

Learning ASP.NET 3.5
SECOND EDITION

Jesse Liberty, Dan Hurwitz, and BrianMacDonald

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Learning ASP.NET 3.5, Second Edition
by Jesse Liberty, Dan Hurwitz, and Brian MacDonald

Copyright © 2008 Jesse Liberty, Dan Hurwitz, and Brian MacDonald. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Sumita Mukherji
Proofreader: Sumita Mukherji
Indexer: Angela Howard

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

September 2007: First Edition.

July 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning ASP.NET 3.5, Second Edition, the image of a monkfish, and related trade
dress are trademarks of O’Reilly Media, Inc.

.NET is a registered trademark of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51845-5

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

iii

Table of Contents

Preface . xi

1. Getting Started . 1
Hello World 2
Creating a New Web Site 2
Creating HelloWorld 6
Making the HelloWorld Web Site Interactive 8
What You Just Did 13
Summary 13
Brain Builder 15

Quiz 15

Exercise 15

2. Building Web Applications . 17
Mastering Web Site Fundamentals 17

The Page 17

Controls 19

Code-Behind Files 22

Events and Postbacks 22

Synchronous and Asynchronous Postbacks 23

The Page Load event and synchronous postback 27

Adding asynchronous postbacks 29

Using Controls 35
Organizing the Properties Window 35

Finding properties with IntelliSense 35

Basic Controls 36

Creating Tables 39

iv | Table of Contents

Setting Properties 41

Selection Controls 43

Panels 45

List Selection Controls 45

Adding items with the Item editor 46

Adding items in Source view 47

More Selection Controls 50

Using Selections to Display Text 52

Images 56

Links 57

LinkButtons 58

Source Code 58
Summary 63
Brain Builder 65

Quiz 65

Exercises 65

3. Snappier Web Sites with AJAX . 69
Take a Walk on the Client Side 69
ScriptManager and UpdatePanel 71
Controlling Browser History 76
Extending Controls with the Control Toolkit 83

TextBoxWaterMarkExtender 85

PopupControlExtender 89

CollapsiblePanelExtender 95

Source Code Listing 100
Summary 105
Brain Builder 106

Quiz 106

Exercises 106

4. Saving and Retrieving Data . 111
Getting Data from a Database 112

Binding Data Controls 113

Create a Sample Web Page 115

Table of Contents | v

Using a DataSource Control 115

Pay No Attention to That Man Behind the Curtain 121

GridView Control 123
Auto-Generated Code 125

Adding Insert, Update, and Delete Statements 128

Displaying and Updating the Data 133
Take It for a Spin 134

Modifying the Grid Based on Conditions 135

Selecting Data from the GridView 139

Passing Parameters to the SELECT Query 140

LINQ 146
Creating the Object Model 147

Using the Object Model 153

Editing Data in LINQ 157

ASP.NET Dynamic Data 161
Source Code Listings 166
Summary 172
Brain Builder 174

Quiz 174

Exercises 174

5. Validation . 179
Validation Controls 180
The RequiredFieldValidator 182
The Summary Control 188
The Compare Validator 189

Checking the Input Type 193

Comparing to Another Control 193

Range Checking 195
Regular Expressions 196
Custom Validation 198
Summary 201
Brain Builder 202

Quiz 202

Exercises 202

vi | Table of Contents

6. Style Sheets, Master Pages, and Navigation . 207
Styles and Style Sheets 207

Cascading Styles 208

Inline Styles 208

Pros and cons 210

Document-Level Styles 210

Pros and cons 211

External Style Sheets 212

Master Pages 220
Creating a Master Page 221

Adding Content Pages 225

Using Nested Master Pages 228

Changing the Master Page at Runtime 232

Navigation 234
Buttons and HyperLinks 235

Menus and Bread Crumbs 240

Site Maps 243

Using Sitemaps 246

TreeView 246

Customizing the look and feel of the TreeView 247

Replacing the TreeView with a menu control 248

Accessing site map nodes programmatically 249

Bread Crumbs 252

Summary 255
Brain Builder 257

Quiz 257

Exercises 257

7. State and Life Cycle . 261
Page Life Cycle 261
State 267

View State 269

Session State 279

Application State 285

Summary 286
Brain Builder 288

Quiz 288

Exercises 288

Table of Contents | vii

8. Errors, Exceptions, and Bugs, Oh My! . 291
Creating the Sample Application 292
Tracing 295

Page-Level Tracing 296

Inserting into the Trace Log 298

Debugging 300
The Debug Toolbar 302

Breakpoints 303

Setting a breakpoint 303

Breakpoints window 303

Breakpoint properties 305

Breakpoint icons 307

Stepping Through Code 309

Examining Variables and Objects 310

Debug Windows 310

Immediate window 311

Locals window 312

Watch window 313

Call Stack window 313

Error Handling 313
Unhandled Errors 314

Application-Wide Error Pages 316

Page-Specific Error Pages 320

Summary 320
Brain Builder 323

Quiz 323

Exercises 323

9. Security . 326
Forms-Based Security 326
Creating Users with the WAT 327
Managing Users Programmatically 332

Creating User Accounts 333

Creating a Welcome Page 336

Creating a Login Page 337

Roles 340
Restricting Access 342

viii | Table of Contents

Testing for Login Status 345

Testing for Role-Based Authentication Membership 345

Summary 349
Brain Builder 351

Quiz 351

Exercises 351

10. Personalization . 353
Profiles 353

Simple Data Types 354

Complex Data Types 359

Anonymous Personalization 364
Adding an Anonymous Profile 365

Migrating Anonymous Data to an Actual User’s Record 370

Themes and Skins 371
Create the Test Site 372

Organize Site Themes and Skins 374

Enable Themes and Skins 375

Specify Themes for Your Page 377

Using Named Skins 381

Summary 382
Brain Builder 384

Quiz 384

Exercises 384

11. Putting It All Together . 388
Getting Started 388
Adding Styles 389
Using Master Pages 392
Setting Up Roles and Users 396
Logging In 398
Navigation 402
Products Page 403
Adding AJAX 414
Cart Page 414
Purchase Page 419
Confirm Page 426
Custom Error Pages 428

Table of Contents | ix

Summary 429
Source Code Listings 430

Cart Page 430

Confirm Page 433

Home Page 435

Login Page 435

Master Page 436

Products Page 438

Purchase Page 442

Web.config 447

A. Installing the Stuff You’ll Need . 453

B. Copying a Web Site . 466

C. Publishing Your Web Site . 478
Database Support 479

Your Domain Name 479

Picking a Hosting Site 481

Setting Up the Account 481

Uploading the Web Site Files 482

Uploading Data 482

Creating the script 485

Logging Into the hosting database and running the script 487

Updating the Connection Strings 492

Notes and Tips 493

Running Web Server Software 495

Security 495

Configuring the Firewall 496

Hosting a Web Site Under IIS 498

IIS 7 498

IIS 6 499

Setting Up the Domain Name 500

D. Answers to Quizzes and Exercises . 503

Index . 575

xi

Preface1

ASP.NET 3.5 is arguably the fastest, most efficient, most reliable, and best-supported
way to create interactive web applications available today. Combined with the devel-
opment tools available from Microsoft (both free and commercial), it is incredibly
easy to create web sites that look great and perform well. Best of all, most of the
“plumbing” (security, data access, layout, and so on) is taken care of for you by the
.NET Framework.

About This Book
This book will teach you how to build professional quality, interactive, robust data-
driven web applications using Visual Basic 2008.

ASP.NET is not difficult to learn. All of the concepts are straightforward, and the
Visual Studio and Visual Web Developer environments simplify the process of build-
ing powerful web applications. The difficulty in ASP.NET is only that it is so com-
plete and flexible that there are many pieces that must be woven together to build a
robust, scalable, and efficient application. This book cuts to the heart of the matter,
showing in clear, easy-to-follow steps how to understand and build a web site.

ASP.NET makes it possible to create sophisticated and useful sites with minimal cod-
ing. You can enhance the functionality of your sites with Visual Basic or C#, if you
choose, but the amount of code that you must write is surprisingly small. We’ve
adopted that philosophy throughout this book, showing you how to take the most
advantage of the tools Microsoft and ASP.NET provide while keeping the coding to a
minimum. Whenever you need to write code, we walk you through each step and
explain what it all does.

xii | Preface

About This Series
O’Reilly Learning books are written and designed for anyone who wants to build
new skills and who prefers a structured approach to studying. Each title in this series
makes use of learning principles that we (with your help) have found to be best at
equipping you with the knowledge you need for joining that new project, for coping
with that unexpected assignment from your manager, or for learning a new language
in a hurry.

To get the most out of any book in the Learning series, we recommend you work
your way through each chapter in sequence. You’ll find that you can get a quick
grasp of a chapter’s content by reading the instructional captions we’ve written for
its examples and figures. You can also use the chapter Summary to preview its key
takeaways and to review what you have learned. Most chapters feature one or more
sample applications, and, if you learn best by reading code, you can turn to the com-
plete source listing that appears just before the Summary. To bridge any gaps in your
knowledge, check out the Cheat Sheets. Finally, to help you test your mastery of the
material in each chapter, we conclude with a Brain Builder section, which includes a
short quiz to test your grasp of the theory, and some hands-on exercises to give you
practice building real applications with your new skills.

Learning books work with you as you learn—much as you would expect from a
trusted colleague or instructor—and we strive to make your learning experience
enjoyable. Tell us how we’ve done by sending us praise, brickbats, or suggestions for
improvements to learning@oreilly.com.

Learning or Programming?
We have written two ASP.NET books: the one you are currently reading and another
named Programming ASP.NET 3.5 (O’Reilly). This book, Learning ASP.NET 3.5, is
intended for beginning ASP.NET developers, and answers the question, “What is the
quickest way for me to build real web applications with the least amount of coding?”

Our other book, Programming ASP.NET, is for developers who are saying: “Help me
learn in depth—show me how everything works, and then help me put it to work in
web applications.” The key difference is this book is aimed to make you productive
quickly, while the second book is designed to explore the technology in more depth.
They complement each other, but if you are starting out and want to get to work
fast, this is the one for you.

Learning ASP.NET 3.5 assumes you know some HTML and have some familiarity
with Visual Basic 2008 (VB) or C#, or can pick up what you need along the way (or
you’re willing to run right out and buy Programming Visual Basic 2008 by Tim
Patrick [O’Reilly], although for what you’ll be doing here, you won’t really need it).
To help with this, we have included VB Cheat Sheets throughout the book to explain
and clarify some of the VB topics for newbies.

learning@oreilly.com

Preface | xiii

VB Versus C#
A quick note on Visual Basic versus C#: some people choose a .NET book based on
what language the examples are given in. That’s a natural reaction, but it’s really not
necessary, and here’s why: there is very little actual VB or C# code in any given ASP.
NET application, and what there is, you can easily translate from one to the other
“on inspection.” Besides, the two languages are strikingly similar, and both produce
the same output. If you know one, it’s quite simple to learn the other. In fact, there
are software tools that can convert one language to the other with amazing accuracy.
Finally, ASP.NET programmers benefit terrifically by being “bilingual”—that is, hav-
ing the ability to read VB and write C# (or vice versa).

In the end, we had to choose one language over the other, and we elected to do
the examples and exercises for this book in Visual Basic. However, if you prefer
C#, you’ll find every single example and exercise solution reproduced in C# free
for download from this book’s web site at http://www.oreilly.com/catalog/
9780596518455.

How This Book Is Organized
Chapter 1, Getting Started, walks you through creating your first web site, HelloWorld.

Chapter 2, Building Web Applications, goes over the fundamentals of web sites and
covers the basic controls available to you in ASP.NET.

Chapter 3, Snappier Web Sites with AJAX, shows you how to integrate this powerful
client-side technology into your ASP.NET pages.

Chapter 4, Saving and Retrieving Data, shows you how to make your site interact
with data stored in a database. You’ll see controls to retrieve data, allow your users
to interact with that data, and then save it back to the database. We’ll also discuss
the Language Integrated Query (LINQ), new to the .NET Framework.

Chapter 5 looks at Validation. ASP.NET provides extensive support for data valida-
tion, including ensuring that users provide required information, checking that val-
ues are within a range, and matching regular expressions.

Chapter 6, Style Sheets, Master Pages, and Navigation, shows you how to make web
sites that are professional quality, good looking, consistent, and easy to navigate.

Chapter 7 examines State and Life Cycle in ASP.NET. Understanding how, and in
what order, a page and its controls are created on the server and rendered to the
browser is crucial for building successful interactive web sites. State is the current
value of everything associated with the page. This is mostly handled automatically,
but this chapter shows you how useful it can be to the developer.

http://www.oreilly.com/catalog/9780596518455
http://www.oreilly.com/catalog/9780596518455

xiv | Preface

Chapter 8, Errors, Exceptions, and Bugs, Oh My!, shows you how to use Visual Stu-
dio’s tools to debug your application, and also how to handle errors in your code
before users see them.

Chapter 9, Security, shows you how you can protect your web site from malicious
users. You’ll find out how to register your users and how to hide parts of your site
from users who don’t have the appropriate privileges.

Chapter 10, Personalization, shows you how to allow your end users to customize
the look and feel of the web site according to their personal preferences. You will see
how to use themes and skins to accomplish this.

Chapter 11, Putting It All Together, is a single, large example that integrates almost
everything you have learned throughout the book.

Appendix A, Installing the Stuff You’ll Need, tells you what hardware and software is
required to run the examples in this book and helps you set up your environment.

Appendix B, Copying a Web Site, describes the process of copying a web site to a new
web site. This is a technique used often throughout this book when building up
examples.

Appendix C, Publishing Your Web Site, covers the steps to take a web site from the
development stage to being publicly available on the web.

Appendix D, Answers to Quizzes and Exercises, presents detailed solutions to all of
the quiz questions and practice exercises found at the end of each chapter.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Used for pathnames, filenames, program names, Internet addresses, such as
domain names and URLs, and new terms where they are defined.

Constant width
Used for command lines and options that should be typed verbatim, and names
and keywords in program examples. Also used for parameters, attributes, prop-
erties, expressions, statements, and values.

Constant width italic
Used for replaceable items, such as variables or optional elements, within syntax
lines or code.

Constant width bold
Used for emphasis within program code examples.

Preface | xv

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

Support: A Note from Jesse Liberty
I provide ongoing support for my books through my web site. You can obtain the
source code for all of the examples in Learning ASP.NET 3.5 at:

http://www.LibertyAssociates.com

There, you’ll also find access to a book support discussion group that has a section
set aside for questions about Learning ASP.NET 3.5. Before you post a question,
however, please check my web site to see if there is a Frequently Asked Questions
(FAQ) list or an errata file. If you check these files and still have a question, then
please go ahead and post it to the discussion center. The most effective way to get
help is to ask a precise question or to create a small program that illustrates your area
of concern or confusion, and be sure to mention which edition of the book you have
(this is the second edition).

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning ASP.NET 3.5, by Jesse
Liberty, Dan Hurwitz, and Brian MacDonald. Copyright 2008 Jesse Liberty, Dan
Hurwitz, and Brian MacDonald, 978-0-596-51845-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at http://permissions@oreilly.com.

http://www.LibertyAssociates.com
http://permissions@oreilly.com

xvi | Preface

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596518455

To comment or ask technical questions about this book, send email to:

http://bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com/

Visit the O’Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

From Jesse Liberty
I am particularly grateful to John Osborn, who has shepherded all of my work
through O’Reilly, as well as the editors and production folks at O’Reilly who (as
always) made this book so much more than what we originally created.

http://www.oreilly.com/catalog/9780596518455
http://bookquestions@oreilly.com
http://www.oreilly.com/
http://www.oreillynet.com/dotnet
http://safari.oreilly.com

Preface | xvii

From Dan Hurwitz
In addition to the people mentioned by Jesse, I also want to commend Brian for the
great work he has done on this edition. It is a much better book because of his
efforts. And, as always, I especially want to thank my wife for being so supportive of
this project. It sounds trite and repetitious, but it would not be possible without her
help.

From Brian MacDonald
As always, my deepest appreciation goes to Jesse and Dan for inviting me to be a part
of this project, and for having me back for another edition. My thanks also to John
Osborn for getting me involved with O’Reilly in the first place, many years ago now.
My gratitude and appreciation to our technical reviewers, Jesudas Chinnathampi,
Owen Davies, and especially to Mike Pope, who took no prisoners, but whose feed-
back improved the quality of this book tremendously. Sumita Mukerji, production
editor extraordinaire, went above and beyond the call of duty several times, and I
thank her for that. Many thanks to my wife, Carole, who once again provided techni-
cal and moral support, and to my son, Alex, for his patience while Dad worked on
yet another chapter. Finally, thanks to my parents, Reenie and Dave, for fostering my
love of reading and writing, and also for the gift of the lap desk that I used while
writing this book.

1

Chapter 1 CHAPTER 1

Getting Started1

Learning ASP.NET 3.5 will teach you everything you need to know to build profes-
sional quality web applications using Microsoft’s latest technology, including ASP.NET
3.5 and AJAX. ASP.NET is Microsoft’s tool for creating dynamic, interactive web pages
and applications. Using plain vanilla HTML, you can make a web page that has some
great content, but it’s static—the content doesn’t change, no matter what the user
does. You can even use Cascading Style Sheets (CSS) to make it the most visually
impressive thing on the Web, but if what you really need is for users to be able to
leave comments, or browse your inventory, or buy things from you, then HTML
alone won’t get it done.

That’s where ASP.NET 3.5 comes in. Within these chapters, you’ll find out how to
do all the great tricks that you see on the most popular commercial web sites. Order
forms? We’ve got that. Interact with a database? You’ll do that, too. Dynamic navi-
gation tools? It’s in here. Personalized appearance that the user can customize? No
problem.

The best part is, you’ll do it all with minimal coding. You can make ASP.NET pages
in your favorite text editor if you want, but that’s a bit like using a hammer and
chisel to write the Great American Novel. If you use Visual Studio 2008, or its free
counterpart, Visual Web Developer, adding many features to your page is as simple
as dragging and dropping. The tools generate most of the code for you. If you’re an
old-school type who cringes at the idea of letting someone else write your code, it’s
all still there, and you can tweak it to your heart’s content. Consider this, though:
would you rather spend your time writing the code for another radio button list, or
figuring out what to do with the data that you gather using it? In short, the tools do
the tedious chores for you, so you can get to the good stuff.

On top of all this, you can enhance your ASP.NET 3.5 site with AJAX, which is more
than just résumé enhancement—it’s a genuine improvement in the user experience.
When a user is browsing your product catalog, and she clicks on one of your thumb-
nail images to view the product’s details in another panel, she simply expects it to
work instantly. She doesn’t want to wait while the page contacts your server, reloads,

2 | Chapter 1: Getting Started

and then redraws itself with the new information. With AJAX, she won’t see any of
that. The update is seamless, and the user never has to slow down. You’ll see AJAX
tools used throughout this book. In fact, Chapter 3 is dedicated solely to just that
topic, so you can use AJAX with everything else we’ll show you.

One of the wonderful characteristics of the tools (Visual Web Developer or Visual
Studio) and the technology you’ll be using (ASP.NET and ASP.NET with AJAX) is
that you’ll be able to create your applications by dropping controls onto the page
and just a little bit of handcoding to handle “events” (such as what happens when
the user clicks a button). Not toy applications—meaningful business applications.

By the time you’ve finished this book, you’ll be able to do all of that and more, and
you’ll learn about it by doing it yourself—hands-on. If you don’t have Visual Studio
or Visual Web Developer installed yet, turn to Appendix A now for detailed instruc-
tions on how to install and set it up. Once you’ve done that, it’s time to dive right in
and create your first application, “Hello World.”

Hello World
One of the most difficult problems in beginning to learn any programming technol-
ogy is the “bootstrap” problem. That is, writing your first program requires using
techniques that you haven’t learned yet, but learning those techniques in a vacuum is
not only boring, but to some degree pointless because there’s no context, and thus
no way to integrate that which you learned.

The traditional solution to this dilemma is to create the canonical “Hello World”
program. Our Hello World web site will allow us to demonstrate many useful
aspects of ASP.NET without overwhelming you with detail. We promise we will
explain every aspect of this web site in detail as we go along.

According to Wikipedia (http://en.wikipedia.org/wiki/Hello_World),
the tradition of a Hello World program dates back to a 1974 Bell Lab-
oratories memorandum by Brian Kernighan.

This introductory web site will have only a Button and a Label control. Initially, the
Label will display the text “Label.” When the user clicks the Button, the Label text
becomes “Hello World.” Very cool, eh? You can see the finished product in
Figure 1-1 as it appears after you’ve clicked the button.

Creating a New Web Site
To get started, open the Integrated Development Environment (IDE), which for your
purposes in this book is Visual Web Developer or Visual Studio. (Throughout this
book, we will use the acronym IDE for both, specifically using Visual Studio or
Visual Web Developer only where they are different.)

http://en.wikipedia.org/wiki/Hello_World

Creating a New Web Site | 3

To create a new web site, click on the menu item File ➝ New Web Site..., or alterna-
tively, use the Create: Web Site... link on the Start Page. Either way, you should see
the New Web Site dialog, like the one shown in Figure 1-2.

In this book, we will be using Visual Basic as our default language,
although it is our profound belief that Visual Basic and C# are really a
single language, just with slightly different syntax.

We will be showing many of our screen shots from Visual Web Devel-
oper, because it is freely available from Microsoft; however, anything that
you can do in Visual Web developer can also be done in Visual Studio.

Take another look at Figure 1-2, and we’ll examine it in some detail. In the upper
part of the window, you are offered various Visual Studio templates (though yours may
vary, depending on any features and add-ons you’ve installed). Select the ASP.NET
Web Site template because that is the kind of site that you are going to create (shown
highlighted in this figure).

In the Location drop-down box at the bottom of the dialog box, select File System
(the other options are HTTP or FTP; we’ll explain this selection in the next section).

The Location drop-down in Figure 1-2 covers up another drop-down in which we
have set the language to Visual Basic (rather than to Visual C#). Finally, you need to
specify where on your disk you would like this web site to be placed—in this case, in
the LearningASP directory on the C drive. You won’t have such a directory on your
hard drive yet, so you’ll need to type it into the Location field (or whatever directory
you want to use for your projects in this book).

Figure 1-1. This is what the HelloWorld web site will look like after you click the Button. It may
not look like a lot, but this is a fully functional, interactive web site.

4 | Chapter 1: Getting Started

The name of the new web site will be HelloWorld (with no space character), so type
that into the Location field. The site will be fully contained in a subdirectory named
HelloWorld within the directory LearningASP.

Click OK; the IDE will create the directory for you, put the needed default files for
your site within it, and then open the new web site.

You can confirm that the files are in the right place by navigating to the specified
directory using Windows Explorer, as shown in Figure 1-3. When you work on your
site, however, you’ll most likely access these files through the Solution Explorer win-
dow located on the right side of the IDE window.

The Location field in Figure 1-2 is really composed of two parts: a drop-down with
three possible values, and a text box for the folder name and path. The drop-down
choices are File System, HTTP, and FTP.

File System is the default choice for new web sites and the only choice we’ll be using
in this book. It creates a new web site folder somewhere on the physical file system,
either on your local machine or your network. One important feature of ASP.NET is
that an entire web site can be contained within a directory. This is convenient not

Figure 1-2. To create a new web site, open the IDE, and click on Menu ➝ New Web Site to open
the New Web Site dialog box. The Visual Studio Installed templates and My Templates panels show
you the types of sites supported by your version of Visual Studio.

Selected template

Location drop-down Web site folder and name

Creating a New Web Site | 5

only for deploying your web site to a web server, but as a side benefit, it allows us to
easily place samples from this book onto our web site for you to download and try
on your local machine.

When you create your web site, you can use the Browse button (lower-right corner in
Figure 1-2) and its associated drop-down list to browse the file system as you would
with Windows Explorer; you can also select any desired folder as the “home” for
your new web site folder.

When you run your file system-based web application from within the IDE, the
development environment runs the application using its own internal web server
rather than a web server program such as Microsoft Internet Information Server (IIS).
This means that you can easily develop web sites on your machine without the neces-
sity of installing IIS.

The alternatives to hosting your site in your file system are named HTTP and FTP.
HTTP indicates that IIS (the web server product from Microsoft) will be serving the
pages and requires that the web application be located in an IIS virtual directory. If
you choose HTTP, the IDE will automatically create this virtual directory for you
and the web site will be served by IIS.

FTP allows you to develop your web site on a remote location accessible via the FTP
protocol. You will be presented with an FTP Log On dialog box with a checkbox to
allow Anonymous Log in, and text boxes for login user name and password, if
necessary.

Figure 1-3. Visual Studio creates a new web site directory for you, complete with some default files
to start with.

6 | Chapter 1: Getting Started

Creating HelloWorld
After you’ve named your new web application and chosen a place to keep the files,
the IDE will look more or less like Figure 1-4. This is where you do the real work of
putting your site together.

Which exact windows you see and how they are presented may be
determined by the options you’ve chosen. In your IDE, you can always
open new windows from the View or Window menu, and you can
undock, move, and redock the various windows using the mouse and
the on-screen docking indicators.

In Figure 1-4, you see the main window, which shows the page markup: HTML plus
ASP.NET declarations and controls. This is called the markup file, or the .aspx file,
because .aspx is the file extension associated with markup files. Also note the three
tabs at the bottom of this pane, labeled Design, Split, and Source. You’ll be using
these three tabs a lot as you create your pages.

Figure 1-4. Initial IDE screen for HelloWorld. This is what you’ll see after you’ve named your web
site, chosen a language, and created a directory for it.

Toolbox (hidden)

Design tab

Main window Solution Explorer

Split tab Source tab Properties window

Creating HelloWorld | 7

To start, click on the Design tab. When you click this tab, the middle window of
your IDE becomes the design surface. On the design surface, you can drag and drop
items such as buttons, text fields, labels, and so on from the Toolbox (which you’ll
see in a moment), where they automatically become part of your application. Each
item that you can drag onto the design surface is called a control. You’ll be reading
more about controls in Chapter 2 and throughout this book.

Next, click on the Source tab. This view allows you to see the same controls, but dis-
played as HTML and ASP.NET markup. When you drag a control onto the design
surface, the IDE automatically adds the appropriate markup to make that control
part of the page. You can view and adjust that markup from the Source tab and even
drag controls from the Toolbox directly onto the Source view. As you switch back
and forth between the Source and Design views, they will remain consistent with one
another, as they are two views of the same information.

Many working programmers—and even Microsoft itself—will refer to
markup as source code. Other programmers draw a distinction
between markup (HTML, ASP.NET controls, XML, etc.) on the one
hand, and source code (C#, VB.NET, JavaScript) on the other. This
can—and does—cause confusion, and all ASP.NET programmers
learn to differentiate as best we can by context. The Source tab shows
markup or HTML source code. The “code-behind” file, discussed
below, shows C# or VB.NET source code. Not a perfect naming sys-
tem, but there you have it. In practice, markup and ASP.NET source
code have become synonymous.

Finally, click on the Split tab—here you’ll see the best of both worlds. The Split view
combines shows the Source view in the top pane, and the Design view in the bottom
pane. You can drag controls onto either pane and the other pane will adjust appro-
priately. Sometimes it might take a moment or two for the other pane to catch up
and synchronize, but you’ll see a warning message when they’re out of sync.

Again, referring to Figure 1-4, the window at the right edge of the screen displays the
Solution Explorer, which is used for navigating and working with the files that make
up your web site. The Database Explorer tab (called the Server Explorer in Visual
Studio) at the bottom of the Solution Explorer window allows you to create and
work with data connections.

Below the Solution Explorer window is the Properties window, which displays the
properties for the currently selected object on the page. Properties are settings that
are specific to each control, so the content of this window changes depending on
what control you’ve clicked on. You’ll be reading a lot more about properties in the
discussion on controls in Chapter 2.

On the left edge of the Main window, click on the Toolbox tab to display the Tool-
box. By default, the Toolbox will obscure part of your code window, so click the
pushpin button in the title bar of the Toolbox to “pin” it in place and shove the code

8 | Chapter 1: Getting Started

window over a bit. You can “pin” any of the auxiliary windows in place, keeping
them visible. When “unpinned,” they will auto-hide, showing only their tab. Click-
ing on a tab while unpinned will make them temporarily visible.

Inside the Toolbox, you’ll find a number of expandable categories that contain just
about every control you’d want to use on your web page. If the Toolbox tab is not
visible, click on View ➝ Toolbox to display it. Initially it will be displayed in
expanded view, as shown on the left side of Figure 1-5. Click on the + or – icon to
collapse or expand each section.

Making the HelloWorld Web Site Interactive
Although it doesn’t seem like you’ve done much, you’ve already created your web
page. It just doesn’t do much of anything right now. To make your page come alive,
you need to add some controls to it. Everything that you’ll find in the Toolbox is a
control, and you can add controls to your pages simply by dragging them onto the
design surface or into the Source view.

For this first program, you’ll add a button and a label to your page, making it look
like what you saw back in Figure 1-1. Follow these steps:

1. Click the Design tab at the bottom of the main window to ensure that you are in
Design view.

Figure 1-5. The Toolbox provides quick access to just about everything you’d want to put on your
page. Here, the Toolbox is shown expanded on the left and collapsed on the right.

Making the HelloWorld Web Site Interactive | 9

2. If the Toolbox window is not already pinned in place, click on the pushpin icon
in its title bar to pin it in place.

3. If the Standard category of the Toolbox is not expanded, click on the plus sym-
bol and expand it. You should be able to see a number of basic controls listed in
the Toolbox, such as “Label,” “TextBox,” and “Button.”

4. Click on a Button control in the Toolbox and drag it onto the design surface
inside the div element.

5. Click on a Label control in the Toolbox, and drag that onto the design surface
next to the button.

At this point, your IDE should appear similar to Figure 1-6.

This is a good time to stop and run your program to see what it does so far. There
are three ways to do this:

• Click on the menu item Debug ➝ Start Debugging

• Press the F5 keyboard shortcut

• Click on the Start Debugging icon () on the toolbar

Because this is the first time you’ve run the program, the IDE will detect that your
application (specifically, its web.config file) is not set to allow debugging and will
offer to make that adjustment for you, as shown in Figure 1-7. Get used to this dialog
box—you’ll see it the first time you run any web site.

Figure 1-6. After you’ve added the button and label to your HelloWorld application, the Design
view should look like this.

10 | Chapter 1: Getting Started

It’s not important to know what a web.config file is right now; we’ll explain it later.
For now, click OK to allow the IDE to modify the configuration file.

After you click OK, your application begins, your default browser opens, and the
page that contains your button is displayed, as shown in Figure 1-8.

In the address bar of the browser, where you normally see the URL of
the web site you’re visiting, you’ll see http://localhost:, followed by
a number. This is still a URL, and “Localhost” is just what it sounds
like—it represents the ASP.NET web server running on your local
machine. The number is a port number, and will probably vary each
time you run your application.

Figure 1-7. You’ll see this Debugging Not Enabled dialog box the first time you run your
application. Just select the first option and click OK to keep going.

Figure 1-8. This is what HelloWorld looks like in the browser before you do any coding. The
button doesn’t do anything yet, though.

Making the HelloWorld Web Site Interactive | 11

Click the button. Unfortunately, nothing happens. In the status bar of the browser,
you may see evidence that the page is sent back to the server—this is called a post
back, which we’ll describe in Chapter 2. For now, close the browser to end the appli-
cation, then return to the Design view in the IDE. You may see a new window named
“Output” at the bottom of the IDE. If so, just close the window and don’t worry
about that for now.

All web applications are “event-driven.” Any action that your control can take, or
that a user can take with a control—clicking a button, opening a tool tip, checking a
checkbox—is an event. Put simply, a web page without any events just sits there.
When an event occurs, it is said to be raised, (we might also say that the event is
fired). Then, behind the scenes, a block of code called an event handler is called to
respond to that event. All of this firing of events and calling event handlers is auto-
matically wired in by ASP.NET, and is far easier to set up than it is to describe, so
don’t panic!

Not surprisingly, all buttons have a default event named Click. The Click event is
automatically fired whenever the user clicks a button. At the moment, when you
click the button on your web page, the event is fired, but there’s no event handler
yet, so nothing happens.

Creating the event handler for the Click event is easy. In Design view, all you have to
do is double-click the Button control. This instructs the IDE to create an event han-
dler and name it. The IDE will name your event handler as follows: the ID of the
control, followed by an underscore, followed by the name of the event. If you do not
explicitly provide the ID for a button (we’ll discuss naming events and event han-
dlers later), the IDE will apply the default ID of Button1. Thus, the name of the event
handler will be set to Button1_Click.

The IDE then displays the code-behind file and an event handler stub for you to com-
plete. Here, you can add your own custom code to specify the operations you want
the handler to perform when it’s called.

Give it a try. Switch to Design view and double-click on the button. The code-behind
file containing your newly created event handler will open, as shown in Figure 1-9.

Don’t worry about any of the other code you see, like the Partial Class and End
Class lines; that’s all added automatically by Visual Studio. All you need to know
right now is that your event handler is the code that starts with Protected Sub and
ends with End Sub. You’ll add your code in between those lines.

In this event handler, whenever the user clicks the button, you want to set the Text
property of the Label control, which the IDE named Label1, to the phrase “Hello
World.” To do that, you need to assign that string of letters to the Text property of
the Label. The event handler for Button1_Click appears as shown in Example 1-1.

12 | Chapter 1: Getting Started

In this listing, and in other listings throughout this book, we’ve refor-
matted the code to fit the width of the printed page. In Visual Basic,
the line continuation character is the underscore (as seen at the end of
the first three lines, used here and elsewhere to make valid VB code).
You, or the IDE, may place much of that code on a single line without
the continuation character(s).

To assign the text string to the label, click inside the event handler, and then type the
following code:

Label1.Text = "Hello World"

When you’re done, the event handler should look like Example 1-2.

Figure 1-9. When you double-click the button in HelloWorld, you’ll be taken to the code-behind
page, where you can modify the event handler yourself.

Example 1-1. The Button1_Click event handler in HelloWorld, before you change it
Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
End Sub

Example 1-2. The Button1_Click event handler, after your addition
Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Label1.Text = "Hello World"
End Sub

Summary | 13

After you’ve added the code to your event handler, save the file by clicking the Save
button on the toolbar, then run the program again by clicking the Debugging icon or
pressing F5. When the page opens in your browser, click the button. Your event han-
dler is working now, so you should see the text label change to “Hello World,” as
displayed back in Figure 1-1.

What has happened is that when you click the button, the page is sent back to the
server, where your event handler code runs, and the string “Hello World” is assigned
to the Text property of the Label control. A new page was created by the server and
sent back down the “wire” to the browser as pure HTML, and then displayed on
your screen. Close your browser to stop the application and return to the IDE.

What You Just Did
When you follow step-by-step instructions as if following a recipe, it’s easy to lose
sight of what you’ve done. Here’s a quick review:

• You created a new web site on your file system.

• You dragged a Button and a Label onto the design surface.

• You double-clicked on the Button to create an event handler.

• In the event handler, you assigned “Hello World” to the Text property of the
Label control.

• You ran your application and clicked on the Button, causing the page to be sent
back to the server where the event handler code ran. The text “Hello World”
was assigned to the Label and the page was sent back to the browser.

Congratulations! You’ve just built your first bona fide web page—and it’s interac-
tive, too. Pretty easy, isn’t it? You’ve seen how to use the IDE, you’ve worked in
Design view and in the code-behind file, and, most important, you saw how to cre-
ate a page that actually responds to user input.

Summary
• ASP.NET 3.5 lets you create interactive web pages and applications. With

dynamic pages, you can interact with your users and create a richer experience
for them.

• Visual Studio 2008, or the free Visual Web Developer, supplies the tools that
make creating a web page as easy as dragging and dropping, minimizing the
code you need to write.

• AJAX is a set of technologies that you can use to make the user’s experience
more responsive.

14 | Chapter 1: Getting Started

• You can create a new web site or open an existing one from the Start Page in
Visual Web Developer or Visual Studio.

• In ASP.NET, you can store your entire web site within a single directory, which
in this book will always be on your local hard drive, but you can also store them
at a remote location and serve them using IIS.

• The main window of the IDE has three views: Design, Source, and Split. Design
view allows you to see the visual design of your web page; Source view shows
the HTML and ASP.NET markup instead; and Split shows both views in sepa-
rate panes. You can switch between the views on the fly.

• The items that you add to your web page are called controls. Controls are stored
in the Toolbox, which by default appears on the left side of the IDE. You add
controls to the page simply by dragging them from the Toolbox onto the appro-
priate spot on the page in Design view or Source view.

• The Solution Explorer, located on the right side of the IDE, displays the files in
your web site. Below the Solution Explorer is the Properties window, which lets
you adjust the properties of any control you select. On a separate tab is the Data-
base Explorer (called Server Explorer in Visual Studio) for access to the databases
that support your web site.

• You can run your application by clicking Debug ➝ Start Debugging from the
menu, pressing F5, or clicking the Start Debugging button.

• Web applications are event-driven, meaning that the controls raise events, which
are handled by code blocks called event handlers.

• The code for the server controls resides in another file called the code-behind
file.

• When you double-click on a control in Design view, you’re automatically taken
to the code-behind file, where the IDE will create a handler for the control’s
default event.

You’ve come a long way in just one chapter. Sure, “Hello World” is a trivial page, as
web pages go, but it’s interactive, which is the point of the book. You can close out
the chapter with some quiz questions to see how much you’ve learned and then a
simple exercise to let you practice your skills. Even though you’ve come this far,
you’ve just scratched the surface of what’s available to you in ASP.NET. Just glanc-
ing at the Toolbox shows you that there are many more controls than you’ve used in
this chapter. In Chapter 2, we’ll show you how to use some of them, and you’ll build
an order form to see how they all work together.

Exercise | 15

B R A I N B U I L D E R

Quiz
1. How do you create a new web site in the IDE?

2. What are the three views of your page that you can use in the IDE?

3. What’s the name for the settings that are specific to each control?

4. Where in the IDE will you find the controls that you can place on your page?

5. How do you run your application?

6. What event is fired when you click on the Button control?

7. Where is the code for the event handler located?

8. What’s one way to access the default event handler’s code?

9. What property of the Label control do you use to set its content?

10. When you click the button in your Hello World application, where is the code
processed?

Exercise
Exercise 1-1. This is your first exercise, so we’ll take it easy on you—you’ll make
some changes to HelloWorld. Open the example again. There are a few ways to do
this:

• Select File ➝ Open Web Site.

• Click the Start Page tab at the top of the main window to display the Start Page,
and click the Open Web Site link, or select it from the Recent Projects list, if it’s
there (and it should be, if you’ve just finished this chapter).

With the file open, select the code-behind file, either from the tab at the top of the
window, or in Solution Explorer. Go to the Click event handler, and change the
“Hello World” text to a message of support for your favorite sports team (or band, or
movie, or whatever you like).

Now switch back to the .aspx file. Select the Label control, and check out the Proper-
ties window. There’s more here than just setting the text, as you’ve seen. Go to the
Appearance section of the Properties, and play around with them to your liking.
Click the + sign next to the Font property, and you’ll find lots of options that you’re
probably familiar with. Try changing the font, the text size, and the color. You can
also play with the border of the label, too. Note that if you change the Text property
here, you’re changing the initial text that the label displays. After you’ve kicked the
tires a bit, run your application to see how it looks. You can see an example in
Figure 1-10, although this is the affiliation of only one of the authors.

16 | Chapter 1: Getting Started

Figure 1-10. The results of Exercise 1-1, for at least one of the authors. Your page may look
different, depending on your sports loyalties.

17

Chapter 2 CHAPTER 2

Building Web Applications2

You’ve built your first web site, and you’ve gotten your feet wet, which is great. But
so far, you’ve only used two controls: Label and Button. You’ve seen the Toolbox in
the IDE, and it’s stuffed with controls just waiting for you to experiment with. That’s
exactly what you’re going to do in this chapter. You’ll build a functional order form
for a fictional business, even though you won’t do anything just yet with the data
your form will collect. You’ll get to try out many of the basic controls in Design view
and Source view; you’ll learn about web site fundamentals, selection controls, and
their collections of items, and you’ll see how to display the results retrieved by one
control in another control somewhere else on the page.

Mastering Web Site Fundamentals
The difference between a web page that simply displays information and a web appli-
cation that interacts with your user is the application’s ability to gather data from the
user, process it on the server, and take action accordingly. The core of a web applica-
tion is the page and its interactive controls. This part of the chapter will introduce
the web page and the types of controls that you’ll use throughout the remainder of
this book and throughout your ASP.NET programming career. We will also intro-
duce the mindset that will move your applications from being a “brochure” that dis-
plays information into an interactive application delivered over the Web.

The Page
Every ASP.NET web site consists of at least one web page stored in a single file with
the extension .aspx. There is usually more than one file, as you saw in Chapter 1.
The .aspx file is called a content file. Some developers call it the markup file, which
makes sense when you remember that HTML stands for HyperText Markup
Language.

18 | Chapter 2: Building Web Applications

The contents of the page itself are composed of “server controls” and “normal”
HTML. Server controls are simply controls with code that runs on the server. Nor-
mal HTML in the .aspx file is sent to the browser “as is.” All you really need to know
to create ASP.NET pages is that HTML is rendered at the browser, and the controls
are processed on the server. If you want to know the technical details, you can see
the sidebar “How Pages Are Processed on the Server,” but that requires some back-
ground in object-oriented programming that we won’t go into here in detail.

The .aspx files can also contain script blocks, usually written in JavaScript, to be exe-
cuted on the client. Server-side code is executed on the server; client-side script is
executed on the client’s machine by the browser.

The normal structure for an ASP.NET with AJAX application is this: the markup
(content) file contains controls. Some of the controls will be server controls. You
already saw a server control in the HelloWorld example—Button1. The event han-
dler code you wrote for Button1 was stored in a second file called the code-behind file,

How Pages Are Processed on the Server
When a user enters the URL for a page into a browser, the browser requests that page
from the web server. If the page being requested is an .aspx page, the server processes
the page before returning it.

The .aspx page serves as a set of instructions to the server on how to create a standard
HTML page to return to the browser. If this is the first time that the .aspx page has been
requested since the web application started, then the ASP.NET runtime compiles,
from the page, a Page class that derives from the base System.Web.UI.Page class. The
compiled class contains all of the control declarations and code that make up the page,
including properties, event handlers, and other methods. This compiled class is cached
in server memory for faster response on subsequent requests.

In order for an .aspx file to be processed by the ASP.NET runtime, it must have a page
directive as the first line in the file. Directives provide information to the compiler, such
as the language in use, the name of the code-behind file, if any, and the name of the
Page class. Visual Studio automatically generates the page directive for you when you
create a new web page. The page directive for your HelloWorld web page looks like the
following:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="Default.aspx.vb" Inherits="_Default" %>

With this information, the server is able to run all of the server-side code, translate all
of the server-side controls into standard HTML and JavaScript, and assemble an
HTML page that will be returned to the calling browser. If the page that is returned
includes client-side script, that script will be run on the client-side machine, by that
browser, when the page is rendered.

Mastering Web Site Fundamentals | 19

and executed on the server. The server controls also contain other code that enables
their basic functions, but you usually won’t be able to access that. Other controls are
AJAX controls, and their code is sometimes written in script blocks in the markup
file, or more commonly, it is buried in .dll files provided to you by Microsoft (and
thus not visible to you as script code), but which is interpreted by the browser on the
client machine, so you don’t need to worry about how it’s done.

There are also HTML controls that are passed “as is” to the client machine’s
browser, such as tables, and
 (the line break tag), and so on.

ASP.NET also allows you to create so-called HTML-server controls,
which are HTML controls with the tag runat="server", but these are
not commonly used, and won’t appear in this book.

Once again, this book assumes you have a passing familiarity with HTML, but even
if you do not, you should find the examples self-explanatory.

If a markup file is named Welcome.aspx, its associated code-behind file will be
named Welcome.aspx.vb, indicating that the code-behind file is written in Visual
Basic (.vb) (or Welcome.aspx.cs if you are writing in C#).

Controls
As you saw in the Hello World example, controls are the building blocks of the web
page’s graphical user interface (GUI). Some controls that you are probably familiar
with include buttons, checkboxes, and listboxes.

Controls allow a user to indicate a preference, enter data, or make selections. They
can also provide support for validation, data manipulation, and security, or help to
ensure a uniform look and feel to the application.

There are several types of web controls:

HTML controls
The original controls available to any HTML page, such as input (for entering
data), a (anchor), div (for separating and applying format to a section), and
more. These all work in ASP.NET exactly as they work in other web pages.
HTML controls will be used where appropriate in this book, but will not be dis-
cussed in detail. For a good resource on HTML controls, see HTML & XHTML:
The Definitive Guide, by Chuck Musciano and Bill Kennedy (O’Reilly).

ASP.NET server controls
Microsoft created the ASP.NET server controls to accomplish two complemen-
tary aims. The first was to “normalize” the HTML controls so that the program-
mer would have a more consistent interaction with the control; the second was
to add an extensive and rich set of powerful controls such as data grids, calen-
dars, ad rotators, and more.

20 | Chapter 2: Building Web Applications

ASP.NET AJAX server controls
ASP.NET AJAX server controls enjoy all the benefits of ASP.NET server con-
trols, such as drag-and-drop operation and a declarative programming model.
However, they also include added client-side functionality, helping you to create
a smooth and snappy user interface.

User controls and custom controls
Controls created by the developer or third parties (that is, not Microsoft). This
topic is beyond what we’ll cover in this book, but for a full discussion of creating
these user-defined controls, please see our more advanced text, Programming
ASP.NET (O’Reilly).

The heart of ASP.NET programming is the ASP.NET server control. With the excep-
tion of tables, the traditional HTML controls are replaced by their equivalent ASP.NET
controls, both for convenience and flexibility. For example, instead of using a tradi-
tional HTML input control, you will use instead an ASP.NET TextBox control. Not
only will this allow the TextBox to run server-side code, but it is easier to use, and is
more intuitive.

In addition to standard form elements, such as text boxes, labels, buttons, and
checkboxes, ASP.NET controls include several broad categories that provide rich
functionality with very little code. These include:

Validation controls
Often, a given field requires a specific format or range of data to be valid. Many
of these validation routines are similar and used in many places, such as making
sure there is an entry, that two entries match (such as when setting a password),
or that an entry falls within a predetermined range of values (which can help
protect against certain types of outside attacks). Microsoft provides a full range
of built-in validation controls. Chapter 5 discusses these controls in detail.

Data source controls
Data binding to a variety of data sources, including Microsoft SQL Server and
Access, and other relational databases, XML files, and classes implemented in
code. Data source controls are covered in Chapter 4.

Data view controls
Various types of lists and tables that can bind to a data source for display and
editing. Data view controls are also covered in Chapter 4.

Login & security controls
Handle the common chores of logging in to a site and maintaining user pass-
words. Login and Security controls are covered in detail in Chapter 9.

Personalization controls
Allow users to personalize their view of a site, including rearrangement of the
page itself. User information can be saved automatically and transparently, and
retained from one session to the next. Personalization is also covered in detail in
Chapter 10.

Mastering Web Site Fundamentals | 21

Master pages
Create web sites with a consistent layout and user interface. Master Pages are
covered in Chapter 6.

Rich controls
A subset of ASP.NET controls that implement complex features such as menus,
tree views, and wizards.

V B C H E A T S H E E T

Classes
Although we’ve said that you don’t need to know much VB to make ASP.NET pages,
you need to know a bit of the vocabulary to understand the background discussion in
this section. You may have heard that VB.NET is an object-oriented language, which
means that everything you make with the language is an object—every control, every
label, even the page itself is an object. Each object is a specific instance of what’s called
a class, or to put it another way, a class is a general case that defines each object. Using
the classic example, if Dog is a class, then your own dog Sparky is an object—he’s an
instance of the Dog class. You can’t see or touch Dog, but you can see and touch Sparky.
In ASP.NET, you can’t put the Label class on your page, but you can create a Label
object that’s an instance of the Label class and put it on your page.

So what’s the point of the class, then? The class defines the qualities that the object has
(called properties), and the things that the object does (called methods).

Dog might have properties called color and size, for example. Each object might have
different values for each property, but by definition, they all must have the property.
So, Sparky might have a color of brown and a size of large, whereas Frisky has a color
of white and a size of small, but they’re both still members of Dog. In ASP.NET, a Label
control has properties for Text and Font.

Methods, on the other hand, tend to be actions that instances of the class can perform.
If Dog has methods for Bark() and Eat(), then both Sparky and Frisky can bark and
eat. The Label control, for example, has methods of ApplyStyle() and Focus(), so you
can call those methods on any Label control to apply a style to the label, or set the focus
to that control.

You invoke both properties and methods with what’s called dot notation. It’s pretty
simple; you give the object’s name (not the name of the class), followed by a period,
followed by the method or property name you want to use, like this:

sparky.color = white
lblMyLabel.Text = "The text for the label"
lblMyLabel.ApplyStyle(MyStyle)

Although you usually don’t see this directly, an ASP.NET page is an instance of the
Page class. When a user requests an .aspx page, ASP.NET creates an instance of a page
and then uses the properties and calls methods of that page to generate the HTML that
appears in the browser.

22 | Chapter 2: Building Web Applications

AJAX controls
A set of controls that provide special script-based features, including the
ScriptManager, UpdatePanel, UpdateProgress, and Timer. AJAX is covered in
detail in Chapter 3.

AJAX toolkit controls
An expanding set of controls based on AJAX that provide enhanced client-side
functionality without the need to write JavaScript, such as watermarks, collaps-
ing panels, and pop ups.

Code-Behind Files
Although you can put your content and your code in a single file, it is strongly dis-
couraged, and we will not do so in this book. The preferred method is to put your
content (HTML, server controls, and AJAX controls) into a markup file with the
extension .aspx, and to put your server-side code into a code-behind file with the
extension .aspx.vb. You saw this separation of content from code-behind in the Hello
World example in Chapter 1.

Events and Postbacks
In the Hello World program you created in Chapter 1, the page was sent back to the
server when you clicked the button. When the page returned to the browser, it was
displayed with new text, specifically with the words “Hello World.”

As we described in that example, clicking on the button raised the Click event. It
turns out that many controls have a Click event, and each control may also have
other events specific to itself. For example, list controls typically have an event for
when the selected item changes, while text boxes have events for when the text they
contain is changed.

The code that responded to the button’s Click event in Hello World (the control’s
event handler), was a method of the Page class, specifically the page that contained
the button. As is often the case, this is more confusing to explain than to see in
action. To the user, it simply appeared that clicking the button changed the contents
of the page.

What is important to keep in mind, however, is that when you click the button, the
page is “posted back” to the server. During a postback, the browser sends the page to
the server, where event handlers are evaluated. The same page is then sent back to
the browser after the code in the event handlers is run.

When a page is returned to the server and a new page is sent to the
browser, that is not a postback. When the page is returned to the
server, processing is done, and the same page is returned to the client,
that is a postback.

Mastering Web Site Fundamentals | 23

Not all controls automatically post back every time you click on them. Buttons do,
but just changing the selection in a listbox, for example, normally does not. (You
can, if you want, set a listbox to post back every time its selection is changed, as you
will see later in this chapter.)

Synchronous and Asynchronous Postbacks
In ASP.NET with AJAX, there are actually two types of postbacks:

Normal
In a normal postback, the entire page is sent back to the server for processing. As
just noted, some events do not cause an automatic postback. These events are
stored up until a postback occurs, and then they are all handled together. When
all of the event handlers have been run, a new HTML page is generated and sent
back to the browser.

A normal postback is synchronous—nothing else will happen in your applica-
tion until the server processing is complete and the response is sent back to the
browser. The typical time for such an update is less than one second, but this
can be dramatically affected by database interactions, network speed, and other
factors, some of which are beyond your control. In any event, the user will see
the page flicker when the browser redraws it.

Within the normal postback, you often want some behavior to occur the first
time the page is loaded, but not on subsequent postbacks. For example, you
might want to gather data from a database when the page is first loaded, but not
when the user clicks a button to post the page back to the server. There is a
property of the Page, called IsPostBack, which can be tested in your code to
determine if this an initial load or a postback. It has the value of False the first
time the page is loaded, and True on subsequent postbacks.

Partial page, asynchronous
AJAX allows an asynchronous postback in which you designate an area of the page
to be updated, while the rest of the page remains unaffected. The user usually per-
ceives no page flicker and may be unaware that processing is happening on the
server at all. This can make for a dramatically more responsive application.

Be careful with event handling in postbacks. A common bug is caused
by assuming that event handler A will run before event handler B. The
best way to discover such bugs is by using the debugger to examine
the code as it runs, which we will explore in Chapter 8.

The next example will demonstrate a normal postback and an AJAX asynchronous
(partial) postback with three labels: one will update the first time the page is loaded,
one will update only on a subsequent normal postback, and one will update
asynchronously.

24 | Chapter 2: Building Web Applications

To start, create a new web site named Postbacks. If necessary, refer back to Figure 1-2,
and create the new web site just as you did in the Hello World example. Be sure to
name the web site folder Postbacks, so that the site will be named Postbacks as well.
When the project is open, switch to Design view by clicking on the Design tab at the
bottom of the editing surface.

To make this an AJAX-enabled web page, it must have a ScriptManager control.
Expand the AJAX Extensions section of the Toolbox and drag a ScriptManager con-
trol anywhere on the page. We’ll discuss the ScriptManager in detail in Chapter 3,
but be assured that it will not be visible when your application is running; its job is
to work behind the scenes to coordinate the AJAX controls on the page.

Press the Enter key once to move the cursor below the ScriptManager control, then
type in the text:

Page First Loaded at:

Drag a Label control from the Toolbox onto the design surface next to the text you
just typed. Click on the Label control to select it, so that the Properties window
shows the properties for the label. The Properties window is on the lower right of the
interface. If you don’t see it, press F4 to get it to appear. You’ll know if you’ve
selected the right control because its name will be listed at the top of the Properties
window—in this case, Label1. Before proceeding, you should change the ID of the
Label to something more meaningful—in the Properties window, scroll up or down
until you find the (ID) property in the left column. Click in the right column, delete
Label1, and then type in lblFirstPageLoad. Now find the Width property in the left
column, and change its value to 200px in the right column.

Drag a button onto the page to the right of the label. Select the button, and in the
Properties window, change the button’s ID to btnPostback and the Text property to
Postback, in the same way that you changed the label’s properties.

With the cursor just to the right of the Button on the design surface, press the Enter
key to move the cursor to the next line. Type in the following text:

Page posted back at:

Drag another Label control onto the page, to the right of the text you just typed, and
set its (ID) property to lblPostBackPageLoad.

Your page should now look pretty much like that shown in Figure 2-1.

In Solution Explorer, click on the plus sign next to Default.aspx to expand the list of
files. You will see the code-behind file created for you, named Default.aspx.vb.
Double-click on the code-behind file to display that file in the editing window, as
shown in Figure 2-2.

Mastering Web Site Fundamentals | 25

You can also open the code-behind window by right-clicking on the
markup window and choosing “View Code.”

V B C H E A T S H E E T

Namespaces
When you create your pages, you’ll use lots of names. Every control on the page gets a
name, as do all the properties of those controls. When you write event handlers in the
code-behind file, you may create names for objects or variables in your code as well,
even though the user of your page will never see them. With all those names, it’s possible
that you might inadvertently pick a name that has already been used by Microsoft or by
the creator of a different page in your site. To avoid that problem, ASP.NET uses the con-
cept of namespaces. Simply put, a namespace is a way of saying. “These names belong to
this group.” One of the namespaces you’ll see all the time is the System namespace. This
namespace appears in all your event handlers as part of System.EventArgs. This indicates
that the EventArgs object belongs to the System group of names, which is a special
namespace that .NET reserves for its built-in objects. You won’t be creating your own
namespaces in this book, but you should know what they are when you see them.

Figure 2-1. Drag two Labels and a Button onto the Postbacks page and set a few properties.

26 | Chapter 2: Building Web Applications

Figure 2-2. The code-behind editing window for the Postbacks page, showing the Classes &
Controls and Methods & Events drop-downs. Set the Classes & Controls method to (Page Events),
and the Methods & Events drop-down to Load.

Naming Conventions
Microsoft’s .NET naming guidelines prohibit the use of Hungarian notation for all
“public” identifiers. Hungarian notation is the practice of prepending variable names
with letters that indicate the type of the identifier (e.g., prepending a variable of type
integer with “i”). (You can read about the history of Hungarian notation at http://en.
wikipedia.org/wiki/Hungarian_Notation.)

Because the guidelines do allow the use of Hungarian notation in private member vari-
ables, two schools of thought have arisen about using this notation, especially when
referring to controls on a page. Many developers will refer to a text box, for example,
as txtLastName, while others will name the same text box LastName. The authors of this
book represent vociferous advocates of both camps. (In fact, one of the authors is a
strong advocate on both sides of this issue depending on his mood.) You will, there-
fore, stumble across both notations in this book. This is not a bug, it is a feature, inten-
tionally included to help you become used to both approaches. Honest.

Methods & EventsClasses & Controls

http://en.wikipedia.org/wiki/Hungarian_Notation
http://en.wikipedia.org/wiki/Hungarian_Notation

Mastering Web Site Fundamentals | 27

The Page Load event and synchronous postback

Every time an ASP.NET page is displayed, the Page’s Load event is fired. You’ll use
that event to display the time that the page was initially loaded and posted back. To
do so, you need to create an event handler for the Page Load event.

At the top of the code window are two context-sensitive drop-down controls, as indi-
cated in Figure 2-2.

The drop-down on the left displays the classes and controls in your application (as
well as the useful all-purpose setting [General]); the one on the right displays all the
methods and events for the class or control selected on the left.

The IDE is slightly different here if you’re working in C# rather than
VB.NET. The drop-downs at the top of the editing window are slightly
different, and in any event, the empty Page_Load event handler will
already be created on the page for you.

Select (Page Events) in the left drop-down, and select Load in the right drop-down. This
will bring up a code skeleton for the Page_Load event handler, shown in Figure 2-3.

Type the highlighted code from Example 2-1 into the Page_Load event handler. Notice
how IntelliSense helps you with the name of the control and its available properties.

Figure 2-3. After you select Page Events and Load from the code-behind file drop-down, a code
skeleton for the Page_Load event handler is inserted automatically.

Object parameter

Event argument parameterHandles clause

28 | Chapter 2: Building Web Applications

Note to C# Users: In VB.NET. the line of code in Example 2-1 that
assigns the date and time to the Label Text property implicitly con-
verts DateTime.Now from a DateTime type to a String type. In C#, this
implicit conversion does not occur, so you must use the following line
of code instead:

lblPageLoad.Text = DateTime.Now.ToString();

Run the application. If it is the first time the web site has been run, the IDE will offer
to modify the web.config file to enable debugging. Click OK to that. A browser will
open with text similar to that shown in Figure 2-4.

Buttons post back to the server even if you do not implement an event handler for
their Click event. Click the button a few times. As you can see, each time you click
the button, the page is posted back. You will see the second Label updated each
time, but the first Label still shows only the time the page was first loaded.

Take a look at the status bar to see the change to the page being sent back to the
“server” (in quotes because in this case the server is your local machine). For each
postback, the page is reloaded, triggering a Page_Load event. This in turn causes the
Load event handler to run and the Label’s text to be updated with the current time.

Example 2-1. Page_Load for Postbacks example
Protected Sub Page_Load(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 lblPostbackPageLoad.Text = DateTime.Now

 If (Not IsPostBack) Then
 lblFirstPageLoad.Text = DateTime.Now
 End If
End Sub

V B C H E A T S H E E T

Booleans
The Boolean variable is a special type of variable that can have only one of two values:
true or false. They’re very useful for evaluating simple conditions, and taking an
action based on whether the condition is true. IsPostBack is a Boolean variable, and
has the value of True if the page loads as the result of a postback. The Not keyword is
used to indicate the opposite of whatever Boolean value follows, so in this case, Not
IsPostBack is True if the page is loading for the first time. In this case, the value of the
Boolean is used to control the behavior in the If statement. You’ll see this technique
used a lot.

Mastering Web Site Fundamentals | 29

The if-then block in the Load event handler tests the value of IsPostBack. If it is
False, that is, if it is the first time the page is loaded, then the first Label is updated.
On subsequent postbacks, that line of code will not be reached, and so that Label is
not updated. However, the second Label is updated every time.

If you are adventurous, you can put a break point in the PageLoad
event handler. Open the code behind file, navigate to the Page_Load
method, and then click in the left margin next to the line with the
lblPageLoad.Text instruction. If a red dot appears in the margin, you’ll
know you’ve done it right. Press F5 to run the app in debugging mode.
You will see this break point stop the application each time the page is
about to run. We will cover debugging in detail in Chapter 8, but we
couldn’t resist showing you that this really works. After you’re done,
click on the red dot again to remove the break point.

You can achieve the same result by clicking the refresh button on your browser,
which forces a refresh of the current page, and thus a post back to the server. When
you’re done, close your browser to stop the application.

Adding asynchronous postbacks

With traditional postback code in place, you’ll modify this application to add the
ability to make an asynchronous postback using AJAX.

Return to default.aspx by double-clicking on it in Solution Explorer, then click the
Design tab to switch to Design view. Bring up the Toolbox and pin it in place.
Expand the AJAX extensions section in the Toolbox. Place the cursor after the

Figure 2-4. When you run the Postback page for the first time, the times will be identical. After
you click the button, the lblPostBackPageLoad Label will update, but the lblFirstPageLoad Label
will not.

30 | Chapter 2: Building Web Applications

lblPostBackPageLoad control and press the Enter key to move the cursor down to the
next line. Drag an UpdatePanel from the Toolbox onto the design surface.

The AJAX UpdatePanel control is the key to asynchronous updates. Any controls that
you place within the UpdatePanel will be updated asynchronously, including both
standard ASP.NET and HTML controls. The panel acts as an asynchronous portal
back to the server.

To display the time the UpdatePanel was updated, add the following text inside the
UpdatePanel:

Partial-Page Update at:

Scroll back up within the Toolbox to the Standard controls and drag another Label
control into the UpdatePanel. Be sure this control is inside the UpdatePanel or this
example won’t work. Make sure the new label is selected, and update its properties.
Change its ID to lblPartialUpdate and set its Width property to 200px.

V B C H E A T S H E E T

Methods, Event Handlers, Parameters, Arguments
In Visual Basic.NET, a method is implemented either as a sub (which returns no value)
or a function (which returns a value).

Methods may declare values that are passed into the method and used as if they were
declared as local variables. In VB.NET, you must declare the type of the value to be
passed in. When the method is called, you must pass in a value. The declaration and
the value passed in are called either parameter or argument. Some old-school computer
scientists distinguish between these terms, but we will use them interchangeably.

Event handlers are special methods that run when an event is raised by a control, or by
the operating system, or by something else happening in your program that requires a
response. By convention, event handlers in ASP.NET always take two arguments. The
first, marked as type object, is the object that caused the event, and is named, by con-
vention, sender. The second is marked as type EventArgs or a type that derives from
EventArgs. (Derivation is a concept from object-oriented programming. It can be sum-
marized as “specialization.” When you derive a Cat from Animal, you say that a Cat is
an animal, but a special type of animal, with special characteristics or special behav-
iors.) This second parameter, the EventArgs, is usually called e.

Event handlers in VB.NET are linked to the event that they handle with the Handles
keyword. Thus, you might mark the method Page_Load with the keywords Handles
Load or Handles Me.Load where Me is a keyword that refers to the object itself (in this
case, the page) signaling .NET that this method handles the Load event of the page.

Mastering Web Site Fundamentals | 31

V B C H E A T S H E E T

If-Then Statements
When you’re working with data, you usually don’t know what the data will be when
you’re writing your code. You might want to take different actions depending on the
value of a variable. That’s what the If-Then statement is for:

If chkMyCheckBox.Checked = True Then
 txtMyTextBox.Text = "It's true!"
End If

The condition you want to evaluate comes after the If, but before the Then. In this case,
you want to determine if the checkbox is checked, so the condition is chkMyCheckBox.
Checked = True.

If it’s true, the statement after the Then keyword is executed, setting txtMyTextBox.Text
to “It’s true!” You can execute any number of statements in the Then section.

If the condition is false, nothing happens.

You must insert the statement End If at the end of the Then block so that your code
knows where the Then block ends and can continue executing as normal from that
point.

The Else statement comes into play when you want to take one of two actions. With
just an If-Then statement, if the condition you’re evaluating is false, nothing happens.
However, you might want to take one action if the condition is true, and another if it’s
false, like this:

If chkMyCheckBox.Checked = True Then
 txtMyTextBox.Text = "It's true!"
Else
 txtMyTextBox.Text = "Not true!"
End If

This code sends one message to txtMyTextBox if the condition is true, and a different
message if it’s false.

You have lots of options when you specify conditions, which are based on a set of oper-
ators that you’re probably already familiar with. For example, instead of testing to see
if one part of your condition is equal (=) to another, you could use one of these other
operators:

• <> not equal to

• < less than

• > greater than

• <= less than or equal to

• >= greater than or equal to

—continued—

32 | Chapter 2: Building Web Applications

You can also add these controls in Source view, either typing the code
by hand, or by dragging a control from the Toolbox. You can then set
properties in the Properties window or type in attributes directly in the
code window.

Drag a Button control into the UpdatePanel. In the Properties Window, change the ID
of that Button to btnPartialUpdate, and set the Text property to “Partial Update.”
The Design view should look something like Figure 2-5.

Next, you need to add an event handler for btnPartialUpdate’s Click event. Double-
click on btnPartialUpdate. The default event for a button is its Click event, and
when you double-click on a control, the default event handler is created for you. The
code behind file will open within the default event handler. As you have already
seen, the event handler gets its name from the control and the event, separated by an
underscore, in this case btnPartialUpdate_Click.

In short, you can test for any condition that evaluates to true or false—in other words,
a Boolean. In fact, the Checked property of a TextBox is a Boolean all by itself, so you
could have used this for the condition:

If chkMyCheckBox.Checked Then

Figure 2-5. After you’ve added the UpdatePanel and the Partial Postback controls, your Design
view should look like this.

Mastering Web Site Fundamentals | 33

Enter the highlighted line of code from Example 2-2 in the click event handler for
btnPartialUpdate.

Once you’ve made the change, run the updated application. After the page loads,
click each of the buttons a few times. You will see something similar to Figure 2-6.

Depending on which region your computer is in and how your region
options are set, you may see the date and time displayed using a differ-
ent format.

Note the following results:

• Clicking on the Partial Update button updates the label in the UpdatePanel con-
trol, but not the labels outside the UpdatePanel.

• Clicking on the Postback button updates only the postback label outside the
UpdatePanel, but not the first load label, nor the label inside the UpdatePanel.

• The UpdatePanel is invisible to the user (though its effects are not).

When you’re done, close the browser.

Example 2-2. Click Event Handler for btnPartialUpdate
Protected Sub btnPartialUpdate_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs)
 lblPartialUpdate.Text = DateTime.Now
End Sub

Figure 2-6. After you click the Partial Update button, the label in your UpdatePanel refreshes, but
the labels outside the UpdatePanel do not. Likewise, the Postback button only refreshes the
postback label, not the label inside the UpdatePanel.

34 | Chapter 2: Building Web Applications

What’s great about updating just a portion of a page this way is that it not only elim-
inates “flicker,” but your entire application will seem faster and more responsive to
the end user.

Silverlight
In March of 2007, Microsoft unveiled Silverlight 1.0 in Beta and started a new chapter
for .NET programmers. That chapter is still being written as this book goes to print,
though with the release of Silverlight 2.0 Beta 1 in March of 2008 the shape of Silver-
light and its potential impact is much easier to see.

There are now five distinct technologies within .NET for writing applications, and they
form a spectrum from entirely server-side to entirely client side:

• ASP.NET

• ASP.NET with AJAX

• Silverlight (potentially integrated with ASP.NET or ASP.NET with AJAX)

• Windows Forms

• Windows Presentation Foundation (WPF)

The sweet spot for most developers is in the center: applications delivered through the
browser, but ones that also provide a very rich, interactive, responsive experience for the
user. Microsoft now offers two technologies to accomplish this: AJAX and Silverlight.

AJAX is, in truth, not a new technology at all; it is the aggregation of mature technol-
ogies in new ways (JavaScript and XML delivered asynchronously) supplemented by
some very cool well-tested code written by Microsoft (the AJAX libraries) and others.

AJAX has the advantage in that it runs on any browser that supports industry standard
protocols.

Silverlight, on the other hand, requires a browser plug-in that the user has to accept.
That plug-in contains a carefully chosen subset of the CLR, allowing Silverlight appli-
cations to use managed code languages like VB.NET or C# and to implement applica-
tions built on a subset of XAML, the mark up language used by WPF (and Work Flow).

The net result is that Silverlight applications are much faster, richer and have capabili-
ties that are simply not possible with AJAX, but they are limited to running (at the time
of this writing) on IE, Firefox, Safari on Windows, the Mac, and Linux.

Learning Silverlight is not hard, but there is quite a bit to it. A full discussion would be
a book in itself (see Programming Silverlight by Jesse Liberty and Tim Heuer
[O’Reilly]).

There may come a time when Silverlight is as much a part of every ASP.NET program-
mer’s skill set as AJAX is today, but we’re not quite there yet, and to keep this book at
a manageable size, we’ve decided to defer a full discussion of Silverlight for now. To
learn more, take a look at Essential Silverlight by Christian Wenz (O’Reilly) and the
extensive material available at http://Silverlight.net.

http://Silverlight.net

Using Controls | 35

Using Controls
As you’ve seen in both examples so far, when you drag a control from the Toolbox
onto the design surface, it is generally represented as a visible widget to the user.
Some controls, however, are used not for display, but for manipulating other objects
(for example, database manipulation controls), and these are displayed in a special
area at the bottom of the main window.

In any case, every control is identified by a unique ID property. Both Visual Web
Developer and Visual Studio will automatically assign an ID to your control as you
drag it onto your page. These automatically generated IDs are rarely meaningful, and
we suggest that you rename them. For example, while the IDE might name your
label “Label2,” you will probably find it much more useful to rename that label
something like lblPartialUpdate.

When you click on a control in Design or Source views, its properties are shown in
the Properties window. You can change any property value in the Properties win-
dow or directly in Source view, and any changes you make will be reflected in both
places immediately.

Organizing the Properties Window
Within the Properties window, you can group properties by category or alphabeti-
cally. Figure 2-7 shows the Accessibility, Appearance, and Behavior categories of a
button, though there are others. You can click the appropriate buttons in the menu
bar to toggle between the Categorized and Alphabetical views. (When organized
alphabetically, the ID of the Control is placed at the top of the list, out of order, for
convenience.)

Virtually every control has events associated with it. To view a control’s events, click
the lightning bolt button. To switch back to properties click the Properties button.

Finding properties with IntelliSense

You don’t need to use the Properties window to edit control properties if you don’t
want to—you can type the properties and their values directly into Source view. If you
prefer to work in Source view rather than Design view, you can enlist IntelliSense to
help you find both the properties and events for any given control. With the cursor
inside the markup for a given control, as you press the Space bar, the list of members
for the control will be displayed. You can then select a member or value from the list.
If you change your mind and don’t want to use the IntelliSense list, press Esc to dis-
miss it. As you type, IntelliSense will help you fill in the appropriate property or
event, as shown in Figure 2-8.

36 | Chapter 2: Building Web Applications

Basic Controls
We could simply review the basic controls in a vacuum, but that’s not very interesting.
Instead, in this section you’ll create a simple business application using the ASP.NET
and AJAX controls in context. The application will be for a fictitious company called
AdventureWorks, a recreational equipment retailer.

To begin, close the Postback site, if it’s still open (File→Close Project), then create a
new web site using the ASP.NET Web Site template (similar to what you did in the
previous example). Name your new project AdventureWorks.

For this version of the program, you’ll use hardcoded data. In later chapters, you will
add dynamic content with data retrieved from a database. Also, to keep this simple,
you will not initially use any AJAX features; that will be added in the next chapter.

The first page you’re going to build is the order form. The finished page will look
something like Figure 2-9, where all the types of controls are labeled. This somewhat
contrived web page (see the upcoming sidebar “Good Sites Look Good”) is intended to
demonstrate many of the available ASP.NET controls for various applications.

Figure 2-7. The Properties window, as you would expect, shows you the properties of the control
you select. You can organize the properties by category, as shown here, or alphabetically. You can
also view the events associated with the control.

Events Property pagesPropertiesAlphabetical

Categorized

Using Controls | 37

In Solution Explorer, rename default.aspx to OrderForm.aspx by right-clicking on the
file name and selecting Rename. The code-behind file is automatically renamed, as
well as almost all the internal references.

When you use automatic renaming, be careful about names that are
used in text or in page directives (at the top of HTML files)—they will
not be renamed for you. Also, the name of the class in the code-behind
file will not be updated automatically.

In this example, you’ll work in Design and Source views, moving back and forth
depending on which is most convenient for the task at hand. Feel free to use Split
view to see both views at once.

Open OrderForm.aspx and select Source view. Change the text between the <title>
tags from Untitled Page to AdventureWorks, and then run the application. At this
point, an empty browser will come up with AdventureWorks in the title bar.

That was fun. Now, add some substance to the page, beginning with header text.
Close the browser. In Source view, type in the following HTML between the <div>
tags:

<h1>AdventureWorks Order Form</h1>

Notice how IntelliSense helps by entering the closing tag for you.

Figure 2-8. IntelliSense provides a drop-down as you type, so that you can select the property or
event you want to use.

38 | Chapter 2: Building Web Applications

Alternatively, in Design view, you can just type in the text on the design surface and
then highlight the text and click on the Block Format drop-down menu in the For-
matting toolbar, as shown in Figure 2-10.

Figure 2-9. This is what the AdventureWorks Order Form in this example will look like when it’s
finished. It’s not the prettiest page, but it uses lots of the controls you’ll be using in this book.

TextBoxes

DropDownList

TextBox with
TextMode=Password

TextBox with
TextMode=Multiline

Panel

RadioButtons

RadioButtonList

CheckBoxList

ListBox

DropDownList

HTML table with table cells
as HTML server controls

Image

CheckBox

Button

Hyperlink

Using Controls | 39

Creating Tables
To position the controls on the page, you’ll need to create a table. If you’re comfort-
able with HTML, you can certainly insert your table row and column tags manually
in Source view and receive assistance from IntelliSense as you go. If you prefer, how-
ever, VS and VWD offer an insert table wizard.

To see this at work, switch to Design view (some of the procedures that follow can-
not be done in Source view), position the cursor immediately after the heading you
just entered, and press Enter once to start a new line. Click on the Table ➝ Insert
Table menu item to bring up the insert table dialog box and enter, for this example,
eight rows and two columns, as shown in Figure 2-11.

Good Sites Look Good
Our only excuse for how ugly the forms in this book are is that we are consciously
avoiding all styling to keep the examples as simple as possible.

We do believe, however, that the creation of professional quality web sites requires
going beyond just the programming, and includes creating professional looking web-
sites as well.

Unfortunately, using style sheets, let alone image buttons, images, gradients, and all of
the other ingredients necessary for a truly professional looking web site would clutter
up the examples in the book, making it longer than necessary, and would only get in
the way of what you really want to learn about—ASP.NET.

We will return to style sheets in Chapter 7, and we do cover all of these subjects in
some detail in Programming ASP.NET. However, the art and skill of creating truly pro-
fessional looking web sites requires many books, as this approaches an art form.

Among the resources we recommend are the highly acclaimed web site http://www.
csszengarden.com/, and its associated book, The Zen of CSS Design: Visual Enlighten-
ment for the Web by Dave Shea and Molly Holzschlag (Peachpit), as well as the follow-
ing books:

• The Non-Designer’s Design Book by Robin Williams (Peachpit)

• Don’t Make Me Think: A Common Sense Approach to Web Usability by Steve
Krug (New Riders)

• The complete Classroom in a Book series by Adobe

• The Total Training computer-based courses: Adoebe Creative Suite 3 and Adobe
Macromedia Studio 8 bundles

For other recommendations, please go to http://www.LibertyAssociates.com and click
on “Books,” then click on “Recommendations,” then “Technical and Programming.”

http://www.csszengarden.com/
http://www.csszengarden.com/
http://www.LibertyAssociates.com

40 | Chapter 2: Building Web Applications

Figure 2-11 demonstrates how you can use this dialog to set various attributes for the
table, although you can also adjust these attributes later in the Source view. Click
OK to create the table.

You’ll use this table to align all of the prompts in the left column, and the user input
in the right column. As is typical with most ASP.NET pages, you’ll use HTML to
generate the display text for your prompts, and ASP.NET TextBox controls for most
of the user input. Figure 2-12 shows the end result for this portion of the page.

Type in the text shown in the left column in Figure 2-12, and then add the controls
to the right column. For the Customer Name, Address, City, ZIP code, and E-mail
fields, the controls are simple TextBoxes, so you can just drag them from the Tool-
box into the appropriate table cells. The Password and Comment fields are special
TextBoxes that we’ll cover in the next section. The State field is a drop-down list that
we’ll get to a bit later in this chapter. You can leave those cells empty for the
moment.

Every ASP.NET control must have a unique ID, and when you drag your text boxes
onto the page, the IDE will assign a simple default ID for you. We strongly recom-
mend, however, that you rename each text box with a meaningful name to make
your code easier to read and maintain. It is far easier to understand code that refers
to txtName than code that refers to the same field as TextBox1. Name the TextBoxes (in
order): txtName, txtAddress, txtCity, txtZip, txtEmail, txtPassword, and txtComments
(skipping the DropDownList).

Figure 2-10. You can enter this heading in Source view, or you can enter it in Design view, and
apply the formatting with the Block Format drop-down menu.

Using Controls | 41

Setting Properties
There are four ways to set the properties of your controls: programmatically, in the
markup, in the Properties window, or through a wizard.

For example, the TextBox control has a Text property. You can set this property either
declaratively in your markup or programmatically in your code-behind file. You can
also read from that property programmatically. You might, for example, write:

Dim City As String
City = txtCity.Text

You can set the font characteristics for text in a text box in the markup, programmat-
ically, or in the Properties window, as shown in Figure 2-13.

The TextMode property for text boxes allows you one of three settings: SingleLine,
MultiLine, or Password. If you choose Password, the text that is entered will appear as
dots. Select the TextBox for the password, and change the TextMode property to
Password.

Figure 2-11. For this example, enter 8 rows and 2 columns in the Insert Table dialog box.

42 | Chapter 2: Building Web Applications

Tables, Page Layouts, and the HTML/CSS Debate
To lay out an .aspx page with the necessary precision, you have a number of options.
The two most common and successful of methods are to use either HTML tables or
Cascading Style Sheets (CSS).

Many CSS aficionados believe that HTML should only be used to describe “content,”
and cascading style sheets should be used to describe layout. It would be their position
that HTML tables should be used only to create tabular data, and never as a tool for
manipulating the layout of the page. Certainly it is true that when using HTML tables
for layout, you will find yourself forced to use “nested tables,” that is, tables within
tables (within tables, ad infinitum) to get the level of precise control your page might
need. It is argued that this is not only inefficient but difficult to maintain.

Whatever the theoretical or practical merits of this argument, few would disagree that
the use of HTML tables for layout is a well-established tradition, and is certainly easier
to demonstrate than using CSS. In any case the layouts we will be using for our sample
applications will be simple enough that we will be satisfied with HTML tables for
layout.

ASP.NET provides an ASP.NET Table control, which you can drag onto your form
from the Toolbox. We believe it is more inconvenient than it is worth though because
it does not size properly in design view and using HTML tables is generally easier,
faster, and less resource-intensive on the web server.

Figure 2-12. You’ll use a two-column table to hold the user prompts and input fields in this
example.

Using Controls | 43

ASP.NET controls treat the font family, or individual character
attributes such as bold, as a property of the TextBox class, while for
HTML controls, it would be more typical to use styles, set most typi-
cally from a style sheet. We cover style sheets in Chapter 6.

Now, set the TextMode property on the comment text box to MultiLine. Set the Rows
property to 3 to create a three-line comment field. Run your application again, and
try typing in the Password and Comments fields to see how these special text fields
work.

Selection Controls
ASP.NET offers a number of different controls to create lists from which the user can
make a selection. These include the ListBox, the DropDownList, RadioButtons and
RadioButtonLists, CheckBoxes, and CheckBoxLists. All of these controls work more
or less the way you’d expect them to.

While not used for selection, ASP.NET has one more kind of list used for organiza-
tion: the BulletedList. BulletedLists have a BulletStyle property, which can be set to
numbered, lower- or uppercase alphabetic, lower- or uppercase Roman numeral,
disk, circle, square, or a custom image.

Figure 2-13. Use the Font section of the Properties window to set the font characteristics of the
TextBoxes in your page.

44 | Chapter 2: Building Web Applications

Radio button lists and checkbox lists are convenient for creating and grouping more
than one radio button or checkbox at a time. Table 2-1 reviews the use of each of
these different types of selection controls.

Referring back to Figure 2-9, just below the table that gathers the user’s name and
address, you want to add a control to prompt the user to decide whether to provide
certain personal information. Because the decision is either yes or no—a mutually
exclusive choice—we will use two radio buttons. In Source view, just below the
table, insert the text “Provide personal information:” Following the text, drag two
radio buttons onto your Source view. Edit the properties for the two radio buttons so
they look like this:

<asp:RadioButton ID="rbYes" runat="server" AutoPostBack="True"
 Checked="True" GroupName="grpPersonalInfo"
 Text="Yes"
 ToolTip="Click Yes to gather personal information; No to skip that step" />

<asp:RadioButton ID="rbNo" runat="server" AutoPostBack="True"
 GroupName="grpPersonalInfo"
 Text="No"
 ToolTip="Click Yes to gather personal information; No to skip that step" />

Each radio button has a unique ID; the first, rbYes, and the second, rbNo. You’ll also
notice that both radio buttons have the attribute runat="server". You’ll see this
attribute on all controls that are evaluated at the server; it’s inserted for you
automatically.

The text that is displayed next to the RadioButton is assigned in the Text attribute. You
saw earlier in this chapter that a Button control performs a postback when it’s clicked,
by default, but that not all controls do that. In the example, you want the radio but-
tons to perform a postback, which isn’t their normal behavior, so the attribute
AutoPostBack="True" signals that every time this RadioButton is clicked, the page will be
sent back to the server for processing. RadioButtons are mutually exclusive within their
own grouping, meaning that only one button of the group can be checked at a time.
The group is established by assigning each radio button a group name, with the
GroupName property, in this case grpPersonalInfo.

Table 2-1. Summary of selection controls

Control type Selection Best for?

CheckBox Multiple Short lists

CheckBoxList Multiple Short lists

RadioButton Single Short lists

RadioButtonList Single Short lists

DropDown Single Long lists

ListBox Multiple Long lists

Using Controls | 45

Finally, each of these buttons is assigned a tool tip. In this case the tool tip for each
button is the same, though that need not be true.

Radio buttons get their name from old-fashioned automobile radios
which had mechanical buttons to select the station unlike modern
electronic ones that can be used to select more than one station
depending on other settings on the radio. These old-fashioned radio
buttons physically adjusted the tuner to the desired location. This
design was so standardized across all automobiles, that setting and
using radio buttons in a car required no more thought than using a
water fountain.

For more on this curious idea about self-evident design, we highly rec-
ommend the seminal work The Design of Everyday Things by Donald
A. Norman (Basic Books), which, along with Don’t Make Me Think by
Steve Krug (New Riders) should be required reading for all web appli-
cation programmers and designers.

The purpose of this radio button group is to allow the user to display or hide the
Panel described in the next section. You’ll enable that functionality in Chapter 3; for
the moment, the radio buttons won’t do anything.

Panels
The personal information that you will be gathering will be clustered together within
an ASP.NET Panel control. Panels give you the opportunity to provide a background
color if you choose, or to make the panel itself visible or invisible as a whole. In this
example, the visibility of the Panel will be controlled by the radio buttons, although
you won’t enable that feature until the next chapter.

Begin by dragging a Panel control from the Standard section of the Toolbox into the
page in Source view, underneath the radio buttons you just added, and giving it the ID
and properties as shown here:

<asp:Panel ID="pnlPersonalInfo" runat="server"
 BorderWidth="1px" Width="300px" BackColor="beige">

What you’ve done here is pretty self-explanatory: you’ve defined the width of the
panel as 300 pixels, with a one-pixel border. If you hadn’t defined the width prop-
erty, the panel would have sized itself to fit the user’s browser automatically. You’ve
also set the background color to beige.

List Selection Controls
Create an HTML table within the panel, like this:

<table>
 <tr valign="top">
 <td>

46 | Chapter 2: Building Web Applications

The valign property in your first row sets the vertical alignment for all elements
within that row to be top-aligned, helping ensure that all of the contents will align
properly. Notice that IntelliSense automatically creates the closing tag for each open-
ing tag you type.

Create the first cell by inserting the <td> tag, and type “Areas of Interest.” Next, drag
a CheckBoxList control into the cell—after the <td> tag and after the text you just
added. Switch to Design view; the display should look something like Figure 2-14.
Notice the small arrow on the CheckBoxList control; this is a Smart Tag. Smart Tags
are convenient helpers that provide fast access to essential properties for many con-
trols. Clicking on the arrow opens a small menu.

Adding items with the Item editor

Click the Smart Tag arrow and select the Edit Items... option to add items to the
CheckBoxListcontrol, using the ListItem Collection Editor, shown in Figure 2-15.

With the exception of CheckBox and RadioButton, all the list controls in Table 2-1 hold
a collection of ListItem objects. Each ListItem has a Textproperty, which is what is dis-
played to the user, and a Value property, which you can access programmatically.

This allows you to display text to the user—“Scuba Diving,” for example—but when
the user selects that option, you’ll return a different value to your program—“SC”
perhaps, or “4,” or whatever value will be meaningful in your application.

The ability to tie a “value” to a “Text property” becomes particularly
useful when displaying values retrieved from a database, as we’ll see
later in this book. You can retrieve, for example, all your vendors, and
display them by name, but when one is selected, you can retrieve the
vendorID from the value field.

The list is empty when you start, so click the Add button to insert an item. As soon
as you add an item, you’ll see some familiar-looking properties in the box on the
right. Click in the Text field and type “Biking.” Notice that you can set the Text and
Value properties separately if you choose. If you don’t, the Wizard defaults to the

Figure 2-14. The CheckBoxList you just added shows a Smart Tag to help you set the critical
properties of the control.

Using Controls | 47

same name for both. You can also set the Selected property to True (causing that
item to appear as checked when the page is first loaded). For this specific example,
add all the items shown in Figure 2-15, set the Text and Value properties to the same
value, and leave all the items unselected and enabled.

Once you’ve added all the items to your list, click OK to close the dialog box. Return
to the properties window and change the ID property of the CheckBoxList to
cblAreas. Set the AutoPostBack property to True so that each time a checkbox item is
checked or unchecked, the page will be sent back to the server for processing.

Adding items in Source view

Click Source view to see the markup. Press Ctrl-F to bring up the Find dialog, and
enter “pnlPersonalInfo” in the Find what box to locate the Panel control. Your IDE
should look something like Figure 2-16.

Notice the CheckBoxList declaration with its end tag. Between the opening and clos-
ing tags are a series of ListItem declarations. These are the items you added with the
ListItem Collection Editor, and you can change their properties here, if you want.

Figure 2-15. When you select “Edit Items” from the Smart Tag, you’ll see the ListItem Collection
Editor, where you can enter each item in the list.

48 | Chapter 2: Building Web Applications

Now go back to constructing your table—add a second set of cell tags (<td></td>) in
the same row as the first cell. Press Enter to create a new line, then use the Tab key
to indent. Type in the following HTML to form a heading:

Age Category

Drag a RadioButtonList control from the Toolbox onto the source view, directly
after the
 tag. Set the ID for the new RadioButtonList to rblAge, AutoPostBack
to True, and the Width to 150. This time, you’ll add ListItems to the radio button list
by hand. Between the opening tag and the closing tag of the radio button list, type
<asp:ListItem>. IntelliSense will help you, as shown in Figure 2-17.

Figure 2-16. The Source view shows the markup for the Panel control, showing the table and the
list items you added.

Figure 2-17. Creating a RadioButtonList by hand. IntelliSense completes the ListItem entry for
you.

Using Controls | 49

Why would you want to add ListItems by hand, rather than use the
nifty UI provided by the IDE? Often, it is just a matter of personal
preference. Other times, you are already in Source view, and it is just
more convenient to stay there. Sometimes, hand editing is the only
way to get the markup exactly as you need it to be. And often times, it
is just faster by hand because you can copy and paste similar lines of
code and change only one or two attributes.

You have now added one list item, Under21, and opened the angle bracket for a sec-
ond ListItem. IntelliSense knows the only possible control that can go in this loca-
tion is an ASP.NET ListItem, and so it offers that option to you. You can click on the
ListItem offered by IntelliSense to explicitly select it, or simply press tab to accept it.

When you enter the closing angle bracket (>), the IDE will immediately create a clos-
ing tag for you:

<asp:ListItem></asp:ListItem>

You need only put your new value between the tags. Thus, you can quickly build the
contents of your radio button list. Add the rest of the ListItems now, so the Source
view looks like this:

<asp:RadioButtonList ID="rblAge" runat="server"
AutoPostBack="True" Width="150px">
 <asp:ListItem>Under 21</asp:ListItem>
 <asp:ListItem>21 to 30</asp:ListItem>
 <asp:ListItem>31 to 50</asp:ListItem>
 <asp:ListItem>Over 50</asp:ListItem>
</asp:RadioButtonList>

Placing the text inside the tags like this is equivalent to setting the Text property of
the ListItem, which is what you did in the ListItem editor. Now, switch back to
Design view. You should see something like Figure 2-18.

In the layout table at the top of the page, you gathered the user’s name and address.
You’ll remember that we planned to use a drop-down list for the state field. It would
be convenient to display the full name of the state while setting the corresponding
value property to the two-letter postal abbreviation.

Go back up to the layout table and drag a DropDownList control into the cell for State,
and name the control ddlState. At this point, you have two options for setting the
text and value property: you can either use the ListItem Collection Editor in Design
view, or you can fill in the list items by hand in Source view. Add the following four
items to the DropDownList now, so the Source view looks like this:

<asp:DropDownList ID="ddlState" runat="server">
 <asp:ListItem Value="AL">Alabama</asp:ListItem>
 <asp:ListItem Value="AK">Alaska</asp:ListItem>
 <asp:ListItem Value="CA">California</asp:ListItem>
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>

50 | Chapter 2: Building Web Applications

In a production environment, you would probably retrieve the text
and the value from columns in a database table.

More Selection Controls
Again referring to Figure 2-9, you need to create two more list selection controls: one
for the product category, and one for the subcategory. Begin by inserting a new lay-
out table just as you did previously, but below pnlPersonalInfo. Give the table one
row and four columns. In the first cell, type “Product Category:”; in the third cell,
type “Subcategory:”.

Drag a DropDownList into the second cell and a ListBox into the fourth cell. Using the
Properties window, change the IDs of these two controls, and set the following
properties.

Figure 2-18. Design view with personal information controls in place in a Panel control.

Property DropDownList ListBox

ID ddlCategory lbSubcategory

SelectionMode Single

ToolTip Select a category Select a subcategory

AutoPostBack True True

Using Controls | 51

Use the Smart Tag and the ListItem Collection Editor, as you did in Figure 2-15, to
enter the following ListItems for each control.

One final layout tweak: go to Source view, find the HTML <table> currently under
construction, then add a valign attribute to the row tag, <tr valign="top"> to top
align all the elements in the row to the top of the table.

Look at this section of the page in Design view. Figure 2-19 shows how the product
table should appear at this point.

DropDownList ListBox

Bikes Brakes

Components Handlebars

Clothing Chains

Accessories Cranks

Scuba Bottom Brackets

Parasailing Tires

Wheels

Seats

Derailleurs

Figure 2-19. Design view of the product category lists after adding the last set of selection
controls.

52 | Chapter 2: Building Web Applications

Using Selections to Display Text
So far, you’ve created controls that provide choices to the user, but you haven’t seen
how your page knows what items the user selected, or how to do anything with
them. The answer lies in the properties of the selection controls. The DropDownList
control, and all of the other list controls back in Table 2-1 (except CheckBox and
RadioButton) provide three properties for retrieving selections:

SelectedIndex
Returns or sets the index of the selected item. The index is a number (an inte-
ger) indicating which ListItem you chose. The index always starts with zero, so
the first item in the list is index 0, the second item is index 1, and so on. If more
than one item is selected, it returns the lowest index of all the selected items, or
–1 if nothing is selected. If you set this property, it deselects all the selected items
except the one with the specified index.

SelectedItem
Returns the selected ListItem. If more than one item is selected, it returns the
one with the lowest index. If nothing is selected, it returns Nothing (null in C#).

SelectedValue
Returns or sets the Value property of the selected item as a String. If more than
one item is selected, it returns the Value of the selected item with the lowest
index. If none of the items in the list control matches the SelectedValue, an error
message is sent.

When a user submits this form, you want to provide feedback regarding the selected
product category, subcategory, and the mailing address to which the purchase will
be sent. A summary table is the solution.

To demonstrate three different ways of displaying text:

• You’ll display the chosen Category in a label.

• You’ll display the chosen Subcategory in a read-only text box.

• Finally, you’ll display the Mailing Address by modifying the inner HTML of the
table cell itself. (Inner HTML is the content between the opening and closing
tags.)

To begin, you need to create the layout table with three rows and two columns
underneath the existing controls. You can type it directly into the source, or use the
Insert Table Wizard we showed you earlier. Whichever method you choose, the table
should end up looking like this in Source view:

Summary

<table>
 <tr valign="top">
 <td>
 Category:
 </td>

Using Controls | 53

 <td>
 <asp:Label ID="CategoryLabel" runat="server" Text="" />
 </td>
 </tr>
 <tr valign="top">
 <td>
 SubCategory:
 </td>
 <td>
 <asp:TextBox ID="SubCategoryTextBox" runat="server"
 ReadOnly="true" />
 </td>
 </tr>
 <tr valign="top">
 <td >
 Mailing Address:
 </td>
 <td id="tdAddress" runat="server" style="width:200px">
 </td>
 </tr>
</table>

This is a fairly straightforward HTML table. The left column has “Category” in the
first row, “Subcategory” in the second, and “Mailing Address” in the third row.

In the right column, place a Label control in the first row with an ID of
CategoryLabel, but with its Text property set to an empty string. You’ll fill that at
runtime. In the second row, insert a TextBox control that has its ReadOnly property set
to true, so that the user cannot type into the text box (you’re using it for display
only).

The third row’s second column is a bit unusual; the <td> itself has an id and a runat
attribute, making this an HTML server control. This allows you to modify the cell
itself programmatically.

If you want to populate the summary table, you’ll need to perform a postback to
evaluate and process the code (as discussed in Chapter 1). To do that, you’ll need a
Submit button. In Design view, drag a Button control onto the page just below the
summary table. Change its ID to btnSubmit, and its text to “Submit.”

The Submit button’s Click event handler will populate the Text properties of the
Label and of the TextBox, and will set the inner HTML of the third row’s second col-
umn, the one which is an HTML server control. Double-click the Submit button
from Design view, and you’ll be automatically taken to the Click event handler in the
code behind file. Add the following code to wire up the functionality:

Protected Sub btnSubmit_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSubmit.Click

54 | Chapter 2: Building Web Applications

 CategoryLabel.Text = ddlCategory.SelectedItem.Text

 SubCategoryTextBox.Text = lbSubCategory.SelectedItem.Text

 Dim strMailingAddress As String
 strMailingAddress = txtName.Text + "
" + _
 txtAddress.Text + "
" + _
 txtCity.Text + ", " + _

ddlState.SelectedValue + " " + _
 txtZip.Text

tdAddress.InnerHtml = strMailingAddress
End Sub

Let’s take a closer look at this code. The event handler retrieves the selected item
from the drop-down list for Categories (ddlCategory) and asks it for its Text prop-
erty, which it then assigns to the Text property of the CategoryLabel:

CategoryLabel.Text = ddlCategory.SelectedItem.Text

Similarly, the text is retrieved from the SelectedItem property of the ListBox that
holds the Subcategory, and that text is assigned to the Text property of the read-only
TextBox:

SubCategoryTextBox.Text = lbSubCategory.SelectedItem.Text

Finally, and this is a bit tricky, the text of the various address fields are retrieved
(including the selected value from the state drop-down), joined into a single text
string, and assigned to the local variable strMailingAddress. That value is then
assigned to the InnerHtml property of tdAddress. This is, you’ll remember, the ID
assigned to the second <td> tag of the third row. The net result is that the cell is filled
with the address string:

Dim strMailingAddress As String
strMailingAddress = txtName.Text + "
" + _
 txtAddress.Text + "
" + _
 txtCity.Text + ", " + _

ddlState.SelectedValue + " " + _
 txtZip.Text
tdAddress.InnerHtml = strMailingAddress

If you run this code and click on the Submit button without first
selecting a SubCategory, you will get an error that says “NullReference-
Exception was unhandled by user code—Object reference not set to an
instance of an object”. (You will learn how to debug this in Chapter 8.)
This error is caused by the fact that the SelectedItem property returns
Nothing if nothing is selected, and our code is trying to get the Text
property of Nothing, which does not exist. To fix this, set the Checked
property of one of the ListItems to True, as in:

<asp:ListItem Selected="True">Brakes</asp:ListItem>

The final result is shown in Figure 2-20. Run your application and try it out. When
you enter text in the text boxes and make selections in the category fields, and then
click the Submit button, the Summary table updates with the text you’ve entered.

Using Controls | 55

V B C H E A T S H E E T

Variables and Strings
In the first two controls in the Summary section of the example, you simply assigned
the Text property of a SelectedItem property to the Text property of another control;
that’s easy enough. But for the third control, you took the Text properties of several
controls, joined them together, and assigned them as a whole.

The trick to this is using a variable. Simply put, a variable is like a bucket in your code,
which can be used to hold a value. You can retrieve the value later, change it, or replace
it with another value. You don’t need to worry about what the value is when you’re
writing your code; you just need to know the name of the variable. In this example,
you’re using a variable named strMailingAddress to hold the text of the user’s address.

In VB, you create a new variable using the Dim statement, followed by the name you
want to give the variable:

Dim strMailingAddress As String

You also need to give the variable a type, which tells the compiler what kind of data it
can expect to find in the variable. In this example, the variable consists of text, and in
VB, a sequence of text is called a string. You use the keyword As to declare a variable
named strMailingAddress, of type String. The important thing to know about strings
is that all literal string values are surrounded by double quotes ("").

One of the useful things about strings is that you can take two strings and put them
together into a single, longer string. This is called concatenation, and it’s very easy to
do in VB; you just use the + operator. Look at this bit of code:

txtName.Text + "
" + txtAddress.Text + "
"

All this does is take the string in txtName.Text, add to it the string that represents a line
break in HTML (
), add the string from txtAddress.Text, and then add another
line break. All of that gets assigned to the variable strMailingAddress, which in turn
gets assigned to the inner HTML of the <td> element.

Figure 2-20. This is what the Summary Table of the page looks like after the user has entered
values in the top part of the page.

56 | Chapter 2: Building Web Applications

Images
Images are an important addition to any web site. An image can be a photograph, a
drawing, a logo—any graphic.

ASP.NET provides several controls to work with images:

• An Image control is used to display an image. We will demonstrate this
momentarily.

• An ImageButton is used to create an image that can be clicked, thus giving it the
behavior of a normal button.

• An ImageMap control provides an image with multiple clickable hotspots. Each of
the hotspots behaves like a separate hyperlink.

Now insert an Image control into the form. To do so, insert some room below the
Summary table and the Submit button by hitting the Return key a few times, and
then drag a CheckBox and an Image control onto the form. In the Properties window,
set the ID of the CheckBox to cbDisplayPhoto, and be sure to set AutoPostBack to True,
Checked to True, and Text to “Show product photo?” Also, set the TextAlign property
to Left.

Set the ID for the image to imgPhoto and the ImageURL to “Dan at Vernal Pool.jpg”.
We’ve provided an image for you to use in this example. You can download that
image with the code for the book from www.LibertyAssociates.com. Once you have
the file, simply drag and drop it onto the AdventureWorks folder in Solution
Explorer. You’ll see the image file appear in the file tree alongside your other solu-
tion files. You can also use any image file you have handy.

The Image control has only three essential properties: the ID (so that you can address
the control programmatically), the ubiquitous runat="server", and the ImageUrl that
identifies the location of the image. Because you put this image in the base directory
of the application, you do not need a pathname, only the name of the file itself.

On this page, the CheckBox control offers the user the opportunity to make the image
visible or not. It has its AutoPostBack property set to true to force a postback every
time the Checked property changes. To make use of this, of course, you must write an
event handler for the CheckedChanged event. Double-click the CheckBox to create an
event handler for CheckChanged, and add the following highlighted line of code:

Protected Sub cbDisplayPhoto_CheckedChanged(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles cbDisplayPhoto.CheckedChanged
 imgPhoto.Visible = cbDisplayPhoto.Checked
End Sub

This event handler changes the Visible property of the Image. When the property is
set to false, the image isn’t rendered. Go ahead and try it out. You’ll see that when
you uncheck the box, the page posts back, and the image vanishes.

http://www.LibertyAssociates.com

Using Controls | 57

Links
Hyperlinks provide immediate redirection to another page in the application or to a
location elsewhere on the Internet without posting back to the server. We’ll use a
HyperLink control to provide a link to Jesse’s home page, serving here very much the
same function as an <a> tag would do in HTML.

Add the text, “For help, contact”, and then drag a HyperLink control onto the bot-
tom of your form. Set the ID to hypContact, its NavigateURL to http://www.
JesseLiberty.com, and its text (which will become its inner HTML) to “Jesse Lib-
erty’s Portal”. Finally, set the Target to "_blank" (we’ll explain this property in just a
moment).

Switch to Source view, and you’ll see that the markup produced looks something like
this:

For help, contact
<asp:HyperLink ID="hypContact" runat="server"
 NavigateUrl="http://www.JesseLiberty.com"
 Target="_blank">
 Jesse Liberty's Portal
</asp:HyperLink>

This last property, Target, specifies in which window or frame the new page will
open. You can specify a window by name, or use one of the special values listed in
Table 2-2.

By setting the value of Target to _blank, clicking on the link instructs the target page
to open in a new browser window.

One significant advantage of using this control over an <a> tag is the ID and
runat="server" properties, which allow you to address the control programmati-
cally. For example, you could set the NavigateUrl to a different location from within
your code, based on conditions established while the program is running.

Table 2-2. Special values of the Target attribute

Target value Description

_blank Renders the content in a new unnamed window without frames.

_new Not documented, but behaves the same as _blank.

_parent Renders the content in the parent window or frameset of the window or frame with the hyperlink. If
the child container is a window or top-level frame, it behaves the same as _self.

_self Renders the content in the current frame or window with focus. This is the default value.

_top Renders the content in the current full window without frames.

http://www.JesseLiberty.com
http://www.JesseLiberty.com

58 | Chapter 2: Building Web Applications

LinkButtons
Remember that a hyperlink redirects immediately and does not post back first; thus,
there is no server-side processing possible when the user clicks the link. If you want
the appearance of a hyperlink, but need to perform server-side processing before
departing for the new page (e.g., to save data to a database) then use a LinkButton
control. The LinkButton behaves like a Button but looks like a HyperLink, and the
behavior is to post back to the server, do its work and then redirect the user to a new
location. You already have a HyperLink control on this page, so you won’t add a
LinkButton.

In order to accomplish the redirection to the new page, you’d need to use the
Response.Redirect method, as shown in the following click event handler:

Protected Sub MyLinkButton_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MyLinkButton.Click
 'Save data to db
 Response.Redirect("http://www.JesseLiberty.com")
End Sub

Source Code
For your convenience (in case you are away from your computer) the complete
source code is shown below. The OrderForm markup is shown in Example 2-3. The
code behind file is shown directly after in Example 2-4.

Example 2-3. OrderForm.aspx
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="OrderForm.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>AdventureWorks</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>
 AdventureWorks Order Form</h1>
 <table >
 <tr>
 <td>Customer Name:</td>
 <td>
 <asp:TextBox ID="txtName" runat="server"></asp:TextBox>
 </td>

Source Code | 59

 </tr>
 <tr>
 <td>Address:</td>
 <td>
 <asp:TextBox ID="txtAddress" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>City:</td>
 <td>
 <asp:TextBox ID="txtCity" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>State:</td>
 <td>
 <asp:DropDownList ID="ddlState" runat="server">
 <asp:ListItem Value="AL">Alabama</asp:ListItem>
 <asp:ListItem Value="AK">Alaska</asp:ListItem>
 <asp:ListItem Value="CA">California</asp:ListItem>
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td>Zip:</td>
 <td>
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td>
 <asp:TextBox ID="txtEmail" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td>
 <asp:TextBox ID="txtPassword" runat="server"
 TextMode="Password"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>Comment:</td>
 <td>
 <asp:TextBox ID="txtComment" runat="server" Rows="3"
 TextMode="MultiLine"></asp:TextBox>
 </td>
 </tr>
 </table>
 Provide Personal Information:

Example 2-3. OrderForm.aspx (continued)

60 | Chapter 2: Building Web Applications

 <asp:RadioButton ID="rbYes" runat="server" AutoPostBack=true
 Checked="true" GroupName="grpPersonalInfo"
 Text="Yes"
 ToolTip="Click Yes to gather personal information; No to skip that step" />
 <asp:RadioButton ID="rbNo" runat="server" AutoPostBack=true
 GroupName="grpPersonalInfo"
 Text="No"
 ToolTip="Click Yes to gather personal information; No to skip that step" />
 <asp:Panel ID="pnlPersonalInfo" runat="server"
 BorderWidth="1px" Width="300px" BackColor="Beige">
 <table>
 <tr valign="top">
 <td>
 Areas of Interest
 <asp:CheckBoxList ID="cblAreas" runat="server"
 AutoPostBack="True">
 <asp:ListItem>Biking</asp:ListItem>
 <asp:ListItem>Scuba Diving</asp:ListItem>
 <asp:ListItem>Gaming</asp:ListItem>
 <asp:ListItem>Mountain Climbing</asp:ListItem>
 <asp:ListItem>Web Surfing</asp:ListItem>
 <asp:ListItem>Real Surfing</asp:ListItem>
 </asp:CheckBoxList>
 </td>
 <td>
 Age Category

 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="true" Width="150px">
 <asp:ListItem>Under 21</asp:ListItem>
 <asp:ListItem>21 to 30</asp:ListItem>
 <asp:ListItem>31 to 50</asp:ListItem>
 <asp:ListItem>Over 50</asp:ListItem>
 </asp:RadioButtonList>
 </td>
 </tr>
 </table>
 </asp:Panel>
 <table>
 <tr valign="top">
 <td>
 Product Category
 </td>
 <td>
 <asp:DropDownList ID="ddlCategory" runat="server"
 AutoPostBack="true"
 ToolTip="Select a category">
 <asp:ListItem>Bikes</asp:ListItem>
 <asp:ListItem>Components</asp:ListItem>
 <asp:ListItem>Clothing</asp:ListItem>
 <asp:ListItem>Accessories</asp:ListItem>

Example 2-3. OrderForm.aspx (continued)

Source Code | 61

 <asp:ListItem>Scuba</asp:ListItem>
 <asp:ListItem>Parasailing</asp:ListItem>
 </asp:DropDownList>
 </td>
 <td>
 SubCategory
 </td>
 <td>
 <asp:ListBox ID="lbSubCategory" runat="server"
 AutoPostBack="true"
 SelectionMode="Single"
 ToolTip="Select a sub-category">
 <asp:ListItem Selected="True">Brakes</asp:ListItem>
 <asp:ListItem>Handlebars</asp:ListItem>
 <asp:ListItem>Chains</asp:ListItem>
 <asp:ListItem>Cranks</asp:ListItem>
 <asp:ListItem>Bottom Brackets</asp:ListItem>
 <asp:ListItem>Tires</asp:ListItem>
 <asp:ListItem>Wheels</asp:ListItem>
 <asp:ListItem>Seats</asp:ListItem>
 <asp:ListItem>Derailleurs</asp:ListItem>
 </asp:ListBox>
 </td>
 </tr>
 </table>
 <table border="1">
 <tr valign="top">
 <td>
 Category:
 </td>
 <td>
 <asp:Label ID="CategoryLabel" runat="server" Text="" />
 </td>
 </tr>
 <tr valign="top">
 <td>
 SubCategory:
 </td>
 <td>
 <asp:TextBox ID="SubCategoryTextBox" runat="server"
 ReadOnly="true" />
 </td>
 </tr>
 <tr valign="top">
 <td>
 Mailing Address:
 </td>
 <td id="tdAddress" runat="server" style="width: 200px">
 </td>
 </tr>
 </table>

Example 2-3. OrderForm.aspx (continued)

62 | Chapter 2: Building Web Applications

 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />

 <asp:CheckBox ID="cbDisplayPhoto" runat="server" AutoPostBack="True"
 Checked="True" Text="Show product photo?" TextAlign="Left" />

 <asp:Image ID="imgPhoto" runat="server" ImageUrl="Dan at Vernal Pool.jpg" />

 <asp:HyperLink ID="hypContact" runat="server"
 NavigateUrl="http://www.JesseLiberty.com" Target="_blank">
 Jesse Liberty's Portal
 </asp:HyperLink>
 </div>
 </form>
</body>
</html>

Example 2-4. OrderForm.aspx.vb
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnSubmit_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSubmit.Click

 CategoryLabel.Text = ddlCategory.SelectedItem.Text
 SubCategoryTextBox.Text = lbSubCategory.SelectedItem.Text
 Dim strMailingAddress As String
 strMailingAddress = txtName.Text + "
" + _
 txtAddress.Text + "
" + _
 txtCity.Text + ", " + _
 ddlState.SelectedValue + " " + _
 txtZip.Text
 tdAddress.InnerHtml = strMailingAddress
 End Sub

 Protected Sub cbDisplayPhoto_CheckedChanged(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles cbDisplayPhoto.CheckedChanged
 imgPhoto.Visible = cbDisplayPhoto.Checked
 End Sub

End Class

Example 2-3. OrderForm.aspx (continued)

Summary | 63

Summary
• A postback occurs when an event happens on your page that causes the page to

return to the server, handle the events, and then send the same page back to the
browser. The contents of the page may have changed, but the page object itself is
the same.

• Postbacks can be either synchronous, in which case the entire page is returned to
the server, or, with AJAX, asynchronous, in which case only part of the page is
returned to the server.

• A control is a tool that lets your web page take an action. It could be as simple as
displaying some text, or as complicated as interacting with a database. Most
controls have some visual representation that the user sees, although not all do.

• Placing a control in your web page is as simple as dragging it from the Toolbox
onto your page; the IDE inserts the appropriate markup for you. Controls all
come with at least a few properties and methods, which you can use to custom-
ize their appearance and behavior, respectively.

• Every control has a unique identifier, its ID property. The IDE assigns a default
ID automatically, but you can (and usually should) rename them to be more
meaningful.

• Almost every control has associated events, as well as properties. You can access
these by clicking the Events button in the Properties window.

• You can create tables by hand in Source view, or you can use the Insert Table
Wizard by selecting Layout ➝ Insert Table in Design view.

• The TextBox control is a relatively simply control that allows the user to enter
text that you can retrieve later. You can change the TextMode property of a
TextBox to create single-line entry fields, multiline fields, or to hide the text for a
password field.

• ASP.NET has a number of selection controls, including the ListBox,
DropDownList, RadioButton, RadioButtonList, CheckBox, and CheckBoxList, which
display various options for the user to choose from. You decide which control to
use based on its appearance, and whether you want the user to be able to make
only one selection from within a list or multiple selections.

• If the AutoPostBack property of a control is set to True, the page is posted back to
the server whenever that control’s value changes.

• Radio buttons can be assigned to a group, by setting each button’s GroupName
property. That ensures that only one button in a group can be selected at a time.
You can also use a RadioButtonList to accomplish the same thing.

• You can use a Panel control to group other controls together, and also to make
the content in the panel visible or invisible as a group.

64 | Chapter 2: Building Web Applications

• Many controls have a Smart Tag, which is a small menu that provides quick
access to the most common tasks for that control. In the case of selection con-
trols, the Smart Tag lets you access the ListItem editor.

• The selection controls each contain a collection of ListItem objects, which you
use to offer the user choices to select from. The Value property of the ListItem
can be different from the Text property that you display to the user, and you can
retrieve the selected value for later use. The ListItem Collection Editor makes it
easy to add ListItems, but you can also add them by hand in Source view.

• There are three properties that let you retrieve the items that users select from a
selection control: SelectedIndex gets the index of the selected item, SelectedItem
gets the Text property, and SelectedValue gets the Value property. You can use
these values to display the selected item in another control, or to use it in other
ways.

• There are several ways to display dynamically generated read-only text in your
page: among others, you can set the property of a Label control, you can use a
read-only TextBox control, or you can set the inner HTML of an HTML element.

• You use an Image control to display an image or graphic. The ImageButton con-
trol displays an image, and acts like a button. An ImageMap control displays an
image that has multiple areas that the user can click, each acting like a hyperlink
or button.

• The Visible property of a control determines whether that control is rendered
on the page. You can change the value of this property programmatically, and
cause the control to appear or disappear with a postback.

• A HyperLink control works like an HTML anchor <a> tag. You can set the
NavigateURL property and the text of the hyperlink separately. You can also spec-
ify if the link’s target will open in a new page or a new frame with the Target
property.

You’ve got a lot of things in your toy box now, and you can do a lot more than just
the label and button from Hello World in Chapter 1. In fact, in this chapter, you’ve
just seen the more common controls—there are many others out there that are more
specialized, such as the Calendar and AdRotator controls, and that’s not even leaving
the General tab of the Toolbox. Feel free to experiment with them. Now that you
have a base to work from, in the next chapter, we’ll show you how you can use AJAX
to do some clever things with the plain-vanilla controls you just learned about.

Exercises | 65

B R A I N B U I L D E R

Quiz
1. What is a postback?

2. What are the two types of postbacks in ASP.NET, and what is the difference
between them?

3. What property is found on every control?

4. What control would you use to have the user enter a password, but keep the text
hidden?

5. What control would you use if you have a list of 20 items, and the user can select
as many as they want?

6. How do you make single radio buttons mutually exclusive?

7. What can you use a Panel control for?

8. What does the SelectedItem property retrieve?

9. How do you include a control on the page, but not render it?

10. What do you do to make the target of a HyperLink control open in a new window?

Exercises
Exercise 2-1. Now that you’ve played with Hello World, you’re going to make a
change to the Postbacks example from this chapter, so you can see how flexible the
UpdatePanel control is. Open the Postbacks web site (similar to how you opened
Hello World in the previous exercise). In Design view, drag another UpdatePanel con-
trol inside the first one, after the button. Click inside the new UpdatePanel and type the
text “Another partial-page update:”. Drag another Label control inside the new
UpdatePanel. In the Properties window, set the label’s name to lblOtherPartialUpdate,
and set its width to 200px. (Note that you can’t give this label the same name as the
other label—or any other control on the page—or you’ll get an error.) Now, add
another Button to the new UpdatePanel, under the label, set its name to
btnOtherPartialUpdate, and change the text to “Another Partial Update”.

You need the event handler for your new button, so double-click it, and you’ll be
taken to the code-behind file. You’ll see the event handlers for the two existing but-
tons already there, and the skeleton for the new event handler. Add the following
line of code to this new event handler so it will update with the current time, like the
other two buttons do:

lblOtherPartialUpdate.Text = DateTime.Now

Run your application, and click the buttons. If all went well, you’ll see that each
label updates independently from the others, and that the two buttons in the update
panels don’t cause any page flicker. Your page should look something like
Figure 2-21.

66 | Chapter 2: Building Web Applications

Exercise 2-2. When you’re creating a web page, often knowing which controls to use
is a bigger challenge than using the controls properly. That’s what you’re going to
practice here. Imagine a page for a busy ice cream shop that lets you preorder an ice
cream cone so it will be ready for you when you get to the counter. The page should
have three controls. The first control asks users to select the type of ice cream from
the following list: Vanilla, Chocolate, Strawberry, Mint, Butter Pecan, Coffee, Pista-
chio, Coconut, Bubble Gum, and Cotton Candy. Only one type of ice cream is
allowed per order. The second control asks the user to select the toppings they want:
chocolate sprinkles, rainbow sprinkles, hot fudge, caramel, cookie dough, Oreo
cookies, pretzel bits, walnuts, coffee beans, or crushed candy bars. It’s a gourmet ice
cream shop, so customers can have as many toppings as they like. The third control
asks users to choose a cone or a dish. Obviously, only one is allowed. Make sure to
include a way for users to submit their order.

Exercise 2-3. Now that you’ve made a working page with different controls, it’s time
to try retrieving a value. Create a page with a simple TextBox that asks the user to
enter his or her password. The password should be disguised as the user types it.
Then, with shocking disregard for security, use a label control to repeat the user’s
password back to him. The page should look something like Figure 2-22.

Figure 2-21. Your goal for Exercise 2-1. Each label should update independently of the others.

Exercises | 67

Exercise 2-4. Now you’re ready to try a slightly more complicated example. Create a
drop-down list that presents a number of fine books from your authors; call it
ddlBookList. This time, the Text and Value properties of the ListItems in the drop-
down should be different, according to the following table.

These values are part of each book’s ISBN, and were you a bookstore or a ware-
house, you would probably use a database with these numbers to help keep track of
the books you have in stock. In this case, though, you’ll just show the user what they
selected, including the value. Add two labels to show the results, as shown in
Figure 2-23.

Figure 2-22. Your goal for Exercise 2-3.

Text Value

Programming ASP.NET 00916X

Programming C# 006993

Programming Visual Basic.NET 004385

Learning C# 2008 102097

68 | Chapter 2: Building Web Applications

Figure 2-23. Your goal for Exercise 2-4.

69

Chapter 3 CHAPTER 3

Snappier Web Sites with AJAX3

AJAX has revolutionized ASP.NET, and from this moment forward, most ASP.NET
applications will routinely integrate AJAX controls. AJAX moves ASP.NET applica-
tions from being 99% server-side code to offering the option for a great deal of the
processing to happen on the user’s browser. The net effect is a tremendous increase
in both real and perceived performance of ASP.NET applications.

To demonstrate how much more dynamic and responsive AJAX is, you’ll rewrite the
order form from Chapter 2, applying AJAX techniques. You’ll enhance the site by
adding a watermark to user entry fields. A watermark is a bit of text that appears in
the text field itself, but disappears as soon as the user starts typing. It serves as an ele-
gant prompt to the user. You will also create a pop-up panel to hide controls until
the user needs them, and you’ll add a collapsible text field to display product infor-
mation in a very space-efficient manner.

Take a Walk on the Client Side
While server-based web applications have wonderful advantages, they have the obvi-
ous disadvantage that any time you want to run any code (or retrieve any data) you
must endure the cost of a “round trip” from the browser to the server and back, and
the page must be redrawn from scratch. Round trips can be slow (though the Inter-
net is getting faster all the time), and redrawing the page causes a noticeable flicker.

AJAX (which more accurately should be spelled AJX, but that’s harder to pro-
nounce) is an acronym for Asynchronous JavaScript and XML—that is, it is a tech-
nique for combining well established (some might say old) Internet technology in
new ways to greatly enhance the performance of web applications. AJAX enabled
applications are very hot—they outperform server-based applications in ways that
would make your jaw drop.

70 | Chapter 3: Snappier Web Sites with AJAX

Microsoft, realizing this was not a technology they could ignore, and having learned
the lesson that they must leave open standards open, chose to take this very good
idea and make it much much better, without making it proprietary.

AJAX Doesn’t Exist
There really isn’t any such thing as AJAX. It isn’t a product or a standard; it isn’t even
a technology. It is just a way to refer to a set of existing technologies used together in
new ways to do cool things.

The first use of the term as an acronym for “Asynchronous JavaScript and XML” was
by Jesse James Garrett in February 2005. Garrett thought of the term while in the
shower (if you must know), when he realized the need for a shorthand term to repre-
sent the suite of technologies he was proposing to a client (who, we are assured, was
not in the shower with him).

On the other hand, the first use of the term at all may have been nearly 3000 years earlier,
by Homer, who wrote about Ajax the Great (and also Ajax the Lesser) in the Iliad (Book
7, 181–312). Ajax the Great was the tallest and strongest of the Achaeans, and second
only to Achilles in skill as a warrior. It isn’t clear if the tale of AJAX-The-Technology will
be told 3,000 years from today (or even 3,000 days), though we’re pretty certain there is
a parallel between the Trojan War and the desktop wars, but that is for another book.

According to Garrett, “AJAX...is really several technologies, each flourishing in its
own right, coming together in powerful new ways.” AJAX incorporates:

• Standards-based presentation using XHTML and CSS, with dynamic display and
interaction using the Document Object Model (DOM). This allows AJAX,
through JavaScript code, to directly manipulate any element on the page.

• Data interchange and manipulation using XML and XSLT, a nonproprietary and
platform independent way of working with data, allowing AJAX to work on any
platform using industry standard technology.

• Asynchronous data requests and retrieval to request units of information com-
prising less than an entire page. This has two very important benefits: much less
information needs to be sent “through the wire,” and the browser can continue
working with other portions of a page while waiting for a response from the
server.

• Heavy emphasis on client-side processing, to eliminate as many round trips as
possible and to greatly improve the performance of the application.

• JavaScript binds everything together. AJAX takes advantage of the industry stan-
dard scripting language that is implemented by virtually every browser on every
desktop.

ScriptManager and UpdatePanel | 71

They did so by combining the power, speed, and flexibility of AJAX with the drag-
and-drop simplicity of ASP.NET. They created a library of AJAX controls that are as
easy to use as the server-side ASP.NET controls we’ve been using since the Middle
Ages. Even more important, they made it relatively easy to create drag-and-drop
AJAX controls, although that’s beyond the scope of this chapter.

This means you can get started using Microsoft’s AJAX controls without first learn-
ing how to program in JavaScript or how to write DHTML. That lowers the usability
bar enough that there really is no reason not to integrate AJAX into all your ASP.NET
applications immediately.

Don’t panic if you like JavaScript and you want to write your own
AJAX controls; you are still free to do so. Just as with custom con-
trols, you can always extend—or even invent—if you are so moved.

Now, you can eat your cake and have it, too. You can continue to create ASP.NET
applications using the same IDE, but add client script with asynchronous postbacks
(especially asynchronous data retrieval!), and you can do so with a library of tested,
ready-to-use controls that fully encapsulate all the JavaScript for you.

The key point, however, is that asynchronous updates improve the performance of
your application and the user’s perception of that performance. This is because the
page is not posted back to the server, but instead data is retrieved independently of
the page being recreated, thus there is no flicker, and data retrieval is far faster.

ScriptManager and UpdatePanel
Microsoft realized that the job of integrating the standard ASP.NET controls and
pages with AJAX controls (that encapsulate JavaScript and DHTML) would be diffi-
cult, tedious, and repetitious. So, they did it for you with the ScriptManager control,
ensuring that you have access to a fully tested, reliable control that manages the
grunt work. Adding a ScriptManager control to your page solves the problem, and
having one on the page even when you don’t need it comes at virtually no cost. Here
is the declaration that must appear in every page:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

The ScriptManager control will be visible in Design view, as shown in Figure 3-1, but
will not be visible when the web site is run.

Implementing partial-page updates is surprisingly easy using ASP.NET AJAX—you
just leave drag a ScriptManager control onto the page and leave its
EnablePartialRendering property set to its default value of True.

Having done the hard work of not changing that property, you can then drag one or
more UpdatePanel controls onto your page. Each UpdatePanel is updated individually
and asynchronously, without affecting one another or anything else on the page.

72 | Chapter 3: Snappier Web Sites with AJAX

That’s it. Instant and unmistakable performance enhancement with almost no pro-
grammer effort.

To see this effect, you will modify the AdventureWorks project from the previous
chapter, using update panels to improve performance. Recall in that example (shown
in Figure 2-9), a pair of radio buttons was created (but never fully enabled) to con-
trol the visibility of a Panel control whose purpose was to collect personal informa-
tion. You’ll enable that feature now.

The way that you created the example in Chapter 2, clicking on the radio buttons
causes a postback because the radio butttons’ AutoPostBack property is set to true.
This would cause the page to flicker as it was redrawn. With an AJAX UpdatePanel,
however, the postback and update will be done asynchronously, and there will be no
page flicker.

Begin by making a copy of the AdventureWorks Order Form site. Call it
AdventureWorksRevisited. Run it to ensure that it works as expected.

See Appendix B for instructions on copying a web site.

Figure 3-1. The ScriptManager control is visible on the page in Design view, but you won’t see it
in the browser.

ScriptManager control

ScriptManager and UpdatePanel | 73

To simplify the page, remove all the controls below the pnlPersonalInfo panel
(everything below that Panel down to—but not including—the closing div and form
tags).

You will also need to delete the no-longer relevant event handlers from
the code-behind. (You can easily tell which code-behind methods are
no longer relevant by trying to run the web page and looking at the
build errors.) As it turns out, this includes all the event handlers from
the AdventureWorks form.

Drag a ScriptManager control from the AJAX Extensions section of the Toolbox onto
the page in either Source or Design view. It doesn’t matter too much where it is, as
long as it is inside the opening <form> tag, but the top of the page is a good choice.

In this example, you will add an AJAX UpdatePanel to surround the radio buttons
and the Panel containing the personal information. The finished application is shown
in Figure 3-2, which shows the panel both visible and hidden.

Figure 3-2. The AdventureWorksRevisited web site with the Panel visible and hidden. You’ll see
that the AJAX version works much more smoothly than the version from Chapter 2.

74 | Chapter 3: Snappier Web Sites with AJAX

First, let’s give the Yes and No RadioButtons something to do. Select each of the
RadioButton controls and take a look at the Properties window. First, be sure the Text
property is set correctly for each button—Yes or No. Next, make sure that the
AutoPostBack property for each RadioButton is set to true. As we mentioned in
Chapter 2, when AutoPostBack is set to true, the RadioButton immediately initiates a
postback to the server when it is clicked, executing any action that should happen.

If you were to inadvertently double-click on one of the RadioButton
controls, instead of single clicking to select it, then an event handler
method would be created for the CheckChanged event. This is not what
you want to happen at this point, because as you will see in a moment,
you will want both radio buttons to call the same event handler. If it
does happen, just go to the code-behind file and delete the just-created
empty event handler method.

As you saw in Chapter 2, you indicate what action should be taken with event han-
dlers. In Design view, set the event handler for the Yes button by single-clicking on
the rbYes radio button. In the Properties window, click on the lightning bolt button
to switch from properties to events. You will see that one of the events is
CheckedChanged.

In the space to the right of the event name, enter the text YesNoEventHandler. Press
tab (or Enter) to open the code-behind file, with the cursor positioned in the skele-
ton of the new event handler, ready for you to enter your custom code. Before you
fill in the code for the event handler, though, return to Design view and single click
on the rbNo radio button. Again, click in the space next to the same CheckedChanged
event handler. This time, a down arrow will appear. Clicking that arrow will give you
the opportunity to select an existing event handler, as shown in Figure 3-3.

Select YesNoEventHandler. Once again, the IDE will take you directly to the event
handler in the code-behind file. Notice that the Handles statement now shows that
this event handler handles the CheckChanged event for both radio buttons. Add the
text shown highlighted in the following code snippet:

Protected Sub YesNoEventHandler(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rbYes.CheckedChanged, rbNo.CheckedChanged
 pnlPersonalInfo.Visible = rbYes.Checked
End Sub

Run the program and click the Yes and No radio buttons in turn. You should see that
the panel is displayed when the Yes button is checked, and hidden when the No but-
ton is checked. As you saw in the previous chapter, the Visible attribute specifies
whether the panel is rendered, and now you’ve tied it to the value of the rbYes
control.

ScriptManager and UpdatePanel | 75

As you click each button, however, you will probably notice a distinct flicker of the
display as the entire page is redrawn. There may even be a detectable delay. This is
because each time you click the button, the entire page is sent back to the server for
processing, the event handler is run, and the entire page is sent back to the browser
and redrawn.

AJAX solves this problem by asynchronously updating only portions of a page. By
updating segments “in the background,” you avoid reposting and redrawing the
entire page.

In the AdventureWorks example as it is currently written, this post-
back also causes the user’s position on the page to be lost. When the
page is rendered from scratch, the browser effectively scrolls back to
the top of the page, which can be very annoying.

You can rectify this by setting the MaintainScrollPositionOnPostback
property of the Page directive to true. To do so, open the markup file
in Source view and edit the Page directive at the top of the file, adding
the following highlighted code:

<%@ Page Language="VB" AutoEventWireup="true"
 CodeFile="OrderForm.aspx.vb" Inherits="_Default"
 MaintainScrollPositionOnPostback="true"%>

Select the ScriptManager control in Design view and look at the Properties window. If
the Properties window is not visible, right-click on the control and select Properties
or press F4. Verify that the EnablePartialRendering property is set to True.

Figure 3-3. Clicking the arrow next to the property of the CheckChanged control will let you wire
the control to an event handler that’s already created.

76 | Chapter 3: Snappier Web Sites with AJAX

Your goal is to update only the Panel named pnlPersonalInfo when the user clicks
one of the radio buttons. To do that, you need to wrap the Panel and the radio but-
tons inside an UpdatePanel control, which you’ll find in the AJAX Extensions section
in your Toolbox.

Make sure that you are in Design view, open the AJAX Extensions tab of the Toolbox,
and drag an UpdatePanel onto the form (you can do the same in Source view, of
course). Now, highlight the text prompt, the radio buttons, and the
pnlPersonalInfoPanel, and drag them all onto that UpdatePanel. That’s all there is to it.

If you look at the resulting page in Source view, you will see not only the UpdatePanel
elements, but also opening and closing <ContentTemplate> tags inside the
UpdatePanel. All of your content must be inside these <ContentTemplate> tags. For
example, if you had a Button and a TextBox inside an UpdatePanel, the markup would
look like this:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Button ID="Button1" runat="server" Text="Button" />
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 </ContentTemplate>
</asp:UpdatePanel>

Doing this in Source view is very similar: drag the UpdatePanel from
the Toolbox onto the window, and then move the relevant markup
inside the UpdatePanel. However, if you do this in Source view, the
<ContentTemplate> tags will not be created automatically, and you
must manually type them into the markup.

Run the program again, and then click the radio buttons to see the difference. This
time, there should be no flicker as only the panel reloads. Feel free to say “Wow!”

Controlling Browser History
It has been said that “he who controls history, controls the future.” That is certainly
true when using a browser. Everyone is familiar with the browser Forward and Back
buttons, which allow the user to navigate back and forth amongst the pages already
visited in the current session. Forward and Back are central to the browsing experience.

The browser automatically enables and disables these buttons as necessary, if there
are appropriate pages to navigate to. For example, if you are at the first page visited
that session, then the Back button will be disabled because you can’t go back any
further.

The browser maintains a history which contains a list of all the URLs sent back to
the server as page requests. However, it is here that the benefits of AJAX turn around

Controlling Browser History | 77

and bite us. With asynchronous postbacks, the URL is not posted back to the server
as a page request. This means that AJAX asynchronous postbacks are not added to
the browser’s history, do not affect the Forward or Back buttons, and are not accessi-
ble to those buttons or in any history lists. Bummer.

You can see this in the previous example, AdventureWorksRevisited. Run that exam-
ple again, and notice that the Forward and Back buttons in your browser are
disabled—that’s because this is the only page you’ve visited so far. Now change the
radio buttons that control the display of personal information. Even though the con-
tent of the page appeared to change, neither the Forward nor Back buttons are
enabled. This is because a full page request is not being made of the server, so the
browser doesn’t know that there’s been a request and response from the server.

Out in the real world of deployed web sites, if the navigation buttons are enabled as
a result of previously navigating to other pages, they will not take you where you
intuitively think you ought to go if you’ve used any AJAX-enabled controls. And
worst of all in that case, you will lose any work you have done in any AJAX-enabled
controls on the page.

With ASP.NET 3.5 Service Pack 1, you can fix this, although it does take some cod-
ing on your part (something we try to avoid as much as possible in this book). There
are two things you need to deal with. The first is to create a history point and add it
to the browser history when the state of the page changes. The second is to handle
the clicks when the user clicks the brower’s Forward and Back buttons or history
lists and to restore the state of the page as it was earlier. The ScriptManager control
included on every ASP.NET AJAX web page, along with the UpdatePanel control,
provides the means to accomplish both of these ends.

An example will show how this works. Create a new ASP.NET web site called
AjaxHistory.

Before you can manage browser history, you must add and configure the
ScriptManager control. In either Source or Design view, drag a ScriptManager control
from the AJAX Extensions section of the Toolbox onto the page. Then, put the cur-
sor on the ScriptManager control so that its properties are visible in the Properties
window. Set the EnableHistory property to True, as shown in Figure 3-4. With this
property set, history is enabled for all AJAX-enabled controls on the page, that is, for
all controls inside UpdatePanel controls. The default setting of this property is False,
which is why the Forward and Back buttons were disabled when you tried them a
moment ago.

Drag an UpdatePanel control from the AJAX Extensions section of the Toolbox onto
the page. You will place all the other controls whose history is to be tracked inside
this UpdatePanel. For this example, the page will contain a RadioButtonList with

78 | Chapter 3: Snappier Web Sites with AJAX

three options, a ListBox with three items, plus a button for updating the history. The
finished page is shown in Figure 3-5.

Switch to Design view. Drag a RadioButtonList from the Standard section of the
Toolbox inside the UpdatePanel. Click on the Smart Tag of the RadioButtonList and
select Edit Items. Add three items, as shown in Figure 3-5. Let the IDE set the default
Value property of each ListItem to be the same as the Text property. With the
RadioButtonList still selected, set the AutoPostBack property to True, so the control
will force an immediate postback whenever a change is made. Remember, because
this control is inside the UpdatePanel, that postback will be an asynchronous, partial
page postback.

Drag a Label control onto the page. This will display the value of the selected radio
button every time a different radio button is selected. To make this happen, double-
click on the RadioButtonList control in Design view to open an event handler
method in the code-behind. Add the highlighted line of code in Example 3-1.

Figure 3-4. Set the EnableHistory property on the ScriptManager control to turn on history
control for all the controls inside UpdatePanel controls anywhere on the page.

Controlling Browser History | 79

Next, switch back to Default.aspx in Design view, and drag a ListBox control from
the Standard section of the Toolbox onto the page, inside the UpdatePanel. You
might first want to hit Enter after the Label to make some space. Click the Smart Tag
of the ListBox and click on Edit Items, just as you did for the RadioButtonList. This
time, add the three items shown in the ListBox in Figure 3-5. Because we are not
doing anything with the selected value anywhere in this example, there is no need to
set AutoPostBack to True, nor is there any code-behind associated with this control.

There are two general strategies you can follow. The first would be to create a his-
tory point whenever a control changes state. In this case, you would add code to the
default event handler for any (or every) control of interest. This works well when you
are only tracking a single control on the page, but gets cumbersome if you want to
track multiple controls, as is the case with this example.

Figure 3-5. The sample page for exercising the browser history with AJAX controls looks like this.

Example 3-1. The SelectedIndexChanged event handler of the RadioButtonList updates the label
with the new selected value
Protected Sub RadioButtonList1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles RadioButtonList1.
SelectedIndexChanged
 Label1.Text = RadioButtonList1.SelectedValue
End Sub

80 | Chapter 3: Snappier Web Sites with AJAX

The second strategy, which we’ll demonstrate in this example, only creates a history
point when the user clicks a button, at which point the state of all the relevant con-
trols is saved. To implement this, drag a Button control onto the page, again inside
the UpdatePanel, underneath the ListBox. Change its Text property to “Snapshot”.
Double-click on the Button to get the event handler for the Click event. Add the
highlighted code from Example 3-2.

This code, which runs every time the button is clicked, gets the selected values of the
two controls, assigning them to String variables. It also constructs a String variable,
strTitle, from a concatenation of the two selected values.

Next, you call the AddHistoryPoint method of the ScriptManager control twice, once
for each of the controls you are interested in preserving, and passing in the strTitle
string that you created. The AddHistoryPoint method, as its name implies, adds a his-
tory point to the History object. There are several variants, or overloads, of this
method. The one used here takes three arguments:

ScriptManager1.AddHistoryPoint("RadioButtonList", strRadioButtonListValue, strTitle)

The first argument is the key that identifies this history point. A key is simply an
identifier that can be associated with a value. Each history point that you save will
have its own key that you can use later to retrieve that history point state. In this line
of code, the key is hardcoded to be RadioButtonList. Later, by retrieving the state
named RadioButtonList, you’ll be able to set the radio buttons to their earlier state.

The second argument is the value associated with this key. This second argument is
the state that you want to save at that moment. This typically would be information
such as which radio button is selected, what item is selected in a list, what the value
is in a text box, and so on. It’s up to you to determine what state you want to save,
and also how you want to save it. There is no predefined format for state data; you
will retrieve it later during navigation, so you can use any format that will help you
restore the state later if needed.

Example 3-2. Clicking on the Button creates a history point for each of the controls on the page
Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim strRadioButtonListValue As String = RadioButtonList1.SelectedValue
 Dim strListBoxValue As String = ListBox1.SelectedValue
 Dim strTitle As String = "History: " + strRadioButtonListValue + _
 " - " + strListBoxValue

 ScriptManager1.AddHistoryPoint("RadioButtonList", _
 strRadioButtonListValue, strTitle)
 ScriptManager1.AddHistoryPoint("ListBox", _
 strListBoxValue, strTitle)
End Sub

Controlling Browser History | 81

In this example, the state to be saved for both controls is the value of the
SelectedValue property. This way, the retrieval method (which you’ll see in a
moment) can use the key to refer to the selected item. The third argument is the title,
which will be displayed when the browser displays history lists. The title is a string
concatenation of a literal with the variables naming the selected items:

Dim strTitle As String = "History: " + strRadioButtonListValue + _
 " - " + strListBoxValue

With this code in place, history points will be added to the browser’s history when-
ever the user clicks the Snapshot button.

That’s a start, but this code doesn’t tell the Forward and Back buttons what to do
automatically. For that, you need to handle the Navigate event. You saw the default
Click event for a Button control above, and the Navigate event isn’t much different.
When the user clicks on the Forward or Back button or selects an entry from one of
the history lists provided by the browser, the ScriptManager raises the Navigate event.

To handle this event, switch back to Default.aspx in Design view, and select the
ScriptManager control. In the Properties window, click the lightning bolt button to
see all the available events. Double-click in the box next to the Navigate event.

You will be taken to the code editor, inside a newly constructed event handler, ready
to type your code. Add the highlighted code from Example 3-3.

Example 3-3. Handle the Navigate event to process the Forward and Back buttons and history
 lists
Protected Sub ScriptManager1_Navigate(ByVal sender As Object, _
 ByVal e As System.Web.UI.HistoryEventArgs) _
 Handles ScriptManager1.Navigate
 ' set the value of the RadioButtonList
 Dim strRadioButtonList As String = String.Empty
 If Not e.State("RadioButtonList") Is Nothing Then
 strRadioButtonList = e.State("RadioButtonList")
 End If

 If (strRadioButtonList.Length > 0) Then
 RadioButtonList1.SelectedValue = strRadioButtonList
 Else
 RadioButtonList1.SelectedIndex = -1
 End If
 Label1.Text = strRadioButtonList

 ' set the value of the ListBox
 Dim strListBox As String = String.Empty
 If Not e.State("ListBox") Is Nothing Then
 strListBox = e.State("ListBox")
 End If

 If (strListBox.Length > 0) Then
 ListBox1.SelectedValue = strListBox
 Else

82 | Chapter 3: Snappier Web Sites with AJAX

Notice the second argument in the method declaration is of type HistoryEventArgs.
This parameter carries information about the history point that is being navigated to.
HistoryEventArgs has a single property called State. State is a NameValueCollection
object, which means that it consists of one or more pairs of strings. The first half of
each pair is the key, or name, of the pair. The second half of each pair is the value of the
pair. Together they constitute a name/value pair. If you know the name, you can
retrieve the value by using the name as an index into the State collection. That is, you
retrieve the value of the pair in the State collection for the RadioButtonList with the
name "RadioButtonList", and assign it to a new string variable, strRadioButtonlist.
You then do the same for the ListBox. In either case, you always want to test if that
State collection exists before trying to read it, otherwise an error will result. The fol-
lowing snippet achieves this. The string variable is declared outside the If-Then
block, so it will be available to the code further down whether or not the State col-
lection exists:

 Dim strRadioButtonList As String = String.Empty
 If Not e.State("RadioButtonList") Is Nothing Then
 strRadioButtonList = e.State("RadioButtonList")
 End If

Back in Exercise 3-2, when you called AddHistoryPoint, the first parameter passed in
was the key, and the second parameter was the value of the State property. Now
you’ve retrieved the values of those history points, and assigned them to
strRadioButtonList and strListBox. With this information, you can set the selected
value of the RadioButtonList and it’s associated Label.Text property, as well as the
selected value of the ListBox. If nothing was selected for either control, set the index
to -1, which has the effect of selecting nothing.

The last thing this event handler does is set the Title of the page.

The end result is shown in Figure 3-6 after clicking on the radio buttons several times
and showing the history list under the Forward button.

Notice that the title of the browser window reflects the title information that you
passed when you called AddHistoryPoint. More interestingly, notice that the URL in
the Address box contains not just the name of the page (Default.aspx), but a string of
characters that look like gibberish. That’s your saved state. It’s encoded in a way that
allows it to be added to a URL. As you navigate back and forth in the browser, you’ll
see that this state string changes (although the base page name does not). And each
time you navigate, that state is sent to the server, where you handle it in the Navigate

 ListBox1.SelectedIndex = -1
 End If

 Page.Title = "History - " + strRadioButtonList + " - " + strListBox
End Sub

Example 3-3. Handle the Navigate event to process the Forward and Back buttons and history
 lists (continued)

Extending Controls with the Control Toolkit | 83

event. This really is the whole secret of how ASP.NET manages AJAX navigation.
ASP.NET creates a new URL that includes your state each time your page performs
an asynchronous postback, and it adds the new URL to the browser’s history auto-
matically. When you click the browser’s Back button, the browser simply goes back
one item in its history, just like it always does. Now, though, the browser’s history
contains URLs with all the history points that have been saved, and the browser ends
up always doing the right thing during navigation.

It might be obvious, but being able to restore state during navigation does not allow
you to magically reverse the effect of something like a database update. (Unless in
your code for the Navigation handler you implement this functionality yourself.) As
you’ve seen, browser history isn’t really doing anything as such; it’s simply storing
information for you that you might need later in response to user navigation. This is
a very welcome feature in ASP.NET AJAX, but it does require that you think care-
fully about what constitutes state at any given point in your web application, and
about what information you need to save.

Extending Controls with the Control Toolkit
The AJAX Control Toolkit is a shared-source collection of pre-built AJAX controls,
available for download from the Microsoft web site, which integrates directly into
the IDE. Before you proceed with this section, make sure you have installed the

Figure 3-6. The Back and Forward buttons work as expected, along with history lists.

84 | Chapter 3: Snappier Web Sites with AJAX

AJAX Control Toolkit, as described in Appendix A. These controls are developed by
the community, so the list of available controls changes regularly, and the controls
may not have the same reliability you’d expect from the built-in ASP.NET controls.
They’re also not officially supported by Microsoft, but you can get great support
from the community.

The AJAX Control Toolkit provides a number of additional AJAX-enabled controls
you can use to enhance the functionality of your web application. Some of the more
useful controls in the Control Toolkit are listed in Table 3-1.

Table 3-1. A sample of the AJAX Toolkit controls

Toolkit control Description

Accordion A control that provides multiple panes, only one of which is
visible at a time

AlwaysVisibleControlExtender Keeps a control visible as the user scrolls the page

Calendar Can be attached to an ASP.NET TextBox to provide a pop-
up calendar control for selecting a date to enter in the
TextBox

CascadingDropDown The user’s selection from one drop down control determines
the choices available in the next drop down

CollapsiblePanelExtender Allows any Panel to collapse and expand

ConfirmButtonExtender When the user clicks a button, a dialog box pops up to con-
firm the choice

DragPanelExtender Lets the user drag a panel around on the page

DropShadow Applies a drop shadow effect to an ASP.NET Panel control

FilteredTextBoxExtender Ensures that only “valid” text may be entered into a
TextBox

HoverMenuExtender Pops up a menu when the mouse hovers over a control

MutuallyExclusive-CheckBoxExtender Pick none or one of several checkboxes; this provides func-
tionality similar to radio buttons, but with the ability to
uncheck all the checkboxes

NoBot A control which attempts to prevent spam or robot interac-
tion with a web site

PasswordStrength Helps the user pick a good password

PopupControlExtender Can be attached to any control to provide a pop-up window
with additional content relevant to the attached control

ReorderList Lets the user reorder the members of a list by dragging them
into place

RoundedCornersExtender Applies rounded corners to a target control

Slider Extends a TextBox control with a horizontal or vertical
slider for selecting a numeric value from a range of values

TextBoxWaterMarkExtender Displays helpful text in a textbox until you start to type

Extending Controls with the Control Toolkit | 85

TextBoxWaterMarkExtender
Many of the Toolkit controls are “extenders”—that is, rather than acting alone, they
extend the behavior of one of the standard controls. For example, the
TextBoxWaterMarkExtender works with a TextBox to add the watermark effect. The
extender has properties to identify which TextBox it will modify, what text will be
used as the watermark, and what style should be applied to the watermark text itself.
Figures 3-7 and 3-8 demonstrate watermarks in action.

To demonstrate the watermark effect, just copy the previous example, called
AdventureWorksRevisited, to a new web site called AdventureWorksWaterMarks.

Before modifying the page, you need to create a style sheet that will specify the styles
for the watermarked and unwatermarked text.

Styles and style sheets are explained fully in Chapter 6, so we will only
show the bare basics here.

To create a style sheet, click Website ➝ Add New Item.... In the Add New Item dia-
log box, select Style Sheet, accept the default name of StyleSheet.css, and then click
the Add button, as shown in Figure 3-9.

This will open a style sheet in the editor with an empty body element. Add the high-
lighted code from Example 3-4 to this style sheet.

In this style sheet, you’re adding two style classes, watermarked and unwatermarked,
that will be applied to the text in the example. You don’t need a specific style sheet
to use the TextBoxWaterMarkExtender, but it makes things easier.

Figure 3-7. This is what the watermarked control looks like before the user enters any data. The
watermark serves as a reminder of what the user should enter, and makes it clear that the field is
currently empty.

Figure 3-8. When the user types in the TextBox, the watermarked style is applied, which shows an
obvious change from the watermarked style.

86 | Chapter 3: Snappier Web Sites with AJAX

Next, in Design view, go to OrderForm.aspx. Select the Customer Name Text Box,
txtName, and in the Properties window, set the CssClass property to unwatermarked.
(The style class names are case sensitive.) Do the same for txtAddress. This sets the
style class that will apply to the text the user types into these text boxes, as illus-
trated previously in Figure 3-8.

Click on the Customer Name TextBox in Design view to bring up the smart tag,
and then click on the tag and select Add Extender . . . from the drop-down menu.

Figure 3-9. To add a style sheet to the web site, use the Add New Item dialog box.

Example 3-4. This StyleSheet file is added to your project to define the styles for the watermarks;
you don’t need to know what the exact styles do right now
body {
}
.watermarked {
 padding:2px 0 0 2px;
 border:1px solid #BEBEBE;
 background-color:#F0F8FF;
 color:Gray;
 font-family:Verdana;
 font-weight:lighter;
}
.unwatermarked {
 height:18px;
 width:148px;
 font-weight:bold;
}

Extending Controls with the Control Toolkit | 87

You will see an Extender Wizard dialog box. Slide along until you find the
TextBoxWatermarkExtender, and select it. Before clicking OK, notice the default ID
assigned to it, as shown in Figure 3-10. You could change it, but it is a reasonable
name, so we will leave it as is.

If you switch to Source or Split view, you can see that the wizard automatically sets
the ID property of the control to txtName_TextBoxWatermarkExtender and the
TargetControlID property to txtName. The ID property is the same as the ID proper-
ties for all the other controls you’ve seen so far, but the TargetControlID property
(which, strangely enough, is not visible in the Properties window for the control)
specifies the control that you want the watermark effect to apply to—in this case, it’s
the TextBox control, txtName. Add a similar TextBoxWatermarkExtender to the Address
TextBox; the screen should look something like Figure 3-11.

There are two other properties you need to set for this control: WatermarkCssClass
and WatermarkText. Unfortunately, these properties are not accessible through the
Properties window, so you need to switch to Source view to manually type them in.

Figure 3-10. The Extender Wizard provides a convenient list of the available extenders you can
use. When you select one, the wizard generates a default ID for you.

88 | Chapter 3: Snappier Web Sites with AJAX

Switch to Source view and add the WatermarkCssClass and WatermarkText attributes.
Add those two lines of code to each control, so that the result looks like
Example 3-5.

Figure 3-11. When you add the TextBoxWatermarkExtender control to the form by using the
Smart Tag on the TextBox, the wizard automatically sets the TargetControlID property, and
suggests an ID property.

Example 3-5. Add two properties to the TextBoxWatermarkExtender in the markup
file
<tr>
 <td style="width: 100px">
 Customer Name:
 </td>
 <td style="width: 150px">
 <asp:TextBox ID="txtName" runat="server"
 CssClass="unwatermarked" >
 </asp:TextBox>
 <cc1:TextBoxWatermarkExtender
 ID="txtAddress_TextBoxWatermarkExtender"
 runat="server"
 Enabled="True"
 TargetControlID="txtName"
 WatermarkCssClass="watermarked"
 WatermarkText="Your name" >
 </cc1:TextBoxWatermarkExtender
 </td>
</tr>
<tr>

Extending Controls with the Control Toolkit | 89

These two watermark attributes add the watermark itself to the TextBox control
before the user types anything in. The WatermarkText property sets the text that will
appear in the TextBox, and the WatermarkCssClass property applies the style class that
you defined earlier in the style sheet. The result is that the TextBox fields have a nicely
styled reminder text in them before the user types anything, as you saw in Figure 3-7.

One final step is to add the following line of HTML to the markup file, inside the
<head> element to make the style sheet visible to the page. Without this line, none of
the style classes you created earlier will apply to the page:

<style type="text/css">@import url(StyleSheet.css);</style>

Now run the page. The Customer Name and Address fields will look like Figure 3-7.
When you type in the text box, the change is noticeable and removes any potential
confusion, as shown previously in Figure 3-8.

PopupControlExtender
Screen real estate on a web page is often at a premium, so the PopupControlExtender
is a very useful tool for presenting the maximum information in a minimum of space.
You attach a PopupControlExtender to a control. When the user clicks that control, a
pop-up window appears with additional content. If you put an UpdatePanel into the
pop up, it can display data retrieved asynchronously from the server—a very power-
ful effect.

To see how you can make this feature work for you, you’ll modify the previous
example, enhancing the RadioButtonList used for selecting an age category with a
TextBox. You’ll add a PopupControlExtender and attach it to the TextBox. The
PopupControlExtender will use an UpdatePanel to present the RadioButtonList as a
pop up.

 <td style="width: 100px">
 Address:</td>
 <td style="width: 150px">
 <asp:TextBox ID="txtAddress" runat="server"
 CssClass="unwatermarked" >
 </asp:TextBox>
 <cc1:TextBoxWatermarkExtender
 ID="txtAddress_TextBoxWatermarkExtender"
 runat="server"
 TargetControlID="txtAddress"
 WatermarkCssClass="watermarked"
 WatermarkText="Home address" >
 </cc1:TextBoxWatermarkExtender
 </td>
</tr>

Example 3-5. Add two properties to the TextBoxWatermarkExtender in the markup
file (continued)

90 | Chapter 3: Snappier Web Sites with AJAX

Figure 3-12 shows the TextBox waiting to be clicked on. To prompt the user to click
inside the TextBox, there’s also a TextBoxWatermarkExtender.

Figure 3-13 shows what happens when the user clicks in the TextBox. The water-
mark disappears, and the pop-up window appears, containing the RadioButtonList
showing the categories the user may pick from. Because the list is inside an
UpdatePanel, there is no postback to the server (and thus no screen flicker); every-
thing happens on the client side.

When the user chooses a radio button, the choice is “posted back,” but again, using
an UpdatePanel, so the rest of the page is unaffected. The panel closes and the choice
is displayed in the TextBox, as shown in Figure 3-14.

To implement this example, copy the previous example, AdventureWorksWatermarks,
to a new web site, called AdventureWorksPopupControl. First, you’ll do all the drag-
ging and dropping and coding, and then we’ll follow with an explanation of how it
all works.

Figure 3-12. The TextBox has a PopupControlExtender attached to it, and also a
TextBoxWatermarkExtender to invite users to click it.

Figure 3-13. When the user clicks on the TextBox with the PopupControlExtender, the pop-up
panel opens, showing the radio buttons.

Textbox with
WatermarkExtender and
PopupControlExtender

When the user clicks
the Textbox, the
RadioButtonList
appears

Extending Controls with the Control Toolkit | 91

The previous example had the following markup for the layout table cell containing
the Age Category caption and radio buttons:

<td style="width: 1024px">
 Age Category

 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="True" Width="125px">
 <asp:ListItem>Under 21</asp:ListItem>
 <asp:ListItem>21 to 30</asp:ListItem>
 <asp:ListItem>31 to 50</asp:ListItem>
 <asp:ListItem>Over 50</asp:ListItem>
 </asp:RadioButtonList>
</td>

In Design view, drag a TextBox control from the Toolbox to the cell that currently
contains rblAge. Set its ID property to txtAgeCategory, and its Width property to
175px. Next, click on the Smart Tag of the TextBox and click on Add Extender. From
the Extender Wizard dialog box, add a TextBoxWatermarkExtender to the TextBox,
then click the Smart Tag again, and add a PopupControlExtender. You can accept the
default IDs for these two extenders. Next, drag a standard Panel control into the cell
and set its ID property to pnlAgeCategories.

Switch to Source view, and you’ll see that the TargetControlID property of the
TextBoxWatermarkExtender has already been set to txtAgeCategory (the ID of new
TextBox). You also want to set its WatermarkText property to “Click here for age cate-
gories” (you need to set this property in Source view because extender controls are
not selectable in Design view). You could also set the WatermarkCssClass property, as
we did in the previous section, but we will not bother to do so here.

While still in Source view (again, not all the properties are visible in Design view),
look at the properties of the PopupControlExtender. The TargetControlID is already
set to the ID of the TextBox (txtAgeCategory). This will cause the pop up to appear
when txtAgeCategory is clicked. Set PopupControlID to pnlAgeCategories. This is the
control that will pop up when the TextBox is clicked (you will populate that Panel in

Figure 3-14. After the user makes a selection, the UpdatePanel is closed and the TextBox is
updated.

After the user selects
a radio button, the
RadioButtonList
disappears, and the
value appears in
the TextBox

92 | Chapter 3: Snappier Web Sites with AJAX

a moment). Finally, set the Position property of the PopupControlExtender to Bottom.
(IntelliSense is a big help in setting these properties.)

You will also see the following attributes in the markup:

ExtenderControlID=""
DynamicServicePath=""

These are spurious and may either be left in place or deleted. We will
delete them from our example for clarity.

Now you need to populate the Panel. This is easiest to do while remaining in Source
view. From the AJAX Extensions section of the Toolbox, drag an UpdatePanel control
into pnlAgeCategories. Manually enter an opening and closing <ContentTemplate> tag
inside the UpdatePanel. (IntelliSense will help you.) Next, drag the pre-existing
RadioButtonList (rblAge) inside the UpdatePanel you just placed within the
<ContentTemplate> tags.

You could stop right here and this would work as is, but edit the RadioButtonList to
add explicit Value properties to each of the items. In Design view, click on the Smart
Tag of the RadioButtonList, then Edit Items to bring up the ListItem Collection Edi-
tor, as shown in Figure 3-15.

Figure 3-15. After clicking the Smart Tag of the RadioButtonList, you get this ListItem Collection
Editor for editing the items in the list.

Extending Controls with the Control Toolkit | 93

Click on each of the Members in turn, and change the Value properties as follows.

When you have modified all the values, Design view should look something like that
shown in Figure 3-16.

The final step is to create an event handler for the RadioButtonList control (rblAge) to
handle a selection change. You can do this easily, as you’ve seen before—double-click
on rblAge in Design view. This will open up the code-behind file, create a skeleton
event handler called rblAge_SelectedIndexChanged, and then place the cursor inside
that method, ready for typing. Enter the following line of code:

 txtAgeCategory_PopupControlExtender.Commit(rblAge.SelectedValue)

This line of code will be executed each time the user changes the selection within the
RadioButtonList. The value the user selected is retrieved, and the Commit method is
called to tell the PopupControlExtender to force the page to automatically update itself.

Text Value

Under 21 Under 21 - Enjoy it!

21 to 30 21 to 30 - Livin’ Large

31 to 50 31 to 50 - Life Is Good

Over 50 Over 50 - Golden Years

Figure 3-16. The Design view of your form with the PopupControlExtender in place. Notice the
UpdatePanel with the RadioButtonList inside it.

94 | Chapter 3: Snappier Web Sites with AJAX

Looking at the Source view, the table cell containing the Age Category components
should now look like the code in Example 3-6.

Don’t panic! While this looks complicated, it breaks down very simply.

All you have is a TextBox control (with an ID of txtAgeCategory), two extenders, and
a Panel control. The first extender is a TextBoxWaterMarkExtender, and the second is a
PopupControlExtender (their relative order is unimportant). Both extenders have a
TargetControlID attribute and they are both set to the ID of the TextBox
(txtAgeCategory), which makes perfect sense. The PopupControlExtender and the
TextBoxWaterMarkExtender are each “extending” the behavior of the TextBox named
txtAgeCategory, so they both have txtAgeCategory as a common target.

Example 3-6. The PopupControlExtender control has a target control, and a separate control that
pops up
<td >
 Age Category

 <asp:TextBox ID="txtAgeCategory" runat="server" Width="175px">
 </asp:TextBox>

 <cc1:TextBoxWatermarkExtender ID=" txtAgeCategory_TextBoxWatermarkExtender "
 runat="server" Enabled="True"
 TargetControlID="txtAgeCategory"
 WatermarkText="Click here for age categories">
 </cc1:TextBoxWatermarkExtender>

 <cc1:PopupControlExtender ID=" txtAgeCategory_PopupControlExtender "
 runat="server" Enabled="True"
 TargetControlID="txtAgeCategory"
 PopupControlID="pnlAgeCategories"
 Position="Bottom">
 </cc1:PopupControlExtender>

 <asp:Panel ID="pnlAgeCategories" runat="server" >
 <asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="True" Width="150px">
 <asp:ListItem Value="Under 21 - Enjoy it!">
 Under 21</asp:ListItem>
 <asp:ListItem Value="21 to 30 - Livin' Large">
 21 to 30</asp:ListItem>
 <asp:ListItem Value="31 to 50 - Life Is Good">
 31 to 50</asp:ListItem>
 <asp:ListItem Value="Over 50 - Golden Years">
 Over 50</asp:ListItem>
 </asp:RadioButtonList>
 </ContentTemplate>
 </asp:UpdatePanel>
 </asp:Panel>
</td>

Extending Controls with the Control Toolkit | 95

The TextBoxWaterMarkExtender stands on its own, but the PopupControlExtender
needs a bit of help. It not only needs to know its target (who is it popping up for) but
it also needs to know the ID of its PopupControl—that is, the control it will pop up
when it is time to go “Pop!”

In this case, the control it is popping up is pnlAgeCategories, which is an ASP.NET
Panel control, and which serves to “hold” other controls within it. The first control
held within this Panel is an UpdatePanel named UpdatePanel2. As you know, any-
thing within an UpdatePanel is updated asynchronously, so you place the
RadioButtonList right into the UpdatePanel.

The RadioButtonList itself consists of a series of ListItems. A ListItem may have two
very important properties (and in this case, it does)—the text to display (placed between
the opening and closing brackets) and a Value property. The Value property can come in
handy—it gives the programmer a way to say “what value is attached to the selected
radio button?” and not necessarily get back only the text that was displayed.

You also added an event handler for the SelectedIndexChanged event of the
RadioButtonList. Each time the user picks a radio button, the method that you desig-
nate (in this case rblAge_SelectedIndexChanged) will be called, allowing the control to
react to the change. (You can see this from the Handles clause added to the event
handler declaration in the code-behind file.) The way to react in this case is to get the
value stashed away with the ListItem, and display it in the text box. The way you do
this is to call the Commit method of the PopupControlExtender.

The Position property of the PopupControlExtender is set to Bottom, which places the
pop-up window below the target control. The options available for the Position
property are Bottom, Center, Left, Right, and Top.

Go ahead and try out your page now. You’ll see that the PopupControlExtender
behaves as shown previously in Figures 3-12 through 3-14.

CollapsiblePanelExtender
The CollapsiblePanelExtender control extends the Panel control, allowing it to col-
lapse and expand. This allows you to add regions to the page which the user can col-
lapse and expand at will. A typical use for the collapsible extender would be a
product detail sheet that the user can display if interested.

In our case, we’ll fill the panel with “Lorem Ipsum” text and a photo of one of the
authors so that his kids will believe he really contributed to this book, however little.

Lorem Ipsum has been the printing industry’s standard placeholder
text for over 600 years, and it is typically called greeking by typogra-
phers (which is ironic since it more closely resembles Latin). The text
is designed to allow the reader to ignore the words and focus on the
layout, though it does have its roots in Cicero’s finibus bonorum et
malorum (The Purpose of Good and Evil).

96 | Chapter 3: Snappier Web Sites with AJAX

You can hide or expand the panel at will. When the CollapsiblePanelExtender is col-
lapsed, the page will look something like Figure 3-17. When it is expanded, it will
look like Figure 3-18.

Figure 3-17. When the CollapsiblePanelExtender is collapsed, it hides out of the way, with only
the arrow indicating it’s there. Note the Tooltip attached to the image.

Figure 3-18. When the user clicks the arrow, the CollapsiblePanelExtender is expanded, showing
the text and images. Note that the Tooltip now indicates that clicking the image will collapse the
panel.

Extending Controls with the Control Toolkit | 97

To create this example, copy the previous web site, AdventureWorksPopupControl,
to a new web site called AdventureWorksCollapsiblePanelExtender. See Appendix B
for instructions on copying web sites.

Open the OrderForm.aspx page by double-clicking it in Solution Explorer. In Design
view, drag a standard ASP.NET Panel control (not an AJAX UpdatePanel) from the
Standard section of the Toolbox onto your page, below the other controls already on
the page. Set the ID of that Panel to pnlProductInfoHeader. Within the Panel, you
need the image for the collapse button and the text to tell the user what is inside the
collapsed panel. For the graphic, drag a standard Image control into the Panel, then
use the Properties window to set its ID to imgProductInfo_ToggleImage and its
ImageUrl property to collapse.jpg. Type the text “Product Information” directly into
the Panel.

The arrow graphics seen above the words “Product Information” in
Figures 3-17 and 3-18 are called collapse.jpg and expand.jpg, respec-
tively. Both images are available with the downloadable code for this
book. In order to select these, or any image files directly from the
Properties window, you must first add the image files to the web site
by using the Website ➝ Add Existing Item... menu item.

The markup for this Panel, which you can see by switching to Source view, should
look something like this:

<asp:Panel ID="pnlProductInfoHeader" runat="server" >
 <asp:Image ID="imgProductInfo_ToggleImage"
 runat="server" ImageUrl="~/collapse.jpg" />
 Product Information
</asp:Panel>

It doesn’t much matter in this Image declaration if you set the ImageUrl
to expand.jpg or collapse.jpg because the CollapsiblePanelExtender
control will actually be controlling which image is displayed.

Below that panel, drag a second Panel onto the design surface. This panel will con-
tain the contents of the “expanded” Panel. Using the Properties window, set the ID to
pnlProductInfo, set its BackColor to LightGray (either type that in directly or choose
something similar from the color picker), and set its Width to 450. From the Toolbox,
drag a standard Label control and a standard Image control into this Panel. In either
Design or Source view, set the ID and Text properties of the Label, along with the ID
and ImageUrl properties of the Image control, as shown in the following code snippet:

<asp:Panel ID="pnlProductInfo" runat="server" BackColor="lightgray" Width="450px">

 <asp:Label ID="myLabel" runat="server" Text="
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eleifend, turpis sit amet tincidunt euismod, urna eros mattis
 neque, vitae facilisis nulla dui ut dolor. Proin pretium. Etiam ultrices

98 | Chapter 3: Snappier Web Sites with AJAX

 eleifend neque. Mauris vestibulum purus quis nibh. Phasellus dignissim.
 Vivamus laoreet magna id purus. In hac habitasse platea dictumst. Vivamus
 congue elit quis arcu. Sed lorem mauris, convallis non, porta sed, interdum
 id, nisl. Aenean id tortor. Sed ac quam. Suspendisse ornare luctus sapien.
 Praesent aliquet, lacus nec venenatis placerat, massa metus mattis dolor,
 non eleifend pede sapien et lorem. Curabitur dapibus faucibus nunc." />

 <asp:Image ID="Image1" runat="server"
 ImageUrl="Dan at Vernal Pool.jpg" />

</asp:Panel>

With the collapsed and expanded Panels in place, you can now add the AJAX
control—the CollapsiblePanelExtender—and set its attributes. Switch to Design
view, click on the pnlProductInfo Panel control, and then click on its Smart Tag,
selecting the Add Extender menu item. Select the CollapsiblePanelExtender from
the extenders presented. Use the default ID of pnlProductInfo_
CollapsiblePanelExtender. Switch to Source view and set all the other properties to
match the following control declaration:

<cc1:CollapsiblePanelExtender ID="pnlProductInfo_CollapsiblePanelExtender"
 runat="server" Enabled="True"
 CollapseControlID="pnlProductInfoHeader"
 Collapsed="true"
 CollapsedImage="expand.jpg"
 CollapsedText="Product Information (Show Details...)"
 ExpandControlID="pnlProductInfoHeader"
 ExpandedImage="collapse.jpg"
 ExpandedText="Product Information (Hide Details...)"
 ImageControlID="imgProductInfo_ToggleImage"
 SuppressPostBack="true"
 TargetControlID="pnlProductInfo">
</cc1:CollapsiblePanelExtender>

Here again, you must use Source view as this is another of the controls with proper-
ties that are not accessible in Design view.

The Design view of the web site will look something that shown in Figure 3-19.

The meaning of these properties is as follows:

CollapseControlID/ExpandControlID
The controls that will expand or collapse the panel on a click, respectively. If
these values are the same, as they are in this example, the panel will toggle its
state with each click. Set both of these to pnlProductInfoHeader.

Collapsed
Indicates the initial state of the collapsible Panel. For this example, set to true, it
will start out in the collapsed state; if this is set to false, it will start out open.
You would usually want the panel to start out collapsed.

Extending Controls with the Control Toolkit | 99

ImageControlID
The ID of an Image control into which an icon indicating the status (collapsed or
expanded) of the Panel will be placed. The extender will replace the source of
this Image with the CollapsedImage and ExpandedImage URLs as appropriate. If
the ExpandedText or CollapsedText properties are set, they are used as the alter-
nate text for the image, also displaying as a tool tip. Set this to imgProductInfo_
ToggleImage.

CollapsedImage
The path to an image used by ImageControlID when the Panel is collapsed. If the
Panel is collapsed, you want readers to see an icon indicating that they can
expand it. Therefore, set this property to expand.jpg.

CollapsedText
The text to show in the control specified by CollapseControlID when the Panel is
collapsed. This text is used as the alternate text of the image if ImageControlID is set,
also displaying as a tool tip. Set this to “Product Information (Show Details...).”

ExpandDirection
This property can be set to Vertical or Horizontal to determine whether the
Panel expands top-to-bottom or left-to-right. For this exercise, set it to Vertical.

Figure 3-19. Design view of the AdventureWorksCollapsiblePanelExtender web site showing the
Panel control to be extended and the CollapsiblePanelExtender control that does the extending.

100 | Chapter 3: Snappier Web Sites with AJAX

ExpandedImage
The path to an image used by ImageControlID when the Panel is expanded. If the
Panel is expanded, you want readers to see an icon indicating that they can col-
lapse it. Therefore, set this to collapse.jpg.

ExpandedText
The text to show in the control specified by ExpandControlID when the Panel is
expanded. This text is used as the alternate text of the image if ImageControlID is
set, also displaying as a tool tip. Set this text to “Product Information (Hide
Details...).”

SuppressPostBack
If set to true, ensures that the control does not cause a post back when the con-
trol is expanded or contracted. That’s what you want, so set this property to
true.

TargetControlID
The control that will be expanded or collapsed, in this case, pnlProductInfo. The
key thing to realize here is that the CollapsiblePanelExtender does not itself
expand or collapse, it is used to expand and collapse a different control and this
property (TargetControlID) identifies the panel it will extend.

Run the web site and you will initially see the Panel collapsed, as shown back in
Figure 3-17. Click on the icon above Product Information and the Panel expands,
displaying its information, as shown previously in Figure 3-18.

Source Code Listing
The complete source code for the final example in this chapter is shown in
Example 3-7.

Example 3-7. OrderForm.aspx
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="OrderForm.aspx.vb"
 Inherits="_Default" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
 TagPrefix="cc1" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>AdventureWorks</title>
 <style type="text/css">
 @import url(StyleSheet.css);
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">

Source Code Listing | 101

 </asp:ScriptManager>
 <div>
 <h1>
 AdventureWorks Order Form</h1>
 <table>
 <tr>
 <td>
 Customer Name:
 </td>
 <td>
 <asp:TextBox ID="txtName" runat="server"
 CssClass="unwatermarked"></asp:TextBox>
 <cc1:TextBoxWatermarkExtender ID="txtName_TextBoxWatermarkExtender"
 runat="server" Enabled="True" TargetControlID="txtName"
 WatermarkCssClass="watermarked" WatermarkText="Your name">
 </cc1:TextBoxWatermarkExtender>
 </td>
 </tr>
 <tr>
 <td>
 Address:
 </td>
 <td>
 <asp:TextBox ID="txtAddress" runat="server"
 CssClass="unwatermarked"></asp:TextBox>
 <cc1:TextBoxWatermarkExtender ID="txtAddress_TextBoxWatermarkExtender"
 runat="server" Enabled="True" TargetControlID="txtAddress"
 WatermarkCssClass="watermarked" WatermarkText="Your address">
 </cc1:TextBoxWatermarkExtender>
 </td>
 </tr>
 <tr>
 <td>
 City:
 </td>
 <td>
 <asp:TextBox ID="txtCity" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 State:
 </td>
 <td>
 <asp:DropDownList ID="ddlState" runat="server">
 <asp:ListItem Value="AL">Alabama</asp:ListItem>
 <asp:ListItem Value="AK">Alaska</asp:ListItem>
 <asp:ListItem Value="CA">California</asp:ListItem>
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>
 </asp:DropDownList>
 </td>
 </tr>

Example 3-7. OrderForm.aspx (continued)

102 | Chapter 3: Snappier Web Sites with AJAX

 <tr>
 <td>
 Zip:
 </td>
 <td>
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 E-mail:
 </td>
 <td>
 <asp:TextBox ID="txtEmail" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 Password:
 </td>
 <td>
 <asp:TextBox ID="txtPassword" runat="server"
 TextMode="Password"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 Comment:
 </td>
 <td>
 <asp:TextBox ID="txtComment" runat="server" Rows="3"
 TextMode="MultiLine"></asp:TextBox>
 </td>
 </tr>
 </table>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 Provide Personal Information:
 <asp:RadioButton ID="rbYes" runat="server" AutoPostBack="true"
 Checked="true" GroupName="grpPersonalInfo" Text="Yes"
 ToolTip="Click Yes to gather personal information - no to skip that step"
 />
 <asp:RadioButton ID="rbNo" runat="server" AutoPostBack="true"
 GroupName="grpPersonalInfo" Text="No"
 ToolTip="Click Yes to gather personal information - no to skip that step"
 />
 <asp:Panel ID="pnlPersonalInfo" runat="server" BorderWidth="1px"
 Width="300px" BackColor="Beige">
 <table>
 <tr valign="top">
 <td>
 Areas of Interest

Example 3-7. OrderForm.aspx (continued)

Source Code Listing | 103

 <asp:CheckBoxList ID="cblAreas" runat="server"
 AutoPostBack="True">
 <asp:ListItem>Biking</asp:ListItem>
 <asp:ListItem>Scuba Diving</asp:ListItem>
 <asp:ListItem>Gaming</asp:ListItem>
 <asp:ListItem>Mountain Climbing</asp:ListItem>
 <asp:ListItem>Web Surfing</asp:ListItem>
 <asp:ListItem>Real Surfing</asp:ListItem>
 </asp:CheckBoxList>
 </td>
 <td>
 Age Category

 <asp:TextBox ID="txtAgeCategory" runat="server"
 Width="175px"></asp:TextBox>
 <cc1:TextBoxWatermarkExtender
 ID="txtAgeCategory_TextBoxWatermarkExtender" runat="server"
 Enabled="True" TargetControlID="txtAgeCategory"
 WatermarkText="Click here for age categories">
 </cc1:TextBoxWatermarkExtender>
 <cc1:PopupControlExtender
 ID="txtAgeCategory_PopupControlExtender" runat="server"
 Enabled="True" PopupControlID="pnlAgeCategories"
 Position="Bottom" TargetControlID="txtAgeCategory">
 </cc1:PopupControlExtender>
 <asp:Panel ID="pnlAgeCategories" runat="server">
 <asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="true" Width="150px">
 <asp:ListItem Value="Under 21 - Enjoy it!">
 Under 21</asp:ListItem>
 <asp:ListItem Value="21 to 30 - Livin' Large">
 21 to 30</asp:ListItem>
 <asp:ListItem Value="31 to 50 - Life Is Good">
 31 to 50</asp:ListItem>
 <asp:ListItem Value="Over 50 - Golden Years">
 Over 50</asp:ListItem>
 </asp:RadioButtonList>
 </ContentTemplate>
 </asp:UpdatePanel>
 </asp:Panel>
 </td>
 </tr>
 </table>
 </asp:Panel>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 <asp:Panel ID="pnlProductInfoHeader" runat="server">
 <asp:Image ID="imgProductInfo_ToggleImage" runat="server"
 ImageUrl="~/collapse.jpg" />

Example 3-7. OrderForm.aspx (continued)

104 | Chapter 3: Snappier Web Sites with AJAX

The code-behind for this page is contained in Example 3-8.

 Product Information
 </asp:Panel>
 <asp:Panel ID="pnlProductInfo" runat="server" BackColor="LightGray" Width="450px">

 <asp:Label ID="myLabel" runat="server" Text="
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eleifend, turpis sit amet tincidunt euismod, urna eros mattis
 neque, vitae facilisis nulla dui ut dolor. Proin pretium. Etiam ultrices
 eleifend neque. Mauris vestibulum purus quis nibh. Phasellus dignissim.
 Vivamus laoreet magna id purus. In hac habitasse platea dictumst. Vivamus
 congue elit quis arcu. Sed lorem mauris, convallis non, porta sed, interdum
 id, nisl. Aenean id tortor. Sed ac quam. Suspendisse ornare luctus sapien.
 Praesent aliquet, lacus nec venenatis placerat, massa metus mattis dolor,
 non eleifend pede sapien et lorem. Curabitur dapibus faucibus nunc." />

 <asp:Image ID="Image1" runat="server" ImageUrl="Dan at Vernal Pool.jpg" />

 </asp:Panel>
 <cc1:CollapsiblePanelExtender ID="pnlProductInfo_CollapsiblePanelExtender"
 runat="server" Enabled="True"
 CollapseControlID="pnlProductInfoHeader" Collapsed="true"
 CollapsedImage="expand.jpg" CollapsedText="Product Information (Show Details...)"
 ExpandControlID="pnlProductInfoHeader"
 ExpandedImage="collapse.jpg" ExpandedText="Product Information (Hide Details...)"
 ImageControlID="imgProductInfo_ToggleImage"
 SuppressPostBack="true" TargetControlID="pnlProductInfo">
 </cc1:CollapsiblePanelExtender>
 </form>
</body>
</html>

Example 3-8. OrderForm.aspx.vb
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub YesNoEventHandler(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rbNo.CheckedChanged, rbYes.CheckedChanged

 pnlPersonalInfo.Visible = rbYes.Checked
 End Sub

 Protected Sub rblAge_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rblAge.SelectedIndexChanged
 txtAgeCategory_PopupControlExtender.Commit(rblAge.SelectedValue)
 End Sub
End Class

Example 3-7. OrderForm.aspx (continued)

Summary | 105

Summary
• AJAX is a technique for shifting much of the processing off the server and to the

user’s browser, which dramatically increases performance, both actual and
perceived.

• The ASP.NET AJAX control library contains a number of controls that can be
used just as easily as standard ASP.NET controls, meaning you don’t need to
know the JavaScript that makes the controls work.

• The ScriptManager control is the key control that makes ASP.NET AJAX possi-
ble by managing the JavaScript for you behind the scenes. The control is placed
on every AJAX-enabled page by default, and its EnablePartialRendering prop-
erty is set to True, so you don’t need to do anything yourself.

• Placing controls inside an UpdatePanel control enables you to update those con-
trols without posting back to the server.

• AJAX asynchronous postbacks are not added to the browser’s history, which can
cause unexpected behaviors of page controls when the Forward and Back
browser buttons are used. With ASP.NET 3.5 Service Pack 1, you can create his-
tory points that allow the Forward and Back buttons of the user’s browser to
function as expected.

• The AJAX Control Toolkit, which is a separate download, has a number of
controls called extenders that enhance existing controls, rather than having
stand-alone functionality themselves. Extender controls have a TargetControlID
property that you use to set the existing control that the extender is extending.

• The TextBoxWaterMarkExtender adds a watermark effect to an existing textbox,
providing a prompt for the reader to enter data.

• TextBoxWaterMarkExtender can apply a separate style to a text box, if you have a
style sheet defined for the project, or it can just add the text you specify.

• The PopupControlExtender can help you make efficient use of the space on your
page, by hiding some content until the user clicks on a control.

• You can apply the CollapsiblePanelExtender to a regular Panel control, causing
it to hide most of its content until the user clicks on it. The Panel then expands,
displaying its content, until the user collapses it.

Now you have a good handle on the basic controls, and you’ve also seen how to use
some of the AJAX extenders to apply some really clever effects to them. The
AdventureWorks order form you’ve been progressively building is becoming pretty
sophisticated by now. As we’ve mentioned, though, it doesn’t connect to anything
behind the scenes, so users can’t see the AdventureWorks products, and can’t yet
place their orders. To do that, you need to learn how to interact with a database.
ASP.NET provides a number of controls for retrieving data from a database and dis-
playing it in a number of different ways. With AJAX, they get even better. You’ll
learn all about them in the next chapter.

106 | Chapter 3: Snappier Web Sites with AJAX

B R A I N B U I L D E R

Quiz
1. What do you need to do to use AJAX-enabled controls on your site?

2. Which property of the ScriptManager control enables asynchronous postback?

3. What control do you need to place on your page to enable asynchronous
updates?

4. Which event do you need to handle on the ScriptManager control to modify the
behavior of the browser Forward and Back buttons for AJAX controls?

5. Can you make a page that contains only an extender control?

6. What property is common to all the AJAX extender controls?

7. What view do you use to set the WatermarkText property?

8. What’s the advantage of using the PopupControlExtender?

9. What method of the PopupControlExtender do you need to call to display the
results?

10. What control does the CollapsiblePanelExtender work with?

Exercises
Exercise 3-1. We’ll start things off simply. Suppose you have a store that ships only
to certain states in the northeastern United States. In your order form, you want to
restrict users to only those states as their shipping destination, so you want to use a
drop-down list. You also want to save space on your form, though, so you want to
hide that delivery list in a Panel with a PopupControlExtender. For this exercise, you’ll
only produce the part of the form where users would enter the shipping State. The
finished form should look like Figure 3-20.

The drop-down list should contain just the six states shown in Figure 3-20. When
the user chooses one of the states, the state’s two-letter postal abbreviation should
appear in the text box.

Exercises | 107

Exercise 3-2. Most of the AJAX control extenders that we’ve shown you in this chap-
ter just do one thing, although they do it very well. There are, however, many more
extenders that we haven’t shown you, and more are being added all the time. Each
one is different, and covering them all in detail would require more space than we
have—or would be out of date almost immediately. The best way to learn about the
AJAX control extenders is to go to the ASP.NET AJAX Control Toolkit page at http://
ajax.asp.net/ajaxtoolkit/. There you’ll find the latest extenders with examples of how
to use them. Many of the extenders are fairly simple, and have properties you can set
easily. In this exercise, you’ll need to use that documentation as you try out a new
extender.

For this exercise, you’ll use the RoundedCorners extender. Create a new page that
includes a Panel with the dimensions 150 pixels × 100 pixels, colored light gray. The
Panel should contain a Label, 50 pixels wide, colored dark gray, with text that’s
white and bold (feel free to use livelier colors; we’re choosing ones here that will
show up in the printed book). The Panel should have only its top corners rounded to
a radius of 8. The Label should have all its corners rounded to a radius of 2. You’ll
need the documentation to tell you how to do all that. The result should look like
Figure 3-21.

Figure 3-20. Your goal for Exercise 3-1.

http:/
http:/

108 | Chapter 3: Snappier Web Sites with AJAX

Exercise 3-3. The SliderExtender is another interesting extender, but slightly more
complicated than it looks. Create a new page that uses the slider extender to simu-
late a volume control. The slider should be set horizontally, and should have a range
from 0 to 10. The results should look like Figure 3-22. (Hint: the documentation is
somewhat unclear. You’ll need two TextBoxes—the slider prevents one from display-
ing, so you need to use a second TextBox, called a bound control, to see the value the
slider is set to.)

Figure 3-21. Your goal for Exercise 3-2.

Exercises | 109

Exercise 3-4. For this exercise, you’ll need to use Visual Web Developer (or Visual
Studio 2008) with Service Pack 1. If you don’t have that version, this exercise won’t
work. Create a website that contains a ScriptManager and an UpdatePanel. Inside the
UpdatePanel should be a single TextBox and a Button. Use the technique for control-
ling the browser history so that you can enter text in the textbox, save it to the his-
tory, change the text, and then use the Forward and Back buttons to restore the
previously entered text. The result should look like Figure 3-23. (Note that in Figure
3-23, we’ve moved the controls down on the page so that the history menu won’t
cover them. You don’t need to do that, though.)

Figure 3-22. Your goal for Exercise 3-3.

110 | Chapter 3: Snappier Web Sites with AJAX

Figure 3-23. Your goal for Exercise 3-4.

111

Chapter 4 CHAPTER 4

Saving and Retrieving Data4

So far, you’ve seen how to make functional web pages with clever and useful con-
trols. You know how to change the appearance of the page in response to user selec-
tions, and how to use AJAX to enhance the performance of your application. But the
applications you’ve made so far have been limited in what they can actually do. In
this chapter, we add the most frequently sought-after functionality: the ability to
retrieve, display, change, and store data.

Think about the web sites you visit most often, and you’ll find that almost all of them
have one thing in common—they interact with persistent data. Persistent data is data
that survives a single session; data that you expect will be there the next time you visit.
In fact, it may even be data that can have significant financial consequences.

Shopping sites have databases to track their inventories and customer transactions.
News sites keep databases with articles and photos in them, perhaps referenced by
topic and date. Search engines use unimaginably large (and wicked-fast) databases.

Nearly every real-world commercial web application must be able to perform the
four essential “CRUD” interactions with a database: Create, Read, Update, and
Delete.

Fortunately, ASP.NET provides controls that make it easy and fast to perform these
essential activities. We will demonstrate these interactions with SQL Server Express
Edition (or its big brother, SQL Server) but they work equally well—or nearly so—
with Microsoft Access and most commercial databases. In theory, you can interact
with virtually any collection of data or with XML files, but that is an advanced topic
we won’t go into here.

Along the way, we’ll show you enough about database interactions that even if
you’ve never used a relational database, such as SQL Server Express, you’ll have lit-
tle trouble working with one through your web application.

112 | Chapter 4: Saving and Retrieving Data

Getting Data from a Database
To see how to interact with a database, you’ll begin by creating a web application
that you can use to display information about the AdventureWorks database. You’ll
start out by simply retrieving and displaying a selection of data. These exercises will
teach you how to connect your controls to a database, to retrieve, filter, and sort the
data, and then use the myriad options for presenting it attractively.

As you may remember, AdventureWorks is a free database from Microsoft that rep-
resents a fictional company that sells outdoor and extreme sports gear. The database
tracks products, inventory, customers, transactions, and suppliers.

See Appendix A for instructions on installing this sample database if
you have not already done so.

ASP.NET includes a number of controls specifically designed for displaying data.
We’ll focus on the GridView control, but other data controls include the ListView,
DataList, Repeater, DetailsView, and FormView. The GridView control displays col-
umns and rows of data and allows sorting and paging. It is by far the most popular
data display control, and is ideal for understanding how data display controls inter-
act with data-retrieval controls and code. The GridView control allows the user to
click on a column header to sort the data. GridViews also let you present just a small
subset of the data at one time, called a page, with links for easy access to other
pages—this process is called “paging” through data. You can do these, and for
numerous other data manipulations, with very little programming. A GridView with
data from the AdventureWorks database is shown in Figure 4-1.

The other data controls mentioned here are used in scenarios where a straight, tabu-
lar display of data is not what you are looking for.

The DetailsView control is used for displaying the data one record at a time. The
FormView is used to for displaying a single record in a master/detail relationship. The
ListView (which is new in version 3.5 of the .NET Framework), DataList and
Repeater controls offer the maximum flexibility for displaying data. These three con-
trols have no inherent look of their own, but require that you, the developer,
construct templates that describe how the data will appear.

The ListView, in particular, offers all the features of the GridView, including paging,
sorting, data update, and so on, with unlimited display flexibility. You can use it to
display repeating data in a nontabular format or to group records according to some
criteria.

For complete coverage of these other data controls, see our more advanced book,
Programming ASP.NET, Fourth Edition (O’Reilly).

Getting Data from a Database | 113

Binding Data Controls
Database information is stored in memory as tables (just as it is retrieved from a rela-
tional database). Tables consist of rows and columns that match nicely to the
GridView control.

You could write code to pick out each piece of data you want and write it into the
appropriate row or column of the data control, but that’s time-consuming and error-
prone. It’s more efficient and safer to bind the control directly to the underlying data.

In the early days of Graphical User Interface (GUI) programming,
binding was a bit of a “trick”—great for simple programs, but useless
for commercial applications because the minute you wanted to do
anything out of the ordinary, the binding would become a strait-
jacket. Microsoft has solved that in ASP.NET by exposing events on
the data controls that allow you to insert custom code at every stage of
the retrieval and binding of the data to the control.

Figure 4-1. This GridView control displays data from the AdventureWorks database in a table
format that makes it easier to read, and allows users to click the column headings to sort the data.

Click on column headers
to sort the grid

Links to grid pages

114 | Chapter 4: Saving and Retrieving Data

Binding is most often used with the larger data controls such as GridView and
ListView, but you can also bind many other controls, such as DropDownList, ListBox,
CheckBoxList, and RadioButtonList. All of these controls have a DataSource property
that identifies the source to which the control is bound. For example, you might
keep a list of all your customers’ names in a database. Binding that data to a ListBox
can be a convenient way to allow a customer service representative to quickly pick a
customer rather than typing in a name that might otherwise be difficult to spell.

To see how all this works, you’ll build the GridView from Figure 4-1. Once you have
it up and running, you’ll add some features to it, including the ability to use the grid
to update the database with new data. Later in the chapter, you will also build an
example using the ListView control.

S Q L C H E A T S H E E T

Relational Database Concepts
Within a relational database, data is stored in tables, and those tables consist of rows
and columns, an arrangement that’s easy to visualize. You might have columns for cus-
tomer numbers, names, and addresses, for example. Each column represents a differ-
ent type of data, and each row represents an individual data record. In this example, a
row would have the customer number, name, and address of an individual customer.

Within a given table, you generally need a way to uniquely identify a specific row, so
that you can retrieve just that row and no other. That’s called a primary key or a unique
key. In this example, you might designate the customer number to be a unique key.

The thing that makes a database relational is its use of foreign keys. For example, you
might have a table of customer transactions named Orders, listing the items a customer
ordered and when. You could store the customer’s shipping information in that table
as well, but if Mr. Smith orders from you a dozen times every month, you’d have his
shipping information stored in the table many times over, which is wasteful. Instead,
you could just store the customer number as a column in your Orders table, and keep
Mr. Smith’s address information in a separate, but related table, where you’d only have
to store it once. The customer number in this case is the foreign key in the Orders
table—it defines the relationship between the Orders table and the Customers table.

To read the data from a relational database, you use a query to define the data that you
want to retrieve. In plain English, you’d say something like, “Get me the names of all
the customers who live in Philadelphia.” Of course, you need a formal way of relaying
that instruction to the database, and that’s where SQL comes in. SQL (pronounced
“sequel”) stands for “Structured Query Language,” and gives you a way to define the
queries. In SQL, the query we just mentioned might look like this:

SELECT Name FROM Customers WHERE City = "Philadelphia"

There’s a lot more to SQL than that, enough to fill books on its own, and you’ll see
some more as you go through the chapter.

Getting Data from a Database | 115

Create a Sample Web Page
To begin, create a new web site named AWProductData.

Drag the all-important ScriptManager control from the AJAX Extensions section of
the Toolbox onto your page. Next, open the Data tab of the Toolbox. You’ll find
two types of objects: display controls, which are designed to present data, and
DataSource controls, which are designed to manage interacting with data, as shown
in Figure 4-2.

Using a DataSource Control
By default, the Data controls are arranged in the Toolbox so the display controls are
on top, and the DataSource controls are below (You can drag them into any order
you like or arrange them alphabetically by right-clicking on any control and select-
ing Sort Items Alphabetically.) There is a DataSource control for use with Microsoft
SQL Server or SQL Server Express, one for Microsoft Access, one for using LINQ
(Language Integrated Query, which is covered at the end of this chapter), one for any
type of Object, one for use with SiteMaps (for binding to menu controls—more on
this in Chapter 6), and one for XML documents as a data source.

Because the AdventureWorks database is a SQL Server database, you’ll use the
SqlDataSource control, whether you are using SQL Server or SQL Server Express.
This control will allow you to access the AdventureWorks database, but first you
need to direct the control where to find it.

Figure 4-2. The Data tab in the Toolbox contains the controls that you’ll need to display data, and
to interact with data sources.

DataSource controls

Display controls

116 | Chapter 4: Saving and Retrieving Data

Switch to Design view and drag the SqlDataSource control from the Toolbox directly
onto the design surface. A Smart Tag will open, as seen in Figure 4-3.

When you click on Configure Data Source, you invoke a wizard that will walk you
through the steps of configuring your data source—hooking up the control to the
underlying data table(s).

The first step is to create (or choose) a data connection as seen in Figure 4-4.

Figure 4-3. A Smart Tag opens when you drag the SqlDataSource control onto your page,
allowing you to configure the data source.

Figure 4-4. To configure your DataSource control, you need to provide it with a data connection.
You can choose a preexisting connection from the list (if you have previously created any for this
web site), or create a new data connection by clicking the New Connection button.

Getting Data from a Database | 117

Any data connections that you’ve made before, for this web site or any other, will
appear in the drop-down list. Most likely, though, you haven’t created any data con-
nections yet, so the list will be empty. To make a new connection, click the New
Connection... button to get the Add connection dialog shown in Figure 4-5.

Following the steps in Figure 4-5, prepare your connection to the database:

1. Select your server from the Server Name drop-down menu. If it is not there, type
the name of the server. Typically, if you are using SQLExpress, the name will be

Figure 4-5. The Add Connection dialog is where you specify a new connection for your data
source. Select the server, the logon credentials, and finally the database you want to use.

1

2

3

4

5

118 | Chapter 4: Saving and Retrieving Data

“.\SqlExpress” (dot, slash, then SqlExpress), and if you are using SQL Server, it
will be the name of your computer, or it will be (local)—including the parentheses.

2. Leave the radio button set to “Use Windows Authentication.”

If Windows Authentication does not work, you may need to use SQL
Server authentication. If so, your database administrator will tell you
what credentials to enter. They may or may not be the same as your
Windows login credentials.

3. Select the option, “Select or enter a database name:”.

4. Choose the AdventureWorks database in the database name drop-down.

5. Click the Test Connection button to verify that it all works.

This dialog box constructs a connection string, which provides the information neces-
sary to connect to a database.

Click OK to complete the connection string and return to the Configure Data Source
Wizard. Click the plus mark next to “Connection string” to see the connection string
you’ve just created, as shown in Figure 4-6. The segment IntegratedSecurity=True
was created when you chose Windows Authentication rather than SQL Server
Authentication.

Figure 4-6. Click the plus sign to view the connection string you just created. This is what gives
your control access to the database.

Getting Data from a Database | 119

In Figure 4-6, the Wizard displays an expanded data connection in the
drop-down menu, consisting of the name of the server (in this case,
the local machine, laptop, concatenated with sqlexpress, followed by
the name of the database and database owner). You don’t need to
enter this information yourself; it is created for you.

When you click Next, the wizard will ask if you’d like to save this connection string
in the “application configuration file.” The configuration file is an XML file that
stores various settings for the web site. In an ASP.NET web site, the application con-
figuration file is web.config, and saving the connection string there is an excellent
idea; that way, all the pages of your web site will be able to use the connection. Make
sure that the checkbox is checked, and give the string a name you can easily remem-
ber. The Wizard will make a suggestion for the name of the connection string, as
shown in Figure 4-7.

This will cause the following lines to be written to the web.config file:

<connectionStrings>
 <add name="AdventureWorksConnectionString"
 connectionString="Data Source=.\SqlExpress;
 Initial Catalog=AdventureWorks;Integrated Security=True"

Figure 4-7. It’s a good idea to save the connection string in the application’s web.config file, so you
can use it again with other controls.

120 | Chapter 4: Saving and Retrieving Data

 providerName="System.Data.SqlClient"/>
</connectionStrings>

The Wizard next prompts you to configure the SELECT statement. The SELECT state-
ment is the SQL code the control uses to retrieve the exact subset of data you are
looking for from the database. Fortunately, if you are not fluent in SQL, the Wizard
will help you build the statement.

Starting with the radio buttons at the top of the dialog box, select “Specify columns
from a table or view.” (You would select the other button if you had a custom SQL
statement prepared, as you’ll see shortly.)

Selecting that radio button displays the table drop-down menu. Here, you are pre-
sented with the various tables that represent the different sets of data in the data-
base. For this exercise, choose the Product table. The various columns from the
Product table will be displayed, as shown in Figure 4-8.

Simply check the columns you want retrieved, and they’ll be added to the SELECT
statement. The choices you make will be displayed in the text box at the bottom of
the dialog. For this exercise, select the ProductID, Name, ProductNumber, Make-
Flag, SafetyStockLevel, and ReorderPoint columns (you may have to scroll to the

Figure 4-8. To configure the SELECT statement, specify the table and columns within it you want
to retrieve, and the Wizard builds the proper SQL statement for you...more or less.

Getting Data from a Database | 121

right to see them all). You could narrow the set of data with the WHERE button, or
specify the sort order in which to retrieve the data with the ORDER BY button. For
the moment, you can ignore them both.

Pay No Attention to That Man Behind the Curtain
When you’ve completed the table setup, click Next to move to the last page of the
Wizard, and then click the Test Query button. The test fails, as shown in Figure 4-9.

In this instance, the Wizard falls on its face. It turns out that the AdventureWorks
database prefixes a schema name in front of each table name and the Wizard is
unprepared for that. It generates a SELECT statement without schema names, as you
saw in Figure 4-8.

Schema in this context refers to an optional name used for organizing the tables in a
large database. For example, in the AdventureWorks database, all the tables relating
to the HR department have the schema name HumanResources prefixed to every table
name, separated by a period, such as HumanResources.EmployeeAddress. Other sche-
mas in the AdventureWorks database include Person, Production, Purchasing, and
Sales.

Figure 4-9. The Wizard let you down; the query test failed and you’re looking at this error
message because this database requires a schema name in front of the table names.

122 | Chapter 4: Saving and Retrieving Data

As mentioned, a schema name is optional in SQL. In our experience, they are rarely
used, and in fact, the Wizard is unaware of them. However, the AdventureWorks
database (which ships as part of Microsoft SQL Server) does use them, the Wizard
becomes confused and flies off to Kansas leaving you on your own.

The square brackets surrounding each field and table name in the gen-
erated SELECT statement are not required, but are used to guarantee
that there will be no problems if the name includes any space charac-
ters (usually a very bad idea in any case). We often remove them from
the finished statement to enhance readability.

Think of this as proof that people are not yet entirely replaceable by automation. Hit
the Previous button to go back one step and fix the SELECT statement manually. Click
the radio button captioned “Specify a custom SQL statement or stored procedure,”
and then click Next. In the SQL Statement box, shown in Figure 4-10, type in:

SELECT ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel, ReorderPoint
FROM Production.Product

Figure 4-10. The SQL statement editing dialog, after adding the schema name to the table name,
and removing all the extraneous square brackets.

GridView Control | 123

As you can see, this is nearly the same SELECT statement that you built with the Wiz-
ard in Figure 4-8, except the Product table now has the required schema (Production)
in front of it. We’ve also left out the square brackets on the columns, as mentioned
in the note above.

Click Next to proceed to the next page of the Wizard, and then click Test Query.
This time, you should get the results shown in Figure 4-11.

Behold—the triumph of 3 billion years of random mutation and natural selection
over 50 years of automation!

Click Finish to save your work. It may not look like much, but you’ve just enabled
your application to access the AdventureWorks database, meaning all that data is
now under your control.

GridView Control
Now that the DataSource control is providing the data you want, you need a way to dis-
play it. From the Data section of the Toolbox, drag a GridView control onto the page.
The GridView control recognizes automatically that a SqlDataSource is on the page.

Figure 4-11. When you test the SELECT statement this time, you’ll see the results you were
looking for.

124 | Chapter 4: Saving and Retrieving Data

If you had dragged the GridView onto the page first, it would have
given you the opportunity to create a SqlDataSource rather than
assuming you’d like to use one already in existence. It pretty much
amounts to the same thing.

Click on the Smart Tag of the GridView (if it is not already open). Click the drop-
down menu next to “Choose Data Source” and select the DataSource control you just
created, as shown in Figure 4-12.

Once the data source is set, the data grid is redrawn, with a column for each field
returned by the data source. The column headers are filled in for you based on the
column names in the table that the data source represents.

You’ll have an opportunity to make the grid look much prettier in just
a short while.

Open the Smart Tag again and check “Enable Paging,” which allows the grid to show
a limited number of entries on each page and provide links to the other pages provid-
ing access to all the data. Also check “Enable Sorting,” which allows the user to sort
the grid by clicking on a column header.

Set the page to be the start page for the application (right-click the page in the Solu-
tion Explorer and select “Set As Start Page”) and then run the application.
Figure 4-13 demonstrates how the screen should appear.

Notice that the MakeFlag column (which is a Boolean value of some obscure use to the
AdventureWorks business model) is shown as a checkbox. Also note that the column
headers are shown as links. Click on one of them now—you see that the grid is sorted
by that column. Also notice that at the bottom of the grid are links to page through
more data, 10 rows at a time. Click on some of those, too, to see the various pages.

Figure 4-12. The Smart Tag of the GridView control lets you select the data source you want to
use.

GridView Control | 125

Each time you click on one of the columns or one of the page numbers, the entire
page is posted back to the server, and you’ll encounter a noticeable delay and flicker.
You know how to fix that!

Close the browser and return to Design view. Drag an UpdatePanel control onto the
page from the AJAX Extensions section of the Toolbox. Drag the SqlDataSource and
GridView controls already on the page into the UpdatePanel.

Run the application again. Notice there are no visible postbacks when you page or
sort, and consequently, no flicker.

Auto-Generated Code
Switch to Source view and look at the markup code that was generated for the
GridView. It should appear as highlighted in Example 4-1.

Figure 4-13. With the GridView in place and connected to the data source, you can see the data
you asked for. Notice the clickable headings and the paging links.

Example 4-1. The GridView auto-generates a lot of control source code for you; you don’t have to
write any of this
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

126 | Chapter 4: Saving and Retrieving Data

The IDE has done a lot of work for you. It has examined the data source and created
a BoundField for each column in the data. Further, it has set the HeaderText to the
name of the column in the database, represented by the DataField attribute. It has set
the AllowPaging and AllowSorting properties to true. In addition, it has also set the
SortExpression property to the name of the field. Finally, you’ll notice on the decla-
ration of the GridView that it has set AutoGenerateColumns to False.

<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT ProductID, Name, ProductNumber, MakeFlag,
 SafetyStockLevel, ReorderPoint
 FROM Production.Product"></asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False"
 DataKeyNames="ProductID" DataSourceID="SqlDataSource1">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 InsertVisible="False"
 ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="ProductNumber" SortExpression="ProductNumber" />
 <asp:CheckBoxField DataField="MakeFlag"
 HeaderText="MakeFlag" SortExpression="MakeFlag" />
 <asp:BoundField DataField="SafetyStockLevel"
 HeaderText="SafetyStockLevel" SortExpression="SafetyStockLevel" />
 <asp:BoundField DataField="ReorderPoint"
 HeaderText="ReorderPoint" SortExpression="ReorderPoint" />
 </Columns>
 </asp:GridView>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </form>
</body>
</html>

Example 4-1. The GridView auto-generates a lot of control source code for you; you don’t have to
write any of this (continued)

GridView Control | 127

If you were creating the GridView by hand, and if you wanted to let the grid create all
the columns directly from the retrieved data, you could simplify the code by setting
AutoGenerateColumns to True. (If AutoGenerateColumns is set to True, and you also
include explicitly bound columns, then you will display duplicate data.)

To see this at work, create a second GridView by dragging another GridView control
from the Toolbox inside the UpdatePanel, below the first. In the Smart Tag, set the
Data Source to the same source as that of the first, SqlDataSource1. Click on the
“Enable Paging” and “Enable Sorting” checkboxes.

Now go to Source view. If necessary, delete the <columns> collection from the new
grid, GridView2. Change AutoGenerateColumns to the default value: True. The declara-
tion for this second GridView should look something like the following:

<asp:GridView ID="GridView2" runat="server"
 AllowPaging="True" AllowSorting="True"
 DataSourceID="SqlDataSource1" >
</asp:GridView>

Run the page. Both grids behave identically and are visually indistinguishable. So
why does the IDE create the more complex version? When you turn off
AutoGenerateColumns, the IDE gives you much greater control over the presentation
of your data. For example, you can set the headings on the columns (such as chang-
ing ProductNumber to Product No.). You can change the order of the columns or
remove columns you don’t need, and you can add new columns with controls for
manipulating the rows.

You can make these changes by manually coding the HTML in the Source view, or
by switching to Design view and clicking the Smart Tag for the GridView and choos-
ing Edit Columns. Do that now for GridView1, and you’ll see the Fields dialog box,
as shown in Figure 4-14.

This dialog box is divided into three main areas: the list of available fields, the list of
selected fields (with buttons to remove fields or reorder the list), and the properties
window on the right. When you click on a selected field (such as ProductID), you can
set the way that field will be displayed in the data grid (such as changing the header
to ID).

While you’re examining what you can do with the GridView, let’s make it look a lit-
tle nicer. First, delete or comment out the second (simpler) grid (GridView2) you just
created a few moments ago. Second, open the Smart Tag on the original grid. Click
AutoFormat and choose one of the formatting options. Of course, you can format it
by hand, but why work so hard for a simple example? We’ll choose “Brown Sugar”
because it shows up well in the printed book. Run the application. The output
should appear as in Figure 4-15.

128 | Chapter 4: Saving and Retrieving Data

Adding Insert, Update, and Delete Statements
At this point, the SqlDataSource you’ve created has only a SELECT statement to extract
data from the database:

SelectCommand="SELECT ProductID, Name, ProductNumber,
 MakeFlag, SafetyStockLevel, ReorderPoint
 FROM Production.Product" >

That’s fine, if all you want to do is display the data in the database. To take the next
step, though, you probably want to be able to add new data, edit existing data, and
even delete data.

You can do all that just as easily as you did the SELECT statement, by asking your data
source control to generate the remaining Create, Retrieve, Update, and Delete state-
ments (fondly known as CRUD statements), using a wizard to make your work
easier.

Figure 4-14. The Fields dialog lets you change the properties of your data columns, without
having to do it in Source view.

GridView Control | 129

To see this in action, switch to Design view, click on the Smart Tag for the
SqlDataSource, and choose Configure Data Source. The Configure Data Source
Wizard opens, displaying your current connection string. Click Next; the Configure
Select Statement dialog box is displayed, as shown earlier in Figure 4-8.

Recall the previous time you used the Configure Data Source Wizard—it did not cor-
rectly identify the table in the autogenerated SELECT statement, omitting the schema
name. You worked around that by specifying your own SQL statement. Because the
SELECT statement you needed was relatively simple to type in, that was not a problem.

However, there is a lot of typing involved for all the CRUD statements. So for the rest
of these statements, you will use the Wizard to generate the SQL code, and then just
fix the table names.

Make sure the “Specify columns from a table or view” radio button is selected, and the
Product table is selected. Check the columns you want returned by the SELECT state-
ment (ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel, ReorderPoint). This
will create a new SELECT statement.

Figure 4-15. The AutoFormat option in the GridView’s Smart Tag lets you choose the formatting
option that best fits your site, and applies it automatically.

130 | Chapter 4: Saving and Retrieving Data

Click the Advanced button to open the Advanced SQL Generation Options dialog
box. Select the “Generate INSERT, UPDATE, and DELETE statements” checkbox,
as shown in Figure 4-16.

Clicking this checkbox instructs the Wizard to create the remaining CRUD state-
ments, and also enables the second checkbox, “Use optimistic concurrency.” This is
a feature that helps safeguard your data in case another user makes a change to the
database at the same time you do. Leave this option unchecked for now and click
OK. When you return to the Wizard, click Next, and then Finish. You may be asked
to update your grid, which unfortunately will wipe out all your customization, but
the good news is that you are now bound to a data source control that provides all
four CRUD methods.

Open the Smart Tag on the GridView control again, and reapply the look and feel you
want. Also—and this is important—select the checkboxes “Enable Editing” and
“Enable Deleting.”

Switch to Source view. The SqlDataSource markup will appear similar to
Example 4-2, with the new SQL commands added. You’ll still need to modify the
table names, or else you’ll get the error you saw earlier (see Figure 4-9). Add the
schema name [Production] to each of the four statements highlighted in
Example 4-2. (You can use Visual Studio’s Quick Find feature (Ctrl + F) to quickly
locate each instance of [Product] in your code.)

Figure 4-16. You’ll use the Advanced SQL Options dialog box to automatically create the SQL
statements to add, edit, and delete data from your data source.

GridView Control | 131

Switch back to Design view and notice the Edit and Delete buttons on each row.
They are the result of checking the Enable Editing and Enable Deleting checkboxes.

Taking apart the code in Example 4-2, on the first line is the declaration for the
SqlDataSource (and its corresponding closing tag at the bottom). After the ID, the oblig-
atory runat="server", and the ConnectionString attribute, you see four attributes: the
SelectCommand (which was there previously), and the new DeleteCommand,
InsertCommand, and UpdateCommand.

Example 4-2. After you update the properties of the SqlDataSource control with CRUD
statements, it should look like this
<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand=" SELECT [ProductID], [Name], [ProductNumber],
 [MakeFlag], [SafetyStockLevel], [ReorderPoint]
 FROM [Production].[Product]"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @ProductID"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber],
 [MakeFlag], [SafetyStockLevel], [ReorderPoint])
 VALUES (@Name, @ProductNumber, @MakeFlag,
 @SafetyStockLevel,
 @ReorderPoint)"
 UpdateCommand="UPDATE [Production].[Product] SET [Name] = @Name,
 [ProductNumber] = @ProductNumber,
 [MakeFlag] = @MakeFlag,
 [SafetyStockLevel] = @SafetyStockLevel,
 [ReorderPoint] = @ReorderPoint
 WHERE [ProductID] = @ProductID" >
 <DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 <asp:Parameter Name="ProductID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 </InsertParameters>
</asp:SqlDataSource>

132 | Chapter 4: Saving and Retrieving Data

If you run this web site and click on the Delete button to delete a row
from the Product table, you will get the following error, raised by the
database:

Sys.WebForms.PageRequestManagerServerErrorException:
The DELETE statement conflicted with the REFERENCE
constraint"FK_ProductInventory_Product_ProductID".
The conflict occurred in database "AdventureWorks",
table "Production.ProductInventory",
column 'ProductID'.
The statement has been terminated.

This error is caused by a constraint on the data, enforced by the data-
base, which prevents the deletion of a record that is referenced else-
where in the database. In other words, the product you are trying to
delete is referenced in the ProductInventory table. If you were to delete
that record from the Product table, there would be orphan records left
behind in the ProductInventory table, which is a violation of the busi-
ness rules of this database.

In a real-world application, the way to handle this would be to write
some custom SQL code, called a stored procedure, which would first
delete all the child records from the ProductInventory table, then
delete the record from the Product table. The SqlDataSource control
would then be configured to use that stored procedure for the Delete
command, rather than the SQL statement it is currently configured to
use. Unfortunately, stored procedures are beyond the scope of this
book. However, our more advanced book, Programming ASP.NET,
Fourth Edition, does cover this sort of situation.

The DeleteCommand takes a single parameter (@ProductID), which is specified in the
DeleteParameters element:

<DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />
</DeleteParameters>e

S Q L C H E A T S H E E T

Parameters
A parameter in a SQL statement allows parts of the statement to be replaced when the
statement is actually run. SQL parameters are always preceded with the @ symbol. So,
in the following SQL statement:

delete from Products where ReorderPoint > @ReorderPoint

all of the records with a value of ReorderPoint greater than some specified value will be
deleted from the Products table. One time the statement is run, that value might be
100, the next time it might be 5. The value depends on how the parameter was defined
beforehand.

Displaying and Updating the Data | 133

The UpdateCommand control requires more parameters, one for each column you’ll be
updating, as well as a parameter for ProductID (to make sure the correct record is
updated). Similarly, the InsertCommand takes parameters for each column for the new
record. All of these parameters are within the definition of the SqlDataSource.

Displaying and Updating the Data
Now that your SqlDataSource object is ready to go, you only have to set up your
GridView control. In Design view, click on the GridView Smart Tag. Verify that the
checkboxes to enable editing and deleting are selected, as shown in Figure 4-17.

If you prefer to have buttons for Edit and Delete, rather than links, click on the
Smart Tag and select “Edit Columns....” When the Fields dialog box opens, click
the Command Field entry in the Selected Fields area (on the lower left). This brings
up the Command Field Properties in the right-hand window. In the Appearance sec-
tion of the Fields editor, choose ButtonType and then change Link to Button in the
drop-down menu next to ButtonType, as shown in Figure 4-18.

Figure 4-17. Select the Smart Tag on the GridView, and check the boxes to enable editing and
deleting.

Make sure these
two boxes are
checked

134 | Chapter 4: Saving and Retrieving Data

The result is that the commands (Edit and Delete) are shown as buttons, as shown in
Figure 4-19.

Take It for a Spin
Start the application. The product database information is loaded into your GridView.
When you click the Edit button, the data grid automatically enters edit mode. You’ll
notice that the text fields you can edit change to text boxes and checkboxes, as
appropriate, and the command buttons change from Edit and Delete to Update and
Cancel. Make a small change to one field, as shown in Figure 4-20.

When you click the Update button for that row, the grid and the database are both
updated, which you can confirm by opening the table in the database, as shown in
Figure 4-21.

To open the database table, stop the application first. Then, on the right side of the
IDE, click the Database Explorer tab (it is called Server Explorer in VS). Expand the
AdventureWorks node, and then expand the Tables node. Scroll down until you find

Figure 4-18. Click the Smart Tag of the GridView, then click Edit Columns to get this Fields
dialog box, where you can select and edit the columns in the GridView. Here, the CommandField
button type is being changed.

Displaying and Updating the Data | 135

the Product (Production) table (in the IDE, the schema name is displayed in paren-
theses after the table name—go figure), then right-click it, and select “Show Table
Data.” This will show you the contents of the table from within the IDE.

Modifying the Grid Based on Conditions
Suppose you would like to modify the grid so the contents of the Name column are red
when the MakeFlag column is checked, that is, when its value is True. In addition, you
want all the ProductNumbers that begin with the letters CA to display in green. You
can do this by handling the RowDataBound event. As the GridView is populated with
data, each row of data is bound to the GridView individually, and the RowDataBound
event is fired once for each row.

To modify the GridView, switch to Design view, click the GridView, click the light-
ning bolt in the Properties window, and double-click in the method name column
(currently blank) to the right of the RowDataBound event. The IDE will create an event
handler named GridView1_RowDataBound() and then place you in the code-behind file
within the skeleton of that method, ready for you to start typing code.

Figure 4-19. You can change the Edit and Delete links in the GridView to buttons, if you prefer.

Look, buttons!

136 | Chapter 4: Saving and Retrieving Data

Figure 4-20. When you click Edit on a row, that row enters edit mode. Any fields that can be
edited change to text boxes and checkboxes.

Figure 4-21. If you view the table in the database after editing it in the GridView, you’ll see that
the changes have been saved.

Edit and Delete
buttons change
to Update and

Cancel Fields become
editable

Your changes
are saved

Displaying and Updating the Data | 137

The second argument to this method is of type GridViewRowEventArgs. This object
has useful information about the row that is being data bound, which is accessible
through the Row property of the event argument.

Enter the code shown in Example 4-3.

The first If statement (highlighted in Example 4-3) tests if the type of Row passed in
as a parameter—in other words, the row that was bound and triggered this event—is
a DataRow (rather than a header, footer, or something else).

Once you know you are dealing with a DataRow, you can extract the cell(s) you want
to examine from that row. Here, we will look at two cells: the ProductNumber cell is
the fourth cell in the row, at offset (index) 3, and the MakeFlag cell is the fifth cell in,
at offset 4. (Remember, all indexes are zero-based.)

To access the ProductNumber cell, you define a new variable, cellProductNumber,
defined as a TableCell with the As keyword, and set it equal to the cell at offset 3 in
the row, like this:

Dim cellProductNumber As TableCell = e.Row.Cells(3)

Once you have the cell as a variable, you want to get the text contained in the cell to
compare to your known value. You do that by accessing the Text property of
cellProductNumber, and then using the Substring() function.

The Substring() function, as you might guess from its name, extracts a smaller string
from a larger one. This is a pretty simple function to work with. First, you call the func-
tion on a string, and you give it two numbers as parameters: the index of the start of
the substring, and the length of the substring. As with all other indexes, the first char-
acter in the string is position zero. You want the first two characters from the Text
string, so the starting index is 0, and the length of the substring is 2. Therefore, to get

Example 4-3. The handler for the RowDataBound event lets you extract individual cells and work
with them
Protected Sub GridView1_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles GridView1.RowDataBound
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber column
 If cellProductNumber.Text.Substring(0, 2) = "CA" Then
 cellProductNumber.ForeColor = Drawing.Color.Green
 End If

 Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
 Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
 If cb.Checked Then
 e.Row.Cells(2).ForeColor = Drawing.Color.Red
 End If
 End If
End Sub

138 | Chapter 4: Saving and Retrieving Data

the first two characters from your string, you use the function Substring(0,2). Once
you have that substring, you can use a simple If statement to compare it to the string
you want to match, “CA”:

If cellProductNumber.Text.Substring(0, 2) = "CA" Then

It there is a match, you want to set the ForeColor property of the cell to green, which
you can do using the Drawing.Color.Green property:

cellProductNumber.ForeColor = Drawing.Color.Green

In the case of the MakeFlag field, it is somewhat more complicated. It’s easy enough
to isolate the cell that contains the checkbox—it’s at index 4—and then assign that
value to a new variable called cellMakeFlag:

Dim cellMakeFlag As TableCell = e.Row.Cells(4)

This is the same technique you used to isolate the ProductNumber cell. In this case,
though, the Text property of this cell will always be empty. However, the cell does
contain a CheckBox control, which is the only control in the cell. Instead of reading
the text in the cell, you want to read the value of the Checked property of that
CheckBox control. Each cell has a collection of all the controls contained in the cell,
called Controls, which has a zero-based index. Because the checkbox you want is the
only control in the collection, you know it’s at cellMakeFlag.Controls(0). Next, you
define a new variable, cb, which you define as a CheckBox. Then, you use the CType
function on the control you just isolated, to convert the control to a CheckBox. This
works because we know it is a CheckBox:

Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)

Then, you test the Checked property of the CheckBox:

If cb.Checked Then

If the box is checked, cb.Checked will evaluate to true. If it is checked, you want to
set the ForeColor property of the third cell in the row (offset 2), the ProductName
column:

e.Row.Cells(2).ForeColor = Drawing.Color.Red

You set the color of the cell the same way you did for ProductNumber, but notice this
time you’re not changing the color of the checkbox cell itself—you’re changing a dif-
ferent cell in the table.

Run the web site. It will look identical to Figure 4-19 (shown earlier in this chapter),
except the product names for which the MakeFlag field is checked will display in red,
and some of the product numbers will display in green, although you may need to
page through the data to find them. (Neither of these changes will be obvious in the
printed book, so we will forego a figure showing the color changes.)

Displaying and Updating the Data | 139

Selecting Data from the GridView
Often you need to select a row from the grid and extract data from that row. This is
easy to do using the SelectedIndexChanged event of the GridView.

To see how this works, drag a Label control from the Standard section of the Tool-
box onto the Design view, below the grid, but within the UpdatePanel control.
Change the Text property of this Label to Name. Then, drag a TextBox control next to
the Label. Change its ID property to txtName and set its ReadOnly property to True.
You now have a place to display the name of the selected item from the grid.

Click on the Smart Tag of the GridView and check the “Enable Selection” checkbox.
This will cause a Select button to display in the first column of the grid, next to the
Edit and Delete buttons already there, as shown in Figure 4-22.

Now all you need to do is set up the event handler to respond to the Select buttons.
Double-click on the Select button in the first row of the grid. This will open up the
code-behind file with the skeleton of the SelectedIndexChanged already created for
you, ready to accept your custom code. Enter the highlighted code from the follow-
ing snippet:

Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles GridView1.SelectedIndexChanged
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name column

V B C H E A T S H E E T

CType Method
CType converts its first argument into an object of a new type as specified by its second
argument. In the case shown here, it is converting an object to a CheckBox. If the object
you pass is not of the appropriate type, CType generates an error. Read this statement:

Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)

as follows: “Find the first item in the Controls collection in cellMakeFlag and convert
it to type CheckBox.” The result will be an object of type CheckBox or an exception will
be thrown. If no exception is thrown, assign the result to the variable cb, which is of
type CheckBox.

If you want to be extra careful, you can wrap the CType conversion in a Try/Catch block,
discussed in Chapter 8, but that isn’t really necessary here as you know it is a checkbox.

Note to C# users: This is one of the few methods available in VB but not in C#.
Instead, in C#, you cast from one type to another by enclosing the target type in paren-
theses, as in the following C# statement equivalent to the one above in VB:

CheckBox cb = (CheckBox)cellMakeFlag.Controls[0];

140 | Chapter 4: Saving and Retrieving Data

 txtName.Text = cellName.Text
 End If
End Sub

This code first tests to determine if the selected row is a DataRow (as opposed to a
HeaderRow or a FooterRow). If it is a DataRow, it creates a variable of type TableCell, to
which you assign the third cell in the selected row (because of zero-based indexing,
the third item will have an index value of 2). Then the Text property of the TextBox is
set equal to the Text property of that cell.

Run the app and click on one of the Select buttons. The name from the selected row
appears in the TextBox.

Passing Parameters to the SELECT Query
Sometimes you do not want to display all the records in a table. For example, you
might want to have users select a product from your grid and display the order
details for that product somewhere else on the current page. To do this, you’ll need a
way to select a product as well as a way to pass the ID of the selected product to the

Figure 4-22. Clicking Enable Selection in the Smart Tag causes Select buttons to appear in a
GridView.

Select buttons are added

Displaying and Updating the Data | 141

second grid. The Select buttons are already in place from the previous example, so all
you need to do now is pass the ID of the selected product to the second grid.

To keep your examples clear, copy the previous example, AWProductData to a new
web site, AWProductDataOrderDetails.

See Appendix B for details about copying a web site.

You need to create a second GridView, which will be used to display the order details.
From the Toolbox, drag the second GridView onto the page below the first, after the
Label and TextBox, and inside the pre-existing UpdatePanel. Open the Smart Tag for the
GridView. In the Choose Data Source field of the Smart Tag, select <New Data Source>
this time instead of using an existing DataSource control. The Data Source Configura-
tion Wizard appears, but with a new screen this time, shown in Figure 4-23. Select the
Database option, and name the data source AdventureWorksOrderDetails.

Figure 4-23. You’re creating a new data source control this time, instead of using one you’ve already
placed on the page. Select Database as the type, and name it AdventureWorksOrderDetails.

142 | Chapter 4: Saving and Retrieving Data

Click OK, and you’ll see the connection string screen from Figure 4-4; use the exist-
ing connection string. Choose the SalesOrderDetail table, select the columns
SalesOrderID, CarrierTrackingNumber, OrderQty, UnitPrice, UnitPriceDiscount, and
LineTotal, and then click the WHERE button, as shown in Figure 4-24.

A WHERE clause is a SQL language construct used to narrow the set of data returned
by the SELECT statement. In other words, you’re saying, “Get me all the records from
this table, where this condition is true.” The condition could be defined any number
of ways—where the amount in inventory is less than 10, where the customer name is
“Smith,” or where the copyright date is after 1985. It all depends on the types of
information you have stored in your tables, and what you need for this circumstance.

When you click the WHERE button, the Add WHERE Clause dialog opens, which
you can see in Figure 4-25. First, you pick the column you want to match on; in this
case, ProductID. Next, pick the appropriate operator for your condition statement.
Your choices include (among others): equal to, less than/greater than, like, and con-
tains. For this exercise, use the default (=).

Figure 4-24. Configuring the SalesOrderDetail table SELECT statement is similar to the way you
set up the first DataSource, but this time, you’ll add a WHERE clause.

Displaying and Updating the Data | 143

The third drop-down lets you pick the source for the ProductID—that is, where you
will get the term you want to match on. You can pick from any one of several objects
in the menu, or choose None if you’ll be providing a source manually. In this case,
you’ll obtain the source of the ProductID from the first GridView, so choose Control.

When you choose Control, the Parameter properties panel of the dialog wakes up.
You are asked to provide the ID of the Control containing the target parameter. Select
GridView1. Once you’ve made all your choices, the screen will resemble Figure 4-25.

Click Add. When you do, the upper portion of the dialog returns to its initial (blank)
state, and the WHERE clause is added to the WHERE Clause window. You could add
additional WHERE clauses at this point, to further restrict the data, but that is not nec-
essary for this example.

Click OK to return to the ConfigureData Source dialog box. While you are at it, sort
the results by the SalesOrderID column by clicking on the ORDER BY button. The
Add ORDER BY Clause dialog with the SalesOrderID column selected is shown in
Figure 4-26. The ORDER BY clause is another SQL construct, and this one does just
what its name implies—it sorts the results using the specified field for the sort order.

Figure 4-25. Add a WHERE clause to your SELECT statement with the Add WHERE Clause
dialog. You select the column, the operator, and the source here.

144 | Chapter 4: Saving and Retrieving Data

Click OK, then Next, then Finish, and the Configure Data Source Wizard is finished.

Switch to Source view and again fix the name of the tables in the SQL statements
that were auto-generated. This time, you’ll need to add [Sales] in front of the
[SalesOrderDetail] item because this data is from the Sales table. The markup for
the second GridView and its associated SqlDataSource is shown in Example 4-4, with
the corrected table name highlighted. Also highlighted are the results of the WHERE
and ORDER BY buttons from the Configure Data Source Wizard.

Figure 4-26. Add an ORDER BY clause to sort the results of your SELECT statement.

Example 4-4. Visual Studio supplies the select parameters for you, but you still need to fix the
schema in the second GridView
<asp:GridView ID="GridView2" runat="server"
 DataSourceID="AdventureWorksOrderDetails">
</asp:GridView>
<asp:SqlDataSource ID="AdventureWorksOrderDetails" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [SalesOrderID], [CarrierTrackingNumber], [OrderQty],
 [UnitPrice], [UnitPriceDiscount], [LineTotal]
 FROM [Sales].[SalesOrderDetail]
 WHERE ([ProductID] = @ProductID)
 ORDER BY [SalesOrderID]">

Displaying and Updating the Data | 145

The SELECT statement now has a WHERE clause that includes a parameterized value
(@ProductID). In addition, within the definition of the SqlDataSource control is a defini-
tion of the SelectParameters. This includes one parameter of type ControlParameter,
which is a parameter that knows how to get its value from a control (in our example,
GridView1). In addition, a second property, PropertyName, tells it which property in the
GridView to check. A third property, Type, tells it that the type of the value it is getting is
of type Int32, so it can properly pass that parameter to the SELECT statement.

You may now reformat your grid and edit the columns as you did for the first grid,
and then try out your new page, which should look something like Figure 4-27.

 <SelectParameters>
 <asp:ControlParameter
 ControlID="GridView1"
 Name="ProductID"
 PropertyName="SelectedValue"
 Type="Int32" />
 </SelectParameters>
</asp:SqlDataSource>

Figure 4-27. When you select a product in the first grid, the order details appear below in the
second grid.

Example 4-4. Visual Studio supplies the select parameters for you, but you still need to fix the
schema in the second GridView (continued)

146 | Chapter 4: Saving and Retrieving Data

The AdventureWorks database has no order details for any of the
entries with ProductIDs below 707. The first entry with details is on
page 22 of the grid, so be sure to move to page 22 (or later) to see
product details (or click the ProductID header to see the products in
descending order). If you select a product that does not have any order
details, the second grid will not appear.

LINQ
As we mentioned earlier, most relational databases use some variant of SQL to
retrieve and manipulate data. Much of the business logic of the application is con-
tained within this SQL code—either as SQL statements passed to the database by
your web app for execution, or as calls to stored procedures on the database server.
A stored procedure is a predefined set of instructions that you can call from some-
where else in your code. Because you can dynamically build the SQL statements and
pass parameters at runtime, this is a very powerful and flexible paradigm.

However, it has its shortcomings. The first is the headache of maintaining the code.
In almost any typically complex web site, you probably want to implement most, if
not all, of the database logic in stored procedures. This means that, at best, you will
have source code in two separate locations—the file system where all your markup,
code behind, and associated files live, and the database itself, where the stored proce-
dures are. Even assuming that you have a suitable system in place for source code
management (which in itself is the topic of many books), before you can implement
features or fix bugs, you (the developer) must first determine if that piece of logic is
handled on the file system or in the database.

A second, subtle but more important shortcoming has to do with what is referred to
as the impedance mismatch between the object-oriented nature of .NET projects ver-
sus the table-oriented nature of relational data. In other words, in an object-oriented
environment such as .NET, you work with instances of classes called objects. These
classes may have properties, which describe the object, and methods, which define
actions of the object. On the other hand, databases are constructed of tables, which
contain rows and columns.

For example, you might have a class called Dog, with the properties of Breed, Color,
and Weight. It also might have methods to create a new Dog, retrieve or modify a pre-
existing Dog, and save a Dog to the database. So your code might create an instance of
a Dog, called coco, set some properties, and save the Dog to the database with code
similar to the following:

Dim coco As Dog = New Dog()
coco.Breed = "Black Lab"
coco.Color = Drawing.Color.Black
coco.Weight = 52
coco.Save()

LINQ | 147

The Save() method would have to handle the not-so-trivial chore of converting the
object into data that the database can save. Typically, this means the object itself
would be represented by a row in a table, and the properties would be represented by
columns within that row. Likewise, when retrieving data from the database, that data
must be converted to the appropriate objects and properties for your program to
work with it.

To address these issues, the .NET Framework 3.5 introduces a new language capa-
bility called LINQ, which stands for Language Integrated Query. LINQ is now part
of all .NET 3.5 languages, including VB.NET and C#. It integrates query capability
directly into the language as a first class feature, just like .NET languages include fea-
tures such as data types, events, and conditional logic. Using LINQ, you can now
interact with your data in a truly object-oriented fashion, writing code in VB or C#
rather than in SQL.

To accomplish LINQ, several new language features have been added,
such as type inference, anonymous types, and lambda expressions,
which we are not going to cover in this book. LINQ is a big topic—it
merits its own books, as well as chapters in several other books,
including Programming .NET 3.5 by Jesse Liberty and Alex Horovitz,
Programming C# 3.0, Fifth Edition, by Jesse Liberty and Donald Xie,
and Programming Visual Basic 2008 by Tim Patrick, all published by
O’Reilly.

To go along with LINQ, VS 2008 and VWD 2008 provide some significant new
tools, including the Object Relational Designer and the LinqDataSource control.

LINQ is an advanced topic for developers, and the classes it employs are well beyond
anything we use elsewhere in this book. In that sense, our discussion here goes
against the “minimal coding” promise that we made at the beginning of this book.
There’s no other way to discuss LINQ except in terms of the classes it creates, how-
ever. In addition, we feel that LINQ is an interesting technology that addresses a
couple of problems, but it’s not yet developed enough to be useful at the beginner
level. We’re including it here because it’s a major part of ASP.NET 3.5 that you
should know about, but we don’t think you’re likely to use it much in its current
version.

Creating the Object Model
LINQ works with an object model, a set of classes mapped to your database. You can
create those classes manually by typing in a lot of code (IntelliSense will help), or you
can let the IDE do most of the heavy lifting by using the Object Relational Designer.
The Object Relational Designer, or O/R Designer, is a visual tool that performs two
crucial tasks.

148 | Chapter 4: Saving and Retrieving Data

First, it creates the classes, or entities, that represent a database. Each table is
mapped to its own class. Within that class, there will be property for each column in
the table.

The properties are strongly typed. In other words, the data type of each property
matches the data type of the corresponding column in the database table. This is
important because it provides one of the big benefits of working with LINQ. Sup-
pose the table has a column called ProductID, which is an integer (that would be an
int in Transact SQL). The corresponding property in VB would of type Integer. This
would be reflected by IntelliSense anywhere it was appropriate to use this property,
and if you attempted to assign, say, a string to this property, the IDE would immedi-
ately flag this as invalid code and it would not build.

The other important task performed by the O/R Designer is to create a DataContext,
which is an object used to send and receive data between your entities and the data-
base. In other words, the DataContext is the bridge between the LINQ object model
and the actual database. This will all become clear in a moment when we show you
an example.

Just as ASP.NET provides a SqlDataSource control to provide easy access to data
using SQL commands, it also provides a LinqDataSource control to provide similar
access using LINQ. Once you have created your object model and DataContext with
the O/R Designer, the LinqDataSource control can use that to be a binding source to
other controls, such as a GridView.

To see this in action, create a new web site. Call it LinqDataSource. Select the
Website ➝ Add new Item... menu command. When the Add New Item dialog box
comes up, select the LINQ to SQL Classes template. The default name will be
DataClasses.dbml. Change this to AdventureWorks.dbml, and click the Add button.
You will immediately be presented with the warning dialog box shown in
Figure 4-28. Click Yes to accept this recommendation. (We will explain this in a
moment.)

Figure 4-28. When you create a LINQ to SQL Classes file, you are prompted to place it in a
special folder. Click Yes to accept this recommendation.

LINQ | 149

After the IDE cooks for a bit, you will see in the Solution Explorer a new folder called
App_Code as part of the web site. Within this folder will be a file called
AdventureWorks.dbml with a plus sign next to it. Clicking on that plus sign expands
it out to show two associated files also in the App_Code folder, AdventureWorks.
dbml.layout and AdventureWorks.designer.vb, as shown in Figure 4-29.

The design surface of the IDE will now be showing the Object Relational Designer,
which contains two panes side by side. Clicking anywhere within the O/R Designer
will show the properties of the AdventureWorksDataContext (whew! that’s a mouth-
ful) in the Properties window. The IDE will now look something like that shown in
Figure 4-30.

A lot has just happened here, so let’s look at this a bit more carefully.

First, when you added the new item to the web site, the name of the template was
“LINQ To SQL Classes”. Notice it is plural, which might seem to be a typo. Remem-
ber, however, that the O/R Designer maps each individual database table to its own
class. So, in the typical case, there will be multiple classes contained in this single
item. Those classes will all be created for you in the file AdventureWorks.designer.vb.

Open this file in the IDE by double-clicking it in the Solution Explorer. A lengthy
comment at the top reminds you that this file is auto-generated and warns against
making any changes. At this point, the file contains just a small amount of boiler-
plate code, as you have not yet added any tables to the O/R Designer. The key
point to notice here is that this source code declares a class called
AdventureWorksDataContext, which inherits from System.Data.Linq.DataContext:

Partial Public Class AdventureWorksDataContext
 Inherits System.Data.Linq.DataContext

Figure 4-29. After you add a LINQ to SQL Classes file, three new files will appear in an App_
Code fold.

150 | Chapter 4: Saving and Retrieving Data

Remember, the DataContext is the bridge between the object model, or classes, and
the database. The class name is created automatically from the name you gave to the
“LINQ to SQL Classes” item you added to the web site, concatenated with
DataContext. Close this file when you’ve finished looking at it.

In Figure 4-30, the AdventureWorks.dbml file is selected in the Solution Explorer,
which displays the O/R Designer on the design surface. The Properties window
shows the properties of this object model. This reflects details of the class declara-
tion in the above code snippet.

The next question you might ask is “Why put these files into the special folder called
App_Code?”. For any class to be available to a .NET application, the class must be
compiled into a dll, or dynamic link library, and properly referenced by the applica-
tion. Fortunately, the .NET Framework and VS/VWD makes it easy to accomplish
this by accommodating two special folder names within the project. The first special
folder name is bin. Any pre-compiled dll files contained within the bin folder are
automatically referenced by the application. The second special folder is the afore-
mentioned App_Code folder. Any class source code files, typically with an extension
of .vb (for an app written with VB.NET; the equivalent extension for a C# app is .cs)
in the App_Code folder will automatically be compiled and referenced when the
application is built.

Figure 4-30. After creating the LINQ to SQL Classes files, the O/R Designer will open in the IDE.

LINQ | 151

Along the left side of Figure 4-30, the Toolbox contains controls available to use in
the O/R Designer. You can create your own classes by dragging the Class control
onto the design surface. You can add properties to that class by right-clicking the
class and selecting Add ➝ Property. You can also create relationships between classes
with the Association and Inheritance controls. We will not be using these controls
in this book, although they can be very useful in more advanced scenarios.

With the O/R Designer open, you are ready to start building your object model from
the database. Open the Database Explorer (Server Explorer in Visual Studio). You
should already have a Data Connection to the AdventureWorks database from the
previous examples in this chapter. If not, right-click on Data Connections and click
Add Connection.... Follow the steps outlined in Figure 4-5 to create the connection.

Expand the connection to the AdventureWorks database by clicking on the plus sign
next to it. Then, expand the list of tables by clicking the plus sign next to Tables. Scroll
down to find the Product table and drag that table onto the left pane of the O/R
Designer. The screen should like something like Figure 4-31.

While you’re at it, drag a few more tables onto the O/R Designer so you can get a
better idea of how the tool creates the classes. Drag the ProductInventory and
Location tables from the Database Explorer onto the design surface. Once they are

Figure 4-31. Drag a table from the Database Explorer onto the O/R Designer to create a class
representing that table.

152 | Chapter 4: Saving and Retrieving Data

on the surface, you can drag them around with the mouse to reposition them for bet-
ter viewing. The design surface will now look similar to Figure 4-32.

Because the database defined relationships between these tables, those relationships
are reflected in the visual data model. More importantly, those relationships are now
reflected in the underlying classes created by the tool.

We are not going to go into great detail about the underlying files, but it is very
instructive to see how they are constructed. The .dbml file is an XML file which con-
tains the structure of the tables in the O/R Designer. Normally, double-clicking this
file opens up the visual designer, as shown in Figures 4-31 and 4-32. To see the
actual XML code, close the visual designer, right-click on the .dbml file, select Open
With..., and select XML Editor. You will see that the XML defines a <Table> ele-
ment for each table. Within each <Table> element are a number of <Column> ele-
ments. Also, if there are any relationships with other tables, they are also defined
within the <Table> element as <Association> elements.

Figure 4-32. After you drag multiple tables onto the O/R Designer from the Database Server, you
can see the relationships between the tables.

LINQ | 153

The .layout file is used by the tool to keep track of the visual location and other
design aspects of each table on the design surface. It does not have any real bearing
on the object model or its underlying classes.

The .vb file contains the real meat. We looked at this file briefly above to see that it
included the class declaration. If you open it now, having added tables with relation-
ships, you will see there is a lot more to it. There is a lot of boilerplate code, which
makes it easy to get lost, but essentially, this file defines three classes associated
within the AdventureWorksDataContext class, one for each of the tables. Within each
of these classes, there is a public property for each column in the table. You can see
that each property has the same data type as the corresponding column in the table.

Save all these files and close them.

Using the Object Model
Now that you have an object model created, let’s use it with a LinqDataSource con-
trol to display data in a GridView. Switch to Design view of Default.aspx. Drag two
controls onto the page from the Data section of the Toolbox—a LinqDataSource and
a GridView.

Select the LinqDataSource control, click on the Smart Tag, and select Configure Data
Source.... This will bring up the Configure Data Source wizard, which is very simi-
lar to the wizard you saw earlier in this chapter used for configuring a SqlDataSource
control. The first step in the wizard asks you to specify the context object, as shown
in Figure 4-33.

All the available DataContext objects are available to choose from in the drop-down.
In this case, there is only one, the AdventureWorksDataContext you created above, so
click Next.

The next step asks you to select the table and fields, as shown in Figure 4-34.

Just as you did with the SqlDataSource back in Figure 4-8, select the Products table
and the ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel and
ReorderPoint columns. Then, click the Finish button.

Next, select the GridView, click on the Smart Tag, and then Choose Data Source. You
will see that one of the available data sources is LinqDataSource1, the LinqDataSource
control you just configured. Select that.

Immediately, the GridView will redraw in Design view to show the columns you have
configured the data source to return.

While the Smart Tag is open, check the Enable Paging and Enable Sorting check-
boxes, then run the page. You will see something identical to Figure 4-13, with pag-
ing and sorting fully implemented, except it is based on the LinqDataSource rather
than the SqlDataSource.

154 | Chapter 4: Saving and Retrieving Data

So, what is the difference between the two data sources, as the end result in these
examples is identical? As we mentioned above, LINQ is a language feature that
allows you to construct database queries directly in your language of choice, rather
than using SQL. Back in Example 4-1, you saw the markup generated by the
SqlDataSource control. It included a ConnectionString and a SelectCommand. The lat-
ter consists of this SQL statement:

SELECT ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel, ReorderPoint
FROM Production.Product

If you look at Default.aspx in Source view, you will see the following markup for the
LinqDataSource control:

<asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="AdventureWorksDataContext"
 Select="new (ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel,
 ReorderPoint)"
 TableName="Products">
</asp:LinqDataSource>

Instead of a ConnectionString attribute pointing to a database, it has a
ContextTypeName attribute specifying the DataContext class you created with the O/R

Figure 4-33. The first step in the Configure Data Source wizard for a LinqDataSource asks you to
select a DataContext object.

LINQ | 155

Designer. Instead of a SelectCommand attribute with a SQL statement, it has a Select
attribute with a LINQ statement for selecting properties from the table class speci-
fied in the TableName attribute.

Just to reiterate the point that LINQ is a language feature, you could omit the
LinqDataSource control from the page entirely and just construct your query directly
in the VB code-behind.

To see this, add another GridView control to the page, which will be called GridView2.
Do not choose a data source for this second GridView. Open the code-behind for the
page and create a Page_Load method by selecting (Page Events) from the Class Name
drop-down at the upper left of the editing surface and Load from the right drop-
down. Then enter the highlighted code from Example 4-5.

Figure 4-34. The next step in the wizard asks you to select a table and fields to display.

Example 4-5. Page_Load for databinding a GridView using LINQ statements
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack then
 Dim dataContext As New AdventureWorksDataContext()
 Dim products = From p In dataContext.Products _
 Order By p.Name _
 Select p.ProductID, p.Name, p.ProductNumber, p.MakeFlag, _
 p.SafetyStockLevel, p.ReorderPoint

156 | Chapter 4: Saving and Retrieving Data

Now when you run the page, you see that both grids display the same data. How-
ever, the second grid displays the columns in a different order, and it does not have
paging and sorting enabled. You can fix the order of the columns by changing the
markup for GridView2 to set the AutoGenerateColumns attribute to False (the default is
True) and add the same BoundField column declarations, as shown in the highlighted
code in Example 4-6.

 GridView2.DataSource = products
 GridView2.DataBind()
 End If
End Sub

Example 4-6. Markup for Default.aspx with two GridView controls, one populated from a
LinqDataSource and one from the code-behind
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="AdventureWorksDataContext"
 Select="new (ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel,
 ReorderPoint)"
 TableName="Products">
 </asp:LinqDataSource>
 </div>
 <asp:GridView ID="GridView1" runat="server" AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False" DataSourceID="LinqDataSource1">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name" ReadOnly="True"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber" HeaderText="ProductNumber"
 ReadOnly="True" SortExpression="ProductNumber" />
 <asp:CheckBoxField DataField="MakeFlag" HeaderText="MakeFlag"
 ReadOnly="True" SortExpression="MakeFlag" />
 <asp:BoundField DataField="SafetyStockLevel" HeaderText="SafetyStockLevel"
 ReadOnly="True" SortExpression="SafetyStockLevel" />
 <asp:BoundField DataField="ReorderPoint" HeaderText="ReorderPoint"
 ReadOnly="True" SortExpression="ReorderPoint" />
 </Columns>
 </asp:GridView>

Example 4-5. Page_Load for databinding a GridView using LINQ statements (continued)

LINQ | 157

Notice that GridView2 does not have paging and sorting enabled, and the
BoundColumns do not have a SortExpression specified. You could set the AllowPaging
and AllowSorting attributes and include the SortExpressions in the Column declara-
tions. If you did that, GridView2 would appear to support paging and sorting, but an
error would result when you tried to actually page or sort the grid. This is because
the LinqDataSource automatically handles those chores for you. If you are binding
directly from your code-behind without benefit of the LinqDataSource control, then
you must write your own code to handle the paging and sorting events. This is not
terribly difficult, but it is a bit beyond the scope of this book.

Editing Data in LINQ
The LinqDataSource control can also work with the GridView to easily allow for edit-
ing of your data, as long as the data source is configured to return all the columns of
the table. The GridView does not have to display all the columns, but the
LinqDataSource must select all the columns.

To see this, create a new web site called LinqDataSourceEditing. Just as you did in
the previous example, add a LINQ to SQL Classes item to the web site and call it
AdventureWorks. Allow it to be placed in the App_Code folder. Open the Database
Explorer (Server Explorer in VS) and drag the Product table onto the left side of the
O/R Designer.

Then, open the page, Default.aspx, in Source or Design view, and drag a
LinqDataSource control and a GridView control onto the page from the Data section
of the Toolbox. In Design view, open the Smart Tag of the LinqDataSource control
and click on Configure Data Source.... As before, verify that AdventureWorksData-
Context is chosen and click Next.

 <asp:GridView ID="GridView2" runat="server" AutoGenerateColumns="False">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 ReadOnly="True" />
 <asp:BoundField DataField="Name" HeaderText="Name" ReadOnly="True" />
 <asp:BoundField DataField="ProductNumber" HeaderText="ProductNumber"
 ReadOnly="True" />
 <asp:CheckBoxField DataField="MakeFlag" HeaderText="MakeFlag"
 ReadOnly="True" />
 <asp:BoundField DataField="SafetyStockLevel" HeaderText="SafetyStockLevel"
 ReadOnly="True" />
 <asp:BoundField DataField="ReorderPoint" HeaderText="ReorderPoint"
 ReadOnly="True" />
 </Columns>
 </asp:GridView>
 </form>
</body>
</html>

Example 4-6. Markup for Default.aspx with two GridView controls, one populated from a
LinqDataSource and one from the code-behind (continued)

158 | Chapter 4: Saving and Retrieving Data

By default, the only table available, Products, should already be selected and the first
column checkbox with an asterisk in it (to select all the fields) should be checked, as
shown in Figure 4-35.

If no tables or fields are visible in the dialog, Cancel the dialog and
click Build ➝ Build Website to build the web site. Then try again.

Click on the Advanced button to get the options shown in Figure 4-36.

Check all three checkboxes, then click OK, and then Finish. The Smart Tag for the
control will now show checkboxes, all checked, for enabling Deletes, Inserts, and
Updates, as shown in Figure 4-37.

If you look at the declaration for the LinqDataSource control in Source view, you will
see the code in Example 4-7.

Figure 4-35. To select all the fields of a table, check the asterisk.

LINQ | 159

If you compare this with the equivalent declaration in Example 4-6, you will see that
not only does this have attributes to enable Deletes, Inserts, and Updates, but it does
not have a Select attribute returning specific columns, so all the columns are
returned from the database.

Figure 4-36. When configuring the LinqDataSource, clicking on the Advanced button allows you
to configure advanced options.

Figure 4-37. After configuring the LinqDataSource, you can enable Deletes, Inserts, and Updates.

Example 4-7. Declaration for a LinqDataSource which enables editing
<asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="AdventureWorksDataContext" EnableDelete="True"
 EnableInsert="True" EnableUpdate="True" TableName="Products">
</asp:LinqDataSource>

160 | Chapter 4: Saving and Retrieving Data

Now, click on the Smart Tag for the GridView. Choose the DataSource to be
LinqDataSource1. The GridView will immediately redraw with every column in the
table, which is more than we want to display.

There are two ways to trim the unwanted fields. The UI way is to click on Edit Col-
umns in the Smart Tag, to get the Fields editor, which you saw back in Figure 4-14.
You can delete the unwanted fields by selecting them, one at a time, from the list box
in the lower left corner of the dialog and clicking the red X button.

The easy way to get rid of the unwanted fields is to switch into Source view and just
delete the undesired BoundField declarations from within the Columns element. So do
that, removing all the BoundField declarations except for the ProductID, Name,
ProductNumber, MakeFlag, SafetyStockLevel, and ReorderPoint columns, so that it
will match the previous example.

Now, one last step: go back to the Smart Tag for the GridView. It will now have two
new checkboxes in addition to the checkboxes you saw previously—Enable Editing
and Enable Deleting. Check those, as shown in Figure 4-38.

Run the web site. You will get a grid that is functionally equivalent to that shown
back in Figure 4-19, which you created with a SqlDataSource. The difference in
appearance is only because we formatted that earlier grid and did not bother to do so
with this latest example.

Figure 4-38. The GridView Smart Tag now enables editing and deleting.

ASP.NET Dynamic Data | 161

Just as you saw with the SqlDataSource example earlier in the chapter,
if you try to delete a record from the Products table, you will get a
database error caused by the fact that there are other tables with
dependencies on the Products table. If you were allowed to delete
products, it would leave orphan records in other tables. To deal with
this, you would construct custom queries that first deleted the depen-
dent records, then delete the product record. However, this is beyond
the scope of this book.

ASP.NET Dynamic Data
Dynamic Data is a new feature of ASP.NET 3.5, introduced in Service Pack 1. It
allows you to create a fully functional website implementing the four CRUD opera-
tions—Create, Read, Update, and Delete—with very little effort and virtually no
handcoding. Depending on the requirements of the site you are building, this may
save a lot of development effort.

The most obvious benefit of Dynamic Data is that it makes it easy and very fast to
create a web site that lets users display and edit data, as seen in the example in this
section. But Dynamic Data is more fundamentally about linking the presentation
layer (how users view and work with data in web pages) with the data model (how
the data is managed and stored).

In data-based applications, the database defines the type of data that can be store—
for example, it defines whether a column consists of text, numbers, or dates, and it
defines information such as how many characters a column value can contain. In
addition, it defines how the data in one table relates to data in another table (that is,
what relationships the tables have).

In most web sites that work with data, much of this information about the data has
to be duplicated in the web site code. What data should be displayed in this page?
How should the data be formatted? How can users edit this data? How should user
input be validated? How does the data in a page work with related data in another
page? These are all questions that web developers traditionally have to think about
and to solve in web page after web page, and all by adding controls or code by hand
to each individual page. The database already understands the data that it contains,
yet the same information must be recoded in the web application by the web site
developer.

To eliminate this type of redundancy, Dynamic Data makes the presentation layer
“smart.” Web pages can infer information about the data from the data layer at run-
time—that is, dynamically. The result is the behavior that you see in this section. For
example, web pages can automatically display data appropriately. Boolean data (true/
false) is automatically displayed by using a check box, foreign keys are automatically
displayed so that they link to related tables, and so on. Similarly, when a web page lets
users edit or insert data, Dynamic Data infers the appropriate validation tests, based

162 | Chapter 4: Saving and Retrieving Data

directly on what the database allows. This ability to infer information and behavior
from the data is sometimes referred to as scaffolding, and pages that can take advan-
tage of this behavior are sometimes referred to as scaffolded pages.

Because every application is different, Dynamic Data is built so that you can custom-
ize its built-in behavior. And if that isn’t sufficient, you can extend Dynamic Data to
include new ways of interacting with data. Dynamic Data is a new feature of ASP.NET
(in fact, it is still being developed), so the full potential of the feature has not yet been
explored. But it has great promise, as we show you here.

This feature builds on the Object Relational Designer that you saw with LINQ, and
the object model (data model) that it creates for you. It combines the object model
with the extensive use of templates to produce fully editable pages representing any
or all of the tables in your database, including all of the relationships between the
tables.

Templates are controls or pages that define how users can interact with data. Field
templates are used to define the look and behavior of individual data types from the
data model. For example, a Text field template defines how string data is displayed;
a TextEdit field template defines how users can edit and insert string data. Addi-
tional field templates are available for Boolean data, date/time data, and so on, and
for displaying and working with foreign keys. Page templates define how sets of data
(or tables) are displayed. There are page templates for simply listing data, for display-
ing master/detail data, for presenting editable data, and so on. Dynamic Data uses
these templates automatically to display whatever data you are working with.

Dynamic Data is a big and complex topic, especially when you begin to customize
how things are presented. We will present here a very simple example just to give
you a feel for what is possible.

In VS/VWD, create a new web site. In the New Web Site dialog box, select the
Dynamic Data Web Site template. Call the new web site DynamicAdventureWorks.

In the Solution Explorer, you will see a folder in the web site called DynamicData,
which contains four subfolders that contain the templates. These are shown, some-
what expanded, in Figure 4-39.

Re-create the object model used in the two previous LINQ examples, adding the Prod-
uct, ProductInventory, and Location tables to the object model. Recall from the discus-
sion above that the O/R Designer will create a class called AdventureWorksDataContext.
You will refer to this class in a moment.

Now comes the only coding you must do. Among the other files created for you by
the IDE when creating a Dynamic Data web site is one called global.asax in the main
folder of the web site. Double-click on this file in the Solution Explorer to open that
file in the editor.

ASP.NET Dynamic Data | 163

The first method in global.asax is called RegisterRoutes, which initially looks like
Example 4-8.

Figure 4-39. A Dynamic Data web site has a folder called DynamicData which contains all the
templates.

Example 4-8. The original global.asax before, you make any edits
Public Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 Dim model As New MetaModel

 ' IMPORTANT: DATA MODEL REGISTRATION
 ‘ Uncomment this line to register LINQ to SQL classes or an ADO.NET Entity Data
 ' model for ASP.NET Dynamic Data. Set ScaffoldAllTables = true only if you are sure
 ' that you want all tables in the data model to support a scaffold (i.e. templates)
 ' view. To control scaffolding for individual tables, create a partial class for
 ' the table and apply the [Scaffold(true)] attribute to the partial class.

164 | Chapter 4: Saving and Retrieving Data

You are going to modify one line in global.asax, the highlighted line in Example 4-8.
In the original, this is actually a single, long commented line, but you are going to
uncomment it in a moment, so we inserted a line continuation character to prepare it
to wrap for readability.

Uncomment this highlighted line and make two edits. First, replace
YourDataContextType with AdventureWorksDataContext. Second, change the value of
ScaffoldAllTables from False to True. (Scaffolding is disabled by default because it
adds some overhead to the web site, so you only want to enable it when you want to
use Dynamic Data with all pages in the web site.) The line should now look like the
following:

model.RegisterContext(GetType(AdventureWorksDataContext), _
 New ContextConfiguration() With {.ScaffoldAllTables = True})

That’s it. In Solution Explorer, right-click Default.aspx, and then click View in
Browser. You will get a page like that shown in Figure 4-40.

 ' Note: Make sure that you change "YourDataContextType" to the name of the data
 ' context class in your application.
 ' model.RegisterContext(GetType(YourDataContextType), New ContextConfiguration() _
 With {.ScaffoldAllTables = False})

 ' The following statement supports separate-page mode, where the List, Detail, Insert,
 ' and Update tasks are performed by using separate pages. To enable this mode,
 ' uncomment the following route definition, and comment out the route definitions
 ' in the combined-page mode section that follows.
 routes.Add(New DynamicDataRoute("{table}/{action}.aspx") With { _
 .Constraints = New RouteValueDictionary(New With {.Action = _
 "List|Details|Edit|Insert"}), _
 .Model = model})

 ' The following statements support combined-page mode, where the List, Detail, Insert,
 ' and Update tasks are performed by using the same page. To enable this mode,
 ' uncomment the following routes and comment out the route definition in the
 ' separate-page mode section above.
 'routes.Add(New DynamicDataRoute("{table}/ListDetails.aspx") With { _
 ' .Action = PageAction.List, _
 ' .ViewName = "ListDetails", _
 ' .Model = model})

 'routes.Add(New DynamicDataRoute("{table}/ListDetails.aspx") With { _
 ' .Action = PageAction.Details, _
 ' .ViewName = "ListDetails", _
 ' .Model = model})
End Sub

Example 4-8. The original global.asax before, you make any edits (continued)

ASP.NET Dynamic Data | 165

There are links for each of the tables you put in your object model. Clicking on any
of these links brings up the data for that table, as shown in Figure 4-41.

Each page automatically includes a huge amount of functionality. Drop-downs at the
top of the page allow you to filter the records displayed. You can click on any col-
umn heading to sort the table by that column. The first column includes links for
editing, deleting, or selecting the row. Clicking on the Edit link allows you to edit the
row with appropriate controls for the type of data (a TextBox for text data, for exam-
ple, or a CheckBox for a Boolean data), and then either accept or cancel the edits. The
Delete link deletes the row, and the Details link displays details about the row on a
separate page. Also, not visible in this figure, the bottom of the grid has links for pag-
ing through the data. Links are also provided to rows in related tables, although they
are also not shown in this figure.

All of this is totally customizable and extendable by editing the template files in the
DynamicData folder.

Figure 4-40. This Dynamic Data web site was created from templates with virtually no
handcoding.

166 | Chapter 4: Saving and Retrieving Data

Source Code Listings
The complete markup for the Default.aspx file in the AWProductData site is shown
in Example 4-9, with the code-behind shown directly after in Example 4-10.

Figure 4-41. The dynamically generated page for the Products table showing command links in
the first column to Edit, Delete, or Select a row, and filter drop-downs for all the Boolean fields.

Example 4-9. Default.aspx for AWProductData
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

Source Code Listings | 167

 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"

 SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [MakeFlag],
 [SafetyStockLevel], [ReorderPoint] FROM [Production].[Product]"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @ProductID"

InsertCommand="INSERT INTO [Production].[Product] ([Name], [ProductNumber],
 [MakeFlag], [SafetyStockLevel], [ReorderPoint])
 VALUES (@Name, @ProductNumber, @MakeFlag, @SafetyStockLevel,
 @ReorderPoint)"
 UpdateCommand="UPDATE [Production].[Product] SET [Name] = @Name,
 [ProductNumber] = @ProductNumber, [MakeFlag] = @MakeFlag,
 [SafetyStockLevel] = @SafetyStockLevel, [ReorderPoint] = @ReorderPoint
 WHERE [ProductID] = @ProductID" >
 <DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 <asp:Parameter Name="ProductID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 </InsertParameters>
 </asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False"
 DataKeyNames="ProductID" DataSourceID="SqlDataSource1"
 BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
 BorderWidth="1px" CellPadding="3" CellSpacing="2">
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"

Example 4-9. Default.aspx for AWProductData (continued)

168 | Chapter 4: Saving and Retrieving Data

 ButtonType="Button" ShowSelectButton="True" />
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 InsertVisible="False"
 ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="ProductNumber" SortExpression="ProductNumber" />
 <asp:CheckBoxField DataField="MakeFlag"
 HeaderText="MakeFlag" SortExpression="MakeFlag" />
 <asp:BoundField DataField="SafetyStockLevel"
 HeaderText="SafetyStockLevel" SortExpression="SafetyStockLevel" />
 <asp:BoundField DataField="ReorderPoint"
 HeaderText="ReorderPoint" SortExpression="ReorderPoint" />
 </Columns>
 <PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True" ForeColor="White" />
 <HeaderStyle BackColor="#A55129" Font-Bold="True" ForeColor="White" />
 </asp:GridView>
 <asp:Label ID="Label1" runat="server" Text="Name"></asp:Label>
 <asp:TextBox ID="txtName" runat="server" ReadOnly="True"></asp:TextBox>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </form>
</body>
</html>

Example 4-10. Default.aspx.vb for AWProductData

Partial Class _Default
 Inherits System.Web.UI.Page

Protected Sub GridView1_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles GridView1.RowDataBound
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber column
 If cellProductNumber.Text.Substring(0, 2) = "CA" Then
 cellProductNumber.ForeColor = Drawing.Color.Green
 End If

 Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
 Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
 If cb.Checked Then
 e.Row.Cells(2).ForeColor = Drawing.Color.Red
 End If
 End If

End Sub

Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, _

Example 4-9. Default.aspx for AWProductData (continued)

Source Code Listings | 169

The complete markup for the Default.aspx file in the AWProductDataOrderDetails
site is shown in Example 4-11, and the code-behind is shown in Example 4-12.

 ByVal e As System.EventArgs) _
 Handles GridView1.SelectedIndexChanged
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name column
 txtName.Text = cellName.Text
 End If
End Sub
End Class

Example 4-11. Default.aspx for AWProductDataOrderDetails
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_
Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [MakeFlag],
 [SafetyStockLevel], [ReorderPoint] FROM [Production].[Product]"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @ProductID"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber], [MakeFlag], [SafetyStockLevel], [ReorderPoint])
 VALUES (@Name, @ProductNumber, @MakeFlag, @SafetyStockLevel,
 @ReorderPoint)"
 UpdateCommand="UPDATE [Production].[Product] SET [Name] = @Name,
 [ProductNumber] = @ProductNumber, [MakeFlag] = @MakeFlag,
 [SafetyStockLevel] = @SafetyStockLevel, [ReorderPoint] = @ReorderPoint
 WHERE [ProductID] = @ProductID">
 <DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />

Example 4-10. Default.aspx.vb for AWProductData (continued)

170 | Chapter 4: Saving and Retrieving Data

 <asp:Parameter Name="ProductID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 </InsertParameters>
 </asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False"
 DataKeyNames="ProductID" DataSourceID="SqlDataSource1"
 BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
 BorderWidth="1px" CellPadding="3" CellSpacing="2">
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ButtonType="Button" ShowSelectButton="True" />
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 InsertVisible="False"
 ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber" HeaderText="ProductNumber"
 SortExpression="ProductNumber" />
 <asp:CheckBoxField DataField="MakeFlag" HeaderText="MakeFlag"
 SortExpression="MakeFlag" />
 <asp:BoundField DataField="SafetyStockLevel"
 HeaderText="SafetyStockLevel" SortExpression="SafetyStockLevel" />
 <asp:BoundField DataField="ReorderPoint" HeaderText="ReorderPoint"
 SortExpression="ReorderPoint" />
 </Columns>
 <PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True" ForeColor="White" />
 <HeaderStyle BackColor="#A55129" Font-Bold="True" ForeColor="White" />
 </asp:GridView>
 <asp:Label ID="Label1" runat="server" Text="Name"></asp:Label>
 <asp:TextBox ID="txtName" runat="server" ReadOnly="True"></asp:TextBox>

 <asp:GridView ID="GridView2" runat="server"
 DataSourceID="AdventureWorksOrderDetails"
 BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
 BorderWidth="1px"
 CellPadding="3" CellSpacing="2">
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
 <PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True" ForeColor="White" />
 <HeaderStyle BackColor="#A55129" Font-Bold="True" ForeColor="White" />

Example 4-11. Default.aspx for AWProductDataOrderDetails (continued)

Source Code Listings | 171

 </asp:GridView>
 <asp:SqlDataSource ID="AdventureWorksOrderDetails" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [SalesOrderID], [CarrierTrackingNumber], [OrderQty],
 [UnitPrice], [UnitPriceDiscount], [LineTotal]
 FROM [Sales].[SalesOrderDetail]
 WHERE ([ProductID] = @ProductID)
 ORDER BY [SalesOrderID]">
 <SelectParameters>
 <asp:ControlParameter ControlID="GridView1" Name="ProductID"
 PropertyName="SelectedValue" Type="Int32" />
 </SelectParameters>
 </asp:SqlDataSource>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </form>
</body>
</html>

Example 4-12. Default.aspx.vb for AWProductDataOrderDetails

Partial Class _Default
 Inherits System.Web.UI.Page

Protected Sub GridView1_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles GridView1.RowDataBound
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber column
 If cellProductNumber.Text.Substring(0, 2) = "CA" Then
 cellProductNumber.ForeColor = Drawing.Color.Green
 End If

 Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
 Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
 If cb.Checked Then
 e.Row.Cells(2).ForeColor = Drawing.Color.Red
 End If
 End If

End Sub

Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles GridView1.SelectedIndexChanged
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name column
 txtName.Text = cellName.Text
 End If
End Sub
End Class

Example 4-11. Default.aspx for AWProductDataOrderDetails (continued)

172 | Chapter 4: Saving and Retrieving Data

Summary
• Most useful web sites make use of a database. ASP.NET provides controls that

make it easy to connect to a database, and retrieve and edit data.

• The GridView is the most commonly used control for displaying data, although
there are others. The GridView can sort data, and present it in pages, for easy
reading.

• Data controls need to be bound to a data source to display data. To do that, you
provide a DataSource control, which connects to the database and retrieves the
data.

• You configure a DataSource control using a wizard that allows you to set a con-
nection string, and then helps you construct a SQL query for retrieving data, or
you can enter your own custom query.

• You create a new connection with the Add Connection dialog, and then you can
save it in your web.config file for future use.

• The SQL SELECT statement allows you to specify which columns of data you
want to retrieve, and from which table. The Wizard can configure this statement
for you automatically.

• The SQL INSERT, UPDATE, and DELETE statements allow you to add, edit, and
remove data, respectively. The Wizard can also generate these statements for
you automatically, and you can easily add buttons to perform these functions in
your GridView.

• Optimistic concurrency is a technique that protects your data by only changing
the database if no one else has changed it since you read the data. Again, the
Wizard can enable optimistic concurrency for you.

• The WHERE SQL clause filters the data you retrieve by specifying a condition for
the data. A row will only be retrieved if that condition is true.

• You can create event handlers for the GridView, which enables you to take action
on rows as they’re bound, and also allows you to take action on rows as they’re
selected.

• You can provide parameters to the SELECT query, which enables you to display
data in a GridView based on the value of another control, even another GridView.

• Language Integrated Query (LINQ) is a new language capability that allows you
to keep all of your code in one place, instead of separating it between the data-
base and the page, and also allows you to treat data in databases as code objects
that you can manipulate with object-oriented languages.

• LINQ maps the database to a set of classes. The easiest way to accomplish that
mapping in VS/VWD is with the Object Relational Designer.

• The DataContext is an object that transfers data between the object model and
the database itself.

Summary | 173

• The LinqDataSource control provides access to LINQ, just as the SqlDataSource
does for a SQL database.

• Adding a LINQ to SQL Classes item to your site adds a .dbml file to the App_Code
folder for your site, which holds the structures you create in the O/R designer.

• The .dbml file is associated with a .vb or .cs file that contains the actual data
classes.

• You configure the LinqDataSource control much the same as you would the
SqlDataSource control using the Configure Data Source wizard.

• Behind the scenes, the LinqDataSource control uses the ContextTypeName attribute
to connect to the DataContext class, and the Select attribute to specify proper-
ties to be selected from the table named in the TableName attribute.

• You can also use the LinqDataSource to edit the data in a GridView, but to do
that, the LinqDataSource must select all the columns of the table, even if they’re
not displayed in the GridView.

• Dynamic Data, a feature of ASP.NET 3.5 Service Pack 1, links the presentation
of data with the way that data is stored and managed.

• With Dynamic Data, web pages can determine, at runtime, the appropriate pre-
sentation for data stored in the database, a technique called scaffolding.

• Dynamic Data builds on the Object Model created by LINQ.

• Dynamic Data makes use of templates: field templates define the behavior of
individual data types; page templates define the behavior of entire sets of data.
You can customize these templates to fit your needs.

Adding the ability to access a database is arguably the most powerful improvement
you can make to your site. It’s easy see how accessing a database would make the
Order Form site from previous chapters that much more useful. Even the best order
form, though, can’t retrieve the right data if users don’t give it valid input—if they
enter a four-digit zip code, for example, or an improperly formatted credit card num-
ber. The whole thing would work much more smoothly if there was a way to check
that the user’s responses are valid before you spend the time accessing the database.
The good news is that ASP.NET provides such a way, called validation, and that’s
what you’ll learn about in the next chapter.

174 | Chapter 4: Saving and Retrieving Data

B R A I N B U I L D E R

Quiz
1. What type of control do you need to retrieve data from the database?

2. What is the name of the process for allowing a control, such as a GridView, to
extract data from the retrieved tables and format it properly?

3. What is a connection string?

4. What are the four elements of CRUD?

5. How do you attach a data source to a GridView?

6. If your table has many rows, what should you do in the GridView to make it eas-
ier to read?

7. How can you enable users to change the contents of the database from your
GridView?

8. How can you take an action based on the data in a row, as the table is loaded?

9. If you’re using a using a LinqDataSource control connected to a GridView, and
you want users to be able to edit the data in the database, how do you need to
configure the data that the LinqDataSource retrieves?

10. What are templates, in terms of Dynamic Data?

Exercises
Exercise 4-1. We’ll start out easy, letting you create your own GridView. Create a
new web site called Exercise 4-1. Add to it a GridView control that shows records
from the Product table with a Weight greater than 100. The GridView should list the
Product ID, Product Name, Product Number, Color, and List Price. The user should
be able to update and delete records, sort by rows, and page through the content.
Use the Professional formatting scheme to give it some style. The result should look
like Figure 4-42.

Exercises | 175

Exercise 4-2. This one is a little trickier, but it lets you see how users could interact
with the data in a GridView. Copy the web site from Exercise 4-1 to a new web site,
called Exercise 4-2. Add the ability to select rows in your GridView. Add two labels
and two read-only textboxes below the GridView to show the selected item’s Product
Name and color. The result should look like Figure 4-43.

Figure 4-42. Your goal for Exercise 4-1.

176 | Chapter 4: Saving and Retrieving Data

Exercise 4-3. Now it’s time to combine what you’ve learned from previous chapters
with the new stuff, and throw a little AJAX into the mix as well. Create a new web
site called Exercise 4-3. This site should have a radio button that gives readers the
opportunity to select whether they want to see data from the Employee table or the
Customer table. Use two Panel controls. The Employee panel should have a GridView
showing the EmployeeID, ManagerID, and Title. The Customer panel should have a
GridView showing the Customer ID, Account Number, and Customer Type. The
table that the reader chooses should appear dynamically in a new panel; the other
one should be invisible. The result should look like Figure 4-44.

Figure 4-43. Your goal for Exercise 4-2.

Exercises | 177

Exercise 4-4. Ready for a bit of a challenge? Sure you are. You’re going to see how to
retrieve data based on multiple customer selections—like you would in a shopping
site. Create a new web site called Exercise 4-4. This site should have three drop-
down menus:

• A Category drop-down list that lists the product categories from the
ProductCategory table

• A Subcategory drop-down list that lists the subcategories of the Category listed
in the first drop-down, by using the ProductSubcategory table

• A Color drop-down list that lists the available product colors from the Product
drop-down list

In addition, there should be a Submit button that users click. Below all of this is a
GridView that displays the Products (from the Product table) that match the chosen
subcategory and color. (You don’t need to match the category—all that control does
is dictate the contents of the Subcategory table.) The GridView should display the
ProductID, Name, Product number, and the color, just so you can tell it’s working.

Figure 4-44. Your goal for Exercise 4-3.

178 | Chapter 4: Saving and Retrieving Data

(Hint: You can use the DISTINCT SQL statement to avoid duplication in the grid.) It
should look like Figure 4-45. Note that many of the possible combinations in the
drop-down lists won’t produce any results in the grid. You can test your solution
with the choices shown in Figure 4-45.

Figure 4-45. Your goal for Exercise 4-4.

179

Chapter 5 CHAPTER 5

Validation5

As you have seen in the preceding chapters, many web applications involve user
input. The sad fact is, however, that users make mistakes: they skip required fields,
they put in six-digit phone numbers, and they return all manner of incorrectly for-
matted data to your application. Your database routines can choke on corrupted
data, and orders can be lost. An incorrectly entered credit card number or omitted
address may result in a missed sales opportunity. Fortunately, you can write code
that checks the user’s input before it gets anywhere near your database code, or any-
thing else dangerous. The process of verifying the user’s input is called validation.

Traditionally, it takes a great deal of time and effort to write reliable validation code.
You need to check each field and create routines for ensuring data integrity. If bad
data is found, you need to display an error message so the user knows there is a
problem and how to correct it.

In any given application, you may choose to verify that the data is formatted cor-
rectly, or that the values fall within a given range, or that certain fields have a value at
all. For example, if you’re processing an order, you may need to ensure that the user
has input an address and phone number, that the phone number has the right num-
ber of digits (and no letters), and that the Social Security number entered is in the
appropriate form of nine digits separated by hyphens.

Some applications require more complex validation, in which you validate that one
field is within a range established by two other fields. For example, you might ask in
one field what date the customer wishes to arrive at your hotel, and in a second field
you might ask for the departure date. When the user books a dinner reservation,
you’ll want to ensure that the date the user chooses is between the arrival and depar-
ture dates.

There is no limit to the complexity of the validation routines you may need to write.
Credit cards have checksums built into their values, as do ISBN numbers. Zip and
postal codes follow complex patterns, as do international phone numbers. You may
need to validate passwords, membership numbers, dollar amounts, dates, runway
choices, or launch codes.

180 | Chapter 5: Validation

In addition, you usually want all of this validation to happen client side so you can
avoid the delay of repeated round trips (postbacks) to the server while the user is
tinkering with his input. In the past, this was solved by writing client-side JavaScript
to validate the input, and then writing server-side script to handle input from brows-
ers that don’t support client-side programming. In addition, as a security check, you
may want to do server-side validation even though you have validation implemented
in the browser, as users can circumvent client-side validation code by creating a mali-
cious page that masquerades as a legitimate page (a tactic known as spoofing). Typi-
cally, these security measures involved writing your validation code twice, once for
the client and once for the server.

As you can see, in traditional web programming, validation requires extensive custom
programming. The ASP.NET framework simplifies this process by providing rich con-
trols for validating user input. In addition to checking the validity of the data entered,
the validation controls allow you to specify how and where error messages will be dis-
played: either inline with the input controls, aggregated in a summary report, or both.
You can use these controls to validate input for HTML and ASP.NET server controls.
In this chapter, you’ll learn how to use all these validation controls, and you’ll create a
number of pages that you can adapt right away to use on your site.

Validation Controls
You add validation controls to your ASP.NET document as you would add any other
control. As a property of the validation control, you specify which other control you’re
validating. You may freely combine the various validation controls, and you may even
write your own custom validation controls, as you’ll see later in this chapter.

With current browsers that support DHTML, .NET validation is done on the client
side, avoiding the necessity of a round trip to the server. (This client-side validation
uses JavaScript but is not part of the AJAX library.) With older browsers, your code
is unchanged, but the code sent to the client ensures validation at the server.

Validation occurs whenever the page tries to post back to the server. Sometimes you
don’t want any validation to occur, such as when a Cancel button is clicked. To pre-
vent validation in these circumstances, many postback controls—such as Button,
ImageButton, LinkButton, ListControl, and TextBox—have a CausesValidation prop-
erty, which you can set to dictate whether validation is performed on the page when
the control’s default event is raised.

If CausesValidation is set to true, the default value—the postback—will not occur if
any control on the page fails validation. This is a big deal, because it means the page
will not post to the server unless all of the controls on the page are in a valid state. If
CausesValidation is set to false, however, no validation will occur when that button
is used to post the page.

Validation Controls | 181

Sometimes you need a postback to be allowed to proceed even if some controls on
the page are invalid. For example, suppose you have a page that gathers both address
and tax information. A button on the page processes the address fields, which might
be before the user has entered some unrelated tax information. However, if a
required tax field is missing, the page will not post.

You solve this problem by using the ValidationGroup property. You can group a
bunch of validation controls together with the control (or controls) that causes the
postback so that only validation controls that are members of the group will be
applied. In this example, you can require that all the address controls are valid before
allowing the Address button to post, but allow the post even if some tax fields are
invalid.

ASP.NET includes the following validation controls:

RequiredFieldValidator
Ensures the user does not leave the field blank and skip over your input con-
trol. A RequiredFieldValidator can be tied to a text box, which means that
the page will only pass validation if the user enters something into the text
box. With selection controls, such as a drop-down or radio buttons, the
RequiredFieldValidator ensures the user makes a selection other than the default
value you specify. The RequiredFieldValidator does not examine the validity of
the data; it only ensures that some data is entered or chosen.

RangeValidator
Ensures that the value entered is within a specified lower and upper boundary.
You can specify the range to be within a pair of numbers (such as greater than 10
and less than 100), a pair of characters (greater than D and less than K), or a pair
of dates (after 1/1/08 and before 2/28/08).

CompareValidator
Compares the user’s entry against another value. It can compare against a con-
stant you specify at design time, or against a property value of another control. It
can also compare against a database value.

RegularExpressionValidator
One of the most powerful validators, it compares the user’s entry with a regular
expression you provide. Regular expressions are a powerful way to match a pat-
tern of letters, numbers, or symbols, as you’ll see later in the chapter. You can
use this validator to check for valid Social Security numbers, phone numbers,
password strength, and so forth.

CustomValidator
If none of these controls meets your needs, you can create your own using the
CustomValidator. This checks the user’s entry against whatever algorithm you
provide in a custom method.

182 | Chapter 5: Validation

In the remainder of this chapter, we’ll examine how to use each of these controls to
validate data in ASP.NET applications.

The RequiredFieldValidator
The RequiredFieldValidator ensures the user provides a value for your control, or in
the case of drop drop-down lists, that the user picks something other than the
default value.

To get started, create a new web site called RequiredFieldValidator. In this section,
you’re going to create the shipping selection web page shown in Design view in
Figure 5-1. This is a pretty standard shipping form, as you can see on any number of
web sites. You can imagine how you’d incorporate such a page into your own site.

Although ASP.NET validation controls do much of their work client-
side using JavaScript, they neither use nor depend on AJAX, including
the ScriptManager control, so you don’t need to include one for this
page.

When the user clicks the Submit button, the page is validated to ensure that each
field has been modified. If not, the offending field is marked with an error message in
red, as shown in Figure 5-2.

Figure 5-1. This shipping selection page incorporates RequiredFieldValidator controls to ensure
that users make selections in each field.

The RequiredFieldValidator | 183

You’ll use a five-row, three-column HTML table to create the page layout, into
which you’ll place the necessary controls. Using what you’ve learned from the previ-
ous chapters, you can create the table fairly easily, either directly in Source view, or
using the Table Wizard, so we won’t go over that here. Adding the controls to the
form is also pretty easy, as you’ll see.

The first column of the table contains some descriptive captions for the input fields,
with the middle column containing the controls to be validated (a DropDownList, a
RadioButtonList, and a TextBox). The third column will contain the validation con-
trols and any error messages they want to display.

The first row of the table should be a single cell spanning all three columns (using
the HTML colspan attribute) containing a Label for displaying any messages. Set the
ID of that Label to lblMsg, and set the Text property to an empty string (Text="").

The first row of user input controls has a DropDownList in the middle column named
ddlShipper. Use the ListItem Collection Editor to set the values for the Shipper
DropDownList to the following:

-- Please Select a Shipper --
US Postal Service
Overnight Express
United Shipping Service

Figure 5-2. The user of this page didn’t provide any shipping information before clicking Submit,
so the RequiredFieldValidator controls return errors, which you can see in the column on the right.

184 | Chapter 5: Validation

WHL
Pony Express
Starship Transporter

The first item is particularly important, as you’ll see in a minute.

For each field that you want validated, add a RequiredFieldValidator control, which
is a control like any other. Open the Validation section of the Toolbox, and drag
three RequiredFieldValidator controls into the table, into the third cell of each of the
three middle rows, as shown previously in Figure 5-1.

The RequiredFieldValidator control has its own ID, and it also asks for the ID of the
control you wish to validate. Therefore, set the ID of the first RequiredFieldValidator
you added to rfvShipper, and set its ControlToValidate property to ddlShipper (the
drop-down list that you are validating). Delete the text in the ErrorMessage property
for the moment; you don’t need it right now. You’ll need to include some text to
show to the user if he doesn’t make a selection, though, so include the text “Please
select a shipper” between the opening and closing tags of the control. You could also
set this text using the Text property.

The RequiredFieldValidator has an additional attribute, InitialValue, which you
should set to the initial value of the control being validated, in this case, the drop-
down box. If the user clicks Submit, this initial value will be compared with the value
of the drop-down, and if they are the same, the error message will be displayed. This
forces the user to change the initial value. In this case, the first item in the drop-
down is the bit of text asking the user to make a choice. That isn’t a valid selection,
so you need to make sure that the user chooses something else, by setting
InitialValue to be the same as that text prompt. You don’t want to use InitialValue
if you have a default shipper, for example, because that would prevent the user from
selecting the default. All this is shown in the following snippet in Source view:

<asp:RequiredFieldValidator ID="rfvShipper" runat="server"
 ControlToValidate="ddlShipper"
 InitialValue="-- Please Select a Shipper --">
 Please Select a Shipper
</asp:RequiredFieldValidator>

Make sure the Display attribute is set to Static (the default), which tells ASP.NET to
allocate room on the page for the validator whether there is a message to display or
not. If you set this to Dynamic, space will not be allocated until (and unless) an error
message is displayed. Dynamic allocation is powerful, but it can cause your controls
to bounce around on the page when the message is displayed. We’ll show you how
this looks in a minute.

In the second input row, add a RadioButtonList called rblUrgency, with the items
shown previously in Figure 5-1. Give the second RequiredFieldValidator an ID of
rfvUrgency, and set its ControlToValidate property to rblUrgency, to ensure that one

The RequiredFieldValidator | 185

of the radio buttons in rblUrgency is selected. Also, change the Text property to
“Please select an Urgency”:

<asp:RequiredFieldValidator ID="rfvUrgency" runat="server"
 ControlToValidate="rblUrgency"
 Display="Static">
 Please select an Urgency
</asp:RequiredFieldValidator>

You do not need to indicate an initial value this time. Because the control is a radio
button list, the validator knows the user is required to pick one of the buttons; if any
button is chosen, the validation will be satisfied.

Finally, to complete the example, add a multiline text box in the third row and
assign it an ID of txtInstructions. Use the third RequiredFieldValidator, named
rfvInstructions, to require the user to enter some text in it. The validator is straight-
forward; set the text box as ControlToValidate, and enter the error message “Please
provide special instructions” into the Text property, for display if the box is left
empty:

<asp:RequiredFieldValidator ID="rfvInstructions" runat="server"
 ControlToValidate="txtInstructions"
 Display="Static">
 Please provide special instructions
</asp:RequiredFieldValidator>

In a real site, the Special Instructions field would probably be optional, but we’ll
make it required for this example.

In the last row, place a Button in the middle column, call it btnSubmit, and set its
Text to “Submit”. The only code required in the code-behind file is the event han-
dler for the Submit button. Double-click on the button in Design view, and you’ll be
taken to the Click event handler, as usual. Enter the highlighted code from
Example 5-1.

Example 5-1. The Button Click event handler for RequiredFieldValidator checks the validation for
every control on the page
Protected Sub btnSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSubmit.Click
 If Page.IsValid Then
 lblMsg.Text = "Page is valid!"
 Else
 ' this code never reached
 lblMsg.Text = "Some of the required fields are empty."
 End If
End Sub

186 | Chapter 5: Validation

When the Submit button is clicked, the validation for each control is checked, and if
every control is valid, the IsValid property of the page will return true.

Now, go back and set the Display property of all the validation controls to Dynamic.
Run the application and see what happens. No space is allocated for the validation
controls, and the browser will consider your table to be only two columns wide
rather than three. That is, the table will not allocate any space for the validation mes-
sages, and will recognize only one column for the prompt and the other for the con-
trols. When you validate the controls (by clicking the Submit button), the table will
widen, which can be either disconcerting or attractive, depending on how you design
the layout of the page. In this case, you can see the controls jump around when you
click Submit, which probably isn’t what you want, so after you’ve played with it a
bit, go back and change the controls back to Static.

Take a look back at Example 5-1. Notice the comment that says the else clause will
never be reached. Recall that the validation occurs client-side. If the page is not valid,
it is never even posted to the server, and the server-side code does not run (unless, of
course, you set the CausesValidation property to false, as described at the begin-
ning of this chapter).

You can make your pages a bit friendlier for your users by placing the focus on the
first control that fails validation. To do so, add the SetFocusOnError property to each
validation control and set it to true (the default is false):

<asp:RequiredFieldValidator runat=server
 id="rfvInstructions"
 ControlToValidate="txtInstructions"
 Display="Static"
 SetFocusOnError="true"
 Width="100%" >
 Please provide special instructions
</asp:RequiredFieldValidator>

Run your application again, and click Submit without adding special instructions.
After validation, you not only get the message asking you to provide them, but the
focus is on the TextBox control, ready for you to enter text. If you set SetFocusOnError
on more than one control, and if the page is invalid, the focus will be set to the first
control that fails validation and has this property set to true.

The complete source code for the markup file, default.aspx, for this example is listed
in Example 5-2.

Example 5-2. Default.aspx forRequiredFieldValidator
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

The RequiredFieldValidator | 187

<head runat="server">
 <title>Required Field Validation</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr>
 <td colspan="3">
 <asp:Label ID="lblMsg" runat="server" Text="" />
 </td>
 </tr>
 <tr>
 <td align="right" valign="top">Shipper:</td>
 <td>
 <asp:DropDownList ID="ddlShipper" runat="server">
 <asp:ListItem>-- Please Select a Shipper --</asp:ListItem>
 <asp:ListItem>US Postal Service</asp:ListItem>
 <asp:ListItem>Overnight Express</asp:ListItem>
 <asp:ListItem>United Shipping Service</asp:ListItem>
 <asp:ListItem>WHL</asp:ListItem>
 <asp:ListItem>Pony Express</asp:ListItem>
 <asp:ListItem>Starship Transporter</asp:ListItem>
 </asp:DropDownList>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvShipper" runat="server"
 ControlToValidate="ddlShipper"
 InitialValue="-- Please Select a Shipper --"
 SetFocusOnError="true">
 Please Select a Shipper
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align="right" valign="top">Urgency:</td>
 <td >
 <asp:RadioButtonList ID="rblUrgency" runat="server">
 <asp:ListItem>Today</asp:ListItem>
 <asp:ListItem>2nd Day</asp:ListItem>
 <asp:ListItem>Normal</asp:ListItem>
 <asp:ListItem>Yesterday</asp:ListItem>
 </asp:RadioButtonList>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvUrgency" runat="server"
 ControlToValidate="rblUrgency"
 Display="Static"
 SetFocusOnError="true">
 Please select an Urgency
 </asp:RequiredFieldValidator>
 </td>

Example 5-2. Default.aspx forRequiredFieldValidator (continued)

188 | Chapter 5: Validation

The Summary Control
As you saw in the previous example, putting your validation feedback next to each con-
trol can be useful, but it leads to some possible layout problems. Fortunately, ASP.NET
lets you decide how you want to report validation errors. For example, rather than put-
ting error messages alongside the control, you can summarize all the validation fail-
ures with a ValidationSummary control. This control can place a summary of the
errors in a bulleted list, a simple list, or a paragraph that appears elsewhere on the
web page or in a pop-up message box.

To see how this works, create a copy of the RequiredFieldValidator web application
called RequiredFieldValidatorSummary. Switch to Source view. From the Validation
section of the Toolbox, drag a ValidationSummary control onto the bottom of the
page, after the </table> tag.

The steps for copying a web site to a new web site are presented in
Appendix B.

 </tr>
 <tr>
 <td align="right" valign="top">Instructions</td>
 <td>
 <asp:TextBox ID="txtInstructions" runat="server"
 Rows="3" TextMode="MultiLine"></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvInstructions" runat="server"
 ControlToValidate="txtInstructions"
 Display="Static"
 SetFocusOnError="true">
 Please provide special instructions
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />
 </td>
 <td></td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Example 5-2. Default.aspx forRequiredFieldValidator (continued)

The Compare Validator | 189

Set the attributes of this ValidationSummary control to the values highlighted in the
following code snippet (you can do this in the Properties window as well, of course):

<asp:ValidationSummary ID="vsSummary" runat="server"
 DisplayMode="BulletList"
 HeaderText="The following error(s) were found:"
 ShowSummary="true" />

To make this work, you’ll need to add an ErrorMessage attribute to the other valida-
tion controls. For example, modify the first validation control for the Shipper drop-
down menu as follows:

<asp:RequiredFieldValidator ID="rfvShipper" runat="server"
 ControlToValidate="ddlShipper"
 Display="Static"
 InitialValue="-- Please Select a Shipper --"
 ErrorMessage="You did not select a shipper from the drop-down."
 SetFocusOnError="true">*
</asp:RequiredFieldValidator>

Note that the asterisk (*) is added after the opening tag for the validator, and not in
the Text property this time. If this control reports a validation error, the text in the
ErrorMessage attribute will be displayed in the summary. You’ve also modified the
validator to display an asterisk rather than the more complete error message. Now
that you have a summary, you don’t need to put a complete error message by each
control; you need only flag the error. Now, make similar changes for each of the
other RequiredFieldValidator controls (you can use the error text displayed in
Figure 5-3, or feel free to improvise).

Run your application, and click Submit without making any choices, so that none of
the validation controls pass muster. The results are shown in Figure 5-3.

In Figure 5-3, the summary of validation errors is presented as a bulleted list. This is
the default display mode, although we did set it explicitly. Messages can also be dis-
played as a simple list or a single paragraph by setting the DisplayMode property of
the ValidationSummary to BulletList, List, or SingleParagraph, respectively.

The Compare Validator
While the ability to ensure the user has made some sort of entry is great, you will
often want to validate that the entry content is within certain guidelines. A common
requirement is to compare the user’s input to a constant value, the value of another
control, or a database value.

To see this at work, make a new copy of the RequiredValidationSummary web site and
name the new web site CompareValidator. In this example, you’ll add a new control
that asks the user how many packages she expects to receive as part of a shipment.

190 | Chapter 5: Validation

To do so, you’ll first need to add a new table row before the row that contains the
Submit button. You can do this in Source or Design view, although the latter makes
it very easy.

Click anywhere in the row containing the Submit button. Then, right-click to get a
pop-up menu and select Insert, then Row Above to insert a new table row above the
current row, as shown in Figure 5-4.

This will insert a blank HTML table row above the selected row. In that new row,
insert some caption text, a text box (call it txtNumPackages), a required field valida-
tor, and a compare validator into the correct table cells. You may want to switch to
Source view to tweak the layout with a
 between the two validation controls.
Adjust the properties for the two new validators as shown in Example 5-3.

Figure 5-3. When you use a Validation Summary, the controls that didn’t pass validation are
marked, but more importantly, the summary appears on the page telling the user exactly what’s
wrong.

The Compare Validator | 191

Figure 5-4. When you select a table row and right-click, the pop-up menu gives you options for
inserting a new row or cell where you want.

Example 5-3. The CompareValidator control compares a control to a set value
<tr>
 <td>Number of packages</td>
 <td>
 <asp:TextBox ID="txtNumPackages" runat="server"></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvNumPackages" runat="server"
 ControlToValidate="txtNumPackages"
 ErrorMessage="You did not enter the number of packages."
 SetFocusOnError="True">*
 </asp:RequiredFieldValidator>

 <asp:CompareValidator ID="cvNumPackages" runat="server"
 ControlToValidate="txtNumPackages"
 ErrorMessage="Invalid number of packages"
 Operator="GreaterThan" SetFocusOnError="True"
 Type="Integer" ValueToCompare="0">*
 </asp:CompareValidator>
 </td>
</tr>

192 | Chapter 5: Validation

The table now looks like Figure 5-5 in Design view, with the two validation controls
in the last cell circled.

Run your application again, and try entering various values into the field. You’ll see
that if you enter 0, or a negative number, the validation fails. If you enter a positive
number, the control passes validation. If you leave it blank, you’ll notice that it still
fails. Without the RequiredFieldValidator, though, it would have passed.

Both validators are placed into the same cell in the table, and both validators vali-
date the same control: txtNumPackages. The RequiredFieldValidator is needed
because the CompareValidator will always return true for null or empty values, as
nonintuitive as that sounds.

The CompareValidator’s ValueToCompare attribute takes a constant; in this case, zero.
The Operator attribute determines how the comparison will be made (that is, how
the input value must be related to the ValueToCompare).

The possible values for the Operator attribute are Equal, NotEqual, GreaterThan,
GreaterThanEqual, LessThan, LessThanEqual, and DataTypeCheck. In this example, to
be valid, the input value must be greater than the ValueToCompare constant. Or to put
in more relevant terms, the user must send more than zero packages.

Figure 5-5. A new table row with a TextBox to be validated, and the RequiredFieldValidator and
CompareValidator validation controls in Design view.

Two validator
controls

The Compare Validator | 193

You must use the Type attribute to tell the control what type of value it is using. The
Type attribute takes one of the ValidationDataType enumerated values: Currency,
Date, Double (a Double is VB-speak for a noninteger number, i.e., a decimal number),
Integer, or String. In the example, the values are compared as integers, and thus,
entering (for example) a character will cause the validation to fail.

Checking the Input Type
Rather than checking that the number of packages is greater than zero, you might
want to check that it is a number at all (rather than a letter or date). To do this, you
make a minor change to the CompareValidator.

Remove the ValueToCompare attribute and change the Operator attribute from
GreaterThan to DataTypeCheck. Because the Type attribute is Integer, the control will
report any integer value as valid. Use the following code to replace that for the
CompareValidator you added in the last section:

<asp:CompareValidator ID="cvNumPackages" runat="server"
 ControlToValidate="txtNumPackages"
 ErrorMessage="Invalid number of packages"
 Operator="DataTypeCheck" SetFocusOnError="True"
 Type="Integer" >*
</asp:CompareValidator>

Now, run the application again, and try entering random data in the text box. You’ll
see that numbers, even zero or negative numbers, pass validation, while anything else
fails. You can imagine how this sort of validation would be useful for order num-
bers, credit card numbers, or anyplace where the type of data is important.

Comparing to Another Control
You can compare a value in one control to the value in another control, rather than
to a constant. A classic use of this might be to ask the user to enter his password
twice and then validate that both entries are identical.

The common scenario is that you’ve asked the user to pick a new password. For
security, when the password is entered, the text is disguised with asterisks. Because
this will be the password the user will need to log in, you must validate that the user
entered the password as intended, without errors. The typical solution is to ask the
user to enter the password a second time, and then check that the same password
was entered each time. The CompareValidator is perfect for this.

To demonstrate this, you’ll need to add two table rows to your page, each with a
TextBox for use as a password field. The first of these password fields will have a
RequiredFieldValidator control; the second will have both a RequiredFieldValidator
and a CompareValidator. You can add these rows and controls as you just did in
Design view, or directly in Source view. Either way, the markup will look something

194 | Chapter 5: Validation

like that listed in Example 5-4. Be sure to set the correct ControlToValidate attributes
of all these new validation controls, as well as the other attributes.

Go ahead and test it out. If the strings you enter don’t match, the control will fail
validation.

The first new table row contains the TextBox control with its TextMode attribute set to
Password. It also contains a RequiredFieldValidator to ensure the user doesn’t leave
the field blank.

Example 5-4. You can perform password validation using the CompareValidator control by
comparing one control to another
<!-- Text fields for passwords -->
<tr>
 <td>Enter your password:</td>
 <td>
 <asp:TextBox ID="txtPassword1" runat="server"
 TextMode="Password" Width="80"></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvTxtPassword1" runat="server"
 ControlToValidate="txtPassword1"
 ErrorMessage="Please enter your password."
 SetFocusOnError="True">*
 </asp:RequiredFieldValidator>
 </td>
</tr>
<!-- Second password for comparison -->
<tr>
 <td>Re-Enter your password:</td>
 <td>
 <asp:TextBox ID="txtPassword2" runat="server"
 TextMode="Password" Width="80"></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvTxtPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ErrorMessage="Please re-enter your password."
 SetFocusOnError="True">*
 </asp:RequiredFieldValidator>

 <!-- Second password must match the first -->
 <asp:CompareValidator ID="cvPasswords" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 SetFocusOnError="true"
 Type="String"
 Operator="Equal"
 ErrorMessage="Passwords do not match">*
 </asp:CompareValidator>
 </td>
</tr>

Range Checking | 195

The second row contains a second password text box and a second
RequiredFieldValidator (again, the user cannot leave the field blank), but it uses a
CompareValidator to check the value of its associated TextBox (txtPassword2) against
that of the first TextBox (txtPassword1) to verify they both have the same content.
The Operator property is set to Equal, and the Type property is set to String, so the
two strings must match. Notice the two properties set:

ControlToValidate="txtPassword2"
ControlToCompare="txtPassword1"

Both text boxes must have a RequiredField validator. If the
CompareValidator compares a string against a null or empty string
value, it will pass validation.

Range Checking
At times, you’ll want to validate that a user’s entry falls within a specific range. That
range can be within a pair of numbers, characters, or dates. In addition, you can
express the boundaries for the range by using constants or by comparing its value
with values found in other controls.

In this example, you’ll prompt the user for a number between 10 and 20, and then
validate the answer to ensure it was entered properly. To do so, create a new web site
named RangeValidator. You’ll create this exercise entirely in Design mode. To begin,
drag four controls onto your page: a label, a text box, a button, and of course, a
RangeValidator control, as shown in Figure 5-6.

Figure 5-6. Create the RangeValidator page in Design mode. Notice how the RangeValidator
control shows up.

196 | Chapter 5: Validation

Click on the Label and set its Text property to “Enter a number between 10 and 20:”.
Click on the TextBox, set its ID to txtValue. Click the button and set its Text to
Submit. Finally, click on the RangeValidator, and in the Properties window, click
Type. Choose Integer from the drop-down list. Set the MinimumValue property to 10
and the MaximumValue property to 20. Next, click on the ControlToValidate property,
pick the text box, and set the Text property to “Between 10 and 20 please.”

Run your application. Enter a value and click Submit. The text “Between 10 and 20
please” will be displayed if the value is not within the range of values specified by the
MinimumValue and MaximumValue attributes. The Type attribute designates how the
value should be evaluated and may be any of the following types: Currency, Date,
Double, Integer, or String.

If there are no validation errors, the page can be submitted; otherwise, the range
checking error message is displayed.

If the user leaves the field blank, the validation will pass and the page will be submit-
ted. You’ll want to ensure some value is entered, so add a RequiredFieldValidator in
addition to the RangeValidator.

Regular Expressions
Often, a simple value or range check is insufficient; you must check that the form of
the data entered is correct. For example, you may need to ensure that a zip code is five
digits with the option to accept an extra four digits, an email address is in the form
name@place.com, credit card information matches the right format, and so forth.

A regular expression validator allows you to verify that a text field matches a regular
expression. Regular expressions are a language for describing and manipulating text.

For complete coverage of regular expressions, see Mastering Regular
Expressions, by Jeffrey E. F. Friedl (O’Reilly).

A regular expression consists of two types of characters: literals and metacharacters.
A literal is a character you wish to match in the target string. A metacharacter is a
special character or sequence of characters that acts as a command to the regular
expression parser. (The parser is the engine responsible for understanding the regu-
lar expression.) Consider this regular expression:

^\d{5}$

This will match any string that has exactly five numerals. The initial metacharacter, ^,
indicates the beginning of the string. The second metacharacter, \d, indicates a digit.
The third metacharacter, {5}, indicates five of the digits, and the final metacharacter, $,
indicates the end of the string. Thus, this regular expression matches five digits
between the beginning and end of the line and nothing else.

name@place.com

Regular Expressions | 197

When you use a RegularExpressionValidator control with client-side
validation, the regular expressions are matched using JScript, the
Microsoft version of JavaScript. This may differ in small details from
the regular expression checking done on the server.

A more sophisticated algorithm might accept a five-digit zip code or a nine-digit zip
code in the format of 12345-1234 by using the | metacharacter, which represents the
“or” operator. Rather than using the \d metacharacter, you could designate the range
of acceptable values:

[0-9]{5}|[0-9]{5}-[0-9]{4}

To see how this works, make a copy of the RangeValidator web site you just created,
and name it RegularExpressionValidator. Change the Label text to “Enter a U.S. zip
code:”. Replace the RangeValidator control with a RegularExpressionValidator
control.

Use the Properties window to set the ControlToValidate to txtValue and set the text
to “Please enter a valid U.S. zip code.” Click on the property for Validation Expres-
sion, and click on the ellipsis. A Regular Expression Editor pops up with a few com-
mon regular expressions; you can also enter your own. Scroll down and choose U.S.
ZIP code, as shown in Figure 5-7.

Figure 5-7. The Regular Expression Editor makes it a snap to use the RegularExpressionValidator.
Just select the ValidationExpression in the Properties window, and then click the ellipsis button to
open the editor.

198 | Chapter 5: Validation

Run the program, and test out the field by entering some responses. You will see that
anything with a format of either a standard five digit zip code or a “Zip+4” will pass
validation, but anything else will fail. Note, though, that this validator simply checks
the format of the input; it doesn’t check whether the input is actually a valid zip
code.

If you choose “Custom,” the Validation expression box will be blank,
allowing you to enter any expression you choose. For help with creat-
ing custom regular expressions, we recommend the program RegEx
Buddy (http://www.RegExBuddy.com).

Custom Validation
There are times when the validation of your data is so specific to your application
that you will need to write your own validation method. The CustomValidator is
designed to provide all the infrastructure support you need. You write a method that
tests the user’s input in whatever way you need, and returns a Boolean value: true or
false. Then, you add a CustomValidator control to the page and point it to your vali-
dation method. The CustomValidator control takes care of all the rest of the work.

Because validation can be performed on the client (depending on the browser) and
the server, the CustomValidator has attributes for specifying a server-side and client-
side method for validation. The server-side method can be written in any .NET lan-
guage, such as C# or VB.NET, but the client-side method must be written in a
scripting language understood by the browser, such as VBScript or JavaScript.

The code functionality is duplicated on the server for two reasons. First, as men-
tioned at the beginning of this chapter, it prevents a malicious user from bypassing
the client-side validation, and second, it makes the page compatible with older
browsers that may not support client-side validation or browsers that have script
disabled.

To get you started, once again copy the RegularExpressionValidator web site to a
new site named CustomValidator. In this example, you want to ensure that the user
enters an even number.

This time, you’ll report an error if the number is not evenly divisible by 2. You can
imagine, however, that you could use this technique to perform a checksum on a
credit card or ISBN number or otherwise perform complex data checking.

Most of these checks can be done more easily with a Regular Expres-
sion Validator; the custom validator should be used only as a last
resort.

http://www.RegExBuddy.com

Custom Validation | 199

Replace the RegularExpressionValidator with a CustomValidator. Set the
ControlToValidate field to the ID of the appropriate TextBox, and make sure that
EnableClientScript is set to true (the default). Update the Label text, and set the
Text property to “Please enter an even number.”

CustomValidators have an additional property that can save you a lot of special cod-
ing: ValidateEmptyText:

ValidateEmptyText=false

If you set this property to false (the default), the text field will be considered invalid
if it is empty, avoiding the need for the RequiredFieldValidator that you needed in
the previous examples.

The key to making your custom validator work is in setting the client-side validator,
which you do in the ClientValidationFunction property. Set this property to
ClientValidator, which is the name of a JavaScript function you are going to write
momentarily. Also, click the Events lightning bolt button, and set the ServerValidate
event handler to ServerValidator, a method in the code-behind you are also going to
write in just a bit.

To create the JavaScript function, add the following code directly to the markup file
in Source view, between the closing </head> element and the opening <body>
element:

<script language="javascript" type="text/javascript" >
 function ClientValidator(source, args)
 {
 if (args.Value % 2 == 0)
 args.IsValid=true;
 else
 args.IsValid=false;
 return;
 }
</script>

IntelliSense will attempt to help by autocompleting as you type this
JavaScript. Do not be alarmed when this syntax does not appear as
one of the options. This code will work. Remember, however, that
JavaScript is case-sensitive.

In this function, the args parameter is an object that you use for validation. The
user’s input is in the args object’s value property. The value that the user has entered
is passed to this function in the args parameter passed to the script by the validator.
If it is an even number, the function sets the IsValid property of the args object to
true. Otherwise, it sets it to false.

200 | Chapter 5: Validation

The standard test for determining if an integer is even or odd is to
divide by 2 and check the remainder. If the remainder is 0, the integer
is even. If it’s 1, the integer is odd.

The operator for determining the remainder is called the modulus. In
JavaScript (as in most programming languages), the % operator repre-
sents the modulus. In other words, if your integer is stored in the vari-
able value, then value % 2 is equal to 0 if value is even.

In VB.NET, the modulus is represented by the Mod operator, not the %
operator.

You’ll implement the server-side method in the code behind file, default.aspx.vb.
Copy the highlighted code from Example 5-5 to the code skeleton for
ServerValidator you created above.

This method does the same thing as the client-side validator, only in VB rather than
in JavaScript. There are a few things to notice about these methods. First, the value
that the CustomValidator is examining is passed to your routine as the Value prop-
erty of the ServerValidateEventArgs event argument. You convert that string to an
int using the Int32 object’s Parse method, as shown.

The declaration for the CustomValidator in the content file sets the client-side
method and the server-side method you’ve designated.

<asp:CustomValidator ID="cvValue" runat="server"
 ControlToValidate="txtValue"
 ValidateEmptyText="false"
 ClientValidationFunction="ClientValidator">
 Please enter an even number.
</asp:CustomValidator>

If you run this program in a current browser and enter an odd number, the page will
never be posted back to the server; the JavaScript handles the validation on the
browser. If you enter an even number, however, the client-side script and the server-
side script will run (to protect against spoofing from the client).

Example 5-5. The server-side custom validation code tests whether a number is odd or even
Protected Sub ServerValidator(ByVal source As Object, _
 ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _
 Handles cvValue.ServerValidate
 args.IsValid = False
 Dim evenNumber As Integer = Int32.Parse(args.Value)
 If evenNumber Mod 2 = 0 Then
 args.IsValid = True
 End If
End Sub

Summary | 201

Summary
• Users will enter improperly formatted data into your forms, but validation can

allow the controls to check that data before it’s accepted by your server.

• ASP.NET provides validation controls that can check for a number of common
user errors.

• Current browsers can validate input on the client side, eliminating a round trip
to the server.

• The RequiredFieldValidator simply checks that the user has made an entry in
the specified control. On TextBoxes and DropDownLists, this validator can also
make certain that the user has selected an item other than the initial value.

• If you set the SetFocusOnError property to true, the focus is automatically placed
on the control that fails validation, making it easier for the user to find.

• You can use the ValidationSummary control to provide detailed feedback to the
user in a single spot on your page. You can still mark the individual controls that
failed validation, but you don’t need to put a lengthy error message next to the
control.

• With the CompareValidator control, you can check the user’s input against a con-
stant value, a database value, or the value of another control. You can check if
the input is greater than, less than, or equal to the specified value, or you can
simply check that the input is of the desired data type.

• The RangeValidator control checks to see if the user’s input falls within an
appropriate range. You can specify the maximum and minimum values of the
range.

• Regular expressions are a language that uses literals and metacharacters to
describe and search text strings.

• With the RegularExpressionValidator, you can check that the user’s input meets
the expected pattern for data such as a phone number, a zip code, an email
address, or other variations. The Regular Expression Editor provides some com-
mon regular expressions, or you can provide your own.

• If none of the existing controls provides the validation you need, you can use a
CustomValidator to add custom JavaScript code to evaluate the user’s input.
Your custom code can do anything you like, but it can only return true or false.

You’ve created a lot of pages so far, and most of them have had familiar elements
that you see as you browse the web every day—form controls, database access, and
postbacks, among others. What you have not done so far, though, is create a page
that looks like something you’d see on the Web. For that, you need style, and we
don’t just mean good fashion sense. In the next chapter, you’ll learn how to pro-
vide a uniform, professional look to all your pages, and how to include special
touches—such as navigation tools—that separate a quality web site from just a col-
lection of controls.

202 | Chapter 5: Validation

B R A I N B U I L D E R

Quiz
1. What is the reason for validation?

2. What do you do if you want a button to post the page without checking
validation?

3. What is the best type of validator to use for a radio button list?

4. What’s the difference between the Static and Dynamic values of the Display
property?

5. Suppose the first item in your drop-down list is “Choose a payment method.”
How do you make sure users choose one?

6. What’s the benefit of using the ValidationSummary control?

7. What control should you use to make sure the user can’t order more of a single
item than you actually have in stock?

8. Suppose you run a hotel that requires at least two guests stay in a double room,
but no more than five guests. What control should you use on the “Number of
guests” field?

9. How do you check that the user has entered a valid email address?

10. Suppose your theme park offers discounts to customers between the ages of 6
and 12, and also to customers over 65. What kind of control would you use to
validate whether the customer is eligible for a discount, while still using a single
age field?

Exercises
Exercise 5-1. In the exercises in this chapter, you’re going to create a form that users
can fill out if they want to participate in a friendly phone survey (I’m told some peo-
ple like to get survey calls in the middle of dinner). To begin, create a page with a
table with three columns, one each for a label, control, and validator. Then, add text
boxes for the user’s name, address, city, state, and zip code. Be sure to add the
appropriate validators for each field—don’t worry about the format of the input
right now; you just want to make sure that something is filled in. Finally, add a Sub-
mit button. It doesn’t matter too much what this form looks like, but it could look
something like Figure 5-8.

Exercises | 203

Exercise 5-2. Let’s make things a little more interesting this time. For starters, move
the text from the individual validators to error messages, and add a summary con-
trol at the bottom of the form, above the Submit button. Next, you don’t want any-
one participating in the survey if they’re under 18, so add another label and field
asking for the user’s age. Add appropriate validators to make sure the user isn’t too
young. Because you’re polite, you’ll ask for a date when you should call the user, but
your survey is only going on in July 2009. Add another table row with a label and a
field asking for a date, and add the appropriate validators to make sure the date is
sometime in July 2009. Your form should look something like Figure 5-9.

Figure 5-8. Your goal for Exercise 5-1.

204 | Chapter 5: Validation

Exercise 5-3. If the user doesn’t mind being called at home, you might as well make
a follow-up call to ask additional survey questions. This call still has to take place in
July, but if it’s a follow-up call, it would have to be later than the first call. Add a row
to the table with a label and text box where users can enter a date for the follow-up
call, and add appropriate validators to make sure the follow-up call comes after the
initial call, but still in July 2009. The result should look something like Figure 5-10.

Figure 5-9. Your goal for Exercise 5-2.

Exercises | 205

Exercise 5-4. If you’re going to call the user at home, you’ll need a phone number to
call. If the user is willing to give out his phone number, you might as well get his
email address as well. After all, you never know when you’ll need it. But if the user
forgets a digit, or leaves off the “.com” from his email address, it’ll do you no good.
Add two more rows to the table, with labels and text fields where the user can enter
a phone number and email address. Then, add the appropriate validators to make
sure that the input is in the correct form. The form should look something like
Figure 5-11.

Figure 5-10. Your goal for Exercise 5-3.

206 | Chapter 5: Validation

Figure 5-11. Your goal for Exercise 5-4.

207

Chapter 6 CHAPTER 6

Style Sheets, Master Pages, and
Navigation6

Back in the early mists of time, when the Earth was young and the Web was new
(circa 1994), we created web pages in HTML (HyperText Markup Language). After
many eons (or so it seemed), we were able to add styles to the HTML elements,
allowing us to take greater control over the presentation of web pages.

Eventually content (the HTML) was divided from presentation and layout through
the use of styles, and that was good. In fact, it came to pass that presentation infor-
mation was given its own file—a style sheet—to allow for reuse, a consistent
presentation across many pages, and easier maintenance, and that was very good
indeed.

Styles and style sheets are a significant (but often overlooked) tool for web develop-
ers, too often ignored by “programmers” who disparage style sheets as being in the
realm of “designers”—leading to the creation of web applications that are ugly and
terribly difficult to maintain.

A powerful technique for creating sites with a common look and feel across all of the
pages is master pages, covered later in this chapter. Master pages cannot only define
the layout of the pages in your site, but they can also contain menus and other navi-
gational aids such as site maps and bread crumbs, and these, too, will be covered in
this chapter.

Styles and Style Sheets
A style specifies how an object will be displayed on an output device, typically a
browser. Styles can be used to manipulate the layout and appearance of controls and
text, detailing every aspect from border color to font size to position on the page.

Web applications use styles to ensure attractive and reasonable display on a wide
variety of devices, including desktop and laptop computers, tablet PCs, mobile PCs,
telephones, PDAs, televisions, printers, audio devices, and media not yet imagined.

208 | Chapter 6: Style Sheets, Master Pages, and Navigation

HTML and ASP.NET controls apply styles through the use of properties and
attributes. There are three ways to apply styles to an element on a web page:

Inline
The style is implemented as an attribute of a specific element.

Document
A set of styles are defined on and for a single HTML page.

External
A style sheet is created as a separate file and “included” in one or more HTML
pages.

Cascading Styles
Style rules cascade down from the most general (the external style sheet), to the more
specific (document level styles), to the most specific (styles applied to particular ele-
ments), hence the term cascading style sheets (CSS).

If your style sheet says that text boxes should have a white background, but one par-
ticular page says that its textboxes will have gray backgrounds, and on that page the
seventh text box has its own style calling for a yellow background, the rules will cas-
cade—style sheet, to document, to element. All other pages in your web site will
have text boxes whose background color is controlled by the style sheet. Your one
document will have text boxes with gray backgrounds, except for the seventh text
box, which will have...you guessed it! A yellow background.

For a complete discussion of CSS, see the following books: HTML &
XHTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy,
or CSS: The Definitive Guide, by Eric A. Meyer (both published by
O’Reilly).

Inline Styles
You can apply styles to a specific element using the inline style attribute, as shown
in the following snippet of HTML:

<input type="text" value="Sample text" style="color:Red;font-family:Arial;
 font-weight:bold;width:150px;" />

The style attribute contains one or more style properties, each consisting of a prop-
erty name and value separated by a colon. Each property-value pair is separated from
the next pair by a semicolon.

When you’re using ASP.NET controls, you may set inline styles either in the markup
or as properties in design view.

To see this, create a new web site called AspNetInLineStyles. Switch to Design view
and drag a TextBox control from the Standard section of the Toolbox onto the page.

Styles and Style Sheets | 209

In the Properties window, set the following properties (you’ll need to expand the
Font group to set the first two properties).

The resulting Design view should look something like Figure 6-1.

When you set the Font Name property, the IDE automatically fills in
the Names property for you.

Run the application. When the page comes up in the browser, view the source by
clicking on the View ➝ Source menu item in IE6 or Page ➝ View Source in IE7.

Property Value

Font-Bold True

Font-Name Arial

ForeColor Red

Text Sample Text

Width 150px

Figure 6-1. You’ve set the inline style properties on this TextBox by using the IDE.

210 | Chapter 6: Style Sheets, Master Pages, and Navigation

Notice how this ASP.NET TextBox is rendered to the page:

<input name="TextBox1" type="text" value="Sample text" id="TextBox1"
 style="color:Red;font-family:Arial;font-weight:bold;width:150px;" />

It is the same as if you had coded HTML with inline styles, which is in fact what
ASP.NET sends to the browser based on the ASP.NET controls and their properties.

You can also set or change style properties programmatically (as you can any control
property).

To see this, close the browser, then drag a Button control from the Standard section
of the Toolbox onto the page. Using an If-Then-Else statement, change its Text
property to toggle between two colors.

Double-click the Button in Design view to open up the event handler for the Click
event. Enter the highlighted code from Example 6-1.

Run the application. Each time you click the button, the ForeColor property will tog-
gle between Red and Green, which it does by changing the style attribute of the
HTML that the page renders.

Pros and cons

Inline properties are excellent for overriding the styles in your existing stylesheet for
a particular control. Unfortunately, they are very easy to use instead of style sheets,
and programmers are often seduced into using inline styles to excess, creating
markup that is very difficult to maintain.

Document-Level Styles
Just as you can use inline styles to override a style sheet for a single control, you can
also add styles to a single document to set or override a particular setting for that one
page. This is an error-prone technique for any multipage web site (that is, for virtu-
ally any serious web site), so we will be brief in our presentation of how to use them.

Document level styles are added to a page with a <style> element in the <head> sec-
tion of the page as shown in Example 6-2. (You don’t need to create this one your-
self.) In this web site, called AspNetDocumentLevelStyles, the style for the top-level

Example 6-1. The ButtonClick Event handler toggles the inline styles
Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 If TextBox1.ForeColor = Drawing.Color.Red Then
 TextBox1.ForeColor = Drawing.Color.Green
 Else
 TextBox1.ForeColor = Drawing.Color.Red
 End If
End Sub

Styles and Style Sheets | 211

heading, <h1>, will be overridden to display in red, bold, and italicized text. Also, a
new style will be defined, called GreenText.

Note the period in front of the GreenText style name; it is required. Also, style names
are case-sensitive.

Also, notice that the style definitions are embedded between HTML comment char-
acters. This is for the benefit of very old browsers that may not recognize styles; they
will ignore the styles enclosed in comments.

Figure 6-2 displays the results of these style settings.

Pros and cons

It is tempting to use a document-level style either to set the styles for that page or to
override the general styles for the entire site. This can be effective, but tends to be
hard to maintain.

Example 6-2. Default.aspx for AspNetDocumentLevelStyles; notice the document styles defined
within the comment tags
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET Document Level Styles</title>
 <style type="text/css">
 <!--
 h1 {color:Red; font-style:italic; font-weight:bold;}
 .GreenText {color:Green;}
 -->
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>Custom H1 Heading</h1>
 <asp:Label ID="Label1" runat="server"
 Text="Green text in an ASP.NET Label control."
 CssClass="GreenText"></asp:Label>

 </div>
 </form>
</body>
</html>

212 | Chapter 6: Style Sheets, Master Pages, and Navigation

Experience shows that collecting styles into a set of external style sheets, even if some
styles are targeted at a subset of pages (where that subset could be as small as a sin-
gle page) tends to be far easier to maintain in the long term.

External Style Sheets
The net result is that in most applications, styles are defined in an external file, called
(somewhat confusingly) a style sheet (or, as already mentioned, a “Cascading Style
Sheet,” or even an “External Style Sheet”). This style sheet is “linked” or “imported”
into each page by a directive at the top of the .aspx page.

To complicate things further, you are not limited to a single style sheet for your
entire application. In fact, you are free to create separate style sheets for different sec-
tions of your application, or for rendering to different devices.

You first saw the use of a CSS style sheet back in Chapter 3, where you used styles to
differentiate the watermarked and unwatermarked text boxes. Look at the CSS Style
sheet created for that application, reproduced here in Example 6-3.

Figure 6-2. The result of using document-level styles. It looks perfectly fine for this one page, but
across a whole site, using document-level styles is tough to maintain.

Example 6-3. The StyleSheet.css for the AdventureWorksWatermarks web site is very simple, but
style sheets can be much longer and more complex
body {
}
.watermarked {
 padding:2px 0 0 2px;

Styles and Style Sheets | 213

There are two style classes in this style sheet: watermarked and unwatermarked.

Style classes are defined with a leading period, followed by the name of the class, and
then the definition of the style class enclosed in braces. To use a style class, the ele-
ment must specifically identify the class it wants to use, such as:

<asp:TextBox CssClass="watermarked"...

When you’re applying a style to a web server control, you use the
CssClass property. When you’re applying a style to an HTML control,
you use the class property instead.

Your style sheet can also define styles for “selectors,” and these styles will automati-
cally be applied to matching elements. For example, if you define a selector for the
<p> (paragraph) element, all paragraph elements would have that style applied.

The application of styles to both classes and selectors can become complex once you
begin nesting, which is why we strongly recommend reading a solid book on CSS
syntax (such as those mentioned in the note above).

The names used for style rules and classes are case sensitive. If your style sheet has a
class called watermarked and you assign the class name Watermarked (with a capital
W) it will be ignored, with no error message, leading to many happy hours of
debugging.

To see style sheets at work, create a new web site called AspNetExternalStyles.

Click on the Website ➝ Add New Item... menu item, and select Style Sheet from the
list of templates. You could use the default name of StyleSheet.css, as we will only be
using a single style sheet in this web site, but let’s call it MyStyleSheet.css.

The new style sheet will be visible on the editing surface, with an empty selector for
the body element:

body {
}

 border:1px solid #BEBEBE;
 background-color:#F0F8FF;
 color:gray;
 font-family:Verdana;
 font-weight:lighter;
}
.unwatermarked {
 height:18px;
 width:148px;
 font-weight:bold;
}

Example 6-3. The StyleSheet.css for the AdventureWorksWatermarks web site is very simple, but
style sheets can be much longer and more complex (continued)

214 | Chapter 6: Style Sheets, Master Pages, and Navigation

You will now add additional style classes for three different headings and the body
text, plus an overridden selector for all paragraph elements.

Right-click anywhere on the editing surface and select Add Style Rule... to bring up
the Add Style Rule dialog box. Select the Class Name radio button and enter the style
class name .MyHeading1 (either with or without the leading period—the style will be
inserted into the style sheet with exactly a single leading period in either case). Click
OK; this will insert an empty style class called MyHeading1, so your style sheet will
now look like the following:

body {
}
.MyHeading1
{
}

Place the mouse pointer anywhere between the curly braces following MyHeading1,
right click, and select Build Style to bring up the Modify Style dialog box.

Add the styles listed in Table 6-1.

When you are done, it should look like Figure 6-3 (showing the Font styles).

Click OK to accept the style modifications, and you will see the style attributes
added to the MyHeading1 class in MyStyleSheet.css.

That’s just one of the heading styles, however; you still have two others to go, plus a
body text style. You can either add the additional styles in a similar manner, using
the values in Example 6-4, or you can edit the style sheet directly. In any event, cre-
ate the styles so that the finished style sheet looks something like Example 6-4.

Table 6-1. Styles in .MyHeading1

Category Style Value

Font font-family Arial, Helvetica, sans-serif

font-size xx-large

font-weight bold

font-style normal

Color #FF0000 (Red)

Block line-height 1.25 in

Background background-color #00FFFF (Aqua)

Box padding-top .75 in

(Uncheck “Same for all”) padding-right .5 in

padding-bottom 0.25 in

padding-left .5 in

Styles and Style Sheets | 215

As you type, IntelliSense will show all possible style attributes and provide hints for
valid values.

Figure 6-3. There are a lot of different style attributes for the .MyHeading1 style class, but the
Modify Style dialog makes them easy to keep track of.

Example 6-4. You can edit MyStyleSheet.css directly if you like, or you can use the Modify Style
dialog to do it for you
body {
}
.MyHeading1
{
 padding: .75in .5in .25in .5in;
 font-family: Arial, Helvetica, sans-serif;
 font-size: xx-large;
 font-weight: bold;
 font-style: normal;
 color: #FF0000;
 background-color: #00FFFF;
 line-height: 1.25in;}
.MyHeading2
{
 font-family: Arial, Helvetica, sans-serif;

216 | Chapter 6: Style Sheets, Master Pages, and Navigation

You can specify colors either using named colors, e.g., Red, Black, or Aqua, or using
RGB values, e.g., #FF0000. The IDE tools insert RGB values, but when you’re edit-
ing manually, it is often easier to use named colors unless you must specifically
match a very precise color. RGB specifies colors by relative amounts of red, green,
and blue. The value always begins with the pound sign, then three pairs of charac-
ters, each of which is a hexadecimal number from 00 through FF, representing red,
green, and blue, respectively.

There are a number of possible units of measurement you can use for attributes that
require absolute values, such as padding and line-height. In addition, Relative units,
which are relative to the other content on the page, are also available.

Before the styles in a style sheet will take effect, you need to attach the style sheet to
the page. You can do this one of two ways, which have essentially the same result.
The first way is to manually enter an @import statement inside a style element
between the opening and closing head tags in the markup file:

<head runat="server">
 <style type="text/css">@import url(MyStyleSheet.css);</style>

 font-style:normal;
 font-weight:bold;
 font-size:x-large;
 background-color:Aqua;
 color:Blue;
 padding-left:.1in;
 padding-right:.1in;
 padding-top:.2in;
 padding-bottom:.2in;
 line-height:.75in;
}
.MyHeading3
{
 font-family: Arial, Helvetica, sans-serif;
 font-style:normal;
 font-weight:bold;
 font-size:large;
 color:Black;
}
.BodyText
{
 font-family:Times New Roman, Serif;
 font-style:normal;
 font-weight:bolder;
 font-size:medium;
}
p
{
 color:Blue;
}

Example 6-4. You can edit MyStyleSheet.css directly if you like, or you can use the Modify Style
dialog to do it for you (continued)

Styles and Style Sheets | 217

 <title>Untitled Page</title>
</head>

In this case, a relative URL is provided, which refers to your style sheet in the cur-
rent directory. Because it is a URL, it can be either relative or absolute. For example,
you could provide an absolute URL such as http://CorporateWebSite.com/stylesheets/
handhelds.css.

The @import command must appear in the <head> element, and before
any conventional style rules are specified. Otherwise, the imported
style sheet will be ignored. This allows the browser to properly cas-
cade styles from the external style sheet down to the element-level
styles.

The second technique is to use a link tag, which also goes inside the head tags in the
markup file. You can also enter this manually, but the IDE provides an easier way.
Make sure that the .aspx page is visible in Design view. Click on the View ➝ Manage
Styles menu item to get the Manage Styles window shown in Figure 6-4.

Figure 6-4. Clicking on View ➝ Manage Styles brings up this window for attaching a style sheet to
the page, then working with that style sheet.

http://CorporateWebSite.com/stylesheets/handhelds.css
http://CorporateWebSite.com/stylesheets/handhelds.css

218 | Chapter 6: Style Sheets, Master Pages, and Navigation

There should be three styles-related items under the View menu item:
CSS Properties, Manage Styles, and Apply Styles. If you don’t see these
items while looking at the page, switch to Design view. Then they
should be visible in either Design, Split, or Source view.

Click on the Attach Style Sheet... link. This will bring up a Select Style Sheet dialog
box, listing all the available style sheets. In this case, there will be only a single style
sheet available: MyStyleSheet.css. Select it and click OK. This will automatically add
the following highlighted line to the .aspx file:

<head runat="server">
 <title>Untitled Page</title>
 <link href="MyStyleSheet.css" rel="stylesheet" type="text/css" />
</head>

Now that you have created the style sheet with several styles and attached the style
sheet to the page, you will add controls to the page and apply the styles. Open the
default.aspx file in the IDE. Switch to Design view, and drag a Label control onto the
page. Set the Text property to “Heading 1”. Set the CssClass property to MyHeading1
by clicking on CssClass in the Properties window and selecting from the available
styles that you created earlier.

Type in some text on the page, select it, and apply the paragraph style to it by select-
ing “Paragraph <p>” from the Block Format drop-down in the Style Application
toolbar (indicated in Figure 6-5).

Now, drag a second Label control onto the page. Set its Text property to “Heading
2” and the CssClass property to MyHeading2. Type some more text on the page after
the label.

Drag a third label on the page. Set the Text property to “Heading 3” and the CssClass
property to MyHeading3. Type some more text on the page.

Add two more Label controls with the CssClass set to MyHeading2 and MyHeading3,
along with some text.

To format the text under both MyHeading3 headings, switch to Source view and insert
some <div> or elements so that you can apply the BodyText style, like this:

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut dolore magna aliqua.

To apply a style to an ASP.NET control, use the CssClass property.
However, to apply a style to an HTML control, use the class property.

And, just as a bit of HTML refresher, both <div> and elements
are used primarily to apply style to some content. The difference is
that a <div> element incorporates a line break before and after, while a
 element does not, displaying its content inline with its con-
tainer. It is convenient to think of a <div> as creating a block, while a
 delineates a series of inline characters.

Styles and Style Sheets | 219

The Design view will now look something like Figure 6-5.

Example 6-5 presents the Source view for Default.aspx.

Figure 6-5. Your AspNetExternalStyles page, in Design view, where you can see all the styles
applied.

Example 6-5. The Default.aspx for AspNetExternalStyles shows how the style classes are applied
to each element, but the style definitions aren’t in this file
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
 <link href="MyStyleSheet.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <form id="form1" runat="server">
 <asp:Label ID="Label1" runat="server" CssClass="MyHeading1" Text="Heading 1">
 </asp:Label>
 <p>
 This is a blue paragraph.</p>

Block format tool

220 | Chapter 6: Style Sheets, Master Pages, and Navigation

The resulting page is shown in Figure 6-6.

Master Pages
A master page acts as a shell or frame shared by all the pages (or some of the pages)
on your site. It is common to put a logo and perhaps a menu into the master page so
that these elements appear at the same location on every page without your having to
recode them.

Within the master page, you place one or more content placeholder areas, which will
be filled with the contents of each of the content pages. This is shown in Figure 6-7.

Unlike cascading style sheets (CSS), which help ensure that similar
controls have similar appearances (see the previous section), master
pages ensure that all the pages on your site have common elements
such as logos, headings, footers, or navigation aids.

To use master pages, follow these steps:

1. Create a new web site.

2. Add a master page to the site.

3. Add content pages that fit the placeholders on the master page.

 <asp:Label ID="Label2" runat="server" CssClass="MyHeading2" Text="Heading 2">
 </asp:Label>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua.</p>
 <asp:Label ID="Label3" runat="server" CssClass="MyHeading3" Text="Heading 3">
 </asp:Label>
 <div class="BodyText">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua.
 </div>
 <asp:Label ID="Label4" runat="server" CssClass="MyHeading2"
 Text="Another Heading 2">
 </asp:Label>

 <asp:Label ID="Label5" runat="server" CssClass="MyHeading3"
 Text="Another Heading 3">
 </asp:Label>
 <div class="BodyText">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua.
 </div>
 </form>
</body>
</html>

Example 6-5. The Default.aspx for AspNetExternalStyles shows how the style classes are applied
to each element, but the style definitions aren’t in this file (continued)

Master Pages | 221

Creating a Master Page
To begin, create a new web site and call it MasterPages. Once the new site opens
click on Website ➝ Add New Item.... Select Master Page in the dialog box and give
it the name, CorpMasterPage.master, as shown in Figure 6-8. Be sure to check the
“Place code in separate file” checkbox, as indicated in the figure.

Even though we don’t actually use any server-side code in the master
page in this chapter, it is good practice to segregate all your server-side
code in a code-behind file, rather than in a script block in the markup
file.

Your new master page has been created with two ContentPlaceHolder controls
already in place, one inside the head tags, and one in the body of the page.

Figure 6-6. This is what the AspNetExternalStyles page looks like in your browser.

222 | Chapter 6: Style Sheets, Master Pages, and Navigation

All master pages must have the extension .master.

Switch to Source view and change the ID of the placeholder in the body of the page
to something more meaningful, such as cphCorpMaster, as in the following code:

<asp:ContentPlaceHolder ID="cphCorpMaster" runat="server">
</asp:ContentPlaceHolder>

You can have more than one ContentPlaceHolder control on a master page (each has
its own ID). This gives you tremendous flexibility in laying out your pages, though
experience shows that the majority of sites actually use only a single
contentPlaceHolder per master page. To keep this example simple, delete the
<asp:ContentPlaceHolder> that is within the head tags.

Normally, content inside the head tags is not displayed directly by the
browser, but is used to convey information about the page, such as the
title, styles, metadata, etc. You can also include certain ASP.NET con-
trols, such as the ContentPlaceHolder and Label, which will display at
the top of every page.

Figure 6-7. The master page defines the content that should appear on every page of your site, and
has placeholders for the content of the individual content pages. When you put them together, you
get a web site with a uniform appearance.

Master page design

+

Content page design

Master Pages | 223

The placeholder will be filled by the contents of the content page, which in turn will
be surrounded by whatever else you place on the master page. Within the master
page, you may add anything you like surrounding the ContentPlaceHolder control.
For example, you might add a logo at the top of the page and a copyright notice at
the bottom. Perhaps you may want navigation controls to appear consistently posi-
tioned along the side of your pages. You can even add other content placeholders,
giving each a unique ID.

For this example, place an <h1> header on the page above the ContentPlaceHolder
within the body of the page, and an HTML table below as a footer. The Source view
should look something like Example 6-6. Add the highlighted code to your page.

Figure 6-8. You add a master page from the Website ➝ Add New Item dialog. Be sure to check the
“Place code in separate file” checkbox.

Example 6-6. You’ll be adding some basic content to CorpMasterPage.master
<%@ Master Language="VB" CodeFile="CorpMasterPage.master.vb"
 Inherits="CorpMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>

Select the Master Page template

Be sure to check this box

224 | Chapter 6: Style Sheets, Master Pages, and Navigation

Switch to Design view; the master page will look something like that shown in
Figure 6-9.

<body>
 <form id="form1" runat="server">
 <div>
 <h1>AdventureWorks Corp.</h1>
 <asp:ContentPlaceHolder ID="cphCorpMaster" runat="server">
 </asp:ContentPlaceHolder>

 <hr />
 <table width="100%">
 <tr>
 <td width="50%" align="left">Learning ASP.NET</td>
 <td width="50%" align="right">©Copyright 2008</td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Figure 6-9. This is what your master page looks like in Design view. The heading at the top and
the footer at the bottom will be applied to all of your content pages. The content from your content
pages will appear in the placeholder, which doesn’t look very large when it’s empty, but it expands
as you add things.

Example 6-6. You’ll be adding some basic content to CorpMasterPage.master (continued)

Master

Content

Master Pages | 225

Adding Content Pages
The pages you’ll add that will use this master page will put all of their content into
the ContentPlaceHolder defined in body of the master page. When combined, the
two create a content page.

For this example, you’ll add two new .aspx pages, Home.aspx and SecondPage.aspx.
There are two ways to do this.

One way is to click on the Website ➝ Add Content Page menu item. However, this
will produce a page with a default name, which you will almost certainly want to
change, which is more of a nuisance than it is worth.

The better way is to click on Website ➝ Add New Item..., then add a “normal” Web
Form. Call the new page Home.aspx, and be sure to check both the “Select master
page” and “Place code in separate file” checkboxes, as indicated in Figure 6-10.

When you click the Add button, the Select a master page dialog will open. Choose
CorpMasterPage.master (the only master page available at this point), and click OK.

Then, switch to Design view.

Figure 6-10. The easiest way to add a content page is by adding a new Web Form, and making
sure to check the “Place code in separate file” and “Select master page” checkboxes.

Select the Web Form template

Check both boxes

226 | Chapter 6: Style Sheets, Master Pages, and Navigation

Your new Home.aspx page will be shown within the master page. The Content box
will allow you to add any content you like, including controls, text, and so forth. The
contents of the master page will be visible, but inaccessible.

Add some text and format it as HTML Heading 1 using the Block Format drop-down
menu, as indicated in Figure 6-11.

The Design view allows you to see how your new page will look when it is combined
with the master page at runtime.

The terminology can get a bit confusing, so let’s clarify. A master page
has an empty ContentPlaceHolder control.

You create a separate file called a content page. A content page is a
normal .aspx file, with a Page directive but minus the <html>, <form>,
<head>, and <body> tags, which are provided by the master page. Typi-
cally, you’ll create many content pages for each master.

The contents of each content page are displayed as if they were
inserted into the ContentPlaceHolder control. In effect, the Master
Page is “wrapped around” the content page, allowing all the content
pages to share the contents of the master page.

Create the next page, SecondPage.aspx, using the same master page. Using the mas-
ter page ensures that the look and feel of the two pages will be identical.

Figure 6-11. When you create a content page, you add content within the placeholder you created
before. The contents of the master page are there for you to view, but they’re grayed out.

Master Pages | 227

Take a quick look at the markup generated for the second page:

<%@ Page Language="VB"
 MasterPageFile="~/CorpMasterPage.master"
 AutoEventWireup="false"
 CodeFile="SecondPage.aspx.vb"
 Inherits="SecondPage"
 title="Untitled Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="cphCorpMaster" Runat="Server">
</asp:Content>

The Page directive contains a reference to the master page for the second page, as
well as some other information necessary to the page. An ASP.NET Content control
was added for you automatically. Visual Studio knows which master page you are
using automatically, and links the Content control to the ContentPlaceholder control
on the master page.

You can put some simple text in the Content control and then run the two pages, as
shown in Figure 6-12.

This example does not provide any means of navigating from page to
page. In order to see these pages, select the page in the Solution
Explorer and run the web site. Later in this chapter, we will look at
ways to navigate from page to page within a web site.

Figure 6-12. This is what your content pages look like when you run the application. As you can
see, the header and footer from the master page appear in both.

228 | Chapter 6: Style Sheets, Master Pages, and Navigation

Using Nested Master Pages
You may want certain elements to appear throughout the entire web site, while other
elements should be shared only within a specific part of your application. For exam-
ple, you might have a company-wide header, but need division-specific elements as
well. For situations like these, ASP.NET lets you create nested master pages. Any
given web page can be combined with a nested master page or with the original mas-
ter, whichever makes more sense for that individual page.

Copy the previous example, MasterPages, to a new application, NestedMasterPages.

Add a new master page to the web site, called SalesMasterPage.master. As shown
back in Figure 6-8, be sure to check the “Place code in separate file” checkbox.

Look at the Source view; the IDE puts the following boilerplate markup code in
SalesMasterPage.master:

<%@ Master Language="VB" CodeFile="SalesMasterPage.master.vb"
 Inherits="SalesMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:contentplaceholder id="ContentPlaceHolder1" runat="server">
 </asp:contentplaceholder>
 </div>
 </form>
</body>
</html>

In order to make this a nested master page, delete all of this except for the Master
directive. Then, add the highlighted code shown in Example 6-7. Again, notice how
IntelliSense helps you.

Example 6-7. Add some additional content to SalesMasterPage.master
<%@ Master Language="VB" CodeFile="SalesMasterPage.master.vb"
 MasterPageFile="~/CorpMasterPage.master"
 Inherits="SalesMasterPage" %>

<asp:Content ID="SalesMasterContent" runat="server"
 ContentPlaceHolderID="cphCorpMaster">
 <table>
 <tr>

Master Pages | 229

The Master directive has an additional attribute, MasterPageFile, which points to its
own master page. This is how ASP.NET knows that this is a nested master page. In
this way, master pages can be nested as deep as necessary.

This master page for the Sales department has an ASP.NET Content control, called
SalesMasterContent, which contains the content to display on all the Sales pages. In
this example, that content consists of an HTML table for layout, along with some
additional markup.

Like all Content controls, it has a ContentPlaceHolderID attribute that specifies which
ContentPlaceHolder control on its master page it will populate—in this case,
cphCorpMaster on the CorpMasterPage.master master page.

The markup also includes a ContentPlaceHolder control called cphSalesContent. Con-
tent pages that use this nested master page will put their content inside this
ContentPlaceHolder.

Switch to Design view for this nested master page, as shown in Figure 6-13. You can
see the top-level master page, CorpMasterPage.master, except it is not editable, just
as the master page of a normal content page is not editable in Design view.

To see the nested master page in action, add two new pages to the web site. Call
them Sales_Orders.aspx and Sales_Stores.aspx. For each, check the “Select master
page” checkbox shown previously in Figure 6-10. Now, when the Select a master
page dialog comes up, you have two master pages to choose from. Select SalesMas-
terPage.master and click OK, as shown in Figure 6-14.

Add some content to each page to distinguish it. The markup for Sales_Orders.aspx
is shown in Example 6-8.

 <td>
 <h3>Sales Department master page</h3>
 Put information here to display on all the Sales pages.

 </td>
 </tr>
 <tr>
 <td>
 <asp:ContentPlaceHolder ID="cphSalesContent" runat="server">
 Default content for Sales
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>
</asp:Content>

Example 6-7. Add some additional content to SalesMasterPage.master (continued)

230 | Chapter 6: Style Sheets, Master Pages, and Navigation

Figure 6-13. When you view nested master pages in Design view, the child master page is editable,
but the top-level master page is not.

Figure 6-14. When your site uses more than one master page, you have a choice whenever you
add a new page.

Master Pages | 231

Place similar content in the Sales_Stores.aspx page, but change the text so that it
reads “stores” instead of “orders.”

The results for both pages are shown in Figure 6-15.

Example 6-8. Sales_Orders.aspx is a simple content page to display with your master pages
<%@ Page Language="VB" MasterPageFile="~/SalesMasterPage.master"
 AutoEventWireup="false" CodeFile="Sales_Orders.aspx.vb"
 Inherits="Sales_Orders" title="Untitled Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="cphSalesContent"
 Runat="Server">
 <h3>Orders</h3>
 Display Orders information here.
</asp:Content>

Figure 6-15. This is what your nested master pages look like when you run the application. You
can see the AdventureWorks master page—and the sales department master page—with the child
content inside.

232 | Chapter 6: Style Sheets, Master Pages, and Navigation

Changing the Master Page at Runtime
You may decide that in response to certain events, you’d like to reach up into the
master page (from a content page) and change its presentation. To do so, you need
to add a public property in the master page that can be accessed by any of the con-
tent pages.

To see how this is done, copy the previous example MasterPages to a new web site
called ChangingTheMasterPage.

In Source view, open the master page, CorpMasterPage.master. From the Standard
section of the Toolbox, drag a Label control onto the page between the <h1> heading
and the existing ContentPlaceHolder control. Change the ID of the Label to
lblMessage and remove the Text property. Add an HTML line break and a horizon-
tal rule (<hr/>) after the Label control while you are at it. The Source view of the
master page markup will look like Example 6-9, with the new Label control and the
additional HTML formatting highlighted.

Example 6-9. CorpMasterPage.master with the Label control added
<%@ Master Language="VB" CodeFile="CorpMasterPage.master.vb"
 Inherits="CorpMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>AdventureWorks Corp.</h1>
 <asp:Label ID="lblMessage" runat="server" ></asp:Label>

 <hr />
 <asp:contentplaceholder id="cphCorpMaster" runat="server">
 </asp:contentplaceholder>

 <hr />
 <table width="100%">
 <tr>
 <td width="50%" align="left">Learning ASP.NET</td>
 <td width="50%" align="right">©Copyright 2008</td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Master Pages | 233

If you run the web site now, this label will not be visible on any of the content pages
because its Text property has no value.

Open the code-behind for the master page by right-clicking on CorpMasterPage.master
in the Solution Explorer and selecting View Code. Type in the code highlighted in
Example 6-10 to implement the public property.

Notice how IntelliSense helps you complete the code for the property.

Before a content page can use a public property of the master page, it needs to be
told the name of the class, or type, that contains the master page. This is done with
another directive at the top of the markup of the page. You have already seen Page
directives at the top of normal .aspx pages, as well as the Master directive at the top
of the master pages. Now, add the following MasterType directive to the top of
SecondPage.aspx, after the existing Page directive and before any page content:

<%@ MasterType TypeName="CorpMasterPage" %>

If you look at the code-behind for the master page CorpMasterPage.master, you will
see that the name of the class is CorpMasterPage. This code, shown in the following
snippet, was generated for you automatically by the IDE:

Partial Class CorpMasterPage
 Inherits System.Web.UI.MasterPage

Now that the content page has a reference to the class of the master page, it can
access members of the master page in code. To see this, switch SecondPage.aspx to
Design view. Drag a Button from the Standard section of the Toolbox into the Con-
tent section of the page. Change the ID of the Button to btnMessage and its Text
property to Message Master. Figure 6-16 shows the page in Design view.

Double-click on the button to create an event handler for the Click event in the code-
behind. Enter the highlighted code from Example 6-11 to this event handler to
change the message label on the master page when the button is clicked.

Example 6-10. CorpMasterPage.master.vb with the public property that will set the value of the
label
Partial Class CorpMasterPage
 Inherits System.Web.UI.MasterPage
Public Property MessageLabel() As Label
 Get
 Return lblMessage
 End Get
 Set(ByVal value As Label)
 lblMessage = value
 End Set
End Property

End Class

234 | Chapter 6: Style Sheets, Master Pages, and Navigation

Run SecondPage.aspx.vb and click the button. The result will look similar to
Figure 6-17.

Navigation
Modern commercial web sites can be surprisingly complex, often consisting of doz-
ens, even hundreds of pages. Users will have a more satisfying experience if you pro-
vide navigational hints and menus to help them avoid getting lost, and to enable
them to conveniently find all the features of the site.

Figure 6-16. You’re adding a button to SecondPage.aspx that you’re going to use to send a
message to the master page.

Example 6-11. SecondPage.aspx.vb doesn’t seem to do much, but it affects the label on the master
page
Partial Class SecondPage
 Inherits System.Web.UI.Page

Protected Sub btnMessage_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 Me.Master.MessageLabel.Text = "Button on SecondPage pushed."
End Sub
End Class

Navigation | 235

The ASP.NET toolset includes a number of controls that facilitate this assistance.
There are controls for creating both “bread crumbs” (how did I get to this page?) and
site maps (how do I find that other page?).

Often you will want these features to be present on every page, and thus master
pages are a great asset. If you change the site map or the control, you only need to
update the master page, and all the other pages are automatically current.

Buttons and HyperLinks
The simplest form of navigation is through the use of Buttons, LinkButtons, and
Hyperlinks. All three will take the user to a different page. Superficially, LinkButtons
and Hyperlinks look the same, while buttons look different (see Figure 6-18). Under
the covers, however, LinkButtons and Buttons have much more in common, while
Hyperlinks are very different.

Let’s clarify. When you click a Hyperlink, you are taken directly to a new page. The
first page does not post back to the server. You are immediately transferred to the
new page—do not pass Go, do not collect $200.

Figure 6-17. When you click the button on SecondPage, the message is sent to the master page and
displayed.

236 | Chapter 6: Style Sheets, Master Pages, and Navigation

With a LinkButton (which looks like a Hyperlink) or a Button (which looks like a but-
ton), however, the page is posted back, and there is an opportunity for you, the
developer, to run an event handler before control is handed over to the new page.

Hyperlinks are faster for the user (and simpler for the developer), but they do not
give you the opportunity to run code before the user leaves the page, which is the
trade off you’ll have to make each time you decide between a Hyperlink and one of
the alternatives.

To see how buttons and links can be used for navigation, copy the example from ear-
lier in this chapter, MasterPages, to a new web site called ButtonNavigation.

Open Home.aspx in Design view. Drag a Button control onto the page below the
header. Change the Text property of the Button to “Page 2”. It will look something
like Figure 6-19.

V B C H E A T S H E E T

Access Modifiers
You’ve seen lots of properties throughout this book. For example, most controls have
a Text property. You have also seen the use of local variables in the classes defined in
the code-behind files. The declaration for properties and variables include a keyword
known as the access modifier, which specifies what parts of the program can see that
property or variable. The most common access modifiers are public, private, and
protected.

If a class member is declared public, that member is available anywhere in the applica-
tion. All you have to do to access the public member is declare an instance of that class.
On the other hand, if a class member is declared private, then only the code within the
class itself can access that member.

To put this into relevant terms, in Example 6-10, the property MessageLabel has declared
public. Code outside the class (outside the master page) can refer to that property by
referring to an instance of the class and the property using dot notation, as will be dem-
onstrated below. If the property were private, only code in the CorpMasterPage class
would be able to access it, which would defeat the purpose here because we want other
pages to be able to access this property. If it were protected, only CorpMasterPage and
classes that inherit from CorpMasterPage could use the property.

If a member is public, then it will be displayed by IntelliSense where appropriate. If it
is private or protected, IntelliSense will never display it if you’re writing code outside
the class.

If you do not declare an access modifier, the default is public, but it is always good
practice to explicitly declare it, even if public is what you intend.

Navigation | 237

As previously mentioned, you need to add custom code to make the navigation hap-
pen. You’ll need to provide some code to handle the Click event, so in Design view,
double-click the button and then enter the highlighted lines of code shown in
Example 6-12.

V B C H E A T S H E E T

The Me Object
So far, your event handlers have always affected the properties of controls on the same
page. In this case, however, you want to change the property of a control on the master
page. SecondPage.aspx.vb doesn’t know where that control is. Fortunately, every con-
tent page does know its own master. When you want a class to call a method on itself,
or access one of its own properties, you use the Me keyword. Me, as you might expect,
refers to the class that’s calling the method or accessing the property. In this case, you
want to access the master page of SecondPage.aspx.vb, so you do that with a reference
to Me.Master. From there, it’s easy to access the MessageLabel.Text property on the
master page. You don’t strictly need to use the Me keyword in this case; if you leave it
out, the code works just fine. However, it is good practice to use Me so that people read-
ing your code will know what you’re referring to.

The equivalent object in C# is called this.

Figure 6-18. A Button control looks like you would expect a button to look, and ditto for the
HyperLink control.

238 | Chapter 6: Style Sheets, Master Pages, and Navigation

Before the button event handler redirects to the new page, you can run some other
code. You might do so, for example, to retrieve the status of other controls on the
page, interact with a database, perform computations or, very commonly, to stash a
value in Session State that will be retrieved by the new page. (We’ll discuss Session
state in Chapter 7; you don’t need to worry about it for the moment.)

The Button’s Click event handler is not the only place where your
code is executed during postbacks. You can place code in event han-
dlers for any number of events. By far, the most common is Page Load,
where it is routine to place code to process the page. Page Load and
other life cycle issues are covered in Chapter 8.

Figure 6-19. You’ve placed a navigation button on the home page, which will help users find
where they’re going.

Example 6-12. Home.aspx.vb showing theButton Click event handler
Partial Class Home
 Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' do something here
 Response.Redirect("SecondPage.aspx")
End Sub
End Class

Navigation | 239

The actual navigation is accomplished with the Redirect method of the HttpResponse
class. It is the programmatic equivalent of a hyperlink, immediately transferring to
the new page without first posting back to the server. The argument to the method is
a string representing the URL of the target page.

It is somewhat confusing that the syntax for calling the Redirect
method of the HttpResponse class is:

Response.Redirect()

and not:

HttpResponse.Redirect()

but there you have it. This oddity is for historical reasons.

The URL can either be relative (as in this example) or absolute. In this example, it
refers to a web page in the same directory as the current page. An absolute URL
would be completely qualified, regardless of the current location, such as http://
LibertyAssociates.com/Samples/SecondPage.aspx.

Run the page now to see how it works. Clicking on the button posts the page back
to the server. If there were a method called Page_Load to handle the Page Load
event, it would be executed. Then, the code in the Button Click event handler
from Example 6-12 would run. The last line in that method would be the
Response.Redirect to perform the navigation.

The main attraction to using buttons and links for navigation is that they are very
simple and direct. The big problem is that it can be tedious to implement, as you
must place every button or link on every page, specify the URL, and handle the Click
event for each (for Buttons and LinkButtons). As a case in point, this example so far
allows you to navigate from the home page to the Second page, but not back (with-
out using the browser’s Back button). For a web site with many pages and routes,
this approach quickly breaks down.

At any rate, add a HyperLink control to SecondPage.aspx to allow easy navigation
back to the home page. Go to SecondPage.aspx in Design view, hit the Enter key a
few times at the end of the line of text already there then drag a HyperLink control on
to the page. In the Properties window, set the Text property to Home Page, and the
NavigateUrl property to Home.aspx. Figure 6-20 shows the home page link in Design
view.

Now, if you run the page, there will be hyperlink on the second page to take you
back to the home page. In this example, they behave identically, but if you needed
custom code to execute on SecondPage.aspx, that would not happen with the
HyperLink.

http://LibertyAssociates.com/Samples/SecondPage.aspx
http://LibertyAssociates.com/Samples/SecondPage.aspx

240 | Chapter 6: Style Sheets, Master Pages, and Navigation

Menus and Bread Crumbs
You’ve probably seen menus and bread crumbs for navigation on many commercial
sites. Menus are familiar from the earliest windowing environments; they offer a set
of choices for navigation (they can be pull-down or pop-up selections). Bread crumbs
take their name from the story of Hansel and Gretel, who left a trail behind them so
they could find their way home. In ASP.NET, bread crumbs typically consist of a set
of links back through the web site, making it easy for users to reverse course and take
different forks in what otherwise would be a confusing tree of alternative pages.

To see menus and bread crumbs at work, you’ll need a web site with a few pages to
simulate a complex web site of hundreds of web pages (feel free to create hundreds
of web pages if you like; we’ll wait). Figure 6-21 shows how the finished web site will
appear.

To build this web site, you will use a single master page, several normal web pages,
and a site map to provide information for the menu and the bread crumbs. Later in
the chapter, you will see how to spiff up the appearance of the menu and the bread
crumbs.

Figure 6-20. A HyperLink in Design view showing the properties set to give it a target page to
navigate to.

Navigation | 241

First, you will create the web site with the master page, minus the navigation con-
trols, and all the content pages. Next, you will add the site map and the navigation
controls.

Create a new web site called WebSiteNavigation. Close the Default.aspx page if it
was opened when you created the site. Then, delete Default.aspx by clicking on it in
the Solution Explorer and pressing the Delete key. Confirm the deletion by clicking
OK.

Add a master page, exactly as you did previously in this chapter. Make certain that
you have the root of the website selected in the Solution Explorer, and click on
Website ➝ Add New Item.... In the Add New Item dialog box, select master page.
You can retain the default file name of MasterPage.master. Be sure to select the
“Place code in separate file” checkbox (see Figure 6-8, earlier in this chapter).

When the master page opens in Source view, the only markup inside the <div> ele-
ments is the default ContentPlaceHolder control. Replace that with the highlighted
code shown in Example 6-13, and also delete the ContentPlaceHolder control inside
the <head> elements. This is nearly identical to the CorpMasterPage.master from the
example shown earlier in the chapter, except the ContentPlaceHolder control is

Figure 6-21. When you’ve completed the web site with menus and bread crumbs, it will look like
this.

242 | Chapter 6: Style Sheets, Master Pages, and Navigation

placed inside an HTML table for layout control. Notice that the first cell in the only
row in that table is empty at the moment. You will put the menu in that cell shortly.

As you can see from the menu in Figure 6-21 shown previously, there are six pages in
this web site. Add all six of those pages to the web site now. In all cases, be sure to
check the “Select master page” checkbox (see Figure 6-10, earlier in this chapter),
and to select MasterPage.master as the master page (the only choice). The names of
the pages to create are:

• Home.aspx

• HR.aspx

• Production.aspx

Example 6-13. This is what MasterPage.master looks like before you add the navigation controls
<%@ Master Language="VB" CodeFile="MasterPage.master.vb"
 Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>AdventureWorks Corp.</h1>

 <hr />
 <table width="100%">
 <tr>
 <td></td>
 <td>
 <asp:ContentPlaceHolder ID="cphCorpMaster" runat="server">
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>

 <hr />
 <table width="100%">
 <tr>
 <td width="50%" align="left">Learning ASP.NET</td>
 <td width="50%" align="right">©Copyright 2008</td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Navigation | 243

• Sales.aspx

• Sales_Orders.aspx

• Sales_Stores.aspx

To keep things simple, add only an <h1> heading to the Content area of each page
identifying the name of the page.

You are now ready to prepare the site map and add the navigation controls.

Site Maps
Site maps are used as a data source for navigation controls such TreeViews, Menus,
and SiteMapPaths (which provide bread crumbs). Used in conjunction with master
pages, these allow for easy, central navigation without having to place navigation
controls on every page of the web site.

Add a site map to the current web site by clicking on Website ➝ Add New Item....
When the Add New Item dialog appears, select Site Map and accept the default
name, Web.sitemap, as shown in Figure 6-22.

When you click Add, the file Web.sitemap is added to your web site, and the skele-
ton of a site map is provided for you, as shown in Example 6-14.

Figure 6-22. To create a new Site Map, select Website ➝ Add New Item, and then choose Site
Map.

244 | Chapter 6: Style Sheets, Master Pages, and Navigation

The url attribute specifies the page this navigation link will point to. The title
attribute defines the text that is displayed as the link, and the description attribute is
used in the tool tip.

Neither VWD nor VS2008 provide drag-and-drop support for creat-
ing your site map file. You can implement your own SiteMap provider
to automate this process, or get the site map from another source
(such as a database) but that is a very advanced topic beyond the
scope of this book.

Replace the contents of Web.sitemap with the site map XML shown in Example 6-15.

The site map is an XML file, as indicated by the first line in the file. The hierarchy of
the web site is represented by a set of nested <siteMapNode> elements. The root ele-
ment is a single <sitemap> element that defines the namespace:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

Within the siteMap element is nested exactly one <SiteMapNode> (in this case, Home).
Nested within that first <SiteMapNode>, however, is any number of children
<SiteMapNode> elements. Each <SiteMapNode> element can in turn have any number of
children <SiteMapNode> elements.

Example 6-14. When you choose to add a new site map, Visual Studio creates this Web.sitemap
skeleton for you
<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="" description="">
 <siteMapNode url="" title="" description="" />
 <siteMapNode url="" title="" description="" />
 </siteMapNode>
</siteMap>

Example 6-15. Visual Studio created the skeleton of the Web.sitemap, but you need to provide the
actual content
<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Home.aspx" title="Home" description="Home page">
 <siteMapNode url="~/Sales.aspx" title="Sales" description="Sales">
 <siteMapNode url="~/Sales_Orders.aspx" title="Orders"
 description="Orders" />
 <siteMapNode url="~/Sales_Stores.aspx" title="Stores"
 description="Stores" />
 </siteMapNode>
 <siteMapNode url="~/Production.aspx" title="Production"
 description="Production" />
 <siteMapNode url="~/HR.aspx" title="Human Resources" description="HR" />
 </siteMapNode>
</siteMap>

Navigation | 245

In Example 6-15, there are three such children: Sales, Production, and Human
Resources. Nested within each of these <SiteMapNode> elements can be more nodes.
For example, Sales contains Orders and Stores. You may nest the nodes as deep as
you wish.

ASP.NET is configured to protect files with the extension .sitemap so
they cannot be seen by a browser.

Once the site map file is in place, you need to make it available to the master page.
You do that by dragging a SiteMapDataSource control from the Data section of the
Toolbox onto the master page. By default, the SiteMapDataSource control will look
for and use the file named Web.sitemap.

It doesn’t matter where you place this SiteMapDataSource control, as long as it is
somewhere between the <form> and </form> tags in Source view. The
SiteMapDataSource will be visible in Design view but will not appear when the web
site is run.

The Design view should look something like Figure 6-23.

Figure 6-23. Place your SiteMapDataSource control on the master page. It’ll show up in Design
view, but not in any of the pages that use the master page.

246 | Chapter 6: Style Sheets, Master Pages, and Navigation

Using Sitemaps
There are two types of controls that can read a site map and provide navigation capa-
bility: a TreeView control and a Menu control. To see both at work, you’ll first create a
TreeView control, then you will disable that and add a Menu control.

TreeView

The TreeView provides the familiar hierarchical view of items. One common use of a
TreeView is the Windows Explorer view of folders and subfolders.

Recall when you created the master page for this example there was an empty table
cell in the layout. Switch to Source view, and then, from the Navigation section of
the Toolbox, drag a TreeView control into that empty cell. (You can do this in Design
view, of course, but we find it easier to use Source view when dragging elements into
a cell.)

Switch back to Design view and click on the Smart Tag of the TreeView. Click on the
drop-down next to Choose Data Source, and select SiteMapDataSource1, the ID of the
SiteMapDataSource you just placed on the master page, as shown in Figure 6-24.

As soon as you select the data source for the TreeView, it will display the nodes from
the site map file in Design view.

Set Home.aspx as the startup page by right-clicking on it in the Solution Explorer and
selecting “Set As Start Page” from the menu.

Figure 6-24. Select the data source for the TreeView control from the Smart Tag. In this case, you
just have the one SiteMapDataSource control on the master page.

Navigation | 247

Run the web site now and see the TreeView menu in action. Click on any of the menu
items along the left of the web site and observe how it navigates from page to page. If
you click on the Stores menu item, it will look almost exactly like Figure 6-21 from
earlier in this chapter. The only difference is the bread crumbs are missing because
you have not yet placed that control on the page.

Menu items that contain subitems of their own, such as Home and Sales, display a
small icon next to them. Clicking on this icon toggles between expanded and col-
lapsed views of these subitems. This structure directly flows from the nesting of
SiteMapNodes in the site map file.

Customizing the look and feel of the TreeView

The TreeView control has many properties, methods, and events that allow you to
customize the look and feel of the TreeView.

Adjusting the Root Node
If you don’t like the way the root node sticks out, you can adjust it. Set the
ShowStartingNode property of the SiteMapDataSource control to False, then edit the
Web.sitemap file so that the original root node is now one level in, and an empty root
node takes its place, as in the following:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/
AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Root" >
 <siteMapNode url="~/Home.aspx" title="Home"
 description="Home page" />
 <siteMapNode url="~/Sales.aspx" title="Sales"
 description="Sales" >
 <siteMapNode url="~/Sales_Orders.aspx"
 title="Orders"
 description="Orders" />
 <siteMapNode url="~/Sales_Stores.aspx"
 title="Stores"
 description="Stores" />
 </siteMapNode>
 <siteMapNode url="~/Production.aspx"
 title="Production"
 description="Production" />
 <siteMapNode url="~/HR.aspx"
 title="Human Resources"
 description="HR" />
 </siteMapNode>
</siteMap>

The only attribute actually required of the root node is the Title.

248 | Chapter 6: Style Sheets, Master Pages, and Navigation

The easiest way to change the appearance of the TreeView is to view the page in
Design view, click the TreeView’s Smart Tag, and then click Auto Format..., as
shown in Figure 6-25.

Most of the TreeView’s properties have to do with the styles used for the various
nodes. There are properties for general nodes, parent nodes, child (leaf) nodes, root
nodes, selected nodes, and nodes when the mouse is hovering over them. For each of
these node types you can set font attributes, CSS class, fore- and back-colors, spac-
ing and padding, borders, and so on.

Replacing the TreeView with a menu control

Open MasterPage.master in Source view and locate the TreeView control. Comment
it out with HTML comment tags and replace it with a Menu control. Remember to set
the Data Source, either in the Smart Tag or directly in Source view:

<!--<asp:TreeView ID="TreeView1" runat="server"
 DataSourceID="SiteMapDataSource1"
 </asp:TreeView> -->
 <asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1" />

Run the application. Presto! A menu control for navigation. Hover over Home (open-
ing the next level), and then hover over Sales (opening the third level). Finally, click
Stores. The results should look like Figure 6-26.

Figure 6-25. The Auto Format options, found in the Smart Tag of the TreeView, provide a
number of prebuilt formatting options.

Navigation | 249

If the menus start to eat into your content space, you can set their Orientation prop-
erty to Horizontal (the default is Vertical) and rearrange your layout table to make
room for them.

Accessing site map nodes programmatically

There are times when you may want access to the current node and its subnodes so
you can manipulate them programmatically. For example, you may want to log the
user’s current menu choice to a log file. You can add code to a page to get that infor-
mation. In the next example, you will display the names of the current node and its
subnodes in the Sales.aspx page. First, switch to the master page and remove the
menu control you added in the previous example, and uncomment the TreeView.
Now, switch to Sales.aspx, and add the highlighted code in Example 6-16 inside the
Content tags, including the <hr/> to provide a bit of a visual break.

Figure 6-26. You’ve replaced the TreeView with a menu control, which does all the work for you.
When you hover over Stores in the Menu Control, you can navigate to that page.

Example 6-16. Sales.aspx with added Label controls for display of the current and child nodes
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Sales.aspx.vb" Inherits="Sales" Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphCorpMaster"
 runat="Server">
 <h1>
 Sales</h1>
 <hr />
 <table>

250 | Chapter 6: Style Sheets, Master Pages, and Navigation

You have added two labels, lblCurrentNode and lblChildNodes, but they have noth-
ing to display yet. For that, you’ll need an event handler.

Open the code-behind for this page (click the plus next to Sales.aspx in Solution
Explorer, then double-click Sales.aspx.vb that appears below it). Add the highlighted
code in Example 6-17 to create an event handler for the Page Load event. You can
have the IDE create the skeleton of the event handler for you by selecting (Page
Events) from the drop-down at the top left of the editing window and selecting Load
from the drop-down menu at the top right of the editing window.

 <tr>
 <td>
 Current Node:
 </td>
 <td>
 <asp:Label ID="lblCurrentNode" runat="server" />
 </td>
 </tr>
 <tr>
 <td valign="top">
 Child Nodes:
 </td>
 <td>
 <asp:Label ID="lblChildNodes" runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 6-17. Sales.aspx.vb showing thePage_Load event handler
Partial Class Sales
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Try
 Me.lblCurrentNode.Text = SiteMap.CurrentNode.Title
 If SiteMap.CurrentNode.HasChildNodes Then
 For Each node As SiteMapNode In SiteMap.CurrentNode.ChildNodes
 Me.lblChildNodes.Text += node.Title + "
"
 Next
 End If
 Catch exNull As System.NullReferenceException
 Me.lblCurrentNode.Text = "The XML file is not in the site map!"
 Catch ex As System.Exception
 Me.lblCurrentNode.Text = "Exception! " + ex.Message
 End Try
 End Sub

End Class

Example 6-16. Sales.aspx with added Label controls for display of the current and child nodes

Navigation | 251

In this code, you are setting the Text property of lblCurrentNode to reflect the Title
property of the SiteMap’s CurrentNode. The SiteMap is an in-memory representation of
a site’s navigational structure. The SiteMap object itself is created by the site map
provider (in this case, by the SiteMapDataSource).

The CurrentNode property returns an object of type SiteMapNode, and the Title prop-
erty of that SiteMapNode returns the title of that SiteMapNode.

The SiteMapNode’s property HasChildNodes returns a Boolean, which is True if there
are subnodes to the SiteMapNode. If this is the case, you can iterate through the
SiteMapNodeCollection returned by the ChildNodes property. If there are no child
nodes, this code does nothing.

V B C H E A T S H E E T

For Each
As you’ve seen throughout this book, lots of objects contain collections of other
objects. Frequently, you’ll want to take some action on every object in a collection, but
you won’t know how many there are. That’s where the For Each loop comes in.

In this case, the SiteMap has a collection called ChildNodes, which is a collection of
SiteMapNode objects. You want to grab each node in order, extract the Title property,
and add it to a label. Here’s how the For Each loop breaks down:

For Each node As SiteMapNode In
 SiteMap.CurrentNode.ChildNodes

You start with the For Each statement, and then you define a variable, node, which is of
type SiteMapNode. Like all variables, node is a placeholder; in this case, you’re using node
to indicate “the node I’m looking at right now.” You use As to indicate that node is of
the type SiteMapNode because that’s the kind of objects that ChildNodes contains.

Then, you use In to indicate where the loop should find the SiteMapNode objects to use,
which in this case is inside SiteMap.CurrentNode.ChildNodes. When the loop starts, the
first node from the ChildNodes collection gets loaded into node. You take an action on
node, in this case, extracting the title and adding it to the label, followed by a line
break:

Me.lblChildNodes.Text += node.Title + "
"

You could take more than one action, of course, assuming you want that action to be
repeated multiple times.

The loop ends with Next. When the loop reaches that point, it dumps the current con-
tent of node, and repeats the loop on the next SiteMapNode object from ChildNodes.
When the loop has gone through each item in the collection, it stops, and execution of
the code continues from after the loop.

252 | Chapter 6: Style Sheets, Master Pages, and Navigation

When you view this page, the labels display the name of the current node and all its
child nodes, as shown in Figure 6-27.

Bread Crumbs
The final thing to add to your example is bread crumbs. As we mentioned earlier,
bread crumbs are an indicator of where you are in the page hierarchy and how you
got there. This is done using the ASP.NET SiteMapPath control.

To see this, go back to MasterPage.master in Design view. From the Navigation sec-
tion of the Toolbox, drag a SiteMapPath control onto the page between the Adven-
tureWorks heading and the horizontal rule, as shown in Figure 6-28.

That’s all there is to it!

Run the site and you’ll see how the breadcrumbs tell you where you are at all times.

It is uncommon in production applications to provide both a TreeView
and bread crumbs on the same page.

V B C H E A T S H E E T

Catching Errors
In Example 6-17, you can see the code that sets the text of your labels is contained
within a block named Try. This is how VB accounts for unexpected errors. If an error
occurs inside the Try block (known as throwing an exception), you can take action spe-
cific to the error by putting error-handling code in a Catch block. In this case, there are
two Catch blocks: the first one occurs if an error is thrown of type System.
NullReferenceException, meaning that the page doesn’t have a valid reference to the
XML file that stores the site map. If that happens, lblCurrentNode outputs an error
message specific to the problem. The second Catch block is a general case, invoked for
any error of type System.Exception. In this case, lblCurrentNode displays a general error
message, and adds the Message property of the captured error, which is automatically
generated by ASP.NET. Neither message fixes the problem, but at least the user will
know what happened if an exception is thrown. In a real-world web site, you might
have some code that supplies a substitute object, logs the error, or takes some other
action to allow the user to continue.

Notice that the Try block ends with an End Try statement, which comes after all the
Catch blocks.

Navigation | 253

Figure 6-27. You’ve added the code that allows you to access the current node and the child nodes,
and that lists them for the user to see.

Figure 6-28. Adding navigation with bread crumbs to your site is as simple as placing a
SiteMapPath control in Design view.

254 | Chapter 6: Style Sheets, Master Pages, and Navigation

Similar to the TreeView, the SiteMapPath provides many ways to customize the look
and feel. Click on the Auto Format item in the Smart Tag shown in Figure 6-29 to
see a number of predefined formats. Alternatively, the Properties window provides a
similar, if smaller, set of properties, just as it did for the TreeView.

In the previous example, the bread crumbs separated the various pages with the
greater-than symbol (>). This is easy to change with the PathSeparator property. For
example, to use an arrow as the separator symbol, edit the SiteMapPath control in
Source view to look like the following:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" PathSeparator="->" />

The result is shown in Figure 6-29. Compare this with the original bread crumbs
shown earlier in Figure 6-21.

Figure 6-29. You can change the PathSeparator property of your SiteMapPath control to alter the
look of your bread crumbs, in this case, with an arrow symbol.

Summary | 255

Summary
• Style sheets hold presentation information for an entire site in a separate file to

ensure a consistent look throughout the site.

• A style specifies how a specific element is rendered visually in the browser.

• Style rules are applied in a hierarchical manner, such that more specific styles
take precedence over general styles.

• A style property is defined by a property name, followed by a colon, followed by
a value. Style properties are separated by semicolons.

• Styles can be applied inline or at the document level, but these methods are
error-prone and difficult to maintain. The most effective way to apply styles is
with a style sheet.

• A master page is a template that holds content that you want to appear on all
pages of your site. The master page also contains content placeholder areas
where you can insert the content of each content page.

• To create a master page, select Website ➝ Add New Item, and choose Master
Page from the Add New Item dialog.

• To add content pages that use your master page, select Website ➝ Add New
Item, select Web Form from the Add New Item dialog, and be sure to check the
“Select master page” checkbox. When you click Add, you’ll be asked to choose
which master page you want to use. Content pages have a Page directive that
indicates their master page.

• You can nest one master page inside another. Create a new master page and
delete all of the content except for the Master directive. Then, insert a
MasterPageFile attribute that points to the primary master page. The new submas-
ter page will appear inside the master page, with its own content placeholders.

• You can change the content of the master page at runtime by implementing a
public property on the master page and adding a MasterType directive to the top
of a content page. Once the content page has a reference to the class of the mas-
ter page, the content page can programmatically interact with public properties
of the master page.

• You can add simple Button controls that allow users to navigate from the cur-
rent page to the button’s target. The Response.Redirect method transfers the
user directly to the new page without first posting back to the server.

• ASP.NET provides a number of predefined navigation controls that make it sim-
ple to help users move around your site.

256 | Chapter 6: Style Sheets, Master Pages, and Navigation

• The site map is a data source that provides the information you need to imple-
ment a navigation tree, menu, or breadcrumbs on your site. It’s an XML file that
contains a series of nodes, each representing a page in your site. The IDE doesn’t
create this file, although it does provide a skeleton if you select Website ➝ Add
New Item and choose Site Map.

• After you’ve created the site map, you can add a SiteMapDataSource control to a
page. The SiteMapDataSource control uses the file named Web.sitemap by default.

• Once you have a SiteMapDataSource in place, you can easily add a TreeView to
your site. You set the data source for the TreeView to point to the
SiteMapDataSource, and ASP.NET does the rest for you automatically. You can
format the TreeView any way you like, from a set of predefined formats, or you
can specify your own custom format.

• You can use a Menu control in the same way as the TreeView control. Simply add
the Menu control to your page, point its data source to the SiteMapDataSource,
and the IDE does the rest for you. You can change the format of the Menu con-
trol, or change the orientation from horizontal to vertical.

• You can access the nodes in your site map programmatically, using the
CurrentNode and ChildNodes properties.

• Bread crumbs are a tool that indicates the current page and the preceding pages
in the hierarchy. They’re more concise and compact than a TreeView or a Menu.
To use bread crumbs, place a SiteMapPath control on the page with the
SiteMapDataSource. You don’t need to specify the data source; it’s done automat-
ically. You can format the bread crumbs as you see fit.

This chapter is one of the first times in this book that you’ve seen sites that consist of
multiple pages. Obviously, most sites in the real world consist of more than one
page, and here you’ve taken your first steps toward more complex sites. You also
learned in this chapter how you can make controls in content pages that affect the
content of the master page. That’s a great technique, but you’ll notice that any con-
tent you change vanishes as soon as you navigate to another page. If you’re going to
have sites with multiple pages, you’ll need some way of passing data from page to
page, or between postbacks. That’s called preserving state, and you’ll learn several
ways of doing it in the next chapter.

Exercises | 257

B R A I N B U I L D E R

Quiz
1. What’s the most effective way to apply styles on your web page?

2. If a style sheet has rules applying to the text of the whole page, but one specific
paragraph has a different style rule applied, which takes precedence?

3. What two commands can you use to apply a style sheet to your page, and where
do you place them?

4. What is the purpose of a master page?

5. How many different master pages can you associate with a particular content
page?

6. When you are trying to change the content of a master page at runtime, what
does the content page need to affect the master page?

7. What method could you use in a Button Click event handler to navigate to
another page?

8. What file do you need for all the navigation controls to work? How is this file
generated?

9. What control do you use to enable the navigation controls to access the file?

10. What do you have to do to connect the SiteMapPath control to a data source?

Exercises
Exercise 6-1. In this set of exercises, you’ll create a web site for a travel agency called
Ajax Travel. First, create a master page containing all of the elements that should
appear on each page of the site, with the company name at the top, and a copyright
notice at the bottom. In addition, Ajax Travel’s portfolio of destinations is divided
into two categories: Sun and Snow. The home page of the site should offer users a
choice between these two categories. Each category should have its own heading,
which appears in addition to the company heading. Also, each page in the Sun cate-
gory should carry a message at the bottom reading “Ask about our honeymoon spe-
cials!” Each page in the Snow category should carry a message at the bottom reading,
“Ask about our ski vacation packages!” To keep things simple, create just two con-
tent pages for each category: the Sun category should have one page for Bermuda,
and one for Maui; the Snow category should have one page for Vail, Colorado, and
one for St. Moritz, Switzerland.

The Maui page should look like Figure 6-30.

The Vail page should look like Figure 6-31.

258 | Chapter 6: Style Sheets, Master Pages, and Navigation

Figure 6-30. Your goal for the “Maui” page of Exercise 6-1.

Figure 6-31. Your goal for the “Vail” page of Exercise 6-1.

Exercises | 259

Exercise 6-2. Add a control to the home page of the Ajax Travel site asking the user
to enter his name. Update the master page of the site so that “Welcome, <name>!” is
displayed at the top of the page. The home page should look like Figure 6-32.

Exercise 6-3. Remove the user greeting control from the master page. Implement a
TreeView and a Menu for site navigation, both on the master page. Let users choose
between the two types of navigation controls by using a control on the master page,
as shown in Figure 6-33.

Figure 6-32. Your goal for Exercise 6-2.

260 | Chapter 6: Style Sheets, Master Pages, and Navigation

Exercise 6-4. Add breadcrumbs to your site on the master page, as shown in
Figure 6-34.

Figure 6-33. Your goal for Exercise 6-3.

Figure 6-34. Your goal for Exercise 6-4.

261

Chapter 7 CHAPTER 7

State and Life Cycle7

Most of the web sites you have built in this book have been confined to a single page.
In Chapter 6, you learned techniques to provide a single look and feel throughout
the site.

When you created the examples in Chapter 6, you may have noticed that any data
you entered on a page didn’t stick around if you went to a different page and came
back, even if you issued a postback on the page you were on. That’s because the
pages you’ve built up until now haven’t had any way to preserve that kind of infor-
mation, called state.

In each chapter up until now, you’ve learned about the different kinds of controls
and how you use them. We’re going to take a slightly different approach in this
chapter, first taking you behind the scenes so you can understand what the page
actually does when you click the Submit button. Next, you’ll find out more about
state, and how to hold onto it. By the time you’ve finished this chapter, you’ll have
built several sites that can retain state, no matter how much the user clicks around.

Page Life Cycle
A user sits at her browser and types in a URL. A web page appears with text, images,
buttons, and so forth. She fills in a text box and clicks a button. New data appears in
response. How does this work?

Before we begin, it is important to understand a little bit about the “architecture” of
the World Wide Web. In the applications you’ve developed to this point, you’ve
been able to do everything on one computer. But in order for these exercises to work,
your single computer is standing in for three or four important pieces of the puzzle,
as shown in Figure 7-1.

In the original model of the Web, a browser would send a request for a page, identi-
fied by a Universal Resource Locater (URL), and then some remote server would
return that page. Information would be presented using HTML, a simple markup

262 | Chapter 7: State and Life Cycle

language that the browser would display. Pages were imagined to be display-only,
with interaction limited to clicking on hyperlinks to move from page to page. Each
page was designed to be independent of all the others, and it didn’t matter who was
looking at a given page, or when.

In a traditional desktop application, on the other hand, you assume that a single user
sits down, starts the application, uses it continuously for a while, and then closes the
application. This period of time when the user is interacting with the application is
called a session. If the user enters her name at some point, the application should
hold onto that name for the duration of the session in case it needs to be retrieved at
some later point. No matter where the user goes in the application, that name is
assumed to be the same, and so the application may need to pass that name around
to different methods within the code as needed. The user’s name, along with any
other changes she makes, is part of the state of the application, and the application
needs to preserve that state for at least the duration of the session, and sometimes
between sessions.

Desktop applications were always intended to preserve the application state; web
pages were not. In fact, the Web was consciously and explicitly designed to be
“stateless.” This plan worked just fine for a while, but nowadays, web users expect
web applications to behave like desktop applications. That is, if you enter something
in a textbox, and then switch to work in a different application for a while, the con-
tent of the textbox is still there when you come back. That means web applications
need a way to preserve state.

To create a session-based interactive application on top of the Web, ASP.NET uses
pages that extend traditional HTML pages. These are stored on the web server and
combine markup and code to produce HTML for the user’s browser.

Some code runs on the server when the page is requested. Some code runs on the
server in response to actions taken by the user (pressing a button, for example).
Some code is embedded in the page and runs in the browser (AJAX and JavaScript
client-side code).

Figure 7-1. When you enter a URL in your browser, your request crosses the Internet to the web
server, which may access a database, and then returns the page to your local machine.

Server

Database

Internet

Local machine

Page Life Cycle | 263

To understand when different bits of code are run, and how the page that is sent to
the browser is assembled, you need to understand the life cycle of the ASP.NET page.

When an ASP.NET page is requested from the server, the server loads the page into
server memory, processes the page, sends the page to the user, and then unloads it
from memory. From the beginning of the life cycle to the end, the goal is to render
appropriate HTML to the requesting browser. At each step, methods and events are
available that allow you to override the default behavior or add your own program-
matic enhancements.

In ASP.NET, the Page class handles the responses. When a browser requests a page,
an instance of the Page class is created, and that instance creates a hierarchical tree of
all the controls on the page: the control tree.

To see this, you’ll create a simple web site called LifeCycle. This site will consist of a
single page containing a single Button control. Clicking on the Button will do noth-
ing but cause the page to post back to the server.

In Source view, open Default.aspx, and then drag a Button control onto the page
between the two <div> tags.

Add the Trace attribute to the Page directive at the top of the file and set its value to
true, as shown in Figure 7-2.

Figure 7-2. The LifeCycle Default page in Source view shows the single control on the page and
the Trace attribute within the Page directive.

264 | Chapter 7: State and Life Cycle

We haven’t yet formally introduced the Trace control, but you need it for this exer-
cise. You can see the control tree for any page by adding Trace="true" to the Page
directive. We’ll cover tracing in detail in Chapter 8.

Run the page. You will see the single button at the top, followed by a ton of informa-
tion at the bottom. For now, just slide down to the section labeled Control Tree, as
shown in Figure 7-3.

The Page itself is at the root of the tree. All the named controls are included in the
tree, referenced by control ID. In our simple example, there are only two named con-
trols: form1 and Button1.

Static text, including whitespace, newlines, and HTML tags, are represented in the
tree as LiteralControls. The order of controls in the tree is strictly hierarchical.
Within a given level of the hierarchy, the controls are in the order in which they
appear in the markup file.

Web components, including the Page, go through their entire life cycle every time the
page is loaded. Events fire first on the Page, then recursively on every object in the con-
trol tree. Just to emphasize the point: every time the page is posted back to the server,
it goes away, and an entirely new page, with an entirely new set of controls, is created
by the server and sent to the browser. This page and these controls will be nearly iden-
tical to those on the previous page.

Figure 7-3. The page Trace contains a lot of information about the page, but for now, you’re only
interested in the Control Tree section, which shows all the controls on the current page.

Page Life Cycle | 265

There are two slightly different sequences in the life cycle: one for the first time a
page is loaded, and a second when the page reloads itself in a postback. The life cycle
is shown schematically in Figure 7-4.

During the first page load, the life cycle consists of the following steps:

1. A request for the page is made from a browser to the web server. The ASP.NET
Framework first determines whether the page already exists in a cache (a section
of memory specifically reserved for recently used items). If so, the page is
retrieved and returned to the browser and we are done. If not, then the actual
page life cycle starts at this point.

2. During the Start phase, the postback mode is determined. If the page was
requested by a different page, then it was not a postback. If the page was
returned to the server for processing and redisplay, then it is a postback. The
IsPostBack and PreviousPage properties are set accordingly. The Request and
Response properties of the page along with a number of other properties are also
set.

3. The Page Initialization phase contains two events often handled by your code:
PreInit and Init. If you do not handle these explicitly yourself, ASP.NET will
perform the default behavior on your behalf. During the PreInit event, the tar-
get device is determined before the page is initialized, the master page is set, the
control tree is built, and the controls are assigned unique IDs, which are made
available to your code. Personalization and themes are loaded and applied to the
page in this step (these are discussed in Chapter 10). PreInit is the first event in
the life cycle that can be trapped and handled. That is, this is the first event that
you can write your own code for, to change the default behavior of initializing
the page.

4. During the Init event, control properties are read or initialized. If this is a post-
back, it is important to realize that the controls won’t reflect any changes to the
page made before the postback—that happens in the PreRender phase. They will
contain values specified in the markup file.

5. During the Load event, all the control properties are set. View state information
is available, and controls in the page’s control hierarchy can be accessed. The
load phase is routinely modified in a Page_Load method.

6. During the Validation phase, the Validate method is called on all the validation
controls on the page. The IsValid property is set for all those controls and for
the page as a whole.

7. During the Rendering phase, personalization, control, and view state is saved.
Each control on the page is called in succession to render itself to the browser,
that is, to compose itself into HTML that is included in the page’s Response
property. It is very common to handle the PreRender event with a Page_PreRender
method, typically when you must take some action based on the final value of
some other control on the page. During the Render event, the HTML is actually

266 | Chapter 7: State and Life Cycle

Figure 7-4. Schematic of ASP.NET page life cycle. Events are in rectangles, with commonly
handled events in bold rectangles. Areas of functionality are indicated in circles. The dashed round-
cornered rectangles delineate the major phases of the cycle.

Event

Commonly handled
event

Functionality

KEY

Page in cache?
Yes Retrieve

from
cache

Page
request

No

Start Set Request, Response &
IsPostBack properties

Page
initialization PreInit

Init

InitComplete

Load

First load?
No

LoadState ProcessPostData

PreLoad

Load

Validation

First load?
ProcessPostData

(second try) ChangedEvents

PostBackEvents

Perform
control
events

Postback
event

handling

LoadComplete

Rendering
PreRender

PreRenderComplete

SaveState

SaveStateComplete

Render
Create
child

controls
Unload

Create child
controls, apply
view & control

state

Yes

No

Yes

State | 267

generated and sent to the requesting page, although this event is rarely handled
unless you are developing custom controls.

8. Unload is the last event of the life cycle. It gives you an opportunity to do any
final cleanup (i.e., closing open files and releasing references to expensive
resources, such as database connections).

During postback, the life cycle is the same as during the first load, except for the
following:

1. During the Load phase, after initialization is complete, the view state and the
control state are loaded and applied as necessary.

2. After the Validation phase completes, postback data is processed. Control event
handlers are now executed. This is important: control event handlers, such as a
Button Click, are not called until after the Page Initialization and Load events are
handled. This is important because it is often critical in which order code in the
various event handlers is executed.

You can easily see the order in which events are fired on a page by turning on tracing
for the page as you did above (setting Trace to true in the Page directive). As shown
in Figure 7-5, the Trace Information section of the sample lists all the page events
along with the number of seconds it took for that event to run from the start of the
life cycle and from the previous event.

If you click the button to cause a postback, the trace information will include the
additional events indicated previously in Figure 7-4, including ProcessPostData
Second Try, ChangedEvents, and PostBackEvent. Often, when you’re trying to track
down why your page is behaving a certain way or why some of your code does not
seem to work as you would expect, looking at the life cycle behavior can be
illuminating.

State
State, in the case of a web page, is the current value of all the controls and variables
for the current user, in the current session. The Web is inherently a stateless envi-
ronment, which means that each time a page is posted to the server and then sent
back to the browser, the page is created again from scratch. Unless the state of all
the controls is explicitly preserved before the page is posted, the state is lost and all
of the controls will be created with default values. One of the great strengths of
ASP.NET is that it automatically maintains state for server controls—both HTML
and ASP.NET—so you do not have to write any code to accomplish this. This sec-
tion will explore how this is done and how you can make use of the ASP.NET state
management capabilities.

268 | Chapter 7: State and Life Cycle

ASP.NET manages four types of state:

Control state
Used to provide features such as paging and sorting of GridView controls. Con-
trol state cannot be modified, accessed directly, or disabled.

View state
The state of all the controls on the page. View state only lasts for that one page
display, and is updated every time the page is redrawn. It can be disabled for
specific controls, the page, or the entire web site.

Session state
Data specifically saved across page posts, for use by all the pages in a web
application.

Application state
Data available to all the users of a web application, even across multiple
sessions.

Figure 7-5. The Trace Information section of the page Trace shows all the page events.

State | 269

Table 7-1 compares the kinds of state management (other than Control state, which
is not accessible to the developer).

View State
The view state is the state of the page and all its controls. View state is automatically
maintained across posts by the ASP.NET Framework. When a page is posted to the
server, the view state is read. Just before the page is sent back to the browser, the
view state is restored.

The view state is saved in a hidden field on the page. Because the view state is main-
tained via a form field, this technique works with all browsers. The information
saved in the hidden field is Base64 encoded, but not encrypted. As such, any infor-
mation stored in view state is not immune to prying eyes.

If there is no need to maintain the view state for a given page, you can boost perfor-
mance by disabling view state for that page. For example, if the page does not post
back to itself or if the only control on a page that might need to have its state main-
tained is populated from a database with every round trip to the server, then there
will be no need to maintain the view state for that page. To disable view state for a
page, add the EnableViewState attribute with a value of false to the Page directive:

<%@ Page Language="VB" EnableViewState="false" %>

The default value for EnableViewState is true.

You can also disable the view state for an entire application by setting the
EnableViewState property to false in the <pages> section of the web.config configura-
tion file.

Table 7-1. Comparison of types of state

Feature View state Session state Application state

Uses server resources No Yes Yes

Uses bandwidth Yes No No

Times out No Yes No

Security exposure Yes Depends No

Optimized for nonprimitive types No Yes Yes

Available for arbitrary data Yes Yes Yes

Programmatically accessible Yes Yes Yes

Scope Page Session Application

Survives restart Yes Depends on configuration No

270 | Chapter 7: State and Life Cycle

You can even maintain or disable the view state for individual controls. This is done
with the Control.EnableViewState property, which is a Boolean value with a default
of true. Disabling view state for a control, just as for the page, will improve perfor-
mance. This would be appropriate, for example, in a situation where a GridView is
populated from a database every time the page is loaded. In this case, the contents of
the control would be overridden by the database query, so there is no point in main-
taining view state for that control. If the GridView in question were named gv, the fol-
lowing line of code would disable its view state:

gv.EnableViewState = false;

The simple controls, TextBox, RadioButton, CheckBoxList, and
RadioButtonList, ignore the EnableViewState properties, as the current
value is always saved in view state and posted back to the server any-
way. Complex controls such as the GridView do respect the
EnableViewState property. In cases where a DataSource control is used
as the data source for a GridView, the data is gathered fresh with every
page post. In this case, it is more performant to disable view state.

There are some situations where view state is not the best place to store data. If you
need to store a large amount of data, view state is not an efficient mechanism
because the data is transferred back and forth to the server with every page post. If
you have security concerns about the data, and the data is not being displayed on the
page, then including it in view state increases the security exposure. Finally, view
state is optimized only for strings, integers, Booleans, arrays, ArrayLists, and hash-
tables. Other .NET types may be saved in view state, but will result in degraded per-
formance and a larger view state footprint.

In some of these instances, session state might be a better alternative; on the other
hand, view state does not consume any server resources and does not time out as ses-
sion state does.

To see view state in action, create a new web site called ViewState.

This web site will have a TextBox, a Label, and a GridView control. It will also have a
Button control to force a postback to the server. To better demonstrate view state,
you will not use a DataSource control to populate the GridView; rather, you’ll use
ADO.NET code in the code-behind to gather the data the first time the page loads
(don’t worry, we’ll show you what to do).

The finished Design view of the page will look similar to Figure 7-6.

While in Design view, drag a Button control and a TextBox control onto the page.
Change the Text property of the Button to Post to indicate that it will post back to
the server.

Press the Enter key several times, and then drag a Label control onto the page.

State | 271

Press the Enter key a few more times. Now, drag a GridView control from the Data
section of the Toolbox onto the page.

The GridView will be populated from the AdventureWorks database. In preparation
for this, add a connection string to the web.config file by double-clicking on that file
in the Solution Explorer to open the file in the editing window.

Replace this single line (if it exists):

<appSettings />

with the lines that follow. If the above line of code is not in the file, add the text
below after the opening <configuration> element anyway (the quoted value should
not wrap in your code, as it does on this printed page):

<appSettings>
 <add key="AdventureWorks"
 value="Data Source=<server name>;
 Initial Catalog=AdventureWorks;
 Integrated Security=True;" />
</appSettings>

Replace the Data Source with the appropriate SQL Server name for your machine. If
you are using SQL Express, the Data Source will be something like (note the single
period before the back slash):

Data Source=.\SqlExpress;

Figure 7-6. You’ll create the ViewState page for this example so that it looks like this in Design
view.

272 | Chapter 7: State and Life Cycle

Open the code-behind for the page by double-clicking on Default.aspx.vb in the
Solution Explorer. Create an event handler for the Page Load event by selecting (Page
Events) in the Class Name drop-down menu at the top left of the editing window,
and in the Method Name drop-down at the top right of the editing window, select
the Load event. This will insert an empty code skeleton for the Page_Load event
handler.

Type the highlighted code inside the Page_Load method from Example 7-1. (Note the
two Imports statements that must appear before the Partial Class line.)

Example 7-1. The Default.aspx.vb for the ViewState web site has a simple Page_Load method that
calls a more elaborate helper method
Imports System.Data
Imports System.Data.SqlClient

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 Label1.Text = "Hello World"
 PopulateGrid()
 End If
 End Sub

 Private Sub PopulateGrid()
 Dim connectionString As String = _
 ConfigurationManager.AppSettings("AdventureWorks")
 Dim connection As SqlConnection = _
 New SqlConnection(connectionString)
 Dim queryString As String = _
 "select top 1000 AddressLine1, AddressLine2, City, " + _
 "StateProvinceID, PostalCode from Person.Address"
 Dim ds As DataSet = New DataSet()
 Try
 Dim dataAdapter As SqlDataAdapter = _
 New SqlDataAdapter(queryString, connection)
 dataAdapter.Fill(ds, "Addresses")
 GridView1.DataSource = ds.Tables("Addresses")
 GridView1.DataBind()
 Catch ex As Exception
 '' Handle exception
 Finally
 connection.Close()
 End Try
 End Sub

End Class

State | 273

Also from Example 7-1, add the helper method called PopulateGrid, which actually
does the work of gathering and binding the data for the GridView. (Again, as with the
Trace control earlier, it is not important in this example for you to understand
exactly how PopulateGrid works.) In order for PopulateGrid to build properly, you
must include the two Imports statements at the top of the code-behind file in
Example 7-1.

Run the application. Enter some text in the TextBox and observe the result. Your
screen will appear similar to Figure 7-7.

If you run the page and there is no data visible in the grid after click-
ing the Post button, you’ve probably disabled view state for the page
(as you are instructed to do below). Make sure the EnableViewState
attribute is set to true in the Page directive at the top of the markup
file:

<%@ Page Language="VB" AutoEventWireup="false"
CodeFile="Default.aspx.vb" EnableViewState="true"
Inherits="_Default" %>

V B C H E A T S H E E T

Helper Methods
When your event handler has a lot of code that you might want to use again elsewhere,
it’s a good idea to separate that code out into another method. You can run that
method from various other points in your code, which is known as calling the method.
To create a helper method, you create a new Sub in the code-behind file. Be careful to
place it before the End Class statement and give it a name. The following example
shows what this looks like:

Private Sub PopulateGrid()
' Your code goes here.
End Sub

To call the method, you simply type the name the function, with the parentheses, at
the point in the code where you want the method to execute, as in:

PopulateGrid()

The execution of the application jumps to the beginning of the method, and then exe-
cutes the method. When the execution reaches the End Sub statement at the end of the
helper method, it returns to the line in the event handler where it left from and contin-
ues from there.

If you need to pass values (called parameters) from the calling method into the helper
method, you would include them in the parentheses of the method call. This example
doesn’t pass any parameters.

274 | Chapter 7: State and Life Cycle

Click on the Post button. The page will be posted back to the server, as indicated by
the progress indicator in the status line at the bottom of the browser. However, noth-
ing on the page will change.

The contents of the TextBox are preserved by the built-in view state capability of
ASP. NET. You have written no code anywhere to do this, it just happens.

Looking at the Page_Load event handler, you can see that the Text property of the
Label control is set when the page is first loaded, but not on subsequent post back.
Ditto for the GridView—it is populated only the first time the page is loaded. Again,
ASP.NET view state is taking care of preserving the data between postbacks.

Now, watch what happens when you disable view state for the page. Open
Default.aspx in Source view. Add the EnableViewState attribute to the Page direc-
tive at the top of the file, and set its value to false, as shown highlighted in the
following code snippet:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
EnableViewState="false" Inherits="_Default" %>

Run the page again and enter some text in the TextBox. It initially looks the same as
Figure 7-7. Click the Post button to post the page back to the server.

The page is very different, as shown in Figure 7-8.

Figure 7-7. After you’ve entered some text in the TextBox, the ViewState page will look like this.
This is the expected result with View state enabled.

State | 275

The TextBox still shows the current value. As mentioned in the note above, simple
controls such as TextBox ignore the EnableViewState property and always preserve
view state. However, the Label and GridView controls do respect that property.
Because they are only populated the first time the page is loaded, they no longer dis-
play the current data after the page is posted back to the server. The Label reverts to
its default Text property, and the GridView is not even rendered if there is no data
bound to it.

In addition to preserving the values of controls, view state is very handy for some-
thing else—you can programmatically stash your own stuff in a data structure
known as the state bag, using the ViewState keyword. The state bag stores data as
attribute/value pairs in a dictionary. The attribute is a string, which is the name of
the object stored as the value. The types of objects that can be stored efficiently are
the primitive data types, including integers, strings, bytes, and Booleans. You can
also store arrays of primitive types. Complex types, such as DataSets and custom
objects can be stored as well, but performance will suffer.

The next example demonstrates stashing values in the state bag and then retrieving
them. In this example, a counter keeps track of the number of times a button on a
page has been clicked. As long as the page is current, the count will be correct. If you
move to another page and then return to this page, the count will start over because
view state will be reinitialized for the new page.

Create a new web site called StateBag. On the Default page, drag on a Label, name it
lblCounter, and then add two buttons. Set the Text property of one button to
Increment Counter, and the Text property of the other button to Navigate.

Figure 7-8. When you post the page back with View state disabled, the results are very different.

276 | Chapter 7: State and Life Cycle

V B C H E A T S H E E T

Arrays and Dictionaries
You’ve seen variables in previous chapters, and you’ve seen collections, like the collec-
tion of ListItems in a RadioButtonList. An array is simply another type of collection,
in which you can store a bunch of objects in a single variable, provided they’re all of
the same type. You declare an array similar to the way you would create a variable:

Dim myArray(5) As Integer

This code creates an array called myArray, which can hold integers. Specifically, the (5)
states that the array can hold six integers. Why not five as the code suggests? Because
just as with controls, array indexes begin at zero. To access the third integer in the
array, you’d just use this syntax:

myArray(2)

Use curly braces if you want to initialize the array when you create it:

Dim myArray() As Integer = {42, 36, 128, 53, 7, 85}

Notice you don’t have to specify the length of the array in this case; the compiler will
automatically set it to a length of six.

A two-dimensional array is like an array of arrays-each entry of the array is itself an
array, which simulates rows and columns. So, to access the fifth entry in the third
array, you use this syntax:

myTwoDimensionalArray(2,4)

Arrays are particularly useful with ForEach loops, like this:

ForEach i In myArray
 i = i + 1
Next i

That little loop increments each element in the array by 1, and you don’t need to know
what values are in the array, or how many there are. One drawback to arrays is that if
you want to retrieve a value from an array, you either have to know the index of the
value you want, or else loop through the array until you find it. The dictionary is a spe-
cific kind of array (also known as a Hashtable) that solves this problem by associating
each value with a key, instead of an index. For example, you could have a dictionary of
U.S. states, using their abbreviations as the key values. Then, to retrieve a state’s name,
you’d just have to know the abbreviation (the key). The following code snippet creates
and partially populates a Hashtable to hold the states:

Dim States as New Hashtable()
States.Add("CA", "California")
States.Add("MA", "Massachusetts")
States.Add("PA", "Pennsylvania")

To retrieve the name of the dictionary entry with the key value of MA, you would use
the following code:

Dim strStateName as string = States("MA").ToString()

In the case of the state bag, the attribute names are the keys, and the values of those
attributes are stored as the value part of each dictionary pair.

State | 277

Add another page to the web site by clicking on Website ➝ Add New Item.... Call
this new page AnotherPage.aspx. Be sure the “Place code in separate file” checkbox is
checked. On that page, add a Button control, with its Text property set to Home.

While still in AnotherPage.aspx, switch to Design view, and double-click the Home
button to open the Click event handler. Add the highlighted code below:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Response.Redirect("Default.aspx")
End Sub

This button will now navigate back to the Default page.

Open Default.aspx in Design view. Double-click the Navigate button to open an
event handler for that button, and add the highlighted code in Example 7-2 to the
Click event handler.

Right-click on Default.aspx in the Solution Explorer and set it as the Start page. Run
the web site and verify you can navigate back and forth between the two pages.

Stop the web site, then open the code-behind for the Default page, Default.aspx.vb.
It already has an event handler for the Navigate button. There is no code necessary
for the Increment Counter button.

Add an event handler for the Load event for the Default page. Next, add the high-
lighted code from Example 7-2 to the Page_Load method.

Run the site. It will open with something like Figure 7-9. The counter will be initial-
ized to 1.

Click the Increment Counter button. You will see the counter increment in the label.
Navigate to the other page and back, however, and the counter will be reset back to
1. Just as in the previous example, the view state is retained through postbacks for
controls on the same page, but once you transfer to a different page, that state is
abandoned. This is called scope—the ViewState data is scoped to the page.

Example 7-2. The Default.aspx.vb for the StateBag web site has a Page_Load method that
increments the counter each time the page is loaded
Partial Class _Default
 Inherits System.Web.UI.Page

Protected Sub Button2_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Response.Redirect("AnotherPage.aspx")
End Sub

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ViewState("Counter") += 1
 lblCounter.Text = ViewState("Counter").ToString()
End Sub
End Class

278 | Chapter 7: State and Life Cycle

In the Page_Load method in Example 7-2, examine the following line:

ViewState("Counter") += 1

This line creates a ViewState dictionary object if it does not already exist, creates a
key in the dictionary called Counter, and associates the value of 1 with Counter.
When you click the Increment Counter button, the page posts back, which means
that the Load event is raised, and the method is called again. The Counter item
already exists in the dictionary, so its value is increased by 1. Note that if the page
had a dozen buttons, clicking any of them would increment the counter, as all it
takes is a postback to run the code in Page_Load.

Figure 7-9. When you open the StateBag page, the counter initializes to 1.

V B C H E A T S H E E T

+= Operator
The += operator is VB shorthand for adding the specified amount, and assigning the
result to the original variable—in this case, incrementing by 1. The following two state-
ments are equivalent:

myVariable = myVariable + 1
myVariable += 1

There are also -=, *=, and /= operators. In addition, there is an &= operator specifically
for concatenating strings, although += works for strings as well.

State | 279

It is interesting to note that if you simply refresh the browser, rather
than click a button on the page, the counter will not be incremented.

For this example, that works fine. However, in the general case, it is usually best to
first test to see if the object in view state exists before trying to use it.

Consider the case where a string array is put into the state bag in Page_Load with the
following lines of code:

Dim strArray() As String = New String() {"a", "b", "c"}
ViewState("TestArray") = strArray

Then, somewhere else in your code, maybe a Button Click event handler, for exam-
ple, you want to retrieve the contents of that ViewState object and do something with
it. You must first verify that the object exists before trying to use it, because if for
some reason it does not exist, it will throw an exception and crash your program.
You can verify the object’s existence with an If...Then block that tests to see if the
ViewState object is not Nothing, as in the following code snippet:

If ViewState("TestArray") IsNot Nothing Then
 Dim strNewArray() As String
 strNewArray = CType(ViewState("TestArray"), String())
End If

Then, once you are sure the ViewState object exists, you retrieve it by using the CType
function to explicitly convert the object to the desired type. This is necessary no mat-
ter what type is stashed into the ViewState object because regardless of what type of
object is stashed in the bag, what comes out is of type Object unless you convert it
back.

Session State
When you connect to an ASP.NET web site, you create a session. The session
imposes state on the otherwise stateless Web and allows the web site to recognize
that subsequent page requests are from the same browser that started the session.
This allows the web site to maintain state across pages until you explicitly end the
session by closing the browser, or until the session times out. (The default timeout is
20 minutes, which you can change by editing the web.config file.)

The scope of a session assumes a single user making many different page requests.
The session is not lost until the timeout period goes by with no requests from the
browser. If the user goes to lunch and does not click on anything for more than 20
minutes (assuming the default timeout period), the session will terminate. On the
other hand, if she clicks once every 19 minutes, the session will be maintained
indefinitely.

While an application is running, there may be many sessions, essentially one for each
user interacting with the web site, as indicated in Figure 7-10.

280 | Chapter 7: State and Life Cycle

ASP.NET provides session state with the following features:

• Works with browsers that have cookies either enabled or disabled.

• Identifies if a request is part of an existing session.

• Stores session-scoped data for use across multiple requests.

• Raises session events such as Session_Start, which you can handle in applica-
tion code.

• Automatically releases session resources if the session ends or times out.

Similar to the ViewState state bag, session data is stored as a collection of attribute/
value pair dictionary entries.

You set and retrieve the dictionary objects using the Session keyword, as shown in
the next example, which presents a set of radio buttons. Selecting one of the radio
buttons sets three session dictionary objects—two strings and a string array. These
session dictionary objects are then used to populate a Label control and a
DropDownList control.

Create a new web site called SessionState and switch to the Design view for
default.aspx. Drag a RadioButtonList control onto the page. Set its AutoPostBack
property to True, so the effects will occur as soon as you make a selection.

Use the ListItem Collection Editor to create three items, with their Text and Value
properties set in the following table.

Figure 7-10. A web site can have many simultaneous sessions, one for each user who has not
timed out.

Dan’s session

Amy’s session

Jesse’s session

Jill’s session

Web server

www.OurWebSite.com

State | 281

You might also want to set the RepeatDirection property to Horizontal, and set the
CellSpacing property to 20, perhaps, to spread things out a bit.

If this were part of a real application, it might make sense to make this
an AJAX-enabled web site and wrap all this in an UpdatePanel to get
much snappier performance. For this example, that is neither neces-
sary nor particularly noticeable.

Drag a Label control onto the page and set its ID to lblMessage. Clear its Text
property. Drag a DropDownList control onto the page. Set its ID to ddl and its Visible
property to False so that it will initially be invisible. The Design view will look some-
thing like Figure 7-11.

Double-click the RadioButtonList to open the code-behind in an event handler for
the default event for that control, SelectedIndexChanged. Enter the code highlighted
in Example 7-3. Notice that in addition to the code inside the event handler itself,
there is also a helper method called DisplayStuff.

Text Value

.NET N

Database D

Hardware H

Figure 7-11. This is what the SessionState Default page should look like in Design view once
you’ve created it. However, populating the drop-down list is different than you might expect.

282 | Chapter 7: State and Life Cycle

Run the application and select one of the radio buttons. Then, open the drop-down
list to see that the items have been populated, as shown in Figure 7-12. Now, select

Example 7-3. The Default.aspx.vb for the SessionState web site contains a helper method that can
retrieve content directly from the session state dictionary
Partial Class _Default
 Inherits System.Web.UI.Page

Protected Sub RadioButtonList1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles RadioButtonList1.SelectedIndexChanged
 Dim Books(3) As String
 Session("cattext") = RadioButtonList1.SelectedItem.Text
 Session("catcode") = RadioButtonList1.SelectedItem.Value
 Select Case RadioButtonList1.SelectedItem.Value
 Case "N"
 Books(0) = "Programming Visual Basic 2008"
 Books(1) = "Programming ASP.NET"
 Books(2) = "Programming C#"
 Case "D"
 Books(0) = "Oracle & Open Source"
 Books(1) = "SQL in a Nutshell"
 Books(2) = "Transact SQL Programming"
 Case "H"
 Books(0) = "PC Hardware in a Nutshell"
 Books(1) = "Dictionary of PC Hardware and Data Communications Terms"
 Books(2) = "Linux Device Drivers"
 End Select
 Session("books") = Books
 DisplayStuff()
End Sub

Private Sub DisplayStuff()
 If RadioButtonList1.SelectedIndex = -1 Then
 lblMessage.Text = "You must select a book category"
 Else
 Dim str As String = String.Empty
 str += "You have selected the category "
 str += CType(Session("cattext"), String)
 str += " with code '"
 str += CType(Session("catcode"), String)
 str += "'."
 lblMessage.Text = str
 ddl.Visible = True
 Dim CatBooks() As String = CType(Session("books"), String())
 ' populate the DropDownList
 ddl.Items.Clear()
 For i As Integer = 0 To CatBooks.Length - 1 Step 1
 ddl.Items.Add(New ListItem(CatBooks(i)))
 Next
 End If
End Sub

End Class

State | 283

one of the other radio buttons. Notice the page posts back immediately, and the con-
tent of the drop-down list changes.

The first thing that happens in this code is the Text the user selected is added to ses-
sion state and associated with the key "cattext" in the dictionary. Similarly, the
Value that goes with that text is stored in Session associated with the key "catcode".

Session("cattext") = RadioButtonList1.SelectedItem.TextSession("catcode") =
RadioButtonList1.SelectedItem.Value

The Select Case statement is used to populate the drop-down list, depending on the
user’s selection. In each case, a three-item array called Books is created, but the text
for each item varies depending on the Case statement. After Books is populated, it,
too, is saved to Session state:

Session("books") = Books

Then, the DisplayStuff() helper method is called. Because cattext, catvalue, and
books have all been saved in session state, you don’t need to pass their values to the
helper method. DisplayStuff() can retrieve them directly from the Session dictio-
nary, for example, when it concatenates cattext to the string:

str += CType(Session("cattext"), String)

V B C H E A T S H E E T

Select Case Statement
You saw the If statement back in Chapter 4. The Select Case statement is a way to
string together multiple If statements in a clearer manner. The Select Case statement
opens with the keywords Select Case, followed by the variable being evaluated:

Select Case myVariable

Next is a series of Case statements, each with a different condition that will be com-
pared against the value of myVariable. Each case is followed by some code that runs if
the value of the variable matches the condition. Assuming myVariable is a string that
represents a size, the Case statements might go like this:

Case "Small"
 lblMyLabel.Text = "Just a little."
Case "Medium"
 lblMyLabel.Text = "Standard size."
Case "Large"
 lblMyLabel.Text = "Super-size me."

Once a case is matched, only the code for that case is executed; the rest of the code is
ignored. In Example 7-3 (shown previously), the variable being evaluated is
RadioButtonList1. SelectedItem.Value, the value that the user chose.

284 | Chapter 7: State and Life Cycle

Remember, you need to use the CType method to convert the value to a string before
you can use it.

Similarly, the helper method retrieves the books object, uses CType to convert it to an
array of strings, and stores it in the new array CatBooks():

Dim CatBooks() As String = CType(Session("books"), String())

Next, the method uses CatBooks() in a loop to populate the drop-down list.

Session state is enabled by default and works right out of the box. To increase perfor-
mance, you can disable session state on a per-page, per-web site, or per-machine
basis.

To disable session state for a page, include the following highlighted attribute in the
Page directive at the top of the markup file:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="Default.aspx.vb"
 Inherits="_Default"

EnableSessionState="False" %>

Valid values for EnableSessionState are True, False, and ReadOnly. ReadOnly provides
better performance than True as long as you do not need to edit the values stored in
session. How do the values get into session state if it is set to ReadOnly? From another
page whose value is True.

Figure 7-12. When you select one of the radio buttons in the SessionState web site, the content of
the drop-down list changes immediately.

State | 285

To configure session state on a per-web site or per-machine basis, you must edit the
configuration file, web.config, in the web site virtual directory.

For simple single-server, single-processor web sites with relatively low traffic (mea-
sured in hits per minute rather than hundreds or thousands of hits per minute), the
default configuration is probably good enough. In more complex or demanding sce-
narios, you can configure session state to accommodate a wide range of require-
ments. This would include the length of the timeout, whether browser cookies are
used, where the session information is stored (in memory on the local machine, in
memory on a state server, or in a database somewhere), and so on.

Application State
You have seen how view state, when accessed with the ViewState keyword, is scoped
to the page. You have also seen that session state, when accessed with the session
keyword, is scoped to the Session. Finally, there is application state, which when
accessed with the Application keyword, is scoped across the entire application; that
is, it applies to all sessions.

The syntax for getting and setting values in Application state are exactly analogous
to ViewState and Session, so we will not include an example here. There are several
things to consider, however.

First, because multiple sessions can access the same Application dictionary object, it
is possible for two people to change the value simultaneously. This is not an issue for
read-only access. However, if the application data is editable by users, it is possible
for two (or more) users to overwrite each other’s values, resulting in faulty data at
best. To prevent this, you can lock the Application object, but that can cause the
application to grind to a halt.

Second, unlike view state and specially configured session state, application state
always consumes server memory, so do not store too much “stuff” in application
state.

Third, data stored in application state will not survive a server restart or crash. If
something needs to persist across application halts, you need to store it elsewhere,
such as in web.config as an AppSetting (but only if it is read-only), or in a database.

And finally, application state is specific to a single processor on a single machine. If
your environment includes either multiprocessor servers (web garden) or multiple
web servers (web farm), do not use application state. If you need this type of
functionality, you will need to create it from scratch, perhaps storing the requisite
values in a database.

286 | Chapter 7: State and Life Cycle

Summary
• When you issue a request from your browser, that request is sent across the

Internet to a remote server, which processes the request, possibly accesses a
database, and then returns the HTML to the browser, where the page is
rendered.

• A session is the period where a single user interacts with the web application, no
matter how many different pages are visited in that application.

• The values of all the controls on the page are referred to as state. The Web was
originally intended not to preserve state, but that has evolved over time.

• Each step of the ASP.NET life cycle has events that allow you to change or add
to the default behavior for that step.

• The control tree is a hierarchical representation of all the controls on a single
page.

• The Trace attribute lets you see a great deal of information about your page,
including the control tree.

• The page life cycle differs slightly depending on whether the page is loaded as a
result of a postback.

• The Start phase determines whether the page was requested by another page, or
is a postback.

• The Initialization phase applies personalization and themes to the page, and also
reads or initializes control properties.

• The Load phase sets the control properties.

• The Validation phase is where validation methods are checked on all eligible
controls on the page.

• The Rendering phase is where each control is called to render itself in the
browser.

• The Unload phase is last, and allows you to clean up any resources you need to.

• ASP.NET can automatically maintain state for server controls, avoiding the need
to write any custom code.

• View state is the state of the page and any controls on it.

• You can disable the view state by adding EnableViewState="false" to the Page
directive. Simple controls such as text boxes, radio buttons, and checkboxes
always preserve view state, no matter what you set in the Page directive. More
complex controls, however, can have their view state disabled.

• Although the view state is maintained automatically, you can use the state bag of
view state to store your own values from post to post, using the ViewState
keyword.

Summary | 287

• The state bag uses a dictionary structure, with keys and values that you define as
needed.

• Session state is not automatically maintained from page to page, but you can
specify that objects be preserved in session state.

• Session state also uses a dictionary that you define as needed. You use the
Session keyword to add items to this dictionary.

• You can disable session state for the page by placing the attribute
EnableSessionState="False" in the Page directive, or for the entire site by editing
web.config.

• Application state is similar to view state and session state. You can access the
dictionary with the Application keyword.

By now, you’ve developed a lot of skills and created many web pages that look and
act professional, both up front and under the hood. When you take your shiny web
site with its fancy controls out for a spin in the real world, though, you’re going to
come up against a tough reality: stuff breaks...a lot. As you may have already discov-
ered from the exercises in this book, a typo in the wrong place or a misconfigured
property can lead to a site that doesn’t work and a lot of time staring at the code try-
ing to figure out where you went wrong. Even when all of your code works perfectly,
you can still run into problems with outside data sources, user errors, and other
things beyond your control. Errors and bugs are part of programming, and nobody
expects you to write perfect code the first time. What you want to learn, though, is
how to find and fix bugs in the shortest possible time. The IDE has a host of tools to
help you do just that, and that’s what we’ll discuss next.

288 | Chapter 7: State and Life Cycle

B R A I N B U I L D E R

Quiz
1. What is a session?

2. What is the state of a page?

3. What setting can you use to see information about the different stages of the
page life cycle?

4. In which life cycle phase does the page determine if it was called as the result of a
postback?

5. What event is usually used to take actions during the Load phase?

6. What are the four kinds of state that ASP.NET manages? Which one can you not
affect in any way?

7. What does the EnableViewState="false" setting do?

8. Where would you store the value of a counter that is incremented each time the
page is loaded?

9. Suppose you wanted to ask the user to enter her name on a page, and you
wanted to retain that value the entire time the user is at your site. What’s the
best mechanism to use?

10. What’s the proper syntax for storing and retrieving that user name?

Exercises
Exercise 7-1. You’ll start out with a simple exercise that uses your knowledge of the
page life cycle. Create a simple page with a label, lblPostBack, and a button,
btnPostBack, with a Text property of “Post Back”. Write the appropriate code to
cause the label to display the message “You’re seeing this page for the first time!”
when the page initially loads. Whenever the page is loaded as a result of a postback,
the label should display the message “Welcome back to the page.”

Exercise 7-2. Create a page with a label, lblMessage, and a button, btnPostBack. The
first time you access the page, the label should output the message “Page first
accessed at,” followed by the date and time. Each time the button is clicked, use the
state bag to add a new line to the label with the message “Page posted back at,” fol-
lowed by the date and time. (Hint: If you don’t recall how to access the current date
and time, see Chapter 3.) Your page should look something like Figure 7-13.

Exercises | 289

Exercise 7-3. Copy Exercise 7-2 to a new web site, and make the Default.aspx page
the home page. Add two more pages to the project; call them SecondPage.aspx and
ThirdPage.aspx. Add an <h1> to Default.aspx to identify it, and then add two naviga-
tion buttons to navigate to each of the other two pages.

SecondPage.aspx and ThirdPage.aspx should each contain an <h1> to identify them, a
button for posting back, two buttons for navigating to each of the other two pages,
and a label that displays the string created on the home page. Both of these pages
should add a message to the string indicating when they were accessed for the first
time and when they are posted back. After you’ve navigated around the site for a bit,
it should look like Figure 7-14.

Figure 7-13. Your goal for Exercise 7-2, after clicking the Post Back button a few times.

290 | Chapter 7: State and Life Cycle

Figure 7-14. Your goal for Exercise 7-3, after clicking around a bit.

291

Chapter 8 CHAPTER 8

Errors, Exceptions, and Bugs, Oh My!8

Every computer programmer has run into bugs. It comes with the territory. Many
bugs are found during the coding process. Others pop up only when an end user per-
forms a specific and unusual sequence of steps or the program receives unexpected
data. You should always try to find bugs early in the development process and avoid
having end users find your bugs for you. Countless studies have shown that the ear-
lier you find a bug, the easier and less expensive it is to fix.

If your program does run into a problem, you will want to recover quickly and invisi-
bly, or, at worst, fail gracefully. ASP.NET provides tools and features to help reach
these goals:

Tracing
You can trace program execution at either the page or application level. ASP.NET
provides an extensible trace log with program life-cycle information.

Symbolic debugging
You can step through your program line by line, stop it as it is running, examine
and modify variables and expressions, and step into and out of classes, even
those written in other languages.

Error handling
You can handle standard or custom errors at the application or page level and
display special error pages. You can also show different error pages for different
errors.

There’s an additional technique for handling errors in your code: the try/catch
block. A try block surrounds code that has a reasonable chance of causing a prob-
lem, such as a file not being found when you try to open it. The corresponding catch
block contains code to handle that error appropriately. You may see try/catch blocks
in various places in this book, and you can find out more about them in the “Catch-
ing Errors” Cheat Sheet in Chapter 6.

292 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

To get started exploring the ASP.NET debugging tools, you should first create a sim-
ple web site to which you will add tracing code. You will then introduce bugs into
the program and use the debugger to find and fix the bugs.

Creating the Sample Application
To start, create a new web site and name it DebuggingApp. This will consist of a sin-
gle web page containing a header label, a DropDownList with a label below it to dis-
play the selected item, and a hyperlink.

In Design view, drag a Label control to the top of the page and set its Text property
to the following:

Tracing, Debugging & Error Handling Demo

Change its Font-Name property to Arial Black, its Font-Size property to Large, and its
Font-Bold property to True.

Drag a DropDownList control onto the form. Set its ID property to ddlBooks. Change
its AutoPostBack property to True.

Add a label below the DropDownList with an ID of lblDdl. Set the Text property so it
is empty.

Finally, add a HyperLink control below lblDdl. Set its ID property to hlTest. Change
the Text property to “Link To” and change the NavigateUrl property to TestLink.aspx.
No page with this name exists. This is an intentional error to demonstrate error han-
dling later in the chapter.

The Design view will look something like that shown in Figure 8-1.

The DropDownList will be dynamically populated every time the page loads in the
Page_Load method. To create this method, double-click Default.aspx.vb in the Solu-
tion Explorer to open the code-behind file. Click the Class Name drop-down at the
upper left of the editing window and select (Page Events).

Click the Method Name drop-down on the upper right and select the Load event to
create the code skeleton for the Page_Load method. Enter the highlighted code from
Example 8-1 into the Page_Load method.

Creating the Sample Application | 293

Figure 8-1. Here’s what the sample application, DebuggingApp, looks like in Design view.

Example 8-1. The Page_Load method for the Default page in DebuggingApp defines an array of
books
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' Second dimension contains ISBN number
 Dim books(,) As String = { _
 {"Programming Silverlight", "0000000001"}, _
 {"Programming .NET 3", "0000000002"}, _
 {"Programming ASP.NET, 4th Edition", "0000000003"}, _
 {"Programming Visual Basic 9", "0000000004"}, _
 {"Programming C#, 5th Edition", "0000000005"}, _
 {"Learning ASP.NET ", "0596513976"} _
 }
 ' Now populate the list
 For i As Integer = 0 To books.GetLength(0) - 1
 ' add both Text and Value
 ddlBooks.Items.Add(New ListItem(books(i, 0), books(i, 1)))
 Next
 End If
End Sub

294 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

There is no need to create the array of book names and populate the DropDownList on
every page load because view state will handle that on postback. Therefore, you test
the IsPostBack property and only create the array the first time the page is loaded.

Now, you need to add the event-handling code for the drop-down list. In Design
view, double-click the control to open the code-behind file, Default.aspx.vb. The cur-
sor will be in the event handler method ddlBooks_SelectedIndexChanged. Type in the
highlighted code from Example 8-2. You could also accomplish this check with the
validation controls you learned about in Chapter 5.

Run the app and select a book title from the DropDownList. You will see something
similar to Figure 8-2.

Example 8-2. The SelectedIndexChanged event handler for ddlBooks simply relays the user’s
choice to the label
Protected Sub ddlBooks_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ddlBooks.SelectedIndexChanged
 ' check to verify that something has been selected
 If ddlBooks.SelectedIndex <> -1 Then
 lblDdl.Text = ddlBooks.SelectedItem.Text + " ---> ISBN: " _
 + ddlBooks.SelectedItem.Value
 End If
End Sub

Figure 8-2. Here’s DebuggingApp in action. After you select a book title from the DropDownList,
its title and ISBN are output in the Label.

Tracing | 295

You will use this application through the rest of this chapter to demonstrate various
techniques for analyzing and debugging code in ASP.NET and for handling errors in
your application.

Tracing
Tracing is the technique of reporting the value or state of things in your program as it
runs. It is an easy way to determine what is going on in your program. Back in the
days of classic ASP, the only way to trace what was happening in your code was to
insert Response.Write statements in strategic places. This allowed you to see that you
had reached a known point in the code and, perhaps, to display the value of some
variables. The big problem with this hand-tracing technique, aside from the amount
of work involved, was that you had to laboriously remove or comment out all those

V B C H E A T S H E E T

For Loops
You saw the For Each loop back in Chapter 6; the For loop is simply a more general ver-
sion. The first line of a For loop has three parts: the condition, the beginning, and the
end. Usually, you create a loop control variable, an integer, often named i, to be the
condition. For example, if you wanted a loop that would run 10 times, you would start
it like this:

For i As Integer = 1 To 10

Inside the loop, you place whatever code you want to run on each iteration. Then, you
end the loop with a Next statement. That causes execution to return to the beginning
of the loop until the condition reaches the upper limit.

You can also use your control variable within the loop, as it increments. For example,
this loop would add the numbers 1 through 10 to myString:

For i As Integer = 1 To 10
 myString = myString + i + " "
Next

This works because i will be incremented each time through the loop.

Usually, you don’t know exactly how many times you want your loop to run, so you
set the upper limit at runtime. In Example 8-1 (shown earlier in this chapter), you want
to loop through each item in the books array. Array indexes start at 0, as we’ve men-
tioned, and you use the GetLength() method on the array to find out how many items
are contained in it. However, the length of the array is measured from 1, not 0, so you
have to use GetLength() -1 to find the correct upper boundary for the loop:

For i As Integer = 0 To books.GetLength(0) - 1

Notice that in the books example, i is also used within the loop to extract the item with
the index of i from books, and add it to the ddlBooks collection of ListItems.

296 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

statements before the program went into production. ASP.NET provides better and
easier ways of gathering the trace information.

Page-Level Tracing
As you saw in Chapter 7, to add page-level tracing, modify the Page directive at the
top of the .aspx page (in Source view) by adding a Trace attribute and setting its
value to true, as follows (remember to close the browser first):

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" Trace="true" %>

Run the page. When you view this page, tables will be appended to the bottom of the
page that contain a wealth of information about your web application. Select a book
from the drop-down list and you will see something like Figure 8-3.

The top section, labeled Request Details, shows information, including the
SessionID, the Time of Request, Request Type, and Status Code (see Table 8-1).
Every time the page is posted to the server, this information is updated. If you change
the selection (remember that AutoPostBack is set to true), you will see that the Time
of Request is updated, but the SessionID remains constant.

Every web user has seen at least some of these status codes in their
normal browsing, including the ubiquitous “404 -Not Found”. For a
complete list, go to http://en.wikipedia.org/wiki/List_of_HTTP_status_
codes.

The next section of the trace, labeled “Trace Information,” is the trace log (this sec-
tion was shown briefly in Chapter 7 in the discussion of life cycle), which provides
life-cycle information. This includes elapsed times, in seconds, since the page was
initialized (the From First(s) column) and since the previous event in the life cycle
(the From Last(s) column). You can add custom trace information to the trace log, as
explained shortly.

Table 8-1. Commonly used HTTP status codes

Category Number Description

Informational (100–199) 100 Continue

Successful (200–299) 200 OK

Client Errors (400–499) 400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

408 Request timeout

Server Error (500–599) 500 Internal Server Error

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Tracing | 297

Figure 8-3. When you enable tracing in your file, you get a lot of data as a result.

298 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

The next section in the trace, under the heading Control Tree, lists all the controls
on the page in a hierarchical manner, including the name of the control, its type, and
its size in bytes, on the page, in the ViewState state bag, and in control state.

This is followed by Session and Application State summaries, and itemizations of the
Cookies and Headers collections. Finally, there is a list of all the server variables.

Inserting into the Trace Log
You can add custom information to the trace output with methods of the Trace
object. This object exposes two methods for putting your own statements into the
trace log: Write and Warn. The only difference between the two methods is that Warn
writes to the log in red. The Warn and Write methods can take either a single argu-
ment, two arguments, or two strings and an exception object (generated by the .NET
Framework when you use a try/catch block), as the following cases illustrate:

Trace.Warn("Warning Message")
Inserts a record into the trace log with the message passed in as a string.

Trace.Warn("Category","Warning Message")
Inserts a record into the trace log with the category and message you pass in.

Trace.Warn("Category","Warning Message", excp)
Inserts a record into the trace log with a category, warning message, and
exception.

To see this in action, add the highlighted code from Example 8-3 to the code-behind
file in your sample web site, DebuggingApp.

Example 8-3. Writing to the Trace object is very simple; just use the Trace.Write()
method
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Trace.Write("In Page_Load")
 If Not IsPostBack Then
 Trace.Write("Page_Load", "Not PostBack.")
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' Second dimension contains ISBN number
 Dim books(,) As String = { _
 {"Programming Silverlight", "0000000001"}, _
 {"Programming .NET 3", "0000000002"}, _
 {"Programming ASP.NET, 4th Edition", "0000000003"}, _
 {"Programming Visual Basic 9", "0000000004"}, _
 {"Programming C#, 5th Edition", "0000000005"}, _
 {"Learning ASP.NET ", "0596513976"} _
 }
 ' Now populate the list
 For i As Integer = 0 To books.GetLength(0) - 1
 ' add both Text and Value
 ddlBooks.Items.Add(New ListItem(books(i, 0), books(i, 1)))

Tracing | 299

The first message is added in the Page_Load method to signal that you’ve entered that
method:

Trace.Write("In Page_Load")

The second message is added if the page is not a postback:

If Not IsPostBack Then
 Trace.Write("Page_Load", "Not PostBack.")

This second message is categorized as Page_Load; using a category can help you orga-
nize the trace output. Run the app to see the effect of these two Write statements, as
shown in Figure 8-4.

The third message is added to demonstrate the process of inserting an exception into
the error log. The ddlBooks_SelectedIndexChanged event handler now contains code
to force an exception by dividing by zero. The code catches that exception and logs
the exception with a Trace statement, as shown by the following code fragment:

Try
 Dim a As Integer = 0
 Dim b As Integer = 5 / a
Catch ex As Exception
 Trace.Warn("User Action", "Calling b=5/a", ex)
End Try

The output from this Trace statement is shown in Figure 8-5.

Because this Trace statement was written by calling the Warn method rather than the
Write method, the trace output appears in red onscreen (though not in your printed

 Next
 End If
End Sub

Protected Sub ddlBooks_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ddlBooks.SelectedIndexChanged
 ' force an exception
 Try
 Dim a As Integer = 0
 Dim b As Integer = 5 / a
 Catch ex As Exception
 Trace.Warn("User Action", "Calling b=5/a", ex)
 End Try

 ' check to verify that something has been selected
 If ddlBooks.SelectedIndex <> -1 Then
 lblDdl.Text = ddlBooks.SelectedItem.Text + " ---> ISBN: " _
 + ddlBooks.SelectedItem.Value
 End If
End Sub

Example 8-3. Writing to the Trace object is very simple; just use the Trace.Write()
method (continued)

300 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

copy of this book). Notice that the string you passed in, Calling b=5/a, is displayed,
followed by an error message extracted automatically from the exception object.

Implementing Trace statements is easy, and when it’s time to put your page into pro-
duction, all these statements can remain in place. The only modification you need to
make is to change the Trace attribute in the Page directive from true to false.

Debugging
Tracing provides you with a snapshot of the steps your code has taken after the code
has run. At times, however, you’d like to monitor your code while it is running.
What you want is more of a CAT scan than an autopsy. The code equivalent of a
CAT scan is a symbolic debugger.

When you run your code in the debugger, you can watch your code work, step by
step. As you walk through the code, you can see the variables change values, and you
can watch as objects are created and destroyed.

Figure 8-4. You can insert Trace.Write statements in your code to send specific messages to the
trace output.

The messages
you added

are here

Debugging | 301

This section will provide a brief introduction to the most important parts of the
debugger that accompanies the VS and VWD IDE. For complete coverage of how to
use the debugger, we urge you to spend time with the documentation and to experi-
ment freely. The debugger is one of the most powerful tools at your disposal for
learning ASP.NET.

You can configure an application to enable or disable debugging through the config-
uration file, web.config. As you’ve already seen many times, the first time you run an
application, a dialog box will pop up, offering to automatically make the necessary
edits to web.config to enable debugging.

The debugging configuration information is contained within the <compilation> sec-
tion, within the <system.web> section, which in turn is contained within the
<configuration> section. So, a typical compilation configuration snippet will look
something like Example 8-4.

Figure 8-5. When you use Trace.Warn to indicate a caught exception, it looks like this. The Trace.
Warn output displays in red.

Example 8-4. This debug configuration code snippet from web.config doesn’t look like much, but it
makes a big difference in your debugging efforts
<?xml version="1.0"?>
<configuration>

 <system.web>
.
.
.
 <compilation debug="true" strict="false" explicit="true">
.

302 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Debugging is strictly for when you’re developing and testing your application. When
you put your web site into production, you should disable debugging. Setting debug
to false improves the runtime performance of the application, and it suppresses cer-
tain output that you probably don’t want your users to see.

The Debug Toolbar
A Debug toolbar is available in the IDE. To make it visible, click the View ➝ Toolbars
menu commands, and then click Debug, if it is not checked. Table 8-2 shows the icons
that appear on the Debug toolbar. The use of most of these buttons may not be obvi-
ous to you right now, but you’ll see how they work when we talk about breakpoints
shortly.

.

.
 </compilation>
 />

Table 8-2. Debug toolbar icons

Icon Debug menu equivalent Keyboard shortcut Description

Start/Continue F5 Starts or continues execut-
ing the program.

Break All Ctrl-Alt-Break Stops program execution at
the currently executing line.

Stop Debugging Shift-F5 Stops debugging.

Restart Ctrl-Shift-F5 Stops the run currently
being debugged and imme-
diately begins a new run.

Shows the next statement
that will be executed.

Step Into F11 If the current line contains a
call to a method or function,
this icon will single-step the
debugger into that method
or function.

Step Over F10 If the current line contains a
call to a method or function,
this icon will not step into
that method or function,
but will go to the next line
after the call.

Example 8-4. This debug configuration code snippet from web.config doesn’t look like much, but it
makes a big difference in your debugging efforts (continued)

Debugging | 303

Breakpoints
The crux of the biscuit is the apostrophe.

—Frank Zappa, “Apostrophe (’)”

Breakpoints are at the heart of debugging. A breakpoint is an instruction to the
debugger to run to a specific line in your code and to stop and wait for you to exam-
ine the current state of the application. When the execution is paused, you can do
the following:

• Examine and modify values of variables and expressions.

• Single-step through the code.

• Move into and out of methods and functions, even stepping into classes written
in other .NET languages compliant with the Common Language Runtime.

• Perform any number of other debugging and analysis tasks.

Setting a breakpoint

You can set a breakpoint in the code-editing window when you’re editing a .NET-
compliant language, such as VB or C#, by single-clicking the gray vertical bar along
the left margin of the window. You can also place the mouse cursor on the line of
code and press F9 to toggle a breakpoint on or off. In either case, if a breakpoint is
set for a line, a red dot will appear in the left margin and the line of code will be high-
lighted, as shown in Figure 8-6.

Breakpoints window

You can see all the breakpoints currently set by looking at the Breakpoints window.

For some strange reason, the Breakpoints window is available in
Visual Studio 2008, but not in Visual Web Developer (VWD) 2008.

Step Out Shift-F11 If the current line is in a
method or function, that
method or function will
complete and the debugger
will stop on the line after
the method or function call.

Hexadecimal display toggle.

Output Debug window selector.

Table 8-2. Debug toolbar icons (continued)

Icon Debug menu equivalent Keyboard shortcut Description

304 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

To display the Breakpoints window, perform any one of the following actions:

• Press Ctrl-Alt-B.

• Select Breakpoints from the Debug ➝ Windows menu command.

• Click the Windows icon of the Debug toolbar and select Breakpoints.

A Breakpoints window is shown in Figure 8-7.

You can toggle a breakpoint between Enabled and Disabled by clicking the corre-
sponding checkbox in the Breakpoints window.

Figure 8-6. Setting a breakpoint in a code-editing window is simple; just click in the left margin of
your code or press F9.

Figure 8-7. The Breakpoints window shows you all the breakpoints you currently have set.
Unfortunately, this window is only available in Visual Studio 2008.

Breakpoint
icon

Debugging | 305

Breakpoint properties

Sometimes you don’t want a breakpoint to stop execution every time the line is
reached. VS2008 offers several properties that can be set to modify the behavior of a
breakpoint. You can set these properties via the property menu, arrived at in either of
two ways:

• Right-click the breakpoint glyph in the left margin.

• Open the Breakpoints window and right-click the desired breakpoint.

Again, this feature is available only in Visual Studio 2008, not VWD.
However, right-clicking the breakpoint glyph in the left margin in
VWD will offer the choice of deleting or disabling the breakpoint.

In either case, you will see the context menu shown in Figure 8-8.

The first two items in the breakpoint properties menu allow you to delete or disable
the selected breakpoint. The Disable menu item will toggle each time you click it,
and when the breakpoint is disabled, the icon will appear as an empty circle. The fol-
lowing menu items are available:

Location. The Location menu item brings up the dialog box shown in Figure 8-9,
which is fairly self-explanatory. Using this dialog box is equivalent to setting a break-
point in the code window, with a few additional options.

Condition. The Condition button brings up the dialog box shown in Figure 8-10.

You can enter any valid expression in the edit field. This expression is evaluated
when program execution reaches the breakpoint. Depending on which radio button
is selected and how the Condition expression evaluates, the program execution will
either pause or move on. The two radio buttons are labeled as follows:

Figure 8-8. When you right-click on a breakpoint, you’ll see this properties menu, where you can
delete or disable a breakpoint, and also make a number of refinements to the breakpoint’s
behavior.

306 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Is true
If the Condition entered evaluates to a Boolean true, the program will pause.

Has changed
If the Condition entered has changed, then the program will pause. On the first
pass through the piece of code being debugged, the breakpoint will never pause
execution because there is nothing to compare against. On the second and sub-
sequent passes, the expression will have been initialized and the comparison will
take place.

Hit count. Hit count is the number of times that spot in the code has been executed
since either the run began or the Reset Hit Count button was pressed. The Hit Count
button brings up the dialog box shown in Figure 8-11.

Figure 8-9. You can use the File Breakpoint dialog box to set a breakpoint at a specific spot in
your file.

Figure 8-10. You can use the Breakpoint Condition dialog box to specify when you want the
breakpoint to stop execution.

Debugging | 307

Clicking the drop-down list presents the following options:

• Break always

• Break always when the hit count is equal to

• Break always when the hit count is a multiple of

• Break always when the hit count is greater than or equal to

If you click any option other than “break always” (the default), the dialog box will
add an edit field for you to enter a target hit count.

Suppose this is a breakpoint set in a loop of some sort. You select “break when the
hit count is a multiple of” and enter 5 in the edit field. The program will pause exe-
cution every fifth time it runs.

When a hit count is set, the red breakpoint icon in the left margin of the window has
a plus sign in the middle of it.

When Hit…. The When Hit menu item brings up the dialog box shown in
Figure 8-12. By default, the “Print a message” checkbox is unchecked. When this
box is checked, the red circular breakpoint icon in the left margin of the window
changes to a diamond shape.

You can also elect to run one of a large selection of predefined macros, such as
FindCase, SaveView, and SaveBackup.

By default, the Continue execution checkbox is checked.

Breakpoint icons

Each breakpoint symbol, or glyph, conveys a different type of breakpoint. These
glyphs appear in Table 8-3.

Figure 8-11. You can use the Breakpoint Hit Count dialog box to cause the breakpoint to only
activate at set intervals.

308 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Figure 8-12. You can use the When Breakpoint Is Hit dialog box to output a message or run a
macro whenever the breakpoint is reached.

Table 8-3. Breakpoint glyphs

Icon Type Description

Enabled A normal, active breakpoint. If break-
point conditions or hit count settings
are met, execution will pause at this
line.

Disabled Execution will not pause at this line
until the breakpoint is reenabled.

Error The location or condition is not valid.

Warning The code at this line is not yet loaded,
so a breakpoint can’t be set. If the code
is subsequently loaded, the breakpoint
will become enabled.

Hit Count A Hit Count condition has been set.

Debugging | 309

Stepping Through Code
One of the most powerful techniques for debugging an application is to single-step
through the code, giving you the opportunity to see the execution flow and to exam-
ine the value of variables, properties, objects, and so on. To see this in action, go to
the code-behind file in the example. Place a breakpoint on the call to the Add method
of the DropDownList control’s Items collection, the line in the Page_Load method
where the items are added to the DropDownList. Then, run the program by pressing
F5 to start the debugger.

The breakpoint will be hit, and the program will stop execution at the line of code
containing the breakpoint, which will turn yellow. The breakpoint glyph in the left
margin will have a yellow arrow on top of it. The screen should look like Figure 8-13.

You can now move forward a single statement or line at a time, stepping into any
methods or functions as you go, by using one of the following techniques:

• Select the Debug ➝ Step Into menu command.

• Click the Step Into icon (see Table 8-2, shown earlier in this chapter, for a pic-
ture of the icon).

• Press F11.

Figure 8-13. When a breakpoint is hit, the program’s execution stops, and the current line of code
is highlighted.

310 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

You can step through the code without going through called functions or methods.
That is, you can step over the calls rather than into the calls, using one of the follow-
ing techniques:

• Select the Debug ➝ Step Over menu item.

• Click the Step Over icon (see Table 8-2 for a picture of the icon).

• Press F10.

Finally, if you are debugging in a called method or function, you can step out of that
method or function call, using one of the following techniques:

• Select the Debug ➝ Step Out menu command.

• Click the Step Out icon (see Table 8-2, shown earlier in this chapter, for a pic-
ture of the icon).

• Press Shift-F11.

Examining Variables and Objects
Once the program is stopped, it is intuitive and easy to examine the value of objects
and variables currently in scope. Place the mouse cursor over the top of any variable
or object in the code, wait a moment, and then a little pop-up window will appear
with its current value.

If the cursor is hovering over a variable, the pop up will contain the type of variable,
its value (if relevant), and any other properties it may have.

If the cursor is hovering over some other object, the pop-up window will contain
information relevant to its type, including its full namespace, syntax, and a descrip-
tive line of help.

Debug Windows
When the program execution is paused for debugging, a number of windows might
appear at the bottom of the IDE, as shown in Figure 8-14. These debug windows are
optimized to show program information in a specific way. The following sections
describe the most commonly used windows.

All the debug windows can be accessed in one of three ways: with a shortcut key
combination, from the Debug ➝ Windows menu command, or from the Windows
icon of the Debug toolbar, as indicated in Figure 8-14. Table 8-4 summarizes the
debug windows, along with the shortcut keys for accessing each window.

Visual Studio 2008, but not VWD, includes some additional, more
arcane debug windows, including ones for Threads, Modules, Regis-
ters, and Memory.

Debugging | 311

Immediate window

The Immediate window allows you to type almost any variable, property, or expres-
sion and immediately see its value.

To see the value of an expression, prepend it with a question mark. For instance, if
the breakpoint is on the line shown previously in Figure 8-13, you will see the value
of the integer i by entering the following line:

?i

Figure 8-14. Debug windows are accessible from the Debug menu, a shortcut key combination, or
by clicking the Windows icon on the Debug toolbar.

Table 8-4. Debug windows

Window name Shortcut keys Description

Immediate Ctrl-Alt-I View any variable or expression.

Locals Ctrl-Alt-V followed by L View all variables in the current context.

Watch Ctrl-Alt-W, followed by either 1, 2, 3, or 4 View up to four different sets of variables of your choos-
ing (VWD supports only one).

Call Stack Ctrl-Alt-C View all methods on the call stack.

Windows icon on the
Debug toolbar

Locals window Call Stack window

312 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

in the Immediate window and pressing Enter. Figure 8-15 shows the result of that
exercise; additionally, this figure shows the process of assigning a new value to the
variable i and then viewing its value again. If you change the value of a variable in
the Immediate window and then continue to run the program, the new value will
now be in effect.

You can clear the contents of the Immediate window by right-clicking anywhere in
the window and selecting Clear All. Close the window by clicking the X in the upper-
right corner. If you close the window and subsequently bring it back up in the same
session, it will still have all the previous contents.

Locals window

The Locals window shows all the variables local to the current context displayed in a
hierarchical table.

A typical Locals window is shown in Figure 8-16.

Figure 8-15. The Immediate window allows you to see the value of a variable at the current
breakpoint, and also to change that variable.

Figure 8-16. The Locals window shows all the current variables at the point where execution
stopped.

Error Handling | 313

There are columns for the name of the object, its value, and its type. A plus sign next
to an object indicates that it has child objects that are not displayed, while a minus
sign indicates that its child objects are visible. Clicking a plus symbol drills down the
tree and shows any children, while clicking a minus symbol contracts the tree and
displays only the parent.

A very useful feature is that values that change in the current step display in red.

You can select and edit the value of any variable. The value will display as red in the
Locals window. Any changes to values take effect immediately.

Watch window

The Watch window is the same as the Locals window, except that it shows only vari-
ables, properties, or expressions you enter into the Name field in the window or drag
from another window. The biggest advantage of using a Watch window is that it
allows you to decide exactly which objects you want to watch.

In addition to typing in the name of the object you want to watch, you can also drag
and drop variables, properties, or expressions from a code window. Select the object
in the code you want to put in the Watch window and then drag it to the Name field
in the open Watch window.

You can also drag and drop objects from the Locals windows into the Watch win-
dow. To do so, both the source window and the Watch window must be open.
Highlight a line in the Locals window and drag it down over the Watch tab. The
Watch window will come to the foreground. Continue dragging the object to an
empty line in the Watch window.

Call Stack window

The Call Stack window displays the names of the methods on the call stack and their
parameter types and values. You can control which information is displayed in the
Call Stack window by right-clicking anywhere in the window and toggling field
names that appear in the lower portion of the pop-up menu.

Error Handling
You can and should avoid bugs, but there are runtime errors that cannot be avoided
and should be handled as gracefully as possible. You would like to avoid having the
end user see ugly or cryptic error messages, or worse, having the application crash.
Errors can arise from any number of causes: user action, such as entering invalidly
formatted text into a field, program logic errors, or circumstances entirely out of
your control, such as an unavailable file or a downed network.

314 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

The simplest bugs to find and fix are syntax errors: violations of the rules of the lan-
guage. For example, suppose you had the following line of code in your VB program:

Dim i as Integr

When you compile the program, you will get a compiler error because the keyword
to declare an integer is misspelled.

Using the IDE dramatically reduces your syntax errors. Depending on how the IDE is
configured, any code element that isn’t recognized is underlined. If Auto List Mem-
bers is turned on (Tools ➝ Options ➝ Text Editor ➝ All Languages), the incidence of
syntax errors is further reduced. Check the “Show All Settings” checkbox (and leave
it checked) to see these options.

If any syntax errors remain or if you are using a different editor, then any syntax
errors will be caught by the compiler every time you build the project. It is very diffi-
cult for a syntax error to slip by into production code.

When the compiler finds a syntax error, an error message containing
the location of the error and a terse explanation will be displayed in
the Output window of the IDE. If the error is caused by something
such as an unbalanced parenthesis or bracket, or a missing semicolon
in C#, then the actual error may not be on the reported line.

More problematic, and often more difficult to catch, are errors in logic. The program
successfully compiles and may run perfectly well most of the time, yet still contain
errors in logic. The very hardest bugs to find are those that occur least often. If you
can’t reproduce the problem, it is terribly difficult to find it.

While you will try to eliminate all the bugs from your code, you do want your pro-
gram to react gracefully when a subtle bug or unexpected problem rears its ugly
head.

Unhandled Errors
To demonstrate what happens if there is no error handling in place, modify the sam-
ple project from this chapter to force some errors.

Go to the code-behind file. Find the For loop that populates the DropDownList in the
Page_Load method. Change the test expression to cause an error intentionally at run-
time. For example, change the line:

 For i As Integer = 0 To books.GetLength(0) - 1

to:

 For i As Integer = 0 To books.GetLength(0) + 1

Error Handling | 315

When this code runs, it will try to add more items than have been defined in the
books array, thus causing a runtime error. This is not a subtle bug, but it serves to
demonstrate how the system reacts to runtime errors.

When you run this example in the IDE, execution will stop at the line causing the
error, as shown in Figure 8-17, preventing you from seeing the error page. Just press
F5 to continue running, or click the Debug ➝ Continue menu item to get to the error
page.

Let the program run. As expected, an error is generated immediately, and the generic
ASP.NET error page is displayed to the user, as shown in Figure 8-18.

Although scary to most end users, this generic error page is actually fairly useful to
the developer or technical support person who will be trying to track down and fix
any bugs. It tells you the error type, the line in the code that is the approximate error
location, and a stack trace to help in tracking down how that line of code was
reached.

You can replace this detailed error page with a custom error page and can control
who gets to see what by setting the mode attribute of the CustomErrors element in the
configuration file, as we’ll describe next.

Figure 8-17. When the program encounters a runtime error, the IDE stops execution and points
out the problem.

316 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Application-Wide Error Pages
The previous section showed the default error pages presented for unhandled errors.
This is fine for a developer, but if the application is in production, it would be much
more aesthetically pleasing if the user were presented with an error page that looked
less intimidating.

The goal is to intercept the error before it has a chance to send the generic error page
to the client. You do that on an application-wide basis by modifying the configura-
tion file, web.config.

The error-handling configuration information in web.config is contained within the
<customErrors> section within the <system.web> section, which is contained within the
<configuration> section. A typical <customErrors> section will look like Example 8-5.

Figure 8-18. When you run an application with a logic error, the application may still compile,
but fail at runtime. In that case, you’ll see a generic error page like this one.

Example 8-5. The custom error section in the web.config file is located in the <system.web>
section
<?xml version="1.0"?>
<configuration>
 <system.web>
.

Error Handling | 317

There are two possible attributes for the <customErrors> element: defaultRedirect
and mode.

defaultRedirect is an attribute that contains the URL of the page to display in the
case of any error not otherwise handled. In Example 8-5, the defaultRedirect page is
CustomErrorPage.htm. This example is a simple HTML page contained in the same
folder as the rest of the web site. The contents of this page are shown in
Example 8-6.

If the custom error page to be displayed is not in the same folder as the rest of the
application, then you need to include either a relative or a fully qualified URL in the
defaultRedirect attribute.

mode is an attribute that enables or disables custom error pages for the application. It
can have three possible values:

On
Enables custom errors for the entire application. ASP.NET will display the cus-
tom error page that you specify instead of the default error page.

Off
Disables custom errors for the entire application. ASP.NET will display only its
default error pages.

RemoteOnly
Enables custom errors only for remote clients. Local clients (those on the web
server) will see the generic error page. In this way, developers can see all the pos-
sible error information, but end users will see the custom error page.

.

.
 <customErrors
 defaultRedirect="CustomErrorPage.htm"
 mode="On"
 />

Example 8-6. The CustomErrorPage.htm file isn’t a complex page, but it’s a lot nicer to the user
than the default error page
<html>
 <head>
 <title>Error Page</title>
 </head>
 <body>
 <h1>Sorry - you've got an error.</h1>
 </body>
</html>

Example 8-5. The custom error section in the web.config file is located in the <system.web> section
(continued)

318 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Edit your web.config file to look like Example 8-5, adding the customErrors element
inside the <system.web> tags; then, select Website ➝ Add New Item, select HTML Page
from the list of templates, and add a new item to your web site called CustomErrorPage.
htm. The full markup for this web page is listed in Example 8-6. Run the program.
Instead of Figure 8-18, you will see something like Figure 8-19.

Obviously, you’ll want to put more information on your custom error page, such as
instructions or contact information, but you get the idea. Showing dynamic informa-
tion about the error on the custom error page is also possible.

You can even use a different custom error page for different errors. To do this, you
need to include one or more <error> child elements in the <customErrors> element of
web.config. For example, modify web.config to look like the code snippet in
Example 8-7.

Figure 8-19. CustomErrorPage resulting from unhandled error with custom errors configured in
web.config.

Example 8-7. You can use <error> subtags in web.config to provide customized error pages for
specific error codes
<?xml version="1.0"?>
<configuration>

 <system.web>
.
.
.
 <customErrors mode="On"
 defaultRedirect="CustomErrorPage.htm">
 <error statusCode="400" redirect="CustomErrorPage400.htm"/>

Error Handling | 319

Copy CustomErrorPage.htm three times and rename the copies to the filenames in
the <error> elements in Example 8-7. Do this by right-clicking CustomErrorPage.htm
in the Solution Explorer and selecting Copy. Then, right-click the web site root
folder and select Paste. Next, right-click the new copy of the file and select Rename.
Edit the files so each displays a unique message.

Run the program again with the intentional error in the For loop still in place. You
should see something like Figure 8-20.

Fix the error in the For loop so the program will at least load correctly. Then, run the
program and click the hyperlink you put on the test page. That control is configured
to link to a nonexistent .aspx file. You should see something like Figure 8-21.

Be aware that you can only display custom error pages for errors generated on your
server. So, for example, if the hyperlink had been set to a nonexistent page—say,
http://TestPage.comx (note the intentional misspelling of the extension)—you will
not see your custom error page for error 404. Instead, you’ll see whatever error page
for which the remote server or your browser is configured. Also, you can only trap
the 404 error if the page you are trying to link to has an extension of .aspx.

 <error statusCode="404" redirect="CustomErrorPage404.htm"/>
 <error statusCode="500" redirect="CustomErrorPage500.htm"/>
 </customErrors>

Figure 8-20. Custom error page for Error 500.

Example 8-7. You can use <error> subtags in web.config to provide customized error pages for
specific error codes (continued)

http://TestPage.comx

320 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Page-Specific Error Pages
You can override the application-level error pages for any specific page by modifying
the Page directive at the top of the .aspx file.

Modify the Page directive in Default.aspx file of the DebuggingApp so it appears as
follows (note the highlighted ErrorPage attribute, which has been added):

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" Trace="false"
 ErrorPage="PageSpecificErrorPage.aspx" %>

If there is an error on this page, the PageSpecificErrorPage.aspx page will be dis-
played. If there is an application-level custom error page defined in web.config, it will
be overridden by the Page directive.

Summary
• Tracing allows you to follow the course of your application through the various

stages of its life cycle and examine its state as it runs. Tracing appends a great
deal of information to the bottom of the page, for which tracing is enabled.

• To turn on tracing for a specific page, add the Trace attribute to the Page direc-
tive of the page you want to trace, and set it to True.

• You can insert your own information into the trace log with the Trace.Write and
Trace.Warn methods. They’re identical, except that Trace.Warn writes in red.

Figure 8-21. Custom error page for Error 404.

Summary | 321

• The Trace.Write and Trace.Warn methods can accept a message string, a cate-
gory string and a message string, or a category string, a message string, and an
exception object.

• The Visual Studio and Visual Web Developer IDEs provide a complete suite of
debugging tools.

• A breakpoint stops execution of an application at a point that you specify to
allow you to examine the state of the application at that point.

• When the application is paused at a breakpoint, you can inspect and change the
current values of variables and expressions.

• After you’ve paused at a breakpoint, you can step forward through the applica-
tion one line at a time, or you can step over or into method calls.

• The Breakpoints window (available only in Visual Studio) shows you all the
breakpoints currently in your application.

• You can specify that an individual breakpoint will stop execution if a specific
condition is true, or only after being reached a certain number of times.

• You can specify what message is printed when a breakpoint is hit, or you can
specify a macro to run when the breakpoint is reached.

• When the application is stopped at a breakpoint, you can simply hover the
mouse cursor over objects and variables at that point to see their values and
properties.

• The Immediate debug window allows you to type a variable, property, or expres-
sion, and see or modify its current value.

• The Locals window shows the variables in the current context and their current
values.

• The Watch window is similar to the Locals window, but it shows only those
variables that you specify.

• Syntax errors are errors that violate the rules of the programming language. The
IDE checks for syntax errors as you write your code, and underlines any code
element that doesn’t fit. If you attempt to run an application with a syntax error
in the debugger, the application will not run, and the IDE will pop up an infor-
mational box at the point of the error.

• Logic errors occur when the code is syntactically correct but doesn’t behave as
intended. These errors are more difficult to deal with because the IDE cannot
find them for you. You need to write code to handle those errors so they don’t
stop your application, or at least provide a way for the application to fail with a
minimum of surprise to the user.

• ASP.NET provides default error pages that appear when an unexpected error
occurs in the application. These pages have useful information for developers,
but not so much for users.

322 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

• To prevent the user from seeing the default error pages, you can define custom
pages to handle errors.

• When you want to use custom error pages, you have to add a <customErrors>
section to the web.config file and set the mode attribute to On or RemoteOnly.

• You can create specific error pages for individual types of errors. Create a new
<error> section within the <customErrors> section, and specify the statusCode
attribute for which you want to create a custom page.

• If you want to specify an error page to be used on one specific page of your site,
instead of the entire application, add the ErrorPage attribute to the Page direc-
tive, and specify the location of the custom error page.

You’ve spent the last couple of chapters behind the scenes, figuring out ways to
enhance your site and the user’s experience that are totally invisible to the user (or
should be, if everything goes well). In the next two chapters, it’s time to get back to
things that the user can see. You’ll learn how to change the entire visual appearance
of your site with themes and skins, and how to let users choose their preference for
viewing your site. Of course, if users are going to customize their experiences, they’ll
need to identify themselves to you. Or, maybe you don’t want just anybody coming
into your site and changing things around. That means you’ll need some security
measures, which is what we’ll talk about in the next chapter.

Exercises | 323

B R A I N B U I L D E R

Quiz
1. How do you turn on tracing for a specific page?

2. What is the difference between the Trace.Write and Trace.Warn methods?

3. What are the three possible arguments to the Trace.Write and Trace.Warn methods?

4. How do you set a breakpoint in your code?

5. How do you determine the current value of a variable when the application is
stopped at a breakpoint?

6. How do you modify the value of a variable while the application is running?

7. What information can you find in the Locals window?

8. What is the difference between syntax and logic errors?

9. What setting do you need to specify before you can use a custom error page?

10. How do you specify that a specific page should use its own custom error page
instead of the application-wide pages?

Exercises
Exercise 8-1. Download the file Exercise 8-1 from this book’s web site. This applica-
tion is a part of a page for an online men’s clothing store. At the moment, this appli-
cation runs correctly. Enable tracing on this page, and insert a warning into the trace
that indicates when the execution is in the event handler for the drop-down list.

Exercise 8-2. Download the file Exercise 8-2 from this book’s web site. This applica-
tion is similar to the first, but it has a problem. Instead of showing the name of the
product in the details pane, some other text is showing up instead, as shown in
Figure 8-22. Find the problem and resolve it.

324 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Exercise 8-3. Same site, different problem. Download the file Exercise 8-3 from this
book’s web site. In this case, the product details don’t show up at all, as shown in
Figure 8-23. Find the problem and resolve it.

Figure 8-22. The problem in Exercise 8-2.

Figure 8-23. The problem in Exercise 8-3.

Exercises | 325

Exercise 8-4. Download the file Exercise 8-4 from the book’s web site. The product
page now has a hyperlink for users to get customer assistance (and it seems like
they’ll need it). Unfortunately, the customer assistance page hasn’t been created yet.
Create a custom error page to handle this error, and give the user the option to
return to the product page.

326

Chapter 9CHAPTER 9

Security 9

All of the web sites you’ve created in this book, so far, have allowed any user to go to
any page. However, in the real world, you often want to restrict access to your web
site. There are many reasons you might want to restrict someone’s access to your
site: some pages might be free to the public, while others are for registered members
only. Or, you might have some parts of your site that only your business partners
should access. Or, you might just need to keep out the bad guys. Let’s face it, some
people get their kicks, or worse, out of wreaking havoc with other people’s web sites.

In this chapter, you’ll build a functional site with multiple pages, some public and
some not. It will include a database of users you will create, and their associated roles.
You’ll use the ASP.NET login controls, and see just how easy they are to use and cus-
tomize to your needs. You’ll then adapt the site to restrict pages to specific roles, and
see how to manage your users. In Chapter 10, you’ll see that you can use these same
user management tools to allow users to personalize your site to their liking.

Forms-Based Security
Many Internet sites require that users “log in.” This allows the site to restrict access
to members, and also allows the user to personalize the site to their individual needs.
These include allowing the site to remember the user’s preferences, profile informa-
tion, shopping cart contents, and so forth, as you’ll see in Chapter 10.

Forms-based security is a common technique for validating that the person who is
trying to log in to a web site is who they say they are. It presents the user with a web
page, or form, containing fields that the user can fill in and submit. Server-side code
processes the credentials submitted, such as the username and password, and deter-
mines whether the user can proceed.

Creating Users with the WAT | 327

Not that long ago, creating the “plumbing” of logging in was a tedious and time-
consuming job: you had to create a database to track users, create the ability to
maintain secure passwords, ensure authorization on each page, assign users to
“roles” (such as guest, member, owner, wizard, and more), and so on. You also had
to write all the controls to allow the user to log in, to recover passwords, to change
passwords, and so forth.

With ASP.NET, all of that has become wonderfully simplified.

Creating Users with the WAT
Visual Studio 2008 offers a wizard called the Web Site Administrative Tool, abbrevi-
ated the WAT. This tremendously powerful tool is hidden for no apparent reason
under the menu choice Website ➝ ASP.NET Configuration.

If the Web Site Administration Tool used a true acronym, it would be
WSAT, but that is very hard to say if English is your first language.
Interestingly, the name itself reflects Microsoft’s apparent ambiva-
lence (reflected within VS/VWD) of whether “web site” is one word or
two. It is used as one word in the menus, but as two in the WAT.
We’ve tried to use it as two words throughout this book, except when
we don’t.

To try it out, create a new web site called FormsBasedSecurityWAT, and then follow
these menu selections. The WAT should open in its own browser window.

Select Website ➝ ASP.NET Configuration. Click the Security tab (or the Security
link), and you’ll see the page that’s shown in Figure 9-1. (Note: “Web Site” is two
words in the heading!)

You use this screen for interactively creating users, roles, and access rules. By default,
the authentication type is Windows, which means that all user authentication and
password management is handled by Windows using your normal Windows sign-on
account. This can be quite handy for an intranet web site (a web site used only
within a single company).

Because we are concerned with Internet accounts (accounts open to the world),
change the authentication type to forms-based. To do so, click the “Select authenti-
cation type” link under the Users heading, indicated in Figure 9-1.

This brings up the screen shown in Figure 9-2. Select the radio button labeled “From
the internet,” and then click the Done button.

328 | Chapter 9: Security

Please note the ambiguity of this tool: To get to the WAT, you click
“ASP.NET Configuration”; to get forms-based security, you click
“From the internet”—you never quite click what you expect, but it
does all make sense, sort of.

After you click the Done button, you return to the previous page, but the display
under Users has changed, as shown in Figure 9-3. You can create users, manage
existing users, or change the authentication type back to Windows.

Figure 9-1. The Web Site Administration Tool (WAT) is under the Website menu. On the Security
screen, you’ll find a link to switch from Windows security to forms-based security.

Click here to switch to
forms-based authentication

Creating Users with the WAT | 329

Click the Create User link to create your first user, as shown in Figure 9-4. Be sure
the Active User checkbox remains checked, or else the user will not be able to log
into the web site.

Figure 9-2. Select “From the internet” to change the Authentication type from Windows-based
security to forms-based security.

Figure 9-3. After you change the security type to forms-based, you’ll see the number of existing
users on the Security tab. You can create new users or manage existing ones from here.

Forms-based

Windows-based

330 | Chapter 9: Security

By default, passwords must be strong, which Microsoft defines as: at
least seven characters in length and consisting of both alphanumeric
and nonalphanumeric characters. So danh would not be strong, nor
would danh123, but danh123! would be.

The strong password requirements may differ in other security areas,
such as requiring upper-and lowercase letters, or numbers. For more
information, go to http://www.msdn.microsoft.com, and search for
strong passwords.

The CreateUserWizard control, which you will see later in this chapter,
has a PasswordRegularExpression property that allows you to substi-
tute your own password requirements. With it, you can dictate how
“strong” your passwords need to be.

And, most importantly for your use of the examples in this chapter,
remember or write down the passwords you use for all the users you
create in this chapter. Otherwise, you will not be able to log in as each
of those users as called for in the examples.

Figure 9-4. Creating a user in the WAT is simple; just enter the pertinent information and click
“Create User.”

Strong password required

Used for password recovery

http://www.msdn.microsoft.com

Creating Users with the WAT | 331

Creating at least one user through the WAT sets up a security database with all the
tables that ASP.NET’s forms-based security system will need to support your use of
the forms-based security system.

Your web.config file will be modified by the WAT to include the following line under
<system.web>:

<authentication mode="Forms" />

In addition, a file-based database will be created in the App_Data directory of your
application, named ASPNETDB.MDF. To view this, click View ➝ Server Explorer to
open the Server Explorer Window. If you’re using VWD, click View ➝ Database
Explorer instead. If you don’t already see ASPNETDB.MDF, then within that win-
dow, right-click Data Connections and select “Add Connection....” This will open
the Add Connection dialog box, shown in Figure 9-5.

We’ve numbered five of the buttons. Let’s take them in order.

First, click the button numbered 1 to change the Data Source to the Data File you
just created. This will open a new dialog (Change Data Source). From the drop-
down, choose Microsoft SQL Server Database File, as shown in Figure 9-6.

Clicking OK will return you to the Add Connection dialog box.

Figure 9-5. In the Add Connection dialog box, click the buttons in the order shown.

1

2

3

4

5

332 | Chapter 9: Security

We’re up to the button labeled 2. Click the Browse button and navigate to the
App_Data directory for your new application, and then click the mdf file that the
WAT created for you.

Leave the radio button set to Use Windows Authentication. Don’t be confused; you
are allowing Windows Authentication to get to the security database only, not to get
to the application you are building.

For step 3, click “Test Connection.” If all is right, the dialog box (generically named
“Visual Web Developer 2008 Express Edition”) will open saying that your test con-
nection succeeded. Click the OK button (4), which will return you to the Add Con-
nection button, and you can click OK (5).

Visual Studio’s Server Explorer window (or VWD’s Database Explorer) will now
show ASPNETDB.MDF under Data Connections with a plus sign next to it. Click
the plus sign to expand the database, and click the plus sign next to “Tables” to see
all the tables in the Security database created for you, as shown in Figure 9-7.

You can look at the data in any of these tables by right-clicking the table name and
selecting “Show Table Data.”

Managing Users Programmatically
You saw how to create users using the WAT, but that’s not the only way to do it.
The WAT is useful as a development tool, but it’s only usable on a machine that has
Visual Studio installed. In almost all cases, this would not be the production web
server. Now you will add users programmatically from within your web site. Use the

Figure 9-6. The first step in accessing the Security Database is selecting a Microsoft SQL Server
Database File as the Data Source.

Managing Users Programmatically | 333

web site that you created previously in this chapter, FormsBasedSecurityWAT. You
will add two new pages: a welcome page that displays different information depend-
ing on whether the user is logged in, and a login page that allows a user to log in.

Creating User Accounts
In a secured web site, before a user can log in, an account for that user must be cre-
ated. You can do this in the WAT, as you have seen, but accounts can also be created
in a live web site.

Look at the web site you created previously in this chapter, FormsBasedSecurityWAT.
Delete Default.aspx by selecting it in the Solution Explorer and pressing the Delete key.

Make certain that the root of the web site is selected in the Solution Explorer, and
add a new page called CreateAccount.aspx. Make sure the checkbox for “Place code
in separate file” is checked, and the “Select master page” checkbox is not checked.

Figure 9-7. Expanding the tables in the Security Database shows all the tables that the Security
Database created automatically.

334 | Chapter 9: Security

Depending on what item you have selected in the Solution Explorer
when you add a new page, the new web form you add may end up in
an unexpected folder. Be careful where you click when you add a new
item in the web site.

Switch to Design view, and drag a CreateUserWizard control from the Login section
of the Toolbox onto the page, as shown in Figure 9-8.

The CreateUserWizard control prompts the user for a username, a password (twice),
an email address, and a security question and answer—the same information that
you provided in the WAT. You can configure what the wizard asks for through the
control declaration created in the .aspx file for you, through the Properties window,
or more commonly, through the Smart Tag, indicated in Figure 9-8.

Click the control and find the ContinueDestinationPageUrl property in the Properties
window. Click in the cell next to the property, then on the ellipses (...) button that
appears in that cell. This is the page that the wizard will redirect to after you’ve created
a new user. The Select URL dialog box will appear. Choose CreateAccount.aspx—that
is, the page itself.

Figure 9-8. CreateUserWizard control showing the Smart Tag.

CreateUserWizard control Smart Tag

Managing Users Programmatically | 335

Set the title of the page by clicking the Design window of the page, finding the Title
property in the Properties window, and changing it from Untitled Page to Create
User.

Finally, set the CreateAccount.aspx as the startup page by right-clicking the page in
the Solution Explorer and selecting Set As Start Page. The resulting page is shown in
Figure 9-9.

Fill in all the fields (with different values than the user you created before) and click
Create User. The new user account will be created, and a confirmation screen will be
displayed. Click the Continue button on the confirmation screen, which will bring
you right back to the CreateAccount page.

Add a few more accounts, and then stop the application. For these examples, we
added the following five users:

bmacdonald
dhurwitz
jliberty
jmontana
tbrady

Figure 9-9. The CreateAccount.aspx page looks complicated, but it’s really just one control that
handles everything.

336 | Chapter 9: Security

If you would like, examine the database tables to ensure that the new members have
been added.

Creating a Welcome Page
Close the browser if it is open, and then add a new page to the web site called
Welcome.aspx. Switch to Design view and drag a LoginStatus control from the Login
section of the Toolbox onto the form.

This control looks like a hyperlink with the text “Login.” The Smart Tag for the con-
trol indicates that you are looking at the template for when the user is not logged in,
as shown in Figure 9-10. You can use the drop-down in the Smart Tag to see the link
and text for Logged In status.

You can use the Properties window to change the properties of the LoginStatus
control—for example, to change the displayed text for the logged-in status,
LoginText, or the logged-out status, LogoutText.

It would be nice to see whether you are logged in. To do this, drag a LoginView con-
trol from the Login section of the Toolbox onto the page. Notice that this control has
two views: AnonymousTemplate and LoggedInTemplate. The template that will be dis-
played depends on whether the user has logged in—the AnonymousTemplate is pre-
sented to users who aren’t logged in (anonymous users).

Figure 9-10. The LoginStatus control has a Smart Tag that you can use to customize the messages
for logged-in or logged-out users.

Managing Users Programmatically | 337

Click the Smart Tag and confirm that the view is set to AnonymousTemplate. Type some
text in the box to display when the user is not logged in, as shown in Figure 9-11.

Click the Smart Tag and select the LoggedInTemplate. Drag a LoginName control into
the box to display the username of the logged-in user along with some text, as shown
in Figure 9-12.

Creating a Login Page
Add a new page to the web site called Login.aspx. It must be called exactly that or
the other controls will not know which page to call. Switch to Design view, and drag
a Login control from the Login section of the Toolbox onto the page, as shown in
Figure 9-13. The Login control is the primary control your users will use to log in to
your site. To make the page look more professional, click the AutoFormat menu
item in the Smart Tag, and pick one of the predefined formats.

Make sure that the Welcome page is the Start page, and then run the application.
The Welcome page will display its “Not Logged In” message, as shown in
Figure 9-14.

Click the link to go to the login page. Enter the user name and password of one of
the users you created previously. If you enter the credentials correctly, you will see a
page similar to that shown in Figure 9-15.

Figure 9-11. The LoginView control also has two separate templates, depending on whether the
user is logged in. Here it’s showing the Anonymous template, for logged-out users.

Figure 9-12. Here the LoginView control is showing the Logged In template, and using a
LoginName control to greet the user.

338 | Chapter 9: Security

Figure 9-13. You can use the AutoFormat feature from the Smart Tag of the Login control to give
your page a more professional appearance.

Figure 9-14. When you first see the Welcome page, you’re not logged in, so you’re greeted the
same as any other user.

Login control Smart Tag

Managing Users Programmatically | 339

If you enter either of the credentials incorrectly, you will see the page shown in
Figure 9-16. You can reenter the username and password to try again.

Figure 9-15. Once you log in successfully, the Welcome Page becomes friendlier.

Figure 9-16. If you don’t log in successfully, the Login control provides a message telling you so.
This message is generated automatically by the control.

340 | Chapter 9: Security

You can also use a PasswordRecovery control, which by default invalidates the cur-
rent password and sends the user a new one. Using it properly requires you to con-
figure your web server to be able to send email, which is slightly too complex for this
example.

Roles
A role is a specific set of permissions that has been given a name. Users can be mem-
bers of one or more roles. For example, a user might be an Administrator, which
gives him permission to change data; or a Guest, which does not give him permis-
sion to change data. Or, a user can be a member of the Administrator and the User
roles, in which case that person will have all the permissions of both roles.

To see this in action, copy the previous example FormBasedSecurityWAT to a new
web site—call it SecurityRoles.

Set Welcome.aspx as the Start page and run the site to make sure it still works and
you can log in.

Use the WAT to enable roles and add the existing users to those roles. Open the
WAT by clicking Website ➝ ASP.NET Configuration. When the WAT opens, click
the Security tab or link (they are equivalent) to go to the Security page.

There are three management areas across the page, as shown in Figure 9-17. Under
the Roles category, there is an “Enable roles” link, indicated in Figure 9-17. Click
this link to enable roles.

The link will change to read “Disable roles” and the link below, “Create or Manage
roles,” will become available. Click that link to create some roles.

Figure 9-17. Click the Enable roles link on the Security Page of the Web Site Administration Tool
(WAT) to enable roles.

Click here to enable roles

Roles | 341

Enter the name of your first role—Manager—in the text box, as shown in Figure 9-18;
then, click the Add Role button.

Add two more roles, SalesRep and Customer. The screen will now list all of the avail-
able roles, as shown in Figure 9-19.

There are links for each role for deleting or otherwise managing the role. The next
thing you need to do is add some users to the roles. Under the Add/Remove Users
column header, click the Manage link for the Manager role, which brings up a search
screen. You can search by username, email address, or, as shown in Figure 9-20, you
can click one of the letters to list all the users whose username begins with that letter.

Check User Is In Role for jliberty to be a member of the Manager role, but jmontana
is not a member of that role, so do not check that box.

Click the Back button at the bottom-right corner of the screen twice to move back to
the Security page, and then click the Manage Users link under the Users category,
shown in Figure 9-17, to bring up the user management screen shown in Figure 9-21.

Figure 9-18. Creating a role called Manager in the WAT is simple—just click the Create or
Manage Roles link, and create some new roles.

342 | Chapter 9: Security

Click the Edit roles link next to the dhurwitz name to get a series of checkboxes for
adding dhurwitz to any of the roles. Add dhurwitz to the Manager and SalesRep roles,
as shown in Figure 9-22.

While you’re on this page, also add bmacdonald, jmontana, and tbrady to the Cus-
tomer role.

Restricting Access
Although you have set the startup page of the ongoing example to be Welcome.aspx,
there is nothing to prevent a user, malicious or otherwise, from entering the URL of a
specific page, such as CreateAccount.aspx, into the address box of a browser.

To see this, run the current example, with Welcome.aspx set as the start page, as you
have been doing all along. The browser will open Welcome.aspx, with an address
similar to the following:

http://localhost:1296/SecurityRoles/Welcome.aspx

Figure 9-19. All of the available roles are displayed in the WAT.

Restricting Access | 343

You have probably noticed that every time you run a web site from
within the IDE, the URL displayed in the browser address box con-
tains localhost and a number separated by a colon. localhost refers to
the local machine serving a web page to itself. The number is the port,
or address into a server. Every time the IDE runs a web site, it chooses,
at random, a different port to use.

Some port numbers are referred to as well-known ports, meaning that
they have a standardized usage. For example, port 80 is commonly
used for HTTP requests (i.e., web sites), and ports 20 and 21 are com-
monly used for FTP. The port numbers from 1 through 1024 are
reserved for well-known ports.

Edit this address to point instead to the CreateAccount page, as follows:

http://localhost:1296/SecurityRoles/CreateAccount.aspx

That page will open, regardless of your credentials (whether you’re logged in and
what roles you’re in).

This can lead to obvious security problems, providing access to unauthorized users.
It can also cause database corruption or exceptions being thrown when your data-
base code assumes that you will have a valid user id and you have none.

Figure 9-20. You can easily search for users to add to a given role in the Add/Remove Users page.

344 | Chapter 9: Security

To avoid all this, it is good practice to check the login status of the user in the Page
Load event of every page in the web site. If the user is not logged in (or is not in the
correct role), you can then redirect the user to the appropriate page (often the login
page).

Figure 9-21. Instead of adding users to roles from the roles page, you can use this screen for
managing users in the WAT.

Figure 9-22. When you click the Edit roles link, the page allows you to add a user to roles.

Restricting Access | 345

This security is not necessary in the normal start page of the web site,
Welcome.aspx in the example, because the LoginStatus control on the
page already takes care of this. It may also not be necessary in many
“open” pages on public sites where you may not want to force visitors
to log in until it is absolutely necessary (to retrieve their own personal-
ized data or to place an order).

Testing for Login Status
To see how checking of credentials might be accomplished, open the code-behind
file for CreateAccount, CreateAccount.aspx.vb. In the Class Name drop-down at the
top left of the editing window, select (Page Events), and in the Method Name drop-
down at the top right of the editing window, select the Load event. This will insert an
empty code skeleton for the Page_Load event handler.

Type the following code inside the Page_Load method:

If User.Identity.IsAuthenticated = False Then
 Response.Redirect("Login.aspx")
End If

Now run the application. Before logging in, edit the page address in the browser to
go to CreateAccount.aspx. Instead of CreateAccount.aspx opening, you will be imme-
diately taken to the login page.

If you enter a valid username and password at this point, the Login
control will try to redirect to Default.aspx, a page that does not exist.
Instead, set the DestinationPageUrl property of the Login control to
one of the pages in the web site, such as Welcome.aspx. Then, on a
successful login, the user will be redirected to that page.

On the other hand, if you run the web site and log in, and then edit the browser
address to open CreateAccount.aspx, you will in fact go to that page.

Testing for Role-Based Authentication Membership
You can also limit access to pages based on the role, or roles, to which the current,
logged-in user belongs.

Add another page to the SecurityRoles web site called ManagersPage.aspx. As the
name implies, this page will be accessible only to managers. To keep the example
simple, for now this page will have only an identifying heading and a button to
return to the Welcome page, shown in bold in Example 9-1. You can do this in either
Source or Design view.

346 | Chapter 9: Security

Switch to Design view and double-click the Return to Welcome button to open up
an event handler for Click event. Add the following highlighted line of code:

Protected Sub btnWelcome_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnWelcome.Click
 Response.Redirect("Welcome.aspx")
End Sub

While you are at it, add a button to the Welcome page for navigating to the Man-
ager’s Page, as shown in Figure 9-23. Set the ID of the button to btnManagersPage,
because you will be referring to the button in code elsewhere, and set its Enabled
property to False. In a moment, you will add some code to the Page_Load event han-
dler to enable or disable the button depending on the login status.

Double-click that button in Design view, and add the following highlighted line of
code to the Click event handler:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnManagersPage.Click
 Response.Redirect("ManagersPage.aspx")
End Sub

Next, add an event handler for the Page_Load event. Then add the following high-
lighted code to run every time the page loads:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else

Example 9-1. The markup for the ManagersPage isn’t particularly important; the key is in the
code-behind
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="ManagersPage.aspx.vb"
Inherits="ManagersPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>

 <form id="form1" runat="server">
 <div>
 <h1>Manager's Page</h1>
 <asp:Button ID="btnWelcome" runat="server"
 Text="Return to Welcome" />
 </div>
 </form>
</body>
</html>

Restricting Access | 347

 btnManagersPage.Enabled = False
 End If
End Sub

Including an If and an Else clause ensures that the Enabled state of the button will
always be what you want, regardless of the circumstances.

Run the app. The Welcome page opens with the Login link and contents of the
AnonymousTemplate displayed, and the Manager’s Page button is disabled.

Log in as a user in the Managers role, say dhurwitz, and the Manager’s Page button
will become enabled. Click that button to move to the Manager’s Page; then, click
the button on that page to return to the Welcome page.

There is still a problem with this application, however: if you log in with one of the
usernames that are not in the Manager’s role, such as tbrady, you still are allowed to
go to the Manager’s page. Let’s fix this.

Go to the code-behind for the Manager’s page, ManagersPage.aspx.vb. Create an
event handler for the Page Load event. Enter the following highlighted code to the
event handler:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.IsInRole("Manager") = False Then
 Response.Redirect("NoPrivs.aspx")
 End If
End Sub

Figure 9-23. Add a button to the Welcome page in Design view, for navigating to the Manager’s
page.

348 | Chapter 9: Security

This code will redirect to a page called NoPrivs.aspx if the current user is not a member
of the Manager role. So, create that page, making it very similar to ManagersPage.aspx,
with only a heading, some text, and a button to redirect back to the Welcome page, as
shown in Figure 9-24.

Double-click the button to open an event handler for the Click event and enter the
following highlighted line of code:

Protected Sub btnWelcome_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnWelcome.Click
 Response.Redirect("Welcome.aspx")
End Sub

Now, when you run the app, if you log in with a username that is a member of the
Manager role, you can navigate to the Manager’s page. Otherwise, you cannot get to
the Manager’s page; you are directed instead to NoPrivs.

In a real application, it would make more sense to only enable the
Manager’s page button on the Welcome page if the user were a mem-
ber of the Manager role, not simply logged in. However, then we
would not have an easy way to demonstrate how to restrict access to a
page based on the role of the current user.

There’s a lot more to properly securing a web site than we have space
to talk about here. This chapter is really just the tip of the iceberg; for
a more detailed discussion, see Programming ASP.NET (O’Reilly).

Figure 9-24. The NoPrivs page in Design view. This is the page where users will be redirected if
they try to access a page for which they do not have permission.

Summary | 349

Summary
• ASP.NET provides controls you can use to allow a user to log in to your site.

• Forms-based authentication is a technique for validating the identity of the user
of the web page, and is useful for users connecting across the Internet.

• Windows-based authentication lets Windows handle the authentication tasks,
and is most useful for users connecting on an intranet.

• Before users can log in to your site, you need to create user accounts for them.
One way to do this is administratively, using the Web Site Administrative Tool
(WAT). The WAT presents itself in a separate browser window, and allows you
to choose between Windows- and forms-based authentication.

• To create a new user with the WAT, you simply need to select the link in the
WAT, and fill in the user’s name, password, email address, and a security ques-
tion. The information will automatically be added to your site’s security database.

• Instead of using the WAT, you can also create user accounts and add them to
your security database from within your site. ASP.NET provides a
CreateUserWizard control that lets users create their own accounts when your
site is running. Users provide all the same information, and the account is auto-
matically created.

• The LoginStatus control has two views: one for logged-in users, and one for
users who aren’t logged in yet. Logged-in users are greeted with a message you
can configure, and other users are given a link so they can log in.

• The LoginView control also has two templates for logged-in and not-logged-in
(anonymous) users. You can use this control to display customized content
based on the user’s login status.

• The Login control is the control where users enter a username and password to
log in to your site.

• The PasswordRecovery control automatically resets a user’s password and sends
them an email notifying them of the change. This requires an SMTP server.

• Another way to determine what users can and can’t see on your site is to use
roles. You define a specific role, assign users to that role, and then specify what
pages members of the role can or cannot access.

• You can enable roles, create new roles, and add users to roles from the WAT.

• A good practice on sites where security is important is to check the login status
of the user in the Page Load event of every page.

• The User.Identity.IsAuthenticated property is a Boolean that you can use to
take action based on whether the user is logged in.

• To determine if a user is a member of a specific role, you can use the User.IsInRole
property.

350 | Chapter 9: Security

As you’ve seen, security is very important for keeping unwanted users out of sensi-
tive areas of your site. The combination of the WAT and ASP.NET Login controls
make it very easy for you to define who gets to access which page. The benefits go
beyond security, though. When users are logged in, you can save data about them
that they provide, allowing you to greet them by name when they visit, keep track of
their shopping cart, and even customize the appearance of your site to fit their pref-
erences. Giving users some degree of control over your site builds a stronger relation-
ship between you and them, and that keeps them coming back. That’s called
personalization, and you’ll see how to do it in the next chapter.

Exercises | 351

B R A I N B U I L D E R

Quiz
1. What are the two methods for creating users for your site?

2. What is the difference between forms-based security and Windows authentication?

3. What is the purpose of the security question in the user creation process?

4. Where is the user information stored in your site?

5. What control do you need to add to enable users to create their own accounts?

6. How many views does the LoginStatus control have?

7. What’s the purpose of the LoginName control?

8. What does the Login control do if the user enters an incorrect password?

9. What tool do you use to add users to roles?

10. What property do you use to restrict access to a page based on a role?

Exercises
Exercise 9-1. In this set of exercises, you’re going to create a web site for Ajax Secu-
rity, a company that provides security guards to banks, jewelry stores, and other cli-
ents. The company employs several guards, each of which works the night shift or
the day shift, but not both. Create four user accounts for the guards, and assign them
to the appropriate shifts, as follows:

Day shift: anakamura, wsmith
Night shift: jsharma, toliver

Create a web site with three pages: a welcome page, a login page, and a page with the
schedules for the guards—one schedule for the day shift, and one for the night shift.
(You don’t actually have to provide a schedule; a placeholder will do.) For security’s
sake, guards working the day shift shouldn’t be able to see the night shift schedule,
and vice versa.

Exercise 9-2. You want potential customers to be able to use the site, and to be able
to log in so that they can access customer-specific information. However, you don’t
want any logged-in customer to be able to access the guard schedules. Add a “client
information” page to the site, with placeholder content, and a “create an account”
page to the site so that users can create their own accounts. Once they’ve created an
account, users should be able to access the client information page, but not the
guards’ schedules. Add a page to redirect an unauthorized user who tries to access
the guards’ page.

352 | Chapter 9: Security

Exercise 9-3. The managers of the company need access to all the existing informa-
tion, plus a page that neither the guards nor the clients can access. Add a “manag-
ers” page to the site, with placeholder content. The managers shouldn’t be able to
create their own logins; they’ll have to be created by the site administrator (that’s
you). Add two managers: mrand and dknight. The managers should have access to
the manager page, but should also be able to see the schedules for all the guards. Be
sure to redirect an unauthorized user who tries to access the managers’ page.

353

Chapter 10 CHAPTER 10

Personalization10

As your site grows, and you have lots of information available, you’ll find that many
users will only want to make use of a subset of what you have available. Say you have
a site that offers news articles from around the world. Some users might only want to
see news from their home countries; others might want only financial news; others
might want just the headlines. In short, you want your site to display different things
to different users, based on the user’s preferences. You can do that with ASP.NET,
and it’s called personalization.

Personalization allows users to modify a site’s settings to reflect their own tastes. It
also allows you to keep track of users’ “progress” through a sequence of steps or
selections made on a page from one visit to another. Many sites use personalization
to create persistent wish lists, shopping carts, and so forth. This used to be a huge
and complicated job—keeping track of a user’s set of preferences and the state of a
user’s personal information. Fortunately, that is all made easier now with ASP.NET.

In this chapter, you’ll build on the project from the previous chapter because the
mechanisms for security and personalization both make use of user logins. You’ll
enhance your site by letting users enter personal information that you’ll store and
produce on demand, and you’ll learn how to provide content for users who’d rather
remain anonymous. Finally, you’ll modify the appearance of the controls on your site
with themes, and you’ll see how you can let users set their own themes and retain
those settings with their other personal information.

Profiles
Copy the example, SecurityRoles, from Chapter 9 to a new web site called
SitePersonalization. Set Welcome.aspx as the start page and run it to make sure every-
thing still works.

One of the easiest ways to personalize a site is to define profile information that you
will maintain for each user. Profile information can include such simple data as the

354 | Chapter 10: Personalization

user’s real name, address, and telephone numbers, or, as you’ll see later, it can
include more complex developer-defined data. Don’t use profile data for sensitive
user information; use a secure database instead.

Simple Data Types
To use profiles, you have to make some modifications to your web.config file for the
project. The first step is adding a new section called <profile>, setting the enabled
property to true, and specifying defaultProvider as AspNetSqlProfileProvider. The
defaultProvider holds the data for the profiles; AspNetSqlProfileProvider is the
built-in provider for ASP.NET.

Then, you need to modify web.config to indicate which pieces of profile information
to save. You add a <properties> section to the <profile> declaration, which is inside
the <system.web> section, and then use the <add> attribute to add the names of any
profile data you want to save. Add the highlighted lines in Example 10-1 to your
web.config.

Your web.config file may look somewhat different depending on your
machine configuration and the databases you have installed. Also,
boilerplate comments and lines unrelated to this topic have been
removed from Example 10-1.

Example 10-1. You need to make some modifications to web.config to enable profiles (with much
of the file omitted for brevity)
<?xml version="1.0"?>
<configuration>
 <configSections>...</configSections>
 <appSettings/>
 <connectionStrings/>
 <system.web>
 <roleManager enabled="true" />
 <compilation debug="true" strict="false" explicit="true">...</compilation>
 <profile enabled="true" defaultProvider="AspNetSqlProfileProvider">
 <properties>
 <add name="lastName"/>
 <add name="firstName"/>
 <add name="phoneNumber"/>
 <add name="birthDate" type="System.DateTime"/>
 </properties>
 </profile>
 <pages>...</pages>

 <!-- stuff omitted for brevity -->

 </system.web>
</configuration>

Profiles | 355

The configuration shown in Example 10-1 causes ASP.NET to create storage for four
pieces of information: first and last name, phone number, and birth date. The default
storage type is String. Notice, however, that you are storing the birth date as a
DateTime object.

You can gather this personalization information any way you like. For this example,
open Welcome.aspx and switch to Design view. Click the Smart Tag of the Login-
View control and select the LoggedInTemplate view, as shown in Figure 10-1.

Now, drag a HyperLink control from the Toolbox onto the LoginView control. Set its
Text property to “Add Profile Info” and the NavigateUrl property to ProfileInfo.aspx
(which you will create shortly). The Design view will look something like Figure 10-2.

Figure 10-1. Select the LoggedInTemplate view of the LoginView control. You’re currently
welcoming the user by using the LoginName, but you’ll change that.

Figure 10-2. Add the HyperLink control to the LoginView control to link to the page where you’ll
gather profile information.

356 | Chapter 10: Personalization

Create the page for gathering the profile information referred to in the NavigateUrl
property of the HyperLink, ProfileInfo.aspx. Remember to check the box to place the
code in a separate file. Add a table for layout to the page, and within the table, add
labels and TextBoxes, as well as a Save button, as shown in Design view in
Figure 10-3.

All that remains to be done is to add an event handler for the Save button. Double-
click the Save button in Design view to open up a code skeleton for the Click event
handler. Add the following highlighted code:

Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.lastName = txtLastName.Text
 Profile.firstName = txtFirstName.Text
 Profile.phoneNumber = txtPhone.Text
 Profile.birthDate = CType(txtBirthDate.Text, System.DateTime)
 End If
 Response.Redirect("Welcome.aspx")
End Sub

Until the web site is built for the first time, the IDE will think all these Profile proper-
ties are invalid and underline them with the dreaded squiggly line. Either click the
Build ➝ Build Web Site menu item or just run the page.

Figure 10-3. The ProfileInfo page, shown here in Design view, is where users will enter their
profile information.

txtFirstName

txtLastName

txtPhone

txtBirthDate

btnSave

Profiles | 357

The first line you added uses the IsAnonymous property of the Profile object. Anony-
mous users are those who haven’t logged in yet. You can’t set the profile properties if
the user isn’t logged in, so you need to check that first. The Profile object has prop-
erties that correspond to the properties you added in web.config.

To test that the Profile object has, in fact, stored this data, add a Panel control to
the bottom of the Welcome page, as shown in Figure 10-4. Set the ID property of the
Panel control to pnlInfo and set its Visible property to False, so that it will not nor-
mally display. Add an HTML table with three rows, each with a single cell contain-
ing a Label control. The Labels within the Panel control should be named
lblFullName, lblPhone, and lblBirthDate. You should also set the Text properties of
these Labels as shown in Figure 10-4.

Each Label control is initialized to say that the value is unknown (this is not nor-
mally needed, but we included it here to ensure that the data you see is retrieved
from the Profile object). When the page is loaded, the event handler will check to
see if you have Profile data for this user and, if so, assign that data to the appropri-
ate controls and set the Visible property of pnlInfo to True.

To do this, you’ll add a bit of code to the code-behind for the Welcome page,
Welcome.aspx.vb, so that when the page loads, it will check to see if you have a pro-
file, and if so, it will make the panel visible. You have previously created an event
handler for the Page Load event for this page and added some code, so add the high-
lighted code from Example 10-2 to that existing event handler.

Figure 10-4. After you’ve added the panel for displaying the profile information, the
WelcomePage will look like this in Design view.

Panel control

358 | Chapter 10: Personalization

When you start the application, you are asked to log in. Once logged in, a new
hyperlink appears: Add Profile Info. This was created by the hyperlink you added to
the LoggedInTemplate earlier. Clicking that link brings you to your new profile page,
as shown in Figure 10-5.

Example 10-2. You’ll use some simple code in the Page_Load handler for the Welcome page to
retrieve and display the Profile information
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else
 btnManagersPage.Enabled = False
 End If

 If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then
 pnlInfo.Visible = True
 lblFullName.Text = Profile.firstName & " " & Profile.lastName
 lblPhone.Text = Profile.phoneNumber
 lblBirthDate.Text = Profile.birthDate.ToShortDateString()
 Else
 pnlInfo.Visible = False
 End If
End Sub

Figure 10-5. The ProfileInfo page is a separate page with a simple form for gathering profile
information.

Profiles | 359

When you click Save and return to the Welcome page, the Page_Load event fires. The
Page_Load contains a three-part If statement:

If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then

All parts of the If statement will evaluate to True: this page is not loading as a result
of a postback (you’re returning from the ProfileInfo.aspx page), the UserName value in
the profile is not Nothing (you just set it), and the user is logged in, and thus not
anonymous.

Your profile information is displayed, as shown in Figure 10-6.

If you are logged in but have not yet entered any profile data, the default values will
display, which are a blank string for string values and 1/1/0001 for the date.

Complex Data Types
The information we’ve saved so far in the profile has been simple, built-in data types,
but of course you may want to save either user-defined types or collections. These
are considered “complex data types” and require a bit of extra work, as you’ll see
with the Sports profile information in the very next example.

Figure 10-6. After the user has entered and saved his profile information, it’s displayed on the
Welcome page.

360 | Chapter 10: Personalization

Close the browser and copy the previous example, SitePersonalization, to a new web
site called SitePersonalizationComplex. Set the Welcome page as the Start page and
run the site to verify that everything works.

In this web site, you will add a CheckBoxList control to the ProfileInfo page so users
can select their favorite sports and store them in a profile using a StringCollection
object.

Add a new property, called Sports, of type StringCollection, to the profile element
in web.config, as indicated by the highlighted line of code in Example 10-3.

Edit the page ProfileInfo.aspx. Add a row to the layout table above the Save button
and put a CheckBoxList control in that row—name it cblSports. In Design view, click
the Smart Tag of the CheckBoxList and click Edit Items.... Add several sports to the
ListItem Collection Editor dialog box, as shown in Figure 10-7.

Now you need to enhance the event handler for the Save button to add the selected
items to the new Profile property, as shown in the highlighted code in
Example 10-4.

Example 10-3. You can add a complex type to the profile element of web.config in the same place
where you add basic types
<profile enabled="true" defaultProvider="AspNetSqlProfileProvider">
 <properties>
 <add name="lastName" />
 <add name="firstName" />
 <add name="phoneNumber" />
 <add name="birthDate" type="System.DateTime" />
 <add name="Sports"
 type="System.Collections.Specialized.StringCollection" />
 </properties>
</profile>

V B C H E A T S H E E T

StringCollection Class
The StringCollection class, is a member of the System.Collections.Specialized
namespace, is used to represent a collection of strings. Elements within the collection
can be accessed using a zero-based integer index. A number of methods are provided
for manipulating the collection, including the ability to add items, find the index of
specific items, and remove items either by index or by specifying the string.

Profiles | 361

Figure 10-7. Add these items to the CheckBoxList control.

Example 10-4. Modify the btnSave_Click event handler to process the complex Profile property
Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.lastName = txtLastName.Text
 Profile.firstName = txtFirstName.Text
 Profile.phoneNumber = txtPhone.Text
 Profile.birthDate = CType(txtBirthDate.Text, System.DateTime)

 Profile.Sports = New System.Collections.Specialized.StringCollection()
 For Each item As ListItem In cblSports.Items
 If item.Selected Then
 Profile.Sports.Add(item.Value.ToString())
 End If
 Next

 End If
 Response.Redirect("Welcome.aspx")
End Sub

362 | Chapter 10: Personalization

You also need to create an event handler for the Page_Load event, so the page will
open with the user’s up-to-date profile information. Create that event the same way
you did earlier, and then add the body of the method, highlighted in Example 10-5.

Each time you navigate to the Profile page, the values are updated from the existing
profile (if any) in Page_Load, and you are free to change them and save the new val-
ues, as shown in Figure 10-8.

However, after you save this page and go back to the Welcome page, the sports
selections are not displayed. To do so, add a ListBox control to the Welcome page,
called lbSports, to the already existing Panel control pnlInfo, as shown in
Figure 10-9. The selections will be displayed in lbSports.

Modify the existing Page_Load handler in Welcome.aspx.vb to bind the contents of
the Profile.Sports property to the ListBox by adding the highlighted code from
Example 10-6.

Example 10-5. The Page_Load handler for ProfileInfo.aspx.vb guarantees that the user will see his
current profile information when the page loads
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack And Profile.UserName IsNot Nothing Then
 If Profile.IsAnonymous = False Then
 txtLastName.Text = Profile.lastName
 txtFirstName.Text = Profile.firstName
 txtPhone.Text = Profile.phoneNumber
 txtBirthDate.Text = Profile.birthDate.ToShortDateString()
 End If

 If Profile.Sports IsNot Nothing Then
 For Each item As ListItem In cblSports.Items
 For Each profileString As String In Profile.Sports
 If item.Text = profileString Then
 item.Selected = True
 End If
 Next
 Next
 End If
 End If
End Sub

Profiles | 363

Figure 10-8. The ProfileInfo page now has a CheckBoxList control showing complex profile
properties, and furthermore, the Profile object retains the data, so that it can be reloaded whenever
the user returns to this page.

Figure 10-9. Add a ListBox control to the Welcome page to display the complex profile property.

ListBox lbSports

364 | Chapter 10: Personalization

When you click Save in the Profile page and return to the Welcome page, your saved
profile information is displayed, as shown in Figure 10-10.

Anonymous Personalization
Often you will want to allow users to use your site for a while before logging in.
Along the way, the user may fill in information that you will want to store in the
user’s profile once the user is logged in. Imagine, for example, that the user has a
shopping cart. Your use model may be that anonymous users may add items to the
cart. If they want the cart to persist after they leave, or if they want to buy the items,
they must log in; otherwise, you’ll toss the cart after their session times out.

You need a way to store her anonymous profile, and, more important, you need a
way to merge that anonymous profile with her actual profile once you know who she
really are. No problem; ASP.NET provides for that very circumstance.

Example 10-6. Modify the Page_Load handler for Welcome.aspx.vb to bind the Profile.Sports data
to the ListBox
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else
 btnManagersPage.Enabled = False
 End If

 If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then
 pnlInfo.Visible = True
 lblFullName.Text = Profile.firstName & " " & Profile.lastName
 lblPhone.Text = Profile.phoneNumber
 lblBirthDate.Text = Profile.birthDate.ToShortDateString()

 If Profile.Sports IsNot Nothing Then
 For Each sport As String In Profile.Sports
 lbSports.Items.Add(sport)
 Next
 End If
 Else
 pnlInfo.Visible = False
 End If

End Sub

Anonymous Personalization | 365

Adding an Anonymous Profile
Copy the previous example, SitePersonalizationComplex, to a new web site called
AnonymousPersonalization. Set Welcome.aspx as the Start page and run the site to
verify that everything is working.

To enable anonymous personalization, add the highlighted lines from Example 10-7
to your web.config file. Also highlighted in Example 10-7 is a line adding the
allowAnonymous attribute to the Sports profile property.

Figure 10-10. The Welcome page now displays the contents of Profile.Sports for logged-in users.

Example 10-7. You need to make a couple of small edits to web.config to enable anonymous
personalization
<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <appSettings/>
 <connectionStrings/>
 <system.web>
 <anonymousIdentification enabled="true" />
 <roleManager enabled="true" />
 <compilation debug="true" strict="false" explicit="true"/>
 <profile enabled="true" defaultProvider="AspNetSqlProfileProvider">

366 | Chapter 10: Personalization

Because anonymous users can now save and see the Sports profile property, but only
the Sports profile property, you need to modify the Welcome and ProfileInfo pages.

Redesign your Welcome.aspx page in two ways: first, move the HyperLink that leads
to the Profile Information page outside of the LoginView control. Second, move the
ListBox (lbSports) outside the Panel pnlInfo. Thus, you can see both of these fea-
tures whether you are logged in or not. Also, change the text on the Add Profile Info
HyperLink to just “Profile Info”, as you will be using this link to add and edit the
profile info.

You must modify the Page_Load event handler from Welcome.aspx.vb, shown previ-
ously in Example 10-6, to properly display the anonymous information. The modi-
fied Page_Load handler is shown in Example 10-8.

 <properties>
 <add name="lastName" />
 <add name="firstName" />
 <add name="phoneNumber" />
 <add name="birthDate" type="System.DateTime" />
 <add name="Sports"
 type="System.Collections.Specialized.StringCollection"
 allowAnonymous="true" />
 </properties>
 </profile>
 <pages>
 <!--stuff omitted for brevity --!>
 </pages>
 <authentication mode="Forms"/>
 </system.web>
</configuration>

Example 10-8. Modify the Page_Load handler in Welcome.aspx.vb to properly display the
anonymous profile properties
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else
 btnManagersPage.Enabled = False
 End If

 If Not IsPostBack And _
 Profile.UserName IsNot Nothing Then
 If Profile.IsAnonymous = False Then
 pnlInfo.Visible = True
 lblFullName.Text = Profile.firstName & " " & Profile.lastName
 lblPhone.Text = Profile.phoneNumber
 lblBirthDate.Text = Profile.birthDate.ToShortDateString()
 End If

Example 10-7. You need to make a couple of small edits to web.config to enable anonymous
personalization (continued)

Anonymous Personalization | 367

When an anonymous user fills in the profile information, the user will automatically be
assigned a Globally Unique Identifier (GUID), and an entry will be made in the data-
base for that ID. However, note that only those properties marked with allowAnonymous
can be stored, so you must modify your btnSave_Click event handler in ProfileInfo.
aspx.vb. Bracket the entries for all the profile elements except Sports in an If statement
that tests whether the user is currently Anonymous. The new btnSave_Click event han-
dler for ProfileInfo.aspx.vb is shown in Example 10-9.

The effect of the new code shown in Example 10-9 is that you check whether the
IsAnonymous property is False. If it is, then you are dealing with a logged-in user, and
you can get all of the properties; otherwise, you can get only those that are allowed
for anonymous users.

Modify the ProfileInfo page so that the nonanonymous data is in a panel that will be
invisible for users who are not logged in. The simplest way to do this may be to
switch to Source view and bracket the nonanonymous code inside a panel (don’t

 If Profile.Sports IsNot Nothing Then
 For Each sport As String In Profile.Sports
 lbSports.Items.Add(sport)
 Next
 End If
 Else
 pnlInfo.Visible = False
 End If
End Sub

Example 10-9. The Save event handler for ProfileInfo.aspx.vb with the code for saving Sports
property moved outside of the test for IsAnonymous
Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.lastName = txtLastName.Text
 Profile.firstName = txtFirstName.Text
 Profile.phoneNumber = txtPhone.Text
 Profile.birthDate = CType(txtBirthDate.Text, System.DateTime)
 End If

 Profile.Sports = New System.Collections.Specialized.StringCollection()
 For Each item As ListItem In cblSports.Items
 If item.Selected Then
 Profile.Sports.Add(item.Value.ToString())
 End If
 Next

 Response.Redirect("Welcome.aspx")

End Sub

Example 10-8. Modify the Page_Load handler in Welcome.aspx.vb to properly display the
anonymous profile properties (continued)

368 | Chapter 10: Personalization

forget to end the anonymous table before ending the panel, and then insert another
opening table tag), as shown in Example 10-10.

Example 10-10. Add a panel to ProfileInfo.aspx for hiding the nonanonymous
information
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="ProfileInfo.aspx.vb"
 Inherits="ProfileInfo" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Panel ID="pnlNonAnonymousInfo" runat="server" >
 <table>
 <tr>
 <td>First Name:</td>
 <td>
 <asp:TextBox ID="txtFirstName" runat="server" />
 </td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td>
 <asp:TextBox ID="txtLastName" runat="server" />
 </td>
 </tr>
 <tr>
 <td>Phone Number:</td>
 <td>
 <asp:TextBox ID="txtPhone" runat="server" />
 </td>
 </tr>
 <tr>
 <td>Birth Date:</td>
 <td>
 <asp:TextBox ID="txtBirthDate" runat="server" />
 </td>
 </tr>
 </table>
 </asp:Panel>
 <table>
 <tr>
 <td colspan="2">
 <asp:CheckBoxList ID="cblSports" runat="server" >
 <asp:ListItem>Skiing</asp:ListItem>
 <asp:ListItem>Mountain Biking</asp:ListItem>
 <asp:ListItem>Road Biking</asp:ListItem>

Anonymous Personalization | 369

In order to hide this panel if the user is anonymous, edit the Page_Load event handler
in ProfileInfo.aspx.vb, as shown in Example 10-11. This code controls the visibility of
pnlNonAnonymousInfo based on whether or not the user is anonymous. Under any cir-
cumstances, the Sports preferences will be displayed.

 <asp:ListItem>Swimming</asp:ListItem>
 <asp:ListItem>Baseball</asp:ListItem>
 <asp:ListItem>Football</asp:ListItem>
 <asp:ListItem>Basketball</asp:ListItem>
 </asp:CheckBoxList>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button ID="btnSave" runat="server" Text="Save"/>
 </td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Example 10-11. Modify the Page_Load handler in ProfileInfo.aspx.vb to properly display
anonymous profile properties
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack And Profile.UserName IsNot Nothing Then
 If Profile.IsAnonymous = True Then
 pnlNonAnonymousInfo.Visible = False
 Else
 pnlNonAnonymousInfo.Visible = True
 txtLastName.Text = Profile.lastName
 txtFirstName.Text = Profile.firstName
 txtPhone.Text = Profile.phoneNumber
 txtBirthDate.Text = Profile.birthDate.ToShortDateString()
 End If

 If Profile.Sports IsNot Nothing Then
 For Each item As ListItem In cblSports.Items
 For Each profileString As String In Profile.Sports
 If item.Text = profileString Then
 item.Selected = True
 End If
 Next
 Next
 End If ' close for If Profile.Sports IsNot Nothing
 End If ' close for If Not IsPostBack And Profile.UserName IsNot Nothing
End Sub

Example 10-10. Add a panel to ProfileInfo.aspx for hiding the nonanonymous
information (continued)

370 | Chapter 10: Personalization

Run the application. Do not log in, but do click the Profile Info link. Select a few
sports and click Save. When you return to the Welcome page, you are still not logged
in, but your selected sports are displayed, as shown in Figure 10-11.

Migrating Anonymous Data to an Actual User’s Record
When the user does log in, you must migrate the Profile data you’ve accumulated for
the anonymous user to the authenticated user’s record (so that, for example, shop-
ping cart items are not lost). You do this by writing a global handler in global.asax.
The global.asax file contains event handlers that apply to the web site as a whole. So
far you’ve worked only with events that happen in a page, like a button click or page
load. The global.asax file lets you write handlers for events like when a request is first
received, when a session starts, when a user is authenticated (logged in), and so on.

Your project probably does not yet have a global.asax file, so click the Website ➝

Add New Item menu item. One of your choices will be Global Application Class,
and it will default to the name global.asax. Click Add to accept the default name.

When a user logs in to an ASP.NET application, the MigrateAnonymous event is fired
automatically. You can handle that event with a method in global.asax. The code to
do so is listed in Example 10-12.

Figure 10-11. The Profile information for an anonymous user is reflected on the Welcome page,
without logging in.

Themes and Skins | 371

The event argument for MigrateAnonymous is of type ProfileMigrateEventArgs. This
event argument has a property called AnonymousID, which contains the ID of the
anonymous user (this is all done automatically). The first step, then, in this method
is to get the profile that corresponds to the AnonymousID of the anonymous user:

Dim anonymousProfile As ProfileCommon = Profile.GetProfile(e.AnonymousId)

If there is such a profile—that is, if the profile is not Nothing—then you know that
there is a matching anonymous profile, and that you may choose whatever data you
need from that profile. In this case, you copy over the Sports collection by using the
For Each loop to iterate through the Sports collection. Each Sport is added to the cur-
rent profile for the logged-in user, after first removing it to avoid duplicates.

Themes and Skins
Many users like to personalize their favorite web sites by setting the look and feel to
meet their own aesthetic preferences. ASP.NET supports that requirement with
“themes.”

A theme is a collection of skins. A skin describes how a control should look. A skin
can define style sheet attributes, images, colors, and so forth.

Having multiple themes allows your users to choose how they want your site to look
by switching from one set of skins to another at the click of a button. Combined with
personalization, your site can remember the look and feel each user prefers.

There are two types of themes. The first, called stylesheet themes, define styles that
can be overridden by the page or control. These are, essentially, equivalent to CSS
style sheets. The second type, called customization themes, cannot be overridden.
You set a stylesheet theme by adding the StyleSheetTheme attribute to the Page direc-
tive, and, similarly, you set a customization theme by setting the Theme attribute in
the Page directive.

Example 10-12. The MigrateAnonymous event handler in global.asax applies to all the pages in
your application
Sub Profile_MigrateAnonymous(ByVal sender As Object, _
 ByVal e As ProfileMigrateEventArgs)
 Dim anonymousProfile As ProfileCommon = Profile.GetProfile(e.AnonymousID)
 If anonymousProfile IsNot Nothing And _
 anonymousProfile.Sports IsNot Nothing Then
 For Each str As String In anonymousProfile.Sports
 Profile.Sports.Remove(str) ' remove duplicates
 Profile.Sports.Add(str)
 Next
 End If
End Sub

372 | Chapter 10: Personalization

In any given page, the properties for the controls are set in this order:

• Properties are applied first from a stylesheet theme.

• Properties are then overridden based on properties set in the control.

• Properties are then overridden based on a customization theme.

Thus, the customization theme is guaranteed to have the final word in determining
the look and feel of the control. Overriding a property replaces the current version of
the property with a new version.

Skins themselves come in two flavors: default skins and explicitly named skins. Thus,
you might create a Labels skin file called Labels.skin with this declaration:

<asp:Label runat="server"
 ForeColor="Blue" Font-Size="Large"
 Font-Bold="True" Font-Italic="True" />

This is a default skin for all Label controls. It looks just like the declaration of an
ASP.NET Label control (minus the ID attribute), but it is housed in a .skin file and,
thus, is used to define the look and feel of all Label objects within that skin file’s
theme.

In addition, however, you might decide that some labels must be red. To accomplish
this, create a second skin, but assign this skin a SkinID property:

<asp:Label runat="server" SkinID="RedLabel"
ForeColor="Red" Font-Size="Large"
Font-Bold="True" Font-Italic="True" />

Any label that does not have a SkinID attribute will get the default skin; any label that
sets SkinID="RedLabel" will get your named skin.

The steps to providing a personalized web site are as follows:

1. Create the test site.

2. Organize your themes and skins.

3. Enable themes and skins for your site.

4. Specify themes declaratively if you wish.

Create the Test Site
To demonstrate the use of themes and skins, copy the previous example web site,
AnonymousPersonalization, to a new web site called Themes. Set the start page to
Welcome.aspx and test the application to make sure it still works as expected.

The first thing to do is to add some controls whose look and feel you can set.

Open Welcome.aspx, create a table for layout with two rows and four columns
underneath lbSports, and drag on some new controls, as shown in Figure 10-12.

Themes and Skins | 373

There are four labels: lblListBox, lblRadioButtonList, lblCalendar, and lblTextBox.
Each of these labels provides a caption for the neighboring control, a ListBox, a
RadioButtonList, a Calendar, and a TextBox, respectively. Use the default properties
for these four controls, other than the IDs and Text properties of the Label controls.

You’ll also need to click the Smart Tag for both ListBox1 and RadioButtonList1. For
each of these, choose Edit Items. In the ListItem Collection Editor, add four items to
ListBox1 and six items to RadioButtonList1, the result of which is shown in
Figure 10-12. In this example, the ListItems are named First Item, RadioButton1,
and so on. These are not the default names; they are just chosen to make the exam-
ple clear.

You will use themes to change the look and feel of the new controls.

Figure 10-12. The Themes test page isn’t very functional, but it has a variety of controls so you
can see the effects of the themes.

ListBox1

TextBox1Calendar1

RadioButtonList1

374 | Chapter 10: Personalization

Organize Site Themes and Skins
Themes are stored in your project in a special folder named App_Themes. To create this
folder, go to Solution Explorer, right-click the web site, and choose Add ASP.NET
Folder ➝ Theme, as shown in Figure 10-13. Name the new folder Dark Blue—the folder
App_Themes will be created automatically, with a Theme folder named Dark Blue
immediately under it. Right-click App_Themes in the Solution Explorer and again select
Add ASP.NET Folder ➝ Theme. Create a second theme folder, named Psychedelic.

Right-click the Dark Blue theme folder and choose Add New Item. From the tem-
plate lists, choose Skin File and name it Button.skin (to hold all the button skins for
your Dark Blue theme), as shown in Figure 10-14.

Each skin file is just a text file that contains a definition for the control type, but with
no ID. Thus, your Button.skin file for the Dark Blue theme might look like this:

<asp:Button runat="server"
 ForeColor="Blue"
 Font-Size="Large" Font-Bold="True" Font-Italic="True" />

Figure 10-13. Adding a Theme folder to a web site is just a right-click away.

Right-click web site folder

Select this submenu

Select this

Themes and Skins | 375

Create skin files for each of the following types in both themes:

• Button.skin

• Calendar.skin

• Label.skin

• ListBox.skin

• RadioButtonList.skin

• TextBox.skin

The name of the skin file doesn’t have to correspond to the type of
control referenced in the file, but it does simplify site maintenance. In
fact, you don’t even need to put each control in a separate skin file, so
you could put them all into a single skin file.

At this point, your Solution Explorer should look more or less like Figure 10-15.

The rest of these skin files are empty right now, so you should create some skins for
the purpose of this example. Copy the code from Button.skin, and paste it into
Calendar.skin. Change asp:Button to asp:Calendar, and now the calendar skin file is
ready to go. Use the same procedure for all the skin files in the Dark Blue theme.
Then, do the same for the skin files in the Psychedelic theme, but feel free to change
the color and size of the fonts in these files as you see fit.

Enable Themes and Skins
To let your users choose the theme they like and have their preference stored in their
profile, you need only to add a single line to the properties subelement in the
profile element of web.config:

<add name="Theme" />

Figure 10-14. You add a new Skin file with the Add New Item dialog.

376 | Chapter 10: Personalization

Strictly speaking, adding this line to web.config is not necessary to enable themes on
a site. It is only necessary to enable saving themes to a user profile.

Save and rebuild your application.

In order to run an ASP.NET web site, the application must be built, or
compiled. When you run a web site from within the IDE, it is built
automatically, as indicated on the status line at the bottom of the win-
dow. It is also possible to build the application without running it by
clicking the Build menu item and choosing one of the options: Build
Page, Build Web Site, or Rebuild Web Site. Normally, a page or code
file is not rebuilt if nothing has changed. The Rebuild menu item
forces a rebuild of all components.

Sometimes it is helpful to build the site without running it just to
check for syntax and compiler errors. Also, sometimes the IDE gets
confused until the app is rebuilt, at which point everything is known
to the system.

Figure 10-15. After you’ve created all of the skin files, you can see them in Solution Explorer.

Themes and Skins | 377

Specify Themes for Your Page
You can set the themes on your page either declaratively or programmatically. For
example, to set a customization theme declaratively for Welcome.aspx, add the Theme
attribute to the Page directive:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Welcome.aspx.vb"
 Inherits="Welcome" Theme="Dark Blue" %>

Set Welcome.aspx as the start page. Run the app now and you will see the Dark Blue
theme applied, as shown in Figure 10-16. (Obviously the monochromatic printed
book will not show the colors in full splendor.)

You can also set the theme programmatically, either by coding it directly onto the
page or (even better) by setting it from the user’s profile.

StyleSheet themes, as opposed to customization themes, are set by overriding the
StyleSheetTheme property for the page. IntelliSense will help you with this. Open
Welcome.aspx.vb and scroll to the bottom of the class. Type the word overrides
just above the End Class statement and all the overridable members are shown.

Figure 10-16. The page is rendered using the Dark Blue theme as a result of adding the Theme
attribute to the Page directive.

378 | Chapter 10: Personalization

Start typing sty and IntelliSense will scroll to the property you want:
StyleSheetTheme, as shown in Figure 10-17.

Once IntelliSense finds the property you want, press the Tab key to accept it. It will
create a code skeleton for a property called StyleSheetTheme.

This code skeleton includes default code for both the getter and setter. Replace that
default code with the highlighted code in Example 10-13.

Figure 10-17. IntelliSense helps you to override the StyleSheetTheme property.

V B C H E A T S H E E T

Properties
Properties in .NET are implemented using special syntax. This is true for all the prop-
erties you’ve used so far, but you haven’t had to concern yourself with how a property
is actually defined behind the scenes. Like all properties in .NET, StyleSheetTheme is
implemented with two special methods: one, called Get, for retrieving the value of the
property; another, called Set, for setting the value of the property. These special meth-
ods are referred to variously as the accessors or the getter and setter.

When your code retrieves the value of a property, as in the following:

Dim i as Integer = SomeProperty

The getter for that property is implicitly called. You don’t have to actually call it. Sim-
ilarly, if you set the value of a property, the setter is implicitly called.

If a property needs to be read-only, then omit the setter. If for some reason you want
to disallow using the value of the property, you could omit the getter.

Themes and Skins | 379

If you are going to set a customization theme programmatically, however, you must
do so from the page’s PreInit event handler, because the theme must be set before
the controls are created. Chapter 7 covered when the various page events occur. A
Page_PreInit event handler is created the same way a Page_Load event handler is cre-
ated: select (Page Events) in the left drop-down and PreInit in the right. Create the
PreInit event handler and type in the bolded code from Example 10-14.

Setting the theme in PreInit creates a bit of a difficulty when you want to allow the
user to change the theme at runtime. If you add a control that lets the user select a
theme, when that page posts back with a new theme, the PreInit code runs before
the event handler for the button that changes the theme (see the discussion of the
page life cycle in Chapter 7). So, by the time the code runs to change the theme, the
controls have already been drawn.

To overcome this, you must, unfortunately, refresh the page again. This can be done
easily enough by calling the Server.Transfer method to transfer to itself from the
event handler, which also sets the theme.

To see this, add two buttons to Welcome.aspx, labeled Psychedelic and Dark Blue,
with ID’s of btnPsychedelic and btnDarkBlue, respectively. You will want both but-
tons to share the same event handler, Set_Theme, shown in Example 10-15. An easy
way to have the IDE set up that event handler for you is to switch to Design view and
single click one of the buttons to select it. Click the lightning bolt in the Properties
window to go to the events, click next to the Click event, and type in the method

Example 10-13. Setting the StyleSheetTheme property
Public Overrides Property StyleSheetTheme() As String
 Get
 If Profile.IsAnonymous = False _
 And Profile.Theme IsNot Nothing Then
 Return Profile.Theme
 Else
 Return "Dark Blue"
 End If
 End Get
 Set(ByVal value As String)
 Profile.Theme = value
 End Set
End Property

Example 10-14. The PreInit event handler in Welcome.aspx.vb sets the customization theme
before the page loads
Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit
 If Profile.IsAnonymous = False Then
 Page.Theme = Profile.Theme
 End If
End Sub

380 | Chapter 10: Personalization

name Set_Theme. You are now ready to type in the event handler. Once the method
exists in your code-behind, you can hook the other button to the method by clicking
the button and selecting the method from the drop-down next to the Click event in
the Properties window.

In the handler, you’ll cast the sender to the Button type (using CType) and check its
Text property, setting the theme appropriately.

What’s going on here is that you’re creating a variable called btn that is a reference to
the button that raised the event (sender). If the Text property of the sender is
“Psychedelic,” you set the Psychedelic theme. If not, the event must have come from
the Dark Blue button, and that theme is set instead.

There is one more problem. If you run this page and try to set the theme before you
are logged in, an exception will result. The Theme property cannot be set for an anon-
ymous user.

To prevent this from happening, you will hide the two theme buttons unless the user
is logged in. To do so, add the following two lines to the Page_Load method of
Welcome.aspx.vb:

btnDarkBlue.Visible = Not Profile.IsAnonymous
btnPsychedelic.Visible = Not Profile.IsAnonymous

These lines set the Visible property of the Buttons to the opposite of the IsAnonymous
property. If the user is logged in, IsAnonymous is False, so the button’s Visible prop-
erty is set True. Now when the user logs in, the page will look something like that
shown in Figure 10-18.

When the user is not logged in, the Welcome page’s default theme will be used.
Once the user sets a theme, that theme will be used when you return to the Wel-
come page.

Example 10-15. The Set_Theme method Button Click event handler in Welcome.aspx.vb handles
the buttons that set the theme
Protected Sub Set_Theme(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnPsychedelic.Click, btnDarkBlue.Click
 Dim btn As Button = CType(sender, Button)
 If btn.Text = "Psychedelic" Then
 Profile.Theme = "Psychedelic"
 Else
 Profile.Theme = "Dark Blue"
 End If

 Server.Transfer(Request.FilePath)
End Sub

Themes and Skins | 381

Using Named Skins
You can override the theme for particular controls by using named skins. For exam-
ple, you can set the lblRadioButtonList label to be red even in the Dark Blue theme
by using a named skin. To accomplish this, create two Label skins in the Label.skin
file within the Dark Blue folder:

<asp:Label Runat="server"
 ForeColor="Blue" Font-Size="Large"
 Font-Bold="True" Font-Italic="True" />
<asp:Label Runat="server" SkinID="Red"
 ForeColor="Red" Font-Size="Large"
 Font-Bold="True" Font-Italic="True" />

The first skin is the default; the second is a named skin because it has a SkinID prop-
erty set to Red. Click the lblRadioButtonList control (that is, the Label, not the
RadioButtonList itself) on the Welcome page in Design view and set the SkinID

Figure 10-18. The two buttons to set the page theme only become visible once the user has logged
in. When the logged-in user chooses a theme, the theme is saved in the user’s profile, and will be
used every time that user logs in.

382 | Chapter 10: Personalization

property to Red (you may need to switch the Properties window back to properties
from events). Or, open the source for Welcome.aspx and find the lblRadioButtonList
and add the attribute SkinID="Red":

<asp:Label ID="lblRadioButtonList" Runat="server" Text="Radio Button List"
 SkinID="Red"/>

When you log in and set your theme to Dark Blue, you’ll find that the label for the
RadioButtonList is Red.

Summary
• Personalization allows your users to choose certain aspects of the site, which

persist from one visit to the next. Personalization options can include your site’s
appearance, personal information, shopping carts, and other choices.

• A simple way to provide personalization is to define a profile for each user and
store their personalization choices there.

• To use profiles in your site, modify web.config, create a <profile> section, and
set the enabled property to true. Then, create a <properties> section within the
<profile> section, and use the add attribute to add the names of any profile
information you want to store.

• The default storage type for a profile property is string, but you can specify a
different type with the Type attribute.

• The Profile.IsAnonymous property is a Boolean that lets you take action based
on whether the user is logged in (using an anonymous profile).

• If you want users to be able to access the restricted features of your site without
logging in, you can enable anonymous personalization. Simply add a line to
web.config setting <anonymousIdentification enabled="true"/>.

• When the user logs in, if you want to copy the user’s profile from the anony-
mous profile to the user’s permanent profile, you need to handle the
MigrateAnonymous event, which is automatically raised when the user logs in. The
code for your event handler should copy the properties from the anonymous
profile to the logged-in profile.

• You can allow users to customize the visual appearance of your site with themes.
A theme is made up of skins, each of which provides the visual appearance of a
single type of control.

• Themes are stored in a folder within your project named App_Themes. Each sub-
folder within App_Themes is the name of a specific theme. Within the named
theme folders, you store specific skin files, one for each control you want to
modify.

• A skin file looks like a control declaration, but it has no ID property, just appear-
ance properties.

Summary | 383

• To enable users to select their preferred theme on your site, add <addname="Theme"/>
to the properties element in the profile section of web.config.

• To specify a customization theme on your page, just add a Theme attribute to the
Page directive.

• To set the style sheet theme programmatically, you need to add an Overrides
Property StyleSheetTheme() method to the class for the page, and set the acces-
sors appropriately.

• To set a customization theme programmatically, you need to add a PreInit
event handler so that the theme is specified before the controls are created.

• To specify the theme for a specific control, use named skins by setting a SkinID
property in the skin file.

You’ve now tried out just about every section of the ASP.NET toolbox, and you’ve
seen controls ranging from the simple to the complex. You’ve learned how controls
work together, and how to create event handlers for them. You know how to create
sites that use master pages, allow users to log in, provide navigation tools, access
databases, and do it all while using Ajax to enhance the experience. What’s left to
do? It’s time to put it all together, of course. In the next chapter, you’ll find a project
that uses nearly everything you’ve learned so far to build a fully functional web site.

384 | Chapter 10: Personalization

B R A I N B U I L D E R

Quiz
1. What do you need to do to enable user profiles in your site?

2. What modifications do you need to make to web.config to specify what profile
information you want to retain for your users?

3. What property of the Profile object do you use to determine whether a user is
logged in?

4. How do you retain profile information that’s not saved as a string?

5. How do you allow for profile information for a user without logging in?

6. How do you indicate that a specific piece of profile information should be
retained for an anonymous user?

7. When a user logs in, how do you transfer any personalization data that the user
might have entered as an anonymous user?

8. What’s the difference between style sheet themes and customization themes?

9. Where do you specify settings for a skin?

10. How do you specify what theme to use on a page?

Exercises
Exercise 10-1. In this set of exercises, you’re going to create a web site that hosts dis-
cussion forums for tropical fish enthusiasts. You won’t actually write the code for the
forums, but you’ll build the framework so that users can log in if they wish and cus-
tomize the site. Start by creating a site that has a front page welcoming users to the
site and stating their login status. Add a login page, and a separate page where users
can create their own accounts. Create a few users by whatever method you like to
test these pages. The page for a logged-in user would look like Figure 10-19. (Hint:
be sure to change the authentication method in web.config.)

Add a page to the site where users can customize their profiles. Add a TextBox to have
users enter their preferred name. Add another TextBox where they can enter how many
fish they have. Add a radio button group where users can choose between tropical or
freshwater fish. Give them a DropDownList where they can choose their favorite fish
type. The Profile page should look something like Figure 10-20 when it’s filled in.

On the home page, provide an opportunity for logged-in users to edit their profile,
and also display the contents of the profile on the home page. The home page should
look something like Figure 10-21 when the user is logged in.

Exercises | 385

Figure 10-19. A logged-in user page for Exercise 10-1.

Figure 10-20. The Profile page for Exercise 10-1.

386 | Chapter 10: Personalization

Exercise 10-2. Allow anonymous users to visit your site and create a temporary pro-
file. They should be able to enter their preference for tropical or freshwater fish, but
because they’re anonymous, they shouldn’t be able to choose a preferred username,
or the number of fish they own. Enable the user to migrate their preference data from
the anonymous profile to a registered, once they’ve created a user account.

Exercise 10-3. A page about tropical fish isn’t very much fun unless it’s colorful, but
users probably want to color their pages to match their favorite fish. We’ll keep it
simple for this exercise: just create two theme files, with skin files for labels and but-
tons. Create the two theme files as follows:

• Angelfish theme: for buttons, set the foreground to yellow, the background to
black, and the text to large. For labels, set the foreground to white, the back-
ground to black, and the text to large.

• Clownfish theme: for both buttons and labels, set the foreground to white, the
background to orange, and the text to large.

Add a section to the user profile that lets users pick the theme they want to use, and
have it displayed on all the pages of the site. The front page should look like
Figure 10-22 for a user who has chosen the Angelfish theme.

Figure 10-21. The home page for Exercise 10-1.

Exercises | 387

Figure 10-22. Your goal for Exercise 10-3.

388

Chapter 11CHAPTER 11

Putting It All Together 11

You’ve now practiced using just about every major tool in the ASP.NET toolbox.
You’ve made dozens of sample applications, and you’ve gotten a feel for just how
easy it is to make functional web sites with just a few controls. Now it’s time to put
those skills to the test. In this chapter, you’ll make a fully functional (if somewhat
limited) shopping application for the Adventure Works company. Unlike the order
form you made in Chapter 2, this application will use all the skills you’ve learned. It
uses data controls to display the Adventure Works database and retrieve the content
the user wants, done in AJAX to speed things along. It has a shopping cart to store
the items the user has purchased. It uses session state to pass that information on to
a purchasing page. It incorporates validation controls to make sure the user enters
good data. It has master pages that provide a consistent look and feel to the site, and
custom error pages in case of problems. Finally, it has login controls to ensure that
only registered users can access the pages of the site. In short, it’s a fully functional
working application.

Getting Started
Create a new web site titled All Together. This is the site that you’ll use throughout
the example in this chapter. This chapter consists of a single large example. As we
build up the example, we will provide full code listings and shorter snippets along
the way. At the end of the chapter are complete code listings for the entire example
so you can see how everything fits together.

You can also download this example, as well as all of the other examples
in this book, from http://www.oreilly.com/catalog/9780596518455.

Add a Master page to the web site, MasterPage.master. Be sure that the “Place Code
in separate file” checkbox is checked.

http://www.oreilly.com/catalog/9780596518455

Adding Styles | 389

Close the Default.aspx file and then delete it; you won’t need it.

Add an Images folder to the web site by right-clicking on the root folder in the Solu-
tion Explorer and selecting New Folder. Insert a folder and call it Images.

This next step is really important: Create the logo file Adventure Works Logo-250x70.gif
using any image-editing tool you like (our logo file is 250 pixels wide×70 pixels high),
or download it from this book’s web site. Once the image file is on your machine, it
must be added to the project. Right-click on the Images folder and select Add Existing
Item. Then, navigate to the logo file, wherever it is on your file system, and select it. It
will automatically be copied to the Images folder and added to the project.

Adding Styles
You’ll be using CSS styles for the various parts of your site, so you need to define the
styles first. Add a CSS style sheet to the web site by selecting Website ➝ Add New
Item, and selecting Style Sheet. You can keep the default name of StyleSheet.css.

Copy in the styles from Example 11-1 any way you wish. You can type the styles in
directly in the source code editing surface, or use the CSS editing tools described
back in Chapter 6.

Example 11-1. StyleSheet.css
body
{
 font-family: Arial; Helvetica; sans-serif;
}
.ButtonSelect
{
 font-weight: normal;
 font-size: x-small;
 background-color: Yellow;
 color: Blue;
}
.ButtonText
{
 font-weight: bold;
 font-size: x-small;
 color: Black;
}
.Hyperlink
{
 font-weight: normal;
 font-size: small;
 color: Blue;
 text-decoration: underline;
}
.LabelMedium
{

390 | Chapter 11: Putting It All Together

 font-weight: bold;
 font-size: Medium;
 color: Black;
}
.LabelSmall
{
 font-weight: bold;
 font-size: small;
 color: Black;
}
.ListHeading
{
 font-weight: bold;
 text-decoration: underline;
 font-size: x-small;
 color: Black;
}
.MenuText
{
 font-weight: normal;
 font-size: small;
 color: Blue;
}
.PageTitle
{
 font-weight: bold;
 font-size: xx-large;
 color: Green;
}
.PageSubTitle
{
 font-weight: bold;
 font-size: x-large;
 color: Blue;
}
.TableCells
{
 font-weight: normal;
 font-size: small;
 color: Black;
 text-align: left;
 vertical-align: top;
}
.TableColumnHeading
{
 font-weight: bold;
 text-decoration: underline;
 font-size: small;
 color: Black;
 text-align: left;
}
.TableColumnHeadingRight

Example 11-1. StyleSheet.css (continued)

Adding Styles | 391

{
 text-align: right;
}
.TableNumberDecimal
{
 font-weight: normal;
 font-size: small;
 color: Black;
 text-align: right;
}
.TableRowHeading
{
 font-weight: bold;
 text-decoration: none;
 font-size: small;
 color: Black;
 text-align: left;
}
.TextBold
{
 font-weight: bold;
 font-style: italic;
 font-size: medium;
 color: Black;
}
.TextNormal
{
 font-weight: normal;
 font-size: medium;
 color: Black;
}
.TextSmall
{
 font-weight: normal;
 font-size: small;
 color: Black;
}
.TextXSmall
{
 font-weight: normal;
 font-size: x-small;
 color: Black;
}
.ValidationError
{
 font-weight: normal;
 font-size: small;
}
.Warning
{
 font-weight: bold;
 font-size: Small;
 color: Red;

Example 11-1. StyleSheet.css (continued)

392 | Chapter 11: Putting It All Together

Using Master Pages
Add a new page, Login.aspx. Check both checkboxes: “Place code in separate file”
and “Select master page.” When the Master Page dialog comes up, select
MasterPage.master. Remove the Content control that refers to the ContentPlaceHolder
control named head.

Add several other new pages: Home.aspx, Products.aspx, Cart.aspx, Purchase.aspx,
and Confirm.aspx. For each of these, select the same master page. Edit each of these
pages to remove the Content control referring to the head ContentPlaceHolder. Set
Home.aspx to be the startup page.

Open MasterPage.master. Add a style statement to the <head> element to import the
style sheet, as in the highlighted line in the following snippet:

<head runat="server">
 <title>Untitled Page</title>
 <link href="StyleSheet.css" rel="stylesheet" type="text/css" />
</head>

Delete the ContentPlaceHolder control with the ID of head.

Add an HTML table for layout, inside the <div> element, but before the content
placeholder control. You can use the IDE tools or just type it manually in the Source
view window. With the help of IntelliSense, I find it easier to type it manually.

Add the table structure and server controls below (above the ContentPlaceHolder):

 <table border="0">
 <tr>
 <td colspan="4">
 <table>
 <tr>
 <td width="10px">

 </td>
 <td>
 <asp:ImageButton ID="ibLogo" runat="server"
 ImageUrl="~/images/AdventureWorksLogo-250x70.gif"
 AlternateText="AdventureWorks logo"
 PostBackUrl="~/Home.aspx" />
 </td>
 <td width="10px">

 </td>

}
.WarningRoutine
{
 font-weight: normal;
 font-size: Small;
 color: Red;
}

Example 11-1. StyleSheet.css (continued)

Using Master Pages | 393

 <td width="500px" align="right">
 Adventure Works

 <asp:Label ID="lblPageSubTitle" runat="server"
 CssClass="PageSubTitle" Text="Page SubTitle" />

 <asp:Label ID="lblTime" runat="server"
 CssClass="TextXSmall" />
 </td>
 <td width="10px">

 </td>
 </tr>
 <tr>
 <td colspan="5">
 <hr />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
<asp:contentplaceholder id="ContentPlaceHolder1" runat="server" >
</asp:contentplaceholder>

This code defines the table that you’re going to use to hold the content of the master
page. The first cell contains an ImageButton control to hold the logo for the site;
when users click on the logo, it will take them to the Home.aspx page. The control
displays the logo image file you created or downloaded earlier.

The cell to the right of the logo contains some text for the title and a pair of labels.
Note the use of the element on the page title; this allows you to apply a CSS
class to it. The first label will contain the page subtitle, which will change depending
on the page the user is on. The other label will contain the date and time, just for
convenience.

Also note the use of the border="0" attribute in the opening <table> tag. This is a ves-
tige of the development process. Although you might not want borders in the fin-
ished site, it is often helpful to make the cell borders visible during development by
setting the border thickness to 1 pixel with border="1". Then, when you are satisfied
with the layout, set the borders back to 0 so they are no longer visible.

You’ll need to populate the Label that shows the time, so open MasterPage.master.vb,
the code-behind file for the master page. Create an event handler for the Page_Load
event by selecting (PageEvents) from the left drop-down menu and Load from the right
drop-down menu. Enter the following line of code:

lblTime.Text = DateTime.Now.ToString()

Open Home.aspx. Edit the Page directive at the top of the file to set the title
attribute to Home Page; also add the trace attribute at this time, but set it to false.

394 | Chapter 11: Putting It All Together

You’ll need this because you know you are going to want to turn trace on or off dur-
ing various phases of development.

Add a MasterType directive to the file also. This will enable the content page to access
properties declared in the master page: if you haven’t already, delete the Content con-
trol which refers to the Head ContentPlaceHolder that we deleted above. The com-
plete markup for Home.aspx should look like the following:

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Home.aspx.vb" Inherits="Home" title="Home Page" Trace="false"%>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2 ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
</asp:Content>

Run the site now, to see what you’ve done so far. You should see something like
Figure 11-1.

You want the page subtitle to display the current page; for example, Home or Prod-
ucts. The label is already in place in the master page.

Go to the code-behind file for the master page. Add the following code outside the
Page_Load method and inside the class definition (the line that says Partial Class
MasterPage) to create a public property called PageSubTitle, of type Label. (IntelliSense

Figure 11-1. Here’s how the home page looks with nothing on it and the page subtitle not yet set.

Using Master Pages | 395

can be a big help here. To insert a good starting code snippet, click on Edit ➝

IntelliSense ➝ Insert Snippet ➝ Code Patterns ➝ Properties, Procedures, Events ➝

Define a Property.)

Public Property PageSubTitle() As Label
 Get
 Return lblPageSubTitle
 End Get
 Set(ByVal value As Label)
 lblPageSubTitle = value
 End Set
End Property

Then, in the code-behind of the home page, create a Page_Load method with the fol-
lowing highlighted line of code:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Home"
End Sub

If the IDE draws squiggly lines indicating some sort of problem, try
building the web site by clicking on the Build menu item and selecting
Build Web Site. The spurious error indicators will go away.

Switch over to the Source view of the home page and add some content inside the
Content control, such as listed in Example 11-2.

Running the site now results in a page that looks like Figure 11-2.

Example 11-2. Markup for the home page - Home.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Home.aspx.vb" Inherits="Home" title="Home Page" Trace="false"%>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
 <h2>This Is Your Home Page</h2>
 <div class="TextNormal">
 You can put some stuff about your company here. Perhaps some links.
 Of course, in a real world application, the navigation would probably
 much more complex. Also, the buttons would actually do something,
 rather than just wave their arms and say Look
 at me!
 </div>
</asp:Content>

396 | Chapter 11: Putting It All Together

Setting Up Roles and Users
Your page has a good foundation, but you should add a measure of security to it to
separate the customers from the managers. The next step is to enable security and
then create a few users for your site.

Go to the WAT by selecting Website ➝ ASP Configuration. Click on Security, and
then click on “Select authentication type” under the Users column. Because this site
will be available on the Internet, forms-based security is the way to go. Change the
Authentication type to Forms by selecting “From the internet.” You’ll be setting up
some roles to group the Adventure Works users into customers, employees, and
managers. Back on the Security page, click on Enable roles. The security page should
now look something like Figure 11-3.

Click on “Create or Manage roles”, and create three roles: Manager, Employee, and
Customer.

Click on the Back button to go back to the Security page. Click on Create user, and
create four users, as in the following table.

Figure 11-2. The home page now has the subtitle set and some content added.

Setting Up Roles and Users | 397

You must also provide an email address and a security question and answer for each
user. We will not be using that information in this example, so it does not matter
what you enter. Close the WAT. Now you have four users to work with for this
example.

Figure 11-3. You’ve switched to Forms authentication, and enabled roles for your site, but there
aren’t any users just yet.

User Password Role

bmacdonald brian123! Customer

dhurwitz dan123! Employee

jliberty jesse123! Customer

rhampster rich123! Manager

398 | Chapter 11: Putting It All Together

Logging In
Now that you have your users, you need a way for them to log in. Edit the master
page markup file to add some login functionality.

Add another table row to the layout table, listed in Example 11-3. Note that the
ContentPlaceHolder control has been moved to within one of the table cells.

This code adds a new row to the table on the master page. The first and third cells
are just spacers. The second cell holds a LoginStatus control and a LoginView control
to go with it. Notice that the CssClass properties of both controls have been set to
apply styles to them. The LoginView control has text added to it to present appropri-
ate messages to either logged-in or anonymous users.

The fourth cell in the row now holds the ContentPlaceHolder control, so be sure to
move the ContentPlaceHolder control that was outside the table to this cell.

Edit the Login.aspx page that you created earlier. Set the title in the Page directive, if
you haven’t already, remove the extra Content control, and add the same MasterType
directive that you added to the home page. Drag a Login control into the Content
area. Switch to Design view, click on the Smart Tag of the Login control, and click on
Auto Format. Select the “Professional” scheme. Set the DestinationPageUrl property
to ~/Home.aspx so that users will be returned to the home page after they log in. You
will end up with something like Example 11-4 for the markup for the Login page,
with the changes highlighted.

Example 11-3. Code snippet from MasterPage.master containing the login controls
<tr>
 <td width="5px"> </td>
 <td width="150px" valign="top">
 <asp:LoginStatus ID="LoginStatus1" runat="server" CssClass="Hyperlink" />

 <asp:LoginView ID="LoginView1" runat="server" >
 <LoggedInTemplate>
 Welcome
 <asp:LoginName ID="LoginName1" runat="server"
 CssClass="WarningRoutine"/>
 </LoggedInTemplate>
 <AnonymousTemplate>
 You are not logged in.
 Please click the login link to log in to this website.
 </AnonymousTemplate>
 </asp:LoginView>
 </td>
 <td width="5px"> </td>
 <td width="700px" valign="top" bgcolor="yellow">
 <asp:contentplaceholder id="ContentPlaceHolder1" runat="server" >
 </asp:contentplaceholder>
 </td>
</tr>

Logging In | 399

When you use the AutoFormat feature of a Smart Tag, it generally
(but not always) uses hex values of red, green, and blue (RGB) to spec-
ify colors. You can also specify the colors with the common names,
such as Red, White, and Blue.

Open the code-behind of the Login page. Create an event handler for the Page_load
event and add the following highlighted line of code:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Login"
End Sub

All this does is set the page subtitle in the master page area.

Now run the site. You will see the first screen shown in Figure 11-4.

Click on the Login link to get the Login page, shown as the second screen in
Figure 11-4. Enter the username and password for one of the user accounts you cre-
ated earlier in this chapter. After you click on the Log In button, you will be brought
back to the home page, shown as the third screen in Figure 11-4.

It is important that you actually click on the Log In button, rather than
just pressing the Enter key. The Log In button does not have focus, the
ImageButton on the master page displaying the logo does. So, if you
press the Enter key, it will take you back to the home page without
logging you in.

Earlier, you enabled roles in the WAT and added each user to one of the three roles:
Manager, Customer, and Employee. As you saw in Chapter 10, you can use these
roles to present customized content to the users who visit the page. You’ll add two
Panel controls to the home page that present content depending on the user’s role.

Example 11-4. Login.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Login.aspx.vb" Inherits="Login" title="Login" Trace="false" %>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
 <asp:Login ID="Login1" runat="server" DestinationPageUrl="~/home.aspx"
 BackColor="#F7F6F3" BorderColor="#E6E2D8" BorderPadding="4"
 BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"
 Font-Size="0.8em" ForeColor="#333333">
 <TitleTextStyle BackColor="#5D7B9D" Font-Bold="True"
 Font-Size="0.9em" ForeColor="White" />
 <InstructionTextStyle Font-Italic="True" ForeColor="Black" />
 <TextBoxStyle Font-Size="0.8em" />
 <LoginButtonStyle BackColor="#FFFBFF" BorderColor="#CCCCCC"
 BorderStyle="Solid" BorderWidth="1px"
 Font-Names="Verdana" Font-Size="0.8em" ForeColor="#284775" />
 </asp:Login>
</asp:Content>

400 | Chapter 11: Putting It All Together

Edit Home.aspx to see this in action. Add two Panel controls, as listed in
Example 11-5, to the page, inside the Content control, after the closing <div> for the
text that all users see.

Figure 11-4. When you first run the site, you’ll see the screen on the left. After you click the Login
link, you’ll be taken to the second screen, and after you’ve successfully logged in, you’ll be taken
back to the home page, which now looks like the third screen.

Example 11-5. Role-specific content in Home.aspx
<asp:Panel ID="pnlEmployee" runat="server" Visible="false" >
 <h3>Employee Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the
 Employee role. Turning on the visibility of this Panel occurs in the
 Page_Load event handler.
 </div>
 </asp:Panel>
 <asp:Panel ID="pnlManager" runat="server" Visible="false" >
 <h3>Manager Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the
 Manager role. Turning on the visibility of this Panel occurs in the
 Page_Load event handler.
 </div>
 </asp:Panel>

First screen

Second screen

Third screen

Logging In | 401

Switch over to the code-behind for the home page, Home.aspx.vb. Add the high-
lighted lines of code from Example 11-6 to the Page_Load event handler.

The code here is very simple; it sets the visibility of each panel depending on the
value of the IsInRole method for the appropriate role.

Before logging in, the home page will still look like the first screen shown previously
in Figure 11-4. If you log in as rhampster, who is a member of the Managers role (it’s
only fitting that the boss is a rodent), you will see Figure 11-5.

Example 11-6. Controlling visibility based on roles in Home.aspx.vb
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Home"

 ' control the visibility of sections restricted to specific roles
 pnlManager.Visible = User.IsInRole("Manager")
 pnlEmployee.Visible = User.IsInRole("Employee")
End Sub

Figure 11-5. If you log in as a member of the Manager role, you’ll see the manager-specific
information.

402 | Chapter 11: Putting It All Together

Now, log out and log in as user dhurwitz, and you’ll see just the content of
pnlEmployee. Log in again as user jliberty or bmacdonald, and you won’t see either
panel because customers don’t need to see employee-specific information. Of course,
if you make a user a member of both the Manager and Employee roles, she would see
both panels.

Navigation
The front page of your site is looking pretty good. Users can identify themselves, and
see the custom content. The master page is working as planned, and each page iden-
tifies itself appropriately. The next thing to do is add some navigation tools so that
users can find their way around, which means you have to create a site map. Close
the browser if it is open, and select Website ➝ Add New Item, and choose Site Map.
Accept the default name of Web.sitemap.

As you learned in Chapter 6, the site map is an XML file, and you have to create it
manually—the IDE won’t do it for you. Open the web.sitemap file, and replace the
default boilerplate with the highlighted code in Example 11-7.

Now that you have the site map file, you’ll add the navigation controls to the master
page. Add the following code to MasterPage.master in the same table cell and after
the LoginView control:

<hr />
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 ShowStartingNode="false" />
<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1"
 CssClass="MenuText" />

In this case, you’re using a Menu control rather than a TreeView. Note that the
DataSourceID property of the Menu control points to the SiteMapDataSource control
that you just created. You’ve set the control’s ShowStartingNode property of the
SiteMapDataSource control to false to suppress display of the root node in the menu.

Example 11-7. Web.sitemap
<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Root" >
 <siteMapNode url="~/Home.aspx" title="Home" description="Home page" />
 <siteMapNode url="~/Products.aspx" title="Products"
 description="Products offered by AdventureWorks" />
 <siteMapNode url="~/Cart.aspx" title="Shopping Cart"
 description="Items selected for purchase" />
 <siteMapNode url="~/Purchase.aspx" title="Purchase"
 description="Purchase your selected items" />
 </siteMapNode>
</siteMap>

Products Page | 403

You don’t want anonymous users to be able to use the menu, so add the following
code to the Page_Load method of MasterPage.master.vb to disable the menu if the
user is not logged in:

If Page.User.Identity.IsAuthenticated = False Then
 Menu1.Enabled = False
End If

Anonymous users will be able to see the menu; they just won’t be able to click any-
thing on it.

At this point, a user could bypass the login by entering the URL of any of the other
pages directly into the browser. To prevent this, add the following code to the
Page_ Load method of every page in the web site except Home and Login (where
you want to allow anonymous users):

If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
End If

Go ahead and try out the site now to make sure everything is working. When you
first see the home page, you’ll see that the navigation menu is disabled. Try entering
cart.aspx in the address field of your browser. You’ll see that you’re taken back to
the Login page instead.

One other navigation aid that you can add is setting the page subtitle in the master
page to identify to the user where they are. You have already done this for the Home
and Login pages. For the rest of the pages, add the MasterType directive to the top of
the relevant markup file:

<%@ MasterType TypeName="MasterPage" %>

While in each page markup file, also set the title attribute of the Page directive. Then,
go to the Page_Load method of each page code-behind file and add a line similar to
the following (for the Purchase page), which sets the page subtitle:

Me.Master.PageSubTitle.Text = "Purchase"

Most real-world sites would have a somewhat deeper menu structure,
and so might benefit from a SiteMapPath control to provide bread
crumbs.

Test out everything to see how it works.

Products Page
The intent of the Products page is to allow the user to select a product category and
then see a grid displaying all the products in that category. The user can select any of
these products to see more detail about that product, and if she wants, she can add
that item to the shopping cart by clicking on a button. The finished page can be seen
in Figure 11-6.

404 | Chapter 11: Putting It All Together

This page has several data-bound controls: a RadioButtonList for selecting the prod-
uct category, a GridView for displaying the products (filtered by category), and a
DetailsView for displaying details about the currently selected item.

In addition, visibility of some of the controls is turned off, depending on circum-
stances. Initially, only the RadioButtonList is visible. Once the user has selected a cat-
egory, the GridView is made visible. When the user selects a product from the
GridView, the DetailsView and its associated button for adding the item to the cart
are made visible.

Open Products.aspx. You will start with a data source control. Go to Source view, if
not there already, and drag a SqlDataSource control from the Data section of the
Toolbox into the Content control on the page. Set the control’s ID to sqlCategories.
Switch to Design view and click on the Smart Tag. Configure it to point to the
Adventure Works database—if you did the examples in Chapter 4, you may still
have a data connection set up that refers to AdventureWorks.mdf. If not, you should
probably flip back to Chapter 4 and review the section on creating a database

Figure 11-6. The Products page is now finished, and has several items added to the cart.

Products Page | 405

connection. In the “Configure the Select Statement” portion of the Wizard, select the
“Specify a custom SQL statement” radio button. After you click Next, enter the fol-
lowing custom statement:

select Name, ProductCategoryID from Production.ProductCategory order by Name

You could have built this statement in the Wizard, but remember from Chapter 4
that the IDE doesn’t automatically include the Production schema in the Select state-
ment, so this custom statement is easier. Test the query to make sure everything is
working, and finish the Wizard.

Drag a RadioButtonList control from the Standard section of the Toolbox onto the
content section of the page. Set its ID to rblCategories. In Design view, click on its
Smart Tag and select Choose Data Source. In the Data Source Configuration Wiz-
ard, select sqlCategories as the data source, Name as the data field to display, and
ProductCategoryID as the data field for the value, as shown in Figure 11-7.

If none of the fields are visible in the drop-down menus, click on the
Refresh Schema link, indicated with the arrow in Figure 11-7.

Figure 11-7. If you can’t see any of the data fields in the drop-down menu controls, click the
“Refresh Schema” link to see them.

406 | Chapter 11: Putting It All Together

Set the RepeatDirection property of rblCategories to Horizontal, and the AutoPostBack
property to True, so that the page will post back as soon as a change is made (later you
will add AJAX features to avoid the flicker), and the CssClass property to LabelSmall.

Run the web site, log in, and go to the Products page. You will see a set of four radio
buttons, as shown in Figure 11-8.

Stop the application, and then drag another SqlDataSource control onto the content
area to be the data source for the products grid. Set its ID to sqlProducts. This data
source will return all the products of the category specified in the radio buttons, so
you need to pass the value of the selected radio button to the data source as a param-
eter. Unfortunately, the Data Source Configuration Wizard shown previously in
Figure 11-7 does not do parameterized queries, so you need to enter the code directly
into Source view, as shown in the following code snippet:

<asp:SqlDataSource id="sqlProducts" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>">
 <SelectParameters>
 <asp:ControlParameter ControlID="rblCategories"
 Name="ProductCategoryID"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:SqlDataSource>

Figure 11-8. Once you’ve logged in and navigated to the Products page, you’ll see the list of
product radio buttons.

Products Page | 407

The ConnectionString attribute points to the previously configured connection string.
Your connection string may have a different name than that shown here. The
SelectParameters element specifies that the parameter will be called ProductCategoryID
and will come from the SelectedValue property of the rblCategories control.

But where is the SQL Select command, and where is this parameter used? You could
declare a SelectCommand attribute, as you did for the first SqlDataSource, but this
query is sort of long and complex, with a subquery as well as the parameter. So you
will set the SelectCommand property of the control programmatically in the Page_Load
of the Products page. Open the Page_Load method in Products.aspx.vb, and add the
following code:

Dim strCommand As String = String.Empty
strCommand = "select ProductID, Name, ProductNumber, ListPrice from " + _
 "Production.Product "
strCommand += "where ProductSubcategoryID in "
strCommand += "(select ProductSubcategoryID from " + _
 "Production.ProductSubcategory "
strCommand += "where ProductCategoryID = "
strCommand += "@ProductCategoryID)"
sqlProducts.SelectCommand = strCommand

The parameter, @ProductCategoryID (highlighted in the above code snippet), assumes
the value of the selected radio button. When the page first loads and none of the
radio buttons are selected, this query returns nothing, so the GridView does not dis-
play. But as soon as a value is selected, the query returns rows and they display in the
GridView.

To see this, drag a GridView control from the Data section of the Toolbox onto the
content area. Set its ID property to gvProducts and its DataKeyNames property to
ProductID. In Design view, click on its Smart Tag and set its Data Source to be
sqlProducts. While the Smart Tag is open, check the Enable Paging, Enable Sorting,
and Enable Selection checkboxes, as shown in Figure 11-9.

Click on the Edit Columns link in the Smart Tag, where you’ll specify the columns
from the SELECT query: ProductID, Name, ProductNumber, and ListPrice. Be sure to
uncheck the Auto-generate fields checkbox. Although you want all the fields from
the query to display, manually adding the columns to the GridView allows you to
fully specify the appearance and behavior of each column.

To add each field from the query, make sure BoundField is selected in the Available
fields list, and then click the Add button. For the first column, set the DataField for
this BoundField to ProductID, the SortExpression to ProductID, the HeaderText to ID,
and the ItemStyleWidth to 50px, as shown in Figure 11-10. Then, add each of the
other columns accordingly.

Alternatively, you can declare all the fields directly in Source view, or any combina-
tion of techniques that works for you. In any case, you should end up with the

408 | Chapter 11: Putting It All Together

following declaration for the products GridView, including several attributes of the
GridView itself and all the columns within the <Columns> element:

<asp:GridView id="gvProducts" runat="server"
 DataSourceID="sqlProducts" DataKeyNames="ProductID"
 AllowSorting="True" AllowPaging="True"
 AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells">
 <Columns>
 <asp:CommandField ShowSelectButton="True" ItemStyle-Width="50"
 ControlStyle-CssClass="ButtonSelect" />
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 SortExpression="ProductID">
 <ItemStyle Width="50px" />
 </asp:BoundField>
 <asp:BoundField DataField="Name" HeaderText="Name"

Figure 11-9. After you’ve selected the data source, and enabled Paging, Sorting, and Selection, the
gvProducts GridView will look like this.

Products Page | 409

 SortExpression="Name">
 <ItemStyle Width="225px" />
 </asp:BoundField>
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product Number"
 SortExpression="ProductNumber">
 <ItemStyle Width="90px" />
 </asp:BoundField>
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 SortExpression="ListPrice"
 ItemStyle-CssClass="TableNumberDecimal"
 HeaderStyle-CssClass="TableColumnHeadingRight">
 <ItemStyle Width="60px" />
 </asp:BoundField>
 </Columns>
</asp:GridView>

The DataKeyNames attribute is very important. It specifies the name (or names) of the
field(s) that make up the primary key for the items displayed. In this example, the
primary key is a single field, ProductID.

As you can see, there are many CSS-related attributes, all of which allow you to
apply a style to a specific type of element in the grid.

Figure 11-10. Specify the ProductID bound field in the Fields dialog box.

410 | Chapter 11: Putting It All Together

Run the site, log in, navigate to the Products page, and select a category. You’ll see
that all the products for that category are listed in the grid.

Now you need to display the item details when the user selects an item from the grid.
Drag a Panel control onto the page, inside the Content area but after gvProducts. Set
its ID to pnlProduct. Inside the Panel is going to be a layout table with a DetailsView
control data bound to another SqlDataSource.

We haven’t used the DetailsView control previously in this book. It is a databound
control, similar to the GridView, but it is used to display or edit a single record at a
time. In this example, it displays the details about the single record selected from the
GridView.

The contents of the pnlProduct are listed in Example 11-8.

Example 11-8. Panel pnlProduct on Products page
<asp:Panel id="pnlProduct" runat="server" Visible="false">
 <table width="100%">
 <tr>
 <td valign="top">
 <asp:Button id="btnAddToCart" runat="server"
 Text="Add To Cart" OnClick="btnAddToCart_Click"
 CssClass="ButtonText" />
 <div class="ListHeading">Items In Cart</div>
 <asp:Label ID="lblCart" runat="server" CssClass="TextSmall"
 Width="90"/>
 </td>
 <td valign="top">
 <asp:SqlDataSource id="sqlDetailsView" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>">
 <SelectParameters>
 <asp:ControlParameter ControlID="gvProducts"
 Name="ProductID"
 PropertyName="SelectedDataKey.Values['ProductID']" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:DetailsView id="DetailsView1" runat="server"
 DataSourceID="sqlDetailsView" DataKeyNames="ProductID"
 AutoGenerateRows="false"
 CssClass="TableCells" BorderWidth="0"
 FieldHeaderStyle-CssClass="TableRowHeading"
 CellSpacing="2" CellPadding="2" Width="500px" Height="50px">
 <Fields>
 <asp:BoundField DataField="ProductID"
 HeaderText="Product ID:"
 SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name:"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product #:"
 SortExpression="ProductNumber" />

Products Page | 411

As with the previous parameterized query, you will set the SelectCommand for the data
source, sqlDetailsView, in the Page_Load of the Products page. In this case, the
ProductID value of the row selected in gvProducts is passed as the parameter to the
SQLDataSource named sqlDetailsView. Add the following code to the Page_Load
method, after setting the SelectCommand property of the previous data source:

strCommand = String.Empty
strCommand += "select product.*, subcat.ProductSubcategoryID, " + _
 "subcat.Name as SubcategoryName, "
strCommand += "cat.ProductCategoryID, cat.Name as CategoryName, "
strCommand += "model.Name as ModelName, model.CatalogDescription, " + _
 "model.Instructions, "
strCommand += "description.Description "
strCommand += "from Production.Product product "
strCommand += "join Production.ProductSubcategory subcat on " + _
 "product.ProductSubcategoryID = subcat.ProductSubcategoryID "
strCommand += "join Production.ProductCategory cat on subcat.ProductCategoryID = " +_
 "cat.ProductCategoryID "
strCommand += "join Production.ProductModel model on product.ProductModelID = " + _
 "model.ProductModelID "
strCommand += "join Production.ProductModelProductDescriptionCulture culture on " + _
 "model.ProductModelID = culture.ProductModelID "
strCommand += "join Production.ProductDescription description on " + _
 "culture.ProductDescriptionID = description.ProductDescriptionID "
strCommand += "where product.ProductID = @ProductID and culture.CultureID = 'en' "
sqlDetailsView.SelectCommand = strCommand

Inside the Panel is also a Button, btnAddToCart. Switch to Design view and double-
click the button to open the code-behind in the skeleton of an event handler, ready
for you to type. The event handler code is included in Example 11-9. This method

 <asp:BoundField DataField="ListPrice" HeaderText="Cost:"
 SortExpression="ListPrice"
 DataFormatString="{0:C}" HtmlEncode="false"/>
 <asp:BoundField DataField="Color" HeaderText="Color:"
 SortExpression="Color" />
 <asp:BoundField DataField="CategoryName"
 HeaderText="Category:"
 SortExpression="CategoryName" />
 <asp:BoundField DataField="SubcategoryName"
 HeaderText="SubCategory:"
 SortExpression="SubcategoryName" />
 <asp:BoundField DataField="Description"
 HeaderText="Description:"
 SortExpression="Description" />
 </Fields>
 </asp:DetailsView>
 </td>
 </tr>
 </table>
</asp:Panel>

Example 11-8. Panel pnlProduct on Products page (continued)

412 | Chapter 11: Putting It All Together

retrieves the ProductID of the selected item using the Value of the SelectedDataKey
property of the GridView. Then, it checks if the Session object exists, and in either
case updates it with the currently selected item as a comma-separated string. It also
displays the contents of the cart in a Label control. (The space trailing the comma
allows the content of the Label control to wrap when many items are listed.)

While you’re in the code-behind file, add the single-line event handler for the
SelectedIndexChanged event of the grid gvProducts, also listed in Example 11-9. This
displays the details of the selected item.

Also add an event handler to gvProducts for the RowDataBound event. This allows you
to apply formatting to the cost display. There is an easier way to set the format in
this case, which you will use later in the chapter, but this demonstrates a really pow-
erful technique that comes in handy with almost every project. That technique
involves looking at each row as it is bound to the data and applying some formatting

S Q L C H E A T S H E E T

Joins
All of the queries you have seen in this book so far have been simple SELECT statements
from a single table. The true strength of a relational database comes from using multi-
ple tables to contain normalized data. Data that has been normalized essentially means
there is no duplicate data.

Suppose you have a database containing employment information. Each employee has
not only a job title but also a job description. Rather than have identical job descrip-
tions in the Employee table for every employee with the same job, it is much better to
have the job titles and descriptions in a separate Jobs table, and then refer to that Jobs
record in the Employees table. There is said to be a relationship between the Employees
table the Jobs table.

Now, however, when you want to query the data, you must join the two tables back
together in your query statement. This is done with the SQL keyword JOIN.

The JOIN keyword alone, as used in the preceding snippet, is the default join type,
known as an inner join. This means that any rows in either table that do not match the
selection criteria will not be included in the results.

There are many circumstances where you do not want to omit these records, in which
case you must use an outer join. There are several different types of outer joins, includ-
ing left, right, cross, and full, depending on which data specifically you want to include
and which to omit.

For a complete discussion on SQL queries in general and joins in particular, we highly
recommend Transact-SQL Programming by Kevin Kline et al. (O’Reilly). Although this
book is a bit dated, only covering up through SQL Server 7.0, the basic syntax has not
changed, and this book remains an excellent primary reference for SQL programming.

Products Page | 413

on a row-by row basis. It is even possible to make different formatting decisions
based on the content of each row.

Finally, add an event handler for the SelectedIndexChanged of the RadioButtonList
rblCategories, which hides the detail Panel when a new category is selected. This
prevents the details of the previous item remaining displayed.

Example 11-9. Products.aspx.vb event handlers
Protected Sub btnAddToCart_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ' the contents of the cart will be saved in a Session object as
 ' a string of comma-delimited values of ProductID's
 Dim strCart As String = String.Empty
 Dim strProductId As String = gvProducts.SelectedDataKey.Value.ToString()

 If Session("Cart") Is Nothing Then
 strCart = strProductId
 Else
 strCart = Session("Cart").ToString() + ", " + strProductId
 End If
 Session("Cart") = strCart
 lblCart.Text = strCart
End Sub

Protected Sub gvProducts_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles gvProducts.SelectedIndexChanged
 pnlProduct.Visible = True
End Sub

Protected Sub gvProducts_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles gvProducts.RowDataBound
 Dim str As String = String.Empty
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cell As TableCell = e.Row.Cells(4) ' ListPrice cell
 Dim nCost As Decimal
 Try
 nCost = CType(cell.Text, Decimal)
 str = nCost.ToString("##,##0.00")
 Catch ex As ApplicationException
 str = "n.a."
 Finally
 cell.Text = str
 End Try
 End If
End Sub

Protected Sub rblCategories_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rblCategories.SelectedIndexChanged
 pnlProduct.Visible = False
End Sub

414 | Chapter 11: Putting It All Together

The finished Products page, with several items added to the cart, is shown back in
Figure 11-6.

Notice the nifty way that the nCost variable, which is a number, is con-
verted to a string with the proper format, including a comma and a
decimal point. The ToString() method allows you to pass in an
optional format string to control the appearance of its output. The
zeros are placeholders for required digits; the # symbols are place-
holders for optional digits.

Adding AJAX
It is easy to spice up the performance of the Products page with a little help from
AJAX. All you need to do is wrap the entire contents of the Content control inside an
UpdatePanel control. You can do this by dragging an UpdatePanel control from the
AJAX Extensions section of the Toolbox onto the page in Design view, and then
dragging all the existing content inside the UpdatePanel. Alternatively, go to Source
view and add the following highlighted lines of code, wrapping the content of the
Content control:

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 ... all the content goes here ...
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

The ScriptManager control should be on the master page, so you don’t have to add
one to every content page. So, open MasterPage.master and drag a ScriptManager
control onto the page, if it is not already there. Run the page to make sure every-
thing works.

Cart Page
The Cart page displays the contents of the cart and allows you to remove items from
the cart. It also provides a button to purchase the items in the cart, which would, of
course, take you to the Purchase page. The finished page can be seen in Figure 11-11.

Of course, a full-featured cart would provide much more functionality
than the simple cart shown here. For example, your fully featured
commercial site might use personalization to remember what was
added to the cart in previous sessions and restore that information in a
new session. It would almost certainly allow the user to change the
quantity ordered of a given item, not to mention things such as size or
color.

Cart Page | 415

Open Cart.aspx. Drag a SqlDataSource control onto the content area of the page. Set its
ID to sqlCart. Configure it similar to the SqlDataSource shown previously in
Example 11-8. Here is the markup for the control. It looks complex, but really it is a
straightforward SELECT statement against the Production.Product table, with five joins:

<asp:SqlDataSource ID="sqlCart" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand= "select product.ProductID, product.Name, product.ProductNumber,
 product.Color,
 subcat.Name as SubcategoryName, cat.Name as CategoryName,
 description.Description
 from Production.Product product
 join Production.ProductSubcategory subcat on
 product.ProductSubcategoryID = subcat.ProductSubcategoryID
 join Production.ProductCategory cat on
 subcat.ProductCategoryID = cat.ProductCategoryID
 join Production.ProductModel model on
 product.ProductModelID = model.ProductModelID
 join Production.ProductModelProductDescriptionCulture culture on
 model.ProductModelID = culture.ProductModelID
 join Production.ProductDescription description on
 culture.ProductDescriptionID = description.ProductDescriptionID">
</asp:SqlDataSource>

Figure 11-11. Here’s what the cart page looks like after you’ve added some items to the cart.

416 | Chapter 11: Putting It All Together

Notice the use of aliases in the query above. This allows you to control the name of
the columns returned. There are two columns called Name in this query, from two dif-
ferent tables, which would conflict if you used them both, so you alias subcat.Name as
subcategoryName and cat.Name as categoryName. Another type of alias is used with the
table names in the from and join clauses, where we alias Production.Product as
product and Production.ProductSubcategory as subcat.

This query needs a WHERE clause. The parameter in the WHERE clause needs to come
from the Session object. ASP.NET actually makes this really easy under some
circumstances—but unfortunately not these circumstances, as we will now describe.

You saw previously in Example 11-8 the use of the <SelectParameters> element of
the SqlDataSource, reproduced here, with a parameter based on the value of another
control on the page:

<SelectParameters>
 <asp:ControlParameter ControlID="gvProducts"
 Name="ProductID" PropertyName="SelectedDataKey.Values['ProductID']" />
</SelectParameters>

There are other types of SelectParameters controls, including a SessionParameter,
which comes from a Session object. The reason that will not work here is due to a
“quirk” of the SQL statement used to construct the query. We’ll explain.

The cart is stored in a string as a comma-separated list of ProductIDs, which are
stored in the database as integers. The query sent to the database has a where clause
using the in keyword, as in:

where product.ProductID in (753,845,143) and culture.CultureID = 'en'

This where clause is created by the sqlDataSource control; you don’t have to type it
in. The two halves of this where clause derive from the join specified in the
SelectCommand of the SqlDataSource control.

SQL Server knows that ProductID is an integer and is able to parse the contents of the
parentheses as a list of integers. However, when you use the SessionParameter con-
trol, it encloses the contents of the parentheses with quotes, as in:

where product.ProductID in ("753,845,143") and culture.CultureID = 'en'

The quotes make it a string, and SQL Server cannot parse it as a set of integers.
There may be a way to deal with this in SQL, but it is easier, and more instructive, to
work around this by writing a handler for the Selecting event of the SqlDataSource
control. This event is raised just before the query is sent to the database, and is a
convenient time to modify the query.

Add the code from Example 11-10 to handle this event (as well as events for two
controls you will place on the page in just a moment) to Cart.aspx.vb. It retrieves the
Session object and constructs the where clause, setting the CommandText subproperty
of the event argument’s Command property. Because this event is raised before the

Cart Page | 417

query is executed, changing the CommandText of the query allows you to modify the
query before it is run; using this technique, you can have the WHERE clause refer to a
specific ProductID.

This example is not as secure as it should be for a production applica-
tion. At the least, you would want to be careful of passing sensitive
information in Session this way. When you’re constructing SQL state-
ments, all values should be validated and tested to prevent SQL
injection attacks, which is well beyond the scope of this book.

Example 11-10. Cart.aspx.vb event handlers
Protected Sub sqlCart_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCart.Selecting

 Trace.Warn("sqlCart_Selecting") ' to aid in debugging

 Dim strCart As String = String.Empty
 If Session("Cart") IsNot Nothing Then
 strCart = Session("Cart").ToString
 e.Command.CommandText &= " where product.ProductID in (" + _
 strCart + _
 ") and culture.CultureID = 'en' "
 Else
 e.Cancel = True
 End If
End Sub

Protected Sub btnPurchase_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnPurchase.Click
 Response.Redirect("Purchase.aspx")
End Sub

Protected Sub gvCart_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles gvCart.SelectedIndexChanged
 ' this method is actually hooked to the Remove button & is removing items from the
cart
 Dim strProductID As String = gvCart.SelectedRow.Cells(1).Text
 If Session("Cart") IsNot Nothing Then
 ' remove the selected ProductID from the Session string
 ' Retrieve the session string.
 Dim strCart As String = Session("Cart").ToString()
 Dim arIDs As String() = strCart.Split({",")

 ' iterate through the ID's comprising the string array
 ' rebuild the cart string, leaving out the matching ID
 strCart = String.Empty

418 | Chapter 11: Putting It All Together

In the sqlCart_Selecting event handler, we test to see if the Session has data. If it
does, we add a where clause to the SQL command by modifying the commandText
property of the Command object of the SqlDataSourceSelectingEventArgs, called e. If
the Session doesn’t contain data, the event handler is cancelled by setting the Cancel
property of e to True.

Now, drag a GridView onto the page, setting its ID to gvCart. Configure it similar to
the previous GridView. Here is the markup for gvCart:

<asp:GridView ID="gvCart" runat="server"
 DataSourceID="sqlCart"
 AllowPaging="True" AllowSorting="True" Width="100%"
 AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells">
 <Columns>
 <asp:CommandField ShowSelectButton="True" SelectText="Remove"
 ControlStyle-CssClass="ButtonSelect" ItemStyle-Width="50px"
 ItemStyle-HorizontalAlign="Center"/>
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 ItemStyle-Width="50px"/>
 <asp:BoundField DataField="ProductNumber" HeaderText="Product Number"
 ItemStyle-Width="90px" />
 <asp:BoundField DataField="Color" HeaderText="Color"
 ItemStyle-Width="60px" />
 <asp:BoundField DataField="CategoryName" HeaderText="Cat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="SubcategoryName" HeaderText="SubCat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="Description" HeaderText="Description" />
 </Columns>
</asp:GridView>

 For Each str As String In arIDs
 ' use Trim to remove leading and trailing spaces
 If str.Trim() <> strProductID.Trim() Then
 strCart += str + ", "
 End If
 Next

 ' remove the trailing space and comma
 If strCart.Length > 1 Then
 strCart = strCart.Trim()
 strCart = strCart.Substring(0, strCart.Length - 1)
 End If

 ' put it back into Session
 Session("Cart") = strCart

 ' rebind the GridView, which will force the SqlDataSource to requery
 gvCart.DataBind()
 End If ' close for test for Session
End Sub

Example 11-10. Cart.aspx.vb event handlers (continued)

Purchase Page | 419

Below the GridView place an HTML
 element and an ASP.NET Button control
called btnPurchase:

<asp:Button ID="btnPurchase" runat="server" Text="Purchase Items in the Cart"
 CssClass="ButtonText"/>

The code to handle the Click event of this button is included in Example 11-10. All
this event handler does is redirect readers to the Purchase page, which you’ll create
shortly.

The Remove button on each row of the GridView was not a normal ASP.NET Button
control, but rather a CommandField with its SelectText property set to Remove. Click-
ing a CommandField in a GridView selects that row of the grid. This is handled with the
gvCart_SelectedIndexChanged event handler, included previously in Example 11-10.

Run through the app, logging in and adding some items to the cart. Then switch to
the Cart page. You will see something similar to Figure 11-11, shown earlier.

Purchase Page
Clicking on the Purchase button on the Cart page brings you to the Purchase page.
This page, as shown in Figure 11-12, is used to gather billing and shipping informa-
tion from the customer. It has a layout table with a bunch of TextBox controls, a cou-
ple of RadioButtonLists, a Buy Now button, and a bunch of associated validation
controls.

The first row of the layout table is just a heading. The second row collects the Name.
This is a required field, so it has a RequiredFieldValidator.

<table border="0" class="TableRowHeading">
 <tr>
 <td colspan="4">
 Billing Information
 </td>
 </tr>
 <tr>
 <td>Name</td>
 <td colspan="3">
 <asp:TextBox ID="txtName" runat="server" Width="250" />
 <asp:RequiredFieldValidator ID="rfName" runat="server"
 ControlToValidate="txtName"
 Display="Dynamic" ErrorMessage="Name is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator></td>
 </tr>

All the validation controls on this page will use dynamic display, so room will only
be allocated on the page if it is necessary to display the validation text. For this and
all the other validation controls, the validation text is simply an asterisk to display

420 | Chapter 11: Putting It All Together

next to the control with invalid input. A ValidationSummary control at the bottom of
the page will gather all the ErrorMessages into a single location.

The next row is the Address, which is very similar to the Name row:

<tr>
 <td>Address</td>
 <td colspan="3">
 <asp:TextBox ID="txtAddress" runat="server" Width="250" />
 <asp:RequiredFieldValidator ID="rfAddress" runat="server"
 ControlToValidate="txtAddress"
 Display="Dynamic" ErrorMessage="Address is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator></td>
</tr>

Next is a row for both City and State. City is a straightforward TextBox, just like Name
and Address. However, the State control is a DropDownList that is populated from the
database. A SqlDataSource is used to populate this DropDownList and another one fur-
ther down used as part of the shipping address with a list of state names from the data-
base. It is a very simple query; there are no parameters necessary:

Figure 11-12. The Purchase page looks like this after you’ve entered information, including an
invalid zip code, and then clicked Buy Now.

Purchase Page | 421

<tr>
 <td>City</td>
 <td style="width: 181px">
 <asp:TextBox ID="txtCity" runat="server" />
 <asp:RequiredFieldValidator ID="rfCity" runat="server"
 ControlToValidate="txtCity"
 Display="Dynamic" ErrorMessage="City is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 <td colspan="2">
 <asp:SqlDataSource ID="sqlStates" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT StateProvinceCode, [Name]
 FROM Person.StateProvince
 WHERE CountryRegionCode = 'US' order by [Name]">
 </asp:SqlDataSource>
 <asp:DropDownList ID="ddlStates" runat="server"
 DataSourceID="sqlStates"
 DataTextField="Name" DataValueField="StateProvinceCode" />
 </td>
</tr>

The next row gathers the zip code, validated by a RegularExpressionValidator to be a
valid U.S. zip code, as well as being required. The regular expression requires either
five digits or five digits plus four more separated by a dash:

<tr>
 <td>Zip</td>
 <td style="width: 181px" colspan="3">
 <asp:TextBox ID="txtZip" runat="server" />
 <asp:RequiredFieldValidator ID="rfZip" runat="server"
 ControlToValidate="txtZip"
 Display="Dynamic" ErrorMessage="Zip is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reZip" runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtZip"
 Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
</tr>

Next is a row to gather credit card information. A RadioButtonList allows the user a
choice of credit card type, and again validates that the user makes a choice.

Entering credit card numbers in a web site invites fraud. This example
makes no pretense of preventing that fraud. A production-quality site
would validate the input, including checksums that are built into the
credit card number itself. Furthermore, each of the credit card process-
ing companies has its own requirements for what constitutes valid
data.

422 | Chapter 11: Putting It All Together

<tr>
 <td>Card</td>
 <td colspan="3" >
 <asp:RadioButtonList ID="rblCardType" runat="server"
 RepeatDirection="Horizontal">
 <asp:ListItem Value="am" Text="American Express" />
 <asp:ListItem Value="d" Text="Discover" />
 <asp:ListItem Value="mc" Text="MasterCard" />
 <asp:ListItem Value="v" Text="Visa" />
 </asp:RadioButtonList>
 <asp:RequiredFieldValidator ID="rfCreditCard" runat="server"
 ErrorMessage="Credit Card type is missing."
 ControlToValidate="rblCardType" Display="Dynamic"
 InitialValue=""
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
</tr>

The next row gathers the credit card number and security code. Both are required
and both use a RegularExpressionValidator to ensure valid formats:

<tr>
 <td>CC #</td>
 <td style="width: 181px">
 <asp:TextBox ID="txtCCNumber" runat="server" />
 <asp:RequiredFieldValidator ID="rfCCNumber" runat="server"
 ControlToValidate="txtCCNumber"
 Display="Dynamic"
 ErrorMessage="Credit Card Number is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reCCNumber" runat="server"
 ErrorMessage="Invalid Credit Card Number"
 ControlToValidate="txtCCNumber"
 Display="Dynamic"
 ValidationExpression=
 "^(\d{4}-){3}\d{4}$|^(\d{4}){3}\d{4}$|^\d{16}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 <td align="right">Security Code</td>
 <td>
 <asp:TextBox ID="txtSecurityCode" runat="server" />
 <asp:RequiredFieldValidator ID="rfSecurityCode" runat="server"
 ControlToValidate="txtSecurityCode"
 Display="Dynamic"
 ErrorMessage="Security Code is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reSecurityCode" runat="server"
 ErrorMessage="Invalid Security Code"
 ControlToValidate="txtSecurityCode"
 Display="Dynamic"
 ValidationExpression="^\d{3}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
</tr>

Purchase Page | 423

The credit card number formats allowed are any of the following:

1234-1234-1234-1234
1234 1234 1234 1234
1234123412341234

It drives me batty when web sites require a credit card number with no
spaces or dashes. It is so easy to accept those characters and just
remove them before submission, and it would greatly reduce input
errors. Long numbers are much easier to enter and read when grouped
by intervening spaces or dashes.

The security number is simply a three-digit number.

The next row contains a RadioButtonList to give the user the choice of shipping to
the billing address or a different shipping address. Depending on the selected value
of that control, a Panel control containing a field for the shipping address is either
made visible or not. The code for doing this is contained in an event handler for the
SelectedIndexChanged event of rblShippingAddress, included later in Example 11-11.

<tr>
 <td colspan="2">
 Shipping Information
 </td>
 <td colspan="2">
 <asp:RadioButtonList ID="rblShippingAddress" runat="server"
 AutoPostBack="true" RepeatDirection="Horizontal">
 <asp:ListItem Value="billing" Text="Ship to Billing Address"
 Selected="True" />
 <asp:ListItem Value="different"
 Text="Ship to Different Address" />
 </asp:RadioButtonList>
 </td>
</tr>

AutoPostBack is set to true so that the page will respond immediately when the user
changes the selection. If a different address is required, then a Panel contained in the
next row is made visible:

<tr>
 <td colspan="4">
 <asp:Panel ID="pnlShippingAddress" runat="server" Visible="false" >
 <table border="0">
 <tr>
 <td>Address</td>
 <td colspan="3">
 <asp:TextBox ID="txtShippingAddress" runat="server"
 Width="250" />
 </td>
 </tr>
 <tr>
 <td>City</td>
 <td>

424 | Chapter 11: Putting It All Together

 <asp:TextBox ID="txtShippingCity" runat="server" />
 </td>
 <td>
 <asp:DropDownList ID="ddlShippingStates"
 runat="server"
 DataSourceID="sqlStates"
 DataTextField="Name"
 DataValueField="StateProvinceCode" />
 </td>
 <td>Zip</td>
 <td>
 <asp:TextBox ID="txtShippingZip" runat="server" />
 <asp:RegularExpressionValidator ID="reShippingZip"
 runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtShippingZip"
 Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*
 </asp:RegularExpressionValidator>
 </td>
 </tr>
 </table>
 </asp:Panel>
 </td>
</tr>

Notice how this Panel control itself contains another table for laying out the controls
used to gather the shipping address.

Finally, there is a row to contain the ValidationSummary control:

<tr>
 <td colspan="4">
 <asp:ValidationSummary ID="ValidationSummary1" runat="server"
 CssClass="ValidationError" />
 </td>
</tr>

And one more row to contain the Button for completing the purchase:

 <tr>
 <td colspan="4">
 <asp:Button ID="btnBuy" runat="server" Text="Buy Now"
 CssClass="ButtonText" />
 </td>
 </tr>
</table>

When the Buy Now button is clicked, a real application would process the order,
updating the database as necessary. In our simple example, it will stash the order
info in Session in a Dictionary object, and then call the Confirm page for order confir-
mation. The event handler for the Buy Now button is included in Example 11-11.

Purchase Page | 425

Note that in order for the Dictionary object to be properly instantiated, you must
include the Imports statement. We’ve placed it at the top of Example 11-11, but in
Purchase.aspx.vb, the Imports statement must appear before the opening Partial
Class Purchase statement.

Just as you did with the Product page, you can spiff up the user experience by wrap-
ping the entire contents of the Content control inside an UpdatePanel, as shown in the
following code snippet:

Example 11-11. Purchase.aspx.vb event handlers
Imports System.Collections.Generic

Protected Sub rblShippingAddress_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rblShippingAddress.SelectedIndexChanged
 If rblShippingAddress.SelectedValue = "billing" Then
 pnlShippingAddress.Visible = False
 Else
 pnlShippingAddress.Visible = True
 End If
End Sub

Protected Sub btnBuy_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnBuy.Click
 ' stash all the info in a dictionary object going to Session
 Dim dictBuy As Dictionary(Of String, String) = _
 New Dictionary(Of String, String)
 dictBuy.Add("Name", txtName.Text)
 dictBuy.Add("Address", txtAddress.Text)
 dictBuy.Add("City", txtCity.Text)
 dictBuy.Add("State", ddlStates.SelectedValue)
 dictBuy.Add("Zip", txtZip.Text)
 dictBuy.Add("Card", rblCardType.SelectedValue)
 dictBuy.Add("CardNumber", txtCCNumber.Text)
 dictBuy.Add("SecurityCode", txtSecurityCode.Text)

 If rblShippingAddress.SelectedValue = "billing" Then
 dictBuy.Add("ShippingAddress", txtAddress.Text)
 dictBuy.Add("ShippingCity", txtCity.Text)
 dictBuy.Add("ShippingState", ddlStates.SelectedValue)
 dictBuy.Add("ShippingZip", txtZip.Text)
 Else
 dictBuy.Add("ShippingAddress", txtShippingAddress.Text)
 dictBuy.Add("ShippingCity", txtShippingCity.Text)
 dictBuy.Add("ShippingState", ddlShippingStates.SelectedValue)
 dictBuy.Add("ShippingZip", txtShippingZip.Text)
 End If

 Session("BuyerInfo") = dictBuy

 Response.Redirect("Confirm.aspx")
End Sub

426 | Chapter 11: Putting It All Together

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 ... all the content goes here ...
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

Now, run the web site and navigate to the Purchase page, as shown previously in
Figure 11-12, after filling in most of the fields along with an invalid zip code.

Confirm Page
The Confirm page in this example does nothing more than retrieve the two Session
objects, one containing the cart and one containing the buyer information, and dis-
play them on the page, as shown in the finished page in Figure 11-13. The cart is dis-
played in a GridView and the buyer information is displayed in a ListBox.

Figure 11-13. Here’s the last page the user will see: the confirmation page. All the information
from the Cart and the Purchase page is passed here and displayed again.

Confirm Page | 427

Again, the page contains an HTML table for layout. The first row contains a
GridView and its associated data source for the cart information:

<table>
 <tr>
 <td valign="top" class="ListHeading">
 Cart:
 </td>
 <td valign="top">
 <asp:SqlDataSource ID="sqlCartConfirm" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="select ProductID, Name, ProductNumber, Color, ListPrice
 from Production.Product "></asp:SqlDataSource>
 <asp:GridView ID="gvCart" runat="server"
 DataSourceID="sqlCartConfirm" AllowPaging="True"
 AllowSorting="True" HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells" AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ID" />
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="ProductNumber" HeaderText="Product #" />
 <asp:BoundField DataField="Color" HeaderText="Color" />
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 DataFormatString="{0:F2}" HtmlEncode="false" />
 </Columns>
 </asp:GridView>
 </td>
 </tr>

The SelectCommand of the SqlDataSource is updated with the contents of the Cart Ses-
sion object in Confirm.aspx.vb, exactly as was done for the Cart page, using the
Selecting event of the SqlDataSource control:

Protected Sub sqlCartConfirm_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCartConfirm.Selecting

 Trace.Warn("sqlCartConfirm_Selecting") ' aid in debugging

 If Session("Cart") IsNot Nothing Then
 Dim strCart = Session("Cart").ToString
 e.Command.CommandText &= "where ProductID in (" + _
 strCart + ")"
 Else
 e.Cancel = True
 End If

End Sub

Back in Confirm.aspx, after a spacing row, the next row contains a ListBox for the
buyer information:

 <tr>
 <td colspan="2"> </td>
 </tr>

428 | Chapter 11: Putting It All Together

 <tr>
 <td valign="top" class="ListHeading">Buyer Info:</td>
 <td valign="top">
 <asp:ListBox ID="lbBuyerInfo" runat="server" Rows="12"
 Width="250" />
 </td>
 </tr>
</table>

The ListBox is populated in Page_Load the first time the page is loaded:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Confirmation"

 If Not IsPostBack Then
 lbBuyerInfo.Items.Clear()
 If Session("BuyerInfo") IsNot Nothing Then
 Dim dictBuyerInfo As Dictionary(Of String, String) = Nothing
 dictBuyerInfo = CType(Session("BuyerInfo"), _
 Dictionary(Of String, String))
 For Each key As String In dictBuyerInfo.Keys
 lbBuyerInfo.Items.Add(key + ": " + dictBuyerInfo(key))
 Next
 Else
 lbBuyerInfo.Items.Add("There is no buyer info.")
 End If
 End If
End Sub

In order for the Dictionary to work in this method, you need to add the following
line at the top of the code-behind file to import the proper namespace:

Imports System.Collections.Generic

The markup for this page is shown later in Example 11-14, and the code-behind is in
Example 11-15.

Running the site and navigating through the entire purchase process brings you to
the confirmation page shown previously in Figure 11-13.

Custom Error Pages
In case of any errors, you don’t want your users to see the ugly generic error page
provided by ASP.NET, so you will add some custom error pages, just like you did in
Chapter 8. To do so, add the following section to the web.config file within the
<system.web> section:

Summary | 429

<!-- Valid values of customErrors mode: On, Off, RemoteOnly -->
<customErrors mode="RemoteOnly" defaultRedirect="CustomErrorPage.aspx">
 <error statusCode="400" redirect="CustomErrorPage400.aspx"/>
 <error statusCode="404" redirect="CustomErrorPage404.aspx"/>
 <error statusCode="500" redirect="CustomErrorPage500.aspx"/>
</customErrors>

This will provide for specific error pages to cover errors 400, “Bad Request,” the
ubiquitous 404, “Not Found,” and the dreaded 500, “Internal Server Error.” It will
also specify a generic error page for any error not specifically covered. Setting the
mode to RemoteOnly means while working on your local machine, you will see the
generic error page, with all its helpful information, but remote users will see your
custom error pages.

Notice that here the custom error pages have an extension of .aspx,
rather than the .htm used in Chapter 8. This is so they can take advan-
tage of the master pages.

Now you need to actually create those error pages. Add four new pages to the web site
called CustomErrorPage.aspx, CustomErrorPage400.aspx, CustomErrorPage404.aspx,
and CustomErrorPage500.aspx. Be sure to check the checkboxes for “Place code in a
separate file” and “Select master page.”

In the markup file for each of these new pages, add the following MasterType direc-
tive, after the Page directive but before the opening <asp:Content> tag:

<%@ MasterType TypeName="MasterPage" %>

This will allow each page to modify the master page, setting the page subtitle appro-
priately. To do this, add the following Page_Load method to each page:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Error"
End Sub

Finally, add some content to each page to indicate what the error is and what to do
about it. While you are at it, add a HyperLink to take the user back to the home page.

The markup for the error pages is too trivial to waste space in the
book. They are included with the code download from www.
LibertyAssociates.com.

Summary
There you have it—a functional web site with user registration, data access, session
state, and a consistent look and feel, all coded by you. You can now go out and cre-
ate sites that you didn’t dream were possible just a short time ago. There are more
features covered in this book that you could add to this site, such as more complex

http://www.LibertyAssociates.com
http://www.LibertyAssociates.com

430 | Chapter 11: Putting It All Together

validation, user profiles, and LINQ. This example is already fairly extensive, and pro-
vides a good start for additional exploration in ASP.NET.

Don’t let this be the end of your learning, though. Although you’re quite familiar
with most of the controls we’ve discussed, they also have plenty of properties that
you can still discover on your own. Experiment with the examples and exercises in
this book to see what’s possible. The Web is full of ASP.NET resources to continue
your education—the AJAX community is adding new extenders all the time, just to
pick one example. And, of course, there are other fine books out there, including
Programming ASP.NET (O’Reilly), to help you learn about the advanced controls.

Source Code Listings
This section contains complete source code listings for the entire site. The style
sheet, StyleSheet.css, is listed in Example 11-1. The site map file, Web.sitemap, is
listed in Example 11-7. Examples 11-12 through 11-25 show the markup and code-
behind files for each of the pages in the site.

Cart Page

Example 11-12. Cart.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Cart.aspx.vb" Inherits="Cart" Title="Cart Page" Trace="false" %>

<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">
 <asp:SqlDataSource ID="sqlCart" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="select product.ProductID, product.Name, product.ProductNumber,
 product.Color,
 subcat.Name as SubcategoryName, cat.Name as CategoryName,
 description.Description
 from Production.Product product
 join Production.ProductSubcategory subcat on
 product.ProductSubcategoryID = subcat.ProductSubcategoryID
 join Production.ProductCategory cat on
 subcat.ProductCategoryID = cat.ProductCategoryID
 join Production.ProductModel model on
 product.ProductModelID = model.ProductModelID
 join Production.ProductModelProductDescriptionCulture culture on
 model.ProductModelID = culture.ProductModelID
 join Production.ProductDescription description on
 culture.ProductDescriptionID = description.ProductDescriptionID">
 </asp:SqlDataSource>
 <asp:GridView ID="gvCart" runat="server" DataSourceID="sqlCart" AllowPaging="True"
 AllowSorting="True" Width="100%" AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells">

Source Code Listings | 431

 <Columns>
 <asp:CommandField ShowSelectButton="True" SelectText="Remove"
 ControlStyle-CssClass="ButtonSelect"
 ItemStyle-Width="50px" ItemStyle-HorizontalAlign="Center" />
 <asp:BoundField DataField="ProductID" HeaderText="ID" ItemStyle-Width="50px" />
 <asp:BoundField DataField="ProductNumber" HeaderText="Product Number"
 ItemStyle-Width="90px" />
 <asp:BoundField DataField="Color" HeaderText="Color" ItemStyle-Width="60px" />
 <asp:BoundField DataField="CategoryName" HeaderText="Cat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="SubcategoryName" HeaderText="SubCat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="Description" HeaderText="Description" />
 </Columns>
 </asp:GridView>

 <asp:Button ID="btnPurchase" runat="server" Text="Purchase Items in the Cart"
 CssClass="ButtonText" />
</asp:Content>

Example 11-13. Cart.aspx.vb

Partial Class Cart
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Cart"

 End Sub

Protected Sub sqlCart_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCart.Selecting

 Trace.Warn("sqlCart_Selecting") ' to aid in debugging

 Dim strCart As String = String.Empty
 If Session("Cart") IsNot Nothing Then
 strCart = Session("Cart").ToString
 e.Command.CommandText &= " where product.ProductID in (" + _
 strCart + _
 ") and culture.CultureID = 'en' "
 Else
 e.Cancel = True
 End If
End Sub

Example 11-12. Cart.aspx (continued)

432 | Chapter 11: Putting It All Together

Protected Sub btnPurchase_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnPurchase.Click
 Response.Redirect("Purchase.aspx")
End Sub

Protected Sub gvCart_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles gvCart.SelectedIndexChanged
 ' this method is actually hooked to the Remove button &
 ' is removing items from the cart
 Dim strProductID As String = gvCart.SelectedRow.Cells(1).Text
 If Session("Cart") IsNot Nothing Then
 ' remove the selected ProductID from the Session string
 ' Retrieve the session string.
 Dim strCart As String = Session("Cart").ToString()
 Dim arIDs As String() = strCart.Split(New [Char]() {","c})

 ' iterate through the ID's comprising the string array
 ' rebuild the cart string, leaving out the matching ID
 strCart = String.Empty
 For Each str As String In arIDs
 ' use Trim to remove leading and trailing spaces
 If str.Trim() <> strProductID.Trim() Then
 strCart += str + ", "
 End If
 Next

 ' remove the trailing space and comma
 If strCart.Length > 1 Then
 strCart = strCart.Trim()
 strCart = strCart.Substring(0, strCart.Length - 1)
 End If

 ' put it back into Session
 Session("Cart") = strCart

 ' rebind the GridView, which will force the SqlDataSource to requery
 gvCart.DataBind()
 End If ' close for test for Session
End Sub

End Class

Example 11-13. Cart.aspx.vb (continued)

Source Code Listings | 433

Confirm Page

Example 11-14. Confirm.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Confirm.aspx.vb" Inherits="Confirm" Title="Confirmation Page" Trace="false"
%>

<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">
 <table>
 <tr>
 <td valign="top" class="ListHeading">
 Cart:
 </td>
 <td valign="top">
 <asp:SqlDataSource ID="sqlCartConfirm" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="select ProductID, Name, ProductNumber, Color, ListPrice
 from Production.Product "></asp:SqlDataSource>
 <asp:GridView ID="gvCart" runat="server" DataSourceID="sqlCartConfirm"
 AllowPaging="True" AllowSorting="True"
 HeaderStyle-CssClass="TableColumnHeading" RowStyle-CssClass="TableCells"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ID" />
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="ProductNumber" HeaderText="Product #" />
 <asp:BoundField DataField="Color" HeaderText="Color" />
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 DataFormatString="{0:F2}" HtmlEncode="false" />
 </Columns>
 </asp:GridView>
 </td>
 </tr>
 <tr>
 <td colspan="2">

 </td>
 </tr>
 <tr>
 <td valign="top" class="ListHeading">
 Buyer Info:
 </td>
 <td valign="top">
 <asp:ListBox ID="lbBuyerInfo" runat="server" Rows="12" Width="250" />
 </td>
 </tr>
 </table>
</asp:Content>

434 | Chapter 11: Putting It All Together

Example 11-15. Confirm.aspx.vb
Imports System.Collections.Generic ' neccesary for Dictionary
Partial Class Confirm
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Confirmation"

 If Not IsPostBack Then
 lbBuyerInfo.Items.Clear()
 If Session("BuyerInfo") IsNot Nothing Then
 Dim dictBuyerInfo As Dictionary(Of String, String) = Nothing
 dictBuyerInfo = CType(Session("BuyerInfo"), _
 Dictionary(Of String, String))
 For Each key As String In dictBuyerInfo.Keys
 lbBuyerInfo.Items.Add(key + ": " + dictBuyerInfo(key))
 Next
 Else
 lbBuyerInfo.Items.Add("There is no buyer info.")
 End If
 End If

 End Sub

 Protected Sub sqlCartConfirm_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCartConfirm.Selecting

 Trace.Warn("sqlCartConfirm_Selecting") ' aid in debugging

 If Session("Cart") IsNot Nothing Then
 Dim strCart = Session("Cart").ToString
 e.Command.CommandText &= "where ProductID in (" + _
 strCart + ")"
 Else
 e.Cancel = True
 End If

 End Sub

End Class

Source Code Listings | 435

Home Page

Login Page

Example 11-16. Home.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Home.aspx.vb" Inherits="Home" Title="Home Page" Trace="false" %>

<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">
 <h2>This Is Your Home Page</h2>
 <div class="TextNormal">
 You can put some stuff about your company here. Perhaps some links. Of course, in
 a real world application, the navigation would probably much more complex. Also,
 the buttons would actually do something, rather than just wave their arms and say
 Look at me!
 </div>
 <asp:Panel ID="pnlEmployee" runat="server" Visible="false">
 <h3>Employee Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the Employee
 role. Turning on the visibility of this Panel occurs in the Page_Load event
 handler.
 </div>
 </asp:Panel>
 <asp:Panel ID="pnlManager" runat="server" Visible="false">
 <h3>Manager Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the Manager
 role.
 Turning on the visibility of this Panel occurs in the Page_Load event handler.
 </div>
 </asp:Panel>
</asp:Content>

Example 11-17. Login.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Login.aspx.vb" Inherits="Login" Title="Login" Trace="false" %>
<%@ MasterType TypeName="MasterPage" %>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">
 <asp:Login ID="Login1" runat="server" BackColor="#F7F6F3" BorderColor="#E6E2D8"
 BorderPadding="4" BorderStyle="Solid" BorderWidth="1px"
 DestinationPageUrl="~/Home.aspx"
 Font-Names="Verdana" Font-Size="0.8em" ForeColor="#333333">
 <TextBoxStyle Font-Size="0.8em" />
 <LoginButtonStyle BackColor="#FFFBFF"
 BorderColor="#CCCCCC" BorderStyle="Solid" BorderWidth="1px"
 Font-Names="Verdana" Font-Size="0.8em" ForeColor="#284775" />
 <InstructionTextStyle Font-Italic="True" ForeColor="Black" />

436 | Chapter 11: Putting It All Together

Master Page

 <TitleTextStyle BackColor="#5D7B9D" Font-Bold="True" Font-Size="0.9em"
 ForeColor="White" />
 </asp:Login>
</asp:Content>

Example 11-18. Login.aspx.vb
Partial Class Login
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Login"
 End Sub
End Class

Example 11-19. MasterPage.master
<%@ Master Language="VB" CodeFile="MasterPage.master.vb"
 Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Adventure Works</title>
 <link href="StyleSheet.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>
 <table border="0">
 <tr>
 <td colspan="4">
 <table>
 <tr>
 <td width="10px">

 </td>
 <td>
 <asp:ImageButton ID="ibLogo" runat="server"
 ImageUrl="~/images/AdventureWorksLogo-250x70.gif"
 AlternateText="AdventureWorks logo"
 PostBackUrl="~/Home.aspx" />
 </td>
 <td width="10px">

 </td>
 <td width="500px" align="right">

Example 11-17. Login.aspx (continued)

Source Code Listings | 437

 Adventure Works

 <asp:Label ID="lblPageSubTitle" runat="server"
 CssClass="PageSubTitle" Text="Page SubTitle" />

 <asp:Label ID="lblTime" runat="server" CssClass="TextXSmall" />
 </td>
 <td width="10px">

 </td>
 </tr>
 <tr>
 <td colspan="5">
 <hr />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td width="5px">

 </td>
 <td width="150px" valign="top">
 <asp:LoginStatus ID="LoginStatus1" runat="server" CssClass="Hyperlink" />

 <asp:LoginView ID="LoginView1" runat="server">
 <LoggedInTemplate>
 Welcome
 <asp:LoginName ID="LoginName1" runat="server"
 CssClass="WarningRoutine" />
 </LoggedInTemplate>
 <AnonymousTemplate>
 You are not logged in.
 Please click the login link to log in to this website.
 </AnonymousTemplate>
 </asp:LoginView>
 <hr />
 <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 ShowStartingNode="false" />
 <asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1"
 CssClass="MenuText" />
 </td>
 <td width="5px">

 </td>
 <td width="700px" valign="top" bgcolor="yellow">
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>

Example 11-19. MasterPage.master (continued)

438 | Chapter 11: Putting It All Together

Products Page

 </div>
 </form>
</body>
</html>

Example 11-20. MasterPage.master.vb
Partial Class MasterPage
 Inherits System.Web.UI.MasterPage
Public Property PageSubTitle() As Label
 Get
 Return lblPageSubTitle
 End Get
 Set(ByVal value As Label)
 lblPageSubTitle = value
 End Set
End Property

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Page.User.Identity.IsAuthenticated = False Then
 Menu1.Enabled = False
 End If

 lblTime.Text = DateTime.Now.ToString()
End Sub
End Class

Example 11-21. Products.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Products.aspx.vb" Inherits="Products" Title="Products Page" %>

<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:SqlDataSource ID="sqlCategories" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="select Name, ProductCategoryID from Production.ProductCategory
 order by Name">
 </asp:SqlDataSource>
 <asp:RadioButtonList ID="rblCategories" runat="server" AutoPostBack="True"
 CssClass="LabelSmall"
 DataSourceID="sqlCategories" DataTextField="Name"
 DataValueField="ProductCategoryID"
 RepeatDirection="Horizontal">
 </asp:RadioButtonList>
 <asp:SqlDataSource ID="sqlProducts" runat="server" ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>">
 <SelectParameters>

Example 11-19. MasterPage.master (continued)

Source Code Listings | 439

 <asp:ControlParameter ControlID="rblCategories" Name="ProductCategoryID"
 PropertyName="SelectedValue" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:GridView ID="gvProducts" runat="server" DataKeyNames="ProductID"
 AllowPaging="True" AllowSorting="True" AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells" DataSourceID="sqlProducts">
 <Columns>
 <asp:CommandField ShowSelectButton="True" ItemStyle-Width="50"
 ControlStyle-CssClass="ButtonSelect" />
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 SortExpression="ProductID">
 <ItemStyle Width="50px" />
 </asp:BoundField>
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name">
 <ItemStyle Width="225px" />
 </asp:BoundField>
 <asp:BoundField DataField="ProductNumber" HeaderText="Product Number"
 SortExpression="ProductNumber">
 <ItemStyle Width="90px" />
 </asp:BoundField>
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 SortExpression="ListPrice">
 <HeaderStyle CssClass="TableColumnHeadingRight" />
 <ItemStyle CssClass="TableNumberDecimal" Width="60px" />
 </asp:BoundField>
 </Columns>
 </asp:GridView>
 <asp:Panel ID="pnlProduct" runat="server" Visible="false">
 <table width="100%">
 <tr>
 <td valign="top">
 <asp:Button ID="btnAddToCart" runat="server" Text="Add To Cart"
 OnClick="btnAddToCart_Click" CssClass="ButtonText" />
 <div class="ListHeading">Items In Cart</div>
 <asp:Label ID="lblCart" runat="server" CssClass="TextSmall"
 Width="90" />
 </td>
 <td valign="top">
 <asp:SqlDataSource ID="sqlDetailsView" runat="server"
 ConnectionString="<%$ ConnectionStrings:
 AdventureWorksConnectionString %>">
 <SelectParameters>
 <asp:ControlParameter ControlID="gvProducts" Name="ProductID"
 PropertyName="SelectedDataKey.Values['ProductID']" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:DetailsView ID="DetailsView1" runat="server"
 DataSourceID="sqlDetailsView"
 DataKeyNames="ProductID"

Example 11-21. Products.aspx (continued)

440 | Chapter 11: Putting It All Together

 AutoGenerateRows="false" CssClass="TableCells" BorderWidth="0"
 FieldHeaderStyle-CssClass="TableRowHeading"
 CellSpacing="2" CellPadding="2" Width="500px" Height="50px">
 <Fields>
 <asp:BoundField DataField="ProductID" HeaderText="Product ID:"
 SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name:"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product #:"
 SortExpression="ProductNumber" />
 <asp:BoundField DataField="ListPrice" HeaderText="Cost:"
 SortExpression="ListPrice"
 DataFormatString="{0:C}" HtmlEncode="false" />
 <asp:BoundField DataField="Color" HeaderText="Color:"
 SortExpression="Color" />

<asp:BoundField DataField="CategoryName" HeaderText="Category:"
 SortExpression="CategoryName" />
 <asp:BoundField DataField="SubcategoryName"
 HeaderText="SubCategory:"
 SortExpression="SubcategoryName" />
 <asp:BoundField DataField="Description"
 HeaderText="Description:"
 SortExpression="Description" />
 </Fields>
 </asp:DetailsView>
 </td>
 </tr>
 </table>
 </asp:Panel>
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

Example 11-22. Products.aspx.vb

Partial Class Products
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Products"

 Dim strCommand As String = String.Empty
 strCommand = "select ProductID, Name, ProductNumber, ListPrice from " + _
 "Production.Product "
 strCommand += "where ProductSubcategoryID in "
 strCommand += "(select ProductSubcategoryID from " + _
 "Production.ProductSubcategory "

Example 11-21. Products.aspx (continued)

Source Code Listings | 441

 strCommand += "where ProductCategoryID = "
 strCommand += "@ProductCategoryID)"
 sqlProducts.SelectCommand = strCommand

 strCommand = String.Empty
 strCommand += "select product.*, subcat.ProductSubcategoryID, " + _
 "subcat.Name as SubcategoryName, "
 strCommand += "cat.ProductCategoryID, cat.Name as CategoryName, "
 strCommand += "model.Name as ModelName, model.CatalogDescription, " + _
 "model.Instructions, "
 strCommand += "description.Description "
 strCommand += "from Production.Product product "
 strCommand += "join Production.ProductSubcategory subcat on " + _
 "product.ProductSubcategoryID = subcat.ProductSubcategoryID "

 strCommand += "join Production.ProductCategory cat on subcat.ProductCategoryID = " + _
 "cat.ProductCategoryID "
 strCommand += "join Production.ProductModel model on product.ProductModelID = " + _
 "model.ProductModelID "

 strCommand += "join Production.ProductModelProductDescriptionCulture culture on " + _
 "model.ProductModelID = culture.ProductModelID "
 strCommand += "join Production.ProductDescription description on " + _
 "culture.ProductDescriptionID = description.ProductDescriptionID "
 strCommand += "where product.ProductID = @ProductID and culture.CultureID = 'en' "
 sqlDetailsView.SelectCommand = strCommand

 End Sub

Protected Sub btnAddToCart_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ' the contents of the cart will be saved in a Session object as
 ' a string of comma-delimited values of ProductID's
 Dim strCart As String = String.Empty
 Dim strProductId As String = gvProducts.SelectedDataKey.Value.ToString()

 If Session("Cart") Is Nothing Then
 strCart = strProductId
 Else
 strCart = Session("Cart").ToString() + ", " + strProductId
 End If
 Session("Cart") = strCart
 lblCart.Text = strCart
End Sub

Protected Sub gvProducts_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles gvProducts.SelectedIndexChanged
 pnlProduct.Visible = True
End Sub

Protected Sub gvProducts_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles gvProducts.RowDataBound
 Dim str As String = String.Empty

Example 11-22. Products.aspx.vb (continued)

442 | Chapter 11: Putting It All Together

Purchase Page

 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cell As TableCell = e.Row.Cells(4) ' ListPrice cell
 Dim nCost As Decimal
 Try
 nCost = CType(cell.Text, Decimal)
 str = nCost.ToString("##,##0.00", Nothing)
 Catch ex As ApplicationException
 str = "n.a."
 Finally
 cell.Text = str
 End Try
 End If
End Sub

Protected Sub rblCategories_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles rblCategories.SelectedIndexChanged
 pnlProduct.Visible = False
End Sub

End Class

Example 11-23. Purchase.aspx
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Purchase.aspx.vb" Inherits="Purchase" Title="Purchase Page" Trace="false"%>

<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <table border="0" class="TableRowHeading">
 <tr>
 <td colspan="4">
 Billing Information
 </td>
 </tr>
 <tr>
 <td>
 Name
 </td>
 <td colspan="3">
 <asp:TextBox ID="txtName" runat="server" Width="250" />
 <asp:RequiredFieldValidator ID="rfName" runat="server"
 ControlToValidate="txtName"
 Display="Dynamic" ErrorMessage="Name is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>

Example 11-22. Products.aspx.vb (continued)

Source Code Listings | 443

 <td>
 Address
 </td>
 <td colspan="3">
 <asp:TextBox ID="txtAddress" runat="server" Width="250" />
 <asp:RequiredFieldValidator ID="rfAddress" runat="server"
 ControlToValidate="txtAddress"
 Display="Dynamic" ErrorMessage="Address is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 City
 </td>
 <td style="width: 181px">
 <asp:TextBox ID="txtCity" runat="server" />
 <asp:RequiredFieldValidator ID="rfCity" runat="server"
 ControlToValidate="txtCity"
 Display="Dynamic" ErrorMessage="City is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 <td colspan="2">
 <asp:SqlDataSource ID="sqlStates" runat="server"
 ConnectionString="<%$ ConnectionStrings:
 AdventureWorksConnectionString %>"
 SelectCommand="SELECT StateProvinceCode, [Name]
 FROM Person.StateProvince
 WHERE CountryRegionCode = 'US' order by [Name]">
 </asp:SqlDataSource>
 <asp:DropDownList ID="ddlStates" runat="server"
 DataSourceID="sqlStates" DataTextField="Name"
 DataValueField="StateProvinceCode" />
 </td>
 </tr>
 <tr>
 <td>
 Zip
 </td>
 <td style="width: 181px" colspan="3">
 <asp:TextBox ID="txtZip" runat="server" />
 <asp:RequiredFieldValidator ID="rfZip" runat="server"
 ControlToValidate="txtZip"
 Display="Dynamic" ErrorMessage="Zip is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reZip" runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtZip" Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 </tr>

Example 11-23. Purchase.aspx (continued)

444 | Chapter 11: Putting It All Together

 <tr>
 <td>
 Card
 </td>
 <td colspan="3">
 <asp:RadioButtonList ID="rblCardType" runat="server"
 RepeatDirection="Horizontal">
 <asp:ListItem Value="am" Text="American Express" />
 <asp:ListItem Value="d" Text="Discover" />
 <asp:ListItem Value="mc" Text="MasterCard" />
 <asp:ListItem Value="v" Text="Visa" />
 </asp:RadioButtonList>
 <asp:RequiredFieldValidator ID="rfCreditCard" runat="server"
 ErrorMessage="Credit Card type is missing."
 ControlToValidate="rblCardType" Display="Dynamic"
 InitialValue=""
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 CC #
 </td>
 <td style="width: 181px">
 <asp:TextBox ID="txtCCNumber" runat="server" />
 <asp:RequiredFieldValidator ID="rfCCNumber" runat="server"
 ControlToValidate="txtCCNumber"
 Display="Dynamic"
 ErrorMessage="Credit Card Number is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reCCNumber" runat="server"
 ErrorMessage="Invalid Credit Card Number"
 ControlToValidate="txtCCNumber" Display="Dynamic"
 ValidationExpression="^(\d{4}-){3}\d{4}$|^(\d{4}){3}\d{4}$|^\d{16}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 <td align="right">
 Security Code
 </td>
 <td>
 <asp:TextBox ID="txtSecurityCode" runat="server" />
 <asp:RequiredFieldValidator ID="rfSecurityCode" runat="server"
 ControlToValidate="txtSecurityCode"
 Display="Dynamic" ErrorMessage="Security Code is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reSecurityCode" runat="server"
 ErrorMessage="Invalid Security Code"
 ControlToValidate="txtSecurityCode" Display="Dynamic"
 ValidationExpression="^\d{3}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 </tr>

Example 11-23. Purchase.aspx (continued)

Source Code Listings | 445

 <tr>
 <td colspan="2">
 Shipping Information
 </td>
 <td colspan="2">
 <asp:RadioButtonList ID="rblShippingAddress" runat="server"
 AutoPostBack="true" RepeatDirection="Horizontal">
 <asp:ListItem Value="billing" Text="Ship to Billing Address"
 Selected="True" />
 <asp:ListItem Value="different" Text="Ship to Different Address" />
 </asp:RadioButtonList>
 </td>
 </tr>
 <tr>
 <td colspan="4">
 <asp:Panel ID="pnlShippingAddress" runat="server" Visible="false">
 <table border="0">
 <tr>
 <td>
 Address
 </td>
 <td colspan="3">
 <asp:TextBox ID="txtShippingAddress" runat="server"
 Width="250" />
 </td>
 </tr>
 <tr>
 <td>
 City
 </td>
 <td>
 <asp:TextBox ID="txtShippingCity" runat="server" />
 </td>
 <td>
 <asp:DropDownList ID="ddlShippingStates" runat="server"
 DataSourceID="sqlStates"

DataTextField="Name"
 DataValueField="StateProvinceCode" />
 </td>
 <td>
 Zip
 </td>
 <td>
 <asp:TextBox ID="txtShippingZip" runat="server" />
 <asp:RegularExpressionValidator ID="reShippingZip"
 runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtShippingZip" Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*
 </asp:RegularExpressionValidator>
 </td>

Example 11-23. Purchase.aspx (continued)

446 | Chapter 11: Putting It All Together

 </tr>
 </table>
 </asp:Panel>
 </td>
 </tr>
 <tr>
 <td colspan="4">
 <asp:ValidationSummary ID="ValidationSummary1" runat="server"
 CssClass="ValidationError" />
 </td>
 </tr>
 <tr>
 <td colspan="4">
 <asp:Button ID="btnBuy" runat="server" Text="Buy Now"
 CssClass="ButtonText" />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

Example 11-24. Purchase.aspx.vb

Partial Class Purchase
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Purchase"

 End Sub

Protected Sub rblShippingAddress_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rblShippingAddress.SelectedIndexChanged
 If rblShippingAddress.SelectedValue = "billing" Then
 pnlShippingAddress.Visible = False
 Else
 pnlShippingAddress.Visible = True
 End If
End Sub

Protected Sub btnBuy_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnBuy.Click
 ' stash all the info in a dictionary object going to Session
 Dim dictBuy As Dictionary(Of String, String) = _

Example 11-23. Purchase.aspx (continued)

Source Code Listings | 447

Web.config

 New Dictionary(Of String, String)
 dictBuy.Add("Name", txtName.Text)
 dictBuy.Add("Address", txtAddress.Text)
 dictBuy.Add("City", txtCity.Text)
 dictBuy.Add("State", ddlStates.SelectedValue)
 dictBuy.Add("Zip", txtZip.Text)
 dictBuy.Add("Card", rblCardType.SelectedValue)
 dictBuy.Add("CardNumber", txtCCNumber.Text)
 dictBuy.Add("SecurityCode", txtSecurityCode.Text)

 If rblShippingAddress.SelectedValue = "billing" Then
 dictBuy.Add("ShippingAddress", txtAddress.Text)
 dictBuy.Add("ShippingCity", txtCity.Text)
 dictBuy.Add("ShippingState", ddlStates.SelectedValue)
 dictBuy.Add("ShippingZip", txtZip.Text)
 Else
 dictBuy.Add("ShippingAddress", txtShippingAddress.Text)
 dictBuy.Add("ShippingCity", txtShippingCity.Text)
 dictBuy.Add("ShippingState", ddlShippingStates.SelectedValue)
 dictBuy.Add("ShippingZip", txtShippingZip.Text)
 End If

 Session("BuyerInfo") = dictBuy

 Response.Redirect("Confirm.aspx")
End Sub

End Class

Example 11-25. web.config
<?xml version="1.0"?>
<configuration>
 <configSections>
 <sectionGroup name="system.web.extensions"
type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">
 <sectionGroup name="scripting" type="System.Web.Configuration.
ScriptingSectionGroup,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">
 <section name="scriptResourceHandler"
type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.
Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
requirePermission="false"
allowDefinition="MachineToApplication"/>
 <sectionGroup name="webServices"
type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">

Example 11-24. Purchase.aspx.vb (continued)

448 | Chapter 11: Putting It All Together

 <section name="jsonSerialization"
type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
requirePermission="false"
allowDefinition="Everywhere"/>
 <section name="profileService"
type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
requirePermission="false"
allowDefinition="MachineToApplication"/>
 <section name="authenticationService"
type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.
Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
requirePermission="false"
allowDefinition="MachineToApplication"/>
 <section name="roleService"
type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
requirePermission="false"
allowDefinition="MachineToApplication"/>
 </sectionGroup>
 </sectionGroup>
 </sectionGroup>
 </configSections>
 <appSettings/>
 <connectionStrings>
 <add name="AdventureWorksConnectionString" connectionString="Data Source=.\
sqlexpress;Initial
Catalog=AdventureWorks;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.web>
 <!--
 Set compilation debug="true" to insert debugging
 symbols into the compiled page. Because this
 affects performance, set this value to true only
 during development.

 Visual Basic options:
 Set strict="true" to disallow all data type conversions
 where data loss can occur.
 Set explicit="true" to force declaration of all variables.
 -->
 <roleManager enabled="true" />
 <compilation debug="true" strict="false" explicit="true">
 <assemblies>
 <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

Example 11-25. web.config (continued)

Source Code Listings | 449

 <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0,
Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 </assemblies>
 </compilation>
 <pages>
 <namespaces>
 <clear/>
 <add namespace="System"/>
 <add namespace="System.Collections"/>
 <add namespace="System.Collections.Generic"/>
 <add namespace="System.Collections.Specialized"/>
 <add namespace="System.Configuration"/>
 <add namespace="System.Text"/>
 <add namespace="System.Text.RegularExpressions"/>
 <add namespace="System.Linq"/>
 <add namespace="System.Xml.Linq"/>
 <add namespace="System.Web"/>
 <add namespace="System.Web.Caching"/>
 <add namespace="System.Web.SessionState"/>
 <add namespace="System.Web.Security"/>
 <add namespace="System.Web.Profile"/>
 <add namespace="System.Web.UI"/>
 <add namespace="System.Web.UI.WebControls"/>
 <add namespace="System.Web.UI.WebControls.WebParts"/>
 <add namespace="System.Web.UI.HtmlControls"/>
 </namespaces>
 <controls>
 <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.
Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add tagPrefix="asp" namespace="System.Web.UI.WebControls"
assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 </controls>
 </pages>
 <!--
 The <authentication> section enables configuration
 of the security authentication mode used by
 ASP.NET to identify an incoming user.
 -->
 <authentication mode="Forms" />
 <!--
 The <customErrors> section enables configuration
 of what to do if/when an unhandled error occurs
 during the execution of a request. Specifically,
 it enables developers to configure html error pages
 to be displayed in place of a error stack trace.

 <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">

Example 11-25. web.config (continued)

450 | Chapter 11: Putting It All Together

 <error statusCode="403" redirect="NoAccess.htm" />
 <error statusCode="404" redirect="FileNotFound.htm" />
 </customErrors>
 -->
 <!-- Valid values of customErrors mode: On, Off, RemoteOnly -->
 <customErrors mode="RemoteOnly" defaultRedirect="CustomErrorPage.aspx">
 <error statusCode="400" redirect="CustomErrorPage400.aspx"/>
 <error statusCode="404" redirect="CustomErrorPage404.aspx"/>
 <error statusCode="500" redirect="CustomErrorPage500.aspx"/>
 </customErrors>

 <httpHandlers>
 <remove verb="*" path="*.asmx"/>
 <add verb="*" path="*.asmx" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.
0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add verb="*" path="*_AppService.axd" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.
0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false"/>
 </httpHandlers>
 <httpModules>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.
Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </httpModules>
 </system.web>
 <system.codedom>
 <compilers>
 <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4"
type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089">
 <providerOption name="CompilerVersion" value="v3.5"/>
 <providerOption name="WarnAsError" value="false"/>
 </compiler>

<compiler language="vb;vbs;visualbasic;vbscript" extension=".vb" warningLevel="4"
type="Microsoft.VisualBasic.VBCodeProvider, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089">
 <providerOption name="CompilerVersion" value="v3.5"/>
 <providerOption name="OptionInfer" value="true"/>
 <providerOption name="WarnAsError" value="false"/>
 </compiler>
 </compilers>
 </system.codedom>
 <!--
 The system.webServer section is required for running ASP.NET AJAX under Internet
 Information Services 7.0. It is not necessary for previous version of IIS.
 -->

Example 11-25. web.config (continued)

Source Code Listings | 451

 <system.webServer>
 <validation validateIntegratedModeConfiguration="false"/>
 <modules>
 <remove name="ScriptModule"/>
 <add name="ScriptModule" preCondition="managedHandler"
type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0,
Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 </modules>
 <handlers>
 <remove name="WebServiceHandlerFactory-Integrated"/>
 <remove name="ScriptHandlerFactory"/>
 <remove name="ScriptHandlerFactoryAppServices"/>
 <remove name="ScriptResource"/>
 <add name="ScriptHandlerFactory" verb="*" path="*.asmx"
preCondition="integratedMode"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.
0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd"
preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/
>
 <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD"
path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.
Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </handlers>
 </system.webServer>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="System.Web.Extensions"
publicKeyToken="31bf3856ad364e35"/>
 <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/>
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="System.Web.Extensions.Design"
publicKeyToken="31bf3856ad364e35"/>
 <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Example 11-25. web.config (continued)

453

Appendix A APPENDIX A

Installing the Stuff You’ll Need1

This book contains lots of practice examples, both ones that you can follow along
with, and exercises that you can do yourself. To do them, though, you’ll need the
right tools: an Integrated Development Environment (IDE), the ASP.NET with AJAX
extensions, and a database. Fortunately, everything you need is available in free ver-
sions from Microsoft, although you can use the fancier paid versions if you want. In
this appendix, we’ll walk you through getting all the software you need and install-
ing it. By the end of this appendix, you’ll be ready to do all the examples in this
book.

What Hardware and Software You’ll Need
To build the examples in this book, you’ll need a PC running one of the following
editions of Windows:

• Windows Vista (any edition)

• Windows XP Home, SP 2

• Windows XP Professional, SP 2

• Windows 2000 Professional, SP 4

• Windows Server 2000, SP 4

• Windows Server 2003, SP 2

• Windows x64 (any edition with the accompanying service pack)

Microsoft recommends that your computer have (at a minimum) a Pentium III 600
MHz, with 1 GHz recommended. Although Microsoft insists you can run with 192
MB of memory, 512 MB is recommended. Many serious programmers find that 1 GB
of memory is the minimum for professional work, and the authors have recently
stepped up to 4 GB, but this is what we do for a living.

454 | Appendix A: Installing the Stuff You’ll Need

Visual Web Developer, the .NET Framework, the documentation, and SQL Server
Express will require nearly two gigabytes of space on your hard drive. A full installa-
tion of Visual Studio 2008 will take considerably more.

There are two software environments that will work equally well for this book:
Visual Web Developer (VWD) and Visual Studio 2008 (VS). The advantage of VWD
is that it is free.

Visual Web Developer
Visual Web Developer (VWD) is a subset of Visual Studio and can be used only to
build web sites. That said, it is a full-featured development environment, and it’s be
all you’ll need if all you are doing is developing web sites or web services (and you
can’t beat the price).

Within the realm of creating web sites, we have found very few limita-
tions of VWD. It will not let you create your own AJAX extender con-
trols, which are mentioned (but not demonstrated) in Chapter 3. Also,
it will not allow you to compile and deploy assemblies. Both of these
are very advanced topics.

You can beef up VWD by downloading the Reporting Add-in, which consists of the
ReportViewer control, an integrated report designer, and report programming interface.

Installing VWD
To get started, head to http://www.microsoft.com/express/download/, select the lan-
guage of your choice in the Visual Web Developer box, and click Download. You’ll
download vnssetup.exe to the chosen location on your local machine. After you’ve
downloaded the installer, double-click it and it, will self-install.

Accept the terms of the license and select which additional features you’d like to
install along with the development environment, as shown in Figure A-1. You should
select the first two options—the MSDN Express Edition provides documentation
that will help you when you get stuck on how to use a control, for example. The SQL
Server 2005 Express Edition lets you connect your web applications to databases,
and you’ll need it for several of the examples in this book, starting in Chapter 4. The
Silverlight runtime is a useful tool to have, but we won’t be covering Silverlight appli-
cations in this book, so that checkbox is optional.

If you already have SQL Server installed on your machine, there is no
need to install SQL Server 2005 Express Edition. Either SQL Server
2005 or SQL Server 2005 Express will work fine for the examples in
this book.

http://www.microsoft.com/express/download/

Visual Web Developer | 455

You will then be asked to select the destination folder for installation—accepting the
default is fine. You’ll also be asked to be sure you are connected to the Internet
before proceeding with the installation, as shown in Figure A-2.

If you’re using Vista, and you install SQL Server 2005 Express, make
sure you check the box for "Add user to the SQL Server Administrator
role." If you do not, your regular Vista user account won’t have appro-
priate permissions to modify the databases. You can run both the cmd
window and Visual Web Developer as Administrator if you want, but
it’s easier to simply add your user account to the SQL Server Adminis-
trator role.

The installation will proceed, downloading what it needs as it goes. Other than a
request to register the software, the installation should pretty much take care of
itself.

Figure A-1. The Visual Web Developer Installation Options. Be sure to select the first two
checkboxes for this book.

456 | Appendix A: Installing the Stuff You’ll Need

After the installation is complete, it is always a good idea to go to the Microsoft web
site at http://msdn2.microsoft.com/en-us/downloads/default.aspx to get the latest ser-
vice packs. Once it is fully installed, fire up the program from the Start menu, and
the development environment should open, as shown in Figure A-3. You’ll see a
number of windows here, most of which are empty right now, but you’ll be using
them a lot once you start creating web pages. The Start Page occupies most of the
middle of the screen, with a lot of news from Microsoft that you can browse or
ignore, as you see fit. The “Recent Projects” area gives you shortcuts to create a new
project or open an existing one; once you’ve done a few projects, you’ll see them
listed here for quick access.

The bar on the left is the Toolbox—this is where you’ll find the controls you’ll be
using in your projects. On the upper right is the Solution Explorer, which is empty
now, but you’ll be able to use it to access any of the files in your project.

Figure A-2. Before you proceed with the installation, VWD will ask you to select a destination
folder; the default works fine. You’ll also need to make sure you’re connected to the Internet before
you click Install.

http://msdn2.microsoft.com/en-us/downloads/default.aspx

Visual Web Developer | 457

Visual Web Developer Service Pack 1 is required for the Browser His-
tory example in Chapter 3, and the Dynamic Data example in Chap-
ter 4. All the other examples in this book will work fine without SP1.
You can download VWD with SP1 from: http://www.microsoft.com/
express/sp1/. VWD with SP1 includes the option to install SQL Server
Express 2008 instead of SQL Server Express 2005. Because SQL Server
Express 2008 was still in beta at the time of this writing, we did not
use it to create the examples in this book, and we suggest that you do
not install it with VWD with SP1. Instead, install VWD with SP1 by
itself, and then install SQL Server Express 2005 separately.

Configuring SQL Server Express
During the VWD installation, SQL Server Express was installed if you checked the
appropriate checkbox. To ensure that you can make a connection to your new data-
base, open VWD’s Database Explorer window (click View ➝ Database Explorer, or
click the Database Explorer tab at the bottom of the Solution Explorer), right-click
Data Connections, and choose Add Connection. You will get the dialog box shown
in Figure A-4, asking you to choose your data source. Select Microsoft SQL Server, as
shown in Figure A-4, and click Continue.

Figure A-3. The VWD Initial Screen, which you’ll see every time you open VWD. There’s not
much here now, but that’ll change shortly.

Toolbox Recent Projects Start Page Solution Explorer

http://www.microsoft.com/express/sp1/
http://www.microsoft.com/express/sp1/

458 | Appendix A: Installing the Stuff You’ll Need

The Add Connection dialog box shown in Figure A-5 will open.

Either type in a server name, use the drop-down menu, or click Refresh to get all the
available servers. Typically, however, your SQL Express installation will not appear
in the list. If that is the case, just enter .\sqlexpress (that is, “dot slash” before the
word “sqlexpress”). Make sure the radio button “Use Windows Authentication” is
chosen, and you should then be able to drop down the list of databases that come
with your installation of SQL Express. Select one of those databases to connect to.
Once you have selected a database to connect to, click the Test Connection button
to verify that the connection is good. Click OK in the Add Connection dialog box.

If you’re using SQL Express, you won’t be able to use the databases in that list until
you install or create a database (or databases) to work with. You need a sample data-
base, such as AdventureWorks, but AdventureWorks doesn’t come with SQL
Express, so you’ll have to install it yourself, which we do in the next section.

Using the AdventureWorks Sample Database
If you’re using SQL Express, the sample databases, which we use throughout this
book, aren’t installed for you. You need to do it manually, and frankly, it’s a real pain.
The good news is you only need to do it once. If you don’t already have the Adventure-
Works database installed on your machine, download it from the following:

http://www.codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.
aspx?ReleaseId=4004

Figure A-4. To begin the connection to your database, select Microsoft SQL Server as your data
source.

http://www.codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseId=4004

Visual Web Developer | 459

There are several different versions of the database you can download, depending
on your circumstances and preferences. AdventureWorksDB.msi contains the sam-
ple database with case-sensitive indexing. AdventureWorksDBCI.msi contains a
case-insensitive version. Either is fine, but the case-insensitive version is easier to
work with. If you are running a 64-bit machine, you should download
AdventureWorksDB_x64.msi.

Figure A-5. VWD Add Connection dialog box. Enter the name of the SQL Server instance as the
Server name, select Windows Authentication, and select the database name to connect to.

http://www.codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseId=4004

460 | Appendix A: Installing the Stuff You’ll Need

Download the appropriate file, and double-click the file to copy the sample database
to your machine. You’ll be asked to accept the license agreement, and for the file
location to copy to—the default is fine.

You next need to attach this sample database to your instance of SQL Express or
SQL Server. This is done with a line of SQL script. The exact steps depend on
whether you are running SQL Server or SQL Express.

If you are using SQL Server, open a query window in SQL Server Management Studio.

If you are using SQL Express, open a command prompt by clicking Start ➝ Run...,
type in cmd (in Vista, just click Start and type cmd), and press Enter. Then, from
within that command window, enter the following command to get a query prompt
into the database (be careful of your capitalization):

sqlcmd -S .\sqlexpress

Once you’ve done that, the cmd window’s title will change to SQLCMD, and the
prompt will look like this: 1>.

In either the query window or at the command prompt, enter the following SQL
command—all on one line. We’ve broken it up here to fit on the page:

exec sp_attach_db @dbname=N'AdventureWorks', @filename1=N'C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\AdventureWorks_Data.mdf',
@filename2=N'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\AdventureWorks_Log.ldf'

In a Management Studio query window, highlight the line of script and press F5 to
execute it. In a SQL Express query prompt, type it all in and press Enter. You’ll get a
new query prompt, 2>. At this prompt, enter the command go, and then press Enter
again.

If you are using the query prompt, type exit to quit the program. The database
should now be installed and ready to use. If you see messages that indicate that the
database is being unpacked, or if you just see the 1> query prompt, you’ve done it
right. If not, you may have made an error in the SQL command, which is very easy to
do.

You can test your installation by attempting to connect to the database, as shown in
Figure A-5. If AdventureWorks appears in the list of available databases, you have it
right. If not, you may need to try the SQL command again. First check to make sure
that the databases are in the correct directory. Go to the default location of C:\
Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\ and see if the two Adven-
tureWorks files are in there. If they’re not, you may need to download and install
them again, or else use the Windows Find feature to locate the files, and adjust the
path in your SQL command accordingly.

Visual Studio 2008 | 461

Visual Studio 2008
As an alternative to VWD, you can choose to purchase Visual Studio 2008, which
comes in a variety of flavors (Standard, Professional, and Team). Briefly, the Stan-
dard edition fully supports the creation of ASP.NET web sites. The Professional edi-
tion allows you to develop Windows desktop apps, and comes with Crystal Reports
and fuller support for XML. Stepping up to the Team edition brings full support for
Office development, all languages, 64-bit support, code profiling, static analysis, unit
testing, code coverage, project management, and test case management.

Our recommendation: if money is no object or you are part of an enterprise develop-
ment team, then purchase the top-of-the-line MSDN subscription (Visual Studio
Team Suite with MSDN Premium). The approximate retail cost is $11,000 initially
and $3,500 to renew. For developers working on smaller projects, either alone or
with one or two team members, Visual Studio Professional with MSDN Premium
will probably be all you need, at around $3,000 initially and $2,500 to renew. Both
of these subscriptions include almost all the software Microsoft sells, plus four sup-
port incidents and a free subscription to MSDN Magazine. There are many other
subscription plans; check them out at http://msdn2.microsoft.com/en-us/vstudio/
aa718657.aspx.

On the other hand, if you don’t feel the need to buy a Ferrari, or even a Corvette, to
learn to drive, the free Visual Web Developer and SQL Express will be fine.

Installing Visual Studio 2008
Insert your disk, or click the EXE if you’ve downloaded the file. On the initial splash
screen, click “Install Visual Studio 2008.”

Follow the Wizard. Accept the terms of the License Agreement, and when prompted,
enter the product key, as shown in Figure A-6.

The next screen in the Wizard, shown in Figure A-7, allows you to select which fea-
tures to install, as well as the installation location.

The default location is in c:\Program Files. In theory, you could install
to a different location—say, for example, a hard drive with more space
available. This sometimes works, but is often problematic. You will
have far fewer problems if you allow the installation to proceed in the
default location.

The Default installation requires 4.7 GB of disk space. It installs the most commonly
used features, including Visual C#, Visual C++, Visual Basic, Visual Web Devel-
oper, the .NET Framework (but without the QuickStart Samples), the Dotfuscator
Community Edition, tools for redistributing applications (necessary for deploying

http://msdn2.microsoft.com/en-us/vstudio/aa718657.aspx
http://msdn2.microsoft.com/en-us/vstudio/aa718657.aspx

462 | Appendix A: Installing the Stuff You’ll Need

desktop applications and creating installation packages), Crystal Reports, and SQL
Server Express.

The Full installation requires 5.1 GB of disk space. It includes all of the Default
installation, plus adds the .NET Framework QuickStart Samples.

The Custom selection allows you to choose what to install, as shown in Figure A-8.
You would select this option, for example, if you do not want to install all of the
default languages or any of the other features included with the Default installation.

We suggest doing the Custom installation, and then deselecting the language(s) and
features that you are quite certain you will never be using. You can always go back
and add the missing languages and features. However, it is often very useful to have
both C# and VB installed at a minimum, as many examples in articles and other
books will be presented in either C# or VB, but not both.

Click the Install button to commence the installation process. The installer will
restart your system part-way through, after the Framework is installed, and then con-
tinue the installation on its own.

Figure A-6. The License Agreement for Visual Studio 2008. Enter your Product key, and click
Next to agree to the terms. You can even read the agreement, if you want.

Visual Studio 2008 | 463

After the VS installation completes, you definitely want to install the Product Docu-
mentation, which installs the MSDN Library on your machine, if you have the disk
space. Do this by clicking the Install Product Documentation link on the splash page.
The installation wizard will walk you through the process. Again, you have the
choice of a Full (1950 MB of disk space required), Custom, or Minimum (868 MB
disk space required) installation. We recommend doing the Full installation, as long
as you have the disk space.

Visual Studio 2008 Service Pack 1 is required for the Browser History
example in Chapter 3, and the Dynamic Data example in Chapter 4.
All the other examples in this book will work fine without SP1. You
can download VS 2008 with SP1 from http://msdn.microsoft.com/en-us/
vstudio/default.aspx.

Figure A-7. This Visual Studio 2008 installation screen lets you customize your installation. Even
Default probably has a lot of stuff you don’t need, so select Custom and remove the languages that
aren’t C# or VB.NET.

http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://msdn.microsoft.com/en-us/vstudio/default.aspx

464 | Appendix A: Installing the Stuff You’ll Need

ASP.NET AJAX Control Toolkit
The next step is to download and install the AJAX Control Toolkit from Microsoft,
available at no charge at http://www.asp.net/ajax/ajaxcontroltoolkit/samples/. The
AJAX Control Toolkit is an ever-expanding shared-source collection of samples and
components, provided by Microsoft and the ASP.NET community, that make it easy
to add client-side functionality to your ASP.NET web site. Our experience is that the
Toolkit is incredibly valuable, as demonstrated in Chapter 3. Don’t be put off by the
fact that it is open source; this is solid code and truly worthwhile. However, it is not
directly supported by Microsoft, other than in the ASP.NET online forums.

1. Go to http://www.codeplex.com/AtlasControlToolkit/Release/ProjectReleases.aspx,
and click the Releases tab to find the downloads. There are two versions:
AjaxControlToolkit-Framework3.5.zip and AjaxControlToolkit-Framework3.5-
NoSource.zip. The first contains the source code for the components it contains,
while the second contains no source code. For this book, all you need is the
NoSource file.

Figure A-8. The Custom installation option lets you choose which components you want to install.
You might not need to install Visual C++ or Crystal Reports, for example.

http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
Go to http://www.codeplex.com/AtlasControlToolkit/Release/ProjectReleases.aspx

ASP.NET AJAX Control Toolkit | 465

This file is updated frequently, so you may want to check back period-
ically for bug fixes and new features. Be aware that installing a newer
version may break stuff that currently works. Usually this is worth the
tradeoff.

2. Unzip the AJAX Control Toolkit archive folder into a convenient folder on your
computer.

3. Create a new web site by opening Visual Studio 2008 or Visual Web Developer
(VS/VWD) and clicking File ➝ New Web Site. Pick “ASP.NET Web Site” under
“Visual Studio installed templates.” (Yes, we know this is a strange way to install
software, but trust us, it is necessary.) You can use the default name for this new
web site because it is not necessary to actually save it.

4. After the web site opens in the IDE, the Toolbox should be visible on the left
side of the screen. (If it is not visible, click the View ➝ Toolbox menu item.)

5. The Toolbox comprises a number of groups. Each group’s name is in boldface,
and each group may have a number of items in it; the items are revealed when
you click the + preceding the group’s name. The first item in the Standard
group, for example, is Pointer. What you will do next is add a new group (tab)
to the Toolbox with the name “AJAX Control Toolkit,” and then populate that
group. (Microsoft has made this somewhat confusing to explain because they
refer to these groups as both groups and tabs.)

a. First, check whether the Toolbox already has a group named AJAX Control
Toolkit. If it does, skip this step.

b. Right-click any item in the Toolbox and select “Add Tab.”

c. A text box will open on the Toolbox, above the General tab.

d. Type the name of the new tab into this text box: “AJAX Control Toolkit”;
then press Enter.

6. Right-click the new Toolbox tab and select “Choose Items” from the pop-up
menu.

7. When the “Choose Toolbox Items” dialog appears, click the “Browse” button.
Navigate to the folder where you unzipped the ASP.NET AJAX Control Toolkit
package. You will find a folder named SampleWebSite, and under that another
folder named Bin. Inside that folder, select AJAXControlToolkit.dll and click
Open. Click OK to close the Choose Toolbox Items dialog.

8. Close the web site. There is no need to save anything.

9. The controls from the AJAX Control Toolkit are now available to use in any of
your web sites.

466

Appendix BAPPENDIX B

Copying a Web Site 2

You’ll often find it necessary or convenient to make a copy of an existing web site—
that is, to make a new web site that is the same as the original except for a different
name. We do this frequently in this book when building up examples, layering func-
tionality on to a previous example. In the real world, you might want to make a copy
of a web site so you can experiment without breaking something that works. We
often copy a web site at various stages of development to have an easy snapshot to
refer to without having to go to the bother of restoring from backup.

Before looking at the different ways to copy a web site, we’ll explain a bit about what
actually constitutes a web site. However, if all you want is the cookbook recipe—the
set of steps you need to follow to copy a web site—you can skip the following discus-
sion and move on to the next two sections, “Copying the Web Site Without Using
the IDE” and “Copying the Web Site with the IDE.”

Virtual Directories
Physically, what comprises a web site? A folder on the hard drive of the web server. If
the server in question, such as Microsoft IIS (Internet Information Services), is oper-
ating outside the bounds of Visual Studio, Visual Web Developer, or some other
development tool, then the folder containing the web site must be designated as a
virtual directory—that is, a directory that is mapped to a web URL by the web server.
When a user enters that URL into a browser, the request is passed to the web server
and the server looks to the contents of the virtual directory to satisfy the request.
How you designate the virtual directory depends on whether you’re operating from
inside or outside the IDE.

Installing IIS on any of the Home editions of Windows XP, or the
Home editions of Windows Vista, is a difficult task. However, not
having IIS won’t prevent you from copying a web site, or from doing
any of the examples in this book.

Virtual Directories | 467

Outside the IDE
You can map any physical directory on the web server to a virtual directory in IIS.
There are several ways to do so. Perhaps the easiest is to click the Start button, right-
click My Computer, and select Manage to bring up the Computer Management win-
dow. Drill down through Services and Applications, Internet Information Services, and
Web Sites to Default Web Site. Alternatively, go to Control Panel ➝ Administrative
Tools ➝ Internet Information Services. In Vista, if you start from Computer Manage-
ment, the Internet Information Services Manager will appear within the Computer
Management window, which is tricky to read. It’s better to take open IIS Manager
from Control Panel in Vista, where you’ll see something that looks like Figure B-1.

You can see in Figure B-1 that there are already two virtual directories in the Default
Web Site, called FormsBasedSecurityIIS and FormsBasedSecurityWAT. (These corre-
spond to two of the examples in this book from Chapter 9.)

By default, the physical directory corresponding to the Default Web Site virtual
directory is located at c:\inetpub\wwwroot. You can see this in Windows XP by right-
clicking Default Web Site, selecting Properties, and then clicking the Home Direc-
tory tab. In Vista, right-click Default Web Site, and select Advanced Settings, and
you’ll see the physical path in the Advanced Settings dialog, as shown in Figure B-2.

Figure B-1. Internet Information Services Manager window in Windows Vista.

468 | Appendix B: Copying a Web Site

If there were a web page called Welcome.aspx in the default web site, and the domain
name MyDomain.com was registered to the IP address of the server, then the following
URL in a browser would bring up the page:

www.MyDomain.com/Welcome.aspx

Opening a browser locally on the server, you would use the following equivalent
URL:

localhost/Welcome.aspx

where localhost always refers to the Default Web Site on the local server.

In IIS, certain web page names will be the default for each web site. In other words,
you do not need to include them as part of the URL. If you enter a URL without a
page name, it will automatically look for one of the default names.

Figure B-2. You can change the physical directory of your default web site with the Default Web
Site Properties dialog.

Virtual Directories | 469

You can see the default page names by right-clicking the virtual directory, selecting
Properties, and clicking the Documents tab.

Inside the IDE
One of the big advantages to using Visual Studio or Visual Web Developer is that
you do not need to use IIS to serve your pages while in development, and you do not
need to create a virtual directory. Instead, the IDE provides its own web server and
temporarily creates any necessary virtual directories.

You create a web site in the IDE either by clicking Create Web Site on the Start Page,
or by clicking the File ➝ New Web Site menu item. In either case, you get the New
Web Site dialog box shown in Figure B-3.

The highlighted portion of the path in Figure B-3 has a dual meaning. Physically, it is
the folder that contains the web site. (If you want to make this web site accessible via
IIS, this is the folder that you would make into a virtual directory.) It also is the name
of the web site for the IDE.

In other words, when you click Open Web Site on the Start page or the File ➝ Open
Web Site menu item, you navigate to this folder to open the web site. The folder con-
tains all the files comprising the web site.

Figure B-3. New Web Site dialog box with web site path entered and the web site name indicated.

Web site name

470 | Appendix B: Copying a Web Site

The default location for a new web site will be the location used the last time you
created a new web site. If you change the location and name in Figure B-3 to some-
thing like c:\WebSites\OrderEntrySystem, then the next time you create a new web
site, the default location and name will be c:\WebSites\WebSite2 (assuming there is
already a web site named WebSite1 in that folder).

There is one more piece of this puzzle that will be helpful to know. The IDE keeps
track of files that comprise the web site, the default language, and build information.
This information is saved in a text file, referred to as the solution file, with the same
name as the web site (MyNewWebSite in Figure B-3) and an extension of .sln. You
can open the web site in the IDE by double-clicking the solution file in Windows
Explorer. The solution file is used by the IDE for certain housekeeping tasks, but it’s
not essential, and it is not part of a production web site.

By default, in Windows XP, this solution file is created in a folder with the same
name as the web site in c:\Documents and Settings\<username>\My Documents\Visual
Studio 2008\Projects (or C:\Users\<username>\Documents\Visual Studio 2008\Projects
in Vista) where <username> is replaced with your user name. You can change this
default location by opening the IDE and clicking Tools ➝ Options... ➝ Projects and
Solutions ➝ General and changing the Visual Studio projects location, as shown in
Figure B-4.

Figure B-4. Changing the location of the solution files in the Options dialog box.

Default location of
the solution files

Copying the Web Site with the IDE | 471

Be sure to check the Show all settings checkbox in the lower-left cor-
ner of the Options dialog box; otherwise, you will not see many of the
options, including the default locations shown in Figure B-4.

There is one more file created with the same name as the solution file and an exten-
sion of .suo. This file contains developer-specific information relating to the web site,
such as which files are displayed in the editing surface, which page is the start page
for the web site, breakpoints, and so on. If this file is deleted, or otherwise missing, a
new one is automatically created the next time the web site is opened in the IDE.

Now that you know how the files that make up a web site are organized, you will
better understand how to copy a web site. There are at least two different ways to do
this: inside the IDE and outside the IDE.

Copying the Web Site Without Using the IDE
To copy a web site without using the IDE, simply copy the web site folder to another
location and name, using Windows Explorer. The new copy can be in the same par-
ent folder as the original, or in a totally different location. For example, suppose the
original web site is called OrderEntrySystem and is located in the following folder:

c:\WebSites\OrderEntrySystem

You want to copy it to a new name, say OrderEntrySystemTest. Copy the original
folder to the following:

c:\WebSites\OrderEntrySystemTest

To work with this new web site, open the IDE, click Open Web Site, and navigate to
this new folder. That’s it.

The IDE will automatically create the necessary solution file and put it in the default
location.

Copying the Web Site with the IDE
You can also copy a web site from within the IDE. The advantage of doing it inside the
IDE instead of in Windows Explorer is that you have a lot more flexibility. Not only
can you copy the site to your local file system, but you can also simultaneously create
an IIS virtual directory or copy it to an FTP or remote web site over the Internet.

In this example, we will copy the AdventureWorks web site to another web site,
called AdventureWorksRevisited, in the same parent folder.

There are two equivalent ways to begin the process of copying a web site from within
the IDE. One is to click the Website ➝ Copy Web Site... menu item. The other is to
click the Copy Web Site icon at the top of the Solution Explorer (see Figure B-5).

472 | Appendix B: Copying a Web Site

Either way you do it, the Copy Web Site window will open in the middle window of
the IDE, as shown in Figure B-6.

Click the Connect button, indicated in Figure B-6, to bring up the Open Web Site
dialog box shown in Figure B-7. This dialog is used to select the target destination of
the copied web site.

The screenshots in these figures were taken after most of the example
web sites in this book were already created. Obviously, the folders you
see in your file system will be different.

Notice the four icons down the left side of the dialog box. In Figure B-7, the File Sys-
tem icon is selected and the local file system is shown with the source web site ini-
tially highlighted.

Clicking any of the other three location icons will replace the File System browser in
Figure B-7 with the appropriate means of specifying the location. For instance, if you
click FTP site, you will be offered fields for the name of the FTP server and login
credentials.

Because you want to copy the target web site to another location within the same
parent folder, click that parent folder (Chapter 2, in this case), and then click the
Create New Folder icon, indicated in Figure B-8. This will create a new folder under
LearningASP\Chapter 2 called WebSite, indicated in Figure B-8, ready to be renamed
to something more meaningful.

Figure B-5. The Copy Web Site icon at the top of the Solution Explorer is a quick way to start the
copying process.

Copy web site button

Copying the Web Site with the IDE | 473

A very common mistake to make here is to forget to select the parent
directory before clicking the Create New Folder icon. Because the dia-
log initially opens with the source folder selected, this mistake will cre-
ate the new web site folder as a subdirectory of the source folder,
which is almost certainly not what you intended.

Replace WebSite with the target name—in this case, AdventureWorksRevisited—and
press tab to move off the menu tree. The new folder will be created and the full
folder name inserted into the text box.

Click the Open button to select the folder you just created as the target.

Figure B-6. The Copy Web Site window looks like this when you first open it. You use the Connect
button to locate the destination folder.

Connect button

474 | Appendix B: Copying a Web Site

You will be brought back to the Copy Web Site window, similar to that shown back
in Figure B-6, except now the target location will be indicated as the Remote Web
Site, as shown in Figure B-9. Note that although the target folder here is designated
as the “remote” folder, in this case, it’s not really remote, it’s just another folder on
the same computer.

Now you can select the items in the grid on the Source side of the window that you
want to copy, which is typically all of them. Click the first item in the list, then hold
down Shift and click the last one. When items are selected, the buttons in the mid-
dle between the two grids become active. Click the right-pointing arrow to copy over
the selected files and folders. The finished result will look something like that shown
in Figure B-10.

Figure B-7. The Connect button brings up the Open Web Site dialog box, where you choose the
destination for the copy.

Copying the Web Site with the IDE | 475

The new web site has now been created and the contents copied over.

To work on this web site, click Open Web Site on the Start page or the File ➝ Open
Web Site menu item and select the new web site.

Figure B-8. In the Open Web Site dialog box, click the New Folder icon to create a new web site
folder. You’ll be invited to rename it immediately.

Create New Folder icon

New web site folder

476 | Appendix B: Copying a Web Site

Figure B-9. After you’ve created the target web site folder, the Copy Web Site window will show
the target.

Copying the Web Site with the IDE | 477

Figure B-10. After you’ve copied the web site, both project folders should show the same contents.

478

Appendix CAPPENDIX C

Publishing Your Web Site 3

Throughout this book, you’ve been developing and testing your web sites on your
local computer. You’ve run all the pages from within Visual Studio 2008, and the
web server you’ve been using is the ASP.NET Development Server that’s built into
Visual Studio.

This setup is good for testing. However, you can’t run a public web site this way. For
starters, it’s unlikely that your computer is set up to be a public-facing web server.
(Or at least, you probably haven’t intentionally set it up that way!) In any event, the
ASP.NET Development Server that you’ve been using can’t be used to serve a public
web site—by design, it accepts requests only from the local computer.

This chapter provides an overview of how you can go about turning the web site
you’ve created on your computer into a web site that anyone can access. You have a
couple of options that depend on how much of the site administration you want to
take on. The easiest and most common option is to rent space from a company that
can host your site.

Another option is to host the web site on a computer you maintain yourself. This is
less common, but we’ll give you an idea of what’s involved in that.

Using a Hosting Company
A hosting company or hosting provider rents space on their servers where you can
upload your web site and keep your data. They will handle the web requests that come
to your site, and they’ll manage tasks like backup, upgrading the server and .NET
Framework software, and so on. Many sites that you’ve used are on hosting sites—for
example, most blogs are on hosting sites. There’s no obvious way to tell if a web site is
on a hosting site, which is something to remember if the image of your web site (and its
URL) is a factor for you.

Every hosting site is slightly different, but they’re all similar. In general, they offer a
basic hosting package that provides a chunk of disk space and a bandwidth quota,
which determines how much data they’ll allow your site to send down the wire every

Using a Hosting Company | 479

month. Some packages include space on a database server; in other packages, you
pay extra for database storage. Many packages also offer email addresses as part of
the package, so that you can have one or more email addresses that look like they
belong to you—for example, you@yoursite.com. (These email addresses are usually
what they call forwarding addresses—they just forward any incoming email to your
normal email account.)

You can expect to pay in the neighborhood of $100 per year for a minimal site, and a
little more if you want SQL Server access or if your site gets a lot of traffic. Costs vary
somewhat, though, and many hosting sites provide deals for first-time users, so the
annual expenditure might vary.

Database Support
An important factor that’s different between the test site on your own computer and
the hosting site is that most hosters do not support SQL Server Express Edition. This
is for technical reasons; it’s not practical for hosters to run multiple (perhaps hun-
dreds or thousands) of individual instances of SQL Server Express. Almost all hosters
therefore instead provide space on a full version of SQL Server. They set up an
account for you on their SQL Server and give you the connection string to use to log
in to that server, or they provide a way to attach an .mdf database file. This differ-
ence means that you might have to transfer not just for data that you store as part of
your web site, but the data for membership, profile properties, and other informa-
tion that by default is stored in an .mdf file in the App_Data folder of your web site.

Your Domain Name
People will access your site by using the site’s domain name, like yourname.net or
yourcompany.com. (For more about domain names, see the upcoming sidebar.) For
example, one of the authors has a web site that you can access by using the domain
name jesseliberty.com.

If you get a package from a hosting site, the basic package often lets you make the
site available by using a variant on their own name. For example, they might offer
you a domain name like http://www.yourname.theirsite.com. (If you use the web
space that’s offered by an ISP such as Comcast, this is what they usually offer.)

If you want a more personal-looking domain name, you can get your own domain name
by ordering it from one of the companies that specializes in managing domain names,
such as Network Solutions (www.networksolutions.com). You buy a domain name for a
fixed period—a year, or two, or three. If you have gotten your own domain name, you
can register it with the hosting site, and requests to the domain name will go to their
servers. If you don’t already have a domain name, a lot of the hosting companies will
help you with that task as well, and then automatically register it with their site.

you@yoursite.com
yourname.net
yourcompany.com.
jesseliberty.com
http://www.yourname.theirsite.com
http://www.networksolutions.com

480 | Appendix C: Publishing Your Web Site

Domain Names and IP Addresses
We generally think of URLs as using names like oreilly.com, or asp.net, or something
similar. And it’s true that when you type in those URLs, you see the pages from those
web sites. But the computers that manage traffic on the Internet don’t really deal with
.com and .net names and all the rest. Instead, they deal primarily with IP (Internet Pro-
tocol) addresses. You won’t be surprised to hear that, as with most things to do with
computers, IP addresses are all numbers.

Try this: type in http://207.46.19.190. How about http://64.233.167.99? The numbers
are IPs, which are the numeric addresses for the primary host computers for, respec-
tively, microsoft.com and google.com. The numbers identify a specific location on the
Internet. Although this isn’t strictly true, you can think of an IP address roughly as the
address of a single web server computer out there somewhere on the web.

Obviously, having to remember these numbers is impractical, so the geniuses who
thought up the Internet came up with the Domain Name System (DNS). Names like
microsoft.com are domain names. In the DNS, a friendly domain name like microsoft.com
is mapped to the decidedly less friendly IP number. As part of the superstructure of the
Internet, DNS servers maintain lists of domain names and IPs. Simplifying a bit, when you
enter a domain name as part of a URL—http://microsoft.com, for example—the request
goes to the nearest DNS server, which looks up the domain name and gets the IP address,
which can then be used to send the request for real. In reality, the volume of requests on
the Internet requires a complex system that involves different tiers of lookup, caching, and
so on. But in principle, it’s a relatively straightforward lookup system.

The benefit of domain names isn’t just that it makes it easier for humans to type URLs.
It also makes it practical for domain owners to swap computers and even networks—
and thus IPs—without breaking URLs.

Anyone can get a domain name. There is a huge central database of all the domain
names currently in use. When you want to get your own domain name, you can con-
tact any of the companies that can do the necessary lookup to make sure that the
domain name you want is available. For a reasonable fee—from $4.99 to $25.00 per
year—you can “own” (actually rent) the domain name of your choice.

Getting the domain name is only one part of the equation, though. The other part is to
point that domain name at an IP. This can be a fixed IP address that you control, which
is true for big companies with big web presences. For individuals, this isn’t as common.
If your site is being hosted by a hosting company, you can generally point the domain
name to the hosting company’s IP address; the hosting company can tell you all about
how to do this. If you run your own web server computer, you generally have to run a
utility that helps map your computer to your domain name, as explained under the sec-
tion “Hosting Your Own Site,” later in this chapter.

http://207.46.19.190
http://64.233.167.99
microsoft.com
http://microsoft.com

Example: Getting Set Up on a Hosting Site | 481

Example: Getting Set Up on a Hosting Site
The clearest way to explain how to get set up on a hosting site is to walk you through
the process on a specific hosting site. The details vary by site, but the overall process
is the same. To show you how the process works, we’ll copy the web site that you
created in the exercises for Chapter 10 (the fish aficionados site).

Picking a Hosting Site
You need to select a hosting site that supports ASP.NET. How do you find such
hosting sites? One way is to search the web for “ASP.NET hosting.” Microsoft also
maintains a list of service providers that you can search by country, type, and so on
at http://www.microsoft.com/serviceproviders/directory/default.aspx. There are cer-
tainly a lot of options, but make sure that the hosting site supports ASP.NET 3.5 and
ASP.NET AJAX. (Not all of them currently do.) Look through the plans that they
offer; one thing you’ll find is that some hosting sites are more oriented toward com-
pany web sites than toward personal web sites, and offer features and pricing accord-
ingly. Note that any free web-site space that’s provided by your ISP probably does
not support ASP.NET (or any server-based processing, for that matter). It’s always
worth checking, though.

For this example, we have decided to use the hosting site DiscountASP.NET (http://
discountasp.net).

This is not an endorsement of DiscountASP.net over any other hosting
company—the authors have also had great success with GoDaddy.com,
Orcsweb.com, WebHost4Life, ServerIntellect, and others. But we had
to pick one to show you the process.

Setting Up the Account
We began buying a basic hosting package that includes the following:

• Disk space: 1 GB

• Monthly disk transfer (bandwidth): 80 GB/month

• Administrative users: 3

Because we knew we would want to keep data in a SQL Server database, we also
ordered the SQL Server 2005 add-on, which provides 300 MB of database storage for
an extra monthly fee.

For this exercise, we wanted our own domain name. We therefore got the domain
name LearningASPNET35.net, which we were able to order directly through
DiscountASP.net, out hosting site provider. This added $15 per year to the cost of the
site.

http://www.microsoft.com/serviceproviders/directory/default.aspx
http://discountasp.net
http://discountasp.net

482 | Appendix C: Publishing Your Web Site

When we finished signing up for the hosting account, we had this information:

• Account name and password. This lets us log in to the hosting site and manage
our account, get support, and so on.

• URL for the web site. Because we elected to get our own domain, this is just the
URL of the domain name (http://www.LearningASPNET35.net).

• An FTP address. FTP (file transfer protocol) is the means by which we’ll con-
nect to the hosting site and upload and manage our files.

• The name of the SQL Server on the hosting site, the name of a database on that
server, database login credentials, and a connection string that we can use in our
web site to access the database.

Uploading the Web Site Files
Uploading files from the local computer to the hosted site is easy—you can use the
same Copy Web Site utility that you’ve been using throughout the book. One differ-
ence, though, is that you will connect to the hosting site by using an FTP connec-
tion. If you are not familiar with FTP, it’s a way to connect to a remote server and
copy files to and from that server. In practice, you can use FTP a lot like you use
Windows Explorer, except that you have to log in first.

In the Copy Web Site window, click Connect. In the Open Web Site window, click
the FTP Site tab on the left. The window changes to show the fields that you fill in to
connect to an FTP server. In the server box, enter the name that the hoster has pro-
vided for the FTP server. Uncheck the Anonymous Login option and then enter the
user name and password for your hosting account. Leave the Passive Mode option
selected.

Figure C-1 shows what the Open Web Site dialog box will look like.

When you’ve connected successfully, you will see the familiar Copy Web Site layout,
with your local files on the left, and the remote server (which really is remote this time)
on the right. Select everything from your local web site except the App_Data folder,
and then click the arrow key to copy everything to the FTP server. (We’ll get to the
App_Data contents in a moment.) Figure C-2 shows the Copy Web Site dialog box
ready to copy files up to the FTP server.

That’s it—you’ve copied your ASP.NET web site files to the server. Except for the
data in the database (membership and profiles), you’re ready to go.

Uploading Data
A somewhat more challenging task is to move data from your local computer, where
you’ve been using SQL Server Express, to the SQL Server database provided by the
hosting company. As noted earlier, hosters generally do not support SQL Server

http://www.LearningASPNET35.net

Example: Getting Set Up on a Hosting Site | 483

Express. They might let you attach an .mdf file that is in your App_Data folder, but
that’s up to the hosters. For questions about database access on a hosting site, you’ll
need to dig into their documentation and support forums a bit.

For this example, we’re assuming that we need to use the database that they have set
up for us. In the example web site, we set up user accounts (membership) and profile
properties, which automatically created the ASPNETDB.MDF database in the App_
Data folder. We want the test information that we created in the ASPNETDB.MDF
database to be available on the hosted site as well. However, we cannot directly copy
the database tables and data to the hosting site’s SQL Server.

A solution is to use the Database Publishing Wizard. This wizard reads through your
existing SQL Server Express database and creates a SQL script (a .sql file) that con-
tains a list of the SQL commands that are required to re-create the database you
already have. This script can be quite hefty—the script that’s generated in order to
recreate the tiny database we have for the example is over 5,000 lines. (Good thing
that this is all done automatically!) When the .sql file has been created, you log in to

Figure C-1. The Open Web Site dialog box, showing how you connect to an FTP server. (Sensitive
information in the picture has been obscured.)

484 | Appendix C: Publishing Your Web Site

the hoster’s database and then run the generated script. When the script has fin-
ished, a copy of the database is available on the hosting site.

There are a few additional tasks to perform as well. We’ll walk through the entire
process, which includes the following:

• Creating the script.

• Logging into the hosting database and running the script.

• Updating the connection strings in your web site to point to the database on the
hosting site.

By the way, we strongly encourage you not to perform these steps with
the AdventureWorks database that you’ve been using throughout the
book. That’s strictly a database for testing, so it’s not useful on a live
site. Moreover, the database is huge, which would up eating a signifi-
cant part of your allocated database space.

Figure C-2. The Copy Web Site window, ready to copy the contents of the web site (except the
App_Data folder) to the hosting server.

Example: Getting Set Up on a Hosting Site | 485

Creating the script

Creating the script is straightforward. In Visual Studio 2008, display the Server
Explorer window (Database Explorer in Visual Web Developer Express Edition). In
our case, under Database Connections, we have a connection to the ASPNETDB.MDF
database.

Right-click the database that you want to create the script for (that is, to “publish”)
and then click “Publish to provider,” as shown in Figure C-3.

The Database Publishing Wizard starts up.

Click Next, and then select the database you want to publish. For us, this means
selecting the .mdf file that contains the membership and profile information for the
web site we have uploaded. Figure C-4 shows this selection.

Click Next, and then specify a target location for the .sql file, as shown in Figure C-5.
You will notice that there is an option in this page of the wizard to specify a “shared
hosting provider.” Some hosting providers make their database available over the
web by using a web service. If your provider does this, you can copy data directly
from your local database to their database. Check with your hosting provider about

Figure C-3. Beginning the process of creating a SQL script file for a database.

486 | Appendix C: Publishing Your Web Site

this capability. Our provider appears not to offer this feature, so we will proceed
with creating the .sql file.

Click Next. The next page lets you specify options for creating the script. The term
“drop” is used in SQL Server to mean “delete”; here, they’re asking you if you want
to delete existing tables in the target database before creating new ones. We left the
default of true. (You will want to be very careful with this if you are uploading to an
existing database—if you select the option to drop existing objects, they will be per-
manently deleted.) “Schema qualify” asks whether you want to add the database
schema names to the new database—remember the adventures you had with data-
base schemas in Chapter 4. We left this as true. For target database, make sure that
the target matches the database version that your hoster provides. And finally, select
whether you want to copy only the database structure (schema) or the structure and
the data that it contains. If your local database contains only throwaway data that
you don’t need in the production web site, you can copy just the schema. If your
local database already contains live data, copy the data as well. Figure C-6 shows this
page of the wizard. (In fact, for this exercise, we could copy just the schema, because
it would be easy for us to re-create the few users and profile properties that we

Figure C-4. Selecting the database to publish.

Example: Getting Set Up on a Hosting Site | 487

created in order to test the web site. However, we will go through this exercise as if
we had data that we absolutely needed to copy to the hosting site.)

Click Finish. The wizard gets to work creating the SQL script file, as shown in
Figure C-7. The process can take a minute or two, depending on the number of
tables and the amount of data in each table.

When the wizard has finished, click Close.

The end result is a .sql file in the location that you specified. If you’re curious about
what the script looks like, open the file in a text editor like Notepad. (But don’t
change anything!) Now you’re ready to re-create the database on the hosting site.

Logging Into the hosting database and running the script

Your hosting provider will provide some way for you to manage your database
tables. A common way is to let you attach to their database server by using a SQL
Server management console. If you have a full version of SQL Server installed on
your computer, you already have this tool. If you are working with SQL Server
Express Edition, you probably do not. In that case, you can download and install the

Figure C-5. Selecting a target location for the .sql file.

488 | Appendix C: Publishing Your Web Site

free SQL Server Management Studio Express tool from the Microsoft web site at
http://msdn2.microsoft.com/en-us/express/bb410792.aspx.

We’ll proceed with the idea that the hoster lets you use SQL Server Management Stu-
dio Express. (Again, you must check with them to get the details of what they provide.)
Start the management console—from the Windows Start menu, click All Programs ➝

Microsoft SQL Server 2005 ➝ SQL Server Management Studio Express.

You’re prompted to connect and are asked for the database server name and the
login credentials. You will have gotten these from the hosting company during the
signup process. Figure C-8 shows the login screen for the management console.

Click Options, and then in the Network protocol list, select TCP/IP, as shown in
Figure C-9.

Click Connect. If you’ve got the correct credentials and if the network protocol
works, you’ll be connected to the hoster’s SQL Server.

Figure C-6. Setting options for what the .sql script will do.

http://msdn2.microsoft.com/en-us/express/bb410792.aspx

Example: Getting Set Up on a Hosting Site | 489

Figure C-7. The wizard as it generates the .sql file.

Figure C-8. Connecting to a SQL Server using SQL Server Management Studio Express.

490 | Appendix C: Publishing Your Web Site

If you cannot connect to the database, check all the information again
and make sure that you’ve got the database name and credentials
right—they might not be the same as the information for logging onto
the hoster’s web site. If you still have no luck, contact your hosting
provider and get their recommendation for how to establish the
connection.

After you’ve connected, on the left-hand side, under Object Explorer, find the data-
base that’s been created for you and then expand it. Figure C-10 shows what this
looks like for our hosting provider’s SQL Server. On our hoster’s SQL Server, ours is
just one of hundreds of databases, so we had to scroll quite a bit to find our particu-
lar database.

Now you can run the SQL script that you created earlier. In the top-left corner, click
New Query. This opens a new tab on the right where you can type (or copy) SQL
statements. Using a text editor, open the .sql file that was generated, copy the entire
contents, and then paste the text into the query tab. When you’re ready to go, click
Execute in the toolbar.

Figure C-9. Setting the network protocol for connecting to a SQL Server database.

Example: Getting Set Up on a Hosting Site | 491

It will take a minute or two for the SQL Server to crank through the script. When the
script is finished, the results are displays in a Results window. If all went well, you
will see line after line that says (1 row(s) affected), as shown in Figure C-11.

Figure C-10. After you have connected to the hoster’s SQL Server, you can open your database.

Figure C-11. When the script finishes, the results are shown in the Messages tab. A series of lines
that say “(1 (row(s) affected)” indicates success.

492 | Appendix C: Publishing Your Web Site

If the script does not run successfully, you will need to study the error messages. If
you can’t determine the problem, you will need to contact the hosting provider for
support. (Our apologies if this suggestion sounds like a stuck record. Unfortunately,
because each situation is different, it’s difficult to help much with troubleshooting
the many possibilities for each problem.)

If you did have success, your database and data are now on the hosting provider’s
SQL Server. Only one step is left, which is to update the connection string or strings
in your application so that they point to the correct database.

Updating the Connection Strings

Now that the data is in a new location, you need to let your web site know where to
find it. This is where it comes in handy to keep database connection string informa-
tion in the web.config file, as we illustrated in Chapter 4.

In Visual Studio, open the web site (if it isn’t already open) and make a copy of the
web.config file. Name the copy something like web.config.local—this will be the ver-
sion of the web.config file that contains settings for testing the web site on your com-
puter. Then, open up the original web.config file.

Look for the <connectionStrings> element. If the web site you are uploading involved
database access other than the ASP.NET membership and profiles database, you
probably already have one or more connection strings already defined, like this:

<connectionStrings>
 <add name="SampleDatabaseConnection"
 connectionString="[connection string information]" />
</connectionStrings>

In that case, find the connection string information that your hosting provider sent
you, and substitute that information for the value of the connectionString attribute.
The hoster’s connection string will probably have placeholders where you need to
include an explicit user name and password.

If you did not explicitly create a connection string for this web site, the element will
be empty, like this:

<connectionStrings />

In that case, re-create the element with separate opening and closing tags, like this:

<connectionStrings>
</connectionStrings>

For both cases (whether there was an existing connection string or not), you’ll need
to add a connection string that tells ASP.NET where to find the membership and
profiles database. Create a new child element that looks like the highlighted part of
the following example:

Example: Getting Set Up on a Hosting Site | 493

<connectionStrings>
 <!-- Any existing connection strings here, updated with the new
 connection string from the hosting provider -->
 <add name="LocalSqlServer"
 connectionString="[Connection string from hosting provider]"/>
</connectionStrings>

Notice that the name attribute of the new element is LocalSqlServer. This is the con-
nection string name that ASP.NET uses to find the membership and profiles data-
base. By default, you don’t have to define this because it’s predefined to point to the
ASPNETDB.MDF database in the App_Data folder of your web site. However, you
have now moved that database, so you need to create a connection string that has
exactly this name (LocalSqlServer) and that provides the alternative connection
string information. As is suggested in the example, the connectionString attribute
should be set to the connection string that the hosting provider has given you. If nec-
essary, substitute your own user name and password for the placeholders in the host-
ing provider’s connection string.

Save the web.config file. Then use the Copy Web Site utility to copy the updated ver-
sion of the web.config file to the hosting site.

Run the web site using the URL for the site and the home page. (For us, that’s http://
www.learningaspnet35/home.aspx.) Did it work? If so, congratulations! You have a
live web site on the Internet.

Notes and Tips
Here are a few tips for you about working with your web site that’s hosted elsewhere.

In Visual Studio and VWD, you can open a web site directly over an FTP connec-
tion. To do so, choose File ➝ Open Web Site. Click the FTP tab on the left and pro-
vide FTP login information, as shown previously in Figure C-1. When the web site
opens and is displayed in Solution Explorer, you are working with the live web site.
However, there are a couple of reasons why you might not want to do this. One is
that working with a web site directly over FTP can be slow; Visual Studio not only
has to copy files back and forth between the server and your computer, but it main-
tains a local cache of files. Another reason you might not want to work directly over
an FTP connection is that you are then working with the live site, and if you break
something, it’s broken for all your users as well. Doing maintenance and testing
directly on a live site is not a good idea!

As suggested in the procedure earlier, keep two copies of the web.config file, one for
testing locally and one for deployment to the live site. It can be tedious to keep these
in sync (except for where they must differ, of course), but it’s better than changing a
single web.config file back and forth.

http://www.learningaspnet35/home.aspx
http://www.learningaspnet35/home.aspx

494 | Appendix C: Publishing Your Web Site

Turn off custom errors until you’ve got everything working. Otherwise, when you’re
testing your newly live site, you won’t be able to see details about errors. When
you’ve got everything working, though, turn custom errors back on. For details, see
Chapter 8.

Be sure to turn off any debugging settings on the live site. In the web.config file, make
sure that the <compilation> element is set like this:

<compilation debug="false" ... >

Make sure also that in the @Page directive on individual pages, you have set
debug="false" or removed the debug attribute altogether.

If you are not using the Default.aspx page for the site (for example, your home page
is Home.aspx), create a simple Default.aspx page that redirects to the home page,
using code like the following:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Response.Redirect("Home.aspx")
End Sub

IIS, which is the web server software that your hosting company uses, is configured
to look for a Default.aspx page on any ASP.NET site. You can take advantage of that
to redirect from the Default.aspx page to the page that you want users to see first,
even if they enter just your domain name without any .aspx file in the URL.

Remember that any time you make a change to any page or file in your site, you’ll
need to connect to the hosting site and upload the new version. This sounds obvi-
ous, but it’s not that hard to forget, and you can spend a surprising amount of time
trying to debug what seems like a problem but turns out to be that the live site has an
old copy of a file.

Finally, be sure to test changes immediately and make sure that you test them thor-
oughly. Don’t let your users find problems for you.

Hosting Your Own Site
You can host a site on your own computer. Hosting your own site is not a job for a
complete beginner, but it’s not rocket science. You need the following:

• A computer and an operating system that can run web server software, specifi-
cally Microsoft Internet Information Services (IIS).

• An “always-on” connection, like what you get with cable-modem, DSL, or fiber
service. (It might not need to be said, but you can’t really run a web site on a
computer that uses dial-up to connect to the Internet.)

• A registered domain name.

• A fixed IP address for the server computer, or alternatively, a dynamic DNS redi-
rection service. (This probably sounds like gibberish, but we’ll explain it shortly.)

Hosting Your Own Site | 495

Running Web Server Software
A web server is not a computer as such; it’s a program that runs on a computer, lis-
tening for web requests and fulfilling them. If you want to host your own web site,
you need to run web server software on a computer that you can make available to
the Internet.

For your purposes, web server software means Microsoft IIS. This is the server soft-
ware that ASP.NET is designed to run on. When you host a site, IIS is playing the
role that the ASP.NET Development Server has played when you’ve tested your web
sites.

IIS is available on Windows XP, Windows Vista, and of course, on the Windows
Server products—Windows Server 2003 and Windows Server 2008. For security and
performance reasons, it is not installed by default on any of these products; you must
add it as a Windows feature in the Control Panel. There are two versions of IIS,
depending on which operating system you have. If you have Vista or Windows
Server 2008, you run IIS 7. If you have Windows XP or Windows Server 2003, you
run IIS 6.

If you run IIS 7 (that is, you have Vista or Windows Server 2008), you
need to explicitly configure support for ASP.NET. For details, see the
topic “Running Web Applications on Windows Vista with Visual Stu-
dio 2005” on the MSDN web site at http://msdn2.microsoft.com/en-us/
library/aa964620(vs.80).aspx.

If you have only one computer, you can run IIS and SQL Server on it and use that
computer as your web server. However, this will put a load on your computer. Web
server processing will affect the performance of your other programs. Conversely, if
you run processor-intensive and disk-intensive programs, they will affect the perfor-
mance of the web server and the database. This might be OK if your web site has
very light traffic, but for web sites of any size, you should probably have a dedicated
computer to run IIS on.

Let’s assume for the remainder of this section that you decide to set up a spare com-
puter with Vista, and you install IIS, SQL Server Express Edition, and the .NET
Framework version 3.5 on it. Now what?

Security
The first thing to do is to do your best to make your web server computer secure. If
you run your own web server, you are inviting the entire Internet into your home and
onto your server. It is critical that you take precautions to protect the server and any
computers that it is attached to. These steps include, but are not limited to, the
following:

http://msdn2.microsoft.com/en-us/library/aa964620(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/aa964620(vs.80).aspx

496 | Appendix C: Publishing Your Web Site

• Make sure that the web server computer is formatted using the NTFS file sys-
tem. Using the alternative FAT system does not provide enough security for indi-
vidual folders and files.

• Put the computer behind a firewall. A typical approach is to use a router that has
a built-in firewall and to put the server computer behind it. Review the firewall
settings to ensure that ports are all closed except port 80, which is used for web
traffic. (If you have other computers behind the firewall, you might need to have
other ports open for functions such as IM—however, keep the open ports to the
few that you absolutely have to have.) An easy way to check the status of your
ports is to use Steve Gibson’s Shields Up! utility. (Search for it on the Web.)

• Install the absolute minimum amount of software on the server computer. Ide-
ally, you will have only IIS and SQL Server. (You can use SQL Server Express if
you are hosting a site on your own computer.) The less software there is, the
fewer security vulnerabilities you have (and the better the performance of the
server computer).

• Remove any user accounts that you might have created that have administrative
privileges. Note that ASP.NET and IIS create user accounts like ASPNET, IUSR_<name>,
and IWAM_<name>. These are required, so leave them; the good news is that they have
limited permissions.

• Be fanatic about installing the releases that are part of Windows Update. These
releases frequently include security patches that help keep down the vulnerabil-
ity of your web server and of SQL Server.

• Be fanatic about backing everything up, using multiple generations of backup. If
your server is compromised (or just plain crashes), you can restore from the
most recent good backup.

Sound scary? It is. The sad fact is that your computer or computers are being probed
continually for security vulnerabilities by malicious users out there. They don’t have
it in for you personally. They’re just constantly on the lookout for computers with
weak defenses that they can compromise, so that they can take control of your com-
puter and use it for their own purposes—as a spam forwarder, as a “zombie,” and so
on. Don’t think that because your site is small and not very important, your server is
not worth anyone’s trouble. It is.

Configuring the Firewall
If your server computer is sitting behind a firewall (as is strongly recommended), you
will need to make a few changes to how the firewall is configured. For starters, you
must make sure that port 80 is open in the firewall. This is the default port for web
traffic, and in order to receive web requests, your server must have that port open. In
Windows Firewall, this means setting up an exception for port 80, since by default
virtually all ports are closed. You might find that in Windows Firewall, port 80 isn’t

Hosting Your Own Site | 497

always referred to by its port number. For example, it might just be called “World
Wide Web Services (HTTP)” as in Figure C-12.

If the computer is behind a router that includes a firewall, you will also need to con-
figure that firewall to let port 80 traffic through. It is likely that you will have to addi-
tionally set up port forwarding. In port forwarding, the router accepts traffic on a
specific port and then forwards the traffic to the same port on a single computer on
the network behind the router. (Which is, of course, your server computer.) The
instructions for configuring ports and port forwarding for a hardware firewall differ
substantially between routers. About the only thing they have in common is that
they usually provide a way to access their configuration pages from a browser, usu-
ally on an address like http://192.168.1.1 or something similar. Beyond that, how-
ever, the best we can tell you is to consult the documentation that came with the
router. If you don’t have the documentation, you can probably find it online at the
router manufacturer’s web site.

Figure C-12. Opening port 80 in Windows Firewall to allow incoming web server traffic.

http://192.168.1.1

498 | Appendix C: Publishing Your Web Site

Hosting a Web Site Under IIS
After you’ve set up the web server, you can publish your web site to IIS. The easiest
way is to copy your web site files to a new folder on the web server computer, and
then to create an IIS application that points to the folder.

In IIS terminology, an “application” is roughly equivalent to what
we’ve been calling a “web site” in Visual Studio and VWD, leaving
aside some technical details. In IIS, a “web site” is the entire site—in
simple terms, yourdomain.com. This is an unfortunate naming conflict
that just means that you have to mentally switch gears when moving
between IIS and VWD.

If your development computer and the web server computer are on the same net-
work, you can usually copy the files across the network (using the Copy Web Site
window, if you like). Otherwise, you’ll need to transfer them on a CD or via some
other transportable means.

Make sure that the web server computer is running the .NET Frame-
work version 3.5.

The steps you take to create an IIS application depend on what version of IIS you are
running. The steps in IIS 7 and IIS 6 are similar, but the UI is different. We’ll show
you screenshots only for IIS 7, but we’ll provide instructions for both.

IIS 7

On the web server computer, you use Internet Information Services (IIS) Manager to
create and manage web sites. To open the management console, from the Windows
Start menu, choose Run and then type inetmgr. The manager window is displayed, as
shown in Figure C-13. (If you are running Vista, Vista might ask your permission to
continue.)

Open the node for the local computer, and then open the Web Sites node. Right-
click Default Web Site, and then choose Add Application, as shown in Figure C-14.

The Add Application dialog box is displayed, as shown in Figure C-15. For alias, fill
in the name that you want your application to have in the URL (for example, http://
yourdomain.com/alias). Fill in the path to the folder where you’ve put your web site
files and then click OK.

yourdomain.com
http://
http://

Hosting Your Own Site | 499

To test your site, open a browser and type http://localhost/alias/. If everything is
working, the Default.aspx file for your application will run. If it isn’t, here are some
things to check:

• The files are in the folder

• The IIS application points to the correct folder

• ASP.NET is enabled for IIS 7

If you’re stumped, do a web search for the exact error message you get and see how
the problem was resolved. (It’s a safe bet that you won’t be the only one who’s seen
the error.)

IIS 6

In IIS 6, the story is similar. To start the management console, type inetmgr in the
Windows Run box. Open the node for the server computer, and then open Web
Sites. Right-click Default Web Sites and then choose New ➝ Virtual Directory. This
starts the Virtual Directory Creation Wizard.

In the wizard, enter an alias and the path of the folder that contains your files. In the
Virtual Directory Access Permissions pane, select the Read, Run scripts, and Execute
permissions. (Setting these permissions causes IIS 6 to automatically create an IIS
application for your virtual directory.) Finish the wizard and then test your applica-
tion by opening a browser on the server and typing http://localhost/alias/.

Figure C-13. The IIS management console, where you create and manage web sites on the web
server computer.

http://localhost/alias/
http://localhost/alias/

500 | Appendix C: Publishing Your Web Site

Setting Up the Domain Name
A final step is to get a domain name and then to point the domain name to the IP
address at which your server computer can be reached. For background on domain
names, see the sidebar, “Domain Names and IP Addresses,” earlier in this chapter.

If you want to host a web site on a computer that you have at home, there’s a bit of a
wrinkle in getting the domain name to point to your IP address. Unless you have
paid for a fixed IP address, your computer probably does not have one. Instead, you
probably get your IP address through your ISP, which has a big pool of IP addresses
and which assigns one of those to your computer whenever you log on to their net-
work. In that case, you have a dynamic IP address. A dynamic IP address makes
things slightly tricky for purposes of registering a domain name to that address.

Figure C-14. Creating a new IIS application for the default Web site in IIS 7.

Further Resources | 501

The solution is to use something referred to as a dynamic DNS redirection service. It
works a little bit like a hosting service—the redirection service company has servers
with fixed IP addresses. You register your domain name with them, using their IP
address. Then, on your server computer, you run a utility as a Windows service that
periodically checks what IP address your ISP has currently assigned to you. This util-
ity sends your current IP address to the redirection service at intervals (as often as
every minute), so that the redirection service knows where the domain really is.

When a request is made to your domain name, it initially goes to the IP address for
the dynamic redirection service. The server at the dynamic DNS redirection com-
pany in turn looks up your domain name in its database, finds whatever your IP
address was as of the last time your computer phoned home, and sends you the
request. The web server on your computer then handles the request and sends the
response.

If this is your situation, you can investigate domain redirection services by searching
for “dynamic DNS redirection” on the web.

Further Resources
In this appendix, we’ve given you just an overview of how you can publish your web
site to the world. As noted, hosting sites differ in what they offer and in how you
work with them. If you opt to use a hosting site, take advantage of the extensive help
and user forums that all the hosters offer to get more information about managing
your account.

Figure C-15. Creating an IIS application for the folder where your web site files are.

502 | Appendix C: Publishing Your Web Site

The lists below provide more information about how to publish a web site. If you are
using a hosting company, see the following:

• The support forums for the hosting company that you select.

• Scott Guthrie’s blog, which includes posts about deployment, about the Data-
base Publishing Wizard, and more. Search his blog (http://weblogs.asp.net/
scottgu/) for topics like “Database Publishing Wizard.”

If you are running your own web server computer, see these resources:

• The http://iis.net site, which provides information and support for IIS.

• “Securing Your Web Server,” an in-depth article from the Microsoft Patterns and
Practices group, available at http://msdn2.microsoft.com/en-us/library/aa302432.
aspx.

http://weblogs.asp.net/scottgu/
http://weblogs.asp.net/scottgu/
http://iis.net
http://msdn2.microsoft.com/en-us/library/aa302432.aspx
http://msdn2.microsoft.com/en-us/library/aa302432.aspx

503

Appendix D APPENDIX D

Answers to Quizzes and Exercises4

Chapter 1: Getting Started

Answers to Quiz Questions
1. You can create a new web site by selecting File ➝ New Web Site, or by clicking

the “Create: Web Site” link on the Start page.

2. The three views are Design view, which shows you the appearance of your page,
Source view, which shows you the markup, and Split view, which shows both.

3. The settings that are specific to each control are called properties, and you can
view them in the Properties window of the IDE.

4. The controls are kept in the Toolbox, which is on the left side of the IDE by
default.

5. There are three different ways to run your program with debugging: click
Debug ➝ Start Debugging, press F5, or click the Start Debugging icon on the
toolbar.

6. The Click event.

7. The code for the event handler is located in the code-behind file.

8. You can get to the code-behind file by selecting the file in the Solution Explorer,
or by double-clicking the control whose default event you want to set up.

9. Use the Label control’s Text property to set the content of the label. You’ll see
that many controls have a Text property that you can set.

10. When you click the button in Hello World, you raise the Click event. The code
for the event handler is evaluated at the server, which redraws the page and
sends it back to the browser, causing a noticeable flicker. In Chapter 2, you’ll see
how to avoid that.

504 | Appendix D: Answers to Quizzes and Exercises

Answer to Exercise
Exercise 1-1. There is no “right” or “wrong” answer to this exercise; you’re just play-
ing around with the properties to get a feel for the range of options you have. If the
changes you’re making aren’t showing up properly, make sure you’ve selected the
label control; you can tell because “Label1” will be displayed at the top of the prop-
erties window. If you’re having difficulty changing the text of the label, be sure
you’re looking in the Default.aspx markup file, which you can access by clicking the
tab at the top of the page, or through the Solution Explorer.

If you switch to Source view, you’ll see the properties you’ve assigned reflected in the
markup, and you can change the values here as well, of course. Example D-1 shows
the markup for one author’s page.

Chapter 2: Building Web Applications

Answers to Quiz Questions
1. A postback is when the page is returned to the server to evaluate code handlers,

and the same page is sent back to the browser afterward.

2. The first type of postback in ASP.NET is synchronous, in which the entire page is
sent back to the server, as with a non-AJAX page. The second type, with AJAX, is
asynchronous, in which only part of the page is updated, and the rest is unaffected.

Example D-1. One version of the markup for Exercise 1-1
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_
Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:Button ID="Button1" runat="server" Text="Button" />
 <asp:Label ID="Label1" runat="server" Text="Label"
 BorderColor="#0033CC" BorderStyle="Dashed"
 Font-Bold="True" Font-Size="Larger"
 ForeColor="#0033CC"></asp:Label>
 </div>
 </form>
</body>
</html>

Chapter 2: Building Web Applications | 505

3. The ID property. The IDE sets this property for you (although you can change
it), and you need it to refer to the control from elsewhere on the page.

4. Use a TextBox control with the TextMode property set to Password.

5. Use a ListBox control, which allows multiple selections, and is best for long lists.

6. Set the GroupName property of each radio button to the same group.

7. A Panel control groups other controls together in one place, and enables you to
make all the controls visible or invisible as a whole.

8. The SelectedItem property retrieves the Text property of the currently selected
item of the control.

9. Set the control’s Visible property to false. The control will be present, but won’t
be rendered until something changes the Visible property.

10. Set the HyperLink control’s Target property to _blank.

Answers to Exercises
Exercise 2-1. This exercise isn’t too tricky; you’re just getting used to adding con-
trols to the page, and seeing how nested UpdatePanel controls work. If the labels
aren’t updating independently of each other, make sure you have the buttons and
labels inside the appropriate update panels. If not, you can drag them to their proper
places. Also make sure, in the code-behind file, that your event handler is changing
the text of the appropriate label. Example D-2 shows the markup for this exercise.

Example D-2. The markup file for Exercise 2-1
<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 Page Loaded at:
 <asp:Label ID="lblPageLoad" runat="server" Text="Label"
 Width="200px"></asp:Label>
 <asp:Button ID="btnPostback" runat="server" Text="Postback" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 Partial-Page update at: <asp:Label ID="lblPartialUpdate"
 runat="server" Text="Label"
 Width="200px"></asp:Label>

506 | Appendix D: Answers to Quizzes and Exercises

Example D-3 shows the code-behind file for this exercise.

Exercise 2-2. This exercise isn’t too hard, and there are several valid solutions. The
only challenge comes in choosing the best controls for the situation. The choice of
ice cream type is a somewhat long list, and only allows for one selection, so a
DropDownList control is probably best. For the toppings, again, it’s a long list, but
multiple selections are possible, so you could use a ListBox, but you need to make
sure to set the SelectionMode property to Multiple. The choice of cone or dish is
much simpler; there are only two options, and they’re mutually exclusive, so a pair
of RadioButton controls is the way to go here. Be sure to give them a common
GroupName, so they’ll be part of the same group.

 <asp:Button ID="btnPartialUpdate" runat="server"
 OnClick="btnPartialUpdate_Click"
 Text="Partial Update" />
 <asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 Another partial-page update at: <asp:Label
 ID="lblOtherPartialUpdate" runat="server"
 Text="Label" Width="200px"></asp:Label>
 <asp:Button ID="btnOtherPartialUpdate" runat="server"
 OnClick="btnOtherPartialUpdate_Click"
 Text="Another Partial Update" />
 </ContentTemplate>
 </asp:UpdatePanel>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </form>
</body>
</html>

Example D-3. The code-behind file for Exercise 2-1
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 lblPageLoad.Text = DateTime.Now
 End Sub

 Protected Sub btnPartialUpdate_Click(ByVal sender As Object, ByVal e _
 As System.EventArgs)
 lblPartialUpdate.Text = DateTime.Now
 End Sub

 Protected Sub btnOtherPartialUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 lblOtherPartialUpdate.Text = DateTime.Now
 End Sub
End Class

Example D-2. The markup file for Exercise 2-1 (continued)

Chapter 2: Building Web Applications | 507

Of course, that’s not the only way to solve the problem. For an ice cream parlor, you
might think it’s good marketing to display all your flavors and toppings for your cus-
tomers to choose from. In that case, you could use a RadioButtonList for the ice
cream, and a CheckBoxList for the toppings. When you’re designing a page, you need
to consider all the customer’s requirements.

One solution to this exercise is shown in Figure D-1. We didn’t use much fancy styl-
ing here, but we did put the controls in a table to make the layout easier. The
markup for this solution is shown in Example D-4.

Figure D-1. One solution to Exercise 2-2.

Example D-4. Markup for one solution to Exercise 2-2
<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-2</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr>

508 | Appendix D: Answers to Quizzes and Exercises

 <td colspan=2>
 Welcome to Ajax Ice Cream!

 Please place your order:</td>
 </tr>
 <tr valign=top>
 <td>
 Select your ice cream:

 <asp:DropDownList ID="ddlIceCream" runat="server">
 <asp:ListItem Value="Van">Vanilla</asp:ListItem>
 <asp:ListItem Value="Choc">Chocolate</asp:ListItem>
 <asp:ListItem Value="Straw">Strawberry</asp:ListItem>
 <asp:ListItem Value="Mint">Mint Chocolate
 Chip</asp:ListItem>
 <asp:ListItem Value="ButPec">Butter
 Pecan</asp:ListItem>
 <asp:ListItem Value="Coff">Coffee</asp:ListItem>
 <asp:ListItem Value="Pist">Pistachio</asp:ListItem>
 <asp:ListItem Value="Coco">Coconut</asp:ListItem>
 <asp:ListItem Value="Bub">Bubble Gum</asp:ListItem>
 <asp:ListItem Value="CotCan">Cotton
 Candy</asp:ListItem>
 </asp:DropDownList></td>
 <td>
 Select your toppings:

 <asp:ListBox ID="lbToppings" runat="server" Rows="3"
 SelectionMode="Multiple">
 <asp:ListItem Value="CSprink">Chocolate
 Sprinkles</asp:ListItem>
 <asp:ListItem Value="RSprink">Rainbow
 Sprinkles</asp:ListItem>
 <asp:ListItem Value="HFudge">Hot Fudge</asp:ListItem>
 <asp:ListItem Value="Carm">Caramel</asp:ListItem>
 <asp:ListItem Value="CDough">Cookie
 Dough</asp:ListItem>
 <asp:ListItem Value="Oreo">Oreo Cookies</asp:ListItem>
 <asp:ListItem Value="Pretz">Pretzel bits</asp:ListItem>
 <asp:ListItem Value="Nuts">Crushed
 Walnuts</asp:ListItem>
 <asp:ListItem Value="CBean">Coffee beans</asp:ListItem>
 <asp:ListItem Value="Candy">Crushed Candy
 Bars</asp:ListItem>
 </asp:ListBox></td>
 </tr>
 <tr>
 <td colspan=2>
 Cone or dish?
 <asp:RadioButton ID="rbCone" runat="server"
 GroupName="grpConeDish" Text="Cone" />
 <asp:RadioButton ID="rbDish" runat="server"
 GroupName="grpConeDish" Text="Dish" />
 </td>
 </tr>

Example D-4. Markup for one solution to Exercise 2-2 (continued)

Chapter 2: Building Web Applications | 509

Exercise 2-3. Creating the web page for this exercise is simple; you just need a
TextBox, a Label, a Button, and some plain text to tell the user what to do. The only
hitch is that you need to remember to set the TextMode property of the TextBox to
Password. The next step is writing the event handler for the Submit button. All you
want to do is set the Text property of the Label to be the same as the Text property of
the TextBox. For that, you need just one line:

lblPassword.Text = txtPassword.Text

Notice that even though the user can’t see the text that’s typed in the TextBox, the
page can, and can assign that value to another control (the label, in this case). This
is, of course, a terrible security practice, but it illustrates the point. Example D-5
shows the markup file for this exercise, and Example D-6 shows the short event
hander for the Submit button.

 <tr>
 <td colspan=2 align=center>
 <asp:Button ID="btnSubmit" runat="server" Text="Submit"
 /></td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Example D-5. The markup for Exercise 2-3
<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-3</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Enter your password:
 <asp:TextBox ID="txtPassword" runat="server"
 TextMode="Password"></asp:TextBox>

 The password you entered is:
 <asp:Label ID="lblPassword" runat="server"></asp:Label>

 <asp:Button ID="btnSubmit" runat="server" Text="Submit" /></div>
 </form>
</body>
</html>

Example D-4. Markup for one solution to Exercise 2-2 (continued)

510 | Appendix D: Answers to Quizzes and Exercises

Exercise 2-4. In this exercise, you’re combining the assignment you did in Exercise
2-3 with the DropDownList control you learned about earlier. When you create the
drop-down list, either with the ListItem editor, or by hand, you assign the ISBN
number to the Value property of the ListItem. That way, when the user makes a
selection, the user never sees the ISBN number, but it appears in the output anyway.
You can see how this would be useful for a database, so that you can hide your inter-
nal system from the users, but still allow them to choose by title.

The only twist for this exercise is that it lacks a Submit button. Therefore, to get the
postback, you can set the DropDownList control’s AutoPostBack property to true, so
that the page posts back every time the user makes a selection. That means you have
to put the event handler in the Load event for the page, just as you did in the Post-
backs example in this chapter. (You could also use a SelectedItemChanged handler, if
you prefer.) The event handler works a bit differently than in Exercise 2-3:

lblID.Text = ddlBookList.SelectedValue
lblTitle.Text = ddlBookList.SelectedItem.Text

To assign the text to the ID label, you need to retrieve the Value property of the
selected item in the drop-down list—that’s the SelectedValue property. Assigning
the title text is slightly trickier: you retrieve the Text property of the SelectedItem
property of the drop-down list: ddlBookList.SelectedItem.Text.

The markup for this exercise is shown in Example D-7, and the event handler is in
Example D-8.

Example D-6. The event handler for the Submit button in Exercise 2-3
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnSubmit_Click(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles btnSubmit.Click
 lblPassword.Text = txtPassword.Text
 End Sub
End Class

Example D-7. The markup for Exercise 2-4
<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb" Inherits="_
Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-4</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Which book are you interested in?

Chapter 3: Snappier Web Sites with AJAX | 511

Chapter 3: Snappier Web Sites with AJAX

Answers to Quiz Questions
1. To use AJAX controls on your web site, you need to add a ScriptManager con-

trol to your page. ASP.NET takes care of the rest of the details.

2. The EnablePartialRendering property is the critical property of the
ScriptManager control, which is why it is set to True by default.

3. The UpdatePanel control is the key control that enables asynchronous updates.

4. You need to handle the Navigate event of the ScriptManager control to modify
the behavior of the browser Forward and Back buttons for AJAX controls. You
also have to make sure the EnableHistory property of the ScriptManager control
is set to True.

5. No, you can’t. The extender controls need to have a target control to extend;
they don’t work alone.

6. All the Extender controls have a property called TargetControlID, which indi-
cates the control that the extender acts on.

 <asp:DropDownList ID="ddlBookList" runat="server" AutoPostBack="true">
 <asp:ListItem Value="00916X">Programming ASP.NET</asp:ListItem>
 <asp:ListItem Value="006993">Programming C#</asp:ListItem>
 <asp:ListItem Value="004385">Programming Visual Basic
 .NET</asp:ListItem>
 <asp:ListItem Value="102097">Learning C# 2005</asp:ListItem>
 </asp:DropDownList>

 Thank you for your interest in

 <asp:Label ID="lblID" runat="server" Text="ID number"></asp:Label>

 <asp:Label ID="lblTitle" runat="server"
 Text="Title"></asp:Label></div>
 </form>
</body>
</html>

Example D-8. The event handler for Exercise 2-4
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 lblID.Text = ddlBookList.SelectedValue
 lblTitle.Text = ddlBookList.SelectedItem.Text
 End Sub
End Class

Example D-7. The markup for Exercise 2-4 (continued)

512 | Appendix D: Answers to Quizzes and Exercises

7. You have to set the WatermarkText property from Source view; it’s not visible in
Design view.

8. It allows you to hide choices for a control within an UpdatePanel, saving valu-
able screen space.

9. The Commit() method is the method of the PopUpControlExtender that causes the
target control to display the results.

10. A CollapsiblePanelExtender, logically enough, lets you expand or collapse a
Panel control.

Answers to Exercises
Exercise 3-1. Start by creating a web site called Exercise 3-1. When the new web site
opens, switch to Design View, and drag a ScriptManager control onto the page, or
else you won’t get very far. Next, type in “Shipping State:” and add a TextBox con-
trol called txtState. Set its Text property to “Click Here,” its ReadOnly property to
True, and its Width property to 70px. Those are the controls the user will see to start
out. Now, add a standard Panel control below the TextBox, and name it pnlPopup.
Inside the Panel, place an UpdatePanel from the AJAX Extensions section of the Tool-
box. Inside the UpdatePanel, place a DropDownList control, and call it ddlStates. Set
the AutoPostBack property of ddlStates to True—this is an important step. Now use
the ListItem Editor to fill in the six items. Be sure to set the Text of each ListItem to
the full name of the state, and the Value to the state’s postal code.

So far, it’s easy. Now, click on the TextBox, open its Smart Tag, and select Add
Extender. When the Extender Wizard opens, select PopupControlExtender. You can
leave the default name. Switch to Source view to set the extender’s properties. The
Panel is the control that you want to pop up, so set PopupControlID to pnlPopup. Set
Position to Bottom, just to make it neater.

The PopupControlExtender is in place now, and ready to go, but it still needs to know
what to do, and for that, you need an event handler for the DropDownList. Double-click
ddlStates in Design view to open the default event handler, SelectedIndexChanged. You
need to call the Commit method of pceStates here, and pass in the value that the user
has selected, not the text. So, add this line of code to the event handler:

Protected Sub ddlStates_SelectedIndexChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles ddlStates.SelectedIndexChanged
 txtState_PopupControlExtender.Commit(ddlStates.SelectedValue)
End Sub

Run your application. You should find that the panel is hidden until you click it, and
that the value is automatically passed to txtState when you make a selection.
Example D-9 shows the markup for Default.aspx for this exercise.

Chapter 3: Snappier Web Sites with AJAX | 513

Example D-9. The markup file for Exercise 3-1
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>
<%@ Register assembly="AjaxControlToolkit" namespace="AjaxControlToolkit"
tagprefix="cc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 3-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

 Shipping State:
 <asp:TextBox ID="txtState" runat="server" ReadOnly="True" Width="70px">Click Here
 </asp:TextBox>
 <cc1:PopupControlExtender ID="txtState_PopupControlExtender" runat="server"
 DynamicServicePath="" Enabled="True" ExtenderControlID=""
 TargetControlID="txtState" PopupControlID="pnlPopup"
 Position="Bottom">
 </cc1:PopupControlExtender>

 <asp:Panel ID="pnlPopup" runat="server">
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:DropDownList ID="ddlStates" runat="server" AutoPostBack="True">
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>
 <asp:ListItem Value="MA">Massachusetts</asp:ListItem>
 <asp:ListItem Value="NJ">New Jersey</asp:ListItem>
 <asp:ListItem Value="NY">New York</asp:ListItem>
 <asp:ListItem Value="PA">Pennsylvania</asp:ListItem>
 <asp:ListItem Value="RI">Rhode Island</asp:ListItem>
 </asp:DropDownList>
 </ContentTemplate>
 </asp:UpdatePanel>
 </asp:Panel>
 </div>

 </form>
</body>
</html>

514 | Appendix D: Answers to Quizzes and Exercises

Example D-10 shows the very brief code-behind file.

Exercise 3-2. This is a fairly simple extender to work with—it does what it says it
does. To start, create a new web site, and call it Exercise 3-2. First add the
ScriptManager control to enable AJAX. Then, add the Panel control, call it
pnlRounded, and set its Width to 150, its Height to 100, and its BackColor to LightGray
(or whatever you prefer). Add the Label control inside the Panel, call it lblRounded,
and set its Width to 50, its BackColor to DarkGray, its ForeColor to White, and its Font-
Bold to True.

So far, nothing particularly interesting has happened. Select pnlRounded, click the
Smart Tag, and select RoundedCornersExtender. Then do the same for lblRounded. For
the rest, you’ll have to check out the online documentation, which will tell you that
there’s a property called Radius, and one called Corners. Those properties aren’t
available in Design view, so switch to Source view and set the Radius for lblRounded_
RoundedCornersExtender to 2; for pnlRounded_RoundedCornersExtender, set the Radius
to 8, and the Corners to Top, so that the bottom corners of the Panel will be left
square. There you go! It’s not the most exciting extender, but you can see how you
might use it to add a little bit of style to your forms. The markup for this page is in
Example D-11. There is no code-behind file for this example.

Example D-10. The code-behind file for Exercise 3-1
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub ddlStates_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ddlStates.SelectedIndexChanged
 txtState_PopupControlExtender.Commit(ddlStates.SelectedValue)
 End Sub
End Class

Example D-11. The markup file for Exercise 3-2
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>
<%@ Register assembly="AjaxControlToolkit" namespace="AjaxControlToolkit"
tagprefix="cc1" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 3-2</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

Chapter 3: Snappier Web Sites with AJAX | 515

If you experiment with this extender, you’ll find that it doesn’t work on other con-
trols, such as the TextBox or the DropDownList. Sometimes, the documentation
doesn’t tell you everything you need to know, and you can only find out by trial and
error.

Exercise 3-3. This exercise is slightly tricky because of the need for two textboxes.
Start by creating an page named Exercise 3-3, and add the required ScriptManager
control. Type “Volume Level:” and then add a TextBox control. This is the TextBox
that you want to see in the finished page, so name it txtVolume_Bound. Set its Width to
15px.

That’s the easy part. Now, add another TextBox, called txtVolume, on a new line.
None of the display properties matter on this TextBox because users will never see it.
Click on the Smart Tag, select the SliderExtender, and accept the default name.
Switch to Source view and set the extender’s Maximum property to 10, and the
BoundControlID to txtVolume_Bound. Run the application, and the slider should work
as you’d expect, although you’ll only see one TextBox. Also, notice that if you type a
number in the text box, the slider’s handle moves to match. The markup for this
page is shown in Example D-12. There is no code-behind file.

 <asp:Panel ID="pnlRounded" runat="server" Height="100px"
 Width="150px" BackColor="LightGray">

 <asp:Label ID="lblRounded" runat="server" Text="Label"
 Width="50px" BackColor="DarkGray" ForeColor="White"
 Font-Bold="true"></asp:Label>
 <cc1:RoundedCornersExtender ID="lblRounded_RoundedCornersExtender"
 runat="server" Enabled="True" TargetControlID="lblRounded"
 Radius=2>
 </cc1:RoundedCornersExtender>
 </asp:Panel>

 <cc1:RoundedCornersExtender ID="pnlRounded_RoundedCornersExtender"
 runat="server" Enabled="True" TargetControlID="pnlRounded"
 Radius=8 Corners="Top">
 </cc1:RoundedCornersExtender>

 </div>
 </form>
</body>
</html>

Example D-12. The markup for Exercise 3-3
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>
<%@ Register assembly="AjaxControlToolkit" namespace="AjaxControlToolkit"
tagprefix="cc1" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Example D-11. The markup file for Exercise 3-2 (continued)

516 | Appendix D: Answers to Quizzes and Exercises

As you can imagine, there are many possible uses for a control like this, and for
many of them, you would actually want to hide the textbox the control extends. You
could use it as an actual volume control, for one thing, or you could use several of
them to make a color slider like you find in a drawing application.

Exercise 3-4. Creating the web site for this exercise isn’t difficult. You need to make
sure you start with a ScriptManager control and an UpdatePanel control. Then, place
the TextBox and the Button controls inside the UpdatePanel and name them appropri-
ately. Set the EnableHistory property of the ScriptManager control to True to enable
the browser history for the AJAX controls on the page, which in this exercise is just
the TextBox and the Button in the UpdatePanel.

Now you need to set a history point every time the user clicks the Button, which
means you’ll have to handle the Click event for the button. To do that, you’ll need to
define two variables, both as strings: strHistoryText, to hold the text that was in the
TextBox when the Button was clicked, and strTitle, which isn’t strictly necessary,
but provides the text for the browser history list. In this case, we’re just using the
word “History:” followed by the same text that was in the TextBox. Then you call the
AddHistoryPoint() method of the ScriptManager, passing in the string “TextBox” as
the key, and then the two variables you created:

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 3-3</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div>

 Volume Level:
 <asp:TextBox ID="txtVolume_Bound" runat="server" Width="15px">
 </asp:TextBox>

 <asp:TextBox ID="txtVolume" runat="server"></asp:TextBox>
 <cc1:SliderExtender ID="txtVolume_SliderExtender" runat="server"
 Enabled="True" TargetControlID="txtVolume" Maximum="10"
 BoundControlID="txtVolume_Bound">
 </cc1:SliderExtender>

 </div>
 </form>
</body>
</html>

Example D-12. The markup for Exercise 3-3 (continued)

Chapter 3: Snappier Web Sites with AJAX | 517

Dim strHistoryText As String = txtHistory.Text
Dim strTitle As String = "History: " + strHistoryText

ScriptManager1.AddHistoryPoint("TextBox", strHistoryText, strTitle)

Now that the history points are enabled, you need to write an event handler for the
Navigate event of the ScriptManager control, so that you can retrieve the values later.
First, you test to see whether the value associated with the key “TextBox” is Nothing
(that is, if there’s nothing stored for that key). If it isn’t, then you can set the value of
the TextBox to the value you stored in that key:

If Not e.State("TextBox") Is Nothing Then
 txtHistory.Text = e.State("TextBox")
End If

The markup for this page is shown in Example D-13. The code-behind file is shown
in Example D-14.

Example D-13. The markup for Exercise 3-4
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 3-4</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server" EnableHistory="True">
 </asp:ScriptManager>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:TextBox ID="txtHistory" runat="server"></asp:TextBox>
 <asp:Button ID="btnHistory" runat="server" Text="Save History" />
 </ContentTemplate>
 </asp:UpdatePanel>

 </div>
 </form>
</body>
</html>

518 | Appendix D: Answers to Quizzes and Exercises

Chapter 4: Saving and Retrieving Data

Answers to Quiz Questions
1. You need a DataSource control to provide a database connection to one of your

other controls.

2. Binding is the process that allows controls to retrieve data from retrieved tables.

3. A connection string is a string that contains the information necessary to connect
to a database on a server. You can store the connection string in the web.config file
for later use.

4. Create (add a new record), Retrieve, Update (edit), and Delete.

5. Use the GridView’s Smart Tag and the “Choose Data Source” drop-down list.

6. Turn on paging by clicking the Smart Tag and selecting Enable Paging.

7. Enable Updating and Deleting from the Smart Tag.

8. Create an event handler for the RowDataBound event.

9. To allow users to edit data, the LinqDataSource must retrieve all the columns
from the table. Therefore, you need to select the asterisk field (*) in the config-
ure data source wizard.

10. In terms of Dynamic Data, there are two types of templates: field templates
define how individual data types are displayed; page templates define the behav-
ior of an entire set of data.

Example D-14. The code-behind file for Exercise 3-4
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnHistory_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles btnHistory.Click
 Dim strHistoryText As String = txtHistory.Text
 Dim strTitle As String = "History: " + strHistoryText

 ScriptManager1.AddHistoryPoint("TextBox", strHistoryText, strTitle)
 End Sub

 Protected Sub ScriptManager1_Navigate(ByVal sender As Object, _
 ByVal e As System.Web.UI.HistoryEventArgs) _
 Handles ScriptManager1.Navigate
 If Not e.State("TextBox") Is Nothing Then
 txtHistory.Text = e.State("TextBox")
 End If

 End Sub
End Class

Chapter 4: Saving and Retrieving Data | 519

Answers to Exercises
Exercise 4-1. Here’s one way to get a page that looks like Figure 4-42:

1. Create a new web site as usual. Name it Exercise 4-1.

2. Drag a SqlDataSource control onto the Design view.

3. Drag a GridView control onto the Design view. Click the GridView’s Smart Tag,
go to the “Choose Data Source” drop-down list, and select SqlDataSource1.

4. Click “Configure Data Source” in the Smart Tag. The Configure Data Source
Wizard starts. You can use the connection string from the other exercises in this
chapter. Click Next.

5. On the next page, click the radio button marked “Specify columns from a table
or view,” and select the Product table from the drop-down list. Check the boxes
for ProductID, Name, ProductNumber, Color, and ListPrice. The Wizard should
look like Figure D-2.

Figure D-2. Creating the Select statement for your GridView.

520 | Appendix D: Answers to Quizzes and Exercises

6. Click the WHERE button. In the Add WHERE Clause dialog, select Weight in
the Column drop-down list, select > (greater than) in the Operator drop-down
list, and None in the Source drop-down list. The Value field appears on the right
side of the box; enter 100 in the field. The dialog should look like Figure D-3.
Click Add to add the WHERE clause, and OK to return to the Wizard.

7. Click the Advanced button and check Generate INSERT, UPDATE, and
DELETE statements and Use optimistic concurrency.

8. Click Next to go to the next page; then, click Finish to close the Wizard. Remem-
ber that this query won’t work properly right now, so switch to Source view, find
the four instances of [Product], and change them to [Production].[Product], like
you did earlier in the chapter.

9. Return to Design View, click the Smart Tag for the GridView, and check the boxes
for Enable Paging, Enable Sorting, Enable Editing, and Enable Deletion. Click
AutoFormat, and select the Professional color scheme. Run your application.

The Source code for this application looks like Example D-15.

Figure D-3. Adding the WHERE clause for your GridView.

Chapter 4: Saving and Retrieving Data | 521

Example D-15. The markup for Exercise 4-1
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"

 SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [Color],
 [ListPrice] FROM [Production].[Product]
 WHERE ([Weight] > @Weight)"
 ConflictDetection="CompareAllValues"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [Color] = @original_Color
 AND [ListPrice] = @original_ListPrice"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber], [Color], [ListPrice])
 VALUES (@Name, @ProductNumber, @Color, @ListPrice)"
 OldValuesParameterFormatString="original_{0}"
 UpdateCommand="UPDATE [Production].[Product] SET
 [Name] = @Name, [ProductNumber] = @ProductNumber,
 [Color] = @Color, [ListPrice] = @ListPrice
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [Color] = @original_Color
 AND [ListPrice] = @original_ListPrice">
 <SelectParameters>
 <asp:Parameter DefaultValue="100" Name="Weight" Type="Decimal" />
 </SelectParameters>
 <DeleteParameters>
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_Color" Type="String" />
 <asp:Parameter Name="original_ListPrice" Type="Decimal" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />

522 | Appendix D: Answers to Quizzes and Exercises

Exercise 4-2. Adding labels and textboxes to your page is easy. The tricky bit is that
you need to change the content of the textboxes whenever the user selects a row in
the GridView. Fortunately, you’ve seen the SelectedIndexChanged event, which makes
it easy to send data to controls based on a user’s selections in the GridView.

Start by copying the web site from Exercise 4-1 to a new web site, Exercise 4-2, as
explained in Appendix B.

Click the GridView’s Smart Tag, and check the Enable Selection checkbox. The Select
links show up next to the Edit and Delete links that are already there.

Drag a Label onto the Design view, below the GridView. Name it lblName, and change
the text to “Name:”. Drag a TextBox next to the Label, name it txtName, and set its
ReadOnly property to True. Add another Label, named lblColor, with text of “Color:”.
Finally, add a second TextBox, name it txtColor, and set its ReadOnly property to True.

 <asp:Parameter Name="ListPrice" Type="Decimal" />
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_Color" Type="String" />
 <asp:Parameter Name="original_ListPrice" Type="Decimal" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />
 <asp:Parameter Name="ListPrice" Type="Decimal" />
 </InsertParameters>
 </asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server" DataSourceID="SqlDataSource1"
 AllowPaging="True" AllowSorting="True" CellPadding="4" ForeColor="#333333"
 GridLines="None">
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
 </Columns>
 <PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Center" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True" ForeColor="#333333" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <EditRowStyle BackColor="#999999" />
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 </asp:GridView>

 </div>
 </form>
</body>
</html>

Example D-15. The markup for Exercise 4-1 (continued)

Chapter 4: Saving and Retrieving Data | 523

You’re got all the parts in place, but now you need to connect the Select link in the
GridView to the two TextBoxes. Double-click one of the Select links to open the
SelectedIndexChanged event handler for GridView1. Add the following highlighted
code:

Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object,_
 ByVal e As System.EventArgs) Handles GridView1.SelectedIndexChanged
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name column
 Dim cellColor As TableCell = GridView1.SelectedRow.Cells(4) ' Color column
 txtName.Text = cellName.Text
 txtColor.Text = cellColor.Text
 End If
End Sub

This is very similar to what you did earlier in the chapter. GridView1.SelectedRow rep-
resents the currently selected row—the one the user clicked. First, check to see if
SelectedRow is a DataRow. If it is, you create a cell variable called cellName, and set
that equal to the cell at index 2 in SelectedRow, because you know that’s the Name
column (remember that the row starts at index 0). Similarly, you create a cell
cellColor, which is set to the cell at index 4. Then, you assign the Text properties of
each of these cells to the respective TextBoxes.

Run your application and try it out. As you select different rows, the values in the
TextBoxes change. You can see how this would be useful for customers to select
products on your order form.

Example D-16 shows the source code for Exercise 4-2.

Example D-16. The markup for Exercise 4-2
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-2</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"

 SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [Color],
 [ListPrice] FROM [Production].[Product]
 WHERE ([Weight] > @Weight)"
 ConflictDetection="CompareAllValues"

524 | Appendix D: Answers to Quizzes and Exercises

 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [Color] = @original_Color
 AND [ListPrice] = @original_ListPrice"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber], [Color], [ListPrice])
 VALUES (@Name, @ProductNumber, @Color, @ListPrice)"
 OldValuesParameterFormatString="original_{0}"
 UpdateCommand="UPDATE [Production].[Product] SET
 [Name] = @Name, [ProductNumber] = @ProductNumber,
 [Color] = @Color, [ListPrice] = @ListPrice
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [Color] = @original_Color
 AND [ListPrice] = @original_ListPrice">
 <SelectParameters>
 <asp:Parameter DefaultValue="100" Name="Weight" Type="Decimal" />
 </SelectParameters>
 <DeleteParameters>
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_Color" Type="String" />
 <asp:Parameter Name="original_ListPrice" Type="Decimal" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />
 <asp:Parameter Name="ListPrice" Type="Decimal" />
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_Color" Type="String" />
 <asp:Parameter Name="original_ListPrice" Type="Decimal" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />
 <asp:Parameter Name="ListPrice" Type="Decimal" />
 </InsertParameters>
 </asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server" DataSourceID="SqlDataSource1"
 AllowPaging="True" AllowSorting="True" CellPadding="4" ForeColor="#333333"
 GridLines="None">
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <Columns>

Example D-16. The markup for Exercise 4-2 (continued)

Chapter 4: Saving and Retrieving Data | 525

The code-behind file is shown in Example D-17.

Exercise 4-3. This is mostly a simple exercise, but it shows you how the AJAX
Update panels interact with GridViews.

1. Create a new web site called Exercise 4-3.

2. Drag a ScriptManager control onto the page first to enable AJAX for this site.
Next, drag an UpdatePanel onto your page. Everything else goes inside the
UpdatePanel.

3. Add some text inside the UpdatePanel, “Select the table you would like to see:”.
Drag two radio buttons into the UpdatePanel beneath that text. Name the first
one rbEmployee, set its text to “Show Employees,” and set its GroupName to
grpEmployeeCustomer. Name the second radio button rbCustomer, set its text to

 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" />
 </Columns>
 <PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Center" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True" ForeColor="#333333" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <EditRowStyle BackColor="#999999" />
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 </asp:GridView>

 <asp:Label ID="lblName" runat="server" Text="Name:"></asp:Label>
 <asp:TextBox ID="txtName" runat="server" ReadOnly="True"></asp:TextBox>
 <asp:Label ID="lblColor" runat="server" Text="Color: "></asp:Label>
 <asp:TextBox ID="txtColor" runat="server" ReadOnly="True"></asp:TextBox>

 </div>
 </form>
</body>
</html>

Example D-17. The code-behind file for Exercise 4-2
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles GridView1.SelectedIndexChanged

 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name column
 Dim cellColor As TableCell = GridView1.SelectedRow.Cells(4) ' Color column
 txtName.Text = cellName.Text
 txtColor.Text = cellColor.Text
 End If

 End Sub
End Class

Example D-16. The markup for Exercise 4-2 (continued)

526 | Appendix D: Answers to Quizzes and Exercises

“Show Customers,” and set its GroupName to grpEmployeeCustomer as well. Now
both buttons are part of the same group.

4. Add a SQLDataSource to the page, and name it sdsEmployee. Add a GridView to the
page, and call it gvEmployee.

5. Time to give gvEmployee something to do. Click its Smart Tag, select sdsEmployee
as the data source, and configure sdsEmployee to retrieve the EmployeeID,
ManagerID, and Title columns from the Employee table. Remember to go to
Source view and add the schema. In this case, you need to replace [Employee]
with [HumanResources].[Employee]. Enable paging and sorting on gvEmployee,
and give it whatever formatting you like.

6. Now drag another SQLDataSource (sdsCustomer) and another GridView
(gvCustomer) onto the page.

7. gvCustomer needs some data as well. Click its Smart Tag, select sdsCustomer as
the data source, and configure sdsCustomer to retrieve the CustomerID,
AccountNumber, and CustomerType fields from the Customer table. Again, go to
source view and change [Customer] to [Sales].[Customer]. Enable paging and
sorting, and apply whatever format you want.

8. Everything’s easy so far, right? Now for the only tricky bit. You want gvEmployee
to be visible when the rbEmployee radio button is clicked; when rbCustomer is
clicked, only gvCustomer should be visible. You’ve seen how to do that in
Chapter 2.

9. Start out with neither GridView visible. Click each GridView, and set its Visible
property to false.

10. Double-click rbEmployee, which creates the rbEmployee_CheckChanged event han-
dler for you. You want to change the visibility of gvEmployee to be the same as
the Checked value of rbEmployee, and you want gvCustomer.Visible to have the
same value as rbCustomer.Checked. Because you know that rbEmployee and
rbCustomer can’t both be checked at the same time (because they’re part of the
same radio button group), you know that only one GridView will be visible at a
time. Here’s the code to add to rbEmployee_CheckChanged:

Protected Sub rbEmployee_CheckedChanged(ByVal sender As Object, _
ByVal e As System.EventArgs)
 gvEmployee.Visible = rbEmployee.Checked
 gvCustomer.Visible = rbCustomer.Checked
End Sub

11. Go back to the .aspx file, click rbEmployee, and set its AutoPostBack property to
true, so that the table will show as soon as the button is clicked.

12. Now double-click rbCustomer to create the rbCustomer_CheckChanged event han-
dler, and add the exact same code. Also make sure to set rbCustomer’s
AutoPostBack property to true.

Chapter 4: Saving and Retrieving Data | 527

13. Test out your application. As you click each radio button, the table displayed
should change. You will see some delay the first time you click the radio button,
because the data for the GridView is being sent to the client, but after that, there’s
no postback, even if you change the page or sort the GridView.

Example D-18 shows the markup file for Exercise 4-3.

Example D-18. The markup file for Exercise 4-3
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-3</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 Select the table you would like to see:

 <asp:RadioButton ID="rbEmployee" runat="server"
 GroupName="grpEmployeeCustomer"
 Text="Show Employees" AutoPostBack="True" />

 <asp:RadioButton ID="rbCustomer" runat="server"
 GroupName="grpEmployeeCustomer"
 Text="Show Customers" AutoPostBack="True" />
 <asp:SqlDataSource ID="sdsEmployee" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString
 %>"
 SelectCommand="SELECT [EmployeeID], [ManagerID], [Title]
 FROM [HumanResources].[Employee]">
 </asp:SqlDataSource>
 <asp:GridView ID="gvEmployee" runat="server" DataSourceID="sdsEmployee"
 CellPadding="4" ForeColor="#333333" GridLines="None"
 AllowPaging="True"
 AllowSorting="True" Visible="False">
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <PagerStyle BackColor="#284775" ForeColor="White"
 HorizontalAlign="Center" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True"
 ForeColor="#333333" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <EditRowStyle BackColor="#999999" />

528 | Appendix D: Answers to Quizzes and Exercises

Example D-19 shows the code-behind file for Exercise 4-3.

 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 </asp:GridView>
 <asp:SqlDataSource ID="sdCustomer" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString
 %>"
 SelectCommand="SELECT [CustomerID], [AccountNumber], [CustomerType]
 FROM [Sales].[Customer]">
 </asp:SqlDataSource>
 <asp:GridView ID="gvCustomer" runat="server" DataSourceID="sdCustomer"
 AllowPaging="True" AllowSorting="True" CellPadding="4"
 ForeColor="#333333"
 GridLines="None" Visible="False">
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <PagerStyle BackColor="#284775" ForeColor="White"
 HorizontalAlign="Center" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True"
 ForeColor="#333333" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <EditRowStyle BackColor="#999999" />
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 </asp:GridView>
 </ContentTemplate>
 </asp:UpdatePanel>

 </div>
 </form>
</body>
</html>

Example D-19. The code-behind file for Exercise 4-3
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub rbEmployee_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles rbEmployee.CheckedChanged
 gvEmployee.Visible = rbEmployee.Checked
 gvCustomer.Visible = rbCustomer.Checked

 End Sub

 Protected Sub rbCustomer_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles rbCustomer.CheckedChanged
 gvEmployee.Visible = rbEmployee.Checked
 gvCustomer.Visible = rbCustomer.Checked

 End Sub
End Class

Example D-18. The markup file for Exercise 4-3 (continued)

Chapter 4: Saving and Retrieving Data | 529

Exercise 4-4. You’re going to need several DataSource controls for this exercise—one
for each of the drop-down lists, and another for the GridView.

1. Add a SqlDataSource, a Label, and a DropDownList to your page. Call the data
source sdsCategorySource, the label lblCategory, and the drop-down list
ddlCategory. Configure sdsCategorySource to retrieve the ProductCategoryID and
Name columns from the ProductCategory table (remember to go to Source view
and add the [Production] schema).

2. Click the Smart Tag on ddlCategory and select “Choose Data Source.” For the
“Select a data source” field, choose sdsCategorySource. For “Select a data field to
display in the DropDownList,” select the Name column—this is what you want
the user to see in the drop-down list. For “Select a data field for the value of the
DropDownList,” select ProductCategoryID. The control will automatically asso-
ciate each name with its appropriate value within the control, so you can use
them later. The Choose Data Source page should look like Figure D-4. If you
don’t see anything in the drop-down lists, click the “Refresh Schema” link at the
bottom of the dialog.

Figure D-4. Select the source, name, and value properties for ddlCategory.

530 | Appendix D: Answers to Quizzes and Exercises

3. That’s one control set up. Add some text to the label, and test the application
now to make sure everything is working. Your drop-down list won’t do much of
anything yet, but if the product categories appear in the list, you’ll know you
configured your data source properly.

For the Subcategory drop-down list, you want to only show the subcategories that
are connected to the category the user chose. That’s only slightly trickier—you’ll
need a WHERE clause.

1. Add a SqlDataSource (and call it sdsSubcategorySource), a DropDownList (called
ddlSubcategory), and also a label for the drop-down list. Then, configure
sdsSubcategorySource to retrieve the ProductSubcategoryID and Name columns
from the ProductSubcategory table.

2. Click the WHERE button to add a WHERE clause. You want to display the
subcategories of the category in the first drop-down list, which means you want
to match on the ProductCategory column. Specifically, you want to select the
rows where the ProductCategoryID column is the same as whatever the user selected
in ddlCategory. The Wizard can do that for you. Select ProductCategoryID for the
Column, = for the Operator, and Control for the Source. The Control ID field on
the right becomes visible; select ddlCategory. You don’t need a default value
because ddlCategory will always have some value. When you have all that set,
your WHERE clause dialog will look like Figure D-5.

3. Click Add to add the WHERE clause; then, click OK to return to the Wizard.
On the Wizard, click Next, and then Finish. Remember to go to Source view and
add the [Production] schema.

4. You’ve got the data, so now you need to tell the drop-down list how to use it.
Click ddlSubcategory and select Choose Data Source. When the dialog appears,
select sdsSubcategorySource for the data source, then Name for the field to dis-
play, and finally ProductSubcategoryID for the field to use for the value. Click
OK.

5. Back in Design view, click ddlCategory, and set its AutoPostBack property to
true. You want ddlSubcategory to change as soon as the user makes a selection
in ddlCategory, so you want it to post back right away.

6. Save everything and test it. When you make a selection in the Category drop-
down list, the Subcategory drop-down list should change automatically. If it
doesn’t, go back and check the WHERE statement for ddlSubcategory.

Two drop-down lists are now set; time for the third.

1. Add another SqlDataSource (sdsColorSource) and another DropDownList
(ddlColor). Add a Label, too. It would be nice if AdventureWorks had a Color
table with colors and IDs for each, but it doesn’t. The colors are stored in the
Product table, so you need to retrieve them from there. That’s not hard, but it
requires a little SQL trick to make it look good. Configure sdsColorSource to

Chapter 4: Saving and Retrieving Data | 531

retrieve just the Color column from the Product table—no need for WHERE
clauses this time. Remember to add the [Production] schema in Source view.

2. Click ddlColor and select Choose Data Source. In the dialog, select
sdsColorSource for the data source, and select Color for the field and the value to
display. Click OK.

3. If you were to run your application right now, you’d see that ddlColor would
have a long list of colors—many repeated, and many blank. This actually works
fine, but it doesn’t look very good. What you want is to only retrieve colors that
aren’t already in the list. The easiest way to do that is to use an extra bit of SQL
code called DISTINCT. DISTINCT does exactly what it sounds like—it makes sure
that each data item in the list is unique, by discarding the repeats. To make this
work, switch to source view and find this line, which contains the Select state-
ment for sdsColorSource:

SelectCommand="SELECT [Color] FROM [Production].[Product]"></asp:SqlDataSource>

Just add DISTINCT, like this:
SelectCommand="SELECT DISTINCT [Color] FROM _
[Production].[Product]"></asp:SqlDataSource>

4. Now test your application. You should see a much shorter list in ddlColor, and
each item is unique.

Figure D-5. Setting the WHERE clause for ddlSubcategory.

532 | Appendix D: Answers to Quizzes and Exercises

Now you have all the tools users need to make a selection, so all you need to do is
give them a way to see the results.

1. Add one more SqlDataSource (call it sdsProducts), and a GridView (gvProducts).

2. Configure the data source to retrieve the ProductID, Name, ProductNumber, and
Color from the Product table.

3. Click the WHERE button. This time, you want two WHERE clauses: one for the sub-
category, and one for the color. (The category doesn’t matter; it’s only there to pop-
ulate the subcategory list.) For the first WHERE, set the Column to
ProductSubcategoryID, the Operation to =, and the Source to Control. On the
right, set the Control ID to ddlSubcategory. Click Add.

4. For the second WHERE clause, set the Column to Color, the Operation to =, and
the Source to Control. On the right, set the Control ID to ddlColor. The dialog
should look like Figure D-6.

5. Click Add to add the second WHERE, and OK to return to the Wizard. Click
Next and Finish in the Wizard; then, switch to Source view to add the
[Production] schema.

6. Back in Design view, click gvProducts, select sdsProducts as the data source, and
enable sorting and paging. Apply a nice format if you like.

Figure D-6. Adding the WHERE clauses for the GridView. Notice that the subcategory WHERE
clause is already added.

Chapter 4: Saving and Retrieving Data | 533

You don’t want to set either ddlSubcategory or ddlColor to auto-postback because
you want users to be able to make both choices before the GridView does anything.
The drop-down lists have AutoPostBack set to false by default, so that’s no problem.
You need something to trigger the postback, though, so add a Button and change its
text to “Submit.” Buttons are set to post back whenever they’re clicked, and that’s all
you want it to do, so you don’t even need an event handler for this button. Easy!

Run your application and try it out. Try selecting black gloves or yellow jerseys to see
the full effect. Note that if there are no items in the color you’ve chosen, the GridView
will not appear.

Well done! You’ve taken a long and confusing product list, and with just a handful
of drop-down lists, you’ve made it much friendlier and easier for readers to navigate.
With the selection tools you learned about in this chapter, you can imagine that you
could enable the user to select items from the GridView to see product details, or add
it to a shopping cart, but that’s a subject for later on.

Example D-20 shows the markup file for Exercise 4-4.

Example D-20. The markup file for Exercise 4-4
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-4</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:SqlDataSource ID="sdsCategorySource" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductCategoryID], [Name]
 FROM [Production].[ProductCategory]">
 </asp:SqlDataSource>
 <asp:SqlDataSource ID="sdsSubcategorySource" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductSubcategoryID], [Name]
 FROM [Production].[ProductSubcategory]
 WHERE ([ProductCategoryID] = @ProductCategoryID)">
 <SelectParameters>
 <asp:ControlParameter ControlID="ddlCategory"
 Name="ProductCategoryID"
 PropertyName="SelectedValue" Type="Int32" />
 </SelectParameters>
 </asp:SqlDataSource>

534 | Appendix D: Answers to Quizzes and Exercises

 <asp:SqlDataSource ID="sdsColorSource" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT DISTINCT [Color]
 FROM [Production].[Product]"></asp:SqlDataSource>
 <asp:SqlDataSource ID="sdsProducts" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"

 SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [Color]
 FROM [Production].[Product]
 WHERE (([ProductSubcategoryID] = @ProductSubcategoryID)
 AND ([Color] = @Color))">
 <SelectParameters>
 <asp:ControlParameter ControlID="ddlSubcategory"
 Name="ProductSubcategoryID"
 PropertyName="SelectedValue" Type="Int32" />
 <asp:ControlParameter ControlID="ddlColor" Name="Color"
 PropertyName="SelectedValue" Type="String" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:Label ID="lblCategory" runat="server" Font-Bold="True"
 Text="Category: "></asp:Label>
 <asp:DropDownList ID="ddlCategory" runat="server"
 DataSourceID="sdsCategorySource" DataTextField="Name"
 DataValueField="ProductCategoryID" AutoPostBack="True">
 </asp:DropDownList>

 <asp:Label ID="lblSubcategory" runat="server" Font-Bold="True"
 Text="Subcategory: "></asp:Label>
 <asp:DropDownList ID="ddlSubcategory" runat="server"
 DataSourceID="sdsSubcategorySource" DataTextField="Name"
 DataValueField="ProductSubcategoryID">
 </asp:DropDownList>

 <asp:Label ID="lblColor" runat="server" Font-Bold="True"
 Text="Color:"></asp:Label>
 <asp:DropDownList ID="ddlColor" runat="server"
 DataSourceID="sdsColorSource"
 DataTextField="Color" DataValueField="Color">
 </asp:DropDownList>

 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />

 <asp:GridView ID="gvProducts" runat="server" AllowPaging="True"
 AllowSorting="True" CellPadding="4" DataSourceID="sdsProducts"
 ForeColor="#333333" GridLines="None">
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Center" />

Example D-20. The markup file for Exercise 4-4 (continued)

Chapter 5: Validation | 535

Chapter 5: Validation

Answers to Quiz Questions
1. You need validation because users make mistakes. The wrong input could result

in misplaced orders, inaccurate records, and can even corrupt your database.
Validation gets the user to fix those errors before they get anywhere near your
data.

2. Set the button’s CausesValidation property to false.

3. The RequiredFieldValidator—in the case of a radio button list, you’ve already
defined the choices for the user, so you don’t need to validate the form or type of
input; you just need to make sure that they chose something.

4. When the Display property is set to Static, the validator takes up a fixed
amount of room, even if it’s not displaying a message. When it’s set to Dynamic,
the control is only rendered when there’s a validation error, which can cause
other controls to move around.

5. Use a RequiredFieldValidator, and set the InitialValue property to “Choose a
payment method.”

6. The ValidationSummary control enables you to place all the validation error mes-
sages in one spot on the page, instead of next to each control.

7. Use a CompareValidator. You can compare the quantity the user ordered with the
amount of inventory in your database, and make sure that the amount the user
wants is equal to or less than the amount you have.

8. Use a NoSnoreValidation control to make sure none of the guests snore too
loudly. Just kidding. Use a RangeValidator. Set the MinimumValue to 2, and the
MaximumValue to 5.

9. Use a RegularExpressionValidator. The Regular Expression Editor has an option
that provides you with a regular expression to validate the form of an email
address.

 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True" ForeColor="#333333" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <EditRowStyle BackColor="#999999" />
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 </asp:GridView>

 </div>
 </form>
</body>
</html>

Example D-20. The markup file for Exercise 4-4 (continued)

536 | Appendix D: Answers to Quizzes and Exercises

10. You’d need to use a CustomValidator. The RangeValidator can only check values
in a single range. With a CustomValidator, though, you could write code to check
that the age the user entered either falls between 6 and 12, or is greater than 65.

Answers to Exercises
Exercise 5-1. This one is fairly simple to start out with. Just make a table with five
labels, five textboxes, and five Required Field Validators. We specified that you
didn’t need to worry about the format of the data, so a RequiredFieldvalidator is all
you need right now. Just make sure you have the validators targeting the correct
controls, add some appropriate error messages, and you’re done. Example D-21
shows the markup file for this exercise.

Example D-21. The markup file for Exercise 5-1
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 5-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <h1>
 Phone Survey Participation Form</h1>
 <table>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label>
 </td>
 <td style="width: 100">
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox>
 </td>
 <td style="width: 100">
 <asp:RequiredFieldValidator ID="rfvName" runat="server"
 ControlToValidate="txtName"
 ErrorMessage="RequiredFieldValidator">
 Please enter your name
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">

Chapter 5: Validation | 537

 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtAddress" runat="server"></asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvAddress" runat="server"
 ControlToValidate="txtAddress"
 ErrorMessage="RequiredFieldValidator">
 Please enter your address
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvCity" runat="server"
 ControlToValidate="txtCity"
 ErrorMessage="RequiredFieldValidator">
 Please enter your city
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvState" runat="server"
 ControlToValidate="txtState"
 ErrorMessage="RequiredFieldValidator">
 Please enter your state
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblZip" runat="server" Text="ZIP code">
 </asp:Label>
 </td>

Example D-21. The markup file for Exercise 5-1 (continued)

538 | Appendix D: Answers to Quizzes and Exercises

Exercise 5-2. This exercise also isn’t too difficult. You saw how to add a
ValidationSummary control earlier in the chapter. All you need to do is change the
text of the other validator controls to ErrorMessage properties, and the messages will
display automatically in the summary control.

To check the user’s age, you need two controls: a RequiredFieldValidator, to make
sure the user can’t leave the field blank, and a CompareValidator to make sure that
the user is over 18 (or that they say they are, anyway). The RequiredFieldValidator is
the same as the ones in Exercise 5-1. For the CompareValidator, be sure to set the
ControlToValidate property to txtAge (or whatever you called the age TextBox), set
the Type property to Integer, set the Operator property to GreaterThanEqual, and set
the ValueToCompare property to 18.

You want to make sure that the user enters a date when they’d like you to call, and
that the date is sometime in July. Sounds like a job for the RangeValidator. You need
to make sure the user enters a date, so add a RequiredFieldValidator that validates
txtCallDate first. Then, add a RangeValidator that also validates txtCallDate. Make
sure you set the Type to Date, or you’ll get unexpected results. Set the MaximumValue to
07/31/2009 and the MinimumValue to 07/01/2009. Add appropriate text and error
messages, and you’re done. Try it out, and you’ll see that the user can only enter
dates in July. Example D-22 shows the markup file for this exercise.

 <td>
 <asp:TextBox ID="txtZip" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvZip" runat="server"
 ControlToValidate="txtZip"
 ErrorMessage="RequiredFieldValidator">
 Please enter your ZIP code
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 </td>
 <td style="text-align: center">
 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 <td>
 </td>
 </tr>
 </table>

 </div>
 </form>
</body>
</html>

Example D-21. The markup file for Exercise 5-1 (continued)

Chapter 5: Validation | 539

Example D-22. The markup file for Exercise 5-2
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 5-2</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <h1>
 Phone Survey Participation Form</h1>
 <table>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvName" runat="server"
 ControlToValidate="txtName"
 ErrorMessage="Please enter your name">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtAddress" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvAddress" runat="server"
 ControlToValidate="txtAddress"
 ErrorMessage="Please enter your address">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">

540 | Appendix D: Answers to Quizzes and Exercises

 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvCity" runat="server"
 ControlToValidate="txtCity"
 ErrorMessage="Please enter your city">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvState" runat="server"
 ControlToValidate="txtState"
 ErrorMessage="Please enter your state">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblZip" runat="server" Text="ZIP code">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtZip" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvZip" runat="server"
 ControlToValidate="txtZip"
 ErrorMessage="Please enter your ZIP code">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblAge" runat="server" Text="Age:">
 </asp:Label>
 </td>
 <td>

Example D-22. The markup file for Exercise 5-2 (continued)

Chapter 5: Validation | 541

 <asp:TextBox ID="txtAge" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="Please enter your age">
 *</asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="You must be over 18 to participate"
 Operator="GreaterThanEqual"
 Type="Integer"
 ValueToCompare="18">
 *</asp:CompareValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblCallDate" runat="server" Width="150"
 Text="Enter a date for us to call you, in July, 2009
 (format mm/dd/yyyy):">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtCallDate" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvCallDate" runat="server"
 ControlToValidate="txtCallDate"
 ErrorMessage="Please enter a date for your call">
 *</asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rvCallDate" runat="server"
 ControlToValidate="txtCallDate"

ErrorMessage="The date must be between 7/1/2009 and 7/31/2009"
 MaximumValue="7/31/2009"
 MinimumValue="7/1/2009"
 Type="Date">
 *</asp:RangeValidator>
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <asp:ValidationSummary ID="vsSummary" runat="server"
 HeaderText="The following error(s) were found:"
 style="text-align: center" />
 </td>
 </tr>
 <tr>
 <td colspan="3" style="text-align: center">
 <asp:Button ID="btnSubmit" runat="server"

Example D-22. The markup file for Exercise 5-2 (continued)

542 | Appendix D: Answers to Quizzes and Exercises

Exercise 5-3. This time around, you need three validators on a single TextBox. The
RequiredFieldValidator and RangeValidator work the same as they do in Exercise 5-2—
you can even copy-and-paste the appropriate markup in Source view to make the new
row. However, be sure to change the ControlToValidate properties of both validators to
txtFollowup (or whatever you call the follow-up text box).

Now, you need to add a third validator—this time, a CompareValidator. You’re not
comparing to a constant value, though, like you were with the age text box. This
time, you want to make sure that the date in txtFollowup is later than the date in
txtCallDate, which means you want the value in txtFollowup to be greater. Add your
CompareValidator, set its ControlToValidate property to txtFollowup, and set the
ControlToCompare property to txtCallDate. Be sure not to get the two properties
backward, or you’ll get unexpected results. Now, set the Operator property to
GreaterThan, and make sure to set the Type to Date. Add the appropriate text and
error messages, and try it out. You’ll see that the follow-up date still has to be in July,
but also that it must be later than the date of the original call. (If you want to be
extra helpful, you can change the RangeValidator for txtCallDate so that the latest
date is July 30, which leaves time for a follow-up on July 31.) Example D-23 shows
the markup file for Exercise 5-3.

 Text="Submit" />
 </td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Example D-23. The markup file for Exercise 5-3
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 5-3</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <h1>
 Phone Survey Participation Form</h1>
 <table>
 <tr>

Example D-22. The markup file for Exercise 5-2 (continued)

Chapter 5: Validation | 543

 <td style="text-align: right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvName" runat="server"
 ControlToValidate="txtName"
 ErrorMessage="Please enter your name">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtAddress" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvAddress" runat="server"
 ControlToValidate="txtAddress"
 ErrorMessage="Please enter your address">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvCity" runat="server"
 ControlToValidate="txtCity"
 ErrorMessage="Please enter your city">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label>
 </td>

Example D-23. The markup file for Exercise 5-3 (continued)

544 | Appendix D: Answers to Quizzes and Exercises

 <td>
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvState" runat="server"
 ControlToValidate="txtState"
 ErrorMessage="Please enter your state">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblZip" runat="server" Text="ZIP code">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtZip" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvZip" runat="server"
 ControlToValidate="txtZip"
 ErrorMessage="Please enter your ZIP code">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblAge" runat="server" Text="Age:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtAge" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="Please enter your age">
 *</asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="You must be over 18 to participate"
 Operator="GreaterThanEqual"
 Type="Integer"
 ValueToCompare="18">
 *</asp:CompareValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">

Example D-23. The markup file for Exercise 5-3 (continued)

Chapter 5: Validation | 545

 <asp:Label ID="lblCallDate" runat="server" Width="150"
 Text="Enter a date for us to call you, in July, 2009
 (format mm/dd/yyyy):"></asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtCallDate" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvCallDate" runat="server"
 ControlToValidate="txtCallDate"
 ErrorMessage="Please enter a date for your call">
 *</asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rvCallDate" runat="server"
 ControlToValidate="txtCallDate"

ErrorMessage="The date must be between 7/1/2009 and 7/30/2009"
 MaximumValue="7/30/2009" MinimumValue="7/1/2009"
 Type="Date">
 *</asp:RangeValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblFollowup" runat="server" Width="150"
 Text="Enter a date for us to make a follow-up call,
 in July, 2009 (format mm/dd/yyyy):">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtFollowup" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvFollowup" runat="server"
 ControlToValidate="txtFollowup"
 ErrorMessage="Please enter a date for your follow-up call">
 *</asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rvFollowup" runat="server"
 ControlToValidate="txtFollowup"

ErrorMessage="The date must be between 7/1/2009 and 7/31/2009"
 MaximumValue="7/31/2009" MinimumValue="7/1/2009"
 Type="Date">
 *</asp:RangeValidator>
 <asp:CompareValidator ID="cvFollowup" runat="server"
 ErrorMessage="Please select a date after your first call"

ControlToCompare="txtCallDate" ControlToValidate="txtFollowup"
 Operator="GreaterThan"
 Type="Date">
 *</asp:CompareValidator>
 </td>
 </tr>

Example D-23. The markup file for Exercise 5-3 (continued)

546 | Appendix D: Answers to Quizzes and Exercises

Exercise 5-4. Adding another couple of rows to the table is old hat for you by now,
and so is adding the RequiredFieldValidator controls for each of the new text boxes.
To check the format for the phone number and email address, though, you’ll need to
use a RegularExpressionValidator for each. This isn’t too tricky: for the phone num-
ber, drag a RegularExpressionValidator next to the RequiredFieldValidator. Set its
ControlToValidate to txtPhone (or whatever you called the text box), click the
ValidationExpression property, and then click the ellipsis button to open the Regu-
lar Expression Editor. Select “U.S. phone number” from the list (or whatever coun-
try you’d like to validate for), and click OK. Add text and error message properties,
and it’s good to go. The RegularExpressionValidator for the email field works the
same way, except that the ControlToValidate is txtEmail (or whatever you called that
text box), and you select “Internet e-mail address” in the Regular Expression Editor.
Try it out, and you’ll see that the page works. You can try a few different variations
on phone numbers, and the most common ones will be accepted. Example D-24
shows the markup for Exercise 5-4.

 <tr>
 <td colspan="3">
 <asp:ValidationSummary ID="vsSummary" runat="server"
 HeaderText="The following error(s) were found:"
 style="text-align: center" />
 </td>
 </tr>
 <tr>
 <td colspan="3" style="text-align: center">
 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>

 </div>
 </form>
</body>
</html>

Example D-24. The markup file for Exercise 5-4
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 5-4</title>
</head>
<body>
 <form id="form1" runat="server">

Example D-23. The markup file for Exercise 5-3 (continued)

Chapter 5: Validation | 547

 <div>

 <h1>
 Phone Survey Participation Form</h1>
 <table>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvName" runat="server"
 ControlToValidate="txtName"
 ErrorMessage="Please enter your name">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtAddress" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvAddress" runat="server"
 ControlToValidate="txtAddress"
 ErrorMessage="Please enter your address">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvCity" runat="server"
 ControlToValidate="txtCity"
 ErrorMessage="Please enter your city">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>

Example D-24. The markup file for Exercise 5-4 (continued)

548 | Appendix D: Answers to Quizzes and Exercises

 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvState" runat="server"
 ControlToValidate="txtState"
 ErrorMessage="Please enter your state">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblZip" runat="server" Text="ZIP code">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtZip" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvZip" runat="server"
 ControlToValidate="txtZip"
 ErrorMessage="Please enter your ZIP code">
 *</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblAge" runat="server" Text="Age:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtAge" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="Please enter your age">
 *</asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="You must be over 18 to participate"
 Operator="GreaterThanEqual"
 Type="Integer"

Example D-24. The markup file for Exercise 5-4 (continued)

Chapter 5: Validation | 549

 ValueToCompare="18">
 *</asp:CompareValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblPhone" runat="server" Text="Phone:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtPhone" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvPhone" runat="server"
 ControlToValidate="txtPhone"
 ErrorMessage="Please enter your phone number">
 *</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="revPhone" runat="server"
 ControlToValidate="txtPhone"
 ErrorMessage="Please enter a valid phone number"
 ValidationExpression="((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}">
 *</asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblEmail" runat="server"
 Text="E-mail address:">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtEmail" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvEmail" runat="server"
 ControlToValidate="txtEmail"
 ErrorMessage="Please enter your e-mail address">
 *</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="revEmail" runat="server"
 ControlToValidate="txtEmail"
 ErrorMessage="Please enter a valide e-mail address"
 ValidationExpression=
 "\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">
 *</asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblCallDate" runat="server" Width="150"

Example D-24. The markup file for Exercise 5-4 (continued)

550 | Appendix D: Answers to Quizzes and Exercises

 Text="Enter a date for us to call you, in July, 2009
 (format mm/dd/yyyy):">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtCallDate" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvCallDate" runat="server"
 ControlToValidate="txtCallDate"
 ErrorMessage="Please enter a date for your call">
 *</asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rvCallDate" runat="server"
 ControlToValidate="txtCallDate"
 ErrorMessage="The date must be between 7/1/2009
 and 7/30/2009"
 MaximumValue="7/30/2009"
 MinimumValue="7/1/2009"
 Type="Date">
 *</asp:RangeValidator>
 </td>
 </tr>
 <tr>
 <td style="text-align: right">
 <asp:Label ID="lblFollowup" runat="server" Width="150"
 Text="Enter a date for us to make a follow-up call,
 in July, 2009 (format mm/dd/yyyy):">
 </asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtFollowup" runat="server">
 </asp:TextBox>
 </td>
 <td>
 <asp:RequiredFieldValidator ID="rfvFollowup" runat="server"
 ControlToValidate="txtFollowup"
 ErrorMessage="Please enter a date for your follow-up call">
 *</asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rvFollowup" runat="server"
 ControlToValidate="txtFollowup"
 ErrorMessage="The date must be between 7/1/2009
 and 7/31/2009"
 MaximumValue="7/31/2009"
 MinimumValue="7/1/2009"
 Type="Date">
 *</asp:RangeValidator>
 <asp:CompareValidator ID="cvFollowup" runat="server"
 ErrorMessage="Please select a date after
 your first call"
 ControlToCompare="txtCallDate"
 ControlToValidate="txtFollowup"

Example D-24. The markup file for Exercise 5-4 (continued)

Chapter 6: Style Sheets, Master Pages, and Navigation | 551

Chapter 6: Style Sheets, Master Pages, and Navigation

Answers to Quiz Questions
1. The best way to apply styles on your page is to use an external style sheet. You

can use inline or document-level styles, but these are error-prone and difficult to
maintain.

2. The style for the specific paragraph applies. Style rules are always applied from
least to most specific.

3. You can use the @import command to apply a style sheet to your page, and it
must be placed in the <head> element. If you place it anywhere else, the style
sheet will be ignored. You can also use a link tag, which also must be placed
within the <head> element. The easiest way to add a link tag is by using the
Attach Style Sheet link in the Manage Styles window; Visual Studio will add the
link tag to the appropriate spot for you.

4. A master page acts as a shell, inside of which the content of your individual
pages is displayed. This allows you to have a consistent look to all the pages on
your site.

5. There’s no limit to the number of nested master pages you can associate with a
single content page.

 Operator="GreaterThan"
 Type="Date">
 *</asp:CompareValidator>
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <asp:ValidationSummary ID="vsSummary" runat="server"
 HeaderText="The following error(s) were found:"
 style="text-align: center" />
 </td>
 </tr>
 <tr>
 <td colspan="3" style="text-align: center">
 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>

 </div>
 </form>
</body>
</html>

Example D-24. The markup file for Exercise 5-4 (continued)

552 | Appendix D: Answers to Quizzes and Exercises

6. The child content page needs a reference to the class of the master page, con-
tained in a @MasterType directive, immediately following the @Page directive for
the child page.

7. You can use the Response.Redirect method to navigate to another page.

8. You need to add a site map file, which is an XML file. You can use Website ➝

Add New Item to add a new site map with an automatically generated skeleton,
but you need to add the content of the XML file yourself.

9. You place a SiteMapDataSource control on the page to enable the navigation con-
trols. In the case of a TreeView or Menu control, you use the Smart Tag to point
the control to the SiteMapDataSource.

10. You don’t have to do anything. The SiteMapPath control automatically finds the
SiteMapDataSource control on the page and uses it.

Answers to Exercises
Exercise 6-1. There are a few different ways to create the pages shown in Exercise 6-1;
here’s one of them. Create a new web site called Exercise 6-1. Add a new master page
called AjaxTravel.master, and be sure to put the code in a separate file. Rename the
content placeholder something like cphAjaxMaster. Add an <h1> with the appropriate
message, and a footer with the copyright message. Check it out in Design view to make
sure it looks the way you want.

Use Website ➝ Add New Item to add a new Web Form called Home.aspx to your
site, and select AjaxMaster.master as its master page. On this page, delete the “head”
content placeholder, and add a bit of text welcoming the user, then a with two
 items that each consist of an HTML <a> element: one that reads “Sun and surf
packages” with an href of Sun.aspx, and one that reads “Snow and ski packages”
with an href of Snow.aspx.

Add a new master page to the site; call it SunMaster.master. As in Example 6-7,
remove everything except the Master directive.

Next, add a Content section with a ContentPlaceHolderID attribute of cphAjaxMaster.
Add some content for the header and footer (a table for layout might be useful), and
be sure to include another ContentPlaceHolder called cphSunContent.

Create another new master page called SnowMaster.master, and set it up in the same
way as SunMaster.master.

Add a new Web Form, and set its master page to be SunMaster.master. Create
another with links to the Bermuda and Maui pages.

Add a new Web Form, and set its master page to be SnowMaster.master. Create
another with links to the St. Moritz and Vail pages.

Chapter 6: Style Sheets, Master Pages, and Navigation | 553

Create content pages for Bermuda and Maui with simple sample text, both of which
use SunMaster.master as their master page.

Create content pages for St. Moritz and Vail with simple sample text, both of which
use SnowMaster.master as their master page.

Now you’ve got a fully functional web site that changes its content depending on
where the user wants to go, but maintains brand identity. If this were a real site, of
course, you’d use style sheets to jazz up the content and add your company logo and
such. Of course, you’d also have real content on the destination pages. You can
imagine that you’d probably have a link in the footers to your honeymoon and ski
vacation packages that would take the user to the appropriate pages.

From this point on, the sites will be too lengthy to provide full code listings, but you
can download the complete sites from this book’s web page at http://www.oreilly.
com/catalog/9780596518455.

Exercise 6-2. Copy Exercise 6-1 to a new web site, Exercise 6-2. Open AjaxTravel.
master, and add some text underneath the <h1>. Type “Welcome,” and then drag a
Label onto the page after the text. Name the label lblName, and change its Text prop-
erty to “Guest.” Then, add an exclamation point. If you run the site now, you’ll see that
each page says “Welcome, Guest!”

You need AjaxTravel.master to implement a public property to display the label, so
open AjaxTravel.master.vb, and enter the following code:

Public Property MessageLabel() As Label
 Get
 Return lblName
 End Get
 Set(ByVal value As Label)
 lblName = value
 End Set
End Property

On the Home.aspx page, below the , add some text saying “Enter your name:”.
Then add a Textbox control (txtName), and a Submit button. The page needs to know
about the AjaxTravel page class, so that it can make changes to the master page. Add
the following line of code to Home.aspx, just after the Page directive:

<%@ MasterType TypeName="AjaxTravel" %>

Now you need to wire up the Submit button so that the text in txtName gets copied to
the label on the master page. Double-click the Submit button, and when the event
handler opens, add the following code:

Me.Master.MessageLabel.Text = txtName.Text

Try it out. You’ll see the control on the home page where you’ll be able to enter your
name, and it should be transferred to the master page. Unfortunately, if you navigate

http://www.oreilly.com/catalog/9780596518455
http://www.oreilly.com/catalog/9780596518455

554 | Appendix D: Answers to Quizzes and Exercises

to any other page, the greeting goes back to being “Hello, Guest!” To save that infor-
mation, you’ll need to use session state, which you’ll see in Chapter 8.

Exercise 6-3. We won’t use the user greeting for this web site, so copy Exercise 6-1
to a new web site called Exercise 6-3. The first thing you need to do is add a Site
Map, so select Website ➝ Add New Item, then select Site Map, and accept the
default name. The skeleton of web.sitemap is created for you automatically, but you
need to fill in the nodes. The results should look like this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Home.aspx" title="Home" description="Home page">
 <siteMapNode url="~/SunHome.aspx" title="Sun" description="Sunny
 destinations">
 <siteMapNode url="~/Bermuda.aspx" title="Bermuda" description="Bermuda" />
 <siteMapNode url="~/Maui.aspx" title="Maui" description="Maui" />
 </siteMapNode>
 <siteMapNode url="~/SnowHome.aspx" title="Snow" description="Snow
 destinations">
 <siteMapNode url="~/StMoritz.aspx" title="St. Moritz" description="St.
 Moritz" />
 <siteMapNode url="~/Vail.aspx" title="Vail" description="Vail, Colorado" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Next, open up AjaxTravel.master, and add a SiteMapDataSource control to the mas-
ter page. It doesn’t matter where you put it—the data source will find Web.sitemap
automatically.

Now, add two radio buttons, rbTree and rbMenu, with Text properties of “Tree View”
and “Menu.” Be sure to set the GroupName property of each control to the same value,
such as grpNavView. Next, add a TreeView control under the radio button list, and set
its Visible property to false. Add a Menu control under the TreeView, and set its
Visible property to false as well. Set the data source of the TreeView and Menu con-
trols to point to the SiteMapDataSource you added earlier.

Now, you need to set the event handler for the radio buttons. Double-click rbTree to
be taken to the CheckChanged event. You want TreeView1 to be visible when this but-
ton is checked, and Menu1 to be invisible, so add this code to the event handler:

TreeView1.Visible = rbTree.Checked
Menu1.Visible = rbMenu.Checked

Create an event handler for the CheckChanged event of rbMenu, and add the same code.

Now run the site. You should be able to select the TreeView or Menu navigation con-
trol on each page. You may need to rearrange the content of your pages so that the
menus will fit. Unfortunately, you can’t retain the user’s choice from page to page,
but again, you’ll see how to do that in Chapter 8.

Chapter 7: State and Life Cycle | 555

Exercise 6-4. This last exercise is very simple. Simply open AjaxTravel.master, and
drag a SiteMapPath control onto the page. The SiteMapPath will automatically find
the SiteMapDataSource and implement the bread crumbs for you.

Chapter 7: State and Life Cycle

Answers to Quiz Questions
1. A session is the period of time in which a single user interacts with an applica-

tion, no matter how many individual pages he or she visits.

2. The state of a page refers to the current values of all controls on the page, includ-
ing any changes made by the user.

3. Add the Trace="True" attribute to the Page directive to see the page Trace,
including the stages of the page life cycle, and the control hierarchy.

4. The postback mode is determined in the Start phase of the life cycle.

5. The Page_Load event is the most common event to handle if you want to take
actions during the Load phase.

6. ASP.NET manages Control state, View state, Session state, and Application
state. You cannot affect the management of the Control state.

7. The EnableViewState="false" attribute disables View state for more complex
controls. Simpler controls, such as text boxes, retain their state no matter what.

8. Use the state bag to store the value of a counter that increments each time the
page is loaded. If you navigate to a separate page, the counter will reset, but not
if you click the browser’s Refresh button.

9. Save the user’s name in session state.

10. Use the syntax Session("username") = <user's name>.

Answers to Exercises
Exercise 7-1. The trick to this exercise isn’t the code—it’s where you put it. You want
to evaluate the IsPostBack attribute and take action based on its value, so the best place
to do that is in the Page_Load event. Just a simple bit of code in the Page_Load event
handler does what you want:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 lblPostBack.Text = "You're seeing this page for the first time!"
 Else
 lblPostBack.Text = "Welcome back to the page."
 End If
End Sub

556 | Appendix D: Answers to Quizzes and Exercises

Example D-25 has the complete markup file for Exercise 7-1.

The complete code-behind file is shown in Example D-26.

Exercise 7-2. This exercise isn’t all that different from Exercise 7-1, except that you
need to use the state bag. The button and the label aren’t anything special. The key to
this exercise is in the code-behind file, specifically, the event handler for the Page_Load
event.

The first thing you need to do is create an empty string to hold the message that
you’ll put in the label:

Dim message As String = ""

Example D-25. The markup file for Exercise 7-1
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>Exercise 7-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="lblPostBack" runat="server"></asp:Label>

 <asp:Button ID="btnPostBack" runat="server" Text="Post Back" />
 </div>
 </form>
</body>
</html>

Example D-26. The code-behind file for Exercise 7-1
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not IsPostBack Then
 lblPostBack.Text = "You're seeing this page for the first time!"
 Else
 lblPostBack.Text = "Welcome back to the page."
 End If

 End Sub
End Class

Chapter 7: State and Life Cycle | 557

If this is the first time the page has been loaded, you add a message to the string say-
ing that. You use an If statement that checks whether the page is a postback, just as
in Exercise 7-1. Notice that you use DateTime.Now to insert the current time, and then
add a line break just to make things look nice:

If Not IsPostBack Then
 message += "Page first accessed at " + DateTime.Now + ".
"
End If

Then, you assign the string to the Text property of the label:

lblMessage.Text = message

That’s all easy enough, but you need that string for the next time the page is posted,
so you need to store it in the state bag. You simply create a new item in the dictio-
nary, give it a name, and then assign the string to it:

ViewState("message") = message

Now, you need to account for when the page is posted back, so you have to go back
up and add an Else clause to your If statement. This time, you want to retrieve the
previous message first, so you get it back from the state bag, and use CType to con-
vert it to a string. Then, you can add the rest of the message just as you did in the
first half of the If:

Else
 message = CType(ViewState("message"), String) + "Page posted back at " _
 + DateTime.Now + ".
"

The statements to assign the message to the label and then store the message back in
the state bag happen outside the If, so there’s no need to repeat them here.

The entire event handler is shown in Example D-27.

Example D-27. The event handler for the Page_Load event in Exercise 7-3
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

 Dim message As String = ""
 If Not IsPostBack Then
 message += "Page first accessed at " + DateTime.Now + ".
"
 Else
 message = CType(ViewState("message"), String) + "Page posted back at " _
 + DateTime.Now + ".
"

 End If
 lblMessage.Text = message
 ViewState("message") = message

End Sub

558 | Appendix D: Answers to Quizzes and Exercises

As a bonus, try adding EnableViewState = "False" to the Page directive, and then run
the application again. Instead of appending each new line to the string, every post-
back will overwrite the existing string.

Exercise 7-3. For this exercise, you need to use the Session dictionary instead of the
state bag. Start by adding the two new buttons to Default.aspx, and give each of
them a handler that uses Response.Redirect to point to SecondPage.aspx and
ThirdPage.aspx.

You’ll need to make some changes to the code-behind file of Default.aspx. First,
replace the ViewState methods with Session. In addition, you have to make a change
to the first half of the If statement:

If Not IsPostBack Then
 message += "Page first accessed at " + DateTime.Now + ".
"

If you navigate to another page, and then return to the home page, the message will
be defined again as a blank string. If that happens, you need to retrieve
Session("message") from the session state, even the first time the page loads, when
Session("message") will be empty:

If Not IsPostBack Then
 message = CType(Session("message"), String) + _
 "Home page first accessed at " + DateTime.Now + ".
"

The entirety of the code-behind for Default.aspx should now look like
Example D-28.

Example D-28. The code-behind file for Default.aspx in Exercise 7-3
Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load

 Dim message As String = ""
 If Not IsPostBack Then
 message = CType(Session("message"), String) + _
 "Home page first accessed at " + DateTime.Now + ".
"
 Else
 message = CType(Session("message"), String) + _
 "Home page posted back at " + DateTime.Now + ".
"
 End If
 lblMessage.Text = message
 Session("message") = message

 End Sub

 Protected Sub btnPage2_Click(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles btnPage2.Click
 Response.Redirect("SecondPage.aspx")
 End Sub

Chapter 8: Errors, Exceptions, and Bugs, Oh My! | 559

Now, create SecondPage.aspx and ThirdPage.aspx. These two pages need the same
controls as Default.aspx, and the same code-behinds, but be sure to change the mes-
sages and the Response.Redirect targets accordingly.

This time, if you add EnableViewState = "False" to the Page directive, the application
doesn’t change because the string is stored in state instead. If you disable session
state and try to run the application, you’ll get an error.

Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Answers to Quiz Questions
1. Add Trace="true" to the @Page directive of the page you want to trace.

2. The only difference is that Trace.Warn writes to the trace log in red.

3. Trace.Write and Trace.Warn can both take a category string, a message string,
and an exception object.

4. Place the cursor on any line of a code file and click in the left column, or press F9
to set a breakpoint in that line of code. A red dot will appear on the line where
you set the breakpoint.

5. Simply hover the mouse over the variable, and a pop-up will appear, showing its
value. You can also look at the Locals window.

6. When the application is stopped at a breakpoint, you can use the Immediate
window to change the value of a variable.

7. The Locals window shows the variables in the current context and their values.

8. Syntax errors are errors in the code that violate the rules of the language. The
IDE can catch most of these for you. Logic errors occur when the syntax of code
is correct, but the code does not provide the results that the programmer
expected.

9. In the web.config file, you need to create a <customErrors> section, and set the
mode attribute to On.

10. Add the ErrorPage attribute to the @Page directive, where you can specify the
error page that will apply only to errors generated by the current page.

 Protected Sub btnPage3_Click(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles btnPage3.Click
 Response.Redirect("ThirdPage.aspx")
 End Sub
End Class

Example D-28. The code-behind file for Default.aspx in Exercise 7-3 (continued)

560 | Appendix D: Answers to Quizzes and Exercises

Answers to Exercises
Exercise 8-1. After you’ve downloaded the file, open Default.aspx, and add the
attribute Trace="true" to the @Page directive. You’ve now enabled tracing on this file.
Open Default.aspx.vb, where you’ll find the event handler for the drop-down list.
Insert a line of code similar to the following:

Trace.Warn("In event handler.")

Now run the application. You’ll see the trace information immediately, but you
won’t see your trace message until you select an item from the drop-down list. Once
you do, the message will show up in the trace.

Exercise 8-2. In debugging, there are always many different ways to identify a prob-
lem. You could try to trace to solve this problem, but it probably won’t tell you
much. The best thing to do is to set a breakpoint somewhere and have a look at the
local variables. The problem is with the text being written to the Label, so placing a
breakpoint where the text is assigned would be a good idea. Open the Default.aspx.vb
file, and place a breakpoint on this line:

lblProduct.Text = ddlProduct.SelectedItem.Value + "
" + description

Now run the application. Nothing happens until you make a selection in the drop-
down list, which triggers the event handler. Still nothing happens in the application
because the breakpoint halted execution before the text was written to the label.

In the Locals window, you should now see the value of several variables. You can see
the value of description there, but that’s not the problem. If you hover over
ddlProduct.SelectedItem.Value, you’ll see that the value is “ox” in this case, which
isn’t what you want. You might know just from looking at it that SelectedItem.Value
isn’t what you want to write to the label, but if you didn’t, there’s still more informa-
tion available. In the Locals window, you’ll see that the value of “sender” is {System.
Web.UI.WebControls.DropDownList}. The problem is with the drop-down list, so that
looks promising. If you click the plus sign to expand that item, you’ll see another
heading at first, but if you click the plus sign next to that new heading, you’ll see a
list of properties for the DropDownList. There’s a lot of them, but if you scroll down to
“SelectedItem,” you’ll see that you can expand that, too. Once you do, you’ll see that
SelectedItem.Value is set to “ox,” which you don’t want, but right above it,
SelectedValue.Text is set to “Oxford shirt,” which is what you want. Therefore, if
you change this:

 lblProduct.Text = ddlProduct.SelectedItem.Value + "
" + description

to this:

 lblProduct.Text = ddlProduct.SelectedItem.Text + "
" + description

you’ll resolve the problem.

Chapter 8: Errors, Exceptions, and Bugs, Oh My! | 561

It’s not obvious that you’d find the answer to the problem three levels deep in the
Locals window. A large part of debugging is experience, along with knowing where
to look. The important part is learning to put the breakpoints at the right spots to
give you the best leads you can get.

Exercise 8-3. One of the most frustrating troubleshooting situations is trying to work
out why your application is not doing something. In this case, you can see that the
checkbox is checked, but the panel isn’t appearing as expected. Something must be
wrong in the event handler. Open Default.aspx.vb, and place a breakpoint at the
beginning of the event handler:

Protected Sub ddlProduct_SelectedIndexChanged(ByVal sender _
As Object, ByVal e As System.EventArgs) Handles ddlProduct.SelectedIndexChanged

Run the application. When it stops at the breakpoint, there isn’t much to see in the
Locals window. If you click the plus sign next to the Me item in the Locals window,
you’ll see a very lengthy list of everything related to the page, including all the con-
trols on it. You need to narrow down the information some. Open the Watch win-
dow next to the Locals window (you may need to drag the Watch tab to some other
part of the UI to see it). Scroll down in the Locals window until you find pnlProduct.
Click the plus sign next to it to see the panel’s properties. Drag the Visible property
into the Watch window so you can watch it all by itself.

Now that you know what you’re watching, you need the application to continue.
Use the Step Into button on the Debugging toolbar, or press F11 to step through the
event handler line-by-line. When you reach the end of the event handler, you’ll see
that the panel’s Visible property is still False—nothing ever changed it. That means
that a line is missing from the event handler; specifically, this one:

pnlProduct.Visible = cbProduct.Checked

Without that line, the panel stays at its initial value of Visible = False. Once you
insert that line, the application runs properly.

Exercise 8-4. The first thing you need to do is modify the Web.config file to indicate
that you’ll be using a custom error page. Insert the following code between the
<system.web> tags:

<customErrors mode="On" defaultRedirect="Error.htm">
 <error statusCode="404" redirect="Error404.htm"/>
</customErrors>

This code specifies a default error page, Error.htm, and a page specifically for 404
errors, Error404.htm.

The next step is creating error file. Select Website ➝ Add New Item, and select an
HTML file, naming it Error404.htm. Open the file and add some HTML similar to
the following:

562 | Appendix D: Answers to Quizzes and Exercises

<html>
<head>
 <title>Bad Link Error</title>
</head>
<body>
 <h1>Error</h1>
 We're sorry, the page you're looking for does not exist. Please notify
 the webmaster.
 Click here to return to the product page.
</body>
</html>

Return to Default.aspx, run the application, and click the link. You’ll be taken to
your custom error page. You can even use the link to get back to the product page,
which probably won’t make the user very happy, so it would be a good idea to get
the customer assistance page created right away, or to delegate it to a subordinate.

Chapter 9: Security

Answers to Quiz Questions
1. You can create users by hand, using the WAT, or you can allow users to create

accounts at runtime with the CreateUserWizard control.

2. Forms-based security grants privileges to users based on credentials, such as
username and password, which are gathered from the user via a web page. With
Windows authentication, user privileges are based on their Windows login,
which is more useful for an intranet setup.

3. The security question allows a method for users to identify themselves to the site
if the user has forgotten her password. This involves sending an e-mail to the
user, and requires the use of an SMTP server.

4. User information is stored in a database named ASPNETDB.MDF within the
App_Data directory of your site.

5. You need to provide a CreateUserWizard control so that users can specify their
own account information.

6. The LoginStatus control has two views: one for anonymous users (users who
haven’t logged in, or who don’t have accounts) and one for logged-in users.

7. The LoginName control simply displays the name of the currently logged-in user.
This control allows you to personalize the page by addressing the user, even if
you don’t know who the users are when you design the page.

8. If the user enters an incorrect password, the Login control has an automatic mes-
sage that informs the user of his mistake, and invites the user to try again.

9. You can add users to roles by using the WAT.

10. Use the User.IsInRole property to test whether a user is a member of a role
before granting access to a page.

Chapter 9: Security | 563

Answers to Exercises
Exercise 9-1. Start out by deleting Default.aspx, add a new page called Welcome.aspx,
and set it as the Start page. Add a bit of text if you like, a LoginStatus control, and a
LoginView control. Make any adjustments you like to the text of the LoginStatus and
LoginView controls. To make sure that only logged-in users can access the Guard
Schedule page, you can put a HyperLink control in the LoggedInTemplate of the
LoginView control. Set the NavigateUrl property of the HyperLink to GuardPage.aspx, or
whatever you decide to call the Guard Schedule page.

Next, you need to create the login page. Remember that it must be called Login.aspx,
and nothing else, or the controls won’t be able to find it. Add a bit of text if you like
(using master pages would make it easier to extend your brand identity to the entire
site, but we won’t bother with that here), and add the Login control to the page.
Style it how you like, and set the DestinationPageUrl property to take users back to
Welcome.aspx.

Now you have the login mechanism set up, but no users. As we mentioned, you’ll
need to add the users from the WAT for this exercise, so select Website ➝ ASP.NET
Configuration. Click the Security link. You have guards on the day shift and the
night shift to create, and you don’t want them to access each other’s content, so the
best way to keep them separate is with roles. To do that, click the “Enable Roles”
link on the Security page, then click “Create or Manage Roles.” Create one role for
the day shift, and one role for the night shift; the administration tool makes that
easy. Click the Back button to return to the Security page.

Click the “Select authentication type” link, and switch the authentication from
Windows-based to forms-based. Now you’re ready to create some users. Click the
create user link, and follow the instructions until you’ve created all four usernames.
Make sure that the “active user” box is checked for each one, and also be sure to
select the checkbox for the appropriate role for each guard. Go back to the Security
page and click the Manage Users link to make sure they’re all set up properly. Your
page should look something like Figure D-7.

Now that your guards are set up and have their roles, they need some content to look
at. Add a new page to your site called GuardPage.aspx (or whatever you like; just be
sure it’s the same name you chose in the HyperLink control earlier). You need to have
some content in here to indicate placeholders for the guard schedule; it can be a sim-
ple bit of text in a Label, or a Panel control, whatever you like, but you need to be
able to control the visibility programmatically. We’ve chosen to create two tables
that show the guard schedules, each within a Panel control. The Visibility property
of each Panel is initially set to false.

Now you need to create the code to display the appropriate Panel, depending on the
user’s role. Open GuardPage.aspx.vb, and create the Page_Load handler. You need to
use the User.IsInRole() method to determine which role the user is in, and display
the appropriate Panel. The complete code-behind file is shown in Example D-29.

564 | Appendix D: Answers to Quizzes and Exercises

Figure D-7. The Manage Users page of the Ajax Security site will look like this once you’ve
created user accounts for the four guards.

Example D-29. GuardPage.aspx.vb for Exercise 9-1
Partial Class GuardPage
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load

 If User.IsInRole("Day shift") Then
 pnlDayShift.Visible = True
 pnl.NightShift.Visible = False
 ElseIf User.IsInRole("Night shift") Then
 pnlNightShift.Visible = True
 pnl.DayShift.Visible = False
 End If

 End Sub
End Class

Chapter 9: Security | 565

At this point, users who aren’t logged in can still access GuardPage.aspx by typing in
the URL directly, but a user who isn’t in either the Day shift or Night shift role
(which includes any user who’s not logged in) won’t be able to see any content on
that page.

Exercise 9-2. You can start by copying Exercise 9-1 to a new web site. Now, add a new
page, CustomerInfo.aspx, to the site. The content of this page doesn’t really matter; it’s
just a placeholder, although you may want to include a link to Welcome.aspx. Go back
to the Welcome.aspx page, and add a link to a new page, CreateAccount.aspx. You
might want to add this link inside the Anonymous template of the LoginView control,
so that users only see the link to create a new account if they’re not already logged in.
While you’re here, set Welcome.aspx as the Start Page for the site because that setting
isn’t retained when you copy the web site.

Now that you have a link to the account creation page, you’d better make that page.
Add a new item to your site and call it CreateAccount.aspx. Add a CreateUserWizard
control to the page, and that’s most of the work done for you. Set the
ContinueDestinationPage property to take users to CustomerInfo.aspx, as that’s
where they’re most likely to want to go. In a slightly fancier site, you might take
them to a confirmation page, and let them choose where to go from there, but for
now, this will do.

Run your site and create a few users. Unfortunately, now that users are logged in,
they can see the link to the Guard Schedule page. You could set the Visibility
attribute of hlGuardPage to false, and add a Page_Load handler to Welcome.aspx to
hide the link if users aren’t a member of the Day shift or Night shift roles:

 If (User.IsInRole("Day shift") Or User.IsInRole("Night shift")) Then
 hlGuardPage.Visible = True
 Else
 hlGuardPage.Visible = False
 End If

Be sure to take the HyperLink out of the LoginView control and place it on the page, or
the event handler won’t be able to find it. That’s certainly a good start. A logged-in
user who’s not a member of one of the guard roles can still type in the URL for the
guard schedule page intentionally, and they’ll be able to access the page, although they
won’t see the guard schedules. You can also make sure that users without privileges
can’t even access the guard page. First, create a page, NoPrivs.aspx, that has a polite
message and a link back to Welcome.aspx. Now, add a bit of code to the Page_Load
handler for GuardPage.aspx:

 If Not (User.IsInRole("Day shift") Or User.IsInRole("Night shift")) Then
 Response.Redirect("NoPrivs.aspx")
 End If

Now, any user that hasn’t specifically been assigned to one of the two guard roles
will be redirected to the NoPrivs.aspx page.

566 | Appendix D: Answers to Quizzes and Exercises

Exercise 9-3. This part isn’t actually too difficult. Start in the WAT: create a new
role, “Managers,” and then add the two users mrand and dknight, adding them each
to the Managers role. Next, add a page Managers.aspx to your site. Now you need to
make sure only the managers can access this page. It’s pretty easy to restrict this page
to just users in the Manager role—just add the following to the Page_Load handler for
Managers.aspx:

 If Not (User.IsInRole("Manager")) Then
 Response.Redirect("NoPrivs.aspx")
 End If

That keeps people who aren’t managers out of the managers’ page. Now, go back to
Welcome.aspx and add a HyperLink pointing to Managers.aspx, but set its Visible
property to false. You’ll want to make sure the HyperLink is only visible to users
with the Manager role, but you also want managers to be able to see the Guard
schedule link, so add the following code to the Page_Load for Welcome.aspx:

 If (User.IsInRole("Manager")) Then
 hlGuardPage.Visible = True
 hlManagers.Visible = True
 Else
 hlManagers.Visible = False
 End If

At the moment, managers can see the link to GuardPage.aspx, but if they try to access it,
they’ll get sent to NoPrivs.aspx. That’s easy to fix. Open up GuardPage.aspx.vb, and add
User.IsInRole("Manager") to the code that allows users to view the page, like this:

 If Not (User.IsInRole("Day shift") Or User.IsInRole("Night shift")
Or User.IsInRole("Manager")) Then

 Response.Redirect("NoPrivs.aspx")
 End If

You also want managers to be able to see the schedule for all guards, and at the
moment, they won’t see any. There are a few ways to give managers permission to
see the schedules; this is one of them:

 If User.IsInRole("Day shift") Then
 pnlDayShift.Visible = True
 pnlNightShift.Visible = False
 ElseIf User.IsInRole("Night shift") Then
 pnlNightShift.Visible = True
 pnlDayShift.Visible = True
 ElseIf User.IsInRole("Manager") Then
 pnlDayShift.Visible = True
 pnlNightShift.Visible = True
 End If

The ElseIf structure is starting to get a little awkward, and if you’re going to add
more roles, you should consider changing it to a Select Case statement, but for now,
it’s fine.

Chapter 10: Personalization | 567

Now you have a site where the clients can access the promotional material, but nothing
else; guards can access only their own schedules; and managers can access everything.

Chapter 10: Personalization

Answers to Quiz Questions
1. To enable user profiles, you need to add a line to web.config, setting profile

enabled to true.

2. To specify the information to retain, you also need to add a <properties> sec-
tion within the profile section, and use the <add> property to specify the names
of the properties you want to retain.

3. The Profile.IsAnonymous property lets you know whether users are logged in.

4. You can also use the <add> property to save user information of types other than
string. Simply specify the type in the <add> property in web.config, and specify
the type, or the collection type.

5. To allow profile data for a user who’s not logged in, use an anonymous profile
by setting <anonymousIdentification enabled="true"> in the web.config file.

6. The specific information that you want to retain for anonymous users should be
marked with allowAnonymous="true" in the <add> property in the web.config file.

7. To migrate the user’s profile data from an anonymous profile to the user’s spe-
cific profile, use a global handler in the global.asax file to copy the data to the
user’s profile.

8. Style sheet themes are functionally equivalent to CSS style sheets, and can be
overridden by the page or by the control. Customization themes are applied last,
and therefore cannot be overridden.

9. You define the settings for a skin in a .skin file, which resides inside a folder
named after the theme, which in turn is located with the App_Themes folder of
your site.

10. To specify a theme for a specific page, add a Theme attribute to the Page directive
for that page.

Answers to Exercises
Exercise 10-1. Create your new web site. Start off by deleting Default.aspx. Add a
new page Home.aspx, set it as the start page, give it a title and an <h1>, and then add
a LoginStatus control. Add a LoginView control, and set the Anonymous and Logged
In templates to the appropriate messages. Add a LoginName control to the Logged In
template to greet the user by name.

568 | Appendix D: Answers to Quizzes and Exercises

If you’re not going to use the WAT to create any users, you need to add the follow-
ing line to your web.config file, in the <system.web> section:

<authentication mode="Forms" />

Add a new page to your site, login.aspx. Give it a title and an <h1>, and then drag a
Login control onto the page. Give it whatever formatting you like.

At the moment, though, the only way to create a new user is with the WAT. Add a page
where users can create their own user accounts. Create a new page, CreateAccount.aspx.
Give it a title and an <h1>, and then add a CreateUserWizard control to the page. Set the
ContinueDestinationPageUrl property to Home.aspx to take users back to the front of
the site when they’ve created their accounts. Go back to the Login.aspx page, and add a
Hyperlink control to the Anonymous template of the LoginView control, with a
NavigateUrl property of CreateAccount.aspx, so that users can create an account if they
don’t already have one.

Run your site and create a handful of users to populate your database. Be sure to
write down the passwords because you’ll need them later.

To enable profiles, the first thing you need to do is make a modification to the
web.config file. Open web.config, and add the following code to the <system.web>
section to enable profiles and store the four data elements you want to save:

<profile enabled="true" defaultProvider="AspNetSqlProfileProvider">
 <properties>
 <add name="userName" />
 <add name="numFish" />
 <add name="fishType" />
 <add name="favFish" />
 </properties>
</profile>

Next, add a new page, ProfilePage.aspx, to the site. Use a table for layout, and enter
the standard controls as shown in the figure. Give the controls meaningful names so
that you can access them from the event handler. Be sure to add the Save button at
the bottom of the table.

Double-click the Save button to create a handler for the Click event. You need to
record the string values from the form into the Profile object.

Protected Sub btnSave_Click(ByVal sender As Object, ByVal e _
 As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.userName = txtUserName.Text
 Profile.numFish = txtNumFish.Text
 Profile.fishType = rblFreshTropical.SelectedValue
 Profile.favFish = ddlFavFish.SelectedItem.Text
 End If
 Response.Redirect("Home.aspx")
End Sub

Chapter 10: Personalization | 569

You have to write a little bit of code to extract the text values from the radio button
list, and the drop-down list, and then enter them into the Profile attributes.

You’ll also need to create the Page_Load event handler for the profile page, so that if
the user already has a profile, those choices will be pre-selected when the user comes
to this page to edit her profile. That handler should look like this:

If Not IsPostBack And Profile.userName IsNot Nothing Then
 If Profile.IsAnonymous = False Then
 txtUserName.Text = Profile.userName
 txtNumFish.Text = Profile.numFish
 rblFreshTropical.SelectedValue = Profile.fishType
 ddlFavFish.SelectedValue = Profile.favFish
 End If
End If

Notice that the Save button handler redirects to Home.aspx when it’s done. The next
thing you need to do is make some modifications to Home.aspx so that users can see
their profiles. First, switch the LoginView control to the logged-in template, and add a
hyperlink directing users to the Profile page.

Now, add a panel, pnlProfileInfo, so that users can see the current contents of their
profile. The markup for this panel and its contents should look like this:

<asp:Panel ID="pnlProfileInfo" runat="server" Visible="False" Width="250px">
 <table>
 <tr>
 <td>User Name:</td>
 <td>
 <asp:Label ID="lblName" runat="server"></asp:Label>
 </td>
 </tr>
 <tr>
 <td>Number of fish:</td>
 <td>
 <asp:Label ID="lblNumFish" runat="server"></asp:Label>
 </td>
 </tr>
 <tr>
 <td>Tropical or Fresh?</td>
 <td>
 <asp:Label ID="lblFishType" runat="server"></asp:Label>
 </td>
 </tr>
 <tr>
 <td>Favorite Fish</td>
 <td>
 <asp:Label ID="lblFavFish" runat="server"></asp:Label>
 </td>
 </tr>
 </table>
</asp:Panel>

570 | Appendix D: Answers to Quizzes and Exercises

Now you just have to write an event handler to populate the labels in the table in the
panel. Add the following code to the Page_Load event handler:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then
 pnlProfileInfo.Visible = True
 lblName.Text = Profile.userName
 lblNumFish.Text = Profile.numFish
 lblFishType.Text = Profile.fishType
 lblFavFish.Text = Profile.favFish
 Else
 pnlProfileInfo.Visible = False
 End If

End Sub

Exercise 10-2. Start by copying Exercise 10-1 to a new web site, Excercise 10-2, and
be sure to set Home.aspx as the Start Page. Add the following line to web.config,
inside the <system.web> section:

<anonymousIdentification enabled="true" />

In the <profile> section, add allowAnonymous="true" to both the fishType and
favFish elements, so that the anonymous profile can use them.

Next, make some changes to ProfilePage.aspx. Break the existing table into two so
that the “name” and “number of fish” controls are separated from the “fish type”
and “favorite fish” controls. Add a Panel control around the name and number of
fish controls because those are the controls that should be invisible to anonymous
users.

Now you need to make two changes to the Page_Load event handler. First, you need
to make sure that pnlRegisteredOnly is hidden from anonymous users. Second, if
there’s any profile information in the fishType or favFish properties, even if the pro-
file is anonymous, you want to set the controls accordingly. So, make the following
changes to the Page_Load event handler:

If Not IsPostBack And Profile.userName IsNot Nothing Then
 If Profile.IsAnonymous = True Then
 pnlRegisteredOnly.Visible = False
 Else
 pnlRegisteredOnly.Visible = True
 txtUserName.Text = Profile.userName
 txtNumFish.Text = Profile.numFish
 End If
 If Profile.fishType IsNot Nothing Then
 rblFreshTropical.SelectedValue = Profile.fishType
 End If
 If Profile.favFish IsNot Nothing Then
 ddlFavFish.SelectedValue = Profile.favFish

Chapter 10: Personalization | 571

 End If
End If

Next, you need to make changes to the btnSave_Click handler. All you really need to
do in this case is move the profile assignment statements for fishType and favFish
outside the If block that checks whether the user is anonymous, like this:

If Profile.IsAnonymous = False Then
 Profile.userName = txtUserName.Text
 Profile.numFish = txtNumFish.Text
End If
Profile.fishType = rblFreshTropical.SelectedValue
Profile.favFish = ddlFavFish.SelectedItem.Text

Now, go back to Home.aspx and make some changes there so that anonymous users
can access the profile page. Break the table that displays the profile information into
two; leave the first two rows inside pnlProfileInfo, and move the last two rows out-
side (this is easy to do if you move the </asp:Panel> tag in Source mode, and then fix
the <table> tags accordingly). In addition, take the hyperlink that points to the pro-
file page out of the LoginView control, and place it on the page above the panel. That
takes care of the .aspx file, but you still have to fix the code-behind file.

Open up Home.aspx.vb. You’ll need to modify the Page_Load handler so that the
fishType and favFish profile information is displayed for anonymous users, but only
if it exists. Change the handler to look like this:

If Not IsPostBack And _
Profile.userName IsNot Nothing Then
 If Profile.IsAnonymous = False Then
 pnlProfileInfo.Visible = True
 lblName.Text = Profile.userName
 lblNumFish.Text = Profile.numFish
 Else
 pnlProfileInfo.Visible = False
 End If
End If
If Profile.fishType IsNot Nothing Then
 lblFishType.Text = Profile.fishType
End If
If Profile.favFish IsNot Nothing Then
 lblFavFish.Text = Profile.favFish
End If

The next step is to make it possible to migrate anonymous data to the user’s new
profile. For that, you need to create a global event handler. So, click Website ➝ Add
New Item, select Global Application Class, and accept the default filename. Now
you just need to add an event handler that assigns the fishType and favFish proper-
ties of the anonymous profile to the new profile you just created:

Sub Profile_MigrateAnonymous(ByVal sender As Object, ByVal e As
ProfileMigrateEventArgs)
 Dim anonymousProfile As ProfileCommon = Profile.GetProfile(e.AnonymousID)
 If anonymousProfile IsNot Nothing Then

Home.aspx.vb

572 | Appendix D: Answers to Quizzes and Exercises

 If anonymousProfile.fishType IsNot Nothing Then
 Profile.fishType = anonymousProfile.fishType
 End If
 If anonymousProfile.favFish IsNot Nothing Then
 Profile.favFish = anonymousProfile.favFish
 End If
 End If
End Sub

There you go. Your site can now accommodate anonymous users and migrate their
data to a new profile.

Exercise 10-3. Start by copying Exercise 10-2 to a new site, Exercise 10-3, and be sure
to set Home.aspx as the Start Page. Next, create the App_Themes folder in Solution
Explorer by right-clicking the root of the site and choosing Add ASP.NET Folder ➝

Theme. Now, add the two theme folders for Angelfish and Clownfish within the
App_Themes folder. Create the Button.skin and Label.skin files in the Angelfish
folder. Here’s the markup for the Button.skin file in the Angelfish theme:

<asp:Button runat="server"
 ForeColor="Yellow"
 BackColor="Black"
 Font-Size="Large" />

The other skin files are similar, but with different colors and names, of course.

Next, you have to enable themes in the properties subelement of the profile sec-
tion in web.config:

<add name="Theme" />

Now, open up Home.aspx.vb and add the overrides StyleSheetTheme() method as
follows:

Public Overrides Property StyleSheetTheme() As String
 Get
 If Profile.IsAnonymous = False And Profile.Theme IsNot Nothing Then
 Return Profile.Theme
 Else
 Return "Angelfish"
 End If
 End Get
 Set(ByVal value As String)
 Profile.Theme = value
 End Set
End Property

When the user logs in, the theme stored in the user’s profile will be loaded. The
anonymous users will get the Angelfish theme.

Next, you need to provide a way for users to choose their theme. Add two buttons to
Home.aspx, inside the panel pnlProfileInfo—one labeled Angelfish Theme and the
other Clownfish Theme, with IDs of btnAngelfish and btnClownfish, respectively.

Chapter 10: Personalization | 573

Create an event handler to use for the Click event for both buttons. Call it Theme_Click
and add the highlighted code from the following snippet:

Protected Sub Theme_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles btnClownfish.Click, btnAngelFish.Click
 Dim btn As Button = CType(sender, Button)
 If btn.Text = "Clownfish Theme" Then
 Profile.Theme = "Clownfish"
 Else
 Profile.Theme = "Angelfish"
 End If
 Server.Transfer(Request.FilePath)
End Sub

If the button that raises the Click event has the text “Clownfish Theme,” the Clown-
fish theme is set. Otherwise, the Angelfish theme is set.

Finally, create an event handler for the PreInit event and add the highlighted code
from the following snippet:

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit
 If Profile.IsAnonymous = False Then
 Page.Theme = Profile.Theme
 End If
End Sub

Now, when you run the app, the default theme on the home page will be Angelfish,
and if you log in and change the theme for user, that theme will be remembered the
next time the user logs in.

575

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
&= (concatenate assignment operator), 278
-= (decrement assignment operator), 278
/= (divide assignment operator), 278
= (equal to operator), 31
> (greater than operator), 31
>= (greater than or equal to operator), 31
+= (increment assignment operator), 278
< (less than operator), 31
<= (less than or equal to operator), 31
_ (line continuation character), 12
% (modulus operator), 200
*= (multiply assignment operator), 278
<> (not equal to operator), 31
? (question mark), prepending expressions in

debugger, 311
[] (square brackets), in SELECT

statement, 122

A
access modifiers, Visual Basic, 236
access to pages, restricting, 342–348
Accordion control, 84
Add Application dialog box, 498
Add Connection dialog box, 331, 458
Add New Item dialog box, 85, 148, 241
Add ORDER BY Clause dialog box, 143
Add Style Rule dialog box, 214
Add WHERE Clause dialog box, 142, 144
AddHistoryPoint method, 80
Adobe Classroom in a Book, 39
Advanced SQL Generation Options dialog

box, 130

AdventureWorks application
basic controls in, 36–38
collapsible panels in, 97–100
images in, 56
links in, 57
panels in, 45
partial-page updates for, 72–76
pop-up windows in, 90–95
selection controls in, 43, 45–54
source code for, 58–63
tables in, 39–40
watermarks for, 85–89

AdventureWorks database, 112, 458–460
AJAX (Asynchronous JavaScript and

XML), 19, 20, 22, 69–71, 414
browser history not affected by, 77
browser history, enabling, 77–83
compared to Silverlight, 34
enabling, 24
history of, 70
technologies used by, 70

AJAX Control Toolkit, 22, 83
controls in, list of, 84
installing, 464

aliases, in queries, 416
All Together application, 388

AJAX in, 414
Cart page, 414–419, 430
configuration for, 447
Confirm page, 426–428, 433
error pages for, 428
Login page, 398–402, 435
logo for, 389
master pages in, 392–395, 436

576 | Index

All Together application (continued)
navigation for, 402
Products page, 403–414, 438
Purchase page, 419–426, 442
roles for, 396–397
source code for, 430–451
styles for, 389–392
users for, 396–397

AllowPaging property, GridView
control, 126

AllowSorting property, GridView
control, 126

AlwaysVisibleControlExtender control, 84
anonymous personalization, 364–371

adding profile for, 365–370
enabling, 365
migrating anonymous data to a user, 370

App_Themes folder, 374
appearance (design) of web sites, 39
application examples

AdventureWorks (see AdventureWorks
application)

All Together (see All Together
application)

AspNetDocumentLevelStyles, 210
AspNetInLineStyles, 208–210
AWProductData, 115, 166–172
ButtonNavigation, 236–239
ChangingTheMasterPage, 232–234
CompareValidator, 189–195
CustomErrorPage, 318
CustomValidator, 198–200
DebuggingApp, 292–295
DynamicAdventureWorks, 162–165
FormsBasedSecurityWAT, 327
Hello World, 2, 6–13
LifeCycle, 263–267
LinqDataSource, 148–157
LinqDataSourceEditing, 157–160
MasterPages, 221–227
NestedMasterPages, 228–231
Postbacks, 24–34
RangeValidator, 195
RegularExpressionValidator, 197
RequiredFieldValidator, 182–188
RequiredFieldValidatorSummary, 188
SecurityRoles, 340
SessionState, 280–285
SitePersonalization, 353–364
SitePersonalizationComplex, 360
source code for, 166–172
StateBag, 275–279

Themes, 372
ViewState, 270–275
web site for, 388
WebSiteNavigation, 241–243

Application keyword, 285
application state, 262, 268, 285
applications, web site (see web site

applications)
application-wide error pages, 316–319
arrays, Visual Basic, 276
ASP.NET AJAX controls (see AJAX)
ASP.NET Dynamic Data, 161–165
ASP.NET server controls (see server controls)
ASPNETDB.MDF file, 331
AspNetDocumentLevelStyles

application, 210
AspNetInLineStyles application, 208–210
.aspx files (see markup files)
assignment operators, Visual Basic, 278
Asynchronous JavaScript and XML (see

AJAX)
asynchronous postbacks, 23

creating, 29–34
not included in browser history, 77

authentication
forms-based, 326, 327, 331, 396
Windows authentication, 118, 327

AutoGenerateColumns property, GridView
control, 126

automatic renaming, 37
AutoPostBack property

CheckBox control, 47, 56
RadioButton control, 72, 74

AWProductData application, 115, 166–172

B
books

Classroom in a Book (Adobe), 39
Creative Suite 3 (Total Training

course), 39
CSS: The Definitive Guide (Meyer), 208
The Design of Everyday Things

(Norman), 45
Don’t Make Me Think (Krug), 39, 45
Essential Silverlight (Wenz), 34
HTML & XHTML: The Definitive Guide

(Musciano; Kennedy), 19, 208
Mastering Regular Expressions

(Friedl), 196
The Non-Designer’s Design Book

(Williams), 39

Index | 577

Programming ASP.NET (Liberty;
Hurwitz), 20, 112, 348

Programming ASP.NET 3.5 (Liberty;
Hurwitz; Maharry), xii

Programming C# 3.0, Fifth Edition
(Liberty; Xie), 147

Programming .NET 3.5 (Horovitz;
Liberty), 147

Programming Silverlight (Liberty;
Heuer), 34

Programming Visual Basic 2008
(Patrick), 147

Transact-SQL Programming (Kline et
al.), 412

The Zen of CSS Design: Visual
Enlightenment for the Web (Shea;
Holzschlag), 39

Boolean variables, 28
bread crumbs, 240–243, 252–254
Break All option, Debug menu, 302
Breakpoint Condition dialog box, 306
Breakpoint Hit Count dialog box, 307
Breakpoint window, 303
breakpoints, 29, 303–308

deleting, 305
enabling and disabling, 303, 304, 305
evaluating expressions at, 305
hit count for, 306
icons for, 307
performing actions at, 307
setting, 303, 305
stepping through code using, 309
viewing all breakpoints, 303
(see also symbolic debugging)

browser history, 76–83
BulletedList control, 43
BulletStyle property, BulletedList control, 43
Button control, 9, 235–239
ButtonNavigation application, 236–239

C
C#

compared to Visual Basic, xiii
examples in, web site for, xiii
this keyword, 237

C# code-behind files (.cs files), 19
Calendar control, 84
Call Stack window, for debugging, 311, 313
Cascading Style Sheets (see CSS)
CascadingDropDown control, 84
catch blocks, 291

CausesValidation property, postback
controls, 180

ChangingTheMasterPage
application, 232–234

CheckBox control, 43, 138
CheckBoxList control, 43, 46–47
CheckChanged control, 74
Checked property

CheckBox control, 138
ListItem object, 54
TextBox control, 32

CheckedChanged event
CheckBox control, 56
RadioButton control, 74

ChildNodes property, SiteMapNode
object, 251

class property, 218
classes, 21
classes, style, 213
Classroom in a Book (Adobe), 39
Click event, Button control, 11, 28, 238
client technologies, 69

(see also AJAX)
ClientValidationFunction property,

CustomValidator control, 199
code examples

in C#, web site for, xiii
permission to use, xv

code-behind files, 7, 11, 19, 22
(see also event handlers)

CollapseControlID property,
CollapsiblePanelExtender
control, 98

Collapsed property,
CollapsiblePanelExtender
control, 98

CollapsedImage property,
CollapsiblePanelExtender
control, 99

CollapsedText property,
CollapsiblePanelExtender
control, 99

CollapsiblePanelExtender control, 84,
95–100

colors in style sheets, specifying, 216
columns, database, 114
CompareValidator application, 189–195
CompareValidator control, 181, 189–195
concatenate assignment (&=) operator, 278
concatenation of strings, 55
conditional operators, 31

578 | Index

configuration file (web.config)
AppSettings in, to preserve state, 285
authentication mode, setting, 331
connection strings, saving in, 119, 271
debugging, enabling, 9, 301
error handling, configuring, 316, 318,

428
profiles, configuring, 354
session timeout, setting, 279
view state, enabling or disabling, 269

Configure Data Source Wizard, 116–123,
129

Configure Select Statement dialog box, 129,
143

Configure Select Statement Wizard, 144
ConfirmButtonExtender control, 84
connection strings, 118–120
constraints, 132
Content control, 229
content files (see markup files)
ContentPlaceHolder control, 222, 226, 229
ContentPlaceHolderID property, Content

control, 229
Continue option, Debug menu, 302
control state, 268
control tree, 263, 264
controls, 7, 19

adding, 8–13
AJAX Control Toolkit, 22, 83, 84, 464
AJAX controls (see AJAX)
custom controls, 20
data source controls, 20, 113–121
data view controls, 20, 112
events for, displaying, 35
extenders (see extenders)
HTML controls, 19
ID property for, 35
login controls, 20
personalization controls, 20
properties of (see properties, of controls)
rich controls, 21
security controls, 20
selection controls, 43, 50–54
server controls, 18, 19, 20–22
types of, 19–22
user controls, 20
validation controls, 20, 180
view state for, disabling, 270
(see also specific controls)

ControlToValidate property
CustomValidator control, 199
RangeValidator control, 196

RegularExpressionValidator control, 197
RequiredFieldValidator control, 184

Copy Web Site dialog box, 482
CreateUserWizard control, 334
Creative Suite 3 (Total Training course), 39
CRUD (Create, Read, Update, Delete)

database operations, 111
Dynamic Data for, 161
generating for DataSource, 128–133

.cs files (C# code-behind files), 19
CSS (Cascading Style Sheets), 42, 208

(see also style sheets)
CSS: The Definitive Guide (Meyer), 208
CssClass property, all controls, 213, 218
CType method, 139
CurrentNode property, SiteMap object, 251
custom controls, 20
CustomErrorPage application, 318
<customErrors> element, 316–319
customization themes, 371, 379
CustomValidator application, 198–200
CustomValidator control, 181, 198–200

D
data source controls, 20, 113–121
Data tab, 115
data view controls, 20, 112
data, persistent, 111
data, validating (see validation of data)
database

binding to data source controls, 113–121
connection string for (see connection

strings)
constraints in, 132
CRUD operations with, 111
relational, 114
support for, with hosting company, 479
uploading to published web site, 482–493

Database Publishing Wizard, 483
DataContext object, 148, 150
DataList control, 112
DataSource controls, 115–123
DataSource property, data view

controls, 114
.dbml file, 152
Debug menu, 302
Debug toolbar, 302
debugging (see symbolic debugging; tracing)
Debugging Not Enabled dialog box, 10
DebuggingApp application, 292–295
decrement assignment (-=) operator, 278

Index | 579

defaultRedirect attribute, <customErrors>
element, 317

DELETE statement, generating for
DataSource, 128–133

DeleteCommand control, 132
The Design of Everyday Things

(Norman), 45
design of web sites, 39
design surface, 7
Design tab, 7
Design view, 7
DetailsView control, 112, 410
dictionaries, Visual Basic, 276
directives

Master directive, 229
MasterType directive, 233, 394
Page directive, 18
(see also specific directive attributes)

DiscountASP.NET, 481
Display property, RequiredFieldValidator

control, 184, 186
DisplayMode property, ValidationSummary

control, 189
<div> element, 218
divide assignment (/=) operator, 278
dll (dynamic link library), 150
document level styles, 208, 210
DOM (Document Object Model), AJAX

using, 70
domain name, 479, 480, 500
Don’t Make Me Think (Krug), 39, 45
dot notation, 21
DragPanelExtender control, 84
DropDownList control, 43, 49, 50
DropShadow control, 84
Dynamic Data, 161–165
dynamic link library (dll), 150
DynamicAdventureWorks

application, 162–165

E
email forwarding addresses, 479
EnableClientScript property,

CustomValidator control, 199
EnableHistory property, ScriptManager

control, 77
EnablePartialRendering property,

ScriptManager control, 71, 75
EnableSessionState attribute, Page

directive, 284
EnableViewState attribute, Page

directive, 269, 273, 274

EnableViewState property
for application, 269
for controls, 270

entities, LINQ object model, 148
equal to operator (=), 31
error handling, 291, 313–320

application wide, 428
logic errors, 314
syntax errors, 314
unhandled errors, results of, 314

error page
application-wide, 316–319
default, 315
page-specific, 320

ErrorMessage property,
RequiredFieldValidator
control, 184, 189

ErrorPage attribute, Page directive, 320
errors, catching, 252
Essential Silverlight (Wenz), 34
event handlers, 11, 22, 30

arguments of, 30
creating, 11–13, 74
linking to event, 30
with postbacks, 23

event-driven web site applications, 11
events, 11, 22

displaying for controls, 35
linking to event handlers, 30

examples (see application examples; code
examples)

ExpandControlID property,
CollapsiblePanelExtender
control, 98

ExpandDirection property,
CollapsiblePanelExtender
control, 99

ExpandedImage property,
CollapsiblePanelExtender
control, 100

ExpandedText property,
CollapsiblePanelExtender
control, 100

explicitly named skins, 372, 381
expressions, evaluating in debugger, 311
Extender Wizard dialog box, 87
extenders, 85

CollapsiblePanelExtender
control, 95–100

PopupControlExtender control, 89–95
TextBoxWaterMarkExtender

control, 84–89

580 | Index

external styles, 208
(see also style sheets)

F
Fields dialog box, 127, 133, 409
File Breakpoint dialog box, 306
File System location option, 3, 4
files for web site

accessing, 4
specifying location of, 3, 5

files, source (see code-behind files; markup
files)

FilteredTextBoxExtender control, 84
Find dialog, 47
firewall, configuring, 496
For Each loop, Visual Basic, 251
For loop, Visual Basic, 295
ForeColor property, table cells, 138
foreign keys, 114
forms-based security, 326

database for, 331
setting, 327, 396

FormsBasedSecurityWAT application, 327
FormView control, 112
forwarding addresses, 479
Friedl, Jeffrey, (Mastering Regular

Expressions), 196
FTP location option, 5
FTP Log On dialog box, 5
functions

methods implemented as, 30
on call stack, examining during

debugging, 313
stepping out of, during debugging, 310
stepping over, during debugging, 310

G
Garrett, Jesse James (AJAX coined by), 70
Get method, 378
global.asax file, 162, 370
Globally Unique Identifier (GUID), 367
graphics (images), 56
greater than operator (>), 31
greater than or equal to operator (>=), 31
GridView control, 112, 407, 418

adding to page, 123–125
auto-generated code for, 125–127
binding to database tables, 113–121
commands in, modifying appearance

of, 133

contents of, modifying
conditionally, 135–138

in UpdatePanel, 125
LINQ object model used with, 153–160
paging for, enabling, 124, 157
selecting data from, 139
sorting for, enabling, 124, 157
specifying DataSource for, 124
testing, 134

GroupName property, RadioButton
control, 44

GUID (Globally Unique Identifier), 367

H
Handles keyword, 30
hardware requirements, 453
HasChildNodes property, SiteMapNode

object, 251
hashtables, Visual Basic, 276
Hello World application, 2

controls for, 8–13
creating, 6–8

helper methods, 273
Heuer, Tim (Programming Silverlight), 34
hidden fields, view state saved in, 269
history points, 77
history, browser (see browser history)
Holzschlag, Molly (The Zen of CSS Design:

Visual Enlightenment for the
Web), 39

Horovitz, Alex (Programming .NET
3.5), 147

hosting web sites (see publishing web sites)
HoverMenuExtender control, 84
HTML & XHTML: The Definitive Guide

(Musciano; Kennedy), 19, 208
HTML (HyperText Markup Language), 1,

17
(see also markup files)

HTML controls, 19
HTTP location option, 5
HTTP status codes, 296
HttpResponse class, 239
Hungarian notation, 26
Hurwitz, Dan

Programming ASP.NET, 20, 112, 348
Programming ASP.NET 3.5, xii

HyperLink control, 57, 235–239
hyperlinks, 57

Index | 581

I
ID property, all controls, 35
IDE (Integrated Development

Environment), 2
If statements, 137
If-Then statements, 31
IIS, publishing web site to, 498–499
Image control, 56, 97
ImageButton control, 56
ImageControlID property,

CollapsiblePanelExtender
control, 99

ImageMap control, 56
images, 56
ImageURL property, Image control, 56, 97
Immediate window, for debugging, 311
impedance mismatch, 146
@import statement, 216
increment assignment (+=) operator, 278
Init event, Page, 265
InitialValue property, RequiredFieldValidator

control, 184
inline styles, 208–210
inner HTML, 52
inner join, 412
INSERT statement, generating for

DataSource, 128–133
Insert Table dialog box, 39
Insert Table Wizard, 39, 52
InsertCommand control, 133
instances, 21
Integrated Development Environment

(IDE), 2
IntelliSense, finding properties with, 35
IP address, 480
IsPostBack property, Page, 23, 265
IsValid property, Page, 186, 265
Item editor, adding list items using, 46–47

J
JavaScript

AJAX using, 70
custom validators using, 199
modulus operator (%), 200
script blocks written in, 18
writing AJAX controls in, 71

joins, SQL, 412, 415
JScript, RegularExpressionValidator control

using, 197

K
Kennedy, Bill (HTML & XHTML: The

Definitive Guide), 19, 208
Kline, Kevin (Transact-SQL

Programming), 412
Krug, Steve (Don’t Make Me Think), 39, 45

L
Label control, 9
Language Integrated Query (see LINQ)
.layout file, 153
layout, methods of, 42
less than operator (<), 31
less than or equal to operator (<=), 31
Liberty, Jesse

Programming ASP.NET, 20, 112, 348
Programming ASP.NET 3.5, xii
Programming C# 3.0, Fifth Edition, 147
Programming .NET 3.5, 147
Programming Silverlight, 34

life cycle of page, 261–267
LifeCycle application, 263–267
line continuation character (_), 12
link tag, 217
LinkButton control, 58, 235–239
links (see hyperlinks)
LINQ (Language Integrated

Query), 146–147
editing data, 157–160
object model

creating, 147–153
templates used with, 162
using with GridView, 153–160
with Dynamic Data, 162

LinqDataSource application, 148–157
LinqDataSource control, 148, 153, 157
LinqDataSourceEditing

application, 157–160
list selection controls, 45–49
ListBox control, 43, 50
ListItem Collection Editor dialog box, 360
ListItem object, 46
ListView control, 112
LiteralControls, 264
literals, in regular expressions, 196
Load event, Page, 27–29, 265
Load phase, of page life cycle, 267
localhost, 10, 343
Locals window, for debugging, 311, 312

582 | Index

Location for web site
File System option, 3, 4
FTP option, 5
HTTP option, 5

logging in
determining if user is logged in, 336,

344–345
enabling for users, 329
forms-based security for, 326, 327, 331,

396
Login page, 337–340, 398–402
of previously anonymous user, migrating

data to, 370
logic errors, 314
login controls, 20
Login page, 337–340, 398–402
LoginView control, 336
loops

For Each loop, Visual Basic, 251
For loop, Visual Basic, 295

M
Maharry, Dan (Programming ASP.NET

3.5), xii
MaintainScrollPositionOnPostback property,

Page directive, 75
markup files (.aspx files), 6, 7, 17
Master directive, 229
.master files, 222
master pages, 21, 207, 220

changing at runtime, 232–234
compared to style sheets, 220
content pages for, 225–227
creating, 221–224, 392–395
for navigation features, 235
nesting, 228–231
public property for, 232

Mastering Regular Expressions (Friedl), 196
MasterPageFile attribute, Master

directive, 229
MasterPages application, 221–227
MasterType directive, 233, 394
MaximumValue property, RangeValidator

control, 196
Me keyword, Visual Basic, 237
measurement units, in style sheets, 216
Menu control, 248
menus, for navigation, 240–243
metacharacters, in regular expressions, 196

methods, 21
as functions, 30
on call stack, examining during

debugging, 313
passing values to, 30
stepping out of, during debugging, 310
stepping over, during debugging, 310
as subs, 30

Meyer, Eric (CSS: The Definitive Guide), 208
MinimumValue property, RangeValidator

control, 196
Mod operator, 200
mode attribute, <customErrors>

element, 317
Modify Style dialog box, 214
modulus operator (%), 200
multiply assignment (*=) operator, 278
Musciano, Chuck (HTML & XHTML: The

Definitive Guide), 19, 208
MutuallyExclusiveCheckBoxExtender

control, 84

N
named skins, 372, 381
namespaces, 25
naming conventions, 26
navigation

bread crumbs for, 240–243, 252–254
Buttons for, 235–239
HyperLinks for, 235–239
LinkButtons for, 235–239
master pages for, 235
menus for, 240–243
site maps for, 243–252, 402

nested master pages, 228–231
NestedMasterPages application, 228–231
.NET AJAX controls (see AJAX)
.NET, technologies in, 34
Network Solutions, 479
New Web Site dialog box, 4, 162, 469
NoBot control, 84
The Non-Designer’s Design Book

(Williams), 39
normalized data, 412
Norman, Donald A. (The Design of Everyday

Things), 45
not equal to operator (<>), 31

Index | 583

O
object model, LINQ

creating, 147–153
templates used with, 162
using with GridView, 153–160
with Dynamic Data, 162

Object Relational Designer, 147–153, 162
object-oriented terminology, 21
objects, 21
Open Web Site dialog box, 472, 475, 482
operating system requirements, 453
Operator property, CompareValidator

control, 192, 193, 195
operators

assignment, 278
conditional, 31

Options dialog box, 470, 471
O/R (Object Relational) Designer, 147–153,

162
order form, example of (see AdventureWorks

application)
OrderForm markup, 63
outer join, 412
Output option, Debug menu, 303

P
Page class, 263
Page directive, 18

(see also specific attributes of Page
directive)

Page Initialization phase, of page life
cycle, 265

page layout, methods of, 42
Page_Load method, 265
Page_PreRender method, 265
page-level tracing, 296–298
pages, 17–19

life cycle of, 261–267
restricting access to, 342–348
(see also web site applications)

page-specific error pages, 320
Panel control, 45, 95–100
parameters, SQL, 132, 140–145
partial page postbacks (see asynchronous

postbacks)
partial-page updates, 71
passing parameters, 141
PasswordRecovery control, 340

passwords
removing and setting a new one, 340
strong passwords, 330

PasswordStrength control, 84
PathSeparator property, SiteMapPath

control, 254
Patrick, Tim (Programming Visual Basic

2008), xii, 147
permissions (see roles)
persistent data, 111
personalization, 353

anonymous, 364–371
based on roles, 399–402
forms-based security allowing, 326
profiles for (see profiles)

personalization controls, 20
physical directories, mapping virtual

directories to, 467–469
pinning windows, 8
pop-up windows, 89–95
PopupControlExtender control, 84, 89–95
PopupControlID property,

PopupControlExtender control, 91
port forwarding, 497
port numbers, 343
Position property, PopupControlExtender

control, 92, 95
postbacks, 22

asynchronous, 23, 29–34, 77
synchronous, 23, 27–29

Postbacks application, 24–34
PreInit event, Page, 265
PreRender event, Page, 265
PreviousPage property, Page, 265
primary key, 114
<profile> element, 354
Profile object, 357
profiles, 353–364

checking for existence of, 357
complex data types in, 359–364
creating, 354–359
for anonymous users, 365–370

Programming ASP.NET (Liberty;
Hurwitz), 20, 112, 348

Programming ASP.NET 3.5 (Liberty;
Hurwitz; Maharry), xii

Programming C# 3.0, Fifth Edition (Liberty;
Xie), 147

584 | Index

Programming .NET 3.5 (Horovitz;
Liberty), 147

Programming Silverlight (Liberty; Heuer), 34
Programming Visual Basic 2008

(Patrick), xii, 147
<properties> element, 354
Properties window, 7, 24, 35, 35–36
properties, of classes, 21
properties, of controls

accessing programmatically, 378
displaying, 7, 35
examining during debugging, 311
finding with IntelliSense, 35
setting, 41
(see also specific properties)

public property, master pages, 232
publishing web sites

hosting company for, 478–480
account setup, 481
ASP.NET support from, 481
choosing, 481
database support from, 479
domain name for, 479, 480
testing and maintenance of site, 493
uploading data to, 482–493
uploading web site files to, 482

hosting your own site, 494–501
domain name for, 500
security for, 495–497
under IIS, 498–499
web server software for, 495

Q
queries (see SELECT statement)
question mark (?), prepending expressions in

debugger, 311

R
RadioButton control, 43, 74
RadioButtonList control, 43, 48, 405, 421
RangeValidator application, 195
RangeValidator control, 181, 195
ReadOnly property, TextBox control, 53,

139
records, database, 114
red dot, indicating breakpoint, 303
Redirect method, HttpResponse class, 239
RegEx Buddy program, 198
RegularExpressionValidator application, 197
RegularExpressionValidator control, 181,

196, 421, 422

relational database, 114
renaming, automatic, 37
Render event, Page, 265
Rendering phase, of page life cycle, 265
ReorderList control, 84
Repeater control, 112
RequiredFieldValidator

application, 182–188
RequiredFieldValidator control, 181, 419

creating, 182–188
using with CompareValidator

control, 192, 194
RequiredFieldValidatorSummary

application, 188
Response propert, 265
Restart option, Debug menu, 302
rich controls, 21
roles, 340

creating, 396–397
customized content for, 399–402
limiting page access based on, 345–348

RoundedCornersExtender control, 84
RowDataBound event, GridView

control, 135–137
rows, database, 114

S
scaffolding, 162, 164
schema names for tables, 121–123
script blocks, 18
ScriptManager control, 24, 71–76, 77, 80,

414
security

access to pages, restricting, 342–348
database for, 331
for web server, 495–497
forms-based, 326, 327, 331, 396
of view state, 269, 270
(see also WAT)

security controls, 20
security database, 331
SecurityRoles application, 340
Select Case statement, Visual Basic, 283
SELECT statement, 114

aliases in, 416
specifying for DataSource

control, 120–123
square brackets ([]) in, 122
(see also SQL)

Select Style Sheet dialog box, 218
Select URL dialog box, 334

Index | 585

Selected property, ListItem object, 47
SelectedIndex property, list controls, 52
SelectedIndexChanged event

GridView control, 139
RadioButtonList control, 281

SelectedItem property, list controls, 52, 54
SelectedValue property, list controls, 52, 81
selection controls, 43, 44, 50

feedback on selections, providing, 52–54
retrieving selections from, 52
(see also list selection controls)

selectors, styles for, 213
<SelectParameters> element, SqlDataSource

control, 145, 416
server (see web server)
server controls, 18, 19, 20–22
ServerValidate event, CustomValidator

control, 199
session, 262, 279
Session keyword, 280
session state, 268, 279–285
session timeout, 279
Session_Start event, session, 280
SessionState application, 280–285
Set method, 378
SetFocusOnError property,

RequiredFieldValidator
control, 186

Shea, Dave (The Zen of CSS Design: Visual
Enlightenment for the Web), 39

ShowStartingNode property,
SiteMapDataSource control, 247

Silverlight, 34
site maps, 243–252

accessing nodes
programmatically, 249–252

creating, 243–245, 402
Menu used with, 248
root node of, adjusting, 247
TreeView used with, 246–248

<sitemap> element, 244
.sitemap files, 245
SiteMapDataSource control, 245, 247
<siteMapNode> element, 244
SiteMapNode object, 251
SiteMapNodeCollection object, 251
SiteMapPath control, 252
SitePersonalization application, 353–364
SitePersonalizationComplex application, 360
skins, 371

creating, 374–375
default skins, 372

enabling, 375
explicitly named skins, 372, 381

Slider control, 84
.sln files, 470
Smart Tags, 46, 404
software requirements, 453
Solution Explorer window, 7
solution file, 470
SortExpression property, GridView

control, 126
source code (see code-behind files; code

examples; markup files)
Source tab, 7
Source view, 7

adding list items using, 47–49
split with Design view, 7

 element, 218
Split tab, 7
spoofing, 180
SQL (Structured Query Language), 114

joins, 412, 415
passing parameters, 132, 140–145
(see also SELECT statement)

SQL Server Express, configuring, 457
SqlDataSource control, 115, 404, 406
square brackets ([]), in SELECT

statement, 122
Start option, Debug menu, 302
Start phase, of page life cycle, 265
state, 261, 267–269

(see also application state; control state;
session state; view state)

state bag, 275–279
state, restoring for AJAX controls, 77–83
StateBag application, 275–279
stateless environment, Web as, 267
Step Into option, Debug menu, 302
Step Out option, Debug menu, 303
Step Over option, Debug menu, 302
Stop Debugging option, Debug menu, 302
stored procedures, 146
StringCollection class, 360
strings, Visual Basic, 55
strong passwords, 330
strongly typed properties, LINQ object

model, 148
Structured Query Language (see SQL)
Studio 8 (Total Training course), 39
style attribute, <input> element, 208
style classes, 213
<style> element, 210

586 | Index

style sheets, 207, 208, 212–220
attaching to a page, 216–218, 392
colors in, specifying, 216
compared to master pages, 220
creating, 85, 213–218, 389–392
units of measurement used in, 216

styles, 207
applying to elements, 208
document level styles, 208, 210
external styles, 208
inline styles, 208–210
for selectors, 213

stylesheet themes, 371, 377
StyleSheetTheme attribute, Page

directive, 371
StyleSheetTheme property, Page, 377
subs, methods implemented as, 30
Substring() function, 137
Summary table, 52–54
SuppressPostBack property,

CollapsiblePanelExtender
control, 100

symbolic debugging, 291, 300
breakpoints for (see breakpoints)
configuration for, 9, 301
Debug toolbar for, 302
evaluating expressions during, 311
examining methods and functions on call

stack during, 313
examining variables and objects

during, 310–313
stepping out of methods or

functions, 310
stepping over specific methods or

functions, 310
stepping through code, 309
testing web site using, 9–11
windows available during, 310–313

synchronous postbacks, 23, 27–29
syntax errors, 314
system requirements, 453

T
Table control, 42
tables, database, 113, 114

binding to GridView control, 113–121
schema names for, 121–123

tables, HTML
creating, 39–40
for page layout, 42, 392
Summary table, 52–54

Target property, HyperLink control, 57

TargetControlID property
CollapsiblePanelExtender control, 100
PopupControlExtender control, 91
TextBoxWatermarkExtender control, 87,

91
templates for data controls, 112
templates for web site

choosing, 3
with Dynamic Data, 162

Text property
Button control, 24, 32
Label control, 11
ListItem object, 46, 78
TextBox control, 41, 140

text, displaying, 52–54
TextAlign property, Image control, 56
TextBox control, 40, 41, 208
TextBoxWaterMarkExtender

control, 84–89, 91–94
TextMode property, TextBox control, 41
Theme attribute, Page directive, 377
themes, 371

creating, 374
customization themes, 371, 379
enabling, 375
location of, 374
setting for page, 377–380
stylesheet themes, 371, 377

Themes application, 372
this keyword, C#, 237
tool tips, 45
Toolbox, 7, 8
ToString() method, 414
Total Training courses, 39
Trace attribute, Page directive, 296
trace log, 296–300
Trace object, 298–300
tracing, 291, 295–300
Transact-SQL Programming (Kline et

al.), 412
TreeView control, 246–248
try/catch blocks, 291
type conversion, 139
Type property

CompareValidator control, 193
RangeValidator control, 196

U
unique key, 114
units of measurement in style sheets, 216
Universal Resource Locater (URL), 261
Unload event, Page, 267

Index | 587

UPDATE statement, generating for
DataSource, 128–133

UpdateCommand control, 133
UpdatePanel control, 30–34, 71–76, 414,

425
GridView in, 125
in PopupControlExtender, 89, 92

URL (Universal Resource Locater), 261
user controls, 20
user input, verifying (see validation of data)
users

anonymous (see anonymous
personalization)

authentication of (see authentication)
creating, 327–330, 332–336, 396–397
customizing web site based on (see

personalization)
logging in (see logging in)
password requirements for, 330
roles for (see roles)

V
Validate method, 265
ValidateEmptyText property,

CustomValidator control, 199
validation controls, 20, 180
Validation Expression property,

RegularExpressionValidator
control, 197

validation of data, 179–182
validation of users (see authentication)
Validation phase, of page life cycle, 265, 267
ValidationGroup property, validation

controls, 181
ValidationSummary control, 188, 420
Value property, ListItem object, 46, 78
ValueToCompare property,

CompareValidator control, 192
variables, 55

examining during debugging, 310, 311,
312, 313

naming conventions for, 26
.vb files (Visual Basic code-behind files), 19,

153
view state, 268, 269–279

disabling, 269, 270
security of, 269, 270
state bag used with, 275–279
using, 270–275
when not to use, 270

ViewState application, 270–275
ViewState keyword, 275–279

virtual directories, 466, 467–469
Visible property, Image control, 56
Visual Basic

&=, concatenate assignment
operator, 278

-=, decrement assignment operator, 278
/=, divide assignment operator, 278
+=, increment assignment operator, 278
_, line continuation character, 12
*=, multiply assignment operator, 278
access modifiers, 236
arrays, 276
Boolean variables, 28
code-behind files (.vb files), 19, 153
compared to C#, xiii
conditional operators, 31
CType method, 139
dictionaries, 276
errors, catching, 252
For Each loop, 251
For loop, 295
If-Then statements, 31
Me keyword, 237
methods, implementation of, 30
Mod operator, 200
namespaces, 25
object-oriented terminology for, 21
Select Case statement, 283
strings, 55
use of, 4
variables, 55

Visual Studio 2008, installing, 461–463
VWD (Visual Web Developer),

installing, 454–457

W
Warn method, Trace object, 298–300
WAT (Web Site Administrative Tool)

roles, creating, 340, 396
users, creating, 327–332, 396

Watch window, for debugging, 311, 313
WatermarkCssClass property,

TextBoxWatermarkExtender
control, 87

watermarks, 85–89
WatermarkText property,

TextBoxWatermarkExtender
control, 87, 91

web pages (see pages)
web server

processing of pages by, 18
used by IDE, 5

588 | Index

Web Site Administration Tool (see WAT)
web site applications, 17

appearance (design) of, 39
building (compiling), 376
copying

with IDE, 471–475
without IDE, 471

creating, 2–5, 469
developing remotely, 5
directory for, 466–471
event-driven, 11
publishing (see publishing web sites)
testing while developing, 9–11

web site resources
AdventureWorks database, 458
AJAX Control Toolkit, 464
application examples, 388
code examples

in C#, xiii
permission to use, xv

DiscountASP.NET, 481
for this book, xiii, xv
HTTP status codes, 296
Hungarian notation, 26
Jesse Liberty, xv
Network Solutions, 479
Silverlight, 34
strong passwords, 330
Visual Studio 2008, 461

Visual Web Developer (VWD), 454, 457
web site design, 39

web.config file (see configuration file)
WebSiteNavigation application, 241–243
Welcome page, 336
well-known ports, 343
Wenz, Christian (Essential Silverlight), 34
When Breakpoint Is Hit dialog box, 308
WHERE clause, 142
Width property, Label control, 24, 30
Williams, Robin (The Non-Designer’s Design

Book), 39
Windows authentication, 118, 327
windows, manipulating, 6, 8
Write method, Trace object, 298–300

X
XHTML, AJAX using, 70
Xie, Donald (Programming C# 3.0, Fifth

Edition), 147
XML, AJAX using, 70
XSLT, AJAX using, 70

Z
The Zen of CSS Design: Visual

Enlightenment for the Web (Shea;
Holzschlag), 39

About the Authors
Jesse Liberty is the best-selling author of O’Reilly’s Learning ASP.NET with AJAX,
Programming C#, Programming .NET 3.5, and a dozen other books on program-
ming. He is a senior program manager at Microsoft on the Silverlight Development
Team, and a frequent contributor to O’Reilly Network web sites and publications.
Jesse is a former distinguished software engineer at AT&T and vice president for
technology development at CitiBank, and was an independent consultant for 12
years.

Dan Hurwitz is the president of Sterling Solutions, Inc., where for more than two
decades he has been providing contract programming and database development to a
wide variety of clients.

Brian MacDonald is a technical editor specializing in Microsoft .NET programming
topics. He has edited Programming C#, Programming ASP.NET, and Programming
WCF (all from O’Reilly). He is also the coauthor of Learning C# 2005, Learning C#
3.0, and Learning ASP.NET 2.0 with AJAX. He lives in southeastern Pennsylvania
with his wife and son.

Colophon
The image on the cover of Learning ASP.NET 3.5, Second Edition, is a monkfish
(Lophius piscatorius). Europeans occasionally call the monkfish a sea monk, a kinder
term for a fish also known as a sea monster.

Although according to Seafood Watch, Americans concerned with sustainable living
practices should avoid eating the fish, the monkfish remains a popular dish among
consumers and chefs alike.

Chefs have come to appreciate the fish—often labeled the “poor man’s lobster”—for
its ability to absorb the flavor of accompanying broths and spices. While the fish is
only similar to the lobster in texture and not flavor, many chefs find it easier to
promote the fish under a name the public will recognize and not find intimidating.

Its large head, which is twice as wide as its tail, and enormous mouth filled with
sharp, pointy teeth give the monkfish a reputation for being one of the ugliest fish
around. Markets will usually sell the monkfish without its head, a precedent perhaps
set by France, where it had previously been illegal to bring monkfish into the country
with their heads attached, as the fish might frighten passersby.

The cover image is from Dover’s Animals. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and
the code font is LucasFont’s TheSansMonoCondensed.

	Learning ASP.NET 3.5
	Table of Contents
	Preface
	About This Book
	About This Series
	Learning or Programming?
	VB Versus C#
	How This Book Is Organized
	Conventions Used in This Book
	Support: A Note from Jesse Liberty
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments
	From Jesse Liberty
	From Dan Hurwitz
	From Brian MacDonald

	Getting Started
	Hello World
	Creating a New Web Site
	Creating HelloWorld
	Making the HelloWorld Web Site Interactive
	What You Just Did
	Summary

	Building Web Applications
	Mastering Web Site Fundamentals
	The Page
	Controls
	Code-Behind Files
	Events and Postbacks
	Synchronous and Asynchronous Postbacks
	The Page Load event and synchronous postback
	Adding asynchronous postbacks

	Using Controls
	Organizing the Properties Window
	Finding properties with IntelliSense

	Basic Controls
	Creating Tables
	Setting Properties
	Selection Controls
	Panels
	List Selection Controls
	Adding items with the Item editor
	Adding items in Source view

	More Selection Controls
	Using Selections to Display Text
	Images
	Links
	LinkButtons

	Source Code
	Summary

	Snappier Web Sites with AJAX
	Take a Walk on the Client Side
	ScriptManager and UpdatePanel
	Controlling Browser History
	Extending Controls with the Control Toolkit
	TextBoxWaterMarkExtender
	PopupControlExtender
	CollapsiblePanelExtender

	Source Code Listing
	Summary

	Saving and Retrieving Data
	Getting Data from a Database
	Binding Data Controls
	Create a Sample Web Page
	Using a DataSource Control
	Pay No Attention to That Man Behind the Curtain

	GridView Control
	Auto-Generated Code
	Adding Insert, Update, and Delete Statements

	Displaying and Updating the Data
	Take It for a Spin
	Modifying the Grid Based on Conditions
	Selecting Data from the GridView
	Passing Parameters to the SELECT Query

	LINQ
	Creating the Object Model
	Using the Object Model
	Editing Data in LINQ

	ASP.NET Dynamic Data
	Source Code Listings
	Summary

	Validation
	Validation Controls
	The RequiredFieldValidator
	The Summary Control
	The Compare Validator
	Checking the Input Type
	Comparing to Another Control

	Range Checking
	Regular Expressions
	Custom Validation
	Summary

	Style Sheets, Master Pages, and Navigation
	Styles and Style Sheets
	Cascading Styles
	Inline Styles
	Pros and cons

	Document-Level Styles
	Pros and cons

	External Style Sheets

	Master Pages
	Creating a Master Page
	Adding Content Pages
	Using Nested Master Pages
	Changing the Master Page at Runtime

	Navigation
	Buttons and HyperLinks
	Menus and Bread Crumbs
	Site Maps
	Using Sitemaps
	TreeView
	Customizing the look and feel of the TreeView
	Replacing the TreeView with a menu control
	Accessing site map nodes programmatically

	Bread Crumbs

	Summary

	State and Life Cycle
	Page Life Cycle
	State
	View State
	Session State
	Application State

	Summary

	Errors, Exceptions, and Bugs, Oh My!
	Creating the Sample Application
	Tracing
	Page-Level Tracing
	Inserting into the Trace Log

	Debugging
	The Debug Toolbar
	Breakpoints
	Setting a breakpoint
	Breakpoints window
	Breakpoint properties
	Breakpoint icons

	Stepping Through Code
	Examining Variables and Objects
	Debug Windows
	Immediate window
	Locals window
	Watch window
	Call Stack window

	Error Handling
	Unhandled Errors
	Application-Wide Error Pages
	Page-Specific Error Pages

	Summary

	Security
	Forms-Based Security
	Creating Users with the WAT
	Managing Users Programmatically
	Creating User Accounts
	Creating a Welcome Page
	Creating a Login Page

	Roles
	Restricting Access
	Testing for Login Status
	Testing for Role-Based Authentication Membership

	Summary

	Personalization
	Profiles
	Simple Data Types
	Complex Data Types

	Anonymous Personalization
	Adding an Anonymous Profile
	Migrating Anonymous Data to an Actual User’s Record

	Themes and Skins
	Create the Test Site
	Organize Site Themes and Skins
	Enable Themes and Skins
	Specify Themes for Your Page
	Using Named Skins

	Summary

	Putting It All Together
	Getting Started
	Adding Styles
	Using Master Pages
	Setting Up Roles and Users
	Logging In
	Navigation
	Products Page
	Adding AJAX
	Cart Page
	Purchase Page
	Confirm Page
	Custom Error Pages
	Summary
	Source Code Listings
	Cart Page
	Confirm Page
	Home Page
	Login Page
	Master Page
	Products Page
	Purchase Page
	Web.config

	Installing the Stuff You’ll Need
	What Hardware and Software You’ll Need
	Visual Web Developer
	Installing VWD
	Configuring SQL Server Express
	Using the AdventureWorks Sample Database

	Visual Studio 2008
	Installing Visual Studio 2008

	ASP.NET AJAX Control Toolkit

	Copying a Web Site
	Virtual Directories
	Copying the Web Site Without Using the IDE
	Copying the Web Site with the IDE

	Publishing Your Web Site
	Using a Hosting Company
	Database Support
	Your Domain Name

	Example: Getting Set Up on a Hosting Site
	Picking a Hosting Site
	Setting Up the Account
	Uploading the Web Site Files
	Uploading Data
	Creating the script
	Logging Into the hosting database and running the script
	Updating the Connection Strings

	Notes and Tips

	Hosting Your Own Site
	Running Web Server Software
	Security
	Configuring the Firewall
	Hosting a Web Site Under IIS
	IIS 7
	IIS 6

	Setting Up the Domain Name

	Further Resources

	Answers to Quizzes and Exercises
	Chap�ter�1: Getting Started
	Chap�ter�2: Building Web Applications
	Chap�ter�3: Snappier Web Sites with AJAX
	Chap�ter�4: Saving and Retrieving Data
	Chap�ter�5: Validation
	Chap�ter�6: Style Sheets, Master Pages, and Navigation
	Chap�ter�7: State and Life Cycle
	Chap�ter�8: Errors, Exceptions, and Bugs, Oh My!
	Chap�ter�9: Security
	Chap�ter�10: Personalization

	Index

