€ ADC
Apple Devedoper Connection
Recommanded Tithe

‘(Va

ac OS X
Unix Geeks

L
L ¥

/

OEREl LLYh Brian Jepson & Ernest E. Rothman

Mac 0S X for Unix Geeks

Related Mac OS X Titles from 0'Reilly

Essentials

AppleScript in a Nutshell
Building Cocoa Applications:

A Step-by-Step Guide
Learning Carbon
Learning Cocoa with Objective-C
Mac OS X Pocket Guide
REALbasic: The Definitive Guide

Missing Manuals

AppleWorks 6: The Missing Manual
iMovie 2: The Missing Manual
iPhoto: The Missing Manual
Mac OS 9: The Missing Manual
Mac OS X: The Missing Manual
Office 2001 for Macintosh:

The Missing Manual
Office X for Macintosh:

The Missing Manual

Mac 05 X Administration

Apache: The Definitive Guide
Essential System Administration
sendmail

Unix Essentials

Using csh & tcsh

Unix in a Nutshell

Unix Power Tools

Learning the bash Shell
Learning Unix for Mac OS X
Learning GNU Emacs
Learning the vi Editor

Related Programming

Developing Java Beans™
Java™ Cookbook

Java™ I/O

Java™ Network Programming
Java™ in a Nutshell

Java™ Swing

Learning Java™

Learning Perl

Managing and Using MySQL
MySQL Cookbook

Perl in a Nutshell

Practical C Programming
Programming with Qt

Mac 0S X for Unix Geeks

Brian Jepson and Ernest E. Rothman

O’REILLY"

Beijing + Cambridge - Farnham - Kdln - Paris - Sebastopol - Taipei - Tokyo

Mac 05 X for Unix Geeks
by Brian Jepson and Ernest E. Rothman

Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly & Associates books may be purchased for educational, business, or sales pro-
motional use. Online editions are also available for most titles (safari.oreilly.com). For
more information, contact our corporate/institutional sales department: (800) 998-9938
or corporate@oreilly.com.

Editor: Chuck Toporek
Production Editor: Claire Cloutier
Cover Designer: Emma Colby
Interior Designer: David Futato

Printing History:
October 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.
The association between the image of a foxhound and the topic of Mac OS X for Unix
development is a trademark of O’Reilly & Associates, Inc.

Apple Computer, Inc., boldly combined open source technologies with its own
programming efforts to create Mac OS X, one of the most versatile and stable operating
systems now available. In the same spirit, Apple has joined forces with O'Reilly &
Associates, Inc., to bring you an indispensable collection of technical publications. The
ADC logo indicates that the book has been technically reviewed by Apple engineers and
is recommended by the Apple Developer Connection.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Carbon, Cocoa,
ColorSync, Finder, FireWire, iBook, iMac, iPod, Mac, Mac logo, Macintosh,
PowerBook, QuickTime, QuickTime logo, Sherlock, and WebObjects are trademarks of
Apple Computer, Inc., registered in the United States and other countries. The
“keyboard” Apple logo (#) is used with permission of Apple Computer, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
the authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 0-596-00356-0
M] [11/02]

Preface

pam Gettl ng Amund —

1.

Table of Contents

The Mac 0S X Command Line

Mac OS X Shells

The Terminal and xterm Compared
Using the Terminal

The Services Menu

Using the tcsh Shell

Mac OS X’s Unix Development Tools

Booting Mac OS X
Adding Startup Items
Scheduling Tasks

Directory Services

Understanding Directory Services
Programming with Directory Services
Configuring Directory Services

NetInfo

Netlnfo Utilities

Netlnfo Command Reference
Managing Groups

Managing Users and Passwords
Managing Hostnames and IP Addresses

Exporting Directories with NFS 61
Flat Files and Their NetInfo Counterparts 61
Restoring the Netlnfo Database 62

part" Bu"dmg 'App“cati'o'ﬁ; —

4. CompilingSourceCodel 67
Compiler Differences 69
Compiling Unix Source Code 70
Architectural Issues 76

5. Libraries, Headers,and Frameworks 78
Header Files 78
The System Library: libSystem 83
Shared Libraries Versus Loadable Modules 84
Library Versions 89
Creating and Linking Static Libraries 91
Prebinding 91
Interesting and Important Libraries 92

6. Creating and Installing Packages 96
Fink 96
Creating Fink Packages 101
GNU-Darwin 104
Packaging Tools 105

Partlll. Beyond the User Spa(e S

7. BuildingtheDarwinKernell 123
Darwin Development Tools 123
Gerting the Source Code 125
Building and Installing the Kernel 127
Kernel Configuration 128

8. SystemManagementToolscoiiii.L. 130
Diagnostic Utilities 130
Kernel Utilities 136
System Configuration 140

vi | Tableof Contents

9. TheXWindowSystem i, 146

Installing X11 146
Running XDarwin 147
Desktops and Window Managers 148
X11-based Applications and Libraries 149
Making X11 Applications More Aqua-like 151
AquaTerm 154
Connecting to Other X Window Systems 155
Virtual Network Computers 156
Conclusion 159

PartIV. Appen.&ixe.s

A. TheMacOSXFilesystemcccoiiiiiin... 163
B. Command-Line Tools: The Missing Manpages 174
IdeX ... 189

Table of Contents | vii

el

Preface

Once upon a time, Unix came with only a few standard utilities, and if you
were lucky, it included a C compiler. When setting up a new Unix system,
you’d have to crawl the Net looking for important software: Perl, gcc, bison,
flex, less, Emacs, and other utilities and languages. That was a lot of soft-
ware to download through a 28.8 kbps modem. These days, Unix distribu-
tions come with much more, and it seems like more and more users are
gaining access to a wide-open pipe.

Free Linux distributions pack most of the GNU tools onto a CD-ROM, and
now commercial Unix systems are catching up. IRIX includes a big selec-
tion of GNU utilities, Solaris comes with a companion CD of free software,
and just about every flavor of Unix (including Mac OS X) now includes Perl.
Mac OS X comes with many tools, most of which are open source and com-
plement the tools associated with Unix.

This book serves as a bridge for Unix developers and system administrators
who’ve been lured to Mac OS X because of its Unix roots. When you first
launch the Terminal application, you'll find yourself at home in a Unix shell,
but like Apple’s credo—“Think Different”—you’ll soon find yourself doing
things a little differently. Some of the standard Unix utilities you've grown
accustomed to may not be there, /etc/passwd and /etc/group have been sup-
planted with something called NetInfo, and when it comes to developing
applications, you’ll find that things like library linking and compiling have a
few new twists to them.

Despite all the beauty of Mac OS X’s Aqua interface, you'll find that a few
things are different on the Unix side. But rest assured, they’re easy to deal
with if you know what to do. This book is your survival guide for taming the
Unix side of Mac OS X.

Audience for This Book

This book is aimed at Unix developers, a category that includes program-
mers who switched to Linux from a non-Unix platform, web developers
who spend most of their time in ~/public_html over an ssh connection, and
experienced Unix hackers. In catering to such a broad audience, we chose to
include some material that advanced users might consider basic. However,
this choice makes the book accessible to all Unix programmers who switch
to Mac OS X as their operating system of choice, whether they have been
using Unix for one year or ten. If you are coming to Mac OS X with no Unix
background, we suggest that you start with Learning Unix for Mac OS X
(O’Reilly & Associates, Inc.) to get up to speed with the very basics.

Organization of This Book

This book is divided into four parts. Part I helps you map your current Unix
knowledge to the world of Mac OS X. Part II discusses compiling, linking,
and packaging applications, and Part III takes you into the world of the Dar-
win kernel and the X Window System. Part IV provides useful reference
information.

Here’s a brief overview of what’s in the book:

Part I, Getting Around
This part of the book orients you to Mac OS X’s unique way of express-
ing its Unix personality.
Chapter 1, The Mac OS X Command Line
This chapter will provide you with an overview of the Terminal
application, including a discussion of the differences between the
Terminal and your standard Unix xterm. The chapter also enumer-

ates many of the available command-line utilities that come with
Mac OS X.

Chapter 2, Startup
This chapter describes the Mac OS X boot process, from when the
Apple icon first appears on your display to when the system is up
and running,.

Chapter 3, Directory Services
This chapter will get you started with Mac OS X’s powerful system
for Directory Services, which replaces or complements the standard
Unix flat files in the /etc directory.

x | Preface

Part 11, Building Applications
Although Apple’s C compiler is based on the GNU Compiler Collec-
tion (GCC), there are important differences between compiling and
linking on Mac OS X and on other platforms. This part of the book
describes these differences and explains how you can package applica-
tions for Mac OS X.

Chapter 4, Compiling Source Code
This chapter describes the peculiarities of the Apple C compiler,
including using macros that are specific to Mac OS X, working with
precompiled headers, and configuring a source tree for Mac OS X.

Chapter 5, Libraries, Headers, and Frameworks
Here we’ll discuss building libraries, linking, and miscellaneous
porting issues you may encounter with Mac OS X.

Chapter 6, Creating and Installing Packages
This chapter describes the native package formats used by Mac OS
X, as well as some other packaging options you can use to distrib-
ute applications.

Part 111, Beyond the User Space
This part of the book talks about the Darwin kernel, useful system
administration tools, and setting up the X Window System to work
alongside Aqua.

Chapter 7, Building the Darwin Kernel
Mac OS X is based on the open source Darwin kernel. This chapter
describes how to download, compile, and install the source code for
Darwin.

Chapter 8, System Management Tools
This chapter describes commands for monitoring system status and
configuring the operating system.

Chapter 9, The X Window System
This chapter explains how to install the X Windows System and
build X applications.

Part IV, Appendixes
The final part of the book includes miscellaneous reference information.

Appendix A, The Mac OS X Filesystem
Here you’ll learn about the layout of the Mac OS X filesystem, with
descriptions of key directories and files.

Appendix B, Command-Line Tools: The Missing Manpages
There are some great Mac OS X utilities that don’t have manpages.
This chapter provides them for you.

Preface | «xi

Developgﬁg'lools

This book assumes that you have installed the Mac OS X Developer Tools.
If you bought the boxed version of Mac OS X 10.2 (Jaguar), the Developer
Tools should be included on a separate CD-ROM. If you bought a new Mac-
intosh that came with Mac OS X preinstalled, the Developer Tools installer
will probably be in /Applications/Installers. Failing either of those, or if you'd
like to get the latest version of the tools, they are available to Apple Devel-
oper Connection (ADC) members at hitp://connect.apple.com.

Where to Go for More Information

Although this book will get you started with the Unix underpinnings of Mac
OS X, there are many online resources that can help you get a better under-
standing of Unix for Mac OS X:

Apple’s Open Source Mailing Lists
http://developer.apple.com/darwin/mail.html
This site leads to all the Apple-hosted Darwin mailing lists, and includes
links to list archives.

The Darwin Project

http://developer.apple.com/darwin/
Darwin is a complete Unix operating system for x86 and PowerPC pro-
cessors. Mac OS X is based on the Darwin project. Spend some time at
this site to peek as deep under Mac OS X’s hood as is possible.

Open Darwin

http:/fwww.opendarwin.org/
The Open Darwin project was founded in 2002 by Apple Computer and
the Internet Software Consortium, Inc. (ISC). It is an independent
project with a CVS repository that is separate from Apple’s Darwin
project, but it aims for full binary compatibility with Mac OS X.

Fink

http://fink.sourceforge.net/
Fink is a collection of open source Unix software that has been ported
to Mac OS X. It is based on the Debian package management system,
and includes utilities to easily mix precompiled binaries and software
built from source. Fink also includes a complete GNOME desktop dis-
tribution.

xii | Preface

GNU-Darwin

http://gnu-darwin.sourceforge.net/
Like Fink, GNU-Darwin brings many free Unix applications to Darwin
and Mac OS X. GNU-Darwin uses the FreeBSD ports system, which
automates source code and patch distribution, as well as compilation,
installation, and resolution of dependencies.

Mac OS X Hints

http:/fwww.macosxhints.com/
Mac OS X Hints presents a collection of reader-contributed tips, along
with commentary from people who have tried the tips. It includes an
extensive array of Unix tips.

Stepwise

http:/fwww.stepwise.com/
Before Mac OS X, Stepwise was the definitive destination for OpenStep
and WebObjects programmers. Now Stepwise provides news, articles,
and tutorials for Cocoa and WebObjects programmers. Softrak (http:/
softrak.stepwise.com/Softrak) keeps track of software releases for Mac
OS X, Mac OS X Server, OpenStep, WebObjects, and Darwin.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Used to indicate new terms, URLs, filenames, file extensions, directo-
ries, commands and options, Unix utilities, and to highlight comments
in examples. For example, a path in the filesystem will appear in the text
as /Applications/Utilities.

Constant width
Used to show functions, variables, keys, attributes, the contents of files,
or the output from commands.

Constant width bold
Used in examples and tables to show commands or other text that
should be typed literally by the user.

Constant width italic

Used in examples and tables to show text that should be replaced with
user-supplied values.

Preface | xiii

Menus/Navigation
Menus and their options are referred to in the text as File -+ Open, Edit
— Copy, etc. Arrows will also be used to signify a navigation path when
using window options; for example: System Preferences — Accounts —
Users means that you would launch System Preferences, click the icon
for the Accounts control panel, and select the Users pane within that
panel.

Pathnames
Pathnames are used to show the location of a file or application in the
filesystem. Directories (or folders for Mac and Windows users) are sepa-
rated by a forward slash. For example, if you see something like,
“...Jaunch the Terminal application (/Applications/Utilities)” in the text,
that means the Terminal application can be found in the Utilities sub-
folder of the Application folder.

% #
The percent sign (%) is used in some examples to show the user prompt
for the tcsh shell; the hash mark (#) is the prompt for the root user.

L

iy These icons signify a tip, suggestion, or a general note.
&
&
'\“l :.‘

These icons indicate a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the pub-
lisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

xiv | Preface

We have a web site for the book, where we’ll list examples, errata, and any
plans for future editions. The site also includes a link to a forum where you
can discuss the book with the author and other readers. You can access this
site at:

http:/fwww.oreilly.com/catalog/mosxgeeks/

For more information about books, conferences, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http:/fwww.oreilly.com

Acknowledgments for Brian Jepson

My thanks go out to Nathan Torkington, Rael Dornfest, and Chuck
Toporek for helping me shape and launch this project, and to Emie Roth-
man for joining in to make the book a reality. Also, thanks to Leon Towns-
von Stauber for contributing Appendix B, Command-Line Tools: The Miss-
ing Manpages, to this book.

I'd especially like to thank my wife, Joan, and my stepsons, Seiji and Yeuhi,
for their support and encouragement through my late night and weekend
writing sessions, my zealous rants about the virtues of Mac OS X, and the
slow but steady conversion of our household computers to Macintoshes.

Acknowledgments for
Ernest E. Rothman

I would first like to thank Brian Jepson, who conceived the book and was
generous enough to invite me to participate in its development. I would also
like to express my gratitude to both Brian Jepson and Chuck Toporek for
their encouragement, patience, stimulating discussions, and kindness. There
are also many reviewers to whom I am grateful for useful suggestions and
insights. I must also thank the visionary folks at Apple Computer for pro-
ducing and constantly improving Mac OS X, as well as developers in the
Mac OS X community who spend a great deal of their time writing applica-
tions and posting helpful insights on newsgroups, mailing lists, and web
sites.

Finally, I wish to thank my lovely wife, Kim, for her love, patience, and
encouragement and my Newfoundland dog, Samson (4/20/1991-4/19/2002),
who was by my side during most of my efforts on this project but passed
away before its completion. He will be forever in my heart.

Preface | xv

K

PART |
Getting Around

This part of the book orients you to Mac OS X’s unique way of expressing
its Unix personality. Chapters in this part include:

* Chapter 1, The Mac OS X Command Line
* Chapter 2, Startup
* Chapter 3, Directory Services

I-a

CHAPTER 1
The Mac 0S X Command Line

The Terminal application (/Applications/Utilities) is Mac OS X’s graphical
terminal emulator. Inside the Terminal, Unix users will find a familiar com-
mand-line environment. The first section of this chapter describes Termi-
nal’s capabilities and compares them to the corresponding xterm
functionality when appropriate. The chapter concludes with a listing of the
Unix tools that developers can find on Mac OS X.

Mac 0S X Shells

Mac OS X comes with the TENEX C shell (¢csh) as the default user shell,’
the Bourne-again shell (bash), and the Z shell (zsh). Both bash and zsh are
sh-compatible. When tcsh is invoked through the ¢sh link, it behaves much
like csh. Similarly, /bin/sh is a hard link to bash, which also reverts to tradi-
tional behavior when invoked through this link (see the bash manpage).

If you install additional shells, you should add them to /etc/shells. To change
the Terminal’s default shell, see the “Customizing the Terminal” section,
later in this chapter.

The Terminal and xterm Compared

There are several important differences between Mac OS X’s Terminal appli-
cation and the xterm common to Unix systems running X Windows:

* You cannot customize the characteristics of the Terminal with com-
mand-line switches such as -fn, -fg, and -bg. Instead, you must use the
Terminal’s Show Info dialog.

* /bin/csh is hard-linked to tcsh.

« Unlike xterm, in which each window corresponds to a separate process,
a single master process controls the Terminal. However, each shell ses-
sion is run as a separate child process of the Terminal.

* The Terminal selection is not automatically put into the clipboard. Use
%-C to copy, $-V to paste. Even before you press #8-C, the current text
selection is contained in a selection called the pasteboard. The opera-
tions described in “The Services Menu” section, later in this chapter, use
the pasteboard.

* The value of $TERM is vt100 when running under Terminal (it’s set to
xterm under xterm by default).

* Pressing PageUp or PageDown scrolls the Terminal window, rather than
letting the running program handle it.

* On compatible systems (generally, a system with an ATI Radeon or
NVidia GeForce AGP graphics adapter), the Mac OS X Terminal (and
all of the Aqua user interface) will use Quartz Extreme acceleration to
make everything faster and smoother.

If you need an xterm, you can have it; however, you will have to install a
compatible version of the X Window System first. See Chapter 9 for more
information about the X Window System.

Using the Terminal

The first order of business when exploring a new flavor of Unix is to find the
command prompt. In Mac OS X, you won’t find the command prompt in
the Dock or on a Finder menu. The Terminal application is instead located
in the /Applications/Utilities directory. Don’t open it just yet, though. First,
drag the Terminal’s application icon to the Dock so you’ll have quick access
to it when you need to use the Terminal. To launch the Terminal, click its
icon in the Dock once, or double-click on its icon in the Finder view.

LA
iy The full path to the Terminal is /Applications/Utilities/
f‘: Terminal.app, although the Finder hides the .app extension.
4‘ Terminal.app is not a binary file. Instead, it’s a Mac OS X
package, which contains a collection of files, including the
binary and support files. You can Control-click (or right-

click) on the Terminal in the Finder and select Show Pack-
age Contents to see what’s inside.

After the Terminal starts, you’ll be greeted by the banner message from fetc/
motd and a tesh prompt, as shown in Figure 1-1.

4 | Chapter1: The Mac0S X Command Line

| & : ‘{M—t@l oo
1 Last login Sat Jul 20 11:53:26 on ttypl =]
4 welcome to Darwin!
4| [Brian-Jepsons-Computer:~] bjepson ||

Figure 1-1. The Terminal window

Launching Terminals

One difference xterm users will notice is that there is no obvious way to
launch a new Terminal window from the command line. For example, Mac
OS X has no equivalent to the following commands:

xterm &

xterm -e -fg green -bg black -e pine -name pine -title pine &
Instead, you can create a new Terminal window by typing 3%-N or selecting
File -+ New Shell from the menu bar.

L

To cycle between open Terminals, you can press #8-Right
Arrow or 38-Left Arrow, use the Window menu, or Control-
s click on the Terminal’s Dock icon to reveal a context menu
" of open Terminals. You can also jump to a particular Termi-
nal window with 38-number (see the Window menu for a list
of numbers).

You can customize startup options for new Terminal windows by creating .term
and .command files.

term files

You can launch a customized Terminal window from the command line by
saving some prototypical Terminal settings to a .term file, then using the
open command to launch the .term file (see “open” in the “Additional Shell
Commands” section, later in this chapter). You should save the .term file
someplace where you can find it later, such as ~/bin or ~/Documents. If you
save it in ~/Library/Application Support/Terminal, the .term file will show up
in Terminal’s File — Library menu.

Using the Terminal | 5

To create a .term file, open a new Terminal window, and then open the
Inspector (File - Show Info, or 3-I) and set the desired attributes, such as
window size, fonts, and colors. When the Terminal’s attributes have been
set, save the Terminal session (File — Save, or %8-S) to a .term file (for exam-
ple, ~/Documents/proto.term). Now, any time you want to launch a Termi-
nal window from the command line, you can issue the following command:

open ~/Documents/proto.term

‘l

B

You can also double-click on proto.term in the Finder to
launch a Terminal window. See “bindkey” under the “Addi-
o tional Shell Commands” section, later in this chapter, for an
" example of binding a key sequence to this command.

The .term file is an XML property list (plist) that you can edit by hand or
with the Property List Editor application (/Developer/Applications).” By
default, opening the .term file creates a new Terminal window. You can con-
figure the window so it executes a command by adding an execution string
to the .term file. When you launch the Terminal, this string is echoed to
standard output before it is executed. Example 1-1 shows an execution
string that connects to a remote host via ssh and exits when you log out.

Example 1-1. An execution string to connect to a remote host

<key>ExecutionString</key>
<string>ssh xyzzy.oreilly.com; exit</string>

.command files

Adding the .command extension to any executable shell script will turn it
into a double-clickable executable. The effect is similar to that of a .term file,
except that you can’t control the Terminal’s characteristics in the same way.
(A .command file will use the default Terminal settings.) However, you can
stuff the shell script full of osascript commands to set the Terminal charac-
teristics after it launches. An osascript is a shell command that lets you run
AppleScript from the command line.t Example 1-2 is a shell script that sets
the size and title of the Terminal, and then launches the pico editor.

* For more information on XML, see Learning XML (O’Reilly) or XML in a Nuishell (O'Reilly).
t To learn more about AppleScript, see AppleScript in a Nutshell (O’Reilly).

6 | Chapter1: The Mac0SXCommand Line

Example 1-2. Launching the pico editor

#!/bin/sh
Script RunPico.command
osascript «<EOF
tell app "Terminal®
set number of rows of first window to 34
set number of columns of first window to 96
set custom title of first window to "PICO Editor"
end tell

EOF

pico $@

If you don’t want to give the shell a .command extension, you could also use
the Finder’s Get Info option (File -+ Get Info, or %-I) to choose which appli-
cation will open with the executable. To do this, perform the following
steps:

1.
. Choose Get Info from the File menu.

b B W M

6.
7.
8.

As

Highlight the script’s icon in the Finder.

. In the Get Info dialog, choose Open with:.
. Click the drop-down menu and choose Other.
. In the Choose Other Application dialog, select All Applications rather

than Recommended Applications.

Find and choose the Terminal (Applications/Utilities) application.
Click Add.
Close the Get Info window (38-W).

with any double-clickable application, you can assign a custom-made

icon to your shell scripts and place them in the Dock. To change an icon,
use the following procedure.

1.
2.

Copy the desired icon to the clipboard.

Select your script in the Finder and open the Get Info window (88-I).
The file’s icon appears in the upper-left corner.

. Click the current icon, and use the Paste option (Edit — Paste, or 3%-V)

to paste the new icon over it.

4. Close the Get Info window (38-W) to save the icon to the application.

- To add the shell script application to the Dock, locate the application in

the Finder and drag its icon to the Dock.

Now you can click on the script’s Dock icon to invoke the script.

Using the Terminal | 7

Customizing the Terminal

To customize the shell used by the Terminal, start by changing the Termi-
nal’s Preferences (Terminal — Preferences). On the preference pane, you can
tell Terminal to execute the default shell at startup or a specific command
(such as an alternative shell).

You can also adjust the Terminal’s characteristics using Terminal - Win-
dow Settings (or 8-I), which brings up the Terminal Inspector, shown in
Figure 1-2. Table 1-1 lists the available window settings. Changing these set-
tings affects only the topmost Terminal window. If you want to change the
default settings for all future Terminal windows, click the Use Settings As
Defaults button at the bottom of the Terminal Inspector window.

T —

TTY: /dev/ttypl
Shell: tcsh

When the shell exits:
O Close the window
() Don't close the window
@ Close only if the sheli exited cleanty

{ Use Settings as Defaults . B,

Figure 1-2. The Terminal Inspector
Table 1-1. Window settings
Pane Desciption
Shell Displays the shell used by the Terminal and lets you choose whether to close the Terminal window
when the shell exits.

Processes Displays the processes running under the frontmost window. You can also control whether Termi-
nal will wamn you if you try to dlose the window while you are running a program. You can disable
this by choosing Never under “Prompt before closing window”. You can also supply a list of com-
mands that should be ignored, so if you're running a program (such as vi or Emacs) that's not in the
list, the Terminal will wamn you before dlosing the window.

* Although you can change the default shell in the Terminal preferences, this does not affect the
login shell used for remote or console logins. See Chapter 3 for instructions on changing a user’s

default shell.

8 | Chapter1: TheMac0SXCommand Line

Table 1-1. Window settings (continued)

Pane Description

Emulation Controls the Terminal emulation properties.

Buffer Sets the size and properties of the scrollback buffer.,

Display Changes the character set encoding, cursor style, font, and other attributes,
Color Changes colors and transparency of the Terminal window.

Window Controls window dimensions, title, and other settings.

One useful option available in the Emulation tab is “Option click to posi-
tion cursor”. If you enable this feature, you will be able to Option-click with
the mouse to position the cursor in Terminal applications such as vi or
Emacs (this could save you many keystrokes when you need to move the
insertion point). This option also works over a remote login session, assum-
ing that this is supported by the remote host’s terminal capabilities.

Customizing the Terminal on the Fly

You can customize the Terminal in shell scripts using escape sequences or
AppleScript commands. xterm users may be familiar with using the follow-
ing to set the xterm’s title:

echo '*[]2;My-Window-Title"G'
Mac OS X’s Terminal accepts this sequence as well.

L

[is the ASCII ESC character, and *G is the ASCII BEL char-
acter. (The BEL character is used to ring the terminal bell,
s but in this context, it terminates an escape sequence.) The
escape sequences described here are ANSI escape sequences,
which differ from the shell escape sequences described ear-
lier. ANSI escape sequences are used to manipulate a Termi-
nal window (such as by moving the cursor or setting the
title). Shell escape sequences are used to tell the shell to treat
a metacharacter, such as |, as a literal character rather than
an instruction to pipe standard output somewhere else.

To type the *[characters in tcsh, use the key sequence Control-V Escape
(press Control-V and release, then press the Escape key). To type G, use
Control-V Control-G. The vi editor supports the same key sequence; Emacs
uses Control-Q instead of Control-V.

You can capture this escape sequence in a shell alias:
alias settitle 'echo -n "A[]2;\1*2G"’
Then you can change the title by issuing this command:

settitle your fancy title here

Using the Terminal | 9

You may want to package this as a shell script and make it available to
everyone who uses your system, as shown in Example 1-3.

Example 1-3. Setting the Terminal title in a shell script

#!/bin/sh
#
Script settitle
Usage: settitle title
#
if [$# == 0]; then
echo "Usage: settitle title"
else
echo -n "~[]2;$17G"
fi

You can also use osascript to execute AppleScript commands that accom-
plish the same thing:
osascript -e \

"tell app "Terminal" to set custom title of first window to "Hello,
World"'

The Services Menu

Mac OS X’s Services menu (Terminal — Services) exposes a collection of ser-
vices that can work with the currently running application. In the case of the
Terminal, the services operate on text that you have selected (the paste-
board). To use a service, select a region of text in the Terminal, and choose
an operation from the Services menu. Mac OS X comes with several ser-
vices, but third-party applications may install services of their own. When
you use a service that requires a filename, you should select a fully qualified
pathname, not just the filename, because the service does not know the
shell’s current working directory. (As far as the service is concerned, you are
invoking it upon a string of text).

Here is a list of the services available in the Mac OS X Services menu:

Finder
The Finder services menu allows you to open a file (Finder - Open),

show its enclosing directory (Finder — Reveal), or show its information
(Finder — Show Info).

Mail
The Mail — Send To service allows you to compose a new message to an
email address, once you have selected that address in the Terminal. You
can also select a region of text and choose Mail —+ Send Selection to send
a message containing the selected text.

10 | Chapter1: The Mac0SXCommand Line

Make New Sticky Note
This service creates a new Sticky (/Applications/Stickies) containing the
selected text.

Speech
The Speech service is used to start speaking the selected text. (Use
Speech — Stop Speaking to interrupt.)

Summarize
This service condenses the selected text into a summary document. The
summary service analyzes English text and makes it as small as possible
while retaining the original meaning.

TextEdit
The TextEdit service can open a filename, or open a new file containing
the selected text.

View in JavaBrowser
This service browses Java documentation for the selected class name.
This is available whether the selected text is a real Java class name or
not. (Garbage In, Garbage Out applies here.)

Using the tcsh Shell

The tcsh shell offers advanced command-line editing capabilities, filename
completion, and a variety of customizations. Although tcsh is the default
user shell, Mac OS X 10.2 (Jaguar) uses the Bourne shell (/bin/sh) for han-
dling scripts (such as those found under the /etc directory), and we suggest
you do the same. However, tcsh is a fine user shell, and this section explains
how to customize it and take advantage of some of its features.

Customizing the tcsh Shell

You can customize tcsh by changing certain environment variables, by creat-
ing aliases for frequently used commands, or by binding keys to commands
(see “bindkey” in the “Additional Shell Commands” section, later in this
chapter).

If you want to make your customizations permanent (so you don’t have to
issue the commands each time you log in), put the appropriate commands in
one of tcsh’s startup files in your home directory. Here are some of the startup
files into which you can put these commands:

.teshre
This script is executed each time you launch a shell. When you open a
Terminal window, .tcshre is executed. If you start a sub-shell (or run a
csh shell script), .teshre will again be executed. If your .teshre contains

UsingtheteshShell | M1

recursive definitions, consider moving those commands to .login. For
example, if you issue the command set path = (SHOME/bin $path) in
your .tcshre, then $SHOME/bin will get prepended to your PATH environ-
ment variable each time you launch a sub-shell.
Jogin

This script is executed each time you launch a login shell, which includes
opening a new Terminal window or logging in remotely. The .login script
runs after .tcshre. The .login file should contain settings that should only
be applied once, such as PATH settings. The .login script is guaranteed to
be run only once, regardless of how many sub-shells you invoke under a
single login shell.

Jdogout

This script is run when you exit a login shell, but not when you exit a
sub-shell.

The following listing shows what happens when you initially launch a shell,
start a sub-shell, and exit the sub-shell and login shell:

Last login: Fri Jul 19 19:24:52 on ttyp1
Welcome to Darwin!

Running .teshrc script

Running .login script
[Brian-Jepsons-Computer:~] bjepson% tcsh
Running .tcshrc script
[Brian-Jepsons-Computer:~] bjepson¥ exit
exit

[Brian-Jepsons-Computer:~] bjepson¥ exit
logout

Running .logout script

There are system-wide versions of these scripts, which are invoked before

the scripts in a user’s home directory: /etc/csh.login, fetc/csh.cshre, and /etc/
csh.logout.

tcsh will also read commands from the .cshre fikle, if present,
) but if you have both a .tcshre file and a .cshre file, it will
ignore .cshrc. For example, Fink (see Chapter 6) instructs

you to insert a path in .cshrc, but if you've already got a .tcshrc
file, that’s where you should put the command instead.

Mac OS X borrows a handful of scripts from MIT’s Project Athena to help
simplify this configuration. On Mac OS X, sample tcsh configuration files are
kept in the /usr/share/tcsh/examples directory. In particular, this directory con-
tains .tcshre, .login, and .logout files named as rc, login, and logout. To use these

12 | Chapter1: The Mac0SX Command Line

configurations, create .tcshre, .login, and .logout files that invoke the sample
ones. This can be done by adding the following lines to your .tcshre, .login,
and .logout files:

source /usr/share/tcsh/examples/rc # put this in ~/.tcshrc

source /usr/share/tcsh/examples/login # put this in ~/.login

source /usr/share/tcsh/examples/logout # put this in ~/.logout
Once this is done, you can then customize the tcsh environment by creating
a ~/Library/init/tcsh directory. You can create individual files in this direc-
tory for each type of customization.

aliases.mine
Contains shell aliases.

completions.mine
Contains command-line completions.

environment.mine
Defines environment variables,

rc.mine
Specifies run commands.

path
Defines the command search path.

The startup scripts in /usr/shareltcshlexamples will use these files, if they
exist. Of course, you can simply use a .tcshre file in your home directory.
(The system-wide /etc/csh.cshrc script will be read first.) For more informa-
tion on tcsh, see Using csh and tcsh (O’Reilly).

Working with File and Directory Names

Traditionally, Unix users tend to avoid spaces in file and directory names,
sometimes inserting hyphens and underscores where spaces are implied, as
follows:

textFile.txt

text-file.txt
text_file.txt

However, most Mac users tend to insert spaces into their file and directory
names, and in a lot of cases, these names tend to be long and descriptive.
While this practice is okay if you’re going to work in the GUI all the time, it
creates a small hurdle to jump over when you’re working on the command
line. To get around these spaces, you have two choices: escape them, or
quote the file or directory name.

UsingtheteshShell | 13

To escape a space on the command line, simply insert a backslash (\) before
the space or any other special characters, such as a parenthesis. Because they
have meaning to the shell, special characters that must be escaped are: * # -
"N S$ | &?; ~() <> ! ~ Hereis an example of how to use a back-
slash to escape a space character in a file or directory name:

cd ~/Documents/Editorial\ Reports

Or you can use quotation marks around the file or directory name that con-
tains the space, as follows:

cd ~/Documents/"Editorial Reports”

There is one other way to get around this problem, but it involves using the
Finder in combination with the Terminal application. To launch a Classic
application such as Word 2001, which probably lives on the Mac OS 9 parti-
tion of your hard drive, you could enter the path as follows, using escape
characters:

open -a /Volumes/Mac\ OS\ 9/Applications\ \(Mac\ 0S\ 9\)/Microsoft\ Office\
2001/Microsoft\ Word

Or you can enter the path using quotes:

open -a /Volumes/"Mac 0S 9"/"Applications (Mac 05 §)"/"Microsoft Office
2001"/"Microsoft Word"

As you can see, neither way is very pretty, and both require you to know a
lot of detail about the path. Now for the easy way:

1. Type open -a, followed by a space on the command line (don’t press
Return yet).

2. Locate Microsoft Word in the Finder and then drag its icon to a Termi-
nal window to insert the path after the space. When you do this, the
spaces and any other special characters will be escaped with back-
slashes, as follows:

open -a /Volumes/Mac\ 0S\ 9/Applications\ \(Mac\ 05\ 9\)/Microsoft\ Office\
2001/
Microsoft\ Word

3. Press Return to invoke the command and launch Word 2001. If Classic
isn’t already running, Classic will start, too.

You can also drag and drop URLs from a web browser, which can be used
with curl -O to download files from the command line. For example:

1. Open a new Terminal window and type curl -O , with a space after the
switch.

2. Bring up your web browser and navigate to http://www.oreilly.com.

14 | Chapter1: The Mac0SXCommand Line

3. Drag the image at the top of the page to the Terminal window. You
should now see the following in the Terminal window:
curl -0 http://www.oreilly.com/graphics_new/header_main.gif

4. Press Enter in the Terminal window to download header_main.gif to
your computer.

Tab completion

If you want to type a long pathname, you can cut down on the number of
keystrokes needed to type it by using tab completion. For example, to type
/Library/Startupltems, you could type /Li<tab>, which gives you /Library/.
Next, type S<tab>. This time, instead of completing the path, you’re given
a choice of completions: Screen Savers/Scripts/Startupltems/. Type a little
bit more of the desired item, followed by a tab, as in t<tab>. The full key
sequence for /Library/Startupltems is /Li<tab>St<tab>.

If you have multiple completions where a space is involved, you can type a
literal space with \<space>. So, to get a completion for /System Folder (the
Mac OS 9 system folder), you should use /Sy<tab>\<space><tab>. It stops
just before the space because /System (the Mac OS X system folder) is a valid
completion for the first three characters.

Command-Line Editing with tcsh

Mac OS X’s default shell, t¢sh, lets you move your cursor around in the com-
mand line, editing the line as you type. There are two main modes for edit-
ing the command line, based on the two most commonly used text editors,
Emacs and vi. Emacs mode is the default; you can switch between the modes
with the following commands:

bindkey -e Select Emacs bindings

bindkey -v Select vi bindings
The main difference between the Emacs and vi bindings is that the Emacs
bindings are modeless (i.e., they always work). With the vi bindings, you
must switch between insert and command modes; different commands are
useful in each mode. Additionally:

* Emacs mode is simpler; vi mode allows finer control.

* Emacs mode allows you to yank cut text and set a mark; vi mode does
not.

* The command-history-searching capabilities of the two modes differ.

Usingthe tshShell | 15

Emacs mode

Table 1-2, Table 1-3, and Table 1-4 describe the various editing keystrokes
available in Emacs mode.

Table 1-2. Cursor positioning commands (Emacs mode)

Command Description

Control-B Moves the cursor back (left) one character.
Control-F Moves the cursor forward (right) one character.
Escthen B Moves the cursor back one word.

EscthenF Moves the cursor forward one word.
Control-A Moves the cursor to the beginning of the line.
Control-E Moves the cursor to the end of the line.

Table 1-3. Text deletion commands (Emacs mode)

Command Desaiption

Del or Control-H Deletes the character to the left of the cursor.
Control-D Deletes the character under the cursor.
EscthenD Deletes the next word.

Esc then Delete or Deletes the previous word.

Esc then Control-H _

Control-K Deletes from the cursor to the end of the line.
Control-U Deletes the entire line.

Control-W Deletes everything to the left of the cursor.
Control-Y Yanks the previously deleted string.

Table 1-4. Command control (Emacs mode)

Command Description

Control-P Recalls the previous command from history.

Control-N Recalls the next command from history.

Up amow Recalls the previous command from history.

Down arrow Recalls the next command from history.

File-fragment Tab Performs command-line completion. file-fragment can be a filename, a directory,

or an executable in your SPATH.
cmd-fragment Escthen P Searches history for cmd-fragment, which must be the beginning of a command.
cmd-fragment Escthen N Like Esc then P, but searches forward in the history.
Escnum Repeats the next tommand_g_q@__t__i_r_pve_s._ o

16 | Chapter1: The Mac0SX Command Line

vi mode

vi mode has two submodes, insert and command mode. The default mode is
insert. You can toggle between the modes by pressing Esc. Alternatively, in
command mode, typing a (append) or i (insert) will return you to insert
mode.

Table 1-5 through Table 1-11 describe the editing keystrokes available in vi
mode.

Table 1-5. Commands available (vi’s insert and command mode)

Command Desaription

Control-P Recalls the previous command from history.
Control-N Recalls the next command from history.

Up arrow Recalls the previous command from history.
Down arrow Recalls the next command from history.

Table 1-6. Editing commands (vi insert mode)

Command Desaiption

Control-B Moves the cursor back (left) one character.
Control-F Moves the cursor forward (right) one character.
Control-A Maves the cursor to the beginning of the line.
Control-E Moves the cursor to the end of the line.

Delete or Control-H Deletes the character to the left of the cursor,
Control-W Deletes the previous word.

Control-U Deletes from the beginning of the line to the cursor.
Control-K

Table 1-7. Cursor positioning commands (vi command mode)

Command Desaription

h or Control-H Moves the cursor back (left) one character.

| or Space Moves the cursor forward (right) one word.

w Moves the cursor forward (right) one word.

b Moves the cursor back (left) one word.

e Moves the cursor to the end of the next word.

W,.B,E Has the same effect as w, b, and e, but treats whitespace as a word separator
instead of any non-alphanumeric character.

A or Contral-A Moves the cursor to the beginning of the line (first non-whitespace character).

0 Moves the cursor to the beginning of the line.

$ or Control-E - Moves the cursor to the end of the line.

UsingthetcshShell | 17

Table 1-8. Text insertion commands (vi command mode)

Command Description

a Appends new text after the cursor until Escis pressed.

i Inserts new text before the cursor until Esc is pressed.

A Appends new text after the end of the line until Esc is pressed.

| Inserts new text before the beginning of the line until Escis prg;_sgq_._ -

Table 1-9. Text deletion commands (vi command mode)

Command Description

X Deletes the character under the cursor.

Xor Delete Deletes the character to the left of the cursor.

dm Deletes from the cursor to the end of motion command m.

D Deletes from the cursor to the end of the line (similar to issuing d$).
Control-W Deletes the previous word.

Control-U Deletes from the beginning of the line up to the cursor.

Control-K Deletes from the cursor to the end of the line.

Table 1-10. Text replacement commands (vi command mode)

Command Desaription .
an Changes the characters from the cursor to the end of motion command m until Esc is pressed.

C Has the same effect as c$.

4 Replaces the character under the cursor with the character ¢.

R Replaces multiple characters until Esc is pressed.

5 Substitutes the character under the cursor with the characters typed until Esc is pressed.

Table 1-11. Character-seeking motion commands (vi command mode)

Command Desaiption

fc Moves the cursor to the next instance of ¢ in the line.

Fc Moves the cursor to the previous instance of cin the line.

tc Moves the cursor just after the next instance of cin the line.

Te Moves the cursor just after the previous instance of cin the line.
; Repeats the previous for F command.

, IRepeats the previous for f command in the opposite direction.

Additional command-line keys

As we've just illustrated, the tcsh shell offers dozens of special keystroke
characters for navigation on the command line. Table 1-12 lists some addi-
tional command-line keys for use in either Emacs or vi editing mode.

18 | Chapter1: TheMac0SXCommand Line

Table 1-12. Additional key commands for the tcsh shell
Keycommand Desaiption

Control-C
Control-D

Control-)

Control-K
Control-L
Control-Q
Control-S
Control-T
Control-Z

Escthen C
Esc then Esc
Escthen L
Escthen U

Interrupts the process; cancels the previous command (88-. works as well).

Signals end-of-input for some programs and returns you to the shell prompt. If Control-D is
issued at a shell prompt, it will terminate the shell session and close the Terminal window, if
you've set your Terminal preferences to close the window when the shell exits,

Has the same effect as pressing the Return (or Enter) key. Hitting Control-J after issuing a
command will invoke the command, or it will take you to the next line in the shell if no com-
mand was given.

Removes everything to the right of the insertion point.

Clears the display.

Restarts the output after a pause by Control-S.

Pauses the output from a program that's writing to the screen.
Transposes the previous two characters.

Suspends a process. To restart the process, issue the bg or fg command to place the processin
the background or foreground, respectively.

Capitalizes the word following the insertion paint.

Completes the name if only a partial pathname or filename is entered.
Changes the next word to all lowercase letters.

Changes the next word to all uppercase letters.

Hasthesame effectas pressing the Eschey twice.

Additional Shell Commands

One of the first things that traditional Unix users will notice when they start
poking around in the Terminal is that there are a few new commands they’ll
need to add to their repertoire. Two that we’ll discuss here are bindkey and
open. The defaults command is described in Chapter 8.

bindkey

Syntax

bindkey

bindkey [option]

bindkey [option] [key]

bindkey [option] [key] [command]
bindkey [option] [key] [string]

Description

bindkey is a tcsh shell command that is used to select, examine, and define key
bindings for use in the Terminal.

bindkey | 19

Options
The following list describes the various uses of the bindkey command.
bindkey

Lists all of the key bindings.
bindkey -c key cmd

Binds key to the Unix command cmd.
bindkey -d

Restores the default key bindings.
bindkey -e

Changes the key bindings to Emacs mode.
bindkey key

Lists the bindings for key.
bindkey key cmd

Binds key to the editing command cmd.
bindkey -1

Lists the editing commands and their meanings.
bindkey -r key

Removes the binding for key.
bindkey -s key string

Binds key to the string string.
bindkey -u

Displays a message, showing how to use the bindkey command.
bindkey -v

Changes the key bindings to vi mode.

For example, to create a binding between the F2 key and the proto.term script from

the “.term files” section, earlier in this chapter, use this command:

bindkey -c ~[0Q ‘open ~/Documents/proto.term'

To get the key sequence *[0Q, type Control-V followed by the function key you
want to bind, in this case F2. Now, any time you type F2 in the first Terminal
window, it will open a new Terminal window using the settings saved in the
proto.term file. You can put bindkey commands in your .tcshre or login script to
make them permanent. For additional information on key bindings, and how to

alter them, see Using csh & tcsh (O’Reilly).

open

Syntax
open file
open [-a application] file
open [-e] file

20 | Chapter1: The Mac0SX Command Line

Description

The open command can be used to open files and directories, and to launch appli-
cations from the Terminal application.

Options
-a application
Uses application to open the file.
-e file
Forces the use of Mac OS X’s TextEdit application to open the specified file.

Examples
To open a directory in the Finder, use open, followed by the name of the direc-
tory. For example, to open the current directory, type:
open .
To open your /Public directory:
open ~/Public
To open the /Applications directory:
open /Applications

To open an application, you need only its name. For example, you can open
Project Builder (/Developer/Applications) with this command:

open -a “Project Builder"

s

You are not required to enter the path for the application,
only its name—even if it is a Classic application. The only
s time you are required to enter the path is if you have two dif-
" ferent versions of applications with similar names on your
system.

You can also supply a filename argument with the -a option, which would launch
the application and open the specified file with that application. You can use this
option to open a file with something other than the application with which it’s
associated. For example, to open an XML file in Project Builder instead of the
default text editor, TextEdit, you could use the following command:

open -a "Project Builder" data.xml
To open multiple files, you can use wildcards:
open *.c
To force a file to be opened with TextEdit, use -e:
open -e *.c
The -e switch will only open files in the TextEdit application; it cannot be used to
open a file in another text editor, such as BBEdit. If you want to use TextEdit on a

file that is owned by an administrator (or root), open -e will not work. You'll need
to specify the full executable path, as in:

% sudo /Applications/TextEdit.app/Contents/MacOSextEdit filename

open | 21

Enabling the root User

By default, the Mac OS X root user account is disabled, so you have to use
sudo to perform administrative tasks. Even the most advanced Mac OS X
users should be able to get by with sudo, and we suggest that you do not
enable the root user account. However, if you must enable the root user
account, start Netlnfo Manager (/Applications/Utilities), click the lock to
authenticate yourself, and select Enable Root User from the Security menu.

Mac 0S X’s Unix Development Tools

The version of Unix that you'll encounter in Mac OS X’s Terminal is similar
to other versions you have seen, but dissimilar in some fundamental and
often surprising ways. Although most tools are in their usual place, some are
not on the system, while others are not where you would typically expect to
find them on other Unix systems.

The lists shown in this section contain a sampling of the Unix commands
developers will find on Mac OS X. It is, by no means, a complete list of the
Unix utilities found on your system. Because there are so many commands,
they are organized into several categories. If you are an experienced Unix
user, many of these commands will be familiar to you, but we’ve referenced
them here so you can quickly determine whether or not a command you
need is available. Unless otherwise specified, all of the tools in the following
lists can be found in fusr/bin or fusr/libexec. Some tools are available with
the standard distribution of Mac OS X, but others are available only after
installing the Developer Tools. (See Chapter 4 for more information about
the Developer Tools). Appendix B contains a listing of commands that don’t
have manpages on Mac OS X.

Standard Unix Development Tools

The following commands are development tools that are commonly found
on Unix and Linux systems.

bison
A yacc-compatible parser generator.
cvs
A high-level revision control system that sits on top of RCS.

flex, flex++
A rool that generates lexical analyzers. See lex & yacc (O’Reilly).

22 | (hapter1: TheMac0SX Command Line

cc, gee
Apple’s customized version of gcc, the GNU C compiler.
gdb
A source-level debugger.
gnumake, make
Tools that automate the steps necessary to compile a source code pack-
age. See Managing Projects with make (O’Reilly).
rcs
A command that manages file revisions.
unzip
A tool that extracts files from a zip archive.
zip
A command that creates a zip archive.

Apple’s Command-line Developer Tools

The following list of utilities can be found in /Developer/Tools after you have
installed the Developer Tools package. Project Builder depends on some of
these tools. Many of these tools have their roots in Macintosh Program-
mer’s Workshop (MPW), Apple’s old development environment. '

agvtool
Acts as a versioning tool for Project Builder projects.
BuildStrings
Creates resource string definitions.
CpMac
Serves as an alternative to cp; preserves resource forks when copying.
cvs-unwrap
Extracts a tar file created by cvs-wrap.
cvs-wrap
Combines a directory into a single tar file.
cvswrappers
Checks an entire directory into CVS as a binary file.
DeRez
Displays the contents of a resource fork.
GetFilelnfo
Displays extended information about a file, including creator code and
file type.
Inresolve
Returns the target of a symbolic link.

Mac 0S X's Unix Development Tools | 23

MergePef
Merges code fragments from one file into another.
MvMac
Serves as an alternative to mv; preserves resource forks when copying.
pbhelpindexer
Creates an index of Apple’s API documentation for Project Builder.
pbprojectdump
Used by Project Builder’s FileMerge feature to produce more readable
diffs between file versions.
pbxcp
Supports Project Builder’s build system; an internal tool.
pbxhmapdump
Debugs header maps; also internal to Project Builder.
ResMerger .
Merges resource manager resource files. Project Builder’s build system
compiles .r files into .rsrc files using Rez, and if needed, Project Builder
merges multiple files using ResMerger.
Rez
Compiles resource files.
RezWack
Embeds resource and data forks in a file.
sdp
Converts a scripting definition file into another format.
SetFile
Sets HFS+ file attributes.
SplitForks
Splits the resource fork, moving it from a dual-forked file into a file
named ._pathname.
UnRezWack
Removes resource and data forks from a file.
WSMakeStubs
Generates web service stubs from a WSDL file.

Also available in the /Developer/Tools directory is a Perl script (uninstall-
devtools.pl), which can be used to uninstall the Developer Tools.

Macintosh Tools

You can use the following tools to work with Macintosh files and disks,
Macintosh applications, and the Macintosh clipboard.

24 | Chapter1: The Mac0SX Command Line

bless
Makes a system folder bootable.

diskutil
Manipulates disks and volumes.

ditto
Copies directories, and optionally includes resource forks for copied
files.

hdiutil

Manipulates disk images.
installer
Installs packages; command-line tool.

Isbom
Lists the contents of a Bill of Materials (bom) file, such as the .bom files
deposited under /Library/Receipts.
open
Opens a file or directory. See “open” under the “Additional Shell Com-
mands” section, earlier in this chapter.
pbcopy
Copies standard input to the clipboard.
pbpaste
Sends the contents of the clipboard to standard output.
screencapture
Takes a screenshot of a window or the screen.

serversetup
Configures network adapter properties. (Mac OS X Server only.)

Java Development Tools

You can use the following tools to develop, debug, and run Java applica-
tions.

appletviewer
A Java applet viewer.
jar
A Java archive tool.
java
The Java Virtual Machine.

javac
The Java compiler.

Mac 0S X's Unix Development Tools | 25

javadoc
A Java documentation generator.
javah
A tool that generates C and header files for JNI programming.
javap
A tool that disassembles class files and inspects member signatures.
jdb
The Java Debugger.
jikes
A fast open source Java compiler (installed as part of the Developer
Tools package).

Text Editing and Processing

You can use the following tools to edit, convert, and otherwise manipulate
text.

awk
A pattern-matching language for textual database files.
cut
A ool that selects columns for display.
emacs
GNU Emacs.
ex
A line editor underlying vi.
fmt
A tool that produces roughly uniform line length.
groff
A document formatting system that can render troff typesetting macros
to PostScript, HTML, and other formats.
join
A tool that merges different columns into a database.
paste
A utility that merges columns or switches their order.
pico
A simple text editor designed for use with the Pine mailer, Note that the
version of pine that ships with Mac OS X is much older than the current
release.
sed

A stream editor.

26 | Chapter1: The Mac0SX Command Line

texi2himl

A tool that converts Texinfo to HTML.
tr

A command that substitutes or deletes characters.
vi

A visual text editor.

Scripting and Shell Programming
The following commands include shells and programs useful in shell scripts.

echo
A command that repeats command-line arguments on standard output.
expr
A command that performs arithmetic and comparisons.
line
A command that reads a line of input.
lockfile
A command that makes sure that a file is accessed by only one script at
a time.

perl
The Practical Extraction and Report Language.
printf
A command that formats and prints command-line arguments.

sh
A standard Unix shell.

sleep
A command that causes a pause during processing.
tclsh
The Tool Command Language (Tcl) shell.
test
A command that tests a condition.
xargs
A command that reads arguments from standard input and passes them
to a command.

zsh
An enhanced Unix shell.

Mac 0S X's Unix Development Tools | 27

Working with Files and Directories
You can use the following tools to compare, copy, and examine files.
cat
Concatenates and displays files.
cd
Changes directory.
chflags
Changes file flags.
chmod
Changes access modes on files.
cmp
Compares two files, byte by byte.
comm
Compares two sorted files.
cp
Copies files.
diff
Compares two files, line by line.
diff3
Compares three files.
file
Determines a file’s type.
head
Shows the first few lines of a file.
less
Serves as an enhanced alternative to more.
In
Creates symbolic or hard links.

*a
o Symbolic and hard links are not the same as Carbon aliases
:s:\ that you create in the Finder (File -+ Make Alias). Unix pro-
* 94+ grams cannot follow Carbon aliases, but all Mac OS X appli-

" cations (Carbon, Cocoa, Classic, and Unix) can follow
symbolic or hard links.

28 | Chapter1: TheMac0SX Command Line

Is
Lists files or directories.

mkdir
Makes a new directory.

more
Displays files one screen at a time.

mv
Moves or renames files or directories.

patch
Merges a set of changes into a file.
pwd
Prints the working directory.
rcp
Insecurely copies a file to or from a remote machine. Use scp instead.
rm
Removes files.
rmdir
Removes directories.

scp
Secures alternative to rcp.

sdiff

Compares two files, side-by-side and line-by-line.
split

Splits files evenly.
tail

Shows the last few lines of a file.
vis

Displays nonprinting characters in a readable form.
unvis

Restores the output of vis to its original form.
wc

Counts lines, words, and characters.
zemp

Compares two compressed files, byte-by-byte.

zdiff

Compare two compressed files, line-by-line.

Mac 05 X's Unix Development Tools | 29

File Compression and Storage
The following tools will compress, decompress, and archive files.
compress

A tool that compresses files to free up space (use gzip instead).
cpio

A utility that copies archives in or out.

gnutar
The GNU version of tar; available only if you have installed the Devel-
oper Tools package.
gunzip
A tool that uncompresses a file that was compressed with gzip.
gzcat
A utility that displays contents of compressed files.
gzip
A tool that compresses a file with Lempel-Ziv encoding.
tar
A tape archive tool. GNU tar has more features and fewer limitations.

uncompress
A utility that expands compressed (.Z) files.

zcat
A ool that displays contents of compressed files.

Searching and Sorting

You can use the following tools to search and sort files.

egrep
An extended version of grep.
fgrep
A tool that searches files for literal words.
find
A utility that searches the system for filenames.
grep
A tool that searches files for text patterns.
locate
A faster version of find; however, it depends on a database that is peri-

odically updated by the weekly cron job in /etc/weekly. If the database is
out of date, find will be more accurate.

30 | Chapter1: The Mac0SXCommand Line

sort
A tool that sorts a file (use -n for numeric sorting, -u to eliminate dupli-
cates).
strings
A tool that searches binary files for text patterns.
uniq
A utility that reports or filters duplicate lines in a file.

zgrep
A tool that searches compressed files for text patterns.

Miscellaneous Tools

The following tools will help you perform such tasks as searching the online
documentation, switching user IDs, and controlling how programs run.

apropos
Locates commands by keyword.
clear
Clears the screen.
dc
Serves as a reverse-polish arbitrary precision calculator.
man
Gets information on a command.
nice
Changes a job’s priority.
nohup
Keeps a job running even if you log out.
passwd
Changes your password.
script
Produces a transcript of your login session.
su
Allows you to become the superuser. Since the root account is disabled
by default, you should use sudo instead.
sudo

Executes a command as another user. This tool is usually used to tem-
porarily gain superuser privileges.

Mac0S X's Unix Development Tools | 31

CHAPTER 2
Startup

The most striking difference between Mac OS X and other flavors of Unix is
in how Mac OS X handles the boot process. Gone are /etc/inittab, /etc/init.d,
and /etc/rc.local from traditional Unix systems. In their place is a BSD-like
startup sequence sandwiched between a Mach’ foundation and the Aqua
user interface.

This chapter describes the Mac OS X startup sequence, beginning with the
BootX loader and progressing to full multiuser mode, at which time the sys-
tem is ready to accept logins from normal users. The chapter also covers
custom startup items, network interface configuration, and Mac OS X’s
default cron jobs.

Booting Mac 0S X

When the computer is powered up, the firmware is in complete control.
After the firmware initializes the hardware, it hands off control to the BootX
loader, which bootstraps the kernel. After a trip into Mach, the control bub-
bles up into the BSD subsystem, and eventually into the Aqua user interface.

By default, Mac OS X boots graphically. If you’d like to see console mes-
sages as you boot, hold down 3-V as you start the computer. To boot in sin-
gle-user mode, hold down 8-S as you start the computer.

The BootX Loader

BootX is located in /System/Library/CoreServices. It draws the Apple logo on
the screen and proceeds to set up the kernel environment. BootX first looks
for kernel extensions (drivers, also known as kexts) that are cached in the

* Mach is a microkernel operating system developed at Carnegie Mellon University. The Mac OS
X kernel, xnu, is a hybrid of Mach and BSD.

32

mkext cache. If this cache does not exist, BootX loads only those extensions
in /System/Library/Extensions that have the OSBundleRequired key in their
Info.plist file. Each extension lives in a folder (ExtensionName.kext), and the
Info.plist file is an XML document that resides in its Contents subfolder.
Example 2-1 is an excerpt from the /System/Library/Extensions/System.kext/
Contents/Info.plist file.

Example 2-1. A portion of a kernel extension’s Info.plist file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
“http://www.apple.com/DTDs/Propertylist-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<!-- multiple keys and strings omitted -->
</dict>
</plist>

After the required drivers are loaded, BootX hands off control to the kernel
(/mach_kernel).

Initialization

The kernel first initializes all the data structures needed to support Mach
and BSD. Next, it initializes the I/O Kit, which connects the kernel with the
set of extensions that correspond to the machine’s hardware configuration.
Then, the kernel finds and mounts the root filesystem. The kernel next loads
mach_init, which starts Mach message handling. mach_init then launches
the BSD init process. In keeping with Unix conventions, init is process ID
(PID) 1, even though it was started second. mach_init is given PID 2, and its
parent PID is set to 1 (init’s PID).

The rc Scripts

The init process launches the /etc/rc.boot and /etc/rc shell scripts to start the
system. Both rc scripts (and all startup items) source the /fetc/rc.common
script, which sets the initial environment, defines some useful functions, and
loads the /etc/hostconfig file. /etc/hostconfig controls which system services
need to be started and defines such things as the AppleTalk hostname.
Example 2-2 is an excerpt from the hostconfig file.

Example 2-2. A portion of fetc/hostconfig

SSHSERVER=-YES-
WEBSERVER=-YES-
APPLETALK_HOSTNAME=*427269616€204a6570736T6ed5732043616d7075746572*

Booting Mac0SX | 33

This excerpt shows that sshd and httpd will be started on “Brian Jepson’s
Computer” (the decoded AppleTalk hostname) at startup. The AppleTalk
hostname is encoded as a sequence of hexadecimal bytes (for example,
42=B, 72=r, 69=i, 61=a, and 6e=n).

After rc.boot has loaded in values from /etc/rc.common, it determines
whether the system is booting from a CD. Next, rc.boot tests to see whether
the system is booting in single-user mode. If the system is neither in single-
user mode nor booting from a CD, then rc.boot performs a check of the file-
system (fsck). If the fsck fails, then rc.boot tries an fsck -y, which assumes a
“Yes” answer to all the questions that fsck asks. If that fails, the system
reboots (and may end up trying an fsck -y over and over again).

-,
il If you find yourself in an fsck loop, you should boot from the
“{ | Mac OS X installation CD. You can boot from a CD by hold-
* %8 ing down the C key at startup. When the Installer appears,

choose Disk Utlity from the Installer menu and use it to
inspect and repair the damaged disk.

If rc.boot succeeds, init drops into a shell (for single-user mode) or launches /etc/
rc (for installation or multiuser mode). In single-user mode, only the root user
may log in. In multiuser mode, the system is fully functional and ready to
accept logins from normal users.

If /etc/rc determines that the system is booting from a CD, it starts the Mac
OS X installation program. (If you booted from a CD in single-user mode,
you’ll get dropped into a shell and /etc/rc won’t get run.) Otherwise, /etc/rc
mounts local filesystems and starts kextd, the kernel extension daemon.
After that, it starts the Window Server and the update process (which flushes
the filesystem buffers every 30 seconds). Finally, /etc/rc enables the swap file,
sets the language for the system, and hands off control to /shin/
SystemStarter.

SystemStarter

SystemStarter examines /System/Library/Startupltems and /Library/
Startupltems for applications that should be started at boot time. /Library/
Startupltems contains items for locally installed applications; you can also
put your own custom startup items there. /System/Library/Startupltems con-
tains items for the system. You should not modify these or add your own
items here. Table 2-1 lists Mac OS X’s available startup items.

34 | Chapter2: Startup

What Is kextd?

The kernel boots with the minimum set of extensions needed to mount the
root filesystem on all supported hardware. Some of these extensions are not
needed, so /etc/rc starts the kextd daemon (/usr/libexec/kextd) to unload
unnecessary extensions. For example, the iPodDriver includes the
OSBundleRequired key to support booting from your iPod. If you don’t have
your iPod plugged in, kextd can safely unload that driver. The kextd daemon
is also responsible for loading and unloading extensions for the duration of

the system’s uptime.

Table 2-1. Mac OS X default startup items

item
Accounting

Apache
AppServices
AppleShare
AppleTalk
AuthServer
BIND
ConfigServer

CoreGraphics

CrashReporter

Cron
DirectoryServices
Disks

HeadlessStartup

Desription
Starts the acct daemon, which collects process accounting records.

Starts the Apache web server. Enable this with the WEBSERVER entry in
/etc/hostconfig or by turning on Web Sharing (System Preferences —
Sharing).

Starts the desktop database, input managers, and printing services.

Starts Apple file sharing. Enable this with the AFPSERVER entry in /et/
hostconfig or by tuming on File Sharing (System Preferences — Sharing).

Starts the AppleTalk protocol. Enable this with the APPLETALK entry in
fetc/hosteonfig.

Starts the authentication server. Enable this with the AUTHSERVER entry
in/etc/hostconfig.

Starts named, the Internet domain name server, if DNSSERVER is set to
-YES- in /etc/hostconfig.

An empty startup script that maintains compatibility with earlier versions
of Mac 05 X, where this script was used to configure the network.

Starts the font and window server.

Enables automatic crash report generation when an application crashes.
Enable this with the CRASHREPORTER entry in /etc/hostconfig or by
selecting Log crash information in the Crashes panel of the Console applica-
tion’s Preferences (the Console application is located in /Applications/
Uilities).

Starts the cron daemon.

Starts lookupd, a daemon through which Directory Services is accessed.
Mounts local filesystems.

Functions as a special startup routine used by headless servers, such as the
XServe. Mac 05 X Server only.

BootingMac0SX | 35

Table 2-1. Mac OS X default startup items (continued)
Item Desaription

IPAliases Sets up IP Aliasing (assigns multiple IP addresses to single physical
adapter). Mac 05 X Server only. Enable this with the IPALIASES entry in
/etc/hostconfig. See the IPAliases(5) manpage.

IPFailover Starts a service that allows a server to take over for another server in caseit
fails. Mac 05 X Server only.

IPServices Starts inetd and, optionally, the bootp service.

LDAP Starts slapd, the standalone LDAP daemon.

LoginWindow Does nothing except to note the point at which the system is ready to dis-
play the login window. This is a placeholder service,

mDNSResponder Starts the multicast DNS responder, which is used by Rendezvous for con-
figuration.

MySQOL Functions as a startup script for MySQL. Mac 0S X Server only. Enable this
with the MYSQL entry in /etc/hosteonfig.

NFS Starts the NFS client. The server s also started if Netinfo or /etc/exports has
been configured to export one or more filesystems.

NIS Starts the Network Information Service unless NTSDOMAIN is set to -NO-
in /etc/hostconfig.

NetInfo Starts Netinfo. If the NETINFOSERVER entry is set to - YES- in /et¢/

hostconfig, this will start up the nibindd daemon, which will start one o
more Netinfo servers. If the entry isset to - AUTOMATIC- (the default),
this will not start nibindd and will only start the local NetInfo server,

Network Configures network interfaces and the hostname. If TPFORWARDING is
enabled in /etc/hostconfig, this script also enables IP forwarding,

NetworkExtensions Loads various networking extensions.

NetworkTime Starts the NTP dlient. Enable this with the TIMESYNC entry in /etc/host-
config or with System Preferences — Date & Time — Network Time.

Portmap Starts the portmap daemon. Enable this with the RPCSERVER entry in
/fetc/hostconfig.

PrintingServices Starts the Common Unix Printing System (CUPS).

QuickTimeStreamingServer Starts the QuickTime Streaming Server. Mac 05 X Server only. Enable this
with the QTSSERVER entry in /etc/hostconfig.

SNMP Starts snmpd, the SNMP daemon. Mac 05 X Server only. Enable this with
the SNMPSERVER entry in /etc/hostconfig.

SSH Starts sshd. Enable this with the SSHSERVER entry in /etc/hostconfig or
by enabling remote login in System Preferences — Sharing.

Samba Starts the Samba service, which provides file services to Windows dlients.

SecurityServer Starts security services.

Sendmail Starts sendmail. Enable this with the MAILSERVER entry in /etc/hostcon-
fig.

SerialTerminalSupport Supports serial terminals for headless servers. Mac 05 X Server only. See

the SerialTerminalSupport script for configuration information.

36 | Chapter2: Startup

Table 2-1. Mac OS X default startup items (continued)

item Description

ServerManagerDaemon Starts the Server Manager daemon. Mac 05 X Server only. Enable this with
the SERVERMANAGERSERVER entry in /etc/hostconfig.

SystemlLog Starts syslogd.

SystemTuning Tunes the system based on details of your hardware configuration (such as
the amount of installed memory).

VPN Starts the VPN server. Mac 05 X Server only. Enable this with the
VPNSERVER entry in /etc/hostconfi.

Watchdog Starts the watchdog service, which monitors and restarts critical services
when they quit unexpectedly. See the watchdog(8) manpage. Mac 05 X
Server only.

The Login Window

Once SystemStarter is finished, control is returned to init, which launches
getty. In /etc/ttys, the console entry launches the Login Window (/System/
Library/CoreServices/loginwindow.app). At this point, the system is fully
functional and ready to accept logins.

Adding Startup Items

To automatically start applications, you have two choices: start them when
a user logs in, or start them when the system boots up. On most Unix sys-
tems, startup applications either reside in the /etc/rc.local script or the fetc/
init.d directory. Under Mac OS 9, you could add a startup item by putting
its alias in System Folder:Startup Items. Mac OS X has a different approach,
described in the following sections.

Login Preferences

To start an application each time you log in, use the Login Items panel of
System Preferences. This is good for user applications, such as Stickies or an
instant messenger program. For system daemons, you should set up a direc-
tory in /Library/Startupltems, as described in the next section.

Startup Items

If you compile and install a daemon, you’ll probably want it to start at boot
time. For example, MySQL will build out of the box on Mac OS X (you can
download it from http://www.mysql.com).

Adding Startup items | 37

A startup item is controlled by three things: a folder (such as /Library/
Startupltems/Myltem), a shell script with the same name as the directory
(such as Myltem), and a property list named StartupParameters.plist. The
shell script and the property list must appear at the top level of the startup
item’s folder. You can also create a Resources directory to hold localized
resources, but this is not mandatory.

To set up the MySQL startup item, create the directory /Library/
Startupltems/MySQL. Then, create two files in that directory, the startup
script MySQL and the property list StartupParameters.plist. The MySQL file
should be an executable since it is a shell script. After you set up these two
files as directed in the following sections, MySQL will be launched at each
boot.

The startup script

The startup script should be a shell script with StartService(),
StopService(), and RestartService() functions. The contents of /Library/
Startupltems/MySQL/MySQL are shown in Example 2-3. The function call
at the bottom of the script invokes the RunService() function from rc.
common, which in turn invokes StartService(), StopService(), or
RestartService(), depending on whether the script was invoked with an
argument of start, stop, or restart.

Example 2-3. A MySQL startup script
#!/bin/sh

Source common setup, including hostconfig.
#

. fetc/rc.common

StartService()

{
Don't start unless MySQL is enabled in /etc/hostconfig
if ["${MYSQL:=-NO-}" = "-YES-"]; then
ConsoleMessage "Starting MySQL"
/usr/local/mysql/bin/safe_mysqld --user=mysql &
fi
}

StopService()

ConsoleMessage "Stopping MySQL"
/ust/local/mysql/bin/mysqladmin shutdown
}

RestartService()

{
Don't restart unless MySQL is enabled in /etc/hostconfig

38 | Chapter2: Startup

Example 2-3. A MySQL startup script (continued)

if ["${MYSQL:=-NO-}" = "-YES-"]; then
ConsoleMessage "Restarting MySQL"
StopService
StartService

else
StopService

fi

}

RunService "$1"

If you are using MySQL version 4 (in beta as of this writing),
replace /usr/local/mysql/bin/safe_mysqld with Jusr/local/mysql/

Because it consults the settings of the $MYSQL environment variable, the star-
tup script won’t do anything unless you’ve enabled MySQL in the /etc/
hostconfig file. To do this, add the following line to /etc/hostconfig:

MYSQL=-YES-

Mac OS X does not recognize any special connections between hostconfig
entries and startup scripts. Instead, the startup script sources the /etc/rc.
common file, which in turn sources hostconfig. The directives in hostconfig
are merely environment variables, and the startup script checks the value of
the variables that control its behavior (in this case, $MYSQL).

You can manually start, stop, and restart MySQL by invoking this script
from the command line:
/Library/StartupItems/MySQL/MySQL start

/Library/StartupItems/MySQL/MySQL restart
/Library/StartupItems/MySQL/MySQL stop

The property list

The property list can be in XML or NeXT format, and the list contains
attributes that describe the item and determine its place in the startup
sequence. The NeXT format uses NeXTSTEP-style property lists, as shown
in Example 2-4.

Example 2-4. The MySQL startup parameters as a NeXT property list

{
Description = "MySQL";
Provides = ("MySQL");
Requires = ("Network");
OrderPreference = "Late";

}

Adding Startup Items | 39

Over time, Apple will probably phase out legacy formats such as NeXT prop-
erty lists, so it is best if you use XML property lists. The XML format adheres
to the PropertyList.dtd Document Type Definition (DTD). You can use your
favorite text editor or the Property List Editor (/Developer/Applications) to
create your own property list. Example 2-5 shows the property list in XML.

Example 2-5. The MySQL startup parameters as an XML property list

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist
SYSTEM "file://localhost/System/Library/DTDs/PropertylList.dtd">
<plist version="0.9">
<dict>
<key>Description</key>
<string>MySQL</string>
<key>Provides</key>
<array>
<string>MySQL</string>
</array>
<key>Requires</key>
<array>
¢string>Network</string>
</array>
<key>OrderPreference</key>
<string>Late</string>
</dict>
</plist>

The following list describes the various keys you can use in a startup param-
eters property list.

Description
This is a phrase that describes the item.

Provides
This is an array of services that the item provides (for example, Apache
provides Web Server). These services should be globally unique. In the
event that SystemStarter finds two items that provide the same service, it
will start the first one it finds.

Requires
This is an array of services that the item depends on. It should corre-
spond to another item’s Provides attribute. If a required service cannot
be started, the system won't start the item.

Uses
This is similar to Requires, but it is a weaker association. If
SystemStarter can find a matching service, it will start it. If it can’t, the
dependent item will still start.

40 | Chapter2: Startup

OrderPreference
The Requires and Uses attributes imply a particular order, in that depen-
dent items will be started after the services they depend on. You can
specify First, Early, None (the default), Late, or Last here. SystemStarter
will do its best to satisfy this preference, but dependency orders prevail.

Scheduling Tasks

Like other flavors of Unix, Mac OS X uses cron to schedule tasks for peri-
odic execution. Each user’s cron jobs are controlled by configuration files
that you can edit with crontab -e (to list the contents of the file, use crontab -

D).

Default cron Jobs

The global crontab file is contained in /etc/crontab. It includes three cron
jobs by default, which run the scripts contained in subdirectories of the /etc/
periodic directory: /etc/periodic/daily, /etc/periodic/weekly, and /etc/periodic/
monthly. Each of these directories contains one or more scripts:
/etc/periodic/daily/100.clean-logs
/etc/periodic/daily/500.daily

/etc/periodic/monthly/500.monthly
/etc/periodic/weekly/500.weekly

By default, /etc/crontab runs them in the wee hours of the night:

15 3 * * * root periodic daily
30 4**6 root periodic weekly
3051 % * root periodic monthly

So, if your Mac is not usually turned on at those times, you could either edit
the crontab file or remember to run them periodically using the following
syntax:

sudo periodic daily weekly monthly

As you’ll see in Chapter 3, it is vitally important that you run these jobs to
ensure that your local NetInfo database is backed up.

You should not modify these files, because they may be replaced by future
system updates. Instead, create a /etc/daily.local, /etc/weekly.local, or /Jetc/
monthly.local file to hold your site-specific cron jobs. The cron jobs are sim-
ply shell scripts that contain commands to be run as root. The local cron
jobs are invoked at the end of the 500.daily, 500.weekly, and 500.monthly
scripts found in the /etc/periodic subdirectory.

SchedulingTasks | 41

CHAPTER 3
Directory Services

A directory service manages information about users and resources, such as
printers and servers. It can manage this information for anything from a sin-
gle machine to an entire corporate network. The Directory Service architec-
ture in Mac OS X is called Open Directory. Open Directory encompasses
flat files (such as /etc/hosts), NetInfo (the legacy directory service brought
over from earlier versions of Mac OS X and NeXTSTEP), LDAPv3, and
other services through third-party plug-ins.

This chapter describes how to perform common configuration tasks, such as
adding a user or host on Mac OS X with the default configuration. If your
system administrator has configured your Macintosh to consult an external
directory server, some of these instructions may not work. If that’s the case,
you should ask your system administrator to make these kinds of changes
anyhow!

Understanding Directory Services

In Mac OS X 10.1.x and earlier, the system was configured to consult the
Netlnfo database for all directory information. If you needed to do some-
thing simple, such as adding a host, you couldn’t just add it to /etc/hosts and
be done with it. Instead, you had to use the NetInfo Manager (or NetInfo’s
command-line utilities) to add the host.

However, in Mac OS X 10.2 (Jaguar), Netlnfo functions more as a legacy
protocol. Instead of being a major player in the directory services world,
Netlnfo’s role has been reduced to that of the local directory database for
machines that are not participating in a neiwork-wide directory, such as
Active Directory or OpenLDAP. NetInfo is still present on Mac OS X sys-
tems, but you can perform most configuration tasks by editing the standard

)

Unix flat files. By default, Mac OS X 10.2 is configured to consult the local
directory (also known as the NetInfo database) for authentication, which
corresponds to /etc/passwd’ and /etc/group on other Unix systems. You can
override this setting with the Directory Access application. For more infor-
mation, see “Configuring Directory Services,” later in this chapter.

For users whose network configuration consists of an IP address, a default
gateway, and some DNS addresses, this default configuration should be fine.
You'll need to tap into Open Directory’s features for more advanced config-
urations, such as determining how a user can log into a workstation and find
their home directory, even when that directory is hosted on a shared server.

In order to work with Mac OS X’s Directory Services, you must first under-
stand the overall architecture, which is known as Open Directory. Directory
Services is the part of Mac OS X (and the open source Darwin operating sys-
tem) that implements this architecture. Figure 3-1 shows the relationship of
Directory Services to the rest of the operating system. On the top, server
processes, as well as the user’s desktop and applications, act as clients to
Directory Services, which delegates requests to a directory service plug-in
(see the “Configuring Directory Services” section, later in this chapter, for a
description of each plug-in).

Desktop | Serverservices | Applications
Directory Services
Plgini Plugin| Plugn} Puginj ...

Figure 3-1. The Directory Services architecture

Programming with Directory Services

As a programmer, you frequently need to deal with directory information,
whether you realize it or not. Your application uses Directory Services each
time it looks up a host entry, authenticates a password, or uses a printer.
The Open Directory architecture unifies what used to be a random collec-
tion of flat files in /etc. The good news is that the flat files still work. The
other good news is that there is a brave new world just beyond those flat
files. So, while all your old Unix code should work with the Open Directory
architecture, you should look for new ways to accomplish old tasks, espe-
cially if you can continue writing portable code.

* fetc/master.passwd is the shadow password file that actually contains the encrypted passwords.

Programming with Directory Services | 43

To get at directory information, Unix applications typically go through the
C library using such functions as gethostent(). Higher-level APIs, such as
Pluggable Authentication Modules (PAM) and Common Data Security
Architecture (CDSA), also use the C library. Figure 3-2 shows how this
works. The C library connects to lookupd, a thin shim that is the doorway to
the DirectoryService daemon. The DirectoryService daemon consults the
available plug-ins until it finds the one that can answer the directory query.

splton
PAM M@sA Clibrary
lookupd
Directory Services

Figure 3-2. Accessing Directory Services

Working with Passwords

One possible route to user and password information is through the getpw*
family of functions. However, those functions are not ideal for working with
systems like Mac OS X that support multiple directories (flat files, NetInfo,
LDAP, etc.). In particular, getpwnam() is not guaranteed to return a crypted
password if the system has been configured to use another scheme, such as
MD5 passwords. You should use the PAM API instead. PAM is included
with, or available for, many flavors of Unix, so you can use it to write porta-
ble code. For more information on PAM, see the pam(8) manpage.

Configuring Directory Services

In order to configure Directory Services, use the Directory Access applica-
tion (/Application/Utilities), shown in Figure 3-3. You can enable or disable
various directory service plug-ins, or change their configuration.

Directory Access supports the following plug-ins:

AppleTalk
This is the ultimate Mac OS legacy protocol. AppleTalk was the origi-
nal networking protocol supported by Mac OS versions prior to Mac OS
X. Linux and the server editions of Windows also support AppleTalk.

44 | Chapter3: DirectoryServices

' Enable | Name | Version fck

- ™ BSD Configuration Files 1.0
. LDAPV2 L5
| ® LpAPv3 1.5
. [Netinfo 1.5
® Rendezvous 1.0
T 1.0
- ™ sms 1.0

S U UTT———

Figure 3-3. The Directory Access application shows the available plug-ins

BSD configuration files
These are flat files located in the /etc directory, such as hosts, exports,
and services.

By default, the checkboxes for NetInfo and BSD Configura-

tion Files are off. For the BSD Configuration Files, the check-

| box controls whether the files are consulted for Directory

Service lookups. Netlnfo is a little more complicated. If the

checkbox is off, NetInfo uses the local domain but does not

consult network-based Netlnfo domains. If the checkbox is

on, NetInfo will also look for and potentially use any net-
work-based domains that it finds.

LDAPv2

This is a version of LDAP that Mac OS X can access (read-only).
LDAPv3

This is a newer version of LDAP, which Mac OS X fully supports (read-

write). This is the same version of LDAP used by Microsoft’s Active
Directory and Novell’s NDS. Mac OS X Server includes both the client

Configuring Directory Services | 45

and server components of OpenLDAP (http://www.openldap.org), an
Open Source LDAPv3 implementation. The client version of Jaguar
includes only the OpenLDAP client components.

NetInfo
This is a legacy Directory Services protocol introduced in NeXTSTEP.

L)

by NetInfo and LDAP both use the same data store, which is
:;{ contained in /var/db/netinfo/. The data store is a collection of

s embedded database files.

Rendezvous
This is Apple’s zero-configuration protocol for discovering file sharing,
printers, and other network services. It uses a peer-to-peer approach to
announce and discover services automatically as devices join a network.

SLP
This is the Service Location Protocol, which supports file and print ser-
vices over IP.

SMB
This is the Server Message Block protocol, which is Microsoft’s proto-
col for file and print services.

Under the Services tab, everything except Netlnfo and BSD Configuration
Files is enabled by default. However, if you go to the Authentication tab
(Figure 3-4), you'll see that NetInfo is the sole service in charge of authenti-
cation (which is handled by /etc/passwd and /etc/group on other Unix sys-
tems).

By default, the Authentication tab is set to Automatic. You can set the
Search popup to any of the following:

Automatic
This is the default, which searches (in order): the local NetInfo direc-
tory, a shared NetInfo domain, and a shared LDAPv3 domain.

Local directory
This searches only the local NetInfo directory.

Custom path
This allows you to use BSD flat files (/etc/passwd and /etc/group). After
you select Custom path from the pop up, click Add and select /BSD
Configuration Files/Local.

46 | Chapter3: DirectoryServices

Choase where to search for user authentication information.

Search: | Automatic]

| Directory Node
| /Netinfo/root

@ Click the lock to prevent further changes. £ Revert) Apply 3

Figure 3-4. The Directory Access Authentication tab

After you have changed the Search setting, click Apply. The Contact tab is
set up identically to the Authentication tab and is used by programs that
search Directory Services for contact information (office locations, phone
numbers, full names, etc.).

Note that enabling BSD flat files does not copy or change the
i information in the local directory (the NetInfo database). If
you want to rely only on flat files, you would need to remove

all the entries from the local directory and add them to /etc/
master.passwd. This would mean you could no longer use
the GUI tools to manage those accounts.

Netinfo

The Netlnfo directory is organized hierarchically, starting from the root,
which, like a filesystem’s root, is called /. However, this is not meant to sug-
gest that there is a corresponding directory or file for each Netlnfo entry.
Instead, the NetInfo data is stored in a collection of files under /var/db/
netinfo.

Netinfo | 47

You can browse or modify the Netlnfo database using NetInfo Manager,
which is located in /Applications/Utilities. Figure 3-5 shows NetInfo Man-
ager displaying the properties of the mysql user.

New Duplicate Delet Open Parent Find
=3 :

afpuser_aliases
aliases

config

groups
machines
mounts
networks
printers
protocols

pcs
rvi

mysql

v

¥F¥F T YVYVY

¥ ¥y ¥ 7y Y¥F ¥ YT VY

realname MySQL Server
name mysql
passwd .
uid 74
| writers_passwd mysql

= change 0
; | shell Jdev/null
home fdev/null

-

@ Click the lock to prevent further changes.

Figure 3-5. Browsing NetInfo

Netinfo Utilities

This chapter demonstrates four NetInfo utilities: nicl, nireport, nidump, and
niload. Table 3-1 describes these and other NetInfo utilities.

48 | Chapter3: Directory Services

Table 3-1. Netinfo tools

Tool Desaiption

nic! Provides a command-line interface to Netinfo.

nidump Extracts flat file format data (such as /etc/passwd) from Netinfo.
nifind Finds a NetInfo directory.

nigrep Performs a regular expression search on Netinfo.

nitoad Loads flat file format data (such as /etc/passwd) into Netinfo.
nireport Prints tables from Netinfo.

The nidump and nireport utilities display the contents of the Netlnfo data-
base. niload loads the contents of flat files—such as /etc/passwd or /etc/
hosts—into NetInfo. niutil directly manipulates the NetInfo database; it’s
the command-line equivalent of Netlnfo Manager. To modify the NetInfo
database, use sudo with these commands or first log in as the root user. Net-
Info commands that can be performed as a normal user are shown with the
% prompt. If you need superuser privileges, the # prompt is shown. (Because
the user can modify the shell prompt, be careful using this as a visual cue on
a real system.)

Unlike other ni* utilities, nicl acts directly on the database files. Conse-
quently, you can use nicl to modify the local directory even when Directory
Services is not running (such as when you boot into single-user mode).

When you use niload, nicl, or niutil, you are making poten-
‘-@ tially dangerous changes to your system. But even if you

trash the NetInfo database with reckless usage of niutil and
niload, you can restore the NetInfo database from your last
backup. For more details, see the “Restoring the Netlnfo
Database” section, later in this chapter. To back up the local
NetInfo database, use the command:

nidump -r / -t localhost/local > backup.nidump

Netinfo and Mac OS X Server

Mac OS X Server includes a graphical utility, Server Settings, shown in
Figure 3-6, which handles the tasks described in this chapter.

Unfortunately, Mac OS X (the client version) does not include this utility,
but the instructions in this chapter will help you accomplish the same
things. You can also use the instructions in this chapter if you are connect-
ing remotely through SSH to a Mac OS X Server.

Netinfo Utilities | 49

Server Settings Fle Edit Favorites Window Help

Figure 3-6. Mac OS X Server’s Server Settings utility

Netinfo Command Reference

This section provides an overview of the Netlnfo command-line utilities
used in this chapter. The following sections, “Managing Groups” and “Man-
aging Users and Passwords,” demonstrate how to use nicl, nireport, nidump,
and niload. For more details on these or other Netlnfo utilities, see their
respective manpages.

nidump

Syntax

nidump [-T timeout] (-r directory|format) [-t] domain

Description

You can dump Netlnfo information in a flat file format (such as the /etc/hosts
format) or in a raw format that uses a C-like syntax:

{
"name" = ("localhost");
"ip_address" = ("127.0.0.1");
"serves" = { "./local");
}
Options
-T timeout

Specifies a timeout in seconds.

-t
Treats the domain as a tagged domain, which includes a machine name and a
tagged NetInfo database. For example, abbot/local refers to the local NetInfo
domain of the machine named abbot.

50 | Chapter3: DirectoryServices

-r directory
Dumps the directory in raw format. Directory should be a path to a NetInfo
directory, such as /users/root or /machines.
format
Specifies a format corresponding to a Unix flat file of the same name. Can be
one of: aliases, bootptab, bootparams, ethers, exports, fstab, group, hosts,
networks, passwd, printcap, protocols, resolv.conf, rpc, services, or mountmaps.
domain
Specifies a NetInfo domain. For standalone machines, use a dot (.), which
refers to the local domain.

nireport

Syntax
nireport [-T timeout] [-t] domain directory [property ...]

Description

You can list all NetInfo groups by using the nireport utility. To use nireport, use
the following syntax:

Options
-T timeout
Specifies a timeout in seconds.
-t
Treats the domain as a tagged domain, which includes a machine name and a
tagged Netlnfo database,
domain
Specifies a NetInfo domain.

directory
Denotes a path to a NetInfo directory.

property ...
Specifies one or more NetInfo properties. For example, each user listed in the
fusers directory has name, passwd, uid, and gid properties (as well as a few
other properties). Every directory has a name property that corresponds to
the directory name. For example, the /machines directory’s name property is
machines.

You can use nireport to list any portion of the NetInfo directory. For example, to
list the top-level directory, specify the local domain, the / directory, and the name
property, as in nireport . / name.

nireport | 51

niload

Syntax

niload [-v] [-T timeout] [(-d|-m)] [(-p|-P password)]
[-u user] {-r directory|format} [-t] domain

Description

niload reads the Unix flat file format from standard input and loads it into the
NetInfo database.

Options

-V

Selects verbose mode.

-T timeout

-d

P

Specifies a timeout in seconds.

Specifies that if a duplicate entry already exists, NetInfo deletes that entry
before adding the new one. This can cause you to lose data if NetInfo is
tracking information that isn’t represented in the flat file. For example, if you
dump the /users directory to a flat passwd file format and load it back in with
niload -d, you will lose the picture, hint, and sharedDir properties for every
user on your system, because the passwd file does not have a field for those
properties. Most of the time, the -m option is what you want.

Specifies that if a duplicate entry already exists, niload will merge the
changes. So, if you dump the /users directory to a flat passwd file format,
change a user’s shell, and load that file back in with niload, NetInfo will keep
the old shell. If you use the -m option, Netlnfo will accept the new shell
without the destructive side effects of the -d option.

Prompt for a password. You can use this instead of prefixing the command
with sudo.

-P password

Use the specified password.

If your shell history file is enabled, the -P option presents a
: security risk, since the password will be stored, along with

the history of other shell commands. It is best to avoid using
this option.

-U User

Use the specified user’s identity when running the command. You’ll be
prompted for a password.

52

| Chapter3: Directory Services

-t
Treats the domain as a tagged domain, which includes a machine name and a
tagged Netlnfo database.

domain
Specifies a NetInfo domain.

directory
Denotes a path to a NetInfo directory.

format
Specifies a format corresponding to a Unix flat file of the same name. Can be
one of the following: aliases, bootptab, bootparams, exports, fstab, group,
hosts, networks, passwd, printcap, protocols, rpc, or services.

nicl

Syntax

nicl [options] datasource [command)

Description

Use nicl to modify entries in the NetInfo database. You can manipulate directo-
ries and properties with nicl. The datasource may be the path to a Netlnfo
directory (such as /) or the filesystem path of a NetInfo database (you must use
the -raw option for this). Use -raw to work directly with the Netlnfo database,
such as /var/db/netinfoflocal.nidb. This is useful in cases when the NetInfo daemon
is down (such as when you boot into single-user mode).

Options
-C
Create a new data source.
P
Prompt for a password. You can use this instead of prefixing the command
with sudo.
-P password
Use the specified password.
-q
Be quiet.
-raw
Indicates that the datasource is a filesystem path to a NetInfo database.
-ro
Open datasource as read-only.
-t

Treats the domain as a tagged domain, which includes a machine name and a
tagged Netlnfo database.

nid | 53

-u user
Use the specified user’s identity when running the command. You'll be
prompted for a password.
-v
Be verbose.
-x500
Use X.500 names (see the nicl manpage for more details).

Commands

-append path key val ...
Appends a value to an existing property. The property is created if it does not
already exist.

-copy path newparent
Copies the specified path to a new parent path.

-create path [key [val ...]]
Creates a NetInfo directory specified by path. See the “Creating a User with
nicl” section, later in this chapter, for a complete example.

-delete path [key [val ...]]
Destroys the specified path and all its contents. If you specify a key and/or
value, only the specified key is deleted. For an example, see the “Deleting a
Group” section, later in this chapter.

-domainname
Prints the NetInfo domain name of datascurce.

-flush
Flushes the directory cache.

-insert path key val index
Operates like -append, but instead of placing the value at the end, it inserts it
at the specified index.

-list path [key ...]
Lists all the NetInfo directories in the specified path. For example, to list all
users, use nicl / -list /users.

-merge path key val ...
Operates like -append, but if the value already exists, it is not duplicated. See
the “Adding Users to a Group” section, later in this chapter.

-move path newparent
Moves the specified path to a new parent path.

-read path [key ...]
Displays all the properties of the specified path. For example, to see root’s
properties, use nicl / -read /usersfroot.

-search arguments
Performs a search within the Netlnfo database. For complete details, see the
nicl manpage.

54 | Chapter3: DirectoryServices

-rename path oldkey newkey
Renames a property.

-resync
Resynchronizes NetInfo.

-rparent

Prints the NetInfo parent of datasource.

-statistics
Displays Netlnfo server statistics.

Managing Groups

Netlnfo stores information about groups in its /groups directory. This is dif-
ferent from the /etc/group file, which is consulted only in single-user mode.

To list all of the group IDs (GIDs) and group names for the local domain,
invoke nireport with the NetInfo domain (., the local domain), the directory
(/groups), and the properties you want to inspect—in this case, gid and

name:
% nireport . /groups gid name
-2 nobody
-1 nogroup
] wheel
1 daemon
2 kmem
3 sys
4 tty
5 operator
6 mail
7 bin
20 staff
25 smmsp
31 guest
45 utmp
66 uucp
68 dialer
69 network
70 WlW
74 mysql
75 sshd
80 admin
99 unknown

Although the flat file format is called group (after the /etc/
group file}, the NetInfo group directory is /groups. If you for-
s‘ get that last s, NetInfo will look for the wrong directory.

Managing Groups

| 55

Creating a Group with niload

The niload utility can be used to read the flat file format used by /etc/group
(name:password:gid:members). To add a new group, you can create a file that
adheres to that format, and load it with niload. For ad hoc work, you can
use a here document rather than a separate file:

niload group . <<EOF

? writers:*:1001:

? EOF

Here Documents

A here document is a shell quoting syntax that allows you to send data to
standard input as though it had come in from a file. You can use this syntax
interactively from the command line or in a shell script. The EOF tag, shown
in the previous example, can be any text string. The here document starts
with <<STRING and ends when STRING appears on a line by itself. For example,
you can sort a bunch of words with here documents. (The ? character is sup-
plied by the shell to let you know it is expecting input.)

% sort <<WORDS

? gamma

? beta

? alpha

? omega

? WORDS

alpha

beta

gamma

omega

Creating a Group with nicl

To create a group with nicl, you’ll need to create a directory under /groups
and set the gid and passwd properties. If you want a password, it must be
encrypted with crypt(). If you don’t want a group password, use an aster-
isk instead. (Be sure to quote the * so that the shell does not attempt to
expand it.) The following creates a group named writers as GID 5005 with
no password and no members:

nicl / create /groups/writers gid 5005
nicl / create /groups/writers passwd '*'

56 | Chapter3: Directory Services

Adding Users to a Group

You can add users to the group by appending values to the users property
with nicl’s -merge switch at the command line (or by using the merge com-
mand interactively). If the users property does not exist, nicl creates it. If the
users are already part of the group, they are not added to the list (contrast
this with the -append command, which can result in the same user being
added more than once if the command is invoked multiple times).

nicl / -merge /groups/writers users bjepson rothman

oA
) To give someone administrative privileges, add that user to
‘a: the admin group (/groups/admin). This gives him or her the
* 94 ability to use sudo and install software that requires such
" privileges.

Listing Groups with nidump

Use nidump to confirm that the new group was created correctly. To list
groups with nidump, pass in the format (in this case, the group file) and the
domain (., the local domain).

% nidump group . | grep writers

writers:*:5005:bjepson, rothman
Because you can use nireport to dump any NetInfo directory, you could also
use it to see this information:

% nireport . /groups name passwd gid users | grep writers
writers * 5005 bjepson,rothman

Deleting a Group

To delete a group, use nicl’s -delete switch. Be careful with this switch, since
it will delete everything in and below the specified NetInfo directory:

nicl / -delete /groups/writers

Managing Users and Passwords

The NetInfo equivalent of the passwd file resides under the /users portion of
the Netlnfo directory. Mac OS X uses /etc/master.passwd for storing
encrypted passwords. That master.passwd file is called the shadow password
file because it shadows the other, nonsensitive information contained in the
letc/passwd file. Only the root user can read the shadow password file. Non-
privileged users can use the regular passwd file to discover other informa-
tion, such as a user’s full name or home directory.

Managing Users and Passwords | 57

The /etc/passwd and /etc/master.passwd files are consulted only while the
system is in single-user mode, or if the system has been reconfigured to use
BSD Configuration Files (see the “Configuring Directory Services” section,
earlier in this chapter). To add a normal user to your system, you should use
System Preferences —+ Accounts. However, if you want to bulk-load NetInfo
with many users or create a user while logged in over ssh, you can use nicl or
niload.

You can list all users with the nireport utility. Supply the NetInfo domain (., the
local domain), the directory (/users), and the properties you want to inspect
(uid, name, home, realname, and shell):

% nireport . /users uid name home realname shell

-2 nobody /dev/null Unprivileged User /dev/null
] root /var/root System Administrator /bin/tcsh
1 daemon /var/root System Services /dev/null
99 unknown /dev/null Unknown User /dev/null
70 Wiw /Library/WebServer World Wide Web Server /dev/null

Creating a User with niload

The niload utility understands the flat file format used by /etc/passwd (name:
password:uid:gid:class:change:expire:gecos:home_dir:shell). See the
passwd(5) manpage for a description of each field. To add a new user, cre-
ate a file that adheres to that format and load it with niload. You can use a
here document rather than a separate file. This example creates a user for
Ernest Rothman with a UID of 701 and membership in the staff (GID 20)
group:
niload passwd . <<EOF

? rothman:*:701:20::0:0:Ernest Rothman:/Users/rothman:/bin/tcsh
? EOF

As you can see from this example, we set the password field to *, which dis-
ables logins for that account. To set the password, we’ll use the passwd com-
mand to set it:

passwd rothman

Changing password for rothman.

New password: *#**kikk
Retype new password: *h&&kkks

If you niload a user that already exists, that user will not be overwritten or
changed in any way. You should delete the user with nicl first (see the
“Deleting a Group” section, earlier in this chapter). Before the user can log
in, you must create his home directory (see the “Creating a User’s Home
Directory” section, later in this chapter).

58 | (Chapter3: DirectoryServices

Creating a User with nid

To create a user with nicl, you'll need to create a directory under /users, and
set the uid, gid, shell, realname, and home properties. The following code
creates the same user shown in the previous section, “Creating a User with
niload.”

nicl / -create /users/rothman uid 701

nicl / -create /users/rothman gid 20

nicl / -create /users/rothman shell /bin/tcsh

nicl / -create /users/rothman home /Users/rothman

nicl / -create /users/rothman realname "Ernest Rothman”
nicl / -create /users/rothman passwd *

After you create the user, you should set the password as shown in the previ-
ous section.

Creating a User’s Home Directory

One thing that NetInfo can’t do for you is create the user’s home directory.
Mac OS X keeps a skeleton directory under the /System/Library/User
Template directory. If you look in this directory, you’ll see localized versions
of a user’s home directory. To copy the localized English version of the
home directory, use the ditto command:

ditto /System/Library/User\ Template/English.lproj /Users/rothman

Then, use chown to recursively set the ownership of the home directory and
all its contents (make sure you set the group to a group of which the user is a
member):

chown -R rothman:staff /Users/rothman

This change makes the new user the owner of his home directory and all its
contents.

Modifying a User

You can change a user’s properties by deleting a property with -delete and
adding it again with -create. For example, to change rothman’s shell to bash,
use:

nicl / -delete /users/rothman shell
nicl / -create fusers/rothman shell /bin/bash

L

You can also modify most user settings with System Prefer-
ences —+ Accounts.

Managing Users and Passwords | 59

Listing Users with nidump

Use nidump to confirm that rothman was added successfully. To list users
with nidump, pass in the format (in this case, the passwd file) and the
domain (use . for the local domain):

% nidump passwd . | grep rothman
rothman:nIhowm2p0OBGsE:701:20::0:0:Exnest Rothman:/Users/rothman:/bin/tcsh

Deleting a User

To delete a user, use nicl’s -delete switch. Since -delete recursively deletes
everything under the specified directory, use this option with caution:

nicl / -delete /users/rothman

If you want to also delete that user’s home directory, you will have to do it
manually, using rm -r.

Managing Hostnames and IP
Addresses

Mac OS X 10.1 (and earlier versions of Mac OS X) only consulted /etc/hosts in
single-user mode and stored hostname/IP address mappings in the /machines
portion of the NetInfo database. As of Mac OS X 10.2, you can use the /etc/
hosts file to map hostnames to IP addresses. For example, the following
entry would map the hostname xyzzy to 192.168.0.1:

192.168.0.1 xyzzy

Creating a Host with niload

If you are using Mac OS X 10.1.5 (or an earlier version of Mac OS X), you'll
need to use NetInfo to maintain the hosts database. The niload utility under-
stands the flat file format used by /etc/hosts (ip_address:name). See the
hosts(5) manpage for a description of each field. To add a new host, create a
file using that format and load it with niload. This example uses a here docu-
ment instead of a separate file to add the host xyzzy:

niload hosts . <<EOF

? 192.168.0.1 xyzzy

? EOF
If you add an entry that already exists, it will not be changed or overwritten.
Instead, niload will silently ignore your command. (To override this behav-
ior, see the -m option under “niload” in the “Netlnfo Command Reference”
section, earlier in this chapter.)

60 | Chapter3: DirectoryServices

Exporting Directories with NFS

Mac OS X 10.1 (and earlier versions of Mac OS X) stored NFS exports in the
lexports portion of the NetInfo directory. As of Mac OS X 10.2, however,
you can use the /etc/exports file. For example, the following line exports the
[Users directory to two hosts (192.168.0.134 and 192.168.0.106):

/Users -ro -mapall=ncbody 192.168.0.134 192.168.0.106

The NFS server will start automatically at boot time if there are any exports
in the NetInfo database. After you've set up your exports, you can reboot,
and NFS should start automatically. NFS options supported by Mac OS X
include the following:

-maproot=user
Specifies that the remote root user should be mapped to the specified
user. You may specify either a username or numeric user ID.
-maproot=user: [group| :group...]]
Specifies that the remote root user should be mapped to the specified
user with the specified group credentials. If you include the colon with
no groups, as in -maproot=username:, it means the remote user should
have no group credentials. You may specify a username or numeric user
ID for user and a group name or numeric group ID for group.

-mapall=user
Specifies that all remote users should be mapped to the specified user.
-mapall=user: [group| :group...]]
Specifies that all remote users should be mapped to the specified user
with the specified group credentials. If you include the colon with no
groups, as in mapall=username:, it specifies that the remote user should
be given no group credentials.

-kerb
Uses a Kerberos authentication server to authenticate and map client
credentials.

-ro
Exports the file system read-only. The synonym -o is also supported.

Flat Files and Their Netinfo
Counterparts

As was mentioned earlier, NetInfo managed information for several flat files
in earlier releases of Mac OS X, including /etc/printcap, /etc/mail/aliases, fetc/
protocols, and /etc/services. For a complete list of known flat file formats, see
the nidump and niload manpages.

Flat Files and Their Netinfo Counterparts | 61

Although you can edit these flat files directly as you would on any other
Unix system, you can also use NetInfo to manage this information. You can
use niload with a supported flat file format to add entries to Netlnfo, or you
can use nicl or NetInfo Manager to directly manipulate the entries. Table 3-2
lists each flat file, the corresponding portion of the NetInfo directory, and
important properties associated with each entry. See the netinfo(5) manpage
for complete details. Properties marked with (list) can take multiple values.
(For an example, see the “Adding Users to a Group” section, earlier in this
chapter).

The “Wired into Directory Services?” column in Table 3-2 indicates whether
Directory Services will consult the flat file when the BSD configuration files
plug-in is enabled. In some cases, an operating system daemon may bypass
Directory Services and consult a flat file, and Directory Services then has no
knowledge of the flat file. For example, nfsd can consult either Directory Ser-
vices or /etc/exports, but if it uses the flat file, it is consulting it directly and is
not going through Directory Services.

Table 3-2. Flat files and their NetInfo counterparts

Netinfo Wired into
Flatfile directory Important properties Directory Services?
fetc/exports fexports name, clients (list), opts (list) No
fetc/fstab /mounts name, dir, type, opts (list), passno, freq Yes
fetc/group /groups name, passwd, gid, users (list) Yes
Jetc/hosts /machines jp_address, name (list) Yes
/etc/mail/aliases /faliases name, members (list) No
fetc/networks /networks name (list), address No
fetc/passwd, fete/ /users name, passwd, uid, gid, realname, home, shell Yes
master.passwd
/fetc/printcap /printers narme, and various printcap properties (see the No
printcap(5) manpage)
/etc/protocols /protocols name (list), number No
Jetc/tpe /ipes name (list), number No
fetdfserves _fserices___name ist), port, protoco i) No

Restoring the Netinfo Database

If the NetInfo database is damaged, boot into single-user mode by holding
down 8-S as the system starts up. Next, check to see if you have a backup of
the NetInfo database. The /etc/daily cron job backs up the NetInfo database
each time it is run. You can find the backup in /var/backups/local.nidump. If
you don’t have a backup, you won’t be able to restore the NetInfo settings.

62 | Chapter3: Directory Services

The local.nidump file is overwritten each time the cron job runs, so make
sure you back it up regularly (preferably to some form of removable media).

If your computer is generally not turned on at 3:15 a.m. (the

El default time for the daily cron job), you’ll never get a backup

of your Netlnfo database. You can solve this problem by
editing /etc/crontab to run this job at a different time, or to
run the job periodically with the command sudo periodic
daily. See the “Default cron Jobs” section in Chapter 2 for
more details.

After the system boots in single-user mode, you should:

1.
2,

10.

11.

Log in as the root user.

Fix any filesystem errors:
/sbin/fsck -y

. Mount the root filesystem as read/write:

/sbin/mount -uw /

. Change directories and go to the NetInfo database directory:

ed /var/db/netinfo/

. Move the database out of the way and give it a different name:

mv local.nidb/ local.nidb.broken

. Switch directories and go to the Startupltems directory:

cd /System/Library/StartupItems

. Start the network:

./Network/Network start

. Start the port mapper, since NetInfo depends on it. Ignore any warn-

ings about a missing NetInfo database:
./Portmap/Portmap start

. Start NetInfo. Since it has to rebuild the NetInfo database, this may take

several minutes:

./DirectoryServices/DirectoryServices start

Load the backup into NetInfo:

/usx/bin/niload -d -r / . < /var/backups/local.nidump

Create the .AppleSetupDone file so that the Setup Assistant does not
appear when you reboot:

touch /var/db/.AppleSetupDone

After you have restored the Netlnfo database, reboot the system with the
reboot command.

Restoring the Netinfo Database | 63

PART Il
Building Applications

Although Apple’s C compiler is based on the GNU Compiler Collection
(GCCQ), there are important differences between compiling and linking on
the Mac OS X and on other platforms. This part of the book describes these
differences and explains how you can package applications for Mac OS X.
Chapters in this part include:

* Chapter 4, Compiling Source Code
* Chapter S, Libraries, Headers, and Frameworks
* Chapter 6, Creating and Installing Packages

CHAPTER 4
Compiling Source Code

The Mac OS X Developer Tools are available from Apple and provide a
development environment that will be familiar to any Unix developer who
works with command-line compilers. For details about obtaining these
tools, see the “Developer Tools” section in the Preface. The Developer Tools
include all sorts of other. goodies, including an advanced Integrated Devel-
opment Environment (IDE), but coverage of those tools is beyond the scope
and intent of this book. To learn more about the Developer Tools, you can
see /Developer/Documentation/DeveloperTools/devtools.html. You can also
learn how to use Project Builder and Interface Builder and how to program
Cocoa applications with Objective-C in Learning Cocoa with Objective-C
(O’Reilly) and Building Cocoa Applications: A Step-by-Step Guide (O’Reilly).

The C compiler that comes with the Developer Tools is based on the Free
Software Foundation’s GNU Compiler Collection, or GCC. Apple’s modifi-
cations to GCC include the addition of Objective-C to the compiler suite, as
well as various modifications to deal with the Darwin operating system. The
development environment in Mac OS X includes:

AppleScript
This is an English-like language used to script applications and the oper-
ating system. AppleScript is installed as part of the Mac OS X operating
system and does not require the Developer Tools package.

AppleScript Studio
This is a high-level development environment based on AppleScript that
allows you to build GUI applications by hooking AppleScript into the
Cocoa frameworks. AppleScript Studio is installed along with the Devel-
oper Tools package.

Compilers

These compilers are based on GCC and provide support for C, C++,
Objective-C, Objective-C++, and assembly.

67

Compiler Tools
These include the Mac OS X Mach-O GNU-based assemblers, Mach-O
static link editor, Mach-O dynamic link editor, and Mach-O object file
tools, such as nm and otool.

Documentation
There is extensive documentation for the Apple Developer Tools (pro-
vided by Apple). Available in both HTML and PDF formats, the devel-
oper documentation can be found in /Developer/Documentation. The
documents are also available online from the Apple Developer Connec-
tion (ADC) web site (http://connect.apple.com).

o You can also access the documentation for GCC with your
f‘.‘. . web browser by going to /Developer/Documentation/

&' DeveloperTools/Compiler/CompilerTOC. html.

Debugger
The Apple debugger is based on GNU gdb.

Miscellaneous Tools
These include traditional development tools, such as GNU make and
GNU libtool, graphical and command-line performance tools, Project
Builder for WebObjects (Mac OS X Server), and an extensive set of Java
development tools.

Project Builder
This is an integrated development environment for Mac OS X that sup-
ports Cocoa and Carbon programming with C, C++, Objective-C, and
Java.

Interface Builder

This is a graphical user interface editor for Cocoa and Carbon applica-
tions.

We will not address the complete Mac OS X development suite in this chap-
ter. Instead, we will focus on the command-line development tools and how
they differ from the implementations on other Unix platforms.

Java programmers will find that the Mac OS X command-line Java tools (see
“Java Development Tools” in Chapter 1) behave as they do under Unix and
Linux.

Perl programmers coming from previous Macintosh systems will find that
Mac OS X does not use MacPerl (http://www.macperl.com), but instead, uses
the standard Unix build of the core Perl distribution (http:/www.perl.org).

68 | Chapterd: Compiling Source Code

Compiler Differences

GCC is supported on a wide range of platforms and is familiar to most Unix
developers. A natural consequence of this is that most Unix developers will
find a familiar development environment in Mac OS X. There are, however,
some important differences.

One difference that experienced GCC users may notice, particularly if they
have dealt with a lot of mathematical and scientific programming, is that
Mac OS X’s Developer Tools do not include FORTRAN. However, the Fink
distribution (http://fink.sourceforge.net) includes g77, the GNU FORTRAN
'77 compiler. Also, the Darwin archive includes the source code for g77,
which you can use to compile FORTRAN code. For more information on
the Darwin CVS archive, see Chapter 7.

o,

Mac OS X’s C compiler contains a number of Mac OS X-spe-
cific features that have not been folded into the main GCC
a' distribution. (It is up to the Free Software Foundation (FSF)
" to accept and merge Apple’s patches.) For information on
how Apple’s compiler differs from the GNU version, see the
README.Apple file in the Darwin CVS archive’s gec3 subdi-
rectory.

As of this writing, Apple’s cc compiler is based on GCC 3.1. However, GCC
2.95 is also available as /usr/bin/gcc2. By default, invoking cc or gec will
invoke GCC 3.1. You can change this to GCC 2.95 by running the com-
mand gcc_select 2, and you can change it back with gcc_select 3. You can see
the current settings by running gcc_select with no arguments:

% gcc_select

Apple Computer, Inc. GCC version 1161, based on gcc version 3.1
20020420 (prerelease)

LAY
&

AltiVec

The Motorola AltiVec Velocity Engine is also supported for G4 processors
by the Mac OS X GCC implementation. The compiler flag -faltivec must be
specified to compile code engineered to use the Velocity Engine. Inclusion of
this command-line option to cc defines the preprocessor symbol __VEC__

You can find the Mac OS X Compiler Release Notes on your

system at /Developer/Documentation/ReleaseNotes/Compiler.
html. You should consult these release notes for details on
" the most current known problems, issues, and features.

Compiler Differences | 69

Compiling Unix Source Code

Many of the differences between Mac OS X and other versions of Unix
become apparent when you try to build Unix-based software on Mac OS X.
Most Unix-based open source software uses GNU autoconf or a similar facil-
ity, which generates a configure script that performs a number of tests of the
system—especially of the installed Development Tools—and finishes by
constructing one or more makefiles. After the configure script has done its
job, you run the make command to first compile, and, if all goes well, install
the resulting binaries.

oA
» Most tarballs will include a configure script, so you do not
f{' need to generate it yourself. However, if you retrieve
* e autoconf-managed source code from a CVS archive, you will
have to run autoconf.sh manually to generate the configure

file.

In most cases, performing the following three steps is all that is needed to
successfully compile a Unix-based application on Mac OS X after you have
unpacked the tarball and changed to the top-level source code directory:

./configure
make
make install

Mac OS X web browsers are configured to invoke Stufflt on
) compressed archives. So, if you click on a link to a tarball,
you may find that it gets downloaded to your desktop and
extracted there. If you'd prefer to manage the download and
extraction process yourself, Control-click or right-click on

the link so you can specify a download location.

The following sections deal with issues involved in successfully performing
these steps. Determining how to improvise within that three-step procedure
reveals some of the differences between Mac OS X and other Unix systems.

The First Line of Defense

Most tarballs will include the following files in the top-level directory:
README, INSTALL, and a file named PORT or PORTING. These files con-
tain useful information that may help you get the application running on
Mac OS X.

70 | Chapters: Compiling Source Code

README
This document is an introduction to the application and source code.
Also, you'll often find copyright information in this document, notes
about bug fixes or improvements made to different versions of the appli-
cation, and pointers to web sites, FAQs, and mailing lists.

INSTALL
This document contains step-by-step installation instructions.

PORT or PORTING
If present, one of these documents will include tips for porting the
application to another platform.

Host Type

One of the first difficulties you may encounter in running a configure script
is when the script aborts with an error message stating that the host system
cannot be determined.

Strictly speaking, the host type refers to the system on which software will
run, and the build type refers to the system on which the software is being
built. It is possible to build software on one system to run on another sys-
tem, but to do so requires a cross-compiler. We will not concern ourselves
with cross-compiler issues. Thus, for our discussion, both the host type and
the build (and target) types are the same: powerpc-apple-darwinVERSION,
where the VERSION denotes the particular version of Darwin. In fact, a
configure script detects Mac OS X by the host/build type named Darwin,
since Darwin is the actual operating system underlying Mac OS X. This can
be verified by issuing the uname -v command, which tells you that you're
running a Darwin kernel, the kernel version, and when it was last built.

Many configure scripts are designed to determine the host system, since the
resulting makefiles will differ depending on the type of system for which the
software is being built. The configure script is designed to be used with two
files related to the host type, usually residing in the same directory as the
configure script. These files are config.guess, which is used to help guess the
host type; and config.sub, which is used to validate the host type and to put
it into a canonical form (such as CPUTYPE-MANUFACTURER-OS, as in
powerpc-apple-darwin6.0).

Since Mac OS X and Darwin are relatively new, you may run across source
code distributions that contain older config.* files that don’t work with Mac
OS X. You can find out if these files support Darwin by running the ./configure
script. If the script complains about an unknown host type, you know that you
have a set of config.* files that don’t support Darwin.

Compiling Unix Source Code | 71

In that case, you can replace the config.guess and config.sub files with the
Apple-supplied, like-named versions residing in /usr/share/automake-1.6.
These replacement files originate from the FSF and include the code neces-
sary to configure a source tree for Mac OS X. To copy these files into the
source directory, which contains the configure script, simply issue the fol-
lowing commands from within the sources directory:

cp /usr/share/automake-1.6/config.sub .
cp /usr/share/automake-1.6/config.guess .

Macros

You can use a number of predefined macros to detect Apple systems and
Mac OS X in particular. For example, __APPLE__ is a macro that is defined
on every Apple gcc-based Mac OS X system, and __MACH__ is one of several
macros specific to Mac OS X. Table 4-1 lists the predefined macros avail-
able on Mac OS X.

Table 4-1. Mac OS X C macros

Maao When defined

__0BIC__ When the compiler is compiling Objective-C.m files or Objective-C++ .M
files. (To override the file extension, use -0bjC or -OBjC++).

_ _ASSEMBLER__ When the compiler is compiling .5 files.

__NATURAL_ALIGNMENT__ When compiling for systems that use natural alignment, such as powerpc.

_ _STRICT_BSD__ If, and only if, the -bsd flag is specified as an argument to the compiler.

__MACH__ When compiling for systems that support Mach system calls.

__APPLE__ When compiling for any Apple system. Currently defined only on Mac 05 X

systems running Apple’s variant of the GNU C compiler. Do not rely on this
macro to tell you that you are on Darwin or Mac 05 X, since third-party com-
pilers may not define this macro.

__APPLE_CC__ When compiling for any Apple system. Integer value that corresponds to the
{Apple) version of the compiler.
__VEC__ ~ When AltiVec support was enabled with the -faltivec flag.

Do not rely on the presence of the __APPLE__ macro to deter-
: mine which compiler features or libraries are supported.
Instead, we suggest that you use a package like GNU
autoconf to tell you which features the target operating sys-
tem supports. This approach makes it more likely that your

applications can compile out-of-the-box (or with little effort)
on operating systems to which you don’t have access.

72 | (Chapter4: Compiling Source Code

Supported Languages

When using the cc command, which supports more than one language, the
language is determined by either the filename suffix or by explicitly specify-
ing the language using the -x option. Table 4-2 lists some of the more com-
monly used filename suffixes and -x arguments supported by Apple’s
version of GCC.

Table 4-2. File suffixes recognized by cc

File suffix Language -X argument

£ Csource code to be preprocessed and compiled c

.G .cc,.o0,.cpp (++source code to be preprocessed and compiled cH++

A Cheader that should neither be compiled nor linked c-header

d Csource code that should be compiled but not preprocessed cpp-output

i Objective-C++ or (++ source code that should be compiled C++-Cpp-output
but not preprocessed

m Objective-C source code objective-c

M,.mm Mixed Objective-C++ and Objective-C source code objective-c++

K} Assembler source that should be assembled but not prepro- assembler
cessed

.5 Assemblersource to be preprocessed and assembled assembler-with-cpp

Although the HFS+ filesystem is case-insensitive, the cc compile driver rec-
ognizes the uppercase C in a source file. For example, cc foo.C invokes cc’s
C++ compiler because the file extension is an uppercase C, which denotes a
C++ source file. (To cc, it’s just a command-line argument.) So, even though
HES+ will find the same file whether you type cc foo.c or cc foo.C, what you
enter on the command line makes all the difference in the world, particu-
larly to cc.

Preprocessing

When you invoke cc without options, it initiates a sequence of four basic
operations, oOr stages: preprocessing, compilation, assembly, and linking. In
a multifile program, the first three stages are performed on each individual
source code file, creating an object code file for each source code file. The
final linking stage combines all the object codes that were created by the first
three stages, along with user-specified object code that may have been com-
piled earlier into a single executable image file.

Compiling Unix Source Code | 73

Apple’s compiler provides two preprocessors. The default preprocessor for
both C and Objective-C is the precompilation preprocessor written by Apple,
named cpp-precomp. The standard GNU C preprocessor, named cpp, is also
available and is the default for Objective-C++ code. cpp-precomp supports
precompiled header files. (For more information about cpp-precomp, see
Chapter 5.) cpp-precomp is faster than cpp. However, some code may not
compile with cpp-precomp. In that case, you should invoke cpp by instruct-
ing cc not to use cpp-precomp. For example, to compile the C program
myprog.c using the standard GNU preprocessor, cpp, use the -no-cpp-
precomp switch as follows:

CC -no-cpp-precomp myprog.c

Earlier versions of the Mac OS X Developer Tools used the
= -traditional-cpp switch, but this switch had undesirable side

effects and is deprecated.

Chapter 5 describes precompilation in more detail.

Frameworks

Object-oriented frameworks are critical in Mac OS X. Indeed Cocoa, the
object-oriented toolkit for user interface development, consists of the Foun-
dation and Application Kit (or AppKit) frameworks for Objective-C and
Java. It is often necessary to let the preprocessor know where to search for
framework header files. You can do this with the -F option, which is also
accepted by the linker. Thus:

-F directoryname

instructs the preprocessor to search the directory directoryname for frame-
work header files. The search begins in directoryname and, if necessary, con-
tinues in order in the following standard framework directories:

* /Library/Frameworks (if the -no-cpp-precomp flag is specified)

* /System/Library/Frameworks

To include a framework object header in Objective-C, use #import. The for-
mat of the #import preprocessor directive in your Objective-C code is:

#import <frameworkname/headerfilename.h>

Here, frameworkname is the name of the framework without the extension,
and headerfilename.h is the source for the header file.

The -F option is accepted by the preprocessor and the linker, and is used in
either case to specify directories in which to search for framework header

74 | Chapter4: Compiling Source Code

files. (This is similar to the -I option, which specifies directories to search for
.h files.) By default, the linker searches the standard directories, /Local/
Library/Frameworks and /System/Library/Frameworks, for frameworks. The
directory search order can be modified with -F options. For example:

cc -F dir1 -F dir2 -no-cpp-precomp myprog.c

will result in dir1 being searched first, followed by dir2, followed by the
standard framework directories. The other flag pertaining to frameworks is
-framework. Inclusion of this flag results in a search for the specified frame-
work named when linking. Example 4-1 shows “Hello, World” in Objec-
tive-C. Notice that it #imports the AppKit framework.

Example 4-1. Saying hello from Objective-C
#import <Appkit/AppKit.h>

int main(int argc, const char *argv[])

{
NSLog(@"Hello, World\n");
return 0;

}

Save Example 4-1 as hello.m. To compile it, use -framework to pass in the
framework name:

cc -framework AppKit -o hello hello.m

The -framework flag is accepted only by the linker and is used to name a
framework. The flag -nostdinc is used to prohibit the search for header files
in any directory other than those specified via other options, such as -I.
Since strict ANSI-C does not allow many of the preprocessor constructs
used in most software created nowadays, the preprocessors are designed to
allow several nonstandard ANSI-C constructs by default. Although it is usu-
ally undesirable to do so, you must include the compile driver flags -trigraphs,
-undef, and -pedantic to enforce strict ANSI-C standards .

There are also several undocumented features of the compiler. These include
the following cc command-line flags.

-fpascal-strings
A flag that enables the compiler to recognize Pascal strings
-Wmost

A Darwin-specific compiler flag, equivalent to -Wall, with the exception
that it does not turn on -Wparenthesis

Other compiler flags of particular interest in Mac OS X are related to the
peculiarities of building shared code. For more details, see Chapter 5.

Compiling Unix Source Code | 75

Architectural Issues

There are a few architectural issues to be aware of when developing or port-
ing software on Mac OS X. In particular, pointer size, endian-ness, and
inline assembly code tend to be the most common issues.

On a 32-bit system, such as Mac OS X running on the G3 or G4, C pointers
are 32 bits (4 bytes). On a 64-bit system, they are 64 bits (8 bytes). As long
as your code does not rely on any assumptions about pointer size, it should
be 64-bit clean. For example, on a 32-bit system, the following program
prints “4”, and on a 64-bit system, it prints “8”:

#include <stdio.h>

int main()

printf("%d\n", sizeof(void *));

Some 64-bit operating systems, such as Solaris 8 on Ultra hardware (sun4u),
have a 64-bit kernel space, but support both 32- and 64-bit mode applica-
tions, depending on how they are compiled.

CPU architectures are designed to treat the bytes of words in memory as
being arranged in big or little endian order. Big endian ordering has the most
significant byte in the lowest address, while little endian has the most signifi-
cant byte at the highest byte address.

The PowerPC is bi-endian, meaning that the CPU is instructed at boot time
to order memory as either big or little endian. Additionally, the PowerPC
architecture can also switch endian-ness at runtime, although this is gener-
ally not done. In practice, bi-endian CPUs run exclusively as big or little
endian. In general, Intel architectures are little-endian, while most, but not
all, Unix/RISC machines are big-endian. Table 4-3 summarizes the endian-
ness of various CPU architectures and operating systems.

Table 4-3. Endian-ness of some operating systems

CPU type Operating system Endian-ness
Dec Alpha : Digital Unix little-endian
Dec Alpha YMS little-endian
Hewlett Packard PA-RISC HP-UX big-endian
IBM RS/6000 AX big-endian
Intel x86 Windows little-endian
Intel xB6 Linux little-endian
Intel x86 Solaris x86 little-endian
Motorola PowerPC Mac0SX big-endian

76 | Chapterd: Compiling Source Code

Table 4-3. Endian-ness of some operating systems (continued)

CPU type Operating system Endian-ness
Motorola PowerPC Linux big-endian
SGI R4000 and up IRIX big-endian
Sun SPARC B Solaris big-endian

As far as inline assembly code is concerned—if you’ve got any—it will have
to be lovingly rewritten by hand. Heaven help you if you have to port a
whole Just-In-Time (JIT) compiler! For information on the assembler and
PowerPC machine language, see the Mac OS X Assembler Guide (/Developer/
Documentation/DeveloperTools/Assembler/Assembler TOC.html).

Architectural Issues | 77

CHAPTER 5

Libraries, Headers, and
Frameworks

In this chapter, we discuss the linking phase of building Unix-based soft-
ware under Mac OS X. In particular, we discuss header files in Mac OS X
and libraries.

Header Files

There are two types of header files in Mac OS X.

Ordinary header files .
These header files are inserted into source code by a preprocessor prior
to compilation. Ordinary header files have a .h extension.

Precompiled header files
These header files have a .p extension.
Header files serve four functions:

* They contain C declarations.
* They contain macro definitions.
* They provide for conditional compilation.

* They provide line control when combining multiple source files into a
single file that is subsequently compiled.

s
iy The mechanism for enabling strict POSIX.1 compliance is
f;{ built into the system header files. The preprocessor variables

S* _ANSI_SOURCE, __ STRICT ANSI__, and _POSIX_SOURCE are sup-
" ported.

Unix developers will find the ordinary header files familiar, since they fol-
low the BSD convention. The C preprocessor directive #include includes a
header file in a C source file. There are essentially three forms of this syntax:

78

#include <headername.h>
This form is used when the header file is located in the directory /fust/
include.

#include <directory/headername.h>
This form is used when the header file is located in the directory /usr/
include/directory, where directory is a subdirectory of fusr/include.

#include "headername.h”
This form is used when the header file is located in a user or nonstand-
ard directory. The form should either be in the same directory as the
source file you are compiling or in a directory specified by cc’s -Idirectory
switch.

You can use #include, followed by a macro, which, when expanded, must
be in one of the aforementioned forms.

As noted in the previous chapter, frameworks in Mac OS X are common
when you step outside of the BSD portions of the operating system. You
must use #import instead of #include when working with a framework. To
include a framework header file in Objective-C code, use the following format:

#import <frameworkname/headerfilename.h>

where frameworkname is the name of the framework without the extension
and headerfilename is the name of the header file. For example, the included
declaration for a Cocoa application would look like:

#import <Cocea/Cocoa.h>

When preprocessing header files or any preprocessor directives, the follow-
ing three actions are always taken:

* Comments are replaced by a single space.

* Any backslash line continuation escape symbol is removed and the line
following it is joined with the current line. For example:

#def\
ine \
NMAX 2000
is processed as:
#tdefine NMAX 2000

* Any predefined macro name is replaced with its expression. In Mac OS
X, there are both standard ANSI C predefined macros, as well as several
predefined macros specific to Mac OS X. For example, __APPLE CC__is
replaced by an integer that represents the compiler’s version number.

HeaderFiles | 79

The following rules must be kept in mind:

* The preprocessor does not recognize comments or macros placed
between the < and > in an #include directive.

* Comments placed within string constants are regarded as part of the
string constant and are not recognized as C comments.

* If ANSI trigraph preprocessing is enabled with cc -trigraph, you must
not use a backslash continuation escape symbol within a trigraph
sequence, or the trigraph will not be interpreted correctly. ANSI tri-
graphs are three-character sequences that represent characters that may
not be available on older terminals. For example, ??< translates to {.
ANSI trigraphs are a rare occurrence these days.

Precompiled Header Files

Mac OS X’s Developer Tools support and provide extensive documentation
on building and using precompiled header files. This section highlights a few
of the issues that may be of interest to Unix developers new to Mac OS X
when it comes to working with precompiled headers.

Precompiled header files are binary files that have been generated from ordi-
nary C header files and that have been preprocessed and parsed using cpp-
precomp. When such a precompiled header is created, both macros and dec-
larations present in the corresponding ordinary header file are sorted, result-
ing in a faster compile time, a reduced symbol table size, and consequently,
faster lookup. Precompiled header files are given a .p extension and are pro-
duced from ordinary header files that end with a .h extension. There is no
risk that a precompiled header file will get out of sync with the .h file,
because the compiler checks the timestamp of the actual header file.

When using precompiled header files, you should not refer to the .p version
of the name, but rather to the .h version in the #include directive. If a pre-
compiled version of the header file is available, it will be used automatically;
otherwise, the real header file (.h) will be used. So, to include foo.p, you
would specify foo.h. The fact that cc is using a precompiled header is totally
hidden from you.

In addition to checking the timestamp, the preprocessor also checks
whether or not the current context is the same as the context in which the
precompilation was performed. For the precompiled header to be used, the
timestamp would need to indicate that the modification time of the .p ver-
sion is more recent than the .k version, and therefore, that the contexts must
be equivalent. The context is the amalgamation of all defines (#define) in
place at the time you compile a program. If the defines are different the next

80 | Chapter5: Libraries, Headers, and Frameworks

time you include the .h file, cpp-precomp will regenerate the .p file based on
the current set of defines.

Mac OS X system headers are precompiled. For example, AppKit.p, Cocoa.p,
mach.p, and other precompiled header files are stored in /System/Library/
Frameworks. You can create your own precompiled header files using the cc
-precomp compile driver flag. For example, the following command illus-
trates this process in its simplest, context-independent form:

cc -precomp header.h -o header.p

If there is context dependence—for example, some conditional compila-
tion—the -Dsymbol flag is used. In this case, the command to build a pre-
compiled header file (with the FOO symbol defined) would be:

cc -precomp -DFOO header.h -o header.p

For more details on building and using precompiled header files, as well as
using the cpp-precomp preprocessor, read the documentation stored in /Devel-
oper/Documentation/DeveloperTools/Preprocessor/.

Although the cpp-precomp and the standard GNU cpp pre-
‘v@ processors are similar in function, there are several incom-

patibilities. For this reason, you will find it is often necessary
to use the -no-cpp-precomp switch when porting Unix-based
software to Mac OS X.

A complete list of precompiled headers can be found in the phasel.
precompList and phase2.precomplList files, located in /System/Library/System-
Resources/PrecompLists. Table 5-1 lists the contents of the files.

Table 5-1. Precompiled header files as listed in phasel.precompList and phase2.
precompList

Precompiled headers Filesystem location

phasel.precomplist

libep Just/include

unistd.p ust/include

mach.p Just/include/mach

phase2.precomplList

CoreServices.p ASystem/Library/Frameworks/CoreServices.framework/Versions/A/Headers
CoreServices.pp /System/Library/Frameworks/CoreServices.framework/Versions/A/Headers

ApplicationServices,p /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Headers
ApplicationServices.pp /System/Library/Frameworks/ApplicationServices.framework/Versions/A/Headers

HeaderFiles | 81

Table 5-1. Precompiled header files as listed in phasel.precompList and phase2.
precompList (continued)

Precomplied headers Filesystem location

phase2.precomplist

Carbon.p /System/Library/Frameworks/Carbon.framework/Versions/A/Headers
Carbon.pp /System/Library/Frameworks/Carbon.framework/Versions/A/Headers
Foundation.p /System/Library/Frameworks/Foundation. framework/Versions/C/Headers
Foundation.pp /System/Library/Frameworks/Foundation. framework/Versions/(/Headers
AppKitp [SystemyLibrary/Frameworks/AppKit.framework/Versions/(/Headers
Appkit.pp [System/Library/Frameworks/AppKit.framework/Versions/(/Headers

Cocoa.p /System/Library/Frameworks/Cocoa.framework/Versions/A/Headers
Cocoagp /System/Library Fromewors/Cocon framewori Versions/AHeaders

Although the filenames in phasel.precompList and phase2.precompList are
listed as filename.p (for example, libc.p), the actual file used depends on the
compiler version. For example, gcc3 will use libc-gee3.p. (Mac OS X 10.2
does not ship with precompiled heaeder files for gcc2.)

L
: The .pp files referred to in phase2.precompList are not

present on the system, but the gec3 versions can be gener-
s ated by running sudo fixPrecomps -gcc3all.

PFE precompilation

The gcc3 compiler supports an alternative precompilation mechanism called
Persistent Front End (PFE). This mechanism offers the same performance
benefits as cpp-precomp, but supports C++ and Objective-C++. (cpp-pre-
comp does not support either language.) To precompile a header file with
PFE, compile the header, specifying the --dump-pch switch with the name of
the output file. You’ll also need to supply the language with the -x switch
(see “Supported Languages” in Chapter 4):

gcc -x ¢ --dump-pch header.pfe header.h

Then, you can compile main.c using the --load-pch switch, supplying the
name of the precompiled file:

gcc --load-pch header.pfe main.c -o main

Example 5-1 shows header.h, and Example 5-2 shows main.c.

Example 5-1. The header.h file

/* header.h: a trivial header file. */

#define x 100

82 | (Chapter5: Libraries, Headers, and Frameworks

Example 5-2. The main.c application

/* main.c: a simple program that includes header.h. */

#include <stdio.h>
#include "header.h"

int main()

{
printf("%d\n", x);
return 0;

}

malloc.h

make may fail in compiling some types of Unix software if it cannot find
malloc.h. Software designed for older Unix systems may expect to find this
header file in /usr/include; however, malloc.h is not present in this directory.
The set of malloc() function prototypes is actually found in stdlib.h. For
portability, your programs should include stdlib.h instead of malloc.h. (This
is the norm; systems that require you to use malloc.h are the rare exception
these days.) GNU autoconf will detect systems that require malloc.h and
define the HAVE_MALLOC_H macro. If you do not use GNU autoconf, you will
need to detect this case on your own and set the macro accordingly. You can
handle such cases with this code:

#include <stdlib.h>

#ifdef HAVE_MALLOC_H

#include <malloc.h>

#endif
For a list of libraries that come with Mac OS X, see the “Interesting and
Important Libraries” section, later in this chapter.

The System Library: libSystem

In Darwin, much is built into the system library, /usr/lib/libSystem.dylib. In
particular, the following libraries are included in libSystem.
libc
The standard C library. This library contains the functions used by C
programmers on all platforms.
libinfo
The Netlnfo library.
libkvm
The kernel virtual memory library.

The System Library: libSystem | 83

libm
The math library, which contains arithmetic functions.

libpthread
The POSIX threads library, which allows multiple tasks to run concur-
rently within a single program.

Symbolic links are provided as placeholders for these libraries. For exam-
ple, libm.dylib is a symbolic link in /usr/lib that points to libSystem.dylib.
Thus, -Im or -lpthread do no harm, but are unnecessary. The -Im option
links to the math library, and -Ipthread links to the POSIX threads library.
Since libSystem provides these functions, you don’t need to use these
options. However, you should use them to make sure your application is
portable to other systems. (Since libm.dylib and libpthread.dylib are sym-
bolic links to libSystem.dylib, the extra -l options will refer to the same
library.)

In Mac OS X 10.1 and earlier versions, the curses screen
@ library (a set of functions for controlling a terminal display)

was part of libSystem.dylib. In Mac OS X 10.2 (Jaguar), the
ncurses library (fusr/lib/libncurses.5.dylib) took the place of
curses. You may still encounter source code releases that
look for curses in libSystem.dylib, which will result in linking
errors. You can work around this problem by adding -lcurses
to the linker arguments. This is portable to earlier versions of
Mac OS X as well, since /usr/lib/libcurses.dylib is a symlink to
libncurses in 10.2, and to [ibSystem in earlier versions.

Interestingly enough, there is no symbolic link for libutil, whose functional-
ity is also provided by libSystem. (libutil is a library that provides functions
related to login, logout, terminal assignment, and logging.) So, if a link fails
because of -lutil, you should try taking it out to see if it solves the problem.

Shared Libraries Versus Loadable
Modules

The Executable and Linking Format (ELF), developed by the Unix System
Laboratories, is common in the Unix world. On ELF systems, there is no
distinction between shared libraries and loadable modules; shared code can
be used as a library for dynamic loading. ELF is the default binary format on
Linux, Solaris 2.x, and SVR4. Since these systems cover a large share of the
Unix base, most Unix developers have experience on ELF systems. Thus, it
may come as a surprise to experienced Unix developers that shared libraries
and loadable modules are not the same on Mac OS X. This is because the
binary format used in Mac OS X is Mach-O, which is different from ELF.

84 | Chapter5: Libraries, Headers, and Frameworks

Mach-O shared libraries have the file type MH_DYLIB and the .dylib (dynamic
library) suffix and can be linked to with static linker flags. So, if you have a
shared library named libcool.dylib, you can link to this library by specifying
the -lcool flag. Although shared libraries cannot be loaded dynamically as
modules, they can be loaded through the dyld API (see the manpage for dyld,
the dynamic link editor). It is important to point out that shared libraries
cannot be unloaded.

Loadable modules, called bundles in Mac OS X, have the file type MH_BUNDLE.
Most Unix-based software ports usually produce bundles with a .so exten-
sion, for the sake of consistency across platforms. Although Apple recom-
mends giving bundles a .bundle extension, it isn’t mandatory.

| You cannot link directly against a bundle. Instead, bundles

= . must be dynamically loaded and unloaded by the dyld APIs.
When porting Unix-based software, you’ll often need to

translate dlopen() function calls to dylib actions. You can

implement a temporary fix by using the dicompat library

from the Fink distribution, but the ideal solution is to do a

complete port using the dyld APIs,

You need to use special flags with cc when compiling a shared library or a
bundle on Darwin. One difference between Darwin and many other Unix
systems is that no position-independent code (PIC) flag is needed, since it is
the default for Darwin. Next, since the linker does not allow common sym-
bols, the compiler flag -fno-common is required for both shared libraries and
bundles. (A common symbol is one that is defined multiple times. You
should instead define a symbol once and use C’s extern keyword to declare
it in places where it is needed.)

To build a shared library, use c¢’s -dynamiclib option. Use the -bundle option
to build a loadable module or bundle.

Building a Shared Library

Suppose you want to create a shared library containing one or more C func-
tions, such as the one shown in Example 5-3.

Example 5-3. A simple C program

/*

* answer.c: The answer to life, the universe, and everything.
*/

int get_answer()

return 42;

}

Shared Libraries Versus Loadable Modules | 85

If you compile the program containing the function into a shared library,
you could test it with the program shown in Example 5-4.

Example 5-4. Compiling answer.c into a shared library

/*

* deep_thought.c: Obtain the answer to life, the universe,

* and everything, and act startled when you actually hear it.
*f
#include <stdio.h>

int main()

{

int the_answer;
the_answer = get_answer();
printf("The answer is... %d\n", the_answer);

fprintf(stderr, "%d??!!\n", the_answer);
return 0;

}

The makefile shown in Example 5-5 will compile and link the library, and
then compile, link, and execute the test program.

Example 5-5. Sample makefile for creating and testing a shared library

Makefile: Create and test a shared library.
#

Usage: make test

#

CC = cc

LD = cc

CFLAGS = -0 -fno-common

all: deep_thought

Create the shared library.
#
answWer.o: answer.c
$(CC) $(CFLAGS) -c answer.c

libanswer.dylib: answer.o
$(LD) -dynamiclib -install_name libanswer.dylib \
-0 libanswer.dylib answer.o

Test the shared library with the deep_thought program.
#
deep_thought.o: deep_thought.c

$(CC) $(CFLAGS) -c deep_thought.c

deep_thought: deep_thought.o libanswer.dylib
$(LD) -o deep_thought deep thought.o -L. -lanswer

8 | (hapter5: Libraries, Headers, and Frameworks

Example 5-5. Sample makefile for creating and testing a shared library (continued)

test: all
./deep_thought

clean:
rm -f *.o0 core deep_thought libanswer.dylib

Dynamically Loading Libraries

You can turn answer.o into a bundle, which can be dynamically loaded
using the commands shown in Example 5-6.

Example 5-6. Commands for converting answer.o into a bundle

cc -flat_namespace -bundle -undefined suppress \
-o libanswer.bundle answer.o

You do not need to specify the bundle at link time. Instead, use the dyld
functions NSCreateObjectFileImageFromFile and NSLinkModule to load the
library. Then, you can use NSLookupSymbolInModule and NSAddressOfSymbol to
access the symbols that the library exports. Example 5-7 loads libanswer.
bundle and invokes the get_answer function. Example 5-7 is similar to
Example 5-4, but many lines (shown in bold) have been added.

Example 5-7. Dynamically loading a bundle and invoking a function
/*
* deep_thought_dyld.c: Obtain the answer to life, the universe,
* and everything, and act startled when you actually hear it.
*/
#include <stdio.h>
#import <mach-o/dyld.h>

int main()

int the_answer;

int rc; // Success or failure result value
NSObjectFileImage img; // Represents the bundle's object file
NSModule handle; // Handle to the loaded bundle
NSSymbol sym; // Represents a symbol in the bundle

int (*get_answer) (void); // Function pointer for get_answer

/* Get an object file for the bundle. */
rc = NSCreateObjectFileImageFromFile("libanswer.bundle", &img);
if (rc 1= NSObjectFileImageSuccess) {
fprintf(stderr, "Could not load libanswer.bundle.\n");
exit(-1);
}

Shared Libraries Versus Loadable Modules | 87

Example 5-7. Dynamically loading a bundle and invoking a function (continued)

/* Get a handle for the bundle. */
handle = NSLinkModule(img, "libanswer.bundle", FALSE);

/* Look up the get_answer function. */
sym = NSLookupSymbolInModule(handle, "_get_answer");
if (sym == NULL)

fprintf(stderr, "Could not find symbol: _get_answer.\n");
exit(-2);

/* Get the address of the function. */
get_answer = NSAddressOfSymbol(sym);

/* Invoke the function and display the answer. */
the_answer = get_answer();
printf("The answer is... %d\n", the_answer);

fprintf(stderr, "%d??!!\n", the_answer);
return 0;

}

For more information on these functions, see the NSObjectFileImage,
NSModule, and NSSymbol manpages. To compile the code in Example 5-7, use
the following command:

cc -0 -fno-common -o deep_thought_dyld deep_thought_dyld.c

Two-level Namespaces

In Mac OS X 10.0, the dynamic linker merged symbols into a single (flat)
namespace. So, if you link against two different libraries that both define the
same function, the dynamic linker complains, because the same symbol was
defined in both places. This approach prevented collisions that were known
at compile time. However, if there wasn’t a conflict at compile time, there is
no guarantee that a future version of the library won’t introduce a conflict.

Suppose you linked your application against version 1 of libfoo and version
1 of libbar. At the time you compiled your application, libfoo defined a func-
tion called logerror(), and libbar did not. But when version 2 of libbar
came out, it included a function called logerror(). Since the conflict was
not known at compile time, your application doesn’t expect libbar to con-
tain this function. If your application happens to load libbar before libfoo, it
will call libbar’s logerror() method, which is not what you want.

So, Mac OS X 10.1 introduced two-level namespaces, which the compiler
uses by default. (Mac OS X 10.2 does not introduce any changes to two-level
namespaces.) With this feature, you can link against version 1 of libfoe and

88 | Chapter5: Libraries, Headers, and Frameworks

libbar. The linker creates an application that knows logerror() lives in lib-
foo. So, even if a future version of libbar includes a logerror() function,
your application will know which logerror() it should use.

If you want to build an application using a flat namespace, use the -flat_
namespace linker flag. See the Id manpage for more details.

Library Versions

Library version numbering is one area where Mac OS X differs from other
Unix variants. In particular, the dynamic linker dyld checks both major and
minor version numbers. Also, the manner in which library names carry the
version numbers is different. On ELF systems, shared libraries are named
with an extension similar to the following:

libname.so.major_version_no.minor_version no

Typically, a symbolic link is created in the library named libname.so, which
points to the most current version of the library. For example, on an ELF
system like Solaris, libMagick.s0.5.0.44 is the name of an actual library. If
this is the latest installed version of the library, you can find symbolic links
that point to this library in the same directory. These symbolic links are typi-
cally created during the installation process.

In this example, both libMagick.so and libMagick.so.5 are symbolic links
that point to libMagick.s0.5.0.44. Older versions of the library may also be
present, such as libMagick.s0.5.0.42. However, although older versions of
the library may be present, whenever a newer version is installed, the sym-
bolic links are updated to point to the latest version. This works because
when you create a shared library, you need to specify the name of the library
to be used when the library is called by a program at runtime.

"
Ly .‘

In general, you should keep older versions of libraries
a.‘.' around, just in case an application depends on them. If you

s¢ are certain there are no dependencies, you can safely remove
" an older version.

On Mac OS X, the libMagick library is named libMagick.5.0.44.dylib, and
the symbolic links libMagick.dylib and libMagick.5.dylib point to it. Older
versions, such as libMagick.5.0.42.dylib, may also be found in the same
directory. One difference that is immediately apparent on Mac OS X sys-
tems is that the version numbers are placed between the library name and
the .dylib extension rather than at the end of the filename, as on other Unix
systems (e.g., libMagick.s0.5.0.42).

LibraryVersions | 89

Another difference on Darwin is that the absolute pathname is specified
when the library is installed. Thus, ldconfig is not used in Darwin, since
paths to linked dynamic shared libraries are included in the executables. On
an ELF system, you typically use ldconfig or set the LD_LIBRARY_PATH vari-
able. In Darwin, use DYLD_LIBRARY_PATH instead of LD_LIBRARY_PATH (see the
dyld man page for more details).

You can link against a particular version of a library by including the appro-
priate option for cc, such as -IMagick.5.0.42. Minor version checking is
another way that the Mach-O format differs from ELF. To illustrate this,
let’s revisit Example 5-4, earlier in this chapter.

Suppose that the library shown in Example 5-4 will continue to be improved
over time; minor bugs will be fixed, minor expanded capabilities will be
added, and, in time, major new features will be added. In each of these
cases, there will be a need to rename the library to reflect the latest version.
Assume that the last version of the library is named libanswer.1.2.5.dylib.
The major version number is 1, the minor revision is 2, and the bug-fix (i.e.,
fully compatible) revision number is 5. Example 5-8 illustrates how to
update this library to release libanswer.1.2.6.dylib, which is fully compatible
with the release 1.2.5, but contains some bug fixes.

In the makefile shown earlier in Example 5-5, replace the following lines:

libanswer.dylib: answer.o
$(LD) -dynamiclib -install_name libanswer.dylib \
-0 libanswer.dylib answer.o

with the code shown in Example 5-8.

Example 5-8. Versioning the answer library

libanswer.dylib: answer.o
$(LD) -dynamiclib -install_name libanswer.i.dylib \
-compatibility version 1.2 -current_version 1.2.6 \
-0 libanswer.1.2.6.dylib $(0BJS)
xm -f libanswer.1.dylib libanswer.1.2.dylib libanswer.dylib
In -s libanswer.1.2.6.dylib libanswer.1.2.dylib
1n -s libanswer.1.2.6.dylib libanswer.1.dylib
In -s libanswer.1.2.6.dylib libanswer.dylib

Symbolic links are established to point to the actual library: one link reflect-
ing the major revision, one reflecting the minor revision, and one that sim-
ply reflects the name of the library.

The compatibility version number checks that the library used by an execut-
able is compatible with the library that was linked in creating the execut-
able. This is why the phrase compatibility version makes sense in this
context.

90 | Chapter5: Librarles, Headers, and Frameworks

Creating and Linking Static Libraries

The creation of static libraries in Mac OS X is much the same as in Unix
variants, with one exception. After installation in the destination directory,

ranlib must be used to recatalog the newly installed archive libraries (i.e., the
lib*.a files).

Another issue involving static libraries is the order in which things are listed
when libraries are linked. The Darwin link editor loads object files and
libraries in the exact order given in the cc command. As an example, sup-
pose we’ve created a static archive library named libmtr.a. Consider the fol-
lowing attempt to link to this library:
cc -L. -1lmtr -o testlibmtr testlibmtr.o

fusr/bin/1d: Undefined symbols:

_cot

_€sc

_sec
make: *** [testlibmtr] Error 1

The rewrite of the command works as follows:
cc -o testlibmtr testlibmtr.o -L. -1lmtr

In the first case, the library is placed first and no undefined symbols are
encountered, so the library is ignored (there’s nothing to be done with it).
However, the second attempt is successful, because the object files are
placed before the library. For the link editor to realize that it needs to look
for undefined symbols (which are defined in the library), it must encounter
the object files before the static library.

Prebinding

Whenever you install an update to the Mac OS X operating system, there is
a long phase at the end called optimization. What the splash screen calls
“optimization” is a particular type of optimization, called prebinding, which
applies only to Mach-O executables. We will only describe the essential idea
behind prebinding. For more details and specific instructions on building
libraries and executables with prebinding enabled, consult the document /Devel-
oper/Documentation/ReleaseNotes/Prebinding. html.

To understand what prebinding is and how it can speed up the launch of an
application, let’s consider what happens when you launch an application
that was built without prebinding. When such an application (or dynamic
library) is built, Id (the static linker) records the names of undefined sym-
bols (i.e., the names of symbols that the application must link against).

Prebinding | 91

Later, when the application is launched, the dynamic linker (dyld) must bind
the undefined references from the application to their definitions.

In contrast, if an executable or dynamic library is built with prebinding, the
binding essentially occurs at build time. In particular, the library is pre-
defined at some specified address range, a process that would otherwise
have to occur when an application is launched. Rather than mark symbols
as undefined, the dynamic linker can use address symbols in a prebound
library to reference when some other application or dynamic library links
against it. Additionally, if the prebound library depends on other libraries (a
common situation), then the static linker records the timestamps of the
other libraries. Later, when the prebound library is used, the dynamic linker
checks the timestamps of the dependent libraries and checks for the exist-
ence of overlapping executable addresses. If the timestamps do not match
those of the build timestamps, or if there are overlapping executable
addresses, the prebinding is broken and normal binding is performed.

Interesting and Important Libraries

Table 5-2 lists some significant libraries included with Mac OS X and
Table 5-3 lists some significant libraries that do not come with Mac OS X
(but are available through Fink).

Table 5-2. Important Mac OS X libraries

Library * Description Headers
libalias A packet aliasing library for masquerading and Notincluded in Mac 05 X. See the
network address translation network_cmds module in the Dar-
win CVS archive.
libl.a The fex runtime library Not applicable. Lexical analyzers
that you generate with lex have all
the necessary definitions.
libMallocDebug A library for the MallocDebug utility (/Developer/ Not applicable.You don't need to
Applications) do anything special with your code
1o use this utility.
libncurses The new curses screen library, a set of functions /usr/include/ncurses.h (curses.his
{libcurses is avail- for controlling a terminal's display screen available for backward compatibil-
able for backward ity.)
compatibility.)
libobjc The library for the GNU Objective-C compiler Just/include/objc/™
libpcap Packet capture library Just/include/pcap*®
libss! and fibcrypto An OpenSSL: Open Source toolkitimplementing /usi/include/openssi/®

the Secure Sockets Layer (SSLv2/v3) and Trans-
port Layer Security (TLS v1) protocols, as well as
a full-strength, general-purpose cryptography
library

92 | (ChapterS: Libraries, Headers, and Frameworks

Table 5-2. Important Mac OS X libraries (continued)

Library
libtc

liby.a

libz

Description
The Tl runtime library

The yacc runtime library

A general-purpose data-compression library

(Zlib)

Headers
fust/include/telh

Not applicable. Parsers that you
generate with yacc have all the
necessary definitions.

2lib.h

Table 5-3. Libraries that are missing from Mac OS X

Fink package

aalib

db3

db4
dicompat
dtdparser
expat
folib
freetype
freetype2
g

gd
gdal

gdbm
giflib

glib

gmp
gnomelibs

gnujaxp
gtk

hermes
imlib

libdivxdecore

libdnet

Desaription
ASCll art library

Berkeley DB embedded database

Berkeley DB embedded database

Dynamic loading compatibility library

Java DTD Parser

Clibrary for parsing XML

Font rendering library for X11

TrueType font rendering library, version 1
TrueType font rendering library, version 2
General-purpose garbage collection library

(Graphics generation library

Translator for raster geospatial data for-
mats

GNU dbm

GIF image format handling library, LZW-
enabled version

Low-level library that supports GTK+ and
GNOME

GNU multiple precision arithmetic library
GNOME libraries
Basic XML processing in Java

GTK+, the GIMP widget toolkit used by
GNOME

Optimized pixel format conversion library
General image handling library

OpenDivX codec

Networking library

Home page
http://aa-project.sourceforge.net/aalib
http://www.sleepycat.com/
http://www.sleepycat.com/

http://fink sourceforge.net
http://www.wutka.com/dtdparser.htmi
http//expat.sf.net
http//www.enlightenment.org/
http://www.freetype.org/
http.//www.freetype.org/

http:/fwww.hpl.hp.com/personal/Hans_
Boehm/gc/

http./fwww.boutell.com/gd/
http.//www.remotesensing.org/gdal/

http:/fwww.gnu.org

hitp:/fprtr-13.ucsc.edu/~badger/software/
libungif/

http:/fwww.gtk.org/

http.//www.swox.com/gmp/
http://www.gnome.org
http://www.gnu.org/software/classpathx/jaxp
http://www.gtk.org/

http.//www.canlib.org/hermes/

http.//www.enlightenment.org/pages/imlib2.
htm!

http://www.projectmayo.com/projects/detail.
phplprojectid=4

http:/flibdnet.sourceforge.net/

Interesting and Important Libraries |

93

Table 5-3. Libraries that are missing from Mac OS X (continued)

Fink package
libdockapp

libdv

libfame
libghttp
libiconv

libiodbc
libjconv

libjpeg
libmpeg
libmusicbrainz
libnas!
libnessus

libole2
libpoll
libproplist
libshout
libsigc++
libstroke

libtiff
libungif

libunicode
libwww

libxrl
libxmi++

libxm|2
libxpg4

libuesit

Desaription

Library that eases the creation of Window-
Maker Dock applets

Software decoder for DV format video
Fast Assembly Mpeg Encoding library
HTTP dient library

Character set conversion library

0DBC libraries
Japanese code conversion library

JPEG image format handling library

GIMP MPEG library

Client library for the MusicBrainz CD Index
Nessus Attack Scripting Language

Libraries package for Nessus without SSL
support

Library for the OLE2 compound file format
System V poll(2) Emulation Library
Routines for string list handling

Library for streaming to icecast

Callback system for widget libraries

Translates mouse strokes to program com-
mands

TIFF image format library

GIF image format handling library, LZW-
free version

Low-level Unicode processing library

General-purpose Web API written in C for
Unix and Windows

XML parsing library

C++ interface to the /ibxmi2 XML parsing
library

XML parsing library, version 2
Locale-enabling preload library

XSLT library

Home page

ftp://shadowmere.student. utwente.nl/pub/
WindowMaker/

http:/fwww.sourceforge.net/projects/libdv/
http.//fame.sourceforge.net/
http:/fwww.gnome.org/

http.//dlisp.cons.org/~haible/packages-
libiconv.htmi

http./fwww.mysgl.com/

http://www.kondara.org/libjconv/index.htmi.
en

http:/www.ijg.org/
http./fwww.gimp.org
http./fwww.musicbrainz.org
http:/fwww.nessus.org/
http://www.nessus.org/

http./fwww.gnome.org/

http://fink sourceforge.net
http://www.windowmaker.org/
http://developer.icecast.org/libshout/
http://developer.icecast.org/libshout/
http:/fwww.etla.net/libstroke/

http://www.libtifforg/

http.//prtr-13.ucsc.edu/~badger/software/
libungitfindex.shtmi

http./fwww.sourceforge.net/projects/
libunicode/

http:/fwww.w3c.org/Library/Distribution. htm/

htip./fwww.gnome.org/
htip://sourceforge.net/projects/libxmiplusplus/

http:/fwww.xmisoft.org/

http://www.darwinfo.org/devlist.
php3inumber=9143

hitp/fwww.xmlsoft.org/XSLT/

94 | Chapter5: Libraries, Headers, and Frameworks

Table 5-3. Libraries that are missing from Mac OS X (continued)

log4j Library that helps the programmer output http://jakarta.apache.org/log4j
log statements to a variety of output tar-
gets
lzo Real-time data compression library http:/fwww.oberhumer.com/opensource/lzo
neon HTTP/WebDAV client library with a C APl http://www.webdav.org/neon/
netpbm Graphics manipulation programs and http://netpbm.sourceforge.net
libraries
pere Perl Compatible Regular Expressions library http://www.pere.org
pdfiib Alibrary for generating PDFs http:/fwww.pdflib.com/pdfiib
pit The Python Imaging Library; adds image- http://www.pythonware/products/pil
processing capabilities to Python
pilot-link Palm libraries http:/fwww.pilot-link.org/
popt Library for parsing command-line options ~ httpz//www.gnu.org/directory/popt.htm!
pth Portable library that provides scheduling hitp:/fwww.gnu.org/software/pth/pth.htmi
readline Terminal input library http.//enswww.cns.cnru.edu/~chet/readline/
ritop.htmi
slang Embeddable extension language and con- htp://space.mit.edu/~davis/slang/
sole 1/0 library
stiport ANSI C++ Standard Library implementa- http.//www.stlport.org/

tion

The list of available libraries is ever-growing, thanks to an influx of open
source ports from FreeBSD and Linux. One of the best ways to keep on top
of the latest ports is to install Fink (see the “Fink” section in Chapter 6),
which lets you install precompiled versions of libraries and applications or
install them from source.

Interesting and Important Libraries | 95

CHAPTER 6
Creating and Installing Packages

Just because you can build all your applications from source doesn’t mean
that you should. Linux users are spoiled by the wealth of applications that
they can download as Red Hat or Debian packages. FreeBSD users have the
best of both worlds (packaged software and building from source) through
the vast number of applications in /usr/ports. Mac OS X users can tap into
this wealth of applications through the Fink and GNU-Darwin projects.

However, if you go through the trouble of building applications from
source, you might want to package the resulting binaries for distribution so
others can install the package, you can reinstall it at a later time without
needing to rebuild it from source, or you can install it on multiple machines.
Mac OS X is quite rich in the number of options available for packaging.

This chapter covers the Fink and GNU-Darwin distributions, as well as the
packaging tools that come with Mac OS X’s Developer Tools, and shows
you how to package your application for distribution.

Fink

Christoph Pfisterer” started the Fink project in December 2000. A number of
other people continued the project after Pfisterer left it in 2002.

Fink is essentially a port of the Debian Advanced Package Tool (APT), with
some frontends and its own centralized collection site, which stores pack-
aged binaries, source code, and patches needed to build software on Mac OS
X. The Fink package manager allows you to install a package, choosing
whether to install it from source or a binary package. Consistent with

* Pfisterer named the project Fink, the German word for finch, while thinking about Charles Dar-
win's study of finches on the Galapagos Islands.

9%

Debian, binary package files are in the dpkg format with a .deb extension
and are managed with the ported Debian tools dpkg and apt-get.

Fink also provides new tools that create a .deb package from source. A data-
base of installed software is maintained that identifies packages by the com-
bination of name, version, and revision. Moreover, Fink understands
dependencies, uses CVS to propagate software updates, supports uninstalla-
tion, and makes it easy to see available packages and installed packages.
Fink can be used to install XFree86, as well as several hundred other popu-
lar Unix packages. If you already have a copy of XFree86 installed, Fink rec-
ognizes and supports it.

A

]

iy Although Fink does not manage Mac OS X packages, it does
a.‘.“ require Mac OS X Developer Tools.

Fink installs itself and all of its packages, with the exception of XFree86, in a
directory named /sw, thus completely separating it from the main system
directory /usr. A more traditional Unix practice is to place locally installed
software in /usr/local. Installing software in /sw takes the usual practice one
step further and is regarded as a safer policy. If problems occur with Fink-
installed packages, you can then delete the entire /sw directory tree without
affecting your system.

You can install Fink from binary or source. Both methods of installation are
simple. The binary installation involves the following steps:

1. Download the binary installer disk image (a .dmg file) from http:/fink.
sourceforge.net/download.
2. In the Finder, double-click the .dmg file to mount the disk image.
3. Open the mounted disk image and double-click the Fink Installer .pkg
package inside.
4. Follow the instructions on the screen.
To install Fink from source, perform the following steps.

1. Download the source tarball from http://fink.sourceforge.net/download/
srcdist.php to a temporary directory using the command line. For exam-
ple:

cd /tmp
curl -0 http://prdownloads.sourceforge.net/fink/fink-0.4.0a-full.tar.gz

Do not use Stufflt to unpack the tarball, as it will corrupt
some files; you should unpack the tarball from the com-

mand line. Also, check the Fink site for the latest release.

Fink | 97

2. Issue the command gnutar -xzf fink-0.4.0a-full.tar.gz. This creates a
directory with the same name as the archive, e.g., fink-0.4.0a-full/.

3. Change into that directory and run the bootstrap script:

cd fink-0.4.0a-full
./bootstrap.sh

4. Follow the instructions on the screen.

To begin using Fink, you need to set up your PATH and some environment
variables. Fink provides shell scripts to help with this. If you are using tcsh
or csh, you can execute this command before using Fink applications (or
add it to your .cshrc or .tcshre file, depending on which one you have):

source /sw/bin/init.csh

If you are using sh, zsh, ksh, or bash, you can run this command (or add it to
your .profile or .bash_profile file):

. /sw/bin/init.sh

Use the following command to perform additional post-install configura-
tion (you will be prompted for your password):

fink scanpackages
Fink can later be updated by entering the commands:

fink selfupdate

fink update-all
The first command updates Fink itself, including the list and descriptions of
available packages, while the second command updates any installed pack-
ages. Once Fink has been installed, you can see what packages are available
by entering the command fink list.

You can download and install binaries via dselect (shown in Figure 6-1), a
console-based frontend to dpkg. To use dselect, you need to have superuser
(or administrator) privileges, so you’ll need to run sudo dselect in the Termi-
nal. Once dselect has started, you can use the following options to maintain,
install, and uninstall packages:

[A]ccess
Chooses the access method to use. Configures the network access
method to use.

[Ulpdate
Downloads the list of available packages from the Fink site. This option

is equivalent to running apt-get update. Table 6-1 lists the apt-get and
dpkg command-line options.

98 | Chapter6: Creatingand Installing Packages

WW

1 Debian dulact w IlI'l:Ili.m frontend.

[A].e
[U]pdate Update ltst of ovai lable puckages, it possible.

L

1.

2. [S]elect Request which pockoges you wont on your system.
3. [I]nstall Install ond upgrade wonted pockages.

4. [Clonfig Configure any pockages that ore unconfigured.
5. [R]emove Remove urwanted software.

6. [Quit Quit dselect.

Move around with AP and AN, cursor keys, initial letters, or digits;
Press <enter> to confirm selection. AL redrows screen.

Version 1.9.28 (darwin-powerpc).

Copyright (C) 1994-19% lan Jackson.

Copyright (C) 20880 Wichert Akkerman.

This is free software; see the GNU General Public Licence version 2

4§ or later for copying conditions. There is NO warronty. Ses
dselect —licence for details.

'?mlz.

Figure 6-1. The dselect program’s main menu

Table 6-1. Some apt-get and dpkg commands

Command Description

apt-get update Updates list of available packages. Do this first.
apt-get install foo Downloads and installs package foo.

apt-get remove foo Deletes package foo.

dpkg --list Lists all installed packages.

dpkg --listfiles foo Lists all the files from package foo.

dpkg --install foo Installs package foo.

dpkg --remove foo Deletes package foo. Leaves configuration files.
dpkg --purge foo Deletes foo and configuration files.

dpkg -S/path/to/file Tells you which package owns a file.

Fink

[S]elect
Requests the packages you want on your system. Displays the actual
package listing, which is used to select and deselect the packages you
want on your system.

[]nstall
Installs, upgrades, and configures selected packages. Also removes dese-
lected packages.

[Clonfig
Configures any packages that are unconfigured. Not actually needed,
since [I]nstall does this after you’ve installed a package.

[R]emove
Removes unwanted software. Not actually needed, since [I]nstall will do
this.

[Qluit

Quits deselect.

The fink command is used from the command line to maintain, install, and
uninstall packages. Table 6-2 lists some examples of its usage.

Table 6-2. Various fink commands

Command Description

fink selfupdate Updates Fink along with package list. Do this first.

fink update-all Updates all installed packages.

fink install foo Downloads source, then builds and installs Debian package feo.

fink reinstall foo Reinstalls foo using dpkg.

fink describe foo Describes package foo.

fink list Lists available packages. “i” is placed next to installed packages.

fink build foe Downloads and builds Debian package foo. No installation is performed.
fink rebuild foo Downloads and rebuilds Debian package foo. Installation is performed.
fink --remove foo Deletes package foo, ignoring dependendies. Use apt-get remove instead.

Using Fink, you can mix binary and source installations. That is, you can
install some packages from their precompiled .deb files and others from
source. If you do this, you will need to first use apt-get to update the avail-
able binaries and subsequently use fink selfupdate, followed by fink update-
all, to update packages installed from source.

100 | Chapter6: Creatingand Installing Packages

Creating Fink Packages

You can create your own Fink packages by identifying a source archive and
creating a .info file in your /sw/fink/dists/local/main/finkinfo directory.

Sample Program

To demonstrate how to create a package, we’ll create a short C program and
its associated manpage. Example 6-1 shows hellow.c and Example 6-2 shows
its manpage, hellow.1.

Example 6-1. The Hello, World sample program

1*
* hellow.c - Prints a friendly greeting.
*/

#include <stdio.h>
int main()

printf("Hello, world!\n");
return 0;

}

Example 6-2. The manpage for hellow.c

A" Copyright (c) 2002, 0'Reilly & Associates, Inc.
A"

.Dd April 15, 2002

.Dt HELLOW 1

.0s Mac 0S X

.Sh NAME

.Nm hellow

.Nd Greeting generator

.Sh DESCRIPTION

This command prints a friendly greeting.

Creating and Publishing the Tarball

The Fink package system needs a tarball that can be downloaded with the
curl utility, so you should put these two files into a directory, such as hellow-
1.0. Then, create a tarball containing these files and that top-level directory,

Creating Fink Packages | 101

and put it somewhere where you can get it. In this example, the tarball is
created and moved to the local Shared folder:

[localhost:~/src] bjepson% tar evfz hellow-1.0.tar.gz hellow-1.0/
hellow-1.0/

hellow-1.0/hellow.1

hellow-1.0/hellow.c

hellow-1.0/Makefile

[localhost:~/src] bjepson% cp hellow-1.0.tar.gz /Users/Shared

The curl utility can download this file with the following URL: file:///Users/
Shared/hellow-1.0.tar.gz. (We could also have put the file on a public web
server or FTP server.)

Creating the .info File

Next, you need a .info file to tell Fink where to download the package and
how to install it. Fink can use this information to download, extract, and
compile the source code, and then generate and install a Debian package (.deb
file). To create the file in /sw/fink/dists/local/main/finkinfo, youw’ll need
superuser privileges (use the sudo utility to temporarily gain these privileges).
Example 6-3 shows hellow-1.0.info.

Example 6-3. The hellow-1.0 info file

Package: hellow
Version: 1.0
Revision: 1
Source: file:///Users/Shared/%n-%v.tar.gz
CompileScript: make
InstallScript: mkdir -p %i/bin
cp %n %i/bin
mkdir -p ¥i/share/man/mani
cp %n.1 %i/share/man/man1/%n.1
Description: Hello, World program
DescDetail: <<
Prints a friendly greeting to you and your friends.
<«
License: Public Domain
Maintainer: Brian Jepson <bjepson@oreilly.com>

The hellow-1.0.info file includes several entries, described in the following
list. See the Fink Packaging Manual on http://fink.sourceforge.net/doc/
packaging/ for more details.

Package
The name of the package.

Version
The package version.

102 | Chapteré: Creating and Installing Packages

Revision
The package revision number.

Source
The URL of the source distribution. You can use percent expansion in
the name. (In this example, %n is the name of the package and %v is the
package version.) See the Fink Packaging Manual for more percent
expansions.

CompileScript
The command (or commands) needed to compile the source package.
The command(s) may span multiple lines, but must begin after the
colon.

InstallScript
The command (or commands) that install the compiled package. The
command(s) may span multiple lines, but must begin after the colon.

Description
A short description of the package.
DescDetail
A longer description of the package, enclosed with << >>.
License
The license used by the package. See the Fink Packaging Manual for
information on available licenses.

Maintainer
The name and email address of the maintainer.

Installing the Package

To install hellow, use the command sudo fink install hellow. This command
downloads the source to a working directory, and then extracts, compiles,
and packages it, generating the file /sw/fink/dists/local/main/binary-darwin-
powerpc/hellow_1.0-1_darwin-powerpc.deb. After fink creates this file, it
installs it using dpkg. After you've installed hellow, you can view its
manpage and run the hellow command:

% man hellow
HELLOW(1) System General Commands Manual HELLOW(1)

NAME
hellow - Greeting generator

DESCRIPTION
This command prints a friendly greeting.

Creating Fink Packages | 103

Mac 05 April 15, 2002 Mac 0§
% hellow
Hello, world!

This example shows only a portion of Fink’s capabilities. For example, Fink
can download and apply patches to a source distribution. For more informa-
tion, see the Fink Packaging Manual, which contains detailed instructions
on how to build and contribute a .deb package to the Fink distribution.

GNU-Darwin

The FreeBSD ports and package management system is used by the GNU-
Darwin distribution (http://gnu-darwin.sourceforge.net).

The ports system provides for packaging an application as a single file that
contains precompiled binaries, as well as associated configuration and docu-
mentation files. Like dpkg, this system allows the installation of a software
package with a single command. This system also maintains an installed
package database and understands dependencies. Additionally, to support
installing remote packages, a remote ports tree is established. The ports tree
resides on your computer and includes makefiles that know how to find,
patch, compile, package, and install software packages from source code.
Current versions of ported software are stored in one or more ports trees.

Unlike Fink, GNU-Darwin does not restrict itself to one por-
§ tion of your filesystem, and it will make changes to system

binaries. We suggest that you read the one_stop script care-
fully before you execute it.

To install GNU-Darwin, perform the following steps:

1. Download the one_stop script from http://gnu-darwin.sourceforge.net/
one_stop.

2. Read the one_stop script so you know what it’s going to do.

3. Execute the one_stop script as root (sudo csh one_stop).

The one_stop installer downloads and installs many packages, so give it
some time to complete.

The one_stop installer requires a considerable amount of
bandwidth and does not allow you to choose a subset of
E packages, so it should not be attempted on a low-bandwidth
connection. Again, read the script before you run it. As of

this writing, the script states that GNU-Darwin will take up
one gigabyte of disk space when one_stop finishes.

104 | Chapteré: Creatingand Installing Packages

After you install GNU-Darwin, you can install additional software by down-
loading precompiled tarballs and using the package management com-
mands listed in Table 6-3. Alternatively, you can install the GNU-Darwin
ports system from http://gnu-darwin.sourceforge.net/ports/ and then:

1. cd to fusr/ports.
2. Find the subdirectory of the port you want to install and cd into it.
3. Run the command sudo make install, which performs the following:
a. Downloads the source code for the package.
b. Downloads and applies any relevant patches.
c. Compiles and installs the package.
d. Repeats those steps for any dependencies.

After you install the package with make install, you can manage it with the
package management tools shown in Table 6-3.

Table 6-3. Using the FreeBSD package management system

Command Description

pkg_add package.tgz Adds (installs} a package.

pkg_add -1 package.tgz Addsaremote package. Checks a predetermined ports tree location.
pkg_delete package Deletes (uninstalls) a package.

pkg_info Shows information on installed packages.

pkg_info package Shows information on an installed package.

pkg_info -Lpackage Shows files belonging to a package.

pkg_version Compares versions of installed packages with current versions in ports

Packaging Tools

The following packaging options come with Mac OS X.

PackageMaker
Found in /Developer/Applications, PackageMaker can be used to create
packages that are bundles consisting of all the items that the Mac OS X
Installer (/Applications/Utilities) needs to perform an installation. Pack-
ageMaker can also create metapackages, which can be used to install
multiple packages at the same time.

gnutar and gzip

The Unix tape archive tools (tar and gnutar; gnutar is preferred because
it can handle longer pathnames) are used to bundle the directories and

PackagingTools | 105

resources for distribution. GNU Zip (gzip) is used to compress the tar
archives to make file sizes as small as possible. Using these tools is gen-
erally the simplest way to copy a collection of files from one machine to
another.

Disk Copy

One of the easiest ways to distribute an application is to use
Disk Copy (/Applications/Utilities) to create a disk image. You can use
Disk Copy to create a double-clickable archive, which mounts as a disk
image on the user’s desktop. From there, the user can choose to mount
the disk image each time the application is run, copy the application to
the hard drive (usually to the /Applications directory), or burn the image
toa CD.

Each of these tools will be discussed separately in the sections that follow.

Using PackageMaker

Apple’s native format for packaging and distributing software is Package-
Maker. Packages created with PackageMaker have a .pkg extension. When a
user double-clicks on a package, the Installer application (/Applications/
Utilities) is invoked and the installation process begins. These packages are
bundles that contain all of the items the Installer needs.

You can also use PackageMaker to create metapackages for installing multi-
ple packages. Metapackages, or bundles, contain meta-information, files,
and libraries associated with a given application. Packages can also contain
multiple versions of an application; typically, both Mac OS X and Classic
versions.

PackageMaker documentation is available in the Help Viewer at /Developer/
Documentation/DeveloperTools/PackageMaker/PackageMaker.help.

The basic components of a package are:

* A bill of materials (.bom) binary file that describes the contents of the
package. You can view the contents of a bill of materials with the Ishom
command.

* An information file (.info) that contains the information entered in the
GUI application PackageMaker when the package was created.

* An archive file (.pax) that contains the complete set of files to be
installed by the package. (This archive file can be compressed, giving it a
.pax.gz extension.) This is similar to a tar archive.

106 | (Chapter6: Creatingand Installing Packages

* A size calculation file (.sizes) that lists the sizes of the compressed and
uncompressed software.

* Resources that the installer uses during the installation, such as
README files, license agreements, and pre- and post-install scripts.
These resources are typically not installed; instead, they are used only
during the installation process.

Setting up the directory

To demonstrate how to create a package, we’ll use the hellow.c and hellow. 1
examples shown earlier in this chapter (in Example 6-1 and Example 6-2).

PackageMaker expects you to set up the files using a directory structure that
mirrors your intended installation. So, if you plan to install hellow into fusr/
bin, and hellow.1 into /usr/share/man/manl, you’ll need to create the appro-
priate subdirectories under your working directory.

Suppose that your hellow project resides in ~/src/hellow. To keep things
organized, you can create a subdirectory called stage that contains the instal-
lation directory. In that case, you’d want to place the hellow binary in ~/sr¢/
hellow/stage/bin and the hellow.1 manpage in ~/src/hellow/stage/share/man/
manl. The makefile shown in Example 6-4 compiles hellow.c, creates the
stage directory and its subdirectories, and copies the distribution files into
those directories when you run the command make prep.

Example 6-4. makefile for hellow

hellow:
cc -0 hellow hellow.c

prep: hellow
mkdir -p stage/bin
mkdir -p stage/share/man/mani
cp hellow stage/bin/
cp hellow.1 stage/share/man/man1/

| The directories you create in the stage directory should have
' the same permissions as the directories into which you are
installing the package. If your umask is set so that the per-

missions are not right, use chmod in your makefile to correct
the permissions after you create the staging directories.

Packaging Tools | 107

To get started, you need only hellow.c, hellow.1, and makefile. When you
run the command make prep, it compiles the program and copies the files to
their locations in the stage directory. After that, you’re ready to launch Pack-
ageMaker and bundle up the application.

Creating the package

Run PackageMaker and set the options as appropriate for your package.
Figure 6-2 through Figure 6-6 show the settings for the hellow sample. The
options are as follows:

Description tab
Contains items that describe the package so the person installing the
package can find its name and version.

Title
The title, or name, of the package.

Version
The version number of the package.

Description
A description of the package.

Delete Warning
A custom warning message to display when a user removes the
package. Mac OS X does not have a utility to uninstall a package,
though.

— L ——

Version 1.0

Description | This is a simple example that shows how to use PackageMaker.

Delate Warning :;Pluse don't delete me!!!

Figure 6-2. PackageMaker’s Description tab

108 | Chapter6: Creating and Installing Packages

Files tab
Contains information related to file locations and compression.
Root
This option indicates where PackageMaker can find the top-level
staging directory.
Compress Archive

You should leave this option enabled, since it makes the package
smaller.

E Compress Archive

Figure 6-3. PackageMaker’s Files tab

Resources tab
Specifies the location of extra resources.

Resources
The Resources directory contains files, such as README files, that
are used by the installer but aren’t installed on the disk. See Pack-
ageMaker help for details.

Figure 6-4. PackageMaker’s Resources tab

PackagingTools | 109

Info tab
Specifies miscellaneous package options.

Default Location
This option indicates the default target location for the package.

Restart Action
If this option is set to Required Restart, the system must be reboo-
ted when the installation is finished. Other options include No
Restart Required, Recommended Restart, and Shutdown Required.

Authorization Action

Set this option to Root Authorization if the user needs to supply
authentication to install the package. (This escalates the user’s priv-
ileges to root temporarily.) Other options include No Authorization
Required and Admin Authorization (if the user needs only to be an
Admin user, but does not need to escalate privileges). If the pack-
age will be installed into a protected directory (such as /usr), you
should use Root Authorization.

Allows Back Rev.
This option allows the user to install an older version of the pack-
age over a newer one.

Install Fat
This option supports multiple architecture binaries.

Relocatable
This option allows the user to choose an alternate location for the
installed files.

Required
This option implies that certain packages (when installed as part of
a larger install) are required.

Root Volume Only
This option requires that the user install the package on the current
root volume (the volume from which you booted Mac OS X).

Update Installed Languages Only
When you update a package, this option will only update the cur-
rently installed localization projects.

Overwrite Permissions
If the installer overwrites an existing file or directory, this option
will cause it to change the permissions to match what Package-
Maker found in the staging area.

110 | Chapter6: Creating and Installing Packages

e

Restart Action (No Restart Required m

Authorization Action { Admin Authorization B

Fiags (] Alows Back Rev.
7 tnstall Fat
2] Relocatable
] Requirea
{7 Root Volume Only
{] Update installed Languages Only
{] Overwrite Permissions

Figure 6-5. PackageMaker’s Info tab

Version tab

Specifies detailed version information.

Display name
The name of the package to use when reporting its version

Identifier
A unique package name

Get-Info string
The version number to use when inspecting the package in the
Finder with Get Info

Short version
An abbreviated version number

Version: Major
A major version number (the 1 in 1.0)

Version: Minor
A minor version number (the 0 in 1.0)

After you have filled in the package settings, select Tools — Create Package
to create the .pkg file. To install it, double-click on the file and install as you
would any other Mac OS X package.

PackagingTools | 11

— Display Information

Display name { Hello, World i
ex: PackageMaker
identifier | com.oreiily.hellow

wx: com.apple.packagemaker
Get-Info string . hellow 1.0

ax: PackageMaker 1.1a9

Short version | 1.0

ex: 1.1

_ Version

Major |1 Minor [0

Figure 6-6. PackageMaker’s Version tab

Using GNU tar

For Unix-based software that does not involve resource forks or creator
types, gnutar and gzip can be used to create a .tar.gz or .igz tarball. This type
of tarball preserves paths, permissions, and symbolic links. It also supports
authentication and compresses well. Tools to uncompress the tarball are
available for many platforms.

The automated creation of such a tarball can be worked into the same
makefile that is used to build the software, Preservation of resource forks is
tricky, but possible, in this method. For example, the following command
preserves Macintosh resource forks (where foo/ is a directory):

gnutar -pczf foo.tgz foo/

Every good tarball has a single top-level directory that contains everything
else. You should not create tarballs that dump their contents into the cur-
rent directory. To install software packaged this way, you can use the fol-
lowing command:

gnutar -pxzf foo.tgz

112 | Chapter6: Creating and Installing Packages

This simply unpacks the tarball into the file and directory structure that
existed prior to packaging. Basically, it reverses the packing step. This
method can be used to simply write files to the appropriate places on the
system, such as /usr/local/bin, fusr/localflib, fusrflocal/man, fusr/localfinclude,
and so on.

When creating packages, you should keep your package con-
= tents out of directories such as /fetc, fusr/bin, fusrflib, fust/

include, or any top-level directory reserved for the operating
system, since you have no way of knowing what a future
software update or Mac OS X upgrade will include. For
example, the Fink project stays out of Mac OS X’s way by
keeping most of its files in /sw. We suggest that you use /usr/
local for the packages that you compile.

This packaging method can also be arranged so that the unpacking is done
first in a temporary directory. The user can then run an install script that
relocates the package contents to their final destination. This approach is
usually preferred, since the install script could be designed to do some basic
checking of dependencies, the existence of destination directories, the recat-
aloging of libraries, etc. You could also include an uninstall script with your
distribution.

The disadvantages of the tarball method of distributing software are:

* There is no built-in mechanism for keeping track of which files go
where.

* " There is no built-in method for uninstalling the software.

* It is difficult to list what software is installed and how the installed files
depend on each other or on other libraries.

* There is no checking of dependencies and prerequisite software prior to
the installation.

These tasks could be built into install and uninstall scripts, but there is no
inherently uniform, consistent, and coherent method for accomplishing
these tasks when multiple software packages are installed in this manner.
Fortunately, more sophisticated methods of packaging, distributing, and
maintaining software on Unix systems have been devised, such as Red Hat’s
RPM, Debian’s dpkg, and Apple’s PackageMaker.

Disk Images

Many applications in Mac OS X do not require a special installer. Often,
they can be installed by simply dragging the application’s folder or icon to a

PackagingTools | 113

convenient location in the directory structure, usually the /Applications
folder. Applications that are distributed this way are typically packaged as a
disk image. A disk image is a file that, when double-clicked, creates a virtual
volume that is mounted on the user’s desktop, as shown in Figure 6-7.

Inside Applications

Actually, an application is a folder with the extension .app, which is typically
hidden from the user. This folder contains all of the application’s resources.
To view the contents of an application bundle, Control-click on the applica-
tion icon and select Show Package Contents from the pop-up menu. This will
open the application’s Contents folder in the Finder.

Finder File Edit View Go Window Help

You can turn a Java application into a .app with MRJApp-

Builder (/Developer/Applications). Since Mac OS X comes

, with Java, you can place your Java application on a disk
image, secure in the knowledge that any Mac OS X user can
double-click on the application to launch it.

Disk images can be created either using Disk Copy (/Applications/Utilities) or
via the command line (described later). There are two types of disk images.
One is a dual fork disk image with an .img extension, and the other is a sin-
gle fork disk image with a .dmg extension. A dual fork disk image requires
additional (MacBinary) encoding in order for it to be transferred across net-
works. The single fork version is preferred for distributing software in Mac
OS X, as it requires no additional encoding.

114 | Chapteré: Creating and Installing Packages

The Unix command df will reveal a disk image as a mounted volume, and it
will appear in the /Volumes directory. When you are done with the mounted
volume, it can be ejected to unmount it. This is accomplished by clicking on
the volume (in Figure 6-7, the mounted volume is named Fink 0.4.0a
Installer) to select it and going to File —+ Eject (3%-E). You could also drag the
mounted volume to the Trash.

s
iy If you've used earlier versions of the Mac OS, you're proba-
f"{ bly familiar with the Put Away command (SB-Y) however,

s that command no longer exists for Mac OS X. Instead, you
must use Eject to unmount a disk image.

Creating a disk image with Disk Copy
To create a disk image using Disk Copy, perform the following steps:

1. Launch Disk Copy (/Applications/Utilities).

2. Select File » New — Blank Image. Disk Copy prompts you for a name,
location, size (the maximum size is limited by available disk space), vol-
ume name, format, and encryption options, as shown in Figure 6-8. If
you choose to enable encryption, Disk Copy will prompt you for a pass-
phrase.

Volume Name: | SampleVol

Size: [10 M8
format: { Mac OS Extended

Encryption: | none

Figure 6-8. Creating a new blank image with Disk Copy

PackagingTools | 115

3. Name the new image “My Disk Image” and choose the Desktop as the
location. Set the Volume Name to “SampleVol” and click Create. The
new image will be created as My Disk Image.dmg and mounted as Sam-
pleVol.

4. Double-click on the disk icon to open the empty volume in a Finder
window, as shown in Figure 6-9.

& M S—
e 8 ED @ ﬁ v A
Back Forward Home Favarites Applications Search

0 e 9.7 M8 valiable: -

Figure 6-9. A blank disk image, ready to be loaded up with files

5. Select File + New Finder Window (or #-N) to open a new Finder win-
dow, where you can select the files you want to place in the disk image,
as shown in Figure 6-10.

. i
9 A
Back Forward View Computer Home Favorites Applications Search

O e, 5.7 ME avail Iahle

Hellow phg
il My Package

ampiter Mome Favorites Applications Search
1ot §wem selected, 5.45 GE avallable

!

' i ¢
£} i

i i

i |

e & @wEm .

Back Forward View

L S

Figure 6-10. Copying a file to the disk image

116 | Chapteré: Creatingand Installing Packages

6. To copy the files to the mounted volume, select and then drag the items
into the empty SampleVol window.

7. Once you've placed the files into the disk image, eject this disk (3%-E, or
drag SampleVol to the Trash).

8. Return to the Disk Copy application, select File - Convert Image, locate
the disk image file in the Convert Image window, and click on the Con-
vert button, as shown in Figure 6-11.

fFrom: { il Desktop B

Kind: disk image
Size: 10 MB

C

Go to; |

Figure 6-11. Choosing the image to convert

9. The Convert Image window will change. Enter either a new name or the
same name in the Save As field, and then select read-only from the
Image Format pull-down menu, as shown in Figure 6-12. (You can also
compress the disk image from this selection.)

10. Click the Convert button. If you've given the disk image the same file-
name as the original image you created, an alert window will appear,

asking you to confirm whether or not you want to replace the older file
with the new one. Click Replace to finish the process.

11. Quit Disk Copy (38-Q).

PackagingTools | 117

Figure 6-12. Converting an image

Creating a disk image from the command line

The following example illustrates how to create a disk image at the com-

mand line.

-

To avoid accidentally wiping out a physical disk, make sure
you are logged in as an unprivileged user when you use these
commands. Do not log in as root or use sudo.

1. Change (cd) to the directory where you want to create the disk image:
cd ~/Documents

2. Create the disk image of a given size (10 MB in this example) using

hdiutil:

hdiutil create -megabytes 10 Sample.dmg -layout NONE

3. Associate the disk image with a device without actually mounting it:
hdid -nomount Sample.dmg

This attaches the image to the system under an unused device, such as /dev/
disk2. (hdid will report the device, or you can use hdiutil info to see all of
the attached images.)
. Format the disk as HFS+ with newfs_hfs. (Replace REAL_DEVICE with the
actual device used, such as /dev/disk2.) Be careful with this command—
if you run it on your hard drive, it could wipe out your disk.

newfs_hfs -v SampleVol /dev/REAL DEVICE
. Detach the newly formatted device:
hdiutil eject /dev/REAL_DEVICE

118 | Chapters: Creatingand Installing Packages

6. Mount the writable image as a volume. Since you named it SampleVol
when you issued the newfs_hfs command, it will appear on the desktop
as SampleVol:

hdid Sample.dmg

7. Use the Finder or command-line tools to write to the volume Sam-
pleVol. It will appear on your desktop and will be available in /Volumes/
SampleVol.

8. When you are done writing to the volume, you can eject it in the Finder,
using one of the methods described earlier.
9. Copy the disk image to a compressed, read-only image named
Ready4Dist.dmg:
hdiutil convert -format UDZ0O Sample.dmg -o Ready4Dist.dmg

Whenever you want to mount this volume again, you can double-click the
file Ready4Dist.dmg in the finder. Note that the writable disk image Sample.
dmg is not destroyed in this process.

There were several names involved with that last example, so here’s a
refresher:

Sample.dmg
A writable 10 MB disk image created in Step 2.
/dev/disk2, /dev/REAL_DEVICE
The system device under which you attached Sample.dmg in Step 3.
SampleVol
The volume name you gave to the disk image when you formatted this
in Step 4.
Ready4Dist.dmg

A read-only, compressed copy of Sample.dmg, created in Step 9. Since
it’s a copy, it has the same volume name as Sample.dmg: SampleVol.

Distributing Your Image

Once you’ve created a disk image, you can share it with the world. Put the
image up on a web server or FTP server for others to enjoy, share it on your
iDisk, or burn it to a CD using Disk Copy (select File -+ Burn Image).

PackagingTools | 119

120

PART Il
Beyond the User Space

This part of the book talks about the Darwin kernel, useful system adminis-

tration tools, and how to set up the X Window System to work alongside
Aqua. Chapters in this part include:

* Chapter 7, Building the Darwin Kernel

* Chapter 8, System Management Tools
* Chapter 9, The X Window System

122

CHAPTER 7
Building the Darwin Kernel

The Darwin kernel, on which Mac OS X is based, is available in a publicly
accessible CVS archive. This is not a watered-down version: you can rebuild
a kernel that matches your current Mac OS X kernel in every respect. The
only noticeable difference will be when you type uname -v:
Darwin Kernel Version 6.0: Sat Jul 27 13:18:52 PDT 2002;
root:xnu/xnu-344.0bj~1/RELEASE_PPC
Just because you can build your kernel, does that mean you should? For
most users, the answer is no, for the following reasons:

* For many users, configuring a Unix kernel involves little more than
choosing and configuring device drivers. On Darwin, most devices are
not in the kernel; they have their own top-level directory in the CVS
archive. So, you do not need to configure Darwin to set up additional
hardware support.

* Apple hardware is predictable. Most of you will be building Darwin for
a G3 or G4 machine, and the range of possible chipsets is limited.

However, if you want to try installing an unofficial kernel patch, or if you
want to try your hand at optimizing the kernel, then this chapter’s for you.

Darwin Development Tools

The Darwin kernel requires a collection of development tools that are not
part of the Mac OS X Developer Tools package. To get these tools, visit the
Darwin project at http://developer.apple.com/darwin/ and follow the links for
the Darwin Development Environment for Mac OS X. Those links lead to a
package called darwintools.pkg, which you should install. This package
installs a number of header files, libraries, and tools into /usr/local. The tools

123

A Safety Net

If you have enough disk space to install two copies of Mac OS X, please do so
before you start playing around with your working kernel. That way, you will
have an operating system you can boot into if things go bad. (On most G3 and
G4 Macintoshes, you can hold down the Option key when booting to select
a boot disk.) Most importantly, your spare install of Mac OS X will contain
backups of important files, such as the kernel and critical frameworks. If
you’re low on disk space, why not treat yourself to a FireWire drive? If you
have a newer Macintosh with a built-in FireWire port, you can boot from a
Mac OS X-compatible FireWire drive.

are described in Table 7-1. The source code for these utilities and libraries
can be found in the cctools, mkisofs, Libstreams, and bootstrap_cmds CVS
modules. If you are working with an interim or seed release of Darwin or
Mac OS X that is out of sync with the current Darwin Development Envi-
ronment, you may need to check these utilities out and install them yourself.

Table 7-1. Darwin development tools

Tool Description CVS module
check_dylib Checks the integrity of a dynamic library. cctools
checksyms Checks a binary to ensure that it adheres to Mac 0S X conventions. cctools
cmpshlib Compares two versions of a shared library for compatibility. cctools
decomment Strips Cand C++ comments from an input file. bootstrap_cmds
devdump Interactively reads the contents of a device or filesystem image. mkisofs (as dump.c)
hack_fibgec Hacks a framewaork to export backward-compatible symbols. cctools
indr Prepends an underscore to selected symbol names in an object file. cctools
isodump Interactively reads the contents of an IS0 9660 image. mkisofs
isainfo Reads information from an IS0 9660 image. Use isoinfo-h forausage mkisofs
summary.
isovfy Verifies an IS0 image. mkisofs
kern_tool Supports cross-compilation of the kemel; a hacked version of thenm cctools
utility.
mkhybrid Creates a hybrid IS0 9660/Joliet/HFS filesystem. mkisofs
mkisofs Creates a hard link to mkhybrid. mkisofs
mkshlib Creates a host and target shared library. The host shared library looks cctools
like a static library to the linker, but at runtime, the target shared
library is loaded.
relpath Finds and prints a relative pathname, given a starting directoryand ~ bootstrap_cmds
an ending directory.

124 | Chapter7: Building the Darwin Kemel

Table 7-1. Darwin development tools (continued)

Yool Description ;

seg_addr_table Works with segment address tables. cctools
seg_hack Changes segment names, €ctools
setdbg - Operates as an interactive kernel dve_pugger‘ at_cmds

Getting the Source Code

To get the Darwin source code, you'll need to register with the Apple Open
Source web site and check the source code out of the CVS archive. (The ker-
nel source code weighs in at about 35 MB; after you compile the kernel, it
will occupy about 150 MB.) To register for CVS access, visit http://developer.
apple.com/darwin/tools/cvs/. That page should lead to a getting-started page,
where you can register as a user.

The first step in registering is to agree to the Apple Public Source License
(http://www.opensource.apple.com/apsl/). When you agree to that license,
you can create a username and password that lets you check files out of CVS
and view the web-based CVS archive.

Using CVS

When you register with Apple, you choose a username and password. You’ll
need to use that username and password when you log into CVS. The first
step 1s setting your CVSROOT environment variable. Under tcsh, issue this
command:

setenv CVSROOT :pserver:username@anoncvs.opensource.apple.com:/cvs/Darwin
Under bash or zsh, use this command:
export CVSROOT=:pserver:username@anoncvs.opensource.apple.com:/cvs/Darwin

Replace username with your username. After you set this environment vari-
able, you can log into CVS with cvs login:

% cvs login
(Logging in to username@anoncvs.opensource.apple.com)
CVS password: #wssssss
Checking out sources
To check out the source code for a module, use the checkout command:
cvs -z3 checkout [-r VERSION] modulename

The -z3 option tells CVS to use compression when transferring files.

Getting the Source Code | 125

Updating sources

To bring a module into sync with the latest changes to the repository, use
the update command:

cvs -z3 update -P -d modulename

The -d option tells CVS to pick up any directories that were recently added,
and -P tells CVS to prune any directories that were recently removed.

L)

If you use modulename with the update command, you need to
be in the same directory where you originally issued the
' checkout command. This will be the parent directory of the
"' module’s top-level source directory. If you don’t specify a
modulename, CVS will update only the files in and below your
current working directory.

Here is an example session in which a module is checked out, its contents
perused, and its source updated to the latest version:

% cvs checkout testmodule

cvs checkout: Updating testmodule

U testmodule/Makefile

U testmodule/bar.c

U testmodule/foo.c

% cd testmodule/

%1s -1

total 24

drwxr-xr-x 5 bjepson staff 126 Apr 10 13:23 CVS
-IW-I--I-- 1 bjepson staff 3 Apr 10 13:22 Makefile
-IW-r--I-- 1 bjepson staff 2 Apr 10 13:22 bar.c
-IW-r--I-- 1 bjepson staff 2 Apr 10 13:22 foo.c

k time passes *F**

% cvs update -P -d

cvs update: Updating .

U bar.c

% 1s -1 bar.c

-IW-I--I-- 1 bjepson staff 2 Apr 10 13:23 bar.c

Getting the Right Version

The only version of Darwin that should work with your copy of Mac OS X is
the same one that Apple used. Your mileage may vary if you try to use an
older or newer version. So, before you try anything like that, get the correct
version and use that as a dry run to verify that you can build and install a
working kernel.

126 | Chapter7: Building the Darwin Kernel

First, find your Darwin version with the uname -v command. The output
you’re looking for is the xnu (Darwin kernel) version, shown in italic type:

4 uname -v
Darwin Kernel Version 6.0: Sat Jul 27 13:18:52 PDT 2002;
root:xnu/xnu-344.0bj~1/RELEASE_PPC

You need to translate that number into an Apple CVS tag, by replacing the
period (.) with a dash (-) and prefixing the version with Apple-. So, the
Apple CVS tag for the xnu version previously shown would be Apple-344.
This is the version you must supply with the -r flag. Now that you know the
CVS tag, you can check it out:

cvs -2z3 checkout -r APPLE_CVS_TAG modulename

Where APPLE_CVS_TAG is the CVS tag you computed, and modulename is xnu.
For example:

% cvs -z3 checkout -r Apple-344
cvs server: Updating xnu

U xnu/APPLE_LICENSE

U xnu/Makefile

U xnu/PB.project

U xnu/README

The CVS tags are symbolic names associated with a snap-
shot of the source code in time. An easy way to browse the
s: available tags is through the Darwin CVSWeb archive, avail-
" able at http://www.opensource.apple.com/tools/cvs/. You will
need to provide your registered username and password to
access the archive. You can also use CVSWeb to peruse the
archive and view the source code.

Building and Installing the Kernel

Now that you have downloaded the source from CVS, you can change to the
xnu directory and load some environment variables. If you’re using tcsh, you
can use the following commands:

% cd xnu
% source SETUP/setup.csh

If you're using bash or zsh, you can use these commands:

$ cd xnu
$. SETUP/setup.sh

Building and Installing the Kemel | 127

To build the kernel, use this command (the output is not shown):
% make
When make is finished, you should see mach_kernel in the xnu/BUILD/obj/

RELEASE_PPC directory. Before you install the new kernel, back up your
old kernel as follows:

% sudo cp /mach_kernel /mach_kernel.backup
Next, copy the new kernel over the older version:
% sudo cp BUILD/obj/RELEASE_PPC/mach_kernel /
Cross your fingers, knock on wood, and reboot. If all goes well, you should

see the build time, hostname, and your username (since you're the person
who compiled the kernel) when you run uname -v:

Darwin Kernel Version 6.0: Thu Aug 22 15:52:19 EDT 2002;
bjepson:BUILD/obj/RELEASE_PPC
Once you’ve made it that far, you can start modifying the code or experi-
menting with unofficial patches!

Kernel Configuration

Darwin includes configuration directories for each major component of the
operating system, as listed here:

xnu/bsd/conf
Contains configuration files for the BSD portions of Darwin.

xnufiokit/conf
Contains configuration files for IOKit, Darwin’s subsystem for device
drivers.

xnu/libkern/conf
Contains configuration files for libkern, a set of base classes for kernel
C++ code.

xnullibsa/conf
Contains configuration files for implementations of standard C library
functions that are used by the kernel.
xnufosfmk/conf
Contains configuration files for the Mach portions of Darwin.
xnu/pexpert/conf

Contains configuration files for pexpert (platform expert). This is for
low-level hardware support during the boot sequence.

128 | (Chapter7: Building the Darwin Kernel

libsa and pexpert are private to the xnu kernel and should not be used by
kernel extensions.

To tweak machine-independent aspects of a Darwin kernel component, you
can edit the MASTER file in each configuration directory. You can find
machine-dependent configuration options in MASTER.i386 (for x86 sys-
tems) and MASTER.ppc (for PowerPC systems).

Kemel Configuration | 129

CHAPTER 8
System Management Tools

Mac OS X comes with many tools for tweaking and spying on various
aspects of your system, including memory, kernel modules, and kernel state
variables. Some of these tools come directly from BSD, while others are
unique to Mac OS X. Most of the BSD-derived utilities have been filtered
through Mach and NeXTSTEP on their way to Mac OS X.

For more details on any of these utilities, see their respective manpages.

Diagnostic Utilities

Mac OS X includes many diagnostic utilities that you can use to monitor
your system and investigate problems.

top

The top utility displays memory statistics and a list of running processes. It
is divided into two regions: the top region contains memory statistics and
the bottom region contains details on each process.

L)
L3 .‘

The Mac OS X version of top is based on the one used in

f‘,“ early versions of BSD. It was ported to Mach in 1988, to
* 9k NeXTSTEP in 1990, and to Mac OS X in 1999.

You can specify the number of processes to show by supplying a numeric
argument. By default, top refreshes its display every second and sorts the list
of processes by process ID (PID) in descending order. You can set top to sort
by CPU utilization with -#, and you can specify the refresh delay with the -s
option. Figure 8-1 shows the output of top -u 10 (if you wanted to refresh
the output every 3 seconds, you could run top -s3 -u 10).

130

(1] Processes: 56 total, 2 runni 54 sleapmg 132 thraads 1n E7:28 E
(2] Load Avg: ©.87, B.77, 8.67 CPU usoge: 11. ?x user, 11.7% sys, 76.6% idl i
(4] SharedLibs: num = 93, resident = 22.2M code, 2.41M datu 7.22M LinkEdit
(3] MenRegions: num = 3256, resident = 72.8M + B.64M private, 182N shared

(6] PhysMem: 55.9M wired, 71.4M active, 193M inactive, 326M used, 328M free
(7] VM: 1.61G + 61.54 5529(5)@5.:;91

® " ® s §;’> "B O © O
Q} COMMAND HCPU TIME Q TS #‘I%S RPRVT RSHRD RSIZE VQE

475 screencapt D.0X 9:00.87 1 128K 736K 752K 22.E5M
473 Preview 0.8% B:85.75 2 32 13? 2.55M 6.98M 6.51M 53.5M
472 FreeHond 1 ©.9% 8:11.82 1 77 297 12.9M 26.2M 28.2M B9.6M
469 top 8.1% 2:58.87 1 14 18 248K 328K 336K 13.6M
462 tcsh 0.8% 9:00.86 1 18 15 356K 664K B16K 5.73M
461 login 0.8% B:1.62 1 12 33 244K 388K 572K 13.™M
460 Microsoft 0.8% B:82.89 2 69 91 1.74M 8.13M 4.15M 47.1M
459 Microsoft 0.8% 1:25.15 4 83 226 13.M 38.2M 2B.6M 95.3M
458 ssh 8.8% B8:01.67 1 18 280 368K 524K B16K 2.83M
457 sh 9.8% 9:80.81 1 9 13 76K 684K E@BK 1.79M
4 458 tcsh 8.ax% 8:08.11 1 18 16 428K 664K 988K 5.76M
449 login 8.8% 8:80.85 1 12 33 248K 38OK E6BK 13.7TM
448 Terminal 8.9% B:45.46 4 62 110 1.87M 6.82M 5.37M 46.8M
447 Internet E 6.3% 3:29.94 7 83 212 14.2M 15.1M 23.4M 76.6M
441 Transport 8.8% @:pa.53 2 82 91 74K 3.8 2.52M 39.7M
440 Palm Deskt ©.9% 08:36.29 1 44 74 TIEK 5.13M 2.55M 42.1M

Figure 8-1. Sample output from top

Table 8-1 describes the values shown in the top region, and Table 8-2
describes the columns in the bottom region (process information).

Table 8-1. Memory information displayed by top

{tem number Item Description

1 Processes The number of processes and threads. A running process is currently using
CPU time, while a sleeping process is not.

2 Load Avg. The average system load (number of jobs vying for the CPU's attention)
over the last 1, 5, and 15 minutes.

3 CPU usage A breakdown of CPU usage, listing time spent in usex mode, kemel (sys)
mode, and idle time.

4 SharedLibs The number of shared libraries in use, along with their memory utilization.

5 MemRegions The number of Mach virtual memory regions in use, along with memory
utilization details.

6 PhysMem The physical memory utilization. Memory that is wired cannot be

swapped to disk. active memory is memory that's currently being used,
inactive memory is memory that Mac 05 X is keeping “on deck” for
processes that need it, and free memory is memory that's not being used
atall.

7 VM The virtual memory statistics, including the total amount of virtual mem-
ory allocated (the sum of the VSIZE in the process list), as well as paging
activity (data paged in and out of physical memory).

Diagnostic Utilities | 131

Table 8-2. Process information displayed by top

8 PID Process ID

9 COMMAND Program’s name

10 *CPU Percentage of the CPU that the process is using

11 TIME Total amount of CPU time this process has used

12 #TH Number of threads in this process

13 #PRTS Number of Mach ports

14 #MRECS Number of memory registers

15 RPRVT Resident private memory

16 RSHRD Resident shared memory

17 RSIZE Resident memory

18 VSIZE Process's total address space, including shared memory
fs_usage

The fs_usage utility shows a continuous display of filesystem-related system
calls and page faults. You must run fs_usage as root. By default, it ignores
anything originating from fs_usage, Terminal, telnetd, sshd, rlogind, tcsh, csh,
or sh.
Figure 8-2 shows the output of fs_usage, which displays the:

1. Timestamp

2. System call

3. Filename

4. Elapsed time

5. Name of the process

latency

latency measures the number of context switches and interrupts, and reports
on the resulting delays, updating the display once per second. This utility
must be run as root. Example 8-1 shows a portion of its output.

Example 8-1. Partial output from latency

Mon Apr 8 16:30:30 0:01:58
SCHEDULER INTERRUPTS

total samples 64431 179982

delays < 10 usecs 38731 176120

132 | Chapter8: System Management Tools

Example 8-1, Partial output from latency (continued)

delays < 20 usecs 10763 2885
delays < 30 usecs 2934 447
delays < 40 usecs 1037 190
delays < 50 usecs 718 93
delays < 60 usecs 708 41
delays < 70 usecs 540 32
delays < 80 usecs 420 21
delays < 90 usecs 310 30
delays < 100 usecs 217 20
total < 100 usecs 56378 179879

The SCHEDULER column lists the number of context switches and the
INTERRUPTS column lists the number of interrupts.

sC_usage

The sc_usage utility samples system calls and page faults, displaying them
onscreen. sc_usage must be run by root or by someone who has superuser
privileges. The display is updated once per second. You must specify a PID,
a command name, or a program to execute with the -E switch. For exam-
ple, to monitor the Finder, use sc_usage Finder. Figure 8-2 shows the output
of running sc_usage on the Finder. Table 8-3 explains sc_usage’s output.

8 proenptwns 2] cmtext switches 3 t.hreads 11:41:09
8 foults 8 system calls 8:00:22

NUMBER cPU_ WAIT_TIME

System Idle 8:09.754{ 0:08.612)
System Busy 9:09.589(0:00.416)
4 Finder Usermode B:ea.

{ zero_till

8:09.0083

)
8
g

{ cache_hit 241 9:09.091

4 senaphore_tinedwait_sig 8 £:00.800 ©:35.463(0:02.058) 2
4 mach_msg_trap 3422 0:00.879 9:12.124(9:01.629) W
mach_wait_until 17 8:09.888 9:08.992

f mk_timer_arm 484 9:80.0868 9:09.801

4 mk_timer_destroy 228 8:00.084 0:00.008

4 vn_al locate 31 9:09.981 0:00.000

& vm_msync 12 9:09.0090 ©:00.000

4 CURRENT_TYPE LAST_PATHNAME_WAITED_FOR CUR_WAIT_TIME T@Dﬂ#%
; mach_msg_trap 8:87.568 @8 51
3 semaphore_timedwait_sig 8:88.

4 semaphore_timedwait_sig 2]

Figure 8-2. sc_usage monitoring the Finder

Diagnostic Utilities | 133

Table 8-3. Information displayed by sc_usage

itemnumber Row Desaription
TYPE The system call type
2 NUMBER The system call count
3 CPU_TIME The processor time used by the system call
4 WAIT_TIME The absolute time that the process spent waiting
5 CURRENT_TYPE The current system call type
6 LAST_PATHNAME_WAITED_FOR The last file or directory that resulted in a blocked 1/0
operation during a system call
7 CUR_WAIT_TIME The cumulative time spent blocked
8 THRD# The thread ID
9 PRI The scheduling priority
vim_stat

The vm_stat utility displays virtual memory statistics. Unlike implementa-
tions of ym_stat in other Unix systems, it does not default to continuous dis-
play. Instead, it displays accumulated statistics.

To obtain a continuous display, specify an interval argument (in seconds), as
in vm_stat 1. Figure 8-3 shows the output of vm_stat with no arguments,
and Figure 8-4 shows the output of vm_stat 1. Table 8-4 describes the infor-
mation that vm_stat displays (the item numbers correspond to the callouts
in both figures).

i Terminal — ttyp2

| [Brian-Jepsons-Computer :~] bjepson% vm_stat

1 Mach Virtual Memory Statistics: (poge size of 4896 bytes)
[1}Pages free: 81365.

(2} Pages active: 19524,

(3)Pages inactive: 45308,

(4)Pages wired down: 14651,

(5} "Translation faults": 2342058,

(6) Pages copy-on-write: 57663,

L7 }Pages zero filled: 1499387.

(8)Pages reactivoted: 8.

L9) Pageins: 6938,

Pageouts: 8.

4 Object cache: 7148 hits of 18874 lookups (65% hit rate)

1 [Brion-Jepsons-Computer :~] bjepsonk [}

Figure 8-3. vm_stat displaying accumulated statistics

134 | (hapter8: System Management Tools

[Brian-Jepsons-Computer :~] bjepson® wm_stot 1 1
Mach Virtual Memory Statistics: (poge size of 4896 bytes, cache hits 66%)
free active inac wire faults copy zerofill reactive pageins pageout
78734 19729 BBG66 14711 2456422 58298 1596119 8 76086 a
787256 19729 BBAT5 14711 14 2] 11 5] 8 8
78716 19729 50684 14711 14 2} 11 [} a]
| 78788 19729 E@692 14711 13] 18 2] 8 e
79588 19782 5OTE6 14714 4089 88 56] 1]
78596 19782 50748 14714 27 5 8 8 8 8
78587 19782 @757 14714 14 i} 11 8 8 8
78587 19782 E@757 14714 5 i} 2 8 8 2]
78576 19782 5A768 14714 17 3} 13 8 8 8
78576 19782 5B768 14714 5 8 2 2] 8 2]
78573 19782 5B77L 14714 9 3} 5 8 8 2]
78513 19782 5B831 14714 67 2] 2] 2] 2]
78511 19782 5B833 14714 7 8 8 2] 8
78583 19782 50841 14714 13 [} a 8 a
76583 19782 50841 14714 6 8 8 2] 8
78498 19762 50854 14714 18 2] 8 2] 2]
78481 19782 58863 14714 14 a a a 8
768481 19782 50863 14714 5 2] 8 8 8
78481 19782 50863 14714 22 8 8 8 8
78438 50906 14714 48 8] 8 8
78438 8 4] a 8
® ® ® ©®

Figure 8-4. vm_stat’s continuous output

Table 8-4. Information displayed by vm_stat

Item

number Accumulated mode Continuousmode Description

1 Pages free free Total free pages

2 Pages active active Total pages in use that can be paged out

3 Pages inactive inac Total inactive pages

4 Pages wired down wire Total pages wired into memory (cannot be
paged out)

5 Translation Faults faults Number of times vm_fault has been called

Pages copy-on-write copy Number of faults that resulted in a page

being copied

7 Pages zero filled zerofill Number of pages that have been zero-filled

8 Pages Reactivated reactive Number of pages redassified from inactive to
active

9 Pageins pagein Number of pages moved into physical mem-
ory

10 Pageouts pageout Number of pages moved out of physical
memory

Diagnostic Utilities | 135

Kernel Utilities

Mac OS X includes various utilities that interact with the kernel. With these
utilities, you can debug a running kernel, load and unload kernel modules or
extensions, or set kernel variables.

ddb

The ddb utility can debug a running kernel. It is not included with the cur-
rent version of Mac OS X. If you want to use ddb, you can find its source
code in the xnu (Darwin kernel) source code. For details on building the ker-
nel or obtaining source code from CVS, see Chapter 7.

Kernel Module Utilities

The following list describes utilities for manipulating kernel modules. For
more information, see the kernel extension tutorials available at http://www.
opensource.apple.com/projects/documentation/howto. These utilities must be
run by root or by someone with superuser privileges.

kextload

Loads an extension bundle.
kextunload

Unloads an extension bundle.

kextstat
Displays the status of currently loaded kernel extensions. Table 8-5
describes this utility’s output.

Table 8-5. Information displayed by kextstat

item

number Column Description .

1 Index Index number of the loaded extension. Extensions are loaded in
sequence; gaps in this sequence signify extensions that have been
unloaded.

2 Refs Number of references to this extension from other extensions.

3 Address Keel space address of the extension.

4 Size Amount of kernel memory (in bytes) used by the extension.

5 Wired Amount of wired kernel memory (in bytes) used by the extension.

6 Name (Version) Name and version of the extension.

7 <Linked Against> Index of kemnel extensions to which this extension refers.

136 | Chapter8: System Management Tools

Figure 8-5 shows sample output.

§ [Brion-Jdepsons-Computer :~] bjepson¥ vm_stat 1
§ Mach Virtual Memory Stotistics: (page size of 4096 bytes, cache hits 66%)

free active inac wire faults copy zerofill reactive pogeins pogeout
78734 19729 BR666 14711 2456422 58298 1596119 2] 7886 -]
78725 19729 59675 14711 14 2] 1 -] -] [}
78716 19729 5684 14711 14 2] 1 5] -] L
78708 19729 59692 14711 13 8 18]] 8§
78588 19782 5B756 14714 409 88 56 8 1 e
78696 19782 EB748 14714 27 5 8 2] 2] 2]
78587 19782 BB7E7 14714 14 2] 11 8 8]
78687 19782 BBTET 14714 5 2] 2 2] a a
78576 19782 50768 14714 17 2] 13 8 8 8
78576 19782 EB768 14714 5 a 2 2] 2] a
78573 19782 EBTTL 14714 9 a 5 8 2] 2]
78513 19782 EBB831 14714 67 a 63 2] 2] 2]
78511 19782 EBB33 14714 7 a 4 2] 2] 2]
78503 19782 50841 14714 13 [} 18 [} 2] [
78503 19782 EBB41 14714 6 a 2 8 [} 2]
78490 19752 5@854 14714 18 a 15 2] 2] 2]
78481 19782 E@BE3 14714 14 a 11 2] 2] e
78481 19782 E@BE3 14714 5 a 2 2] 2] 2]
78481 19782 EBBE3 14714 22 8 19 8 2] 2]

§ 78438 19782 50906 14714 8 45 2] 2] 2]

§ 70438 19782 58986 14714 8 2 8 a 2]

10 o (5) ® ©

Figure 8-5. Partial output of kextstat

sysctl

sysctl is a standard BSD facility for configuring kernel state variables. Use
sysctl name to display a variable name, as in sysctl kern.ostype. Use sysctl -a to
display all variables. You can set a variable with sysctl -w name=value. You
must have superuser privileges to set a variable.

Table 8-6 lists the sysctl variables on Mac OS X. See the sysctl(3) manpage
for a description of the sysct! system call and more detailed information on
the kernel state variables.

Table 8-6. sysctl’s kernel state variables

Name Type Writable Desaription

hw.busfrequency int no Bus frequency in hertz. Divide by one million to
get a megahertz figure,

hw.byteorder int no Variable that retums 4321, showing the ordering
of four bytes on the PowerP(platform.

hw.cachelinesize int no The cache line size in bytes.

Kemnel Utilities | 137

Table 8-6. sysctl’s kernel state variables (continued)

Writable Description

Name
hw.cpufrequency

hw.epoch

hw.I1dcachesize
hw.iTicachesize
hw.2cachesize
hw.[2settings
hw.B3cachesize
hw.[3settings
hw.machine

hw.model
hw.nepu
hw.pagesize
hw.physmem
hw.usermem
hw.vectorunit

kern.argmax

kern.boottime
kern.clockrate

kern.dummy
kern.hostid
kern.hostname
kern.job_contro!

kern.maxfiles

kern.maxproc
kern.maxvnodes

kern.ngroups
kemn.netboot

kern.nisdomainname

Type

int

int

int
int
int
int
int
int

string

string
int
int
int
int

int
int

struct
timeval

struct
clockinfo

n/a
int
string

int

int
int
int
int

int

string

no

no

no
no
no
no
no
no

no

no
no
no
no
no

no

no

n/a
yes
yes

no

yes
yes
yes
no

no

yes

CPU frequency in hertz. Divide by one million to
get a megahertz figure.

Variable that indicates whether your hardware is
in the New World or the Old World. Old World
Macintoshes (pre-G3) will have a value of 0.

Level 1 data cache size in bytes.

Level 1 instruction cache size in bytes.
Level 2 cache size in bytes.

Level 2 cache settings.

Level 3 cache size in bytes.

Level 3 cache settings.

Machine class (Power Macintosh on most sys-
tems).

Machine model.

Number of CPUs,

Software page size in bytes.
Physical memory in bytes.
Non-kernel memory.

Variable that indicates whether you are running
on an AltiVec-enabled CPU.

Maximum number of arguments supported by
exec().

The time when the system was booted.
System clock timings.

Unused.
Host identifier.
Hostname.

Variable that indicates whether job control is
available.

Maximum number of open files.

Maximum number of simultaneous processes.
Maximum number of vnodes.

Maximum number of supplemental groups.

Variable that indicates whether the system
booted via NetBoot.

NIS domain name.

138 | Chapter8: System Management Tools

Table 8-6. sysctl’s kernel state variables (continued)

Name
kern.osrelease
kern.osrevision
kern.ostype
kern.posixversion

kern.saved_ids

kern.securelevel

kern.symfile
kern.sysv.shmmax
kern.sysv.shmmin

kern.sysv.shmmni

kern.sysv.shmseg
kern.sysv.shmall
kern.version
net.inet.*
net.key.*
net.inet6.*
user.bc_base_max

user.be_dim_max
user.bc_scale_max
user.b¢_string_max
user.coll_weights_max
user.cs_path
user.expr_nest_max
user.fine_max

user.posix2_c_bind

Type

string
int
string
int

int

int
string
int

int

int

int

int
string
various
various

various

int
int
int
int
int
string
int
int

int

Writable
no
no
no

no
no
increment
only

no

yes

yes
yes

yes
yes
no

n/a
n/a
n/a

no
ne
no
no
no
no
no
no

no

Operating system release version.
Operating system revision.
Operating system name.

The version of POSIX 1003.1 with which the sys-
tem attempts to comply.

This i set to 1 if saved set-group and set-user IDs
are available.

The system security level.

The kernel symbol file.
The maximum number of shared memory pages.

The maximum number of shared memory seg-
ments per process.

The maximum number of shared memory seg-
ments.

The minimum size of a shared memory segment.
The maximum size of a shared memory segment.
The kemel version string.

IPv4 settings.

IPSec key management settings.

IPv6 settings.

Maximum ibase/obase available in the bc calcu-
lator.

Maximum array size available in the bc calcula-
tor.

Maximum scale value available in the b¢ calcula-
tor.

Maximum string length available in the bc calcu-
lator,

Maximum number of weights that can be used
with LC_COLLATE in the locale definition file.

Value for PATH that can find all the standard
utilities.

Maximum number of expressions you can nest
within parentheses using expr.

Maximum length in bytes of an input line used
with a text-processing utility.

Variable that retums 1 if the C development
environment supports the POSIX C Language
Bindings Option; otherwise, the result will be 0.

Kemel Utilities | 139

Table 8-6. sysctl’s kernel state variables (continued)

Name Type Writable Description

user.posix2_c_dey int no Variable that returns 1 if the C development
environment supports the POSIX C Language
Development Utilities Option; otherwise, the
result will be 0.

user.posix2_char_term int no Variable that retums 1 if the systems supports at

least one terminal type spedified in POSIX 1003.2;
otherwise, the result will be 0.

user.posix2_fort_dev int no Variable that returns 1 if the system supports the
POSIX FORTRAN Development Utilities Option;
otherwise, the result will be 0.

user.posix2_fort_run int no Variable that returns 1 if the system supports the

POSIX FORTRAN Runtime Utilities Option; other-
wise, the result will be 0.

user.posix2_localedef int no Variable that retums 1 if the system allows you
to create locale; otherwise, the result will be 0.
user.posix2_sw_dev int no Variable that returns 1 if the system supports the

POSIX Software Development Utilities Option;
otherwise, the result will be 0.

user,posix2_upe int no Variable that retumns 1 if the system supports the
POSIX User Portable Utilities Option; otherwise,
the result will be 0.

user.posix2_version int no Variable that returns the POSIX 1003.2 version
with which the system attempts to comply.

user.re_dup_max int no Maximum repeated occurrences of a reqular
expression when using interval notation.

user.stream_max int no Maximum number of streams a process may
have open.

user.izname_max int no Maximum number of types supported for a time
onename.

System Configuration

Although you can perform most system configuration through the System
Preferences program, the defaults command lets you poke around under the
hood. You can get even further under the hood with the nvram command
(perhaps further than most people would need or want to get).

defaults

When you customize your Mac using the System Preferences, all of those
changes and settings are stored in what's known as the defaults system.
Everything that you've done to make your Mac your own is stored as XML

140 | (hapter8: System Management Tools

data in the form of a property list (or plist). This property list is, in tumn,
stored in ~/Library/Preferences.

Every time you change one of those settings, that particular property list is
updated. For the initiated, there are two other ways to alter the property
lists. The first is by using the PropertyListEditor application (/Developer/
Applications) and the other is by using the defaults command in the Termi-
nal. Whether you use System Preferences, PropertyListEditor, or the defaults
command, any changes you make affect the current user.

Syntax

defaults [-currentHost | -host name] command

Options
-currentHost
Performs operations on the local machine.

-host name
Performs operations on the specified host.

Commands

read
Prints out all of your current settings.

read domain
Prints out your settings for the specified domain, such as com.apple.

dock.

read domain key
Prints out the value of the specified key. For example, to see the current
Dock orientation, use:

defaults read com.apple.dock orientation.

read-type domain key
Prints out the data type of the specified key. For example, defaults read-
type com.apple.dock orientation tells you that the type of the orientation
key is string.

write domain key value
Writes a value to the specified key.

rename domain old_key new_key
Renames the specified key.

delete domain
Deletes the specified domain. So, if you issued the command defaults
delete com.apple.dock, the Dock would forget everything. The next time
. you log in, the Dock’s settings are set to the system default.

System Configuration | 141

delete domain key
Deletes the specified key. So, if you issued the command defaults delete
com.apple.dock orientation, the Dock would forget its orientation. The
next time you log in, the Dock’s settings are set to the system default.

domains

Lists all the domains in your defaults.
find string

Searches all defaults for the specified string.
help

Prints a list of options.

Values
A value may take one of the following forms:

string
Specifies a string value. For example, defaults write com.apple.dock
orientation right.

-type value
Specifies a value of the specified type. The type may be string, float, or
boolean. For example, defaults write com.apple.dock autohide -boolean
true.

-array [-add] value [value ...]
Creates or adds to a list of defaults. For example, you can create a list of
your favorite colors with defaults write personal.favorites colors -array red,
blue. Use -add to add values to an existing array.

-dict [-add] key value [key value...]
Creates or adds to a dictionary list. For example, you can create a dictio-
nary of preferred pet foods with defaults write personal.pets food -dict cat
salmon dog steak.

Using the defaults command is not for the foolhardy. If you
‘-@ manage to mangle your settings, the easiest way to correct

the problem is to go back to that application’s Preferences
pane and reset your preferences. In some cases, you can use
defaults delete, which will be reset to the same defaults when
you next log in. Since the defaults command affects only the
current user, you could also create a user just for testing ran-
dom defaults tips you pick up on the Internet.

142 | Chapter8: System Management Tools

Examples

View all of the user defaults on your system
% defaults domains
This will print a listing of all of the domains in the user’s defaults sys-
tem. The list you’ll see is run together with spaces in between—not
quite the prettiest way to view the information.

View the settings for your Terminal
% defaults read com.apple.Terminal
This command reads the settings from the com.apple. Terminal.plist file,
found in ~/Library/Preferences. This listing is rather long, so you might
want to pipe the output to less or more to view the contents one screen
at a time:
% defaults read com.apple.Terminal | more

Change your Dock’s default location to the top of the screen
% defaults write com.apple.Dock orientation top
This moves the Dock to the top of the screen underneath the menu bar.
After changing that setting, you’ll need to logout from the system and
then log back in to see the Dock under the menu bar.

nvram

The nvram utility modifies Open Firmware variables, which control the
boot-time behavior of your Macintosh. To list all Open Firmware variables,
use nvram -p. The Apple Open Firmware page is http://bananajr6000.apple.
com/.

To change a variable, you must run nvram as root or as the superuser. To set
a variable, use variable=value. For example, to configure Mac OS X to boot
verbosely, use nvram boot-args=-v. (Booting into Mac OS 9 or earlier will
reset this.) Table 8-7 lists Open Firmware variables. Some variables use the
Open Firmware Device Tree notation (see the technotes available at the
Apple Open Firmware page).

Be careful changing the nvram udility, since incorrect set-
b tings can turn a G4 iMac into a $2000 doorstop. If you ren-

der your computer unbootable, you can reset Open
Firmware by zapping the PRAM. To zap the PRAM, hold
down Option-88-P-R as you start the computer, and then
release the keys when you hear a second startup chime. (If
your two hands are busy holding down the other buttons
and you have trouble reaching the power button, remember
that you can press it with your nose.)

System Configuration | 143

Table 8-7. nvram variables

Variable
auto-boot?

boot-args
boot-command

boot-device

boot-file

boot-screen

boot-script

console-screen

default-client-ip
default-gateway-ip
default-mac-address?

default-router-ip
default-server-ip
default-subnet-mask

diag-device
diag-file
diag-switch?
fcode-debug?

input-device

input-device-1

little-endian?

load-base
mouse-device

nvramrc

Description

The automatic boot settings. If t rue (the default), Open Firmware will auto-
matically boot an operating system. If false, the process will stop at the Open
Firmware prompt. Be careful using this with Old World (unsupported) machines
and third-party graphics adapters, since the display and keyboard may not be
initialized until the operating system starts (in which case, you will not have
access to Open Firmware).

The arguments that are passed to the boot loader.

The command that starts the boot process. The default is mac-boot, an Open
Firmware command that examines the boot - device for a Mac 0S startup.

The device to boot from. The syntax is device: [partition],path:
filename, and a common defaultis hd: ,\\: tbxi. In the path, \\ is an
abbreviation for /System/Library/CoreServices, and tbxi is the file type of the
BootX boot loader. (Run /Developer/Tools/GetFilelnfo on BootX to see its type.)

The name of the boot loader. (This is often blank, since boot - command and
boot-device are usually all that are needed.)

The image to display on the boot screen.
A variable that can contain an Open Firmware boot script.

A variable that specifies the console output device, using an Open Firmware
Device Tree name.

An IP address for diskless booting.
A gateway address for diskless booting.

Description not available at time of writing; see errata page at http./www.
oreilly.com/catalog/mosxgeeks.

A router address for diskless booting.

An IP address for diskless booting.

A default subnet mask for diskless booting.

A private variable; not usable for security reasons.
A private variable; not usable for security reasons.
A private variable; not usable for security reasons.

A variable that determines whether the Open Firmware Forth interpreter will
display extra debugging information.

The input device to use for the Open Firmware console.

A secondary input device (so you ¢an have a screen and serial console at the
same time). Use scca for the first serial port.

The CPU endian-ness. If tTue, initializes the PowerPC chip as little-endian. The
defaultis false.

A private variable; not usable for security reasons.
The mouse device using an Open Firmware Device Tree name.

A sequence of commands to execute at boot time (if use-nvramc? s set to
true).

144 | Chapter8: System Management Tools

Table 8-7. nvram variables (continued)

Yariable
oem-banner

oem-banner?
oem-logo
oem-logo?

output-device

output-device-1

pci-probe-mask

ram-size

real-base

real-mode?

Teal-size
screen-#columns
screen-#rows

scroll-lock

selftest-#megs

use-generic?
use-nvramrc?

virt-base

Description o
A custom banner to display at boot time.

The oem banner settings. Set to true to enable the oem banner. The default is
false.

A 64-by-64 bit array containing a custom black-and-white logo to display at
boot time. This should be specified in hex.

The oem logo settings. Set to txue to enable the oem logo. The default is
false.

The device to use as the system console, The default is sczeen.

A secondary output device (s you can have everything go to both the screen
and a serial console). Use scca for the first serial port.

A private variable; not usable for security reasons.

The amount of RAM currently installed. For example, 256 MB is shown as
0x10000000.

The starting physical address that is available to Open Firmware.

The address translation settings. If true, Open Firmware will use real-mode
address translation. Otherwise, it uses virtual-mode address translation.

The size of the physical address space available to Open Firmware.
The number of columns for the system console.
The number of rows for the system console.

Set by page checking output words to prevent Open Firmware text from scroll-
ing off the top of the screen.

The number of MB of RAM to test at boot time. The default is o.

The device node naming settings. Specifies whether to use generic device node
names such as “screen’, as opposed to Apple hardware code names.

The command settings. If this is tzue, Open Firmware uses the commands in
nvramre at boot time.

The starting virtual address that is available to Open Firmware.

The size of the virtual address space available to Open Finnwg re.

System Configuration | 145

CHAPTER 9
The X Window System

Although the X in “Mac OS X” is not the same X as in “The X Window Sys-
tem,” you can get them to play nice together.

Most Unix systems use the X Window System as their GUIL. (We'll refer to
the X Window System as X11, to avoid confusion with Mac OS X.) X11
includes development tools and libraries for creating graphical applications
for Unix-based systems. Mac OS X does not use X11 as its GUI, relying
instead on Quartz (and, on compatible hardware, Quartz Extreme), a com-
pletely different graphics system. However, an implementation of X11 for
Mac OS X is available from the XFree86 Project (http://www.xfree86.org/).
The XDarwin project (http://www.xdarwin.org/) provides an easy-to-install
binary distribution of XFree86.

Installing X11

The XFree86 site contains instructions for downloading and installing the
X11R6 binaries on a Mac OS X system. The site also provides instructions
for compiling the X11R6 suite from source. The easiest way to get X11 for
Mac OS X is through either XDarwin or Fink, both of which contain easy-
to-install binary distributions of X11. Fink also includes the system-xfree86
package, which is a placeholder package that lets you use the X11 distribu-
tion of your choice with Fink. (The placeholder package satisfies the same
dependencies as the Fink X11 package.)

Manually Installing X11

If you want to install the XFree86 distribution manually, download the dis-
tribution (see the instructions on the XFree86 web site) and run the Xinstall.
sh script to install the XFree86 suite.

146

This script will prompt you for some configuration details, although it
includes defaults that should work for most Mac OS X users. The XFree86
web site has an extensive set of instructions explaining how to install
XFree86 for the first time, how to install the suite over an older XFree86
installation, and how to uninstall XFree86. There are specific instructions
for Mac OS X and Darwin.

The installer script will install the X11 binaries, libraries, header files,
manpages, configuration files, etc., in /usr/X11R6 and /etc/X11.

There is very little difference between manually installing XFree86 on Mac
OS X and manually installing it on other Unix systems. The main difference
is that some files required on other Unix systems are not required on Dar-
win. For example, there is no separate Xvar.tgz file to download. Another
difference with Mac OS X is that the double-clickable XDarwin application
is placed in the /Applications folder.

Running XDarwin

XDarwin can be run in two modes: full screen or rootless. Either of these
modes runs side-by-side with Aqua, although full-screen mode hides the
Finder desktop. To launch the X server, double-click the XDarwin applica-
tion (/Applications). You will be prompted to choose which of these two
modes to run. In rootless mode, X11 applications take up their own win-
dow on your Aqua desktop. In full-screen mode, X11 takes over the entire
screen and is suitable if you want to run an X11 desktop environment (DTE)
like GNOME, KDE, or Xfce. If you prefer rootless mode, you will probably
want to run OroborOSX, an X window manager with a look and feel similar
to Aqua (see the section “Aqua-like X Windows: OroborOSX,” later in this
chapter).

L

[You can still access your Mac OS X desktop while in full-
ﬁ{' screen mode by pressing Option-38-A. To go back to the
&' X11 desktop, either press Option-38-A or click the XDarwin

" icon in the Dock.

Running XDarwin from the Console

You can also run XDarwin from the Darwin console. To run X11 from the
Darwin console, first shut down Core Graphics by logging into the machine
as >console. When the console prompt appears, log in with your normal
username. Once logged in, start the X server by entering the command exec
startx. To quit X11, type exit from the main login Terminal window. If there

Running XDarwin | 147

is a long delay, with only the spinning beach ball cursor visible, type logout
to return to console mode. Note that in this situation, you will not see text
appear on the screen as you type.

Desktops and Window Managers

You can do a lot of X11 customization in XDarwin. The most significant
customization is in your choice of Window manager. To start customizing,
you would typically use the .xinitrc script in the your home directory. A
sample .xinitrc script is provided in /etc/X11/xinit/xinitrc.

Using the script as a starting point, you can specify which X11-based appli-
cations to start when XDarwin is launched, including which window man-
ager you'd like to use as your default. The default window manager for
XDarwin is the tab window manager (or twm), but many other DTEs are
available. You can visit the following web sites to get instructions and bina-
ries for a wide variety of window managers and DTEs.
Fink

http://fink.sourceforge.net
GNU-Darwin

http://gnu-darwin.sourceforge.net
OroborOSX

http:/foroborosx.sourceforge.net

Once you've installed XFree86, you will probably want to install additional
X11 applications, window managers, and perhaps other DTEs. One of the
easiest ways to install additional window managers is to use Fink. Table 9-1
lists some of the window managers and desktops that can be installed via
Fink. (For information on installing and updating Fink, see the “Fink” sec-
tion in Chapter 6.)

Table 9-1. Window managers available for Fink

Window manager/desktop Fink package name

Blackbox blackbox

Enlightenment enlightenment

FVWM fewm, frwm2

GNOME bundle-gnome

lceWM icewm

KDE As of this writing, support for KDE is available, but is experimental. See http.//
fink sourceforge.net/news/kde.php.

mwm lesstif

148 | (Chapter9: TheX Window System

Table 9-1. Window managers available for Fink (continued)

Window manager/desktop Fink package name

Oroborus : oroborus, oroborus2
PWM pwm

Sawfish sawfish

Window Maker windowmaker
Xrce e

Fink has an entire section devoted to GNOME, where you will find an
extensive set of GNOME libraries, utilities, and plug-ins. Also included in
the GNOME section are GTK+, glib, and Glade. You can use Fink to install
an xterm replacement such as rxvt or eterm.

It is important to remember that Fink installs everything in its /sw directory.
So, for example, if you’ve installed lesstif and want to use the mwm window
manager, you must include your path in /sw/bin, or include /sw/bin/mwm &
in your .xinitrc file to start the Motif window manager.

X11-based Applications and Libraries

You can also use Fink to install many X11-based applications, such as the
GNU Image Manipulation Program (GIMP), xfig/transfig, ImageMagick,
nedit, and many others. Since Fink understands dependencies, installing
some of these applications will cause Fink to first install several other pack-
ages. For example, since the text editor nedit depends on Motif libraries,
Fink will first install lesstif. (This also gives you the Motif window manager,
mwm.) Similarly, when you install the GIMP via Fink, you will also install
the packages for GNOME, GTK+, and glib.

You can also use Fink to install libraries directly. For example:
% fink install qt

will install the X11-based Qt libraries. An Aqua version of Qt for Mac OS X
is available from Trolltech (http://www.trolltech.com).

Building X11-based Applications and Libraries

If you cannot find binaries for X11-based applications (or if you prefer to
build the applications yourself), most of the tools to do this are available.
First, you need Apple’s Developer Tools. If you installed XFree86 by hand,
make sure you installed XProg.tgz, which contains development tools and
header files needed for building X11-based applications. The XDarwin dis-
tribution includes these tools and header files.

X11-based Applications and Libraries | 149

The process of building software usually begins with generating one or more
makefiles customized to your system. For X11 applications, there are two
popular methods for generating makefiles. One method is to use a configure
script (see the “Compiling Unix Source Code” section in Chapter 4.)

The other popular method for generating makefiles involves using the
xmkmf script, which is a frontend to the imake utility. xmkmf invokes imake,
which creates a makefile. To do this, imake looks for a template file called
Imakefile.

With imake-driven source releases, after downloading a source tarball,
unpacking it, and changing to the top-level source directory, you'll find an
Imakefile. After reading the README or INSTALL files, examine the
Imakefile to see if you need to change anything. Then the next step is usu-
ally to issue the command:

% xmkmf -a
When invoked with the -a option, xmkmf reads imake-related files in /usr/
X11R6/lib/X11/config and performs the following tasks recursively, begin-

ning in the top-level directory and then in the subdirectories, if there are
any:

% make Makefiles
% make includes
% make depend

The next steps are usually make, make test (or make check), and make install.
To illustrate this method of building software, consider the script in
Example 9-1, which downloads and builds an X11-based game.

Example 9-1. Downloading and building an X11 game

Download the source tarball
curl -0 ftp://ftp.x.org/contrib/games/xtic1.12.tar.gz

Unpack the tarball
gnutar xvfz xtici.12.tar.gz

Change to the top-level build directory
cd xtici.12/

Generate the Makefile
xmkmf -a

Build everything (some X11 apps use 'make World')
make

Have fun!
./src/xtic

150 | Chapter9: TheXWindow System

Making X11 Applications More
Aqua-like

Even though you can run the X server in rootless mode and display X11
applications alongside Aqua applications, the appearance of X11 windows is
determined by the window manager you are using. OroborOSX is a Win-
dow manager with a look and feel similar to Aqua, and AquaTerm displays
vector graphics in an Aqua window.

An Aqua-like X11: Orobor0SX

OroborOSX, developed by Adrian Umpleby, is a modified version of the
oroborus GNOME-compliant X11 window manager created by Ken Lynch.
OroborOSX is designed to make X windows look and behave as much like
Aqua as possible.

Although OroborOSX includes a copy of the XDarwin server, it does not
include supporting files such as user binaries, headers, and libraries. So, you
should install XFree86 before running OroborOSX. Aside from the prerequi-
site software, one of the most Mac-like features of OroborOSX is its installa-
tion.

After unpacking the tarball containing the OroborQSX package, drag the
OroborOSX folder to the Applications folder in the Finder. You might also
consider adding its icon to the Dock.

Some versions of Stufflt Expander and the OroborOSX pack-
= age do not play nice together. For best results, you should

download the OroborOSX tarball, save it in the /Applications
directory, and unpack it there from the command line. For
more details about this problem, see the OroborOSX FAQ
page at http://oroborosx.sourceforge.net.

At the time of this writing, the latest version of OroborOSX
: is v0.8b2—a pre-Jaguar beta. To prevent XDarwin from
crashing, you need to download an update for the xterm

from the following web site: http://prdownloads.sourceforge.
net/xonx/Jaguar_XTerm_Update.zip?download.

To launch OroborOSX, double-click its icon. Launching OroborOSX also
starts XDarwin in the background.

You will notice some differences immediately. The first and most obvious
difference from other X11 window managers is that the xterm window

Making X11 Applications More Aqua-like | 151

frames look very similar to the Aqua Terminal windows. In particular, they
have the Aqua-like buttons for closing, minimizing, and maximizing the
window. Also, OroborOSX windows minimize to the Dock, just like other

Aq

ua windows. (Other X11 window managers have their own locations for

minimized windows). Figure 9-1 shows a Terminal window and an xterm
window side-by-side.

Lost login: Mon Jul 22 16:85:56 on ttyp3 =]
¥elcome to Darwin!

[Brion-Jepsons-Computer :~] bjepsonX []

[Brian-Jepsons-Computer:*] bjepsont ||

|
i
5
§
|
|
|

Figure 9-1. A Terminal and an xterm sporting the Aqua look

OroborOSX also includes the following features that distinguish it from
other X11 window managers.

X11 windows are interleaved with Aqua windows. Clicking an open
OroborOSX window brings only that individual window to the front of
the desktop, not all X11 windows.

Clicking in a background window will bring that window to the front,
but it won’t pass the click through to any window controls. For exam-
ple, if you click on the GIMP toolbar while it is in the background, this
will only bring it to the front. Click again to select the tool you wanted.

A list of X11 windows can be obtained by Control-clicking
OroborOSX’s icon in the Dock (and via the Window menu).

New X11 application icons can be created with the template script. This
file is located in the Contents/Resources/Launch Menu Items subdirec-
tory of the OroborOSX application (.app) folder. Copy it to a file with
an .x11app extension, edit it to suit your needs, and double-click it from
the Finder to launch it under OroborOSX.

X11 applications, such as nedit and the GIMP, can be launched from the
Launch menu. You can also use the Launch menu to edit startup and
launch items.

X11 applications can be launched by double-clicking on their icons.

152

| Chapter9: TheX Window System

OroborOSX is a self-contained package. It does not interfere with any Unix-
based software, although it can run X11 binaries that were installed by other
packages.

By default, OroborOSX does not execute your .xinitrc script; however, this
script can be run from OroborOSX’s Launch menu. If you want to utilize
your .xinitrc script this way, be sure not to start some other window man-
ager in it. To prevent that from happening, simply comment out the line in
your .xinitrc file that starts a window manager. For example, the following
line:

exec mwm

should be changed to:

exec mwm

One interesting Mac-like feature of OroborOSX is that double-clicking the
titlebar of an OroborOSX window will window-shade it. This feature gives
OroborOSX something in common with Mac OS 9 that Mac OS X windows
lack; double-clicking a Mac OS X window’s titlebar will minimize the win-
dow and place it in the Dock. The Window menu includes shortcuts for
activating the window-shade feature, minimizing a window, or zooming a
window. Figure 9-2 shows a window-shaded and normal xterm next to each
other.

[Brian-Jepsons—Computer:~] bjepson || %

Figure 9-2. xterms with and without window shading

You can customize window appearance by choosing a different OroborOSX
theme (Options —+ Themes). Here is a list of the OroborOSX themes:

Eau (default)
This is an Aqua-like theme that styles the window and its titlebar to
look just like normal Aqua windows under Mac OS X.

Greyphite
This theme gives the windows an Aqua-like look and feel, but with a
graphite style.

Nextish
This theme creates windows with a NeXTSTEP appearance.

Making X11 Applications More Aqua-like | 153

AquaTerm

The X Window System is useful to Unix developers and users, since many
Unix-based software packages depend on the X11 libraries. An interesting
project that in some cases eliminates the need for the X windows is the BSD-
licensed AquaTerm application, developed by Per Persson (http://aquaterm.
sourceforge.net). AquaTerm is a Cocoa application that can display vector
graphics in an X11-like fashion. It does not replace X11, but it is useful for
applications that need to generate plots and graphs.

The output graphics formats that AquaTerm supports are PDF and EPS.
Applications communicate with AquaTerm through an adapter that acts as
an intermediary between your old application’s API and AquaTerm’s APL.

At the time of this writing, AquaTerm has are adapters for gnuplot and
PGPLOT, as well as example adapters in C, FORTRAN, and Objective-C.
For example, assuming that you have installed both XFree86 and Aqua-
Term, you can build gnuplot (http:/fwww.gnuplot.info) so that graphics can
be displayed either in X windows or in AquaTerm windows.

There is extensive documentation on AquaTerm’s web site (listed earlier in
this section). Consult that site for the latest developments, examples, and
other documentation.

Aqua-X11 Interactions

Since X11-based applications rely on different graphics systems even when
running XDarwin in rootless mode, you would not necessarily expect to see
GUI interactions run smoothly between these two graphics systems. But
actually, there are several such interactions that run very well.

First, it is possible to open X11-based applications from the Terminal appli-
cation. To launch an X11-based application from the Terminal application,
you need to set the shell environment variable DISPLAY as follows for tcsh:

setenv DISPLAY 0:0

If you are using a Bourne-compatible shell, such as bash, you could use the
following:

DISPLAY="0:0"; export DISPLAY
o, .
e You may want to add this functionality to your startup con-
f;:‘ figuration script .tcshre (for tesh) or .bashre (for bash).
N -
)

154 | Chapter9: TheXWindow System

You can also copy and paste between X11 and Mac OS X applications. For
example, to copy from an xterm, select some text with your mouse. This
action places the selected text into the Mac clipboard. To paste the contents
of the clipboard into a Mac OS X application (such as the Terminal), simply
press 8-V to paste the text.

To copy from a Mac OS X application, highlight some text and press 3-C.
The copied text can be pasted into an xterm window by pressing the middle
button of a three-button mouse or by Command-clicking in the X11 applica-
tion.

In Aqua, Mac OS X emulates right-mouse clicks with Con-
trol-click. In XDarwin, you can configure key combinations

s that simulate two- and three-button mice. By default,

" Option-click simulates the middle mouse button, and 38-click
simulates the right mouse button. To configure this in XDar-
win, choose Preferences from the XDarwin menu. In
OroborOSX, choose XDarwin Preferences from the Options
menu.

Connecting to Other X Window
Systems

You can connect from Mac OS X to other X window systems using ssh with
X11 forwarding. If you use OpenSSH (which is included with Mac OS X),
you must use the -X option to request X11 forwarding (the -2 option speci-
fies the ssh version 2 protocol, as opposed to the older version 1 protocol).
For example:

ssh -2 -X remotemachine -1 username

As long as XDarwin is running, this can be entered in either an xterm win-
dow or in the Mac OS X Terminal. To have the X11 forwarding enabled in
Terminal, you must have the DISPLAY variable set prior to making the con-
nection, as noted earlier. (This will always be the case if the DISPLAY variable
is set in your .tcshrc script.) It is also possible to create a double-clickable
application that connects to a remote machine via ssh2, with X11 forward-
ing enabled. For example, you can use the following script for this purpose:
#1/bin/sh
ssh -2 -X remotemachine -1 username
If you've installed the commercial version of ssh from http://www.ssh.com,
the equivalent of the preceding script is as follows:

#!/bin/sh
ssh2 remotemachine -1 username

Connecting to Other X Window Systems | 155

The X11 forwarding flag is +x with the commercial ssh, but
it is enabled by default, so that you need not include it in the
4" command.

Using OroborOSX, you can add a Launch menu item to accomplish the
same task. To do this, start by copying the template file found in the direc-
tory ~/Library/Preferences/OroborOSX/Launch Menu Items to whatever
you’d like to call this application. For example, suppose we want to connect
to a remote machine named chops with a username of sam. We’ll name the
application Connect2Chops. Start by copying the template to
Connect2Chops.x11app:

% cp template Connect2Chops.x11app

Next, edit the Connect2Chops.x11app file. You only need to change a cou-
ple of lines, since you'll be using an xterm. In particular:

ARGUMENTS FOR THE COMMAND GO HERE (can be left blank)
set argums="-geometry 80x25 -1s -sb -sl 5000 -e ssh -2 -X chops -1 sam"

OPTIONAL TITLE STRING GOES HERE (uncomment this if wanted)

note that an ID number, sent from Orobor0SX, will be added in

brackets after this string [eg, below would give "xterm (3)"]

set titlenam="Connect2Chops"
Save this file in ~/Library/Preferences/OroborOSX/Launch Menu Items, then
select Launch — Rebuild Launch Menu.

That’s it! Now you’ll be ready to launch the connection to the remote
machine via the menu bar. Once you’ve connected to a machine running X
Windows, you can start X11-based applications on the remote machine and
display them on your Mac OS X machine. Figure 9-3 shows MATLAB run-
ning on a remote Sun workstation, but displayed on the local Mac OS X
machine.

Virtual Network Computers

One of the attractive features of Mac OS X is the ease with which you can
integrate a Mac OS X system into a Unix environment consisting of multi-
ple Unix workstations that typically rely on X11 for their GUL In the previ-
ous section, for example, we explained how to log in to a remote Unix
machine, launch an X11 application, and display the application on your
Mac. The reverse process is also possible. You can log into a remote Mac OS
X machine from another computer, launch an application on the remote
Mac OS X machine, and have the application display on your local machine.
The local machine, meanwhile, can be running the X Window System,

156 | Chapter9: TheXWindow System

cHATLAB >
Copyright 1584-2001 The MathWorks, Inc
Wersion 6.1 0.450 Belease 181
May 18 2001
To get started, selsce “MATLAB Halp® From the Halp menu
aa Ix.z E] = ptlkﬂiﬂ)
> grid, m'm =), ;rmwivl elabel{ 'z}

n:lu(warf dems - peske)
"

ot ylabel{'y'). elabel('e’}
title('part demo - pesks’}

Figure 9-3. MATLAB running in a remote window on top of Mac OS X

Microsoft Windows, or any another platform supported by Virtual Net-
work Computer (VNC).

VNC consists of two components: a VNC server (which must be installed on
the remote machine) and a VNC viewer (which is used on the local machine
to view and control applications running on the remote machine). The VNC
connection is made through a TCP/IP connection.

The VNC server and viewer may not only be on different machines, but they
can also be installed on different operating systems. This allows you to, for
example, connect from Solaris to Mac OS X. Using VNG, you can launch
and run X11 applications on Mac OS X, but view and control them from
your Solaris box.

VNC can be installed on Mac OS X with the Fink package manager (look for
the vnc package), but that version (the standard Unix version of the VNC
server) only supports X11 programs, not Aqua applications. VNC translates
X11 calls into the VNC protocol. All you need on the client machine is a
VNC viewer.

The standard Unix version of the VNC server is quite robust. Rather than
interacting with your display, it intercepts and translates the X11 network
protocol. (In fact, the Unix version of the server is based on the XFree86
source code.) Applications that run under the Unix server are never displayed

Virtual Network Computers | 157

on the server’s screen. Instead, they are displayed on an invisible X server that
relays its virtual display to the VNC viewer on the client machine.

Launching VNC

If you installed VNC via Fink, you can start the VNC server by issuing the
following command:

vncserver

You will need to enter a password, which you supply when you connect
from a remote machine. (This password can be changed using the com-
mand vncpasswd.) You can run several servers; each server is identified by its
hostname with a :number appended. For example, suppose you start the
VNC server twice on a machine named abbott; the first server will be identi-
fied as abbott:1 and the second as abbott:2. You will need to supply this
identifier when you connect from a client machine.

By default, the VNC server runs twm. So, when you connect, you will see an
X11 desktop instead of the Mac OS X desktop. (You can specify a different
window manager in ~/.vnc/xstartup.) To terminate the VNC server, use the
following command syntax:

vncserver -kill :display

For example, to terminate abbott:1, you would issue the following com-
mand while logged into abott as the user who started the VNC server:

vncserver -kill :1.

o,
0

There is a derivative of VNC, called TightVNC, which is
optimized for bandwidth conservations. It can also be
s installed with Fink. TightVNC also offers automatic ssh tun-

" neling on Unix and backward compatibility with the stan-
dard VNC.

Connecting to the Mac 0S X VNC Server

To connect to a Mac OS X machine that is running a VNC server, you will
need a VNC viewer. Viewers are available for Mac OS X; a list can be found
on Version Tracker (http://www.versiontracker.com/macosx/) by searching
for “VNC”.

If you want to connect to a VNC server from your Macintosh, there are sev-
eral VNC viewers available for Mac OS X, including;

158 | Chapter9: The X Window System

VNCDimension
http:/fwww.mdimension.com/Community/

VNCThing
http:/fwebthing.net/vncthing/

VNCViewer
http://homepage.mac.com/kedoin/VNC/VNCViewer/

To connect, start your viewer and specify the hostname and display num-
ber, such as abbott:1 or abbott:2. If all goes well, you’ll be asked for your
password, and then connected to the remote Mac OS X desktop.

Conclusion

From Aqua to X11, there’s no shortage of graphical environments for Mac
OS X. The operating system’s solid Unix underpinnings and powerful
graphics subsystem make it possible for developers to support alternative
graphical environments. For this reason, a humble iBook can make the best
cockpit for a network of heterogeneous machines!

Condusion | 159

160

PART IV
Appendixes

There are two appendixes in this book:

* Appendix A, The Mac OS X Filesystem
* Appendix B, Command-Line Tools: The Missing Manpages

162

APPENDIX A
The Mac 0S X Filesystem

If you do an Is -a / on your Mac OS X box, you will see some familiar things,
such as /etc and /var, but you will also notice some unfamiliar things, such
as /TheVolumeSettingsFolder, /Library, and /Documents. The Mac OS X file-
system contains traces of Unix, NeXTSTEP, and the Mac OS 9. This chap-
ter describes the contents of important directories. The tables in this chapter
list directory entries (directories are denoted with a trailing slash) and pro-
vide a description of each file or directory.

Files and Directories

Table A-1 describes the files and directories you may find in your root direc-
tory. The remaining tables in this chapter describe significant subdirectories.

Table A-1. Mac OS X's root directory

File or directory Description e

.DS_Store This file contains Finder settings, such as icon location and window size. The file will
appear in any directory that you've viewed with the Finder.

Trashes/ This directory contains files that have been dragged to the Trash. On a boot volume,
such files are stored in ~/ Trash. On a non-boot volume, these files are in/ Trashes/
uid/.

hidden This file contains a list of files that should be invisible to the Finder.

Jol/ This directory maps HFS+ file IDs to files. If you know a file’s ID, you can open it
using /vol/id.

Applications (Mac 05 9)/ This directory contains all your 05 9 applications, if you've got Mac 05 X and Mac 05
installed.

Applications/ This directory holds all your Mac 05 X applications. Its Utilities subdirectory includes
lots of useful things, such as Terminal and Console.

Desktop DB This file, along with Desktop DF, contains the desktop database that is rebuilt when

you click Rebuild Desktop in System Preferences — Classic.

163

Table A-1. Mac OS X’s root directory (continued)

File or directory Description

Desktop DF See Desktop DB.

Desktop Folder/ This directory is the Mac 05 9 desktop folder.

Developer/ This directory contains Apple’s Developer Tools and documentation. This is only
available if you have installed the Developer Tools.

Documents/ This is the Mac 05 9 documents folder.

Library/ This directory contains support files for locally installed applications, among other
things. See Table A-4, later in this chapter.

Network/ This directory contains network-mounted Application, Library, and Users directo-
ries, as well as a Servers diractory, which contains directories mounted by the
automount daemon.

Shared items/ In Mac 05 9, this folder gave multiuser systems a place where users could store files
that other users could access.

System Folder/ This s the Mac 05 9 System Folder.

System/ This directory contains a subdirectory, Library, which holds support files for the sys-
tem and system applications, among other things. See Table A-3, later in this chap-
ter.

Temporary items/ This directory contains temporary files used by Mac 05 9.

TheVolumeSettingsFolder/ This directory keeps track of details such as open windows and desktop printers.

Trash/ This directory is where Mac 05 9 stores deleted files until the Trash is emptied.

Users/ This directory contains home directories for the users on the system. The oot user’s
home directory is /var/root.

VM Storage This is the Mac 05 9 virtual memory file.

Volumes/ This directory contains all mounted filesystems, including removable media and
mounted disk images.

automount/ This directory handles static NFS mounts for the automount daemon.

bin/ This directory contains essential system binaries.

cores/ This directory is a symbolic link {or symiink) to /private/cores. If core dumps are
enabled (with tesh’s fimit and bash/sh's ulimit commands—see the tesh and bash
manpages for more details), they will be created in this directory as core.pid.

dev/ This directory contains files that represent various devices. See Table A-6, later in
this chapter.

et/ This directory contains system configuration files. See Table A-2, later in this chap-
ter. The directory is a symbolic link to /private/etc.

fost-+found This directory stores orphaned files discovered by fsck.

mach This is a symbolic link to the /mach.sym file.

mach.sym This file contains kernel symbols. It is generated during each boot by /etc/rc.

mach_kernel This is the Darwin kernel. See Chapter 7 for more information about the kemel.

private/ This private directory contains the tmp, var, etc, and cores directories.

sbin/ This directory contains executables for system administration and configuration.

164 | AppendixA: The Mac0S X Filesystem

Table A-1. Mac OS X’s root directory (continued)

File or directory Description e 3
tmp/ This directory holds temporary files. It is a symbolic link to /private/tmp.
usr/ This directory contains BSD Unix applications and support files.
var/ This directory contains frequently modified files, such as log files. It is a symbolic
link to /private/var.
The /etc Directory

The /etc directory contains configuration files for Unix applications and ser-
vices, as well as scripts that control system startup. Table A-2 lists the con-
tents of the /etc directory.

Table A-2. The /etc directory

File or directory Description

6tod.conf Configuration file for encapsulating IPvé within [Pv4. See ip6config(8).
X1y X11 configuration directory. This will be present only if you have installed XDarwin.
acgid/ File that contains configuration files for acgid, a bridge between Apache and ACGI-

capable scripting languages, such as AppleScript. Mac 05 X Server only. For equivalent
functionality under Mac 05 X, see http.//www.sentman.com/acgi/.

afpovertep.cfg File that causes Mac 05 X to use TCP/IP as the default transport for Apple File Protocol
(AFP). Use this file to configure the defaults for AFP over TCP/IP.

appletalk.cfg AppleTalk configuration file for routing or multihoming. See the appletalk.cfg(5)
manpage.

authorization File that controls how applications, such as installers, can temporarily obtain root priv-
ileges.

bashrc Global configuration file for bash, the Bourne-again shell.

crontab root’s crontab. See “Default cron Jobs” in Chapter 2.

csh.cshre Global csh configuration file, processed when the shell starts up. If you have a.cshr or
teshre file in your home directory, tesh will execute its contents as well.

esh.login Global csh login file, processed when a login shell starts up. If you have a..fogin file in
your home directory, tesh will execute its contents as well.

esh.logout Global csh logout file, processed when a user logs out of a login shell.

cups/ Directory that contains configuration files for Common Unix Printing System (CUPS).

daily cron job that is run once a day (see crontab). This is a symlink to /etc/periodic/daily/
500.daily.

defaults/ Directory that contains default configuration files for applications and utilities.

diskspacemonitor/ Configuration files for diskspacemonitor, which monitors the amount of free disk
space. Mac 05 X Server only.

dumpdates Dump date records created by dump(5), which is run by /etc/daily.

find.codes Description not available at time of writing; see errata page at htp.//www.oreilly.
com/catalog/mosxgeeks.

Files and Directories | 165

Table A-2. The /etc directory (continued)

File or directory
fipusers
gdb.conf
gettytab

group
hostconfig

hosts

hosts.equiv

hosts.lpd
httpd/
iftab
inetd.conf
IPAliases
kepassword

kern_loader.conf

localtime
magic
mail/

mail.rc
manpath.config
master.passwd

moduli
monthly

motd

named.conf
networks
ntp.conf

Description
List of users who are prohibited from using FTP.

Global gdb configuration file.
Terminal configuration database.
Group permissions file. See Chapter 3 for more information.

System configuration file that controls many of the startup items described in the
*SystemStarter” section in Chapter 2.

Host database; a mapping of IP addresses to hostnames. You can use this as a supple-
ment to other Directory Services, such as DNS. Mac 05 X 10.1 and earlier consulted this
file only in single-user mode, but Mac 05 X 10.2 (Jaguar) uses this file at other times.
For more information, see Chapter 3.

List of trusted remote hosts and host-user pairs. This is used by rsh and is inherently
insecure. You should use ssh instead, which is a secure alternative. See ssh-keygen(7)
to generate key pairs that can be used to set up a trust relationship with remote users,

List of hosts that are allowed to connect to the Unix jpd service.
Directory that contains Apache’s configuration files.
Configuration file for network interfaces.

Internet super-server (inetd) configuration file.

Configuration file for IP aliases.

Description not available at time of writing; see errata page at http.//www.oreilly.
com/catalog/mosxgeeks.

Description not available at time of writing; see emata page at hittp.//www.oreilly.
com/catalog/mosxgeeks.

Symbolic link to your system'’s time zone, such as: /usr/share/zoneinfo/US/Eastern.
Database of magic numbers used by the file command to determine a file's type.

Directory that contains configuration files for sendmail. Note that Open Directory han-
dles the mail aliases (see Chapter 3).

Global configuration file for /usr/bin/mail.
Configuration file for man.

Shadow passwd file. This is consulted only in single-user mode. During normal system
operation, Open Directory manages user information (see Chapter 3).

System-wide prime numbers used for cryptographic applications such as ssh.

Monthly cron job (see crontab). This is a symlink to /etc/periodic/monthly/500.
monthly.

Message of the day. This is displayed each time you launch a new Terminal or log in
remotely.

Configuration file for named, the DNS daemon. For more details, see named(8).
Network name database.

Configuration file for the Network Time Protacol daemon, which synchronizes system
time by accessing a remote server.

166 | AppendixA: The Mac0S X Filesystem

Table A-2. The /etc directory (continued)

File or directory
openldap/

pam.d/
passwd
periodic/

pep/
printcap

profile
protocols

racoon/

rc
rc.boot
re.cleanup
rc.common
re.netboot
resolv.conf
resolver/
rmtab

pc

rtadvd.conf

servermgrd/
services

shells

slpsa.conf
smb.conf
smb.conf.template
squirrelmail/

ssh_config

Directory that contains configuration files for OpenLDAP, an implementation of the
Lightweight Directory Access Protocol.

Directory that contains configuration files for PAM .
Password file. For more information, see Chapter 3.

Directory that contains configuration files for the periodic utility, which runs cron jobs
on a regular basis.

Contains configuration files for Point-To-Point Tunneling Protocol (PPTP). Mac 05 X
Server only.

Printer configuration file for fpd. CUPS automatically generates this file. For more
information, see cupsd(8).

Global profile for the Bourne-again shell.
Network protocol database.

Directory that contains configuration files for raccoon, the IKE key management dae-
mon.

Startup script for multiuser mode.

Startup script for single-user mode.

Cleanup script invoked by /etc/rc.

Common settings for startup scripts.

Startup script for booting from the network using MetBoot.
DNS resolver configuration.

Contains files used to resolve hostnames.

Remote NFS mount table.

RPC number-to-name mappings. Mac 05 X 10.1 and earlier consulted this file only in
single-user mode, but Mac 05 X 10.2 {Jaguar) uses this file at other times. For more
information, see Chapter 3.

Configuration file for the router advertisement daemon. For more details, see
rtadvd(8).

Configuration files for the Server Manager daemon. Mac 05 X Server only.

Intemet service name database. Mac 05 X 10.1 and earlier consulted this file only in
single-user mode, but Mac 05 X 10.2 (Jaguar} uses this file at other times. For more
information, see Chapter 3.

List of shells.

Configuration file for the service locator daemon (sipd).
Samba configuration file.

Template configuration file for Samba.

Configuration files for SquirrelMail, a web-based email client. See http://www.
squirrelmail.org. Mac 05 X Server only.

Global configuration file for OpenSSH client programs.

Filesand Directories | 167

Table A-2. The /etc directory (continued)

File or directory
ssh_host_dsa_key

ssh_host_dsa_key.pub
ssh_host_key
ssh_host_key.pub
ssh_host_rsa_key
ssh_host_rsa_key.pub
sshd_config

sudoers

syslog.conf

tys
ttys.installer

watchdog.conf
webperfcache

weekly
xinetd.conf
xinetd.d/
xtab

Description .
Private DSA host key for OpenSSH. This file, and the other ssh_host_*files, are cre-
ated the first time you start Remote Login in the Sharing System Preferences.

Public DSA host key for OpenSSH.

Private host key for OpenSSH when using SSH 1 compatibility.
Public host key for OpenSSH when using SSH 1 compatibility.
Private RSA host key for OpenSSH.

Public RSA host key for OpenSSH.

Configuration file for the OpenSSH sshd daemon.

Configuration file for the sudo command. Make sure you use the visudo command
only to edit this file.

syslogd configuration file.
Terminal initialization file,

Description not available at time of writing; see emata page at http.//www.oreilly.
com/catalog/mosxgeeks.

Configuration file for Mac 05 X Server's watchdog service. Watchdog restarts certain
daemons if they die (similar to System V inittab).

File that contains configuration files for Mac 05 X Server's webperfcache service, which
sits between port 80 and your web server and caches static pages.

Weekly cron job (see crontab). This is a symlink to /etc/periodic/weekly/500.weekly.
Configuration file for xinetd, the extended Internet superserver daemon.
File that contains service-specific configuration files for xinetd.

Description not available at time of writing; see errata page at http//www.oreilly.
convcatalog/mostgeels.

The /System/Library Directory

Table A-3 lists the directories stored under the /System/Library directory.
You should not modify the contents of these directories or add new files tc
them. Instead, use their counterparts in the /Library folder. For example, tc
install a new font, drag it into /Library/Fonts, not /System/Library/Fonts.

Table A-3. The /System/Library directory

Flle or directory
Ads/
Assistants/
Caches/

CFMSupport/
Classic/

Desaription

Contains support files for Apache Axis. Mac 05 X Server only.
Contains support files for the setup assistant. Mac 05 X Server only.
Contains caches used by various parts of the operating system.
Holds shared libraries used by Carbon applications.

Description not available at time of writing; see emata page at http./www.oreilly:
com/catalog/mosxgeeks.

168 | AppendixA: The Mac0S X Filesystem

Table A-3. The /System/Library directory (continued)

File or directory
ColorPickers/

Colors/
ColorSync/
Components/

CoreServices/

Displays/
DiDs/

Extensions/
Extensions.kextcache
Extensions.mkext
Filesystems/

Find/

Fonts/
Frameworks/

Image Capture/
Java/

Keyboard Layouts/
Keyboards/
Keychains/

LoginPlugins/
Modem Scripts/
MonitorPanels/
OpenSSL/

Perl/

PHP/
PreferencePanes/
Printers/
Privateframeworks/

QuickTime/
QuickTimelava/

Description .
Includes localized resources for Mac 05 X color pickers.

Lists the names and values of colors used in the color picker control.
Contains ColorSync profiles.

Contains application building blacks (components), such as AppleScript and color
pickers. Components are not applications themseives and are generally shared
between applications.

Contains system applications, such as SystemStarter, BootX, the Finder, and the login
window.

Contains ColorSync information for extemal monitors.

Contains document type definitions for XML documents used by the system, such as
property lists.

Holds Darwin kernel extensions.

Contains information about extensions in the cache; a compressed XML document.
Contains the kemel extension cache. It is created at boot by /etc/rc.

Contains drivers and utilities for various filesystems (MS-DOS, AppleShare, UFS, etc.).
Includes support files for Sherlock’s content indexing.

Contains core Mac 0S X fonts.

Holds a collection of reusable application framewaorks, induding shared libraries,
headers, and documentation.

Contains device support files for the Image Capture application.
Contains Java dlass and jar files.

Contains bundles that support internationalized keyboard layouts.
Contains keyboard mappings.

Contains system-wide keychain files. (~/Library/Keychains contains per-user key-
chains.)

Contains helper applications that are launched as you log in.
Contains modem configuration scripts.

Includes panels used by System Preferences — Displays.

Holds OpenSSL configuration and support files.

Holds Perl Libraries.

Contains PHP Libraries.

Contains all the preference panes for the Preferences application.
Contains printer support files.

Holds private frameworks meant to support Mac 05 X. These framewaorks are not
meant for programmers’ use.

Holds QuickTime support files.
Includes support files for the QuickTime/Java bridge.

Files and Directorles | 169

Table A-3. The /System/Library directory (continued)

File or directory
Rulebooks/

Screen Savers/
ScriptingAdditions/
Server Settings/
ServerSetup/

Services/

Sounds/

Speech/
Startupitems/
SystemConfiguration/
SystemResources/

Td/
TextEncodings/
User Template/

Description

Contains information used for text handling, such as word-breaking rules for hyphen-
ation.

Contains screensavers that you can select from System Preferences — Screen Saver.
Includes AppleScript plug-ins and libraries.
Contains plug-ins for the Server Settings utility. Mac 05 X Server only.

Contains support files used when setting the initial server configuration. Mac 05 X
Server only.

Contains services that are made available through the Services menu.

Contains sounds that are available in System Preferences — Sound.

Includes speech recognition and generation support files.

Contains startup scripts as described in Chapter 2.

Contains plug-ins used to monitor various system activities (for Apple use only).

Contains precompiled header lists for the C compiler (see “Precompiled Header Files”
in Chapter 5).

Holds Teflibraries.
Contains localized text encodings.

Lists localized skeleton files for user directories. See “Creating a User's Home Direc-
tory” in Chapter 3.

The /Library Directory

Table A-4 lists the contents of the /Library directory. This directory con-
tains counterparts to many directories found in /System/Library. You can use
the /Library counterparts for system-wide customization. If you find a direc-
tory of the same name in your home Library directory (~/Library), you can
use that for user-level customization. For example, you can install fonts for
one particular user by moving them into ~/username/Library/Fonts.

Table A-4. The /Library directory

File or directory Description

Application Support/ Contains support files for locally installed applications.

Audio/ Contains audio plug-ins and sounds.

Authenticators/ Contains authentication code for locally installed applications.

Caches/ Contains cached data used by various parts of the operating system.
170 | AppendixA: The MacOSX Filesystem

Table A-4. The (Library directory (continued)

File or directory
CFMSupport/
ColorSyn/
Desktop Pictures/
Documentation/
FTPServer/

Filesystems/
Fonts/

Image Capture/
Internet Plug-Ins/
Java/

Keyboard Layouts/
Logs/

Macintosh Manager/
Modem Scripts/

Perl/
PreferencePanes/
Preferences/
Printers/

QuickTime/
QuickTimeStreaming/
Receipts/

Screen Savers/
Scripts/
Startupitems/
Tomcat/
User Pictures/
WebServer/

Descrption 4
Holds shared libraries used by Carbon applications.
Contains user-installed ColorSync profiles and scripts.
Contains desktop pictures used by System Preferences— De
Provides documentation for locally installed appiicaﬁonﬂ

Contains configuration files and the root folder of anon
Server only.

Contains authentication support for the Apple Share network

Contains locally installed fonts. i

Contains locally installed scripts and plug-ins for the Image(;ﬁnuplicaﬁnn
Contains locally installed browser plug-ins. g

Contains locally installed Java classes (you can drop jar files into /ALibrary/Java/
Extensions), as well as a suitable directory to use asyour $JAVA_HOME (/Library/Java/
Home).

Contains keyboard mappings.

Holds logs for services such as Apple File Services, the(rash Reporter, and the Directory
Service.

Contains support files for the Macintosh Manager application (Mac 05 X Server only).
Holds support files for various modem types,

Lists locally installed Perl modules (MakeMaker's INSTALLSITELIB).

Contains system preference panes for locally installed utilities such as TinkerTool.
Lists global preferences.

Lists printer drivers and utilities.

Contains locally installed QuickTime components.

Contains the QuickTime Streaming Server (Mac 05 X Server only).

Leaves a receipt in the form of a.pkg directory after you Install an application with the
Mac 05 Xinstaller. The .pkg directory contains a bill of matesials file {.bom), which you
can read with the fsbom command.

Lists locally installed screensavers.

Contains a variety of AppleScripts installed with Mac 0S X.

Lists locally installed startup items. See “Adding Startup Items” in Chapter 2.
Holds the Apache Tomcat Java Servlet and JSP server (Mac 05 X Server only).
Contains user pictures that are used in the login panel.

Contains the__ﬁ_pache CGl and document root directories.

Files and Directories | 171

The /var Directory

The /var directory contains transient and volatile files, such as PID files
(which tell you the process ID of a currently running daemon), log files, and
many others. Table A-5 lists the contents of the /var directory.

Table A-5. The fvar directory
Fileor directory Desaription

at/ Contains information about jobs scheduled with the at command.

backups/ Contains backups of the Netinfo database.

aron/ Contains user crontab files.

db/ Includes a grab bag of configuration and data files, including the focate database, the Net-
Info database, and network interface information.

empty/ Description not available at time of writing; see emata page at http.//www.oreilly.com/
catalog/mosxgeeks.

log/ Contains a variety of log files, induding syslog, mail, and web server logs.

mail/ Contains inboxes for local users’ email.

msgs/ Holds system-wide messages that were delivered using msgs -s.

named/ Includes various files used for local DNS services.

netboot/ Contains various files used for NetBoot.

root/ Serves as the root user's home directory.

run/ Ho;ds PID files for running processes. Also contains working files used by programs such as
sudo.

rwho/ Contains information used by the rwho command.

servermgrd/ Contains runtime files used by the Server Manager daemon. Mac 05 X Server only.

spool/ Serves as a spool directory for mail, printer queues, and other queued resources.

tmp/ Serves as a temporary file directory.

vm/ Contains your swap files.

w Contains files used by NIS.

The /dev Directory

The /dev directory contains files that represent devices attached to the sys-
tem, including physical devices, such as serial ports, and pseudodevices,
such as a random number generator. Table A-6 lists the contents of the /dev

directory.

172 | AppendixA: The Mac0SX Filesystem

Table A-6. The /dev directory
Flleordirectory Description

bpffo-3]
console

cu.modem
disk{0-n]
disk{0-nJs{0-n]
fd/

klog

kmem

mem

null
ptyplo-f1
ptylg-wifo-fi
random
rdisk[0-n]
rdisk[0-n]sf0-n]
stderr

stdin

stdout

tty
tty.modem
ttyp{0-]
ttylq-wifo-1]
urandom
n{0-3]

2er0

Berkeley Packet Filter devices. See bpf{4). I

The system console. This is owned by whoever is currently logged in. If you write to it, the
output will end up in var/tmp/console.log, which you can view with the Console application
(/Applications/Utilities).

Modem device for compatibility with the Unix cu (call up) utility.

Disk.

Disk partition. For example, /dev/disk0s1 is the first partition of /dev/disko.
Devices that correspond to file descriptors. See the fd manpage for more details.
Device used by syslogd to read kemel messages.

Image of kernel memory.

Image of the system memory.

Bit bucket. You can redirect anything here, and it will disappear.

Master ends of the first sixteen pseudo-ttys.

Master ends of the remaining pseudo-tiys.

Source of pseudorandom data. See random(4).

Raw disk device.

Raw disk partition.

Symbolic link to /dev/fd/2.

Symbolic link to /dev/fd/0.

Symbolic link to /dev/fd/1.

Standard output stream of the current Terminal or remote login.

Modem device.

Slave ends of the first sixteen pseudo-ttys.

Slave ends of the remaining pseudo-ttys.

Source of pseudorandom data, not guaranteed to be strong. See random(4).
Pseudo disk devices.

Infinite supply of null characters. Often used with dd to create a file made up of null charac-
ters.

Files and Directories | 173

APPENDIX B

Command-Line Tools: The
Missing Manpages

Unfortunately, many of the command-line utilities in Mac OS X have no
corresponding manpages, and documentation on the utilities can be diffi-
cult to find, even with a Google search. This appendix offers a quick refer-
ence to tools that may be helpful or interesting to Mac OS X developers, but
that lack manpages.

Each of the following sections includes the command syntax, a brief descrip-
tion, the directory location of the command, and the operating system with
which it comes. Note that tools released with Darwin are also included in
Mac OS X.

aexml

Syntax
aexml -soap -SOAPAction text [-in filename] [-out filename] [-name 'App
Name' | -pid pid | psn highPSN.lowPSN | -sig signature]
aexml -xmlrpc [-in filename] [-out filename] [-name 'App Name' | -pid pid |
psn highPSN.lowPSN | -sig signature]

Description

Translates SOAP and XML-RPC requests into Apple Events understood by Mac
OS X applications. The target application can be specified by name, process ID,
process serial number, or signature. If no target is specified, a sandbox applica-
tion is launched to handle the request. Output, if any, is in the form of XML or a
one-line error.

Options/Usage

-soap
Forwards a SOAP request to the target application.

174

-SOAPAction
Provides the SOAPAction header. If specified as -, the header is read from
nput.

-xmlrpc
Forwards an XML-RPC request to the target application.

-in Specifies source of input. Defaults to - (standard input).

-out
Specifies location of output. Defaults to - (standard output).

-name
Specifies target application by pathname.

-pid
Specifies target application by Unix PID.

-psn
Specifies target application by Carbon Process Manager process serial
number.

-sig
Specifies target application by signature. This is a four-character code unique
to an application.The signature is usually the same as the application’s
creator code. In an application bundle, it is specified by the
CFBundleSignature property in Info.plist.

Location
fusribin

Operating System
Mac OS X

configd

Syntax
config d [-b] [-B bundle_ID] [-d] [-t pathname] [-v] [-V bundle_ID]

Description

This is the System Configuration Server. configd is normally started as a daemon
during the boot process. It monitors changes to network-related items, such as
link status, DHCP assignments, PPP connections, and IP configuration, and
provides an API for applications to be notified of these changes. To monitor
various items, it uses a set of plug-in configuration agents, including the Prefer-
ences Monitor, the Kernel Event Monitor, the PPP Controller Agent, the IP
Configuration Agent, and the IP Monitor Agent. The agent plug-ins are located in
/System/Library/SystemConfiguration.

configd | 175

More information on the System Configuration framework can be found at htip:/
developer.apple.com/techpubs/macosx/Networking/SysConfigOverview926/.

Options/Usage

-b Disables loading of all agents.

-B Disables loading of the specified agent.

-d Disables daemonization; runs process in foreground.
-t Loads the agent specified by pathname.

-v Enables verbose logging.

-V Enables verbose logging for the specified agent.

Location
Jusr/sbin

Operating System

Darwin

DirectoryService

Syntax

DirectoryService [-h | -v]
DirectoryService [-appledebug | -appleframework | -applenodaemon | -
appleoptions | -appleperformance | -appleversion]

Description

This is the server process for the Directory Services framework.

Options/Usage

-h Prints a usage statement for the first form of command invocation to stan-
dard output.

-v Prints software release version to standard output.

-appledebug
Runs service in debug mode.

-appleframework
Starts service normally. This is the default.

-applenodaemon
Disables daemonization; runs service in foreground.

-appleoptions
Prints a usage statement for the second form of command invocation to stan-
dard output.

176 | AppendixB: Command-Line Tools: The Missing Manpages

-appleperformance
Runs service in foreground and logs extensively.

-appleversion
Prints software build version to standard output.

Location
fust/shin

Operating System

Darwin

disktool

Syntax

disktool [-0 | -1 | -x | -y]

disktool [-d | -g | -m | -va | -vd | -vs] device
disktool [-e | -p | -s | -u] device integer flag
disktool -n device vol name

disktool -a device vol name vol flags

Description

Controls disks, including mounting, unmounting, ejecting, enabling permissions,
and volume naming. Most options require a device name argument (for example,
disko), and some options require additional parameters.

Options/Usage

-a Adds disk to Disk Arbitration tables, to notify applications of a mounted
volume. This is useful if you have forced a mount, thus bypassing standard
notification.

-d Removes disk from Disk Arbitration tables, to notify applications of a
dismount. This is useful if you have forced a dismount, thus bypassing stan-
dard notification.

-e Ejects disk. Takes an additional argument that is normally set to 0.

-g Gets HFS encoding on a volume.

-m Mounts disk.

-n Names volume.

-0 Opens vacant drive doors.

-p Unmounts partition. Device name is that of a partition (for example,
diskoss). Takes an additional argument that is normally set to 0.

-r Refreshes Disk Arbitration.

-s Sets HFS encoding on a volume. Takes encoding as additional integer
argumenL

disktool | 177

-4 Unmounts disk. Takes an additional argument that is normally set to 0.
-va Adds device to /var/db/volinfo.database.

-vd Deletes device from /var/db/volinfo.database.

-vs Displays status of device in /var/db/volinfo.database.

-x Disallows dismounts and ejects.

-y Allows dismounts and ejects.

Location
fusr/shin

Operating System

Darwin

dynamic_pager

Syntax
dynamic_pager [-F filename] [-H hire_point] [-L layoff point] [-P priority]
[-S file size]

Description

Manages virtual memory swap files. This tool is started from /etc/rc during the
boot process.

Options/Usage

-F Specifies the base absolute pathname for swap files. Swap filenames consist of
this base and a whole number suffix, starting at 0. The default is /private/var/
vm/swapfile.

-H Creates an additional swap file when free swap space drops below the hire_
point in bytes. The default is 0, which disables the use of this swap space.

-L Attempts to consolidate memory and remove a swap file when free swap
space rises above the layoff point in bytes. The layoff point must be set
higher than the sum of the swap file size and the hire_point, unless it is set to
0 (the default), which disables layoffs.

-P Determines the priority of this swap space. The default is 0.
-§ Determines the size of swap files created, in bytes. The default is 20000000.

Location
/sbin

Operating System

Darwin

178 | AppendixB: Command-Line Tools: The Missing Manpages

ipconfig

Syntax

ipconfig getifaddr interface
ipconfig getoption { interface |
ipconfig getpacket interface
ipconfig ifcount

ipconfig set interface { BOOTP | DHCP }

ipconfig set interface { INFORM | MANUAL } IP addr netmask
ipconfig waitall

} { option name | option code }

Description

Interacts with the IP Configuration Agent of configd to manage network configu-
ration changes.

Options/Usage
getifaddr

Prints the specified network interface’s IP address to standard output.
getoption
Prints the value of the specified DHCP option to standard output. If
interface is specified, the option is interface-specific. If empty quotes are
used instead, the option is global. Option names and numeric codes are
DHCP-standard (such as host_name, domain_name, netinfo_server_address,
etc.).
getpacket
Prints DHCP transaction packets to standard output.
ifcount
Prints the number of network interfaces to standard output.
set
Sets the method by which the specified network interface is assigned an IP
address. Using BOOTP or DHCP causes the system to attempt to contact a
server of the appropriate type to obtain IP configuration information. Using
INFORM sets the IP address locally, but initiates a DHCP request to obtain
additional IP configuration information (DNS servers, default gateway, etc.).
Using MANUAL indicates that all IP configuration information is set locally.
waitall
Sets the configurations of all network interfaces according to the specifica-
tions in /etc/iftab.

Location
fusr/sbin

Operating System

Darwin

ipconfig | 179

opendiff

Syntax
opendiff file1 filez [-ancestor ancestor file] [-merge merge file]

Description
Opens the two designated files in the FileMerge application.

Options/Usage

-ancestor
Compares the two files against a common ancestor file.

-merge

Merges the two files into a new file.
Location

lusr/bin

Operating System
MacOS X

pbcopy

Syntax
pbeopy [-help]

Description

Copies standard input to the pasteboard buffer. The pasteboard is used to imple-
ment GUI copy, cut, and paste operations, drag-and-drop operations, and the
Cocoa Services menu.

Options/Usage

-help
Prints an unhelpful usage statement to standard output.

Location
fusr/bin

Operating System
Mac OS X

180 | AppendixB: Command-Line Tools: The Missing Manpages

pbpaste

Syntax
pbpaste[-help] [-Prefer { ascii | rtf | ps }]

Description
Prints the contents of the pasteboard to standard output. The combination of
pbcopy and pbpaste may be an interesting tool to use in scripting. However, the

system’s global pasteboard can be modified by other processes at any time, which
limits the tool’s actual usefulness.

Options/Usage
-help

Prints a usage statement to standard output.

-Prefer
Specifies the output format to use if the desired format (ASCII, Rich Text
Format, or PostScript) is available in the pasteboard.

Location
Jusr/bin

Operating System
MacOSX

pl

Syntax
pl [-input input_binary file | -output output_binary file]

Description

Translates XML property list files into a more compact “key = value” format. Also
translates between this and a serialized binary format, in either direction. XML is
read from standard input, “key = value” data is read from standard input and
written to standard output, and serialized binary data is read from and written to
files specified with arguments.

Options/Usage
-input

Specifies a serialized binary file as input.
-oulput

Specifies a serialized binary file as output.

p | 181

Examples
cat foo.plist | pl

Translates XML property list to “key = value” format.
cat foo.plist | pl | pl -output foo.bin

Translates XML property list to serialized binary format.
pl -input foo.bin

Translates serialized binary file to “key = value” format.

Location

fusr/bin

Operating System
Mac OS X

scselect

Syntax

scselect [[-n] location]

Description

Changes active network location, similar to selecting a network Location from
the Apple menu. If there are no arguments, a usage statement and a list of defined
Locations (or “sets”) as defined in the Network System Preferences panel is
printed to standard output, along with an indication of which location is currently
active. Locations can be referred to by name or by integer ID.

Options/Usage

-n Changes the active network Location, but does not apply the change.

Location
Jusr/shin

Operating System

Darwin

182 | AppendixB: Command-Line Tools: The Missing Manpages

scutil

Syntax

scutil [-r node_or_address | -w key [-t timeout]]

Description

Provides control of the System Configuration framework’s dynamic store. scutil
opens an interactive session with configd, in which various commands are avail-
able to view and modify System Configuration keys.

As a quick sample run-through, invoke scutil. You will be placed at the scutil
prompt. Enter open to start the session with configd, then enter list. You will see a
set of keys, some of which are provided by the System Configuration framework
(such as the keys in the File: domain), some of which are obtained from the pref-
erences file /var/db/SystemConfiguration.xml (the Setup: keys), and some of which
are published by the configuration agents (the State: keys). Enter get State:/
Network/Global/DNS to load the dictionary associated with that key. Then run d.
show to display it. You should see a list of DNS servers and search domains
configured on your system. Finally, run close, then quit.

Options/Usage

-t Checks for reachability of the node or address. (Any numerical argument
seems to result in Reachable status.)

-t Specifies the timeout to wait for the presence of a data store key, in seconds.
The default is 15.

-w Exits when the specified key exists in the data store or when the timeout has
expired.

Commands
scutil enters interactive mode when it is invoked with no arguments.

add key [temporary]
Adds a key to the data store with the value of the current dictionary. The
temporary keyword causes it to be flushed when the session to configd is
closed.

close
Closes a session with configd.

d.add key [*| ? | #] value...
Adds an entry to the current dictionary. The optional type specifier can desig-
nate the values as arrays (*), booleans (?), or numbers (#).

scutil | 183

d.init
Creates an empty dictionary.
d.remove key
Removes the specified key from the current dictionary.
d.show
Displays the contents of the current dictionary.
f.read file
Reads prepared commands from a file.
get key
Causes the value of the specified key to become the current dictionary.
help
Prints a list of available commands.
list [key_pattern]
Lists keys in the System Configuration data store. The key pattern can
restrict which keys are output, but key_pattern appears to be quite limited.
n.add { key | key_pattern)
Requests notification of changes to the specified keys.
n.cancel
Cancels n.watch settings.
n.changes
Lists changed keys that have been marked with notification requests.
n.list [key pattern]
Lists keys upon which notification requests have been set.
n.remove { key | key_pattern)
Removes notification requests for the specified keys.
n.watch [verbose]
Causes changes to keys marked with notification requests to issue immediate
notices, obviating the need to use n.changes to serve notice that the change
has occurred.
notify key
Sends a notification for the specified key.
open
Opens a session with configd.
quit
Exits the scutil session.
remove key
Removes the specified key from the data store.
set key
Sets the specified key to the value of the current dictionary.

184 | AppendixB: Command-Line Tools: The Missing Manpages

Location
fusr/sbin

Operating System

Darwin

SplitForks

Syntax
SplitForks { -u | [-v] pathname }

Description

Splits the resource fork out of a dual-forked file into a file named ._pathname. You
can also do this with cp pathname/..namedfork/rsrc ._pathname. This method
results in a resource file amenable to processing by DeRez, whereas the output of
SplitForks does not appear to produce a file that DeRez can understand.

Options/Usage
-u Prints a usage statement to standard output.
-v Enables verbose output.

Location
/Developer/Tools

Operating System
MacOSX

tiff2icns

Syntax
tiff2icns [-nolarge] input_filename [output_filename]

Description

Converts TIFF image files to Apple icon (ICNS) files. If output_filename is not
specified, the output file receives the same name as the input file, with the file-
name extension changed to .icns.

Options/Usage

-noLarge
Prevents the creation of the highest resolution icons.

tiff2ins | 185

Location
fusr/bin

Operating System
Mac OSX

tiffutil

Syntax

tiffutil { -dump | -info | -verboseinfo } input_file..

tiffutil { -extract number | -jpeg [-fN] | -lzw | -none | -packbits }
input_file [-out output file]

tiffutil -cat input_file.. [-out output file]

Description
Manipulates TIFF image files.

Options/Usage

-cat
Concatenates multiple input files,
-dump
Prints a list of all tags in the input file to standard output.
-extract
Extracts an individual image from the input file, with 0 designating the first
image in the file.
f
Specifies the compression factor to use with JPEG compression. The value
can range from 1 to 255. The default is 10.
-info
Prints information about images in the input file to standard output.
-jpeg
Specifies the use of JPEG compression when producing the output file.
lzw
Specifies the use of Lempel-Ziv-Welch compression when producing the
output file.
-none
Specifies the use of no compression when producing the output file.

186 | AppendixB: Command-Line Tools: The Missing Manpages

-output

Specifies the name of the output file; defaults to out.tiff.
-packbits

Specifies the use of PackBits compression when producing the output file.
-verboseinfo

Prints lots of information about images in the input file to standard output.

Location

fusr/bin

Operating System
Mac OS X

udf.util

Syntax
udf.util -m device mount point
udf.util { -p | -u } device
Description
Mounts UDF (DVD) filesystems into the directory hierarchy.

Options/Usage

-m Mounts the device.

-p Probes the device for mounting.
-u Unmounts the device.

device
Specifies the DVD device filename, for example, diska.

mount_point
Specifies the directory on which the DVD filesystem will be mounted.

Location
/System/Library/Filesystemsfudyf.fs

Operating System

Darwin

udfutil |

187

vsdbutil

Syntax

vsdbutil { -a | -c | -d } pathname
vsdbutil -i

Description

Enables or disables the use of permissions on a disk volume. This is equivalent to
using the Ignore Privileges checkbox in the Finder’s Info window for a mounted
volume. The status of permissions usage on mounted volumes is stored in the
permissions database, /var/db/volinfo.database.

Options/Usage
-a Activates permissions on the volume designated by pathname.

- Checks the status of permissions usage on the volume designated by
pathname.

-d Deactivates permissions on the volume designated by pathname.

-i Initializes the permissions database to include all mounted HFS and HFS+
volumes.

Location
fusr/sbin

Operating System

Darwin

188 | AppendixB: Command-Line Tools: The Missing Manpages

Symbols
prompt, 49
% prompt, 49

A

ADC (Apple Developer
Connection), xii, 68
Advanced Package Tool (APT), 96
aexml command, 174
agvtool, 23
AltiVec Velocity Engine (Motorola), 69
.app file extension, 4, 114
_ _APPLE_ _ macro, 72
Apple C compiler, 69
_ _APPLE_CC_ _macro, 72
Apple debugger, 68
Apple Developer Connection
(ADC), xii, 68
Apple Open Source, 125
AppleScript/AppleScript Studio, 67
AppleTalk protocol, 44
appletviewer tool, 25
applications
compiling source code for, 67-77
steps in, 70
contents of, 114
packaging for distribution, 101-104
disadvantages of tarballs for, 113
starting automatically, 37—41
X11-based, 149-155

Index

Applications folder, disk images
and, 114

/Applications/Urtilities directory
Directory Access and, 44
NetInfo Manager in, 48
Terminal in, 4

apropos command, 31

APT (Advanced Package Tool), 96

apt-get commands, 98

Aqua
interacting with X11, 154
mouse buttons and, 155
OroborOSX and, 151

AquaTerm, 151, 154

archiving files, tools for, 30

_ -ASSEMBLER _ _ macro, 72

authentication, 46

autoconf facility, 70

awk tool, 26

bash shell, 3
/bin/csh, 3
bindkey command, 19
/bin/sh, 3
bison command, 22
bless tool, 25
booting
in single-user mode, 32
Mac OS X, 32-37
boot-time behavior, 143

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

189

BootX loader, 32
Bourne shell, 3
BSD, 32
configuration files for, 45
flat files and, 46
build type, 71
BuildStrings tool, 23
-bundle option, 85
bundles, 85
loading dynamically, 87-88
bytes, endian order of, 76

C

C compiler, 67, 69
C pointers, size of, 76
calculator, dc command for, 31
Carnegie Mellon University, Mach
developed by, 32
cat command, 28
cc command, 23,73
cc compiler, 69
special flags for, 85
cd command, 28
characters, positioning commands for
(vi mode), 18
chflags command, 28
chmod command, 28
clear command, 31
click to position cursor option, 9
clipboard, Terminal and, 4
cmp command, 28
code (see source code; sample code)
comm command, 28
.command files, 6
command line, 3-31
creating disk images from, 118
downloading files from, 14
editing from, with tcsh shell, 15-19
history commands for
Emacs mode, 16
vi mode, 17
command-line switches, 3
command-line utilities, 23, 174-188
command prompt, 4
command submode (vi mode), 17
commands, 15-31
information about, man command
for, 31
via keystrokes, 16-19

locating by keyword, apropos
command for, 31
Compiler Tools, 68
compilers, 67, 69
compiling source code, 67-77
steps in, 70
compress tool, 30
configd command, 175
configuration files in /etc
directory, 165-168
configure scripts, 70-72
console messages, displaying during
startup, 32
context switches, latency utility for
measuring, 132
cp command, 28
cpio tool, 30
cpludl tool, 23
CpMac tool, 23
cpp (GNU C preprocessor), 74
caution with, 81
cpp-precomp (precompilation
preprocessor), 74
caution with, 81
vs. PFE mechanism, 82
creating
hosts, 60
packages, 101-104
static libraries, 91
Terminals, 5-10
user properties, 59
users, 58
cron jobs, 41
.cshre file, caution in presence of .tcshre
file, 12
curl utility, 101
curses screen library, 84
cursor
click to position option for, 9
editing commands for (vi mode), 17
positioning commands for (Emacs
mode), 16
cut tool, 26
CVS archive, obtaining/using source
code from, 125
CVS tags, 127
cvs tool, 22
CVSWeb archive (Darwin), 127
cvs-wrap/cvs-unwrap tools, 23

190 | Index

D

daemons, starting at bootup, 37
Darwin kernel

building, 123-129

pros and cons of, 123

CVSWeb archive and, 127

PIC flags and, 85

source code distributions and, 71

utilities for, 136-140
data store for Netlnfo and LDAP, 46
dc command, 31
ddb utility, 136
.deb file extension, 97
Debian, 96
debuggers

Apple debugger, 68

gdb debugger, 23

Java debugger, 26
defaults command, 140-143
defaults delete command, 142
deleting

groups, 57

user properties, 59

users, 60
DeRez tool, 23
desktop environments (DTEs), 147, 148
/dev directory, 172
Developer Tools, xii, 23, 67

documentation for, 68
/Developer/Tools directory, 23
development tools, 22-31, 68

for Darwin kernel, 123-125
devices, files for stored in /dev

directory, 172

diagnostic utilities, 130-135
diff/diff3 commands, 28
diffs, pbprojectdump tool for, 24
directories

caution with for packages, 113

manipulating, commands for, 22, 28

NFS exports and, 61

open command for, 20
Directory Access application, 44
directory names, working with, 13
Directory Services, 42-63

configuring, 44—47
DirectoryService command, 176
Disk Copy tool, 106

creating disk images with, 114-117
disk images, 113-119

disktool command, 177

diskutil tool, 25

ditto tool, 25

dlcompat library, 85

Dock (the), using Terminal and, 4
double-clickable executables, 6
dpkg commands, 98

DTEs (desktop environments), 147, 148
dyld editor, 89

dylib actions/.dylib file extension, 85
dynamic linker, 89

dynamiclib option, 85
dynamic_pager command, 178

E

Eau theme (OroborOSX), 153

echo command, 27

egrep tool, 30

ELF (Executable and Linking
Format), 84

Emacs editing mode, 15

emacs tool, 26

endian order, 76

escape sequences, 9

escaping spaces in file/directory
names, 14

/etc directory, 45, 165-168

/etc/crontab, 41

/etc/daily cron job, 62

/etc/init.d directory, 37

/etc/master.passwd file, 57

/etc/passwd file, 57

/etc/rc shell script, 33

/etc/rc.boot shell script, 33

/etc/rc.local script, 37

/etc/shells directory, 3

Jetc/ttys file, 37

/etc/X11 directory, 147

eterm, replacement for xterm, 149

ex tool, 26

examples (see source code; sample code)

exec startx command, 147

Executable and Linking Format
(ELF), 84

executables, making double-clickable, 6

execution strings, 6

exit/logout commands, for
XDarwin, 147

expr command, 27

extern keyword, 85

Index | 191

F

fgrep tool, 30
file attributes, SetFile tool for, 24
file command, 28
FileMerge (Project Builder),
pbprojectdump tool for, 24
filename completion, 15
filenames, working with, 13
files
downloading from the command
line, 14
manipulating, tools for, 20-25,
28-31
filesystem, 163-173
check of, 34
information about, fs_usage utility
for displaying, 132
find tool, 30
Finder services menu, 10
fink commands, 100
Fink distribution, 69, 96-104
displaying packages available
with, 98
libraries available through
(list), 92-95
packages, creating/installing
with, 101-104
Window managers/desktops,
installing via, 148
X11-based applications, installing
via, 149
(see also /sw directory)
fink list command, 98
FireWire drive, 124
flat files, 46, 49, 61
-flat_namespace linker flag, 89
flex/flex++ tools, 22
fmt tool, 26
-fno-common compiler flag, 85
FORTRAN, 69
framework header files, 74
#import directive and, 79
FreeBSD, 96
ports system and, 104
fsck command, 34
fs_usage utility, 132
full-screen mode, for XDarwin, 147

G

g77 (GNU FORTRAN 77 compiler), 69
GCC (GNU Compiler Collection), 67,
69,73
command for, 23
gdb debugger, 23
GetFilelnfo tool, 23
getpw” functions, passwords and, 44
getry, 37
GIMP (GNU Image Manipulation
Program), 149
GNOME desktop environment, 147,
149
GNU C preprocessor (cpp), 74
caution with, 81
GNU Compiler Collection (see GCC)
GNU FORTRAN ’77 compiler (g77), 69
GNU Image Manipulation Program
(GIMP), 149
GNU tar, 112-113
GNU-Darwin distribution, 104
gnumake tool, 23
gnuplot data plotting program, 154
gnutar tool, 30, 105
creating tarballs with, 112-113
grep tool, 30
Greyphite theme (OroborOSX), 153
groft tool, 26
groups, 55-57
gunzip tool, 30
gzcat tool, 30
gzip tool, 30, 105
creating tarballs with, 112-113

.h file extension, 78

hdiutil tool, 25

head command, 28

header files, 78-83

header.h file, 82

“Hello, World” sample program
illustrating packages, 101

here documents, 56

home directory for users, 59

host type, 71

hostconfig file, 33

hostnames, managing, 60

hosts, creating, 60

192 | Index

ImageMagick, 149

#import directive, 79

#include directive, 78

.info files, for Fink packages, 102

Info.plist file, kernel extension and, 33

init process, 33

initialization, 33

inline assembly code, 77

insert submode (vi mode), 17

INSTALL file, 70,71

installer tool, 25

instant messenger program, starting up
automatically, 37

Interface Builder, 68

interrupts, latency utility for
measuring, 132

IP addresses, managing, 60

ipconfig command, 179

J

Java applications

tools for, 25

turning into .app files, 114
JavaBrowser, service for, 11
Java debugger, 26
jobs, commands for, 31
join tool, 26

K

KDE desktop environment, 147

kernel state variables, 137-140

kernel utilities, 136-140

kextd daemon, 35

kextload/kextunload utilities, 136

kextstat utility, 136

key bindings, bindkey command for, 19

key commands, 16-19

keys, for startup parameters property
list, 40

L

latency utility, 132

-lcurses routine, 84

LDAPv2/LDAPv3 protocols, 45

less command, 28

lexical analyzers, flex/flex++ tools
for, 22

libraries, 83-95
lists of, 9295
loading dynamically, 87-88
static, 91
version numbering for, 89
/Library directory, 168, 170
/Library/Startupltems directory, 34
libSystem, 83
line command, 27
linking errors, -lcurses routine and, 84
In command, 28
Inresolve tool, 23
loadable modules (see bundles)
locate tool, 30
lockfile command, 27
logging in, preferences for, 37
(see also entries at startup)
Jogin script, 12
login session, script command for, 31
Login Window, 37
Jlogout script, 12
logout/exit commands, for
XDarwin, 148
Is command, 29
Isbom tool, 25
Lynch, Ken, 151

M

Mac OS X shells, 3
Mac OSX
architectural issues and, 76
booting, nvram utility and, 143
default startup items for, 34
Developer Tools for, xii
development environment of, 67
Directory Services architecture
within, 43
filesystem for, 163-173
interacting with X11, 154
libraries available with (list), 92-95
packaging tools shipped
with, 105-119
predefined macros for, 72
source code distributions and, 71
source tree for, 72
startup sequence for, 32-41
system management tools
for, 130-145
MACH_ _ macro, 72

Index | 193

Mach microkernel operating system, 32
Mach-O runtime architecture
prebinding and, 91
shared libraries and, 85
Macintosh Programmer’s Workshop
(MPW), 23
Macintosh, tools for, 24
MacPerl, not used by Mac OS X, 68
macros, 72
Mail service, 10
mailing lists, xii
main.c application, 82
make command, 70
missing header files and, 83
Make New Sticky Note service, 11
make tool, 23
man command, 31
manpages
flat file formats and, 61
hosts and, 60
“missing,” for command-line
utilities, 174—188
Netlnfo udlities and, 50
memory information
top utility for displaying, 130-132
virtual memory, vm_stat utility for
displaying, 134
MergePef tool, 24
MH_BUNDLE file type, 85
MH_DYLIB file type, 85
MIT’s Project Athena, 12
mkdir command, 29
more command, 29
Motif window manager (mwm), 149
Motorola AltiVec Velocity Engine, 69
mouse buttons, 155
MPW (Macintosh Programmer’s
Workshop), 23
mv command, 29
MvMac tool, 24
mwm (Motif window manager), 149
MySQL startup items, 38

namespaces, 88

_ _NATURAL_ALIGNMENT_ _
macro, 72

ncurses library, 84

nedit text editor, 149

Netlnfo, 42, 46
browsing/modifying, 48, 53
bug affecting default setting, 45
flat files and, 61
restoring/backing up, 62
utilities for, 48-55

list of, 49

NetInfo Manager, 42
enabling root user and, 22

networked computers, 156-159

networking protocols, 44

NeXT property lists, 40

Nextish theme (OroborOSX), 153

NFS exports, 61

nice command, 31

nicl utility, 53
groups, creating with, 56
users, creating with, 59

nidump utility, 49, 50, 60
groups, listing with, 57

niload utility, 49, 52
caution with -P option for, 52
groups, creating with, 56
users, creating with, 58

nireport utility, 49, 51
users, listing with, 58

niutil utility, 49

-no-cpp-precomp switch, 74, 81

nohup command, 31

nvram command, 140, 143-145

0

_ _OBJC__ macro, 72

Objective-C programming language,
“Hello, World” illustrating, 75

one_stop script (GNU-Darwin), caution
before executing, 104

open -a command, 14

open command, 20, 25

Open Firmware variables, vram utility
for modifying, 143-145

opendiff command, 180

operating systems, endian order and, 76

optimization, 91

OroborOSX, 147, 151-153

installing, caution with, 151
osascript commands, 6

194 | Index

P

.p file extension, 78
PackageMaker tool, 105, 106-111
packages
creating/installing, 101-104
using PackageMaker
for, 106-111
/ust/local directory for, 113
disadvantages of tarballs for
distributing, 113
packaging tools, 105-119
page faults, sc_usage utility for
displaying, 133
PAM API, 44
passwords, 44
changing, passwd command for, 31
managing, 57-60
paste tool, 26
patch command, 29
pbcopy command, 25, 180
pbhelpindexer tool, 24
pbpaste command, 25, 181
pbprojectdump tool, 24
pbxcp tool, 24
pbxhmapdump tool, 24
perl command, 27
Persistent Front End (PFE)
mechanism, 82
Persson, Per, 154
PFE precompilation, 82
Pfisterer, Christoph, 96
PGPLOT graph-drawing package, 154
PIC flags, 85
pico tool, 26
pl command, 181
plists (property lists), 141
for startup items, 39
PORT/PORTING file, 70, 71
ports system, 104
position-independent code (PIC)
flags, 85
prebinding, 91
precompilation preprocessor (see
cpp-precomp)
precompiled header files, 78, 80
Preferences pane, 142
preprocessing, 73

printers, cplutil tool for configuring, 23

printf command, 27

process information, top utility for
displaying, 130-132
programming, Directory Services
and, 43
programming languages, GCC support
for, 73
Project Athena, 12
Project Builder, 68
tools for, 23, 24
prompts, 49
property lists (plists), 141
for startup items, 39
protocols, 44-63
proto.term, 6
pwd command, 29

Q

Quartz/Quartz Extreme, 146
quoting file/directory names, 14

ranlib command, 91
rc scripts, 33
rcp command, 29
rcs command, 23
RCS, cvs tool and, 22
README file, 70, 71
Red Hat, 96
Rendezvous protocol, 46
ResMerger tool, 24
resource files, tools for, 24
resource forks, commands/tools for, 23,
24
resource strings, BuildStrings tool
for, 23
resources for further reading, xii
assembler and PowerPC machine
language, 77
Developer Tools, 67
flat file formats, 61
kernel extension tutorials, 136
Mac OSX, x
Netlnfo utilities, 50
PAM API, 44
prebinding, 91
precompiled header files, 81
Rez tool, 24
RezWack tool, 24
rm/rmdir commands, 29

Index | 195

root directory, 163-165

root user, 22

rootless mode, for XDarwin, 147
rxvt, replacement for xterm, 149

S

sample code
dynamically loaded bundle, 87
execution strings, 6

header.h file, 82

“Hello, World” in Objective-C, 75

libraries
shared, 85
version numbering for, 90
main.c application, 83
MySQL startup script, 38
packages, creating/installing, 101
using PackageMaker, 107-111
pico editor, launching, 7
Terminal title, shell script for, 10
X11 game, downloading and
building, 150
scheduling tasks, 41
scp command, 29
screen, command for clearing, 31
screencapture tool, 25
script command, 31
scripting definition files, sdp tool for
converting, 24
scripts, using Bourne shell for, 11
scselect command, 182
sc_usage utility, 133
scutil command, 183
sdiff command, 29
sdp tool, 24
sed tool, 26
Server Settings utility, 49
serversetup tool, 25
Services menu, 10
SetFile tool, 24
sh command, 27
shadow password file, 57
shared libraries, 84-89
shell scripts, commands for, 27
shells, 3
commands for, 15-21
single-user mode, 32-34
sleep command, 27
SLP/SMP protocols, 46

.so file extension, 85
sort tool, 31
source code
compiling, 67-77
gnumake/make commands

for, 23
inline assembly code and, 77
steps in, 70
fragments of, MergePef tool for
merging, 24

source tree, 72
spaces in filenames, 13
Speech service, 11
split command, 29
SplitForks command, 24, 185
ssh, 155
startup items
launching, 37-41
property list for, 39
shell seript for, 38
startup sequence for Mac OS X, 32—41
static libraries, 91
Stickies application, starting up
automatically, 37
_ _STRICT_BSD_ _ macro, 72
strings tool, 31
sucommand, 31
sudo command, 31
root user and, 22
used with NetInfo utilities, 49
Summary service, 11

superuser privileges, commands for, 31

/sw directory, 97,113, 149
symbolic links
for libraries, 84,90
Inresolve tool for, 23
sysctl utility, 137-140
system calls, sc_usage utility for
displaying, 133
system configuration tools, 140-1435
system library, 83
system management tools, 130-145
System Preferences program, 140
/System/Library directory, 168-170
/System/Library/CoreServices, 32
/System/Library/CoreServices/
loginwindow.app, 37
/System/Library/Startupltems, 34
SystemStarter, 34

196 | Index

T

tab completion, 15
tab window manager (twm), 148
VNC server and, 158
tail command, 29
tar archives (see tarballs)
tar tool, 30
tarballs, 70
creating with gnutar or
gzip, 112-113
disadvantages of for distributing
software, 113
for Fink packages, 101
for GNU-Darwin, 105
tasks, scheduling, 41
tclsh command, 27
tesh shell, 3,11-21
customizing, 11
.teshre seript, 11
TENEX Cshell, 3
.term files, 5
Terminal application, 3-10
Terminal Inspector, 8
Terminals (Terminal windows),
launching/ customizing, 5-10
test command, 27
texizhtml tool, 27
text
deletion commands for (Emacs
mode), 16
editing/processing tools for, 26
insertion/replacement commands for
(vi mode), 18
TextEdit service, 11
tiff2icns command, 185
tiffutil command, 186
TightVNC, 158
top utility, 130-132
Towns-von Stauber, Leon, xv
tr tool, 27
-traditional-cpp switch, 74
twm (tab window manager), 148
VNC server and, 158
two-level namespaces, 88

U

udf.util command, 187
Umpleby, Adrian, 151
uncompress tool, 30

uniq tool, 31
Unix commands, 22-31
Unix, version of in Mac QS X, 22
UnRezWack tool, 24
unvis command, 29
unzip command, 23
URLs
Apple Developer Connection
(ADC), 68
Apple Open Source, 125
AquaTerm, 154
Darwin, xii
Darwin CVSWeb archive, 127
Fink distribution, 69, 97
GNU-Darwin distribution, 104
gnuplot, 154
kernel extension tutorials, 136
Mac OS X Hints, xiii
OroborOSX, 148
ssh, 155
Stepwise, xiii
Version Tracker, 158
XDarwin project, 146
XFree86 Project, 146
users
home directory for, 59
managing, 57—60
/usr/bin or /ust/libexec directory, 22
/usr/local directory, 113
/usr/X11R6 directory, 147
utilities
command-line, 23, 174-188
Netlnfo, 48-55
list of, 49
system management, 130-145

v

/var directory, 172

/var/db/metinfo, 47

_ _VEC__macro, 72

version numbering for libraries, 89

vi editing mode, 15, 17

vi tool, 27

View in JavaBrowser service, 11

Virtual Network Computing
(VNQ), 156-159

vis command, 29

vm_stat utility, 134

Index | 197

VNC (Virtual Network
Computing), 156-159

vncserver command, 158

vsdbutil command, 188

w

wc command, 29

web service stubs, UnRezWack tool for
generating, 24

web sites (see URLs)

Window managers, customizing for
XDarwin, 148

window-shade feature for
OroborQSX, 153

WSDL files, UnRezWack tool for
generating web service stubs
from, 24

WSMakeStubs tool, 24

X

X Window System (see X11)

X11 applications, 149-155

X11 forwarding, 155

X11 (X Window System), 146—159
interacting with Mac OS X, 154
making remote connections to, 155

xargs command, 27

XDarwin, 146-151
mouse buttons and, 153

Xfce desktop environment, 147
xfig/transfig drawing tool, 149
XFree86, OroborOSX and, 151
XFree86 Project, 146
.xinitrc script
customizing XDarwin and, 148
OroborOSX and, 153
xmkmf script, 150
XML property lists, 40
XProg.tgz, 149
xterm
OroborOSX and, 151
replacements for, 149
vs. Terminal, 3

Y

yacc-compatible generator, bison
command for, 22

z

Z shell (zsh), 3

zcat tool, 30

zcmp command, 29
zdiff command, 29
zgrep tool, 31

zip/unzip commands, 23
zsh command, 27

zsh shell, 3

About the Authors

Brian Jepson is a “100-foot-tall nonstudent” who specialized in social sabo-
tage as a student at the University of Rhode Island. His on-again, off-again
coffeehouse, Cafe de la Tete, was part of a successful “culture jamming”
experiment disguised as a program for mass liberation. Not content to enjoy
the relaxed life of a coffeehouse operator and student, Brian made his way to
Wall Street, where he remained cleverly disguised as a database programmer
for many years. As he grew older and wiser, he worked more and more with
free software and encourages others to do the same. Brian has written
several books, including Database Application Programming with Linux
(John Wiley & Sons) and the Perl Resource Kit Utilities Guide (O’Reilly). He
is now a writer for O’Reilly & Associates, Inc. He keeps a watchful gaze on
many corners of technology, including web services, .NET, Mac OS X,
portable computing, and wireless networking. You can follow his move-
ments at http://fwww.jepstone.net.

Emest E. Rothman is an associate professor of mathematics at Salve Regina
University (SRU), where he is also chair of the mathematical sciences depart-
ment, as well as manager of the computational science program. Before
SRU, Emie held the position of research associate at the Cornell Theory
Center at Cornell University. Ernie holds a Ph.D. in applied mathematics
from Brown University. His academic interests are primarily in scientific
computing and computational science education. Ernie also enjoys playing
with Linux systems, including Solaris, Linux, and Mac OS X.

Colophon

Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of Mac OS X for Unix Geeks is a foxhound. The
foxhound’s coat is short, hard, and glossy and can be black, tan, white, or a
combination of these colors. Foxhounds are generally free of many of the
heritable defects that afflict other large dog breeds. They usually stand 21 to
27 inches tall at the shoulder, and their average weight is 55 to 75 pounds.

The English foxhound traces its ancestry back to the 1600s. Foxhounds
were bred specifically to hunt foxes, so they require great stamina, strength,
and speed. They are known for their superior scenting powers and strong,
melodious voices. Amerian foxhounds, developed from stock brought over

from England in the 1650s, are hardier and finer-boned than their English
counterparts. They were bred to adapt to more rugged terrain, where they
hunted foxes, coyotes, and deer.

Foxhounds are friendly, intelligent, courageous pack hounds with a
cheerful, determined disposition. They tend to be easygoing and
affectionate, and although they can be strong-willed, they are not aggres-
sive. Foxhounds were bred mainly as hunting dogs, rather than as family
pets. They are a very active breed, requiring lots of exercise, and they tend to
be happiest with owners who live in rural areas or on large farms.
Foxhounds enjoy the company of other dogs and can become bored if kept
alone.

Claire Cloutier was the production editor and copyeditor for Mac OS X for
Unix Geeks. Ann Schirmer was the proofreader. Ann Schirmer, Linley
Dolby, and Jeffrey Holcomb provided quality control. Claire Cloutier, Kimo
Carter, and Genevieve d’Entremont were the compositors. Brenda Miller
wrote the index.

Emma Colby designed the cover of this book, based on a series design by
Edie Freedman. The cover image is a 19th-century engraving from the Royal
Natural History. Emma Colby produced the cover layout with QuarkXPress
4.1, using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
MclIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technolo-
gies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.
The illustrations that appear in the book were produced by Robert Romano
and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon
was written by Rachel Wheeler.

Want To Know More
About Mac OS X?

The Apple Developer Connection offers convenient and
timely support for all your Mac OS X development needs.

Developer Programs

The Apple Developer Connection (ADC)
helps developers build, test, and distribute
software products for Mac OS X. ADC Pro-
grams provide direct, affordable access to
Mac OS X software, along with many other
products and services, including;

* Pre-release software seeds
* Apple hardware discounts
* Code-level technical support

Programs range in price from $0 (free) to
US$3500 and are available worldwide.

Developer Tools

All ADC Program members receive
free Mac OS X Developer Tools such as
Project Builder, Interface Builder, and
AppleScript Studio.

Getting Started Is Easy

The ADC web site offers a variety of
reference materials including in-depth
articles, tutorials, sample code, and
FAQs. You'll also find student developer
resources, open source projects, mailing
lists, and more. Our elec- tronic newslet-
ter keeps members notified with up-to-
the-minute information on new releases
and documentation.

Join today!

Visit http://developerapple.com/
membership/

€ ADC
Apple Developer Connection

Other Titles Available from 0'Reilly

Macintosh Users

Mac 0S X: The Missing Manual,

2nd Edition

By David Pogue

2nd Edition October 2002

728 pages, ISBN 0-596-00450-8

David Pogue applies his scrupu-
| lous objectivity to this exciting
new operating system, revealing
hich new features work well and which do not.
his second edition offers a wealth of detail on the
yriad changes in OS X 10.2. With new chapters
1iChat (Apple’s new instant-messaging software),
1erlock 3 (the Web search tool that pulls Web
formation directly onto the desktop), and the new
nder (which reintroduces spring-loaded folders).

Office X for Madintosh:
The Missing Manual

By Nan Barber, Tonya Engst &
David Reynolds

1st Edition July 2002

| 728 pages, ISBN 0-596-00332-3

This book applies the urbane
" and readable Missing Manuals
uch to a winning topic: Microsoft Office X for
pple’s stunning new operating system, Mac OS X.
| typical Missing Manual style, targeted sidebars
1sure that the book’s three sections impart business-
vel details on Word, Excel, and the Palm-synca-
e Entourage, without leaving beginners behind.
dispensable reference for a growing user base.

hoto | iPhoto:The Missing Manual

By David Pogue, Joseph Schorr &
| Derrick Story

1st Edition July 2002

350 pages, ISBN 0-596-00365-x

With this guide, Macintosh fans
can take their digital photos to
the screen, to the Web, to print-
1ts, to hardbound photo books, even to DVDs.
nd they’ll learn how to take iPhoto far beyond its
emingly simple feature list. But the software is
st the beginning, The book also covers choosing
1d mastering a digital camera, basic photograph-
techniques, and tips for shooting special subjects
<e kids, sports, nighttime shots, portraits, and
ore.

Macintosh Troubleshooting
Pocket Guide

By David Lerner & Aaron

“r | Freimark, Tekserve Corporatic
| 1st Edition November 2002 (e:
| 80 pages (est.), ISBN 0-596-0044:

| Tekserve Corporation, the dis
| tinctive Macintosh repair stor

New York City, has long provi
ed its customers with a free ‘T
quently Asked Questions” document to cover tt
most common troubleshooting questions. We
recently discovered this FAQ sheet and realized
thatr—like New York itself—it was too good to
leave just for the New Yorkers. With the help of
Tekserve's owners, we turned this FAQ sheet int
the Macintosh Troubleshooting Pocket Guide.

iMovie 2: The Missing Manual

By David Pogue

1st Edition January 2001

420 pages, ISBN 0-596-00104-

iMovie 2: The Missing Manual
covers every step of iMovie vi
production, from choosing an
—— using a digital camcorder to
burning the finished work onto CDs. Far deepe
and more detailed than the meager set of onlin,
help screens included with iMovie, the book he
iMovie 2 users realize the software’s potential a:
breakthrough in overcoming the cost, complexi
and difficulty of desktop video production.

R AppleScript in a Nutshell

By Bruce W. Perry
1st Edition June 2001
528 pages, ISBN 1-56592-841-

AppleScript in a Nutshell is the
first complete reference to Ap]
Script, the popular programm
language that gives both pows
users and sophisticated enter-
prise customers the important ability to autom:
repetitive tasks and customize applications. App
Script in a Nutshell is a high-end handbook at a
low-end price—an essental desktop reference t
puts the full power of this user-friendly prograr
ming language into every AppleScript user’s har

O’REILLY*

To order: 800-998-9938 » order@oreilly.com * www.oreilly.com
Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com

Alem mrrmilalide e svn et soemi] memd cemlice e T o e me o e

Macintosh Developers

Learning Cocoa with Objective-C,
2nd Edition

By James Duncan Davidson &
Apple Computer, Inc.

2nd Edition September 2002
384 pages, ISBN 0-596-00301-3

Based on the Jaguar release of

" Mac OS5 X 102, this new edition
earning Cocoa covers the latest updates to the
coa frameworks, including examples that use the
dress Book and Universal Access APIs. Also
luded with this edition is a handy quick refer-
e card, charting Cocoa’s Foundation and AppKit
neworks, along with an Appendix that includes a
ing of resources essential to any Cocoa develop-
~beginning or advanced.

-

Learning Carbon

By Apple Computer, Inc.
1st Edition May 2001
368 pages, ISBN 0-596-00161-4

Get up to speed quickly on creat-
ing Mac OS X applications with
Carbon. You'll learn the funda-
mentals and key concepts of Car-
1 programming as you design and build a

nplete application under the book’s guidance.
itten by insiders at Apple Computer, Learning
bon provides information you can't get any-

ere else, giving you a head start in the Mac OS X
lication development market.

Building Cocoa Applications:

A Step-by-Step Guide

By Simson Garfinkel &

Mike Mahoney

1st Edition May 2002

648 pages, ISBN 0-596-00235-1
Building Cocoa Applications is
step-by-step guide to developir
applications for Apple’s Mac OS X. It describes, i
an engaging tutorial fashion, how to build subst:
tial, object-oriented applications using Cocoa. Tt
primary audience for this book is C programme:
who want to learn quickly how to use Cocoa to
build significant Mac OS X applications. The bo:
takes the reader from basic Cocoa functions
through the most advanced and powerful facilitit

LEC— | Learning Unix for the Mac 0S X
By Dave Taylor & Jerry Peek
| 1st Edition May 2002

8 | 160 pages, ISBN 0-596-00342-(

| This concise introduction offer
| just what readers need to knov
for getting started with Unix
functions on Mac OS X. Mac

users have long been comforta
with the easy-to-use elegance of the Mac GUI, an
are loathe to change. With Mac OS X, they can c
tinue using their preferred platform and explore |
powerful capabilities of Unix at the same time.
Learning Unix for the Mac OS X tells readers how
to use the Terminal application, become function
with the command interface, explore many Unix
applications, and—most important—how to tak
advantage of the strengths of both interfaces.

O’REILLY*

To order: 800-998-9938 = order@oreilly.com * www.oreilly.com

Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com

T

’REILLY NETWORK

Search Hundreds of Books and
Find Answers Fast

O’Reilly Network Safari Bookshelf is a subscription-based
service featuring hundreds of the latest technical publications
from O’Reilly & Associates and other premium publishers. Sign
up today and your Safari subscription could include these titles:

®-De

e e s

Bm{a'rmz
Cocod
ICcatons

ORERLY o e Wit & My ORBULY" o it o st e gt

The Safari service lets you search, annotate and read your own

reference collection online—available wherever you have access to
the Web.

safari.oreilly.com

How to stay in touch with 0'Reilly

Visit our award-winning web site
http./fwww.oreilly.com/

* “Top 100 Sites on the Web”™—PC Magazine
* CIO Magazine’s Web Business 50 Awards

Our web site contains a library of comprehen-
sive product information (including book
excerpts and tables of contents), downloadable
software, background articles, interviews with
technology leaders, links to relevant sites, book
cover art, and more. File us in your bookmarks
or favorites!

Join our email mailing lists

Sign up to get email announcements of new
books and conferences, special offers, and
O'Reilly Network technology newsletters at:

http://elists.oreilly.com

1t’s easy to customize your free elists subscription
so you'll get exactly the O'Reilly news you want.

Get examples from our books

To find example files for a book, go to:
http:flwww.oreilly.com/catalog

select the book, and follow the “Examples” link.

Work with us

Check out our web site for current
employment opportunites:

http:/tjobs.oreilly.com/

Register your book
Register your book art:
http://register.oreilly.com

6. Contactus

0'Reilly & Associates, Inc.

1005 Gravenstein Hwy North

Sebastopol, CA 95472 USA

TEL: 707-827-7000 or 800-998-9938
(6am to 5pm PST)

FAX: 707-829-0104

order@oreilly.com

For answers to problems regarding your ord
or our products. To place a book order onlir
visit:

http:/fwww.oreilly.com/order_new/

catalog@oreilly.com
To request a copy of our latest catalog.

booktech@oreilly.com
For book content technical questions or
corrections.

corporate@oreilly.com
For educational, library, government, and
corporate sales.

proposals@oreilly.com
To submit new book proposals to our editor
and product managers.

interational@oreilly.com

For information about our international dis
tributors or translation queries. For a list of
our distributors outside of North America
check out:

http:/finternational.oreilly.com/distributors. ht:

adoption@oreilly.com
For information about academic use .
O'Reilly books, visit:

http:/facademic.oreilly.com

To order: 800-998-9938 » order@oreilly.com * www.oreilly.com
Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com

Macineosh Uinix

O’REILLY"
Mac OS X for Unix Geeks

S0, vou're one of the many, the proud ... the Unix gecks who've
“switched® 1o Mac O5 X Although hacking code on the Mac is the
same 45 hacking code on other Unix systeins, you're bound oo nen into
some problems because of the subile differences between the Unix

voure acoustomed o and how things are done in Mac O8 X 1002 (laguar),

Mg O X for Uniy Gl was written by teeo [ong-time Unix users who've found
themmselves exacly where you are, It cuts through the chaff and gets right 1o the
point on such topics as:

® Using the Terminal and understanding bow it differs from an xlerm

= Using Dhreciory Senvioes, Open Directony (LEDAP)Y, and SNetlnfo

= Compiling code with GOC 3

& Library linking and porting Unix softecane

& Creating and installing packages with Fink

& Building the Darain kermel

= Running X Windows on 37 e] of Mac O8 X

This quick and diry guide continues with an overview of Mac 08 X's filesystem

and starup processes, wrapping up with a

handy melerence section called the “Missing

Manpages,” covering Mac OS5 X commanid- ‘ |A|D|¢|

linez utilities nest in the official documentation. #wm
Ascommended THis

Mac O8 X is quibckly becainimg the plaform
of chaolee for Unix hackers and geeks, apen sourte tchnologies with its own

Pecause it gives vou what Tim O°Reilly refers programming efforts bo creale Mac 05 X,
tor s “guilt-Free compaiting™=—a Unix system oot of the most versatile and stable oper-

that youn cBom have 1o share w il,-|'|_'II"p|1|;I.4m.~\._ #“uw:H_‘
IF vour prowdly wear the badge *Unix Geek, Associates, h‘“.’_-*!-
this book is vour guide to demystifying the sable coliection of bechnical publications.
geekier side of Mac 08 X, a‘m W“Itw#
mears and ks recommendad by the Apple
US $24.65 Devaloper Connection.
[SBN Q=594=0035&=0 mg.ﬂ 0 St COMEalanar
20000
Visit 0'Railly
on the Web al
www, oreilly. com
o ' TROS24" 00356

L] P20700356™" &

	Table Of Contents
	Cpt 01 MacOSX Command Line
	Cpt 02 Startup
	Cpt 03 Directory Services
	Cpt 04 Compiling Source Code
	Cpt 05 Libraries, Headers,Frameworks
	Cpt 06 Creating & Installing Packages
	Cpt 07 Building The Darwin Kernel
	Cpt 08 System Management Tools
	Cpt 09 The X Window System
	A: The MacOSX Filesystem
	B: Command-LIne Tools:
	Index

