L_earning Perl on Win32

http://kickme.to/tiger/

http://kickme.to/tiger/

By Randal L. Schwartz, Erik Olson & Tom Christiansen; ISBN 1-56592-324-3, 306 pages.
First Edition, August 1997.
(See the catalog page for this book.)

Search the text of Learning Perl on Win32 Systems.

Index

Table

of Contents

Foreword to the First Edition of Learning Perl

Foreword to the Present Edition

Preface

Chapter 1: Introduction

Chapter 2: Scalar Data

Chapter 3: Arraysand List Data

Chapter 4: Control Structures

Chapter 5: Hashes

Chapter 6: Basic |/0O

Chapter 7: Regular Expressions

Chapter 8: Functions

Chapter 9: Miscellaneous Control Structures

Chapter 10:

Filehandles and File Tests

Chapter 11:

Formats

Chapter 12:

Directory Access

Chapter 13:

File and Directory Manipulation

Chapter 14:

Process M anagement

Chapter 15:

Other Data Transformation

Chapter 16:

System Information

Chapter 17:

Database Manipulation

Chapter 18:

CGI Programming

Chapter 19:

OLE Automation

Appendix A: Exercise Answers

http://www.oreilly.com/catalog/lperlwin/
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Appendix B: Libraries and Modules
Appendix C: Networking Clients
Appendix D: Topics We Didn't Mention

Examples

The Perl CD Bookshelf
Navigation

Copyright © 1999 O'Reilly & Associates. All Rights Reserved.

file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/examples/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/

,@Leammg Perl on Win32 Systems

Foreword to the First Edition of Next: Foreword to the
L earning Per| Present Edition

Foreword to the First Edition of Learning
Perl

Attention, class! Attention! Thank you.

Greetings, aspiring magicians. | hope your summer vacations were enjoyable, if too short. Allow meto
be the first to welcome you to the College of Wizardry and, more particularly, to this introductory class
in the Magic of Perl. | am not your regular instructor, but Professor Schwartz was unavoidably delayed,
and has asked me, as the creator of Perl, to step in today and give afew introductory remarks.

Let's see now. Where to begin? How many of you are taking this course as freshmen? | see. Hmmm, I've
seen worse in my days. Occasionally. Very occasionally.

Eh? That was ajoke. Really! Ah well. No sense of humor, these freshmen.

WEell now, what shall | talk about? There are, of course, any number of things | could talk about. | could
take the egotistical approach and talk about myself, elucidating all those quirks of genetics and
upbringing that brought me to the place of creating Perl, as well as making afool of myself in general.
That might be entertaining, at least to me.

Or | could talk instead about Professor Schwartz, without whose ongoing efforts the world of Perl would
be much impoverished, up to and including the fact that this course of instruction wouldn't exist.

That might be enlightening, though | have the feeling you'll know more of Professor Schwartz by the end
of this course than | do.

Or, putting aside all this personal puffery, | could simply talk about Perl itself, which is, after all, the
subject of this course.

Orisit?Hmmm ...

When the curriculum committee discussed this course, it reached the conclusion that this classisn't so
much about Perl asit is about you! This shouldn't be too surprising, because Perl isitself also about you -
at least in the abstract. Perl was created for someone like you, by someone like you, with the
collaboration of many other someones like you. The Magic of Perl was sewn together, stitch by stitch
and swatch by swatch, around the rather peculiar shape of your psyche. If you think Perl is abit odd,
perhaps that's why.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Some computer scientists (the reductionists, in particular) would like to deny it, but people have
funny-shaped minds. Mental geography is not linear, and cannot be mapped onto a flat surface without
severe distortion. But for the last score years or so, computer reductionists have been first bowing down
at the Temple of Orthogonality, then rising up to preach their ideas of ascetic rectitude to any who would
listen.

Their fervent but misguided desire was ssmply to squash your mind to fit their mindset, to smush your
patterns of thought into some sort of Hyperdimensional Flatland. It's ajoyless existence, being smushed.

Nevertheless, your native common sense has shown through in spots. Y ou and your conceptual ancestors
have transcended the dreary |andscape to compose many lovely computer incantations. (Some of which,
at times, actually did what you wanted them to.) The most blessed of these incantations were canonized
as Standards, because they managed to tap into something mystical and magical, performing the miracle
of Doing What Y ou Expect.

What nobody noticed in all the excitement was that the computer reductionists were still busily trying to
smush your mindsflat, albeit on a dightly higher plane of existence. The decree, therefore, went out (I'm
sure you've heard of it) that computer incantations were only allowed to perform one miracle apiece. "Do
onething and do it well" was the ralying cry, and with one stroke, shell programmers were condemned
to alife of muttering and counting beads on strings (which in these latter days have come to be known as
pipelines).

Thiswas when | made my small contribution to saving the world. | was rolling some of those very beads
around in my fingers one day and pondering the hopel essness (and haplessness) of my existence, when it
occurred to me that it might be interesting to melt down some of those mystical beads and see what
would happen to their Magic if | made asingle, slightly larger bead out of them. So | fired up the old
Bunsen burner, picked out some of my favorite beads, and let them melt together however they would.
And lo! the new Magic was more powerful than the sum of its parts and parcels.

That's odd, thought I. Why should it be, that the Sedulous Bead of Regular Expressions, when bonded
together with the Shellacious Bead of Gnostic Interpolation, and the Awkward Bead of Simple Data
Typology, should produce more Magic, pound for pound, than they do when strung out on strings? | said
to myself, could it be that the beads can exchange power with each other because they no longer have to
commune with each other through that skinny little string? Could the pipeline be holding back the flow
of information, much as wine doth resist flowing through the neck of Doctor von Neumann's famous
bottle?

This demanded (of me) more scrutiny (of it).

So | melted that larger bead together with afew more of my favorite beads, and the same thing happened,
only more so. It was practically a combinatorial explosion of potential incantations: the Basic Bead of
Output Formats and the Lispery Bead of Dynamic Scoping bonded themsel ves with the C-rationalized
Bead of Operators Galore, and together they put forth a brilliant pulse of power that spread to thousands
of machines throughout the entire civilized world. That message cost the net hundreds if not thousands of
dollarsto send everywhere. Obviously | was either onto something, or on something.

| then gathered my courage about me and showed my new magical bead to some of you, and you then
began to give me your favorite beads to add in as well. The Magic grew yet more powerful, as yet more

synergy was imbued in the silly thing. It was as if the Computational Elementals summoned by each
bead were cooperating on your behalf to solve your problems for you. Why the sudden peace on earth
and good will toward mentality? Perhaps it was because the beads were your favorite beads? Perhaps it
was because I'm just a good bead picker?

Perhaps | just got lucky.

Whatever, the magical bead eventually grew into this rather odd-looking Amulet you see before you
today. Seeit glitter, aimost like a pearl.

That was another joke. Really! | assure you! Ah well. | was a freshman once too...

The Amulet isn't exactly beautiful though - in fact, up closeit still looks like a bunch of beads melted
together. Well, all right, | admit it. It's downright ugly. But never mind that. It's the Magic that counts.
Speaking of Magic, look who just walked in the door! My good buddy Merlyn, er, | should say,
Professor Schwartz, is here just in the nick of time to begin telling you how to perform miracles with this
little Amulet, if you're willing to learn the proper mysterious incantations. And you're in good hands - |
must admit that there's no one better at muttering mysterious incantations than Professor Schwartz. Eh,
Merlyn?

Anyway, to sum up. What you'll need most is courage. It is not an easy path that you've set your foot
upon. You're learning a new language - alanguage full of strange runes and ancient chants, some easy
and some difficult, many of which sound familiar, and some of which don't. Y ou may be tempted to
become discouraged and quit. But think you upon this: consider how long it took you to learn your own
native tongue. Was it worth it? | think so. And have you finished learning it? | think not. Then do not
expect to learn al the mysteries of Perl in amoment, as though you were consuming a mere peanut, or an
olive. Rather, think of it as though you were consuming, say, a banana. Consider how this works. Y ou do
not wait to enjoy the banana until after you have eaten the whole thing. No, of course not. Y ou enjoy
each bite as you take it. And each bite motivates you to take the next bite, and the next.

So then, speaking now of the fruit of Merlyn's labors, | would urge you to enjoy this, um, course. The
fruit course, of course. Ahem, that was ajoke too. Ah well.

Here then, Professor, | present to you your new class. They seem to have no sense of humor whatsoever,
but | expect you'll manage somehow.

Class, | present to you Professor Randal L. Schwartz, Doctor of Syntax, Wizard at Large, and of course,
Just Another Perl Hacker. He has my blessings, just as you have my blessings. May you Learn Perl. May
you do Good Magic with Perl. And above al, may you have Lots of Fun with Perl. So beit!

So doit!

Larry Wall
September, 1993
Learning Perl on Win32 Next: Foreword to the
Systems Present Edition
Book Foreword to the Present

Index Edition

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: Foreword to the Foreword to the Present Edition Next:
First Edition of Learning Perl Preface

Foreword to the Present Edition

| hope you enjoy using Perl on Win32 and are as enthralled as | was when | first experienced Perl. Easy
tasks were easy and hard tasks were possible - cool! While at hip communicationsinc., | started using the
Perl 4 port developed in part by Clark Williams from Intergraph and Dean Troyer from Honeywell.
Seeing the need for aWin32 port of Perl 5, | convinced Microsoft to fund the core port, Automation
support, additional administrative modules, and an ISAPI plug in. After leaving hip communications inc.
and taking Perl for Win32 with me, | started ActiveWare Internet Corp. and developed Perl Script, again
with Microsoft funding. Responding to the demand for commercial Perl-related products and services,
my development partner, Doug Lankshear, and | founded ActiveSTATE tool corporation where we are
striving to balance freeware and commercial software devel opment efforts.

As the operator of the perl-win32-* mailing lists, | am very relieved with the release of this book. There
isfinally adefinitive, introductory reference for Perl on Win32 systems. Most of the Perl books that |
have seen have a UNIX dant that can be very confusing to the uninitiated. | now have somewhere to
send the aspiring but confused Win32 Perl developer.

Unlike UNIX systems, which typically come with several powerful scripting tools, Windows systems are
shipped without one (I don't count batch files or <gasp> BASIC in the "powerful" category). Fortunately
Perl isfreely available for Win32 systems to help you create scripting solutions for everything from
repetitive system administration tasks to building powerful, dynamic web sites. Perl for Win32 gives you
access to the Registry, event logs, ODBC databases, and any Automation Object so that you can glue
together all the components you need to solve the task at hand.

If you are experienced with Perl on UNIX platforms, this book will help you become familiar with the
unigue features of Perl for Win32. Either as a novice or experienced programmer, whether you are a
System Administrator, Web Master, or Power User, you will be brought up to speed and ready to use
Perl to solve real problems on Win32 systems. Y ou will also be poised to take advantage of all the cool
stuff coming for Perl. Some of these technologies are: toolsto make it easier to develop and manage Perl
modules, graphical development environments; enhanced Automation capabilities and performance; as
well as solid compiler, multithread, and Unicode support.

| am excited about Perl and its future - | hope you are too.

Dick Hardt
July 1997

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: Foreword to the Learning Perl on Win32 Next:

First Edition of Learning Perl Systems Preface
Foreword to the First Edition Book Preface
of Learning Perl Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: Foreword to the Preface Next: We'd Like to Hear from
Present Edition You

Preface

Contents:
What This Book Is About

Wed Liketo Hear from You
Conventions

Exercises

Acknowledgments for First Edition
Acknowledgments for the Second Edition
Acknowledgments for the Win32 Edition

What This Book Is About

This book is a gentle introduction to Perl. By the time you've gone through this book, you'll have touched
on the mgjority of the most common operations and language idioms found in most Perl programs.

This book is not intended as a comprehensive guide to Perl - on the contrary, in order to keep the book
from being yet another comprehensive reference guide, we've been selective about covering the things
you are most likely to use early in your Perl hacking career. For more information, check out the
voluminous and readily available Perl reference material. For obvious reasons, we recommend highly the
companion volume to this book, Programming Perl, Second Edition, published by O'Rellly & Associates.

This book is based on the second edition of Learning Perl. We have removed some things that are not
applicable to Perl programmers on Windows NT systems, and have added coverage of other things that
are specia to Windows NT. A wealth of Perl extensions for the Windows platforms exist; we have
introduced some of the most important of these extensions, but we have again been selective in doing so.

Each chapter ends with a series of exercisesto help you practice what you have just read. If you read at a
typical pace, and do all of the exercises, you should be able to get through each chapter in about 2 or 3
hours, and finish the book in 40 or 50 hours.

Previous: Foreword to the Learning Perl on Win32 Next: We'd Like to Hear from
Present Edition Systems You

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm

Foreword to the Present Book We'd Like to Hear from Y ou
Edition Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: What This Book Is Preface Next:
About Conventions

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, aswell as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in US or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (FAX)

Y ou can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com (viathe Internet)

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com (viathe Internet)

Previous: What This Book Is Learning Perl on Win32 Next:
About Systems Conventions
What This Book |s About Book Conventions
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
mailto:info@oreilly.com
mailto:bookquestions@oreilly.com
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: We'd Like to Hear Preface Next:
from You Exercises

Conventions

The following typographic conventions are used in this book:

Italic
isused for filenames and command names. It is also used to highlight comments in command
examples, and to define new terms when they first appear in the text.

Constant Wdth
isused in examples to show the text that you enter literally, and in regular text to show operators,
variables, and the output from commands or programs.

Constant Bold

Isused in examples to show the user's actual input at the terminal.
Constant Italic

isused in examples to show variables for which a context-specific substitution should be made.
Thevariablef i | enane, for example, would be replaced by some actual filename.

Footnotes

are used to attach parenthetical notes which you should not read on your first reading of this book.
Sometimes, lies are presented to simplify the discussion, and afootnote restores the lie to truth.
Often, the materia in the footnote will be advanced information that is not discussed anywhere
else in the book.

Previous: We'd Like to Hear Learning Perl on Win32 Next:
from You Systems Exercises
Wed Like to Hear from Y ou Book Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,&Leaming Perl on Win32 Systems

Previous: Preface Next: Acknowledgments for
Conventions First Edition
Exercises

The exercisesin this book are available electronically by FTP and FTPMAIL. Use FTPif you are directly on the
Internet. Use FTPMAIL if you are not on the Internet but can send and receive electronic mail to Internet sites. (This
includes CompuServe users.)

FTP

If you have an Internet connection (permanent or dialup), the easiest way to use FTP is viayour web browser or favorite
FTP client. To get the examples, ssmply point your browser to:

ftp://ftp.oreilly.com/published/oreilly/nutshell/learning perlnt/examples.zip

If you don't have aweb browser, you can use the command-line FTP client included with Windows NT (or Windows
95).

%ftp ftp.oreilly.com

Connected to ftp.oreilly.com

220 ftp.oreilly.com FTP server (Version 6.34 Thu Oct 22 14:32:01 EDT 1992) ready.
Name (ftp.oreilly.comusernane): anonynous

331 Guest login ok, send e-mail address as password.

Passwor d: user name@ost nane Use your usernane and host here
230 Guest | ogin ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/learning perlnt

250 OWD command successful .

ftp> get README

200 PORT command successful .

150 Opening ASCII node data connection for READVE (xxxx bytes).

226 Transfer conplete.

| ocal : README renote: README

XXXX bytes received in xxx seconds (xxx Kbytes/s)

ftp> binary

200 Type set to |

ftp> get exanples.zip

200 PORT command successful .

150 Openi ng BI NARY node data connection for exanples.zip (xxxx bytes).
226 Transfer conplete. |ocal: exercises renote: exercises

XXXX bytes received in xxx seconds (xxx Kbytes/s)

ftp> quit

221 Goodbye.

%

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
ftp://ftp.oreilly.com/published/oreilly/nutshell/learning_perlnt/examples.zip

FTPMAIL

FTPMAIL isamail server available to anyone who can send electronic mail to, and receive electronic mail from,
Internet sites. Any company or service provider that allows email connections to the Internet can access FTPMAIL.

Y ou send mail to ftpmail @online.oreilly.com. In the message body, give the FTP commands you want to run. The server
will run anonymous FTP for you, and mail the files back to you. To get a complete help file, send a message with no
subject and the single word "help" in the body. The following is an example mail message that gets the examples. This
command sends you alisting of the filesin the selected directory and the requested examplefiles. The listing is useful if
you are interested in alater version of the examples.

Subj ect :

reply-to usernane@ost nane (Message Body) Where you want files nuailed
open

cd /published/oreilly/nutshell/learning perlnt

dir

get READMVE

node bi nary

uuencode

get exanples.zip

qui t

A signature at the end of the message is acceptable aslong as it appears after "quit.”

Previous: Learning Perl on Win32 Next: Acknowledgments for
Conventions Systems First Edition
Conventions Book Acknowledgments for First
Index Edition

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl
Cookbook]

mailto:ftpmail@online.oreilly.com
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: Preface Next: Acknowledgments for
Exercises the Second Edition

Acknowledgments for First Edition

First, | wholeheartedly thank Chick Webb and Taos Mountain Software (in Silicon Valley). The folks at
TMS offered me an opportunity to write an introductory Perl course for them (with substantial assistance
from Chick), and a chance to present their course afew times. From that experience, | gained the
motivation and resources to write and repeatedly present a new course of my own, from which this book
Is derived. Without them, | don't think I'd be doing this, and | wish them continued success at marketing
their course. (And if they're looking for a good text for arevision of their course, | just may have a
suggestion...)

Thanks aso to the reviewers: Perl Godfather Larry Wall (of course), Larry Kistler (Director of
Education, Pyramid), fellow Perl trainer Tom Christiansen, the students of the Learning Per| classes |

taught at Intel and Pyramid, and - from O'Reilly & Associates - Tanya Herlick, Lar Kaufman, Lenny
Muellner, Linda Mui, and Andy Oram.

This book was created and edited entirely on my persona Apple Macintosh Powerbook (well, actually a
series of them - the 140, 160, and now the 520c models). More often than not, | was away from my office
while writing - sometimes in a park, sometimes in a hotel, sometimes waiting for the weather to clear so |
could continue to snow-ski, but most often in restaurants. In fact, | wrote a substantial portion of this
book at the Beaverton McMenamin's just down the road from my house. The McM's chain of brewpubs
make and serve the finest microbrew and best cheesecake and greasiest sandwiches in my hometown
area. | consumed many pints of ale and pieces of cheesecake in thisideal work environment, while my
Powerbook swallowed many kilowatt hours of electricity at their four tables with power outlets. For the
electricity, and the generous hospitality and courtesy (and rent-free booth-office space), | thank the
exceptional staff at the Beaverton McM's. | also hacked some early work on the book at the Beaverton
Chili's Restaurant, to which | am also grateful. (But they didn't have any outlets near the bar, so |
switched when | found McM's, to save the wear and tear on my batteries.)

Thanks aso to "the Net" (especially the subscribers to comp.lang.perl.*) for their continued support of
Larry and me, and their unending curiosity about getting Perl to work for them.

Further thanks to the O'Reilly & Associates folks who made this book happen, including Clairemarie
Fisher O'Leary, who copyedited the book and managed the production with invaluable help from Kismet
McDonough, Mike Sierra, and Stephen Spainhour; and Edie Freedman who designed the cover and the
internal format. Thanks, aso, to Tim O'Rellly, for Taoistically being.

And especially, a huge personal thanks to my friend Steve Talbott, who guided me through every step of

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm

the way (especially suggesting the stroll at the end of the first chapter). His editorial criticisms were
always right on, and hisincessant talent for beating me over the head ever so gently allowed me to make
this book a piece of art with which I'm extremely pleased.

Asaways, aspecial thank you to both Lyle and Jack, for teaching me nearly everything | know about
writing.

And finaly, an immeasurable thank you to my friend and partner, Larry Wall, for giving Perl to us al in
the first place.

A one L Randal wrote a book,
A two L llamafor the look,
But to whom we owe it all
Isthethree L Larry Wall!

Randal L. Schwartz

Previous: Learning Perl on Win32 Next: Acknowledgments for
Exercises Systems the Second Edition
Exercises Book Acknowledgments for the
Index Second Edition

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: Acknowledgments Preface Next: Acknowledgments for
for First Edition the Win32 Edition

Acknowledgments for the Second Edition

I'd like to thank Larry Wall for writing Perl, the Perl Porters for their continued maintenance efforts, and
the entire Perl community for their hel pfulness toward one another.

Thanks aso to Jon Orwant, Nate Torkington, and Larry Wall for reviewing the CGI chapter.

Tom Christiansen

Previous: Acknowledgments Learning Perl on Win32 Next: Acknowledgments for
for First Edition Systems the Win32 Edition
Acknowledgments for First Book Acknowledgments for the
Edition Index Win32 Edition

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: Acknowledgments Preface Next: 1.
for the Second Edition Introduction

Acknowledgments for the Win32 Edition

First, thanks to Robert Denn for his expert editorial guidance. Thanks also to the technical reviewers for
the Win32 edition of this book for their comments and observations: Dick Hardt, Jon Udell, Jon Forrest,
Mike McMillan, and Eric Pearce. They all provided valuable feedback, and even offered lots of
suggestions that unfortunately didn't get applied to the final version due to scheduling constraints.

Thanks to the folks, both at ActiveState and the Perl Porters, who have made a Win32 version of Perl
possible.

Thanks aso to Randal Schwartz and Tom Christiansen for the version of Learning Perl upon which this
book is based, and for their comments on this version.

Thanksto the folks at O'Rellly & Associates who either helped with the manuscript or offered
suggestions, including Tim O'Reilly, Mike Sierra, who provided Tools support, Jane Ellin, the
production editor, John Files, Peter Fell, Mary Anne Weeks Mayo, and Sheryl Avruch for quality
control, Seth Maidlin for the index, Nancy Priest for the interior design, Edie Freedman for the cover,
Robert Romano and Chris Reilley for the figures, and Madeleine Newell for freelance support.

Thanks also to my extremely understanding employers at Axiom Technologies, who let me practically
live in their offices during a hectic schedule, and who provided moral support and easy targets.

Finally, a huge thanks to my wife, Jodi, and my son, Isaac, for their love, understanding, and support.
Erik Olson

Previous: Acknowledgments Learning Perl on Win32 Next: 1.
for the Second Edition Systems Introduction
Acknowledgments for the Book 1. Introduction
Second Edition Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: Acknowledgments Chapter 1 | Next: 1.2 Purpose of Perl|
for the Win32 Edition

1. Introduction

Contents:
History of Perl

Purpose of Perl
Availability

Support

Basic Concepts

A Stroll Through Perl
Exercises

1.1 History of Perl

Perl is alanguage designed for people who need to get things done. Written by the amazing Larry Wall
as akind of glue language to tie together all of the loose ends of everyday computing life, Perl is atool
for leveraging the skills and tools that you already have. Perl has become an indispensable boon to
Windows NT webmasters, power users, administrators, and programmers who have discovered how
much easier it isto get their work done when Perl is doing some of it for them.

Do you know allittle about C? Then you probably already know alot about Perl. In fact, if you have used
any programming or scripting language before, you might be surprised at how familiar Perl looks. Perl is
not only an easy language to use, but also makes great use of your existing tools and solutions.

Perl is an easy language, but it's al'so arich language, offering lots of functionality right out of the box.
Y ou'll be surprised at how much you can do with just alittle bit of Perl code. Often, rewriting a small
scrap of Perl wizardry requires hundreds of lines of C. Some languages that let you do alot with alittle
don't let you do awhole lot. Perl not only lets you do alat, it lets you do so with minimal effort. And if
you run into something that you can't do in Perl, you'll find most likely that Perl will cooperate quite
nicely with whatever you do haveto do it in.

For many addicts, Perl is more than alanguage, it's an entire culture. For many folks, Perl was an
indispensable part of their UNIX toolkits that they took with them to new environments. As aresult, Perl
grew, and became even more general and more powerful. What was once just an exceptional
text-processing language that bound UNIX programs together has become a widespread |language that

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

seems to bind much of the Internet together. Perl is now used to create web pages, read Usenet news, do
system adminstration and systems programming, write network clients and servers, and much more.

The three chief virtues of a Perl programmer (indeed, of any programmer) are sometimes said to be
|aziness, impatience, and hubris. Although these may seem like undesirable qualities at first blush (just
ask your SO), there's more to this than there appearsto be.

Lazinessis the quality that makes you take great efforts to reduce the overall amount of work that you
have to do. Lazy programmers are apt to develop reusable and general solutions that can be used in more
than one place, and are more apt to document what they do, so that they don't have to ever waste time or
torture their brains figuring it out again.

I mpatient programmers get angry whenever they have to do anything that the computer could be doing
for them. Hence, they develop programs that anticipate their needs and solve problems for them, so that
they can do less (there's that 1aziness again) while accomplishing more.

Finally, hubrisisthat quality which makes programmers write programs that they want other peopleto
see (and be able to maintain). Hubrisis also a quality that promotes innovation: if you think that you
have a better way and you're not afraid to prove it, you're often right.

Odd ideas for a culture, perhaps, but effective ones. Here's another tenet of the Perl way: "There's more
than one way to do it." What this meansisthat Perl programmers are aresults-oriented lot. They're likely
to applaud any tool that gets the job done, regardless of whether or not the code looks like something
they would have written. Another side effect of this tenet that particularly endearsitself to Win32 Perl
programmersisthat Perl is highly portable. Although ready-made scripts that you find on the Net may
use existing UNIX tools or UNIX system calls that aren't portable to the Windows environment (this
scenario has led Win32 programmers to say, "There's more than one way to do it, and it's agood thing,
because most of the ways don't work™), you can nearly always find away to make them work (and
nobody will make fun of you if your solution is perhaps somewhat less than el egant).

True to this philosophy, Perl stands for either Practical Extraction and Report Language or Pathologically
Eclectic Rubbish Lister (both derivations are sanctioned by the Perl community). Perl for Win32 sprang
into existence when Microsoft commissioned ActiveState Tool Corporation (formerly Hip
Communications) to do a port for inclusion in the Windows NT Resource Kit. ActiveState is still
improving Perl for Win32, extending it with functionality specific to the Win32 platforms, and
incorporating the best and most appropriate new features as they are added to the core Perl distribution.

You'll find that Perl for Win32 uses some of the coolest and most compelling technologies available to
Windows programmers including OL E automation, ODBC database connectivity, ActiveX scripting, and
much more. The source code for Perl (including Perl for Win32) isfreely available and freely
redistributable. If you want to extend Perl to provide additional features, or embed the interpreter in your
own application, you can easily do so.

You'll also find that the Perl community believesin (and practices) information and code sharing. There
Is an archive network (called the CPAN, for Comprehensive Perl Archive Network), where you can find
thousands of existing Perl programs and code fragments.

In addition to a vast body of high quality pre-written code, Perl excels at rapid application development.
Part of thisis due to the powerful qualities of language that let you do lots of work with afew

statements - another part is due to the Perl development tools themselves.

Perl is an interpreted language, but it might work alittle bit differently from other interpreted languages
that you've used. Perl is actually both a compiler and an interpreter. When you invoke the Perl interpreter
on a Perl script file, the fileisfirst compiled and optimized, then efficiently executed. Not only does this
allow for efficient runtime execution, it also promotes a quick development cycle, in which you can
guickly make changes and rerun your script without going through along compile and link cycle.

In spite of Perl's relatively free syntax, you can easily develop correct Perl programs. Not only isthere a
Perl debugger, but the compiler itself will issue informative warnings when you're treading on thin ice.
Furthermore, the interpreter doesn't execute unless the program compiles completely. This feature saves
you from the common interpreted-language nightmare in which the first half of your program works and
does something to afile, and then the second half doesn't.

Previous: Acknowledgments Learning Perl on Win32 | Next: 1.2 Purpose of Perl|
for the Win32 Edition Systems
Acknowledgments for the Book 1.2 Purpose of Perl
Win32 Edition Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 1.1 Ch ter‘l Next: 1.3
History of Perl I ntroduction Availability

1.2 Purpose of Perl

WEell, you've made it through the Perl hype. Y ou might be wondering why you'd ever use Perl. This
section provides a couple of ideas.

Y ou can use Perl for World Wide Web (WWW) programming. Y ou've probably heard that Perl has
become a sort of lingua franca for the Web (actually, you may have heard that statement for more than
one language, but we'll say it again here). Perl cannot only be used as a CGI language (for which there
are wonderful modules available), but it can be used as an I SAPI extension (an in-process extension to
your web server), or even as an ActiveX scripting language. Y ou can also use Perl to validate HTML
syntax, to verify that web hyperlinks are still correct, and to fetch URLs from the Internet.

Y ou can use Perl for many system administration chores. Not only will Perl let you manipulate the
Registry, the Event Log, and Windows NT user account information, it's also the best tool going for
processing log files of nearly any format.

Y ou can use Perl to drive your favorite word processor or spreadsheet using OLE Automation. Y ou can
use the freely available Win32::ODBC module or Active Data Objects (ADO) to access your favorite
local or enterprise database.

Y ou can use Perl to retrieve (and filter) your email and Usenet news. Y ou can use Perl to send emall,
interact with FTP and HTTP servers, and be a client for nearly any other type of Internet server you can
dream up.

Y ou can use Perl to process textual or numerical data, to prototype projects, to do quick search and
replace functionsin text files, to drive the execution of a sequence of commands, and much, much more.

In short, Perl can do zillions of thing to help you do your job faster and get back to doing things that are
fun (many of which you can also use Perl to do). And along the way, you might find that the journey
itself can be alot of fun.

Like any language, Perl can be "write only"; it's possible to write programs that are impossible to read.
But with proper care, you can avoid this common accusation. Y es, sometimes Perl looks like line noise to
the uninitiated, but to the seasoned Perl programmer, it looks like checksummed line noise with a
mission in life. If you follow the guidelines of this book, your programs should be easy to read and easy
to maintain, but they probably won't win any obfuscated Perl contests.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: 1.1 Learning Perl on Win32 Next: 1.3

History of Perl Systems Availability
1.1 History of Perl Book 1.3 Availability
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

| Previous: 1.2 Purpose of Perl] Chapter 1 Next: 1.4
I ntroduction Support

1.3 Availability

Unless you have had the good fortune of having a system administrator install Perl on your workstation,
you will need to obtain and install a copy yourself.

Per| is distributed under the GNU Public License,[1] which says something like, "you can distribute
binaries of Perl only if you make the source code available at no cost, and if you modify Perl, you have
to distribute the source to your modifications as well." And that's essentially free. Y ou can get the source
to Perl for the cost of afew megabytes over awire.

[1] Or the slightly more liberal Artistic License, found in the distribution sources.

At the time of thiswriting, there are two Per| distributions that run on Windows NT and Windows 95.
There isthe ActiveState port of Perl, called Perl for Win32, and starting with Perl 5.004, the standard
Per| distribution includes support for Win32 systems. The two versions are largely compatible, with
some of the Perl 5.004 code being based on the ActiveState port, but there are some differences. The
programs and examples presented in this tutorial have been tested on both systems; when a distribution
requires different code, we point that fact out. The architects of both distibutions have announced their
intention to merge the distributions, but they have not yet announced atime frame for that to happen.

1.3.1 ActiveState Perl for Win32

The canonical source for the ActiveState Perl for Win32 distribution at the time of thiswriting is at
http://www.activestate.com. Y ou can also find the source and binaries for the Perl for Win32 distribution

at CPAN. To use the CPAN archives, visit http://www.perl.com/CPAN for amirror site close to you. The

CPAN site will aso provide the source distribution for the UNIX version of Perl and precompiled
binaries for other platforms. If you're absolutely stumped, write bookquestions@ora.com and say "Where

can | get Perl21 2"

Perl for Win32 comesin avariety of flavors, in both source and binary distributions. Unless you have
access to a C++ compiler,[2] you'll probably want to get the binary distribution that contains the Perl

executables and libraries, pre-built and ready to use. Y ou might also want to grab the source distribution
for reference purposes, if you're familiar with C/C++.

[2] The Perl for Win32 distribution currently includes makefiles only for the Microsoft
Visual C++ compiler.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
http://www.activestate.com/
http://www.perl.com/CPAN
mailto:bookquestions@ora.com

Y ou can choose from one of several different binary distributions. there's a standal one version of the Perl
interpreter (Perl for Win32), aversion for use as an ISAPI[3] extension with ISAPI compliant Web
servers (PerllS), and an ActiveX scripting version (Perl Script). If you choose either the ISAPI or the
PerlScript version, you will still need the standalone version of the interpreter, because it contains the
Per| libraries, documentation, and example files. Binary distributions exist for both DEC Alpha and Intel
versions of Windows NT. At the time of thiswriting, the current release version of Perl for Win32 is
based on Perl 5.003, and the build number is 306.

[3] For more on ISAPI and PerllS, see Chapter 18, CGI Programming.

The standalone version of Perl for Win32 is easy to install; the distribution comes as a self-extracting
executable. Just run the executable, select the directory to install into, and run the installation script as
prompted by the installer. Y ou'll probably need to re-logon (in Windows NT) or reboot (in Windows 95)
to your workstation because the installation changes the PATH environment variable.

The Perl for Win32 distribution includes the Perl interpreter, the standard Perl libraries (useful
collections of code that aren't part of the core language), and a number of Win32 extension modules. The
Win32 extension modules either extend Perl to provide additional functionality for Win32 platforms or
they provide functionality that is present in UNIX versions of Perl, but which is unimplemented or
otherwise missing in Win32 versions. The distribution also includes help documentation (in HTML
format) and example scripts that demonstrate the various features of Perl and the Win32 extensions.

Currently, if you're interested in either the ISAPI version of Perl, or PerlScript, you need to get the
ActiveState distribution, because neither of these tools works with the standard distribution. Also, if you
don't have convenient accessto either the Microsoft or Borland C++ compilers, you'll definitely want to
grab the binary ActiveState distibution.

1.3.2 Standard Perl Distribution

The standard Perl distribution can be found at http://www.perl.com/CPAN/ and compiles out of the box
for several different platforms, including Windows NT. Aswe write this, the standard distribution is only
available in source form; the binary distribution on CPAN isthe ActiveState port. This scenario is likely
to change by the time you are reading this, so you'll want to visit CPAN to investigate your options.

The source distribution of Perl 5.004 requires either the Microsoft Visual C++ compiler (versions 2.0 -
5.0) or the Borland C++ compiler (version 5.x). After you get the distribution, you should start with the
readme.win32 file, which contains detailed instructions for building, testing, and installing the
distribution.

Briefly, here's what you need to do to build and install the distribution (this example assumes you're
using the Microsoft compiler, but using the Borland C++ compiler should be quite similar, except that
you'll need to get the dmake make utility; see readme.win32 for details).

Extract the distribution using some utility that supports gzip and tar files, aswell aslong filenames.
There are ports of both GNU gzip and tar available for the various Win32 platforms (you can find both at
the Virtually UN* X site at www.itribe.net/virtunix or several other places on the Net), and these will
work quite nicely. Alternatively, you might try one of the graphical zip archive programs (we
recommend WinZip at www.winzip.com).

http://www.perl.com/CPAN/
http://www.itribe.net/virtunix
http://www.winzip.com/

Assuming you're using gzip and tar, execute the following (you might need to adjust the filename):
> gzip -dc perl5.004 0Ol.tar.gz | tar xf -

If you're using WinZip or some other utility, make sure that you preserve the directory structure.

Next, edit the makefile (Makefile) in the win32 subdirectory of the distribution and make sure that you're
happy with the values for theinstall drive and directory.

Then, execute the following commands from the win32 subdirectory of the distribution to build, test, and
install the distribution. This assumes that you have the proper environment variables (L1B, INCLUDE,
etc) set up for your compiler (this assumes nmake is your make utility).

> nmake (Build all of Perl)
> nnmake test (Test your distribution)
> nmake install (Install to the target dir. in the Mkefile)

Assuming everything is built correctly, you just need to add the bin subdirectory of the installation target
directory to your path. For example, if you installed the Perl distribution to c:\Perl, you'll want to add
c:\Perl\bin to your path.

Finally, restart your machine to get the environment changes, and you're ready to go. We strongly
recommend getting the libwin32 package from CPAN, and installing it as well. We'll be discussing
severa of the extensions provided by libwin32 throughout this book (the ActiveState distribution
includes most of these extensions aready). Installation of libwin32 is easy. Simply download and extract
the file, and then execute the following commands from the directory to which you extracted the files:

perl Makefile. PL
> nmake

> nmake test

> nnmake i nstall

\J

1.3.3 Windows NT and Windows 95

A word of warning is probably in order here: Windows 95 users can expect significantly different
functionality from their Perl distribution than Windows NT users. For various reasons, some of the
Win32 modules don't work on Windows 95. The functionality required to implement them may be
missing on Windows 95, or bugs in Windows 95 may prevent them from working correctly. Wel'll
explore some of the specificsin later chapters, but for now remember that some of the examples and
concepts presented in this book require Windows NT.

| Previous: 1.2 Purpose of Perl] Learning Perl on Win32 Next: 1.4
Systems Support
1.2 Purpose of Perl Book 1.4 Support
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 1.3 Chapter 1 [Next: 1.5 Basic Concepits]
Availability I ntroduction

1.4 Support

Perl isthe child of Larry Wall, and is still being coddled by him. Bug reports and requests for
enhancements generally get fixed in later releases, but he is under no obligation to do anything with
them. Nevertheless, Larry really does enjoy hearing from al of us, and doestruly like to see Perl be
useful to theworld at large. Direct email generally gets aresponse (even if it is merely his email
answering machine), and sometimes a personal response. These days, Larry is actually acting as an
architect to the "Perl 5 Porters" group, a bunch of very clever people that have had alot to do with the
last few Perl releases. If Larry got hit by a bus, everyone would be very sad for along time, but Perl
would still continue to mature under the direction of this group.

Y ou will probably find that your best bet for support comes from the global online Perl community,
accessible via the Usenet newsgroup comp.lang.perl.misc. If you are emailable to the Internet, but not
amenable to Usenet, you can also wire yourself into this group by sending arequest to
perl-users-request@cs.orst.edu, which will reach a human who can connect you to atwo-way email

gateway into the group, and give you guidelines on how the group works.

When you subscribe to the newsgroup, you'll find roughly 50 to 200 postings a day (at the time of this
writing) on all manner of subjects from beginner questions to complicated porting issues and interface
problems, and even afairly large program or two.

The newsgroup is aimost constantly monitored by many Perl experts. Most of the time, your question
gets answered within minutes of your news article reaching a major Usenet hub. Just try getting that level
of support from your favorite software vendor for free! Larry himself reads the group as time permits,
and has been known to interject authoritative articles to end bickering or clarify apoint. After all, without
Usenet, there probably wouldn't have been a place to easily announce Perl to the world.

In addition to the newsgroup, you should aso be reading the Perl documentation which comes with the
Per| distribution. Another authoritative source is the Programming Perl Nutshell Handbook, by Larry

Wall, Tom Christiansen, and Randal L. Schwartz (O'Reilly & Associates, 1996). Programming Perl is
known as "The Camel Book" because of the animal on its cover. The Camel Book contains the complete
reference information, some tutorial stuff, and a bunch of miscellaneous information about Perl in a
nicely bound form.

The Frequently Asked Questions (FAQ) list for Perl isagreat source of answers for common questions
that arise about Perl. The FAQ is available in the perlfag documentation page as of the 5.004 rel ease of
Perl, is posted periodically to the moderated comp.lang.perl.announce newsgroup, and can also be found

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
mailto:perl-users-request@cs.orst.edu
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

on any CPAN mirror under the doc/FAQs directory.

Finally, for specific issues concerning Perl for Win32, atrio of mailing listsis available:
Perl-Win32-Users, Perl-Win32-Porters, and Perl-Win32-Announce. Perl-Win32-Userg4] isfor genera
guestions on installation and usage. Thislist has moderate traffic at times and can be a valuable resource
for Perl-for-Win32 users. The Perl-Win32-Porterslist is for development and porting issues only. Please
do not ask installation or usage questions of thislist. The Perl-Win32-Announce list isfor
announcements of new builds, bugs, or issues, and isaread-only list. Thetraffic isvery light, and if
you're serious about Perl for Win32, you probably want to subscribe to this|list.

[4] Thislist has ahistory of down time. If it seemsto be down for afew days, try
resubscribing or wait awhile. It usually starts working again.

To subscribe to any of the Perl-for-Win32 lists, send a message to ListManager @A ctiveState.com with
the message SUBSCRI BE Per | - W n32- User s (or whichever list you're interested in) in the body of
the message.

Even though the Perl community islargely a helpful and collaborative group, they do expect you to do
your homework before asking questions. Y ou should always search the applicable FAQs before posting
your question to the Usenet or amailing list. You can find the Perl-for-Win32 FAQ at
http://www.endcontsw.com/peopl e/evangel o/Perl for Win32 FAQ.html, or by searching around at the
ActiveState site (http://www.activestate.com). Y ou can find the general Perl FAQs at any CPAN site (try
the /doc/FAQS) directory.

Previous: 1.3 Learning Perl on Win32 | Next: 1.5 Basic Concepts]
Availability Systems
1.3 Availability Book 1.5 Basic Concepts
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

mailto:ListManager@ActiveState.com
http://www.endcontsw.com/people/evangelo/Perl_for_Win32_FAQ.html
http://www.activestate.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
http://www.activestate.com

,@Leammg Perl on Win32 Systems

Previous: 1.4 Chapter 1 Next: 1.6 A Stroll Through
Support I ntroduction Perl

1.5 Basic Concepts

A Perl program is a bunch of Perl statements and definitions thrown into afile. Y ou can execute the file
by invoking the Perl interpreter with the script name as an argument. Y ou will often seealine

#! [usr/ bi n/ perl

asthefirst line of a Perl script. Thislineisabit of magic employed by UNIX-like operating systemsto
automatically execute interpreted languages with the correct command interpreter. Thislineiscalled a
shebang line due to the first two characters: # is sometimes called sharp, and ! is sometimes called bang.
Thisline normally won't work for Perl-for-Win32 users,[5] although it doesn't hurt anything since Perl

sees lines beginning with # as comments.

[5] However, there are Win32 ports of UNIX shells (e.g., tcsh, ksh, and bash) that do
understand shebang lines. If you're using one of these shells, you can use shebang lines by
specifying the path to your Perl interpreter.

The invocation examples that follow assume that you have invoked the Windows NT command
interpreter (cmd.exe) and are typing into a console window. Y ou can run Perl scripts from the Explorer or
the File Manager (assuming that you've associated the script extension with the Perl interpreter) by
double-clicking on the script icon to launch it. Throughout this book, we're going to be discussing
standard output and input streams; these are generally assumed to be your console window.

We recommend naming scripts with a .plx extension. Traditionally, Perl modules have a.pm extension,
and Perl libraries have a .pl extension. The ActiveState installer prompts you to associate .pl with the
interpreter.

Y ou can always execute a script by calling the Perl interpreter with the script as an argument:
> perl nyscript.plx

Y ou can also associate files with the .plx extension (or another of your choosing) with the Perl
interpreter, so that executing

> nyscript. plx
will correctly invoke the Perl interpreter and execute your script. This step is normally done for you by

the ActiveState installation script[6] for the .pl extension, but if you wish to change the extension or if

you've got the standard distribution, you can do this step manually. If you're using Windows NT 4.0 (or
greater), the following commands will do the trick (use the full path to your interpreter):

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

[6] This statement is not true if you're using Windows 95, in which case you'll have to do
the whole thing manually. From an Explorer window, go to View/Optiong/File Types and
add a new type with the .pl extension and the path to the Perl interpreter.

> assoc . pl x=Per |
> ftype Perl=c:\nyperl\bin\perl.exe %4 %

If you can't bear the thought of typing the extension every time you execute a Perl script, you can set the
PATHEXT environment variable so that it includes Perl scripts. For example:

> set PATHEXT=%ATHEXT% . PLX

This setting will let you type
> nyscript

without including the file extension. Take care when setting PATHEXT permanently - it also includes
executable filetypeslike .COM, .EXE, .BAT, and .CMD. If you inadvertently lose those extensions,
you'll have difficulty invoking applications and script files.

Perl is mostly afree-format language like C - whitespace between tokens (elements of the program, like
pri nt or+)isoptional, unless two tokens placed together can be mistaken for another token, in which
case whitespace of some kind is mandatory. (Whitespace consists of spaces, tabs, newlines, returns, or
formfeeds.) A few constructs require a certain kind of whitespace in a certain place, but they'll be pointed
out when we get to them. Y ou can assume that the kind and amount of whitespace between tokensis
otherwise arbitrary.

Although many interesting Perl programs can be written on one line, typically a Perl program isindented
much like a C program, with nested parts of statements indented more than the surrounding parts. You'll
see plenty of examples showing atypical indentation style throughout this book.

Just like abatch file, a Perl program consists of all of the Perl statements of the file taken collectively as
one big routine to execute. Perl has no concept of a"main"” routineasin C.

Perl comments are single-line comments (like REMin abatch fileor / / inaC++ or Javafile). Anything
from an unquoted pound sign (#) to the end-of-line is a comment. There are no C-like multiline
comments.

Unlike the command shell, the Perl interpreter completely parses and compiles the program before
executing any of it. This means that you can never get a syntax error from a program once the program
has started, and that the whitespace and comments simply disappear and won't slow the program down.
In fact, this compilation phase ensures the rapid execution of Perl operations once execution starts, and
provides additional motivation for dropping C as a systems utility language merely on the grounds that C
Is compiled.

This compilation does take time - it's inefficient to have a voluminous Perl program that does one small
quick task (out of many potential tasks) and then exits, because the run-time for the program will be
dwarfed by the compile time.

So, Perl islike acompiler and an interpreter. It's a compiler because the program is completely read and
parsed before the first statement is executed. It's an interpreter because no object code sits around filling

up disk space. In some ways, it's the best of both worlds. Admittedly, a caching of the compiled object
code between invocations, or even trandation into native machine code, would be nice. A working
version of such acompiler already exists, and is currently scheduled to be bundled into the 5.005 release.
See the Perl FAQ for the current status.

1.5.1 Documentation

Throughout this book, welll refer to the documentation included with the Perl distributions. The
ActiveState port comes with documentation in HTML format; you can find it in the /docs subdirectory of
the distribution. When we refer to the documentation, we'll just refer to the base name of the file without
the extension. For example, if we refer to perlfunc, we really mean /docs/Perl/perlfunc.html. Win32
specific documentation islocated in the /docs/Per|-Win32 subdirectory, so areference to win32ext really
refers to /docs/Per|-Win32/win32ext.html.

If you have the standard 5.004 distribution, you can use the perldoc command from the command line.
perldoc is abatch file wrapper around a Perl script, found in the /bin directory of the distribution. perldoc
lets you view documentation pages or module documentation by invoking it as follows:

> perldoc perlfunc
perldoc extracts the documentation from the Perl POD (plain old documentation) format found in the

/pod subdirectory of the distribution. If al elsefails, you can just read the pod files with your favorite
text editor.

Previous: 1.4 Learning Perl on Win32 Next: 1.6 A Stroll Through
Support Systems Perl
1.4 Support Book 1.6 A Stroll Through Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

| Previous: 1.5 Basic Concepts| Chapter 1 Next: 1.7
Introduction Exercises

1.6 A Stroll Through Perl

We begin our journey through Perl by taking alittle stroll. This stroll presents a number of different
features by hacking on asmall application. The explanations here are extremely brief - each subject area
Is discussed in much greater detail later in this book. But thislittle stroll should give you a quick taste for
the language, and you can decide if you really want to finish this book instead of reading some more
Usenet news or running off to the ski slopes.

1.6.1 The "Hello, world" Program

Let'slook at alittle program that actually does something. Here is your basic "Hello, world" program
(use any text editor to typeit in):

print ("Hello, world!'\n");

Thissinglelineisthe entire program. The built-in function pr i nt startsit off, and in this case has just
one argument, a C-like text string. Within this string, the character combination \ n stands for a newline
character, just asit doesin C. Thepri nt statement isterminated by a semicolon (;). Asin Pascal or C,
al simple statements in Perl are terminated by a semicolon.[7]

[7] The semicolon can be omitted when the statement is the last statement of a block, file, or
eval .

When you invoke this program, the Perl interpreter parses the entire program and then executes the
compiled form. The first and only operation is the execution of the pr i nt function, which sends any
arguments to the standard output. After the program has completed, the Perl process exits, returning a
successful exit code to the parent process.

Soon, you'll see Perl programsin which pri nt and other functions are sometimes called with
parentheses, and sometimes called without them. The rule is ssimple: in Perl, parentheses for built-in
functions are never required nor forbidden. Their use can help or hinder clarity, so use your own
judgment.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

1.6.2 Asking Questions and Remembering the Result

Let's add a bit more sophistication. TheHel | o, wor | d greeting is atouch cold and inflexible. Let's
have the program call you by your name. To do this, we need a place to hold the name, away to ask for
the name, and a way to get a response.

One kind of place to hold values (like aname) isascalar variable. For this program, we'll use the scalar
variable $nane to hold your name. In Chapter 2, Scalar Data, we'll go into more detail about what these
variables can hold, and what you can do with them. For now, assume that you can hold a single number
or string (sequence of characters) in ascalar variable.

The program needs to ask for the name. To do that, we need a way to prompt and away to accept input.
The previous program showed us how to prompt: usethe pri nt function. And the way to get aline
from the terminal iswith the <STDI N> construct, which (as we're using it here) grabs one line of input.
We assign thisinput to the $name variable. This gives us the following program:

print "Wat is your nane? ";

$nane = <STDI N>;

The value of $nane at this point has aterminating newline (Er i k comesinasEr i k\ n). To get rid of
the newline, we use the chonp() function, which takes a scalar variable as its sole argument and
removes the trailing newline, if present, from the string:

chonmp $nane;

Now, all weneedtodoissay Hel | o, followed by the value of the $nane variable, which we can do
by embedding the variable inside the quoted string:

print "Hello, $nane!\n";

Putting it all together, we get:

print "Wat is your nane? ";
$nane = <STDI N>;

chonmp $nane;

print "Hello, $nane!\n";

1.6.3 Adding Choices

Now, let's say we have a specia greeting for Erik, but want an ordinary greeting for anyone else. To do
this, we need to compare the name that was entered with the string Er i k, and if they are identical, do
something special. Let's add a C-like if-then-el se branch and a comparison to the program:

print "What is your nane? ";
$nane = <STDI N>;
chonmp $nane;
i f ($nane eq "Erik") {
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
}

The eq operator compares two strings. If they are equal (character for character, and of the same length),
the result istrue. (No comparable operator[8] existsin C or C++.)

[8] Well, OK, there'sastandard C| i br ar y function. But that's not an operator.

Thei f statement selects which block of statements (between matching curly braces) is executed - if the
expression istrue, it's the first block, otherwise it's the second block.

1.6.4 Guessing the Secret Word

WEell, now that we have the name, let's have the person running the program guess a secret word. For
everyone except Erik, we'll have the program repeatedly ask for guesses until the person guesses
properly. First the program, and then an explanation:

$secretword = "gecko"; # the secret word
print "What is your nane? ";
$nanme = <STDI N>;
chonp $nane;
if ($name eq "Erik") {
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "Wat is the secret word? ";
$guess = <STDI N>;
chonp $guess;
whi |l e ($guess ne $secretword) {
print "Wong, try again. Wat is the secret word? ";
$guess = <STDI N>;
chonp $guess;

}

First, we define the secret word by putting it into another scalar variable, $secr et wor d. After the
greeting, the (non-Erik) person is asked (with another pr i nt) for the guess. The guess is compared with
the secret word using the ne operator, which returns true if the strings are not equal (ne isthelogical
opposite of the eq operator). The result of the comparison controlsawhi | e loop, which executes the
block as long as the comparison istrue.

Of course, this program is not very secure, because anyone who istired of guessing can merely interrupt
the program and get back to the prompt, or even look at the source to determine the word. But, we
weren't trying to write a security system, just an example for this book.

1.6.5 More than One Secret Word

L et's see how we can modify this program to allow more than one valid secret word. Using what we've
already seen, we could compare the guess repeatedly against a series of good answers stored in separate
scalar variables. However, such alist would be hard to modify or read in from afile or compute based on

the day of the week.

A better solution is to store all of the possible answersin adata structure called alist, or (preferrably) an
array. Each element of the array is a separate scalar variable that can be independently set or accessed.
The entire array can also be given avalue in one fell swoop. We can assign a value to the entire array
named @wr ds so that it contains three possible good passwords:

@wrds = ("canel", "gecko", "al paca");

Array variable names begin with @ so they are distinct from scalar variable names. Another way to write
this so that we don't have to put all those quotemarks thereiswith theqw() syntax, like so:

@wrds = gw(canel gecko al paca);
These mean exactly the same thing; the qw makesit asif we had quoted each of three strings.

After the array is assigned, we can access each element by using a subscript reference (subscripts start at
zero). So, $wor ds[0] iscanel , $wor ds[1] isgecko, and $wor ds[2] isal paca. The subscript
can be an expression aswell, so if we set $i to 2, then $wor ds[$i] isal paca. (Subscript references
start with $ rather than @ because they refer to a single element of the array rather than the whole array.)
Going back to our previous example:

@wrds = gw(canel gecko al paca);
print "Wat is your nane? ";
$nane = <STDI N>;
chomp $nane;
if ($nanme eq "Erik") {
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);
$i = 0; #try this word first
$correct = "maybe"; # is the guess correct or not?
while ($correct eq "maybe") { # keep checking til we know
if ($words[$i] eq $guess) { # right?

$correct = "yes"; # yes!
} elsif ($i <2) { # nore words to | ook at?
$i = $i + 1; # look at the next word next tine

} else { # no nore words, nust be bad
print "Wong, try again. Wat is the secret word?";
$guess = <STDI N>;
chomp ($guess);
$i = 0; # start checking at the first word again

}

} # end of while not correct
} # end of "not Erik"

You'll notice we're using the scalar variable $cor r ect to indicate that we are either still looking for a

good password, or that we've found one.

This program also showstheel si f block of thei f - t hen- el se statement. This exact construct is
not present in all programming languages - it's an abbreviation of the el se block together with a new

| f condition, but it does not nest inside yet another pair of curly braces. It's avery Perl-like thing to
compare a set of conditionsinacascadedi f - el si f-el sif-elsif-else chan. Perl doesn't really
have the equivalent of C'sswi t ch or Pascal's case statement, although you can build one yourself
without too much trouble. See Chapter 2 of Programming Perl or the perlsyn documentation for details.

1.6.6 Giving Each Person a Different Secret Word

In the previous program, any person who comes along could guess any of the three words and be
successful. If we want the secret word to be different for each person, we'll need a table that matches
people with words. Table 1.1 doesjust this.

Table 1.1: Matching
Persons to Secret Words

Person | Secret Word
Fred camel

Barney |gecko

Betty |apaca

Wilma |alpaca

Notice that both Betty and Wilma have the same secret word. Thisisfine.

The easiest way to store such atable in Perl iswith a hash. Each element of the hash holds a separate
scalar value (just like the other type of array), but each hash is referenced by a key, which can be any

scalar value (any string or number, including noninteger and negative values). To create a hash called
%wor ds (notice the use of % rather than @ with the keys and values givenin Table 1.1, we assign a

value to %wor ds (much aswe did earlier with the array):

%words = gw
fred canel
barney gecko
betty al paca
wilm al paca

)i

Each pair of valuesin the list represents one key and its corresponding value in the hash. Note that we
broke this assignment over many lines without any sort of line continuation character. We could do so
because whitespace is generally insignificant in a Perl program.

To find the secret word for Betty, we need to use Betty as the key in areference to the hash %wor ds, via
some expression such as $wor ds{ " bet t y"} . The value of thisreferenceisal paca, similar to what

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

we had before with the other array. Also, as before, the key can be any expression, so setting $per son
to bet t y and evaluating $wor ds{ $per son} givesal paca aswell.

Putting all this together, we get a program like this:

%wrds = gw
fred canel
bar ney gecko
betty al paca
w | ma al paca
);

print "Wat is your nane? ";
$nane = <STDI N>;
chonmp ($nane);
if ($nanme eq "Erik") {
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
$secretword = $words{$nane}; # get the secret word
print "What is the secret word? ";
$guess = <STDI N>;
chomp ($guess);
whil e ($guess ne $secretword) {
print "Wong, try again. Wat is the secret word? ";
$guess = <STDI N>;
chomp ($guess);

}

Note the lookup of the secret word. If the name is not found, the value of $secr et wor d will be an
empty string,[9] which we can then check for if we want to define a default secret word for everyone
else. Here's how that process looks:

[9] WEell, OK, the value isreally the undef value, but it looks like an empty string to the
eq operator. You'd get awarning about this value if you used - won the command line,
which iswhy we omitted it here.

[... rest of programdeleted ...]
$secretword = $words{$nane}; # get the secret word
if ($secretword eq "") { # oops, not found
$secretword = "groucho"; # sure, why a duck?
}

print "Wat is the secret word? ";
[... rest of programdeleted ...]

1.6.7 Handling Varying Input Formats

If weenter Eri k A son oreri k rather than Er i k, we're lumped in with the rest of the users, because
the eq comparison requires an exact equality. Let'slook at one way to handle that.

Suppose we wanted to look for any string that began with Er i k, rather than just a string that was equal
to Er i k. We could do thiswith aregular expression: atemplate that defines a collection of strings that
match. The regular expression in Perl that matches any string that beginswith Er i k is”Er i k. To match
this against the string in $name, we use the match operator as follows:
if ($name =~ /" Erik/) {

yes, it matches
} else {

no, it doesn't
}

Note that the regular expression is delimited by slashes. Within the slashes, spaces and other whitespace
are significant, just as they are within strings.

This addition almost meets our needs, but it doesn't handle selecting er i k or rgjectinger i ko. To
accept er i k, we add the ignore-case option, asmall i appended after the closing slash. To regject

er i ko, we add aword boundary special marker in the form of \ b in the regular expression. This
ensures that the character following the first k in the regular expression is not another letter. The addition
also changes the regular expressionto be/ ~eri k\ b/ i , whichmeans"er i k at the beginning of the
string, no letter or digit following, and OK to be in either case."

When thisis added to the rest of the program, the final version lookslike this:

%words = gw
fred canel
barney gecko
betty al paca
w | ma al paca
);
print "What is your nanme? “;
$nanme = <STDI N>;
chonp ($nane);
if ($name =~ /"erik\b/i) {
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nanme!\n"; # ordinary greeting
$secretword = $words{$nane}; # get the secret word
if ($secretword eq "") { # oops, not found
$secretword = "groucho"; # sure, why a duck?
}

print "What is the secret word? ";
$guess = <STDI N>;
chomp ($guess);

whil e ($guess ne $secretword) {
print "Wong, try again. Wat is the secret word? ";
$guess = <STDI N>;
chomp ($guess);
}
}

Asyou can see, the program isafar cry fromthesimpleHel | o wor | d, but it's still very small and
workable, and does quite a bit for being so short. Thisis The Perl Way.

Perl provides nearly every regular expression feature imaginable. In addition, the way Perl handles string
matching is about the fastest on the planet, so you don't lose performance. String matching in Perl often
compares favorably to hand-coded C programs written specifically for the same purpose.

1.6.8 Making It Fair for the Rest

So, now wecanenter Eri k oreri k or Eri k A son, but what about everyone else? Barney still hasto
say exactly bar ney (not even bar ney followed by a space).

To befair to Barney, we need to grab the first word of whatever's entered, and then convert it to
lowercase before we look up the name in the table. We do this with two operators: the substitute
operator, which finds a regular expression and replaces it with a string, and the translate operator, which
puts the string in lowercase.

First, we discuss the substitute operator. We want to take the contents of $nane, find the first nonword
character, and zap everything from there to the end of the string. / \ W */ isthe regular expression we
are looking for - the\ Wstands for a nonword character (something besides a letter, digit, or underscore),
and . * represents any characters from that point to the end of the line. Now, to zap these characters, we
need to take whatever part of the string matches this regular expression and replace it with nothing:

$nane =~ s/I\W*//;

We're using the same =~ operator that we did before, but now on the right we have a substitute operator:
the letter s followed by a slash-delimited regular expression and string. (The string in this example isthe
empty string between the second and third slashes.) This operator looks and acts very much like the
substitution command of various editors.

Now, to get whatever's left into lowercase, we tranglate the string using thet r operator.[10] This

operation takes alist of charactersto find, and another list of characters with which to replace them. For
our example, to put the contents of $nane in lowercase, we use:

[10] This method doesn't work for characters with accent marks, although the uc function
would.

$nane =~ tr/ A-Z/ a-z/;

The slashes delimit the searched-for and replacement character lists. The dash between A and Z stands
for all the charactersin between, so we have two lists that each contain 26 characters. When thet r
operator finds a character from the string in the first list, the character is then replaced with the
corresponding character in the second list. So, all uppercase A's become lowercase a's, and so on.[11]

[11] Expertswill note that we could have also constructed something like
s/ (\S*).*/\L$1/ todo thisprocessing in one fell swoop, but experts probably won't be
reading this section.

Putting everything together results in the following:

%wrds = gw
fred canel
barney gecko
betty al paca
wilm al paca
);
print "Wat is your nane? ";
$nanme = <STDI N>;
chonmp ($nane);
$origi nal _nane = $nane; #save for greeting
$nane =~ s/\W*//; # get rid of everything after first word
$name =~ tr/A-Z/ a-z/; # |owercase everything
if ($nane eq "erik"™) { # ok to conpare this way now
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, S$original_nanel\n"; # ordinary greeting
$secretword = $words{$nane}; # get the secret word
I f ($secretword eq "") { # oops, not found
$secretword = "groucho"; # sure, why a duck?
}

print "What is the secret word? ";

$guess = <STDI N>;

chonp ($guess);

whil e ($guess ne $secretword) {
print "Wong, try again. Wat is the secret word? ";
$guess = <STDI N>;
chomp ($guess);

}

Notice how the regular expression match for Er i k became a simple comparison again. After all, both
Eri k A sonandEri k becomeer i k after the substitution and translation. And everyone else gets a
fair ride, because Fr ed and Fred Fl i nt st one both becomef r ed, Bar ney Rubbl e and
Barney, the little guy becomebar ney, and so on.

With just afew statements, we've made the program much more user friendly. Y ou'll find that expressing
complicated string manipulation with afew keystrokesis one of Perl's many strong points.

However, hacking away at the name so that we could compare it and look it up in the table destroyed the
name that was entered. So, before the program hacks on the name, it savesitin $ori gi nal _nane.
(Like C symbols, Perl variable names consist of letters, digits, and underscores and can be of nearly

unlimited length.) We can then make referencesto $or i gi nal _nane later.

Perl has many ways to monitor and mangle strings. You'll find out about most of them in Chapter 7,
Regular Expressions, and Chapter 15, Other Data Transformation.

1.6.9 Making It a Bit More Modular

Now that we've added so much to the code, we have to scan through many detailed linesin order to get
the overall flow of the program. What we need is to separate the high-level logic (asking for a name,
looping based on entered secret words) from the details (comparing a secret word to a known good
word). We might do thisfor clarity, or maybe because one person is writing the high-level part and
another iswriting (or has already written) the detailed parts.

Perl provides subroutines that have parameters and return values. A subroutine is defined oncein a
program, and can be invoked repeatedly from within any expression.

For our small-but-rapidly-growing program, let's create a subroutine called good_wor d that takes a
name and a guessed word, and returns true if the word is correct, and false if not. The definition of such a
subroutine looks like this:

sub good word {
ny($sonenane, $soneguess) = @; # nane the paraneters
$sonenane =~ s/\W?*//; # get rid of everything after first word
$sonenane =~ tr/A-Z/ a-z/; # |owercase everything
i f ($sonenane eq "erik") { # should not need to guess
return 1; # return value is true
} elsif (($words{$sonmenane} || "groucho") eq $soneguess) {
return 1; # return value is true
} else {
return O; # return value is false
}

}

First, the definition of a subroutine consists of the reserved word sub, followed by the subroutine name,
followed by ablock of code (delimited by curly braces). These definitions can go anywhere in the
program file, but most people put them at the end.

Thefirst line within this particular definition is an assignment that copies the values of the two
parameters of this subroutine into two local variables named $sonenane and $soneguess. (The

ny () definesthe two variables as private to the enclosing block - in this case, the entire subroutine - and
the parameters are initially in a specia local array called @ .)

The next two lines clean up the name, just like in the previous version of the program.

Thei f - el si f - el se statement decides whether the guessed word ($soneguess) is correct for the
name ($sonmenane). Er i k should not make it into this subroutine, but even if it does, whatever word
was guessed is OK.

A r et ur n statement can be used to make the subroutine immediately return to its caller with the

supplied value. In the absence of an explicit r et ur n statement, the last expression evaluated in a
subroutine is the return value. We'll see how the return value is used after we finish describing the
subroutine definition.

Thetest for theel si f part looks alittle complicated - let's break it apart:
($wor ds{$sonenane} || "groucho") eq $soneguess

Thefirst thing inside the parentheses is our familiar hash lookup, yielding some value from %wor ds
based on akey of $somenane. The operator between that value and the string gr oucho isthe| |
(logical-or) operator similar to that used in C. If the lookup from the hash has a value (meaning that the
key $somenane was in the hash), the value of the expression isthat value. If the key could not be
found, the string gr oucho isused instead. This step is avery Perl-like thing to do - specify some
expression, and then provide adefault value using | | in case the expression turns out to be false.

In any case, whether it's a value from the hash, or the default value gr oucho, we compare it to whatever
was guessed. If the comparison istrue, we return 1; otherwise, we return 0.

So, expressed asarule, if the nameiser i k, or the guess matches the lookup in %wor ds based on the
name (with a default of gr oucho if not found), then the subroutine returns 1; otherwise, it returns O.

Now, let'sintegrate al these additions with the rest of the program:

%words = gw
fred canel
barney gecko
betty al paca
w | ma al paca
);
print "What is your nane? “;
$nane = <STDI N>;
chonp ($nane);
if ($name =~ /"erik\b/i) { # back to the other way :-)
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);
whil e (! good word($nane, $guess)) {
print "Wong, try again. Wat is the secret word? ";
$guess = <STDI N>;
chonp $guess;
}
}
[... insert definition of good word() here ...]
Notice that we've gone back to the regular expression to check for Er i k, because now the main program
does not have to pull apart the first name and convert it to lowercase.

The big difference isthe whi | e loop containing good _wor d. Here, we see an invocation of the
subroutine passing two parameters, $nane and $guess. Within the subroutine, the value of
$sonenarne isset from the first parameter, in this case $nane. Likewise, $sonmeguess is set from the
second parameter, $guess.

The value returned by the subroutine (either 1 or O, recalling the definition given earlier) islogically
inverted with the prefix ! (logical not) operator. Asin C, this operator returns true if the expression
following isfalse, and vice versa. The result of this negation controls the whi | e loop. Y ou can read this
as "whileit's not agood word..." Many well-written Perl programs read very much like English, provided
you take afew liberties with either Perl or English. (But you certainly won't win a Pulitzer that way.)

Note that the subroutine assumes that the value of the %wor ds hash is set by the main program.

Such a cavalier approach to global variables doesn't scale very well, of course. Generally speaking,
variables not created with ny are global to the whole program, while those nny creates last only until the
block in which they were declared exits. Don't worry; Perl doesin fact support arich variety of other
kinds of variables, including those private to afile (or package), as well as variables private to afunction
that retain their values between invocations (which is what we could really use here). However, at this
stage in your Perl education, explaining these variables would only complicate your life. When you're
ready for such information, check out what Programming Perl hasto say about scoping, subroutines,

modules, and objects. Or, see the online documentation in the perlsub , perlmod , perlobj , and perltoot
documentation.

1.6.10 Moving the Secret Word List into a Separate File

Suppose we wanted to share the secret word list among three programs. If we store the word list aswe
have done aready, we will need to change all three programs when Betty decides that her secret word
should be swi ne rather than al paca. This change can get to be a hassle, especially considering how
often Betty islikely to change her mind.

So, let's put the word list into afile, and then read the file to get the word list into the program. To do so,
we need to create an 1/0 channel called afilehandle. Y our Perl program automatically gets three
filehandles called STDI N, STDOUT, and STDERR, corresponding to the three standard |/O channelsin
many programming environments. We've already been using the STDI N handle to read data from the
person running the program. Now, we just have to get another handle attached to afile of our own
choice.

Here's asmall chunk of code to do that:

sub init_words {
open (WORDSLI ST, "wordslist");
whil e (defined ($name = <WORDSLI ST>)) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
$wor ds{ $nane} = $word;

}
cl ose (WORDSLI ST) ;

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

}

We're putting this code into a subroutine so that we can keep the main part of the program uncluttered.
This organization also meansthat at alater time (hint: after afew more revisionsin this stroll), we can
change where the word list is stored, or even the format of the list.

The arbitrarily chosen format of the word list is one item per line, with names and words alternating. So,
for our current database, we'd have something like this:

fred

canel

bar ney

gecko

betty

al paca

wi | ma

al paca

Theopen function creates a filehandle named WORDSLI ST by associating it with afile named

wor dsl i st inthe current directory. Note that the filehandle doesn't have afunny character in front of it
as do the three variable types. Also, filehandles are generally uppercase - although they aren't required to
be - for reasons detailed later.

Thewhi | e loop reads lines from thewor dsl i st file (viathe WORDSLI ST filehandle) oneline at a
time. Each line is stored into the $nane variable. When end-of-file is reached, the value returned by the
<WORDSL| ST> operation isthe empty string,[12] which looks false to thewhi | e loop, and terminates

it. That's how we get out at the end.

[12] Well, technically the valueisundef again, but empty string is close enough for this
discussion.

If you were running with the -w option, you would have to check that the return value read in was
actually def i ned. The empty string returned by the <WORDSL| ST> operation isn't merely empty - it's
undef again. Thedef i ned function is how you test for undef when this matters. In the case of
reading lines from afile, you'd test as shown:

while (defined ($nane = <WORDSLI ST>)) {

But if you were being that careful, you'd probably also have checked to make sure that open returned a
true value. Y ou know, that's probably not a bad idea either. The built-in di e function is frequently used
to exit the program with an error message in case something goes wrong. We'll see an example of this
function in the next revision of the program.

On the other hand, the normal case is that we've read aline (including the newline) into $nane. First, off
comes the newline using the chonp function. Then, we have to read the next line to get the secret word,
holding it in the $wor d variable. This variable also gets the newline hacked off.

Thefinal line of thewhi | e loop puts $wor d into %wor ds with akey of $nane, so that the rest of the
program can access it later.

After the file has been read, the filehandle can be recycled with the cl ose function. (Filehandles are

automatically closed anyway when the program exits, but we're trying to be tidy. If we werereally tidy,
we'd even check for atrue return value from cl ose in case the disk partition which held the file went
south, its network filesystem became unreachable, or asimilar catastrophe occurred. Y es, these things
really do happen. Murphy will always be with us.)

This subroutine definition can go after or before the other one. And, we invoke the subroutine instead of
setting %mor ds in the beginning of the program. Therefore, you could wrap up all of this asfollows:
init_words();
print "Wat is your nanme? ";
$nane = <STDI N>;
chonmp ($nane);
if ($name =~ /"erik\b/i) { # back to the other way :-)
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "Wat is the secret word? ";
$guess = <STDI N>;
chomp ($guess);
while (! good_word($nane, $guess)) {
print "Wong, try again. Wat is the secret word? ";
$guess = <STDI N>;
chonp ($guess);
}
}
subroutines from here down
sub init_words {
open (WORDSLI ST, "wordslist") ||
die "can't open wordlist:$!";
whil e (defined ($name = <WORDSLI ST>)) {
chonmp ($nane);
$word = <WORDSLI| ST>;
chonmp ($word);
$wor ds{ $nane} = $word;

}
cl ose (WORDSLI ST) ;

sub good word {
ny($sonenane, $sonmeguess) = @; # nane the paraneters
$sonmenane =~ s/\W?*//; # delete everything after first word
$sonenanme =~ tr/A-Zl a-z/; # |owercase everything
i f ($sonenane eq "erik") { # should not need to guess
return 1; # return value is true

} elsif (($words{$sonenane} || "groucho") eq $soneguess) {
return 1; # return value is true
} else {

return O; # return value is fal se

}

Now our program is starting to look full-grown. Notice the first executable line is an invocation of

I ni t_words().Thereturnvalueisnot used in afurther calculation, which is good because we didn't
return anything remarkable. In this case, atrue value is guaranteed (the value 1, in particular), because if
thecl ose had failed, the di e would have printed a message to our STDERR error and exited the
program. The di e function isfully explained in Chapter 10, Filehandles and File Tests, but because the
return values of anything that might fail must be checked, we'll get into the habit of using the function
right from the start. The $! variable (also explained in Chapter 10) contains the system error message

explaining why the system call failed.

Theopen function isalso used to open files for output, or open programs as files (demonstrated
shortly). The full scoop on open comes much later in this book, however, in Chapter 10.

1.6.11 Ensuring a Modest Amount of Security

"That secret word list has got to change at least once aweek!" cries the Chief Director of Secret Word
Lists. Well, we can't force the list to be different, but we can at least issue awarning if the secret word
list has not been modified in more than a week.

The best place for handling thiswarning isthei ni t _wor ds() subroutine - we're aready looking at
the file there. The Perl operator - Mreturns the age in days since afile or filehandle has last been
modified, so we just need to see whether thisvalue is greater than seven for the WORDSL| ST filehandle:
sub init_words {

open (WORDSLI ST, "wordslist") ||

die "can't open wordlist:$!";
if (-MWORDSLIST > 7.0) { # conply with bureaucratic policy
die "Sorry, the wordslist is older than seven days.";
}

whi l e (defined ($nane = <WORDSLI ST>)) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
$wor ds{ $nane} = $word;

}
cl ose (WORDSLIST) || die "couldn't close wordlist: $!";

}

Thevalue of - M WORDSL| ST is compared to seven, and if the value is greater, bingo, we've violated
policy.

The rest of the program remains unchanged, so in the interest of saving afew trees, we won't repeat it
here.

Besides getting the age of afile, we can also find out its size, accesstime, and everything else that an
operating system maintains about afile. More information about this feature appearsin Chapter 10.

1.6.12 Warning Someone When Things Go Astray

We really ought to know when someone guesses incorrectly so that we can watch for break-in attempts.
If we were using a UNIX system, we would probably use the mail command to send an email message to
someone about the failed attempt. However, on a Windows workstation, no standard mail [13] command
exists, so we're going to log failures to afile.[14] We need only do alittle work to accomplish this task.
WEe'l add a new subroutine and modify only thegood_wor d() subroutine (thanks to modularity),
because we have all the information we need:

sub

sub

}

[13] Perl for Win32 programmers will encounter this mail comand issue frequently in scripts
that they find on the Net. The solution isto use one of a number of readily available
command-line mailers, or to use Perl's network interface to talk to an SMTP server directly.

[14] We could also use the Win32::EventL og module to log our warnings to the Windows
NT Event Log.

good word {

ny($sonenane, $soneguess) = @; # nane the paraneters
$sonenanme =~ s/\W?*//; # get rid of stuff after first word
$sonenanme =~ tr/A-Zl a-z/; # |owercase everything

i f ($sonenane eq "erik") { # should not need to guess
return 1; # return value is true

} elsif (($words{$sonenane}||"groucho") eq $sonmeguess) {
return 1; # return value is true

} else {
| og_failure($sonenane, $soneguess);
return O; # return value is false

| og failure {
ny($sonenane, $soneguess) = @; # nane the paraneters
open(LOG ">>failures.log") || die "failures.log: $!'";

print LOG "bad news: $sonenane guessed $soneguess\n”;
close (LOG || die "can't close failures.log: $'";

Notice the open, which has aredirection symbol (>>) in the filename. This symbol is a specid
indication that we are appending to afile. The next statement, apr i nt , showsthat afilehandle between
thepri nt keyword and the values to be printed selects that filehandle for output, rather than
STDQOUT.[15] This means that the message will be written to the output file that we've opened. Finally,

we close the filehandle.

[15] Wéll, technically, the currently selected filehandle. That's covered much later, though.

1.6.13 Many Secret Word Files in the Current Directory

L et's change the definition of the secret word filename dlightly. Instead of just the file named

wor dsl i st , let'slook for anything in the current directory that endsin. sec. At the command prompt,
we say:

> dir /B *.sec

to get a brief listing of all of these names. Asyou'll seein amoment, Perl uses asimilar wildcard name
syntax.

Pulling out thei ni t _wor ds() definition again:
sub init_words {
while (defined ($filename = glob("*.sec"))) {
open (WORDSLI ST, $filenane) ||
die "can't open $fil enane: $!";
if (-MWORDSLI ST <= 7.0) {
whil e (defined ($name = <WORDSLI ST>)) {
chomp ($nane);
$word = <WORDSLI ST>;
chonmp ($word);
$wor ds{ $nane} = 3$word;
}
}
cl ose (WORDSLI ST) || die "couldn't close $filenane: $!";

}
}

First, I've wrapped a new whi | e loop around the bulk of the routine from the previous version. The new
thing hereisthe gl ob function. Thisis called afilename glob[16] for historical reasons. The function
works much like <STDI N>, in that each time it is accessed, it returns the next value: successive
filenames that match the pattern, in thiscase * . sec. When there are no additional filenamesto be
returned, the filename glob returns an empty string.[17] In Perl on Windows systems, filename
globbing[18] isimplemented by means of another program, called PerlGlob.exe, which must be
somewhere in your search path (this should usually be the case, because PerlGlob.exeisinstalled in the
same directory as your Perl interpreter by default).

[16] Glob might be a new word to Win32 programmers. We'll talk much more about
globbing in Chapter 12, Directory Access.

[17] Yeah, yeah, undef again.

[18] If you're using the ISAPI version of Perl, you'll have better luck if you avoid file
globbing altogether and use the following equivalent technique:

opendir(DIR, ".");

@iles = grep(/\.sec$/, readdir(D R));

closedir DR

This method leaves you with alist (@ 1 | es) of al filenamesin the current directory that
contain the . sec pattern. We'll provide more information on this later.

So, if the current directory containsf r ed. sec and bar ney. sec, then$fi | enane isbar ney. sec
on the first pass through the whi | e loop (the names come out in aphabetically sorted order). On the
second pass, $f i | enane isfred. sec. And thereis no third pass because the glob returns an empty
string the third time it is called, perceived by the whi | e loop to be afalse, causing an exit from the
subroutine.

Within thewhi | e loop, we open the file and verify that it is recent enough (less than seven days since
the last modification). For the recent-enough files, we scan through as before.

Note that if there are no files that match * . sec and are less than seven days old, the subroutine will exit
without having set any secret words into the %wor ds array. In such a case, everyone must use the word
gr oucho. Oh well. (For real code, we would have added some check on the number of entriesin

%wor ds before returning, and di e'd if the check wasn't good. See the keys function when we get to
hashes in Chapter 5, Hashes.)

1.6.14 Listing the Secret Words

WEell, the Chief Director of Secret Word Lists wants areport of all the secret words currently in use, and
how old they are. If we set aside the secret word program for a moment, we'll have time to write a
reporting program for the Director.

First, let's get all of the secret words, by stealing some code from thei ni t _wor ds() subroutine:

while (defined ($filename = glob("*.sec"))) {
open (WORDSLI ST, $fil enane) ||
die "can't open $filenanme: $!";
if (-MWORDSLI ST <= 7.0) {
whi l e (defined ($nane = <WORDSLI ST>) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
new stuff wll go here
}
}
cl ose (WORDSLI ST) || die "couldn't close $filenane: $!";
}

At the point marked "new stuff will go here," we know three things: the name of thefile ($f i | enane),
someone's name ($nane), and that person's secret word ($wor d). Here's a place to use Perl's report
generating tools. We define aformat somewhere in the program (usually near the end, like a subroutine):
format STDOUT =

OR<<<<K<KLKLLKLKLKLKLKLKLS [@BKLLKLKLKLKLKLLS (@<L

$fil enane, $nane, $word

The format definition beginswith f or mat STDOUT =, and ends with a single period. The other two
lines comprise the format itself. The first line of thisformat is afield definition line that specifies the
number, length, and type of the fields. For this format, we have three fields. The line following afield
definition lineisalways afield value line. The value line gives alist of expressions that will be evaluated
when this format is used, and the results of those expressions will be plugged into the fields defined in
the previous line.

We invoke this format with thewr i t e function, as shown:

while (defined($filename = glob("*.sec"))) {
open (WORDSLI ST, $filenane) ||
die "can't open $filenane: $'";
i f (-M WORDSLI ST <= 7.0) {
whil e (defined ($nanme = <WORDSLI ST>) {
chonmp ($nane);
$word = <WORDSLI ST>;
chonp ($word);
wite; # invoke fornat STDOUT to STDOUT
}
}
cl ose (WORDSLI ST) || die "couldn't close $fil enane: $!";
}

format STDOUT =
@X<<<<KKKLKLKLKLKLKLKLKLS (@KLK ([@KLLLKLKLKLLL LKL

$fil enane, $nanme, $word

When the format isinvoked, Perl evaluates the field expressions and generates aline that it sends to the
STDQOUT filehandle. Becausewr i t e isinvoked once each time through the loop, we'll get a series of
lines with text in columns, one line for each secret word entry.

Hmm. We haven't labeled the columns. That's easy enough. We just need to add a top-of-page format, as
shown:

format STDOUT TOP =
Page @<
$%

Fi | ename Name Wor d

Thisformat is named STDOUT _TOP, and will be used initially at the first invocation of the STDOUT
format, and again every time 60 lines of output to STDOUT have been generated. These column headings
line up with the columns from the STDOUT format, so everything comes out tidy.

Thefirst line of thisformat shows some constant text (Page) along with athree-character field
definition. The following lineisafield value line, which in this case has one expression. This expression
is the $%variable,[19] which holds the number of pages printed - a very useful value in top-of-page

formats.

[19] More mnemonic aliases for these predefined scalar variables are available via the
English module, which provides English names for Perl's specia variables.

The third line of the format is blank. Because this line does not contain any fields, the line following itis
not afield value line. Thisblank lineis copied directly to the output, creating a blank line between the
page number and the column headers below.

The last two lines of the format also contain no fields, so they are copied as-is, directly to the output. So
this format generates four lines, one of which has a part that changes from page to page.

Just tack this definition onto the previous program to get it to work. Perl notices the top-of-page format
automatically.

Perl also has fields that are centered or right justified, and supports afilled paragraph area as well. More
on these features when we get to formats in Chapter 11, Formats.

1.6.15 Making Those Old Word Lists More Noticeable

Aswe are scanning through the * . sec filesin the current directory, we may find files that are too old.
So far, we are ssimply skipping over those files. Let's go one step more - we'll rename them to
*. sec. ol d sothat adirectory listing will quickly show us which files are too old, simply by name.

Here'show thei ni t _wor ds() subroutine looks with this modification:

sub init_words {
while (defined($filename = glob("*.sec"))) {
open (WORDSLI ST, $filenane) ||
die "can't open $filenane: $!";
if (-M WORDSLI ST <= 7.0) {
whil e (defined ($name = <WORDSLI ST>)) {
chonp ($nane);
$word = <WORDSLI ST>;
chonmp ($word);
$wor ds{ $nane} = $word;
}
cl ose (WORDSLI ST) | |
die "can't close $filenanme: $!'";

}
el se {
must close file before renanming it
cl ose (WORDSLI ST) | |
die "can't close $filenane.old: $'"
rename ($fil ename, "$fil ename. ol d") |
die "can't renane $filenane: $'";
}

}

Notice the new el se part of the file age check. If the file is older than seven days, it gets renamed with
ther enane function. This function takes two parameters, renaming the file named by the first
parameter to the name given in the second parameter.

Perl has a complete range of file manipulation operators - nearly anything you can doto afilefromaC
program, you can also do from Perl.

1.6.16 Maintaining a Last-Good-Guess Database

Let's keep track of when the most recent correct guess has been made for each user. One data structure
that might seem to work at first glance is a hash. For example, the statement:

$l ast _good{ $nane} = ti ne;

assigns the current time in internal format (some large integer above 800 million, incrementing one
number per second) to an element of % ast _good that has the name for akey. Over time, this method
would seem to give us a database indicating the most recent time the secret word was guessed properly
for each of the users who had invoked the program.

But, the hash doesn't have an existence between invocations of the program. Each time the program is
invoked, a new hash isformed, so at most, we create a one-element hash and then immediately forget it
when the program exits.

The dbnopen function[20] maps a hash out into adisk file (actually a pair of disk files) known as a
DBM. It'sused like this:

[20] On a specific database, use the more low-level t i e function, as detailed in Chapters 5
and 7 of Programming Perl, or in the perltie documentation.

dbrmopen (% ast _good, "I ast db", 0666) ||
die "can't dbropen | astdb: $!'";
$l ast _good{ $nanme} = ti ne;
dbntl ose (% ast_good) || die "can't dbntlose |astdb: $!'";

Thefirst statement performs the mapping, using the disk filenames of | ast db. di r and| ast db. pag
(these names are the normal namesfor aDBM called | ast db). Showing Perl's UNIX heritage,
dbropen takes an octal file permission mask as the third argument. Although all Windows filesystems
support file attributes of some sort, they are largely incompatible with the UNIX filesystem scheme used
by Perl. The UNIX file permissions used for these two files, if the files must be created (as they will the
first time through), is0666. This mode means that anyone can read or write the files. Thismodeis
usually the one that you want to use when working with files with read/write attributes.[21]

[21] The Win32::File module provides additional features for setting file attributes. We'll
discuss those features in more detail in Chapter 13, File and Directory M anipul ation.

The Perl file permission value is composed of a series of bits with read, write, and execute privileges for
the user, the user's group, and everyone else. Traditionally, FAT filesystems only keep track of read and
write privileges for the user, along with afew other tidbits of information, like whether thefileisa

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

hidden or a system file. We'll discuss file permissions and attributes in detail in Chapter 13. For now, just
trust us that you want to use 0666 for creating DBM files.

The second statement shows that we use this mapped hash just like a normal hash. However, creating or
updating an element of the hash automatically updates the disk files that form the DBM. And, when the
hash is later accessed, the values within the hash come directly from the disk image. This gives the hash
alife beyond the current invocation of the program - a persistence of its own.

The third statement disconnects the hash from the DBM, much like afile cl ose operation.
Y ou can insert these three statements just ahead of the subroutine definitions.

Although the inserted statements maintain the database adequately (and even create the database
initially), we don't have any way of examining the information yet. To do so, we can create a separate
little program that looks something like this;

dbrmopen (% ast _good, "Il ast db", 0666) ||
die "can't dbnopen |astdb: $!'";
foreach $nane (sort keys % ast good) {
$when = $l ast _good{ $nane};
$hours = (tinme - $when) / 3600; # conpute hours ago
wite;

}

format STDOUT =
User @x<<<<<<<<<<: |ast correct guess was @<< hours ago.
$nane, $hours

We've got afew new operations here: af or each loop, sorting alist, and getting the keys of an hash.

First, the keys function takes a hash name as an argument and returns alist of all the keys of that hash
in some unspecified order. For the %wor ds hash defined earlier, the result is something likef r ed,
bar ney, betty,w | ma, in some unspecified order. For the % ast _good hash, the result will bea
list of all users who have guessed their own secret word successfully.

Thesort function sortsthe list alphabetically (just like passing atext file through the sort command).
This function makes sure that the list processed by the f or each statement is aways in aphabetical
order.

The Perl f or each statement takes alist of values and assigns each onein turn to ascalar variable (here,
$nane), executing the body of the loop (a block) once for each value. So, for five namesin the
% ast _good list, we get five passes through the loop, with $nanme being a different value each time.

The body of thef or each loop loads up a couple of variables used within the STDOUT format, and then
invokes the format. Note that we figure out the age of the entry by subtracting the stored system time (in
the array) from the current time (asreturned by t i ne), and then divide that by 3600 (to convert seconds
to hours).

Per| also provides easy ways to create and maintain text-oriented databases and fixed-length-record

databases. These databases are described in Chapter 17, Database M anipul ation.

1.6.17 The Final Programs

Here are the programs from this stroll in their final form so that you can play with them.

First, the "say hello" program:
Init_words();
print "Wat is your nane? "
$nane = <STDI N>;
chonmp ($nane);
if ($nane =~ /"erik\b/i) { # back to the other way :-)
print "Hello, Erik! How good of you to be here!\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);
whil e (! good word($nane, $guess)) {
print "Wong, try again. Wat is the secret word? "
$guess = <STDI N>;
chomp ($guess);
}
}
dbrmopen (% ast _good, "I ast db", 0666) ||
die "can't dbropen | astdb: $!'";
$l ast _good{ $nanme} = ti ne;
dbntl ose (% ast_good) || die "can't dbntlose |astdb: $!'";
sub init_words {
while (defined($filename = glob("*.sec"))) {
open (WORDSLI ST, $filenane) ||
die "can't open $filenanme: $'";
if (-MWORDSLI ST <= 7.0) {
whil e (defined ($name = <WORDSLI ST>)) {
chonmp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
$wor ds{ $nane} = $word;
}
cl ose (WORDSLI ST) | |
die "can't close $filenane: $!"
}
el se {
nmust close file before renamng it
cl ose (WORDSLI ST) | |
die "can't close $filenane.old: $'"

renanme ($fil enane,"$filenane.ol d") ||
die "can't renane $fil enane: $!";

}
}
sub good word {
ny($sonenane, $sonmeguess) = @; # nane the paraneters
$sonenane =~ s/\W*//; # delete everything after first word
$sonenanme =~ tr/ A-Zl a-z/; # |owercase everything
i f ($sonmenane eq "erik") { # should not need to guess
return 1; # return value is true

} elsif (($words{$sonenane} || "groucho") eq $soneguess) {
return 1; # return value is true
} else {

| og_fail ure($sonenane, $sonmeguess) ;
return O; # return value is false

sub log failure {
ny($sonenane, $soneguess) = @; # nane the paraneters

open(LOG ">>failures.log") || die "failures.log: $!";
print LOG "bad news: $sonenane guessed $soneguess\n”;
close (LOG || die "can't close failures.log: $'";

}

Next, we have the secret word lister:

while (defined($filename = glob("*.sec"))) {
open (WORDSLI ST, $filenane) ||
die "can't open $filenanme: $'";
if (-MWORDSLI ST <= 7.0) {
whil e (defined ($nanme = <WORDSLI ST>)) {
chonmp ($nane);
$word = <WORDSLI| ST>;
chonp ($word);
wite; # invoke format STDOUT to STDOUT
}
}
close (WORDSLIST) || die "can't close $filenanme: $'";
}

format STDOUT =
OR<<<<K<KLKLLKLKLKLLKLKL (X< (@KLK

$fil enane, $nane, $word

format STDOUT TOP =

Page @<
$%

Fi | ename Nane Wor d

And findly, the last-time-a-word-was-used display program:

dbrmopen (% ast _good, "l ast db", 0666) ||
die "can't dbrnopen | astdb: $!'";
foreach $nanme (sort keys % ast_good) {
$when = $l ast _good{ $nane};
$hours = (tinme - $when) / 3600; # conpute hours ago
wite;
}
dbntl ose(% ast _good) || die "can't dbntlose |astdb: $!'";
format STDOUT =
User @x<<<<<<<<<<: |ast correct guess was @<< hours ago.
$nane, $hours

Together with the secret word lists (files named sonet hi ng. sec inthe current directory) and the
database, | ast db. di r and| ast db. pag, you'll have al you need.

| Previous: 1.5 Basic Concepts| Learning Perl on Win32 Next: 1.7
Systems Exercises
1.5 Basic Concepts Book 1.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 1.6 A Stroll Ch ter.1 Next: 2. Scalar
Through Perl Introduction Data

1.7 Exercises

Normally, each chapter will end with some exercises, for which answers will be found in Appendix A,
Exercise Answers. For this stroll, the answers have already been given above.

1. Typein the example programs, and get them to work. (Y ou'll need to create the secret word lists as
well.) Consult your local Perl guru if you need assistance.

Previous: 1.6 A Stroll Learning Perl on Win32 Next: 2. Scalar
Through Perl Systems Data
1.6 A Stroll Through Perl Book 2. Scalar Data
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 1.7 Chapter 2 Next: 2.2
Exercises Numbers

2. Scalar Data

Contents:
What Is Scalar Data?

Numbers

Strings

Scalar Operators

Scalar Variables

Scalar Operators and Functions
<STDIN> asa Scalar Value
Output with print

The Undefined Value
Exercises

2.1 What Is Scalar Data?

A scalar isthe simplest kind of data that Perl manipulates. A scalar is either a number (like 4 or 3.25e€20)
or astring of characters (like "hello" or the Gettysburg Address). Although you may think of numbers
and strings as very different things, Perl uses them nearly interchangeably, so we'll describe them
together.

A scalar value can be acted upon with operators (like plus or concatenate), generally yielding a scalar
result. A scalar value can be stored into a scalar variable. Scalars can be read from files and devices and
written out as well.

Previous: 1.7 Learning Perl on Win32 Next: 2.2
Exercises Systems Numbers
1.7 Exercises Book 2.2 Numbers
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.1 What Is Scalar Chapter 2 Next: 2.3
Data? Scalar Data Strings

2.2 Numbers

Although a scalar is either anumber or a string,[1] consider numbers and strings separately for the
moment. Numbersfirst, stringsin a minute...

[1] A scalar can also be areference, but that is an advanced topic.

2.2.1 All Numbers Use the Same Format Internally

Asyou'll seein the next few paragraphs, you can specify both integers (whole numbers, like 17 or 342)
and floating-point numbers (real numbers with decimal points, like 3.14, or 1.35 times 102°). But
internally, Perl computes only with double-precision floating-point values.[2] This means that there are
no integer values internal to Perl; an integer constant in the program is treated as the equivalent
floating-point value.[3] Y ou probably won't notice the conversion (or care much), but you should stop

looking for integer operations (as opposed to floating-point operations), because there aren't any.

[2] A "double-precision floating-point value" is whatever the C compiler that compiled Perl
used for adoubl e declaration.

[3] Unless you use "integer mode," but that is not the default.

2.2.2 Float Literals

A literal isthe way avalueis represented in the text of the Perl program. Y ou could also call thisa
constant in your program, but we'll use the term literal. Literals are the way in which datais represented
In the source code of your program as input to the Perl compiler. (Datathat isread from or written to
filesistreated similarly, but not identically.)

Perl accepts the complete set of floating-point literals available to C programmers. Numbers with and
without decimal points are allowed (including an optional plus or minus prefix), as well as tacking on a
power-of-10 indicator (exponential notation) with E notation (that's e or E). For example:

1.25 # about 1 and a quarter
7.25e45 # 7.25 times 10 to the 45th power (a big nunber)
-6.5e24 # negative 6.5 tinmes 10 to the 24th
(a "big" negative nunber)
-12e- 24 # negative 12 tinmes 10 to the -24th

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

(a very small negative nunber)
-1.2E-23 # another way to say that

2.2.3 Integer Literals

Integer literals are also straightforward, asin:

12

15

- 2004
3485

Don't start the number with a 0, because Perl supports octal and hexadecimal (hex) literals. Octal
numbers start with aleading O, and hex numbers start with aleading Ox or OX.[4] The hex digits A

through F (in either case) represent the conventional digit values of 10 through 15. For example:

[4] The "leading zero" indicator works only for literals, not for automatic string-to-number
conversion. Y ou can convert a data string that looks like an octal or hex value into a number
withoct () or hex().

0377 # 377 octal, sane as 255 deci nal
-Oxff # negative FF hex, sane as -255 deci nal

Previous: 2.1 What Is Scalar Learning Perl on Win32 Next: 2.3
Data? Systems Strings
2.1 What |s Scalar Data? Book 2.3 Strings
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.2 Chapter 2 | Next: 2.4 Scalar Operators|
Numbers Scalar Data

2.3 Strings

Strings are sequences of characters (like hel | 0). Each character is an 8-bit value from the entire
256-character set (there's nothing special about the NUL character, as in some languages).

The shortest possible string has no characters. The longest string fills all of your available memory
(although you wouldn't be able to do much with that). Thisisin accordance with the principle of "no
built-in limits" that Perl follows at every opportunity. Typical strings are printable sequences of letters,
digits, and punctuation in the ASCII 32 to ASCII 126 range. However, the ability to have any character
from 0 to 255 in a string means that you can create, scan, and manipulate raw binary data as strings - a
task with which most other utilities would have great difficulty. (For example, you can patch your
operating system by reading it into a Perl string, making the change, and writing the result back out.)

Like numbers, strings have aliteral representation (the way you represent the string in a Perl program).
Literal strings come in two different flavors: single-quoted strings and double-quoted strings.[5] Another
form that looks rather like these two is the back-quoted string (‘like this’). Thisform isn't so much a
literal string as away to run external commands and get back their output. Thisformis covered in
Chapter 14, Process Management.

[5] Perl aso has here strings, which we'll touch on in Chapter 18, CGI Programming.

2.3.1 Single-Quoted Strings

A single-quoted string is a sequence of characters enclosed in single quotes. The single quotes are not
part of the string itself; they're just there to let Perl identify the beginning and the ending of the string.
Any character between the quote marks (including newline characters, if the string continues onto
successive lines) islegal inside astring. There are two exceptions: to get asingle quoteinto a
single-quoted string, precede it by a backslash; and, to get a backslash into a single-quoted string,
precede the backslash by a backdlash. In other pictures:

"hel |l 0 # five characters: h, e, |, I, o

‘don\'t’ # five characters: d, o, n, single quote, t

v # the null string (no characters)

"silly\\nme' # silly, followed by backsl ash, followed by ne
"hel l o\ n' # hello foll owed by backsl ash foll owed by n
"hell o

t here' # hello, newine, there (11 characters in all)

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Note that the\ n within a single-quoted string is not interpreted as a newline, but as the two characters
backslash and n. (Only when the backslash is followed by another backslash or a single quote does it
have special meaning.)

2.3.2 Double-Quoted Strings

A double-quoted string acts alot like a C string. Once again, it's a sequence of characters, although this
time enclosed in double quotes. But now the backslash takes on its full power to specify certain control
characters, or even any character at all through octal and hex representations. Here are some
double-quoted strings:

"hello world\n"# hello world, and a new i ne

“new \ 007" # new, space, and the bell character (octal 007)
"coke\tsprite" # a coke, a tab, and a sprite
"c:\\tenp" # c:, backslash, and tenp

The backslash can precede many different characters to mean different things (typically caled a
backslash escape). The complete list of double-quoted string escapesis givenin Table 2.1.

Table 2.1: Double-Quoted String Representations

Construct |Meaning

\n Newline

\r Return

\t Tab

\ f Formfeed

\b Backspace

\'v Vertical tab

\a Bell

\e Escape

\ 007 Any octal ASCII value (here, 007 = bell)
\ x7f Any hex ASCII value (here, 7f = delete)

\cC Any "control" character (here, control C)
\\ Backslash

\ " Doublequote

\ Lowercase next letter

\L Lowercase all following letters until \ E

\u Uppercase next |etter

\U Uppercase al following letters until \ E
\Q Backslash quote all nonal phanumerics
\E Terminate\ L ,\ Uor\ Q

Another feature of double-quoted stringsis that they are variable inter polated, meaning that scalar and
array variables within the strings are replaced with their current values when the strings are used. We
haven't formally been introduced to what a variable looks like yet (except in the stroll), so I'll get back to
thislater.

A quick note here about using DOS/Win32 pathnames in double-quoted strings: while Perl accepts either
backslashes or forward slashes in path names, backslashes need to be escaped. So, you need to write one
of the following:

"c:\\tenp" # use an escaped backsl ash
“c:/tenp” # use a Unix-style forward sl ash

If you forget to escape the backslash, you'll end up with strange results:
"c:\temp" # WRONG - this string contains a c:, a TAB, and enp
If you're already used to using pathnames in C/C++, this notation will be second nature to you.

Otherwise, beware: pathnames seem to bite each and every Perl-for-Win32 programmer from time to
time.

Previous: 2.2 Learning Perl on Win32 | Next: 2.4 Scalar Operators|
Numbers Systems
2.2 Numbers Book 2.4 Scalar Operators
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

J»Leaming Perl on Win32 Systems

Previous: 2.3 Chapter 2 [Next: 2.5 Scalar Variables]
Strings Scalar Data

2.4 Scalar Operators

An operator produces a new value (the result) from one or more other values (the operands). For
example, + is an operator because it takes two numbers (the operands, like 5 and 6), and produces a new
value (11, the result).

Perl's operators and expressions are generally a superset of those provided in most other

AL GOL/Pascal-like programming languages, such as C or Java. An operator expects either numeric or
string operands (or possibly a combination of both). If you provide a string operand where a number is
expected, or vice versa, Perl automatically converts the operand using fairly intuitive rules, which will be
detailed in the section " Conversion Between Numbers and Strings,” later in this chapter.

2.4.1 Operators for Numbers

Perl provides the typical ordinary addition, subtraction, multiplication, and division operators, and so on.
For example:

2 + 3 # 2 plus 3, or 5

5.1 - 2.4 #5.1 mnus 2.4, or approximately 2.7

3 * 12 # 3 tinmes 12 = 36

10.2 / 0.3 # 10.2 divided by 0.3, or approximately 34

10 / 3 # always floating point divide, so approximately 3.333333...

Additionally, Perl provides the FORTRAN-like exponentiation operator, which many have yearned for in
Pascal and C. The operator is represented by the double asterisk, such as 2* * 3, which is 2 to the power of
3, or 8. (If the result cannot fit into a double-precision floating-point number, such as a negative number
to anoninteger exponent, or alarge number to alarge exponent, you'll get afatal error.)

Perl also supports a modulus operator. The value of the expression 10 % 3 isthe remainder when 10 is
divided by 3, which is 1. Both values are first reduced to their integer values, so 10. 5 % 3. 2 is
computedas10 % 3.

The logical comparison operators are <, <=, ==, >=, >, and ! =. These operators compare two values
numerically, returning atrue or false value. For example, 3 > 2 returns true because three is greater than
two, while5 ! = 5 returnsfalse because it's not true that 5 is not equal to 5. The definitions of true and
false are covered later, but for now, think of the return values as one for true, and zero for false. (These
operators arerevisited in Table 2.2.)

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Y ou may be wondering about the word "approximately" in the code comments at the start of this section.
Don't you get exactly 2.7 when subtracting 2.4 from 5.1? In math class you do, but on computers you
usually don't. Instead, you get an approximation that's only accurate to a certain number of decimal
places. Computers don't store numbers in the same way a mathematician does. Although there are
infinitely many decimal points in them, the computer only has alimited space to store them (usually 64
bits per number). So, just afew of these infinite real numbers can be exactly represented on the
computer - the rest are just close.

Comparing the following statements, you'll see what the computer really got as the result of the
subtraction (thepr i nt f function is described in Chapter 6, Basic 1/0):

printf("%51f\n", 5.1 - 2.4)
2.699999999999999733546474089962430298328399658203125

print(5.1- 2.4, "\n");
2.7

Don't worry too much about this: the pri nt () function's default format for printing floating-point
numbers usually hides such minor representational inaccuracies. If this ends up being a problem, the
Math::Biglnt and Math::BigFloat object modules provide infinite-precision arithmetic for integers and
floating-point numbers at the cost of somewhat slower execution. For details, see Chapter 7 of

Programming Perl or the online documentation on these modules.

2.4.2 Operators for Strings

String values can be concatenated with the ™. " operator. (Y es, we are using asingle period.) This
concatenation does not alter either string, any more than 2+3 aters either 2 or 3. The resulting (longer)
string is then available for further computation or to be stored into avariable. For example:

"hell o" . "world" # same as "hell oworl| d"
"hello world" . "\n" # sane as "hello worl d\n"
“fred" . " " . "barney" # sane as "fred barney"”

Note that the concatenation must be explicitly caled for with the. operator. Y ou do not merely have to
stick the two values close to each other.

Another set of operators for strings are the string comparison operators. These operators are FORTRAN
like, asinusing | t for less than, and so on. The operators compare the ASCII values of the characters of
the strings in the usual fashion. The complete set of comparison operators (for both numbers and strings)
isgivenin Table 2.2.

Table 2.2: Numeric and String Comparison
Operators

Comparison Numeric |String

Equa == eq

Not equal I = ne

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Lessthan < | t
Greater than > gt
Lessthanorequal to |<= | e
Greater than or equal to | >= ge

Y ou may wonder why there are separate operators for numbers and strings, if numbers and strings are
automatically converted back and forth. Consider the two values 7 and 30. If compared as numbers, 7 is
obviously less than 30, but if compared as strings, the string " 30" comes before the string " 7" (because
the ASCII value for 3 isless than the value for 7), and hence isless. Perl always requires you to specify
the proper type of comparison, whether it be numeric or string.

Still another string operator is the string repetition operator, consisting of the single lowercase letter x.
This operator takes its left operand (a string), and makes as many concatenated copies of that string as
indicated by its right operand (a number). For example:

"fred" x 3 # is "fredfredfred"
“bar ney" x (4+1) # is "barney" x 5, or
"bar neybar neybar neybar neybar ney"
(3+2) x 4 #is 5 x 4, or really "5" x 4, which is "5555"

That last example is worth spelling out slowly. The parentheses on (3+2) force this part of the
expression to be evaluated first, yielding five. (The parentheses here are working as in standard math.)
But the string repetition operator wants a string for aleft operand, so the number 5 is converted to the
string "5" (using rules described in detail later), a one-character string. This new string is then copied
four times, yielding the four-character string 5555. If we had reversed the order of the operands, we
would have made five copies of the string 4, yielding 44444. This shows that string repetition is not
commutative.

If necessary, the copy count (the right operand) is first truncated to an integer value (4.8 becomes 4)
before being used. A copy count of less than 1 resultsin an empty (zero-length) string.

2.4.3 Operator Precedence and Associativity

Operator precedence defines how to resolve the ambiguous case in which two operators are trying to
operate on three operands. For example, in the expression 2+3* 4, do we perform the addition first or the
multiplication first? If we did the addition first, we'd get 5* 4, or 20. But if we did the multiplication first
(as we were taught in math class), we'd get 2+12, or 14. Fortunately, Perl chooses the common
mathematical definition, performing the multiplication first. Because of this, we say multiplication has a
higher precedence than addition.

Y ou can override the order defined by precedence using parentheses. Anything in parenthesesis
completely computed before the operator outside of the parenthesesis applied (just like you learned in
your math class). So if | realy want the addition before the multiplication, | can say (2+3) * 4, yielding
20. Also, if | wanted to demonstrate that multiplication is performed before addition, | could add a
decorative but functionless set of parenthesesin 2+(3*4).

While precedence isintuitive for addition and multiplication,[6] we start running into problems when
faced with, say, string concatenation compared with exponentiation. Y ou can resolve this by consulting
the official, accept-no-substitutes Perl operator precedence chart, shown in Table 2.3. (Note that some of
the operators have not yet been described, and in fact, may not even appear anywhere in this book, but
don't let that fact scare you away from reading about them.) Operators also found in C have the same
precedence asin C).

[6] Asssuming you recall your high school algebra class. If not, ssimply use parentheses to
improve clarity.

Table 2.3: Associativity and Precedence of Operators

Associativity |Operator

L eft The"list" operators (leftward)

L eft - > (method call, dereference)

Nonassociative |++ - - (autoincrement, autodecrement)

Right ** (exponentiation)

Right I ~\ +- (logical not, bit not, reference operator, unary plus, unary minus)
L eft =~ | ~ (matches, doesn't match)

L eft * [%x (multiply, divide, modulus, string replicate)

L eft + - . (add, subtract, string concatenate)

L eft << >> (shift operators)

Nonassociative | Named unary operators (like chonp)

Nonassociative [< > <= >= |t gt | e ge (relationa operators)

Nonassociative |== ! = <=> eq ne cnp (equality operators)

L eft & (bit and)

L eft | ~ (bit or, bit xor)

L eft && (logical and)

L eft | | (logical or)

Nonassociative |. (noninclusive and inclusive range)

Right ?: (if then else)

Right = +=- = * = etc. (assignment and binary assignment)
L eft , => (comma and comma arrow)

Nonassociative | List operators (rightward)

'Right 'not (logical not)
L eft and (logical and)

L eft or xor (logical or, logica xor)

In Table 2.3, any given operator has higher precedence than those listed below it, and lower precedence
than all of the operators listed aboveit.

Operators at the same precedence level resolve according to rules of associativity. Just like precedence,
associativity resolves the order of operations when two operators of the same precedence compete for
three operands:

2 ** 3 ** 4 # 2 ** (3 ** 4), or 2 ** 81, or approx 2.41le24

72 1 12 | 3 # (72 /1 12) | 3, or 6/3, or 2
30/ 6 * 3 # (30/6)*3, or 15

In the first case, the * * operator has right associativity, so the parentheses are implied on the right.
Comparatively, the* and/ operators have left associativity, yielding a set of implied parentheses on the
left.

2.4.4 Conversion Between Numbers and Strings

If you use a string value as an operand for a numeric operator (say, +), Perl automatically converts the
string to its equivalent numeric value, asif you had entered it as a decimal floating-point value.[7]
Trailing nonnumerics and leading whitespaces are politely and quietly ignored, so "123. 45f r ed" (with
aleading space) convertsto 123. 45 with nary awarning.[8] At the extreme, something that isn't a
number at all convertsto zero without warning (such asthe string f r ed used as a number).

[7] Hex and octal values are not supported in this automatic conversion. Use hex and oct to
interpret hex and octal values.

[8] Unless you turn on the - woption from the command line. which you should really
always do for safety's sake.

Likewise, if you give a numeric value when a string value is needed (for the string concatenate operator,
for example), the numeric value is expanded into whatever string would have been printed for that
number. For example, if you want to concatenate an X followed by the results of 4 multiplied by 5, you
can say thissimply as:

"X . (4 *5) # sanme as "X' . 20, or "X20"

(Remember that the parentheses force 4* 5 to be computed first, before considering the string
concatenation operator.)

In other words, you don't really have to worry about whether you have a number or a string (most of the
time). Perl performs al the conversions for you.

Previous: 2.3 Learning Perl on Win32 | Next: 2.5 Scalar Variables|
Strings Systems

2.3 Strings Book 2.5 Scalar Variables
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.4 Scalar Chapter 2 Next: 2.6 Scalar Operators
Operators Scalar Data and Functions

2.5 Scalar Variables

A variable is aname for a container that holds one or more values. The name of the variable is constant
throughout the program, but the value or values contained in that variable typically change over and over
again throughout the execution of the program.

A scalar variable holds a single scalar value (representing a number, a string, or areference). Scalar
variable names begin with adollar sign followed by aletter, and then possibly more letters, or digits, or
underscores.[9] Upper- and lowercase letters are distinct: the variable $A is a different variable from $a.

And al of the letters, digits, and underscores are significant, so:

[9] Limited to 255 characters, however. We hope that suffices.
$a very long variable that _ends in_ 1

isdifferent from:
$a _very long variable that _ends in_2

Y ou should generally select variable names that mean something regarding the value of the variable. For
example, $xyz 123 is probably not very descriptive, but $l i ne_| engt h is.

Previous: 2.4 Scalar Learning Perl on Win32 Next: 2.6 Scalar Operators
Operators Systems and Functions
2.4 Scalar Operators Book 2.6 Scalar Operators and
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.5 Scalar Chapter 2 Next: 2.7 <STDIN> as a
Variables Scalar Data Scalar Value

2.6 Scalar Operators and Functions

The most common operation on a scalar variable is assignment, which is the way to giveavalueto a
variable. The Perl assignment operator isthe equal sign (asin C or FORTRAN), which takes avariable
name on the left side and givesit the value of the expression on the right, like so:

$a = 17; # give $a the value of 17
$b = $a + 3; # give $b the current value of $a plus 3 (20)
$b = $b * 2; # give $b the value of $b multiplied by 2 (40)

Notice that the last line uses the $b variable twice: once to get its value (on the right side of the =), and
once to define where to put the computed expression (on the left side of the =). Thisislegal, safe, and in
fact, rather common. In fact, the practice is so common that we'll see in a minute that we can write this
expression using a convenient shorthand.

Y ou may have noticed that scalar variables are aways specified with the leading $. In batch files, Java,
or C, you don't need the $ at al. If you bounce back and forth alot, you'll find yourself typing the wrong
things occasionally. Thisis expected. (Our solution was to stop writing batch files and C programs, but
that may not work for you.)

Y ou may use ascaar assignment as avalue aswell as an operation, asin C. In other words, $a=3 hasa
value, just as $a+3 hasavalue. The value is the value assigned, so the value of $a=3 is 3. Although this
usage may seem odd at first glance, using an assignment as avalue is useful if you wish to assign an
intermediate value in an expression to a variable, or if you simply wish to copy the same value to more
than one variable. For example:

$b = 4 + ($a = 3); # assign 3 to $a, then add 4 to that

resulting in $b getting 7
$d = ($c = 5); # copy 5 into $c, and then also into $d
$d = $c = 5; # the sane thing w thout parentheses

That last example works because assignment is right-associative.

2.6.1 Binary Assignment Operators

Expressionslike$a = $a + 5 (inwhich the same variable appears on both sides of an assignment)
occur so frequently that Perl has a shorthand for the operation of altering a variable: the binary
assignment operator. Nearly all binary operators that compute a value have a corresponding binary

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

assignment form with an appended equal sign. For example, the following two lines are equivalent:

$a = $a + 5; # without the binary assignnment operator
$a += b5; # wth the binary assignnent operator

And so are these:
$b = $b * 3;
$b *= 3;

In each case, the operator causes the existing value of the variable to be altered in some way, not ssmply
overwriting the value with the result of some new expression.

Another common assignment operator is the string concatenate operator:

$str = $str . " "; # append a space to $str
$str .= " "; # sanme thing wth assi gnnent operator

Nearly all binary operators are valid in thisway. For example, araise to the power of operator iswritten
as**=,50,%a **= 3 means"raise the number in $a to the third power, placing the result back in
$a."

Like the simple assignment operator, each of these operators has a value as well: the new value of the
variable. For example:

$a = 3;

$b ($a += 4); # %a and $b are both now 7

2.6.2 Autoincrement and Autodecrement

Asif it weren't already easy enough to add one to $a by saying $a += 1, Perl goes one step further and
shortens even this method. The ++ operator (called the autoincrement operator) adds one to its operand,
and returns the incremented value, like so:

$a += 1; # with assignnent operator
++3a; # with prefix autoincrenment
$d = 17;

$e = ++%d; # $e and $d are both 18 now

Here, the ++ operator is being used as a prefix operator - that is, the operator appearsto the left of its
operand. Y ou may also use the autoincrement in a suffix form (to the right of its operand). In this case,
the result of the expression isthe old value of the variable before the variable isincremented. For
example:

$c 17;
$d $c++; # $d is 17, but $c i s now 18

Because the value of the operand changes, the operand must be areal scalar variable, not just an
expression. You cannot say ++16 to get 17, nor can you say ++($a+3$b) to somehow get one more
than the sum of $a and $b.

The autodecrement operator (- -) is sSimilar to the autoincrement operator, but subtracts one rather than
adding one. Like the autoincrement operator, the autodecrement operator has a prefix and suffix form.

For example:

$x = 12;
--$x; # $x is now 11
Py = $x--; # Py is 11, and $x is now 10

The autoincrement and autodecrement operators also work on floating-point values. So autoincrementing
avariablewith thevalue 4. 2 yields 5. 2 as expected.[10]

[10] Autoincrement even works on strings. See Programming Perl or perlop for related
information.

2.6.3 The chop() and chomp() Functions

A useful built-in functionischop() . This prefix function takes a single argument within its
parentheses - the name of a scalar variable - and removes the last character from the string value of that
variable. For example:

$x = "hello world";
chop($x); # $x is now "hello worl"

Note that the value of the argument is altered here, hence the requirement for a scalar variable, rather
than simply a scalar value. It would not make sense, for example, to writechop(' suey') to changeit
to' sue' , becausethereisno place in which to save the value. Besides, you could have just written
''sue' instead.

The value returned is the discarded character (the letter d inwor | d above). As aresult, the following
code is probably wrong:

$x = chop($x); # WRONG replaces $x with its last character
chop($x) ; # RI GHT: as above, renoves the |ast character

If you givechop() anempty string, it does nothing, returns nothing, and doesn't raise an error or even
whimper abit.[11] Most operationsin Perl have sensible boundary conditions; in other words, you can
use them right up to the edges (and beyond), frequently without complaint. Some have argued that thisis
one of Perl's fundamental flaws, while others write screaming programs without having to worry about
the fringes. Y ou decide which camp you wish to join.

[11] Unless you are using the sanity-saving - w switch.

When you chop a string that has already been chopped, another character disappears off into "bit
heaven." For example:

$a = "hello world\n";
chop $a; # $a is now "hello world"
chop $a; # oops! $a is now "hello worl"

If you're not sure whether the variable has a newline on the end, you can use the dlightly safer chonp()
function, which removes only a newline character,[12] like so:

[12] Or whatever the input record separator $\ is set to.

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

$a = "hello world\n";
chonp ($a); # $a is now "hello worl d"
chonmp (%$a); # aha! no change in $a

2.6.4 Interpolation of Scalars into Strings

When a string literal is double quoted, it is subject to variable interpolation (besides being checked for
backslash escapes). This means that the string is scanned for possible scalar variable[13] names - namely,
adollar sign followed by letters, digits, and underscores. When avariable referenceisfound, it is
replaced with its current value (or an empty string if the variable has not yet been assigned a value). For
example:

[13] The string is actually scanned for array variables as well, but we won't know about
those until Chapter 3, Arrays and List Data.

$a = "fred";
$b = "sone text %$a"; # $b is now "sone text fred"
$c = "no such vari abl e $what"; # $c is "no such variable "

The text that replaces the variable is not rescanned; even if there are dollar signs in the replaced value, no
further replacement occurs:

$x = "$fred'; # literally a dollar sign followed by "fred"
$y = "hey $x"; # value is 'hey $fred' : no double substitution

To prevent the substitution of avariable with its value, you must either alter that part of the string so that
It appears in single quotes, or precede the dollar sign with a backslash, which turns off the dollar sign's
special significance:

$fred = "hi';
$barney = "a test of " . "$fred ;# literally: "a test of $fred
$barney2 = "a test of \$fred”; # sane thing

The variable name will be the longest possible variable name that makes sense at that part of the string.
This can be a problem if you want to follow the replaced value immediately with some constant text that
begins with aletter, digit, or underscore. As Perl scans for variable names, it would consider those
characters to be additional hame characters, and this result is not what you want. Perl provides a
delimiter for the variable name. Simply enclose the name of the variable in a pair of curly braces. Or, you
can end that part of the string and start another part of the string with a concatenation operator:

$fred = "pay"; $fredday = "wong!";

$barney = "It's $fredday”; # not payday, but "It's wong!"
$barney = "It's ${fred}day"”; # now, $barney gets "It's payday"
$barney2 = "It's $fred"."day"; # another way to do it

$barney3 = "It's " . $fred . "day"; # and anot her way

Y ou can use the case-shifting string escapes to alter the case of |etters that are brought in with variable
interpolation.[14] For example:

[14] You may findtheuc, ucfirst,l c,andl cfi r st operatorseasier to use.

$bigfred = "\ Ufred";
$fred = "fred”;
$capfred = "\ u$fred”;
$barney = "\ LBARNEY";
$capbarney = "\ u\ LBARNEY";
$bi gbar ney = "BARNEY";

$bigfred = "\ Usfred";

$capbarney = "\ u\L$bi gbarney";

$bigfred is "FRED

sane thing

$capfred is "Fred"

$barney is now "barney"

$capbarney is now "Barney"
sane

Asyou can see, the case-shifting string escapes are remembered within a string until they are used, so
even though the first letter of BARNEY doesn't follow the\ u, it remains uppercase because of the\ u.

The term variable interpolation is often used interchangeably with double-quote interpolation, because
strings that are double quoted are subject to variable interpolation. So too, are backquoted strings, as

described in Chapter 14.

Previous: 2.5 Scalar

Learning Perl on Win32

Next: 2.7 <STDIN> as a
Scalar Value

Variables Systems
2.5 Scalar Variables Book
Index

2.7 <STDIN> asa Scalar
Vaue

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.6 Scalar Chapter 2 | Next: 2.8 Output with print]|
Operators and Functions Scalar Data

2.7 <STDIN> as a Scalar Value

At thispoint, if you're atypical code hacker, you're probably wondering how to get a value into a Perl
program. Here's the simplest way. Each time you use <STDI N> in a place where ascalar value is
expected, Perl reads the next complete text line from standard input (up to the first newline), and uses
that string as the value of <STDI N>. Standard input can mean many things, but unless you do something
odd, it means the command consol e that invoked your program. If there's nothing waiting to be read
(typically the case, unless you type ahead a complete line), the Perl program will stop and wait for you to
enter some characters followed by a newline (return).

The string value of <STDI N> typically has a newline on the end of it. Most often, you'll want to get rid
of that newline right away (there's abig difference between hel | o and hel | o\ n). It isat this point that
our friend, thechonp() function, comes to the rescue. A typical input sequence goes something like
this:

$a = <STDI N>; # get the text

chomp($a) ; # get rid of that pesky newine

A common abbreviation for these two linesis:
chonmp($a = <STDI N>) ;

The assignment inside the parentheses continues to refer to $a, even after it has been given a value with
<STDI N>. Thus, thechonp() functionisworking on $a. (Thisistruein general about the assignment
operator - an assignment expression can be used wherever avariable is needed, and the actions refer to
the variable on the left side of the equal sign.)

Previous: 2.6 Scalar Learning Perl on Win32 [Next: 2.8 Output with print]|
Operators and Functions Systems
2.6 Scalar Operators and Book 2.8 Output with print
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.7 <STDIN> as a Chapter 2 Next: 2.9 The Undefined
Scalar Value Scalar Data Value

2.8 Output with print

So, we get things in with <STDI N>. How do we get things out? With the pri nt () function. This
function takes the values within its parentheses and puts them out without any embellishment onto
standard output. Once again, unless you've done something odd, thiswill be your command console. For
example:

print("hello world\n"); # say hello world, followed by newine
print "hello world\n"; # sane thing

Note that the second example shows the form of pri nt () without parentheses. In fact, many of the
operators that ook like functions also have a syntactic form that works without the parentheses. Whether
or not to use the parentheses is mostly a matter of style and typing agility, although there are afew cases
where you'll need the parentheses to remove ambiguity.

WEe'll see that you can actually give pri nt alist of values, in the "Using print for Normal Output”
section of Chapter 6, but we haven't talked about lists yet, so we'll put that discussion off until later.

Previous: 2.7 <STDIN> as a Learning Perl on Win32 Next: 2.9 The Undefined
Scalar Value Systems Value
2.7 <STDIN> as a Scalar Book 2.9 The Undefined Vaue
Value Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.8 Output with Chapter 2 Next: 2.10
print Scalar Data Exercises

2.9 The Undefined Value

What happens if you use a scalar variable before you give it avalue? Nothing serious, and definitely
nothing fatal. Variables have the undef value before they arefirst assigned. This value looks like a zero
when used as a number, or the zero-length empty string when used as a string. Y ou will get awarning
when running under Perl's - wswitch, though, which is a good way to catch programming errors.

Many operators return undef when the arguments are out of range or don't make sense. If you don't do
anything special, you'll get azero or anull string without major consequences. In practice, this scenario
is hardly a problem.

One operation we've seen that returnsundef under certain circumstancesis <STDI N>. Normally, this
returns the next line that was read; however, if there are no more lines to read, (such as when you type
CTRL-Z at theterminal, or when afile has no more data), <STDI N> returnsundef asavalue. In
Chapter 6, we'll see how to test for this and take specia action when there is no more data available to

read.

Previous: 2.8 Output with Learning Perl on Win32 Next: 2.10
print Systems Exercises
2.8 Output with print Book 2.10 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.9 The Undefined Chapter 2 Next: 3. Arrays
Value Scalar Data and List Data

2.10 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that computes the circumference of acirclewith aradiusof 12. 5. The
circumferenceis ol[eil mes the radius, or about 2 times 3. 141592654.

2. Modify the program from the previous exercise to prompt for and accept a radius from the person
running the program.

3. Write a program that prompts for and reads two numbers, and then prints out the result of the two
numbers multiplied together.

4. Write a program that reads a string and a number, and then prints the string the number of times
indicated by the number on separate lines. (Hint: use the x operator.)

Previous: 2.9 The Undefined Learning Perl on Win32 Next: 3. Arrays
Value Systems and List Data
2.9 The Undefined Value Book 3. Arraysand List Data
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 2.10 Chapter 3 Next: 3.2 Literal
Exercises Representation

3. Arrays and List Data

Contents:
What Isalist or Array?

Literal Representation
Variables

Array Operators and Functions
Scalar and List Context
<STDIN> asan Array

Variable Interpolation of Arrays
Exercises

3.1 What Is a List or Array?

A listisan ordered set of scalar data. An array isavariable that holds alist. Each element of the array is
a separate scalar variable with an independent scalar value. These values are ordered - that is, they have a
particular sequence from the lowest to the highest element.

Arrays can have any number of elements. The smallest array has no elements, while the largest array can
fill all of available memory. Once again, thisflexibility isin keeping with Perl's philosophy of "no
unnecessary limits."

Previous: 2.10 Learning Perl on Win32 Next: 3.2 Literal
Exercises Systems Representation
2.10 Exercises Book 3.2 Literal Representation
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 3.1 What Is a List C_hapti.?, Next: 3.3
or Array? Arraysand List Data Variables

3.2 Literal Representation

A list literal (the way you represent the value of alist within your program) consists of comma-separated
values enclosed in parentheses. These values form the elements of the list. For example:

(1, 2,3) # array of three values 1, 2, and 3
("fred",4.5) # two values, "fred" and 4.5

The elements of alist are not necessarily constants - they can be expressions that will be evaluated newly
each time the literal is used. For example:

(%a, 17) # two val ues: the current value of $a, and 17
($b+$c, $d+$e) # two val ues

The empty list (one of no elements) is represented by an empty pair of parentheses:
() # the enpty list (zero el enents)

Anitem of thelist literal can include the list constructor function, indicated by two scalar values
separated by two consecutive periods. This function creates alist of values starting at the left scalar value
and continuing up through the right scalar value, incrementing by one at each value. For example:
(1..5) # sane as (1, 2, 3, 4, 5)

(1.2..5.2) # sanme as (1.2, 2.2, 3.2, 4.2, 5.2)

(2..6,10,12) # sane as (2,3,4,5,6, 10, 12)

(%a. . $b) # range determ ned by current values of $a and $b

Having the right scalar less than the left scalar resultsin an empty list; you can't count down by switching
the order of the values. If the final value is not awhole number of steps above theinitial value, the list
stops just before the next value would have been outside the range:

(1.3..6.1) # sane as (1.3,2.3,3.3,4.3,5.3)

List literals with lots of short text strings start to look pretty noisy with all the quotes and commas:

@ = ("fred","barney","betty","wlm"),; # ugh!

Fortunately, Perl has a shortcut: the "quote-word" syntax, which creates alist from the nonwhitespace
parts between the parentheses:

@ gwMm fred barney betty wilnma); # better!

@ = gqw
fred

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

bar ney
betty
wi | ma
); # sane thing

Oneuseof alist literal isasargumentsto thepri nt () function introduced earlier. Elements of the list
are printed out without any intervening whitespace:
print("The answer is ",%a,"\n"); # three elenent literal array

This statement prints"The answer i s" followed by a space, the value of $a, and a newline. Stay
tuned for other usesfor list literals.

Previous: 3.1 What Is a List Learning Perl on Win32 Next: 3.3
or Array? Systems Variables
3.1 What Isalistor Array? Book 3.3 Variables
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 3.2 Literal Chapter 3 Next: 3.4 Array Operators
Representation Arraysand List Data and Functions

3.3 Variables

An array variable holds asingle list value (zero or more scalar values). Array variable names are similar
to scalar variable names, differing only in theinitial character, which isan at sign (@ rather than a dollar
sign ($). For example:

@red # the array variable @red

@A Very Long Array Vari abl e_Nane

@A Very Long Array Variable Nane that is different

Note that the array variable @ r ed is unrelated to the scalar variable $f r ed. Perl maintains separate
namespaces for different types of things.

The value of an array variable that has not yet been assigned is () , the empty list.

An expression can refer to array variables as awhole, or it can examine and modify individual elements
of the array.

Previous: 3.2 Literal Learning Perl on Win32 Next: 3.4 Array Operators
Representation Systems and Functions
3.2 Literal Representation Book 3.4 Array Operators and
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

J»Leaming Perl on Win32 Systems

Previous: 3.3 C_haw Next: 3.5 Scalar and List
Variables Arraysand List Data Context

3.4 Array Operators and Functions

Array functions and operators act on entire arrays. Some return alist, which can then either be used as a
value for another array function, or assigned into an array variable.

3.4.1 Assignment

Probably the most important array operator is the array assignment operator, which gives an array
variable avalue. It isan equal sign, just like the scalar assignment operator. Perl determines whether the
assignment is a scalar assignment or an array assignment by noticing whether the assignment isto a scalar
or an array variable.[1] For example:

[1] Thisappliesto scalar or array "lvalues' as well asto simple variables.

@red = (1,2,3); # The fred array gets a three-elenent literal
@arney = @red; # nowthat is copied to @arney

If you assign a scalar value to an array variable, the scalar value becomes the single element of an array:

@uh =1; # 1 is pronoted to the list (1) automatically
that is, @uh nowis (1)

An array variable name may appear in alist-literal list. When the value of the list is computed, Perl
replaces the array variable name with the current values of the array, like so:

@red = qwm one two);
@arney = (4,5, @red,6,7); # @arney becones
(4,5,"one","two", 6,7)
@ar ney = (8, @arney); # puts 8 in front of @arney
@arney = (@arney,"last"); # and a "last" at the end
@arney is now (8,4,5,"one","tw",6,7,"last")

Note that the inserted array elements are at the same level astherest of the literals: alist cannot contain
another list as an element.[2]

[2] Although alist referenceis permitted as alist element, it's not really alist asalist
element. Still, it works out to nearly the same thing, allowing for multidimensional arrays.
See Chapter 4 of Programming Perl or perllol for more details.

If alist literal contains only variable references (not expressions), you can treat the list literal asa

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch04_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

variable. In other words, you can use it on the left side of an assignment. Each scalar variablein the list
literal takes on the corresponding value from the list on the right side of the assignment. For example:

($a, $b, $c) = (1,2, 3); # give 1 to $a, 2 to $b, 3 to $c

($a, $b) = ($b, $a); # swap $a and $b

($d, @red) = (%a,3b,$c); # give $a to $d, and ($b,$c) to @red
($e, @red) = @red; # renove the first element of @red to $e

this makes @red = ($c) and $e = $b

If the number of elements you assign does not match the number of variables to hold the values, any
excess values (on the right side of the equal sign) are silently discarded, and any excess variables (on the
left side of the equal sign) are given the value of undef .

An array variable appearing in the array literal list must be last, because the array variable is "greedy" and
consumes all remaining values. (Well, you could put other variables after it, but they would just get
undef values))

If you assign an array variable to a scalar variable, the number assigned is the length of the array, asin:

@red = (4,5,6); # initialize @red
$a = @red; # $a gets 3, the current length of @red

The length is aso returned whenever you use an array variable name where a scalar value is needed. (In
the section "Scalar and List Context" later in this chapter, we'll see that this method is called using the
array namein ascalar context.) For example, to get one less than the length of the array, you can use
@ r ed- 1, because the scalar subtraction operator wants scalars for both of its operands. Notice the
following:

$a = @red; # $a gets the length of @red
($a) = @red; # $a gets the first elenent of @red

Thefirst assignment is a scalar assignment, and so @ r ed istreated as ascalar, yielding itslength. The
second assignment is an array assignment (even if only one value is wanted), and thus yields the first
element of @ r ed, silently discarding all the rest.

The value of an array assignment isitself alist value, and can be cascaded as with scalar assignments. For
example:

@red
@red

(@arney = (2,3,4)); # @red and @arney get (2, 3,4)
@arney = (2, 3,4); # sane thing

3.4.2 Array Element Access

So far, we've been treating the array as awhole, adding and removing values by doing array assignments.
Many useful programs are constructed using arrays without ever accessing any specific array element.
However, Perl provides atraditional subscripting operator to access an array element by numeric index.

For the subscripting operator, the array elements are numbered using sequentia integers, beginning at
0,[3] and increasing by 1 for each element. The first element of the @ r ed array is accessed as

$f r ed[O] . Note that the @on the array name becomes a$ on the element reference. Thisis because
accessing an element of the array identifies a scalar variable (part of the array), which can either be

assigned to or have its current value used in an expression, like so:

[3] You can change the index value of the first element to something else (like 1). However,
doing so has drastic effects, will probably confuse people maintaining your code, and might
break the routines you take from other people. Thus, we highly recommend that you consider
this feature unusable.

@red = (7,8,9);

$b = $fred[0]; # give 7 to $b (first elenment of @red)

$fred[0] =5, # now @red = (5,8,9)

Other elements can be accessed with equal ease, asin:

$c = $fred[1]; # give 8 to $c
$f red[2] ++; # increnment the third elenent of @red
$fred[1] += 4; # add 4 to the second el enent

($fred[0],$fred[1]) = ($fred[1],$fred[0]); # swap the first two

Accessing alist of elements from the same array (as in the previous example) is called a slice, and occurs
often enough so that a special representation exists for it:

@red[0, 1] # same as ($fred[0], $fred[1])

@red[0,1] = @red[1,0] # swap the first two elenents
@red[0,1,2] = @red[1,1, 1] # make all 3 elenents |ike the 2nd
@red[1,2] = (9,10); # change the last two values to 9 and 10

Note that this slice uses an @prefix rather than a$. Thisis because you are creating an array variable by
selecting part of the array rather than a scalar variable accessing just one element.

Slices al'so work on literal lists, or any function that returns alist value:

@ho = (gMfred barney betty wlm))|[2, 3];

like @ = gMfred barney betty wilm); @ho = @[2, 3];

The index values in these examples have been literal integers, but the index can aso be any expression
that returns a number, which is then used to select the appropriate element:

@red = (7,8,9);

$a = 2;
$b = $fred| $a] ; # like $fred[2], or the value of 9
$c = $fred[$a-1]; # $c gets $fred[1], or 8

($c) = (7,8,9)[$a-1]; # sane thing using slice
Perl programs can thus have array accesses similar to many traditional programming languages.

Thisidea of using an expression for the subscript aso works for slices. Remember, however, that the
subscript for adliceisalist of values, so the expression is an array expression, rather than a scalar
expression. For example:

@red = (7,8,9); # as in previous exanple

@arney = (2,1,0);

@ackfred = @red[@ar ney];

same as @red[2,1,0], or ($fred[2],$fred[1],$fred[0]), or

(9,8,7)

If you access an array element beyond the ends of the current array (that is, an index of lessthan O or
greater than the last element's index), the undef valueis returned without warning. For example:
@red = (1, 2,3);

$barney = $fred[7]; # $barney is now undef

Assigning a value beyond the end of the current array automatically extends the array (giving a value of
undef to al intermediate values, if any). For example:

@red = (1, 2,3);
$f red[3] "hi"; # @red is now (1,2,3,"hi")
$f red[6] "ho"; # @red is now (1, 2,3,"hi",undef, undef, "ho")

Assignment to an array element with a subscript of lessthan O isafatal error, because it is probably the
result of Very Bad Programming Style.

You can use $#f r ed to get the index value of the last element of @ r ed. You can even assign to this
value to change the apparent length of @ r ed, making it grow or shrink, but such an assignment is
generally unnecessary, because the array grows and shrinks automatically.

A negative subscript on an array counts back from the end. So, another way to get at the last element is
with the subscript -1. The second to the last element would be -2, and so on. For example:

@red = ("fred", "wlm", "pebbles", "dino");

print $fred[-1]; # prints "dino"
print $#fred; # prints 3
print $fred[$#fred]; # prints "dino"

3.4.3 The push and pop Functions

One common use of an array is as a stack of information, where new values are added to and removed
from the right-hand side of the list. These operations occur often enough to have their own special
functions:

push(@yl ist, $newalue); # like @vylist = (@vylist, $newal ue)
$ol dval ue = pop(@rylist); # renoves the last elenment of @ylist

Thepop() function returnsundef if given an empty list, rather than doing something un-Perl-like such
as complaining or generating a warning message.

The push() function also accepts alist of values to be pushed. The values are pushed together onto the
end of the list. For example:

@wylist = (1,2,3);
push(@wylist,4,5,6); # @wvylist = (1,2,3,4,5,6)

Note that the first argument must be an array variable name - pushing and popping wouldn't make sense
on aliteral list.

3.4.4 The shift and unshift Functions

The push and pop functions do thingsto the "right" side of alist (the portion with the highest
subscripts). Similarly, theunshi ft and shi ft functions perform the corresponding actions on the
"left" side of alist (the portion with the lowest subscripts). Here are afew examples.

unshift(@red, $a); # like @red = ($a, @red);
unshift(@red, $a, $b, $c); # like @red = ($a, $b, $c, @red);
$x = shift(@red); # like ($x, @red) = @red;
with sone real values
@red = (5,6,7);
unshift(@red, 2, 3,4),; # @red is now (2,3,4,5,6,7)
$x = shift(@red); # $x gets 2, @red is now (3,4,5,6,7)

Aswith pop(),shi ft () returnsundef if you giveit an empty array variable.

3.4.5 The reverse Function

Ther ever se function reverses the order of the elements of its argument, returning the resulting list. For
example:

@ = (7,8,9);
@ = reverse(@); # gives @ the value of (9,8,7)
@ = reverse(7,8,9); # same thing

Note that the argument list is unaltered; ther ever se() function works on acopy. If you want to
reverse an array "in place," you'll need to assign it back into the same variable:

@ = reverse(@); # give @ the reverse of itself

3.4.6 The sort Function

Thesort function takesits arguments, and sorts them asif they were single strings in ascending ASCI|
order. It returns the sorted list, without altering the original list. For example:

@ = sort("small","mediun', "l arge");

@& gets "large", "nmediun', "smal | "
@ = (1,2,4,8,16,32,64);
@ =sort(@); # @ gets 1,16,2,32,4,64,8

Note that sorting numbers does not happen numerically, but by the string values of each number (1, 16,
2,32, and so on). In the section "Advanced Sorting" in Chapter 15, Other Data Transformation, you'll
learn how to sort numerically, in descending order, by the third character of each string, or by any other
method that you choose.

3.4.7 The chomp Function

The chonp function works on an array variable aswell as a scalar variable. Each element of the array has
its last newline removed. This function can be handy when you've read alist of lines as separate array
elements, and you want to remove a newline from all of the lines at once. For example:

@tuff = ("hello\n","worl d\n", "happy days");
chomp(@tuff); # @tuff is now ("hello","world", "happy days")

Previous: 3.3 Learning Perl on Win32 Next: 3.5 Scalar and List
Variables Systems Context
3.3 Variables Book 3.5 Scalar and List Context
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 3.4 Array Operators Chapter 3 ter. 3 Next: 3.6 <STDIN> as an
and Functions Arraysand List Data Array

3.5 Scalar and List Context

Asyou can see, each operator is designed to operate on some specified combination of scalars or lists,
and returns either ascalar or alist. If an operator or function expects an operand to be a scalar, we say
that the operand or argument is being evaluated in a scalar context. Similarly, if an operand or argument
isexpected to be alist value, we say that it is being evaluated in alist context.

Normally, the context is fairly insignificant. But, sometimes you get a completely different operation
depending on whether you are within a scalar or alist context. For example, @ r ed returns the contents
of the @ r ed array in alist context, but the length of the same array in a scalar context. These subtleties
are mentioned when each operator and function is described.

A scalar value used within an array context is promoted to a single-element array.

Previous: 3.4 Array Operators Learning Perl on Win32 Next: 3.6 <STDIN> as an
and Functions Systems Array
3.4 Array Operators and Book 3.6 <STDIN> asan Array
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 3.5 Scalar and List Ch ter. 3 Next: 3.7 Variable
Context Arraysand List Data Interpolation of Arrays

3.6 <STDIN> as an Array

One previously seen operation that returns a different value in alist context is<STDI N>. As described
earlier, <STDI N> returns the next line of input in a scalar context. However, in alist context, it returns
all of the remaining lines up to the end-of-file. Each lineis returned as a separate element of the list. For
example:

@ = <STDIN>; # read standard input in a |ist context

If the person running the program types three lines, then hits CTRL-Z (to indicate end-of-file), the array
ends up with three elements. Each element will be a string that ends in a newline, corresponding to the
three newline-terminated lines entered.

Previous: 3.5 Scalar and List Learning Perl on Win32 Next: 3.7 Variable
Context Systems Interpolation of Arrays
3.5 Scalar and List Context Book 3.7 Variable Interpolation of
Index Arrays

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 3.6 <STDIN> as an Chapter 3 Next: 3.8
Array Arraysand List Data Exercises

3.7 Variable Interpolation of Arrays

Like scalars, array values may be interpolated into a double-quoted string. A single element of an array
will be replaced by its value, like so:

@red = ("hello","dolly");

Sy = 2;
$x = "This is $fred[1]'s pl ace"; # "This is dolly's place"
$x = "This is $fred[$y-1]'s place"; # sane thing

Note that the index expression is evaluated as an ordinary expression, asif it were outside astring. It is
not variable interpolated first.

If you want to follow asimple scalar variable reference with aliteral left square bracket, you need to
delimit the square bracket so it isn't considered part of the array, as follows:

@red = ("hello","dolly"); # give value to @red for testing
$fred = "right";
we are trying to say "this is right[1]"

$x = "this is $fred[1]"; # wrong, gives "this is dolly"
$x = "this is ${fred}[1]"; # right (protected by braces)
$x = "this is $fred"."[1]"; # right (different string)

$x = "this is $fred\[1]"; # right (backslash hides it)

Similarly, alist of values from an array variable can be interpolated. The ssmplest interpolation isan
entire array, indicated by giving the array name (including its leading @character). In this case, the
elements are interpolated in sequence with a space character between them, asin:
@red = ("a","bb","ccc", 1,2, 3);
$all = "Now for @red here!";

%all gets "Now for a bb ccc 1 2 3 here!”

Y ou can also select aportion of an array with adlice:
@red = ("a","bb","ccc", 1, 2,3);

$all = "Now for @red[2,3] herel";
$all gets "Now for ccc 1 here!"
$all = "Now for @red[@red[4,5]] here!"; # sanme thing

Once again, you can use any of the quoting mechanisms described earlier if you want to follow an array

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

name reference with aliteral left bracket rather than an indexing expression.

Previous: 3.6 <STDIN> as an Learning Perl on Win32 Next: 3.8
Array Systems Exercises
3.6 <STDIN> asan Array Book 3.8 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 3.7 Variable
Interpolation of Arrays

Chapter 3
Arraysand List Data

| Next: 4. Control Structures|

3.8 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that reads alist of strings on separate lines and prints out the list in reverse order.
If you're reading the list from the console, you'll probably need to delimit the end of the list by

pressing CTRL-Z.

2. Write aprogram that reads a number and then alist of strings (all on separate lines), and then
prints one of the lines from the list as selected by the number.

3. Write aprogram that reads a list of strings and then selects and prints arandom string from the list.
To select arandom element of @ onear r ay, put

srand;

at the beginning of your program (thisinitializes the random number generator), and then use
rand(@onearr ay)

where you need a random value between 0 and 1 less than the length of @onearr ay.

Previous: 3.7 Variable
Interpolation of Arrays

3.7 Variable Interpolation of
Arrays

Learning Perl on Win32
Systems

Book
Index

| Next: 4. Control Structures|

4. Control Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 3.8 Chapter 4 Next: 4.2 The if/unless
Exercises Statement

4. Control Structures

Contents:
Statement Blocks

The if/unless Statement

The while/until Statement
Thedo {} while/until Statement
Thefor Statement

The foreach Statement
Exercises

4.1 Statement Blocks

A statement block is a sequence of statements, enclosed in matching curly braces. It looks like this:

{

first_statenent;
second_st at enent ;
third_statenent;

| ast _st at enent ;

}

Perl executes each statement in sequence, from the first to the last. (Later, I'll show you how to alter this
execution sequence within ablock, but thisis good enough for now.)

Syntactically, ablock of statementsis accepted in place of any single statement, but the reverse is not
true.

The final semicolon on the last statement is optional. Thus, you can speak Perl with a C-accent
(semicolon present) or Pascal-accent (semicolon absent). To make adding more statements at a later time
easier, we usually suggest omitting the semicolon only when the block is all on one line. Contrast these
twoi f blocksfor examples of the two styles:

i f ($ready) { $hungry++ }
if ($tired) {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

$sl eepy = (Shungry + 1) * 2;

}
Previous: 3.8 Learning Perl on Win32 Next: 4.2 The if/lunless
Exercises Systems Statement
3.8 Exercises Book 4.2 The if/unless Statement

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 4.1 Statement Chapter 4 Next: 4.3 The while/until
Blocks Control Structures Statement

4.2 The if/funless Statement

Next up in order of complexity isthei f statement. This construct takes a control expression (evaluated
for its truth) and a block. It may optionally have an else followed by a block aswell. In other words, it
looks like this:
i f (sone_expression) {

true_statenent 1,

true_statenent 2;

true_statenent 3;
} else {

fal se_statenent 1;

fal se_statenment 2;

fal se_statenent 3;

}

(If you're a C or Java hacker, you should note that the curly braces are required. This eliminates the need
for a"confusing dangling else" rule.)

During execution, Perl evaluates the control expression. If the expression is true, the first block (the
t rue_st at enent statements above) is executed. If the expression is false, the second block (the
fal se_st at enent statements above) is executed instead.

But what constitutes true and false? In Perl, the rules are slightly weird, but they give you the expected
results. The control expression is evaluated for a string value in scalar context (if it's already a string, no
change is made; but if it'sanumber, it is converted to astring[1]). If this string is either the empty string
(with alength of zero) or astring consisting of the single character O (the digit zero), then the value of
the expression is false. Anything else is true automatically. Why such funny rules? Because they
facilitate branching on an emptyish versus nonempty string, as well as on a zero versus nonzero number,
without having to create two versions of interpreting true and false values. Here are some examples of
true and false interpretations:

[1] Internally, thisisn't quitetrue. But it acts asif thisiswhat it does.

converts to "0", so false

conputes to O, then converts to "0", so fal se
converts to "1", so true

enpty string, so false

HHHH

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

A # not "" or "0", so true

" 00" # not "" or "0", so true (this one is weird, watch out)
"“0.000" # also true for the sane reason and war ni ng
undef # evaluates to "", so fal se

Practically speaking, interpretation of values as true or falseisfairly intuitive. Don't et us scare you.

Here's an example of acompletei f statement:

print "how old are you? ";
$a = <STDI N>;
chomp($a) ;
if ($a < 18) {
print "So, you're not old enough to vote, eh?\n";
} else {
print "Ad enough! Cool! So go vote!\n";
$voter++; # count the voters for later

}

Y ou can omit the el se block, leaving just athen part, asin:

print "how old are you? ";
$a = <STDI N>;
chonp($a);
if ($a < 18) {
print "So, you're not old enough to vote, eh?\n";
}

Sometimes, you want to leave off the then part and have just an el se part, because saying "do that if
thisisfalse," ismore natural than saying "do that if not thisistrue." Perl handles this case with the
unl ess variation:

print "how old are you? ";

$a = <STDI N>;

chonp($a) ;

unl ess ($a < 18) {
print "Ad enough! Cool! So go vote!\n";
$vot er ++;

}

Replacing i f withunl ess isin effect saying, "If the control expressionisfalse, do..." (Anunl ess
can also haveanel se, just likeani f)

If you have more than two possible choices, add anel si f branchtothei f statement, like so:
I f (sonme_expression_one) {

one_true_statenent 1;

one true_statenent 2;

one_true_statenent 3;
} elsif (sone_expression_two) {

two _true_statenent 1,

two_true_statenent 2;
two_true_statenent _3;

} elsif (sone_expression_three) {
three true_statenent 1;
three_true_statenent 2,
three_true_statenent 3;

} else {
all false statenent 1;
all fal se_statenent 2;
all fal se _statenent 3;

}

Each expression (here, sone_expr essi on_one, sone_expr essi on_t wo, and
sone_expressi on_t hr ee) iscomputed in turn. If an expression is true, the corresponding branch is
executed, and all remaining control expressions and corresponding statement blocks are skipped. If all
expressions are false, the el se branch is executed (if thereisone). You don't haveto havean el se
block, but having one is always a good idea. Y ou may have as many el si f branches as you wish.

Previous: 4.1 Statement Learning Perl on Win32 Next: 4.3 The while/until
Blocks Systems Statement
4.1 Statement Blocks Book 4.3 The while/until Statement
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 4.2 The if/unless Chapter 4 Next: 4.4 The do {} while/until
Statement Control Structures Statement

4.3 The while/until Statement

No programming language would be complete without some form of iteration[2] (repeated execution of a
block of statements). Perl can iterate using the whi | e statement:

[2] That'swhy HTML is not a programming language.
whil e (sone_expression) {
statenent 1,
statenent 2,
statenent 3;

}

To execute thiswhi | e statement, Perl evaluates the control expression (sone_expr essi on inthe
example). If its value is true (using Perl's notion of truth), the body of thewhi | e statement is evaluated
once. This step is repeated until the control expression becomes false, at which point Perl goes on to the
next statement after thewhi | e | oop. For example:

print "how old are you? ";

$a = <STDI N>;

chonp($a) ;

while ($a > 0) {
print "At one tine, you were $a years old.\n";
$a- -;

}

Sometimes it is easier to say "until something istrue" rather than "while not thisistrue." Once again,
Perl has the answer. Replacing thewhi | e withunt i | yieldsthe desired effect:

until (sone_expression) {
st at ement _1;
st at enent _2;
st at enent _3;

}

Note that in both thewhi | e andunt i | forms, the body statements will be skipped entirely if the
control expression is the termination value to begin with. For example, if a user enters an age less than
zero for the program fragment above, Perl skips over the body of the loop.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Sometimes the control expression never letsthe loop exit. This caseis perfectly legal, and sometimes
desired, and is thus not considered an error. For example, you might want a loop to repeat as long as you
have no error, and then have some error handling code following the loop. Y ou might use thisfor a
program that is meant to run until the system terminates.

Previous: 4.2 The if/unless Learning Perl on Win32 Next: 4.4 The do {} while/until
Statement Systems Statement
4.2 Theif/unless Statement Book 4.4 Thedo {} while/until
Index Statement

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 4.3 The while/until Chapter 4 Next: 4.5 The
Statement Control Structures for Statement

4.4 The do {} while/until Statement

Thewhi | e/ unti | statement you saw in the previous section tests its condition at the top of every
loop, before the loop is entered. If the condition was aready false to begin with, the loop won't be
executed at all.

But sometimes you don't want to test the condition at the top of the loop. Instead, you want to test it at
the bottom. To fill this need, Perl providesthedo {} whi | e statement, which isjust like the regular
whi | e[3] statement except that it doesn't test the expression until after executing the loop once. For

example:

[3] WEell, this statement is not quite true; the loop control directives explained in Chapter 9,
Miscellaneous Control Structures, don't work for the bottom-testing form.

do {
statenent _1;
statenent 2,
st at enent _3;

} while (sone_expression);

Perl executes the statements in the do block. When it reaches the end, it evaluates the expression for
truth. If the expression is false, the loop is done. If it's true, then the whole block is executed one more
time before the expression is once again checked.

Aswith anormal whi | e loop, you can invert the sense of the test by changingdo {} whi | e todo {}
unti | . Theexpressionisstill tested at the bottom, but its senseis reversed. For some cases, especially
compound ones, thisis the more natural way to write the test:
$stops = O;
do {

$st ops++;

print "Next stop? ";

chonp($l ocati on = <STDI N>) ;
} until $stops > 5 || $location eq 'hone';

Previous: 4.3 The while/until Learning Perl on Win32 Next: 4.5 The
Statement Systems for Statement

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

4.3 The while/until Statement Book 4.5 The for Statement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 4.4 The do {} Chapter 4 Next: 4.6 The foreach
while/until Statement Control Structures Statement

4.5 The for Statement

Another Perl iteration construct isthe f or statement, which looks suspiciously like C's or Javasf or
statement, and works roughly the same way. Hereit is:
for (initial _exp; test_exp; re-init_exp) {

statenent _1;

statenent 2,

st at enent _3;

}

Unraveled into forms we've seen before, this construct turns out as:
i nitial _exp;
while (test _exp) {

statenent _1;

statenent 2,

st at enent _3;

re-init_exp;

}

In either case, thei ni ti al _exp expression isevaluated first. This expression typically assigns an
initial value to an iterator variable, but there are no restrictions on what it can contain; in fact, it may
even be empty (doing nothing). Thenthet est _exp expression is evaluated for truth or falsehood. If
the valueistrue, the body is executed, followed by ther e-i ni t _exp (typicaly, but not solely, used to
increment the iterator). Perl then reevaluatesthet est _exp, repeating as necessary.

This example prints the numbers 1 through 10, each followed by a space:
for ($i =1; $i <= 10; $i++) {

print "$i ";
}

Initialy, the variable $i isset to 1. Then, thisvariable is compared with 10, which it isindeed less than
or equal to. The body of the loop (the single pri nt statement) is executed, and then the re-init
expression (the autoincrement expression $i ++) is executed, changing the valuein $i to 2. Because this
valueis still lessthan or equal to 10, we repeat the process until the last iteration in which the value of 10
in$i getschanged to 11. The value is then no longer less than or equal to 10, so the loop exits (with $i
having avalue of 11).

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: 4.4 The do {} Learning Perl on Win32 Next: 4.6 The foreach
while/until Statement Systems Statement
4.4 Thedo {} while/until Book 4.6 The foreach Statement
Statement Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 4.5 The for Chapter 4 Next: 4.7
Statement Control Structures Exercises

4.6 The foreach Statement

Y et another iteration construct isthe f or each statement. This statement takes alist of values and
assigns them one at atime to a scalar variable, executing a block of code with each successive
assignment. It looks like this:
foreach $i (@one_list) {

statenent 1,

statenent 2;

st atenent _3;

}

The original value of the scalar variable is automatically restored when the loop exits; another way to say
thisisthat the scalar variable islocal to the loop.

Here'san example of af or each:

@ = (1,2, 3,4,5);
foreach $b (reverse @) {
print $b;

}

This program snippet prints 54321. Note that the list used by the f or each can be an arbitrary list
expression, not just an array variable. (Thisflexibility istypical of all Perl constructs that require alist.)

Y ou can omit the name of the scalar variable, in which case Perl pretends you have specifiedthe $
variable nameinstead. You'll find that the $_ variable is used as a default for many of Perl's operations,
so you can think of it as a scratch area[4] (All operationsthat use $ by default can also use a normal

scalar variable aswell.) For example, the pri nt function printsthevalue of $ if no other valueis
specified, so the following example works like the previous one:

[4] Which means you'd better localize it in functions when we learn about them.
@ =(1,2,3,4,5);
foreach (reverse @) {
print;
}

See how using theimplied $_ variable makesit easier? After you've learned more functions and
operatorsthat default to $_, this construct will become even more useful. Thisis one case where the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

shorter construct is more legible than the longer one.

If the list you are iterating over is made of real variables rather than some function returning alist value,
then the variable being used for iteration isin fact an alias for each variable in the list instead of being
merely a copy of the values. Consequently, if you change the scalar variable, you are also changing that
particular element in the list that the variable is standing in for. For example:

@ = (3,5,7,9);

foreach $one (@) {

$one *= 3;

17;

@ (3,5,7,9);

@ (10, 20, 30);

foreach $one (@, @, $x) {
$one *= 3;

}

$x is now 51

@ is now (9,15, 21, 27)
@ is now (30,60,90);

$x

}
@ is now (9, 15, 21, 27)

Notice how altering $one in fact atered each element of @.

Previous: 4.5 The for Learning Perl on Win32 Next: 4.7
Statement Systems Exercises
4.5 The for Statement Book 4.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 4.6 The foreach Chapter 4 Next: 5.
Statement Control Structures Hashes

4.7 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that asks for the temperature outside, and prints "too hot" if the temperatureis
above 72, and "too cold" otherwise.

2. Modify the program from the previous exercise so that it prints "too hot" if the temperatureis
above 75, "too cold" if the temperature is below 68, and "just right!" if it is between 68 and 75.

3. Write aprogram that reads alist of numbers (on separate lines) until the number 999 isread, and
then prints the total of all the numbers added together. (Be sure not to add in the 999!) For
example, if you enter 1, 2, 3, and 999, the program should reply with the answer of 6 (1+2+3).

4. Write aprogram that readsin alist of strings on separate lines and then prints out the list of strings
in reverse order - without using r ever se onthelist. (Recall that <STDI N> will read alist of
strings on separate lines when used in an array context.)

5. Write a program that prints a table of numbers and their squares from 0 to 32. Try to come up with
away in which you don't need to have all the numbersfrom 0 to 32 in alist, and then try away in
which you do. (For nice looking output,

printf "%g %8g\n", $a, $b

prints $a as a five-column number and $b as an eight-column number.)

Previous: 4.6 The foreach Learning Perl on Win32 Next: 5.
Statement Systems Hashes
4.6 The foreach Statement Book 5. Hashes
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 4.7 Chapter 5 Next: 5.2 Hash
Exercises Variables

5. Hashes

Contents:
What |s aHash?

Hash Variables

Literal Representation of aHash
Hash Functions

Hash Slices

Exercises

5.1 What Is a Hash?

A hash[1] islike the array that we discussed earlier, in that it is a collection of scalar data, with individual
elements selected by some index value. Unlike alist array, the index values of a hash are not small
nonnegative integers, but instead are arbitrary scalars. These scalars (called keys) are used later to
retrieve the values from the array.

[1] In older documentation, hashes were called "associative arrays," but the Perl hackers got
tired of a seven-syllable word for such a common item, so we replaced it with a much nicer
one-syllable word.

The elements of a hash have no particular order. Consider them instead like a deck of filing cards. The
top half of each card isthe key, and the bottom half is the value. Each time you put a value into the hash,
anew card is created. Later when you want to modify the value, you give the key, and Perl finds the right
card. So, redly, the order of the cardsisimmaterial. In fact, Perl stores the cards (the key-value pairs) in
aspecia internal order that makes finding a specific card easy, so Perl doesn't have to look through all
the pairsto find the right one. Y ou cannot control this order, so don't try.[2]

[2] Actually, modules like IxHash and DB file do provide some ordering, but at the cost of a
performance penalty.

Previous: 4.7 Learning Perl on Win32 Next: 5.2 Hash
Exercises Systems Variables

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

4.7 Exercises Book 5.2 Hash Variables
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 5.1 What Is a Chapter 5 Next: 5.3 Literal
Hash? Hashes Representation of a Hash

5.2 Hash Variables

A hash variable name is a percent sign (%9 followed by aletter, followed by zero or more letters, digits,
and underscores. In other words, the part after the percent is the same as that after scalar and array
variable names. And, just as thereis no relationship between $f r ed and @ r ed, the % r ed hash
variable is aso unrelated to the other two.

Rather than referencing the entire hash, more commonly you create and access the hash by referring to its
elements. Each element of the hash is a separate scalar variable, accessed by a string index, called the
key. Elements of the hash % r ed are thus referenced with $f r ed{ $key} where $key isany scalar
expression. Notice once again that accessing an element of a hash requires different notation than when
you access the entire hash.

Aswith arrays, you create new elements merely by assigning to a hash element:

$fred{"aaa"} “bbb"; # creates key "aaa", val ue "bbb"
$fred{234. 5} 456. 7; # creates key "234.5", value 456.7

These two statements create two elements in the hash. Subsequent accesses to the same element (using
the same key) return the previously stored value:

print $fred{"aaa"}; # prints "bbb"

$fred{234.5} += 3; # nakes it 459.7

Referencing an element that does not exist returnsthe undef value, just as with amissing array element
or an undefined scalar variable.

Previous: 5.1 What Is a Learning Perl on Win32 Next: 5.3 Literal
Hash? Systems Representation of a Hash
5.1 What IsaHash? Book 5.3 Literal Representation of a
Index Hash

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

| Previous: 5.2 Hash Variables| Chapter 5 Next: 5.4 Hash
Hashes Functions

5.3 Literal Representation of a Hash

Y ou may wish to access the hash as awhole, either to initialize it, or to copy it to another hash. Perl
doesn't really have aliteral representation for a hash, so instead it unwinds the hash as alist. Each pair of
elementsin thelist (which should always have an even number of elements) defines akey and its
corresponding value. This unwound representation can be assigned into another hash, which will then
recreate the same hash. In other words:

@red list = %red; # @red |list gets ("aaa", "bbb","234.5",456.7)

Y%barney = @red |ist; # create %barney |like %red
Ybarney = %red; # a faster way to do the sane
%nmooth = ("aaa", "bbb","234.5",456.7);

create %snooth like %Gred, fromliteral values

The order of the key-value pairsis arbitrary in this unwound representation and cannot be controlled.
Even if you swap some of the values around and create the hash as awhole, the returned unwound list is
still in whatever order Perl has created for efficient access to the individual elements. Y ou should never
rely on any particular ordering.

One quick use of thiswinding and unwinding is to copy a hash value to another hash variable:
Y%copy = %original; # copy from%original to %opy

And you can construct a hash with keys and values swapped using ther ever se operator, which works
magically well here:

Obackwards = reverse %or nal ;

Of course, if %mor mal hastwo identical values, those will end up asonly asingle element in
%ackwar ds, so this swap is best performed only on hashes with unique keys and values.

| Previous: 5.2 Hash Variables| Learning Perl on Win32 Next: 5.4 Hash
Systems Functions
5.2 Hash Variables Book 5.4 Hash Functions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

J»Leaming Perl on Win32 Systems

Previous: 5.3 Literal Chapter 5 Next: 5.5 Hash
Representation of a Hash Hashes Slices

5.4 Hash Functions
Here are some functions for hashes.

5.4.1 The keys Function

Thekeys(%hashnane) functionyieldsalist of all the current keysin the hash %hashnane. In other
words, it's like the odd-numbered (first, third, fifth, and so on) elements of the list returned by unwinding
%hashnane inan array context, and in fact, returns them in that order. If there are no elementsto the
hash, then keys returns an empty list.

Here's an example using the hash from the previous examples:

$fred{"aaa"} = "bbb"

$fred{234.5} = 456. 7

@ist = keys(%red); # @ist gets ("aaa", 234.5) or
(234.5, "aaa")

Aswith all other built-in functions, the parentheses are optional: keys % r ed islikekeys(% r ed) .
For example:

foreach $key (keys % red) { # once for each key of %red
print "at $key we have $fred{$key}\n"; # show key and val ue
}

This example aso shows that individual hash elements can be interpolated into double-quoted strings.
Y ou cannot interpolate the entire hash, however.[3]

[3] Well, you can, using a slice, but we don't talk about slices here.

In ascalar context, the keys function gives the number of elements (key-value pairs) in the hash. For
example, you can find out whether a hash is empty:

| f (keys(o/sorrehash)) { #if keys() not zero:
hash is non enpty
}
or

whi | e (keys(%sorrehash) < 10) {
- # keep | ooping while we have | ess than 10 el enents
}

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

In fact, merely using “sonehash in ascalar context will reveal whether the hash is empty or not:

I f (%sonehash) { # if true, then sonething's in it
do sonething with it
}

5.4.2 The values Function
Theval ues(%ashnane) function returnsalist of al the current values of the %hashnane, inthe

same order as the keys returned by the keys(%hashnane) function. As aways, the parentheses are
optional. For example:

% astname = (); # force % astnane enpty
$l astname{"fred"} = "flintstone";
$l ast nane{"barney"} = "rubble";

@ ast nanes = val ues(% astnane); # grab the val ues

At this point, @ ast nanes containseither ("fl i nt stone","rubbl e") or (" rubbl e",
"flintstone").

5.4.3 The each Function

To iterate over (that is, examine every element of) an entire hash, use keys, looking up each returned key
to get the corresponding value. Although this method is frequently used, a more efficient way isto use
each(%hashnane) , which returns akey-vaue pair as atwo-element list. On each evaluation of this
function for the same hash, the next successive key-value pair is returned until al the elements have been
accessed. When there are no more pairs, each returns an empty list.

So, for example, to step through the % ast nane hash from the previous example, do something like
this:
while (($first,$last) = each(% astnane)) {
print "The last nane of $first is $last\n";
}

Assigning a new value to the entire hash resets the each function to the beginning. Adding or deleting
elements of the hash is quite likely to confuse each (and possibly you as well).

5.4.4 The delete Function

So far, with what you know, you can add elements to a hash, but you cannot remove them (other than by
assigning a new value to the entire hash). Perl providesthe del et e function to remove hash elements.
The operand of del et e isahash reference, just as if you were merely looking at a particular value. Perl
removes the key-value pair from the hash. For example:

%red = ("aaa", "bbb",234.5,34.56); # give %red tw el enents
del ete $fred{"aaa"};
%red is now just one key-val ue pair

Previous: 5.3 Literal Learning Perl on Win32 Next: 5.5 Hash

Representation of a Hash Systems Slices
5.3 Literal Representation of a Book 5.5 Hash Slices
Hash Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

| Previous: 5.4 Hash Functions| Chapter 5 Next: 5.6
Hashes Exercises

5.5 Hash Slices

Like an array variable (or list literal), a hash can be sliced to access a collection of elementsinstead of
just one element at atime. For example, consider the bowling scores set individually:

$score{"fred"} = 205;

$score{"barney"} = 195;

$score{"di no"} = 30;

This collection seems rather redundant, and in fact can be shortened to:

($score{"fred"}, $score{"barney"}, $score{"dino"}) =
(205, 195, 30);

But even these seem redundant. Let'suse ahash slice::

@core{"fred", "barney", "dino"} = (205,195, 30);

There. Much shorter. We can use a hash slice with variable interpolation as well:
@l ayers = gwfred barney dino);
print "scores are: @core{ @l ayers}\n";

Hash dlices can also be used to merge a smaller hash into alarger one. In this example, the smaller hash
takes precedence in the sense that if there are duplicate keys, the value from the smaller hash is used:

@ eague{ keys %score} = val ues %score;

Here, the values of ¥scor e are merged into the % eague hash. This operation is equivalent to the
much slower operation:

% eague = (% eague, %score); # nerge %score into % eague

| Previous: 5.4 Hash Functions| Learning Perl on Win32 Next: 5.6
Systems Exercises
5.4 Hasnh Functions Book 5.6 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 5.5 Chapter 5 Next: 6. Basic
Hash Slices Hashes I/O

5.6 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that reads in a string, then prints that string and its mapped value according to the
mapping presented in Table 5.1.

Table5.1:
Sample Hash

Mapping
Input | Output

red |apple

green |leaves

blue |ocean

2. Write aprogram that reads a series of words with one word per line until end-of-file, then printsa
summary of how many times each word was seen. (For extra challenge, sort the words in
ascending ASCI|I order in the output.)

Previous: 5.5 Learning Perl on Win32 Next: 6. Basic
Hash Slices Systems /0
5.5 Hash Slices Book 6. Basic 1/O
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 5.6 Chapter 6 Next: 6.2 Input from the
Exercises Diamond Operator

6. Basic I/O

Contents:
Input from STDIN

Input from the Diamond Operator
Output to STDOUT
Exercises

6.1 Input from STDIN

Reading from standard input (viathe Perl filehandle called STDI N) is easy. We've been doing it already
with the <STDI N> construct. Evaluating thisin a scalar context gives the next line of input,[1] or

undef if there are no morelines, like so:

[1] Up to anewline, or whatever you've set $/ to.
$a = <STDIN>; # read the next line

Evaluating in alist context produces all remaining lines as alist: each element isone line, including its
terminating newline. We've seen this before, but as arefresher, it might look something like this:

@ = <STDI N>;

Typically, one thing you want to do isread all lines one at atime and do something with each line. One
common way to do thisis:

while (defined($line_ = <STDIN>)) {
process $line here
}

Aslong asaline has been read in, <STDI N> evaluates to a defined value, so the loop continuesto
execute. When <STDI N> has no more linesto read, it returns undef , terminating the loop.

Reading a scalar value from <STDI N> into $_ and using that value as the controlling expression of a
loop (as in the previous example) occurs frequently enough so that Perl has an abbreviation for it.
Whenever aloop test consists solely of the input operator (something like <. . . >), Perl automatically
copiesthelinethat isread into the $_ variable. For example:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

while (<STDIN>) { # like "while(defined($_
chonp; # like "chonmp($)"
other operations with $ here

<STDI N>)"

}

Becausethe $_ variable is the default for many operations, you can save a noticeable amount of typing
thisway.

Previous: 5.6 Learning Perl on Win32 Next: 6.2 Input from the
Exercises Systems Diamond Operator
5.6 Exercises Book 6.2 Input from the Diamond

Index Operator

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 6.1 Input from Chapter 6 [Next: 6.3 Output to STDOUT]
STDIN Basic1/O

6.2 Input from the Diamond Operator

Another way to read input is with the diamond operator: <>. This operator works like <STDI N> in that
it returnsasingle linein ascalar context (undef if al the lines have been read) or al remaining linesif
used in alist context. However, unlike <STDI N>, the diamond operator gets its data from the file or files
specified on the command line that invoked the Perl program. For example, if you have a program named
type.plx, consisting of:
while (<>) {

print $_;
}

and you invoke type.plx with:
perl type.plx filel file2 file3

then the diamond operator readseach lineof f i | el followed by eachlineof fil e2 andfil e3in
turn, returning undef only when al of the lines have been read. Asyou can see, type.plx works alittle
like the NT command type, sending all the lines of the named files to standard output in sequence. If you
don't specify any filenames on the command line, the diamond operator reads from standard input
automatically.

Technically, the diamond operator isn't looking literally at the command-line arguments; it works from
the @GARGV array. Thisarray isaspecia array initialized by the Perl interpreter to the command-line
arguments. Each command-line argument goes into a separate element of the GARGV array. Y ou can
interpret thislist any way you want.[2] Y ou can even set this array within your program and have the

diamond operator work on that new list rather than the command-line arguments, like so:

[2] The Perl standard distribution contains routines for parsing the command-line arguments
of a Perl program. See Programming Perl for more information on the get opt library.

@GARGV = ("aaa", "bbb","ccc");

while (<>) { # process files aaa, bbb, and ccc
print "this line is: $";

}

In Chapter 10, Filehandles and File Tests, we'll see how to open and close specific filenames at specific
times, but the technique detailed here has been used for some of our quick-and-dirty programs.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Previous: 6.1 Input from Learning Perl on Win32 [Next: 6.3 Output to STDOUT|

STDIN Systems
6.1 Input from STDIN Book 6.3 Output to STDOUT
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 6.2 Input from the C_haw Next: 6.4
Diamond Operator Basic1/0 Exercises

6.3 Output to STDOUT

Perl usesthepri nt andpri ntf functionsto write to standard output. Let's look at how they are used.

6.3.1 Using print for Normal Output

We've already used pr i nt to display text on standard output. Let's expand on that usage a bit.

Thepri nt function takes alist of strings and sends each string to standard output in turn, without any
intervening or trailing characters added. What might not be obviousisthat pri nt isrealy just a
function that takes alist of arguments, and returns avalue like any other function. In other words:

$a = print("hello ", "world", "\n");

would be another way to say hel | o wor | d. Thereturnvalue of pri nt isatrueor false value,
indicating the success of the print. The print nearly always succeeds, unless you get some I/O error, so
$a in this case will usually be 1.

Sometimes you'll need to add parenthesesto pr i nt as shown in the example given below, especialy
when the first thing you want to print starts with aleft parenthesis, asin:

print (2+3),"hello"; # wong! prints 5, ignores "hello"
print ((2+3),"hello"); # right, prints 5hello
print 2+3,"hello"; # also right, prints 5hello

6.3.2 Using printf for Formatted Output

Y ou may wish to have alittle more control over your output than pr i nt provides. In fact, you may be
accustomed to the formatted output of C'spr i nt f function. Fear not: Perl provides a comparable
operation with the same name.

Thepri ntf functiontakes alist of arguments (enclosed in optional parentheses, likethe pri nt
function). The first argument is aformat control string, defining how to print the remaining arguments.
Here's an example:

printf "%5s %d %0.2f\n", $s, $n, $r;

This function prints $s in a 15-character field, then a space, then $n as a decimal integer in a 5-character
field, then another space, then $r as afloating-point value with 2 decimal placesin a 10-character field,

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

and finally a newline.

Among the many formats supported by Perl'spri nt f () andspri ntf () functions are the following
commonly used ones:

%% | Percent sign

%c | Character with the given number

%s |String

%d | Signed integer, in decimal

%u |Unsigned integer, in decimal

%0 |Unsigned integer, in octal

%x |Unsigned integer, in hexadecimal

%e |Floating-point number, in scientific notation

%f | Floating-point number, in fixed decimal notation

%g | Floating-point number, in %e or %f notation

Between the percent and the format character, you may place one or more of the following flags:

space |Prefix positive number with a space

+ Prefix positive number with aplussign

- L eft justify within the field

0 Use zeros, not spaces, to right justify

number | Minimum field width

.number | Precision: digits after decimal point for floating-point number, maximum length for string,
minimum length for integer

Previous: 6.2 Input from the Learning Perl on Win32 Next: 6.4
Diamond Operator Systems Exercises
6.2 Input from the Diamond Book 6.4 Exercises
Operator Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 6.3 Output to Chapter 6 | Next: 7. Regular Expressions
STDOUT Basic 1/0

6.4 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that acts like type, but reverses the order of the lines from the files specified on
the command line, or all the lines from standard input if no files are specified.

2. Modify the program from the previous exercise so that each file specified on the command line
hasits lines individually reversed. (Y es, you can do this with only what's been shown to you so far,
even excluding the stroll in Chapter 1, Introduction.)

3. Write aprogram that reads a list of strings on separate lines, and printsthe stringsin a
right-justified 20-character column. For example, inputting hel | o, good- bye printshel | o and
good- bye, right-justified in a 20-character column. (Be sure your program is actually using a
20-character column, and not a 21-character column. That mistake is common.)

4. Modify the program from the previous exercise to allow the user to select the column width. For
example, entering 20, hel | o, and good- bye should do the same thing as the previous program
did; but, entering 30, hel | 0, and good- bye should justify hel | o and good- bye ina
30-character column.

Previous: 6.3 Output to Learning Perl on Win32 | Next: 7. Regular Expressions|
STDOUT Systems
6.3 Output to STDOUT Book 7. Regular Expressions
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 6.4 Chapter 7 Next: 7.2 Simple Uses of
Exercises Regular Expressions

/. Regular Expressions

Contents:
Concepts About Regular Expressions

Simple Uses of Regular Expressions
Patterns

More on the Matching Operator
Substitutions

The split and join Functions
Exercises

7.1 Concepts About Regular Expressions

A regular expression is a pattern - atemplate - to be matched against a string. Matching aregular
expression against a string either succeeds or fails. Sometimes, the success or failure may be al you are
concerned about. At other times, you will want to take a matched pattern and replace it with another
string, parts of which may depend on exactly how and where the regular expression matched.

Regular expressions are used by many programs: editors, search utilities, and word processors. Each
program has a different set of (mostly overlapping) template characters. Perl is a semantic superset of all
of these tools - any regular expression that can be described in one of these tools can also be written in
Perl, but will not necessarily use exactly the same characters.

Previous: 6.4 Learning Perl on Win32 Next: 7.2 Simple Uses of
Exercises Systems Regular Expressions
6.4 Exercises Book 7.2 Simple Uses of Regular

Index Expressions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 7.1 Concepts About Chapter 7 . Next: 7.3
Regular Expressions Regular Expressions Patterns

7.2 Simple Uses of Regular Expressions

If we were looking for all lines of afilethat contain the string abc, we might use the Windows NT
findstr command:

>findstr abc sonefile > results

In this case, abc isthe regular expression that the findstr command tests against each input line. Lines
that match are sent to standard output, and end up in thefiler esul t s because of the command-line
redirection.

In Perl, we can speak of the string abc as aregular expression by enclosing the string in slashes:

if (/abc/) {
print $_;
}

But what is being tested against the regular expression abc in this case? Why, it'sour old friend, the $_
variable! When aregular expression is enclosed in slashes (as above), the $ variable is tested against
the regular expression. If the regular expression matches, the match operator returns true. Otherwise, it
returns false.

For thisexample, the $_ variableis presumed to contain some text line and is printed if the line contains
the characters abc in sequence anywhere within the line - similar to the findstr command above. Unlike
the findstr command, which is operating on all of the lines of afile, this Perl fragment islooking at just
oneline. To work on al lines, add aloop, asin:

while (<>) {
if (/abc/) {
print $_;
}
}

What if we didn't know the number of b's between the a and the c? That is, what if we want to print the
lineif it contains an a followed by zero or more b's, followed by ac? With findstr, we'd say:

>findstr ab*c sonefile >results

In Perl, we can say exactly the same thing:
while (<>) {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

if (/ab*c/) {
print $_;
}
}

Just like findstr, thisloop looks for an a followed by zero or more b's followed by ac.

Welll visit more uses of pattern matching in the section "More on the Matching Operator," later in the
chapter, after we talk about all kinds of regular expressions.

Another simple regular expression operator is the substitute operator, which replaces the part of a string
that matches the regular expression with another string. The substitute operator consists of the letter s, a
slash, aregular expression, a slash, a replacement string, and afinal slash, looking something like:

s/ ab*c/ def/;
Thevariable (inthiscase, $_) is matched against the regular expression (ab* ¢). If the matchis

successful, the part of the string that matched is discarded and replaced by the replacement string (def).
If the match is unsuccessful, nothing happens.

As with the match operator, we'll revisit the myriad options on the substitute operator later, in the section
" Substitutions.”

Previous: 7.1 Concepts About Learning Perl on Win32 Next: 7.3
Regular Expressions Systems Patterns
7.1 Concepts About Regular Book 7.3 Patterns
Expressions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 7.2 Simple Uses of Chapter 7 . Next: 7.4 More on the
Regular Expressions Regular Expressions Matching Operator

/.3 Patterns

A regular expression is a pattern. Some parts of the pattern match single charactersin the string of a
particular type. Other parts of the pattern match multiple characters. First, we'll visit the single-character
patterns, and then the multiple-character patterns.

7.3.1 Single-Character Patterns

The simplest and most common pattern-matching character in regular expressionsis a single character
that matches itself. In other words, putting aletter a in aregular expression requires a corresponding
letter a in the string.

The next most common pattern-matching character isthe dot ". . This character matches any single
character except newline (\ n). For example, the pattern/ a. / matches any two-letter sequence that
startswith a and isnot a\ n.

A pattern-matching character classis represented by a pair of open and close square brackets and a list
of characters between the brackets. One and only one of these characters must be present at the
corresponding part of the string for the pattern to match. For example,

/ [abcde] /

matches a string containing any one of the first five letters of the lowercase al phabet, while
/ [aei ouAElI QU] /

matches any of the five vowelsin either lower- or uppercase. If you want to put aright bracket (]) in the
list, put abackslash in front of it, or put it asthe first character within the list. Ranges of characters (like
a through z) can be abbreviated by showing the end points of the range separated by adash (-); toget a
literal dash inthelist, precede the dash with a backslash or placeit at the end. Here are some other
examples.

[0123456789] # match any single digit

[0- 9] # sane thing
[0-9\ -] # match 0-9, or m nus
[a- z0- 9] # match any single |lowercase letter or digit

[a-zA-Z0-9] # match any single letter, digit, or underscore

There's also a negated character class, which is the same as a character class, but has aleading up arrow

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

(or caret:) immediately after the left bracket. This character class matches any single character that is
not in the list. For example:

[70-9] # match any single non-digit
[~aei oUAEI QU] # match any singl e non-vowel
["\"] # match single character except an up-arrow

For your convenience, some common character classes are predefined, as described in Table 7.1.

Table 7.1: Predefined Character Class Abbreviations

Construct Equivalent Class | Negated Construct | Equivalent Negated Class
\d (adigit) [0-9] \D (digits, not!) [70-9]

\w (word char) |[azA-Z0-9] \W (words, not!) [fazA-Z0-9]

\s (space char) ([\r\t\n\f] \S (space, not!) [\r\t\n\f]

The\ d pattern matchesonedi gi t . The\ w pattern matchesonewor d char act er, athough the
pattern is really matching any character that islegal in aPerl variable name. The\ s pattern matches one
space (whitespace), defined here as spaces, carriage returns, tabs, line feeds, and form feeds. The
uppercase versions match the complements of these classes. Thus, \W matches one character that can't be
in an identifier, \S matches one character that is not awhitespace (including letters, punctuation marks,
control characters, etc.), and \D matches any single non-digit character.

These abbreviated classes can be used as part of other character classes as well:
[\da-fA-F] # match one hex digit

7.3.2 Grouping Patterns

The true power of regular expressions comes into play when you can say "one or more of these" or "up to
five of those." Let'stalk about how these cases are handled.

7.3.2.1 Sequence

Thefirst (and probably most obvious) grouping pattern is sequence. In using this pattern, Perl matches
abc asan a followed by a b followed by a c. This pattern seems simple, but we're giving it a name so
we can talk about it |ater.

7.3.2.2 Multipliers

We've already seen the asterisk (*) as a grouping pattern. The asterisk indicates zero or more of the
immediately previous character (or character class).

Two other grouping patterns that work in the same manner are the plus sign (+), meaning one or more of
the immediately previous character, and the question mark (?), meaning zero or one of the immediately
previous character. For example, the regular expression/ f o+ba?r/ matchesanf followed by one or

more 0's, followed by ab, followed by an optional a, followed by anr .

In all three of these grouping patterns, the patterns are greedy. If such a multiplier has a chance to match
between five and ten characters, it'll pick the ten-character string every time. For example,

$_ = "fred xxxXxxxxxxx barney";
s/ x+/ boon ;

always replaces all consecutive x'swith boom(resultinginf red boom bar ney), rather than just one
or two x's, even though a shorter set of x's would also match the same regular expression.

If you need to say "fiveto ten" x's, you could get away with putting five x's followed by five x's each
immediately followed by a question mark. But thislooks ugly. Instead, an easier way exists: the general
multiplier. The general multiplier consists of a pair of matching curly braces with one or two numbers
inside, asin/ x{ 5, 10}/ . Theimmediately preceding character (in this case, the letter x) must be found
within the indicated number of repetitions (five through ten here).[1]

[1] Of course, / \ d{ 3}/ doesn't only match three-digit numbers. It would also match any
number containing more than three digits. To match exactly three, you need to use anchors,
described in the next section, titled "Anchoring Patterns.”

If you leave off the second number, asin/ x{ 5, }/, you indicate "that many or more" (five or morein
this case), and if you leave off the comma, asin/ x{ 5} / , you indicate "exactly this many" (fivex's). To
get five or fewer x's, you must put the zero in, asin/ x{ 0, 5} / .

So, theregular expression/ a. { 5} b/ matches the letter a separated from the letter b by any five
non-newline characters at any point in the string. (Recall that a period matches any single non-newline
character, and we're matching five here.) The five characters do not need to be the same. (Well learn
how to force them to be the same in the next section.)

We could dispense with * , +, and ? entirely, because they are completely equivalentto {0, },{1, },
and{ 0, 1} . But it's easier to type the equivalent single punctuation character, and more familiar as well.

If two multipliers occur in asingle expression, the greedy rule is augmented with leftmost is greediest.
For example:

$ = "a XXX € XXXXXXXX € xxx d";
[a.*c.*d/;

In this case, thefirst . * intheregular expression matches all characters up to the second ¢, even though
matching only the characters up to the first ¢ would still allow the entire regular expression to match.
Right now, this distinction is not important (the pattern would match either way), but later when we can
look at parts of the regular expression that matched, the distinction will matter quite a bit.

We can force any multiplier to be nongreedy (or lazy) by following it with a question mark:
$ = "a XXX € XXXXXXXX € xxx d";
[a.*?c.*d/;

Here, thea. * ?c matches the fewest characters between the a and ¢, not the most characters. This
means the leftmost ¢ is matched, not the rightmost. Y ou can put such a question-mark modifier after any
of the multiplers (?, +, * and { m n}).

What if the string and regular expression were slightly altered, say, to:

$ = "a XXX Ce XXXXXXXX ci xxx d";
[a.*ce.*d/;

In thiscase, if the . * matches the most characters possible before the next ¢, the next regular expression
character (e) doesn't match the next character of the string (i). In this case, we get automatic
backtracking. The multiplier is unwound and retried, stopping at someplace earlier (in this case, at the
earlier c, next tothee).[2] A complex regular expression may involve many such levels of backtracking,
leading to long execution times. In this case, consider that making that match lazy (with atrailing ?) will
actually ssmplify the work that Perl has to perform.

[2] WEell, technically, there was alot of backtracking of the * operator to find the c'sin the
first place. But that's alittle trickier to describe, and it works on the same principle.

7.3.2.3 Parentheses as memory

Another grouping operator isapair of open and close parentheses around any part pattern. This operator
doesn't change whether the pattern matches, but instead causes the part of the string matched by the
pattern to be remembered, so that it may be referenced later. So, for example, (a) still matchesan a, and
([a-z]) till matches any single lowercase |etter.

To recall amemorized part of a string, you must include a backslash followed by an integer. This pattern
construct represents the same sequence of characters matched earlier in the same-numbered pair of
parentheses (counting from one). For example:

/[fred(.)barney\1/;

matches a string consisting of f r ed, followed by any single non-newline character, followed by
bar ney, followed by that same single character. So, the string matchesf r edxbar neyx, but not
f r edxbar neyy. Compare that string with:

/ fred. barney./;
in which the two unspecified characters can be the same, or different.

Where did the 1 come from? The 1 indicates the first parenthesized part of the regular expression. |If
there's more than one, the second part (counting the left parentheses from left to right) is referenced as
\ 2, thethird as\ 3, and so on. For example:

la(.)b(.)c\2d\1/;

matches an a, acharacter (call it #1), ab, another character (call it #2), ac, the character #2, ad, and the
character #1. S0, the string matches axbycydx, for example.

The referenced part can be more than a single character. For example,

la(.*)b\1lc/;

matches an a, followed by any number of characters (even zero), followed by b, followed by that same

sequence of characters, followed by c. So, the string would match aFREDbFREDc, or even abc, but not
axXXbXXXc.

7.3.2.4 Alternation

Another grouping construct is alternation, asin a| b| c. This construct matches exactly one of the
aternatives (a or b or c, in this case). This construct works even if the alternatives have multiple
characters, asin/ song| bl ue/ , which matches either song or bl ue. (For single-character
aternatives, you're definitely better off with a character classlike/ [abc] /)

What if we wanted to match songbi r d or bl uebi r d?We could write/ songbi r d| bl uebi rd/,
but that bi r d part shouldn't have to be in there twice. In fact, there's away out, but we have to talk about
the precedence of grouping patterns, which is covered later in the section " Precedence.”

7.3.3 Anchoring Patterns

Several specia notations anchor a pattern. Normally, when a pattern is matched against the string, the
beginning of the pattern is dragged through the string from left to right, matching at the first possible
opportunity. Anchors allow you to ensure that parts of the pattern line up with particular parts of the
string.

Thefirst pair of anchors requires that a particular part of the match be located either at aword boundary
or not at aword boundary. The\ b anchor requires aword boundary at the indicated point for the pattern
to match. A word boundary is the place between characters that match \ wand \ W or between characters
matching \ wand the beginning or ending of the string. Note that this description haslittle to do with
English words and alot more to do with C symbols, but that's as close as we get. For example:

[fred\b/; # mat ches fred, but not Frederick

/\ bno/; # mat ches nbe and nol e, but not El npD

[\ bFred\b/; # matches Fred but not Frederick or al Fred
I\ b\ +\ b/ ; # matches "x+y" but not "++" or " + "

/ abc\ bdef/; # never matches (inpossible for a boundary there)

Likewise, \ B requiresthat there not be a word boundary at the indicated point. For example:
/\bFred\B/; # matches "Frederick" but not "Fred Flintstone"

Two more anchors require that a particular part of the pattern be next to an end of the string. The caret
(™) matches the beginning of the string if it isin a place that makes sense to match the beginning of the
string. For example, *a matches an a if, and only if, the a isthe first character of the string. However,
a” matches the two charactersa and * anywhere in the string. In other words, the caret has lost its
special meaning. If you need the caret to be aliteral caret even at the beginning, put a backslash in front
of it.

The $, likethe”, anchors the pattern, but to the end of the string, not the beginning. In other words, c$
matchesac only if it occurs at the end of the string.[3] A dollar sign anywhere else in the pattern is

probably going to be interpreted as a scalar value interpretation, so you'll most likely need to backslash it
to match aliteral dollar sign in the string.

[3] Or just before the newline at the end of the string, for historical ssimplicity.
Other anchors are supported, including \A, \Z, and lookahead anchors created via (?=...) and (?!...). These

anchors are described fully in Chapter 2 of Programming Perl and the perlre documentation.

7.3.4 Precedence

So what happens when we get a| b* together? Isthisa or b any number of times, or isit either asingle
a or any number of b's?

WEell, just as operators have precedence, the grouping and anchoring patterns also have precedence. The
precedence of patterns from highest to lowest isgivenin Table 7.2.

Table 7.2: regex Grouping Precedence [4]

Name Representation
Parentheses () (?2:)
Multipliers ?+* {mn} ?? +? *? {mn}

Sequence and anchoring [abc » $ \A\Z (?=) (?!)
Alternation |

[4] Some of these symbols are not described in this book. See Programming Perl or perlre
for details.

According to thetable, * hasahigher precedencethan | . So/ a| b*/ isinterpreted asasinglea, or any
number of b's.

What if we want the other meaning, asin "any number of a's or b's'? We simply throw in apair of
parentheses. In this case, we enclose the part of the expression that the * operator should apply to inside
parentheses, and we are done, as (a| b) *. If you want to clarify the first expression, you can
redundantly parenthesizeit witha| (b*) .

When you use parentheses to affect precedence they also trigger the memory, as shown earlier in this
chapter. That is, this set of parentheses counts when you are figuring out whether something is\ 2,\ 3, or

Thisform still allows for multipliers, but doesn't cause you to throw off your counting by using up
another $4 or whatever. For example, / (?: Fred| W1 ma) Fl i nt st one/ does not store anything
into $1; it'sjust there for grouping.

Here are some other examples of regular expressions, and the effect of parentheses.

abc* # mat ches ab, abc, abcc, abccc, abcccc, and so on
(abc) * # matches "", abc, abcabc, abcabcabc, and so on
Xy # matches x at the beginning of line, or y anywhere
ANx|y) # matches either x or y at the beginning of a line
al bc| d # a, or bc, or d

(al b)(c|d) # ac, ad, bc, or bd

(song| blue)bird # songbird or bluebird

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Previous: 7.2 Simple Uses of Learning Perl on Win32 Next: 7.4 More on the

Regular Expressions Systems Matching Operator
7.2 Simple Uses of Regular Book 7.4 More on the Matching
Expressions Index Operator

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 7.3 Chapter 7 . Next: 7.5
Patterns Regular Expressions Substitutions

7.4 More on the Matching Operator

We have already looked at the simplest uses of the matching operator (aregular expression enclosed in
slashes). Now let'slook at a zillion ways to make this operator do something slightly different.

7.4.1 Selecting a Different Target (the =~ Operator)

Usually the string you'll want to match your pattern against is not withinthe $_ variable, and it would be
anuisance to put it there (perhaps you already have avaluein $__ you're quite fond of). No problem. The
=~ operator helps us here. This operator takes aregular expression operator on the right side, and
changes the target of the operator to something besidesthe $_ variable - namely, some value named on
the left side of the operator. For example:

$a = "hello world";
$a =~ /"hel; # true
$a =~ /(.)\I/; # also true (matches the double I|)

if ($a =~ /(.)\1/) { # true, so yes...
sonme stuff
}

The target of the =~ operator can be any expression that yields some scalar string value. For example,
<STDI N> yields a scalar string value when used in a scalar context, so we can combine this with the =~
operator and aregular expression match operator to get a compact check for particular input, asin:
print "any |ast request? ";
I f (<STDIN> =~ [~[yY]/) { # does the input begin with a y?

print "And just what m ght that request be? ";

<STDI N>; # discard a line of standard i nput

print "Sorry, I'munable to do that.\n";

}

In this case, <STDI N> yields the next line from standard input, which is then immediately used as the
string to match against the pattern *[yY] . Note that you never stored the input into avariable, so if you
wanted to match the input against another pattern, or possibly echo the data out in an error message,
you'd be out of luck. But this form frequently comes in handy.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

7.4.2 Ignoring Case

In the previous example, we used [yY] to match either alower- or uppercasey. For very short strings,
suchasy orf r ed, thismatchiseasy enough, asin[f F] [oQ [0o . But what if the string you wanted
to match was the word "pr ocedur e" in either lower- or uppercase?

In the Windows NT findstr command, a/ i flag indicates "ignore case." Perl aso has such an option.

Y ou indicate the ignore-case option by appending alowercasei to theclosing dash, asin

/ sonepat t er n/ i . Thissaysthat the letters of the pattern will match lettersin the string in either case.
For example, to match the word pr ocedur e in either case at the beginning of the line, use

/| “procedureli.

Now our previous example looks like this:

print "any |ast request? ";

if (<STDIN> =~ /~y/i) { # does the input begin with a y?
yes! deal wth it

}
7.4.3 Using a Different Delimiter

If you are looking for a string with aregular expression that contains slash characters (/), you must
precede each slash with abackslash (\). For example, you can look for a string that begins with
/ wwwr oot / docs likethis:

$path = <STDIN>; # read a pathnanme (from"find" perhaps?)
if ($path =~ /"\/wwwoot\/docs/) {

begins with /wwwroot/docs...
}

Asyou can see, the backslash-slash combination makes this example ook asif there are little valleys
between the text pieces. Using this combination for alot of slash characters can get cumbersome, so Perl
allows you to specify a different delimiter character. Simply precede any nonal phanumeric,
nonwhitespace character[5] (your selected delimiter) with an m then list your pattern followed by another

identical delimiter character, and you're done, as in:

[5] If the delimiter happens to be the left character of aleft-right pair (parentheses, braces,
angle bracket, or square bracket), the closing delimiter is the corresponding right of the
same pair. But otherwise, the characters are the same for begin and end.

/ "\ / wwwwwr oot \/docs/ # using standard slash delimter
Mm@/ wwwwr oot/ docs@ # using @for a delimter
m#~ wwwr oot / docs# # using # for a delimter (ny favorite)

Y ou can even use dlashes again if you want, asin m f r ed/ . So the common regular-expression
matching operator isreally the moperator; however, the mis optional if you choose slash for a delimiter.

7.4.4 Using Variable Interpolation

A regular expression is variable interpolated before it is considered for other special characters. Asa
result, you can construct aregular expression from computed strings rather than just literals. For
example:
$what = "bird";
$sentence = "Every good bird does fly.";
i f ($sentence =~ /\b$what\b/) {
print "The sentence contains the word $what!\n";
}

In this example we have effectively constructed the regular expression operator / \ bbi r d\ b/ using a
variable reference.

Here's a dlightly more complicated example:

$sentence = "Every good bird does fly.";
print "Wat should |I |ook for? ";
$what = <STDI N>;

chonmp($what) ;

if ($sentence =~ /$what/) { # found it!
print "I saw $what in $sentence.\n";

} else {

print "nope... didn't find it.\n";
}

If you enter bi r d, itisfound. If you enter scr eam itisn't. If you enter [bw] i r d, that's also found,
showing that the regular expression pattern-matching characters are indeed still significant.

How would you make them insignificant? Y ou'd have to arrange for the non-al phanumeric characters to
be preceded by a backslash, which would then turn them into literal matches. That process sounds hard,
unless you have the\ Qquoting escape at your disposal:

$what = "[box]";
foreach (gw(in[box] out[box] white[sox])) {
if (/\@what\E/) {
print "$ matched!\n";
}
}

Here, the\ @bwhat \ E construct turnsinto\ [box\] , making the match look for aliteral pair of
enclosing brackets, instead of treating the whole thing as a character class.

7.4.5 Special Read-Only Variables

After asuccessful pattern match, the variables $1, $2, $3, and so on are set to the same valuesas\ 1,
\ 2,\ 3, and so on, held inside the pattern. Y ou can use this feature to look at a piece of the match in later
code. For example:

$ ="this is a test";
[(\wt)\W-(\w+)/; # match first two words
$1 is now "this" and $2 is now "is"

Y ou can also gain access to the same values ($1, $2, $3, and so on) by placing amatch in alist context.
Theresultisalist of valuesfrom $1 up to the number of memorized things, but only if the regular
expression matches. (Otherwise, the variables are undefined.) Taking that last example in another way:

$ ="thisis atest";
($first, $second) = /(\w)\W(\w+)/; # match first two words
$first is now "this" and $second is now "is"

Other predefined read-only variables include $&, which isthe part of the string that matched the regular
expression; $° , which isthe part of the string before the part that matched; and $' , which is the part of
the string after the part that matched. For example:

$ ="this is a sanple string";

/sa.*lel; # matches "sanple” within the string

$ is now"thisis a"

$& i s now "sanpl e"

$ is now" string"

Because these variables are set on each successful match, you should save the values elsewhere if you
need them later in the program.[6]

[6] See O'Rellly's Mastering Regular Expressions for the performance ramifications of
using these variables.

Previous: 7.3 Learning Perl on Win32 Next: 7.5
Patterns Systems Substitutions
7.3 Patterns Book 7.5 Substitutions
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 7.4 More on the Chapter 7 . Next: 7.6 The split and join
Matching Operator Regular Expressions Functions

7.5 Substitutions

We've already talked about the simplest form of the substitution operator:
s/ ol d-regex/ new- st ri ng/ . We can now discuss afew variations of this operator.

If you want the replacement to operate on all possible matches instead of just the first match, append ag
to the substitution, asin:

$ = "foot fool buffoon";
s/foo/bar/g; # $_ is now "bart barl bufbarn”

The replacement string is variable interpolated, allowing you to specify the replacement string at
runtime:

$ = "hello, world"
$new = "goodbye";
s/ hell o/ $new ; # replaces hello wth goodbye

Pattern charactersin the regular expression allow patterns to be matched, rather than just fixed
characters:

$ ="thisis atest";
s/ (\w+)/<$1>/g; # $_ is now "<this> <is> <a> <test>"
Recall that $1 is set to the data within the first parenthesized pattern match.

Ani suffix (either before or after the g, if present) causes the regular expression in the substitute
operator to ignore case, just like the same option on the match operator described earlier.

As with the match operator, an alternate delimiter can be selected if the slash is inconvenient. Just use the
same character three times:[7]

[7] Or, use two matching pairs if aleft-right pair character is used.
s#fred#barney#;, # replace fred wwth barney, |ike s/fred/barney/

Also as with the match operator, you can specify an alternate target with the =~ operator. In this case, the
selected target must be something you can assign a scalar value to, such as a scalar variable or an element
of an array. Here's an example:

$which = "this is a test";
$which =~ s/test/quiz/; # $which is now "this is a quiz"

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

$sonepl ace[$here] =~ s/left/right/; # change an array el enent

$d{"t"} =~ s/Nx [; # prepend "x " to hash el enent
Previous: 7.4 More on the Learning Perl on Win32 Next: 7.6 The split and join
Matching Operator Systems Functions
7.4 More on the Matching Book 7.6 The split and join
Operator Index Functions

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 7.5 Chapter 7 . Next: 7.7
Substitutions Regular Expressions Exercises

7.6 The split and join Functions

Regular expressions can be used to break a string into fields. Thespl i t function does this and the
j oi n function glues the pieces back together.

7.6.1 The split Function

Thespl i t function takes aregular expression and a string and looks for all occurrences of the regular
expression within that string. The parts of the string that don't match the regular expression are returned
in sequence as alist of values. For example, here's something to parse semicolon-separated fields, such
as the PATH environment variable:

$line = "c:\\;;c:\\windows\\; c:\\w ndows\\system";
@ields = split(/;/,%line); # split $line, using ; as delimter
now @ields is ("c:\", "", "c:\w ndows", "c:\w ndows\ systent')

Note how the empty second field became an empty string. If you don't want this to happen, match all of
the semicolons in one fell swoop:

@ields = split(/;+/, $line);
This matches one or more adjacent semicolons together, so that there is no empty second field.

One common string to split isthe $_ variable, and that turns out to be the default:

$ = "sone string";
@wrds = split(/ /); # sanme as @wrds = split(/ /, $);

For this split, consecutive spaces in the string to be split will cause null fields (empty strings) in the
result. A better pattern would be/ +/, orideally / \ s+/ , which matches one or more whitespace
characters together. In fact, this pattern is the default pattern,[8] so if you're splitting the $ variable on

whitespace, you can use all the defaults and merely say:

[8] Actually, the" " string isthe default pattern, and this will cause leading whitespace to be
ignored, but that's still close enough for this discussion.

@wrds = split; # sane as @wrds = split(/\s+/, $);

Empty trailing fields do not normally become part of thelist. Thisruleisnot generaly aconcern. A
solution like this:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

$line = "c:/;c:/windows; c:/w ndows/systen ";
($first, $second, $third, $fourth) =
split(/;/,%line); # split $line, using ; as delimter

would simply give $f our t h anull (undef) valueif the lineisn't long enough, or if it contained empty
valuesinthe last field. (Extrafields are silently ignored, because list assignment works that way.)

7.6.2 The join Function

Thej oi n function takes alist of values and glues them together with a glue string between each list
element. The function looks like this:

$bigstring = join($glue, @ist);
For example, to rebuild the PATH line, try something like:
$outline = join(";", @ields);

Note that the glue string is not aregular expression - just an ordinary string of zero or more characters.
If you need to get glue ahead of every item instead of just between items, a simple cheat suffices:
$result =join("+", "", @ields);

Here, theextra" " istreated as an empty element, to be glued together with the first data el ement of
@i el ds. Thischange resultsin glue ahead of every element. Similarly, you can get trailing glue with
an empty element at the end of thelist, like so:

$output = join ("\n", @ata, "");

Previous: 7.5 Learning Perl on Win32 Next: 7.7
Substitutions Systems Exercises
7.5 Substitutions Book 7.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems —

Previous: 7.6 The split and Chapter 7 . Next: 8.
join Functions Regular Expressions Functions

7.7 Exercises

See Appendix A, Exercise Answers for answers.

1. Construct aregular expression that matches:
(a) At least one a followed by any number of b's
(b) Any number of backslashes followed by any number of asterisks (any number might be zero)
(c) Three consecutive copies of whatever is contained in $what ever
(d) Any five characters, including newline

(e) The same word written two or more timesin arow (with possibly varying intervening
whitespace), where "word" is defined as a nonempty sequence of nonwhitespace characters

2. (a) Write aprogram that accepts alist of wordson STDI N and looks for aline containing all five
vowels(a, e, i , 0, and u). Run this program on some large text file and see what shows up. In
other words, enter:

> perl nyprogram plx < nytextfile
(This presumes you name your program myprogram.plx.)

(b) Modify the program so that the five vowels have to be in order, and intervening letters don't
matter.

(c) Modify the program so that all vowels must bein an increasing order; all five vowels have to

be present; and no "e" can occur before an "a’, no "i" can occur befor an "€", and so on.

Previous: 7.6 The split and Learning Perl on Win32 Next: 8.
join Functions Systems Functions
7.6 The split and join Book 8. Functions
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 7.7 Chapter 8 Next: 8.2 Invoking a User
Exercises Function

8. Functions

Contents:
Defining a User Function

Invoking a User Function

Return Values

Arguments

Private Variables in Functions
Semiprivate Variables Using local
File-Level my() Variables
Exercises

We've already seen and used predetermined, built-in functions, such aschonp, pri nt , and so on. Now,
let's take alook at functions that you define yourself.

8.1 Defining a User Function

A user function, more commonly called a subroutine or just a sub, is defined in your Perl program using
aconstruct like:

sub subnane {
statenent _1;
statenent 2,
st atenent _3;

}

The subname is the name of the subroutine, which is like the names we've had for scalar variables,
arrays, and hashes. Once again, these come from a different namespace, so you can have a scalar variable
$fred,anarray @r ed, ahash % r ed, and now a subroutinef r ed.[1]

[1] Technically, the subroutine's nameis &f r ed, but you seldom need to cal it that. See
Chapter 2 of Programming Perl for all of the gory details.

The block of statements following the subroutine name becomes the definition of the subroutine. When
the subroutine isinvoked (described shortly), the block of statements that makes up the subroutine is

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

executed, and any return value (described later) is returned to the caller.

Here, for example, is a subroutine that displays that famous phrase:

sub say_hello {
print "hello, world!'\n";
}

Subroutine definitions can be anywhere in your program text (they are skipped on execution), but we like
to put them at the end of the file, so that the main part of the program appears at the beginning of thefile.
(If you like to think in Pascal terms, you can put your subroutines at the beginning and your executable
statements at the end, instead. It's up to you.)

Subroutine definitions are global;[2] there are no local subroutines. If you have two subroutine
definitions with the same name, the later one overwrites the earlier one without warning.[3]

[2] They are global to the current package, actually, but since this book doesn't really deal
with separate packages, you may think of subroutine definitions as global to the whole
program.

[3] This statement is true, unless you are running with the - w switch.

Within the subroutine body, you may access or give values to variables that are shared with the rest of
the program (aglobal variable). In fact, by default, any variable reference within a subroutine body refers
to aglobal variable. We'll tell you about the exceptions in the later section entitled "Private Variablesin

Functions." In the following example:

sub say what {
print "hello, $what\n";

}
$what refersto the the global $what , which is shared with the rest of the program.
Previous: 7.7 Learning Perl on Win32 Next: 8.2 Invoking a User
Exercises Systems Function
7.7 Exercises Book 8.2 Invoking a User Function
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 8.1 Defining a User Ch t.er 8 Next: 8.3
Function Functions Return Values

8.2 Invoking a User Function

Y ou invoke a subroutine from within any expression by following the subroutine name with parentheses,
asin:

say _hello(); # a sinple expression

$a = 3 + say_hello() # part of a |arger expression

for ($x = start _value(); $x < end value(); $x += increnent()) {

} # invoke three subroutines to define val ues

A subroutine can invoke another subroutine, and that subroutine can in turn invoke another subroutine,
and so on, until all available memory isfilled with return addresses and partially computed expressions.
(No mere eight or 32 levels could satisfy areal programmer.)

Previous: 8.1 Defining a User Learning Perl on Win32 Next: 8.3
Function Systems Return Values
8.1 Defining a User Function Book 8.3 Return Vaues
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 8.2 Invoking a User Ch t‘er 8 Next: 8.4
Function Functions Arguments

8.3 Return Values

A subroutine is always part of some expression. The value of the subroutine invocation is called the
return value. The return value of a subroutine is the value of the return statement or of the last expression
evaluated in the subroutine.

For example, let's define this subroutine:

sub sumof _a and b {
return $a + $b;
}

The last expression evaluated in the body of this subroutine (in fact, the only expression evaluated) is the
sum of $a and $b, so the sum of $a and $b will be the return value. Here's that in action:

$a = 3; $b = 4;
$c = sumof _a and b(); # $c gets 7
$d = 3*sumof _a_and _b(); # $d gets 21

A subroutine can also return alist of values when evaluated in alist context. Consider this subroutine and
Invocation:

sub list _of _a and b {

return ($a, $b);

}
$a = 5; $b = 6;
@ = list_of_a_and_b(); # @ gets (5, 6)

The last expression evaluated really means the last expression evaluated, rather than the last expression
defined in the body of the subroutine. For example, this subroutine returns $a if $a > 0; otherwise, it
returns $b:

sub gimme_a or_b {

if ($a > 0) {
print "choosing a ($a)\n";
return $a;
} else {
print "choosing b ($b)\n";
return $b;

}

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

}

These examples are al rather trivial. It gets better when we can pass values that are different for each
invocation into a subroutine, instead of having to rely on global variables. In fact, thisdiscussion is
coming right up.

Previous: 8.2 Invoking a User Learning Perl on Win32 Next: 8.4
Function Systems Arguments
8.2 Invoking a User Function Book 8.4 Arguments
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 8.3 Ch t‘er 8 Next: 8.5 Private Variables in
Return Values Functions Functions

8.4 Arguments

Although subroutines that have one specific action are useful, awhole new level of usefulness becomes
available when you can pass arguments to a subroutine. In Perl, the subroutine invocation (with the
ampersand and the subroutine name) is followed by alist within parentheses, causing the list to be
automatically assigned to a special variable named @_for the duration of the subroutine. The subroutine
can access this variable to determine the number of arguments and the value of those arguments. For
example:

sub say hello to {
print "hello, $ [0]!\n"; # first paraneter is target
}

Here, we see areferenceto $_[0] , which isthefirst element of the @ array. Specia note: athough
similar in appearance, the $_[0] value (the first element of the @ array) has nothing whatsoever to do
withthe$_ variable (ascalar variable of its own). Don't confuse them! The code seemsto say hello to
whomever we pass as the first parameter. As aresult, we can invoke it like this:

say hello_to("world"); # gives hello, world!
$x = "sonebody";
say hell o _to($x); # gives hello, sonebody!

say hello to("nme") + say hello to("you"); # and ne and you

Note that in the last line, the return values weren't really used. But in evaluating the sum, Perl hasto
evaluate all of its parts, so the subroutine was invoked twice.

Here's an example using more than one parameter:

sub say {
print "$ [0], $ [1]!\n";
}

say("hello","worl d"); # hello world, once again
say("goodbye","cruel world"); # silent novie |anment

Excess parameters are ignored: if you never look at $ [3] , Perl doesn't care. And insufficient
parameters are also ignored; you simply get undef if you look beyond the end of the @ array, aswith
any other array.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

The @ variableis private to the subroutineg; if there'sagloba valuefor @ , it is saved away before the
subroutine isinvoked and restored to its previous value upon return from the subroutine. This also means
that a subroutine can pass arguments to another subroutine without fear of losing itsown @ variable; the
nested subroutine invocation getsitsown @_ in the same way.

Let'srevigit that "add aand b" routine from the previous section. Here's a subroutine that adds any two
values (specifically, the two values passed to the subroutine as parameters):

sub add_two {
$_[0] + $_[1];
}

print add _two(3,4); # prints 7
$c = add_two(5,6); # $c gets 11

Now let's generalize this subroutine. What if we had 3, 4, or 100 values to add together? We could do it
with aloop, as shown:

sub add {
$sum = 0O; # initialize the sum
foreach $_ (@) {
$sum += $_; # add each el enent
}
return $sum # the sumof all elenents
}
$a = add(4,5,6); # adds 4+5+6 = 15, and assigns to $a
print add(1,2,3,4,5); # prints 15
print add(1..5); # also prints 15, because 1..5 is expanded

What if we had a variable named $sumwhen we called add? We just clobbered it. In the next section,
we see how to avoid this situation.

Previous: 8.3 Learning Perl on Win32 Next: 8.5 Private Variables in
Return Values Systems Functions
8.3 Return Vaues Book 8.5 Private Variablesin
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

J»Leaming Perl on Win32 Systems

Previous: 8.4 Ch t_er 8 Next: 8.6 Semiprivate
Arguments Functions Variables Using local

8.5 Private Variables in Functions

We've already talked about the @ variable and how alocal copy gets created for each subroutine invoked
with parameters. Y ou can create your own scalar, array, and hash variables that work the same way. Y ou
do thiswith the my operator, which takes alist of variable names and creates local versions of them (or
instantiations, if you like bigger words). Here's that add function again, thistime using vy

sub add {
ny $sum # make $sum a |l ocal variable
$sum = O; # initialize the sum
foreach $_ (@) {
$sum += $; # add each el enent
}
return $sum # | ast expression eval uat ed:
the sum of el enents
}

When the first body statement is executed, any current value of the global variable $sumis saved away,
and a brand new variable named $sumis created (with the value undef). When the subroutine exits, Perl
discards the local variable and restores the previous (global) value. This method works even if the $sum
variableis currently alocal variable from another subroutine (a subroutine that invokes this one, or one
that invokes one that invokes this one, and so on). Variables can have many nested local versions,
although you can access only one at atime.

Here'saway to create alist of all the elements of an array greater than 100:

sub bigger than 100 {
nmy (@esult); # tenporary for holding the return val ue
foreach $_ (@) { # step through the arg |i st
if ($_ > 100) { #is it eligible?
push(@esult,$); # add it
}
}

return @esult; # return the final |ist

}

What if we wanted all elements greater than 50, rather than all elements greater than 100? We'd have to
edit the program, changing each 100 to 50. But what if we need both? Well, we can replace the 50 or 100

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

with a variable reference instead. This change makes the program look like:

sub bi gger than {
ny($n, @al ues); # create sone | ocal variables
($n, @al ues) = @; # split args into limt and val ues
nmy(@esult); # tenporary for holding the return val ue
foreach $_ (@al ues) { # step through the arg |i st
if ($_ > $n) { # is it eligible?
push(@esult,$); # add it

}
}
@esul t; # return the final |ist
}
sone i nvocations:
@ew = bi gger than(100, @i st); # @ew gets all @ist > 100

@his = bigger _than(5,1,5,15,30); # @his gets (15, 30)

Notice that thistime, we used two additional local variablesto give namesto arguments. This method is
fairly common in practice - you can more easily talk about $n and @ al ues thantalk about $ [0] and
@[1..%#],and$n and @al ues are safer aswell.

The result of my isan assignable list, meaning that it can be used on the left side of an array assignment
operator. You can give thislist initial values for each of the newly created variables. (If you don't give
values to the list, the new variables start with avalue of undef , just like any other new variable.) Asa
result, we can combine the first two statements of this subroutine, replacing:

ny($n, @al ues) ;

($n, @alues) = @; # split args into limt and val ues

with:

ny($n, @al ues)= @;

Thisis, in fact, a very common Perl-ish thing to do. Loca nonargument variables can be given literal
values in the same way, such as:

ny($sum) = 0; # initialize local variable

Be warned that despite its appearance as a declaration, ny isreally an executable operator. Good Perl

hacking strategy suggests that you bunch all of your nmy operators at the beginning of the subroutine
definition, before you get into the meat of the routine.

Previous: 8.4 Learning Perl on Win32 Next: 8.6 Semiprivate
Arguments Systems Variables Using local
8.4 Arguments Book 8.6 Semiprivate Variables

Index Using local

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 8.5 Private Ch t‘er 8 Next: 8.7 File-Level my()
Variables in Functions Functions Variables

8.6 Semiprivate Variables Using local

Perl gives you a second way to create private variables, using thel ocal function. You must, however,
understand the differences between ny and | ocal . For example:

$value = "original";

tellme();
spoof () ;
tell me();

sub spoof {
| ocal ($value) = "tenporary”;
tell me();

}

sub tellnme {
print "Current value is $val ue\n";
}

This prints out:

Current value is original
Current value is tenporary
Current value is original

If my had been used instead of | ocal , the private reading of $val ue would be available only within
thespoof () subroutine. But with| ocal , asthe output shows, the private value is not quite so private;
it is also available within any subroutines called from spoof () . The general ruleisthat | ocal
variables are visible to functions called from within the block in which those variables are declared.

Whereas nmy can be used only to declare ssmple scalar, array, or hash variables with al phanumeric names,
| ocal suffersno such restrictions. Also, Perl's built-in variablessuch as$_, $1, and @GARGV, cannot be
declared with my, but work finewith | ocal . Because $_is so often used throughout most Perl
programs, it's probably prudent to place a

| ocal $_;

at the top of any function that uses$__ for its own purposes. This assures that the previous value will be

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

preserved and automatically restored when the function exits.

In your more advanced programming efforts, you may eventually need to know that | ocal variablesare
really global variablesin disguise. That is, the value of the global variable is saved and temporarily
replaced with the locally declared value.

By and large, you should prefer to use my over | ocal because ny isfaster and safer.

Previous: 8.5 Private Learning Perl on Win32 Next: 8.7 File-Level my()
Variables in Functions Systems Variables
8.5 Private Variablesin Book 8.7 File-Level my() Variables
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 8.6 Semiprivate C_haw Next: 8.8
Variables Using local Functions Exercises

8.7 File-Level my() Variables

The nmy operator can also be used at the outermost level of your program, outside of any subroutines or
blocks. While iy isn't really alocal variable in the sense defined above, it's actually rather useful,
especially when used in conjunction with a Perl pragma:[4]

[4] A pragmaisacompiler directive. Other directives include those used to set up integer
arithmetic, overload numeric operators, or request more verbose warnings and error
messages. These are documented in perlmodlib.

use strict;
If you place this pragma at the beginning of your file, you will no longer be able to use variables (scalars,
arrays, and hashes) until you have first declared them. And you declare them with ny, like so:

use strict;
ny $a; # starts as undef
mny @ = gwm fred barney betty); # give initial value

push @, gw(w | ma); # cannot | eave her out
@ = sort @, # WLL NOT COWI LE

That last statement will be flagged at compile time as an error, because it referred to a variable that had
not previously been declared with ny (that is, @). In other words, your program won't even start running
unless every single variable being used has been declared.

The advantages of forcing variable declarations are twofold:

« Your programswill run slightly faster (variables created with nmy are accessed dlightly faster than
ordinary variableg 5]).

[5] Inthis case, ordinary variable isreally a package variable (so $x isredly
$mai n: : x). Variables created with ny are not found in any package.

« You'll catch mistakes in typing much faster, because you'll no longer be able to accidentally
reference a nonexisting variable named $f r eed when you wanted $f r ed.

Because of these advantages, many Perl programmers automatically begin every new Perl program with
usestrict.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: 8.6 Semiprivate Learning Perl on Win32 Next: 8.8

Variables Using local Systems Exercises
8.6 Semiprivate Variables Book 8.8 Exercises
Using loca Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 8.7 File-Level my() Chapter 8 Next: 9. Miscellaneous
Variables Functions Control Structures

8.8 Exercises

See Appendix A, Exercise Answers for answers.

1. Write asubroutine that takes a numeric value from 1 to 9 as an argument and then returns the
English name (such as, one, t wo, or ni ne). If the valueis out of range, return the original
number as the name instead. Test it with some input data; you'll probably have to write some sort
of code to call the subroutine. (Hint: the subroutine should not perform any 1/0.)

2. Taking the subroutine from the previous exercise, write a program that takes two numbers and
then adds them together, displaying the result as Two pl us t wo equal s f our . (Don't forget to
capitalize theinitial word!)

3. Extend the subroutine to return negat i ve ni ne throughnegati ve one andzer o. Tryitina

program.
Previous: 8.7 File-Level my() Learning Perl on Win32 Next: 9. Miscellaneous
Variables Systems Control Structures
8.7 File-Level my() Variables Book 9. Miscellaneous Control

Index Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

AﬁaLeaming Perl on Win32 Systems —

Previous: 8.8 Chapter 9 [Next: 9.2 The next Statement]
Exercises

9. Miscellaneous Control Structures

Contents:
The last Statement

The next Statement

Theredo Statement

Labeled Blocks

Expression Modifiers

&&, ||, and 2. as Control Structures
Exercises

9.1 The last Statement

In some of the previous exercises, you may have thought, "if | just had a C br eak statement here, I'd be
done." Even if you didn't think that, et me tell you about Perl's equivalent for getting out of aloop early:
thel ast statement.

Thel ast statement breaks out of the innermost enclosing loop block,[1] causing execution to continue
with the statement immediately following the block. For example:

[1] Notethat thedo {} whil e/ unti | construct does not count asaloop for purposes of
next,| ast,andr edo.

whi l e (sonet hing) {
sonet hi ng;

sonet hi ng;

sonet hi ng;

I f (sonmecondition) {
sonet hi ngor ot her;
sonet hi ngor ot her;
| ast; # break out of the while | oop

}

nor et hi ngs;

nor et hi ngs;

}

| ast cones here

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

If somecondi ti on istrue, thesonet hi ngor ot her sare executed, and then thel ast forcesthe
whi | e loop to terminate.

Thel ast statement counts only looping blocks, not other blocks that are needed to make up some
syntactic construct. As aresult, the blocksfor thei f and el se statement, aswell asthe onefor ado {}
whi | e/ unti | , do not count; only the blocks that make up thef or , f or each,whi | e,unti |, and
"naked" blocks count. (A naked block isablock that is not otherwise part of alarger construct, such asa
loop, subroutine, ori f /t hen/el se statement.)

Suppose we wanted to see whether a mail message that had been saved in afile was from Erik. Such a
message might look like:

From eriko@xtech.com (Erik d son)
To: rdenn@ra. com

Dat e: 01- MAY-97 08:16:24 PM MDT -0700
Subj ect: A sanple mail nessage

Here's the body of the mail nessage. And
here is sone nore.

We'd have to look through the message for aline that begins with Fr om , and then notice whether the line
also contains the login name, er i ko.

We could do it thisway:
while (<STDIN>) { # read the input |ines
if (/"From /) { # does it begin with From? |If yes...
if (/eriko/) { #it's from Erik!
print "Email fromErik! It's about tinme!l\n";

}
| ast; # no need to keep looking for From, so exit
} # end "if from"
if (/"$/) { # blank |ine?
| ast; # if so, don't check any nore |ines
}
} # end while

After the line starting with Fr om isfound, we exit the main loop because we want to see only the first
From line. Also, because a mail message header ends at the first blank line, we can exit the main loop
there as well.

Previous: 8.8 Learning Perl on Win32 | Next: 9.2 The next Statement|
Exercises Systems
8.8 Exercises Book 9.2 The next Statement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 9.1 The last Chapter 9 [Next: 9.3 The redo Statement]
Statement Miscellaneous Contr ol
Structures

9.2 The next Statement

Likel ast , next altersthe ordinary sequential flow of execution. However, next causes execution to
skip past the rest of the innermost enclosing looping block without terminating the block.[2] next is

used like this:

[2] If acont i nue block exists for the loop, which we haven't yet discussed, next goesto
the beginning of the cont i nue block rather than to the end of the block. Pretty close.

whil e (sonething) {
firstpart;
firstpart;
firstpart;

i f (sonmecondition) {
sonepart ;
sonmepart;
next ;

}

ot her part;

ot herpart;

next cones here

}

If somecondi ti onistrue thensonmepart isexecuted, and ot her part isskipped around.

Once again, the block of ani f statement doesn't count as alooping block.

Previous: 9.1 The last Learning Perl on Win32 | Next: 9.3 The redo Statement|
Statement Systems
9.1 Thelast Statement Book 9.3 The redo Statement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 9.2 The next Chapter 9 [Next: 9.4 Labeled Blocks]
Statement M iscellaneous Control
Structures

9.3 The redo Statement

The third way you can jump around in alooping block iswith r edo. This construct causes a jump to the
beginning of the current block (without reevaluating the control expression), like so:

whil e (sonecondition) {

redo cones here

sonet hi ng;

sonet hi ng;
sonet hi ng;

i f (sonmecondition) {
sonest uf f;
sonest uf f;
redo;

}

nor et hi ng;

nor et hi ng;

nor et hi ng;

}

Onceagain, thei f block doesn't count - just the looping blocks.

Withr edo, | ast, and anaked block, you can make an infinite loop that exits out of the middle, like so:

{

startstuff;

startstuff;

startstuff;

i f (sonecondition) {
| ast ;

¥

| at er st uf f;
| at er st uff;
| at er st uff;
redo;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

This logic would be appropriate for awhi | e-like loop that needed to have some part of the loop
executed as initialization before the first test. (In alater section entitled "Expression Modifiers,” well

show you how to writethat i f statement with fewer punctuation characters.)

Previous: 9.2 The next Learning Perl on Win32 | Next: 9.4 Labeled Blocks]
Statement Systems
9.2 The next Statement Book 9.4 Labeled Blocks
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 9.3 The redo . Chapter 9 Next: 9.5 Expression
Statement Miscellaneous Contr ol Modifiers
Structures

9.4 Labeled Blocks

What if you want to jump out of the block that contains the innermost block - to exit from two nested
blocks at once? In C, you'd resort to that much maligned got o to get you out. No such kludge is
required in Perl. You can usel ast , next , and r edo on any enclosing block by giving the block a
name with alabel.

A label isyet another type of name from yet another namespace following the same rules as scalars,
arrays, hashes, and subroutines. Aswe'll see, however, alabel doesn't have a special prefix punctuation
character (like $ for scalars, & for subroutines, and so on), so alabel named pr i nt conflicts with the
reserved word pr i nt , and would not be allowed. For this reason, you should choose labels that consist
entirely of uppercase letters and digits, which will never be chosen for areserved word in the future.
Besides, using all uppercase makes an item stand out better within the text of a mostly lowercase
program.

After you've chosen your label, place it immediately in front of the statement containing the block, and
follow it with acolon, like this:

SOMVELABEL: while (condition) {
st at enent ;
st at enment ;
st at enent ;
I f (nuthercondition) {
| ast SOVELABEL,;
}

}

We added SOVELABEL as a parameter to | ast . This parameter tells Perl to exit the block named
SOVELABEL, rather than exiting just the innermost block. In this case, we don't have anything but the
innermost block. But suppose we had nested |oops:
QUTER:. for ($i = 1; $i <= 10; $i++) {
INNER: for ($ = 1; $ <= 10; $j++) {
if ($i * $ == 63) {
print "$i tinmes $ is 63!'\n";
| ast OUTER,

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

if ($ >= $i) {
next OUTER;
}

}

This set of statementstries all successive values of two small numbers multiplied together until it finds a
pair whose product is 63 (7 and 9). After the pair isfound, there's no point in testing other numbers, so
thefirsti f statement exitsboth f or loopsusing| ast with alabel. Thesecondi f ensuresthat the
bigger of the two numbers will always be the first number by skipping to the next iteration of the outer
loop as soon as the condition would no longer hold. This means that the numbers will be tested with ($i
$j) being (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), and so on.

Even if theinnermost block islabeled, thel ast , next , and r edo statements without the optional
parameter (the label) still operate with respect to that innermost block. Also, you can't use labelsto jump
into ablock - just out of ablock. Thel ast, next , or r edo hasto be within the block.

Previous: 9.3 The redo Learning Perl on Win32 Next: 9.5 Expression
Statement Systems Modifiers
9.3 The redo Statement Book 9.5 Expression Modifiers
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

| Previous: 9.4 Labeled Blocks]| ~ Chapter 9 Next: 9.6 &&, ||, and ?: as
M iscellaneous Control Control Structures
Structures

9.5 Expression Modifiers

AsYet Another Way to indicate "if this, then that," Perl allows you to tag an if modifier onto an
expression that is a standal one statement, like this:

sonme_expression if control _expression;

Inthiscase, cont r ol _expr essi on isevaluated first for itstruth value (using the same rules as
aways), and if true, sone_expr essi on isevauated next. This method is roughly equivalent to:

I f (control _expression) {
Sonme_expressi on;
}

except that you don't need the extra punctuation, the statement reads backwards, and the expression must
be a simple expression (not a block of statements). Many times, however, this inverted description turns
out to be the most natural way to state the problem. For example, here's how you can exit from aloop
when a certain condition arises:
LINE: while (<STDIN>) {

last LINE if /~From /;
}

See how much easier that isto write? And you can even read it in anormal English way: "last lineif it
begins with From."

Other parallel formsinclude the following:

exp2 unl ess expl;# like: unless (expl) { exp2; }
exp2 while expl;, # like: while (expl) { exp2; }
exp2 until expl; # like: until (expl) { exp2; }

All of these forms evaluate exp1l first, and based on that evaluation, do or don't do something with
exp2.

For example, here's how to find the first power of two greater than a given number:
chomp($n = <STDI N>) ;

$i = 1; # initial guess

$i *= 2 until $i > $n; # iterate until we find it

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Once again, we gain some clarity and reduce the clutter.

These forms don't nest: you can't say exp3 whi | e exp2 i f expl. Thisrestriction is because the form
exp2if expl isnolonger an expression, but afull-blown statement, and you can't tack one of these
modifiers on after a statement.

| Previous: 9.4 Labeled Blocks| Learning Perl on Win32 Next: 9.6 &&, ||, and ?: as
Systems Control Structures
9.4 Labeled Blocks Book 9.6 &&, ||, and ?: as Control
Index Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 9.5 Expression . Chapter 9 Next: 9.7
Modifiers Miscellaneous Control Exercises
Structures

9.6 &&, ||, and ?: as Control Structures

These look like punctuation characters, or parts of expressions. Can they really be considered control
structures? Well, in Perl-think, amost anything is possible, so let's see what we're talking about here.

Often, you run across "if this, then that." We've previously seen these two forms:

if (this) { that; } # one way
that if this; # anot her way

Here'sathird (and believeit or not, there are still others):
this && that;

Why does this statement work? Isn't that the logical-and operator? Check out what happenswhent hi s
takes on each value of true or false:

« Ift hi s istrue, then the value of the entire expression is still not known, because it depends on the
valueof t hat . Sot hat hasto be evaluated.

o Ifthi s isfalse there'sno pointinlooking at t hat , because the value of the whole expression
has to be false. Because you don't haveto evaluate t hat , we might as well skip it.

And in fact, Perl doesjust that. Perl evaluatest hat only whent hi s istrue, making the form equivalent
to the previous two examples.

Likewise, thelogical or worksliketheunl ess statement (or unl ess modifier). So, you can replace:
unless (this) { that; }

with
this || that;

Finally, the C-like ternary operator:
expl ? exp2 : exp3;

evaluatesto exp?2 if expl istrue, and to exp3 in all other cases. Y ou might have used:
I f (expl) { exp2; } else { exp3; }

but you could have eliminated all of that punctuation. For example, you could write:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

($a < 10) ? ($b = %a) : (%a = $b);

Which one should you use? Y our choice depends on your mood, sometimes, or on how big each of the
expression parts are, or on whether you need to parenthesize the expressions because of precedence
conflicts. Look at other peopl€'s programs, and see what they do. Y ou'll probably see alittle of each.
Larry suggests that you put the most important part of the expression first, so that it stands out.

Previous: 9.5 Expression Learning Perl on Win32 Next: 9.7
Modifiers Systems Exercises
9.5 Expression Modifiers Book 9.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 9.6 &&, |[, and ?: as ~ Chapter 9 Next: 10. Filehandles and File
Control Structures Miscellaneous Control Tests
Structures

9.7 Exercises

See Appendix A, Exercise Answers for the answers.

1. Extend the problem from the last chapter to repeat the operation until the word end is entered for
one of the values. (Hint: use an infinite loop, and then do al ast if either vaueisend.)

2. Rewrite the exercise from Chapter 4, Control Structures, summing numbers up to 999, using a

loop that exits from the middle. (Hint: use a naked block with ar edo at the end to get an infinite
loop, and al ast inthe middle based on acondition.)

Previous: 9.6 &&, ||, and ?: as Learning Perl on Win32 Next: 10. Filehandles and File
Control Structures Systems Tests
9.6 &&, ||, and ?. as Control Book 10. Filehandles and File Tests
Structures Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 9.7 Chapter 10 Next: 10.2 Opening and
Exercises Closing a Filehandle

10. Filehandles and File Tests

Contents:
What Is aFilehandle?

Opening and Closing a Filehandle
Using Pathnames and Filenames
A Slight Diversion: die

Using Filehandles

The-x File Tests

The stat Function

Exercises

10.1 What Is a Filehandle?

A filehandle in a Perl program is the name for an 1/O connection between your Perl process and the
outside world. We've already seen and used filehandles implicitly: STDI Nis afilehandle, naming the
connection between the Perl process and the standard input. Likewise, Perl provides STDOUT (for
standard output) and STDERR (for standard error output). These names are the same as those used by the
C and C++ standard I/O library package, which Perl uses for most of its 1/0O.

Filehandle names are like the names for |abeled blocks, but they come from yet another namespace (so
you can have ascalar $f r ed, anarray @ r ed, ahash % r ed, asubroutine &f r ed, alabel f r ed, and
now afilehandlef r ed). Like block labels, filehandles are used without a specia prefix character, and
thus might be confused with present or future reserved words. Once again, the recommendation is that
you use ALL UPPERCASE lettersin your filehandle; not only will the uppercase stand out better, but it
will also guarantee that your program won't fail when afuture reserved word is introduced.

Previous: 9.7 Learning Perl on Win32 Next: 10.2 Opening and
Exercises Systems Closing a Filehandle
9.7 Exercises Book 10.2 Opening and Closing a

Index Filehandle

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.1 What Is a ' Chapter 10 Next: 10.3 Using Pathnames
Filehandle? Filehandles and File Tests and Filenames

10.2 Opening and Closing a Filehandle

Perl provides three filehandles- STDI N, STDOUT, and STDERR - which are automatically open to files
or devices established by the program's parent process (probably a command console). Y ou use the
open function to open additional filehandles. The syntax looks like this:

open(FI LEHANDLE, " sonenane") ;

where FI LEHANDLE isthe new filehandle and sonenane isthe external filename (such asafileor a

device) that will be associated with the new filehandle. This invocation opens the filehandle for reading.
To open afilefor writing, use the same open function, but prefix the filename with a greater-than sign

(aswith redirection in cmd.exe or command.com):

open(QUT, ">outfile");

WEe'l seein alater section, "Using Filehandles," how to use thisfilehandle. Also, as at the command
prompt, you can open afile for appending by using two greater-than signs for a prefix, as shown:
open(LOGFI LE, ">>nyl ogfile");

All forms of open return true for success and false for failure. (Opening afile for input fails, for
example, if thefileis not there or cannot be accessed because of permissions; opening afile for output
failsif thefileiswrite protected, or if the directory is not writable or accessible.)

When you are finished with afilehandle, you can close it with the cl ose operator, like so:
cl ose(LOGFI LE) ;

Reopening afilehandle also closes the previously opened file automatically, as does exiting the program.
Because of this feature, many Perl programs don't bother with cl ose. But the function isthere if you
want to be tidy or make sure that all of the datais flushed out before program termination. A cl ose call
could also fail if the disk filled up, the remote server that held the file became inaccessible, or any of
various other esoteric problems occurred. Y ou should always check the return values of all system calls.

Previous: 10.1 What Is a Learning Perl on Win32 Next: 10.3 Using Pathnames
Filehandle? Systems and Filenames
10.1 What Is aFilehandle? Book 10.3 Using Pathnames and

Index Filenames

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.2 Opening and ‘ Chapter 10 1(_) Next: 10.4 A Slight Diversion:
Closing a Filehandle Filehandlesand File Tests die

10.3 Using Pathnames and Filenames

When working with files and pathnames, you're faced with an interesting choice: what's the best way of
specifying pathnames? Perl accepts either a slash or a backslash as a path delimiter.[1] The dlashis
typically used by UNIX systemsto delimit paths while the backslash is the traditional MS-DOS path
delimiter. The slash is aso used as a path delimiter when specifying URLSs. The following statements all
evaluate to the same thing, as far as Perl is concerned:[2]

[1] Acutally, pathnames are just passed to the operating system, which accepts either a slash
or a backslash.

[2] The only portable delimiter isthe dlash. Of course, if you're using drive letters, your
script isn't really portable anyway.

"c:\\tenp" # backsl ash (escaped for doubl e quoted string)
‘c:\tenp' # backsl ash (single quoted string)
“c:/tenmp" # slash - no escape needed

There are a couple of tradeoffs associated with either approach. First we look at the backslash: if you use
the backslash to delimit paths, you have compatibilty problems with scripts that need to run on UNIX
systems. Y ou also need to remember to escape the backslash inside of double-quoted strings (or use
single-quoted strings, because they are not interpolated). Finally, you need to remember to use a slash if
you're outputting URL paths.

If you decide to use a slash, you need to consider the following issues: although some Windows NT
programs and utilities accept slashes as a delimiter, many do not. Traditionally, the slash is used to
specify command-line options to MS-DOS programs, so many programs interpret slashes as command
switches. Generally speaking, if your script is self contained, you won't run into any difficulties using
slashes. However, if you need to pass pathnames to external programs, you'll probably need to use
backslashes (unless you know that the program you're using accepts slashes).

Our practice isto use slashes unless we're passing a path to an external program, in which case we use
backslashes. If you're using one style of delimiter, you could easily switch to the other style by doing a
simple substitution. Y ou must exercise caution if you're writing code that parses a path to extract
components; make sure that your code either regularizes paths to use the same delimiter, or that it
handles both delimiters when extracting components.[3]

[3] Or consider using Fi | e: : Basenane, which does portable parsing of path

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

components.

Another issue to consider isthe use of long filenames versus the traditional MS-DOS 8.3 filename (a
maximum of eight characters, followed by an optional extension of up to three characters). You'll find
that some programs do not handle long filenames gracefully (particularly those with embedded spacesin
them). In fact, if you're communicating with 16-bit programs (of either the Windows 3.x or DOS
variety), the odds are very high that they won't understand long filenames.

To convert along filename to an 8.3 filename, usethe W n32: : Get Shor t Pat hNane[4] function:

[4] For adiscussion of the Win32 extensions, see Appendix B, Libraries and Modules.

use Wn32;

$l onghane = 'words. secret’;

$short nane = W n32:: Get Short Pat hNane($l ongnane) ;
$short nane has WORDS~1. SEC

Perl can also be used to open files using UNC (Universal Naming Convention) pathnames. A UNC path
consists of two backslashes (or slashes) followed by a machine name and a share. The following example
opens afile using a UNC pathname:

open(F, '//soneserver/share/sonefile') ||

die "open: $!";
$cnt = 0;
whil e(<F>) {$cnt++;} # count the nunber of I|ines
close(F) || die "close: $!";

print "$cnt |ines\n";

If you use backslashes, make sure that they're properly escaped:
open(F, "\\\\soneserver\\share\\sonefile") ||

die "open: $!";
$cnt = 0;
whil e(<F>) {$cnt++;} # count the nunber of I|ines
close(F) || die "close: $!";

print "$cnt |ines\n";

Previous: 10.2 Opening and Learning Perl on Win32 Next: 10.4 A Slight Diversion:
Closing a Filehandle Systems die
10.2 Opening and Closing a Book 10.4 A Slight Diversion: die
Filehandle Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.3 Using ‘ Chapter 10 | Next: 10.5 Using Filehandles|
Pathnames and Filenames Filehandlesand File Tests

10.4 A Slight Diversion: die

Consider the following a large footnote, but in the middle of the page.

A filehandle that has not been successfully opened can still be used without even so much as awarning
throughout the program.[5] If you read from the filehandle, you'll get end-of-file right away. If you write

to the filehandle, the datais silently discarded (like last year's campaign promises).
[5] This statement is true, unless you are running with the - w switch enabled.

Typicaly, you'll want to check the result of the open and report an error if the result is not what you
expect. Sure, you can pepper your program with stuff like:

unl ess (open (DATAPLACE, ">c:/tenp/dataplace")) {
print "Sorry, | couldn't create c:/tenp/dataplace\n";
} else {

}

But that sort of changeisalot of work. And it happens often enough for Perl to offer abit of a shortcut.
The di e function takes alist within optional parentheses, spits out that list (like pri nt) on the standard
error output, and then ends the Perl program with a nonzero exit status (generally indicating that
something unusual happened[6]). So, rewriting the chunk of code above turns out to look like this:

the rest of your program

[6] Actually, di e () merely raises an exception, but because you aren't being shown how
to trap exceptions, it behaves as described. See Eval {} in Chapter 3 of Programming Per| or

perlfunc for details.

unl ess (open DATAPLACE, ">c:/tenp/datapl ace") {
die "Sorry, | couldn't create c:/tenp/dataplace\n";

}

rest of program

But we can go even one step further. Remember that we can usethe | | (logical or) operator to shorten
thisup, asin:

open(DATAPLACE, ">c: /tenp/ dat apl ace") ||
die "Sorry, | couldn't create c:/tenp/dataplace\n";

So, the di e gets executed only when the result of the open isfalse. The common way to read thisis

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

"open that file or die!" And that's an easy way to remember whether to use the logical and or logical or .

The message at death (built from the argument to di e) has the Perl program name and line number
automatically attached, so you can easily identify which di e was responsible for the untimely exit. If
you don't like the line number or file revealed, make sure that the death text has a newline on the end. For
example:

di e "you gravy-sucking pigs";

prints the file and line number, while
di e "you gravy-sucking pigs\n";

does not.

Another handy thing inside die stringsis the $! variable, which contains the text relating to the most
recent operating system error value. The variable is used like this:

open(LOG ">>logfile") || die "cannot append: $!";
The program might end up saying "cannot append: Perm ssi on deni ed" as part of the message.

There's also the close call function, which most people know aswar n. It does everything di e does, just
short of actually dying. Useit to give error messages on standard error without alot of extra hassle:

open(LOG ">>l0g") || warn "discarding |logfile output\n";
Previous: 10.3 Using Learning Perl on Win32 | Next: 10.5 Using Filehandles|
Pathnames and Filenames Systems
10.3 Using Pathnames and Book 10.5 Using Filehandles
Filenames Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.4 A Slight ‘ Chapter 10 Next: 10.6 The
Diversion: die Filehandlesand File Tests -X File Tests

10.5 Using Filehandles

After afilehandleis open for reading, you can read lines from it just as you can read from standard input
with STDI N. So, for example, to read lines from atext file:
open (FIL,"sone_file");
while (<FIL>) {
chonp;
print "I saw $_ in sone_filel\n";

}

Note that the newly opened filehandle is used inside the angle brackets, just as we have used STDI N
previously.

If you have afilehandle open for writing or appending, and if you want to print to it, you must place the
filehandle immediately after the print keyword and before the other arguments. No comma should occur
between the filehandle and the rest of the arguments:

print LOGFILE "Finished item $n of $max\n";
print STDOUT "hi, world!'\n";

In this case, the message beginning with Fi ni shed goesto the LOGFI LE filehandle, which
presumably was opened earlier in the program. And hi , wor | d still goesto standard output, just as
when you didn't specify the filehandle. We say that STDOUT is the default filehandle for the pr i nt
Statement.

Here'saway to copy all of the text from afile specified in $a into afile specified in $b. It illustrates
nearly everything we've learned in the last few pages:[7]

[7] Although this method is entirely redundant when you consider the Fi | e: : Copy
module.

open(IN,$a) || die "cannot open $a for reading: $!";
open(QUT, ">$b") || die "cannot create $b: $!";
while (<IN>) { #read aline fromfile $a into $_

print QUT $; # print that line to file $b
}

cl ose(IN) || die "can't close $a:$!";
close(QUT) || die "can't close $b:$!";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: 10.4 A Slight Learning Perl on Win32 Next: 10.6 The

Diversion: die Systems -X File Tests
10.4 A Slight Diversion: die Book 10.6 The-x File Tests
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.5 Using ‘ Chapter 1(_) Next: 10.7 The
Filehandles Filehandles and File Tests stat Function

10.6 The -x File Tests

Now you know how to open afilehandle for output, overwriting any existing file with the same name.
Suppose you wanted to make sure that there wasn't afile by that name (to keep you from accidentally
blowing away your spreadsheet data or that important birthday calendar). Perl uses- e $fi | evar to
test for the existence of the file named by the scalar valuein $f i | evar . If thisfile exists, theresult is
true; otherwise it isfalse. For example:

$nanme = "index.htm";
if (-e $nane) ({
print "I see you already have a file naned $nane\n";
} else {
print "Perhaps you'd like to make a file called $nane\n";
}

The operand of the - e operator isreally just any scalar expression that evaluates to some string,
including a string literal. Here's an example that checks to see whether both index.html and index.cgi
exist in the current directory:
If (-e "index.htm" &% -e "index.cgi") {

print "You have both styles of index files here.\n";
}

Other operators are defined aswell. For example, - r $f i | evar returnstrueif the file named in
$f i | evar existsandisreadable. Similarly, - w $f i | evar testswhether it iswritable. Here'san
example that tests a user-specified filename for both readability and writability:
print "where? ";
$fil enanme = <STDI N>;
chonp $fil enanme; # toss pesky new i ne
if (-r $filenane && -w $fil enane) {
file exists, and | can read and wite it

}

Many more file tests are available, some of which are not applicable to Perl for Win32. Table 10.1 lists
some file tests and their meanings; for the whole list, see the perlfunc documentation.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Table 10.1: File Testsand Their Meanings

File Test [Meaning

-r File or directory is readable

-W File or directory iswritable

-e File or directory exists

-X Fileis executable

-Z File exists and has zero size (directories are never empty)

-S File or directory exists and has nonzero size (the value is the size in bytes)
-f Entry isaplainfile

-d Entry isadirectory

-t I satty onthefilehandleistrue (that is, the filehandle is a character device)
-T Fileistext

-B Fileisbinary

-M Modification age in days (C lang. time_t value)

-A Access age in days (C lang. time_t value)

-C Inode-modification age in days (C lang. time_t value)

Most of these tests return asimple true-false condition. A few don't, so let's talk about them.

The - s operator does return true if the file is nonempty, but it's a particular kind of true. It's the length in
bytes of the file, which evaluates as true for a nonzero number.

The age operators- M - A, and - C (yes, they're uppercase) return the number of days since the file was
last modified, accessed, or had its information changed.[8] This age value is fractional with aresolution
of one second: 36 hoursisreturned as 1.5 days. If you compare the age with a whole number (say three),
you'll get only the files that were changed exactly that many days ago, not one second more or less. This
means that you'll probably want a range comparison rather than an exact comparison to get files that are
between three and four days old.[9]

[8] The age is measured relative to the time the program started, as captured in C-library
timeinto the $” T variable. Y ou can get negative numbers for these agesif the queried value
refers to an event that happened after the program began.

[9] Or, you might want to use thei nt function.

These operators can operate on filehandles as well as filenames. Giving afilehandle for the operand is all
it takes. So to test whether the file opened as SOVEFI LE is executable, you can use:

i f (-x SOVEFILE) {

file open on SOVEFI LE is executable
}

If you leave the filename or filehandle parameter off (that is, if you specify just - r or - s), the default
operand isthefilenamed inthe $ _ variable (thereitisagain!). So, to test alist of filenames to see which
ones are readable, it'sas simple as.

foreach (@one_list_of filenanes) {
print "$ is readable\n" if -r; # same as -r $_

}
Previous: 10.5 Using Learning Perl on Win32 Next: 10.7 The
Filehandles Systems stat Function
10.5 Using Filehandles Book 10.7 The stat Function
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.6 The -x File Chapter 10 Next: 10.8
Tests Filehandles and File Tests Exercises

10.7 The stat Function

While these file tests are fine for testing various attributes regarding a particular file or filehandle, they
don't tell the whole story. To get at the remaining information about afile, merely call the st at
function, which returns pretty much everything that the POSIX system call st at returns (hopefully
more than you want to know). Not all of thest at fields are meaningful under Perl for Win32, because
they include information not supported by the Windows NT filesystems.

The operand to st at isafilehandle or an expression that evaluates to a filename. The return valueis
either undef , indicating that the stat failed, or a 13-element list,[10] most easily described using the

following list of scalar variables:

[10] If you have a hard time remembering the order of st at 'sreturn values, you might look
attheFi | e: : st at module, first introduced in release 5.004 of Perl. It provides access
such as:

$file_owner = stat($fil enane)->uid;

($dev, $i no, $node, $nl i nk, $ui d, $gi d, $rdev,
$si ze, $atinme, $nti me, $cti me, $bl ksi ze, $bl ocks) = stat(...)

Table 10.2 lists each field along with a brief description.

Table 10.2; stat Return Valves

Field |Description

dev Device number (drive number)

Ino Inode number: O (zero) in Perl for Win32

mode |File permission mode: read/write/execute

nlink [Number of linksto file (usualy one for Win32 systems - NTFS filesystems may have avalue
greater than one)

uid User ID - zero for Win32

gid Group ID - zero for Win32

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

rdev |Device Identifier (drive number)

Size File sizein bytes

atime |Last accesstime (C lang. time_t value)

mtime |Last modification time (C lang. time_t value)

ctime |Filecreationtime (C lang. time_t value)

blksize | Disk block size (cluster size): zero for Win32

blocks | Number of blocks for file: zero for Win32

Like thefiletests, the operand of st at defaultsto $_, meaning that the stat will be performed on the file
named by the scalar variable $_.

Y ou can retrieve information about the filesystem of the current active drive using the
W n32: : FsType function:
$fstype = Wn32:: FsType;
if ($fstype =~ INTFS/) {
print "NTFS -- good choice!\n";

}
Previous: 10.6 The -x File Learning Perl on Win32 Next: 10.8
Tests Systems Exercises
10.6 The-x File Tests Book 10.8 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.7 The stat Chapter 10 Next: 11.
Function Filehandlesand File Tests Formats

10.8 Exercises

See Appendix A, Exercise Answers for answers.

1. Writeaprogram to read in afilename from STDI N, and then open that file and display its contents
with each line preceded by the filename and a colon. For example, if f r ed wasread in, and the
filef r ed consisted of thethreelinesaaa, bbb, andccc, youwould seefred: aaa,fred:
bbb,andfred: ccc.

2. Write aprogram that prompts for an input filename, an output filename, a search pattern, and a
replacement string, and then replaces all occurrences of the search pattern with the replacement
string while copying the input file to the output file. Try it on some files. Can you overwrite an
existing file? (Don't try it with anything important!) Can you use regular expression charactersin
the search string? Can you use $1 in the replacement string?

3. Writeaprogram to read in alist of filenames and then display which of the files are readable,
writable, and nonexistent. (Y ou can perform each test for each filename as you read them, or you
can perform the tests on the entire set of filenames after you've read them all. Don't forget to
remove the newline at the end of each filename that you have read.)

4. Write aprogram to read in alist of filenames and then find the oldest file among them. Print out
the name of the file and the age of that file in days.

Previous: 10.7 The stat Learning Perl on Win32 Next: 11.
Function Systems Formats
10.7 The stat Function Book 11. Formats
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 10.8 Chapter 11 [Next: 11.2 Defining a Format]
Exercises

11. Formats

Contents:
What |s a Format?

Defining a Format

Invoking a Format

More About the Fieldholders
The Top-of-Page Format
Changing Defaults for Formats
The FileHandle Module
Exercises

11.1 What Is a Format?

Per| stands, among other things, for "Practical Extraction and Report Language.” It's time to learn about
that "...report language" business.

Perl provides a simple report-writing template, called aformat. A format defines a constant part (the
column headers, labels, fixed text, or whatever) and a variable part (the current data you're reporting).
The shape of the format is very close to the shape of the output, as with formatted output in COBOL or
thepri nt usi ng clauses of some BASICs.

Using aformat consists of doing three things:
1. Defining aformat
2. Loading up the datato be printed into the variable portions of the format (fields)
3. Invoking the format

Most often, the first step is done once (in the program text so that it gets defined at compile time[1]), and
the other two steps are performed repeatedly.

[1] You can also create formats at runtime using the eval function, as described in
Programming Perl and perlform.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Previous: 10.8 Learning Perl on Win32 [Next: 11.2 Defining a Format|

Exercises Systems
10.8 Exercises Book 11.2 Defining a Format
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.1 What Is a Chapter 11 | Next: 11.3 Invoking a Format|
Format? Formats

11.2 Defining a Format

A format is defined using aformat definition. This format definition can appear anywhere in your
program text, like a subroutine. A format definition looks like this:

format sonef or mat nane =

fieldline

val ue_one, value two, value three
fieldline

val ue_one, val ue_two

fieldline

val ue_one, value_two, value_ three

Thefirst line contains the reserved word f or mat , followed by the format name and then an equal sign
(=). The format name is chosen from yet another namespace, and follows the same rule as everything
else. Because format names are never used within the body of the program (except within string values),
you can safely use names that are identical to reserved words. Asyou'll see in the following section,
"Invoking a Format," most of your format names will probably be the same as filehandle names (which

then makes them not the same as reserved words...oh well).

Following the first line comes the template itself, spanning zero or more text lines. The end of the
template isindicated by aline consisting of asingle dot by itself.[2] Templates are sensitive to

whitespace; this instance is one of the few in which the kind and amount of whitespace (space, newline,
or tab) in the text of a Perl program actually matters.

[2] In text files, the last line needs to end with a newline to work properly.

The template definition contains a series of fieldlines. Each fieldline may contain fixed text - text that
will be printed out literally when the format is invoked. Here's an example of afieldline with fixed text:

Hell o, ny nane is Fred Flintstone.

Fieldlines may also contain fieldholders for variable text. If aline contains fieldholders, the following
line of the template (called the value line) dictates a series of scalar values - one per fieldholder - that
provide the values that will be plugged into the fields. Here's an example of afieldline with one
fieldholder and the value line that follows:

Hell o, ny nane i s @kx<<<<<<<<<

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

$nane

The fieldholder isthe @<<<<<<<<<, which specifies aleft-justified text field with 11 characters. More
complete details about fieldholders will be given in the section called "More About the Fieldholders'

later in this chapter.

If the fieldline has multiple fieldholders, it needs multiple values, so the values are separated on the value
line by commas:

Hel l o, ny nane is @k<<<<<<<<< and |'m @< years ol d.
$nane, $age

Putting all this together, we can create a simple format for an address label:
format ADDRESSLABEL =

| @<<<<<KKKKLKLKLKLKLILLKLKLLKLLLLL<L |
$nane

| @r<<<<<LLLLKLLLLKLLLLKLLLLLL LK< |
$addr ess

| @k<<<<<<<<<<g, @ @<<< |

$city, $state, $zip

Note that the lines of equal signs at the top and bottom of the format have no fields, and thus have no
value lines following. (If you put avalue line following such afieldline, it will be interpreted as another
fieldline, and will most likely not do what you want.)

Whitespace within the value line isignored. Some people choose to use additional whitespace in the
value line to line up the variable with the fieldholder on the preceding line (such as putting $zi p
underneath the third field of the previous line in this example), but that's just for looks. Perl doesn't care,
and the change doesn't affect your output.

Text after the first newline in avalue is discarded (except in the special case of multiline fieldholders,
described later).

A format definition is like a subroutine definition. It doesn't contain immediately executed code, and can
therefore be placed anywhere in the file with the rest of the program - we tend to put ours toward the end
of the file, ahead of my subroutine definitions.

Previous: 11.1 What Is a Learning Perl on Win32 | Next: 11.3 Invoking a Format|
Format? Systems
11.1 What Is a Format? Book 11.3 Invoking a Format
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.2 Defining a Chapter 11 Next: 11.4 More About the
Format Formats Fieldholders

11.3 Invoking a Format

You invoke aformat with thewr i t e function. This operator takes the name of a filehandle and
generates text for that filehandle using the current format for that filehandle. By default, the current
format for afilehandle is aformat with the same name (so for the STDOUT filehandle, the STDOUT
format is used), but we'll soon see that you can changeit.

Let's take another ook at that address label format, and create afile full of address labels. Here'sa
program segment:
f ornrat ADDRESSLABEL =

| @x<<<<<LLLLLLLLLILLLLLLLLL LKL |

$nane

| @x<<<<<KKLKLKLKLKLKLKLILLKLKLLKLLLLL <L |

$addr ess

| @<<<<<<<K<KKKL, @& @<<< |

$city, $state, $zip

open(ADDRESSLABEL, ">| abel s-to-print") || die "can't create";
open(ADDRESSES, "addr esses"”) || die "cannot open addresses”;

whi | e (<ADDRESSES>) {
chonp; # renove new i ne
($nane, $address, $city, $state, $zip) = split(/:/);
| oad up the global variables
wite (ADDRESSLABEL); # send the out put

}

Here we see our previous format definition, but now we also have some executable code. First, we open
afilehandle onto an output file called | abel s-t o- pri nt . Note that the filehandle name
(ADDRESSLABEL) is the same as the name of the format. This fact isimportant. Next, we open a
filehandle on an address list. The format of the address list is presumed to be something like:

St onehenge: 4470 SWHall Suite 107: Beaverton: OR 97005
Fred Flintstone: 3737 Hard Rock Lane: Bedr ock: OZ: 999bc

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

In other words, the format is five colon-separated fields, which our code parses as described below.

Thewhi | e loop in the program reads each line of the addressfile, gets rid of the newline, and then splits
the remainder into five variables. Note that the variable names are the same names as the ones we used
when we defined the format. This fact, too, isimportant.

After we have all of the variables loaded up (so that the values used by the format are correct), the
wr i t e function invokes the format. Note that the parameter towr i t e isthe filehandle to be written to,
and by default, the format of the same nameis also used.

Each field in the format is replaced with the corresponding value from the next line of the format. After
the two sample records given above are processed, thefilel abel s-t o- pri nt contains:

| Stonehenge |
| 4470 SWHall Suite 107 |
| Beaverton , OR 97005 |

| Fred Flintstone |
| 3737 Hard Rock Lane |
I

| Bedrock , QZ 999bc
Previous: 11.2 Defining a Learning Perl on Win32 Next: 11.4 More About the
Format Systems Fieldholders
11.2 Defining a Format Book 11.4 More About the
Index Fieldholders

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.3 Invoking a Chapter 11 Next: 11.5 The Top-of-Page
Format Formats Format

11.4 More About the Fieldholders

So far, by example, you know that the fieldholder @ <<< indicates a 5-character, |eft-justified field and
that @<<<<<<<<< indicates an 11-character, |eft-justified field. Here's the whole scoop, as promised
earlier.

11.4.1 Text Fields

Most fieldholders start with @ The characters following the @indicate the type of field, while the number
of characters (including the @ indicates the field width.

If the characters following the @are left-angle brackets (<<<<), you get aleft-justified field; that is, the
value will be padded on the right with spacesiif the value is shorter than the field width. (If avalueistoo
long, it's truncated automatically; the layout of the format is always preserved.)

If the characters following the @are right-angle brackets (>>>>), you get aright-justified field - that is, if
the value is too short, the field gets padded on the left with spaces.

Finally, if the characters following the @are vertical bars(| | | |), you get a centered field; if the valueis
too short, the field gets padded on both sides with spaces, enough on each side to make the value mostly
centered within the field.

11.4.2 Numeric Fields

Another kind of fieldholder is a fixed-precision numeric field, useful for those big financial reports. This
field also begins with @ and is followed by one or more #'s with an optional dot (indicating a decimal
point). Once again, the @counts as one of the characters of the field. For example:

format MONEY =
Assets: @###. ## Li abil i ti es: @t###H#. ## Net: @#H###H. ##
$assets, $liabilities, $assets-$liabilities

The three numeric fields allow for six places to the | eft of the decimal place, and two to the right (useful
for dollars and cents). Note the use of an expression in the format - perfectly legal and frequently used.

Perl provides nothing fancier than this; you can't get floating currency symbols or brackets around
negative values or anything interesting. To do so, you have to write your own spiffy subroutine, like so:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

format MONEY =
Assets: @k<<<<<<<< Liabilities @k<<<<<<< Net: @<<<<<<<
pretty($assets, 10), pretty($liab,9), pretty($assets-$liab, 10)

sub pretty {
ny($n,$width) = @;
$width -= 2; # back off for negative stuff
$n = sprintf("%2f",$n); # sprintf is in later chapter
if ($n < 0) {
return sprintf("[%w dth.2f]", -$n);
negative nunbers get brackets
} else {
return sprintf(" %w dth.2f ", $n);
positive nunbers get spaces instead

}

body of program
$assets = 32125.12;
$liab = 45212. 15;
wite (MONEY);

11.4.3 Multiline Fields

As mentioned earlier, Perl normally stops at the first newline of a value when placing the result into the
output. One kind of fieldholder, the multiline fieldholder, alows you to include a value that may have
many lines of information. Thisfieldholder is denoted by @ on aline by itself; as always, the following
line defines the value to be substituted into the field, which in this case may be an expression that results
In avalue containing many newlines.

The substituted value will ook just like the original text: four lines of value become four lines of output.
For example:

format STDOUT =
Text Before.

@
$l ong_string
Text After.

$l ong_string = "Fred\ nBarney\ nBetty\nWI nma\n";
wite;
generates the outpuit:

Text Before.
Fr ed

Bar ney
Betty
W I na
Text After.

11.4.4 Filled Fields

Another kind of fieldholder isafilled field. Thisfieldholder allows you to create afilled paragraph,
breaking the text into conveniently sized lines at word boundaries, wrapping the lines as needed. There
are afew partsthat work together here, but let'slook at them separately.

First, afilled field is denoted by replacing the @marker in atext fieldholder with a caret (so you get
N<<<, for example). The corresponding value for afilled field (on the following line of the format) must
be a scalar variable] 3] containing text, rather than an expression that returns a scalar value. The reason
for thisisthat Perl will alter the variable whilefilling the filled field, and it's pretty hard to alter an
expression.

[3] The scalar value can include a single scalar element of an array or hash, like $a[3] or
$h{"fred"}.

When Perl isfilling the filled field, it takes the value of the variable and grabs as many words (using a
reasonable definition of "word")[4] as will fit into the field. These words are actually ripped out of the
variable - the value of the variable after filling thisfield iswhatever is |eft over after removing the words.
You'll see why in aminute.

[4] The word-separator characters are defined by the $: variable.

So far, thisisn't much different from how anormal text field works; we're printing only as much as will
fit (except that we're respecting aword boundary rather than just cutting it off at the field width). The
beauty of thisfilled field appears when you have multiple references to the same variable in the same
format. Take alook at this:

f ormat PECPLE =
Name: @x<<<<<<<<<<<< Comment: A<<<<<<<KLKLLLLLLLLLLLLLLLLLLLL
$nane, $coment
N LLLLLLLLLLLLLLLLLLL

$comment
Nl LLLLLLL

$coment
Nl LLLLLLLLLLL

$coment

Note that the variable $comrent appears four times. The first line (the one with the $nane field) prints
the person’'s name and the first few words of the valuein $conmrent . But in the process of computing
thisline, scomment isaltered so that the words disappear. The second line once again refers to the same
variable ($conment), and will take the next few words from the same variable. This processisaso
used for the third and fourth lines. Effectively, what we've created is arectangle in the output that will be

filled as best it can with the words from $conment spread over four lines.

What happens if the complete text occupies less than four lines? Well, you'll get ablank line or two. This
result is probably OK if you are printing out labels and need exactly the same number of lines for each
entry to match them up with the labels. But if you are printing out a report, many blank lines merely use
up your printer's paper budget.

To fix this, use the suppression indicator. Any line that contains atilde (~) character is suppressed (not
output) if the line would have otherwise printed blank (just whitespace). Thetilde itself always prints as a
blank and can be placed anywhere a space could have been placed in the line. We could rewrite that last
example asfollows:

format PECPLE =
Nanme: @<<<<<<<<<<<< Coment: <<<<<<<<<<LLLLLLLLLLLLLLLLL<L
$nane, $coment
~ N L L L L L L L L L L LKL L
$coment
~ N LLLLLLLLLLLLLLLLLLLLLLLL
$comment
~ N gL LLLLLLLLLLLLLLLLLLL

$coment

Now, if the comment covers only two lines, the third and fourth lines are automatically suppressed.

What if the comment is more than four lines? Well, we could make about 20 copies of the last two lines
of that format, hoping that 20 lines will suffice. But that goes against the idea that Perl helps you to be
lazy, so there's alazy way to do it. Any line that contains two consecutive tildes will be repeated
automatically until the result is a completely blank line. (The blank line is suppressed.) This changes our
format to look like this:

format PEOPLE =
Name: @x<<<<<<<<<<<< Comment: <<<<<<<<<L<L<L<LL<LLLLLLLL<LL<L

$nane, $coment
~~ Nl LLLLLLLLLLLLLL

$coment

Thisway, if the comment takes 1 line, 2 lines, or 20 lines, we are till OK.

Note that the criterion for stopping the repeated line requires the line to be blank at some point. That
means you probably don't want any constant text (other than blanks or tildes) on the line, or else theline
will never become blank.

Previous: 11.3 Invoking a Learning Perl on Win32 Next: 11.5 The Top-of-Page
Format Systems Format
11.3 Invoking a Format Book 11.5 The Top-of-Page Format

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.4 More About Chapter 11 Next: 11.6 Changing Defaults
the Fieldholders Formats for Formats

11.5 The Top-of-Page Format

Many reports end up on some hardcopy device, like alaserprinter. Printer paper is generally clipped into
page-size chunks, because most of us stopped reading paper in scrolls along time ago. So the text being
fed to a printer typically has to take page boundaries into consideration by putting in blank lines or
form-feed characters to skip across the page boundaries. Now, you could take the output of a Perl
program and feed it through some utility (maybe even one written in Perl) that does this pagination, but
there's an easier way.

Perl allows you to define a top-of-page format that triggers a page-processing mode. Perl counts each
line of output generated by any format invocation to a particular filehandle. When the next format output
cannot fit on the remainder of the current page, Perl spits out a formfeed followed by an automatic
invocation of the top-of-page format, and finally the text from the invoked format. In this manner, the
result of onewr i t e invocation will never be split across page boundaries (unless the result is so large
that it won't even fit on apage by itself).

The top-of-page format is defined just like any other format. The default name of a top-of-page format
for a particular filehandle is the name of the filehandle followed by _ TOP (in uppercase only).

Perl defines the variable $%to be the number of times the top-of-page format has been called for a
particular filehandle, so you can use this variable in your top-of-page format to number the pages
properly. For example, adding the following format definition to the previous program fragment prevents
labels from being broken across page boundaries, and also numbers consecutive pages:

format ADDRESSLABEL TOP =
My Addresses -- Page @
$%

The default page length is 60 lines. Y ou can change this default by setting a special variable, described
shortly.

Perl doesn't notice whether you also pr i nt to the same filehandle, so that might throw the number of
lines on the current page off a bit. Y ou can either rewrite your code to use formats to send everything or
fudge the "number of lines on the current page" variable after you do your pri nt . Inamoment, welll
see how to change this value.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: 11.4 More About Learning Perl on Win32 Next: 11.6 Changing Defaults

the Fieldholders Systems for Formats
11.4 More About the Book 11.6 Changing Defaults for
Fieldholders Index Formats

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.5 The Chapter 11 Next: 11.7 The FileHandle
Top-of-Page Format Formats Module

11.6 Changing Defaults for Formats

We have often referred to the default for this or that. Well, Perl provides away to override the defaults
for just about every step. Let's talk about these.

11.6.1 Using select to Change the Filehandle

Back when we talked about pr i nt , in Chapter 6, Basic I/O, we mentioned that pri nt and pri nt
STDOUT were identical, because STDOUT was the default for pri nt . Not quite. The real default for
print (andwr it e, and afew other operations we'll get to in amoment) is an odd notion called the
currently selected filehandle.

The currently selected filehandle starts out as STDOUT - which makes it easy to print things on the
standard output. However, you can change the currently selected filehandle with the sel ect function.
This function takes a single filehandle (or a scalar variable containing the name of afilehandle) asan
argument. After the currently selected filehandle is changed, it affects all future operations that depend
on the currently selected filehandle. For example:

print "hello world\n"; # li ke print STDOUT "hell o worl d\n";
sel ect (LOGFILE); # select a new fil ehandl e

print "howdy, world\n"; # li ke print LOGFILE "howdy, world\n";
print "nore for the log\n"; # nore for LOGFILE

sel ect (STDOUT); # re-sel ect STDOUT

print "back to stdout\n"; # this goes to standard out put

Note that thesel ect operation is sticky - after you've selected a new handle, it stays in effect until the
next sel ect .

S0, a better definition for STDOUT with respect topri nt andwr i t e isthat STDOUT isthe default
currently selected handle, or the default default handle.

Subroutines may find a need to change the currently selected filehandle. However, you would be shocked
if you called a subroutine and then found out that all of your carefully crafted text lines were going into
some bit bucket because the subroutine changed the currently selected filehandle without restoring it. So
what's a well-behaved subroutine to do? If the subroutine knows that the current handle is STDOUT, the
subroutine can restore the selected handle with code similar to that given earlier. However, what if the
caller of the subroutine had already changed the selected filehandle?

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Thereturn value from sel ect isastring containing the name of the previously selected handle. Y ou
can capture this value to restore the previously selected filehandle later, using code like this:

$ol dhandl e = sel ect LOGFI LE;
print "this goes to LOGFI LE\ n";
sel ect (%ol dhandle); # restore the previous handl e

Y es, for these examples, putting LOGFI LE explicitly asthe filehandle for thepr i nt isan easier
method, but some operations require the currently selected filehandle to change, as we will soon see.

11.6.2 Changing the Format Name

The default format name for a particular filehandle is the same as the filehandle. However, you can
change this name for the currently selected filehandle by setting the new format name into a special
variable called $~. Y ou can also examine the value of the variable to see what the current format is for
the currently selected filehandle.

For example, to use the ADDRESSLABEL format on STDOUT, simply use the following:
$~ = " ADDRESSLABEL";

But what if you want to set the format for the REPORT filehandle to SUMMARY? Just afew stepsto do it
here:

$ol dhandl e = sel ect REPORT;
$~ = " SUWARY";
sel ect (%ol dhandl e);

The next time we say:
wite (REPORT);
we get text out on the REPORT filehandle in the SUMMARY format.

Note that we saved the previous handle into a scalar variable and then restored it later. This maneuver is
good programming practice. In fact, in production code, we probably would have handled the previous
one-line example similarly and not assumed that STDOUT was the default handle.

By setting the current format for a particular filehandle, you can interleave many different formatsin a
single report.

11.6.3 Changing the Top-of-Page Format Name

Just as we can change the name of the format for a particular filehandle by setting the $~ variable, we
can change the top-of-page format by setting the $” variable. This variable holds the name of the
top-of-page format for the currently selected filehandle and is read/write, meaning that you can examine
its value to see the current format name, and you can change it by assigning to it.

11.6.4 Changing the Page Length

If atop-of-page format is defined, the page length becomes important. By default, the page length is 60
lines; that is, when awr i t e won't fit by the end of line 60, the top-of-page format is invoked
automatically before printing the text.

Sometimes 60 linesisn't right. Y ou can change this by setting the $= variable. This variable holds the
current page length for the currently selected filehandle. Once again, to change it for afilehandle other
than STDOUT (the default currently selected filehandle), you'll need to usethe sel ect () operator.
Here's how to change the LOGFI LE filehandle to have 30-line pages:

$ol d = select LOGFILE;, # select LOGFILE and save ol d handl e
$= = 30;
sel ect $ol d;

Changing the page length won't have any effect until the next time the top-of-page format isinvoked. If
you set it before any text is output to a filehandle through aformat, it'll work just fine because the
top-of-page format isinvoked immediately at thefirstwri t e.

11.6.5 Changing the Position on the Page

If you pri nt your own text to afilehandle, it messes up the page-position line count because Perl isn't
counting lines for anything but awr i t e. If you want to let Perl know that you've output afew extra
lines, you can adjust Perl'sinternal line count by altering the $- variable. This variable contains the
number of linesleft on the current page on the currently selected filehandle. Eachwr i t e decrements the
lines remaining by the lines actually output. When this count reaches zero, the top-of-page format is
invoked, and the value of $- isthen copied from $= (the page length).

For example, to tell Perl that you've sent an extraline to STDOUT, do something like this:
wite; # invoke STDOUT fornmat on STDOUT

print "An extra line... oops!\n"; # this goes to STDOUT
$- --; # decrenent $- to indicate non-wite [ine went to STDOUT

wite; # this wll still work, taking extra |ine into account

At the beginning of the program, $- is set to zero for each filehandle. This ensures that the top-of-page
format will be the first thing invoked for each filehandle upon thefirstwri t e.

Previous: 11.5 The Learning Perl on Win32 Next: 11.7 The FileHandle
Top-of-Page Format Systems Module
11.5 The Top-of-Page Format Book 11.7 The FileHandle Module
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.6 Changing Chapter 11 Next: 11.8
Defaults for Formats Formats Exercises

11.7 The FileHandle Module

Because Perl was designed to be a practical extraction and report language, formats were one of the
earliest constructs incorporated into the language. As such, the format interface is starting to show its
age, particularly when you have to resort to ugly variable names and esoteric sel ect manipulations
merely to switch the currently active format.

The FileHandle module provides a more intuitive approach to these matters. For example, here's the easy
way to perform the same manipulations we demonstrated earlier in the section " Changing the Format

Name."

use FileHandle; # load library

format _nanme REPORT " ADDRESSLABEL";
wite REPORT;

format _nanme REPORT " SUMVARY";
write REPORT;

This object-oriented module lets you treat filehandles as though they were objects.[5] All the
filehandle-specific built-in punctuation variables have more mnemonic interfaces. See Chapter 2 of
Programming Perl, or the perlform documentation, for the complete description of these.

[5] See Chapter 18, CGI Programming, for more explanation about objects.

Previous: 11.6 Changing Learning Perl on Win32 Next: 11.8
Defaults for Formats Systems Exercises
11.6 Changing Defaults for Book 11.8 Exercises
Formats Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.7 The
FileHandle Module

Chapter 11

Formats

| Next: 12. Directory Access)|

11.8 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that reads afile containing alist of lines composed of a user name, a company
name, and an email address separated by colons. A sample line might look like this:

John Doe: Foo Technol ogi es: j doe@ oot ech. com

Print out each field in formatted columns. Usef or mat andwri t e.

2. Add atop-of-page format to the previous program. (If your fileisrelatively short, you might need
to set the pagelength to something like 10 lines so that you can get multiple instances of the

top-of-page.)

3. Add asequentially increasing page number to the top-of-page, so that you get page 1, page 2,

and so on, in the output.

Previous: 11.7 The
FileHandle Module

11.7 The FileHandle Module

Learning Perl on Win32
Systems

Book
Index

| Next: 12. Directory Access)|

12. Directory Access

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 11.8 Chapter 12 Next: 12.2
Exercises Globbing

12. Directory Access

Contents:
Moving Around the Directory Tree

Globbing

Directory Handles

Opening and Closing a Directory Handle
Reading a Directory Handle

Exercises

12.1 Moving Around the Directory Tree

By now, you're probably familiar with the notion of the current directory and using the cd command at
the command prompt. If you were programming in C, you'd be invoking thechdi r () call to change
the current directory of aprogram; thisnameis aso used by Perl.

Thechdi r function in Perl takes a single argument - an expression evaluating to a directory nameto
which the current directory will be set. Aswith most other system calls, chdi r returnstrueif you've
successfully changed to the requested directory and falseif you couldn't. Here's an example:

chdir("c:/temp") || die "cannot cd to c:/tenp ($!)";

The parentheses are optional, so you can aso get away with stuff like:
print "where do you want to go? ";
chonp($where = <STDI N>) ;
if (chdir $where) {
we got there
} else {

}

Y ou can't find out where you are without launching a cc command (something like cmd /c cd, or some
moral equivalent[1]). We'll learn about launching commands in Chapter 14, Process M anagement.

we didn't get there

[1] Other solutions are using the get cwd function out of the Oamd module or the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

W n32: : Get Ond function.

Every procesy[2] hasits own current directory. When a new processis launched, it inheritsits parent's

current directory, but that's the end of the connection. If your Perl program changes its directory, the
change won't affect the parent program that launched the Perl process. Likewise, the processes that the
Perl program creates cannot affect that Perl program'’s current directory. The current directories for these
new processes are inherited from the Perl program's current directory.

[2] A processisthe technical jargon for an executing program.

Thechdi r function without a parameter defaults to taking you to your home directory, in imitation of a
typical UNIX shell's cd command. The cd command in Windows NT does not normally work this way.
In order to guess your home directory, Perl will check to see whether the HOVE or LOGDI R environment
variables are defined.

Previous: 11.8 Learning Perl on Win32 Next: 12.2
Exercises Systems Globbing
11.8 Exercises Book 12.2 Globbing
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 12.1 Moving ‘_p_Cha ter 12 | Next: 12.3 Directory Handles|
Around the Directory Tree Directory Access

12.2 Globbing

The command prompt usually takes a solitary asterisk (*) command-line argument and turnsit into alist
of al of the filenamesin the current directory. So, when you say del *, you'll remove al of the files from
the current directory. (Don't try this unless you like restoring the current directory from your backup
device.) Similarly, *.c as a command-line argument turnsinto alist of all filenamesin the current
directory that end in .c, and c:\temp\backup* isalist of all filenamesin the directory c:\temp that begin
with backup. (If thisinformation is new to you, you probably want to read some more about using the
command line somewhere el se before proceeding.)

The expansion of argumentslike * or *.c into the list of matching filenames s called globbing. Perl
supports globbing through a very simple mechanism - just put the globbing pattern between angle
brackets or use the more mnemonically named gl ob function, like this:

@ <t pl x>;
@ = glob("*.plx");

In alist context, as demonstrated here, the glob returns alist of all names that match the pattern or an
empty list if none match. In ascalar context, the next name that matches isreturned, or undef is
returned if there are no more matches; this processis very similar to reading from afilehandle. For
example, to look at one name at atime:

whi |l e (defined($nextnane = <c:/scripts/*.plx>)) {
print "one of the files is $nextnanme\n";
}

Here the returned filenames begin with c:\scripts\, so that if you want just the last part of the name, you'll
have to whittle it down yourself, like so:

whil e ($nextnane = <c:/scripts/*.plx>) {
$next name =~ s#.*/##; # renove part before | ast slash
print "one of the files is $nextnane\n";

}

Multiple patterns are permitted inside the file glob argument; the lists are constructed separately and then
concatenated asif they were one big list:

@red barney files = <fred* barney*>;

In other words, the glob returns the same values that an equivalent dir /B command with the same

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

parameters would return.

Although file globbing and regular-expression matching function similarly, the meanings of their various
special characters are quite different. Don't confuse the two, or you'll be wondering why <\ . ¢$> doesn't
find all of thefilesthat endin. c!

The argument to glob is variable interpolated before expansion. Y ou can use Perl variablesto select a
wildcard based on a string computed at runtime:
if (-d "c:/tmp") {
$where = "c:/tmp";
} else {
$where = "c:/tenp”;
}

@il es = <$where/ *>;

Here we set $wher e to be one of two different directory names, based on whether or not the directory
c:\tmp exists.[3] Wethen get alist of filesin the selected directory. Note that the $wher e variableis

expanded, which means the wildcard to be globbed is either c:\tmp* or c:\temp*.

[3] If wewerereally trying to find where the temporary directory was, we'd be checking the
ENV hash for the TEMP variable:

ny $tnmp = $SENV{' TEMP' } || $ENV{' TMP };

There's one exception to this rule: the pattern <$var > (meaning to use the variable $var asthe entire
glob expression) must be written as <${ var } > for reasons we'd rather not get into at this point.[4]

[4] The construct <$f r ed> reads aline from the filehandle named by the contents of the
scalar variable $f r ed. Together with some other features not covered in this book, this
construct enables you to use indirect filehandles in which the name of a handle is passed
around and manipulated asif it were data.

Previous: 12.1 Moving Learning Perl on Win32 | Next: 12.3 Directory Handles|
Around the Directory Tree Systems
12.1 Moving Around the Book 12.3 Directory Handles
Directory Tree Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 12.2 ‘Cha ter 12 Next: 12.4 Opening and
Globbing Directory Access Closing a Directory Handle

12.3 Directory Handles

UNIX and POSIX programmers are used to reading directories and their contents using a system library
function called readdir. Asit turns out, this function is what Perl uses to provide directory access. Perl
implements readdir (and its companions) using a new type of object called directory handles. A
directory handle is a name from yet another namespace, and the cautions and recommendations that
apply to filehandles also apply to directory handles (you can't use a reserved word, and uppercaseis
recommended). The filehandle FRED and the directory handle FRED are unrelated.

The directory handle represents a connection to a particular directory. Rather than reading data (asfrom a
filehandle), you use the directory handle to read alist of filenames within the directory. Directory
handles are a'ways opened read only; you cannot use a directory handle to change the name of afile or to
delete afile.

Previous: 12.2 Learning Perl on Win32 Next: 12.4 Opening and
Globbing Systems Closing a Directory Handle
12.2 Globbing Book 12.4 Opening and Closing a
Index Directory Handle

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 12.3 Directory ‘Cha ter 12 Next: 12.5 Reading a
Handles Directory Access Directory Handle

12.4 Opening and Closing a Directory Handle

Theopendi r function is used to open adirectory handle for reading. Y ou give it the name of anew
directory handle and a string value denoting the name of the directory to be opened. The return value
from opendi r istrueif the directory can be opened, false otherwise. Here's an example:

opendir (NT,"c:/winnt") || die "Cannot opendir c:/winnt: $!'";
Normally, at this point, we'd go playing with the directory handle NT, but it's probably nice to know how

to close the directory handle first. Thisisdonewith cl osedi r, inasimilar manner to using cl ose,
like so:

cl osedir (NT);

Likecl ose, cl osedi r isoften unnecessary, as al directory handles are automatically closed before
they're reopened or at the end of the program.

Previous: 12.3 Directory Learning Perl on Win32 Next: 12.5 Reading a
Handles Systems Directory Handle
12.3 Directory Handles Book 12.5 Reading a Directory
Index Handle

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 12.4 Opening and ‘Cha ter 12 Next: 12.6
Closing a Directory Handle Directory Access Exercises

12.5 Reading a Directory Handle

After we have adirectory handle open, we can read the list of nameswith r eaddi r, which takes a
single parameter: the directory handle. Each invocation of r eaddi r inascaar context returns the next
filename (just the basename - you'll never get any slashes or backslashesin the return value) in a
seemingly random order.[5] If no more names exist, r eaddi r returnsundef . Invoking r eaddi r ina
list context returns all of the remaining names as alist with one name per element. Here's an example of
listing all of the names from your Windows directory:

[5] Specifically, this order is the one in which the filenames are kept in the directory - the
same unordered order you get back from the dir command from the command prompt.
$windir = $SENV{"WNDI R"};
opendi r (NT, $windir) || die "no $windir?: $!'";
while ($name = readdir(NT)) { # scalar context, one per | oop
print "$nanme\n"; # prints ., .., systemini, and so on
}

cl osedi r (NT);

And here'saway of getting them all in alphabetical order with the assistance of sort :

$windir = $SENV{"WNDI R'};

opendir (NT, $windir) || die "no $windir?: $!'";

foreach $nanme (sort readdir(NT)) { # list context, sorted
print "$nanme\n"; # prints ., .., systemini, and so on

}

cl osedir (NT);

The names include files that begin with adot. This method is unlike globbing with <* >, which does not
return names that begin with adot. This method isarelic from Perl's UNIX heritage, where the standard
filename expansion normally does not include any files that begin with a dot.

In the current version of Perl for Win32, and the current version of the standard distribution, opendi r
fails on UNC paths. Y ou can work around this by mapping a drive to the UNC share before using
directory handles, and then using the drive letter as the path instead of the UNC path. Y ou can do this
withthe W n32: : Net Resour ce module extension (see the AddConnect i on function) or with the
Windows NT net use command. For more information on modules and the Win32 extensions, see
Appendix B, Libraries and Modules.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: 12.4 Opening and Learning Perl on Win32 Next: 12.6

Closing a Directory Handle Systems Exercises
12.4 Opening and Closing a Book 12.6 Exercises
Directory Handle Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 12.5 Reading a .Cha ter 12 Next: 13. File and Directory
Directory Handle Directory Access Manipulation

12.6 Exercises

Answers arein Appendix A, Exercise Answers.

1. Write aprogram that changes the directory to alocation specified as input, and then lists the names
of the filesfound there in alphabetical order. (Don't show alist if the directory change doesn't
succeed: merely warn the user.)

2. Modify the program to include all files, not just the ones that don't begin with dot. Try to do so
with both a glob and a directory handle.

Previous: 12.5 Reading a Learning Perl on Win32 Next: 13. File and Directory
Directory Handle Systems Manipulation

12.5 Reading a Directory Book 13. File and Directory

Handle Index Manipulation

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 12.6 Chapter 13 | Next: 13.2 Renaming a File|
Exercises

13. File and Directory Manipulation

Contents:
Removing aFile

Renaming aFile

Making and Removing Directories
Modifying Permissions

Modifying Timestamps

Exercises

This chapter shows you how to manipulate the files themselves, not merely the data contained within.
Perl uses UNIX semantics for providing access to files and directories. Some of these names will be
familiar to Win32 programmers who have used the C run-time library, while others may not. Perl
provides arich set of file and directory manipulation routines, and not all of these are implemented on
Win32 platforms, but we'll cover the most useful ones here.[1]

[1] In particular, we've omitted discussion of thel i nk() andsyml i nk() functions, used
to create hard and symbolic links under Unix, because these functions are unimplemented in
the Windows NT filesystems and thus in Perl for Win32, as well.

13.1 Removing a File

Earlier, you learned how to create afile from within Perl by opening it for output with afilehandle. Now,
we'll get dangerous and learn how to remove afile (very appropriate for Chapter 13, File and Directory

Manipulation, don't you think?).

The Perl unl i nk function (named for the POSIX system call) deletes afile. Thisis exactly what the
command prompt del command does. Here's how to remove afile called fred and then remove afile
specified during program execution:

unlink ("fred"); # say goodbye to fred
print "what file do you want to delete? ";
chomp($nanme = <STDI N>) ;

unl i nk ($nane);

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Theunl i nk function can take alist of names to be unlinked as well:

unlink ("spottedow ", "nmeadow ark™); # kill two birds
unlink <*.bak>; # just like "del *.bak" in the command pronpt

The glob isevaluated in alist context, creating alist of filenames that match the pattern. Thislistis
exactly what we need to feed unl i nk.

Thereturn value of unl i nk isthe number of files successfully deleted. If only one argument exists, and
it is deleted, the result is one; otherwise, the result is zero. If there are three filenames but only two could
be deleted, the result istwo. Y ou can't tell which two, so if you need to figure out which deletion failed,
you must do them one at atime. Here's how to delete all of the backup files (ending in .bak) while
reporting an error for any file that cannot be del eted:

foreach $file (<*.bak>) { # step through a list of .bak files
unlink($file) || warn "having trouble deleting $file: $!'";
}

If unl i nk returns one (meaning the one file specified was indeed deleted), the true result skips the
war n function. If the filename cannot be deleted, the zero result isfalse, so thewar n is executed. Once
again, this can be read abstractly as "unlink thisfile or tell me about it."

If theunl i nk function is given no arguments, the $_ variable is once again used as a default. Thus, we
could have written the preceding loop as:

foreach (<*.bak>) { # step through a list of .bak files

unlink || warn "having trouble deleting $ \: $!'";
}
Previous: 12.6 Learning Perl on Win32 | Next: 13.2 Renaming a File|
Exercises Systems
12.6 Exercises Book 13.2 Renaming aFile
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 13.1 Removing a . ‘Cha ter 13 _ _ Next: 13.3 Making and
File Fileand Directory Manipulation Removing Directories

13.2 Renaming a File

In the command shell, you change the name of afile with the rename command. And so it is with Perl,
too, where this operation is denoted with r enane($ol d, $new) . Here's how to change the file named
fredintobar ney:

renane("fred","barney") || die "Can't renane fred to barney: $!'";

Like most other functions, the r ename function returns atrue value if successful, so test this result to
see whether ther enane has indeed worked.

Ther enane function is perhaps more like the command-prompt move command than the
command-prompt rename command. Perl'sr enanme can move afileinto adifferent directory, as can
move.

The move command performs a little behind-the-scenes magic to create afull pathname when you say
move file some-directory. However, the r enanme function cannot. The equivalent Perl operation is:
rename("file","sonme-directory/file");

Note that in Perl we had to say the name of the file within the new directory explicitly. If you try to

rename afile to afilename that already exists, r enane will overwrite the existing file; thisresult is
different than that of the Windows NT rename command, which will fail if the file already exists.

Previous: 13.1 Removing a Learning Perl on Win32 Next: 13.3 Making and
File Systems Removing Directories
13.1 Removing aFile Book 13.3 Making and Removing
Index Directories

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 13.2 Renaming a Chapter 13 Next: 13.4 Modifying
File Fileand Directory Manipulation Permissions

13.3 Making and Removing Directories

Y ou probably couldn't have made it this far without knowing about the mkdir or md command, which
makes directories that hold other filenames and other directories. Perl's equivalent isthe nkdi r function,
which takes a name for a new directory and a mode that will affect the permissions of the created
directory. The mode is specified as a number interpreted in internal permissions format. For now, just say
0777 for the mode and everything will work. Here's an example of how to create a directory named
gravel pit:

nkdir("gravel pit",0777) || die "cannot nkdir gravelpit: $'";

The command-prompt rmdir command removes empty directories - you'll find a Perl equivalent with the
same name (rmdir). Here's how to make Fred unemployed:

rodir("gravelpit") || die "cannot rndir gravelpit: $'";
Previous: 13.2 Renaming a Learning Perl on Win32 Next: 13.4 Modifying
File Systems Permissions
13.2 Renaming a File Book 13.4 Modifying Permissions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 13.3 Making and . ‘Cha ter 13 . _ Next: 13.5 Modifying
Removing Directories File and Directory Manipulation Timestamps

13.4 Modifying Permissions

The permissions on afile or directory define who (in broad categories) can do what (more or less) to that
file or directory. Under UNIX, the typical way to change permissions on afile is with the chmod
command. As a Windows user, you may be more used to the attrib command. Perl changes permissions
with the chnod function. This operator takes an octal numeric mode and alist of filenames, and
attempts to alter the permissions of al the filenamesto the indicated mode. To make the files fred and
barney with both read/write attributes, for example, do something like this:

chnod(0666, "fred", "barney");

In short, the UNIX (and Perl) concept of file permissions consists of abit for read, write, and execute
rights for the user, the user's group, and everyone else. These bits are combined to create the mode.
Because Win32 systems have a significantly different concept of permissions, you don't need to worry
about all of the different possible values for the mode. Table 13.1 presents a couple of key values.

Table 13.1: Key
Vauesfor File
Permissions

Mode | M eaning
0666 |Read/Write
0444 |Read only

Win32 systems determine whether or not afile is executable based on the file extension, so we're not
going to worry about the execute bits. Furthermore, even though some Windows NT filesystems support

advanced user/group rights, the current Perl implementation doesn't support access to these rights via
chnod.

The return value of chnod isthe number of files successfully adjusted (even if the adjustment does
nothing); so chnod workslike unl i nk, and you should treat it as such with regard to error checking.
Here's how to change the permissions of fred and barney while checking the errors for each:

foreach $file ("fred", "barney") {
unl ess chnod (0666, $file) {
warn "hnmm .. couldn't chnod $file. $!";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

}

TheW n32: : Fi | e[2] extension module provides away to access and set traditional DOS file attributes
like the archive, system, and hidden attributes. This package consists of just two methods:
Get Attributes andSet Attri but es. Table 13.2 lists the attributes and their significations.

[2] See Appendix B, Libraries and Modules, for an explanation of the Win32 extensions.

Table 13.2: DOS File Attributes and Their Significations
Attribute Explanation

ARCHIVE Thefile has been modified since it was last archived.
DIRECTORY | Thefileisadirectory.

HIDDEN Thefileishidden (that is, it won't normally appear in directory listings).
NORMAL Thefileisanormal (read/write) file.
READONLY |Thefileisread-only.

SYSTEM Thefileisasystem file (among other things, it can't be deleted without first changing
the attributes).

To combine attributes, use the bitwise or operator |. Here's an example of how to make afile read-only,
without changing its other attributes:

use Wn32::File;

Wn32::File::GetAttributes("foo.txt", $attrib) || die $!;
Wn32::File::SetAttributes("foo.txt", $attrib | READONLY) ||
die $!';

Although we won't get to references until Chapter 18, CGI Programming, the$at t ri b isjust that. For

now, just know that upon returning from Get At t ri but es, $at t ri b will contain an attribute mask
consisting of some combination of the values outlined above.

To set user permissions on NTFS filesystems, use either the W n32: : Fi | eSecuri ty extension
module, or the Windows NT cacls.exe program, which provides a command-line interface to file
permissions.

Previous: 13.3 Making and Learning Perl on Win32 Next: 13.5 Modifying
Removing Directories Systems Timestamps
13.3 Making and Removing Book 13.5 Modifying Timestamps

Directories Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 13.4 Modifying Chapter 13 Next: 13.6
Permissions Fileand Directory Manipulation Exercises

13.5 Modifying Timestamps

Associated with each fileis a set of three timestamps. These timestamps were discussed briefly when we
talked about getting information about afile: the last access time, the last modification time, and the last
change time. The first two timestamps can be set to arbitrary values by the ut i me function (which
corresponds directly to the same-named C library call). Setting these two values automatically setsthe
third value to the current time, so there's no point in having away to set the third value.

The values are measured in internal time, namely an integer number of seconds past midnight GMT,
January 1, 1970 - afigure that had reached el ght-hundred-million-something when this book was being
written. (Internaly, it's represented as a 32-bit unsigned number, and if we haven't all upgraded to 64-bit
machines (or beyond), will overflow sometime well into the next century. We have much more to worry
about in the year 2000[3]).

[3] Perl'sl ocal ti me and gnt i me functionswork just like C's do: they return the year
with 1,900 subtracted. In 2003, | ocal t i me will give the year as 103.

Theut i me function workslike chnod and unl i nk. It takes alist of filenames and returns the number
of files affected. Here's how to make the fred and barney files look as though they were modified
sometime in the recent past:

$atinme = $minme = 700 000 _000; # a while ago

uti me($atine, $ntine, "fred", "barney")

No "reasonableness’ value exists for the timestamps, you can make afile look arbitrarily old or as though
it were modified at some time in the distant future (useful if you are writing science fiction stories). For
example, using thet i me function (which returns the current time as a timestamp), here's how to make
the file max_headroomlook like it was updated 20 minutes into the future:

$when = tinme()+ 20*60; # 20 m nutes from now
ut i me($when, $when, "max_headr oont') ;

Previous: 13.4 Modifying Learning Perl on Win32 Next: 13.6
Permissions Systems Exercises
13.4 Modifying Permissions Book 13.6 Exercises

Index

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 13.5 Modifying
Timestamps

Chapter 13
Fileand Directory Manipulation

Next: 14. Process
Management

13.6 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that works like del, deleting the files given as command-line arguments when the
program isinvoked. (Y ou don't need to handle any options of del.)

Be careful to test this program in a mostly empty directory so that you don't accidentally delete
useful stuff! Remember that the command-line arguments are available in the GARGV array when

the program starts.

2. Write aprogram that works like rename, renaming the first command-line argument to the second
command-line argument. (Y ou don't need to handle any options of rename, or more than two
arguments.) Y ou may wish to consider how to handle the rename when the destination is a

directory.

Previous: 13.5 Modifying
Timestamps

13.5 Modifying Timestamps

Learning Perl on Win32
Systems

Book
Index

Next: 14. Process
Management

14. Process M anagement

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

J»Leaming Perl on Win32 Systems

Previous: 13.6 Chapter 14 [Next: 14.2 Using Backquotes]
Exercises

14. Process Management

Contents:
Using system and exec

Using Backquotes

Using Processes as Filehandles
Summary of Process Operations
Win32::Process

Exercises

14.1 Using system and exec

Like the command shell, a Perl program can launch new processes, and like most other operations, has
more than one way to do so.

The smplest way to launch anew processisto usethe syst emfunction. In its ssmplest form, this
function hands a single string to a brand new command shell to be executed as a command. When the
command is finished, the sy st emfunction returns the exit value of the command (typically O if
everything went OK). Here's an example of a Perl program executing adir command using a shell:

system("dir");
We're ignoring the return value here, but the dir command is not likely to fail anyway.

Where does the command's output go? In fact, where does the input come from, if it was a command that
wanted input? These are good questions, and the answers to these questions are most of what
distinguishes the various forms of process creation.

For the syst emfunction, the three standard files (standard input, standard output, and standard error) are
inherited from the Perl process. So, for the dir command in the previous example, the output goes
wherever the pri nt STDOUT output goes - probably to the invoker's command prompt. Because you are
firing off another command shell, you can change the location of the standard output using the normal 1/0
redirections. For example, to put the output of the directory command into afile named this _dir,
something like this will work just fine:

system("dir >this dir") && die "cannot create this dir";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

This time, we not only send the output of the dir command into afile with aredirection to the new
command shell, but also check the return status. If the return status is true (nonzero), something went
wrong with the shell command, and the di e function will do its deed. Thisis backwards from normal
Perl operator convention - a nonzero return value from the sy st emoperator generally indicates that
something went wrong. Y ou can feed anything to the sy st emfunction that you can feed to your
command shell.

Here's an example of generating a dir command and sending the output to a filename specified by a Perl
variable:

$where = "dir_out.".++$i; # get a new fil enane
system "dir >$where";

The double-quoted string is variable interpolated, so Perl replaces $wher e with itsvalue.

In addition to the standard filehandles, the current directory and the environment variables are inherited
by the child. These variables are typically created by the command shell set command and accessed or
altered using the %0 KEYNAME% construct. Environment variables are used by many utilities, including
the command shell itself, to alter or control the way that utility operates.

Perl gives you away to examine and alter current environment variables through a special hash called
%ENV (uppercase). Each key of this hash corresponds to the name of an environment variable, with the
corresponding value being, well, the corresponding value. Examining this hash shows you the
environment handed to Perl by the parent process - altering the array affects the environment used by Perl
and by its children processes, but not that of its parents.

For example, here's a simple program that prints out all of your environment variables:

foreach $key (sort keys %ENV) {
print "$key=$ENV{$key}\n";
}

Note that the equal sign hereis not an assigment, but smply atext character that the pr i nt functionis
using to say stuff like USERNAVE=er i ko or COVSPEC=c: \ nt \ syst enB82\ cnd. exe.

Here's a program snippet that alters the value of PATH to make sure that the nmake command run by
syst emislooked for only in the correct places:

$ol dPATH = $ENV{" PATH"'}; # save previous path

SENV{" PATH'} = "c:\\nsedev\\bin;c:\\wi nnt;c:\\wi nnt\\systenB2";
force known path

systen("nmake nyproj.nmak >output"); # run comrmand

SENV{" PATH'} = $ol dPATH; # restore previous path

That's alot of typing. It'd be faster just to set alocal value for this hash element.

Despite its other shortcomings, the | ocal operator can do one thing that my cannot: it can give just one
element of an array or a hash atemporary value. For example:

{
| ocal $ENV{"PATH'} =

“c:\\nsdev\\bin;c:\\winnt;c:\\w nnt\\systenB82";

system("nnake fred bedrock >output");

}

The syst emfunction can also take alist of arguments rather than a single argument. In this case, rather
than handing the list of arguments off to a command shell, Perl treats the first argument as the command
to run (located according to the PATH if necessary) and the remaining arguments as arguments to the
command without normal shell interpretation. In other words, you don't need to quote whitespace or
worry about arguments that contain angle brackets because those are all merely characters to hand to the
program. So, the following two commands are equivalent:

system "nnmake 'fred flintstone. mak' buffal oes"; # usi ng conmand shel |
system "nnake","fred flintstone. mak", "buffal oes"; # using |ist

Giving syst emalist rather than giving it a simple string saves one command shell process aswell, so do
this when you can. (In fact, when the one-argument form of syst emis simple enough, Perl itself
optimizes away the shell invocation entirely, calling the resulting program directly asif you had used the
multiple-argument invocation.)

Here's another example of equivalent forms:

@files = ("fred.c", "barney.c"); # what to conpile

@ptions = ("-DHARD', "- DGRANI TE") ; # options

system"cc -0 slate @ptions @files"; # using shell

system "cc","-0","slate", @ptions, @files; # avoiding shell

Previous: 13.6 Learning Perl on Win32 | Next: 14.2 Using Backquotes|
Exercises Systems

13.6 Exercises Book 14.2 Using Backquotes

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 14.1 Using system Chapter 14 Next: 14.3 Using Processes
and exec Process M anagement as Filehandles

14.2 Using Backquotes

Another way to launch a processisto put a shell command line between backquotes. Thisfires off a
command and waits for its completion, capturing the standard output as it goes along:

@iles = "dir ; # gets dir output

Thevalueof @i | es isthe text from the dir command, so it might look something like:

Volune in drive D has no | abel.
Vol une Serial Nunber is 9C5D 713A
Directory of D:\ora\eg

05/19/97 11:54p <Dl R>

05/19/97 11:54p <Dl R> -

04/ 12/ 97 11:12a 23 bel | . pl
04/ 12/ 97 10: 56a 73 consol e. pl

The standard input and standard error of the command within backquotes are inherited from the Perl

process.[1] In other words, the value of the backquoted string is normally just the standard output of the

commands within the backquotes.

[1] Actualy, the situation is a bit more complicated. See the question in Section 8 of the Perl
FAQ on "How can | capture STDERR from an external command?"

Previous: 14.1 Using system Learning Perl on Win32 Next: 14.3 Using Processes
and exec Systems as Filehandles
14.1 Using system and exec Book 14.3 Using Processes as
Index Filehandles

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 14.2 Using Chapter 14 Next: 14.4 Summary of
Backquotes Process M anagement Process Operations

14.3 Using Processes as Filehandles

Y et another way to launch a processisto create a process that looks like a filehandle (similar to the
popen Clibrary routine, if you're familiar with that). We can create a process filehandle that either
captures the output from or provides input to the process.[2] Here's an example of creating afilehandle

out of a netstat process. Because the process is generating output that we want to read, we make a
filehandle that is open for reading, like so:

[2] But not both at once. See Chapter 6 of Programming Perl for examples of bidirectional
communication.

open(NETPROC, "netstat|"); # open netstat for reading

Note the vertical bar on theright side of net st at . That bar tells Perl that thisopen is not about a
filename, but rather, is about a command to be started. Because the bar is on the right of the command,
the filehandle is opened for reading, and the standard output of netstat is going to be captured. (The
standard input and standard error remain shared with the Perl process.) To the rest of the program, the
NETPROC handle is merely afilehandle that is open for reading, and all normal file I/O operators apply.
Here's away to read data from the netstat command into an array:

@et stat = <NETPROC>;

Similarly, to open acommand that expects input, we can open a process filehandle for writing by putting
the vertical bar on the left of the command, like so:

open(FIND, "|find $pattern");
print FIND @i | edat a;
cl ose(FI ND);

In this case, after opening FI ND, we wrote some data to it and then closed it. Opening a process with a
process filehandle allows the command to execute in parallel with the Perl program. Saying cl ose on
the filehandle forces the Perl program to wait until the process exits. If you don't close the filehandle, the
process can continue to run even beyond the execution of the Perl program.

Y ou don't have to open just one command at atime. Y ou can open an entire pipeline. For example, the
following line starts up a dir process, which pipes its output into a sort process, which finally sendsits
output along to the DIRPR filehandle:

open(DIRPR, "dir | sort |");

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Theexi t function causes an immediate exit from the current Perl process. Y ou'd use this to abort a Perl
program from somewhere in the middle. The exi t function takes an optional parameter, which serves as
the numeric exit value that can be noticed by the parent process. The default isto exit with azero value,
indicating that everything went OK.

Previous: 14.2 Using Learning Perl on Win32 Next: 14.4 Summary of
Backquotes Systems Process Operations
14.2 Using Backquotes Book 14.4 Summary of Process
Index Operations

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 14.3 Using
Processes as Filehandles

Chapter 14

Process M anagement

Next: 14.5
Win32::Process

14.4 Summary of Process Operations

Table 14.1 summarizes the operations that you have for launching a process.

Table 14.1: Summary of Subprocess Operations

Operation Standard I nput Standard Output |Standard Error Waited for?
systenm() Inherited from Inherited from Inherited from Yes

program program program
Backquoted Inherited from Captured asstring | Inherited from Yes
string program vaue program
open() Connected to Inherited from Inherited from Only at time of
command as filehandle program program cl ose()
filehandle for
output
open() Inherited from Connected to Inherited from Only at time of
command as program filehandle program cl ose()
filehandle for
Input
fork,exec, Not implemented |Not implemented |Not implemented |Not implemented
wai t,wai tpid

The simplest way to create a process is with the sy st emfunction. Standard input, output, and error are
unaffected (they're inherited from the Perl process). A backquoted string creates a process, capturing the
standard output of the process as a string value for the Perl program. Standard input and standard error
are unaffected. Both methods require that the process finish before any more code is executed.

A simple way to get an asynchronous process (one that allows the Perl program to continue before the
process is complete) is to open acommand as a filehandle, creating a pipe for the command's standard
input or standard output. A command opened as a filehandle for reading inherits the standard input and
standard error from the Perl program; a command opened as a filehandle for writing inherits the standard
output and standard error from the Perl program.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Previous: 14.3 Using Learning Perl on Win32 Next: 14.5

Processes as Filehandles Systems Win32::Process
14.3 Using Processes as Book 14.5 Win32::Process
Filehandles Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 14.4 Summary of Chapter 14 Next: 14.6
Process Operations Process M anagement Exercises

14.5 Win32::Process

The most flexible way of starting a process on Windows NT isto usethe W n32: : Pr ocess
module.[3] Using this module, you can select whether or not you want to wait for the child processto run

to completion, configure priorities, and suspend or resume processes.
[3] Of course, this method won't work at all on non-Windows platforms.

Even though we haven't covered all of the relevant concepts, we are going to run through a
W n32: : Process example.

Asshown, the W n32: : Pr ocess module contains amethod (subroutine) called Cr eat e that does all
the work of creating a process:

use Wn32:: Process;

W n32:: Process: : Creat e($Process,
“c:\\nt\\systenB2\\not epad. exe",
"not epad",
0,
DETACHED PROCESS,
“.") || die "Create: $!'";

This code creates an asychronous instance of Notepad. Let's take alook at the parameters. The first
parameter $Pr ocess isascalar reference that receives the process object if the call succeeds. Well
discuss references in Chapter 18, CGI Programming, but for now, you can just think of it as a parameter

that receives output.

The second argument is afully qualified (system-dependent) path to the executable. The third argument
is the command line passed to the program. In this case, we're just invoking Notepad without any
documents or options. The next argument specifies whether or not the new process inherits handles from
the parent process (the Perl program). A value of one indicates that the process inherits any inheritable
open handle in the parent process. Inheritable handles include 1/0 handles, socket handles,
synchronization handles, and so on. Unless you really know what you're doing here, you're better off
specifying this value as zero.

The next argument specifies various create options for the new process. The flag that we've passed is
DETACHED PROCESS, which indicates that the new process does not have access to the console of the
calling process (our Perl program). Other flags that you may be interested in include

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

CREATE_SUSPENDED, which creates a process that isinitially suspended, and
CREATE_SEPARATE_WOW VDM which runs a 16-bit processin its own Virtual DOS Machine (VDM).
For more information on the various options, see the win32mod documentation for W n32: : Pr ocess.

Previous: 14.4 Summary of Learning Perl on Win32 Next: 14.6
Process Operations Systems Exercises
14.4 Summary of Process Book 14.6 Exercises
Operations Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 14.5 Chapter 14 Next: 15. Other Data
Win32::Process Process M anagement Transformation

14.6 Exercises

1. Write aprogram that takes two directory arguments and then uses the xcopy command to copy the
first directory (and all related subdirectories) to the second directory.

2. Write aprogram that uses the Windows NT net view command to list all hosts in your domain or
workgroup, in sorted order.

Previous: 14.5 Learning Perl on Win32 Next: 15. Other Data
Win32::Process Systems Transformation
14.5 Win32::Process Book 15. Other Data
Index Transformation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 14.6 Chapter 15 Next: 15.2 Extracting and
Exercises Replacing a Substring

15. Other Data Transformation

Contents:

Finding a Substring

Extracting and Replacing a Substring
Formatting Data with sprintf()
Advanced Sorting

Trandliteration

Exercises

15.1 Finding a Substring

Finding a substring depends on where you have lost it. If you happen to have lost it within a bigger
string, you're in luck, becausei ndex can help you out. Here'show i ndex looks:

$x = index($string, $substring);

Per| locates the first occurrence of subst ri ng within st ri ng, returning an integer location of the first
character. The index value returned is zero-based; if the subst r i ng isfound at the beginning of the

st ri ng, you get azero. If it's one character later, you get aone, and so on. If thesubst ri ng can't be
foundinstri ng, you get negative one.

Take alook at these:

$where = index("hello","e"); # $where gets 1
$person = "barney";

$where = index("fred barney", $person); # $where gets 5
@ockers = ("fred", "barney");

$wher e = index(join(" ", @ockers), $person); # sane thing

Notice that both the string being searched and the string being searched for can each be aliteral string, a
scalar variable containing a string, or even an expression that has a string value. Here are some more
examples:

$whi ch = index("a very long string","long"); # $which gets 7

$whi ch = index("a very long string","lame"); # $which gets -1

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

If the string contains the substring at more than one location, thei ndex function returns the leftmost
location. To find later locations, you can givei ndex athird parameter. This parameter is the minimum
value that will be returned by i ndex, allowing you to look for the next occurrence of the substring that
follows a selected position. Thisi ndex lookslike this:

$x = index($bigstring, $littlestring, $skip);

Here are some examples of how this third parameter works:

$where = index("hello world","I"); # returns 2 (first 1)
$where = index("hello world","1",0); # sanme thing

$where = index("hello world","1",1); # still sane

$where = index("hello world","1",3); # nowreturns 3

(3 is the first place greater than or equal to 3)
$wher e I ndex("hello world","o0",5); # returns 7 (second 0)
$wher e | ndex("hello world","0",8); # returns -1 (none after 8)

Going the other way, you can scan from the right to get the rightmost occurrenceusing r i ndex. The
return value is still the number of characters between the left end of the string and the start of the
substring, as before, but you'll get the rightmost occurrence instead of the leftmost occurrence if there are
more than one. Ther i ndex function also takes a third parameter likei ndex does, so that you can get
an occurrence that is less than or equal to a selected position. Here are some examples of what you get:

$w = rindex("hello world","he"); # $w gets O

$w = rindex("hello world","l"); # $w gets 9 (rightnost |)

$w = rindex("hello world","o"); # $w gets 7

$w = rindex("hello world","o "); # now $w gets 4

$w = rindex("hello world","xx"); # $w gets -1 (not found)

$w = rindex("hello world","o0",6); # $w gets 4 (first before 6)

$w = rindex("hello world","o0",3); # $w gets -1 (not found before 3)

Previous: 14.6 Learning Perl on Win32 Next: 15.2 Extracting and
Exercises Systems Replacing a Substring

14.6 Exercises Book 15.2 Extracting and Replacing

Index a Substring

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 15.1 Finding a Chapter 15 Next: 15.3 Formatting Data
Substring Other Data Transformation with sprintf()

15.2 Extracting and Replacing a Substring

Pulling out a piece of a string can be done with careful application of regular expressions, but if the piece
isalways at a known character position, this method is inefficient. Instead, you should use subst r . This
function takes three arguments: a string value, a start position (measured as with i ndex), and alength,
like so:

$s = substr($string, $start, $l engt h);

The start position works likei ndex: the first character is zero, the second character is one, and so on.
The length isthe number of charactersto grab at that point: alength of zero means no characters, one
means get the first character, two means two characters, and so on. (subst r stops at the end of the
string, so if you ask for too many characters, don't worry.) subst r lookslike this:

$hello = "hello, world!";
$grab = substr($hello, 3, 2); # $grab gets "l o"
$grab = substr($hello, 7, 100); # 7 to end, or "world!"

Y ou could even create a"10 to the power of " operator for small integer powers, asin:
$bi g = substr("10000000000", 0, $power +1); # 10**$power

If the count of charactersis zero, an empty string is returned. If either the starting position or ending
position is less than zero, the position is counted that many characters from the end of the string. So- 1
for astart position and 1 (or more) for the length gives you the last character. Similarly, - 2 for a start
position starts with the second-to-last character. The following example illustrates the point:

$stuf f substr("a very long string",-3,3); # last three chars
$st uf f substr("a very long string",-3,1); # the letter "i"

If the starting position is before the beginning of the string (like a huge negative number bigger than the
length of the string), the beginning of the string is the start position (asif you had used zero for a starting
position). If the start position is a huge positive number, the empty string is always returned. In other
words, subst r probably doeswhat you expect it to do, as long as you expect it to always return
something other than an error.

Omitting the length argument provides the same result as including a huge number for that argument -
grabbing everything from the selected position to the end of the string.[1]

[1] Very old Perl versions did not allow the third argument to be omitted, leading to the use

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

of ahuge number for that argument by pioneer Perl programmers. Y ou may come across
such cases in your Perl archeological expeditions.

If the first argument to subst r isascaar variable (in other words, it could appear on the left side of an
assignment operator), then the subst r itself could appear on the left side of an assignment operator.
This case may look strange if you come from a C background, but if you've ever played with some
dialects of BASIC, it's quite normal.

What gets changed as the result of such an assignment is the part of the string that would have been
returned had the subst r been used on the right-hand side of the expression instead. In other words,
subst r ($var, 3, 2) returnsthe fourth and fifth characters (starting at 3, for a count of 2), so
assigning avalueto subst r ($var, 3, 2) changesthose two characters as shown:

$hw = "hello worl d!";

substr($hw, 0, 5) = "howdy"; # $hw is now "howdy world!"

The length of the replacement text (what gets assigned into the subst r) doesn't have to be the same as
thetext it is replacing, as shown in this example. The string will automatically grow or shrink as
necessary to accommodate the text. Here's an example in which the string gets shorter:

substr($hw, 0, 5 = "hi"; # $hwis now "hi world!"

and here's an example that makes the string longer:
substr($hw, -6, 5) = "nationw de news"; # replaces "world"

The shrinking and growing are fairly efficient, so don't worry about using them arbitrarily, although
replacing a string with a string of equal length is afaster solution.

Previous: 15.1 Finding a Learning Perl on Win32 Next: 15.3 Formatting Data
Substring Systems with sprintf()

15.1 Finding a Substring Book 15.3 Formatting Data with

Index sprintf()

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 15.2 Extracting and Chapter 15 | Next: 15.4 Advanced Sorting|
Replacing a Substring Other Data Transformation

15.3 Formatting Data with sprintf()

Thepri ntf function is sometimes handy when used to take alist of values and produce an output line
that displays the valuesin controllable ways. Thespri nt f functionisidentical topri nt f forits
arguments, but returns whatever would have been output by pri nt f asasingle string. (Think of it as
"string pri nt f.") For example, to create a string consisting of the letter X followed by afive-digit
zero-padded value of $y, simply use this:

$result = sprintf("X¥®5d", $y);

See Chapter 6, Basic |/O, or Chapter 3 of Programming Perl for a description of the format strings
understood by pri ntf andsprintf.

Previous: 15.2 Extracting and Learning Perl on Win32 | Next: 15.4 Advanced Sorting|
Replacing a Substring Systems
15.2 Extracting and Replacing Book 15.4 Advanced Sorting
a Substring Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 15.3 Formatting Chapter 15 . Next: 15.5
Data with sprintf() Other Data Transformation Transliteration

15.4 Advanced Sorting

Earlier, you learned that you could take a list and sort it in ascending ASCI| order (as you do with
strings) using the built-insor t function. What if you don't want an ascending ASCI| sort, but something
else instead, like a numeric sort? Well, Perl gives you the tools you need to do the job. In fact, you'll see
that the Perl sor t iscompletely general and able to perform any well-defined sort order.

To define asort of adifferent color, you need to define a comparison routine that describes how two
elements compare. Why is this necessary? Well, if you think about it, sorting is putting a bunch of things
in order by comparing them all. Because you can't compare them all at once, you need to compare two at
atime, eventually using what you find out about each pair's order to put the whole kit'n'caboodle in line.

The comparison routine is defined as an ordinary subroutine. This routine will be called repeatedly, each
time passing two elements of the list to be sorted. The routine must determine whether the first valueis
less-than, equal-to, or greater-than the second value, and return a coded value (described in a moment).
This process is repeated until the list is sorted.

To save alittle execution speed, the two values are not passed in an array, but rather are handed to the
subroutine as the values of the global variables $a and $b. (Don't worry: the original values of $a and
$b are safely protected.) The routine should return any negative number if $a islessthan $b, 0if $a is
equal to $b, and any positive number if $a is greater than $b. Now remember, the less-than signis
defined by you; it could be a numeric comparison, according to the third character of the string, or even
according to the values of a hash using the passed-in values as keys. It's really pretty flexible.

Here's an example of a sort subroutine that sorts in numeric order:
sub by nunber {

if ($a < $b) {
return -1;

} elsif ($a == $b) {
return O;

} elsif ($a > $b) {
return 1;

}

}

Notice the name by nunber . There's nothing special about the name of this subroutine, but you'll see
why we like names that start with by _ in aminute.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Let'slook through this routine. If the value of $a islessthan (numerically in this case) the value of $b,
we return a- 1 value. If the values are numerically equal, we get back a0, and otherwisea 1. So,
according to our specification for a sort comparison routine, this method should work.

How do we useit? Let'stry sorting the following list:
@onelist = (1, 2,4,8,16, 32,64, 128, 256) ;

If we usethe ordinary sor t without any adornment on the list, we get the numbers sorted asif they were
strings, and in their ASCII order, like so:

@wonglist = sort @onelist;

@wonglist is now (1,128, 16, 2, 256, 32, 4, 64, 8)

Thissort iscertainly not very numeric. Well, let'sgivesor t our newly defined sort routine. The name
of the sort routine immediately followsthesort keyword, like so:

@ightlist = sort by nunber @wonglist;

@ightlist is now (1, 2,4,8,16, 32,64, 128, 256)

Thissort doesthe trick. Note that you can read the sor t with its companion sort routinein a
human-like fashion: "sort by number."” This feature is why we named the subroutine with aby__ prefix.

Thiskind of three-way value of -1, 0, and +1 on the basis of a numeric comparison occurs often enough
in sort routines that Perl has a special operator to do thisin one fell swoop. The operation is often called
the spaceship operator, and looks like <=>. Using the spaceship operator, the preceding sort subroutine
can be replaced with this:

sub by nunber {
$a <=> $b;
}

Note the spaceship between the two variables. Y es, it isindeed a three-character-long operator. The
spaceship returns the same values asthei f /el si f chain from the previous definition of this routine.
Now thisis pretty short, but you can reduce the sort invocation even further, by replacing the name of the
sort routine with the entire sort routine in line, like so:

@ightlist = sort { $a <=> $b } @wonglist;
There are some who argue that this shortcut decreases readability. They are wrong. Others argue that it

removes the need to go somewhere else for the definition. Perl doesn't care. Our personal ruleisthat if it
doesn't fit on one line or we have to use it more than once, it goes into a subroutine.

The spaceship operator for numeric comparison has a comparable string operator called cnp. The cnp
operator returns one of three values depending on the relative string comparisons of the two arguments.
So, another way to write the default sort order[2] is.

[2] This statement is not exactly true. The built-in sort discardsundef elements, but this
one doesn't.

@esult = sort { $a cnp $b } @oneli st;

Y ou probably won't ever write this exact subroutine (mimicking the built-in default sort), unlessyou're

writing a book about Perl. However, the cnp operator does have its uses in the construction of cascaded
ordering schemes. For example, you might need to put the elements in numeric order unless they're
numerically equal, in which case they should go in ASCII string order. (By default, theby nunber
routine above just sticks nonnumeric strings in some random order because there's no numeric ordering
when comparing two values of zero.) Here's away to say "numeric, unless they're numerically equal,
then string":

sub by nostly nuneric {
($a <=> $b) || (%a cnmp $b);
}

How does thiswork? Well, if the result of the spaceship is-1 or 1, the rest of the expression is skipped,
and the -1 or 1 isreturned. If the spaceship evaluatesto zero, however, the cnp operator getsitsturn at
bat, returning an appropriate ordering value considering the values as strings.

The values being compared are not necessarily the values being passed in. For example, say you have a
hash where the keys are the login names and the values are the real names of each user. Suppose you
want to print a chart where the login names and real names are sorted in the order of the real names. How
would you do that?

Actually, the solution isfairly easy. Let's assume the values are in the array %manes. The login names

arethusthelist of keys(%manes) . What we want to end up with isalist of the login names sorted by
the corresponding value, so for any particular key $a, we need to look at $nanmes{ $a} and sort based
on that. If you think of the sort that way, it amost writesitself, asin:

@ortedkeys = sort by _nanes keys(%manes);

sub by nanes {
return $nanes{$a} cnp $nanes{3$b};
}

foreach (@ortedkeys) {
print "$ has a real name of $nanmes{$ }\n";
}

To thiswe should also add afallback comparison. Suppose the real names of two users are identical.
Because of the whimsical nature of thesor t routine, we might get one value ahead of another the first
time through and the values in the reversed order the next time. This differenceis bad if the report might
be fed into a comparison program for reporting, so try very hard to avoid such things. With the cnp
operator, you can avoid this case like this:

sub by nanmes {
($nanes{$a} cnp $nanes{$b}) || ($a cnp $b);
}

Here, if the real names are the same, we sort based on the login name instead. Because the login nameis
guaranteed to be unique (after all, login names are the keys of this hash, and no two keys are the same),
then we can ensure a unique and repeatable order. Good defensive programming during the day is better
than alate-night call from a system administrator wondering why the security alarms are going off.

Previous: 15.3 Formatting Learning Perl on Win32 Next: 15.5

Data with sprintf() Systems Transliteration
15.3 Formatting Data with Book 15.5 Trandliteration
sprintf() Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 15.4 Advanced Chapter 15 Next: 15.6
Sorting Other Data Transfor mation Exercises

15.5 Transliteration

When you want to take a string and replace every instance of some character with some new character, or
delete every instance of some character, you can do so with carefully selected s/ / / commands. But
suppose you had to change al of thea'sinto b's, and al of the b'sinto a's? You can't do that with two

s/ /| commands because the second one would undo all of the changes that the first one made.

Perl providesat r operator that does the trick:
tr/ab/ bal;

Thet r operator takes two arguments: an old string and a new string. These arguments work like the two
argumentsto s/ / / ; in other words, there's some delimiter that appears immediately after thet r
keyword that separates and terminates the two arguments (in this case, a slash, but nearly any character
will do).

Thet r operator modifies the contents of the $_ variable (just likes/ / /'), looking for characters of the
old string withinthe $_ variable. All such characters found are replaced with the corresponding
charactersin the new string. Here are some examples:

$ = "fred and barney";

tr/fb/bf/; # $ is now "bred and farney"”
tr/abcde/ ABCDE/; # $_ is now "BrED AnD f ArnEy"
tr/a-z/ A-Z/; # $ is now "BRED AND FARNEY"

Notice how arange of characters can be indicated by two characters separated by adash. If you need a
literal dash in either string, precede it with a backslash.

If the new string is shorter than the old string, the last character of the new string is repeated enough
times to make the strings equal length, like so:

$ = "fred and barney";
tr/ia-z/x/; # $_ 1S nOW "XXXX XXX XXXXXX"

To prevent this behavior, append ad to theend of thet r / / / operator, which means delete. In this case,
the last character is not replicated. Any character that matches in the old string without a corresponding
character in the new string is simply removed from the string. For example:

$ = "fred and barney";
tr/a-z/ABCDE/d; # $_ is now "ED AD BAE"

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Notice how any letter after e disappears because there's no corresponding letter in the new list, and that
spaces are unaffected because they don't appear in the old list.

If the new list is empty and there's no d option, the new list isthe same asthe old list. This default may
seem silly. Why replacean | for an | and a2 for a 2? But the command actually does something useful.
Thereturn value of thet r / / / operator isthe number of characters matched by the old string, and by

changing characters into themselves, you can get the count of that kind of character within the string.[3]

For example:

[3] This method works only for single characters. To count strings, usethe/ g flagto a

pattern match:
while (/pattern/g) {
$count ++;
}
$ = "fred and barney";
$count = tr/a-z//; # $ unchanged, but $count is 13

$count2 = tr/a-z/A-Zl; # $_ is uppercased, and $count2 is 13

If you append ac (like appending the d), you complement the old string with respect to all 256
characters. Any character you list in the old string is removed from the set of all possible characters; the
remaining characters, taken in sequence from lowest to highest, form the resulting old string. So, away
to count or change the nonlettersin our string could be:

$ = "fred and barney";

$count = tr/a-z//c; # $_ unchanged, but $count is 2

tr/a-z/ _/c; # $ is now "fred _and barney” (non-letters =>)
tr/a-z//cd; # $ is now "fredandbarney" (delete non-letters)

Notice that the options can be combined, as shown in that |ast example, where we first complement the
set (thelist of letters become the list of al nonletters) and then use the d option to delete any character in
that set.

Thefina optionfortr/// iss, which squeezes multiple consecutive copies of the same resulting
trandlated letter into one copy. As an example, look at this:

$ = "aaabbbcccdefghi";
tr/ defghi/abcddd/s; # $ is now "aaabbbcccabcd"

Note that the def became abc, and ghi (which would have become ddd without the s option)
becomes asingle d. Also note that the consecutive letters at the first part of the string are not squeezed
because they didn't result from atranglation. Here are some more examples:

$ = "fred and barney, wilm and betty";
tr/a-z/ X's; #$ is now"X X X, X X X"
$ = "fred and barney, wilma and betty";

tr/ a- z/ /cs; # $_is now "fred and _barney w |l ma_and betty"

In the first example, each word (consecutive letters) was squeezed down to asingle letter X. In the
second example, al chunks of consecutive nonletters became a single underscore.

Likes/ /] ,thetr operator can be targeted at another string besides$_ using the =~ operator:

$nanmes = "fred and barney”;
$nanmes =~ tr/aeiou/ X/ ; # $nanmes now "frXd Xnd bXrnXy"

Previous: 15.4 Advanced Learning Perl on Win32 Next: 15.6
Sorting Systems Exercises
15.4 Advanced Sorting Book 15.6 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 15.5 Chapter 15 | Next: 16. System Information|
Transliteration Other Data Transfor mation

15.6 Exercises

See Appendix A, Exercise Answers for answers.

1. Writeaprogram to read alist of filenames, breaking each name into its head and tail components.
(Everything up to the last backslash is the head, and everything after the last lash isthe tail. If
there's no backslash, everything isin thetail.) Try this exercise with things like \fred, barney, and
fred\barney. Do the results make sense?

2. Write aprogramto read in alist of numbers on separate lines, and then sort them numerically,
printing out the resulting list in aright-justified column. (Hint: the format to print a right-justified
column is something like" 9%20g" .)

3. Create afilethat consists of sentences, one per line. Write a program that makes the first character
of each sentence uppercase, and the rest of the sentence lowercase. (Does the program work even
when the first character is not aletter? How would you alter the program if the sentences were not
already one per line?)

Previous: 15.5 Learning Perl on Win32 | Next: 16. System Information|
Transliteration Systems
15.5 Trandliteration Book 16. System Information
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 15.6 Chapter 16 Next: 16.2 Packing and
Exercises Unpacking Binary Data

16. System Information

Contents:
Getting User and Machine Information

Packing and Unpacking Binary Data
Getting Network Information

The Registry

Opening and Reading Reqgistry Values
Setting Reqgistry Values

Exercises

16.1 Getting User and Machine Information

Perl provides several facilities for finding out information about the user and machine that you are
running on. These functions are provided via Win32 extensions (see Appendix B, Libraries and Modules,

for more information).

To retrieve the name of the user executing the script, usethe W n32: : Logi nNane function:

use Wn32;
$name = Wn32:: Logi nNane;

To retrieve the name of the machine executing the script, use the W n32: : NodeNane function:

use Wn32;
$machi ne = W n32: : NodeNane;

The W n32: : Net Adm n module provides extensive functionality for administering users and groups.
Here's an simple example of how you might use it to retrieve the current user's home directory:

use W n32:: Net Adm n;
$user = Wn32::LoginNanme; # grab the nane of the current user
W n32:: Net Adm n: : User Get Attri butes("",

$user nane, $password, $passwordage,

$privil ege, $honedir, $comrent,

$fl ags, $scriptpath);

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

print "The homedir for $usernane is $honedir\n";
For more information on using W n32: : Net Adm n, explore the win32mod documentation.

Asyou explore Perl scripts on the Net, you'll no doubt find scripts that refer to any of amyriad of Perl
functions that access UNIX password and group files. At the time of this writing, these functions are not
implemented in Perl on Win32 platforms, but you can usually duplicate the functionality (if it's
applicable) using one of the Win32 extension modules.

Previous: 15.6 Learning Perl on Win32 Next: 16.2 Packing and

Exercises Systems Unpacking Binary Data
15.6 Exercises Book 16.2 Packing and Unpacking
Index Binary Data

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 16.1 Getting User Chapter 16 ' Next: 16.3 Getting Network
and Machine Information System Information Information

16.2 Packing and Unpacking Binary Data

While most of the user information is nicely represented in textual form, other system information is
more naturally represented in other forms. For example, the |P address of an interfaceisinternally
managed as a four-byte number. While it is frequently decoded into atextual representation consisting of
four small integers separated by periods, this encoding and decoding is wasted effort if ahuman is not
interpreting the data in the meantime.

As aresult, the network routinesin Perl that expect or return an IP address use a four-byte string that
contains one character for each sequential byte in memory. While constructing and interpreting such a
byte-string is fairly straightforward using chr and or d (not presented here), Perl provides a short cut
that is equally applicable to more difficult structures.

The pack function works abit likespri nt f, taking aformat control string and alist of values, and
creating a single string from those values. The pack format string is geared towards creating a binary
data structure, however. For example, to take four small integers and pack them as successive unsigned
bytes in a composite string, use the following format:

$buf = pack("CCCC', 140, 186, 65, 25);

Here, the pack format string isfour Cs. Each C represents a separate value taken from the following list
(smilar to what a %field doesinspri nt f). The Cformat (according to the Perl manpages, the
reference card, Programming Perl, the HTML files, or even Perl: The Motion Picture) refersto asingle

byte computed from an unsigned character value (a small integer). The resulting string in $buf isa
four-character string - each character being one byte from the four values 140, 186, 65, and 25.

Similarly, theformat | generates asigned long value. On many machines, thisis afour-byte number,
although this format is machine-dependent. On a four-byte long machine, the statement:

$buf = pack("1", 0x41424344);

generates afour-character string that looks like either ABCD or DCBA, depending on whether the machine
is little-endian or big-endian. These results occur because we are packing one value into four characters
(the length of along integer), and the one value just happens to be composed of the bytes representing
the ASCII values for thefirst four letters of the alphabet. Similarly:

$buf = pack("IIl", 0x41424344, 0x45464748);

creates an eight-byte string consisting of ABCDEFGH or DCBAHGFE, once again depending on whether
the machineislittle- or big-endian.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

The exact list of the various pack formats is given in the reference documentation (perlfunc, or
Programming Perl). You'll see afew here as examples, but we're not going to list them all.

What if you were given the eight-byte string ABCDEFGH and were told that it was really the memory
Image (one character is one byte) of two long (four-byte) signed values? How would you interpret it?
WEell, you'd need to do the inverse of pack, called unpack. This function takes aformat control string
(usually identical to the one you'd give pack) and adata string, and returns a list of values that make up
the memory image defined in the data string. For example, let's take that string apart:

($val 1, $val 2) = unpack("II", " ABCDEFGH") ;

This statement gives us back something like 0x41424344 for $val 1, or possibly 0x44434241
instead (depending on big-endian-ness). In fact, by the values that come back, we can determineif we are
on alittle- or big-endian machine.

Whitespace in the format control string isignored, and can be used for readability. A number in the
format control string generally repeats the previous specification that many times. For example, CCCC
can also be written C4 or C2C2 with no change in meaning. (A few of the specifications use atrailing
number as a part of the specification, and thus cannot be multiplied in this manner.)

A format character can also be followed by a* , which repeats the format character enough timesto
swallow up therest of the list or the rest of the binary image string (depending on whether you are
packing or unpacking). So, another way to pack four unsigned charactersinto astring is:

$buf = pack("C*", 140, 186, 65, 25);

The four values here are swallowed up by the one format specification. If you had wanted two short
integers followed by "as many unsigned chars as possible,”" you could say something like:

$buf = pack("s2 C", 3141, 5926, 5, 3, 5, 8, 9, 7, 9, 3, 2);

Here, we take the first two values as shorts (generating four or eight characters, probably) and the
remaining nine values as unsigned characters (generating nine characters, aimost certainly).

Going in the other direction, unpack with an asterisk specification can generate alist of elements of
unpredetermined length. For example, unpacking with C* creates one list element (a number) for each
string character. Therefore, this statement:

@al ues = unpack("C", "hello, world!'\n");

yieldsalist of 14 elements, one for each of the characters of the string.

Previous: 16.1 Getting User Learning Perl on Win32 Next: 16.3 Getting Network
and Machine Information Systems Information

16.1 Getting User and Book 16.3 Getting Network

Machine Information Index Information

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 16.2 Packing and Chapter 16 ‘ Next: 16.4 The
Unpacking Binary Data System Information Registry

16.3 Getting Network Information

Perl supports network programming in away that is very familiar to those who have written network
codein C programs. In fact, most of the Perl functions that provide network access have the same names
and similar parameters as their C counterparts. We can't teach a complete course on network
programming in this chapter, but let's take alook at one of the task fragments to see how it's done in Perl.

One of the things you need to find out is the network address that goes with a network name, or vice
versa. In C, you use the get host bynane routine to convert a network name to a network address. Y ou
then use this address to create a connection from your program to another program somewhere else.

The Perl function to translate a host name to an address has the same name and similar parameters as the
C routine, and looks like this:

($nane, $aliases, $addrtype, $length, @ddrs) =
get host bynane($nane); # generic form of gethostbynane

The parameter to this function is a hostname - for example, slate.bedrock.com. The return valueisalist
of four or more parameters, depending on how many addresses are associated with the name. If the
hostname is not valid, the function returns an empty list.

If get host bynane iscalled in ascalar context, only the (first) addressis returned.

When get host byname() completes successfully, $narme isthe canonical name, which differs from
the input name if the input nameisan alias. $al i ases isalist of space-separated names by which the
host is also known. $addr t ype gives acoded value to indicate the form of the addresses. In this case,
for slate.bedrock.com, we can presume that the value indicates an | P address, usually represented as four
numbers under 256, separated by dots. $| engt h gives the number of addresses, which is actually
redundant information because you can look at the length of @ddr s anyway.

But the useful part of the return value is @ddr s. Each element of thelist is a separate | P address, stored
in an internal format, handled in Perl as afour-character string.[1] While this four-character string is
exactly what other Perl networking functions are looking for, suppose we wanted to print out the result
for the user to see. In this case, we need to convert the return value into a human-readable format with
the assistance of the unpack function and alittle additional massaging. Here's some code that prints one
of slate.bedrock.com’ s|P addresses:

[1] Well, at least until IPv6.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

($addr) = (gethostbyname("sl ate. bedrock. cont'))[4];
print "Slate's address is ",
join(".",unpack("C4", S$addr)), "\n";

The unpack takes the four-byte string and returns four numbers. This just happens to be in the right
order for thej oi n to glue in adot between each pair of numbers to make the human-readable form. See
Appendix C, Networking Clients, for information about building simple networking clients.

Previous: 16.2 Packing and Learning Perl on Win32 Next: 16.4 The
Unpacking Binary Data Systems Registry
16.2 Packing and Unpacking Book 16.4 The Registry

Binary Data Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 16.3 Getting Chapter 16 Next: 16.5 Opening and
Network Information System Information Reading Registry Values

16.4 The Registry

The Windows NT Registry is a database that stores al sorts of information about your system. It includes
operating system and hardware information, file extension associations, environment information,
application information, and much more. In addition to being used heavily by the operating system, most
Win32 applications keep registration and state information in the Registry. If you've never taken alook at
it before, you really ought to run the regedit.exe (or regedt32.exe) utility included with your system and
take alook at what the Registry contains. For a detailed programmer's reference to the Windows 95
Registry, you might try Ron Petrusha's Inside the Windows 95 Registry, published by O'Reilly &
Associates.

Many operating system and application behaviors are controlled by Registry data; therefore, one of the
most valuable tools an administrator can have at his disposal is an efficient way to update Registry data.
Enter Perl'sW n32: : Regi st ry package, which provides a powerful interface to the Registry. This
package lets you retrieve information from the Registry, as well as add new information and modify or
delete existing information.

A strong word of caution isin order before we begin. The Registry contains vital system data and you
could render your system inoperable by deleting or changing Registry information. Before modifying the
Registry, make certain that you have a good backup of your entire Registry. The exercises in this chapter
will only read data or write to harmless areas of the Registry, but taking precautions is still a good idea.
To make a backup, use the regedit utility included with your system.

16.4.1 The Registry Structure

The Registry is organized into four main subtrees of keys that contain machine and user data. Each
subtree is organized into clusters of keys called hives (by analogy to the cellular structure of beehives). A
hiveis acollection of keys, subkeys, and values that is rooted at the subtree. For example, one of the
Registry subtrees, as shown in Figure 16.1, isHKEY LOCAL _MACHI NE, which contains information
about the local machine and the software installed on it. The hives under HKEY L OCAL_MACHI NE are
HARDWARE, SAM SECURI TY, SOFTWARE, and SYSTEM

Each registry key can have dataitems called values, or additional child keys called subkeys. Some users
like to think of thisin terms of afilesystem: keys are similar to directories and values are similar to files.

Figure 16.1: Sample Registry

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

L

Registy Edit Wiew Help

=10 %]

=
__-w_!'i

+ __| HaRDwaRE
W] SAM

_] SECURITY
+ __| SOFTwWaRE
¥] SYSTEM
_J HEEY_USERS

4

+

] HE EIIJ_E .“r-l_ju_.“..T_.-.

My Computer

.|| HEEY CLASSES ROOT
v] HKEY_CURRENT_USER
") HKEY _LOCAL MACHINE

_ REEY_LURREMNT_LUMFIG

M ame Data

: 2]

Table 16.1 details the four main subtrees of the Registry, and a general description of what each oneis

used for.

Table 16.1: Sample Registry Subtrees

Registry Subtree

Description

HKEY_LOCAL_MACHINE

Contains information about the local computer, including information
about the hardware and operating system

HKEY_CLASSES ROOT

Contains OLE and file association information

HKEY CURRENT USER

Contains user profile information for the currently logged-on user
including environment, desktop, and preference settings

HKEY USERS

Contains all actively loaded user profiles (including
HKEY_ CURRENT_USER) and default user profile information

The W n32: Regi st ry package creates an instantiated registry key object[2] for each of these
subtrees, so you can open keys relative to these trees.

[2] See Chapter 18, CGI Programming, for a discussion of Perl objects.

The Registry can contain severa different data types including strings, dwords (unsigned four-byte
integers), unicode strings, expanding strings (e.g., environment variables that rely on the value of another
environment variable), binary data, and more. W n32: : Regi st r y defines constants (in the form of
subroutines) for these values. Table 16.2 gives some of the most useful constants.

Table 16.2: Win32::Registry Constants

Win32::Registry Constant | Data Type

REG SZ String Data

REG_DWORD Unsigned four-byte integer

REG_MULTI_SZ Multiple strings, delimited with NULL

REG EXPAND_SZ Strings that expand (e.g., based on environment variables)

REG_BINARY Binary data (no particular format is assumed)

Previous: 16.3 Getting Learning Perl on Win32 Next: 16.5 Opening and

Network Information Systems Reading Registry Values

16.3 Getting Network Book 16.5 Opening and Reading
Information Index Registry Values

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 16.4 Chapter 16 Next: 16.6 Setting Registry
The Registry System Information Values

16.5 Opening and Reading Registry Values

Let's start our exploration of the Registry by finding out how to get information out of it. As an example,
let's see what we can find out about the current build version of Windows NT on our system. If you're
using this book on a Windows 95 system, you'll need to change the Windows NT key to Windows:
use Wn32:: Registry;
$p = "SOFTWARE\\ M crosoft\\ Wndows NT\\ Current Version";
$mai n: : HKEY _LOCAL_MACHI NE- >Open($p, $CurrVer) ||
die "Qpen: $!'";

$Curr Ver - >Get Val ues(\ %val s); # get sub keys and val ue -hash ref
foreach $k (keys %als) {

$key = $val s{3$k};

print "$$key[0] = $$key[2]\n"; # see bel ow for explanation
}

Running this script on one of our systems produces the following output:

Current Bui | dNunber: 1381

CSDVer si on = Service Pack 3

CurrentBuild = 1.511.1 () (Oosolete data - do not use)
Regi st eredOrgani zati on = Axi om Technol ogi es
Current Type = Uni processor Free

Instal | Date = O?L3

Regi st eredOmer = Erik 4 son

CurrentVersion = 4.0

SystenRoot = D:\ NT

Current Bui | dNunmber = 1381

Sof t war eType = SYSTEM

Productld = 50036419013877247607

SourcePath = E: \1386

Pat hName = D:\ NT

Let's see what's going on here. The first line of the script employs the use operator to include the

W n32: : Regi st ry package. We then have avariable $p containing a Registry path relative to

HKEY LOCAL_MACHI NE. Thethird line uses$mai n: : HKEY LOCAL_MACHI NE (one of the Registry
keys declared in registry.pm that we mentioned) to open the Cur r ent Ver si on key. If the Open

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

method succeeds, $Cur r Ver will contain the Registry object corresponding to the Cur r ent Ver si on
key.

Line four usesthe $Cur r Ver key to call the Get Val ues method. Get Val ues takes areferenceto a
hash as a parameter and populates that hash with al of the values under $Cur r Ver . Each hash element
consists of a key with the name of the Registry value and a value containing areference to a
three-element list. The list contains the value name, the data type of the value, and the value data. The
remaining lines of the example iterate over each value using the f or each operator and print its value
name and data value. For example:

foreach $k (keys %als) { # iterate over keys
$key = $val s{$k}; # get ref to |ist
print "$$key[0] = $$key[2]\n"; # dereference as |ist

}

We've seen how the Gpen method will open a Registry key relative to one of the main subtrees (or
another key). We can also use the Cr eat e method to open akey, creating it if it doesn't exist. Cr eat e
won't create more than one level deep, so we need to have a handle to the parent key before calling
create. Here's an example that creates a new key under the HKEY _CURRENT_USER\SOFTWARE
hive:

use Wn32::Registry;

$mai n: : HKEY _CURRENT USER- >Open(" SOFTWARE", $Software) ||

die "Open: $!";
$Sof t war e- >Creat e(" ERI KO', $eri ko) ||
die "Create: $!"; # new key is in S$eriko

In order to create akey under SOFTWARE, we first need to obtain the key to SOFTWARE. We do so by
using Qpen again, thistime with the HKEY CURRENT _USER subtree. After we have the SOFTWARE
key open, we can create keys directly beneath it.

Previous: 16.4 Learning Perl on Win32 Next: 16.6 Setting Registry
The Registry Systems Values
16.4 The Registry Book 16.6 Setting Registry Values
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 16.5 Opening and Chapter 16 ‘ Next: 16.7
Reading Registry Values System Information Exercises

16.6 Setting Registry Values

In addition to creating keys, we can also set Registry values. To do so, we once again need an open key
and the Set Val ue or Set Val ueEx function. Set Val ue setsthe default (unnamed) value for akey,
while Set Val ueEx allowsyou to create a new named value and set itsinformation. The following
example assumes that we already have the $er i ko key open:

$eri ko- >Set Val ue("bl ah", REG SZ, "sone_string");
$eri ko- >Set Val ueex("foo", 0, REG Sz, "bar");

Even though these two functions ook similar, they do quite different things. Thefirst line (Set Val ue)
creates anew key called bl ah and sets its default (unnamed) valueto sonme_st ri ng. The second line
(Set Val ueEx) creates anew value under $er i ko with aname of f 0o and avalue of bar . In both
cases, we're using the REG _SZ data type, which indicates string data.

16.6.1 More Registry Operations

Y ou can do more with the Registry than just read and modify key values. Y ou can also delete keys and
export/import hives from the Registry. As we mentioned above, be extremely prudent when deleting or
importing things into your registry.

Here's an example of deleting akey:

use Wn32:: Registry;
$mai n: : HKEY_CURRENT_USER- >Cpen(" SOFTWARE", $Software) ||

die "Open: $!";
$Sof t war e- >Creat e("ERI KO', $eri ko) ||
die "Create: $'"; # open parent key

$eri ko->Del et eKey("bl ah"); # delete bl ah

Del et eKey will delete akey and all of its values - it will not delete a key with subkeys. To do that, you
need to remove all of the subkeysfirst. Here's how you do that:
use Wn32:: Registry;
$mai n: : HKEY _CURRENT USER- >Qpen(" SOFTWARE", $Software) ||
die "Open: $!";
$Sof t war e- >Creat e("ERI KO', $eri ko) ||
die "Create: $!'";
$eri ko->Qpen(" bl ah", $bl ah); # open bl ah

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

$bl ah- >Get Keys(\ @i ds) ; # get all child keys

foreach $k (@ids) { # kill all of them
$bl ah- >Del et eKey($k) ;

}

$eri ko- >Del et eKey(" bl ah™); # now, renove bl ah

This code assumes that none of the child keys of bl ah have child keys themselves. If they do, you'll
need to do something recursive to iterate over each subkey and all of its subkeys.

The following example saves a Registry hive to an external file using the Save method:
use Wn32::Registry;
$mai n: : HKEY _LOCAL MACHI NE- >Open(" SOFTWARE", $Software) ||

die "Qpen: $!'";
$Sof t war e- >Cpen(" Acti veState", $ActiveState) ||
die "Open: $!";

wite ActiveState hive to perl keys.reg
$Acti veSt at e- >Save(" perl keys.reg") ||
die "Save: $!";

Y ou can connect to the Registry of aremote machine (but only to the HKEY_ _LOCAL_MACHINE or
HKEY_USERS hives) using the RegConnect Regi st ry function:
use Wn32:: Registry;
W n32:: Regi stry: : RegConnect Regi stry("\\\\ sonemachi ne",
HKEY_ LOCAL_MACHI NE, $key) || die "connect: $!";

Previous: 16.5 Opening and Learning Perl on Win32 Next: 16.7
Reading Registry Values Systems Exercises
16.5 Opening and Reading Book 16.7 Exercises
Registry Values Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 16.6 Setting
Registry Values

Chapter 16
System Information

Next: 17. Database
Manipulation

16.7 Exercises

See Appendix A, Exercise Answers for the answers.

1. Write aprogram that takes a machine name as input and then prints alist of all of the IP addresses
for that machine (skip this example if you don't have TCP/IP installed). Try your program on
something like www.microsoft.com that has lots of |P addresses to make sure you get it right.

2. Write aprogram that takes as an argument a single Registry key relative to
HKEY_LOCAL_MACHINE and prints all of the values under it (don't worry about recursing into
child keys or about binary data for now, just print whatever you get).

3. Write asubroutine that creates al of the keysin a path if they don't exist. To make things easier,
pass in the subtree to which the path is relative.

4. Using what you know about unpack, write aroutine that will print a hexidecimal representation
of aREG_DWORD value (that is, afour-byte integer value).

Previous: 16.6 Setting
Registry Values

16.6 Setting Registry Vaues

Learning Perl on Win32
Systems

Book
Index

Next: 17. Database
Manipulation

17. Database Manipulation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
http://www.microsoft.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 16.7 Chapter 17 Next: 17.2 Opening and
Exercises Closing DBM Hashes

17. Database Manipulation

Contents:
DBM Databases and DBM Hashes

Opening and Closing DBM Hashes
Using aDBM Hash

Fixed-Length Random-A ccess Databases
Variable-Length (Text) Databases
Win32 Database I nterfaces

Exercises

17.1 DBM Databases and DBM Hashes

Most UNIX systems have a standard library called DBM that many Win32 programmers have never
heard about. Thislibrary provides a simple database management facility that allows programsto store a
collection of key-value pairsinto apair of disk files. These files retain the values in the database between
invocations of the programs using the database, and these programs can add new values, update existing
values, or delete old values.

The DBM library isfairly simple, but being readily available, it has been used for many programs with
modest database needs. For example, the famous UNIX mail program, sendmail (and its variants and
derivatives), storesits user alias database (the mapping of mail addresses to recipients) asaDBM
database. The most popular Usenet news software uses a DBM database to track current and recently
seen articles. In spite of this, it isunlikely that you will have DBM files laying around on your Windows
system (unless you've aready created them using Perl).

Perl provides access to this same DBM mechanism through a rather clever means. a hash can be
associated with a DBM database through a process similar to opening afile. This hash (called a DBM
array) isthen used to access and modify the DBM database. Creating a new element in the array
modifies the DBM database immediately. Deleting an element del etes the value from the DBM database,
and so on.[1]

[1] Thiscaseisactually just aspecial use of the genera t i e mechanism. If you want
something more flexible, check out the SDBM_File and perltie documentation.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

The size, number, and kind of keys and valuesin a DBM database are restricted, and depending on which
version of DBM library you're using, a DBM array may share these same restrictions. Perl for Win32
includes the SDBM database routines. In general, if you keep both the keys and the values down to 1000
arbitrary binary characters or less, you'll probably be OK.

Previous: 16.7 Learning Perl on Win32 Next: 17.2 Opening and
Exercises Systems Closing DBM Hashes
16.7 Exercises Book 17.2 Opening and Closing
Index DBM Hashes

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 17.1 DBM Chapter 17 Next: 17.3 Using a DBM
Databases and DBM Hashes Database M anipulation Hash

17.2 Opening and Closing DBM Hashes

To associate a DBM database with aDBM array, use the dbnopen function, which looks like this:
dbrmopen(YARRAYNAME, "dbnfil enane”, $node);

The Y%ARRAYNANE parameter is a Perl hash. (If this hash already has values, the values are discarded.)
This hash becomes connected to the DBM database called domfilename, usually stored on disk as a pair
of files called dbmfilename.dir and domfilename.pag.

The $node parameter isanumber that controls the permission bits of the pair of filesif the files need to
be created. The number istypically specified in octal format; the frequently used value of 0666 provides
read-write access to the database. If the files already exist, this parameter has no effect. For example:

dbnopen(-RED, "nydat abase", 0666); # open %RED onto nydat abase

This invocation associates the hash %-RED with the disk files mydatabase.dir and mydatabase.pag in the
current directory. If the files don't already exist, they are created with read/write attributes.

The return value from dbnopen istrue if the database could be opened or created, and fal se otherwise,
just like an open invocation. If you don't want the files created, use a $node value of undef . For
example:

dbrmopen(%A, "c:/tenp/ xx",undef) || die "cannot open DBM c:/tenp/ xx";

In this case, if the files c:\temp\xx.dir and c:\temp\xx.pag cannot be opened, the dbnopen call returns
false, rather than attempting to create the files.

The DBM array stays open throughout the program. When the program terminates, the association is
terminated. Y ou can aso break the association in amanner similar to closing afilehandle, by using the
dbntl ose function:

dbntl ose(%A) ;

Likecl ose, dbntl ose returnsfalse if something goes wrong.

Previous: 17.1 DBM Learning Perl on Win32 Next: 17.3 Using a DBM
Databases and DBM Hashes Systems Hash
17.1 DBM Databases and Book 17.3 Using aDBM Hash

DBM Hashes Index

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 17.2 Opening and Chay ter.17 . Next: 17.4 Fixed-Length
Closing DBM Hashes Database M anipulation Random-Access Databases

17.3 Using a DBM Hash

After the database is opened, accesses to the DBM hash are mapped into references to the database.
Changing or adding a value in the hash causes the corresponding entries to be immediately written into
the disk files. For example, once %4-RED is opened from the earlier example, we can add, delete, or
access elements of the database, like this:

$FRED{"fred"} = "bedrock"; # create (or update) an el ement
del et e $FRED{" bar ney"}; # renove an el enent of the database
foreach $key (keys %RED) { # step through all val ues
print "$key has val ue of $FRED{$key}\n";
}

That last loop has to scan through the entire disk file twice: once to access the keys, and a second time to
look up the values from the keys. If you are scanning through a DBM hash, it's generally more
disk-efficient to use the each operator, which makes only one pass:

whil e (($key, $value) = each(%RED)) {
print "$key has value of $val ue\n";

}
Previous: 17.2 Opening and Learning Perl on Win32 Next: 17.4 Fixed-Length
Closing DBM Hashes Systems Random-Access Databases
17.2 Opening and Closing Book 17.4 Fixed-Length
DBM Hashes Index Random-Access Databases

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 17.3 Using a DBM Chay ter.17 . Next: 17.5 Variable-Length (
Hash Database Manipulation Text) Databases

17.4 Fixed-Length Random-Access Databases

Another form of persistent datais the fixed-length, record-oriented disk file. In this scheme, the data
consists of a number of records of identical length. The numbering of the records s either not important
or determined by some indexing scheme.

For example, we might have a series of records in which the data has 40 characters of first name, a
one-character middleinitial, 40 characters of last name, and then atwo-byte integer for the age. Each
record isthen 83 byteslong. If we were reading al of the data in the database, we'd read chunks of 83
bytes until we got to the end. If we wanted to go to the fifth record, we'd skip ahead four times 83 bytes
(332 bytes) and read the fifth record directly.

Perl supports programs that use such adisk file. A few things are necessary in addition to what you
aready know:

« Opening adisk file for both reading and writing, and setting the filehandle to binary mode
« Moving around in thisfile to an arbitrary position

« Fetching data by alength rather than up to the next newline

« Writing data down in fixed-length blocks

The open function takes an additional plus sign before its I/O direction specification to indicate that the
fileisreally being opened for both reading and writing. For example:

open(A "+<b"); # open file b read/wite (error if file absent)
open(C,"+>d"); # create file d, with read/wite access
open(E,"+>>f"); # open or create file f with read/wite access

Notice that all we've done wasto prepend a plus sign to the 1/0O direction.

Next, we need to set the filehandle to binary mode using the bi nnode function:
bi nnode(A); # set the filehandle to binary node

Some operating systems don't need to use bi nnode, so you may find scripts that don't do this. Windows
NT (and Windows 95) systems do need to use bi nnode, so if you find yourself getting strange results
while using a random-access database file, thisis the first place you should check.

After we've got the file open, we need to move around in it. Y ou do this with the seek function, which

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

takes the same three parameters asthe C f seek library routine. The first parameter is afilehandle; the
second parameter gives an offset, which isinterpreted in conjunction with the third parameter. Usually,
you'll want the third parameter to be zero so that the second parameter selects a new absolute position for
the next read from or write to the file. For example, to go to the fifth record on the filehandle NANVES (as
described above), you can do this:

seek(NAMES, 4*83, 0) ;

After the file pointer has been repositioned, the next input or output will start there. For output, use the
pri nt operator, but be sure that the data you are writing is the right length. To obtain the right length,
we can call upon the pack() operator:

print NAMES pack("A40 A A40 s", $first, $mddle, $last, $age);

That pack() specifier gives 40 charactersfor $f i r st , asingle character for $i ddl e, 40 more
charactersfor $I ast , and a short (two bytes) for the $age. This should be 83 bytes long, and will be
written at the current file position.

Last, we need to fetch a particular record. Although the <NAMES> operator returns all of the data from
the current position to the next newline, that's not correct; the data is supposed to go for 83 bytes, and
there probably isn't a newline right there. Instead, we use the r ead function, which looks and works alot
like its C language counterpart:

$count = read(NAMES, $buf, 83);

Thefirst parameter for r ead isthe filehandle. The second parameter is a scalar variable that holds the
datathat will be read. The third parameter gives the number of bytesto read. The return value from

r ead isthe number of bytes actually read; typically, this number is the same number as the number of
bytes asked for unless the filehandle is not opened or you are too close to the end of thefile.

After you have the 83-character data, break the datainto its component parts with the unpack operator:
($first, $mddle, $last, $age) = unpack("A40 A A40 s", $buf);

Note that the pack and unpack format strings are the same. Most programs store thisstring in a
variable early in the program, and even compute the length of the records using pack instead of
sprinkling the constant 83 everywhere:

$nanes = "A40 A A40 s";
$nanes_| ength = | engt h(pack($nanes)); # probably 83

Previous: 17.3 Using a DBM Learning Perl on Win32 Next: 17.5 Variable-Length (
Hash Systems Text) Databases
17.3 Using aDBM Hash Book 17.5 Variable-Length (Text)
Index Databases

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

AﬁaLeaming Perl on Win32 Systems —

Previous: 17.4 Fixed-Length Ch ter.l7 _ Next: 17.6 Win32 Database
Random-Access Databases Database Manipulation Interfaces

17.5 Variable-Length (Text) Databases

Some system databases (and quite a few user-created databases) are a series of human-readable text lines,
with one record per line. For example, the TCP/IP hosts file contains one line per hostname.

Most often, these databases are updated with simple text editors. Updating such a database consists of
reading it all into atemporary area (either memory or another disk file), making the necessary changes, and
then either writing the result back to the original file or creating a new file with the same name (after
deleting or renaming the old version). Y ou can think of this process as a copy pass. the data is copied from
the original database to a new version of the database, and changes are made during the copy.

Perl supports a copy-pass-style edit on line-oriented databases using inplace editing. Inplace editing isa
modification of the way the diamond operator (<>) reads data from the list of files specified on the
command line. Most often, this editing mode is accessed by setting the- 1 command-line argument, but
we can also trigger inplace editing mode from within a program, as shown in the examples that follow.

To trigger the inplace editing mode, set avalueinto the $71 scalar variable. The value of thisvariableis
important and will be discussed in a moment.

When the <> construct is used and $ | has a value other than undef , the steps marked ##1 NPLACE##
in the following code are added to the list of implicit actions the diamond operator takes:

$ARGV = shift @ARGY,

open(ARGV, " <$ARGV") ;

rename($ARGV, "$ARGVSM ") ; ## | NPLACE ##

unl i nk($ARGV) ; ## | NPLACE ##
open(ARGVOUT, " >$ARGV") ; ## | NPLACE ##
sel ect (ARGVQOUT) ; ## | NPLACE ##

The effect is that reads from the diamond operator come from the old file, and writes to the default
filehandle go to anew copy of thefile. The old file remains in a backup file, which is the filename with a
suffix equal to the value of the $” I variable. (A bit of magic is also used to copy the attributes from the old
fileto the new file.) These steps are repeated each time a new file istaken from the GARGV array.

Typical valuesfor $71 arethingslike . bak or ~, to create backup files much like the editor creates. A
strange and useful value for $71 isthe empty string, " ", which causes the old file to be neatly eliminated
after the edit is complete. Unfortunately, if the system or program crashes during the execution of your
program, you lose al of your old data, so this method is recommended only for brave, foolish, or trusting
souls.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Here's away to change everyone's login name to lowercase in some file that contains alist of user logins,
one per line:

@ARGV = ("userlist.txt"); # prine the di anond operator
$” = ". bak"; # wite userlist.bak for safety
while (<>) { # main | oop, once for each |ine
tr/ A-Z/ a-z/; # change everything to | ower case
print; # send output to ARGVQUT: the new userlist.txt

}

Asyou can see, this program is pretty simple. In fact, the same program can be generated entirely with a
few command-line arguments:

perl -p -i.bak -e "tr/A-Z/ a-z/' wuserlist.txt
The - p switch brackets your program with awhi | e loop that includesapri nt statement. The-1i switch

setsavalueinto the $M 1 variable. The - e switch defines the following argument as a piece of Perl code for
the loop body. The final argument gives an initial value to GARGV.

Command-line arguments are discussed in greater detail in Programming Perl or the perlrun
documentation.

Previous: 17.4 Fixed-Length Learning Perl on Win32 Next: 17.6 Win32 Database
Random-Access Databases Systems Interfaces
17.4 Fixed-Length Book 17.6 Win32 Database
Random-A ccess Databases Index Interfaces

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 17.5 Cha ter 17 Next: 17.7
Variable-Length (Text) Database M anipulation Exercises
Databases

17.6 Win32 Database Interfaces

We have seen how Perl can be used to create and maintain databases. What we haven't talked about is
how Perl can also be used to access data stored in many popular database formats.

One of the handiest extension modules for Perl for Win32 isW n32: : ODBC. Written by Dave Roth,
W n32: : ODBC provides an interface to any ODBC data source for which you have adriver.

A detailed discussion of W n32: : ODBCis beyond the scope of this book, but you can find
W n32: : CDBC at any CPAN site (try www.perl.com/CPAN/authors/Dave Roth/).

Another popular way to access data from Perl for Win32 is to use the OLE Automation interface to
Microsoft's ActiveX Data Objects (ADO). ADO is an OLE interface that provides uniform data access to
any compliant data source (including ODBC). See Chapter 19, OLE Automation, for a couple of

examples of how to use ADO. For more information on ADO, see www.microsoft.com/ado.

Previous: 17.5 Learning Perl on Win32 Next: 17.7
Variable-Length (Text) Systems Exercises
Databases
17.5 Variable-Length (Text) Book 17.7 Exercises
Databases Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
http://www.perl.com/CPAN/authors/Dave_Roth/
http://www.microsoft.com/ado
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 17.6 Win32 Chapter 17 Next: 18. CGl
Database Interfaces Database M anipulation Programming

17.7 Exercises

See Appendix A, Exercise Answers for answers.

1. Create two programs. one program that reads the data from <>, splits the data into words, and then
updates a DBM file noting the number of occurrences of each word; and another program to open
the DBM file and display the results sorted by descending count. Run the first program on afew
files and see if the second program picks up the proper counts.

Previous: 17.6 Win32 Learning Perl on Win32 Next: 18. CGlI
Database Interfaces Systems Programming
17.6 Win32 Database Book 18. CGI Programming

Interfaces Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 17.7 Chapter 18 Next: 18.2 Your CGI Program
Exercises in Context

18. CGI Programming

Contents:
The CGIl.pm Module

Your CGI Program in Context

Simplest CGI Program

Passing Parameters via CGl

Creating a Guestbook Program
Troubleshooting CGI Programs

Perl and the Web: Beyond CGI Programming
Further Reading

Exercises

Unless you've been holed up in alog cabin without electricity for the last few years, you've heard of the
World Wide Web. Web addresses (better known as URLS) pop up everywhere from billboards to movie
credits, from magazines and newspapers to government reports.

Many of the more interesting web pages include some sort of entry form. Y ou supply input to thisform
and click on a button or picture. This step fires up a program at the web server that examines your input
and generates new output. Sometimes this program (commonly known as a Common Gateway | nterface
(CGlI) program) isjust an interface to an existing database, massaging your input into something the
database understands and massaging the database's output into something aweb browser can understand
(usually HTML).

CGlI programs do more than process form input. They are also invoked when you click on agraphic
image and may in fact be used to provide whatever output that your browser sees. Instead of being dull
and boring, CGl-enabled web pages can be marvelously alive with dynamic content. Dynamic
information is what makes the Web an interesting and interactive place, and not just away to read a book
from your terminal.

Despite what all those bouncing balls and jumping adverts might lead you to believe, the web contains a
lot of text. Because we're dealing with text, files, network communications, and alittle bit of binary data
now and then, Perl is perfect for web programming.

In this chapter, we'll not only explore the basics of CGI programming, but we'll also steal alittle

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

introductory knowledge about references, library modules, and object-oriented programming with Perl as
we go along. Then, at the end, we'll make a quick survey of Perl's usefulness for other sorts of web
programming.

As astandalone tutorial, this chapter (and most any other document shorter than a couple of hundred
pages) will not be adequate to teach the more complex topics touched on here, such as object
programming and the use of references. But as a meansto gain a preliminary taste of what's ahead of
you, the examples presented here, together with their explanations, may whet your appetite and give you
some practical orientation as you slog through the appropriate textbooks. And if you're the
learn-by-doing type, you'll actually start writing useful programs based on the models you find here.

We assume you already possess a basic familiarity with HTML.

18.1 The CGIl.pm Module

Starting with the 5.004 release, the standard Per| distribution includes the al-singing, al-dancing
CGIl.pm module.[1]

[1] If you have the ActiveState distribution or an earlier release of Perl (but at least version
5.001), and haven't gotten around to upgrading yet, just grab CGI.pm from CPAN. To install
it, follow the directions in the README file.

Written by Lincoln Stein, author of the acclaimed book How to Setup and Maintain Your Web Ste
(Addison-Wesley), this module makes writing CGI programsin Perl a breeze. Like Perl itself, CGl.pmis
platform independent, so you can use it on systems running everything from Windows NT to UNIX and
VMS.

Assuming CGIl.pmis already installed on your system, you can read its complete documentation in the
included HTML documentation. If al elsefails, just read the source file for CGI.pm: the documentation
for the module is embedded in the module itself, written in simple pod format.[2]

[2] Pod stands for "plain old documentation,” the simplistic markup used for all Perl
documentation. See the perlpod documentation for how it works.

While developing CGI programs, keep a copy of the CGI.pm documentation handy. Not only doesiit
describe the module's functions, it's also loaded with examples and tips.

Previous: 17.7 Learning Perl on Win32 Next: 18.2 Your CGI Program

Exercises Systems in Context
17.7 Exercises Book 18.2 Your CGI Program in
Index Context

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,&Leaming Perl on Win32 Systems

Previous: 18.1 The CGl.pm Chapter 18 Next: 18.3 Simplest CGlI
Module CGI Programming Program

18.2 Your CGI Program in Context

Figure 18.1 shows the relationships between aweb browser, web server, and CGI program. When you click
on alink while using your browser, thereis a URL associated with the link. This URL specifies aweb server
and a resource accessible through that server. So the browser communicates with the server, requesting the
given resource. If, say, the resource isan HTML fill-out form, the web server responds by downloading the

form to the browser, which then displays the form for you to fill out.

Figure 18.1: CGI application flow

WWW Browser Server Application
{ow abent)

R |

i
Fi
..'. "-..__‘_.-'r
User

[| » . @
*w___iu———"__—& Retriaves farm
Lbses fills Sandk h_]n'n
out fom 1 diest
User submits fom o—
Forwoed fo I—
6 apelication mﬂssus
—]
‘7_7_'—,_.—,_9_ i SEres
Outpet Ot o
|E[EHE¢.‘| [ll-H'IT

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Each text-input field on the form has a name (given in the form's HTML code), and an associated value,
which iswhatever you type into the field. The form itself is associated (viathe HTML <FORM> tag) with a
CGI program that processes the form input. When you fill out the form and click on Submit, the browser
accesses the URL of the CGI program. But first it tacks onto the end of the URL a query string consisting of
one or more nane=val ue pairs; each name isthe name of atext input field, and each value is the
corresponding input you provided. So the URL to which the browser submits your form input looks
something like this (where the query string is everything after the question mark):

http://ww. SOVEVWHERE. or g/ cgi - bi n/ sonme_cgi _prog?fl avor=vani | | a&si ze=doubl e

In this case, there are two nane=val ue pairs. Such pairs are separated by an ampersand (&): adetail you
won't have to worry about when you use the CGl.pm module. The part of the URL that reads
/cgi-bin/some_cgi_prog/ will receive further explanation later; at the moment, you need only note that this
part provides a path to the CGI program that will processthe HTML form input.

When the web server (www.SOMEWHERE.org in this case) receives the URL from your browser, it invokes
the CGI program, passing the nane=val ue pairsto the program as arguments. The program then does
whatever it does, and (usually) returns HTML code to the server, which in turn downloads the code to the
browser for display to you.

The conversation between the browser and the server, and aso between the server and the CGI program,
follows the protocol known as HTTP. Y ou needn't worry much about this when writing your CGI program,
because CGI.pm takes care of the protocol requirements for you.

The way in which the CGI program expects to receive its arguments (and other information) from the
browser viathe server is governed by the CGI specification. Again, you don't need to worry too much about
this; as you will see, CGIl.pm automatically unpacks the arguments for you.

Finaly, you should know that CGI programs can work with any HTML document, not just forms. For
example, you could write the HTML code:

Cick her e</ a>
to receive your fortune.

In this case, there wouldn't be any argument supplied to the CGI program with the URL. Or the HTML
document could give two links for the user to click on - one to receive afortune, and one to receive the
current date. Both links could point to the same program, in one case with the argument f or t une following
the question mark in the URL, and in the other case with the argument dat e. The HTML links would look
likethis:

The CGlI program (fortune_or_date in this case) would then see which of the two possible arguments it
received and execute either the fortune or date program accordingly.

S0 you see that arguments do not have to be of the nanme=dat e variety characteristic of fill-out forms. Y ou
can write a CGI program to do most anything you please, and you can pass it most any arguments you
please.

In this chapter, we will primarily illustrate HTML fill-out forms. And we will assume that you understand
basic HTML code aready.[3]

http://www.SOMEWHERE.org/cgi-bin/some_cgi_prog?flavor=vanilla&size=double
http://www.SOMEWHERE.org/cgi-bin/fortune.cgi">here</a
http://www.SOMEWHERE.org/cgi-bin/fortune_or_date?fortune
http://www.SOMEWHERE.org/cgi-bin/fortune_or_date?date

[3] For the full story about HTML, see HTML.: The Definitive Guide, Second Edition, O'Relilly

& Associates.
Previous: 18.1 The CGl.pm Learning Perl on Win32 Next: 18.3 Simplest CGI
Module Systems Program
18.1 The CGl.pm Module Book 18.3 Simplest CGI Program

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming
| Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 18.2 Your CGI Chapter 18 . Next: 18.4 Passing
Program in Context CGlI Programming Parameters via CGl

18.3 Simplest CGI Program

Here's the source code for your first CGI program. It's so ssimple it doesn't even need to use the CGIl.pm
module.

howdy--the easiest of CA prograns
print <<END of Muiltiline_Text;
Content-type: text/htm

<HTM_>
<HEAD>
<TlI TLE>Hel | o Wor | d</ TI TLE>
</ HEAD>
<BODY>
<H1>G eetings, Terrans!</Hl>
</ BODY>

</ HTML>

END of Multiline_ Text

Each and every time this program is called, it displays exactly the same thing. It's not particularly
dynamic, or interesting. But we'll spiceit up later.

This little program contains just one statement: a call to the pr i nt function. That somewhat funny
looking argument is a here document. It starts with two less-than signs and aword that we'll call the end
token. Although this may look like 1/O redirection, it'sreally just a convenient way to quote a multiline
string. The string begins on the next line and continues up to aline containing the end token, which must
stand by itself at the start of the line. Here documents are especially handy for generating HTML.

Thefirst part in that long string is arguably the most important: the Cont ent - Type lineidentifiesthe
type of output you're generating. It'simmediately followed by a blank line, which must not contain any
spaces or tabs. Most beginners first CGI programs fail because they forget that blank line, which
separates the header (somewhat like amail header) from an optional body following it.[4] After the blank

line comes the HTML, which is sent on to be formatted and displayed on the user's browser.
[4] This header isrequired by the HT TP protocol we mentioned above.

First make sure your program runs correctly from the command line. Thisis a necessary but not a

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

sufficient step to making sure your program will run as a server script. A lot of other things can go
wrong; see the section on "Troubleshooting CGI Programs' later in this chapter.

After it runs properly from the command line, you need to get the program installed on the server
machine. Acceptable |ocations are server- and machine-dependent, although the scripts or cgi-bin
directory of your server installation is a good place to start looking. Consult your server documentation
or options to be sure.

After your programisinstalled in a CGlI directory, you can execute it by giving its pathname to your
browser as part of a URL. For example, if your program is called howdy.plx, the pathname would be:

http://ww. SOVEWHERE. or g/ cgi - bi n/ howdy. pl x

Serverstypically define aliases for long pathnames. The server a8 www.SOMEWHERE.org might well
trandlate cgi-bin/howdy.plx in this URL to something like c:\inetpub\scripts\howdy.plx.

Previous: 18.2 Your CGlI Learning Perl on Win32 Next: 18.4 Passing

Program in Context Systems Parameters via CGl
18.2 Your CGI Program in Book 18.4 Passing Parameters via
Context Index CGl

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
http://www.SOMEWHERE.org/cgi-bin/howdy.plx

,@Leammg Perl on Win32 Systems

Previous: 18.3 Simplest CGlI Chapter 18 . Next: 18.5 Creating a
Program CGI Programming Guestbook Program

18.4 Passing Parameters via CGl

Y ou don't need aform to pass a parameter to (most) CGI programs. This feature is convenient because it
lets programs be called viasimple links, not just by full-blown forms. To test this out, take the original
URL and add a question mark followed by the parameter name, an equal sign, and the value desired. For
example, the following URL would call theice _cream script with thef | avor parameter set to the value
m nt :

http://ww. SOVEVWHERE. or g/ cgi - bi n/i ce_cream pl x?f| avor =m nt

When you point your browser at this URL, the browser not only requests the web server to invoke the
ice_cream.plx program, but it also passesthe string f | avor =m nt to the program. Now it's up to the
program to read the argument string and pick it apart. Doing this properly isnot as easy as you might
think. Many programstry to wing it and parse the request on their own, but most hand-rolled algorithms
only work some of the time. Given how hard it isto get it right in all cases, you probably shouldn't try to
write your own code, especially when perfectly fine modules already handle the tricky parsing business
for you.

Enter the CGI.pm module, which always parses the incoming CGI request correctly. To pull thismodule
into your program, merely say:

use CA:

somewhere near the top of your program.[5]

[5] All Perl modules end in the suffix .pm; in fact, the use statement assumes this suffix.
Y ou can learn how to build your own modules in Chapter 5 of Programming Perl or the

perlmod documentation.

The use statement is somewhat likea#i ncl ude statement in C programming in that it pullsin code
from another file at compile time. But it also allows optional arguments specifying which functions and
variables you'd like to access from that module. Put those in alist following the module nameintheuse
statement. Y ou can then access the named functions and variables as if they were your own.

In this case, all we need to use from CGl.pmisthe par an() function.[6]

[6] Some modules automatically export all their functions, but because CGl.pmisreally an
object module masquerading as a traditional module, we have to ask for its functions
explicitly.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
http://www.SOMEWHERE.org/cgi-bin/ice_cream.plx?flavor=mint

If given no arguments, par an() returnsalist of all the fields that werein the HTML form that this CGI
script is responding to. (In the current example, thislist containsthef | avor field. In general, the list
contains al the namesin nane=val ue strings received from the submitted form.) If given an argument
naming afield, par an() returnsthe value (or values) associated with that field. Therefore,
paranm("flavor") returns” m nt ", because we passed in ?f | avor =m nt at the end of the URL.

Even though we have only one item in our import list for use, we'll employ the gw() notation; this way
it will be easier to expand the list | ater:

ice_creampl x: programto answer ice cream
favorite flavor form (version 1)
use CA gw paranj;

print <<END of Start;
Content-type: text/htni

<HTM_>
<HEAD>
<TI TLE>Hel | o Wor | d</ TI TLE>
</ HEAD>
<BODY>
<H1>Greetings, Terrans!</Hl>
END of Start

ny $favorite = param("flavor");
print "<P>Your favorite flavor is $favorite.";
print <<All _ Done;
</ BODY>
</ HTM.>
Al'l _Done

18.4.1 Less Typing

That's still alot of typing. Luckily, CGI.pmincludes awhole slew of convenience functions for
simplifying this. Each of these routines returns a string for you to output. For example, header ()
returns a string containing the Cont ent - t ype line with afollowing blank line,

start_htm (string)retunsstri ngasan HTML title, h1(stri ng) retunsstri ng asa
first-level HTML heading, and p(st ri ng) returnsst ri ng asanew HTML paragraph.

We could list all these functionsin the import list given with use, but that would eventually grow too
unwieldy. However, CGIl.pm, like many modules, provides you with import tags - labels that stand for
groups of functions to import. Y ou simply place the desired tags (each of which begins with a colon) at
the beginning of your import list. The tags available with CGI.pm include these:

. cqi
Import all argument-handling methods, such aspar an() .
cform

Import al fill-out form generating methods, such ast ext fi el d() .
chtnl 2

Import all methods that generate HTML 2.0 standard elements.

chtm 3
Import all methods that generate HTML 3.0 proposed elements (such as <t abl e>, <super >,
and <sub>).

: net scape

Import all methods that generate Netscape-specific HTML extensions.
:shortcuts

Import all HTML-generating shortcuts (that is, "html2" + "html3" + "netscape”).
: standard

Import "standard” features: "html2," "form," and "cgi."
call

Import all the available methods. For the full list, see the CGIl.pm module, where the variable
%I AGS is defined.

WE'l just use: st andar d. (For more information about importing functions and variables from
modules, see the Exporter module in Chapter 7 of Programming Perl.)

Here's our program using all the shortcuts CGIl.pm provides:

cgi-bin/ice creampl x: programto answer ice cream

favorite flavor form (version 2)

use CA gw :standard);

print header(), start_htm ("Hello Wrld"), hl("Hello World");
ny $favorite = param("flavor");

print p("Your favorite flavor is $favorite.");

print end _htm ();

See how much easier that is? Y ou don't have to worry about form decoding, headers, or HTML if you
don't want to.

18.4.2 Form Generation

Perhaps you're tired of typing your program's parameter to your browser. Just make afill-out form
instead, which iswhat most folks are used to. The parts of the form that accept user input are typically
called widgets, amuch handier term than graphical input devices. Form widgets include single- and
multiline textfields, pop-up menus, scrolling lists, and various kinds of buttons and checkboxes.

Create the following HTML page, which includes aform with one textfield widget and a submit button.
When the user clicks on the submit button,[7] theice_cream script specified in the ACTION tag will be

called:

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_015.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

[7] Some browsers allow you to leave out the submit button when the form has only asingle
input text field. When the user types areturnin thisfield, it istreated as a submit request.
But you should use proper HTML here.

<l-- ice_creamhtm -->
<HTM_>
<HEAD>
<TI TLE>Hell o | ce Creanx/ Tl TLE>
</ HEAD>
<BODY>

<Hl>Hel |l o I ce Creanx/Hl>
<FORM ACTI ON="ht t p: / / ww. SOVEWHERE. or g/ cgi - bi n/i ce_cream pl x">
What's your flavor? <INPUT NAMVE="favorite" VALUE="m nt">
<pP>
<I NPUT TYPE="submt">
</ FORW>
</ BODY>
</ HTM.>

Remember that a CGI program can generate any HTML output that you want, which will then be passed
to any browser that fetches the program's URL. A CGI program can, therefore, produce the HTML page
with the form on it, just as a CGI program can respond to the user's form input. Moreover, the same
program can perform both tasks, one after the other. All you need to do is divide the program into two
parts, which do different things depending on whether or not the program was invoked with arguments. If
no arguments were received, then the program sends the empty form to the browser; otherwise, the
arguments contain a user's input to the previoudy sent form, and the program returns a response to the
browser based on that inpuit.

Keeping everything in asingle CGl file this way eases maintenance. The cost is alittle more processing
time when loading the original page. Here's how it works:

ice_creampl x: programto answer *and generate* ice cream
favorite flavor form (version 3)
use CA gw :standard);
ny $favorite = param("flavor");
print header, start_htm ("Hello Ice Creant),
hli("Hello Ice Creant);
if ($favorite) {
print p("Your favorite flavor is $favorite.");
} else {
hr() emts horizontal rule: <HR>
print hr(), start _form();
print p("Please select a flavor: ",
textfield("flavor","mnt"));
print end _forn(), hr();

http://www.SOMEWHERE.org/cgi-bin/ice_cream.plx

If, while using your browser, you click on alink that points to this program (and if the link does not
specify ?what ever at theend of the URL), you'll see a screen like Figure 18.2.

Figure 18.2: Screen shot of ice_cream.plx (without input)

%] N [=] £
File Edit “iew Go Favoitez Heslp
= © [N @ @ 5 & A &
B ack Step Refiesh Home Search Favorles Pkl Font Ml
Address I*‘ur'p'-".“r-rx sr2fSomptsficecream ply j Links
=l
Hello Ice Cream
Please select a flavor: |mint
I
] 4]':11

Now, fill inthef | avor field and press Return. Figure 18.3 will appear.

Figure 18.3: Screen shot of ice_cream.plx with params (after input)

9] =101
File Edit “iew Go Favortez Help
Hack Stop Heheszl Home Search Favontes it Fank S ET
Addiess || b A fs epverd dsenpts/iceciesn pl j Lirik.z
I~
L W &
Hello Ice Cream
Your favorte flavor 15 munt.
=
5 Al

18.4.3 Other Form Elements

Now that you know how to create simple text fields in your form and respond to them, you're probably
wondering how to make the other kinds of widgets you've seen, like buttons, checkboxes, and menus.

Here's amore elaborate version of our program. We've thrown in some new widgets. pop-up menus, a
submit button (named "order"), and a button to reset the entire form and erase all user input. Pop-up
menus are pretty much just what they say they are, but the arguments given to popup_nenu may
perplex you until you've read the following section on "References.” Thet ext fi el d() function

creates atext-input field with the indicated name. We'll give more details about this function when
describing the guestbook program later in this chapter. Here's an example:

ice_creampl x: programto answer and generate ice cream
order form (version 4)

use strict; # enforce variable declarations and quoti ng
use CA gw :standard);

print header, start _htm ("lIce Cream Stand"),
hi("lce Cream Stand");
if (param()) { # the formhas already been filled out
ny $who = param("nane");
ny $flavor = paran("flavor");
ny $scoops = paran("scoops");
ny $taxrate = 1.0743;

ny $cost = sprintf("%2f", $taxrate *
(1.00 + $scoops * 0.25));

print p("Ck, $who, have $scoops scoops of $flavor
for \$$cost.");

} else { # first time through, so present clean form
print hr(); # draw a horizontal rule before the form
print start _form();
print p("Wat's your nane? ", textfield("name"));

FOR EXPLANATI ON OF FOLLOW NG TWD LI NES, SEE NEXT SECTI ON
print p("Wat flavor: ", popup_nenu("flavor",
['mnt', ' cherry', ' nocha']));
print p("How many scoops? ",
popup_nenu("scoops", [1..3]));
print p(submt("order"), reset("clear"));
print end form(), hr();
}
print end_htm;

Figure 18.4 showstheinitial screenthet ext fi el d function generates.

Figure 18.4: Screen shot of ice_cream.plx (final version)

Fle Edit 'iew Go Fgvontes Help
{1= © [0 & @ 3 8 & &)
Back Stop Refiesth Home Seaich Favoiles Print Ford bl il
Address |HIn:r'.-'w-ml-':cni:-lss'i:,e-:nMrn-l fils j Links
=l
Ice Cream Stand
What's your name? |
What flavor: [mie -]
How many seoops? [1 |
aidei | clea |
I
2] R

Asyou'll recal, the par an() function, when called without arguments, returns the names of all

form-input fields that were filled out. As aresult, you can tell whether or not the URL was called from a
filled-out form. If you have parameters, then the user filled in some of the fields of an existing form, so
respond to them. Otherwise, generate a new form, expecting to have this very same program called a
second time.

18.4.4 References

Y ou may have noticed that the popup_nenu() functionsin the previous example both have a strange
kind of argument. Just whatare[' mint', 'cherry', ' nocha'] and[1..3] doingthere? The
brackets create something you haven't seen before: areference to an anonymous array. The
popup_nenu() function expects an array reference for an argument. Another way to create an array
reference isto use a backslash in front of anamed array, asin\ @hoi ces. So this:

@hoices = ("mnt'," cherry', ' nocha');

print p("Wat flavor: ", popup_nenu("flavor", \@hoices));

works just as well asthis:

print p("Wat flavor: ", popup_nenu("flavor",
["'mnt'," cherry',"nocha']));

References behave somewhat as pointers do in other languages, but with less danger of error. They're
values that refer to other values (or variables). Perl references are very strongly typed (and uncastable),
and they can never cause general protection faults. Even better, the memory storage pointed to by
references is automatically reclaimed when it's no longer used. References play a central rolein
object-oriented programming. They're also used in traditional programming, forming the basis for data
structures more complex than simple one-dimensional arrays and hashes. Perl supports references to both
named and anonymous scalars, arrays, hashes, and functions.

Just as you can create references to named arrays with\ @r r ay and to anonymous arrays with [
| i st],you can also create references to named hashes using \ %hash and to anonymous hashes
using:[8]

[8] Y es, braces now have quite afew meaningsin Perl. The context in which you use them
determines what they're doing.

{ keyl, valuel, key2, value2, ... }

Y ou can learn more about referencesin Chapter 4 of Programming Perl, or the perlref documentation.

18.4.5 Fancier Calling Sequences

WEell round out the discussion of form widgets by creating areally fancy widget - one that allows the
user to select any number of itsitems. Thescrol I'i ng_|i st () function of CGI.pm can take an
arbitrary number of argument pairs, each of which consists of a named parameter (beginning with -) and
avalue for the parameter.

To add ascrolling list to aform, here's all you need to do:
print scrolling_list(

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch04_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

-NAME => "f| avors",
-VALUES => [gw(m nt chocol ate cherry vanilla peach)],
- LABELS => {

mnt => "Mghty Mnt",

chocol ate => "Cherished Chocol ate",

cherry => "Cheery Cherry",

vanilla => "Very Vanilla",

peach => "Perfectly Peachy",

}
-SI ZE => 3,
-MULTIPLE => 1, # 1 for true, O for false
);
The parameter values have meanings as follows:
- NAMVE
The name of the widget. Y ou can use the value of thislater to retrieve user data from the form with
paran().
- VALUES
A reference to an anonymous array. The array consists of the keys of the hash referenced by
- LABELS.
- LABELS
A reference to an anonymous hash. The values of the hash provide the labels (list items) seen by
the form user. When a particular label is selected by the user, the corresponding hash key is what
getsreturned to the CGI program. That is, if the user selectstheitem givenasPerfect|y
Peachy, the CGI program will receive the argument peach.
- SI ZE

A number determining how many list items will be visible to the user at one time.
- MULTI PLE

A true or false value (in Perl's sense of true and false) indicating whether the form user will be
allowed to choose more than one list item.

When you've set - MULTI PLE to true, you'll want to assign par an() 'sreturn list to an array:
@hoi ces = paranm("flavors");

Here's another way to create the same scrolling list, passing areference to an existing hash instead of
creating one on the fly:

% | avors = (
mnt => "Mghty Mnt",
chocol ate => "Cherished Chocol ate",
cherry => "Cheery Cherry",
vanilla => "Very Vanilla",
peach => "Perfectly Peachy",

)i
print scrolling_list(

-NAME => "fl avors",

- LABELS => \ % | avor s,

-VALUES => [keys %l avors],

-SI ZE => 3,

-MULTIPLE => 1, # 1 for true, O for false
),

This time we send in values computed from the keys of the % | avor s hash, which isitself passed in by
reference using the backslash operator. Notice how the - VALUES parameter is still wrapped in square
brackets? Passing in the result of keys asalist wouldn't work because the calling convention for the
scrolling_Iist() functionrequiresan array reference there, which the brackets happily provide.
Think of the brackets as a convenient way to treat multiple values as a single value.

Previous: 18.3 Simplest CGI Learning Perl on Win32 Next: 18.5 Creating a
Program Systems Guestbook Program

18.3 Simplest CGI Program Book 18.5 Creating a Guestbook

Index Program

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

J»Leaming Perl on Win32 Systems

Previous: 18.4 Passing Chapter 18 _ Next: 18.6 Troubleshooting
Parameters via CGI CGI Programming CGI Programs

18.5 Creating a Guestbook Program

If you have followed the examples above, you can now get some simple CGI programs going. But what
about harder ones? A common request isto create a CGI program to manage a guestbook, so that visitors
to your web site can record their own messages.[9]

[9] Aswe will note later on, this application might also be called a webchat program.

Actually, the form for thiskind of thing is quite easy - easier in fact than some of our ice cream forms.
Other matters get trickier. But don't worry, we'll explain everything as we go.

Y ou probably want guestbook messages to survive auser's visit to your site, so you need afileto store
them in. The CGI program (probably) runs under a different user, not as you; therefore, it won't normally
have permission to update afile of yours. S0, first, create afile (make sure it has read-write permissions
for whatever user your program runs as). Y ou can either use atext editor to create an empty file, or do
something like:

> echo. > c:\tenp\chatfile

Okay, but how will you accommodate several folks using the guestbook program simultaneously? The
operating system doesn't block simultaneous accessto files, so if you're not careful, you could get a
jumbled file as everyone writes to it at the sametime. To avoid this, we'll use Perl'sf | ock function to
request exclusive access to the file we're going to update. It will look something like this:

Perl 5.004
use Fcntl gw(:flock); # inports LOCK EX, LOCK SH, LOCK NB

f1 ock(CHANDLE, LOCK EX) || bail ("cannot flock SCHATNAVE: $!"):

ActiveState distribution
$LOCK EX = 2; # hard coded val ue of standard LOCK EX

f1 ock(CHANDLE, $LOCK EX) || bail ("cannot flock SCHATNAME: $!"):

The LOCK_EX argument to f | ock iswhat buys us exclusive file access.[10] bail is a subroutine that
prints an error message back to the browser and then calls die.

[10] With Perl versions prior to the 5.004 release, you must comment out theuse Fcnt |
and just use 2 as the argument to flock.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

f I ock presents asimple but uniform locking mechanism even though its underlying implementation
varies wildly between systems. It reliably blocks, not returning until it gets the lock. Note that file locks
are purely advisory; they only work when all processes accessing afile honor the locks in the same way.
If three processes honor them, but another doesn't, all bets are off.

18.5.1 Object-Oriented Programming in Perl

Finally, and most importantly, you must learn how to use objects and classes. Although building your
own object module is beyond the scope of this book, you don't have to know about that in order to use
existing, object-oriented library modules. For in-depth information about using and creating object
modules, see Chapter 5 of Programming Perl and the perltoot documentation (Perl 5.004 distribution and

beyond).

We won't go into the theory behind objects here, but you can just treat them as packages (which they are!)
of wonderful and marvelous things that you invoke indirectly. Objects provide subroutines that do
anything you need to do with the object.

For instance, suppose the CGI.pm module returns an object called $quer y that represents the user's
input. If you want to get a parameter from the query, invoke the par an() subroutine like this:

$quer y->paran("answer");

This says, "Run the par am() subroutine on the $quer y object, with answer asan argument.” It'sjust
like invoking any other subroutine, except that you employ the name of the object followed by the - >
syntax. Subroutines associated with objects, by the way, are called methods.

If you want to retrieve the return value of the par an() subroutine, just use the usual assignment
statement and store the value in aregular old variable named $he_sai d:

$he _said = $query->paran("answer");

Objectslook like scalars; you store them in scalar variables (like $quer y in our example), and you can
make arrays or hashes of objects. But you don't treat them as you would strings or numbers. They're
actually aparticular kind of reference,[11] but you don't even treat them as you would ordinary

references. Instead, you treat them like a special, user-defined type of data.
[11] A blessed reference, to be precise.

The type of aparticular object is known asits class. The class nameis normally just the module name -
without the .pm suffix - and often the words class and module are used interchangeably. So we can speak
of the CGI module and also the CGlI class. Objects of a particular class are created and managed by the
module implementing that class.

Y ou access classes by loading in amodule, which looks just like any other module except that
object-oriented ones don't usually export anything. Y ou can think of the class as a factory that cranks out
brand-new objects. To get the class to produce one of these new objects, you invoke special methods
called constructors. Here's an example:

$query = CA->new(); # call nethod new() in class "C3"

What you have there is the invocation of a class method. A class method looks just like an obj ect

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

nmet hod (which iswhat we were talking about a moment ago), except that instead of using an object to
call the method, you use the name of the class as though it were itself an object. An object method is
saying "call the function by this name that is related to this object”; a class method is saying "call the
function by this name that is related to this class.”

Sometimes you'll see that same thing written this way:
$query = new CE; # sane thing

The second form isidentical in behavior to the first. It's got less punctuation, so is sometimes preferred.
But it's less convenient to use as part of alarger expression, so we'll use the first form exclusively in this
book.

From the standpoint of the designer of object modules, an object is areference to a user-defined data
structure, often an anonymous hash. Inside this structure is stored al manner of interesting information.
But the well-behaved user of an object is expected to get at this information (to inspect or change it), not
by treating the object as areference and going straight for the data it pointsto, but by employing only the
available object and class methods. Changing the object's data by other means amounts to hanky-panky
that is bound to get you talked about. To learn what those methods are and how they work, just read the
object modul€e's documentation, usually included as embedded pods.

18.5.2 Objects in CGl.pm

The CGI moduleisunusual in that it can be treated either as a traditional module with exported functions
or as an object module. Some kinds of programs are more easily written using the object interface to
CGl.pm rather than the procedura one. A guestbook program is one of these. We access the input that the
user supplied to the form viaa CGI object, and we can, if we want, use this same object to generate new
HTML code for sending back to the user.

First, however, we need to create the object explicitly. For CGI.pm, asfor so many other classes, the
method that generates objects is the class method named new() .[12]

[12] Unlike C++, Perl doesn't consider new a keyword; you're perfectly free to have
constructor methods called gi nme_anot her () orfred() . But most classes end up
naming their constructors new() anyway.

This method constructs and returns a new CGI object corresponding to afilled-out form. The object
contains all the user's form input. Without arguments, new() builds the object by reading the data passed
by the remote browser. With a filehandle as an argument, it reads the handle instead, expecting to find
form input saved from previous communication with a browser.

WEe'll show you the program and explain its details in a moment. Let's assume that the program is named
guestbook.plx and isin the cgi-bin directory. While this program does not |ook like one of the two-part
scripts shown earlier (where one part outputs an HTML form, and the other part reads and responds to
form input from a user), you will see that it nevertheless does handle both functions. So you do not need a
separate HTML document containing a guestbook form. The user might first trigger our program simply
by clicking on alink like this:

Pl ease sign our
guest book</ A>.

http://www.SOMEWHERE.com/cgi-bin/guestbook.plx">guestbook.

The program then downloads an HTML form to the browser, and for good measure also downloads any
previous guest messages (up to a stated limit) for the user to review. The user then fills out the form,
submitsit, and the program reads what is submitted. Thisinformation is added to the list of previous
messages (saved in afile), which is then output to the browser again, along with afresh form. The user
can continue reading the current set of messages and submitting new messages via the supplied forms as
long as he wishes.

Here's the program. Y ou might want to scan it quickly before we step you through it.

use strict; # enforce declarations and quoting
use CA gw :standard); # inport shortcuts

sub bail { # function to handle errors gracefully

my $error = "@";
print hl("Unexpected Error"), p($error), end htm;

die $error;
}
my (
$CHATNANME, # name of guestbook file
SMAXSAVE, # how many to keep
$TI TLE, # page title and header
$cur, # new entry in the guestbook
@ntries, # all cur entries
$entry, # one particular entry
$LOCK _EX, # hardcoded val ue for flock
);

$LOCK _EX = 2; # hardcoded val ue for flock

$TITLE = "Si npl e Guest book";
$CHATNAME = "c:/tenp/chatfile"; # wherever nmakes sense on your system
SMAXSAVE = 10;
print header, start_htm ($TI TLE), h1($TI TLE);
$cur = CA->new); # current request
i f ($cur->paran("nmessage")) { # good, we got a nessage
$cur - >paranm("date", scalar localtine); # current tine
@ntries = ($cur); # save nessage to array

}

open the file for read-wite (preserving old contents)
open(CHANDLE, "+< $CHATNAME") ||
bai | ("cannot open $CHATNAME: $!");
get exclusive | ock on the guestbook
($LOCK _EX == excl usive | ock)
fl ock(CHANDLE, $LOCK EX) || bail ("cannot flock $CHATNAME: $!'");

grab up to $MAXSAVE ol d entries, newest first
whil e (!eof (CHANDLE) && @ntries < $MAXSAVE) ({

pass the filehandl e by reference

$entry = CA ->new(\ * CHANDLE) ;

push @ntries, $entry;
}
seek(CHANDLE, 0, 0) || bail("cannot rewi nd $CHATNAME: $!");
foreach $entry (@ntries) {

$entry->save(\ *CHANDLE) ; # pass the filehandl e by reference
}

truncat e(CHANDLE, tell (CHANDLE)) ||
bai | ("cannot truncate $CHATNAME: $!");
cl ose(CHANDLE) || bail ("cannot cl ose $CHATNAME: $!");

print hr, start _form # hr() emts html horizontal rule: <HR>
print p("Nanme:", $cur->textfiel d(
- NAME => "nane"));
print p("Message:", $cur->textfiel d(
- NAME => "nessage",
-OVERRIDE => 1, # clears previous nessage
-SI ZE => 50));
print p(submt("send"), reset("clear"));
print end form hr;
print h2("Prior Messages");
foreach $entry (@ntries) {
printf("% [%]: %",
$entry->paran("date"),
$ent ry- >par an(" nane"),
$entry->par an(" nessage")) ;
print br();

}
print end_htnmn;

Figure 18.5 shows a sample screen dump after running the program a few times.

Figure 18.5: Sample screen dump

] =10] x|

fle Edt View Go Favoske: Help

A e Sl o - = o\ B -

e © [m @ & & A & &

Back 51 | Fefiesh Home Seaich Fanmntes Frint Fiont i al Edit
"LII‘I'I‘.'\.'\.llIII.-.-.'-l'-\.'-l...- cnplsSguesibooes. px j Links

Simple Guestbook

Narme: |Erl« ko

Message: |

e EL-L || |

Prior Messages

Mon Jun 16 01:11:06 1997 [Enk Olson]: Hello agamn
Mon Jun 16 01:09:43 1997 [Homer Sumpson|: Where's the candy machme
Mon Jun 16 01:09:20 1997 |Enk Olson|: CGLpm 15 cool

- B
5 _\.-l.l

Because every execution of the program results in the return of an HTML form to the particular browser
that sought us out, the program begins by getting a start on the HTML code:

print header, start_htm ($TI TLE), h1($TI TLE);

The program then creates a new CGI object:

$cur = CA->new); # current request

i f ($cur->paran("nmessage")) { # good, we got a nessage
set to the current tine
$cur - >paran("date", scalar localtine);
@ntries = ($cur); # save nessage to array

}

If we are being called via submission of aform, then the $cur object now contains information about the
input text given to the form. The form we supply (as shown later) has two input fields: a name field for
the name of the user, and a message field for the message. |n addition, the code shown above puts a date
stamp on the form data after it is received. Feeding the par am() method two argumentsis away to set
the parameter named in the first argument to the value given in the second argument.

If we are not being called via submission of aform, but rather because the user has clicked on "Please

sign our guestbook," then the query object we create here will be empty. Thei f test will yield afalse
value, and no entry will be added to the @nt ri es array.

In either case, we proceed to check for any entries previously saved in our savefile. We will read those
into the @nt ri es array. (Recall that we have just now made the current form input, if any, the first
member of thisarray.) But, first, we have to open the savefile:

open(CHANDLE, "+< $CHATNAME') || bail ("cannot open $CHATNAME: $!");

This opens the file in nondestructive read-write mode. Alternatively, we could have used
sysopen() .[13] Thisway asingle call opens an old file (if it exists) without clobbering it, or else
creates a new one (note the use of the permission bits again):

[13] For you C programmers, sysopen() isimplemented intermsof open() rather than
f open().
need to inport tw "constants" from Fcntl nodule for sysopen
use Fcntl gw(O RDWR O CREAT);
sysopen(CHANDLE, $CHATNAME, O RDWR| O CREAT, 0666)
|| bail "can't open $CHATNAME: $!";

Then we lock the file, as described earlier, and proceed to read up to atotal of $MAXSAVE entries into
@ntries:

fl ock(CHANDLE, $LOCK EX) || bail ("cannot flock $CHATNAMVE: $!'");
while (!eof (CHANDLE) && @ntries < $MAXSAVE) {

pass the filehandl e by reference

$entry = CA ->new(\ * CHANDLE) ;

push @ntries, $entry;
}

eof isaPerl built-in function that tells whether we have hit the end-of-file. By repeatedly passing the
new() method areference to the savefile's filehandle,[14] we retrieve the old entries - one entry per call.

Then, we update the file so that it now includes the new entry we (may) have just received:

[14] Actually, thisreference is a glob reference, not afilehandle reference, but it's close
enough.

seek(CHANDLE, 0, 0) || bail("cannot rew nd $CHATNAME: $!'");
foreach $entry (@ntries) {

$entry->save(\ *CHANDLE); # pass the filehandl e by reference
}

truncat e(CHANDLE, tell (CHANDLE)) ||
bai | ("cannot truncate $CHATNAME: $!");
cl ose(CHANDLE) || bail ("cannot cl ose $CHATNAME: $!");

seek,truncat e,andt el | areadl built-in Perl functions whose descriptions you will find in any Perl
reference work. Here seek repositions the file pointer to the beginning of thefile, t r uncat e truncates
the indicated file to the specified length, and t el | returnsthe current offset of the file pointer from the
beginning of the file. The effect of these linesis to save only the most recent $MAXSAVE entries,
beginning with the one just now received, in the savefile.

Thesave() method handles the actual writing of the entries. The method can be invoked here as
$ent ry- >save because $ent ry isa CGI object, created with C3 - >new() as discussed above.

The format of a savefile entry looks like this, where the entry is terminated by = standing alone on aline:

NAME1=VALUE1
NAME2=VAL UE2
NAME3=VALUE3

Now it's time to return a fresh form to the browser and its user. (This form will be, of course, the first
form heisseeing if he has just clicked on "Please sign our guestbook.") First, consider some
preliminaries:

print hr, start _form # hr() emts html horizontal rule: <HR>

As aready mentioned, CGIl.pm alows usto use either straight function calls or method calls viaa CGl
object. Here, for basic HTML code, we've reverted to the simple function calls. But for generation of form
input fields, we continue to employ object methods:

print p("Nanme:", $cur->textfield(
- NAME => "nane"));
print p("Message:", $cur->textfiel d(
- NAME => "nessage",
-OVERRIDE => 1, # clears previous nessage
-SI ZE => 50));
print p(submt("send"), reset("clear"));
print end form hr;

Thet extfi el d() method returns atext input field for aform. The first of the two invocations here
generates HTML code for atext input field with the HTML attribute NAME=" nane" , while the second
one creates afield with the attribute NAME=" nessage" .

Widgets created by CGl.pm are by default sticky - they retain their values between calls. (This statement
Istrue only during a single session with aform, beginning when the user clicks on "Please sign our
guestbook.") Consequently, the NAME=" nane" field generated by thefirstt ext fi el d() above will
have the value of the user's name if he already filled out and submitted the form at least once during this
session. So the input field we are now creating will actually have these HTML attributes:

NAMVE="nanme" VALUE="Sam Sm t h"

The second invocation of t ext fi el d() isadifferent matter. We don't want the message field to
contain the value of the old message. So the - OVERRI DE => 1 argument pair says, in effect, "throw
out the previous value of thistext field and restore the default value." The - SI ZE => 50 argument pair
of textfiel d() givesthesizeof the displayed input field in characters. Other optional argument pairs
besides those shown include: - DEFAULT =>"ini ti al val ue' and- MAXLENGTH => n, wheren is
the maximum number of input characters the field will accept.

Finally, we output for the user's del ectation the current set of saved messages, including, of course, any he
has just submitted:

print h2("Prior Messages");

foreach $entry (@ntries) {
printf("% [%]: %",
$entry->paran("date"),
$ent ry->par an(" nane"),
$entry- >par an(" nessage")) ;
print br();

}
print end_htm;

Asyou will doubtless realize, the h2 function outputs a second-level HTML heading. For the rest, we
simply iterate through the current list of saved entries (the same list we earlier wrote to the savefile),
printing out date, name, and message from each one.

Users can sit with the guestbook form, continually typing messages and pressing the submit button. This
method simul ates an electronic bulletin-board system, letting users see each other's new messages each
time they send off their own. When they do this, they call the same CGI program repeatedly, which means
that the previous widget values are automatically retained between invocations. This result is particularly
convenient when creating multistage forms, such as those used in so-called "shopping cart" applications.

Previous: 18.4 Passing Learning Perl on Win32 Next: 18.6 Troubleshooting
Parameters via CGI Systems CGI Programs
18.4 Passing Parametersvia Book 18.6 Troubleshooting CGI
Cal Index Programs

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 18.5 Creating a Chapter 18 Next: 18.7 Perl and the Web:
Guestbook Program CGlI Programming Beyond CGI Programming

18.6 Troubleshooting CGI Programs

CGlI programs launched from aweb server run under a fundamentally different environment than they do
when invoked from the command line. While you should always verify that your CGI program runs
properly from the command line,[15] thisisn't enough to guarantee that your program will work when

called from the web server.
[15] See the CGI.pm documentation for tips on command-line debugging.

Y ou should get the CGI programming FAQ and a good book on CGI programming to help you in this.
Some of these references are listed at the end of this chapter. Here's a brief list of the frequent problems
that arise in CGI programming. Almost all of them trigger those annoyingly unhelpful 500 Ser ver
Er r or messages that you will soon come to know and hate.

« If, when sending HTML to a browser, you forget the blank line between the HTTP header (that is,
the Content-Type line) and the body, your program won't work. Remember to output a proper
Content-Type line (and possibly other HTTP headers) plus atotally blank line before you do
anything else.

« The server needsto be able to read and execute the script, so you need to make sure that whatever
user your script runsas (e.g., IUSR_MY SERVER under 11S) has read and execute rights to the
script.

« Thedirectory where the script resides must have read and execute rights for the script user.

« The script must be installed in the proper directory for your server configuration. For example, on
some systems, the directory may be c:\inetpub\scripts.[16]

[16] Thisdirectory isthe default for 11S, Microsoft's Internet Information Server.

« You need to have your script's filename end in a particular suffix, like .cgi or .plx, so that your web
server knows that it needs to invoke the Perl interpreter on your script. Make sure that your script
directory isnot writable by FTP clients. We suggest using a suffix of .plx, and associating .plx with
your Perl interpreter.

« Your server configuration requires CGI execution specially enabled for the directory you put your
CGil script in. Make sure both GET and POST are allowed.

« Normally, the web server doesn't execute your script using your account. Make sure the files and

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

directories accessed by the script are open to whatever user the script will run as; this might be the
IUSR_INTERNET or anoynnous account, or whatever account you use on your system. Y ou
may need to pre-create such files and directories and give them appropriate permissions. Always
be alert to the risks when you grant such accessto files.

« Alwaysrun your script under Perl's - wflag to get warnings. These warnings go to the web server
error log, which contains any errors and warnings generated by your script. Learn the path to that
logfile from your webmaster and check it for problems. See also the standard C3 : : Car p
module for how to handle errors better.

« Make sure that the versions and paths to Perl and any libraries you use (like CGI.pm) are what
you're expecting them to be over on the machine the web server is running on.

« Enableaut of | ush onthe STDOUT filehandle at the top of your script by setting the $|
variableto atrue value, like one. If you've used the Fi | eHandl e module or any of the |O
modules (likel O : Fil e, 1 O : Socket , and so on), then you can use the more mnemonically
named aut of | ush() method on the filehandle instead:

use Fil eHandl e;
STDOUT- >aut of | ush(1);

« Check the return value of every system call your program makes, and take appropriate action if the

call fails.
Previous: 18.5 Creating a Learning Perl on Win32 Next: 18.7 Perl and the Web:
Guestbook Program Systems Beyond CGI Programming
18.5 Creating a Guestbook Book 18.7 Perl and the Web:
Program Index Beyond CGI Programming

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 18.6 Chapter 18 | Next: 18.8 Further Reading|
Troubleshooting CGI CGlI Programming
Programs

18.7 Perl and the Web: Beyond CGI Programming

Perl is used for much more than CGI programming. Other uses include logfile analysis, cookie and
password management, clickable images, and image manipulation. And thislist is still just the tip of the
iceberg.

18.7.1 Custom Publishing Systems

Commercia web publishing systems may make things easy, especially for nonprogrammers, but they
just aren't infinitely flexible the way area programming language is. Without source code, you're locked
into someone else's design decisions: if something doesn't work quite the way you want it to, you can't
fix it. No matter how many whiz-bang programs become available for the consumer to purchase, a
programmer will always be needed for those specia jobs that don't quite fit the mold. And, of course,
someone has to write the publishing software in the first place.

Perl is great for creating custom publishing systems tailored to your unique needs. Y ou can easily
convert raw datainto zillions of HTML pages en masse. Sites al over the web use Perl to generate and
maintain their entire web site. The Perl Journal (www.tpj.com) uses Perl to generate its pages. The Perl

L anguage Home Page (www.perl.com) has nearly ten thousand web pages automatically maintained and
updated by various Perl programs.

18.7.2 PerllS and PerlScript

Each time a user invokes a CGI program or script, the web server needs to create a new instance of that
program. While thisis areliable, proven way of doing things, there are more efficient ways to generate
dynamic content. ActiveState provides for their distribution of Perl for Win32 two excellent aternatives.
Oneis PerllS, which enables Perl to be run as an ISAPI extension under an ISAPI compliant webserver
(more on this shortly). Another is PerlScript, which is an ActiveX scripting version of Perl that can be
used to generate Active Server Pages with a compatible web server (such as Microsoft's11Sor O'Reilly's
Website Professional 2.0).

We said that PerllS runs as an ISAPI extension. Accordingly, the web server loads Perl as part of its
process when the web server starts. Each CGI request destined for the Perl interpreter is then run
In-process with the web server as a separate thread. Consequently, the web server doesn't need to start a
new instance of the Perl interpreter for each request; it merely creates a new thread and tells its copy of

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
http://www.tpj.com/
http://www.perl.com/

the Perl interpreter to handle the request from the new thread. This can provide significant performance
benefits in situations where the server receives a high number of hits.

The current version of PerllS (Build 306) has some instability when launching external processes and
when creating socket connections. If you can't get something to work that you need, we suggest running
your script as a CGI program using the standalone interpreter. Look for improved stability in future
releases of PerllS.

Perl Script can not only be used to generate Active Server Pages, but also as a client-side scripting
language in the same manner as VB Script or JavaScript. For more information on PerlScript, see
www.activestate.com. For more information on Active Server Pages, see the Microsoft ASP roadmap at

www.microsoft.com/iis/usingiis/resources/ A SPdocs/roadmap.asp, which provides a detailed overview of
Active Server Pages and the automation objects that a server provides to Perl Script.

Previous: 18.6 Learning Perl on Win32 | Next: 18.8 Further Reading|
Troubleshooting CGI Systems
Programs
18.6 Troubleshooting CGI Book 18.8 Further Reading
Programs Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

http://www.activestate.com/
http://www.microsoft.com/iis/usingiis/resources/ASPdocs/roadmap.asp
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 18.7 Perl and the Chapter 18 . Next: 18.9
Web: Beyond CGI CGI Programming Exercises
Programming

18

.8 Further Reading

There's quite a bit more to modules, references, objects, and web programming than we can possibly
hope to cover in this one small chapter. A whole book could be written on CGI programming. In fact,
dozens have been. For your continued research into these matters, check out the following reference list:

CGl.pm documentation

The LWP library from CPAN (runs under Windows NT with afew modifications - see the
documentation for more information)

CGlI Programming on the World Wide Web (Shishir Gundavaram, O'Reilly & Associates, 1996)
Web Client Programming with Perl (Clinton Wong, O'Rellly & Associates, 1997)

HTML.: The Definitive Guide, Second Edition (Chuck Musciano & Bill Kennedy, O'Reilly &
Associates, 1997)

How to Set Up and Maintain a Web Ste, Second Edition (Lincoln D. Stein, Addison-Wesley,
1996)

Nick Kew's CGI FAQ

Perl documentation: perltoot, perlref, perlmod, perlobj

Previous: 18.7 Perl and the Learning Perl on Win32 Next: 18.9
Web: Beyond CGI Systems Exercises
Programming
18.7 Perl and the Web: Book 18.9 Exercises
Beyond CGI Programming Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 18.8 Further Chapter 18 . Next: 19. OLE
Reading CGI Programming Automation

18.9 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aform that provides two input fields that are added together when the user submitsiit.

2. Write a CGlI script that detects the browser type making the request, and then prints something
appropriate (hint: look at the HTTP_USER_AGENT environment variable).

Previous: 18.8 Further Learning Perl on Win32 Next: 19. OLE
Reading Systems Automation
18.8 Further Reading Book 19. OLE Automation
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 18.9 Chapter 19 Next: 19.2 Creating
Exercises Automation Objects

19. OLE Automation

Contents:
Introduction to OLE Automation

Creating Automation Objects
Using Automation Objects
Variants

Tips and Techniques
Exercises

19.1 Introduction to OLE Automation

OLE Automation is amethod for a client program to control an OLE server. Microsoft designed
automation to be a solution for the problem of cross-application macro programming. Because there
seemed to be little chance of convincing usersto use a single language, the best solution was to make a
way for any language to access the capabilities that an application chose to offer.

Automation objects provide two types of interactivity: properties and methods. Properties are values that
you can get and set.[1] Methods are functions that can be called with (optional) parameters and

(optionally) provide areturn value, possibly even another automation object. PerlScript also provides
support for OLE events, which are atype of handler that get invoked when certain things happen, such as
when the user clicks on a button in abrowser. However, we will limit our discussion to automation and
to properties and methods.

[1] Although, it is possible to have read only properties.

Perl implements support for automation objects in the same way as for any other Perl object. Object
methods can be called using the pointer arrow:

$obj - >sone_func(); # call sone_func() method of $obj

Properties are stored in a hash, and can also be accessed through the pointer arrow:

$obj ->{foo} = "Sone String"; # set foo to Sone String
$val = $obj ->{foo}; # get the value of foo

Notice that we normally don't need to enclose the property name in quotes. If you're getting a property

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

value, you can also use a short form:

$val = $obj - >f 00; # get the value of foo
$obj - >f oo = $val; # WRONG, set requires {foo}

Now, we know that we can control our favorite automation servers from Perl. But how do we know what
methods, properties, and objects a server exposes? The answer, unfortunately, it that these things are
completely server dependent. No standards for object names, methods, or properties exist. The best
solution isto turn to your server's documentation for answers. If the server doesn't provide
documentation, your situation is still not completely hopeless. If the automation server provides typelib
information (an OL E mechanism to describe the interfaces that an OLE server provides), you can use an
OLE object viewer (such as Microsoft's OLE2VW32.EXE) that can read OLE typelib information and try
to figure out what methods and properties the object exposes on your own.

Automation servers come in a couple of different flavors. There are local serversthat livein an
application (.exefile) and run as their own processes. There are in-proc serversthat livein DLLs
(dynamic-link libraries) and run in the process of the automation controller. There are a'so remote servers
that may run on a different machine using Distributed COM (DCOM).

Perl for Win32 cannot currently use OCX controls, which require additional OL E support.

Previous: 18.9 Learning Perl on Win32 Next: 19.2 Creating

Exercises Systems Automation Objects
18.9 Exercises Book 19.2 Creating Automation
Index Objects

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 19.1 Introduction to Chapter 19. Next: 19.3 Using Automation
OLE Automation OLE Automation Objects

19.2 Creating Automation Objects

Unfortunately, automation is one of the areas in which the ActiveState distribution differs slightly from
the libwin32 OLE module for use with the standard Perl distribution. Both distributions use the

Cr eat eObj ect function to create an automation object, but the syntax (and module name) is dlightly
different:

ActiveState distribution

use CLE;

$obj = CreateObject OLE "Excel . Application" ||
die "Create(hject: $!'";

|ibwin32 Wn32:: OLE

use Wn32:: CLE;

W n32:: OLE: : Creat eObj ect ("Excel . Application", $obj) ||
die "Createhject: $!'";

The ActiveState CreateObject takes two arguments: a class type (currently, always OLE), and a ProglD
(program ID) string of the object to create. When an automation server is registered on the system, it
storesa CLSID (class D), which is atoken that uniquely identifies an OLE object, and a ProgID that
provides a human readable way to access the CLSID. Perl does the conversion internally, so you just
need to provide the ProglD. A server generally has two types of ProglDs: one is a version-independent
ProglD that typically identifies the most current version of the server, the other is a version-specific
ProgID that denotes a specific application version.

Here are some examples of ProglDs that you might use:

Excel . Application (Mcrosoft Excel Application Qbject)
Excel . Wor kSheet (M crosoft Excel Wrksheet bject)
Wor d. Docunent . 8 (Mcrosoft Word Docunent Cbj ect, Ver 8)
Wor d. Basi c. 8 (Mcrosoft WrdBasic Cbject, Ver 8)

Y ou'll need to check the documentation for the automation server that you want to use in order to
discover what its ProgID is.

CreateObject returns a reference to the automation object if it succeeds, and undef if it fails.

The libwin32 version of Cr eat e(Obj ect usesW n32: : OLE as the module name (this was done for
conformity with the other Win32 extensions). Cr eat eQbj ect takesthe same ProgID, and a scalar that

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

will contain the automation object if the function returns successfully.

Throughout this chapter, we'll be using the ActiveState syntax for our automation examples.

Previous: 19.1 Introduction to Learning Perl on Win32 Next: 19.3 Using Automation
OLE Automation Systems Objects
19.1 Introduction to OLE Book 19.3 Using Automation
Automation Index Objects

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

J»Leaming Perl on Win32 Systems

Previous: 19.2 Creating Chapter 19_ Next: 19.4
Automation Objects OLE Automation Variants

19.3 Using Automation Objects

In this section, we're going to explore automation objects by building a simple progam that sends a
message using Microsoft's Active Messaging Library. If you don't have Active Messaging (if you have
MAPI, you probably haveit) on your system, you can still follow the concepts, which are generally
applicable to using automation. Remember, though, that the specific methods, properties, and objects that
aserver exposes are specific to that server. To learn more about Active Messaging, try the Microsoft
MSDN[2] web site at www.microsoft.com/msdn/sdk/ and look for the for Active Messaging Library

documentation. The Active Message Library isacomplex API that provides complete services for
messaging, message stores, providers, transports, and more; but we're just going to touch on the basics of
sending a message here.

[2] Microsort Developer Network - you might also have it on CD, if you're aWin32
programmer and subscribe to MSDN.

Thefirst thing we need to do isto create a Active Messaging session. This happens to be the top-level
automation object for our purposes, so we'll start here with Cr eat eQbj ect :

use OLE;
$Act i veSessi on = CreateCbject OLE "MAPI. Sessi on" ||
die "CreateChject: $!";

The ProglD for the Active Messaging Session object is MAPI.Session, so that's the argument that we give
to Cr eat e(bj ect . After we have an Active Messaging session, we need to logon. Active Messaging
provides a couple of options for doing this. If you don't supply avalid username/password combination,
you'll get alogon dialog that lets you supply a user and password:
$LogonNarme = "Eri k O son";
$LogonPasswd = undef; # use stored one, or pronpt
die "Logon: $!" if $ActiveSessi on->Logon($LogonNane,

$LogonPasswd); # Logon returns 0 on success

Here, we're calling the Logon method of the Active Messaging Session object. Because Logon returns O
on success, we are only dying if we get areturn value (indicating an error code). If we successfully logon
to the Active Messsaging session, we're ready to create a Message object. A message object is another
automation object that (appropriately enough) encapsulates a message. For example:

$Message = $Acti veSessi on- >Qut box- >Messages- >Add() ;
Now, things are starting to get interesting. We're using the $ActiveSession object to call a method named

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
http://www.microsoft.com/msdn/sdk/

Qut box that returns an automation object (the Outbox object). We're then calling a method of the
Outbox object called Messages that returns another automation object (the M essage object). We're then
calling amethod of the Message object named Add that returns yet another automation object, which
we're assiging to our $Message variable. Perl lets you merrily create as many nested automation objects
as you need.

Now that we have a M essage object, we can start doing things with the message. First, we need to add a
recipient. Thisinvolves another nested automation-object call:

$Reci pi ent = $Message- >Reci pi ent s- >Add() ;

Here we're calling the Recipients method of the message object that returns a recipients object. We then
call the Add method of the recipients object to get a Recipient object that we can use. Let's set some
properties of the recipient object:

$Reci pi ent - >{ Nane} "Erik O son"; # to address
$Reci pi ent - >{ Type} 1; # ugly constant, neans this is a To address

We've set the Nane property of the Recipient object by setting the property using the object's hash. Asfor
that assignment to the Ty pe property, we've set it to 1, which isthe Active Messaging value for aTO
recipient (as opposed to a CC or BCC recipient). Table 19.1 displays the values for the recipient types.

Table 19.1: Recipient Type Values
Recipient Type Value

MAPI _ ORI G(recipient is message originator) |0

MAPI _TO(recipient isaprimary recipient)

1
MAPI _ CC (recipient is a copy recipient) 2
3

MAPI _BCC (recipient is ablind copy recipient)

After setting the recipient information, we need to resolve it to a name in the Active Messaging address
book. We do this by calling the Resolve member of the Recipient object:

$Reci pi ent - >Resol ve() ;

Now that we know where our message is going, let's add some datato it. We need at least a subject and a
body, both of which are properties of the Message object.

$Message->{ Subject} = "A Message From Perl|";
$Message->{text} = "Perl does automation!";

All that remains is to save the message, send it, and terminate our session:
$Message- >Updat e() ;

$Message- >Send(1, 0, 0);

$Message- >Logof f () ;

We call the Updat e method of the message object to save it, then the Send method to actually send the
message. The parametersto Send are shown in Table 19.2.

Table 19.2: Send Parameters

Parameter M eaning

saveCopy Save a copy of the message in the Sent-Items folder (one or zero)

showDi al og Display a send-message dialog where the user can change the message contents or
recipients (1 or 0)

par ent W ndow | Parent-window handle for the dialog, if showDi al og istrue; in Perl, you'll
normally be passing thisas 0

Let's put everything together:

use OLE;
$LogonNarme = "Eri k O son"; # send nessage to ne
$LogonPasswd = undef; # use stored passwd
$Act i veSessi on = CreateCbj ect OLE "MAPI. Session" ||
die "CreateCbject: $!'"; # create session
die "Logon: $!" if $ActiveSessi on->Logon($LogonNane,
$LogonPasswd) ; # logon (returns O on success)

$Message = $Acti veSessi on- >CQut box- >Messages- >Add() ;
$Reci pi ent = $Message- >Reci pi ent s- >Add() ;
$Reci pient->{Nane} = "Erik O son"; # to address
ugly constant, neans this is a To address
$Reci pi ent - >{Type} = 1;

$Reci pi ent - >Resol ve(); # resolve nane - hope it's there
$Message- >{ Subj ect} = "A Message From Perl";

$Message->{text} = "Perl does automation!";

$Message- >Updat e() ; # save it

$Message- >Send(1, 0, 0); # send it - don't show Ul

$Act i veSessi on- >Logof f () ; # end session

19.3.1 Data-Access Objects

If you are a Perl programmer looking for a database solution, you owe it to yourself to check out
Microsoft's ActiveX Data Objects (ADO), which provide an automation interface to database access.
ADO isapowerful data-access layer that you can use from Perl, PerllS, or PerlScript. Thislayer is
particularly interesting in conjunction with Active Server pages and PerlScript. See
www.microsoft.com/ADO/ for more information on ADO. The ActiveState site (www.activestate.com)

has several samples using Perl Script and ADO for database access.

Just to tempt you, here's a quick example that uses the sampl e database shipped with the OLEDB SDK
(OLE Database Software Development Kit), with which ADO isincluded. For more information on the
OLEDB SDK, see www.microsoft.com/oledb. The sample database contains a table called Employees,

which includes the fields LastName, FirstName, and Employeel D. The following program just opens the
data source (you have to have an ODBC driver installed for Microsoft Access database files) and lists all

http://www.microsoft.com/ADO/
http://www.activestate.com/
http://www.microsoft.com/oledb

the rows in the Employees table. Regardless of which data source you choose to use ADO with, you'll find
the procedure to be similiar.

use OLE;
$conn = Createlbject OLE "ADODB. Connection" ||
die "CreateCbject: $!'"; # create ADO auto object

$conn->Cpen(' OLE_ DB NW nd_Jet'); # connect to data source
$sql = "SELECT * FROM Enpl oyees ORDER BY Last Nane, FirstNanme";
$rs = $conn->Execut e($sql); # grab all records in table
whil e(!$rs->EOF()) {

$l ast nane = $rs->Fi el ds(' Last Nane') - >Val ue;

$firstname = $rs->Fi el ds(' First Nane') - >Val ue;

$enpid = $rs->Fi el ds(' Enpl oyeel d') - >Val ue;

wite; # print them out

$r s- >MoveNext () ;

}
$rs->C ose() ; # shut down the recordset
$conn->Cl ose(); # cl ose the data source

sonme formats for a quick printout
format STDOUT =
@<<<< @:<<<<<<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<<<<<

$enpi d, $firstnane, $l ast nane

format STDOUT TOP =

Our first task isto create the automation object using the now familiar Cr eat eObj ect function. We
then use the ADO Connection object to execute a SQL statement. The Execute function returns a
Recordset object, which we then use to iterate through all the rows, printing out the data.

Here's another quick program that inserts an employee into the Employees table:

use OLE;
$firstnane = "Honer"; # hardcode sone values to insert
$l ast nane = " Si npson”;

$empid = "3001";
$conn = CreateCbj ect OLE "ADODB. Connection" ||
die "CreateCbject: $!'"; # create the ADO object
$conn->Cpen(' OLE DB N\Wnd_Jet'); # connect to the data source
build a sinple SQ | NSERT
$sql = "INSERT into Enpl oyees (LastNane, FirstNanme, EnployeelD)";
$sql .= "VALUES (' $l astnane', 'S$firstnane’, 'S$enpid)";
$conn- >Execut e($sql) ; # run it

$conn->d ose();

Previous: 19.2 Creating Learning Perl on Win32 Next: 19.4
Automation Objects Systems Variants
19.2 Creating Automation Book 19.4 Variants

Objects Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 19.3 Using Chapter 19. Next: 19.5 Tips and
Automation Objects OLE Automation Techniques

19.4 Variants

In order for automation controllers and servers to cooperate, they have to have some way to agree on the
type of datathat they're passing. Automation accomplishes this through a data type called a VARI ANT.
The VARI ANT datatypeis built on a C-language union. It contains atype field that identifies that type of
datain the union (things such as strings, numbers, automation objects, etc.) and afield that contains the
data.

Usually, Perl handles data-type conversion for you. If you need more control, though, you can create a
Var i ant object and specify the type yourself. Perl provides access to the types listed in Table 19.3.

Table 19.3: Variant Types

Variant Type |Description

VT Ull Unsigned character (1 byte)
VT 12 Signed integer (2 bytes)
VT |14 Signed integer (4 bytes)
VT R4 Floating point (4 bytes)
VT R8 Floating point (8 bytes)

VT _DATE OLE Date (floating-point value measuring days since midnight, Dec. 30, 1899)
VT _BSTR OLE String

VT _CY OLE Currency

VT_BOOL OLE Boolean

By default, Perl convertsinteger datato the VT |4 type, string datato the VT _BSTR type, and
floating-point datato the VT_R8 type. Usually, these conversions are what you'd expect, but let's look at
how you might specify your own type:

$vt = new OLE:: Vari ant (CLE: : VT_DATE, "May 31, 1997");

$Message- >{ Ti neSent} = $vt;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

This examplefirst creates a Variant object, setting the typeto VT _DATE and the date to "May 31, 1997."
It then assigns the date to the Message object TimeSent property (something you might do if you were
posting a message to afolder, for example).

Previous: 19.3 Using Learning Perl on Win32 Next: 19.5 Tips and

Automation Objects Systems Techniques
19.3 Using Automation Book 19.5 Tips and Techniques
Objects Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems —

Previous: 19.4 Chapter 19. Next: 19.6
Variants OL E Automation Exercises

19.5 Tips and Techniques

Here are a couple of tips for using OL E automation from Perl.

19.5.1 Translating Samples from Visual Basic

Finding documentation and examples that show you how to use an automation server from Perl can be
difficult. You'll morelikely find examples for Visual Basic. Converting automation examples from
Visual Basic to Perl is quite easy.

Visual Basic dso usesaCr eat e(Obj ect call to create automation objects. Visual Basic usesaset
statement to assign an object, whereas Perl just needs a normal assignment. Visual Basic references
properties and methods using the dot operator, while Perl uses the pointer arrow for methods, and the
pointer arrow and a hash for properties. Here's a brief snippet from Visua Basic:

set Message = ActiveSessi on. Qut box. Messages. Add
Message. Subj ect = " Subj ect™
Message. Text = "Text"

And here's the trandation into Perl:

$Message = $Acti veSessi on->Qut box- >Messages- >Add() ;
$Message- >{ Subj ect} = "Subject”;

$Message- >{ Text} = "Text";

Previous: 19.4 Learning Perl on Win32 Next: 19.6
Variants Systems Exercises
19.4 Variants Book 19.6 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 19.5 Tips and Chapter 19 [Next: A. Exercise Answers
Techniques OL E Automation

19.6 Exercises

1. Write aprogram that will invoke your favorite automation-enabled web browser and take it to the
O'Rellly & Associates Perl home page (http://www.ora.com/publishing/perl).

2. Write aprogram that reads a list of numbers and uses automation to put them in sequential rowsin

your favorite spreadsheet.
Previous: 19.5 Tips and Learning Perl on Win32 [Next: A. Exercise Answers)|
Techniques Systems
19.5 Tips and Techniques Book A. Exercise Answers

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
http://www.ora.com/publishing/perl
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: 19.6 Appendix A Next: A.2 Chapter 3, Arrays
Exercises and List Data

A. Exercise Answers

Contents:
Chapter 2, Scdlar Data

Chapter 3, Arraysand List Data

Chapter 4, Control Structures

Chapter 5, Hashes

Chapter 6, Basic 1/O

Chapter 7, Regular Expressions

Chapter 8, Functions

Chapter 9, Miscellaneous Control Structures
Chapter 10, Filehandles and File Tests
Chapter 11, Formats

Chapter 12, Directory Access

Chapter 13, File and Directory Manipulation
Chapter 14, Process Management

Chapter 15, Other Data Transformation
Chapter 16, System Information

Chapter 17, Database Manipulation

Chapter 18, CGI Programming

Chapter 19, OLE Automation

This appendix gives the answers for the exercises found at the end of each chapter.

A.1l Chapter 2, Scalar Data

1. Here'soneway to do it:

$pi = 3.141592654;
$result =2 * $pi * 12.5;
print "radius 12.5 is circunference $result\n";

First, we give a constant value () to the scalar variable $pi . Next, we compute the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

circumference using this value of $pi in an expression. Finally, we print the result using a string
containing a reference to the result.

. Here'sone way to do it:

print "What is the radius: ";

chonp($radi us = <STDI N>) ;

$pi = 3.141592654;

$result =2 * $pi * $radi us;

print "radius $radius is circunference $result\n";

Thisissimilar to the previous exercise, but in this case, we've asked the person running the
program for avalue, using apr i nt statement for a prompt, and then the <STDI N> operator to
read aline from the terminal.

If we had left off the chonp, we'd get anewline in the middle of the displayed string at the end.
Y ou must get that newline off the string as soon as you can.

. Hereé'soneway to doit:

print "First nunber: "; chonp($a = <STDI N>);
print "Second nunber: "; chonp($b = <STDI N>);
$c = $a * $b; print "Answer is $c\n";

Thefirst line does three things: prompts you with a message, reads a line from standard input, and
then getsrid of the inevitable newline at the end of the string. Note that because we are using the
value of $a strictly as a number, we can omit the chonp here, because 45\ n is 45 when used
numerically. However, such careless programming would likely come back to haunt us later on
(for example, if we were to include $a in amessage).

The second line does the same thing for the second number and placesit into the scalar variable
$b.

The third line multiplies the two numbers together and prints the result. Note the newline at the
end of the string here, contrasted with its absence in the first two lines. The first two messages are
prompts, for which user input was desired on the same line.

. Here'sone way to do it:

print "String: "; $a = <STDI N>;

print "Nunber of tines: "; chonp($b = <STDI N>);
$c = $a x $b; print "The result is:\n$c";

Aswith the previous exercise, the first two lines ask for, and accept, values for the two variables.
Unlike the previous exercise, we don't chonp the newline from the end of the string, because we
need it! Thethird line takes the two entered values and performs a string repetition on them, and
then displays the answer. Note that the interpolation of $c is not followed by a newline, because
we believe that $¢ will always end in a newline anyway.

Previous: 19.6 Learning Perl on Win32 Next: A.2 Chapter 3, Arrays
Exercises Systems and List Data

19.6 Exercises Book A.2 Chapter 3, Arrays and
Index List Data

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.1 Chapter 2, ﬁw Next: A.3 Chapter 4, Control
Scalar Data Exercise Answers Structures

A.2 Chapter 3, Arrays and List Data

1. Here'soneway to doit:

print "Enter the list of strings:\n";
@i st = <STDI N>;

@everselist = reverse @i st;

print @everselist;

Thefirst line prompts for the strings. The second reads the strings into an array variable. The third
line computes the list in the reverse order, storing it into another variable. The final line displays
the result.

We can actually combine the last three lines, resulting in:

print "Enter the list of strings:\n";
print reverse <STDI N>;

This method works because the pr i nt operator is expecting alist, andr ever se returnsalist -
so they're happy. Andr ever se wantsalist of valuesto reverse, and <STDI N> in alist context
returns alist of the lines, so they're happy, too!

2. Oneway to dothisis:

print "Enter the line nunber: "; chonp($a = <STDI N>);
print "Enter the lines, end with ~Z:\n"; @ = <STD N>;
print "Answer: $b[$a-1]";

Thefirst line prompts for a number, reads it from standard input, and removes that pesky newline.
The second line asksfor alist of strings, then usesthe <STDI N> operator in alist context to read
all of the lines until end-of-file into an array variable. The final statement prints the answer, using
an array reference to select the proper line. Note that we don't have to add a newline to the end of

this string, because the line selected from the @ array still hasits newline ending. You'll need to

type CTRL-Z at the console to indicate an end-of-file.

3. Oneway to do thisis:
sr and;
print "List of strings: "; @ = <STDI N>,
print "Answer: $b[rand(@®)]";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Thefirst line initializes the random number generator. The second line reads a bunch of strings.
The third line selects arandom element from that bunch of strings and printsiit.

Previous: A.1 Chapter 2, Learning Perl on Win32 Next: A.3 Chapter 4, Control
Scalar Data Systems Structures
A.1 Chapter 2, Scalar Data Book A.3 Chapter 4, Control
Index Structures

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.2 Chapter 3, Appendix A [Next: A.4 Chapter 5, Hashes]
Arrays and List Data Exercise Answers

A.3 Chapter 4, Control Structures

1. Here'soneway to doit:

print "Wat tenperature is it? ";
chonp($t enperature = <STDI N>);
I f ($tenperature > 72) {
print "Too hot!\n";
} else {
print "Too cold!'\n";
}

Thefirst line prompts you for the temperature. The second line accepts the temperature for input.
Thei f statement on the final five lines selects one of two messages to print, depending on the
value of $t enper at ur e.

2. Heré'soneway to doit:

print "Wat tenperature is it? ";
chonp($t enperature = <STDI N>) ;
i f ($tenperature > 75) {
print "Too hot!\n";
} elsif ($tenperature < 68) {
print "Too cold!'\n";
} else {
print "Just right!\n";
}

Here, we've modified the program to include a three-way choice. First, the temperature is
compared to 75, then to 68. Note that only one of the three choices will be executed each time
through the program.

3. Here'soneway to doit:

print "Enter a nunber (999 to quit): ";
chomp($n = <STDI N>) ;
while ($n !'= 999) {

$sum += $n;

print "Enter another nunmber (999 to quit): ";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

chomp($n = <STDI N>) ;
}

print "the sumis $sumn";

Thefirst line prompts for the first number. The second line reads the number from the terminal.
Thewhi | e loop continues to execute as long as the number is not 999.

The += operator accumulates the numbers into the $sumvariable. Note that the initial value of
$sumisundef , which makes a nice value for an accumulator, because the first value added in
will be effectively added to O (remember that undef used asanumber is0).

Within the loop, we must prompt for and receive another number, so that the test at the top of the
loop is against a newly entered number.

When the loop is exited, the program prints the accumul ated results.

Note that if you enter 999 right away, the value of $sumis not O, but an empty string - the value
of undef when used asastring. If you want to ensure that the program prints O in this case, you
should initialize the value of $sumat the beginning of the program with $sum = 0.

. Here'sone way to do it:

print "Enter sone strings, end with *"Z:\n";
@trings = <STDI N>;
while (@trings) {
print pop @trings;
}

First, this program asks for the strings. These strings are saved in the array variable @t r i ngs,
one per element.

The control expression of thewhi | e loopis @t ri ngs. The control expression islooking for a
single value (true or false), and is therefore computing the expression in a scalar context. The
name of an array (such as @t r i ngs) when used in ascalar context is the number of elements
currently in the array. Aslong asthe array is not empty, this number is non-zero, and therefore
true. Thisisavery common Perl idiom for "do this while the array is non-empty."

The body of the loop prints a value, obtained by pop'ing off the rightmost element of the array.
Thus, each time through the loop, the array is one element shorter, because that element has been
printed.

Y ou may have considered using subscripts for this problem. Aswe say, there's more than one way
to do it. However, you'll rarely see subscripts in atrue Perl Hacker's programs because a better
way amost always exists.

. Here'saway to do it without alist:

for ($nunber = 0; $nunber <= 32; $nunber++) {
$square = $nunber * $nunber;
printf "%g %Bg\n", $nunber, $square;

}

And here's how to do it with alist:

foreach $nunber (0..32) {

$square = $nunber * $nunber;

printf "%g %8g\n", $nunber, $square;
}

These solutions both involve loops, using thef or and f or each statements. The body of the
loops are identical, because for both solutions, the value of $nunber proceeds from 0 to 32 on
each iteration.

Thefirst solution uses atraditional C-likef or statement. The three expressions respectively: set
$nunber to 0, test to seeif $nunber islessthan 32, and increment $nunber on each iteration.

The second solution uses af or each statement. A list of 33 elements (0 to 32) is created, using
the list contructor. The variable $nunber isthen set to each element in turn.

Previous: A.2 Chapter 3, Learning Perl on Win32 | Next: A.4 Chapter 5, Hashes|
Arrays and List Data Systems
A.2 Chapter 3, Arrays and Book A.4 Chapter 5, Hashes
List Data Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.3 Chapter 4, ﬁw Next: A.5 Chapter 6, Basic
Control Structures Exercise Answers I/O

A.4 Chapter 5, Hashes

1. Hereisoneway to doit:
%rap = gw(red apple green | eaves bl ue ocean);

print "A string please: "; chonp($sone_string = <STDI N>);
print "The value for $sone_string is $map{$sone_string}\n";

Thefirst line creates the hash, giving it the desired key-value pairs. The second line fetches a
string, removing the pesky newline. The third line prints the entered value, and its mapped value.

Y ou can also create the hash through a series of separate assignments, like so:
$map{'red'} = 'apple';

$map{' green'} = 'l eaves';

$map{' blue'} = 'ocean';

2. Heré'soneway to doit:

chomp(@wrds = <STDIN>); # read the words, m nus new ines
foreach $word (@wrds) {

$count {Sword} = Scount {Sword} + 1; # or $count{$word}++
}
foreach $word (keys %ount) {

print "$word was seen $count{$word} tinmes\n";
}

Thefirst line reads the lines into the @wor ds array. Recall that this method will cause each line to
end up as a separate element of the array, with the newline character still intact.

The next four lines step through the array, setting $wor d equal to each lineinturn. The newlineis
discarded with chonp() , and then the magic comes. Each word is used as a key into ahash. The
value of the element selected by the key (the word) is a count of the number of times we've seen
that word so far. Initially, there are no elements in the hash, so if theword wi | d is seen on the
first line, we have $Scount { "wi | d"}, whichisundef . Theundef value plus 1 turns out to be
O plus 1, or one. (Recall that undef lookslikeaO if used as a number.) The next time through,
we'll have 1 plus 1, or 2, and so on.

Another common way to write the increment is given in the comments. Fluent Perl programmers
tend to be lazy (we call it "concise"), and would never go for writing the same hash reference on

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

both sides of the assignment when a simple autoincrement will do.

After the words have been counted, the last few lines step through the hash by looking at each of
its keys one at atime. The key and the corresponding value are printed after having been
interpolated into the string.

The extra-challenge answer looks like this answer, with the sor t operator inserted just before the
word keys on the third-to-last line. Without the sorting, the resulting output is seemingly random
and unpredictable. However, after being sorted, the output is predictable and consistent.
(Personally, | rarely usethe keys operator without also adding a sort immediately in front of it -
this method ensures that reruns over the same or similar data generate comparabl e results.)

Previous: A.3 Chapter 4, Learning Perl on Win32 Next: A.5 Chapter 6, Basic
Control Structures Systems 1/O
A.3 Chapter 4, Control Book A.5 Chapter 6, Basic I/O
Structures Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.4 Chapter 5, ﬁw Next: A.6 Chapter 7, Regular
Hashes Exercise Answers Expressions

A.5 Chapter 6, Basic 1/0O

1. Here'soneway to doit:

print reverse <>;

Y ou may be surprised at the brevity of this answer, but this answer will get the job done. Here's
what is happening, from the inside out:

First, ther ever se operator islooking for alist for its arguments. Accordingly, the diamond
operator (<>) isbeing evaluated in alist context. Thus, all of the lines of the files named by
command-line arguments (or standard input, if none are named) are read in, and then massaged
into alist with one line per element.

Next, ther ever se operator reverses the list end-for-end.
Finally, the pr i nt operator takes the resulting list, and displaysit.

. Hereé'soneway to doit:

@\RGV = reverse @\RGV;
print reverse <>,

Thefirst line just takes any filename arguments and reverses them. That way if the user called this
script with command line arguments " camel gecko alpaca’, @GARGV would then contain "alpaca
gecko camel" instead. The second linereadsin all the linesin all the filesin GARGV, flips them
end on end, and prints them. If no arguments were passed to the program, then as before, <> works
on STDIN instead.

. Hereé'soneway to doit:
print "List of strings:\n";
chomp(@trings = <STDI N>) ;
foreach (@trings) {

printf "9%0s\n", $_;
}

Thefirst line prompts for alist of strings.

The next line reads all of the strings into one array, and gets rid of the newlines at the end of each
line.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Thef or each loop steps through this array, giving $_ the value of each line.

Thepri nt f operator gets two arguments: the first argument defines the format - %20s\ n means
a 20-character right-justified column, followed by a newline.

4. Here'soneway to do it:
print "Field width: ";
chomp($wi dt h = <STDI N>) ;
print "List of strings:\n";
chonp(@trings = <STDI N>);
foreach (@trings) {

printf "9{width}s\n", $;

}

To the previous exercise's answer, we've added a prompt and response for the field width.

The other changeisthat thepri nt f format string now contains a variable reference. The value of
$wi dt h isincluded into the string before pr i nt f considers the format. Note that we cannot
write this string as:

printf "% w dths\n", $_; # WRONG

because then Perl would be looking for avariable named $w dt hs, not a variable named
$wi dt h to which we attach an s. Another way to writethisis:

printf "%w dth"."s\n", $; # R GHT

because the termination of the string aso terminates the variable name, protecting the following
character from being sucked up into the name.

Previous: A.4 Chapter 5, Learning Perl on Win32 Next: A.6 Chapter 7, Regular
Hashes Systems Expressions
A.4 Chapter 5, Hashes Book A.6 Chapter 7, Regular
Index Expressions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

%Leaming Perl on Win32 Systems

Previous: A.5 Chapter 6, Appendix A Next: A.7 Chapter 8,
Basic 1/0 Exercise Answers Functions

A.6 Chapter 7, Regular Expressions

1. Here are some possible answers:

b.

C.

| a+b*/
/\\ *\ **] (Remember that the backslash cancels the meaning of the special character following.)

[($what ever) { 3}/ (You must have the parentheses, or else the multiplier applies only to the
last character of $what ever ; this solution also failsif $what ever has special characters.)

[[\000-\377]{5}/ or/(.|\n){5}/ (Youcan't usedot alone here, because dot doesn't
match newline.)

[(MVs)(VSH) (Vs+H\2)+(\s| $)/ (\ Sisnon-whitespace, and \ 2 is areference to whatever
the "word" is; the caret or whitespace alternative ensures that the\ S+ begins at a whitespace
boundary.)

. Oneway to do thisis:

whil e (<STDI N>) {
if (/ali && leli && [ili && /o/i && /uli) {
print;
}
}

Here, we have an expression consisting of five match operators. These operators are all looking at
the contents of the $__ variable, which is where the control expression of the whi | e loop is putting
each line. The match operator expression will be true only when all five vowels are found.

Note that as soon as any of the five vowels are not found, the remainder of the expression is
skipped, because the && operator doesn't evaluate its right argument if the left argument isfalse. For
more information on using the && operator as a control structure, please refer to the section, "& &, ||,
and ?: as Control Structures'.

Another way to do thisis:
whil e (<STDI N>) {
if (/a.*e.*i.*o.*uli) {
print;
}
}

This answer turns out to be easier than the other part of this exercise. Here we have a simple regular

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

expression, that looks for the five vowels in sequence, separated by any number of characters.

c. A third way to dothisis:

while (<STDIN>) {
if (/”[eiou]*a[”iou]*e[”aou]*i["aeu] *o[~aei]*u[aeio]*$/i) {
print;
}
}

This solution is ugly, but it works. To construct this solution, just think "What can go between the
beginning of the line, and the first a?* Then, think "What can go between the first aand the first €7
Eventually, everything works out, with alittle assistance from you.

Previous: A.5 Chapter 6, Learning Perl on Win32 Next: A.7 Chapter 8,
Basic I/O Systems Functions
A.5 Chapter 6, Basic 1/0 Book A.7 Chapter 8, Functions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.6 Chapter 7, Appendix A
Regular Expressions Exercise Answers

Next: A.8 Chapter 9,
Miscellaneous Control
Structures

A.7 Chapter 8, Functions

1. Here'sone way to do it:

sub card {
ny %ard_nmap;
@ard_map{1..9} = gw
one two three four five six seven eight nine
);

ny($num = @;
i f ($card_map{$nun}) {
$card_map{$num}; # return val ue
} else {
$num # return val ue
}

}

driver routine:
while (<>) {

chonp;

print "card of $ is ", &ard($), "\n";
}

The &car d subroutine (so named because it returns a cardinal name for a given value) begins by
initializing a constant hash called %€ ar d_nap. Thisarray has values such that $car d_nap{ 6}
ISsi x; consequently, the mapping is easy.

Thei f statement determinesif the value isin range by looking the number up in the hash - if
there's a corresponding hash element, the test is true, so that array element isreturned. If there'sno
corresponding element (such aswhen $numis 11 or - 4), the value returned from the hash lookup
isundef , sotheel se-branch of thei f statement is executed, returning the original number.

Y ou can aso replace that entirei f statement with the single expression:

$card_map{$nunt || $num

If the value on the left of the | | istrue, it's the value for the entire expression, which then gets
returned. If it's false (such as when $numis out of range), theright side of the | | operator is

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

evaluated, returning $numas the return value.

The driver routine takes successive lines, chonping off their newlines, and hands them one at a
time to the &car d routine, printing the result.

. Heré'sone way to do it:
sub card { ...; } # from previous problem

print "Enter first nunber: ";
chonmp($first = <STDI N>);
print "Enter second nunber: ";

chomp($second = <STDI N>);

$nessage = &card($first) " plus "
&card($second) . " equals "
&card($first+$second) . ".\n";

print "\u$message";

Thefirst two pri nt statements prompt for two numbers, with the immediately following
statements reading the valuesinto $f i r st and $second.

A string called $nmessage isthen built up by caling &car d three times, once for each value, and
once for the sum.

After the message is constructed, itsfirst character is uppercased by the case-shifting backslash
operator \ u. The message is then printed.

. Here'sone way to do it:

sub card {
ny %ard_nmap;
@ard_map{0..9} = gw
zero one two three four five six seven eight nine
);

ny($num = @;
ny($negati ve) ;
if ($num < 0) {
$negative = "negative ";
$num = - $num
}
i f ($card_map{$nun}) {
$negative . $card_map{$nun}; # return val ue
} else {
$negative . $num # return val ue
}

}

Here, we've giventhe %car d_nap array anamefor O.

Thefirsti f statement inverts the sign of $num and sets $negat i ve to the word negative, if the

number is found to be lessthan 0. After thisi f statement, the value of $numis always
non-negative, but we will have an appropriate prefix stringin $negat i ve.

Thesecondi f statement determinesif the (now positive) $numis within the hash. If so, the
resulting hash value is appended to the prefix within $negat i ve, and returned. If not, the value
within $negat i ve isattached to the original number.

That lasti f statement can be replaced with the expression:
$negative . ($card_map{$nunt || $num;

Previous: A.6 Chapter 7, Learning Perl on Win32 Next: A.8 Chapter 9,
Regular Expressions Systems Miscellaneous Control
Structures
A.6 Chapter 7, Regular Book A.8 Chapter 9, Miscellaneous
Expressions Index Control Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.7 Chapter 8, ﬁw Next: A.9 Chapter 10,
Functions Exercise Answers Filehandles and File Tests

A.8 Chapter 9, Miscellaneous Control Structures

1. Here'soneway to doit:
sub card {} # from previ ous exercise

while () { ## NEW ##
print "Enter first nunber: ";
chomp($first = <STDI N>);
last if $first eq "end"; ## NEW ##

print "Enter second nunber: ";
chonp($second = <STDI N>) ;
last if $second eq "end"; ## NEW ##

$nessage = &card($first) . " plus "
&card($second) . " equals "
&card($first+$second) . ".\n";
print "\u$nmessage";
} ## NEW ##

Note the addition of thewhi | e loop, and thetwo | ast operators. That's it!

2. Here'sone way to do it:

{
print "Enter a nunber (999 to quit): ";

chonmp($n = <STDI N>) ;
last if $n == 999;
$sum += $n;
redo;

}

print "the sumis $sumn";

We're using a naked block withar edo and al ast to get things done thistime. We start by
printing the prompt and grabbing the number. If it's 999, we exit the block with | ast and print
out the sum on exit. Otherwise, we add to our running total and user edo to execute the block

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

again.

Previous: A.7 Chapter 8, Learning Perl on Win32 Next: A.9 Chapter 10,
Functions Systems Filehandles and File Tests
A.7 Chapter 8, Functions Book A.9 Chapter 10, Filehandles
Index and File Tests

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.8 Chapter 9, ﬁw Next: A.10 Chapter 11,
Miscellaneous Control Exercise Answers Formats
Structures

A.9 Chapter 10, Filehandles and File Tests

1. Here'soneway to doit:
print "Wat file? ";
chonmp($fil enane = <STDI N>) ;
open(THATFI LE, "$fil ename") ||
di e "cannot open $filenane: $!";
whi | e (<THATFI LE>) {
print "$filenane: $ "; # presune $ ends in \n
}

Thefirst two lines prompt for afilename, which is then opened with the filehandle THATFI LE.
The contents of the file are read using the filehandle, and printed to STDOUT.

2. Here'sone way to do it:

print "Input file name: ";
chonp($i nfil enane = <STDI N>);
print "Qutput file name: ";
chonmp($outfil enane = <STDI N>);
print "Search string: ";
chonp($search = <STDI N>) ;
print "Replacenent string: ";
chonp($repl ace = <STDI N>);
open(I N, $i nfil enane) ||

di e "cannot open $infilenane for reading: $!'";
optional test for overwite...
die "will not overwite $outfilenanme"” if -e $outfil enane;
open(QUT, ">%out fi | enanme™) ||

die "cannot create $outfil enane: $!";
while (<IN>) { #read aline fromfile INinto $_

s/ $search/ $repl ace/ g; # change the |lines

print QUT $; # print that line to file OQUT
}
cl ose(IN);
cl ose(QUT) ;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

This program is based on the file-copying program presented earlier in the chapter. New features
here include the prompts for the strings, the substitute command in the middle of thewhi | e loop,
and the test for overwriting afile. Note that backreferences in the regular expression do work, but
references to memory in the replacement string do not.

3. Here'soneway to doit:
while (<>) {
chonp; # elimnate the newine
print "$ 1is readable\n" if -r;
print "$ is witable\n" if -w
print "$ is executable\n" if -x;
print "$ does not exist\n" unless -e;

}

Thiswhi | e loop reads afilename each time through. After discarding the newline, the series of
statements tests the file for the various permissions.

4. Here'soneway to doit:

while (<>) {
chonp;
$age = -M

i f (%ol dest _age < $age) {
$ol dest _nane = $_;
$ol dest _age = $age;
}
}
print "The oldest file is $ol dest _nane ",
"and i s $ol dest _age days old.\n";

First, we loop on each filename being read in. The newline is discarded, and then the age (in days)
gets computed with the - Moperator. If the age for thisfile exceeds the oldest file we've seen so
far, we remember the filename and its corresponding age. Initially, $ol dest _age will be zero,
so we're counting on there being at least one file that is more than zero days old.

Thefina pri nt statement generates the report when we're done.

Previous: A.8 Chapter 9, Learning Perl on Win32 Next: A.10 Chapter 11,
Miscellaneous Control Systems Formats
Structures
A.8 Chapter 9, Miscellaneous Book A.10 Chapter 11, Formats
Control Structures Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.9 Chapter 10, ﬁw Next: A.11 Chapter 12,
Filehandles and File Tests Exercise Answers Directory Access

A.10 Chapter 11, Formats

1. Here'soneway to doit:
$file = shift || die "usage: $0 fil enane";
open(F, $file) || die "open: $!'";
while (<F>) {
($user, $conpany, $email) = split /:/;
wite;
}
format STDOUT =
@X<<K<KKKLKLKLKLKLKLKLS (@KLK LLLLLLLLLLLLLL (@ LLKLLLLLLLLLLLLKL

$user, $conpany, $emi |

The second line opensthe file. Thewhi | e loop processes the file line-by-line. Each lineistorn
apart (with colon delimiters), which loads up the scalar variables. The final statement of the
whi | e loop invokes write to display all of the data.

The format for the STDOUT filehandle defines a simple line with three fields. The values come
from the three scalar variables that are given valuesin thewhi | e loop.

2. Heré'soneway to doit:
append to programfromthe first problem..

format STDOUT _TOP =
User Conpany Real Nane

All you need to get page headers for the previous program is to add a top-of-page format. Here, we
put column headers on the columns.

To get the columnsto line up, we copied the text of format STDOUT and used overstrike modein
our text editor to replace @ << fields with ==== bars. That's the nice thing about the
one-character-to-one-character correspondence between a format and the resulting display.

3. Here'soneway to doit:
append to programfromthe first problem..

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

format STDOUT _TOP =
Page @x<<
$%

WEell, here again, to get stuff at the top of the page, we've added a top-of-page format. This format
also contains a reference to $% which gives us a page number automatically.

Previous: A.9 Chapter 10, Learning Perl on Win32 Next: A.11 Chapter 12,

Filehandles and File Tests Systems Directory Access
A.9 Chapter 10, Filehandles Book A.11 Chapter 12, Directory
and File Tests Index Access

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.10 Chapter 11, Appendix A Next: A.12 Chapter 13, File
Formats Exercise Answers and Directory Manipulation

A.11 Chapter 12, Directory Access

1. Here'soneway to doit:
print "Were to? ";
chonp($newdi r = <STDI N>) ;
chdir($newdir) || die "Cannot chdir to $newdir: $!'";
foreach (<*>) {
print "$ \n";
}

The first two lines prompt for and read the name of the directory.
The third line attempts to change the directory to the given name, aborting if thisisn't possible.

Thef or each loop steps through alist. But what'sthe list? It's the glob in alist context, which
expandsto alist of al of the filenames that match the pattern (here, *).

2. Here'sone way to do it, with adirectory handle:

print "Were to? ";
chomp($newdir = <STDI N>) ;
chdir($newdir) ||

die "Cannot chdir to $newdir: $!'";
opendi r (DOT, ".") ||

di e "Cannot opendir . (serious dai nbramage): $!'";
foreach (sort readdir(DOT)) {

print "$_\n";

}

cl osedi r (DOT) ;

Just as with the previous program, we prompt and read a new directory. After we'vechdi r'ed
there, we open the directory creating a directory handle named DOT. In thef or each loop, the list
returned by r eaddi r (inalist context) is sorted, then stepped through, assigning each element to
$_inturn.

And here's how to do it with a glob instead:

print "Were to? ",
chomp($newdir = <STDI N>);

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

chdir($newdir) || die "Cannot chdir to $newdir: $!'";
foreach (sort <* .*>) {

print "$ \n";
}

Y es, this solution is basically the other program from the previous exercise, but I've added asor t
operator in front of the glob, and | also added . * to the glob to pick up the files that begin with
dot. Weneed thesor t because afilenamed! f r ed belongs before the dot files, and bar ney
belongs after them. In addition, an easy glob pattern that can get them all in the proper sequence

does not exist.
Previous: A.10 Chapter 11, Learning Perl on Win32 Next: A.12 Chapter 13, File
Formats Systems and Directory Manipulation
A.10 Chapter 11, Formats Book A.12 Chapter 13, Fileand

Index Directory Manipulation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.11 Chapter 12, ﬁw Next: A.13 Chapter 14,
Directory Access Exercise Answers Process Management

A.12 Chapter 13, File and Directory Manipulation

1. Here'soneway to doit:
unl i nk @ARGV:

Y up, that'sit. The @GARGV array isalist of namesto be removed. Theunl i nk operator takes alist
of names, so we just marry the two, and we're done.

Of course, this solution doesn't handle error reporting, or the-f or -1 options, or anything like
that, but those things are just gravy. If your solution addressed these things, good!

2. Here'sone way to do it:

($ol d, $new) = @\RGV; # nane them

if (-d $new) { # newnane is a directory, need to patch it up
($basenane = $ol d) =~ s#.*\\##s; # get basenane of S$old
$new . = "\\ $basenane”; # and append it to new nane

}

rename($ol d, $new) || die "Cannot renane $old to $new $!";

The workhorse in this program is the last line, but the remainder of the program is necessary for
the case in which the name we are renaming to is a directory.

First, we give understandable names to the two elements of GARGV. Then, if the $newnameisa
directory, we need to patch it by adding the basename of the $ol d nameto the end of the new
name. Finally, after the basename is patched up, we're home free, with ar enane invocation.

Previous: A.11 Chapter 12, Learning Perl on Win32 Next: A.13 Chapter 14,
Directory Access Systems Process Management
A.11 Chapter 12, Directory Book A.13 Chapter 14, Process
Access Index Management

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.12 Chapter 13, ﬁw Next: A.14 Chapter 15, Other
File and Directory Exercise Answers Data Transformation
Manipulation

A.13 Chapter 14, Process Management

1. Here'sone way to do it:

my ($src, $trg) = @RGY,
die "$src isn't a directory” unless -d $src;
die "$trg isn't a directory” unless -d $trg;
"xcopy /s /e $src $trg;

We check to make sure both arguments are really directories, then we invoke xcopy to do the dirty
work. We could have also used:

systenm("xcopy /s /e $src $trg");

2. Here'sone way to do it:

@osts = " net view ;

foreach (@osts) {
next unl ess m#A\\\\ #;
chop;
s/IMN(\S+) . */$1/;
push @orted, $;

}
print join("\n", sort @orted);

We run the command net view and capture the output as alist of lines. We then go through each
line looking for hostnames (they start with \\), chop off newlines and comments, and add the
matches to another list. We then sort the second list and print it.

Previous: A.12 Chapter 13, Learning Perl on Win32 Next: A.14 Chapter 15, Other
File and Directory Systems Data Transformation
Manipulation
A.12 Chapter 13, Fileand Book A.14 Chapter 15, Other Data
Directory Manipulation Index Transformation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.13 Chapter 14, Appendix A Next: A.15 Chapter 16,
Process Management Exercise Answers System Information

A.14 Chapter 15, Other Data Transformation

1. Here'soneway to doit:
while (<>) {
chonp;
$slash = rindex($_,"/");
if ($slash > -1) {
$head = substr($_, 0, $sl ash);
$tail = substr($_, $sl ash+l);

} else {
($head, $tail) = ("", $);
}
print "head = '$head', tail = '"$tail'\n";

}

Each line read by the diamond operator isfirst chonped (tossing the newline). Next we look for
the rightmost slash in theline, using r i ndex () . The next two lines break the string apart using
subst r (). If no dlash exists, the result of ther i ndex is- 1, so we hack around that. The final
line within the loop prints the results.

2. Herésoneway to doit:

chomp(@uns = <STDIN>); # note special use of chonp
@uns = sort { $a <=> $b } @uns;
foreach (@wuns) ({
printf "980g\n", $_;
}

Thefirst line grabs al of the numbersinto the @uns array. The second line sorts the array
numerically, using an inline definition for a sorting order. Thef or each loop prints the results.

3. Heresoneway to doit:
while (<>) {
substr($_,0,1) =~ tr/a-z/ A Z/;
substr($_,1) =~ tr/ A Z a-z/;
print;
}

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

For each line read by the diamond operator, we usetwo t r operators, each on adifferent portion
of the string. Thefirstt r operator uppercases the first character of the line, and the second t r
operator lowercases the remainder. The result is printed.

Another way to do this, using only double-quoted string operators, is:

while (<>) {
print "\u\L$_";
}
Giveyourself an extrafive pointsif you thought of that method instead.
Previous: A.13 Chapter 14, Learning Perl on Win32 Next: A.15 Chapter 16,
Process Management Systems System Information

A.13 Chapter 14, Process Book A.15 Chapter 16, System
Management Index Information

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

%Leaming Perl on Win32 Systems

Previous: A.14 Chapter 15, Appendix A Next: A.16 Chapter 17,
Other Data Transformation Exercise Answers Database Manipulation

A.15 Chapter 16, System Information

1. Heresoneway to doit.

foreach $host (@RGY) {
($nane, S$aliases, $addrtype, $length, @ddrs) = get hostbyname($host);
print "$host:\n";

foreach $a (@ddrs) {
print join(".", unpack("C4", $a)), "\n";
}

}

This code just takes alist of machine names, iterates over them, calling get - host bynanme() for each
one. We then enumerate each of the addresses, printing them out in dotted decimal notation.

2. Here'soneway to do it:
use Wn32::Registry;
$p = shift || die "usage: $0 path";
strip | eadi ng backsl ashes
$p =~ sHMN\ ##;
$mai n: : HKEY_LOCAL_MACHI NE- >Qpen($p, $key) ||
die "Open: $!'";
$key- >CGet Val ues(\ %val s); # get val ues -hash ref
foreach $k (keys %vals) {
$key = $val s{$k};
print "$$key[0] = $$key[2]\n";
}

This code takes a path relative to HKEY _LOCAL_MACHINE (something like
SOFTWARE\ActiveWar e\Per15) and strips beginning backslashes, if there are any. It opens the key using
the precreated HKEY _LOCAL_MACHINE key. It then calls GetVa ues (passing it areference to a hash;
see Chapter 18, CGI Programming, for more on references). The code then enumerates over the keys of
the hash, printing them. Each value consists of a reference to alist with three items, so we assign the list
reference to $key. We then have to dereference $key in order to access its values; we do so with the
$$key[0] construct.

3. Here'soneway to do it:

sub CreateKeyPath {
ny ($subtree, $path) = @;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

break it into conponents
strip initial path separator, if there is one
$pat h =~ s#"\\ ##;
ny (@&list) = split(/\\/, $path);
ny $key;
ny $regkey = $subtree;
foreach $key (@list) {

$regkey- >Cr eat e($key, $regkey) ||

die "Can't create key $key: $!";

}

return $regkey;

}

We first strip the leading backslash out of the path, then break it into a series of keys. We then iterate over
each key, creating the key (remember, cr eat e opensit if it already exists) and return the deepest key.
We're assuming that we have passed in an open key as the first argument.

4. Here'sone way to do it:

sub print_dword _key {

ny ($dw) = @;

printf ("Ox%", unpack("l", $dw));
}

This subroutine takes a scalar value that's assumed to be a four-byte integer value and unpacks it using the
long format | (which unpacks a four-byte integer). The subroutine then uses pr i nt f and its hexidecimal
specifier (%) prefixed with Ox to print out the value.

Previous: A.14 Chapter 15, Learning Perl on Win32 Next: A.16 Chapter 17,
Other Data Transformation Systems Database Manipulation
A.14 Chapter 15, Other Data Book A.16 Chapter 17, Database
Transformation Index Manipulation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.15 Chapter 16, Appendix A Next: A.17 Chapter 18, CGI
System Information Exercise Answers Programming

A.16 Chapter 17, Database Manipulation

1. Here'soneway to doit:

program 1:
dbnopen(9MORDS, " wor ds", 0644) ;
while (<>) {
foreach $word (split(/\W/)) {
SWORDS{ $wor d} ++;
}
}

dbntl ose(WNORDS) ;

Thefirst program (the writer) opens a DBM in the current directory called wor ds, creating files
named words.dir and words.pag. Thewhi | e loop grabs each line using the diamond operator.
Thislineis split apart using thespl i t operator, with a delimiter of / \ W+/ , meaning nonword
characters. Each word is then counted into the DBM array, using the f or each statement to step
through the words.

program 2:

dbnopen(9MORDS, " wor ds", undef) ;

foreach $word (sort { $WORDS{ $b} <=> $WORDS{ $a} } keys WNORDS) {
print "$word $WORDS{ $wor d}\ n";

}

dbntl ose(W\ORDS) ;

The second program opens a DBM in the current directory called words. That complicated looking
f or each line does most of the dirty work. The value of $wor d each time through the loop will
be the next element of alist. Thelist isthe sorted keys from 9WNORDS, sorted by their values (the
count) in descending order. For each word in the list, we print the word and the number of times
the word has occurred.

Previous: A.15 Chapter 16, Learning Perl on Win32 Next: A.17 Chapter 18, CGI
System Information Systems Programming
A.15 Chapter 16, System Book A.17 Chapter 18, CGI

Information Index Programming

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.16 Chapter 17, Appendix A Next: A.18 Chapter 19, OLE
Database Manipulation Exercise Answers Automation

A.17 Chapter 18, CGl Programming

1. Here'soneway to doit:

use strict;
use CA gw :standard);
print header(), start_htm ("Add M");
print hl("Add Me");
i f(param()) {
ny $nl = param('fieldl");
ny $n2 = paran('field2');
my $n3 = $n2 + $ni;
print p("$nl + $n2 = $n3\n");
} else {
print hr(), start _form();
print p("First Nunmber:", textfield("fieldl"));
print p("Second Number:", textfield("field2"));
print p(submt("add"), reset("clear"));
print end_forn(), hr();

}
print end htm ();

We simply generate aform if there's no input with two textfields (using thet ext fi el d()
method). If there isinput, we simply add the two fields together and print the result.

2. Heré'soneway to do it

use strict;
use CA gw :standard);
print header(), start_htm ("Browser Detective");
print hl("Browser Detective"), hr();
ny $browser = $ENV{' HTTP_USER AGENT' };
$ = $browser;
I f (/meiel) {
mei e($);
} oelsif (/nozillali) {
net scape($);

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

} oelsift (/lynx/i) {
lynx($);

} else {
default($);

}

print end htm ();
sub nsi ef

print p("Internet Explorer: @. Good Choice\n");
}

sub netscape {
print p("Netscape: @. Good Choice\n");

}
sub lynx {

print p("Lynx: @. Shudder...");
}

sub default {
print p("Wiat the heck is a @?");
}

The key here is checking the environment for the HTTP_USER_AGENT variable (line 5).
Although this step isn't implemented by every server, many of them do set the variable. This
method is a good way to generate content geared at the features of a particular browser. Note that
we're just doing some basic string matching (case insensitive) to see what they're using (nothing
too fancy). Experienced Perl programmers would probably prefer to write the string-matching
section more along these lines:

BROWSER: {
/ mei el i and do { nmsie($), |ast BRONMSER, };
/mozillal/i and do { netscape($), |ast BROASER, };
[Tynx/i and do { lynx($), |ast BROMSER };
defaul t ($);

}

However we haven't talked about this construct in this book. If you're interested, see Chapter 2 of
Programming Per| for several other ways to emulate a switch construct.

Previous: A.16 Chapter 17, Learning Perl on Win32 Next: A.18 Chapter 19, OLE
Database Manipulation Systems Automation

A.16 Chapter 17, Database Book A.18 Chapter 19, OLE

Manipulation Index Automation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leaming Perl on Win32 Systems

Previous: A.17 Chapter 18, AEIM Next: B. Libraries and
CGI Programming Exercise Answers Modules

A.18 Chapter 19, OLE Automation

1. Here are acouple of waysto do it with Internet Explorer 3.x:

Here's one for the ActiveState distribution (5.003, build 306):

use CLE;

$ie = Createhject OLE "Internet Explorer. Application.1" ||
die "CreateChject: $!'";

$ie->{Visible} = 1;

$i e->Navi gate("http://ww. ora. coml publ i shing/perl/");

And here's one for the Perl 5.004 distribution using libwin32:

use Wn32:: OLE;

W n32:: OLE: : Creat eCbj ect ("I nternet Expl orer. Application. 1",
s

$ie->{Visible} = 1;

$i e->Navi gate("http://ww. ora. coni publ i shing/perl/");

$i e)

die "Creat e(hject:

2. Here are some ways to solve this exercise (this example uses Microsoft Excel 97 - other versions may have dightly different

automation objects):

. One solution for the ActiveState distribution is:;

use OLE;
grab the nunbers
@unbers = <STDI N>;
create the autonmation object
$xI = CreateObj ect OLE "Excel . Application” ||
die "CreateChject: $!'";
show it and add a new wor kbook
$xl ->{Visible} = 1;
$xI - >Wor kbooks- >Add() ;
start at the top left
$col = "A"; $row = 1;
foreach $num (@unbers) {
chomp($num ;
$cell = sprintf("%%l", $col, $rowt+);
add it to Excel
$x| - >Range($cel |) - >{Val ue} = $num
}

b. One solution for the Perl 5.004 distribution using libwin32 is:

use Wn32:: CLE;

grab the nunbers

@unbers = <STDI N>;

create the autonmation object

W n32:: OLE: : Creat eCbj ect (" Excel . Application", $xl)
die "CreateChject: $!'";

show it and add a new wor kbook

$xl->{Visible} = 1;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
http://www.ora.com/publishing/perl/"
http://www.ora.com/publishing/perl/"

$x1 - >Wor kbooks- >Add() ;
start at the top |eft
$col = "A"; $row = 1;
foreach $num (@unbers) {
chomp($num ;
$cell = sprintf("%%l", $col, $rowt++);
add it to Excel
$xl - >Range($cel |) ->{Val ue} = $num
}

Thefirst task isto grab our list of numbers (you'll need to enter CTRL-Z to terminate the input). After that, we create an Excel
application object, make it visible by setting the { Vi si bl e} property, and then add a new workbook. Then, we iterate over
our array of numbers and add them to Excel, incrementing the row counter as we go. Note that we could have saved this
workbook using the Save method, and then terminated Excel using the Quit method, but we chose not to, so that we could see
what was going on more easily.

Previous: A.17 Chapter 18, Learning Perl on Win32 Next: B. Libraries and
CGI Programming Systems Modules
A.17 Chapter 18, CGlI Book B. Libraries and Modules
Programming Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: A.18 Chapter 19, Appendix B [Next: B.2 Standard Modules]
OLE Automation

B. Libraries and Modules

Contents:
Library Terminology

Standard Modules
CPAN: Beyond the Standard Library
Win32 Extensions

For simple programs, you can easily write your own Perl routines and subroutines. As the tasks to which
you apply Perl become more difficult, however, sometimes you'll find yourself thinking, "someone must
have done this already." Y ou are probably more right than you imagine.

For most common tasks, other people have aready written the code. Moreover, they've placed it either in
the standard Perl distribution or in the freely downloadable CPAN archive. To use this existing code (and
save yourself sometime), you'll have to understand how to make use of a Perl library. Thistask was
briefly discussed in Chapter 18, CGI Programming.

One advantage in using modules from the standard distribution is that you can then share your program
with others without having to take any special steps. This statement is true because the same standard
library is available to Perl programs almost everywhere.

You'll save yourself timein thelong run if you get to know the standard library. No one benefits from
reinventing the wheel. Y ou should be aware, however, that the library contains a wide range of material.
While some modules may be extremely helpful, others may be completely irrelevant to your needs. For
example, some modules are useful only if you are creating extensions to Perl.

To read the documentation for a standard module, use the perldoc program (if you have the standard
distribution), or perhaps your web browser on HTML versions of the documentation. If all elsefails, just
look in the module itself; the documentation is contained within each module in pod format. To locate
the module on your system, try executing this Perl program from the command line:

perl -e "print \"@NCQ n\""

Y ou should find the module in one of the directories listed by this command.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

B.1 Library Terminology

Before we list the standard modules, let's untangle some terminology:
Package
A package is a simple namespace management device, which allows two different parts of a Perl

program to each have a (different) variable named $f r ed. These namespaces are managed with
the package declaration, described in Chapter 5 of Programming Perl.

Library

A library isaset of subroutines for aparticular purpose. Often the library declaresitself a separate
package so that related variables and subroutines can be kept together, and so that they won't
interfere with other variables in your program. Generally, an old-style library used to be placed in
aseparate file, often with aname ending in .pl. The library routines were then pulled into the main
program viather equi r e function. More recently this older approach has been replaced by the
use of modules (see next paragraph), and the term library often refers to the entire system of
modules that come with Perl.

Module

A moduleisalibrary that conforms to specific conventions, alowing the library routines to be
brought into your program with the use directive at compile time. Module filenamesend in .pm,
because the us e directive insists on that convention. Chapter 5 of Programming Perl describes
Perl modulesin greater detail.

Extension

An extension is a combination of a module written in Perl and alibrary writtenin C (or C++). On
Win32 systems, these extensions are implemented as dynamic-link libraries and have a .pll file
extension. Extension modules are used just like modules - with the use directive at compile time.
The case isimportant here: it doesn't necessarily need to match the filename that the packageis
stored in, but should match the case used in the package declaration.

Pragma

A pragmais a module that affects the compilation phase of your program as well as the execution
phase. Think of it as something that contains hints to the compiler. Unlike other modules, pragmas
often (but not always) limit the scope of their effects to the innermost enclosing block of your
program (that is, the block enclosing the pragma invocation). The names of pragmas are by
convention all lowercase.

Previous: A.18 Chapter 19, Learning Perl on Win32 | Next: B.2 Standard Modules]|
OLE Automation Systems
A.18 Chapter 19, OLE Book B.2 Standard Modules
Automation Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: B.1 Library . Aﬁw Next: B.3 CPAN: Beyond the
Terminology Librariesand Modules Standard Library

B.2 Standard Modules

Thefollowing isalist of al Perl pragmas and modules included with the current Perl distribution
(version 5.004). Modules new to 5.004 are italicized. The classification of the modulesis admittedly
arbitrary, and not all of them are applicable to Windows NT systems.

B.2.1 General Programming: Miscellaneous

autouse

Defersloading of amodule until it's used
constant

Creates compile-time constants
Benchmark

Checks and compares running times of code
Config

Accesses Perl configuration information
Env

Imports environment variables
English

Uses English or awk names for punctuation variables
FindBin

Finds path of currently executing program
Getopt::Long

Provides extended processing of command-line options
Getopt::Std

Processes single-character switches with switch clustering
lib

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Manipulates @INC at compile time
Shell

Runs shell commands transparently within Perl
strict

Restricts unsafe constructs
Symbol

Generates anonymous globs; qualifies variable names
subs

Predeclares subroutine names
vars

Predeclares global variable names

B.2.2 General Programming: Error Handling and Logging

Carp

Generates error messages
diagnostics

Forces verbose warning diagnostics
sigtrap

Enables stack backtrace on unexpected signals
Sys.:Syslog

Provides Perl interface to UNIX syslog (3) calls

B.2.3 General Programming: File Access and Handling

Cwd

Gets pathname of current working directory
DirHandle

Supplies object methods for directory handles
Fentl

Loads the C Fentl.h defines
File::Basename

Parses file specifications
File::CheckTree

Runs many tests on a collection of files
File::Copy

Copiesfiles or filehandles
File::Find

Traverses afiletree
File::Path

Creates or removes a series of directories
FileCache

K eeps more files open than the system permits
FileHandle

Supplies object methods for filehandles
SelectSaver

Saves and restores selected filehandles

B.2.4 General Programming: Classes for I/O Operations

(0]

Top-level interfaceto 10::* classes
1O::File

Object methods for filehandles
|O::Handle

Object methods for 1/0 handles
1O::Pipe

Object methods for pipes
1O::Seekable

Seek-based methods for I/O objects
1O::Select

Object interface to select
| O::Socket

Object interface to sockets

B.2.5 General Programming: Text Processing and Screen Interfaces

locale

Uses POSI X locales for built-in operations
Pod::HTML

Converts POD datato HTML
Pod:: Text

Converts POD datato formatted ASCI| text
Sear ch::Dict

Searches for key in dictionary file
Term::Cap

Interfaces termcap
Term::Complete

Word-completion module
Text::Abbrev

Creates an abbreviation table from alist
Text::ParseWords

Parses text into an array of tokens
Text::Soundex

I mplements the Soundex Algorithm described by Knuth
Text::Tabs

Expands and unexpands tabs
Text::Wrap

Wraps text into a paragraph
B.2.6 Database Interfaces

AnyDBM File

Provides framework for multiple DBMs
DB_File

Provides access to Berkeley DB
GDBM _File

Providestied access to GDBM library

NDBM _File

Providestied accessto NDBM files
ODBM File

Provides tied access to ODBM files
SDBM _File

Provides tied access to SDBM files

B.2.7 Mathematics

I nteger

Does integer arithmetic instead of double precision
Math::BigFloat

Provides arbitrary-length, floating-point math package
Math::Biglnt

Provides arbitrary-length integer math package
Math::Complex

Provides complex numbers package

B.2.8 The World Wide Web

CGl

Interfaces web server (Common Gateway Interface)
CGl::Apache

Supports Apache's Perl module
CGl::Carp

Details log server errors with helpful context
CGl::Fast

Supports FastCGlI (persistent server process)
CGl::Push

Supports server push
CGl::Switch

Provides simple interface for multiple server types

B.2.9 Networking and Interprocess Communication

IPC::Open2

Opens a process for both reading and writing
IPC::Open3

Opens a process for reading, writing, and error handling
Net::Ping

Checks whether a host isonline
Socket

L oads the C socket.h defines and structure manipulators
Sys.:Hostname

Tries every conceivable way to get hosthame

B.2.10 Automated Access to the Comprehensive Perl Archive
Network

CPAN

Provides simple interface to CPAN
CPAN::FirstTime

Provides utility for creating CPAN configuration file
CPAN::Nox

Runs CPAN while avoiding compiled extensions

B.2.11 Time and Locale

Time::Local

Efficiently computes time from local and GMT time
18N::Collate

Compares 8-bit scalar data according to the current locale

B.2.12 Object Interfaces to Built-in Functions

Class::Struct
Declares struct-like datatypes as Perl classes
File::stat

Provides object interfaceto st at function

Net::hostent

Provides object interface to get host * functions
Net::netent

Provides object interface to get net * functions
Net::protoent

Provides object interface to get pr ot o* functions
Net::servent

Provides object interface to get ser v* functions
Time::gmtime

Provides object interfaceto gnt i me function
Time::localtime

Provides object interfaceto | ocal t i ne function
Time:tm

Providesinternal object for Ti me: : {gm | ocal }ti ne
User::grent

Provides object interface to get gr * functions
User::pwent

Provides object interface to get pw* functions

B.2.13 For Developers: Autoloading and Dynamic Loading

AutoL oader

L oads functions only on demand
AutoSplit

Splits a package for autoloading
Devdl::SdfStubber

Generates stubsfor aSel f Loadi ng module
DynalL oader

Provides automatic dynamic loading of Perl modules
SelfL oader

L oads functions only on demand

B.2.14 For Developers: Language Extensions and Platform
Development Support
blib

Finds blib directory structure during module builds

ExtUtils;:Embed

Provides utilities for embedding Perl in C programs
ExtUtils::Install

Installs files from here to there
ExtUtils::Liblist

Determines libraries to use and how to use them
ExtUtils::MakeM aker

Creates a Makefile for a Perl extension
ExtUtils::Manifest

Provides utilities to write and check a MANIFEST file
ExtUtils::Miniper|

Writes the C code for perlmain.c
ExtUtils:;:Mkbootstrap

Makes a bootstrap file for use by Dynal_oader
ExtUtils::Mksymlists

Writes linker-option files for dynamic extension
ExtUtils::MM_0OS2

Provides methods to override UNIX behavior in Ext Ut i | s: : MakeMaker
ExtUtils::MM _Unix

Provides methods used by Ext Ut i | s: : MakeMaker
ExtUtils:MM_VMS

Provides methods to override UNIX behavior inExt Ut i | s: : MakeMaker
ExtUtils::testlib

Fixes @INC to use just-built extension
Opcode

Disables opcodes when compiling Perl code
ops

Provides pragmafor use with Opcode module
POSI X

Interfaces to |EEE Std 1003.1
Safe

Creates safe namespaces for evaluating Perl code
Test::Harness

Runs Perl standard test scripts with statistics
vmsish

Enables VM S-specific features

B.2.15 For Developers: Object-Oriented Programming Support

Exporter

Provides default import method for modules
over|oad

Overloads Perl's mathematical operations
Tie::RefHash
Provides base-class definitions for tied hashes with references as keys
Tie:Hash
Provides base-class definitions for tied hashes
Tie::Scalar
Provides base-class definitions for tied scalars
Tie::StdHash
Provides base-class definitions for tied hashes
Tie::StdScalar

Provides base-class definitions for tied scalars
Tie::SubstrHash

Provides fixed-table-size, fixed-key-length hashing
UNIVERSAL

Provides base-class definitions for all classes

Previous: B.1 Library Learning Perl on Win32 Next: B.3 CPAN: Beyond the
Terminology Systems Standard Library

B.1 Library Terminology Book B.3 CPAN: Beyond the
Index Standard Library

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: B.2 Standard Appendix B | Next: B.4 Win32 Extensions
Modules Librariesand Modules

B.3 CPAN: Beyond the Standard Library

If you don't find an entry in the standard library that fits your needs, someone still may have written code
that will be useful to you. Many superb library modules exist that are not included in the standard
distribution, for various practical, political, and pathetic reasons. To find out what is available, you can
look at the Comprehensive Perl Archive Network (CPAN). See the discussion of CPAN in Chapter 1,

I ntroduction.

Here are the magjor categories of modules available from CPAN:
« Modulelisting format
« Perl core modules, Perl language extensions, and documentation tools
« Development support
« Operating system interfaces
« Networking, device control (modems), and interprocess communication
» Datatypesand datatype utilities
« Database interfaces
o User interfaces
« Interfacesto or emulations of other programming languages
« Filenames, filesystems, and file locking (see aso filehandles)
« String processing, language text processing, parsing, and searching
« Option, argument, parameter, and configuration-file processing
« Internationalization and locale
« Authentication, security, and encryption
o World Wide Web, HTML, HTTP, CGI, and MIME

e Server and daemon utilities

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

« Archiving, compression, and conversion

« Images, pixmap and bitmap manipulation, drawing and graphing
« Mail and Usenet news

« Control-flow utilities (callbacks and exceptions)

« Filehandle, directory handle, and input/output stream utilities

« Microsoft Windows modules

o Miscellaneous modules

Previous: B.2 Standard Learning Perl on Win32 | Next: B.4 Win32 Extensions]|
Modules Systems
B.2 Standard Modules Book B.4 Win32 Extensions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

@Leaming Perl on Win32 Systems

Previous: B.3 CPAN: Beyond ~ Appendix B [Next: C. Networking Clients]
the Standard Library Librariesand Modules

B.4 WIin32 Extensions

We've said that extensions consist of amodule written in Perl, and alibrary written in C or C++. Win32 extensions are valuable
tools because they provide Windows-specific functionality that otherwise wouldn't be present in the base language. The
following list details the extensions included with the ActiveState distribution (these are also available for the standard
distribution viathe libwin32 distribution, available from CPAN).

OLE (Win32::OLE in the libwin32 distribution)

Access to OLE automation and OLE variants
Win32::Process
Access to extended Win32 process creation and management; includes methods to kill, suspend, resume, and set the
priorities of processes
Win32::Semaphore
Provides access to Win32 semaphores and synchronization
Win32::IPC
Provides sychronization for objects of type Semaphore, Mutex, Process, or ChangeNotify
Win32::Mutex

Provides access to Win32 mutex objects
Win32::ChangeNotify
Provides access to Win32 change-notification objects, letting you do things like monitor changes to directory trees
Win32::EventLog
Provides access to the Windows NT event log
Win32::Registry
Provides access to the Windows NT registry
Win32::NetAdmin
L ets you manipulate users and groups
Win32::File
Letsyou get and set file attributes
Win32::Service
Provides a service control interface: lets you start, pause, resume, and stop services
Win32::NetResource
Lets you work with shares, both as a client and a server
Win32::FileSecurity

Letsyou work with file permissionson NTFS
Win32::Error

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Provides an interface to the system error codes and messages
The following Win32 extensions are not included in (but are readily available for) the ActiveState distribution, and are
included with the libwin32 distribution.
Win32::Internet

Provides an interfaceto HTTP and FTP
Win32::0DBC

Provides an interface to ODBC data sources
Win32::Shortcut

Letsyou create Explorer (shell) shortcuts
Win32::Sound

Plays .wav files or uses system sounds

Win32::AdminMisc
Provides an extension of W n32: : Net Admi n that adds user impersonation, password manipulation, and DNS
administration

Win32::Clipboard

Accesses the Windows NT clipboard
Win32::Console

Interfaces to console screen drawing; lets you do colors, boxes, etc.
Win32::Pipe
Provides access to named pipes on Windows NT
In addition to these extensions, a Win32 extension is included with the ActiveState distribution, and is available as part of

libwin32. The Win32 extension provides the following list functions (we've given a brief code snippet to illustrate how you
might code each one):

Win32::GetL astError

Returnsthe last error value generated by a call to aWin32 API function:

use Wn32;
$err = Wn32::GetLastError();

Win32::BuildNumber

Returns the build number of Perl for Win32:

use Wn32:
$bui |l d = Wn32:: Bui | dNunber (); # $build has 306 (or whatever it is)

Win32::LoginName

Returns the username of the owner of the current perl process:

use Wn32,
$user = Wn32:: Logi nNane(); # $user has eri ko (account nanme of
current user)

Win32::NodeName

Returns the Microsoft Network node name of the current machine:

use W n32;
$node = Wn32:: NodeNane(); # $node has machi ne nane

Win32::DomainName

Returns the name of the Microsoft Network domain that the owner of the current perl processislogged into:

use Wn32;
$dormai n = Wn32::Domain(); # $donmain has network domai n nane (not
TCP/ | P domai n nane)

Win32::FsType

Returns a string naming the filesystem type of the currently active drive:

use Wn32;

$fs = Wn32:: FsType(); # $fs contains fs type, |like NTFS or FAT
Win32::GetCwd

Returns the current active drive and directory; this function does not return a UNC path:

use Wn32;

$cwd = Wn32:: Getowd(); # $cwd has current working directory

Win32::SetCwd NEW_DIRECTORY

Sets the current active drive and directory; this function does not work with UNC paths:

use Wn32;

Wn32::SetOnd("c:/tenmp") || die "SetOnd: $!'";
Win32::GetOSVersion

Returns an array ($st ri ng, $maj or , $ni nor , $bui | d, and $i d). $st ri ng isadescriptive string, $maj or isthe
major version of the operating system, $mi nor isthe minor version of the operating system, $bui | d isthe build
number of the OS, and $i d isadigit that denotes the operating system variety (zero for Win32s, one for Windows 95,
and two for Windows NT):

use Wn32,

($string, $major, $mnor, $build, $id) = Wn32:: Gt OSVersion();

@s = gM W n32s, Wn95, WnNT);

print "$os[$id] $major\.$mnor $string (Build $build)\n";

The output on aWindows NT 4.0 systemis:

WnNnNT 4.0 Service Pack 3 (Build 1381)
Win32::FormatM essage ERROR_CODE

Converts the supplied Win32 error bitmap (returned by Get Last Er r or) to a descriptive string:

use Wn32;

use Wn32::WnError; # for error constants

$nsg = W n32:: For mat Message(ERROR_| NTERNAL_ERROCR) ;

$nsg contains the string: There is not enough space on di sk

Win32::Spawn COMMAND, ARGS, PID

Spawns a new process using the supplied COMVAND, passing in arguments in the string ARGS; the pid of the new
processis stored in Pl D

use Wn32,
W n32:: Spawn(' c:/nt/systenB2/ not epad. exe', undef, $pid); # $pid has
new pi d of notepad

Win32::LookupAccountName SY STEM, ACCOUNT, DOMAIN, SID, SIDTY PE

Looks up ACCOUNT on SYSTEMand returns the domain name, SI D, and SI D type
Win32::LookupAccountSID SYSTEM, SID, ACCOUNT, DOMAIN, SIDTYPE

Looks up Sl D (Security ID) on SYSTEMand returns the account name, domain name, and Sl D type:

use Wn32,
W n32: : LookupAccount SI D(undef, $sone_sid, $acct, $donmin, $sidtype);

Win32::InitiateSystemShutdown MACHINE, MESSAGE, TIMEOUT, FORCECLOSE, REBOOT

Shuts down the specified MACHI NE (undef means local machine), notifying users with the supplied MESSAGE, within
the specified TI MEQUT (in seconds) interval. Forces closing of all documents without prompting the user if
FORCECLGCSE istrue, and reboots the machine if REBOOT is true (be careful experimenting with this one):

use Wn32,
Wn32::1nitiateSystenthutdown(undef, "Bye", 15, undef, 1);
try to shut down | ocal machine

Win32::AbortSystemShutdown MACHINE

Aborts a shutdown on the specified MACHI NE:

use W n32;
W n32: : Abort Syst enShut down(undef) ;
stop a shutdown on | ocal machine

Win32::GetTickCount
Returns the Win32 tick count, which is the number of milliseconds that have elasped since the system started:

use Wn32,
$tick = Wn32:: GetTi ckCount () ;
tick has nunber of mlliseconds since system start

Win32::IsWinNT

Returns nonzero if the operating system is Windows NT:

use W n32;
$winnt = Wn32::IsWnNT(); # true if running on Wndows NT

Win32::1sWin95

Returns nonzero if the operating system is Windows 95:

use Wn32,
$Wi n95 = Wn32::1sWn95(); # true if running on Wndows 95

Win32::ExpandEnvironmentStrings STRING

Takesthe STRI NG and builds areturn string that has environment-variabl e strings replaced with their defined values:

use W n32;
$pat h = Wn32: : ExpandEnvi ronment Strings(' %4°PATHY%) ; # $path contai ns expanded PATH

Win32::GetShortPathName LONGPATHNAME

Returns the short (8.3) pathname for LONGPATHNAME:

use Wn32,
$short = Wn32:: Get Short Pat hNane(' words. secret'); # $short now has 8.3 nane
(WORDS~1. SEC)

Win32::GetNextAvailDrive

Returnsastring in the form of <d>: \ where <d> isthefirst available drive letter:

use Wn32;
$drive = Wn32:: Get Next Avai Il Drive();, # $drive has first drive (e.g,. B:)

Previous: B.3 CPAN: Beyond Learning Perl on Win32 [Next: C. Networking Clients|
the Standard Library Systems
B.3 CPAN: Beyond the Book C. Networking Clients
Standard Library Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: B.4 Win32 Appendix C Next: C.2 A
Extensions Webget Client

C. Networking Clients

Contents:
A Simple Client
A Webget Client

Few computers (or computer users, for that matter) are content to remain isolated from the rest of the
world. Networking, once mostly limited to government research labs and computer science departments
at major universities, is now available to virtually everyone, even home computer users with a modem
and dial-up SLIP or PPP service. More than ever, networking is now used daily by organizations and
individuals from every walk of life. They use networking to exchange email, schedule meetings, manage
distributed databases, access company information, grab weather reports, pull down today's news, chat
with someone in adifferent hemisphere, or advertise their company on the Web.

These diverse applications all share one thing in common: they use TCP networking, the fundamental
protocol that links the Net together.[1] And we don't just mean the Internet, either. Firewalls aside, the
underlying technology is the same whether you're connecting far across the Internet, between your
corporate offices, or from your kitchen down to your basement. As aresult, you only have to learn one
technology for all sorts of application areas.

[1] Actudly, IP (Internet Protocol) ties the Internet together, but TCP/IP isjust alayer on
top of IP.

How can you use networking to let an application on one machine talk to a different application, possibly
on atotally different machine? With Perl, it's pretty easy, but first you should probably know alittle bit
about how the TCP networking model works.

Even if you've never touched a computer network before in your whole life, you already know another
connection-based system: the telephone system. Don't let fancy words like "client-server programming"
put you off. When you see the word "client,” think “caller"; when you see the word "server," think
"responder.” If you ring someone up on the telephone, you are the client. Whoever picks up the phone at
the other end isthe server.

Programmers with a background in C programming may be familiar with sockets. A socket isthe
interface to the network in the same sense that afilehandle is the interface to files in the filesystem. In
fact, for the ssmple stream-based clients we're going to demonstrate below, you can use a socket handle

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

just as you would afilehandle.[2]
[2] WEell, amost; you can't seek on a socket.

Y ou can read from the socket, write to it, or both. That's because a socket is a special kind of
bidirectional filehandle representing a network connection. Unlike normal files created viaopen,
sockets are created using the low-level socket function.

L et's squeeze a little more mileage out of our telephone model. When you call into a big company's
telephone switchboard, you can ask for a particular department by one name or another (such as
Personnel or Human Resources), or by an exact number (like extension 213). Think of each service
running on a computer as a department in alarge corporation. Sometimes a particular service has several
different names, such as both http and www, but only one number, such as 80. That number associated
with a particular service nameisits port. The Perl functions get ser vbynane and get ser vbyport
can be used to look up a service name given its port number, or vice versa. Table C.1 lists some standard

TCP services and their port numbers.

Table C.1: Standard TCP Services and Their Port Numbers
Service |Port | Purpose

echo 7 Accepts al input and echoes it back

discard |9 Accepts anything but does nothing with it

daytime |13 | Returnsthe current date and timein local format

ftp 21 |Server for file-transfer requests

telnet 23 | Server for interactive telnet sessions

smtp 25 |Simple mail transfer protocol; the mailer daemon

time 37 | Return number of seconds since 1900 (in binary)
http 80 | TheWorld Wide Web server

nntp 119 | The news server

Although sockets were originally developed for Berkeley UNIX, the overwhelming popularity of the
Internet has induced virtually all operating-systems vendors to include socket support for client-server
programming. For this book, directly using thesocket functionisabit low level. We recommend that
you use the more user-friendly | O. : Socket nodul e,[3] which well usein all our sample code.
Consequently, we'll also be employing some of Perl's object-oriented constructs. For a brief introduction
to these constructs, see Chapter 18, CGI Programming. The perltoot documentation (starting with Perl
5.004) and Chapter 5 of Programming Per| offer a more complete introduction to object-oriented
programming in Perl.

[3] | O : Socket isincluded as part of the standard Perl distribution as of the 5.004 release
and the current ActiveState at the time of thiswriting. If you're running an earlier version of

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Perl, just fetch | O : Socket from CPAN.

We don't have the space in this book to provide afull TCP/IP tutorial, but we can at least present afew
simple clients. For servers, which are a bit more complicated, see Chapter 6 of Programming Pexl.
Generally speaking, writing serversin Perl on Windows NT isadifficult task because Perl doesn't
currently offer support for threads, and there's no easy way to implement support for multiple
simultaneous clients. This may change in the future, so stay tuned for future Per| releases.

C.1 A Simple Client

For our simplest client, we'll choose arather boring service, caled "daytime." The daytime server sends a
connecting client one line of data containing the time of day on that remote server, then closes the
connection.

Here's the client:

use | O : Socket;
$remote = 1O : Socket: : | NET- >new

Proto => "tcp",

Peer Addr => "l ocal host",

Peer Port => "daytine(13)",

)

or die "cannot connect to daytine port at | ocal host";
while (<$renote>) { print }

When you run this program, you should get something back that looks like this:
Thu May 8 11:57:15 1997

Here are what those parameters to the new constructor mean:
Proto

The protocol to use. In this case, the socket handle returned will be connected to a TCP socket,
because we want a stream-oriented connection, that is, one that acts pretty much like aplain old
file. Not all sockets are of thistype. For example, the UDP protocol can be used to make a
datagram socket, used for message-passing.

Peer Addr

The name or Internet address of the remote host the server is running on. We could have specified
alonger name like www.perl.com, or an address like 204.148.40.9. For demonstration purposes,
we've used the special hostname | ocal host , which should always mean the current machine
you're running on. The corresponding Internet address for localhost is 127.0.0.1, if you'd rather use
that.

Peer Por t

Thisisthe service name or port number we'd like to connect to. We could have gotten away with
using just dayt i me on systems with awell-configured system servicesfile,[4] but just in case,

we've specified the port number (13) in parentheses. Using just the number would also have

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

worked, but numbers as constants make careful programmers nervous.

[4] The system servicesfileisin %windir%/system32/driver s/etc/services under
Windows NT.

Notice how the return value from the new constructor is used as afilehandle in the whi | e loop? That
exampleis anindirect filehandle, which isascalar variable containing a filehandle. Y ou can use this
filehandle as you would a normal filehandle. For example, you can read one line from it this way:

$li ne = <$handl e>;

Or al remaining lines from it thisway:
@i nes = <$handl e>:

And send aline of datato it thisway:
print $handl e "sone data\n";

Previous: B.4 Win32 Learning Perl on Win32 Next: C.2 A
Extensions Systems Webget Client
B.4 Win32 Extensions Book C.2 A Webget Client
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

| Previous: C.1 A Simple Client| Appendix C Next: D. Topics We Didn't
Networking Clients Mention

C.2 A Webget Client

Here'sasimple client that contacts a remote server and fetches alist of documents from it. Thisisamore
interesting client than the previous one because it sends aline of data to the server before fetching that
server's response.

use | O : Socket;

unless (@RGY > 1) { die "usage: $0 host docunment ..." }
$host = shift(G\RGQV);

foreach $docunent (@GARGV) {

$renote = | O : Socket:: | NET->new(Proto => "tcp",

Peer Addr => $host,

PeerPort => "http(80)",

)

unl ess ($renote) { die "cannot connect to http daenon on $host" }
$r enot e- >aut of | ush(1);

print $renote "CGET $docunment HTTP/ 1.0\ n\n";

while (<$renote>) { print }

cl ose $renvote;

}

The web server handling the http service is assumed to be at its standard port, number 80. If the server
you're trying to connect to is at a different port (say, 8080), you should give Peer Port => 8080 as
the third argument to new() . The aut of | ush method is used on the socket because otherwise the
system would buffer up the output we sent.

Connecting to the server is only the first part of the process: after you have the connection, you have to
use the server's language. Each server on the network has its own little command language that it expects
asinput. The string that we send to the server starting with GET isin HTTP syntax. In this case, we
simply request each specified document. Y es, we really are making a new connection for each document,
even though it's the same host. That's the way it works with HTTP. (Recent versions of web browsers
may request that the remote server leave the connection open alittle while, but the server doesn't have to
honor such arequest.)

WEe'I call our program webget.plx. Here's how it might execute:

conmmand_pronpt > perl webget. pl x www. perl.com /guanaco. ht m
HTTP/ 1.1 404 File Not Found

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Dat e: Thu, 08 May 1997 18:02: 32 GVI

Server: Apache/ 1. 2b6

Connection: close

Content-type: text/htm

<HEAD><TI TLE>404 Fil e Not Found</ Tl TLE></ HEAD>

<BODY><H1>Fi | e Not Found</H1>

The requested URL /guanaco. html was not found on this server.<P>
</ BODY>

OK, so the program is not very interesting, because it didn't find that particular document. But along
response wouldn't have fit on this page.

For amore full-featured version of this program, you should look for the Iwp-request program included
with the LWP modules from CPAN.

Y ou might also want to investigate the W n32: : | nt er net extension module that provides easy
accessto the HTTP and FTP protocols. W n32: : | nt er net isbundled with libwin32, or is available
separately for those using the ActiveState distribution.

| Previous: C.1 A Simple Client| Learning Perl on Win32 Next: D. Topics We Didn't
Systems Mention
C.1 A Simple Client Book D. Topics We Didn't Mention
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: C.2 A Webget Appendix D Next: D.2 The
Client Debugger

D. Topics We Didn't Mention

Contents:
Full Interprocess Communications

The Debugger

The Command Line

Other Operators

Many, Many More Functions

Many, Many Predefined Variables
Symbol Table Manipulation With * FRED
Additional Regular Expression Features
Packages

Embeddible, Extensible

And Other Stuff

Yes, it'samazing. A book thislong, and some things still weren't covered. The footnotes contain
additional helpful information.

The purpose of this section is not to teach you about the things listed here, but merely to provide alist.

Y ou'll need to go to Programming Perl, the perl documentation, the Perl FAQ, the Perl for Win32 FAQ,
the HTML documentsin CPAN's doc directory, the Usenet support groups, or the Perl mailing lists to get
further information.

D.1 Full Interprocess Communications

Y es, Perl can do networking. Beyond the TCP/IP stream sockets discussed in Appendix C, Networking
Clients, Perl aso supports UDP-based message passing, named and anonymous pipes, semaphores,
mutexes, process control, |PC, signal handling, and more. See Chapter 6 of Programming Perl or the

perlipc documentation for standard modules, and the networking section of the CPAN modules directory
for third-party modules.

Previous: C.2 A Webget Learning Perl on Win32 Next: D.2 The
Client Systems Debugger

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

C.2 A Webget Client Book D.2 The Debugger
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

A#:Leaming Perl on Win32 Systems

Previous: D.1 Full . A_EI3_ef‘diX D [Next: D.3 The Command Line|
Interprocess Communications TopicsWe Didn't Mention

D.2 The Debugger

Perl has awonderful source-level debugger, which the perldebug documentation will tell you all about.

Previous: D.1 Full Learning Perl on Win32 [Next: D.3 The Command Line|
Interprocess Communications Systems
D.1 Full Interprocess Book D.3 The Command Line
Communications Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

A#:Leaming Perl on Win32 Systems —

Previous: D.2 Appendix D [Next: D.4 Other Operators|
The Debugger TopicsWeDidn't Mention

D.3 The Command Line

The Perl interpreter has a plethora of command-line switches. Check out the perlrun documentation for
information.

Previous: D.2 Learning Perl on Win32 [Next: D.4 Other Operators|
The Debugger Systems
D.2 The Debugger Book D.4 Other Operators
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.3 The Command Appendix D Next: D.5 Many, Many More
Line TopicsWe Didn't Mention Functions

D.4 Other Operators

The comma operator, for one. And there are the bit manipulation operators &, | , *, and ~, the ternary ?\
. operator,andthe.\|. and.\| .\ | . flip-flop operators, just to name afew.

And there are some variations on operators, like using the g modifier on match. For this and more, see
perlop.

Previous: D.3 The Command Learning Perl on Win32 Next: D.5 Many, Many More
Line Systems Functions
D.3 The Command Line Book D.5 Many, Many More
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.4 Other . ﬁw ‘ Next: D.6 Many, Many
Operators TopicsWeDidn't Mention Predefined Variables

D.5 Many, Many More Functions

Yes, Perl hasalot of functions. We're not going to list them here, because the fastest way to find out
about them is to read through the function section of Programming Perl or the perlfunc documentation
and look at anything you don't recognize that sounds interesting. Here are afew of the more interesting
ones.

D.5.1 grep and map

The gr ep function selects elements from its argument list, based upon the result of an expression that's
repeatedly evaluated for itstruth value, with the $_ variable successively set to each element in the list.
For example:

@i gpowers = grep $ > 6, 1, 2, 4, 8, 16; # gets (8, 16)
@ nanmes = grep /"b/, gMfred barney betty w | m);
@extfiles = grep -T, <*>;

The map operator is similar, but instead of selecting or rejecting items, it merely collects the results of
the expression (evaluated in alist context):

@ore =map $ + 3, 3, 5 7; # gets 6, 8, 10

@quares = map $ * $, 1..10; # first 10 squares

@hat = map "$ \n", @his; # like "unchop"

@riangle = map 1..$_, 1..5; # 1,1,2,1,2,3,1,2,3,4,1,2,3,4,5
%izes =map { $, -s } <*> # hash of files and sizes

D.5.2 The eval Operator (and s///e)

Y es, you can construct a piece of code at runtime and then eval it. This process forces a dynamic
compilation of the code inside the eval . This compilation is actually rather useful, because you can get
some compile-time optimizations (like a compiled regular expression) at runtime. Y ou can also useit to
trap otherwise fatal errorsin a section of code: afatal error insidetheeval merely exitstheeval and
givesyou an error status.

For example, here's aprogram that reads a line of Perl code from the user and then executesit asif it
were part of the Perl program:

print "code line: ";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

chop($code = <STDI N>) ;
eval $code; die "eval: $@ if $@

Y ou can put Perl code inside the replacement string of a substitute operator with the e flag. Thisis handy
If you want to construct something complicated for the replacement string, such as calling a subroutine
that returns the results of a database |ookup. Here's aloop that increments the value of the first column of
aseries of lines:

while (<>) {
s/IMN(\S+)/$1+1l/e; # $1+1 is Perl code, not a string
print;

}

Another use of eval isasan error-trapping mechanism:

eval {
&sone_hairy _routine_that_m ght _di e(@rgs);

3

i f ($@ {

print "oops... sonme_hairy died with $@;
}

Here, $@will be empty aslong astheeval block worked; otherwise, it will have the text of the die
message.

Previous: D.4 Other Learning Perl on Win32 Next: D.6 Many, Many
Operators Systems Predefined Variables
D.4 Other Operators Book D.6 Many, Many Predefined
Index Variables

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.5 Many, Many . AEM _ Next: D.7 Symbol Table
More Functions TopicsWeDidn't Mention Manipulation With *FRED

D.6 Many, Many Predefined Variables

You've seen afew predefined variables, like$_. Well, alot more exist. Pretty much every punctuation
character has been pressed into service. The perlvar documentation will be of help here. Also, see the

Engl i sh modulein perlmod .

Previous: D.5 Many, Many Learning Perl on Win32 Next: D.7 Symbol Table
More Functions Systems Manipulation With *FRED
D.5 Many, Many More Book D.7 Symbol Table
Functions Index Manipulation With * FRED

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.6 Many, Many . ﬁw ‘ Next: D.8 Additional Regular
Predefined Variables TopicsWeDidn't Mention Expression Features

D.7 Symbol Table Manipulation With *FRED

You can make b an dliasfor a with*b = *a. This statement means that $a and $b refer to the same
variable, asdo @ and @, and even filehandles and formatsa and b. You can also localize* b inside a
block with | ocal (*b) , letting you have local filehandles, formats, and other things. Pretty fancy stuff,
but useful when you need it.

Previous: D.6 Many, Many Learning Perl on Win32 Next: D.8 Additional Regular
Predefined Variables Systems Expression Features
D.6 Many, Many Predefined Book D.8 Additional Regular
Variables Index Expression Features

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.7 Symbol Table . ﬁw ‘ Next: D.9
Manipulation With *FRED TopicsWeDidn't Mention Packages

D.8 Additional Regular Expression Features

Regular expressions can contain extended syntax (where whitespace is optional, so aregular expression
can be split over multiple lines, and can contain regular Perl comments), and can have positive and
negative lookahead. The syntax isabit ugly, so rather than scare you off here, go look in Programming

Perl, or see the perlre documentation. Jeffrey Friedl's book, Mastering Regular Expressions (published
by O'Rellly & Associates), explains all of this and much more.

Previous: D.7 Symbol Table Learning Perl on Win32 Next: D.9
Manipulation With *FRED Systems Packages
D.7 Symbol Table Book D.9 Packages
Manipulation With * FRED Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.8 Additional . AEM ' Next: D.10 Embeddible,
Regular Expression Features TopicsWeDidn't Mention Extensible

D.9 Packages

When multiple people work on a project, or if you're slighly schizophrenic, you can carve up the variable
namespace using packages. A packageisjust a hidden prefix put in front of most variables (except
variables created with the my operator). By changing the prefix, you get different variables. Here's a brief
example:

$a = 123;

$mai n: : a++;
package fred;
$a = 456;

this is really $main::a
sane vari able, now 124
now the prefix is "fred"
this is $fred::a

print $a - $main::a; prints 456-124

package nai n; back to original default
print $a + $fred::a; # prints 124+456

HoHHHEHH

So, any name with an explicit package nameisused asis, but all other names get packaged into the
current default package. Packages are local to the current file or block, and you always start out in
package mai n at the top of afile. For details, the perlsub documentation will help here.

Previous: D.8 Additional Learning Perl on Win32 Next: D.10 Embeddible,
Regular Expression Features Systems Extensible
D.8 Additional Regular Book D.10 Embeddible, Extensible
Expression Features Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.9 Appendix D | Next: D.11 And Other Stuff|
Packages TopicsWeDidn't Mention

D.10 Embeddible, Extensible

The guts of Perl is defined well enough that it becomes arelatively straightforward task to embed the
Perl compiler/interpreter inside another application, or to extend Perl by connecting it with arbitrary code
written in C/C++ (or having a C-like interface). In fact, about a third of the on-line documentation for
Perl is specifically devoted to embedding and extending Perl. The perlembed , perlapi, perlxs, perixstut ,
perlguts, and perlcall documenation pages cover these topicsin depth.

And because Perl isfreely reusable, you can write your proprietary spreadsheet application, using an
embedded Perl to evaluate the expressions in your spreadsheet cells, and not have to pay one cent in
royalties for all that power. Joy.

D.10.1 Security Matters

Perl was designed with security in mind. See Chapter 6 of Programming Perl or the perlsec

documentation about taint checking. Thisisthe kind of security where you trust the writer of the
program, but not the person running it, such as is often the case with server-launched programs. The
Saf e module, covered in the Saf e documentation and Chapter 7 of Programming Perl, provides

something else entirely: the kind of security necessary when executing (as with eval) unchecked code.

D.10.2 Switch or Case Statements

No, Perl doesn't really have these statements, but you can easily make them by using more basic
constructs. See Chapter 2 of Programming Per| or the perlsyn documentation.

D.10.3 Direct I/O: sysopen, sysread, syswrite, and sysseek

Sometimes Perl's high-level 1/0 isabit too high-level for what you need to do. Chapter 3 of
Programming Perl and the perlfunc documentation cover direct access to the raw system callsfor 1/O.

D.10.4 The Perl Compiler

Although we speak of Perl as compiling your code before executing it, this compiled form is not native
object code. Malcolm Beatie's Perl compiler project can produce standal one byte code or compilable C
code out of your Perl script. The 5.005 release of Perl is expected to have native code generation

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

included as part of the standard release. See the material in the perlfag3 documentation about this.

D.10.5 Database Support

Yes, Perl can interface directly with your commercial database servers, including Oracle, Sybase,
Informix, and ODBC, just to name afew. See the database section in the CPAN modules directory for
the relevant extension modules.

D.10.6 Complex Data Structures

Using references, you can build data structures of arbitrary complexity. These are discussed in Chapter 4
of Programming Perl, and in the perllol , perldsc, and perlref documentation. If you prefer an
object-oriented data structure, see Chapter 5 of Programming Perl, or the perltoot and perlobj
documentation.

D.10.7 Function Pointers

Per| can store and pass pointers to functions viathe\ & uncnane notation, and call them indirectly via
&$f uncpt r ($ar gs) . You can even write functions that create and return new anonymous functions,
just as you could in languages like Lisp or Scheme. Such anonymous functions are often called closures.

See Chapter 4 of Programming Perl and the perlsub and perlfaq7 documentation for details.

Previous: D.9 Learning Perl on Win32 | Next: D.11 And Other Stuff|
Packages Systems
D.9 Packages Book D.11 And Other Stuff
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch04_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch04_03.htm#PERL2-CH-4-SECT-3.6
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch04_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Previous: D.10 Embeddible, Appendix D
Extensible TopicsWe Didn't Mention

D.11 And Other Stuff

Per| just keeps getting more powerful and more useful, and it's quite an effort to keep the documentation
up to date. (Who knows? By the time this book hits the shelves, there could be a Visual Perl.) But in any

case, thanks, Larry!

Previous: D.10 Embeddible, Learning Perl on Win32
Extensible Systems
D.10 Embeddible, Extensible Book
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: Symbols and Numbers

\1 and $1 variables
7.3.2.3. Parentheses as memory

7.4.5. Special Read-Only Variables
8.3 filename format : 10.3. Using Pathnames and Filenames

& & operator as control structure: 9.6. & &, ||, and ?: as Control Structures

**= gperator : 2.6.1. Binary Assignment Operators
* (asterisk)
** (exponentiation) operator : 2.4.1. Operators for Numbers
as prefix : D.7. Symbol Table Manipulation With * FRED
in pack format string : 16.2. Packing and Unpacking Binary Data

in regular expressions : 7.3.2.2. Multipliers
@ (at sign)

@_array
1.6.9. Making It aBit More Modular

8.4. Arguments

as array name prefix : 1.6.5. More than One Secret Word
asformat field delimiter : 11.4.1. Text Fields
as prefix for array variables : 3.3. Variables

at sign

@*, informats : 11.4.3. Multiline Fields
" (backquotes) as command invocation : 14.2. Using Backquotes
\ (backslash) : 10.3. Using Pathnames and Filenames

escape character : 2.3.1. Single-Quoted Strings

escapes : 2.3.2. Double-Quoted Strings

in regular expressions : 7.3.1. Single-Character Patterns
I (bang)
I= operator : 2.4.2. Operators for Strings

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

logical not operator : 1.6.9. Making It a Bit More Modular
[(Ieft bracket) in double-quoted strings : 3.7. Variable Interpolation of Arrays
" (caret)
as anchor in regular expressions : 7.3.3. Anchoring Patterns
asfilled-field in formats: 11.4.4. Filled Fields
: (colon)
label suffix : 9.4. Labeled Blocks
matching with split() : 7.6.1. The split Function

, (comma)
array literal character : 3.2. Literal Representation

operator : D.4. Other Operators

{} (curly braces)
in double-quoted strings : 2.6.4. Interpolation of Scalarsinto Strings

in regular expressions : 7.3.2.2. Multipliers

required in if statements: 4.2. The if/unless Statement

$ (dollar sign)

$1 asregular expression memory access : 7.4.5. Special Read-Only Variables

$& (match string) : 7.4.5. Special Read-Only Variables

$ (before-match string) : 7.4.5. Special Read-Only Variables

$" variable : 11.6.3. Changing the Top-of-Page Format Name

$"l variable : 17.5. Variable-Length (Text) Databases

$'\T variable: 10.6. The -x File Tests

$: variable: 11.4.4. Filled Fields

$=variable: 11.6.5. Changing the Position on the Page

$- variable : 11.6.5. Changing the Position on the Page

$% (special variable), example of : 1.6.14. Listing the Secret Words
$#fred (index of last element of @fred) : 3.4.2. Array Element Access
$ (after-match string) : 7.4.5. Special Read-Only Variables

$/ variable : 6.1. Input from STDIN

$~ variable : 11.6.2. Changing the Format Name

$ variable
default for filetests: 10.6. The -x File Tests

default for stat(), Istat() : 10.7. The stat Function
foreach statement and : 4.6. The foreach Statement

implicit assignment to when reading : 6.1. Input from STDIN
regular expression matching default : 7.2. Simple Uses of Regular Expressions
selecting other than with =~ operator : 7.4.1. Selecting a Different Target (the =~ Operator)
split() default : 7.6.1. The split Function
tr() default target : 15.5. Trandliteration
unlink() default : 13.1. Removing aFile

$avariable, as special in sort comparison routine : 15.4. Advanced Sorting

$b variable, as special in sort comparison routine : 15.4. Advanced Sorting

$_[0], distinct from $_: 8.4. Arguments

removing significance in strings : 2.6.4. Interpolation of Scalarsinto Strings

scalar variable prefix : 2.5. Scalar Variables

. (dot)

.. list construction operator : 3.2. Literal Representation

.= operator : 2.6.1. Binary Assignment Operators

in regular expressions : 7.3.1. Single-Character Patterns

= (equal sign)

== operator : 2.4.2. Operators for Strings

=> operator (CGlI) : 18.4.5. Fancier Calling Sequences

=~ operator : 7.4.1. Selecting a Different Target (the =~ Operator)
substitution and : 7.5. Substitutions

array assignment operator : 3.4.1. Assignment

assignment operator : 2.6. Scalar Operators and Functions

=~ operator
example of : 1.6.8. Making It Fair for the Rest
tr() and : 15.5. Trandliteration

> (greater than)
>= (greater than or equal to) operator : 2.4.2. Operators for Strings

greater than operator : 2.4.2. Operators for Strings
- (hyphen)
-= operator : 11.4.2. Numeric Fields
-- operator : 2.6.2. Autoincrement and Autodecrement
in regular expression ranges : 7.3.1. Single-Character Patterns

< (lessthan)
<=>: (see spaceship (<=>) operator)

<> : (see diamond operator)
<= (lessthan or equal to) operator : 2.4.2. Operators for Strings
format field character : 11.4.1. Text Fields
less than operator : 2.4.2. Operators for Strings
() (parentheses)
array literalsand : 3.2. Literal Representation
asmemory in regular expressions : 7.3.4. Precedence
chdir() and: 12.1. Moving Around the Directory Tree
forcing array context with : 3.4.1. Assignment
keys() and : 5.4.1. The keys Function
memory in regular expressions : 7.3.2.3. Parentheses as memory
print() and : 6.3.1. Using print for Normal Output
in regular expressions : 7.3.4. Precedence
values() and : 5.4.2. The values Function
% (percent sign)
associative array prefix
1.6.6. Giving Each Person a Different Secret Word
5.2. Hash Variables
modulus operator : 2.4.1. Operators for Numbers
+ (plus sign)
+= operator
A.3. Chapter 4, Control Structures
2.6.1. Binary Assignment Operators
++ operator
2.6.2. Autoincrement and Autodecrement

14.1. Using system and exec

open() and : 17.4. Fixed-Length Random-A ccess Databases

in regular expressions : 7.3.2.2. Multipliers
(pound sign)

comment character : 1.5. Basic Concepts

format field characters: 11.4.2. Numeric Fields
? (question mark) in regular expressions : 7.3.2.2. Multipliers
?. operator, as control structure: 9.6. & &, ||, and 2. as Control Structures
/usr/bin/perl line : 1.5. Basic Concepts

/ (slash)
changing regular expressions : 7.4.3. Using a Different Delimiter
choosing alternate to, in substitution : 7.5. Substitutions
regular expression delimiter : 7.2. Simple Uses of Regular Expressions
~ (tilde) in formats: 11.4.4. Filled Fields
| (vertical bar), open() and
1.6.12. Warning Someone When Things Go Astray
14.3. Using Processes as Filehandles
| (vertical bar)
format field characters: 11.4.1. Text Fields
in regular expressions : 7.3.2.4. Alternation
|| (logical-or) operator
as control structure : 9.6. & &, ||, and ?: as Control Structures
die() and: 10.4. A Slight Diversion: die
example of
A.7. Chapter 8, Functions
15.4. Advanced Sorting
introduced : 1.6.9. Making It a Bit More Modular

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: A

-A operator : 10.6. The -x File Tests

Abba: 15.5. Tranditeration

AbortSystemShutdown module : B.4. Win32 Extensions
access time, changing : 13.5. Modifying Timestamps
Active Data Objects : 19.3.1. Data-Access Objects
Active Message Library : 19.3. Using Automation Objects
ActiveState : 1.3.1. ActiveState Perl for Win32
ActiveState Tool Corporation : 1.1. History of Perl
ActiveX Data Objects: 17.6. Win32 Database Interfaces
AddConnection : 12.5. Reading a Directory Handle
addition, operator for : 2.4.1. Operators for Numbers

address labels, and formats, examples of : 11.3. Invoking a Format
AdminMisc module : B.4. Win32 Extensions

ADO (ActiveX Data Objects) : 17.6. Win32 Database I nterfaces
alternation, in regular expressions : 7.3.2.4. Alternation

anchoring, in regular expressions : 7.3.3. Anchoring Patterns
angle brackets (<\>), as globbing delimiter : 12.2. Globbing
appending to afile: 10.2. Opening and Closing a Filehandle

archaeology : 15.2. Extracting and Replacing a Substring

arguments, to subroutines : 8.4. Arguments

@ARGV, as command-line arguments : 6.2. Input from the Diamond Operator

array assignment operator : 3.4.1. Assignment

array context, readdir() and : 12.5. Reading a Directory Handle

array elements
accessing : 1.6.5. More than One Secret Word

numbering of : 3.4.2. Array Element Access

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

referencing : 3.4.2. Array Element Access

array expression, as subscript : 3.4.2. Array Element Access

array literals, defined : 3.2. Literal Representation

array operators : 3.4. Array Operators and Functions

array dlice: 3.4.2. Array Element Access

array variables: 3.3. Variables

assigned scalar values : 3.4.1. Assignment

automatically growing : 3.4.2. Array Element Access
default value of : 3.3. Variables
foreach statement : 4.6. The foreach Statement

inarray literals: 3.4.1. Assignment

in scalar context : 3.4.1. Assignment

interpolated into strings : 3.7. Variable Interpolation of Arrays

arrays
1.6.5. More than One Secret Word
3.1. What IsalList or Array?
empty : 3.2. Literal Representation

referencing elements : 3.4.2. Array Element Access

sizeboundaries: 3.1. What IsalList or Array?
Artistic License : 1.3. Availahility
assigning to asubstr() : 15.2. Extracting and Replacing a Substring

assigning to an array : 1.6.5. More than One Secret Word

assignment operator : 2.6. Scalar Operators and Functions

assignment, binary : 2.6.1. Binary Assignment Operators

associative arrays
variables: 5.2. Hash Variables
associativity : 2.4.3. Operator Precedence and Associativity

Astro, pronouncing "Windex" : 15.1. Finding a Substring

attrib command : (see chmod command)

autodecrement operator : 2.6.2. Autoincrement and Autodecrement

autoincrement : 4.5. The for Statement

operator : 2.6.2. Autoincrement and Autodecrement

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: B

-B operator : 10.6. The -x File Tests
\B, as anchor inregular expressions : 7.3.3. Anchoring Patterns

\b, example of : 7.4.4. Using Variable Interpolation

\ (backslash)
before dollar in regular expression : 7.3.3. Anchoring Patterns

backtracking, in regular expressions: 7.3.2.2. Multipliers
backup files, and inplace editing : 17.5. Variable-Length (Text) Databases
\ (backslash)
in regular expressions
as memory access : 7.3.2.3. Parentheses as memory

basename command, emulating : A.12. Chapter 13, File and Directory Manipulation

big-endian : 16.2. Packing and Unpacking Binary Data

binary assignment operator : 2.6.1. Binary Assignment Operators

binary data, treated, using strings : 2.3. Strings
binmode() : 17.4. Fixed-L ength Random-A ccess Databases

blocks
1.6.3. Adding Choices

4.1. Statement Blocks

as body of subroutine
1.6.9. Making It a Bit More Modular

8.1. Defining a User Function
labeled : 9.4. Labeled Blocks
looping : 9.1. The last Statement
naked : 9.1. The last Statement
break (in C), and last operator : 9.1. The last Statement
BuildNumber module : B.4. Win32 Extensions
built-in variables : D.6. Many, Many Predefined Variables

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

bytesin memory, interpreting : 16.2. Packing and Unpacking Binary Data

Copyright © 1999 O'Rellly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: C

-C operator : 10.6. The -x File Tests
c, as complement option of tr : 15.5. Trandliteration

cacls.exe program : 13.4. Modifying Permissions
Camel Book
D.5. Many, Many More Functions
1.4. Support
16.2. Packing and Unpacking Binary Data
17.5. Variable-Length (Text) Databases
canonical name, from gethostbyname() : 16.3. Getting Network Information

case
ignoring
1.6.7. Handling Varying Input Formats
7.5. Substitutions
in variable names: 2.5. Scalar Variables

cd command : 12.1. Moving Around the Directory Tree

CGI Programming : 18. CGI Programming

CGIl.pm module: 18.1. The CGl.pm Module

ChangeNotify module : B.4. Win32 Extensions

changing directories: 12.1. Moving Around the Directory Tree

character classes, in regular expressions : 7.3.1. Single-Character Patterns

character ranges, in regular expressions : 7.3.1. Single-Character Patterns
chdir() : 12.1. Moving Around the Directory Tree

example of : A.11. Chapter 12, Directory Access
Chili's : Acknowledgments for First Edition
chmod command, and the chmod() : 13.4. Modifying Permissions
chmod() : 13.4. Modifying Permissions
chomp()

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

1.6.2. Asking Questions and Remembering the Result
3.4.7. The chomp Function

examples of
1.6.10. Moving the Secret Word List into a Separate File

1.6.17. The Final Programs
10.5. Using Filehandles
chop() : 2.6.3. The chop() and chomp() Functions

examples of
A.1l. Chapter 2, Scalar Data

2.7. <STDIN> asa Scalar Value
chr() : 16.2. Packing and Unpacking Binary Data

circle, circumference of : 2.10. Exercises

clients, networking : C. Networking Clients

Clipboard module : B.4. Win32 Extensions

close() : 10.2. Opening and Closing a Filehandle
examples of : 1.6.10. Moving the Secret Word List into a Separate File
process-filehandles : 14.3. Using Processes as Filehandles

closedir() : 12.4. Opening and Closing a Directory Handle

example of : A.11. Chapter 12, Directory Access
CLSID : 19.2. Creating Automation Objects
cmp operator : 15.4. Advanced Sorting
COBOL : 11.1. What IsaFormat?
Coke: 2.3.2. Double-Quoted Strings
column headers, informat : 11.1. What Is a Format?
columns, labeling : 1.6.14. Listing the Secret Words
command line : D.3. The Command Line

command-line arguments : 17.5. Variable-Length (Text) Databases

diamond operator and : 6.2. Input from the Diamond Operator

comments, in Perl programs : 1.5. Basic Concepts

comparison operators : 2.4.2. Operators for Strings

comparison routine, in sorting : 15.4. Advanced Sorting

compiled language, Perl asa: 1.5. Basic Concepts

concatenation : 2.4.2. Operators for Strings

Console module : B.4. Win32 Extensions

constant part : 11.1. What Is a Format?

context, scalar and array : 3.5. Scalar and List Context
continue block : 9.2. The next Statement

control expression
of if statement : 4.2. The if/unless Statement

while statements : 4.3. The while/until Statement
Control-D, asend of file: 3.6. <STDIN> as an Array
copy pass: 17.5. Variable-Length (Text) Databases
counting characters : 15.5. Trandliteration
CPAN (Comprehensive Perl Archive Network) : B.3. CPAN: Beyond the Standard Library
Create() : 16.5. Opening and Reading Reqgistry Values
CreateObject()
19.2. Creating Automation Objects
19.3. Using Automation Objects
creating processes : 14.1. Using system and exec
currently selected filehandle : 11.6.1. Using select to Change the Filehandle

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: D

-d operator : 10.6. The -x File Tests
d, as delete option of tr : 15.5. Trangliteration
\d, inregular expressions : 7.3.1. Single-Character Patterns

dangling else, and impossibility of : 4.2. Theif/unless Statement

database interface modules : B.2.6. Database | nterfaces

databases
fixed-length recordsin : 17.4. Fixed-L ength Random-A ccess Databases

human-readable : 17.5. Variable-L ength (Text) Databases
managing with the DBM library : 17.1. DBM Databases and DBM Hashes
random-access : 17.4. Fixed-L ength Random-A ccess Databases

daytime server : C.1. A Simple Client

DBM array : 17.1. DBM Databases and DBM Hashes

DBM files: 1.6.16. Maintaining a L ast-Good-Guess Database

DBM library : 17.1. DBM Databases and DBM Hashes

dbmclose() : 17.2. Opening and Closing DBM Hashes
example of : 1.6.17. The Final Programs

dbmopen() : 17.2. Opening and Closing DBM Hashes

examples of
1.6.17. The Final Programs

1.6.16. Maintaining a L ast-Good-Guess Database
debugger : D.2. The Debugger
decimal points, in floating-point numbers: 2.2.2. Float Literals
default filehandle : 10.5. Using Filehandles
default values, implemented with || operator : 1.6.9. Making It a Bit More Modular

defensive programming : 15.4. Advanced Sorting
defining aformat : 11.2. Defining a Format

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

delete operator : 5.4.4. The delete Function

delete(), example of : 17.3. Using aDBM Hash
DeleteKey() : 16.6.1. More Registry Operations

deleting characters : 15.5. Trandliteration

deleting Registry keys: 16.6.1. More Reqgistry Operations
delimiters, for tr : 15.5. Trandliteration

diamond operator (<>)
6.2. Input from the Diamond Operator

17.5. Variable-Length (Text) Databases

examples of
A.7. Chapter 8, Functions

A.9. Chapter 10, Filehandles and File Tests
A.14. Chapter 15, Other Data Transformation
A.16. Chapter 17, Database Manipulation
7.2. Simple Uses of Regular Expressions
die(): 10.4. A Sight Diversion: die
examples of : A.11. Chapter 12, Directory Access
using : 1.6.13. Many Secret Word Filesin the Current Directory
directories, renaming filesinto : 13.2. Renaming a File

directory handles: 12.3. Directory Handles
creating : 12.4. Opening and Closing a Directory Handle

division, operators for : 2.4.1. Operators for Numbers

Documentation : 1.5.1. Documentation

documentation : 1.5.1. Documentation

DomainName module : B.4. Win32 Extensions
dot (.)
as current directory : A.11. Chapter 12, Directory Access

example of : A.7. Chapter 8, Functions

double-quote interpolation : (see variable interpol ation)

double-quoted strings : 2.3.2. Double-Quoted Strings
backslash escape and : 2.3.2. Double-Quoted Strings
example of : 1.6.2. Asking Questions and Remembering the Result
hash elements: 5.4.1. The keys Function

variable interpolation : 2.6.4. Interpolation of Scalarsinto Strings

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: E

-e command-line option, and inplace editing : 17.5. Variable-Length (Text) Databases
-e operator : 10.6. The -x File Tests
e, as option to substitute operator : D.5.2. The eval Operator (and g///e)
each() : 5.4.3. The each Function
examples of : 17.3. Using a DBM Hash
echo command, and globbing : 12.2. Globbing
editors, and updating databases : 17.5. Variable-L ength (Text) Databases
elementsof array : 3.1. What IsaList or Array?

else keyword : 4.2. The if/unless Statement

elsif keyword
1.6.5. More than One Secret Word
4.2. The if/unless Statement

example of
A.3. Chapter 4, Control Structures

15.4. Advanced Sorting
email, example of handling : 9.1. The last Statement
embedding Perl : D.10. Embeddible, Extensible
empty array : 3.2. Literal Representation

empty list : 3.2. Literal Representation

as default value for array variable : 3.3. Variables

clearing out a hash : 5.4.2. The values Function

end of file
detecting, introduced : 1.6.10. Moving the Secret Word List into a Separate File

with Control-D : 3.6. <STDIN> as an Array
%ENYV variable: 14.1. Using system and exec

environment variables, controlling through %ENV : 14.1. Using system and exec

eq operator : 2.4.2. Operators for Strings

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

example of
1.6.3. Adding Choices

1.6.17. The Final Programs
Error module : B.4. Win32 Extensions

eval()
D.5.2. The eval Operator (and g///e)

11.1. What |s a Format?
EventLog module : B.4. Win32 Extensions

examples, where to get on-line : Exercises

execute bits : 13.4. Modifying Permissions

exit status, die() and : 10.4. A Slight Diversion: die
exit value : 14.3. Using Processes as Filehandles

exit() : 14.3. Using Processes as Filehandles
ExpandEnvironmentStrings module : B.4. Win32 Extensions

experts, and reading introductory sections: 1.6.8. Making It Fair for the Rest

exponential notation, in floating-point numbers: 2.2.2. Float Literals

exponentiation operator (**) : 2.4.1. Operators for Numbers

expressions
in a subroutine body : 8.3. Return Values

inarray literals: 3.2. Litera Representation

extension modules
definition of : B.1. Library Terminology

Win32, list of : B.4. Win32 Extensions

Copyright © 1999 O'Rellly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: F

-f operator : 10.6. The -x File Tests
fase: 4.2. Theif/unless Statement

regular expressions: 7.2. Simple Uses of Regular Expressions
FAQ, Perl : 1.4. Support
field definition line, introduced : 1.6.14. Listing the Secret Words
field value line, introduced : 1.6.14. Listing the Secret Words
fieldlines of format : 11.2. Defining a Format

File module
B.4. Win32 Extensions

13.4. Modifying Permissions

File::Basename : 10.3. Using Pathnames and Filenames

filehandles
1.6.10. Moving the Secret Word List into a Separate File

10.1. What |s a Filehandle?

default, defined : 10.5. Using Filehandles

formats and : 11.3. Invoking a Format

indirect : 12.2. Globbing

print() and : 1.6.12. Warning Someone When Things Go Astray

as processes : 14.3. Using Processes as Filehandles

read() and : 17.4. Fixed-Length Random-A ccess Databases

reading from : 10.5. Using Filehandles

seek() and : 17.4. Fixed-L ength Random-A ccess Databases

as uppercase : 1.6.10. Moving the Secret Word List into a Separate File
filename glob : 1.6.13. Many Secret Word Filesin the Current Directory
filenames : 10.3. Using Pathnames and Filenames

files
age, example of : 1.6.11. Ensuring a Modest Amount of Security

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

appending to : 10.2. Opening and Closing aFilehandle
information about, with stat() : 10.7. The stat Function
modifying permissions of : 13.4. Modifying Permissions

modifying timestamps of : 13.5. Modifying Timestamps

opening : 10.2. Opening and Closing aFilehandle

removing : 13.1. Removing aFile

renaming
1.6.15. Making Those Old Word Lists More Noticeable
13.2. Renaming aFile

testing for existence : 10.6. The -x File Tests

FileSecurity module
B.4. Win32 Extensions

13.4. Modifying Permissions
filled fields, in formats : 11.4.4. Filled Fields
finding a substring : 15.1. Finding a Substring
finding asubstring in reverse : 15.1. Finding a Substring

findstr command : 7.2. Simple Uses of Regular Expressions

ignoring case : 7.4.2. Ignoring Case
floating-point literals: 2.2.2. Float Literals
floating-point numbers: 2.2.1. All Numbers Use the Same Format Internally
footnotes, meaning of : Conventions
for statement : 4.5. The for Statement

example of
A.3. Chapter 4, Control Structures

9.4. Labeled Blocks

foreach statement
1.6.16. Maintaining a L ast-Good-Guess Database

4.6. The foreach Statement

example of
A.3. Chapter 4, Control Structures

A.4. Chapter 5, Hashes
A.11. Chapter 12, Directory Access
1.6.17. The Final Programs

12.5. Reading a Directory Handle
17.3. Using aDBM Hash
foreach(), example of : A.5. Chapter 6, Basic /O

format definition
example of : 1.6.14. Listing the Secret Words

location in source file: 11.2. Defining a Format
format fieldholders: 11.2. Defining a Format
format fieldlines: 11.2. Defining a Format

format keyword
1.6.14. Listing the Secret Words

11.2. Defining a Format
example of : 1.6.17. The Final Programs

format names
changing : 11.6.2. Changing the Format Name

selecting : 11.2. Defining a Format
format template : 11.2. Defining a Format
FormatM essage module : B.4. Win32 Extensions
formats: 11.1. What Is a Format?
changing top-of-page format name : 11.6.3. Changing the Top-of-Page Format Name
constant part : 11.1. What Is a Format?
defining : 11.2. Defining a Format
defining text fields: 11.4.1. Text Fields
invoking : 11.3. Invoking a Format

multi-line fieldholder
defined : 11.4.3. Multiline Fields

top-of-page : 11.5. The Top-of-Page Format

variable part : 11.1. What Is a Format?

whitespace within : 11.2. Defining a Format
formatted output, printf() and : 6.3.2. Using printf for Formatted Output
formfeed, and top-of-page format : 11.5. The Top-of-Page Format
FsType function : 10.7. The stat Function
FsType module : B.4. Win32 Extensions

FTP, obtaining exercisesvia: FTP
FTPMAIL : FTPMAIL

function pointers : D.10.7. Function Pointers

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: G

as global replace option : 7.5. Substitutions

modifier of regexp match : D.4. Other Operators
GetCwd function : 12.1. Moving Around the Directory Tree
GetCwd module : B.4. Win32 Extensions
GetFileAttributes method : 13.4. Modifying Permissions
gethostbyname() : 16.3. Getting Network Information
GetLastError module : B.4. Win32 Extensions
GetNextAvailDrive module : B.4. Win32 Extensions
getopt, and the Perl standard library : 6.2. Input from the Diamond Operator
GetOSVersion module : B.4. Win32 Extensions
getservbyname() : C. Networking Clients

getservbyport() : C. Networking Clients

GetShortPathName function : 10.3. Using Pathnames and Filenames
GetShortPathName module : B.4. Win32 Extensions

GetTickCount module : B.4. Win32 Extensions

GetValues method : 16.5. Opening and Reading Registry Values
glob: 1.6.13. Many Secret Word Filesin the Current Directory

global replace
example of : A.9. Chapter 10, Filehandles and File Tests

in substitute operator : 7.5. Substitutions
global variables, and subroutines : 8.1. Defining a User Function
globbing : 12.2. Globbing

compared with regular expressions : 12.2. Globbing

example of, with unlink() : 13.1. Removing aFile

variable interpolation : 12.2. Globbing

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

GNU Public License: 1.3. Availability
goto, unnecessary in Perl : 9.4. Labeled Blocks
greediness

in regular expression patterns : 7.3.2.2. Multipliers

in regular expressions: 7.3.2.2. Multipliers

grep function : D.5.1. grep and map

ot operator : 2.4.2. Operators for Strings
gzip utility : 1.3.2. Standard Perl Distribution

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: H

hash : 1.6.6. Giving Each Person a Different Secret Word
hash keys: 1.6.6. Giving Each Person a Different Secret Word
hash operators : 5.4. Hash Functions
hashes: 5.1. What |s a Hash?
creating new elements of : 5.2. Hash Variables
example of assignment to : 1.6.6. Giving Each Person a Different Secret Word

literal representation of : 5.3. Literal Representation of a Hash
orderin: 5.1. What IsaHash?

removing elements from with delete : 5.4.4. The delete Function
sorting (sort-of) : 15.4. Advanced Sorting

stepping through with the each() : 5.4.3. The each Function

Hello, world (program example) : 1.6.1. The "Hello, world" Program
help

documentation : 1.5.1. Documentation

technical support : 1.4. Support
here strings : 2.3. Strings

hex()
2.2.3. Integer Literals

2.4.4. Conversion Between Numbers and Strings

hexadecimal numbers: 2.2.3. Integer Literals

hives, Registry : 16.4.1. The Registry Structure
HKEY_LOCAL_MACHINE subtree: 16.4.1. The Reqgistry Structure
human-readable databases : 17.5. Variable-Length (Text) Databases

Copyright © 1999 O'Rellly & Associates, Inc. All Rights Reserved.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: |

-i option for inplace editing : 17.5. Variable-Length (Text) Databases
-i option for inplace editing : 17.5. Variable-Length (Text) Databases

-i flag (ignore case) : 7.5. Substitutions

i flag (ignore case) : 7.4.2. Ignoring Case

if modifier ;: 9.5. Expression Modifiers
if statement
1.6.3. Adding Choices

4.2. Theif/unless Statement

example of
1.6.17. The Final Programs

1.6.9. Making It a Bit More Modular
4.2. Theif/unless Statement
5.4.1. The keys Function
not counting as looping block : 9.2. The next Statement

ignoring case
example of : 1.6.7. Handling Varying Input Formats
in substitution : 7.5. Substitutions
withi flag : 7.4.2. Ignoring Case

in-proc servers: 19.1. Introduction to OL E Automation

indentation, in Perl programs: 1.5. Basic Concepts
index() : 15.1. Finding a Substring

indirect filehandles : 12.2. Globbing

infinite loops : 9.3. The redo Statement

I nitiateSystemShutdown module : B.4. Win32 Extensions
inplace editing : 17.5. Variable-L ength (Text) Databases
int(): 10.6. The -x File Tests

integer : 2.2.3. Integer Literals

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

integers: 2.2.1. All Numbers Use the Same Format Internally
Internet module : B.4. Win32 Extensions
interpreted language, Perl asa: 1.5. Basic Concepts

interpreted languages : 1.1. History of Perl

interpreting bytesin memory : 16.2. Packing and Unpacking Binary Data
Introduction to OLE Automation : 19.1. Introduction to OL E Automation
invoking aformat : 11.3. Invoking a Format

invoking a subroutine : 8.2. Invoking a User Function
|O::Socket module : C. Networking Clients

IPC module : B.4. Win32 Extensions

ISAP: 1.3.1. ActiveState Perl for Win32

|SAPI extensions : 18.7.2. PerllS and Perl Script
IsWin95 module : B.4. Win32 Extensions

ISWIinNT module : B.4. Win32 Extensions

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: J

join() : 7.6.2. The[oin Function

example of : 16.3. Getting Network Information

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: K

keys()
1.6.13. Many Secret Word Files in the Current Directory

1.6.16. Maintaining a L ast-Good-Guess Database
5.4.1. The keys Function
scalar context and : 5.4.1. The keys Function
keys, of hashes: 5.1. What |s a Hash?
keys, Registry : 16.4.1. The Reqgistry Structure
kit'n'caboodle : 15.4. Advanced Sorting
kludge : 9.4. L abeled Blocks

Copyright © 1999 O'Rellly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: L

labels: 9.4. L abeled Blocks

language extension modules : B.2.14. For Developers. Language Extensions and Platform Devel opment
Support
last access time, changing : 13.5. Modifying Timestamps

last modification time, changing : 13.5. Modifying Timestamps
last operator : 9.1. The last Statement
example of : A.8. Chapter 9, Miscellaneous Control Structures

last(), example of : 9.5. Expression Modifiers

le operator : 2.4.2. Operators for Strings

|eft associativity : 2.4.3. Operator Precedence and Associativity

left-right pairs
asdelimiters: 7.4.3. Using a Different Delimiter

length(), example of : 17.4. Fixed-L ength Random-A ccess Databases

libraries, definition of : B.1. Library Terminology
libwin32 package : 1.3.2. Standard Perl Distribution
link(') : 13. File and Directory Manipulation

list

(see also arrays)
1.6.5. More than One Secret Word
3.1. What Isalist or Array?
list constructor operator (..) : 3.2. Literal Representation

list expressions, and foreach statement : 4.6. The foreach Statement

list reference (in Perl 5.0) : 3.4.1. Assignment

listing the /etc directory, example of : 12.5. Reading a Directory Handle
lists

nested : 3.4.1. Assignment
as subroutine return values : 8.3. Return Values

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

literal lists, dicesof : 3.4.2. Array Element Access

literals, array : 3.2. Literal Representation
literals, of hashes : 5.3. Literal Representation of a Hash
little-endian : 16.2. Packing and Unpacking Binary Data

local ()
example of
A.7. Chapter 8, Functions

11.4.2. Numeric Fields
loops and : 8.5. Private Variables in Functions

local servers: 19.1. Introduction to OLE Automation

local variables
creating, with local() : 8.5. Private Variables in Functions

foreach statement : 4.6. The foreach Statement

in subroutines, example of : 8.4. Arguments

logical comparison operators : 2.4.1. Operators for Numbers
logical not (!) operator : 1.6.9. Making It a Bit More Modular
LoginName function : 16.1. Getting User and Machine Information

LoginName module : B.4. Win32 Extensions

L ookupA ccountName module : B.4. Win32 Extensions
L ookupAccountSID module : B.4. Win32 Extensions
looping blocks: 9.1. The |ast Statement
loops
endless : 4.3. The while/until Statement
exiting early, with last : 9.1. The |last Statement
infinite : 9.3. The redo Statement
local() and : 8.5. Private Variables in Functions
nested, exiting from : 9.4. L abeled Blocks
lowercase, example of converting to : 1.6.8. Making It Fair for the Rest

lpr command, example of : 14.3. Using Processes as Filehandles

It operator : 2.4.2. Operators for Strings

lvalue: 3.4.1. Assignment

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: M

-M operator : 10.6. The -x File Tests
example of : 1.6.11. Ensuring a Modest Amount of Security

m, as match operator : 7.4.3. Using a Different Delimiter

mailing lists, Perl : 1.4. Support
main routine, unneeded in Perl : 1.5. Basic Concepts

map operator : D.5.1. grep and map
MAPI : 19.3. Using Automation Objects
match operator : 7.2. Simple Uses of Regular Expressions

example of : 1.6.7. Handling Varying Input Formats

matching, choosing a delimiter besides slash : 7.4.3. Using a Different Delimiter
mathematics modules : B.2.7. Mathematics

Max Headroom : 13.5. Modifying Timestamps

McMenamin's : Acknowledgments for First Edition

memory, interpeting bytesin : 16.2. Packing and Unpacking Binary Data
methods : 19.1. Introduction to OLE Automation
microbrew : Acknowledgments for First Edition

mkdir command, mkdir() and : 13.3. Making and Removing Directories

modes, and making directories : 13.3. Making and Removing Directories

modification time
changing : 13.5. Modifying Timestamps

example of : 1.6.11. Ensuring a Modest Amount of Security

modules, definition of : B.1. Library Terminology
modules, list of : B.2. Standard Modules

Win32 extensions : B.4. Win32 Extensions
modulus operator (%) : 2.4.1. Operators for Numbers
multi-line fieldholder, in formats : 11.4.3. Multiline Fields

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

multiplication, operator for : 2.4.1. Operators for Numbers
Mutex module : B.4. Win32 Extensions
mv command, rename() and : 13.2. Renaming aFile

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: N

\n, in single-quoted strings : 2.3.1. Single-Quoted Strings
naked blocks: 9.1. The last Statement
name spaces : 3.3. Variables

naming subroutine arguments, using local variables: 8.5. Private Variables in Functions
ne operator : 2.4.2. Operators for Strings

example of : 1.6.4. Guessing the Secret Word
nested loops, exiting from : 9.4. Labeled Blocks
nested subroutine invocation : 8.2. Invoking a User Function
net use : 12.5. Reading a Directory Handle
net view : 14.6. Exercises

NetAdmin module
B.4. Win32 Extensions

16.1. Getting User and M achine Information

NetResource module
B.4. Win32 Extensions

12.5. Reading a Directory Handle
netstat : 14.3. Using Processes as Filehandles
networking : C. Networking Clients

newlines
in format value, and @* field : 11.4.3. Multiline Fields

non-matching by dot : 7.3.1. Single-Character Patterns
removing : 2.7. <STDIN> as a Scalar Vaue

newsgroup, Perl : 1.4. Support
next operator : 9.2. The next Statement

NodeName function : 16.1. Getting User and M achine Information
NodeName module : B.4. Win32 Extensions
numbers: 2.1. What |s Scalar Data?

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

automatic conversion to strings : 2.4.4. Conversion Between Numbers and Strings
numeric fields (in formats) : 11.4.2. Numeric Fields
numeric operators : 2.4.1. Operators for Numbers

numeric order, example of sorting by : 15.4. Advanced Sorting

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: O

obscure biblical reference : 15.5. Trandliteration

oct()
2.2.3. Integer Literals

2.4.4. Conversion Between Numbers and Strings
octal numbers, defined : 2.2.3. Integer Literals
OCX controls: 19.1. Introduction to OL E Automation

ODBC module
B.4. Win32 Extensions

17.6. Win32 Database I nterfaces

OLE module
A.18. Chapter 19, OL E Automation

B.4. Win32 Extensions

19.2. Creating Automation Objects
OLEDB : 19.3.1. Data-Access Objects
Open() : 16.5. Opening and Reading Registry Values
open() : 10.2. Opening and Closing a Filehandle

commands and, example of : 1.6.17. The Final Programs

example of
A.9. Chapter 10, Filehandles and File Tests

11.3. Invoking a Format
introduced : 1.6.10. Moving the Secret Word List into a Separate File
plussign and : 17.4. Fixed-L ength Random-A ccess Databases

vertical bar in: 14.3. Using Processes as Filehandles

vertical bar in: 1.6.12. Warning Someone When Things Go Astray
opendir()

12.4. Opening and Closing a Directory Handle

12.5. Reading a Directory Handle

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

example of : A.11. Chapter 12, Directory Access

opening
DBM database : 17.2. Opening and Closing DBM Hashes
files: 10.2. Opening and Closing a Filehandle

Registry values : 16.5. Opening and Reading Registry Values
operands, defined : 2.4. Scalar Operators
operators : 2.4. Scalar Operators

addition : 2.4.1. Operators for Numbers

assignment : 2.6. Scalar Operators and Functions

associativity : 2.4.3. Operator Precedence and Associativity

autodecrement : 2.6.2. Autoincrement and Autodecrement

autoincrement : 2.6.2. Autoincrement and Autodecrement

division : 2.4.1. Operators for Numbers
for hashes : 5.4. Hash Functions
logical comparison : 2.4.1. Operators for Numbers

multiplication : 2.4.1. Operators for Numbers

precedence of : 2.4.3. Operator Precedence and Associativity

for scalar variables: 2.6. Scalar Operators and Functions

for strings : 2.4.2. Operators for Strings

subtraction : 2.4.1. Operators for Numbers
undef and : 2.9. The Undefined Value
ord() : 16.2. Packing and Unpacking Binary Data

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: P

-p command-line option, and inplace editing : 17.5. Variable-L ength (Text) Databases

pack() : 16.2. Packing and Unpacking Binary Data

example of : 17.4. Fixed-L ength Random-A ccess Databases
pack format string : 16.2. Packing and Unpacking Binary Data

packages
B.1. Library Terminology

D.9. Packages

page length
changing, in formats : 11.6.4. Changing the Page L ength

default, for top-of-page format : 11.5. The Top-of-Page Format

page position, changing, in formats : 11.6.5. Changing the Position on the Page
parameters, introduced : 1.6.9. Making It a Bit More Modular

parentheses
precedence and : 2.4.3. Operator Precedence and Associativity

path delimiter : 10.3. Using Pathnames and Filenames

PATH environment variable, managing : 14.1. Using system and exec

pathnames
2.3.2. Double-Quoted Strings

10.3. Using Pathnames and Filenames

Perl
embedding : D.10. Embeddible, Extensible

history of : 1.1. History of Perl
standard distribution of : 1.3.2. Standard Perl Distribution
technical support : 1.4. Support

Perl compiler : D.10.4. The Perl Compiler

Perl for Win32 : 1.3.1. ActiveState Perl for Win32

Per| standard library : 6.2. Input from the Diamond Operator

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Perl: The Motion Picture : 16.2. Packing and Unpacking Binary Data
perldoc command : 1.5.1. Documentation

PerlllS extension : 18.7.2. PerllS and Per| Script

PerllS: 1.3.1. ActiveState Perl for Win32

Perl Script
1.3.1. ActiveState Perl for Win32

18.7.2. PerllS and Perl Script
permissions
1.6.16. Maintaining a L ast-Good-Guess Database
13.4. Modifying Permissions
modifying : 13.4. Modifying Permissions

permission bits, in domopen() : 17.2. Opening and Closing DBM Hashes

pi
computing with : A.1. Chapter 2, Scalar Data
obscure reference to : 16.2. Packing and Unpacking Binary Data

pipe: (see| (vertical bar))

Pipe module : B.4. Win32 Extensions
plx extension : 1.5. Basic Concepts
pod : 18.1. The CGl.pm Module
POD : 1.5.1. Documentation

pointers : D.10.7. Function Pointers

pop() : 3.4.3. The push and pop Functions

example of : A.3. Chapter 4, Control Structures

popen library function, emulating : 14.3. Using Processes as Filehandles

port numbers : C. Networking Clients
powers of ten, example of, with substr() : 15.2. Extracting and Replacing a Substring
Practical Extraction and Report Language : 11.1. What Is a Format?

pragmas, definition of : B.1. Library Terminology

precedence : 2.4.3. Operator Precedence and Associativity

in regular expressions : 7.3.4. Precedence

parentheses and : 2.4.3. Operator Precedence and Associativity
predefined variables : D.6. Many, Many Predefined Variables

print()

2.8. Output with print

6.3.1. Using print for Normal Output

17.4. Fixed-L ength Random-A ccess Databases
$ and: 4.6. The foreach Statement

array literalsand : 3.2. Literal Representation

example of
1.6.1. The "Hello, world" Program

1.6.17. The Final Programs

filehandle keyword and : 1.6.12. Warning Someone When Things Go Astray

return value of : 6.3.1. Using print for Normal Output

writesto samefilehandle and : 11.5. The Top-of-Page Format

printf() : 6.3.2. Using printf for Formatted Output

example of
A.3. Chapter 4, Control Structures

A.5. Chapter 6, Basic I/0
4.7. Exercises

process exit value : 14.3. Using Processes as Filehandles

process launching : 14.4. Summary of Process Operations

Process module
B.4. Win32 Extensions

14.5. Win32::Process

processes
creating : 14.1. Using system and exec

asfilehandles: 14.3. Using Processes as Filehandles
Windows NT and : 14.5. Win32::Process
products, finding : 9.4. Labeled Blocks
ProglD
19.2. Creating Automation Objects
19.3. Using Automation Objects
Programming Per| : (see Camel Book)

prompt, example of : 1.6.2. Asking Questions and Remembering the Result

properties: 19.1. Introduction to OLE Automation
push() : 3.4.3. The push and pop Functions
pwd command : 12.1. Moving Around the Directory Tree

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: Q

aqw()
1.6.5. More than One Secret Word

18.4. Passing Parameters via CGI

Copyright © 1999 O'Rellly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: R

-r operator : 10.6. The -x File Tests
rand() : 3.8. Exercises
example of : A.2. Chapter 3, Arraysand List Data
random access, seek() and : 17.4. Fixed-L ength Random-A ccess Databases
ranges of characters: 7.3.1. Single-Character Patterns
read() : 17.4. Fixed-L ength Random-A ccess Databases
readdir() : 12.5. Reading a Directory Handle
reading data from acommand : 14.3. Using Processes as Filehandles
reading from afile: 10.5. Using Filehandles
reading from standard input : 6.1. Input from STDIN
reading Registry values : 16.5. Opening and Reading Registry Vaues
redo operator : 9.3. The redo Statement
regedit.exe, regedt32.exe utilities : 16.4. The Reqgistry

Registry module
A.15. Chapter 16, System Information
B.4. Win32 Extensions
Registry package
16.4. The Reqgistry
16.4.1. The Registry Structure
Registry, Windows NT : 16.4. The Reqgistry
regular expressions
1.6.7. Handling Varying Input Formats

7.1. Concepts About Regular Expressions
dternationin: 7.3.2.4. Alternation
anchoring in : 7.3.3. Anchoring Patterns

backtrackingin: 7.3.2.2. Multipliers

character classesin: 7.3.1. Single-Character Patterns

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

compared with globbing : 12.2. Globbing

example of
1.6.8. Making It Fair for the Rest

1.6.9. Making It a Bit More Modular
9.1. Thelast Statement
extended syntax : D.8. Additional Regular Expression Features

grouping patterns of : 7.3.2. Grouping Patterns

non-special characters of : 7.3.1. Single-Character Patterns

precedencein : 7.3.4. Precedence
split() and : 7.6.1. The split Function
variable interpolation : 7.4.4. Using Variable Interpolation

removing afile: 13.1. Removing aFile

removing characters: 15.5. Trandliteration

removing the last character : 2.6.3. The chop() and chomp() Functions

rename command (Windows NT) : 13.2. Renaming a File

rename()
1.6.15. Making Those Old Word Lists More Noticeable

13.2. Renaming a File

example of : A.12. Chapter 13, File and Directory Manipulation

renaming files: 13.2. Renaming aFile
examplesof : 1.6.15. Making Those Old Word Lists More Noticeable
report generating, example of : 1.6.14. Listing the Secret Words

reports, writing : 11.1. What Is a Format?
result : 2.4. Scalar Operators
return status, backwards for system() : 14.1. Using system and exec
return values: 1.6.9. Making It a Bit More Modular
from subroutine, example of : 1.6.17. The Final Programs
of tr : 15.5. Trandliteration
print() and : 6.3.1. Using print for Normal Output
read() and : 17.4. Fixed-L ength Random-A ccess Databases
of select() : 11.6.1. Using select to Change the Filehandle
subroutines : 8.3. Return Values

reverse() : 3.4.5. The reverse Function

example of
A.2. Chapter 3, Arraysand List Data

A.5. Chapter 6, Basic 1/O
right angle brackets (\>), asformat field characters: 11.4.1. Text Fields
right associativity : 2.4.3. Operator Precedence and Associativity
rindex() : 15.1. Finding a Substring
example of : A.14. Chapter 15, Other Data Transformation
rm command, unlink() and : 13.1. Removing a File
rmdir command, and rmdir() : 13.3. Making and Removing Directories

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: S

S operator
example of
1.6.17. The Final Programs

12.2. Globbing
making basename of fileand : A.12. Chapter 13, File and Directory Manipulation
substitute operator : 7.5. Substitutions
-soperator : 10.6. The -x File Tests
soption, tr() : 15.5. Trangliteration
\s, inregular expressions : 7.3.1. Single-Character Patterns

scalar assignment, used as avalue : 2.6. Scalar Operators and Functions

scalar context
3.4.1. Assignment

3.5. Scalar and List Context
readdir() : 12.5. Reading a Directory Handle
scalar data: 2.1. What |s Scalar Data?
scalar values, assigned to array variables: 3.4.1. Assignment

scaar variables
1.6.2. Asking Questions and Remembering the Result

2.5. Scalar Variables
operatorsfor : 2.6. Scalar Operators and Functions

scientific notation, in floating-point numbers : 2.2.2. Float Literals

Scooby Doo, pronouncing "Windex" : 15.1. Finding a Substring

secret words, guessing : 1.6.4. Guessing the Secret Word
security : D.10.1. Security Matters
seek() : 17.4. Fixed-L ength Random-A ccess Databases
select() : 11.6.1. Using select to Change the Filehandle
return value of : 11.6.1. Using select to Change the Filehandle

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Semaphore module : B.4. Win32 Extensions
semicolon (;), as statement terminator : 1.6.1. The "Hello, world" Program

sequence, in regular expressions : 7.3.2.1. Sequence
Service module : B.4. Win32 Extensions

SetCwd module : B.4. Win32 Extensions
SetFileAttributes method : 13.4. Modifying Permissions
setting Registry values : 16.6. Setting Reqgistry Vaues
SetValue() : 16.6. Setting Reqgistry Values
SetVaueEx() : 16.6. Setting Registry Vaues

shebang line : 1.5. Basic Concepts

shell, avoiding for new processes: 14.1. Using system and exec
shift() : 3.4.4. The shift and unshift Functions
ShortCut module : B.4. Win32 Extensions
single-quoted strings : 2.3.1. Single-Quoted Strings
skiing : 1.6. A Stroll Through Perl
slash : 10.3. Using Pathnames and Filenames
dlices
of array : 3.4.2. Array Element Access

on litera lists: 3.4.2. Array Element Access

variable interpolation in strings : 3.7. Variable Interpolation of Arrays
Socket module : C. Networking Clients
sockets : C. Networking Clients

sort()
1.6.16. Maintaining a L ast-Good-Guess Database

3.4.6. The sort Function
controlling sort order of : 15.4. Advanced Sorting

example of
A.11. Chapter 12, Directory Access

A.14. Chapter 15, Other Data Transformation
example of : A.11. Chapter 12, Directory Access

sort comparison routines : 15.4. Advanced Sorting

using array lookups : 15.4. Advanced Sorting

sorting

advanced : 15.4. Advanced Sorting
example of numeric : 15.4. Advanced Sorting
Sound module : B.4. Win32 Extensions

Space
between array values when interpolated : 3.7. Variable Interpolation of Arrays

in regular expressions : 7.3.1. Single-Character Patterns
spaceship (<=>) operator : 15.4. Advanced Sorting

example of : A.16. Chapter 17, Database M anipulation
Spawn module : B.4. Win32 Extensions
split() : 7.6.1. The split Function

example of : 11.3. Invoking a Format

spotted owls: 13.1. Removing aFile
sprintf() : 15.3. Formatting Data with sprintf()
compared with pack() : 16.2. Packing and Unpacking Binary Data

example of : 11.4.2. Numeric Fields
Sprite : 2.3.2. Double-Quoted Strings
square brackets ([]), inregular expressions : 7.3.1. Single-Character Patterns
standard distribution, Perl : 1.3.2. Standard Perl Distribution
standard error of command in backquotes : 14.2. Using Backquotes

standard input
example of using : 2.7. <STDIN> as a Scalar Value

of command in backquotes : 14.2. Using Backquotes
reading from : 6.1. Input from STDIN
Standard Modules : B.2. Standard Modules

standard output
example of using : 2.8. Output with print

stat() : 10.7. The stat Function

statement block
(see also blocks)

1.6.3. Adding Choices
4.1. Statement Blocks

STDERR
1.6.10. Moving the Secret Word List into a Separate File

10.1. What Is a Filehandle?

STDIN
1.6.2. Asking Questions and Remembering the Result

1.6.10. Moving the Secret Word List into a Separate File
6.1. Input from STDIN
10.1. What |s a Filehandle?
in array context : 3.6. <STDIN> as an Array
example of : A.5. Chapter 6, Basic I/O

example of
1.6.17. The Final Programs

6.1. Input from STDIN

9.1. Thelast Statement
asscalar value: 2.7. <STDIN> asa Scalar Value
astarget of amatch : 7.4.1. Selecting a Different Target (the =~ Operator)
undef return value and : 2.9. The Undefined Value

STDOUT
1.6.10. Moving the Secret Word List into a Separate File

10.1. What Is a Filehandle?
string concatenation : 2.4.2. Operators for Strings

string operators : 2.4.2. Operators for Strings

strings
2.1. What |s Scalar Data?
2.3. Strings
automatic conversion to numbers : 2.4.4. Conversion Between Numbers and Strings
counting charactersin : 15.5. Trandliteration
deleting characters from : 15.5. Trandliteration
length of : 2.3. Strings
literal representation of : 2.3. Strings
pathnamesin : 2.3.2. Double-Quoted Strings
removing last character : 2.6.3. The chop() and chomp() Functions

sub keyword
1.6.9. Making It aBit More Modular

8.1. Defining a User Function

example of
A.7. Chapter 8, Functions

1.6.17. The Final Programs
subkeys : (see keys, reqgistry)
subroutine definitions
example of : A.7. Chapter 8, Functions
location of infile: 1.6.9. Making It a Bit More Modular
location of intext : 8.1. Defining a User Function

re-defining : 8.1. Defining a User Function

subroutines
1.6.9. Making It aBit More Modular

8.1. Defining a User Function

arguments : 8.4. Arguments
invoking : 8.2. Invoking a User Function

lack of locals: 8.1. Defining a User Function

nested invocation of : 8.2. Invoking a User Function
return values of : 8.3. Return Vaues
scope of variables: 8.1. Defining a User Function
subscript reference, introduced : 1.6.5. More than One Secret Word

subscripts
array expressions : 3.4.2. Array Element Access

with array elements: 3.4.2. Array Element Access

substitute operator
1.6.8. Making It Fair for the Rest

7.2. Simple Uses of Regular Expressions

7.5. Substitutions
substr() : 15.2. Extracting and Replacing a Substring

example of : A.14. Chapter 15, Other Data Transformation

variable asfirst argument : 15.2. Extracting and Replacing a Substring
substrings, finding : 15.1. Finding a Substring
subtraction, operator for : 2.4.1. Operators for Numbers

subtrees, Registry : 16.4.1. The Reqgistry Structure
symlink() : 13. File and Directory Manipulation
system() : 14.1. Using system and exec

list of argumentsto : 14.1. Using system and exec

PATH : 14.1. Using system and exec

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: T

-T operator : 10.6. The -x File Tests

-t operator : 10.6. The -x File Tests

Tab : 2.3.2. Double-Quoted Strings

tar utility : 1.3.2. Standard Per| Distribution
TCP, Perl and : C. Networking Clients
technical support : 1.4. Support
temperature : 4.7. Exercises

template of format : 11.2. Defining a Format
text editors, and updating databases : 17.5. Variable-Length (Text) Databases
text fields (in formats) : 11.4.1. Text Fields
time
manipulation of : 1.6.16. Maintaining a L ast-Good-Guess Database
UNIX internal format : 13.5. Modifying Timestamps

time operator
1.6.17. The Final Programs

1.6.16. Maintaining a L ast-Good-Guess Database
13.5. Modifying Timestamps
timestamps, modifying : 13.5. Modifying Timestamps

_TOP, as suffix for top-of-page format : 11.5. The Top-of-Page Format

top-of-page format
11.5. The Top-of-Page Format

11.6.3. Changing the Top-of-Page Format Name
example of : 1.6.14. Listing the Secret Words
tr operator : 15.5. Trandliteration

example of
1.6.8. Making It Fair for the Rest

1.6.17. The Fina Programs

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

translate operator, introduced : 1.6.8. Making It Fair for the Rest
tranditeration : 15.5. Tranditeration
true: 4.2. Theif/unless Statement

regular expressions: 7.2. Simple Uses of Regular Expressions

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: U

UNC path : 10.3. Using Pathnames and Filenames

undef : 2.9. The Undefined Value
array element access: 3.4.2. Array Element Access
as default value for $1 : 17.5. Variable-Length (Text) Databases
asinitial value of local variables: 8.5. Private Variables in Functions

as return value from globbing : 12.2. Globbing

as return value from pop() : 3.4.3. The push and pop Functions
asreturn value from readdir() : 12.5. Reading a Directory Handle
associative array elements : 5.2. Hash Variables

resulting from split() : 7.6.1. The split Function

STDIN and : 6.1. Input from STDIN

to control dbmopen() : 17.2. Opening and Closing DBM Hashes
when assigning lists: 3.4.1. Assignment

underscore (), in variable names : 2.5. Scalar Variables

unless modifier : 9.5. Expression Modifiers

unless statement : (see if statement)
example of : 10.4. A Slight Diversion: die

unlink() : 13.1. Removing aFile

example of : A.12. Chapter 13, File and Directory Manipulation

unpack() : 16.2. Packing and Unpacking Binary Data

example of
16.3. Getting Network |nformation

17.4. Fixed-L ength Random-A ccess Databases
return values from gethostbyname() : 16.3. Getting Network Information
unshift() : 3.4.4. The shift and unshift Functions
until modifier : 9.5. Expression Modifiers

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

until statement : (see while statement)
uppercase for filehandles : 1.6.10. Moving the Secret Word List into a Separate File

use statement
18.4. Passing Parameters via CGl

19.2. Creating Automation Objects
user function : (see subroutines)
utime() : 13.5. Modifying Timestamps

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: V

values() : 5.4.2. The values Function

variable
namesfor : 1.6.8. Making It Fair for the Rest

variable interpolation : 2.6.4. Interpolation of Scalarsinto Strings

array variables: 3.7. Variable Interpolation of Arrays

double-quoted strings and : 2.3.2. Double-Quoted Strings

globbing : 12.2. Globbing

regular expressions : 7.4.4. Using Variable Interpolation

the substitute operator : 7.5. Substitutions

used with system() : 14.1. Using system and exec
variable part of format : 11.1. What |s a Format?

variables
array : 3.3. Variables

associative array : 5.2. Hash Variables
default value of : 2.9. The Undefined Vaue
predefined : D.6. Many, Many Predefined Variables
scalar : 2.5. Scalar Variables
subroutines and : 8.1. Defining a User Function
Variant : 19.4. Variants
VARIANT : 19.4. Variants
Very Bad Programming Style, example of : 3.4.2. Array Element Access
Visual Basic: 19.5.1. Trandating Samples from Visual Basic
von Neumann, John : Foreword to the First Edition of Learning Perl

vowels, matching : 7.3.1. Single-Character Patterns

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: W

-w operator : 10.6. The -x File Tests
\w, in regular expressions : 7.3.1. Single-Character Patterns
wall, Larry

1.4. Support
9.6. &&, ||, and ?: as Control Structures

Foreword to the First Edition of Learning Perl
Webget client (example) : C.2. A Webget Client
while modifier : 9.5. Expression Modifiers

while statement
1.6.4. Guessing the Secret Word

4.3. The while/until Statement

example of
A.3. Chapter 4, Control Structures

1.6.13. Many Secret Word Filesin the Current Directory
1.6.9. Making It a Bit More Modular
5.4.1. The keys Function
5.4.3. The each Function
6.1. Input from STDIN

last operator : 9.1. The last Statement

next operator : 9.2. The next Statement

redo operator : 9.3. The redo Statement

whitespace : 1.5. Basic Concepts

informats: 11.2. Defining a Format

in pack format string : 16.2. Packing and Unpacking Binary Data

in Perl programs: 1.5. Basic Concepts

in regular expressions : 7.3.1. Single-Character Patterns
Win32 Extensions : B.4. Win32 Extensions

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm

Win32:
Win32:
Win32::
Win32:
Win32:
Win32:
Win32::
Win32::
Win32::
Win32::
Win32::

:AbortSystemShutdown module : B.4. Win32 Extensions
‘AdminMisc module : B.4. Win32 Extensions

BuildNumber module : B.4. Win32 Extensions

:ChangeNotify module : B.4. Win32 Extensions
:Clipboard module : B.4. Win32 Extensions
:Console module : B.4. Win32 Extensions

DomainName module : B.4. Win32 Extensions
Error module: B.4. Win32 Extensions
EventLog module : B.4. Win32 Extensions

ExpandEnvironmentStrings module : B.4. Win32 Extensions

File module

B.4. Win32 Extensions

13.4. Modifying Permissions

Win32:

:FileSecurity module

B.4. Win32 Extensions

13.4. Modifying Permissions

Win32::
Win32::
Win32::
Win32:
Win32:
Win32:
Win32:
Win32:
Win32:
Win32:
Win32:
Win32::
Win32::
Win32::
Win32::
Win32:
Win32::

FormatM essage module : B.4. Win32 Extensions
FsType function : 10.7. The stat Function
FsType module : B.4. Win32 Extensions

:GetCwd function : 12.1. Moving Around the Directory Tree
:GetCwd module : B.4. Win32 Extensions

:GetL astError module : B.4. Win32 Extensions

:GetNextAvailDrive module : B.4. Win32 Extensions
:GetOSVersion module : B.4. Win32 Extensions
:GetShortPathName function : 10.3. Using Pathnames and Filenames
:GetShortPathName module : B.4. Win32 Extensions

:GetTickCount module : B.4. Win32 Extensions

InitiateSystemShutdown module : B.4. Win32 Extensions
Internet module : B.4. Win32 Extensions

IPC module : B.4. Win32 Extensions

ISWin95 module : B.4. Win32 Extensions

ISWinNT module : B.4. Win32 Extensions

LoginName function : 16.1. Getting User and Machine Information

Win32::LoginName module : B.4. Win32 Extensions
Win32::LookupAccountName module : B.4. Win32 Extensions
Win32::LookupAccountSID module : B.4. Win32 Extensions
Win32::Mutex module : B.4. Win32 Extensions

Win32::NetAdmin module
B.4. Win32 Extensions

16.1. Getting User and M achine Information

Win32::NetResource module
B.4. Win32 Extensions

12.5. Reading a Directory Handle
Win32::NodeName function : 16.1. Getting User and Machine Information
Win32::NodeName module : B.4. Win32 Extensions

Win32::ODBC module
B.4. Win32 Extensions

17.6. Win32 Database Interfaces

Win32::OLE module
A.18. Chapter 19, OL E Automation

B.4. Win32 Extensions

19.2. Creating Automation Objects
Win32::Pipe module : B.4. Win32 Extensions
Win32::Process : 14.5. Win32::Process

Win32::Process module
B.4. Win32 Extensions

14.5. Win32::Process
Win32::Registry module

A.15. Chapter 16, System Information

B.4. Win32 Extensions
Win32::Registry package

16.4. The Reqgistry

16.4.1. The Registry Structure
Win32::Semaphore module : B.4. Win32 Extensions
Win32::Service module : B.4. Win32 Extensions
Win32::SetCwd module : B.4. Win32 Extensions
Win32::Shortcut module : B.4. Win32 Extensions

Win32::Sound module : B.4. Win32 Extensions
Win32::Spawn module : B.4. Win32 Extensions
Windows 95 vs. Windows NT : 1.3.3. Windows NT and Windows 95

Windows NT
processeson : 14.5. Win32::Process

Registry : 16.4. The Registry
Windows 95 versus : 1.3.3. Windows NT and Windows 95
winZip utility : 1.3.2. Standard Perl Distribution

word boundary (regular expressions)
1.6.7. Handling Varying Input Formats

7.3.3. Anchoring Patterns
word characters, in regular expressions : 7.3.1. Single-Character Patterns
words, and filled fields in formats : 11.4.4. Filled Fields

World Wide Web
B.2.8. The World Wide Web

18. CGI Programming

write()
1.6.14. Listing the Secret Words
1.6.17. The Final Programs
11.3. Invoking a Format

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: X

x operator (exmaple) : A.1. Chapter 2, Scalar Data
-x operator : 10.6. The -x File Tests
X, as string repetition operator : 2.4.2. Operators for Strings

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

,@Leammg Perl on Win32 Systems

Index: Z

-z operator : 10.6. The -x File Tests

Copyright © 1999 O'Rellly & Associates, Inc. All Rights Reserved.

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/search/wsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

	Learning Perl on Win32 Systems
	Scroll down to the Underground
	Table of Contents
	Foreword to the First Edition of Learning Perl
	Foreword to the Present Edition
	Preface
	[Preface] We'd Like to Hear from You
	[Preface] Conventions
	[Preface] Exercises
	[Preface] Acknowledgments for First Edition
	[Preface] Acknowledgments for the Second Edition
	[Preface] Acknowledgments for the Win32 Edition

	[Chapter 1] Introduction
	[Chapter 1] 1.2 Purpose of Perl
	[Chapter 1] 1.3 Availability
	[Chapter 1] 1.4 Support
	[Chapter 1] 1.5 Basic Concepts
	[Chapter 1] 1.6 A Stroll Through Perl
	[Chapter 1] 1.7 Exercises

	[Chapter 2] Scalar Data
	[Chapter 2] 2.2 Numbers
	[Chapter 2] 2.3 Strings
	[Chapter 2] 2.4 Scalar Operators
	[Chapter 2] 2.5 Scalar Variables
	[Chapter 2] 2.6 Scalar Operators and Functions
	[Chapter 2] 2.7 <STDIN> as a Scalar Value
	[Chapter 2] 2.8 Output with print
	[Chapter 2] 2.9 The Undefined Value
	[Chapter 2] 2.10 Exercises

	[Chapter 3] Arrays and List Data
	[Chapter 3] 3.2 Literal Representation
	[Chapter 3] 3.3 Variables
	[Chapter 3] 3.4 Array Operators and Functions
	[Chapter 3] 3.5 Scalar and List Context
	[Chapter 3] 3.6 <STDIN> as an Array
	[Chapter 3] 3.7 Variable Interpolation of Arrays
	[Chapter 3] 3.8 Exercises

	[Chapter 4] Control Structures
	[Chapter 4] 4.2 The if/unless Statement
	[Chapter 4] 4.3 The while/until Statement
	[Chapter 4] 4.4 The do {} while/until Statement
	[Chapter 4] 4.5 The for Statement
	[Chapter 4] 4.6 The foreach Statement
	[Chapter 4] 4.7 Exercises

	[Chapter 5] Hashes
	[Chapter 5] 5.2 Hash Variables
	[Chapter 5] 5.3 Literal Representation of a Hash
	[Chapter 5] 5.4 Hash Functions
	[Chapter 5] 5.5 Hash Slices
	[Chapter 5] 5.6 Exercises

	[Chapter 6] Basic I/O
	[Chapter 6] 6.2 Input from the Diamond Operator
	[Chapter 6] 6.3 Output to STDOUT
	[Chapter 6] 6.4 Exercises

	[Chapter 7] Regular Expressions
	[Chapter 7] 7.2 Simple Uses of Regular Expressions
	[Chapter 7] 7.3 Patterns
	[Chapter 7] 7.4 More on the Matching Operator
	[Chapter 7] 7.5 Substitutions
	[Chapter 7] 7.6 The split and join Functions
	[Chapter 7] 7.7 Exercises

	[Chapter 8] Functions
	[Chapter 8] 8.2 Invoking a User Function
	[Chapter 8] 8.3 Return Values
	[Chapter 8] 8.4 Arguments
	[Chapter 8] 8.5 Private Variables in Functions
	[Chapter 8] 8.6 Semiprivate Variables Using local
	[Chapter 8] 8.7 File-Level my() Variables
	[Chapter 8] 8.8 Exercises

	[Chapter 9] Miscellaneous Control Structures
	[Chapter 9] 9.2 The next Statement
	[Chapter 9] 9.3 The redo Statement
	[Chapter 9] 9.4 Labeled Blocks
	[Chapter 9] 9.5 Expression Modifiers
	[Chapter 9] 9.6 &&, ||, and ?: as Control Structures
	[Chapter 9] 9.7 Exercises

	[Chapter 10] Filehandles and File Tests
	[Chapter 10] 10.2 Opening and Closing a Filehandle
	[Chapter 10] 10.3 Using Pathnames and Filenames
	[Chapter 10] 10.4 A Slight Diversion: die
	[Chapter 10] 10.5 Using Filehandles
	[Chapter 10] 10.6 The -x File Tests
	[Chapter 10] 10.7 The stat Function
	[Chapter 10] 10.8 Exercises

	[Chapter 11] Formats
	[Chapter 11] 11.2 Defining a Format
	[Chapter 11] 11.3 Invoking a Format
	[Chapter 11] 11.4 More About the Fieldholders
	[Chapter 11] 11.5 The Top-of-Page Format
	[Chapter 11] 11.6 Changing Defaults for Formats
	[Chapter 11] 11.7 The FileHandle Module
	[Chapter 11] 11.8 Exercises

	[Chapter 12] Directory Access
	[Chapter 12] 12.2 Globbing
	[Chapter 12] 12.3 Directory Handles
	[Chapter 12] 12.4 Opening and Closing a Directory Handle
	[Chapter 12] 12.5 Reading a Directory Handle
	[Chapter 12] 12.6 Exercises

	[Chapter 13] File and Directory Manipulation
	[Chapter 13] 13.2 Renaming a File
	[Chapter 13] 13.3 Making and Removing Directories
	[Chapter 13] 13.4 Modifying Permissions
	[Chapter 13] 13.5 Modifying Timestamps
	[Chapter 13] 13.6 Exercises

	[Chapter 14] Process Management
	[Chapter 14] 14.2 Using Backquotes
	[Chapter 14] 14.3 Using Processes as Filehandles
	[Chapter 14] 14.4 Summary of Process Operations
	[Chapter 14] 14.5 Win32::Process
	[Chapter 14] 14.6 Exercises

	[Chapter 15] Other Data Transformation
	[Chapter 15] 15.2 Extracting and Replacing a Substring
	[Chapter 15] 15.3 Formatting Data with sprintf()
	[Chapter 15] 15.4 Advanced Sorting
	[Chapter 15] 15.5 Transliteration
	[Chapter 15] 15.6 Exercises

	[Chapter 16] System Information
	[Chapter 16] 16.2 Packing and Unpacking Binary Data
	[Chapter 16] 16.3 Getting Network Information
	[Chapter 16] 16.4 The Registry
	[Chapter 16] 16.5 Opening and Reading Registry Values
	[Chapter 16] 16.6 Setting Registry Values
	[Chapter 16] 16.7 Exercises

	[Chapter 17] Database Manipulation
	[Chapter 17] 17.2 Opening and Closing DBM Hashes
	[Chapter 17] 17.3 Using a DBM Hash
	[Chapter 17] 17.4 Fixed-Length Random-Access Databases
	[Chapter 17] 17.5 Variable-Length (Text) Databases
	[Chapter 17] 17.6 Win32 Database Interfaces
	[Chapter 17] 17.7 Exercises

	[Chapter 18] CGI Programming
	[Chapter 18] 18.2 Your CGI Program in Context
	[Chapter 18] 18.3 Simplest CGI Program
	[Chapter 18] 18.4 Passing Parameters via CGI
	[Chapter 18] 18.5 Creating a Guestbook Program
	[Chapter 18] 18.6 Troubleshooting CGI Programs
	[Chapter 18] 18.7 Perl and the Web: Beyond CGI Programming
	[Chapter 18] 18.8 Further Reading
	[Chapter 18] 18.9 Exercises

	[Chapter 19] OLE Automation
	[Chapter 19] 19.2 Creating Automation Objects
	[Chapter 19] 19.3 Using Automation Objects
	[Chapter 19] 19.4 Variants
	[Chapter 19] 19.5 Tips and Techniques
	[Chapter 19] 19.6 Exercises

	[Appendix A] Exercise Answers
	[Appendix A] A.2 Chapter 3, Arrays and List Data
	[Appendix A] A.3 Chapter 4, Control Structures
	[Appendix A] A.4 Chapter 5, Hashes
	[Appendix A] A.5 Chapter 6, Basic I/O
	[Appendix A] A.6 Chapter 7, Regular Expressions
	[Appendix A] A.7 Chapter 8, Functions
	[Appendix A] A.8 Chapter 9, Miscellaneous Control Structures
	[Appendix A] A.9 Chapter 10, Filehandles and File Tests
	[Appendix A] A.10 Chapter 11, Formats
	[Appendix A] A.11 Chapter 12, Directory Access
	[Appendix A] A.12 Chapter 13, File and Directory Manipulation
	[Appendix A] A.13 Chapter 14, Process Management
	[Appendix A] A.14 Chapter 15, Other Data Transformation
	[Appendix A] A.15 Chapter 16, System Information
	[Appendix A] A.16 Chapter 17, Database Manipulation
	[Appendix A] A.17 Chapter 18, CGI Programming
	[Appendix A] A.18 Chapter 19, OLE Automation

	[Appendix B] Libraries and Modules
	[Appendix B] B.2 Standard Modules
	[Appendix B] B.3 CPAN: Beyond the Standard Library
	[Appendix B] B.4 Win32 Extensions

	[Appendix C] Networking Clients
	[Appendix C] C.2 A Webget Client

	[Appendix D] Topics We Didn't Mention
	[Appendix D] D.2 The Debugger
	[Appendix D] D.3 The Command Line
	[Appendix D] D.4 Other Operators
	[Appendix D] D.5 Many, Many More Functions
	[Appendix D] D.6 Many, Many Predefined Variables
	[Appendix D] D.7 Symbol Table Manipulation With *FRED
	[Appendix D] D.8 Additional Regular Expression Features
	[Appendix D] D.9 Packages
	[Appendix D] D.10 Embeddible, Extensible
	[Appendix D] D.11 And Other Stuff

	Index
	Index: Symbols and Numbers
	Index: A
	Index: B
	Index: C
	Index: D
	Index: E
	Index: F
	Index: G
	Index: H
	Index: I
	Index: J
	Index: K
	Index: L
	Index: M
	Index: N
	Index: O
	Index: P
	Index: Q
	Index: R
	Index: S
	Index: T
	Index: U
	Index: V
	Index: W
	Index: X
	Index: Z

