: keep-
al i ve headersthat may be sent, if the browser or any intervening firewall supports that feature (keep- al i ve) of
HTTP.

Opera5.12 is not much different:

User-Agent: QOpera/5.12 (Wndows 98; U [en]

Accept: text/htm , image/png, inage/jpeg, image/gif, imnmagel/x-xbitnmap,
/

Accept - Language: en

Accept - Encodi ng: deflate, gzip, x-gzip, identity, *;q=0

But arecent version of Netscape gets rather more verbose:

User-Agent: Mzilla/5.0 (Macintosh; U PPC Mac OS X; en-US;
rv:0.9.4) Gecko/20011126 Netscape6/6.2.1

Accept: text/xm, application/xm, application/xhtm +xm , text/htm;

g=0.9,
i mage/ png, inmagel/jpeg, imgel/gif;g=0.2, text/plain;qg=0.8,
text/css, */*;q=0.1

Accept - Charset: |1S0O 8859-1, utf-8;g=0.66, *;q=0.66

Accept - Encodi ng: gzip, deflate, conpress;g=0.9

Accept - Language: en-us

Internet Explorer 5.12, in true Microsoft fashion, emits afew nonstandard headers:

Accept: */*

Accept - Language: en

Ext ensi on: Security/ Renot e- Passphr ase

UA- CPU. PPC

UA- OS: MacOs

User-Agent: Mozilla/4.0 (conpatible; MSIE 5.12; Mac_Power PC)

Lynx can be verbose in reporting what MIME types my system's /etc/mailcap tells it that it can handle:

Accept: text/htm, text/plain, audio/nod, inmage/*, video/*, videolnpeg,
appl i cation/ pgp, application/pgp, application/pdf, nmessage/partial,
nessage/ ext er nal - body, application/postscript, x-be2,
application/andrewinset, text/richtext, text/enriched

Accept: x-sun-attachnment, audio-file, postscript-file, default,
mail -file, sun-deskset-nessage, application/x-netamail-patch
text/sgm, */*;q=0.01

Accept - Encodi ng: gzi p, conpress

Accept - Language: en, es

User-Agent: Lynx/2.8.3dev.18 |ibww FM 2. 14

Thisinformation can come in handy when trying to make your LWP program seem as much like a well-known
interactive browser as possible

11.2.1. Pretending to Be Netscape
For example, suppose you're looking at http://www.expreszo.nl/home.php and you see that it has interesting headlines.

You'd like to write a headline detector for this site to go with the other headline detectors we've been producing
throughout the book. Y ou look at the source in Netscape and see that each headline link looks like this:

<A cl ass=pi nk href="headl i nes. php?i d=749">. . . text...

So you write something quite simple to capture those links:

use strict;
use war ni ngs;
use LWP;

ny $browser = LWP:: User Agent - >new;

ny $url = "http://ww. expreszo.nl/hone. php';
ny $response = $browser->get ($url);
die "Can't get $url: ", $response->status_|ine
unl ess $response->i s_success;
$ = $response->content;
ny %een,
whil e(m{href="(headlines. php[?*"]+)">(.*?)}sg) {
ny $this = URI ->new_abs($1, $response- >base) ;
print "$this\n $2\n" unless $seen{$t hi s} ++;
}
print "NO HEADLI NES?! Source:\n", $response->content unless keys %
seen;

And you run it, and it quite stubbornly says:

NO HEADLI NES?! Source:
<ht M ><body>

http://www.expreszo.nl/home.php

Je hebt nmininmal Mcrosoft Internet Explorer versie 4 of hoger, of
Net scape Navi gator versie 4 of hoger nodig omdeze site te bekijken.

</ body></ ht i >

That is, "you need MSIE 4 or higher, or Netscape 4 or higher, to view this site.” It seemsto be checking the User -
Agent string of whatever browser visits the site and throwing afit unlessit's MSIE or Netscape! Thisis easily
simulated, by adding thislineright after $br owser is created:

$browser - >agent (' Mozilla/4.76 [en] (Wn98; U"');

With that one small change, the server sends the same page you saw in Netscape, and the headline extractor happily sees
the headlines, and everything works:

htt p: // www. expreszo. nl / headl i nes. php?i d=752 Meer syfilis en HV bij honp's
http:// ww. expreszo. nl / headl i nes. php?i d=751 | mam hangt gel dboete van € 1200
boven het hoofd http://ww.expreszo. nl/headlines. php?i d=740 SGP wi| honohuwelij k
terugdraai en http://ww. expreszo. nl/ headl i nes. php?i d=750 Gays en noslinms worden
vaak gedi scrimneerd http://ww.expreszo. nl/headl i nes. php?i d=749 Elton's gaydar
rinkelt bij bruidegom M nnelli http://ww. expreszo.nl/headlines. php?i d=746
Lekkertje Drew Barrynore |iever net een vrouw?

This approach works fine when the web site is looking only at the User - Agent line, asyou can most easily control it
with $br owser - >agent (. . .) . If you were dealing with some other site that insisted on seeing even more Netscape-
like headers, that could be done, too:

my @etscape_|ike headers = (

"User-Agent' => 'Mozillal/4.76 [en] (Wn98; U)',

" Accept - Language' => 'en-US',

"Accept-Charset' => 'is0-8859-1,*, utf-8'",

" Accept - Encodi ng' => 'gzip',

"Accept' =>

"image/ gi f, imagel/ x-xbitmap, imnmage/jpeg, inmagel/pjpeg, imagel/png, */

);

ny $response = $browser->get ($url, @etscape_|ike_headers);

11.2.2. Referer

For some sites, that's not enough: they want to see that your Ref er er header value is something they consider
appropriate. A Ref er er header line signalsthe URL of a page that either linked to the item you're requesting (as with
) orinlinesthat imageitem (aswith<i g src="url ">).

For example, | am a big fan of the comic strip Dennis The Menace. | find it to be the truest realization of deep satire, and
I admire how its quality has kept up over the past 50 years, quite undeterred by the retirement and eventual death of its
auteur, the comic genius Hank Ketcham. And nothing brightens my day more than laughing over the day's Dennis The
Menace strip and hardcopying areally good one now and then, so | can pin it up on my office door to amuse my
colleagues and to encourage them to visit the DTM web site. However, the server for the strip's image files doesn't want
it to be inlined on pages that aren't authorized to do so, so they check the Ref er er line. Unfortunately, they have
forgotten to allow for when thereisno Ref er er lineat al, such as happens when | try to hardcopy the day'simagefile
using my browser. But LWP comes to the rescue:

ny $response = $browser - >get (
The URL of the inmage:
"http://pst.rbma. com content/Denni s_The_Menace',

"Referer' => # The URL where | see the strip:

"http://ww. sfgate.conicgi-bin/article.cgi?file=/comcs/

Denni s_The_ Menace. dt1"',

);

open(QUT, ">today _dennis.gif") || die $!;
bi nnmode(OUT) ;

print OUT $response->content;

cl ose(QUT);

By giving aRef er er value that passes the image server's test for agood URL, | get to make alocal copy of the image,

which | can then print out and put on my office door.

41 PREVIOUS HOME

11. Cookies, Authentication,and BEOOK INDEX
Advanced Requests

MEXT o
11.3. Authentication

RL
IN A MUTSHELL
2nd Edition

L] !
i \ ’I
PERL & LWP -~

LEARNING PERL
3rd Edition

3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PE
& XML

=

he

PERL COOKBOOK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

2.2. An HTTP Transaction

The Hypertext Transfer Protocol (HTTP) is used to fetch most documents on the Web. It isformally specified in RFC
2616, but this section explains everything you need to know to use LWP.

HTTPisaserver/client protocol: the server has the file, and the client wantsit. In regular web surfing, the client isaweb
browser such as Mozilla or Internet Explorer. The URL for a document identifies the server, which the browser contacts
and requests the document from. The server returns either in error ("file not found") or success (in which case the
document is attached).

Example 2-1 contains a sample request from aclient.

Example 2-1. An HTTP request

CGET /daily/2001/01/05/1. htm HTTP/ 1.1
Host: www. suck. com

User - Agent: Super Duper Browser 14.6
bl ank |ine

A successful response is given in Example 2-2.

Example 2-2. A successful HTTP response

HTTP/ 1.1 200 K

Content-type: text/htm
Content-1ength: 24204

bl ank |ine

and then 24, 204 bytes of HTM. code

A responseindicating failureis given in Example 2-3.
Example 2-3. An unsuccessful HTTP response

HTTP/ 1.1 404 Not Found
Content-type: text/htmni
Content-1length: 135

<ht nl ><head><titl e>Not Found</titl e></head><body>
Sorry, the object you requested was not found.

</ body><ht m >

and then the server closes the connection

2.2.1. Request

An HTTP request has three parts: the request line, the headers, and the body of the request (normally used to pass form
parameters).

The request line says what the client wants to do (the method), what it wants to do it to (the path), and what protocol it's
speaking. Although the HTTP standard defines several methods, the most common are GET and POST. The path is part
of the URL being requested (in Example 2-1 the path is/daily/2001/01/05/1.html). The protocol version is generally

HTTP/ 1. 1.

Each header line consists of akey and avalue (for example, User - Agent : Super Duper Browser/ 14. 6).In
versions of HTTP previousto 1.1, header lines were optional. In HTTP 1.1, the Host : header must be present, to name
the server to which the browser istalking. Thisisthe "server" part of the URL being requested (e.g., www.suck.com).
The headers are terminated with a blank line, which must be present regardless of whether there are any headers.

The optional message body can contain arbitrary data. If abody is sent, the request's Cont ent - Type and Cont ent -
Lengt h headers help the server decode the data. GET queries don't have any attached data, so this areais blank (that is,
nothing is sent by the browser). For our purposes, only POST queries use this third part of the HTTP request.

The following are the most useful headers sent in an HTTP request.

Host : www. yout here. i nt
This mandatory header line tells the server the hosthame from the URL being requested. It may sound odd to be
telling a server its own name, but this header line was added in HTTP 1.1 to deal with caseswhereasingle HTTP
server answers requests for several different hosthames.

User - Agent : Thi ng/ 1. 23 details. ..
This optional header line identifies the make and model of this browser (virtual or otherwise). For an interactive
browser, it's usually something like Mozi | | a/ 4. 76 [en] (W n98; U) orMozilla/4.0 (conpati bl e;
MBI E5. 12; Mac_Power PC) . By default, LWP sendsaUser - Agent header of | i bwww per| /5. 64 (or
whatever your exact LWP version is).

Ref erer:http://ww.thi ngamabob.int/stuff.htm
This optional header line tells the remote server the URL of the page that contained alink to the page being
requested.

Accept - Language: en-US, en, es, de
This optional header line tells the remote server the natural languages in which the user would prefer to see
content, using language tags. For example, the above list means the user would prefer content in U.S. English, or
(in order of decreasing preference) any kind of English, Spanish, or German. (Appendix D, "Language Tags' lists
the most common language tags.) Many browsers do not send this header, and those that do usually send the
default header appropriate to the version of the browser that the user installed. For example, if the browser is
Netscape with a Spanish-language interface, it would probably send Accept - Language: es, unlessthe user
has dutifully gone through the browser's preferences menus to specify other languages.

2.2.2. Response
The server's response a so has three parts: the status line, some headers, and an optional body.

The status line states which protocol the server is speaking, then gives a numeric status code and a short message. For
example, "HTTP/1.1 404 Not Found." The numeric status codes are grouped—200-299 are success, 400-499 are
permanent failures, and so on. A full list of HTTP status codesis given in Appendix B, "HTTP Status Codes".

The header lines | et the server send additional information about the response. For example, if authentication is required,
the server uses headers to indicate the type of authentication. The most common header—almost always present for both
successful and unsuccessful requests—is Cont ent - Type, which helps the browser interpret the body. Headers are
terminated with a blank line, which must be present even if no headers are sent.

Many responses contain a Cont ent - Lengt h line that specifies the length, in bytes, of the body. However, thislineis
rarely present on dynamically generated pages, and because you never know which pages are dynamically generated,
you can't rely on that header line being there.

(Other, rarer header lines are used for specifying that the content has moved to a given URL, or that the server wants the
browser to send HTTP cookies, and so on; however, these things are generally handled for you automatically by LWP.)

The body of the response follows the blank line and can be any arbitrary data. In the case of atypical web request, thisis
the HTML document to be displayed. If an error occurs, the message body doesn't contain the document that was
requested but usually consists of a server-generated error message (generally in HTML, but sometimes not) explaining

the error.

4 PREVIOUS HOME NEXT B
2. Web Basics BOOK INDEX 2.3. LWP::Simple

PE

" L IN A WUTSHELL & Xhil
LEARMING PERL 2nd Edition PERL PERL COOKBOOK -
3rd Edition 3rd Edition PERL/TK :

i H

Jeary
BOOKSHELF PERL & LWP
HOME

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

10.2. Deleting Images

Instead of altering nodes or extracting data from them, it's common to want to just delete them. For example, consider
that we have the task of taking normally complex and image-rich web pages and making unadorned text-only versions of
them, such as one would print out or paste into email. Each document in question has one big table with three rows, like
this:

<htm >
<head><titl e>Shatner and Kunis Sweep the Oscars</titl e></head>
<body>
<t abl e>
<tr class="top_button_bar">
...appalling amounts of ad banners and button bars...
</[tr>
<tr class="main">
<td class="Ileft_geegaws">
...yet nore ads and button bars..
</td>
<td class="story">

<hl>Shat ner and Kunis Sweep the Oscars</hl>
<i mg src="shatner_kunis_awards.jpg" align=left>

<p>Stars of <cite>Anmerican Psycho II</cite> wal ked away with four
Acadeny Awards. ..

</td>
<td class="right_geegaws">
...even nore ads...
</td>
</[tr>
<tr class="top_button_bar">
...ads, always ads...
</[tr>
</t abl e>
<hr >Copyri ght 2002, United Lies Syndicate
</htm >

The simplified version of such a page should omit all images and elements of the classt op_but t on_bar,
bottom button_bar,| eft _geegaws,andri ght _geegaws. Thiscan beimplemented with asmple call to

| ook _down:

use HTM.:: TreeBui l der;
ny $root = HTM.:: Tr eeBui | der - >new,
$root->parse file('rewitersl/in002.htm"') || die $!;

foreach ny $d ($root->l ook_down(
sub {
return 1 if $ [0]->tag eq "ing'; # we're | ooking for images
no class neans ignhore it
ny $class = $ [0]->attr('class') || return O;

return 1 if $class eq 'top_button bar' or $class eq 'right _geegaws'
or $class eq 'bottombutton_bar' or $class eq
"l eft _geegaws';

return O,

}
)) |

$d- >del et e;
}
open(QUT, ">rewritersl/out002.htm") || die "Can't wite: $!'";
print OUT $root->as_HTM_(undef, ' '); # two-space indent in output
cl ose(QUT);

$root ->del ete; # done with it, so delete it

The call to $d- >del et e detaches the node in $d from its parent, then destroys it along with all its descendant nodes.
The resulting file looks like this:

<ht m >
<head>
<title>Shatner and Kunis Sweep the Oscars</title>
</ head>
<body>
<t abl e>
<tr class="main">
<td class="story">
<hl>Shat ner and Kunis Sweep the Oscars</hl>
<p>Stars of <cite>American Psycho Il</cite> walked [...] </
td>
</[tr>
</t abl e>
<hr >Copyri ght 2002, United Lies Syndicate </body>
</htm >

One pragmatic point here: the list returned by thel ook_down() call will containthetwot r andt d elements, any
images they contain, and also images el sewhere in the document. When we delete one of thoset r or t d nodes, we are
also implicitly deleting every one of its descendant nodes, including some i ng elements that we are about to hitin a
subsequent iteration through | ook _down() 'sreturn list.

Thisisn't aproblem in this case, because deleting an already deleted node is a harmless no-operation. The larger point
hereisthat when| ook _down() findsamatching node (aswithal eft _geegaws t d node, in our example), that
doesn't stop it from looking below that node for more matches. If you need that kind of behavior, you'll need to
implement it in your own traverser, as discussed in Chapter 9, "HTML Processing with Trees'.

4 PREVIOUS HOME MEXT B
10. Modifying HTML with Trees BOOK INDEX 10.3. Detaching and Reattaching

S|

PE

5 % R & XNL
- 0 F) y ! = IM A MUTSHELL :
BOOKSHELE PERL & LWP - LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK ‘*‘t\e
HOME 3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS

6.4. When Regular Expressions Aren't Enough

HEXT

Regular expressions are powerful, but they can't describe everything. In particular, nested structures (for example, lists
containing lists, with any amount of nesting possible) and comments are tricky. While you can use regular expressions to
extract the components of the HTML and then attempt to keep track of whether you're in acomment or to which nested
array you're adding elements, these types of programs rapidly balloon in complexity and become maintenance

nightmares.

The best thing to do in these situationsisto use areal HTML tokenizer or parser such asHTML::Parser, HTML::
TokeParser, and HTML::TreeBuilder (all demonstrated in the next chapter), and forego your regular expressions.

41 PREVIOUS HOME
6.3. Troubleshooting BOOK INDEX

MEXT mp
6.5. Example: Extracting Linksfrom a

PERL

PROGRAMMING ‘

Y Y . : IN A NUTSHELL
PERL & LWP~ LEARMNING PERL 2nd Edition PERL
3rd Edition 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

Bookmark File
r%? ‘

MASTERING PERL COOKBOOK
PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

2.6. HTTP POST

Some forms use GET to submit their parameters to the server, but many use POST. The difference is POST requests pass
the parametersin the body of the request, whereas GET requests encode the parameters into the URL being requested.

Babelfish (http://babelfish.altavista.com) is a service that |ets you translate text from one human language into another. If

you're accessing Babelfish from a browser, you see an HTML form where you paste in the text you want translated,
specify the language you want it translated from and to, and hit Translate. After afew seconds, a new page appears, with
your tranglation.

Behind the scenes, the browser takes the key/value pairsin the form:

urltext =1 like pie
Ip = en_fr
enc = utf8

and rollsthem into aHTTP request:

POST /transl ate.dyn HTTP/ 1.1

Host: babel fish. altavista.com

User - Agent: Super Duper Browser/ 14. 6

Cont ent - Type: application/ x-wwformurl encoded
Cont ent - Lengt h: 40

url text =1 %0l i ke¥20pi e& p=en_fr&enc=utf8

Just asweused ado_GET() function to automate a GET query, Example 2-7 usesado_POST() functionto
automate POST queries.

Example 2-7. The do_POST subroutine

use LWP;
ny $browser;
sub do_ POST {
Paraneters:
the URL,
an arrayref or hashref for the key/val ue pairs,
and then, optionally, any header lines: (key,value, key, val ue)
$browser = LWP: : User Agent - >new() unl ess $browser;
ny $resp = $browser->post(@);
return ($resp->content, $resp->status_line, $resp->is_success, $resp)
if wantarray;
return unl ess $resp->i s_success;
return $resp->content;

}

Usedo_POST() likethis:

doc = do_POST(URL, [formref, [headers_ref]]);
(doc, status, success, resp) = do GET(URL, [formref, [headers ref]]);

http://babelfish.altavista.com/

Thereturn valuesin scalar and list context are asfor do_GET() . Thef or m_r ef parameter isareference to ahash
containing the form parameters. The header s_r ef parameter is areference to a hash containing headers you want
sent in the request.

41 PREVIOUS HOME NEXT B
2.5. Example: AltaVista BOOK INDEX 2.7. Example: Babelfish
st i Yol : IN A NUTSHELL
BOOKSHELF PERL&LWP~ LEARNING PERL 2nd Edition PERL mmmnﬁ PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

1.2. History of LWP

The following history of LWP was written by Gisle Aas, one of the creators of LWP and its current maintainer.

The libwww-perl project was started at the very first WWW conference held in Genevain 1994. At the conference,
Martijn Koster met Roy Fielding who was presenting the work he had done on MOM spider. MOM spider was a Perl
program that traversed the Web looking for broken links and built an index of the documents and links discovered.
Martijn suggested turning the reusable components of this program into alibrary. The result was the libwww-perl library
for Perl 4 that Roy maintained.

Later the same year, Larry Wall made the first "stable" release of Perl 5 available. It was obvious that the module system
and object-oriented features that the new version of Perl provided make Roy's library even better. At one point, both
Martijn and myself had made our own separate modifications of libwww-perl. We joined forces, merged our designs,
and made severa aphareleases. Unfortunately, Martijn ended up in disagreement with his employer about the
intellectual property rights of work done outside hours. To safeguard the code's continued availability to the Perl
community, he asked me to take over maintenance of it.

The LWP:: module namespace was introduced by Martijn in one of the early alpha releases. This name choice was lively
discussed on the libwww mailing list. It was soon pointed out that this name could be confused with what certain
implementations of threads called themselves, but no better name alternatives emerged. In the last message on this
matter, Martijn concluded, "OK, so we all agree LWP stinks :-)." The name stuck and has established itself.

If you search for "LWP" on Google today, you have to go to 30th position before you find alink about threads.

In May 1996, we made the first non-beta release of libwww-perl for Perl 5. It was called release 5.00 because it was for
Perl 5. This made some room for Roy to maintain libwww-perl for Perl 4, called libwww-perl-0.40. Martijn continued to
contribute but was unfortunately "rolled over by the Javatrain.”

In 1997-98, | tried to redesign LWP around the concept of an event loop under the name LWPng. This allowed many
nice things: multiple requests could be handled in parallel and on the same connection, requests could be pipelined to
improve round-trip time, and HTTP/1.1 was actually supported. But the tuits to finish it up never came, so this branch
must by now be regarded as dead. | still hope some brave soul shows up and decides to bring it back to life.

1998 was also the year that the HTML:: modules were unbundled from the core LWP distribution and the year after Sean
M. Burke showed up and took over maintenance of the HTML-Tree distribution, actually making it handle all the real-
world HTML that you will find. | had kind of given up on dealing with all the strange HTML that the web ecology had
let develop. Sean had enough dedication to make sense of it.

Today LWPisin strict maintenance mode with a much slower release cycle. The code base seems to be quite solid and
capable of doing what most people expect it to.

4 PREVIOUS HOME HEXT %
1. Introduction to Web Automation BOOK INDEX 1.3. Installing LWP

| X ‘ | gi% ‘
PROGRAMMING .2

3 N A NUTSHELL

b .
4 o]
a5 i 4 ! Bl .
BOOKSHELF PERL & LWP ~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

6.7. Example: Extracting Temperatures from Weather Underground

The Weather Underground web site (http://www.wunderground.com) is a great source of meteorological information.

Let'swrite a program to tell us which of the two O'Rellly offices, Cambridge and Sebastopol, is warmer and by how
many degrees.

First, we fetch the pages with the temperatures. A quick look around the Weather Underground site indicates that the
best way to get the temperature for aplaceisto fetch a URL like:

http://ww. wunder ground. coni cgi - bi n/ fi ndweat her/ get For ecast ?quer y=95472

95472 isthe Zip Code for the Sebastopol office, while 02140 is the Zip Code for the Cambridge office. The program
begins by fetching those pages:

#!/usr/ bin/perl -w

use strict;
use LWP:: Si npl e;

nmy $url = "http://ww. wunder ground. coni cgi - bi n/ fi ndweat her/ get For ecast ?
query=";
ny $ca = get("${url}95472"); # Sebastopol, California

ny $ma = get ("${url}02140"); # Canbridge, Mssachusetts

Next, we need to extract the temperature from the HTML. Viewing the source to one of the pages reveal s the rel evant
portion as:

<tr ><td>Tenperature</td>
<t d>52° </ b> F</td></tr>

Because we need to extract the temperature from multiple pages, we define a subroutine that takes the HTML string and
returns the temperature:

sub current _tenp {
local $_ = shift;
M <tr ><td>Tenperature</td>\s+<td>(\d+)} || die "No tenp data?";
return $1;

}

Now all that's left to do is extract the temperatures and display the message:

ny $ca_tenp = current _tenp($ca);
ny $ma_tenp = current _tenp($m);
ny $diff = $ca_tenp - $na_tenp;

print $diff > 0 ? "California" : "Mssachusetts"”;
print " is warner by ", abs($diff), " degrees F.\n";

When you run the program, you see something like:

% ora-tenps

http://www.wunderground.com/

California is warnmer by 21 degrees F.
The complete program is shown in Example 6-6.
Example 6-6. ora-temps

#!/usr/bin/perl -w

use strict;
use LWP:: Si npl e;

nmy $url = "http://ww. wunder ground. coni cgi - bi n/ fi ndweat her/
get For ecast ?"

"query=";
ny $ca = get("${url}95472"); # Sebastopol, California

ny $ma = get ("${url }02140"); # Canbridge, Massachusetts

ny $ca_tenp = current _tenp($ca);

ny $ma_tenp = current _tenp($m);

ny $diff = $ca_tenp - $na_tenp;

print $diff >0 ? "California" : "Massachusetts";
print " is warner by ", abs($diff), " degrees F.\n";

sub current _tenp {
local $ = shift;

M <tr ><td>Tenperature</td>\s+<td>(\d+)} || die "No tenp data?";
return $1;
}
41 PREVIOUS HOME HEXT B
6.6. Example: Extracting Linksfrom BOOK INDEX 7. HTML Processing with Tokens
Arbitrary HTML

g}

_ . RL
e i Y A IM A NUTSHELL
BOOKSHELF FERL & LWP - LEARMIMNG PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

12.2. A User Agent for Robots

So far in this book, we've been using one type of user-agent object: objects of the class LWP::UserAgent. Thisis
generally appropriate for a program that makes only afew undemanding requests of aremote server. But for casesin
which we want to be quite sure that the robot behaves itself, the best way to start is by using LWP::RobotUA instead of
LWP::UserAgent.

An LWP::RobotUA object islike an LWP::UserAgent object, with these exceptions:
. Instead of calling $br owser = LWP: : User Agent - >new(), youcall:
$robot = LWP:: Robot UA- >new('botnane/1.2', 'ne@whost.int')

Specify areasonably unique name for the bot (with an X. Y version number) and an email address where you can
be contacted about the program, if anyone needs to do so.

. Whenyou cal $r obot - >get (. ..) or any other method that performs arequest (head(),post(),
request(),sinple_request()),LWPcalssl eep() towait until enough time has passed since the
last request was made to that server.

. When you request anything from a given HTTP server using an LWP::RobotUA $r obot object, LWP will make
sure it has consulted that server'srobots.txt file, where the server's administrator can stipulate that certain parts of
his server are off limitsto some or al bots. If you request something that's off limits, LWP won't actually request
it, and will return aresponse object with a 403 (Forbidden) error, with the explanation "Forbidden by robots.txt."

For specifics on robots.txt files, see the documentation for the LWP module called WWW::RobotRules, and also
be sure to read http://www.robotstxt.org/wc/robots.html.

Besides having all the attributes of an LWP::UserAgent object, an LWP::RobotUA object has one additional interesting
attribute, $r obot - >del ay($m nut es) , which controls how long this object should wait between requests to the
same host. The current default value is one minute. Note that you can set it to a non-integer number of minutes. For
example, to set the delay to seven seconds, use $r obot - >del ay(7/ 60) .

So we can take our New York Times program from Chapter 11, "Cookies, Authentication,and Advanced Requests' and
make it into a scrupulously well-behaved robot by changing this one line:

ny $browser = LWP:: User Agent->new);
to this:

use LWP:: Robot UA;

ny $browser = LWP:: Robot UA- >new ' Jam esNYTBot/ 1.0,
"jam e@ewsjunkie.int' # ny address

);

$browser - >del ay(5/60); # 5 second del ay between requests

We may not notice any particular effect on how the program behaves, but it makes quite sure that the $br owser object
won't perform its requests too quickly, nor request anything the Times's webmaster thinks robots shouldn't request.

In new programs, | typically use $r obot asthe variable for holding LWP::RobotUA objects instead of $br owser . But
thisis amerely cosmetic difference; nothing requires usto replace every $br owser with $r obot inthe Times

http://www.robotstxt.org/wc/robots.html

program when we change it from using an LWP::UserAgent object to an LWP::RobotUA object.

Y ou can freely use LWP::RobotUA anywhere you could use LWP::UserAgent, in a Type One or Type Two spider. And
you really should use LWP::RobotUA as the basis for any Type Three or Type Four spiders. Y ou should useit not just
so you can effortlessly abide by robots.txt rules, but also so that you don't have to remember to writein sl eep
statements all over your programsto keep it from using too much of the remote server's bandwidth—or yours!

41 PREVIOUS HOME MEXT m
12. Spiders BOOK INDEX 12.3. Example: A Link-Checking
Spider
.#i?
PE
i v . mmpli.lgrlsum j ‘ &
PERL & LWP -~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK R,

HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

3rd Edition

PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

3.2. Programming with LWP Classes

Thefirst step in writing a program that uses the LWP classes isto create and initialize the browser object, which can be
used throughout the rest of the program. Y ou need a browser object to perform HT TP requests, and although you could
use several browser objects per program, I've never run into areason to use more than one.

The browser object can use a proxy (a server that fetches web pages for you, such as afirewall, or aweb cache such as
Squid). It's good form to check the environment for proxy settings by callingenv_pr oxy():

use LWP:: User Agent ;
ny $browser = LWP:: User Agent - >new();
$browser->env_proxy(); # if we're behind a firewall

That's dl the initialization that most user agents will ever need. Once you've done that, you usually won't do anything
with it for the rest of the program, aside from callingitsget (), head(), orpost() methods, to get what'sat a
URL, or to perform HTTP HEAD or POST requests on it. For example:

$url = "http://ww. guardi an. co. uk/";
ny $response = $browser->get ($url);

Then you call methods on the response to check the status, extract the content, and so on. For example, this code checks
to make sure we successfully fetched an HTML document that isn't worryingly short, then prints a message depending
on whether the words "Madonna' or "Arkansas' appear in the content:

die "Hm error \"", $response->status_line(),
"\" when getting $url" unless $response->is success();
ny $content _type = $response->content _type();
die "Hm unexpected content type $content_type from $url"”
unl ess $content _type eq '"text/htm"';
ny $content = $response->content();
die "Qdd, the content from $url is awmfully short!"
if length($content) < 3000;

i f($content =~ ni Madonna| Arkansas/i) {
print "<!-- The news today is | MPORTANT -->\n",
$cont ent ;
} else {

print "$url has no news of ANY CONCEl VABLE | MPORTANCE! \ n";
}

Asyou see, the response object contains al the data from the web server's response (or an error message about how that
server wasn't reachablel), and we use method callsto get at the data. There are accessors for the different parts of the
response (e.g., the status line) and convenience functions to tell us whether the response was successful (i s_success

())

And that's aworking and complete LWP program!

41 PREVIOUS HOME MEXT 5

3. The LWP Class Model BOOK INDEX 3.3. Insidethe do_GET and do_POST
Functions

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

Chapter 12. Spiders

Contents:

Types of Web-Querying Programs
A User Agent for Robots
Example: A Link-Checking Spider
Ideas for Further Expansion

So far we have focused on the mechanics of getting and parsing data off the Web, just a page here and a page there,
without much attention to the ramifications. In this section, we consider issues that arise from writing programs that send
more than a few requests to given web sites. Then we move on to how to writing recursive web user agents, or spiders.
With these skills, you'll be able to write programs that automatically navigate web sites, from simple link checkers to
powerful bulk-download tools.

12.1. Types of Web-Querying Programs

Let's say your boss comes to you and says "l need you to write a spider." What does he mean by "spider"? Is he talking
about the simple one-page screen scrapers we wrote in earlier chapters? Or does he want to extract many pages from a
single server? Or maybe he wants you to write a new Google, which attempts to find and download every page on the
Web. Roughly speaking, there are four kinds of programs that make requests to web servers:

Type One Requester
This program requests a couple items from a server, knowing ahead of time the URL of each. An example of this
isour programin Chapter 7, "HTML Processing with Tokens' that requested just the front page of the BBC News
web site.

Type Two Requester
This program requests a few items from a server, then requests the pages to which those link (or possibly just a
subset of those). An example of thisis the program we aluded to in Chapter 11, "Cookies, Authentication,and
Advanced Requests' that would download the front page of the New York Times web site, then downloaded every

story URL that appeared there.

Type Three Requester
This single-site spider requests what's at a given URL, finds links on that page that are on the same host, and
requests those. Then, for each of those, it finds links to things on the same host, and so on, until potentialy it
visits every URL on the host.

Type Four Requester
This host-spanning spider requests what's at a given URL, finds links on that page that are anywhere on the Web,
and requests those. Then, for each of those, it finds links to things anywhere on the Web (or at least things that are
accessed viaHTTP) and so on, until it visits every URL on the Web, in theory.

From each of the above typesto the next, there is an added bit of logic that radically changes the scope and nature of the
program.

A Type One Requester makes only afew requests. Thisis not normally a noticeable imposition on the remote server,
unless one of these requestsis for a document that's very large or that has to be dynamically generated with great
difficulty.

A Type Two Requester places rather more burden on the remote server, simply because it generates many more requests.
For example, our New York Times story downloader in Chapter 11, "Cookies, Authentication,and Advanced Requests'

downloads not one or two pages, but several dozen. Because we don't want this to burden the Times's servers, we

considerately caled sl eep(2) after every request.

In fact, that probably makes our program much kinder to the remote server than a typical browser would be. Typically,
browsers create several simultaneous connections when downloading al the various images, stylesheets, and applets they
need to render a given web page. However, atypical session with a graphical browser doesn't involve downloading so
many different pages.

Note that with this sort of program, the scope of the program is clearly finite; it processes only the presumably small
number of links that appear on afew pages. So there is no real chance of the program surprising you by requesting vastly
more pages than you'd expect. For example, if you run your program that downloads links off the New York Times's front
page, it downloads just those and that'sit. If you run it, and the total count of downloaded pagesis 45, you can assume
that when you run it tomorrow, it will be about that many: maybe 30, 60, maybe even 70, but not 700 or 70,000.
Moreover, when you see that the average length of each story downloaded is 30 KB, you can assume that it's unlikely for
any future story to be 100 KB, and extremely unlikely for any to be 10 MB.

But a Type Three Requester is the first kind that could potentially go seriously awry. Previoudly, we could make safe
assumptions about the nature of the pages whose links we were downloading. But when a program (or, specifically, a
spider, as we can freely call these sorts of recursive programs) could request anything and everything on the server, it
will be visiting pages we know naothing about, and about which we can't make any assumptions. For example, suppose
we request the main page of our local paper's web site, and suppose that it links to alocal events calendar for this month.
If the events calendar is dynamically generated from a database, this month's page probably has alink to next month's
page, and next month's to the month after, and so on forever, probably regardless of whether each "next month" has any
eventsto it. Soif you wrote a spider that wouldn't stop until it had requested every object on the server, for this server, it
would never stop, because the number of pages on the server isinfinite. In webmaster jargon, these are referred to as
"infinite URL spaces."

A Type Four Requester has all the problems of Type Threes, except that instead of running the risk of annoying just the
webmaster of the local paper, it can annoy any number of webmasters all over the world. Just one of the many things that
can go wrong with these kinds of host-spanning spidersisif it seesalink to Yahoo!. It will follow that link, and then
start recursing through all of Y ahoo!, and visiting every site to which Y ahoo! links. Because these sorts of spiders
demand typically immense resources and are not "general purpose” by any means, we will not be discussing them.

If you are interested in this type of spider, you should read this chapter to understand the basic ideas of single-site
spiders, then read Totty et a's HTTP: The Definitive Guide (O'Rellly), which goesinto great detail on the special
problems that await large-scale spiders.

41 PREVIOUS HOME HEXT

11.4. An HTTP Authentication BOOK INDEX 12.2. A User Agent for Robots
Example: The Unicode Mailing Archive

)

£ | \ : PERL 4l
g fe ALY 3, : INANUTSHELL | PROGRAMMING .
BOOKSHELF PERL&LWP~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

0.3. Order of Chapters

The chaptersin this book are arranged so that if you read them in order, you will face a minimum of cases where | have
to say "you won't understand this part of the code, because we won't cover that topic until two chapterslater.” However,
only some of what each chapter introducesis used in later chapters. For example, Chapter 3, "The LWP Class Modd"
lists al sorts of LWP methods that you are likely to use eventually, but the typical task will use only afew of those, and
only afew will show up in later chapters. In cases where you can't infer the meaning of a method from its name, you can
always refer back to the earlier chapters or use per | doc to see the applicable modul€e's online reference documentation.

41 PREVIOUS HOME NEXT B
0.2. Structure of This Book BOOK INDEX 0.4. Important Standards Documents

o

: RL
N A B A IN A NUTSHELL
PERL & LWP~ LEARNING PERL 2nd Edition PERL MASTERING = PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS

HEXT

Appendix A. LWP Modules

While the text of this book has covered the LWP modules that you need to know about to get things done, there are many
additional modulesin LWP. Most of them are behind the scenes or have limited use that we couldn't spare the space to
discuss. But if you want to further your knowledge of LWP'sinternals, here's aroadmap to get you started.

These are the LWP modules, listed al phabetically, from the CPAN distributions most current at time of writing, libwww-
perl v5.64, URI v1.18, HTML-Parser v3.26, HTML-Tree v3.11, and HTML-Format v1.23. Especially noteworthy
modules have an "*" in front of their names.

Module Description
File::Listing Module for parsing directory listings. Used by Net::FTP.
HTML::Form Class for objects representing HTML forms.

HTML::FormatPS

Class for objects that can render HTML:: TreeBuilder tree contents as
PostScript.

HTML::Formatter

Internal base class for HTML::FormatPS and HTML ::FormatText.

*HTML::FormatText

Class for objects that can render HTML::TreeBuilder tree contents as plain text.

*HTML::Entities

Useful module providing functions that & -encode/decode strings (suchasC. &
E. Bront & toandfromC. &anp; E. Bront &um ;).

HTML::Filter

Deprecated class for HTML parsers that reproduce their input by default.

HTML::HeadParser

Parse <HEAD> section of an HTML document.

HTML::LinkExtor

Classfor HTML parsersthat parse out links.

HTML::PullParser

Semi-internal base class used by HTML :: TokeParser.

*HTML:: TokeParser

Friendly token-at-a-time HTML pull-parser class.

HTML::Parser

Base class for HTML parsers; used by the friendlier HTML:: TokeParser and
HTML::TreeBuilder.

HTML::AsSubs

Semi-deprecated module providing functions that each construct an HTML ::
Element object.

*HTML::Element

Classfor objects that each represent an HTML element.

HTML::Parse Deprecated module that provides functions accessing HTML :: TreeBuilder.
HTML::Tree Module that exists just so you can run per | doc HTM.- Tr ee.

*HTML:: TreeBuilder

Class for objects representing an HTML tree into which you can parse source.

*HTTP::Cookies

Class for objects representing databases of cookies.

HTTP::Daemon Base class for writing HTTP server daemons.
HTTP::Date Module for date conversion routines. Used by various LWP protocol modules.
HTTP Headers Class for objects representing the group of headersin an HTTP::Response or

HTTP::Request object.

HTTP::Headers::Auth

Experimental/internal for improving HTTP::Headers's authentication support.

HTTP::Headers::ETag

Experimental/internal module adding HTTP ETag support to HTTP::Headers.

HTTP::Headers;; Util

Module providing string functions used internally by various other LWP
modules.

*HTTP:Message

Base class for methods common to HTTP::Response and HTTP::Request.

HTTP::Negotiate

Module implementing an algorithm for content negotiation. Not widely used.

HTTP::Request

Class for objects representing a request that carried out with an LWP::
UserAgent object.

HTTP::Request::Common

Module providing functions used for constructing common kinds of HTTP::
Request objects.

*HTTP::Response

Class for objects representing the result of an HTTP::Request that was carried
out.

*HTTP:: Status Module providing functions and constants involving HT TP status codes.
Module that exists merely so you can say "use LWP" and have all the common
LWP modules (notably LWP::UserAgent, HTTP::Request, and HTTP::

*LWP Response). Saying " use LWP5. 64" also asserts that the current LWP

distribution had better be Version 5.64 or later. The module also contains
generous documentation.

LWP::Authen::Basic

Module used internally by LWP::UserAgent for doing common ("Basic")
HTTP authentication responses.

LWP::Authen::Digest

Module used internally by LWP::UserAgent for doing less-common HTTP
Digest authentication responses.

LWP::ConnCache

Class used internally by some LWP::Protocol::protocol modules to reuse socket
connections.

*LWP::Debug

Module for routines useful in tracing how LWP performs requests.

LWP::MediaTypes

Module used mostly internally for guessing the MIME type of afile or URL.

LWP::MemberMixin Base class used internally for accessing object attributes.

LWP::Protocol Mostly internal base class for accessing and managing LWP protocols.
LWP::Protocol::data Internal class that handles the new dat a: URL scheme (RFC 2397).
LWP::Protocol::file Internal classthat handlesthefi | e: URL scheme.

LWP::Protocol::ftp Internal classthat handlesthef t p: URL scheme.

LWP-Protocol::=GHTTP Illr;;[rearrr;/al classfor handling ht t p: URL scheme using the HTTP::GHTTP
LWP::Protocol::gopher Internal classthat handlesthe gopher: URL scheme.

LWP::Protocol::http Internal classthat normally handlestheht t p: URL scheme.

LWP::Protocol -httpi0 lEtGe;nfl eizsnsgftgaatsr;ir;d:; Lhr;k;t t p: URL schemeviajust HTTP v1.0 (without
LWP::Protocol:https Ihr;tve;r;arl] glsaisl'id;?tarr;oirrr:;ta;:?/egfs\ndleﬁthe htt ps: URL scheme, assuming you
LWP::Protocol :https10 Lrlt(alrréilt grlgsz r’:gat handlestheht t ps: URL scheme, if you don't want HTTP
LWP::Protocol::mailto Internal classthat handlesthenmai | t 0: URL scheme; yes, it sends mail!
LWP::Protocol::nntp Internal classthat handlesthennt p: and news: URL schemes.
LWP::Protocol::nogo Internal class used in handling requests to unsupported protocols.

* L WP::RobotUA

Class based on LWP::UserAgent, for objects representing virtual browsers that
obey robots.txt files and don't abuse remote servers.

*LWP::Simple

Module providing the get , head, get pri nt ,get store,andni rror
shortcut functions.

*LWP::UserAgent

Class for objects representing "virtual browsers."

Net::HTTP

Internal class used for HT TP socket connections.

Net::HTTP::Methods

Internal class used for HT TP socket connections.

Net::HTTP::NB Internal class used for HTTP socket connections with nonblocking sockets.
Net::HTTPS Internal class used for HTTP Secure socket connections.
*URI Main class for objects representing URIS/URLSs, relative or absolute.
. . Internal class for objects representing URLs for schemes for which we don't
URI::_foreign .
have a specific class.
URI::_generic Internal base class for just about all URLSs.
. . Internal base class for connection URLs such ast el net : ,rl ogi n: , and
URI::_login .
ssh: .
§ Internal base class providing methods for URL types that can have query strings
URI::_query)
(suchasfoo://...?bar).
§ Internal class for representing some return values from $ur | -
URI::_segment >pat h_segnent s() cals.
URI server Internal base class for URL types where the first bit represents a server name

(most of them except mai | t o:).

URI::_userpass

Internal class providing methods for URL types with an optional user [:
pass] part(suchasftp://itsnme:foo@ecret.int/).

URI::data Class for objects representing the new dat a: URLs (RFC 2397).

*URI-Escape Module for functions that URL -encode and URL -decode strings (such as pot
~=SCep pi e to and from pot %20pi e).

URI::file Classfor objects representing f i | e: URLSs.

URI:

file:Base

Internal baseclassforfi | e: URLS.

Internal base classfor fi | e: URLsunder legacy MSDOS (with 8.3

URI::file::FAT filenames).

URI::file::Mac Internal base classfor fi | e: URLsunder legacy (before v10) MacOS.
URI::file::0S2 Internal base classforfi | e: URLsunder OS/2.

URI::file::QNX Internal base classforfi | e: URLsunder QNX.

URI::file::Unix Internal base classfor fi | e: URLsunder Unix.

URI::file::Win32 Internal base classfor fi | e: URLsunder MS Windows.

URI::ftp Classfor objects representing f t p: URLS.

URI::gopher Class for objects representing gopher : URLSs.

URI::Heuristic Module for functions that expand abbreviated URL s such as ora.com.
URI::http Classfor objects representing ht t p: URLSs.

URI::https Classfor objects representing ht t ps: URLSs.

URI::Idap Class for objects representing | dap: URLSs.

URI::mailto Classfor objects representingnai | t 0 URLS.

URI::news Class for objects representing news: URLSs.

URI::nntp Class for objects representing nnt p: URLSs.

URI::pop Class for objects representing pop: URLS.

URI::rlogin Classfor objects representing r | ogi n: login URLS.

URI::rsync Classfor objects representingr sync: URLSs.

URI::snews Class for objects representing snews: (Secure News) URLSs.
URI::ssh Classfor objects representing ssh: login URLSs.

URI::telnet Classfor objectsrepresenting t el net : login URLSs.

URI::URL Deprecated class that islike URI; use URI instead.
URI::WithBase Like the class URI, but objects of this class can "remember" their base URLSs.
WWW::RobotsRules Class for objects representing restrictions parsed from various robots.txt files.

WWW::RobotRules::AnyDBM_File | Subclass of WWW::RobotRules that uses a DBM file to cache its contents.

41 PREVIOUS HOME NEXT »
12.4. Ideas for Further Expansion BOOK INDEX B. HTTP Status Codes

ﬂ PE
RL _ !
E il Vo S IM A NUTSHELL PROGRAMMING ‘ & XML
BOOKSHELF PERL & LWP -~ LEARNING PERL 2nd Edition PERAL MASTERING PERL COOKBOOK =
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Appendix B. HTTP Status Codes

Contents:

100s. Informational
200s. Successful
300s: Redirection
400s: Client Errors
500s: Server Errors

Y ou can find adetailed explanation of each status code in RFC 2616 (Hypertext Transfer Protocol—HTTP/1.1) at http://
www.rfc-editor.org.

B.1. 100s: Informational

If an LWP request gets either of these rarely used codes, $r esponse- >i s_i nf o will be true. For all other status
codes, $r esponse- >i s_i nf o will befalse.

100 Conti nue
101 Switching Protocols

41 PREVIOUS HOME MEXT B
A. LWP Modules BOOK INDEX B.2. 200s; Successful

LEARNING PERL 2nd Edition PEAL MASTERING = PERL CODKBOOK
3rd Edition 3rd Edition PERL/TK

PE
& XML
ﬁ"'\.

- i H ’.I
BOOKSHELF PERL & LWF -~
HOME

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://www.rfc-editor.org/
http://www.rfc-editor.org/
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY" X

Perl & LWP

41 PREVIOUS MEXT B

Appendix C. Common MIME Types

Every HTTP response that's more than just headers must specify a MIME type viathe Cont ent - Type header
(accessible as $r esponse- >cont ent _t ype()). Hereisalist of the usual MIME type for each of the most
common file types on the Internet. The items are sorted alphabetically by the usual extensions.

Regrettably, thislist is neither complete nor authoritative, as there are more file typesin use than those given "official"
MIME types. For more information, see HTTP: The Definitive Guide (O'Reilly). Also consider the mime.types file that
comes with Apache and/or your browser's "Helper Applications' configuration menus. For the list of official MIME
types, see http://www.isi.edu/in-notes/iana/assi gnments/media-types/.

Extension MIME type
.au audi o/ basi c

avi vi deo/ msvi deo, video/avi, video/x-nsvideo
.bmp i mage/ bnp

.bz2 application/x-bzip2

.CSS text/css

.dtd application/xm -dtd

.doc applicati on/ nsword

.exe application/octet-stream
.gif i mge/ gi f

.0z application/x-gzip

.hgx appl i cati on/ mac- bi nhex40
.html text/htm

Jjar application/java-archive
Jpg i nage/ j peg

http://www.isi.edu/in-notes/iana/assignments/media-types/

Js application/ x-javascri pt

.midi audi o/ x- m di

.mp3 audi o/ npeg

.mpeg vi deo/ npeg

.0gg audi o/ vorbi s, application/ogg

.pdf appl i cati on/ pdf

.pl application/ x-perl

.png i mage/ png

.ppt appl i cati on/ vnd. ns- power poi nt

.ps appl i cation/ postscri pt

qt vi deo/ qui ckti ne

ra audi o/ x- pn-real audi o, audi o/ vnd.rn-real audi o
rram audi o/ x- pn-real audi o, audi o/ vnd.rn-real audi o
rdf application/rdf, application/rdf+xn

rtf application/rtf

.sgml text/sgm

Sit application/x-stuffit

-Svg i mage/ svg+xn

Swif appl i cation/ x-shockwave-fl ash

tar.gz application/x-tar

1gz

application/x-tar

Aiff i mge/tiff

tsv text/tab-separ at ed- val ues

ixt text/plain

wav audi o/ wav, audi o/ x-wav

Xls appl i cation/vnd. ns- excel

xml appl i cation/ xm

Zp application/zip, application/x-conpressed-zip

4 PREVIOUS HOME HEXT %
B.5. 500s. Server Errors BOOK INDEX D. Language Tags

PE
& XML

{ RL
i H ,] - b IN A MUTSHELL
PERL & LWP LEARMING PERL 2nd Edition

AL
3rd Edition 3rd Edition PERL/TK

PERL COOKBOOK \

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Appendix D. Language Tags

Language tags are a system defined in RFC 3066, which is used in various Internet protocols and formats, including
HTML, HTTP, and XML. For example, an HTTP request often has an Accept - Language header, an HTTP response
can have aCont ent - Language header, and any HTML element can haveal ang="en- US" or (in XML and
XHTML) anxmni : | ang="en- US" attribute to indicate that its content isin that language.

There are many more language tags than are presented here; for the full list, see documentation for the Perl module 118N::
LangTags::List. This appendix lists major languages, in alphabetical order by their English names.

Tag Language Tag Language
sq Albanian en- us American English
ar Arabic en-gb British English
hy Armenian et Estonian
as Assamese fa Fars
eu Basque fi Finnish
be Belarusian fr French
bn Bengali/Bangla fr-ca Canadian French
bg Bulgarian fr-fr French French
ca Catalan ga Irish Gaelic
zh Chinese gd Scots Gaelic
zh-cn Mainland Chinese de German
zh-tw Taiwan Chinese el Modern Greek
hr Croatian grc Ancient Greek
cs Czech gu Gujarati

da Danish haw Hawaiian

nl Dutch he Hebrew

en English hi Hindi

hu Hungarian pt Portuguese

is Icelandic pt - br Brazilian Portuguese
id Indonesian pt - pt European Portuguese
it Italian pa Punjabi

ja Japanese ro Romanian

kn Kannada ru Russian

ks Kashmiri sa Sanskrit

kok Konkani sr Serbian

ko Korean sd Sindhi

I a Latin sk Slovak

[v Latvian sl Slovene

It Lithuanian es Spanish

mk Macedonian es-es European Spanish
s Malay es- nx Mexican Spanish
m Malayalam sV Swedish

nt Maltese tl Tagalog

m Maori ta Tamil

nr Marathi te Telugu

mi Meithei/Manipuri th Thai

ne Nepali tr Turkish

no Norwegian uk Ukrainian

nb Norwegian Bokmal ur Urdu

nn Norwegian Nynorsk Vi Vietnamese

or Oriya cy Welsh

pl Polish
4 PREVIOUS HOME HEXT %
C. Common MIME Types BOOK INDEX E. Common Content Encodings

] i & XML

i y
PERL & LWP -

g

i R
BEOOKSHELF
HOME

RL
e ~ IN A NUTSHELL
LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

N

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Appendix E. Common Content Encodings

In anideal world, the only character encoding (or, loosely, "character set") that you'd ever see would be UTF-8 (ut f -
8), and Latin-1 (i so- 8859- 1) for al those legacy documents. However, the encodings mentioned below exist and can
be found on the Web. They are listed below in order of their English names, with the lefthand side being the value you'd
get returned from $r esponse- >cont ent _char set . The complete list of character sets can be found at http://www.
iana.org/assignments/character-sets.

Value Encoding
us-asci i ASCII plain (just characters 0x00-0x7F)
asno- 708 Arabic ASMO-708
i so-8859-6 Arabic ISO
dos- 720 Arabic MSDOS
W ndows- 1256 Arabic MSWindows
i so-8859-4 Baltic 1ISO

w ndows- 1257

Baltic MSWindows

i so-8859-2

Central European 1SO

i bmB852

Central European MSDOS

wi ndows- 1250

Central European MSWindows

hz- gb- 2312 Chinese Simplified (HZ)
gh2312 Chinese Simplified (GB2312)
euc-cn Chinese Simplified EUC

bi g5 Chinese Traditional (Bigb)

cp866

Cyrillic DOS

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

i so-8859-5 Cyrillic SO
koi 8-r CyrillicKOI8-R
koi 8-u Cyrillic KOI8-U

w ndows- 1251

Cyrillic MSWindows

i so-8859-7

Greek ISO

wi ndows- 1253

Greek MSWindows

i so- 8859- 8- Hebrew 1SO Logical

i so- 8859-8 Hebrew 1SO Visud
dos- 862 Hebrew MSDOS

wi ndows- 1255 Hebrew M SWindows
euc-jp Japanese EUC-JP

i so-2022-jp Japanese JIS
shift_jis Japanese Shift-JIS

i s0-2022- kr Korean 1SO

euc- kr Korean Standard

wi ndows- 874

Thai MSWindows

i so-8859-9

Turkish ISO

w ndows- 1254

Turkish MSWindows

utf-8

Unicode expressed as UTF-8

utf-16

Unicode expressed as UTF-16

wi ndows- 1258

Vietnamese M SWindows

viscii

Vietnamese VISCI|

i so-8859-1

Western European (L atin-1)

w ndows- 1252

Western European (Latin-1) with extra characters in 0x80-0x9F

41 PREVIOUS
D. Language Tags

HOME HEXT o
F. ASCII Table

i y o
PERL & LWP -

PE
& XML

AL
" L IN A NUTSHELL
LEARNMING PERL 2nd Edition AL
3rd Edition 3rd Edition PERL/THK

PERL COOKBOOK &

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

Appendix F. ASCII Table

Gone are the days when ASCII meant just US-ASCII characters 0-127. For over a decade now, Latin-1 support (US-
ASCII plus characters 160-255) has been the bare minimum for any Internet application, and support for Unicode (L atin-
1 plus characters 256 and up) is becoming the rule more than the exception. Although a full Unicode character chartisa
book on its own, this appendix lists all US-ASCII characters, plus al the Unicode characters that are common enough
that the current HTML specification (4.01) defines a named entity for them.

Note that at time of thiswriting, not al browsers support all these characters, and not all users have installed the fonts
needed to display some characters.

Also note that in HTML, XHTML, and XML, you can refer to any Unicode character regardless of whether it hasa
named entity (such as &eur 0;) by using adecimal character reference such as € or a hexadecimal character
reference such as € (notetheleading x). See http://www.unicode.org/charts/ for a complete reference for
Unicode characters.

Dec | Hex |Char |Octal mlz(?;\i/ng UTFS8 encoding HTML entity Description
0 0000 000 |Ox00 0x00 NUL

1 [ooo1 001 |ox0L 0x01 SOH

2 [o002 002 |ox02 0x02 STX

3 [oo03 003 |ox03 0x03 ETX

4 (0004 004 |Ox04 O0x04 EOT

5 0005 005 |Ox05 0x05 ENQ

6 |0006 006 |0x06 0x06 ACK

7 [o007 007 |oxo7 0x07 BEL, bell, dlarm, \a
8 [ooos 010 |ox08 0x08 BS, backspace, \b
9 [ooo09 011 |ox09 0x09 HT, tab, \t

10 [000a 012 |oxoA OX0A LF, line feed, \cj

http://www.unicode.org/charts/

11 [ooob 013 |0x0B OxOB VT
12 [oo0c 014 |0xOC Ox0C FF, NP, form feed, \f
13 |oood 015 |ox0D O0XOD S; carriage return,
14 [000e 016 |OxOE OXOE SO

15 [ooof 017 |OxOF OXOF s

16 |0010 020 |ox10 0x10 DLE

17 [oo11 021 |oxii Ox11 DC1

18 [0012 022 |ox12 Ox12 DC2

19 [0013 023 |ox13 0x13 DC3

20 [o014 024 |ox14 Ox14 DC4

21 [0015 025 |ox15 0x15 NAK

22 [0016 026 |ox16 0x16 SYN

23 [0017 027 |ox17 Ox17 ETB

24 [oo18 030 |oxi8 ox18 CAN

25 0019 031 |ox19 0x19 EM

26 |00la 032 |ox1A Ox1A SUB

27 |001b 033 |0x1B 0x1B ESC, escape, \e

28 |001c 034 |ox1C Ox1C =

20 [oo1d 035 |0x1D Ox1D GS

30 |o0le 036 |Ox1E OX1E RS

31 |oolf 037 |OxIF OX1F us

32 [0020 040 [0x20 0x20 SPC, space

33 loo2L|! |04l |oxet ox21 E;‘rféamaﬂon point,
34 0022 (" 042 |0x22 0x22 " ; Quote, double quote
35 |0023 |# 043 |0x23 0x23 Number, pound, hash
36 [0024[$ (044 |ox24 0x24 Dollar

37 [0025[% [045 |ox25 0x25 Percent

38 0026 [& 046 |0x26 0x26 &anp; Ampersand, and

39 0027 |" 047 |0x27 0x27 &apos: Qu%ﬁmphe’ single
40 |oo2s|(|050 |ox28 0x28 Oorf’eer?g;”;hws’
41 |oo29|y |os1 |ox29 0x29 gg’sfg’;r;r‘stms’
42 |002a |* 052 |Ox2A Ox2A Asterisk, star, glob
43 |002b |+ 053 |[0x2B 0x2B Plus

44 |002c |, 054 |0x2C 0x2C Comma

45 |002d |- 055 [0x2D 0x2D Hyphen, dash, minus
4 |ooze|. 056 |OxoE OX2E Fjrli;%pd"t’ decimal,
47 |002f |/ 057 |Ox2F OX2F iﬁ’é’f\‘fﬁgig,;ﬁw
48 [o030[0 [060 [0x30 0x30

49 [oos1[1 o061 [ox31 0x31

50 [o032[2 [o62 [ox32 0x32

51 |0033 063 |0x33 0x33

52 |0034 064 |0x34 0x34

53 0035 065 |0x35 0x35

54 | 0036 066 |0x36 0x36

55 0037 067 |0x37 0x37

56 |0038 070 |0x38 0x38

57 |0039 071 |0x39 0x39

58 |003a |: 072 |Ox3A Ox3A Colon

59 |003b |; 073 |0Ox3B 0x3B Semicolon

60 |003c 074 |0x3C 0x3C &t; Less-than sign
61 [003d 075 |0x3D 0x3D Equalssign
62 |003e 076 |Ox3E Ox3E > ; Greater-than sign
63 |003f 077 |Ox3F Ox3F Question mark
64 |0040 100 |0Ox40 0x40 Atsign

65 |0041 101 |Ox41 0x41

66 |0042 102 |0x42 0x42

67 |0043 103 |0x43 0x43

68 |0044 104 |Ox44 Ox44

69 |0045 105 |0x45 0x45

70 |0046 106 |Ox46 0x46

71 |0047 107 |0x47 0x47

72 [o048 110 |ox48 Ox48
73 [0049 111 |oxd9 Ox49

74 [004a 112 |oxaA Ox4A

75 [004b 113 |ox4B Ox4B

76 |004c 114 |oxacC Ox4C

77 [004d 115 |ox4D Ox4D

78 |00de 116 |Ox4E OXAE

79 [o04f 117 |oxaF Ox4F

80 |0050 120 |0ox50 0X50

81 |0051 121 |ox51 Ox51

82 |0052 122 |ox52 OX52

83 |0053 123 |ox53 OX53

84 0054 124 |ox54 Ox54

85 |0055 125 |ox55 OX55

86 |0056 126 |0x56 OX56

87 |0057 127 |ox57 OX57

88 |0058 130 |ox58 OX58

89 |0059 131 |0x59 OX59

% |o05a 132 |oxsA OXBA

o1 |o0sb 133 |0x5B OX5B tﬁf;(fﬁgjj‘fjg)bgﬁ@;
92 |005c 134 |ox5C OX5C Backslash

Right (square) bracket,

93 |00sd 135 | 0x5D OX5D lows (o) brackes
94 |005e 136 | Ox5E OXSE gf‘;ﬁtr'n‘]fgxa”ow’
95 | 005f 137 |Ox5F Ox5F Underscore
96 |0060 |- 140 |0x60 0x60 Backtick, backquote
97 |oo61 141 [ox61 0x61

98 |0062 142 |ox62 0x62

99 [0063 143 |0x63 0x63

100 |0064 144 |ox64 0x64

101 0065 145 |0x65 0x65

102 [0066 146 | 0x66 0x66

103 [0067 147 [ox67 0x67

104 |0068 150 |0x68 0x68

105 [0069 || 151 |0x69 0x69

106 |006a || 152 |ox6A OXBA

107 |006b 153 | ox6B 0x6B

108 |006c 154 |ox6C O0x6C

109 |006d 155 | ox6D 0x6D

110 |006e 156 | Ox6E OX6E

111 006 157 |ox6F Ox6F

112 (0070 160 |0x70 0x70

113 (0071 161 |ox71 ox71

114 |0072 162 |0x72 0x72

115 |0073 163 |0x73 0x73

116 [0074 164 |0x74 0x74

117 |0075 165 |0x75 0x75

118 |0076 166 |Ox76 0x76

119 |0077 167 |Ox77 ox77

120 |0078 170 |0x78 0x78

121 |0079 171 |Ox79 0x79

122 |007a 172 |Ox7A Ox7A

123 |007b 173 |Ox7B 0x7B Open brace
124 |007c 174 |0x7C 0x7C Pipe, vertical bar
125 |007d 175 |Ox7D Ox7D Close brace
126 |007e 176 | OX7E OXTE ;L?S’gmi ddle,
127 |007f 177 |OxX7F Ox7F DEL, delete
128 |0080 200 [0x80 0xC2,0x80 (Undefined)
129 |0081 201 |Ox81 0xC2,0x81 (Undefined)
130 |0082 202 |0x82 0xC2,0x82 (Undefined)
131 |0083 203 |0x83 0xC2,0x83 (Undefined)
132 |0084 204 |0x84 0xC2,0x84 (Undefined)
133 |0085 205 |0x85 0xC2,0x85 (Undefined)
134 | 0086 206 |0Ox86 0xC2,0x86 (Undefined)

135 |0087 207 |0Ox87 0xC2,0x87 (Undefined)
136 |0088 210 |0x88 0xC2,0x88 (Undefined)
137 | 0089 211 |0x89 0xC2,0x89 (Undefined)
138 |008a 212 |Ox8A 0xC2,0x8A (Undefined)
139 |008b 213 |0x8B 0xC2,0x8B (Undefined)
140 |008c 214 |0x8C 0xC2,0x8C (Undefined)
141 |008d 215 |0x8D 0xC2,0x8D (Undefined)
142 |008e 216 |Ox8E 0xC2,0x8E (Undefined)
143 | 008f 217 |Ox8F 0xC2,0x8F (Undefined)
144 | 0090 220 |0x90 0xC2,0x90 (Undefined)
145 |0091 221 |0x91 0xC2,0x91 (Undefined)
146 |0092 222 |0x92 0xC2,0x92 (Undefined)
147 |0093 223 |0x93 0xC2,0x93 (Undefined)
148 |0094 224 | 0x94 0xC2,0x94 (Undefined)
149 | 0095 225 |0x95 0xC2,0x95 (Undefined)
150 |0096 226 |0x96 0xC2,0x96 (Undefined)
151 |0097 227 |0x97 0xC2,0x97 (Undefined)
152 |0098 230 |0x98 0xC2,0x98 (Undefined)
153 | 0099 231 |0x99 0xC2,0x99 (Undefined)
154 | 009 232 |0x9A 0xC2,0x9A (Undefined)
155 |009b 233 |0x9B 0xC2,0x9B (Undefined)

156 |009c 234 |0x9C 0xC2,0x9C (Undefined)
157 |009d 235 |[0x9D 0xC2,0x9D (Undefined)
158 |009% 236 |Ox9E 0xC2,0x9E (Undefined)
159 | 009f 237 |Ox9F 0xC2,0x9F (Undefined)
160 |0020 240 |OxAO 0XC2,0xA0 No-break space,
nonbreaking space
161 |00al |; |241 |oxAl OXC2,0xA1 & excl ; 'r;‘;’rek”ed exclamation
162 [00a2 (¢ 242 |OxA2 0xC2,0xA2 ¢ ; Cent sign
163 [00a3 |£ 243 |OxA3 0xC2,0xA3 £ Pound sign
164 |00a4 |« 244 |0xA4 0xC2,0xA4 ¤ Currency sign
165 |00a5 |¥ 245 |OxA5 0xC2,0xA5 ¥ Yen sign, yuan sign
166 |00a6 || |246 |OxA6 OXC2,0xA6 &br vbar ; Broken bar, broken
vertical bar
167 |00a7 |8 247 |OxA7 0xC2,0xA7 § ; Section sign
168 |00a8 | 250 |OxA8 OXC2,0xA8 &un ; Digeresis, spacing
diaeresis
169 |00a9 |(© 251 |OxA9 0xC2,0xA9 © Copyright sign
) Feminine ordinal
170 |0Oaa |& 252 |OxAA 0xC2,0xAA &or df ; .
indicator
L eft-pointing double
171 |00ab |« 253 |OxAB 0xC2,0xAB &l aquo; angle quotation mark,
left pointing guillemet
172 [00ac |— 254 |OxAC 0xC2,0xAC ¬ ; Not sign, angled dash
173 |00ad [() |255 |oxAD OXC2,0xAD gshy: Soft hyphen,

discretionary hyphen

Registered sign,

174 |00ze |(® 256 |OXAE 0xC2,0xAE ® registered trademark
sign
Macron, spacing

175 |00af |~ 257 |OxAF 0xC2,0xAF ¯ ; macron, overline, APL
overbar

176 |00bO |° 260 |0xBO 0xC2,0xB0 ° Degree sign

177 |00bl |+ [261 |OxB1 0xC2,0xB1 &l usm; Plus-minus sign, plus-
or-minus sign
Superscript two,

178 |00b2 |2 262 |0xB2 0xC2,0xB2 &supz; superscript digit two,
sgquared
Superscript three,

179 |00b3 (3 263 |0xB3 0xC2,0xB3 ³ superscript digit three,
cubed

180 |oob4 | |264 |oxB4 0xC2,0xB4 gacut e; ';‘C%‘:teeaccmt' spacing

181 |00b5 |e 265 |0xB5 0xC2,0xB5 &m cro; Micro sign

182 |00b6 |1 |266 |0xB6 0xC2,0xB6 &par a; Pilcrow sign,
paragraph sign
Middle dot, Georgian

183 |00b7 |- 267 |0xB7 0xC2,0xB7 &ni ddot ; comma, Greek middle
dot

184 |00b8 |, 270 |0xB8 0xC2,0xB8 &cedi | ; Cedilla, spacing cedilla

185 |00b9 1 [271 |oxB9 OXC2,0xB9 gsupl; Superscript one,
superscript digit one

186 |ooba|c [272 |oxBA OXC2,0xBA gor dm Masculine ordingl
indicator
Right-pointing double

187 |oobb [» (273 |oxBB O0XC2,0xBB & aquo; angle quotation mark,

right pointing
guillemet

Vulgar fraction one

188 |00bc |44 274 |0xBC 0xC2,0xBC &f racl4,; quarter, fraction one
quarter
Vulgar fraction one

1 .

189 |00bd (/5 275 |0xBD 0xC2,0xBD & racl?; half. fraction one half
Vulgar fraction three

190 |00be |4 276 |OxBE 0xC2,0xBE &f rac34; quarters, fraction three
quarters
Inverted question

191 |00bf |¢ 277 |OxBF 0xC2,0xBF & quest; mark, turned question
mark

192 |00c0 [A [300 |OxCO 0xC3,0x80 &Agr ave: Capital A grave,
capital A grave

193 |00cl |A 301 |OxC1 0xC3,0x81 &Aacut e; Capital A acute

194 |00c2 |A 302 |0OxC2 0xC3,0x82 Â Capital A circumflex

195 |00c3 |A 303 |0xC3 0xC3,0x83 &Ati | de; Capital A tilde

196 |00c4 |A 304 |0xC4 0xC3,0x84 &Auni ; Capital A diaeresis

197 |0ocs [A |305 |oxCs OXC3,0x85 &Ar i ng: Capital A ring above,
capital A ring

198 |00c6 [£ (306 |0xC6 OXC3,0x86 &AEl i g; Capital AE, capital
ligature AE

199 (00c7 [C 307 |OxC7 0xC3,0x87 &Ccedi | ; Capital C cedilla

200 |00c8 E 310 |0xC8 0xC3,0x88 &Egr ave; Capita E grave

201 |00c9 |E 311 |0xC9 0xC3,0x89 &Eacut e; Capital E acute

202 |00ca |E 312 |OxCA 0xC3,0x8A Ê Capital E circumflex

203 |00cb |E 313 |0xCB 0xC3,0x8B &Eumn ; Capital E diaeresis

204 |00cc |1 314 |0xCC 0xC3,0x8C &l grave; Capita | grave

205 [00cd |i 315 |0xCD 0xC3,0x8D &l acut e; Capital | acute

206 |0Oce |1 316 |OxCE 0xC3,0x8E &l circ; Capital | circumflex
207 |00cf |1 317 |OxCF O0xC3,0x8F & un ; Capital | diaeresis
208 |00dO |b 320 |0xDO 0xC3,0x90 Ð, gr?)psggld IIEDth’ Edh,
209 |0od1 [N 321 |0xD1 0xC3,0x91 &Nt i | de; Capital N tilde

210 |00d2 |O 322 |0xD2 0xC3,0x92 &Qgr ave; Capital O grave
211 |00d3 |O 323 |0xD3 0xC3,0x93 &Cacut e; Capital O acute
212 |00d4 |O 324 |0xD4 0xC3,0x94 &Qci rc; Capital O circumflex
213 |0od5 [O 325 |0xD5 0xC3,0x95 & i | de; Capital Otilde

214 |00d6 O 326 |0xD6 0xC3,0x96 &Cun ; Capital O diaeresis
215 |00d7 |x 327 |0xD7 0xC3,0x97 &t i mes; Multiplication sign
216 |00d8 |@ [330 |oxDS 0xC3,0x98 &GCs| ash; Saegit:‘l g :;;ke'
217 |00d9 |U 331 |0xD9 0xC3,0x99 &Ugr ave; Capital U grave
218 |00da |U 332 |O0xDA 0xC3,0x9A &Uacut e; Capital U acute
219 [00db |0 333 |0xDB 0xC3,0x9B &Uci rc; Capital U circumflex
220 |00dc U 334 |0xDC 0xC3,0x9C &Uun ; Capital U diaeresis
221 |00dd |Y 335 |0xDD 0xC3,0x9D &Yacut e; Capital Y acute
222 |00de |k 336 |OxDE 0xC3,0x9E Þ,; Capital Thorn

223 |00df [R 337 |OxDF 0xC3,0x9F ß Sharp s, ess-zed
224 |00e0 |a 340 |OxEO 0xC3,0xA0 à agrave

225 |00el |a 341 |OxEl OxC3,0xA1 &aacut e; aacute

226 |00e2 |a 342 |OxE2 OxC3,0xA2 â acircumflex

227 |00e3 |& 343 |OxE3 OxC3,0xA3 &ati | de; atilde

228 |00e4 |& 344 |OxE4 0xC3,0xA4 &aun ; adiaeresis
229 |00e5 |4 345 |OxE5 0xC3,0xA5 &ari ng; aring above, aring
230 |00e6 |z 346 |OxE6 0xC3,0xA6 &ael i g; ae, ligature ae
231 |00e7 |¢ 347 |OxE7 OxC3,0xA7 &ccedi | ; c cedilla

232 |00e8 |e 350 |[OxES8 OxC3,0xA8 è egrave

233 |00e9 | & 351 |[OxE9 0xC3,0xA9 &eacut e; € acute

234 |00ea |é 352 |OxEA OxC3,0xAA ê e circumflex
235 [00eb |& 353 |OxEB 0xC3,0xAB &euni ; ediaeresis
236 |00ec |i 354 |OxEC OxC3,0xAC & grave; i grave

237 |00ed |i 355 |OXED 0xC3,0xAD & acut e; i acute

238 |00ee |1 356 |OxEE 0xC3,0xAE & circ; i circumflex
239 |00ef |i 357 |OxEF OxC3,0xAF & um ; i diaeresis
240 |00fO i 360 |OxFO 0xC3,0xB0 &et h; eth, edh, crossed d
241 |00f1 |i 361 |[OxF1 0xC3,0xB1 &nt il de; ntilde

242 |00f2 |0 362 |OxF2 0xC3,0xB2 &ogr ave; o grave

243 |00f3 |6 363 |[OxF3 0xC3,0xB3 &oacut e; 0 acute

244 |00f4 |6 364 |OxF4 0xC3,0xB4 ô o circumflex
245 |00f5 |© 365 |OxF5 0xC3,0xB5 &ot i | de; otilde

246 |00f6 |0 366 |OxF6 0xC3,0xB6 &ount ; o diaeresis
247 |00f7 |+ 367 |OxF7 0xC3,0xB7 &di vi de; Division sign

248 |00f8 | 370 |OxF8 0xC3,0xB8 &osl ash; o stroke, o slash
249 |00f9 |u 371 |OxF9 0xC3,0xB9 &ugr ave; u grave

250 |00fa |G 372 |OxFA 0xC3,0xBA &uacut e; u acute

251 |00fb |U 373 |OxFB 0xC3,0xBB û u circumflex

252 |00fc |U 374 |OxFC 0xC3,0xBC &uum ; u diaeresis

253 |00fd |¥ 375 |OxFD 0xC3,0xBD &yacut e; y acute

254 |00fe |l 376 |OxFE 0xC3,0xBE &t hor n; Thorn

255 |00ff |y 377 |OxFF O0xC3,0xBF &yum ; y diaeresis

338 |0152 (:E 0xC5,0x92 &CEl i g; Capital ligature OE
339 (0153 |2 0xC5,0x93 &oel i g; Ligature oe

352 |0160 |& 0xC5,0xA0 &Scar on; Capital Scaron
353 |0161 | O0xC5,0xA1l &scar on,; scaron

376 |0178 Y 0xC5,0xB8 &yun ; Capita Y diaeresis
402 |0192 f 0xC6,0x92 &f nof ; F hook, function, florin
710 |02¢6 |~ OXCB,0x86 ˆ zfr‘?ﬂ;ﬁre'xe?cmt
732 |02dc |~ 0xCB,0x9C &t il de; Small tilde

913 |0391 | A OXCE,0x91 &Al pha; Capital apha

914 {0392 3 OXCE,0x92 &Bet a; Capital beta

915 |0393 |_ OxCE,0x93 &Ganmms; Capital gamma
916 (0394 | A OxCE,0x94 &Del t a; Capital delta

917 |0395 | OXCE,0x95 &Epsi | on; Capital epsilon
918 |039% |/ OXCE,0x96 &Zet a; Capital zeta
919 |0397 |H OXCE,0x97 &Ft a; Capital eta
920 |0398 e 0xCE,0x98 &Thet a; Capital theta
921 |0399 | T OXCE,0x99 &l ot a; Capital iota
922 |039a |K OxCE,0x9A Κ Capital kappa
923 |03% | OXCE,0x9B &lLanbda; Capital lambda
924|039 |V OXCE,0x9C &MU; Capital mu
925 |039d |\| OxCE,0x9D Ν Capital nu
926 |039% | — OXCE,0x9E 8Xi ; Capital xi

927 | 039f O OxCE,O0x9F &0 cron; Capital omicron
928 {0320 [} OXCE,0xA0 &Pi ; Capital pi

929 |03al (]2 OXCE,0xA1 Ρ Capital rho
931 |03a3 | OXCE,0xA3 &Si gn; Capital sigma
932 |03 | T OXCE,0xA4 Τ Capital tau
933 |03a5 |'Y' OxCE,0xA5 &Upsi | on; Capital upsilon
934 |03a6 (P OXCE,0xA6 &Phi ; Capital phi
935 |03a7 | X OXCE,OxA7 &Chi ; Capital chi
936 |03s8) OxCE,OxA8 &Psi ; Capital psi
937 |03a9 | OxCE,OxA9 &0Onega; Capital omega

945 |03bl [} OxCE,0xB1 &al pha; Alpha
946 |03b2 I?) OxCE,0xB2 &bet a; Beta
947 |03b3 Y OXCE,0xB3 &ganma; Gamma
948 | 0304 5 OXCE,0xB4 &del t a: Delta
949 |03b5 |E OxCE,0xB5 &epsi |l on; Epsilon
950 |03b6 C OXCE,0xB6 gzet a: Zeta
951 {0307 | OXCE,0xB7 get a; Eta
952 (0308 | OXCE,0xB8 &t het a; Theta
953 |03h9 |1 OxCE,0xB9 & ot a; lota
954 | 03ba |K_ OxCE,0xBA κ Kappa
955 |03bb)\ OXCE,0xBB & anbda; Lambda
956 |03bc |e OxCE,0xBC ν Mu
957 |03bd |\/ O0xCE,0xBD &nu: Nu

958 |03be E OXCE,OXBE &xi Xi

959 |03bf () OxCE,0xBF &om cron; Omicron
960 |03cO |m 0xCF,0x80 &pi ; Pi

961 |[03cl p OxCF,0x81 &r ho; Rho
962 |03c2 [& 0xCF,0x82 &si gmaf ; Final sigma
963 [03c3 O OxCF,0x83 &si gmma; Sigma
964 |03c4 | T OxCF,0x84 &t au; Tau

965 |03c5 ||) OxCF,0x85 &upsi | on; Upsilon
966 |03c6 CP O0xCF,0x86 &phi ; Phi
967 |03c7 | X OXCF,0x87 &chi ; Chi
968 |03c8 LlJ OxCF,0x88 &psi ; Ps
969 |03c9 |(W) OxCF,0x89 &onmega,; Omega
977 |03d1 |& OxCF,0x91 &t het asym Theta symbol

— Greek upsilon with
978 |03d2 |1 OxCF,0x92 &upsi h; hook symbol
982 |03d6 |_| OxCF,0x96 &pi v; Greek pi symbol
8194 | 2002 . 0xE2,0x80,0x82   En space
8195 | 2003 . OxE2,0x80,0x83   Em gpace
8201 {2009 | OxE2,0x80,0x89 &t hi nsp; Thin space
8204 |200c |l OxE2,0x80,0x8C &wnj ; Zero width non-joiner
8205 |200d | OxE2,0x80,0x8D &Ww ; Zero width joiner
8206 |200e | 0xE2,0x80,0x8E & rm Left-to-right mark
8207 |200f |=: OxE2,0x80,0x8F &l m Right-to-left mark
8211 (2013 |- OxE2,0x80,0x93 – En dash
8212 (2014 |— OxE2,0x80,0x94 — Em dash
8216 |2018 |° OXE2,0x80,0x98 &l squo; 'r‘nf:rtks'”g'eq“"tat'on
8217 2019 | OXE2,0x80,0x99 & SquO: Right single quotation

mark

Single low-9 quotation

8218 | 201a |* OxE2,0x80,0x9A ‚ mark
8220 |201c | OXE2,0x80,0x9C &l dquo:; an‘jrtkdO“b'eq“Ota“O”
8221 |201d |" OXE2,0x80,0x9D & dquo: r'_‘:agrzt double quotation
) Double low-9
8222 |201e |1 0xE2,0x80,0x9E „ quotation mark
8224 | 2020 -|- OXE2,0x80,0xA0 &dagger ; Dagger
8225 | 2021 :|: OxE2,0x80,0xA1 &Dagger ; Double dagger
8226 | 2022 |- OXE2,0x80,0xA2 &bul | ; E‘:(':'Izt black small
. Horizontal ellipsis,
8230 (2026 | ... OxE2,0x80,0xA6 &hel | i p; three dot | eader
8240 | 2030 %a 0xE2,0x80,0xB0 &perm | ; Per mille sign
8242 (2032 |’ OxE2,0x80,0xB2 &pri ne; Prime, minutes, feet
8243 | 2033 OxE2,0x80,0xB3 &Pri me; Double prime,
’ i ’ seconds, inches
. Single left-pointing
8249 (2039 | ¢ OxE2,0x80,0xB9 &l saquo; angle quotation mark
] Single right-pointing
8250 |203a | ¥ 0OxE2,0x80,0xBA &r saquo; angle quotation mark
N Overline, spacing
8254 | 203e |- OxE2,0x80,0xBE &ol i ne; overscore
8260 (2044 |/ OxE2,0x81,0x84 &frasl ; Fraction slash
8364 |20ac |£ OxE2,0x82,0xAC &eur o; Euro sign
8465 2111 |3 OXE2,0x84,0x91 & rage:; Blackletter capital |,

imaginary part

Script capital P, power

8472 | 2118 /g OXE2,0x84,0x98 &wei er p: =t WP

8476 |211c |} OXE2,0x84,0x9C greal ; ?e'j‘:gﬁgrﬁiﬂfd R

8482 (2122 | TM OxE2,0x84,0xA2 &t r ade; Trademark sign

8501 |2135 | N OXE2,0x84,0xB5 gal ef sym ﬁ;ﬁf sf?]?::cc)lé\rgirrsltal

8592 (2190 |&— OxE2,0x86,0x90 & arr; Leftward arrow

8593 | 2191 ’]\ OxE2,0x86,0x91 ↑ Upward arrow

8594 (2192 | —» OxE2,0x86,0x92 → Rightward arrow

8595 | 2193 \l, OxE2,0x86,0x93 ↓ Downward arrow

8596 (2194 | &> OxE2,0x86,0x94 &harr ; L eft-right arrow
Downward arrow with

8629 | 21b5 |,] OxE2,0x86,0xB5 ↵ corr_lerleftward,
carriage return

8656 |21d0 |¢&= OxE2,0x87,0x90 &l Arr; Leftward double arrow

8657 [21d1 ﬂ OxE2,0x87,0x91 &UArT Upward double arrow

8658 | 21d2 | = OXE2,0x87,0x92 & AT aRrir%r\‘NtWard double

8659 |21d3 ||}, OXE2,0x87,0x93 &dAr T ; aDr?(‘;"vcward double

8660 |21d4 | &> OxE2,0x87,0x94 ⇔ Left-right double arrow

8704 | 2200 \g’ 0xE2,0x88,0x80 ∀ For all

8706 2202 |4 0xE2,0x88,0x82 ∂ Partial differential

8707 | 2203 |- OXE2,0x88,0x83 &exi st ; There exists

Empty set, null set,

8709 (2205 |@ O0xE2,0x88,0x85 &enpty; diameter

8711 | 2207 |v OXE2,0x88,0x87 gnabl a; Nabla, backward
difference

8712 | 2208 E OxE2,0x88,0x88 & sin; Element of

8713 | 2209 % OxE2,0x88,0x89 ¬i n; Not an element of

8715 [220b | = OxE2,0x88,0x8B &ni ; Contains as member

8719 | 220f |T7] OXE2,0x88,0x8F &pr od: n-ary product, product
sign

8721 | 2211 Z OxE2,0x88,0x91 &sum n-ary sumation

8722 |2212 |- OxE2,0x88,0x92 &m nus; Minussign

8727 | 2217 |* OxE2,0x88,0x97 & owast ; Asterisk operator

8730 | 221a |/ OXE2,0x88,0x9A & adi c; Square root, radica
sign

8733 |221d |&x¢ OxE2,0x88,0x9D &pr op; Proportional to

8734 |221e |00 0xE2,0x88,0x9E & nfin; Infinity

8736|2220 |/ OXE2,0x88,0xA0 ∠ Angle

8743 | 2227 /\ OxE2,0x88,0xA7 ∧ Logical and, wedge

8744 | 2228 v 0xE2,0x88,0xA8 &or ; Logical or, vee

8745 | 2229 ﬂ 0xE2,0x88,0xA9 ∩ Intersection, cap

8746 | 222a || | OXE2,0x88,0xAA ∪ Union, cup

8747 | 222b _[‘ OXE2,0x88,0xAB & nt: Integral

8756 |2234 | ° 0xE2,0x88,0xB4 &t her e4; Therefore

Tilde operator, varies

8764 | 223c |~ OXE2,0x88,0xBC &sim with, Sonilar
8773 | 2245 | = OXE2,0x89,0x85 &cong: gppro’(imate'y equal
8776 | 2248 | = OXE2,0x89,088 gasynp: ;'y ”;ﬁ;oetﬁgito’
8800 | 2260 |z= OxE2,0x89,0xA0 ≠ Not equal to

8801 | 2261 |= OxE2,0x89,0xA1 &equi v; Identical to

8804 | 2264 | < OXE2,0x89,0xA4 & e; Less-than or equal to
8805 | 2265 | > OXE2,0x89,0XA5 ≥ Greater:than or eqa
8834 2282 [OXE2,0x8A,0x82 ⊂ Subset of

8835 2283 [= OXE2,0x8A,0x83 ⊃ Superset of

8836 (2284 |z OxE2,0x8A,0x84 ⊄ Not a subset of
8838 2286 | — OxE2,0x8A,0x86 ⊆ Subset of or equal to
8839 |2287 | = OxE2,0x8A,0x87 ⊇ Superset of or equal to
8853 2295 | @ OXE2,0x8A,0x95 gopl us; g:ﬁ'edp'us’ direct
8855 | 2297 | @ OXE2,0x8A,0x97 got i nes; ;igg'lft“ mes, vector
8869 2285 | | OXE2,0x8A ,0XA5 &per p; if’;gfg;ggﬁﬁa‘?nal
8901 | 22¢5 |« OxE2,0x8B,0x85 &sdot ; Dot operator

8968 (2308 | OXE2,0x8C,0x88 & ceil; tsgifs”i”g’ApL
8969 [2309 |1 OXE2,0x8C,0%89 &rceil: Right ceiling

8970 | 230a || OXE2,0x8C,0x8A &l 1 oor; Left floor, APL
downstile
8971 |230Db || OxE2,0x8C,0x8B & fl oor; Right floor
i L eft-pointing angle
9001 | 2329 |{ OxE2,0x8C,0xA9 &l ang; bracket, bra
9002 | 232a OXE2,0x8C, OXAA & ang; Right-pointing angle
! X g: bracket, ket
9674 | 25ca () OxE2,0x97,0x8A &l oz; Lozenge
9824 | 2660 Q OxE2,0x99,0xA0 ♠ Black spade suit
9827 | 2663 | e OXE2,0x99,0xA3 &cl ubs; Black dub sut,
shamrock
9829 | 2665 | ¢ OXE2,0x99,0xA5 gheart s; Black heart suit,
valentine
9830 | 2666 ‘ OxE2,0x99,0xA6 &di ars; Black diamond suit
4 PREVIOUS HOME MEXT
E. Common Content Encodings BOOK INDEX G. User's View of Object-Oriented
Modules
f \ RL ﬁ; b PE
i v y bL IM A NUTSHELL PROGRAMMING &
BOOKSHELF PERL&LWP~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK 3
HOME 3rd Edition srd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

G.2. Modules and Their Functional Interfaces

Modules are the main way that Perl provides for bundling up code for later use by yourself or others. As1'm sure you
can't help noticing from reading The Perl Journal, CPAN (the Comprehensive Perl Archive Network) is the repository
for modules (or groups of modules) that others have written, to do anything from composing music to accessing web
pages. A good deal of those modules even come with every installation of Perl.

One module that you may have used before, and which isfairly typical initsinterface, is Text::Wrap. It comes with Perl,
so you don't even need to install it from CPAN. You useit in aprogram of yours, by having your program code say early
on:

use Text::Wap;

and after that, you can access afunction called wr ap, which inserts line-breaks in text that you feed it, so that the text
will be wrapped to 72 (or however many) columns.

Theway thisuse Text : : W ap business works is that the module Text::Wrap exists as afile Text/Wrap.pm
somewhere in one of your library directories. That file contains Perl code[6] which, among other things, defines a
function called Text : : W ap: : wr ap, and then exports that function, which means that when you say wr ap after
having said use Text : : W ap, you'll be actually calling the Text : : W ap: : wr ap function. Some modules don't
export their functions, so you haveto call them by their full name, like Text : : W ap: : w ap(par aneters).

[6]And mixed in with the Perl code, there's documentation, which iswhat you read with per | doc
Text : : W ap. The perldoc program simply ignores the code and formats the documentation text,
whereasuse Text : : W ap loads and runs the code while ignoring the documentation.

Regardless of whether the typical module exports the functions it provides, amoduleis basically just a container for
chunks of code that do useful things. The way the module allows for you to interact with it, isits interface. And when,
like with Text::Wrap, itsinterface consists of functions, the moduleis said to have a functional interface.[7]

[7]The term "function” (and therefore "functional") has various senses. I'm using the term herein its
broadest sense, to refer to routines—hits of code that are called by some name and take parameters and
return some value.

Using modules with functional interfaces is straightforward—instead of defining your own "wrap" function with sub
wap { ... },youentrustuse Text:: W ap todo that for you, along with whatever other functions its defines
and exports, according to the module's documentation. Without too much bother, you can even write your own modules
to contain your frequently used functions; | suggest having alook at the perlmod manpage for more leads on doing this.

4 PREVIOUS HOME MEXT B
G. User's View of Object-Oriented BOOK INDEX G.3. Modules with Object-Oriented
Modules Interfaces

PROGRAMMING .2

i i g VI 1L IN A NUTSHELL .
BOOKSHELF PERL&ALWF~ LEARMING PERL 2nd Edition PERL MASTERING ~ PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

Copyright © 2002 O'Reilly & Associates. All rights reserved.

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

G.3. Modules with Object-Oriented Interfaces

So suppose that one day you want to write a program that will automate the process of f t p ing a bunch of files from one
server down to your local machine, and then off to another server.

A quick browse through search.cpan.org turns up the module Net::FTP, which you can download and install using
normal installation instructions (unless your sysadmin has aready installed it, as many have).

Like Text::Wrap or any other module with afamiliarly functional interface, you start off using Net::FTP in your program
by saying:

use Net:: FTP;

However, that's where the similarity ends. The first hint of differenceis that the documentation for Net::FTP refersto it
asaclass. A classisakind of module, but one that has an object-oriented interface.

Whereas modules like Text::Wrap provide bits of useful code as functions, to be called likef unct i on

(par anet er s) or likePackageNane: : f uncti on(par amet er s) , Net::FTP and other modules with object-
oriented interfaces provide methods. Methods are sort of like functionsin that they have a name and parameters; but
methods look different, and are different, because you have to call them with a syntax that has a class name or an object
as aspecial argument. I'll explain the syntax for method calls, and then later explain what they all mean.

Some methods are meant to be called as class methods, with the class name (same as the module name) as a specia
argument. Class methods look like this:

Cl assNane- >nmet hodnane(paraneter1, paraneter2, ...)
Cl assNane- >net hodnane() # if no paraneters
Cl assNane- >nmet hodnane # same as above

which you will sometimes see written:

met hodnanme Cl assNane (paraneterl, paraneter2, ...)
met hodnanme C assNane # if no paraneters

Basically, al class methods are for making new objects, and methods that make objects are called constructors (and the
process of making them is called "constructing" or "instantiating"). Constructor methods typically have the name "new,"
or something including "new" (new_from fi | e, etc.); but they can conceivably be named anything—DBI's
constructor method is named "connect,” for example.

The object that a constructor method returnsistypically captured in a scalar variable:
$obj ect = C assName- >new(paraml, paran®...);

Once you have an object (more later on exactly what that is), you can use the other kind of method call syntax, the
syntax for object method calls. Calling object methodsis just like class methods, except that instead of the Cl assName
as the special argument, you use an expression that yields an obj ect . Usually thisisjust ascalar variable that you
earlier captured the output of the constructor in. Object method calls ook like this:

$obj ect - >net hodname(paraneter1, paraneter2, ...);
$obj ect - >net hodname() # if no paraneters
$obj ect - >net hodname # same as above

which is occasionally written as:

net hodnanme $obj ect (paraneterl, paraneter?2,

nmet hodname $obj ect # if no paraneters

Examples of method calls are:

ny $sessionl = Net::FTP->new("ftp. nyhost.cont');
Calls a class nethod "new', fromclass Net::FTP,
with the single parameter "ftp.myhost. coni,

and saves the return value (which is,

Could also be witten:
new Net:: FTP(' ftp. myhost.con)
$sessi onl- >l ogi n("sburke", "aoeuaoeu")

#
#
#
an object), in $sessionl.
#
#
e
|| die "failed to | oginl\n";

calling the object nethod "l ogin"

print "Dir:\n", $sessionl->dir(), "\n";

$sessionl->quit;

same as $sessionl->quit()
print "Done\n";
exit;

-)

as usual ,

Incidentally, | suggest aways using the syntaxes with parentheses and - > in them,[8] and avoiding the syntaxes that start
out met hodnane $obj ect or net hodnane Modul eNane. When everything's going right, they all mean the same
thing as the - > variants, but the syntax with - > is more visually distinct from function calls, as well as being immune to
some kinds of rare but puzzling ambiguities that can arise when you're trying to call methods that have the same name as

subroutines you've defined.

[8] The character-pair - > is supposed to ook like an arrow, not "negative greater-than"!

But, syntactic alternatives aside, all thistalk of constructing objects and object methods begs the question—what is an
object? There are several angles to this question that the rest of this article will answer in turn: what can you do with
objects? what'sin an object? what's an object value? and why do some modules use objects at all?

41 PREVIOUS HOME
G.2. Modules and Their Functional BEOOK INDEX
Interfaces

HEXT
G.4. What Can Y ou Do with Objects?

i AL
i y ! ‘- IN A MUTSHELL
PERL & LWP -~ LEARMIMNG PERL 2nd Edition
3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

PROGRAMMING
PERL
3rd Edition

PE
& XML

=

N

il

MASTERING PERL COOKBOOK
PERL/TH

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

G.4. What Can You Do with Objects?

Y ou've seen that you can make objects and call object methods with them. But what are object methods for? The answer
depends on the class:

A Net::FTP object represents a session between your computer and an FTP server. So the methods you call on a Net::
FTP object are for doing whatever you'd need to do across an FTP connection. Y ou make the session and log in:

ny $session = Net::FTP->new(' ftp.aol.com);

die "Couldn't connect!" unl ess defined $session;
The class method call to "new' will return
the new object if it goes OK, otherwise it
will return undef.

$sessi on->l ogi n(' sburke', 'p@sw3rD)
|| die "Did I change ny password agai n?";

The object nethod "login" will give a true
return value if actually logs in, otherw se
#it'll return false.

Y ou can use the session object to change directory on that session:
$sessi on- >cwd("/ honme/ sburke/ public_htm ")
|| die "Hey, that was REALLY supposed to work!";
#if the cwd fails, it'll return false

...get files from the machine at the other end of the session:

foreach ny $f ('log_report _ua.txt', 'log report_domtxt',
"l og_report_browsers.txt')
{
$session->get ($f) || warn "Getting $f failed!"
b

...and plenty else, ending finally with closing the connection:
$session->quit();

In short, object methods are for doing things related to (or with) whatever the object represents. For FTP sessions, it's
about sending commands to the server at the other end of the connection, and that's about it—there, methods are for
doing something to the world outside the object, and the objectsis just something that specifies what bit of the world
(well, what FTP session) to act upon.

With most other classes, however, the object itself stores some kind of information, and it typically makes no senseto do
things with such an object without considering the data that's in the object.

41 PREVIOUS HOME HEXT

G.3. Modules with Object-Oriented BOOK INDEX G.5. What's in an Object?
Interfaces

L iy ', i ~ IM A& NUTSHELL
BOOKSHELF PERL & LWF - LEARMING PERL 2nd Edition
HOME 3rd Edition

Copyright © 2002 O'Reilly & Associates. All rights reserved.

a
PROGRAMMING
PERL
3rd Edition

MASTERING
PERL/TK

PERL COOKBOOK

& XML

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

G.5. What's in an Object?

An object is (with rare exceptions) a data structure containing a bunch of attributes, each of which has avalue, aswell as
aname that you use when you read or set the attribute's value. Some of the object's attributes are private, meaning you'll
never see them documented because they're not for you to read or write; but most of the object's documented attributes
are at least readable, and usually writeable, by you. Net::FTP objects are a bit thin on attributes, so we'll use objects from
the class Business::US_Amort for this example. Business::US Amort isavery simple class (available from CPAN) that

I wrote for making calculations to do with loans (specifically, amortization, using U.S.-style algorithms).

An object of the class Business::US_Amort represents aloan with particular parameters, i.e., attributes. The most basic
attributes of a"loan object” are itsinterest rate, its principal (how much money it'sfor), and it's term (how long it'll take
to repay). Y ou need to set these attributes before anything else can be done with the object. The way to get at those
attributes for loan objectsisjust like the way to get at attributes for any class's objects: through accessors. An accessor is
simply any method that accesses (whether reading or writing, ak.a. getting or putting) some attribute in the given object.
Moreover, accessors are the only way that you can change an object's attributes. (If a module's documentation wants you
to know about any other way, it'll tell you.)

Usually, for simplicity's sake, an accessor is named after the attribute it reads or writes. With Business::US_Amort
objects, the accessors you need to usefirst are pri nci pal ,i nterest _rate,andt er m Then, with at |east those
attributes set, you can call the r un method to figure out severa things about the loan. Then you can call various
accessors, liket ot al _pai d_t owar d_i nt er est , to read the resuilts:

use Business:: US Anort;

ny $l oan = Business::US_Anort->new,
Set the necessary attributes:

$l oan- >pri nci pal (123654);

$l oan->i nterest _rate(9.25);

$l oan->term(20); # twenty years

NOW we know enough to cal cul ate:
$l oan- >run;

And see what cane of that:

pri nt
"Total paid toward interest: A WHOPPING ",
$l oan->total _paid_interest, "!l\n";

Thisillustrates a convention that's common with accessors: calling the accessor with no arguments (as with $1 oan-

>t ot al _pai d_i nt erest) usually meansto read the value of that attribute, but providing avalue (as with $| oan-
>t er m(20)) means you want that attribute to be set to that value. This stands to reason: why would you be providing a
value, if not to set the attribute to that value?

Although aloan's term, principal, and interest rates are all single numeric values, an object's values can be any kind of
scalar, or an array, or even a hash. Moreover, an attribute's value(s) can be objects themselves. For example, consider
MIDI files (as | wrote about in TPJ#13): a MIDI file usually consists of several tracks. A MIDI fileis complex enough to
merit being an object with attributes like its overall tempo, the file-format variant it'sin, and the list of instrument tracks
in the file. But tracks themselves are complex enough to be objects too, with attributes like their track-type, alist of

MIDI commands if they're aMIDI track, or raw dataif they're not. So | ended up writing the MIDI modules so that the
"tracks" attribute of a MIDI::Opus object is an array of objects from the class MIDI::Track. This may seem like a
runaround—you ask what's in one object, and get another object, or several! But in this case, it exactly reflects what the
module isfor—MIDI files contain MIDI tracks, which contain data.

4 PREVIOUS HOME HEXT
G.4. What Can Y ou Do with Objects? BOOK INDEX G.6. What Is an Object Vaue?

{ RL
M A B . L. IN A NUTSHELL
PERL & LWP - LEARMING PERL 2nd Edithon PERL MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

G.6. What Is an Object Value?

When you call aconstructor like Net : : FTP- >new(host nane) , you get back an object value, which isavalue you
can later use, in combination with a method name, to call object methods.

Now, so far we've been pretending, in the above examples, that the variables $sessi on or $I oan are the objects
you're dealing with. Thisideaisinnocuous up to a point, but it's really a misconception that will, at best, limit you in
what you know how to do. Thereality is not that the variables $sessi on or $quer y are objects; it'salittle more
indirect—they hold values that symbolize objects. The kind of value that $sessi on or $quer y hold iswhat I'm
calling an object value.

To understand what kind of value thisis, first think about the other kinds of scalar values you know about: The first two
types of scalar values you probably ever ran into in Perl are numbers and strings, which you learned (or just assumed)
will usually turn into each other on demand; that is, the three-character string "2.5" can become the quantity two and a
half, and vice versa. Then, especially if you started using per | - wearly on, you learned about the undefined value,
which can turninto O if you treat it as a number, or the empty-string if you treat it asastring.[9]

[9]Y ou may also have been learning about references, in which case you're ready to hear that object values
arejust akind of reference, except that they reflect the class that created thing they point to, instead of
merely being aplain old array reference, hash reference, etc. If this makes sense to you, and you want to
know more about how objects are implemented in Perl, have alook at the perltoot manpage.

And now you're learning about object values. An object value is a value that points to a data structure somewherein
memory, which iswhere all the attributes for this object are stored. That data structure as awhole belongs to a class
(probably the one you named in the constructor method, like Cl assNane- >new), so that the object value can be used
as part of object method calls.

If you want to actually see what an object valueis, you might try just saying pr i nt $obj ect . That'll get you
something like this:

Net : : FTP=GLOB(0x20154240)
or:
Busi ness: : US_Anor t =HASH(0x15424020)

That's not very helpful if you wanted to really get at the object's insides, but that's because the object valueisonly a
symbol for the object. This may all sound very abstruse and metaphysical, so areal-world alegory might be very helpful.

Y ou get an advertisement in the mail saying that you have been (im)personally selected to have the rare privilege of
applying for a credit card. For whatever reason, this offer sounds good to you, so you fill out the form and mail it back to
the credit card company. They gleefully approve the application and create your account, and send you a card with a
number on it.

Now, you can do things with the number on that card—clerks at stores can ring up things you want to buy, and charge
your account by keying in the number on the card. Y ou can pay for things you order online by punching in the card
number as part of your online order. Y ou can pay off part of the account by sending the credit card people some of your
money (well, a check) with some note (usually the pre-printed dlip) that has the card number for the account you want to
pay toward. And you should be able to call the credit card company's computer and ask it things about the card, like its
balance, its credit limit, its APR, and maybe an itemization of recent purchases and payments.

Now, what you're really doing is manipulating a credit card account, a completely abstract entity with some data
attached to it (balance, APR, etc.). But for ease of access, you have a credit card number that is a symbol for that
account. Now, that symbol is just a bunch of digits, and the number is effectively meaningless and uselessin and of itself
—but in the appropriate context, it's understood to mean the credit card account you're accessing.

Thisis exactly the relationship between objects and object values, and from this analogy, several facts about object
values are a bit more explicable:

. An object value does nothing in and of itself, but it's useful when you useit in the context of an $obj ect -
>net hod call, the same way that a card number is useful in the context of some operation dealing with a card
account.

Moreover, several copies of the same object value all refer to the same object, the same way that making severa
copies of your card number won't change the fact that they all still refer to the same single account (thisis true
whether you're "copying" the number by just writing it down on different slips of paper, or whether you go to the
trouble of forging exact replicas of your own plastic credit card). That's why this:

$x = Net::FTP->new("ftp.aol.conl');
$x- >l ogi n("sburke", "aoeuaoeu");

does the same thing asthis:

$x = Net::FTP->new("ftp.aol.cont);
$y = $x;

$z = $y;

$z- >l ogi n("sburke", "aoeuaoeu");

That is, $z and $y and $x are three different dots for values, but what's in those slots are all object values
pointing to the same object—you don't have three different FTP connections, just three variables with values
pointing to the some single FTP connection.

. You can't tell much of anything about the object just by looking at the object value, any more than you can see
your credit account balance by holding the plastic card up to the light, or by adding up the digitsin your credit
card number.[10]

[10]URI.pm objects are an exception to this general rule: when you use them as a string, instead of
getting a useless value like URI =HASH(0x15404220) , you instead get the string representation
of that URL : http://mww.perl.com/thingamabob/ or whatever.

. You can't just make up your own object values and have them work—they can come only from constructor
methods of the appropriate class. Similarly, you get a credit card number only by having a bank approve your
application for a credit card account—at which point they let you know what the number of your new card is.

Now, there's even more to the fact that you can't just make up your own object value: even though you can print
an object value and get astring like Net : : FTP=G.0B(0x20154240) , that's just a representation of an object
value.

Internally, an object value has a basically different type from a string, or a number, or the undefined value—if $x holds a
real string, then that value's slot in memory says "thisis a value of type string, and its characters are...," whereasif it'san
object value, the value's slot in memory says, "thisis avalue of type reference, and the location in memory that it points
tois..." (and by looking at what's at that location, Perl can tell the class of what's there).

Perl programmers typically don't have to think about all these details of Perl'sinternals. Many other languages force you
to be more conscious of the differences between all of these (and also between types of numbers, which are stored
differently depending on their size and whether they have fractional parts). But Perl doesits best to hide the different
types of scalars from you—it turns numbersinto strings and back as needed, and takes the string or number
representation of undef or of object values as needed. However, you can't go from a string representation of an object

value, back to an object value. And that's why this doesn't work:

$x = Net::FTP->new(' ftp.aol.com);

$y = Net::FTP->new(' ftp.netcomcom);

$z = Net::FTP->new' ftp.qual conmcomn);

$all = join(" ', $x, %y, $2); # 111
...later...

($aol, $netcom S$qualcomm = split(' ', $all); # 11!
$aol - >l ogi n("sburke", "aoeuaoeu");

$net com >l ogi n("sburke", "qj kxqgj kx");

$qual comm >l ogi n("snb", "dhtndhtn");

Thisfails because $aol ends up holding merely the string representation of the object value from $x, not the object
valueitself—when j oi n tried to join the characters of the "strings" $x, $y, and $z, Perl saw that they weren't strings at
all, soit gavej oi n their string representations.

Unfortunately, this distinction between object values and their string representations doesn't really fit into the analogy of
credit card numbers, because credit card numbers really are numbers—even thought they don't express any meaningful
quantity, if you stored them in a database as a quantity (as opposed to just an ASCII string), that wouldn't stop them from
being valid as credit card numbers.

This may seem rather academic, but there's two common mistakes programmers new to objects often make, which make
sense only in terms of the distinction between object values and their string representations.

The first common error involves forgetting (or never having known in the first place) that when you go to use avalue as
ahash key, Perl uses the string representation of that value. When you want to use the numeric value two and ahalf asa
key, Perl turnsit into the three-character string "2.5." But if you then want to use that string as a number, Perl will treat it
as meaning two and a half, so you're usually none the wiser that Perl converted the number to a string and back. But
recall that Perl can't turn strings back into objects—so if you tried to use a Net::FTP object value as a hash key, Perl
actually used its string representation, like Net : : FTP=GLOB(0x20154240) , but that string is unusable as an object
value. (Incidentally, there's amodule Tie::RefHash that implements hashes that do let you use real object-values as

keys.)

The second common error with object valuesisin trying to save an object value to disk (whether printing it to afile, or
storing it in a conventional database file). All you'll get is the string, which will be useless.

When you want to save an object and restore it later, you may find that the object's class already provides a method
specifically for this. For example, MIDI::Opus provides methods for writing an object to disk as astandard MIDI file.
Thefile can later be read back into memory by a MI1DI::Opus constructor method, which will return anew MIDI::Opus
object representing whatever file you tell it to read into memory. Similar methods are available with, for example,
classes that manipulate graphic images and can save them to files, which can be read back later.

But some classes, like Business::US_Amort, provide no such methods for storing an object in afile. When thisisthe
case, you can try using any of the Data::Dumper, Storable, or FreezeThaw modules. Using these is unproblematic for
objects of most classes, but may run into limitations with others. For example, a Business::US _Amort object can be
turned into a string with Datac:Dumper, and that string written to afile. When it's restored later, its attributes will be
accessible as normal. But in the unlikely case that the loan object was saved in mid-calculation, the cal culation may not
be resumable. Thisis because of the way that that particular class does its calculations, but similar limitations may occur
with objects from other classes.

But often, even wanting to save an object is basically wrong—what would saving an ftp session even mean? Saving the
hostname, username, and password? current directory on both machines? the local TCP/IP port number? In the case of
"saving" a Net::FTP object, you're better off just saving whatever details you actually need for your own purposes, so
that you can make a new object later and just set those valuesfor it.

48 PREVIOUS HOME MEXT

G.5. What'sin an Object? BOOK INDEX

G.7. So Why Do Some Modules Use

Objects?
] =] PE
N B . LA INANUTSHELL | PROGRAMMING & XML
PERL&LWP~ ' LEARNING PERL and Edition PERL MASTERING = PERL COOKBODK .
3rd Edition 3rd Edition PERL/TK -

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

0.4. Important Standards Documents

The basic protocols and data formats of the Web are specified in anumber of Internet RFCs. The most important are:

RFC 2616: HTTP 1.1
ftp://ftp.isi.edu/in-notes/rfc2616.txt

RFC 2965: HTTP Cookies Specification
ftp://ftp.isi.edu/in-notes/rfc2965.txt

RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
ftp://ftp.isi.edu/in-notes/rfc2617.txt

RFC 2396: Uniform Resource Identifiers: Generic Syntax
ftp://ftp.isi.edu/in-notes/rfc2396.txt

HTML 4.01 specification
http://www.w3.org/TR/html401/

HTML 4.01 Forms specification
http://www.w3.org/TR/html401/interact/forms/

Character sets
http://www.iana.org/assignments/character-sets

Country codes
http://www.isi .edu/in-notes/iana/assignments/country-codes

Unicode specifications
http://www.unicode.org

RFC 2279: Encoding Unicode as UTF-8
ftp://ftp.isi.edu/in-notes/rfc2279.txt

Request For Comments documents
http://www.rfc-editor.org

I ANA protocol assignments
http://www.iana.org/numbers.htm

@ PREVIOUS HOME MEXT B
0.3. Order of Chapters BOOK INDEX 0.5. Conventions Used in This Book

B
¢ A \ IN A NUTSHELL J

L =) i ,
EOOKSHELF PERL & LWP ~ LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

PE
& XML

=

Copyright © 2002 O'Reilly & Associates. All rights reserved.

ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2965.txt
ftp://ftp.isi.edu/in-notes/rfc2617.txt
ftp://ftp.isi.edu/in-notes/rfc2396.txt
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/interact/forms/
http://www.iana.org/assignments/character-sets
http://www.isi.edu/in-notes/iana/assignments/country-codes
http://www.unicode.org/
ftp://ftp.isi.edu/in-notes/rfc2279.txt
http://www.rfc-editor.org/
http://www.iana.org/numbers.htm
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

0.7. Acknowledgments

It takes a mere village to raise a puny human child, but it took awhole globe-girdling Perl cabal to get this book done!
These are the readers who, as a personal favor to me, took the time to read and greatly improve my first sketchy
manuscript, each in their own particular, helpful, and careful ways. Gisle Aas, David H. Adler, Tim Allwine, Elaine
Ashton, Gene Boggs, Gavin Estey, Scott Francis, Joe Johnston, Kevin Healy, Conrad Heiney, David Huggins-Daines,
Samy Kamkar, Joe Kline, Y ossef Mendel ssohn, Abhijit Menon-Sen, Brad Murray, David Ondrik, Clinton Pierce, Robert
Spier, Andrew Stanley, Dennis Taylor, Martin Thurn, and Glenn Wood.

I'm also especially thankful to Elaine Ashton for doing alast-minute review not just of this manuscript's prose, but of all
the code blocks. If not for her eagle eye, you'd be scratching your head over variables and subroutines magically
renaming themselves all over the place!

| am grateful to Conrad Heiney for suggesting the California Department of Motor Vehicles as an example for Chapter 5,
"Forms'. Thanks also to Mark-Jason Dominus for suggesting the ABEBooks web site as an example in that same
chapter. Many thanksto Gisle Aas, Michael A. Chase, and Martijn Koster for making LWP such areliable and
indispensable addition to every programmer’s toolkit.

And last but not least, thanks to the people at O'Rellly who intrepidly pushed for this book to get done when | really just
wanted to stay in bed and play Tetris. The chief author-wrangler is my editor, Nat Torkington, but I'm much obliged also
to the many other under-appreciated O'Reilly people who conspired to get this book from my hands to yours. Jon Orwant
(of Perl Journal fame even before he got to O'Reilly), Neil Walls (who daved over Appendix F, "ASCII Table" so you
can see what a&per p; lookslike!), sage editor Linda Mui, Betsy Waliszewski in marketing, and in the production
department, Linley Dolby, the book's production editor and copyeditor and Rob Romano, the book's illustrator.

48 PREVIOUS HOME MEXT
0.6. Comments & Questions BOOK INDEX 1. Introduction to Web Automation
A
_ i <]) £
i 4 ! L IN A NUTSHELL PROGRAMMING) & XhL
PERL & LWF™~ LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK R
3rd Edition 3rd Edition PERL/TK e

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

3.6. LWP Classes: Behind the Scenes

To get data off the Web with LWP, you really only need to know about LWP::UserAgent objects and HTTP::Response
objects (although a rudimentary knowledge of the URI class and the LWP::Cookies class can help too). But behind the
scenes, there are dozens and dozens of classes that you generally don't need to know about, but that are still busily doing
their work. Most of them are documented in the LWP manual pages, and you may see them mentioned in the
documentation for the modules about which you do need to know. For compl eteness, they are listed in Appendix A,

"LWP Modules'.

41 PREVIOUS HOME NEXT B
3.5. HTTP::Response Objects BOOK INDEX 4. URLs

S|

] PERL
o i Vo . IM A NUTSHELL
BOOKSHELF FERL & LWP - LEARMING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

8.2. Getting the Data

Thefirst step isto figure out what web pages we heed to request to get the datain any form. With the BBC extractor, it
was just a matter of requesting the single page http://news.bbc.co.uk, but here there's no one page that lists al the datawe
want. Instead, you can view the program description for each show, one day at atime. Moreover, the URL for each such
page looks like this, which displays the program info for July 2, 2001:

http://freshair. npr.org/dayFA. cf nf’t odayDat e=07%2F02%2F2001

It's relatively clear that the format for the bit after the equal sign is the two-digit month, %2 F, the two-digit day, ¥2F,
and the four-digit year. (It's even more clear when you consider that ¥%2F isthe/ character encoded, so that the above
means 07/ 02/ 2001.) Harvesting all the datais a simple matter of iterating over al the days of the month (or whatever
period you want to cover), skipping weekends (because the program listings are only for weekdays), substituting the
proper date numbers into that URL. Once each page is harvested, the data can be extracted from it.

Already the outlines of the program's design are becoming clear: there needs to be aloop that harvests the contents of a
URL based on each date, then scans the returned content. Scanning the content isn't a distinct enough task that it has to
be part of the same block of code as the code that actual harvests the URL. Instead, it can simply be aroutine that is
given a new stream from which it is expected to extract data. Moreover, that is the hard part of the program, so we might
aswell do that first (the stuff with date handling and URL interpolation is much less worrisome, and can be put off until
last).

So, to figure out the format of the data we want to harvest, consider atypical program listing page in its rendered formin
abrowser. We establish that thisisa"typical" page (shown in Figure 8-1) by flipping through the listings and finding
that they all pretty much look like that. (That stands to reason, asthe URL tells us that they're being served dynamically,
and al through the same .cfm—Cold Fusion—file, such that having each day's bit of content poured into a common
template is the easy way for the web site's designers to have implemented this.) So we have good reason to hope that
whatever code we work up to extract successfully from one typical page, would hopefully work for al of them. The only
remarkable difference isin the number of segments per show: here there's two, but there could be one, or four, or even
more. Also, the descriptions can be severa paragraphs, sometimes much shorter.

3 Feosh Aar: Monday - duly 2. 20010 - Relicaps
B Edi Mew B Coweeisior Help
T ¥ Bookmaks o ocabor Wy e hm. o cepldaf . ol Modeslahe <[P RF 129027200

Listen

T 1 DLATR B
current show
irchived showas tre 3 7 1 sand & oo
= n weed nan

commEnsainee

find m siwtion
s B AT
shap

whynorg

BT onling

Figure 8-1. Fresh Air web page

What we want to extract hereisthe link text that says "Monday - July 2, 2001," "Editor and writer Walter Kirn," and
"Casting director and actress Joanna Merlin," and for each we aso want the link URL as an absolute URL. We don't
want the "Listen to" part, since it'd be pointlessly repetitive to have a whole month's worth of listings where every line
startswith "Listen to".

41 PREVIOUS HOME HEXT n
8. Tokenizing Walkthrough BOOK INDEX 8.3. Inspecting the HTML

BOOKSHELF PERL s CWP
HOME

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS MEXT B

8.3. Inspecting the HTML

The first step to getting some code working isto save afilelocally. Thisis so you can look at the source in an editor, and
secondly so you can initially test your data extractor on that local file. It may take a good deal of hit-and-miss before you
get it working right, and there's no point in making each trial run go and get the same page across the network, especially
to Fresh Air's occasionally quite busy server. Saving the above URL as freshl.html givesusa 12K file. While there's
only about 1K of text shown on the screen, the other 11K are mostly whitespace that indentsthe HTML, some
JavaScript, plus all the table code needed to make the navigation bar on the left and the search form on the right. We can
completely ignore al that code and just try to figure out how to extract the "Listen..." links. Sifting through the HTML
source, we see that those links are represented with this code (note that most lines begin with at least two spaces):

<FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#FFCC00"
SI ZE=" 2" >
Li sten to Monday - July 2, 2001
</ FONT>
</ A>

Li sten

to

 Editor and witer Walter Kirn </ B>
</ FONT></ A>

<BLOCKQUOTE>Edi tor and witer Wal t er
Kirn</ A>'s new novel <I>Up in the Air</1> (Doubl eday) is about

</ BLOCKQUOTE></ FONT>

Li st en

to

 Casting director and actress Joanna Merlin </ B>
</ FONT></ A>

<BLOCKQUOTE>Casting director and actress <A
HREF="htt p: //freshair. npr.org/ guest | nf oFA. cf n?
name=j oannaner | i n">Joanna
Merlin has witten a new guide for actors, <l>Auditioning: An

</ BLOCKQUOTE></ FONT>

4 PREVIOUS HOME HEXT %
8.2. Getting the Data BOOK INDEX 8.4. First Code

PE
& XML

PERL COOKBOOK S

{ RL

NOAY e IN & NUTSHELL
PERL&LWP~ LEARMING PERL 2nd Edition PERL

3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP #

41 PREVIOUS

8.4. First Code

HEXT

Because we want links, let's get links, like this:

use strict;

use HTM.:: TokePar ser;
parse_fresh_strean

);

HTM.: : TokeParser->new(' freshl. htm') || die $!

sub parse_fresh_stream {
ny($stream = @;
while(nmy $a tag = $stream >get _tag('a')) {
ny $text = $stream >get _trimed text('/a');

printf "%\n
}

return;

}

But this outputs:

Fresh Air Online
i ndex. cfm

%\ n", Stext, $a_tag->[1]{ href'} || '??";

Li sten to Current Show

http://ww. npr.

[...]
NPR Onl i ne

http://ww. npr.
FreshAi r @vhyy. org

org/ranfiles/fa/20011011.fa.ram

org

mai | t o: freshai r @whyy. org

Li sten to Monday

http://ww. npr.

Li sten to Editor

http://ww. npr.

Valter Kirn

- July 2, 2001
org/ranfiles/fal20010702. fa.ram
and witer Walter Kirn

org/ranfil es/fal20010702.fa.01. ram

http://freshair.npr.org/ guestlnfoFA cfn?nane=wal t er ki rn
Listen to Casting director and actress Joanna Merlin

http://ww. npr.

Joanna Merlin

org/ranfil es/fal/20010702.fa. 02.ram

http://freshair. npr.org/ guestl nfoFA. cfn?nane=j oannanerlin

Pr evi ous show

dayFA. cf n?t odayDat e=06%2F29%2F2001

Next show

dayFA. cf n?t odayDat e=07%2F03%2F2001

We got what we wanted (those three "Listen to" links are in there), but it's buried in other stuff. Y ou see, the navigation
bar on the left does consist of image links, whose ALT content showsup whenwecall get _tri mred_text() or
get _text().Weasogetthemailto: link from the bottom of the navigation bar, the bio links for the guests from
the paragraphs describing each segment, and the "Previous Show" and "Next Show" links.

41 PREVIOUS

HOME MEXT o

8.3. Inspecting the HTML BOOK INDEX 8.5. Narrowing In

3 = i y s W IN A MUTSHELL & XhiL
BOOKSHELF PERL&LWP~ LEARNING PERL 2nd Edition PERL COOKBOOK %,
HOME 3rd Edition 3rd Edition PERL/TK :

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

8.7. Alternatives

Now, with the sort of 20/20 hindsight that is always in abundance in such cases, we can see that there were other ways it
could have been done. For example, instead of using the various tricks to keep the first image-ALT link from printing,
we could simply have kept a count of the good links seen so far in the current stream and ignored the first one. Our
actual solution is more proper in this case, but sometimes counting items is the best or only way to get a problem solved.

More importantly, we could have done without all the code that tests the link URL and used one regexp to implement our
last criterion, i.e., that the link text begin with "Listen to". But, as with our earlier consideration of how much of the URL
to check, it comes down to the question: do you want something that's more careful (i.e., enforcing more assumptions on
the input data, and so more prone to reject appropriate links in the future) or more forgiving (i.e., enforcing fewer
assumptions, but more likely to match inappropriate linksin the future)?

The answer depends on how concise you want the code to be, how much time you want to spend thinking up
assumptions, and, most importantly, what happensif it breaks. If I've crontabbed this program to harvest Fresh Air
listings every month and mail me the results, if it breaks, I'll get some sort of anomal ous output mailed to me (whether
with too few links, or too many) and it's no big deal because, working or not, it'sjust so | can listen to interesting radio
programs. But your data extraction program may instead serve many people who will be greatly inconvenienced if it
stops working properly. Y ou have to decide on a case-by-case basis whether your program should be more likely to clam
up and miss interesting data in new formats, or pass through new kinds of data despite the risk that they might be
irrelevant or just plain wrong.

4@ PREVIOUS HOME MEXT
8.6. Rewrite for Features BOOK INDEX 9. HTML Processing with Trees

| : RL
N i Y, LU IM A NUTSHELL _
PERL & LWP -~ LEARMING PERL 2nd Edithon MASTERING PERL COOKBOOK
3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

12.4. Ideas for Further Expansion

Inits current form, this bot is a passable implementation framework for a Type Three Requester spider that checks links
ontypical HTML web sites. In actual use, you would want to fine tune its heuristics. For example, if you want to check
the validity of lots of URLsto sites that don't implement HEAD, you'd want to improve on the logic that currently just
considers those URLs alost cause; or you might want to add code that will skip any attempt at HEADing a URL on a
host that has previously responded to any HEAD request with a"Method Not Supported” error, or has otherwise proven
uncooperative.

If you wanted the spider to check large numbers of URLS, or spider alarge site, it might be prudent to have some of its
state saved to disk (specifically @chedul e, ¥%seen_ur| _bef ore, %poi nt s_t 0, and %ot abl e_ur| _error);
that way you could stop the spider, start it later, and have it resume where it left off, to avoid wastefully duplicating what
it did the last time. It would also be wise to have the spider enforce some basic constraints on documents and requests,
such as aborting any HTML transfer that exceeds 200K or that seems to not actually be HTML, or by having the spider
put a maximum limit on the number of timesit will hit any given host (seetheno_vi si t s() method mentioned in
the LWP::RobotUA documentation, and specifically consider $bot - >no_vi si t s($url - >host _port)).

Moreover, the spider's basic behavior could be altered easily by changing just afew of the routines. For example, to turn
it into arobot that merely checks URL s that you give it on the command line, you need only redefine one routine like
this:

sub near_url { 0; } # no URLs are "near", i.e., spiderable

Conversely, to turn it into a pure Type Four Requester spider that recursively looks for links to which any web pages it
findslink, all it takesisthis:

sub near_url { 1; } # all URLs are "near", i.e., spiderable
But as pointed out earlier in this chapter, that is arisky endeavor. It requires careful monitoring and log analysis,

constant adjustments to its response-processing heuristics, intelligent caching, and other matters regrettably beyond what
can be sufficiently covered in this book.

4a PREVIOUS HOME NEXT %
12.3. Example: A Link-Checking BOOK INDEX A.LWP Modules
Spider

PERL

S|

A i 4 3, . IN A MUTSHELL :
BOOKSHELF FERL & LWP - LEARMIMNG PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

B.2. 200s: Successful

If an LWP request gets any of these codes, $r esponse- >i s_success will betrue. For all other status codes,
$response->i s_success will befase.

200 K

201 Created

202 Accepted

203 Non-Authoritative Infornation
204 No Cont ent

205 Reset Content

206 Partial Content

41 PREVIOUS HOME MEXT o
B. HTTP Status Codes BOOK INDEX B.3. 300s; Redirection
f ! IM A MUTSHELL ‘ % i 5 j
BDDKSHEI.F PERL & L'.lw - LEARMING PERL 2nd Edition PERL mSTEmHG PERL COOKBOOK i,
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

B.3. 300s: Redirection

If an LWP request gets any of these codes, $r esponse- >i s_r edi r ect will betrue. For al other status codes,
$response->i s_redirect will befase

300 Multiple Choices
301 Moved Permanently
302 Found

303 See Ot her

304 Not Modified

305 Use Proxy

307 Tenporary Redirect

41 PREVIOUS HOME MEXT B
B.2. 200s: Successful BOOK INDEX B.4. 400s: Client Errors
o ' . IN A MUTSHELL ‘ % i i j
BOOKSHELF PERL & I-WP - LEARMING PERL 2nd Edition PERL mmmm PERL COOKEBOOK N
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS

HEXT

B.4. 400s: Client Errors

If an LWP request gets any of these 400-series codes, $r esponse- >i s_err or will betrue, asit will be for any of
the 500-series codes. For al other status codes, $r esponse- >i s_er r or will befase.

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

420-

426

Bad Request

Unaut hori zed

Paynent Required

For bi dden

Not Found

Met hod Not Al | owed

Not Accept abl e

Proxy Aut hentication Required
Request Ti nmeout

Conflict

Gone

Length Required

Precondition Fail ed

Request Entity Too Large
Request - URI Too Long
Unsupported Medi a Type
Request ed Range Not Sati sfiable
Expectation Fail ed

424: (Pl anned extensions involving WbDAV)
Upgrade Required (RFC 2817)

41 PREVIOUS

HOME HEXT n

B.3. 300s: Redirection BOOK INDEX B.5. 500s: Server Errors

a1

MASTERING PERL COOKBOOK R,

M w .
PERL & LWP -~ LEARMING PERL 2nd Edition
3rd Edition 3rd Edition PERL/TK

RL
IN A MUTSHELL

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

B.5. 500s: Server Errors

If an LWP request gets any of these 500-series codes, $r esponse- >i s_err or will betrue, asit will be for any of
the 400-series codes. For al other status codes, $r esponse- >i s_er r or will befase.

Note that at the time of thiswriting, the "500 Internal Server Error" codeis also used by LWP to signal some error
conditions where the remote server can't even be contacted, such as when there's aDNS failure or a TCP/IP connection
error.

500 Internal Server Error

501 Not | npl enment ed

502 Bad Gat eway

503 Service Unavail abl e

504 Gateway Ti neout

505 HTTP Versi on Not Supported

41 PREVIOUS HOME NEXT B
B.4. 400s: Client Errors BOOK INDEX C. Common MIME Types
| 3 ’..Z 3
; Hh
i \ 1 I PERL e - j
!] i " : IN A NUTSHELL PROGRAMMING
BOOKSHELF PERL & LWP - LEARNING PERL 2nd Edition PERL MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

0.6. Comments & Questions

Please address comments and questions concerning this book to the publisher:
O'Rellly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

Thereis aweb page for this book, which lists errata, examples, or any additional information. Y ou can access this page
at:

http://www.oreilly.com/catal og/perllwp/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

4 PREVIOUS HOME NEXT B
0.5. Conventions Used in This Book BOOK INDEX 0.7. Acknowledgments

B

.

RL
o i by . y IN A NUTSHELL
BOOKSHELF PERL & LWP ~ LEARMING PERL 2nd Edition MASTERING PERL COOKBOOK
HOME 3rd Edition 3rd Edition PERL/TK

Copyright © 2002 O'Reilly & Associates. All rights reserved.

http://www.oreilly.com/catalog/perllwp/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Per] & LWP

41 PREVIOUS MEXT B

0.5. Conventions Used in This Book
The following typographic conventions are used in this book:

Italic
Used for file and directory names, email addresses, and URLS, aswell asfor new terms where they are defined.
Constant width
Used for code listings and for keywords, variables, function names, command options, parameters, and bits of
HTML source where they appear in the text.
Constant wi dth bold
Used to highlight key fragments of larger code examples, or to show the output of a piece of code.
Constant width italic
Used as agenera placeholder to indicate terms that should be replaced by actual valuesin your own programs.

4 PREVIOUS HOME NEXT B
0.4. Important Standards Documents BOOK INDEX 0.6. Comments & Questions
& XML

5
INA I'IJ!I'I-SHELL 4) -

LEARNING PERL 2nd Edition MASTERING PERL COOKBOOK .
3rd Edition 3rd Edition PERL/TK

PE

! o il '-:I !
BOOKSHELF PERL & LWF -~
HOME

Copyright © 2002 O'Reilly & Associates. All rights reserved.

file:///I|/Carti/Temp/perl3/pxml/index.htm
file:///I|/Carti/Temp/perl3/cookbook/index.htm
file:///I|/Carti/Temp/perl3/tk/index.htm
file:///I|/Carti/Temp/perl3/prog/index.htm
file:///I|/Carti/Temp/perl3/perlnut/index.htm
file:///I|/Carti/Temp/perl3/lperl/index.htm
file:///I|/Carti/Temp/perl3/index.htm

O’REILLY"

Perl & LWP
by Sean M. Burke

Submit your own errata for this book.

The changes and errata are listed by printing date. To find the printing date of your copy, look on the
copyright page for the most recent date (either under "Printing History" or in the lower righthand corner).

Printings that are not listed here contained no significant corrections.

. Errata: alist of errorsin the most recent printing
. Unconfirmed error reports and comments from readers

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2002, O'Reilly & Associates, Inc.

http://www.oreilly.com/cgi-bin/errata.form/perllwp
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html

Perl & LWP
by Sean M. Burke

This errata page lists errors outstanding in the most recent printing.

If you have technical questions or error reports, you can send them to
booktech@oreilly.com. Please specify the printing date of your copy.

This page was updated September 24, 2003.

Here's akey to the markup:
[page-number]: serious technical mistake
{ page-number} : minor technical mistake
<page-number>: important language/formatting problem
(page-number): language change or minor formatting problem
?Ppage-number?. reader question or request for clarification

NOTE FROM THE AUTHOR

Thanks for buying my book! I've gotten really enthusiastic responses from
readers, and that has made all the work of writing absolutely worth it.

If you're having trouble getting any code from the book to work, the
absolute first thing you should do is make sure you've got arecent version
of LWPinstalled! Here's my favorite incantation for seeing what version
you have:
perl -e "use L WP 1000000000"
It will say something like:
LWP version 1000000000 required--thisisonly version 5.68 at -e line 1.
BEGIN failed--compilation aborted at -e line 1.

If the version number you seein "thisis only version 5.68" is lower that

5.68, upgrade! /Perl & LWP/ is not about old versions of LWP, but just
about modern versions -- the more modern the better, since we're constantly
improving its performance and interface. If you're using an old version,
you're missing out on years of improvements that Gisle, me, and many others
have added for you.

Just to pick two little examples: in older versions, you would load the

class HTTP::Cookies::Netscape not with the expected "use
HTTP::Cookies::Netscape" line, but with "use HTTP::Cookies'. Moreover, old
versions didn't understand cookies files from recent Mozillaversions,

A more compelling exampleisthat in old LWP versions, LWP::UserAgent had
no $browser->get or $browser->post methods -- and this book uses those

"new" methods heavily, because the aternative is a much less friendly
syntax: use HTTP::Request::Common; $browser->request(GET(...),...); and the
like.

Besides the issue of LWP versions, there is also the question of brittleness.

SECOND NOTE FROM THE AUTHOR:

| said in Chapter 1, in the section on "Brittleness':

"As somewhat of alesson in brittleness, in this book | show you data on
various web sites (Amazon.com, the BBC News web site, and many others) and
show how to write programs to extract data from them. However, that code
isfragile. Some sites get redesigned only every few years, Amazon.com

seems to change something every few weeks. So while I've made every effort
to have the code be accurate for the web sites as they exist at the time of
thiswriting, | hope you will consider the programs in this book valuable

as learning tools even after the sites they communicate with will have

changed beyond recognition.”

WEell, even though it's been only afew weeks since the book went to press,
already many of the sites have changed enough to break some of the

extractor programs that are examplesin the book. With some sites (like
Amazon), that was expected -- it was just a matter of happening sooner

rather than later. With others (like the CaliforniaDMV server, or the
Weather Underground), I'm a bit surprised that the changes happened so soon.

In some of the program files at http://examples.oreilly.com/perllwp/

| have added a few comments noting where some of the screen-scraper
programs have already broken because of changesin the site that they pull
from.

| leave it as an exercise to readersto try on their own to get some of

those extractors working. It'll be good practice in retuning brittle
programs! After all, when you write your extractors from stratch, they'll
eventually break too.

-- Sean M. Burke
August 1, 2002

Confirmed errors:

(xi) Under the heading "Foreword", add a subheading "by Gisle Aas’

(xiv) Second line;

Correct
http://www.w3.org/TR/html401/interact/forms/
to
http://www.w3.0rg/TR/html401/interact/forms
(just removing the final "/")

{7}, Table 1-1
Several things wrong with the table contents. Hereitis, al fixed:

Distribution CPAN directory Minimal Version Needed

libwww-perl modules/by-module/Net 5.68

URI modul es/by-module/URI 1.23

libnet modules/by-module/Net 1.12
HTML-Tagset modules/by-module/HTML 3.03
HTML-Parser modules/by-module/HTML 3.27
HTML-Tree modules/by-module/HTML 3.17
MIME-Base64 modules/by-module/MIME ~ 2.16
Compress-Zlib modul es/by-module/Compress 1.19
Digest-MD5 modules/by-module/Digest 2.23

(7) end of first paragraph after the table
After "get the latest." add a new sentence:
"Thisbook is about the latest version of LWP! Upgrade now!"

{7} inthe paragraph before heading "Unpack and configure"
Change both instances of

authors/id/G/GA/GAAS

to

modul es/by-module/MIME

(11) example 1-1
change "use LWP::Simple;" to "use LWP::Simple 1.36;"

(11) example 1-2
change "use LWP;" to "use LWP 5.58;"

(12) example 1-3
change "use LWP::UserAgent;" to "use LWP::UserAgent 2.003;"

(13) example 1-5
change "use HTML::TreeBuilder;" to "use HTML:: TreeBuilder 3.13;"

(14) end of the chapter text:
Add a new section with a heading "Upgrade Now!" with this as the text:

If you're having trouble getting any code from the book to work, the
absolute first thing you should do is make sure you've got arecent version
of LWPinstalled! Here's my favorite incantation for seeing what version
you have:
perl -e "use LWP 1000000000"
It will say something like:
LWP version 1000000000 required--thisisonly version 5.68 at -e line 1.
BEGIN failed--compilation aborted at -e line 1.

If the version number you seein "thisisonly version 5.68" is lower that

5.68, upgrade! Thisbook is not about old versions of LWP, but just about
modern versions -- the more modern the better, since we're constantly
improving its performance and interface. If you're using an old version,
you're missing out on years of improvements that Gisle, me, and many others
have added for you.

Just to pick two examples. in older LWP versions, you would load the class
HTTP::Cookies::Netscape not with the expected "use HT TP::Cookies::Netscape"
line, but with "use HTTP::Cookies'. Moreover, old versions didn't

understand cookies files from recent Mozillaversions. A more compelling
exampleisthat in old LWP versions, LWP::UserAgent had no $browser->get or
$browser->post methods -- and this book uses those methods heavily, because
the aternative is amuch less friendly syntax: use HT TP::Request:: Common;
$browser->request(GET(...),...); and the like.

{16}

The examples at the bottom of page 16 and the top of 17 mistakenly show
"+" separating form=value pairs. It should be"&"!

So:

Takethis:

name=Hiram%20V eebl ef eetzer+age=35+country=M adagascar
and correct to:

name=Hiram%20V eebl efeetzer& age=35& country=M adagascar

And later, take this:

$query = "name=%$n+age=%$a+country=3$c";

print $query;

name=Hiram%20V eebl ef eetzer+age=35+country=M adagascar
and correct it to:

$query = "name=%$n& age=$a& country=$c";

print $query;

name=Hiram%20V eebl efeetzer& age=35& country=M adagascar

(24) example 2-5
change "use LWP;" to "use LWP 5.58;"

{28}, 1st new paragraph, 7th line down on the page.
Takethis:

(doc, status, success, resp) = do_GET(URL, [form_ref, [headers ref]]);
And correct it to:

(doc, status, success, resp) = do_POST(URL, [form_ref, [headers ref]]);

(31) third code line
change "use LWP;" to "use LWP 5.58;"

(32) 2nd paragraph, second line:
There's dlightly too much space after the commain "afiremwall, or"

{37} Fifth (non-code) paragraph, second sentence:
Correct to:

If this $browser object has a protocols_allowed list (and most don't),
then is_protocol _supported returns true only for protocols that are in
that list, and which LWP supports. But if $browser object is normal in
not having a protocols_allowed list, then is_protocol _supported returns
true for any protocol that LWP supports and whichisn'tin

protocols forbidden.

{40} second codeblock, fifth and sixth lines
Correct both instances of "$response” to "$resp".

{40} six lines from the bottom;

Correct

my $resp = $browser->get('http://www.perl.com’
to

my $resp = $browser->get(‘http://www.perl.con,
(just adding a comma to the end)

{41} first line of first new codeblock;
Correct

my $resp = $browser->get('http://www.perl.com/'
to

my $resp = $browser->get('http://www.perl.com/’,
(just adding a comma to the end)

{41} first line of second-to-last codeblock;
Correct

my $resp = $browser->get('http://www.perl.com/'
to

my $resp = $browser->get('http://www.perl.com/’,
(just adding a comma to the end)

{43} Thefirst line of the 2nd and 5th code examples under " Status Line"

Correct "$resp =" to "$response = ".

{45} second-to-last codeblock;
Correct the line;

$mins = int($age/60); $age -= $minutes * 60;
to

$mins = int($age/60); $age -= $mins * 60;

(47) Third line of the last paragraph:
Correct "LWP::Cookies" to "HTTP::Cookies'

(48) first code line
change "use URI;" to "use URI 1.23;"

(53) Thethird line of each of the first two code sections:
Correct "$uri->" to "$url->".
(Look close!)

(61) example 5-1
change "use URI;" to "use URI 1.23;"

{75} Second-from-last line of the codeblock;
IldSII :> IISOII’

should be:
IldSII :> n 100",

(85) first code line
change "use LWP::Simple;" to "use LWP::Simple 1.36;"

{97} about adozen lines down;
Correct thisline:
die "Couldn't get $doc_url: ", $resp->status line
to:
die "Couldn't get $doc_url: ", $response->status line

{97} 14th non-blank codeline, right under "{ # Get..."

Take

$doc_url = $response->request->base;
and correct it to:

$doc_url = $response->base;

{98, 99} All the code in this section:

Sorry, this code doesn't work anymore -- Weather Underground has changed
their HTML at least twice since the book went to press. Y ou're on your

own with getting it to work -- and (the hard part) KEEPING it working.

{105} second "#" linein the codeblock in the middle of the page.
Correct this comment line:

process the text in $text->[1]
tothis:

process the text in $token->[1]

(105) third code line
change "use HTML::TokeParser;" to "use HTML:: TokeParser 2.24;"

{106} Next-to-last paragraph;
Book reads:

Should be (with alt attribute)

(111) Start of new paragraph in the middle of the page;
Clarify

If you though the contents of $url could be very large,
to

If you thought the content in $resp could be very large,

(120) 3rd paragraph, 2nd sentence;
"actual" should be "actually"

(122) three lines under the new heading "First Code"
change "use HTML::TokeParser;" to "use HTML :: TokeParser 2.24;"

(126) first line under the heading "Debuggability"
correct "al the links' to "all the lines"

(134) example 9-2
change "use HTML::TreeBuilder 3;" to "use HTML::TreeBuilder 3.13;"

(135) Parse Options Section;
Two incidents of mistake.

A) In example beginning with
$comments = $root->strict_comment();
last statement incorrectly reads
$comments = $root->strict_comments(); -- Omit 's

B) Two paragraphs later beginning with
$root->strict_comments([boolean]);

Incorrect with 's again, should read
$root->strict_comment([boolean]);

(140) Second paragraph under "Traversing” heading;
Correct

The traverse() method lets you both:
to

The traverse() method lets you do both:

{144} first codeblock;
Add before the first line:
use URI;

{144} about eight linesinto the first codebl ock;
Correct

if(@children == 1 and ref $children[0] and $children[0]->tag eq 'a)
to

if(@children == 1 and ref $children[0] and $children[0]->tag eq 'a) {
(Just adding a"{" at the end)

(149) example 10-1
change "use HTML::TreeBuilder;" to "use HTML:: TreeBuilder 3.13;"

{149} Example 10-1 (lines 11 and 16 of code);
The attribute should be 'class not 'styl€'. The value should be 'mutter’ not
'mumble’ (cf. p. 148).

Take
$h3c->attr('styl€e, 'scream’);
and correct to
$h3c->attr('class, 'scream’);

And take
$h3r->attr('styl€, 'mumble);
and correct to:
$h3r->attr('class, 'mutter’);

And in the dump on page 150, the bolded line, correct the second and third
bolded lines to:

<h2 class="scream"> @0.1.0
and to

<h2 class="mutter"> @0.1.1

(151) Second line of the last paragraph;

Correct

"There'sno point is"
to

"There's no point in"

(152) HTML example, sixth-from-last line;
Take

<tr class="top_button_bar">
and correct to:

<tr class="bottom_button bar">

(166) last codeblock
change "use HTTP::Cookies;" to "use HTTP::Cookies 1.30;"

(174) 2nd line of first codeblock:

Take
$browser->name('ReportsBot/1.01");

and correct to
$browser->agent('ReportsBot/1.01");

(175) the first paragraph's fifth line;
Correct

Is password protected
to

IS password-protected

(178) 1st paragraph, 4th line;
"writing" should be "write"

(181) second code line
change "use LWP::RobotUA;" to "use LWP::RobotUA 1.19;"

(187) the last codeblock's first line;
Correct

my %notable url_error; # URL => error messageS
to

my %notable url_error; # URL => error message
(Just removing the"S")

{195}
Take

my $hit_limit = $option{'h} || 500;
and correct it to:

my $hit_limit = $option{'n} || 500;

[i.e.'n' for 'network hits, not 'n' for 'help']

(196) about 3/5ths of the way thru the codebl ock;
Correct

sub report { # Thisthat getsrun at the end.
to

sub report { # This getsrun at the end.

{220} entry for character 982;

The character should not be an uppercase pi, but instead should be
alowercase pi that looks like an omega with a crossbar --

just like TeX \varpi -- as seen at http://members.spinn.net/~sburke/varpi.gif

(228) four lines from the bottom;
Correct
it's term (how long
to
its term (how long
(Just deleting the apostrophe)

Perl & LWP
by Sean M. Burke

The unconfirmed error reports are from readers. They have not yet been
approved or disproved by the author or editor and represent solely the
opinion of the reader.

Here's akey to the markup:
[page-number]: serious technical mistake
{ page-number} : minor technical mistake
<page-number>: important language/formatting problem
(page-number): language change or minor formatting problem
?Ppage-number?: reader question or request for clarification

This page was updated February 06, 2003.

UNCONFIRMED errors and comments from readers:

{51} last line, second from last paragraph;
reads:
userinfo, server, or port components).

should be:
userinfo, host, or port components).

(59) fifthline, paragraph after code sample;
reads:
city, state, and a submit button called zip.

should be:
city, state, zip, and a submit button called Search

(59) second to last paragraph, next to last line;
reads:

cal to cal

should be:

call

[203] Redirection;
Redirection seems to have some quirks that might be good to mention. Using, for

example, do_get with www.amazon.com does not show up as a redirection unless
$browser->requests redirectable([]) is set. In which case the redirection is not
allowed.

#Example 1:

using default requests_redirectable

my $url = "http://www.amazon.com/";

my ($content, $status line, $is_success, $resp) = do_url ($url);

print "status line $status line" . "\n";

print "is_success $is_success" . "\n";
($resp->is_redirect() ? print "isredirect \n" : print "not redirect \n");

RESULT:

status line 200 OK
IS success 1

not redirect

#Example 2:

switch off redirects

$browser->requests _redirectable([]);

my $url = 'http://www.amazon.com/’;

my ($content, $status line, $is_success, $resp) = do_url ($url);

print "status line $status line" . "\n";

print "is_success $is_success" . "\n";
($resp->is_redirect() ? print "is redirect \n" : print "not redirect \n");

RESULT:
status line 302 Found
IS success
isredirect

sub do_url {

my $url = shift;

my $resp = Sbrowser->get($url);

#my $response = $browser->get(@_); # alows more flexibility

return ($resp->content, $resp->status _line, $resp>is_success, $resp)
if wantarray;

scalar return values

return unless $resp->is_success; # returns undef if not success

return $resp->content; # returns content

	Local Disk
	Perl & LWP
	JObjects QuestAgent - "Search by Field" Applet
	Copyright (Perl & LWP)
	Preface (Perl & LWP)
	Perl & LWP: Index
	Preface (Perl & LWP)
	The Gory Details (Perl & LWP)
	Colophon (Perl & LWP)
	Index: Symbols & Numbers
	Index: A
	Index: B
	Index: C
	Index: D
	Index: E
	Index: F
	Index: G
	Index: H
	Index: I
	Index: J
	Index: K
	Index: L
	Index: M
	Index: N
	Index: O
	Index: P
	Index: Q
	Index: R
	Index: S
	Index: T
	Index: U
	Index: V
	Index: W
	Index: X
	Index: Y
	Index: Z
	Structure of This Book (Perl & LWP)
	User's View of Object-Oriented Modules (Perl & LWP)
	So Why Do Some Modules Use Objects? (Perl & LWP)
	POST Example: ABEBooks.com (Perl & LWP)
	Converting Relative URLs to Absolute (Perl & LWP)
	Converting Absolute URLs to Relative (Perl & LWP)
	Installing LWP (Perl & LWP)
	User Agents (Perl & LWP)
	Example: AltaVista (Perl & LWP)
	Automating Form Analysis (Perl & LWP)
	Rewrite for Features (Perl & LWP)
	Modifying HTML with Trees (Perl & LWP)
	URLs (Perl & LWP)
	Processing (Perl & LWP)
	LWP in Action (Perl & LWP)
	Authentication (Perl & LWP)
	An HTTP Authentication Example:The Unicode Mailing Archive (Perl & LWP)
	Example: Babelfish (Perl & LWP)
	Token Sequences (Perl & LWP)
	Example: BBC News (Perl & LWP)
	Example: Extracting Linksfrom a Bookmark File (Perl & LWP)
	Introduction to Web Automation (Perl & LWP)
	Idiosyncrasies of HTML Forms (Perl & LWP)
	Individual Tokens (Perl & LWP)
	HTML Processing with Trees (Perl & LWP)
	Cookies, Authentication, and Advanced Requests (Perl & LWP)
	The LWP Class Model (Perl & LWP)
	HTML::TreeBuilder (Perl & LWP)
	Detaching and Reattaching (Perl & LWP)
	Basic HTML::TokeParser Use (Perl & LWP)
	Attaching in Another Tree (Perl & LWP)
	Regular Expression Techniques (Perl & LWP)
	Example: A Link-Checking Spider (Perl & LWP)
	Creating New Elements (Perl & LWP)
	HTTP::Response Objects (Perl & LWP)
	Words of Caution (Perl & LWP)
	Simple HTML Processing with Regular Expressions (Perl & LWP)
	Troubleshooting (Perl & LWP)
	Tokenizing Walkthrough (Perl & LWP)
	Example: Extracting Linksfrom Arbitrary HTML (Perl & LWP)
	Fetching Documents Without LWP::Simple (Perl & LWP)
	Inside the do_GET and do_POST Functions (Perl & LWP)
	HTML Processing with Tokens (Perl & LWP)
	More HTML::TokeParser Methods (Perl & LWP)
	Using Extracted Text (Perl & LWP)
	File Uploads (Perl & LWP)
	LWP and GET Requests (Perl & LWP)
	Forms (Perl & LWP)
	POST Example: License Plates (Perl & LWP)
	Limits on Forms (Perl & LWP)
	Relative URLs (Perl & LWP)
	Example: Fresh Air (Perl & LWP)
	Web Basics (Perl & LWP)
	LWP::Simple (Perl & LWP)
	Narrowing In (Perl & LWP)
	Adding Extra Request Header Lines (Perl & LWP)
	An HTTP Transaction (Perl & LWP)
	Deleting Images (Perl & LWP)
	When Regular Expressions Aren't Enough (Perl & LWP)
	HTTP POST (Perl & LWP)
	History of LWP (Perl & LWP)
	Example: Extracting Temperatures from Weather Underground (Perl & LWP)
	A User Agent for Robots (Perl & LWP)
	Programming with LWP Classes (Perl & LWP)
	Spiders (Perl & LWP)
	Order of Chapters (Perl & LWP)
	LWP Modules (Perl & LWP)
	HTTP Status Codes (Perl & LWP)
	Common MIME Types (Perl & LWP)
	Language Tags (Perl & LWP)
	Common Content Encodings (Perl & LWP)
	ASCII Table (Perl & LWP)
	Modules and Their Functional Interfaces (Perl & LWP)
	Modules with Object-Oriented Interfaces (Perl & LWP)
	What Can You Do with Objects? (Perl & LWP)
	What's in an Object? (Perl & LWP)
	What Is an Object Value? (Perl & LWP)
	Important Standards Documents (Perl & LWP)
	Acknowledgments (Perl & LWP)
	LWP Classes: Behind the Scenes (Perl & LWP)
	Getting the Data (Perl & LWP)
	Inspecting the HTML (Perl & LWP)
	First Code (Perl & LWP)
	Alternatives (Perl & LWP)
	Ideas for Further Expansion (Perl & LWP)
	200s: Successful (Perl & LWP)
	300s: Redirection (Perl & LWP)
	400s: Client Errors (Perl & LWP)
	500s: Server Errors (Perl & LWP)
	Comments & Questions (Perl & LWP)
	Conventions Used in This Book (Perl & LWP)
	Perl & LWP
	http://www.oreilly.com/catalog/perllwp/errata/perllwp.confirmed
	http://www.oreilly.com/catalog/perllwp/errata/perllwp.unconfirmed

