Build Web Applications with
ASP.NET 3.5, AJAX, LINQ, and More

Learning

ASPNET 35

" o Jesse Liberty, Dan Hurwitz
O’REILLY & Brian MacDonald

9

NET

O’REILLY*

Learning ASP.NET 3.5

Learning ASP.NET 3.5, Second Edition, teaches you
how to create engaging and interactive applications

| using the latest version of ASP.NET with AJAX and
the productivity-enhancing features of Visual Studio
2008. All you need to get started is a basic knowledge of HTML
and a desire to produce professional-quality websites.

Each chapter in this book is a self-contained lesson that
introduces new skills—with illustrations and plenty of annotated
examples—that you can use right away. You'll also get unique
Brain Builders in each chapter that include practical exercises
and review quizzes so that you can practice what you've learned
and test your understanding. Inside, you'll find:

* A series of tutorials on different aspects of ASP.NET web
development

* AJAX-integrated examples

* Examples that illustrate how new concepts work—each
chapter includes one example with several stages, or a
series of smaller examples

= VB, JavaScript, and SQL Cheat Sheet sidebars to help readers
with little or no background on these topics

* An example web application in the final chapter that
incorporates everything you've learned

If you want to get up to speed with the world's most popular
web development technology. Learning ASP.NET 3.5 is the best
resource for the job.

www.oreilly.com

US $44.99 CAN $44.99
ISBN: 978-0-596-51845-5

IO O

780596751845

Safari

Books Online

“I'd recommend this book
as a great introduction
to the most commonly
used aspects of ASP.NET.
Readers who go all the
way through will have
touched on all the tasks
that they're likely to
encounter when they
create (small) dynamic
websites.”

—Mike Pope,
Microsoft User
Education

Jesse Liberty is the bestselling
author of O'Reilly’s Learning
ASP.NET 2.0 with AJAX,
Programming C#, and
Programming NET 3.5.

Dan Hurwitz is the president
of Sterling Solutions, Inc.,
where he provides contract
programming and database
development.

Brian MacDonald is the
coauthor of O'Reilly’s Learning
C# 2005, and is the editor of
several programming and
networking books.

**2 Free online edition
for 45 days with
purchase of this book.
Details on last page.

SECOND EDITION

Learning ASP.NET 3.5

Jesse Liberty, Dan Hurwitz, and Brian MacDonald

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Sebastopol - Taipei - Tokyo

Learning ASP.NET 3.5, Second Edition
by Jesse Liberty, Dan Hurwitz, and Brian MacDonald

Copyright © 2008 Jesse Liberty, Dan Hurwitz, and Brian MacDonald. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn Cover Designer: Karen Montgomery
Production Editor: Sumita Mukherji Interior Designer: David Futato
Proofreader: Sumita Mukherji lllustrator: Jessamyn Read

Indexer: Angela Howard

Printing History:
September 2007: First Edition.
July 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning ASP.NET 3.5, Second Edition, the image of a monkfish, and related trade
dress are trademarks of O’Reilly Media, Inc.

.NET is a registered trademark of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 978-0-596-51845-5
[(M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

Table of Contents

Preface Xi
1. GettingStarted..... 1
Hello World 2
Creating a New Web Site 2
Creating HelloWorld 6
Making the HelloWorld Web Site Interactive 8
What You Just Did 13
Summary 13
Brain Builder 15
Quiz 15
Exercise 15

2. Building Web Applications .. 17
Mastering Web Site Fundamentals 17
The Page 17
Controls 19
Code-Behind Files 22
Events and Postbacks 22
Synchronous and Asynchronous Postbacks 23

The Page Load event and synchronous postback 27

Adding asynchronous postbacks 29

Using Controls 35
Organizing the Properties Window 35
Finding properties with IntelliSense 35

Basic Controls 36

Creating Tables 39

Setting Properties 41

Selection Controls 43
Panels 45
List Selection Controls 45
Adding items with the Item editor 46
Adding items in Source view 47
More Selection Controls 50
Using Selections to Display Text 52
Images 56
Links 57
LinkButtons 58
Source Code 58
Summary 63
Brain Builder 65
Quiz 65
Exercises 65

3. Snappier Web Siteswith AJAXl 69
Take a Walk on the Client Side 69
ScriptManager and UpdatePanel 71
Controlling Browser History 76
Extending Controls with the Control Toolkit 83
TextBoxWaterMarkExtender 85
PopupControlExtender 89
CollapsiblePanelExtender 95
Source Code Listing 100
Summary 105
Brain Builder 106
Quiz 106
Exercises 106

4. SavingandRetrievingData 1
Getting Data from a Database 112
Binding Data Controls 113
Create a Sample Web Page 115

iv | Tableof Contents

Using a DataSource Control

Pay No Attention to That Man Behind the Curtain

GridView Control
Auto-Generated Code

Adding Insert, Update, and Delete Statements

Displaying and Updating the Data
Take It for a Spin

Modifying the Grid Based on Conditions
Selecting Data from the GridView
Passing Parameters to the SELECT Query

LINQ
Creating the Object Model
Using the Object Model
Editing Data in LINQ
ASP.NET Dynamic Data
Source Code Listings
Summary
Brain Builder
Quiz

Exercises

Validation

Validation Controls
The RequiredFieldValidator
The Summary Control
The Compare Validator
Checking the Input Type
Comparing to Another Control
Range Checking
Regular Expressions
Custom Validation
Summary
Brain Builder
Quiz

Exercises

115
121
123
125
128
133
134
135
139
140
146
147
153
157
161
166
172
174
174
174

179
180
182
188
189
193
193
195
196
198
201
202
202
202

Table of Contents

| v

6.

Style Sheets, Master Pages, and Navigation

Styles and Style Sheets
Cascading Styles
Inline Styles
Pros and cons
Document-Level Styles
Pros and cons
External Style Sheets
Master Pages
Creating a Master Page
Adding Content Pages
Using Nested Master Pages
Changing the Master Page at Runtime
Navigation
Buttons and HyperLinks
Menus and Bread Crumbs
Site Maps
Using Sitemaps
TreeView
Customizing the look and feel of the TreeView
Replacing the TreeView with a menu control
Accessing site map nodes programmatically
Bread Crumbs
Summary
Brain Builder
Quiz

Exercises

Stateand LifeCycle

Page Life Cycle
State
View State
Session State
Application State
Summary
Brain Builder
Quiz

Exercises

207
208
208
210
210
211
212
220
221
225
228
232
234
235
240
243
246
246
247
248
249
252
255
257
257
257

261
261
267
269
279
285
286
288
288
288

Vi

Table of Contents

8. Errors, Exceptions, and Bugs, OhMy! 291

Creating the Sample Application
Tracing
Page-Level Tracing
Inserting into the Trace Log
Debugging
The Debug Toolbar
Breakpoints
Setting a breakpoint
Breakpoints window
Breakpoint properties
Breakpoint icons
Stepping Through Code
Examining Variables and Objects
Debug Windows
Immediate window
Locals window
Watch window
Call Stack window
Error Handling
Unhandled Errors
Application-Wide Error Pages
Page-Specific Error Pages
Summary
Brain Builder
Quiz

Exercises

9. SeCUNtY

Forms-Based Security

Creating Users with the WAT

Managing Users Programmatically
Creating User Accounts
Creating a Welcome Page
Creating a Login Page

Roles

Restricting Access

292
295
296
298
300
302
303
303
303
305
307
309
310
310
311
312
313
313
313
314
316
320
320
323
323
323

326
326
327
332
333
336
337
340
342

Table of Contents

vii

10.

11.

Testing for Login Status

Testing for Role-Based Authentication Membership
Summary
Brain Builder

Quiz

Exercises

Personalization

Profiles
Simple Data Types
Complex Data Types
Anonymous Personalization
Adding an Anonymous Profile
Migrating Anonymous Data to an Actual User’s Record
Themes and Skins
Create the Test Site
Organize Site Themes and Skins
Enable Themes and Skins
Specify Themes for Your Page
Using Named Skins
Summary
Brain Builder
Quiz

Exercises

Putting It All Together

Getting Started
Adding Styles
Using Master Pages
Setting Up Roles and Users
Logging In
Navigation
Products Page
Adding AJAX

Cart Page

Purchase Page
Confirm Page
Custom Error Pages

345
345
349
351
351
351

353
353
354
359
364
365
370
371
372
374
375
377
381
382
384
384
384

388
388
389
392
396
398
402
403
414
414
419
426
428

viii

Table of Contents

A.
B.
C

Summary

Source Code Listings
Cart Page
Confirm Page
Home Page
Login Page
Master Page
Products Page
Purchase Page
Web.config

Installing the Stuff You'll Need
Copyinga Web Site

Publishing Your Web Site
Database Support
Your Domain Name
Picking a Hosting Site
Setting Up the Account
Uploading the Web Site Files
Uploading Data

Creating the script

Logging Into the hosting database and running the script

Updating the Connection S
Notes and Tips
Running Web Server Software
Security
Configuring the Firewall
Hosting a Web Site Under IIS
s 7
IS 6
Setting Up the Domain Name

trings

429
430
430
433
435
435
436
438
442
447

Table of Contents

| ix

Preface

ASP.NET 3.5 is arguably the fastest, most efficient, most reliable, and best-supported
way to create interactive web applications available today. Combined with the devel-
opment tools available from Microsoft (both free and commercial), it is incredibly
easy to create web sites that look great and perform well. Best of all, most of the

“plumbing” (security, data access, layout, and so on) is taken care of for you by the
.NET Framework.

About This Book

This book will teach you how to build professional quality, interactive, robust data-
driven web applications using Visual Basic 2008.

ASP.NET is not difficult to learn. All of the concepts are straightforward, and the
Visual Studio and Visual Web Developer environments simplify the process of build-
ing powerful web applications. The difficulty in ASP.NET is only that it is so com-
plete and flexible that there are many pieces that must be woven together to build a
robust, scalable, and efficient application. This book cuts to the heart of the matter,
showing in clear, easy-to-follow steps how to understand and build a web site.

ASP.NET makes it possible to create sophisticated and useful sites with minimal cod-
ing. You can enhance the functionality of your sites with Visual Basic or C#, if you
choose, but the amount of code that you must write is surprisingly small. We’ve
adopted that philosophy throughout this book, showing you how to take the most
advantage of the tools Microsoft and ASP.NET provide while keeping the coding to a
minimum. Whenever you need to write code, we walk you through each step and
explain what it all does.

Xi

About This Series

O’Reilly Learning books are written and designed for anyone who wants to build
new skills and who prefers a structured approach to studying. Each title in this series
makes use of learning principles that we (with your help) have found to be best at
equipping you with the knowledge you need for joining that new project, for coping
with that unexpected assignment from your manager, or for learning a new language
in a hurry.

To get the most out of any book in the Learning series, we recommend you work
your way through each chapter in sequence. You’ll find that you can get a quick
grasp of a chapter’s content by reading the instructional captions we’ve written for
its examples and figures. You can also use the chapter Summary to preview its key
takeaways and to review what you have learned. Most chapters feature one or more
sample applications, and, if you learn best by reading code, you can turn to the com-
plete source listing that appears just before the Summary. To bridge any gaps in your
knowledge, check out the Cheat Sheets. Finally, to help you test your mastery of the
material in each chapter, we conclude with a Brain Builder section, which includes a
short quiz to test your grasp of the theory, and some hands-on exercises to give you
practice building real applications with your new skills.

Learning books work with you as you learn—much as you would expect from a
trusted colleague or instructor—and we strive to make your learning experience
enjoyable. Tell us how we’ve done by sending us praise, brickbats, or suggestions for
improvements to learning@oreilly.com.

Learning or Programming?

We have written two ASP.NET books: the one you are currently reading and another
named Programming ASP.NET 3.5 (O’Reilly). This book, Learning ASP.NET 3.5, is
intended for beginning ASP.NET developers, and answers the question, “What is the
quickest way for me to build real web applications with the least amount of coding?”

Our other book, Programming ASP.NET, is for developers who are saying: “Help me
learn in depth—show me how everything works, and then help me put it to work in
web applications.” The key difference is this book is aimed to make you productive
quickly, while the second book is designed to explore the technology in more depth.
They complement each other, but if you are starting out and want to get to work
fast, this is the one for you.

Learning ASP.NET 3.5 assumes you know some HTML and have some familiarity
with Visual Basic 2008 (VB) or C#, or can pick up what you need along the way (or
you’re willing to run right out and buy Programming Visual Basic 2008 by Tim
Patrick [O’Reilly], although for what you’ll be doing here, you won’t really need it).
To help with this, we have included VB Cheat Sheets throughout the book to explain
and clarify some of the VB topics for newbies.

xi | Preface

learning@oreilly.com

VB Versus C#

A quick note on Visual Basic versus C#: some people choose a .NET book based on
what language the examples are given in. That’s a natural reaction, but it’s really not
necessary, and here’s why: there is very little actual VB or C# code in any given ASP.
NET application, and what there is, you can easily translate from one to the other
“on inspection.” Besides, the two languages are strikingly similar, and both produce
the same output. If you know one, it’s quite simple to learn the other. In fact, there
are software tools that can convert one language to the other with amazing accuracy.
Finally, ASP.NET programmers benefit terrifically by being “bilingual”—that is, hav-
ing the ability to read VB and write C# (or vice versa).

In the end, we had to choose one language over the other, and we elected to do
the examples and exercises for this book in Visual Basic. However, if you prefer
C#, you'll find every single example and exercise solution reproduced in C# free
for download from this book’s web site at http://www.oreilly.com/catalog/
9780596518455.

How This Book Is Organized

Chapter 1, Getting Started, walks you through creating your first web site, HelloWorld.

Chapter 2, Building Web Applications, goes over the fundamentals of web sites and
covers the basic controls available to you in ASP.NET.

Chapter 3, Snappier Web Sites with AJAX, shows you how to integrate this powerful
client-side technology into your ASP.NET pages.

Chapter 4, Saving and Retrieving Data, shows you how to make your site interact
with data stored in a database. You’ll see controls to retrieve data, allow your users
to interact with that data, and then save it back to the database. We’ll also discuss
the Language Integrated Query (LINQ), new to the .NET Framework.

Chapter 5 looks at Validation. ASP.NET provides extensive support for data valida-
tion, including ensuring that users provide required information, checking that val-
ues are within a range, and matching regular expressions.

Chapter 6, Style Sheets, Master Pages, and Navigation, shows you how to make web
sites that are professional quality, good looking, consistent, and easy to navigate.

Chapter 7 examines State and Life Cycle in ASP.NET. Understanding how, and in
what order, a page and its controls are created on the server and rendered to the
browser is crucial for building successful interactive web sites. State is the current
value of everything associated with the page. This is mostly handled automatically,
but this chapter shows you how useful it can be to the developer.

Preface | xiii

http://www.oreilly.com/catalog/9780596518455
http://www.oreilly.com/catalog/9780596518455

Chapter 8, Errors, Exceptions, and Bugs, Oh My!, shows you how to use Visual Stu-
dio’s tools to debug your application, and also how to handle errors in your code
before users see them.

Chapter 9, Security, shows you how you can protect your web site from malicious
users. You'll find out how to register your users and how to hide parts of your site
from users who don’t have the appropriate privileges.

Chapter 10, Personalization, shows you how to allow your end users to customize
the look and feel of the web site according to their personal preferences. You will see
how to use themes and skins to accomplish this.

Chapter 11, Putting It All Together, is a single, large example that integrates almost
everything you have learned throughout the book.

Appendix A, Installing the Stuff You’ll Need, tells you what hardware and software is
required to run the examples in this book and helps you set up your environment.

Appendix B, Copying a Web Site, describes the process of copying a web site to a new
web site. This is a technique used often throughout this book when building up
examples.

Appendix C, Publishing Your Web Site, covers the steps to take a web site from the
development stage to being publicly available on the web.

Appendix D, Answers to Quizzes and Exercises, presents detailed solutions to all of
the quiz questions and practice exercises found at the end of each chapter.

Conventions Used in This Book

The following font conventions are used in this book:

Italic
Used for pathnames, filenames, program names, Internet addresses, such as
domain names and URLs, and new terms where they are defined.

Constant width
Used for command lines and options that should be typed verbatim, and names
and keywords in program examples. Also used for parameters, attributes, prop-
erties, expressions, statements, and values.

Constant width italic
Used for replaceable items, such as variables or optional elements, within syntax
lines or code.

Constant width bold
Used for emphasis within program code examples.

xiv | Preface

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

g\\'\M'E This is a warning. It helps you solve and avoid annoying problems.

=

Support: A Note from Jesse Liberty

I provide ongoing support for my books through my web site. You can obtain the
source code for all of the examples in Learning ASP.NET 3.5 at:

http://'www.LibertyAssociates.com

There, you’ll also find access to a book support discussion group that has a section
set aside for questions about Learning ASP.NET 3.5. Before you post a question,
however, please check my web site to see if there is a Frequently Asked Questions
(FAQ) list or an errata file. If you check these files and still have a question, then
please go ahead and post it to the discussion center. The most effective way to get
help is to ask a precise question or to create a small program that illustrates your area
of concern or confusion, and be sure to mention which edition of the book you have
(this is the second edition).

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning ASP.NET 3.5, by Jesse
Liberty, Dan Hurwitz, and Brian MacDonald. Copyright 2008 Jesse Liberty, Dan
Hurwitz, and Brian MacDonald, 978-0-596-51845-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at http://permissions@oreilly.com.

Preface | xv

http://www.LibertyAssociates.com
http://permissions@oreilly.com

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596518455
To comment or ask technical questions about this book, send email to:
http://bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com/
Visit the O’Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet

Safari® Books Online

..+ When you see a Safari® Books Online icon on the cover of your
Safa Pl favorite technology book, that means the book is available online
Bosksontine through the O’Reilly Network Safari Bookshelf.

'Y
b F

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

From Jesse Liberty

I am particularly grateful to John Osborn, who has shepherded all of my work
through O’Reilly, as well as the editors and production folks at O’Reilly who (as
always) made this book so much more than what we originally created.

xi | Preface

http://www.oreilly.com/catalog/9780596518455
http://bookquestions@oreilly.com
http://www.oreilly.com/
http://www.oreillynet.com/dotnet
http://safari.oreilly.com

From Dan Hurwitz

In addition to the people mentioned by Jesse, I also want to commend Brian for the
great work he has done on this edition. It is a much better book because of his
efforts. And, as always, I especially want to thank my wife for being so supportive of
this project. It sounds trite and repetitious, but it would not be possible without her
help.

From Brian MacDonald

As always, my deepest appreciation goes to Jesse and Dan for inviting me to be a part
of this project, and for having me back for another edition. My thanks also to John
Osborn for getting me involved with O’Reilly in the first place, many years ago now.
My gratitude and appreciation to our technical reviewers, Jesudas Chinnathampi,
Owen Davies, and especially to Mike Pope, who took no prisoners, but whose feed-
back improved the quality of this book tremendously. Sumita Mukerji, production
editor extraordinaire, went above and beyond the call of duty several times, and 1
thank her for that. Many thanks to my wife, Carole, who once again provided techni-
cal and moral support, and to my son, Alex, for his patience while Dad worked on
yet another chapter. Finally, thanks to my parents, Reenie and Dave, for fostering my
love of reading and writing, and also for the gift of the lap desk that I used while
writing this book.

Preface | xvii

CHAPTER 1
Getting Started

Learning ASP.NET 3.5 will teach you everything you need to know to build profes-
sional quality web applications using Microsoft’s latest technology, including ASP.NET
3.5 and AJAX. ASP.NET is Microsoft’s tool for creating dynamic, interactive web pages
and applications. Using plain vanilla HTML, you can make a web page that has some
great content, but it’s static—the content doesn’t change, no matter what the user
does. You can even use Cascading Style Sheets (CSS) to make it the most visually
impressive thing on the Web, but if what you really need is for users to be able to
leave comments, or browse your inventory, or buy things from you, then HTML
alone won’t get it done.

That’s where ASP.NET 3.5 comes in. Within these chapters, you’ll find out how to
do all the great tricks that you see on the most popular commercial web sites. Order
forms? We've got that. Interact with a database? You’ll do that, too. Dynamic navi-
gation tools? It’s in here. Personalized appearance that the user can customize? No
problem.

The best part is, you’ll do it all with minimal coding. You can make ASP.NET pages
in your favorite text editor if you want, but that’s a bit like using a hammer and
chisel to write the Great American Novel. If you use Visual Studio 2008, or its free
counterpart, Visual Web Developer, adding many features to your page is as simple
as dragging and dropping. The tools generate most of the code for you. If you’re an
old-school type who cringes at the idea of letting someone else write your code, it’s
all still there, and you can tweak it to your heart’s content. Consider this, though:
would you rather spend your time writing the code for another radio button list, or
figuring out what to do with the data that you gather using it? In short, the tools do
the tedious chores for you, so you can get to the good stulff.

On top of all this, you can enhance your ASP.NET 3.5 site with AJAX, which is more
than just résumé enhancement—it’s a genuine improvement in the user experience.
When a user is browsing your product catalog, and she clicks on one of your thumb-
nail images to view the product’s details in another panel, she simply expects it to
work instantly. She doesn’t want to wait while the page contacts your server, reloads,

and then redraws itself with the new information. With AJAX, she won’t see any of
that. The update is seamless, and the user never has to slow down. You’ll see AJAX
tools used throughout this book. In fact, Chapter 3 is dedicated solely to just that
topic, so you can use AJAX with everything else we’ll show you.

One of the wonderful characteristics of the tools (Visual Web Developer or Visual
Studio) and the technology you’ll be using (ASP.NET and ASP.NET with AJAX) is
that you’ll be able to create your applications by dropping controls onto the page
and just a little bit of handcoding to handle “events” (such as what happens when
the user clicks a button). Not toy applications—meaningful business applications.

By the time you’ve finished this book, you’ll be able to do all of that and more, and
you’ll learn about it by doing it yourself—hands-on. If you don’t have Visual Studio
or Visual Web Developer installed yet, turn to Appendix A now for detailed instruc-
tions on how to install and set it up. Once you’ve done that, it’s time to dive right in
and create your first application, “Hello World.”

Hello World

One of the most difficult problems in beginning to learn any programming technol-
ogy is the “bootstrap” problem. That is, writing your first program requires using
techniques that you haven’t learned yet, but learning those techniques in a vacuum is
not only boring, but to some degree pointless because there’s no context, and thus
no way to integrate that which you learned.

The traditional solution to this dilemma is to create the canonical “Hello World”
program. Our Hello World web site will allow us to demonstrate many useful
aspects of ASP.NET without overwhelming you with detail. We promise we will
explain every aspect of this web site in detail as we go along.

According to Wikipedia (http://en.wikipedia.org/wiki/Hello_World),
the tradition of a Hello World program dates back to a 1974 Bell Lab-
oratories memorandum by Brian Kernighan.

This introductory web site will have only a Button and a Label control. Initially, the
Label will display the text “Label.” When the user clicks the Button, the Label text
becomes “Hello World.” Very cool, eh? You can see the finished product in
Figure 1-1 as it appears after you’ve clicked the button.

Creating a New Web Site

To get started, open the Integrated Development Environment (IDE), which for your
purposes in this book is Visual Web Developer or Visual Studio. (Throughout this
book, we will use the acronym IDE for both, specifically using Visual Studio or
Visual Web Developer only where they are different.)

2 | Chapter1: Getting Started

http://en.wikipedia.org/wiki/Hello_World

[& Untitled Page - Internet Explorer E@lﬁ
& () - [E] nttp/tocalnostas: - [43 x | [Googte
vl ‘ (& Untitled Page [_ ”

Hello World

€D Internet | Protected Mode: On H100% -

Figure 1-1. This is what the HelloWorld web site will look like after you click the Button. It may
not look like a lot, but this is a fully functional, interactive web site.

To create a new web site, click on the menu item File -+ New Web Site..., or alterna-
tively, use the Create: Web Site... link on the Start Page. Either way, you should see
the New Web Site dialog, like the one shown in Figure 1-2.

In this book, we will be using Visual Basic as our default language,
although it is our profound belief that Visual Basic and C# are really a
single language, just with slightly different syntax.

We will be showing many of our screen shots from Visual Web Devel-
oper, because it is freely available from Microsoft; however, anything that
you can do in Visual Web developer can also be done in Visual Studio.

Take another look at Figure 1-2, and we’ll examine it in some detail. In the upper
part of the window, you are offered various Visual Studio templates (though yours may
vary, depending on any features and add-ons you’ve installed). Select the ASP.NET
Web Site template because that is the kind of site that you are going to create (shown
highlighted in this figure).

In the Location drop-down box at the bottom of the dialog box, select File System
(the other options are HTTP or FTP; we’ll explain this selection in the next section).

The Location drop-down in Figure 1-2 covers up another drop-down in which we
have set the language to Visual Basic (rather than to Visual C#). Finally, you need to
specify where on your disk you would like this web site to be placed—in this case, in
the LearningASP directory on the C drive. You won’t have such a directory on your
hard drive yet, so you’ll need to type it into the Location field (or whatever directory
you want to use for your projects in this book).

Creatinga New WebSite | 3

Selected template

New Web Sit [[l
I. Templates:
Visual Stydio installed templates
M ASPMET Web Site L ASP.NET Web Service L Empty Web Site
E%;"WCF Service

My Templates
;j Search Online Templates...

.A blank ASP.NET Web site ((MET Framework 3.5)

Location: ' .C:\LearmngASP\HeHoWUr\d -
File Systern
Language: HTTP
FTP
ok || canca |

Location drop-down ~ Web site folder and name

Figure 1-2. To create a new web site, open the IDE, and click on Menu — New Web Site to open
the New Web Site dialog box. The Visual Studio Installed templates and My Templates panels show
you the types of sites supported by your version of Visual Studio.

The name of the new web site will be HelloWorld (with no space character), so type
that into the Location field. The site will be fully contained in a subdirectory named
HelloWorld within the directory LearningASP.

Click OK; the IDE will create the directory for you, put the needed default files for
your site within it, and then open the new web site.

You can confirm that the files are in the right place by navigating to the specified
directory using Windows Explorer, as shown in Figure 1-3. When you work on your
site, however, you’ll most likely access these files through the Solution Explorer win-
dow located on the right side of the IDE window.

The Location field in Figure 1-2 is really composed of two parts: a drop-down with
three possible values, and a text box for the folder name and path. The drop-down
choices are File System, HTTP, and FTP.

File System is the default choice for new web sites and the only choice we’ll be using
in this book. It creates a new web site folder somewhere on the physical file system,
either on your local machine or your network. One important feature of ASP.NET is
that an entire web site can be contained within a directory. This is convenient not

4 | Chapter1: Getting Started

@Qv| |, « DS(C) » LeamingASP » HelloWorld » -|¢,||gem,»_. o

s v &g Burn

S ek MName z Date medified Type Size
Ei DT | App_Data 2/14/2008 1:38 PM File Folder
[E] Default 11/8/2007 8:02 AM ASP.NET Server Pa... 1KB
Mote || Default.aspxvb 11/8/2007 8:02 AM VB File 1KB
Folders v | EBweb 2/14/2008 1:38 PM XML Configuratio... 10 KB
| doctemp -
1. Drivers
. LearningASP
. HelloWarld
|/ App_Data
|, MDT E
.. MS0Cache |j
. Program Files
1. ProgramData il
4 items

Figure 1-3. Visual Studio creates a new web site directory for you, complete with some default files
to start with.

only for deploying your web site to a web server, but as a side benefit, it allows us to
easily place samples from this book onto our web site for you to download and try
on your local machine.

When you create your web site, you can use the Browse button (lower-right corner in
Figure 1-2) and its associated drop-down list to browse the file system as you would
with Windows Explorer; you can also select any desired folder as the “home” for
your new web site folder.

When you run your file system-based web application from within the IDE, the
development environment runs the application using its own internal web server
rather than a web server program such as Microsoft Internet Information Server (1IS).
This means that you can easily develop web sites on your machine without the neces-
sity of installing IIS.

The alternatives to hosting your site in your file system are named HTTP and FTP.
HTTP indicates that IIS (the web server product from Microsoft) will be serving the
pages and requires that the web application be located in an IIS virtual directory. If
you choose HTTP, the IDE will automatically create this virtual directory for you
and the web site will be served by IIS.

FTP allows you to develop your web site on a remote location accessible via the FTP
protocol. You will be presented with an FTP Log On dialog box with a checkbox to
allow Anonymous Log in, and text boxes for login user name and password, if
necessary.

Creatinga New WebSite | 5

Creating HelloWorld

After you’ve named your new web application and chosen a place to keep the files,
the IDE will look more or less like Figure 1-4. This is where you do the real work of
putting your site together.

Which exact windows you see and how they are presented may be
determined by the options you’ve chosen. In your IDE, you can always
open new windows from the View or Window menu, and you can
undock, move, and redock the various windows using the mouse and
the on-screen docking indicators.

Toolbox (hidden) Main window Solution Explorer
5 He\,éwqr\d - Visual Web Developer 2008 Express Edition \ =)

File/ Edit View Website Build Debug Tools Window Help
R R R - NP TR = e R AT R O 0 ST BB = ‘2 |[XHTML10 Transitlon: <] 2

- -l Bz ou A i= 1= | @ 1 syle Application: -] Target Rute: [
 Defaultaspx Start Page | - x
Client Objects & Events ~ (NoEvents) -

<%@ Page Language="VE" RutcEventWireup={"false" CodeFile="Default.aspx.vb" Inheri

~]

HelloWorld\

WA

Default aspx

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.orq 2
% web.config

] <html ="http://www.w3.0rq/1999/xhtml ">
[] <head I ="server”>
<title>Untitled Page</title>
</head>
0 <body>
108 <form id="formi" runat="server">
i1 <div>

s o e - tn
i

13, </div>
14 </form>
15} -</body>
16

|=a\pi15 abeuep %‘sagummd 850 ﬁlxnmnuj_\:gl_

5'3 Solution Expl... ‘{'5 Database Ex..

</html> B B Gy

Broperties

Default.aspx Web File Properties ~

B Misc
FileName Defaultaspx
Full Path C\LearningASP\H
T\ | misc
Cll [4
3 Design | O Split [Source |
creatinl7 broject ‘HelloWorld'... pmjaé\sreatmn successful,
Designtab Splittab ~ Source tab Properties window

Figure 1-4. Initial IDE screen for HelloWorld. This is what you’ll see after you've named your web
site, chosen a language, and created a directory for it.

In Figure 1-4, you see the main window, which shows the page markup: HTML plus
ASP.NET declarations and controls. This is called the markup file, or the .aspx file,
because .aspx is the file extension associated with markup files. Also note the three
tabs at the bottom of this pane, labeled Design, Split, and Source. You’ll be using
these three tabs a lot as you create your pages.

6 | Chapter1: Getting Started

To start, click on the Design tab. When you click this tab, the middle window of
your IDE becomes the design surface. On the design surface, you can drag and drop
items such as buttons, text fields, labels, and so on from the Toolbox (which you’ll
see in a moment), where they automatically become part of your application. Each
item that you can drag onto the design surface is called a control. You’ll be reading
more about controls in Chapter 2 and throughout this book.

Next, click on the Source tab. This view allows you to see the same controls, but dis-
played as HTML and ASP.NET markup. When you drag a control onto the design
surface, the IDE automatically adds the appropriate markup to make that control
part of the page. You can view and adjust that markup from the Source tab and even
drag controls from the Toolbox directly onto the Source view. As you switch back
and forth between the Source and Design views, they will remain consistent with one
another, as they are two views of the same information.

Many working programmers—and even Microsoft itself—will refer to
markup as source code. Other programmers draw a distinction
between markup (HTML, ASP.NET controls, XML, etc.) on the one
hand, and source code (C#, VB.NET, JavaScript) on the other. This
can—and does—cause confusion, and all ASP.NET programmers
learn to differentiate as best we can by context. The Source tab shows
markup or HTML source code. The “code-behind” file, discussed
below, shows C# or VB.NET source code. Not a perfect naming sys-
tem, but there you have it. In practice, markup and ASP.NET source
code have become synonymous.

Finally, click on the Split tab—here you’ll see the best of both worlds. The Split view
combines shows the Source view in the top pane, and the Design view in the bottom
pane. You can drag controls onto either pane and the other pane will adjust appro-
priately. Sometimes it might take a moment or two for the other pane to catch up
and synchronize, but you’ll see a warning message when they’re out of sync.

Again, referring to Figure 1-4, the window at the right edge of the screen displays the
Solution Explorer, which is used for navigating and working with the files that make
up your web site. The Database Explorer tab (called the Server Explorer in Visual
Studio) at the bottom of the Solution Explorer window allows you to create and
work with data connections.

Below the Solution Explorer window is the Properties window, which displays the
properties for the currently selected object on the page. Properties are settings that
are specific to each control, so the content of this window changes depending on
what control you’ve clicked on. You’ll be reading a lot more about properties in the
discussion on controls in Chapter 2.

On the left edge of the Main window, click on the Toolbox tab to display the Tool-
box. By default, the Toolbox will obscure part of your code window, so click the
pushpin button in the title bar of the Toolbox to “pin” it in place and shove the code

Creating HelloWorld | 7

window over a bit. You can “pin” any of the auxiliary windows in place, keeping
them visible. When “unpinned,” they will auto-hide, showing only their tab. Click-
ing on a tab while unpinned will make them temporarily visible.

Inside the Toolbox, you’ll find a number of expandable categories that contain just
about every control you’d want to use on your web page. If the Toolbox tab is not
visible, click on View — Toolbox to display it. Initially it will be displayed in
expanded view, as shown on the left side of Figure 1-5. Click on the + or —icon to
collapse or expand each section.

Toolbox = Toolbox =
| = Standard | = Standard =
k Pointer I Data I
A Label Validation
[abl] TextBox = Navigation
Button [Login 3
LinkButton WebParts
ImageButton & [, AJAX Extonsions
A HyperLink NIl b
=3 DropDownList [E1 Ajax Comtrol Toolkit -
3 ListBox 3¢+ Toolbox | A] €SS Propertiesl
CheckBox
8= CheckBoxList
(5} RadioButton
2= RadioButtonlList
|8 Image
[l ImageMap -
4% Toolbox | o] CS5 Properties

Figure 1-5. The Toolbox provides quick access to just about everything you’d want to put on your
page. Here, the Toolbox is shown expanded on the left and collapsed on the right.

Making the HelloWorld Web Site Interactive

Although it doesn’t seem like you’ve done much, you’ve already created your web
page. It just doesn’t do much of anything right now. To make your page come alive,
you need to add some controls to it. Everything that you’ll find in the Toolbox is a
control, and you can add controls to your pages simply by dragging them onto the
design surface or into the Source view.

For this first program, you’ll add a button and a label to your page, making it look
like what you saw back in Figure 1-1. Follow these steps:

1. Click the Design tab at the bottom of the main window to ensure that you are in
Design view.

8 | Chapter1: Getting Started

2. If the Toolbox window is not already pinned in place, click on the pushpin icon
in its title bar to pin it in place.

3. If the Standard category of the Toolbox is not expanded, click on the plus sym-
bol and expand it. You should be able to see a number of basic controls listed in
the Toolbox, such as “Label,” “TextBox,” and “Button.”

4. Click on a Button control in the Toolbox and drag it onto the design surface
inside the div element.

5. Click on a Label control in the Toolbox, and drag that onto the design surface
next to the button.

At this point, your IDE should appear similar to Figure 1-6.

[E] HelloWorld - Visual Web Developer 2008 Express Edition =]E)
File Edit View Website Build Debug Formet Iools Windew Help

-EH- | BB O-E [-Rid KHTML 10 Transition: =] o
i[(None) - |(DefaultFort) ~|[Defouli=]| Bz U | A 2 | = -|:= i= | @ [:style Application: [Manual ~] Target Rule: [(New Infine Style) ~]sb7 3 2
Toolbox = & X| Defaultaspx"| Start Page] + x| Solution Explorer o
& Standard By N R EREE R

K Pointer Button 2P C\Learni P\HelloWorld\

abel

A Label [y App_Data

[abi| TextBox Default.aspx

Button 5 web.config

LinkButton
(&) ImageButton
A HyperLink
DropDownList
[£3 ListBox
CheckBox

4= CheckBoxList
@ RadioButton

T

) Solution Explo... \5‘3 Database Expl...

i= RadioButtonList Properties 0 x
| Image Default.aspx Web File Properties ~
[ImageMap -

[Table FAAIE]

i BulletedList E M

S HiddenField File Name ?Hfau\t.aspx

B Literal Full Path C:\LeamningASP\Hell
[Calendar e - =

.};rm?;nx@cggpmpm G Design | o Splt | @ Source | [4][<body>|[<form#form1>|[<div>|[<aspilabeizLabell>| [1]

Ready

Figure 1-6. After you've added the button and label to your HelloWorld application, the Design
view should look like this.

This is a good time to stop and run your program to see what it does so far. There
are three ways to do this:

* Click on the menu item Debug — Start Debugging

* Press the F5 keyboard shortcut

* Click on the Start Debugging icon (p) on the toolbar
Because this is the first time you’ve run the program, the IDE will detect that your
application (specifically, its web.config file) is not set to allow debugging and will

offer to make that adjustment for you, as shown in Figure 1-7. Get used to this dialog
box—you’ll see it the first time you run any web site.

Making the HelloWorld Web Site Interactive | 9

Debugging Mot Enabled @lﬂ

The page cannot be run in debug mode because debugging is not enabled in the Web.config file.
What would you like to do?

@ Modify the Web.config file to enable debugging.

1 Debugging should be disabled in the Web.config file before deploying the Web
site to a production environment.

() Run without debugging. (Equivalent to Ctrl+F5)

[ok || Ccancel

Figure 1-7. You'll see this Debugging Not Enabled dialog box the first time you run your
application. Just select the first option and click OK to keep going.

It’s not important to know what a web.config file is right now; we’ll explain it later.
For now, click OK to allow the IDE to modify the configuration file.

After you click OK, your application begins, your default browser opens, and the
page that contains your button is displayed, as shown in Figure 1-8.

& Untitled Page - Internet Explarer E@lﬂ

"\.;J'_-,.f'l x |E, http://localhost49z ~ | ‘f| b4 | | Google

Wl ‘@Unti‘cledpage [_| -8 -~ & =

Label

€D Internet | Protected Mode: On H100% -

Figure 1-8. This is what HelloWorld looks like in the browser before you do any coding. The
button doesn’t do anything yet, though.

In the address bar of the browser, where you normally see the URL of
the web site you're visiting, you’ll see http://localhost:, followed by
a number. This is still a URL, and “Localhost” is just what it sounds
like—it represents the ASP.NET web server running on your local
machine. The number is a port number, and will probably vary each
time you run your application.

10 | Chapter1: Getting Started

Click the button. Unfortunately, nothing happens. In the status bar of the browser,
you may see evidence that the page is sent back to the server—this is called a post
back, which we’ll describe in Chapter 2. For now, close the browser to end the appli-
cation, then return to the Design view in the IDE. You may see a new window named
“Output” at the bottom of the IDE. If so, just close the window and don’t worry
about that for now.

All web applications are “event-driven.” Any action that your control can take, or
that a user can take with a control—clicking a button, opening a tool tip, checking a
checkbox—is an event. Put simply, a web page without any events just sits there.
When an event occurs, it is said to be raised, (we might also say that the event is
fired). Then, behind the scenes, a block of code called an event handler is called to
respond to that event. All of this firing of events and calling event handlers is auto-
matically wired in by ASP.NET, and is far easier to set up than it is to describe, so
don’t panic!

Not surprisingly, all buttons have a default event named Click. The Click event is
automatically fired whenever the user clicks a button. At the moment, when you
click the button on your web page, the event is fired, but there’s no event handler
yet, so nothing happens.

Creating the event handler for the Click event is easy. In Design view, all you have to
do is double-click the Button control. This instructs the IDE to create an event han-
dler and name it. The IDE will name your event handler as follows: the ID of the
control, followed by an underscore, followed by the name of the event. If you do not
explicitly provide the ID for a button (we’ll discuss naming events and event han-
dlers later), the IDE will apply the default ID of Button1. Thus, the name of the event
handler will be set to Button1 Click.

The IDE then displays the code-behind file and an event handler stub for you to com-
plete. Here, you can add your own custom code to specify the operations you want
the handler to perform when it’s called.

Give it a try. Switch to Design view and double-click on the button. The code-behind
file containing your newly created event handler will open, as shown in Figure 1-9.

Don’t worry about any of the other code you see, like the Partial Class and End
Class lines; that’s all added automatically by Visual Studio. All you need to know
right now is that your event handler is the code that starts with Protected Sub and
ends with End Sub. You’ll add your code in between those lines.

In this event handler, whenever the user clicks the button, you want to set the Text
property of the Label control, which the IDE named Label1, to the phrase “Hello
World.” To do that, you need to assign that string of letters to the Text property of
the Label. The event handler for Button1 Click appears as shown in Example 1-1.

Making the HelloWorld Web Site Interactive | 11

[E] HelloWorld - Visual Web Developer 2008 Express Edition Bl

Fle Edit View Website Build Debug Tools Window Help

& o -E-Sr 9 2B
iR h | T 2083 B AR
- Default aspvb® | Defauitaspx | Start Page | ~ x [Solufion Explorer s
Buttonl - 7 Click TR ERE e
- 2P CL i \H
2@ Partial Class _Default B] App_Data
v & [E] Defaultaspx

Inherits System.Web.UIL.Page

‘#) Defaultaspxvb
L. [web.config

s

Protected Sub Buttonl Click(ByVal sender As Object, ByVal e As System.Even|

7 End Sub
g2 LEnd Class

1

] Solution Explo... \!5 Database Expl...

Properties A%

‘au\unmuau.manu E‘ |sa\uadmd 850 ﬁ‘mqmnl%‘

Buttonl_Click Attributes -

< m v

Ready Lné Col9 Cha INS

Figure 1-9. When you double-click the button in HelloWorld, you’ll be taken to the code-behind
page, where you can modify the event handler yourself.

Example 1-1. The Buttonl_Click event handler in HelloWorld, before you change it
Protected Sub Buttoni Click(_

ByVal sender As Object,

ByVal e As System.EventArgs) _

Handles Button1.Click
End Sub

In this listing, and in other listings throughout this book, we’ve refor-
matted the code to fit the width of the printed page. In Visual Basic,
the line continuation character is the underscore (as seen at the end of
the first three lines, used here and elsewhere to make valid VB code).
You, or the IDE, may place much of that code on a single line without
the continuation character(s).

To assign the text string to the label, click inside the event handler, and then type the
following code:

Label1.Text = "Hello World"
When you’re done, the event handler should look like Example 1-2.

Example 1-2. The Buttonl_Click event handler, after your addition
Protected Sub Buttoni Click(_
ByVal sender As Object,
Byval e As System.EventArgs)
Handles Button1.Click
Label1.Text = "Hello World"
End Sub

12 | Chapter1: Getting Started

After you've added the code to your event handler, save the file by clicking the Save
button on the toolbar, then run the program again by clicking the Debugging icon or
pressing F5. When the page opens in your browser, click the button. Your event han-
dler is working now, so you should see the text label change to “Hello World,” as
displayed back in Figure 1-1.

What has happened is that when you click the button, the page is sent back to the
server, where your event handler code runs, and the string “Hello World” is assigned
to the Text property of the Label control. A new page was created by the server and
sent back down the “wire” to the browser as pure HTML, and then displayed on
your screen. Close your browser to stop the application and return to the IDE.

What You Just Did

When you follow step-by-step instructions as if following a recipe, it’s easy to lose
sight of what you’ve done. Here’s a quick review:

* You created a new web site on your file system.
* You dragged a Button and a Label onto the design surface.
* You double-clicked on the Button to create an event handler.

* In the event handler, you assigned “Hello World” to the Text property of the
Label control.

* You ran your application and clicked on the Button, causing the page to be sent
back to the server where the event handler code ran. The text “Hello World”
was assigned to the Label and the page was sent back to the browser.

Congratulations! You’ve just built your first bona fide web page—and it’s interac-
tive, too. Pretty easy, isn’t it? You’ve seen how to use the IDE, you’ve worked in
Design view and in the code-behind file, and, most important, you saw how to cre-
ate a page that actually responds to user input.

Summary

* ASP.NET 3.5 lets you create interactive web pages and applications. With
dynamic pages, you can interact with your users and create a richer experience
for them.

* Visual Studio 2008, or the free Visual Web Developer, supplies the tools that
make creating a web page as easy as dragging and dropping, minimizing the
code you need to write.

* AJAX is a set of technologies that you can use to make the user’s experience
more responsive.

Summary | 13

You can create a new web site or open an existing one from the Start Page in
Visual Web Developer or Visual Studio.

In ASP.NET, you can store your entire web site within a single directory, which
in this book will always be on your local hard drive, but you can also store them
at a remote location and serve them using IIS.

The main window of the IDE has three views: Design, Source, and Split. Design
view allows you to see the visual design of your web page; Source view shows
the HTML and ASP.NET markup instead; and Split shows both views in sepa-
rate panes. You can switch between the views on the fly.

The items that you add to your web page are called controls. Controls are stored
in the Toolbox, which by default appears on the left side of the IDE. You add
controls to the page simply by dragging them from the Toolbox onto the appro-
priate spot on the page in Design view or Source view.

The Solution Explorer, located on the right side of the IDE, displays the files in
your web site. Below the Solution Explorer is the Properties window, which lets
you adjust the properties of any control you select. On a separate tab is the Data-
base Explorer (called Server Explorer in Visual Studio) for access to the databases
that support your web site.

You can run your application by clicking Debug — Start Debugging from the
menu, pressing F5, or clicking the Start Debugging button.

Web applications are event-driven, meaning that the controls raise events, which
are handled by code blocks called event handlers.

The code for the server controls resides in another file called the code-behind

file.

When you double-click on a control in Design view, you’re automatically taken
to the code-behind file, where the IDE will create a handler for the control’s
default event.

You’ve come a long way in just one chapter. Sure, “Hello World” is a trivial page, as
web pages go, but it’s interactive, which is the point of the book. You can close out
the chapter with some quiz questions to see how much you’ve learned and then a
simple exercise to let you practice your skills. Even though you’ve come this far,
you’ve just scratched the surface of what’s available to you in ASP.NET. Just glanc-
ing at the Toolbox shows you that there are many more controls than you’ve used in
this chapter. In Chapter 2, we’ll show you how to use some of them, and you’ll build
an order form to see how they all work together.

14

Chapter 1: Getting Started

BRAIN BUILDER

Quiz

. How do you create a new web site in the IDE?

. What are the three views of your page that you can use in the IDE?

. What’s the name for the settings that are specific to each control?

. Where in the IDE will you find the controls that you can place on your page?
. How do you run your application?

. What event is fired when you click on the Button control?

. Where is the code for the event handler located?

. What’s one way to access the default event handler’s code?

O 0 N O L AW N

. What property of the Label control do you use to set its content?

—_
o

. When you click the button in your Hello World application, where is the code
processed?

Exercise

Exercise 1-1. This is your first exercise, so we’ll take it easy on you—you’ll make
some changes to HelloWorld. Open the example again. There are a few ways to do
this:

* Select File » Open Web Site.

* Click the Start Page tab at the top of the main window to display the Start Page,
and click the Open Web Site link, or select it from the Recent Projects list, if it’s
there (and it should be, if you’ve just finished this chapter).

With the file open, select the code-behind file, either from the tab at the top of the
window, or in Solution Explorer. Go to the Click event handler, and change the
“Hello World” text to a message of support for your favorite sports team (or band, or
movie, or whatever you like).

Now switch back to the .aspx file. Select the Label control, and check out the Proper-
ties window. There’s more here than just setting the text, as you’ve seen. Go to the
Appearance section of the Properties, and play around with them to your liking.
Click the + sign next to the Font property, and you’ll find lots of options that you’re
probably familiar with. Try changing the font, the text size, and the color. You can
also play with the border of the label, too. Note that if you change the Text property
here, you’re changing the initial text that the label displays. After you’ve kicked the
tires a bit, run your application to see how it looks. You can see an example in
Figure 1-10, although this is the affiliation of only one of the authors.

Exercise | 15

& Untitled Page - Internet Explorer = | E]

’@\J « |E] http://localhost49z + | 44| X || Google

oy ke i@umiﬂed Page |_i 5o~ v g v

b

[Button Go Patriots!

@ Internet | Protected Mode: On H100% -

e

Figure 1-10. The results of Exercise 1-1, for at least one of the authors. Your page may look
different, depending on your sports loyalties.

16 | Chapter1: Getting Started

CHAPTER 2
Building Web Applications

You’ve built your first web site, and you’ve gotten your feet wet, which is great. But
so far, you've only used two controls: Label and Button. You’ve seen the Toolbox in
the IDE, and it’s stuffed with controls just waiting for you to experiment with. That’s
exactly what you’re going to do in this chapter. You’ll build a functional order form
for a fictional business, even though you won’t do anything just yet with the data
your form will collect. You’ll get to try out many of the basic controls in Design view
and Source view; you’ll learn about web site fundamentals, selection controls, and
their collections of items, and you’ll see how to display the results retrieved by one
control in another control somewhere else on the page.

Mastering Web Site Fundamentals

The difference between a web page that simply displays information and a web appli-
cation that interacts with your user is the application’s ability to gather data from the
user, process it on the server, and take action accordingly. The core of a web applica-
tion is the page and its interactive controls. This part of the chapter will introduce
the web page and the types of controls that you’ll use throughout the remainder of
this book and throughout your ASP.NET programming career. We will also intro-
duce the mindset that will move your applications from being a “brochure” that dis-
plays information into an interactive application delivered over the Web.

The Page

Every ASP.NET web site consists of at least one web page stored in a single file with
the extension .aspx. There is usually more than one file, as you saw in Chapter 1.
The .aspx file is called a content file. Some developers call it the markup file, which
makes sense when you remember that HTML stands for HyperText Markup
Language.

The contents of the page itself are composed of “server controls” and “normal”
HTML. Server controls are simply controls with code that runs on the server. Nor-
mal HTML in the .aspx file is sent to the browser “as is.” All you really need to know
to create ASP.NET pages is that HTML is rendered at the browser, and the controls
are processed on the server. If you want to know the technical details, you can see
the sidebar “How Pages Are Processed on the Server,” but that requires some back-
ground in object-oriented programming that we won’t go into here in detail.

How Pages Are Processed on the Server

When a user enters the URL for a page into a browser, the browser requests that page
from the web server. If the page being requested is an .aspx page, the server processes
the page before returning it.

The .aspx page serves as a set of instructions to the server on how to create a standard
HTML page to return to the browser. If this is the first time that the .aspx page has been
requested since the web application started, then the ASP.NET runtime compiles,
from the page, a Page class that derives from the base System.Web.UI.Page class. The
compiled class contains all of the control declarations and code that make up the page,
including properties, event handlers, and other methods. This compiled class is cached
in server memory for faster response on subsequent requests.

In order for an .aspx file to be processed by the ASP.NET runtime, it must have a page
directive as the first line in the file. Directives provide information to the compiler, such
as the language in use, the name of the code-behind file, if any, and the name of the
Page class. Visual Studio automatically generates the page directive for you when you
create a new web page. The page directive for your HelloWorld web page looks like the
following:
<%@ Page Language="VB" AutoEventWireup="false"
CodeFile="Default.aspx.vb" Inherits=" Default" %>

With this information, the server is able to run all of the server-side code, translate all
of the server-side controls into standard HTML and JavaScript, and assemble an
HTML page that will be returned to the calling browser. If the page that is returned
includes client-side script, that script will be run on the client-side machine, by that
browser, when the page is rendered.

The .aspx files can also contain script blocks, usually written in JavaScript, to be exe-
cuted on the client. Server-side code is executed on the server; client-side script is
executed on the client’s machine by the browser.

The normal structure for an ASP.NET with AJAX application is this: the markup
(content) file contains controls. Some of the controls will be server controls. You
already saw a server control in the HelloWorld example—Button1. The event han-
dler code you wrote for Button1 was stored in a second file called the code-behind file,

18 | Chapter2: Building Web Applications

and executed on the server. The server controls also contain other code that enables
their basic functions, but you usually won’t be able to access that. Other controls are
AJAX controls, and their code is sometimes written in script blocks in the markup
file, or more commonly, it is buried in .dll files provided to you by Microsoft (and
thus not visible to you as script code), but which is interpreted by the browser on the
client machine, so you don’t need to worry about how it’s done.

There are also HTML controls that are passed “as is” to the client machine’s
browser, such as tables, and
 (the line break tag), and so on.

ASP.NET also allows you to create so-called HTML-server controls,
which are HTML controls with the tag runat="server", but these are

not commonly used, and won’t appear in this book.

Once again, this book assumes you have a passing familiarity with HTML, but even
if you do not, you should find the examples self-explanatory.

If a markup file is named Welcome.aspx, its associated code-behind file will be
named Welcome.aspx.vb, indicating that the code-behind file is written in Visual
Basic (.vb) (or Welcome.aspx.cs if you are writing in C#).

Controls

As you saw in the Hello World example, controls are the building blocks of the web
page’s graphical user interface (GUI). Some controls that you are probably familiar
with include buttons, checkboxes, and listboxes.

Controls allow a user to indicate a preference, enter data, or make selections. They
can also provide support for validation, data manipulation, and security, or help to
ensure a uniform look and feel to the application.

There are several types of web controls:

HTML controls
The original controls available to any HTML page, such as input (for entering
data), a (anchor), div (for separating and applying format to a section), and
more. These all work in ASP.NET exactly as they work in other web pages.
HTML controls will be used where appropriate in this book, but will not be dis-
cussed in detail. For a good resource on HTML controls, see HTML & XHTML:
The Definitive Guide, by Chuck Musciano and Bill Kennedy (O’Reilly).

ASP.NET server controls
Microsoft created the ASP.NET server controls to accomplish two complemen-
tary aims. The first was to “normalize” the HTML controls so that the program-
mer would have a more consistent interaction with the control; the second was
to add an extensive and rich set of powerful controls such as data grids, calen-
dars, ad rotators, and more.

Mastering Web Site Fundamentals | 19

ASP.NET AJAX server controls
ASP.NET AJAX server controls enjoy all the benefits of ASP.NET server con-
trols, such as drag-and-drop operation and a declarative programming model.
However, they also include added client-side functionality, helping you to create
a smooth and snappy user interface.

User controls and custom controls
Controls created by the developer or third parties (that is, not Microsoft). This
topic is beyond what we’ll cover in this book, but for a full discussion of creating
these user-defined controls, please see our more advanced text, Programming
ASP.NET (O’Reilly).

The heart of ASP.NET programming is the ASP.NET server control. With the excep-
tion of tables, the traditional HTML controls are replaced by their equivalent ASP.NET
controls, both for convenience and flexibility. For example, instead of using a tradi-
tional HTML input control, you will use instead an ASP.NET TextBox control. Not
only will this allow the TextBox to run server-side code, but it is easier to use, and is
more intuitive.

In addition to standard form elements, such as text boxes, labels, buttons, and
checkboxes, ASP.NET controls include several broad categories that provide rich
functionality with very little code. These include:

Validation controls
Often, a given field requires a specific format or range of data to be valid. Many
of these validation routines are similar and used in many places, such as making
sure there is an entry, that two entries match (such as when setting a password),
or that an entry falls within a predetermined range of values (which can help
protect against certain types of outside attacks). Microsoft provides a full range
of built-in validation controls. Chapter 5 discusses these controls in detail.

Data source controls
Data binding to a variety of data sources, including Microsoft SQL Server and
Access, and other relational databases, XML files, and classes implemented in
code. Data source controls are covered in Chapter 4.

Data view controls
Various types of lists and tables that can bind to a data source for display and
editing. Data view controls are also covered in Chapter 4.

Login & security controls
Handle the common chores of logging in to a site and maintaining user pass-
words. Login and Security controls are covered in detail in Chapter 9.

Personalization controls
Allow users to personalize their view of a site, including rearrangement of the
page itself. User information can be saved automatically and transparently, and
retained from one session to the next. Personalization is also covered in detail in
Chapter 10.

20 | Chapter2: Building Web Applications

VB CHEAT SHEET

Classes

Although we’ve said that you don’t need to know much VB to make ASP.NET pages,
you need to know a bit of the vocabulary to understand the background discussion in
this section. You may have heard that VB.NET is an object-oriented language, which
means that everything you make with the language is an object—every control, every
label, even the page itself is an object. Each object is a specific instance of what’s called
a class, or to put it another way, a class is a general case that defines each object. Using
the classic example, if Dog is a class, then your own dog Sparky is an object—he’s an
instance of the Dog class. You can’t see or touch Dog, but you can see and touch Sparky.
In ASP.NET, you can’t put the Label class on your page, but you can create a Label
object that’s an instance of the Label class and put it on your page.

So what’s the point of the class, then? The class defines the qualities that the object has
(called properties), and the things that the object does (called methods).

Dog might have properties called color and size, for example. Each object might have
different values for each property, but by definition, they all must have the property.
So, Sparky might have a color of brown and a size of large, whereas Frisky has a color
of white and a size of small, but they’re both still members of Dog. In ASP.NET, a Label
control has properties for Text and Font.

Methods, on the other hand, tend to be actions that instances of the class can perform.
If Dog has methods for Bark() and Eat(), then both Sparky and Frisky can bark and
eat. The Label control, for example, has methods of ApplyStyle() and Focus(), so you
can call those methods on any Label control to apply a style to the label, or set the focus
to that control.

You invoke both properties and methods with what’s called dot notation. It’s pretty
simple; you give the object’s name (not the name of the class), followed by a period,
followed by the method or property name you want to use, like this:

sparky.color = white

1bIMyLabel.Text = "The text for the label"

1bIMyLabel.ApplyStyle(MyStyle)
Although you usually don’t see this directly, an ASP.NET page is an instance of the
Page class. When a user requests an .aspx page, ASP.NET creates an instance of a page
and then uses the properties and calls methods of that page to generate the HTML that
appears in the browser.

Master pages
Create web sites with a consistent layout and user interface. Master Pages are
covered in Chapter 6.

Rich controls
A subset of ASP.NET controls that implement complex features such as menus,
tree views, and wizards.

Mastering Web Site Fundamentals | 21

AJAX controls
A set of controls that provide special script-based features, including the
ScriptManager, UpdatePanel, UpdateProgress, and Timer. AJAX is covered in
detail in Chapter 3.

AJAX toolkit controls
An expanding set of controls based on AJAX that provide enhanced client-side
functionality without the need to write JavaScript, such as watermarks, collaps-
ing panels, and pop ups.

Code-Behind Files

Although you can put your content and your code in a single file, it is strongly dis-
couraged, and we will not do so in this book. The preferred method is to put your
content (HTML, server controls, and AJAX controls) into a markup file with the
extension .aspx, and to put your server-side code into a code-behind file with the
extension .aspx.vb. You saw this separation of content from code-behind in the Hello
World example in Chapter 1.

Events and Postbacks

In the Hello World program you created in Chapter 1, the page was sent back to the
server when you clicked the button. When the page returned to the browser, it was
displayed with new text, specifically with the words “Hello World.”

As we described in that example, clicking on the button raised the Click event. It
turns out that many controls have a Click event, and each control may also have
other events specific to itself. For example, list controls typically have an event for
when the selected item changes, while text boxes have events for when the text they
contain is changed.

The code that responded to the button’s Click event in Hello World (the control’s
event handler), was a method of the Page class, specifically the page that contained
the button. As is often the case, this is more confusing to explain than to see in
action. To the user, it simply appeared that clicking the button changed the contents
of the page.

What is important to keep in mind, however, is that when you click the button, the
page is “posted back” to the server. During a postback, the browser sends the page to
the server, where event handlers are evaluated. The same page is then sent back to
the browser after the code in the event handlers is run.

When a page is returned to the server and a new page is sent to the
browser, that is not a postback. When the page is returned to the
server, processing is done, and the same page is returned to the client,
that is a postback.

22 | Chapter2: Building Web Applications

Not all controls automatically post back every time you click on them. Buttons do,
but just changing the selection in a listbox, for example, normally does not. (You
can, if you want, set a listbox to post back every time its selection is changed, as you
will see later in this chapter.)

Synchronous and Asynchronous Postbacks
In ASP.NET with AJAX, there are actually two types of postbacks:

Normal
In a normal postback, the entire page is sent back to the server for processing. As
just noted, some events do not cause an automatic postback. These events are
stored up until a postback occurs, and then they are all handled together. When
all of the event handlers have been run, a new HTML page is generated and sent
back to the browser.

A normal postback is synchronous—nothing else will happen in your applica-
tion until the server processing is complete and the response is sent back to the
browser. The typical time for such an update is less than one second, but this
can be dramatically affected by database interactions, network speed, and other
factors, some of which are beyond your control. In any event, the user will see
the page flicker when the browser redraws it.

Within the normal postback, you often want some behavior to occur the first
time the page is loaded, but not on subsequent postbacks. For example, you
might want to gather data from a database when the page is first loaded, but not
when the user clicks a button to post the page back to the server. There is a
property of the Page, called IsPostBack, which can be tested in your code to
determine if this an initial load or a postback. It has the value of False the first
time the page is loaded, and True on subsequent postbacks.

Partial page, asynchronous
AJAX allows an asynchronous postback in which you designate an area of the page
to be updated, while the rest of the page remains unaffected. The user usually per-
ceives no page flicker and may be unaware that processing is happening on the
server at all. This can make for a dramatically more responsive application.

; Be careful with event handling in postbacks. A common bug is caused
by assuming that event handler A will run before event handler B. The
best way to discover such bugs is by using the debugger to examine
the code as it runs, which we will explore in Chapter 8.

The next example will demonstrate a normal postback and an AJAX asynchronous
(partial) postback with three labels: one will update the first time the page is loaded,
one will update only on a subsequent normal postback, and one will update
asynchronously.

Mastering Web Site Fundamentals | 23

To start, create a new web site named Postbacks. If necessary, refer back to Figure 1-2,
and create the new web site just as you did in the Hello World example. Be sure to
name the web site folder Postbacks, so that the site will be named Postbacks as well.
When the project is open, switch to Design view by clicking on the Design tab at the
bottom of the editing surface.

To make this an AJAX-enabled web page, it must have a ScriptManager control.
Expand the AJAX Extensions section of the Toolbox and drag a ScriptManager con-
trol anywhere on the page. We'll discuss the ScriptManager in detail in Chapter 3,
but be assured that it will not be visible when your application is running; its job is
to work behind the scenes to coordinate the AJAX controls on the page.

Press the Enter key once to move the cursor below the ScriptManager control, then
type in the text:

Page First Loaded at:

Drag a Label control from the Toolbox onto the design surface next to the text you
just typed. Click on the Label control to select it, so that the Properties window
shows the properties for the label. The Properties window is on the lower right of the
interface. If you don’t see it, press F4 to get it to appear. You'll know if you’'ve
selected the right control because its name will be listed at the top of the Properties
window—in this case, Labell. Before proceeding, you should change the ID of the
Label to something more meaningful—in the Properties window, scroll up or down
until you find the (ID) property in the left column. Click in the right column, delete
Label1, and then type in 1blFirstPageload. Now find the Width property in the left
column, and change its value to 200px in the right column.

Drag a button onto the page to the right of the label. Select the button, and in the
Properties window, change the button’s ID to btnPostback and the Text property to
Postback, in the same way that you changed the label’s properties.

With the cursor just to the right of the Button on the design surface, press the Enter
key to move the cursor to the next line. Type in the following text:

Page posted back at:

Drag another Label control onto the page, to the right of the text you just typed, and
set its (ID) property to 1blPostBackPageload.

Your page should now look pretty much like that shown in Figure 2-1.

In Solution Explorer, click on the plus sign next to Default.aspx to expand the list of
files. You will see the code-behind file created for you, named Default.aspx.vb.
Double-click on the code-behind file to display that file in the editing window, as
shown in Figure 2-2.

24 | Chapter2: Building Web Applications

VB CHEAT SHEET

Namespaces

When you create your pages, you'll use lots of names. Every control on the page gets a
name, as do all the properties of those controls. When you write event handlers in the
code-behind file, you may create names for objects or variables in your code as well,
even though the user of your page will never see them. With all those names, it’s possible
that you might inadvertently pick a name that has already been used by Microsoft or by
the creator of a different page in your site. To avoid that problem, ASP.NET uses the con-
cept of namespaces. Simply put, a namespace is a way of saying. “These names belong to
this group.” One of the namespaces you’ll see all the time is the System namespace. This
namespace appears in all your event handlers as part of System. EventArgs. This indicates
that the EventArgs object belongs to the System group of names, which is a special
namespace that .NET reserves for its built-in objects. You won’t be creating your own
namespaces in this book, but you should know what they are when you see them.

E Postbacks - Visual Web Developer 2008 Express Edition E@g
Eile Edit View Website Build Debug Format Tools Window Help
e -EHE %R T = 2 |[erMLioTensiton -] E b @ @ | @ 52 (3 %z | He| E
{[None) -|[(DefavFort) |[(Defauii || B 7 U [A 2 i= 1= | @ [T istyle Application: [Manual -] e
D

efault.upu(t Sé[tpaig - x| Soluti E;EE - 1x
=l Standard il | (] =
R Pointer]

ey e @ C\\Postbacks\
A Label | -

|3 App_Data
Button .

il TetBox Dage First Loaded at Label _Posthack |
LinkHtoe Page posted back at: Label]

ImageButton

Toolbox X
o

|sa|ﬁ15 abeuey @‘

HyperLink

DropDownlList - —
ListBox g Solution Ex... [5 Database Ex..

CheckBox Properties > 1%

CheckBoxList Default.aspx Web File Propertie: -
RadioButton
RadioButtonList

Image

eTmEEHEREE

FileName Defaultaspx
ImageMap

Full Path ChLearning ASPAC]
Table

i B B

BulletedList :
HiddenField M+ , Mec

B Literal |||/ Design | = spiit | @ Source | [4][<aspiLabel#IblPostBackPag..> ¥
=

=5}

Ready

Figure 2-1. Drag two Labels and a Button onto the Postbacks page and set a few properties.

You can also open the code-behind window by right-clicking on the
markup window and choosing “View Code.”

Mastering Web Site Fundamentals | 25

Classes & Controls Methods & Events

[E] Postbacks - Visual Web Developer 2008 Express Edition =] E

File Edit View Website Build Debug| Tools Window Help

R RAEERA N~ I~ NI WECHF- YR LA <R NSO)

i b oax | 2| 02BRABaBRAT
1| Teolbox ~ 0 X| Defaultasplvb | Defaultaspe’ | Start Page ~ x [Solution Explorer ~ I %
o || £ General e et 2 | FE:l =

e [(General) ~ [(Dedarations) - = Z‘ SOk)

= - 2P C:\Leamni \Pastbacks\

8| Thereareno usable 1 . &g App.Data

2| controlsin this group. 2@ Partial Class _Default e ‘ij Default.

£ | Dragan item onto this 3 Inherits System.Web.UI.Page B B Defauitaspx

S| tettoaddittothe 4 L.) Defaultasprvb
= toolbox. i LEnd class [web.config

&
5] Solution Explo. ‘%'gt)atabase Expl...

m

Properties T Ix

-)@Too\hox@css Pro... ||| ¢ . | 3
Ready Lnl Coll Chl INS

Figure 2-2. The code-behind editing window for the Postbacks page, showing the Classes &
Controls and Methods & Events drop-downs. Set the Classes & Controls method to (Page Events),
and the Methods & Events drop-down to Load.

Naming Conventions

Microsoft’s .NET naming guidelines prohibit the use of Hungarian notation for all
“public” identifiers. Hungarian notation is the practice of prepending variable names
with letters that indicate the type of the identifier (e.g., prepending a variable of type
integer with “i”). (You can read about the history of Hungarian notation at http://en.
wikipedia.org/wiki/Hungarian_Notation.)

Because the guidelines do allow the use of Hungarian notation in private member vari-
ables, two schools of thought have arisen about using this notation, especially when
referring to controls on a page. Many developers will refer to a text box, for example,
as txtLastName, while others will name the same text box LastName. The authors of this
book represent vociferous advocates of both camps. (In fact, one of the authors is a
strong advocate on both sides of this issue depending on his mood.) You will, there-
fore, stumble across both notations in this book. This is not a bug, it is a feature, inten-
tionally included to help you become used to both approaches. Honest.

26 | Chapter2: Building Web Applications

http://en.wikipedia.org/wiki/Hungarian_Notation
http://en.wikipedia.org/wiki/Hungarian_Notation

The Page Load event and synchronous postback

Every time an ASP.NET page is displayed, the Page’s Load event is fired. You’ll use
that event to display the time that the page was initially loaded and posted back. To
do so, you need to create an event handler for the Page Load event.

At the top of the code window are two context-sensitive drop-down controls, as indi-

cated in Figure 2-2.

The drop-down on the left displays the classes and controls in your application (as
well as the useful all-purpose setting [General]); the one on the right displays all the
methods and events for the class or control selected on the left.

The IDE is slightly different here if you’re working in C# rather than
VB.NET. The drop-downs at the top of the editing window are slightly
different, and in any event, the empty Page_Load event handler will
already be created on the page for you.

Select (Page Events) in the left drop-down, and select Load in the right drop-down. This
will bring up a code skeleton for the Page_Load event handler, shown in Figure 2-3.

Type the highlighted code from Example 2-1 into the Page_Load event handler. Notice
how IntelliSense helps you with the name of the control and its available properties.

toolbox,

Protected Sub Page_Load (ByVal sender As Objeet,

End Sub
End Class

ByVal = As System.EventArgs) _
Handles Me.Load

i

Object parameter
[] Postbacks - Visual Web Developer 2008 Express Edition [E=)
File Edit View Website Build Debug Tools Window Help
ie-E-FHA % BB - -2-5] b9 H)
iDL s |ESEI= 2 RAQ R EERE
|] Tootbox ~ % X| Defaultasprvb®| Defsultsspx’ | Stort Page | ~ x [Solution Explorer R
o | = General = B | =R = P
B # (Page Events) v 7 load mi| = FA =Rl)
5 - @l \Pastbacks\
& | Therearenousable 1 e Ao it
o controls in this group. 2j[q Partial Class _Default 'l ij‘J oo f‘
S | Draganitem onto this 3 Inherits System.Web.UI.Page B [Defaultaspx
S| tettoaddittothe L. ¥ Defaultasprvb

[web.config

g Solution Explo... [Database Bxpl..

3 Toolbox @ CS5Pro... ||| ¢

Properies TIx

Page Load Attributes -

Ready

| in7 ol 29

Cch29 INS

Handles clause

Event argument parameter

Figure 2-3. After you select Page Events and Load from the code-behind file drop-down, a code
skeleton for the Page_Load event handler is inserted automatically.

Mastering Web Site Fundamentals |

27

Example 2-1. Page_Load for Postbacks example
Protected Sub Page Load(_
ByVal sender As Object,
Byval e As System.EventArgs)
Handles Me.Load
1blPostbackPageload.Text = DateTime.Now

If (Not IsPostBack) Then
1blFirstPageload.Text = DateTime.Now
End If
End Sub

Note to C# Users: In VB.NET. the line of code in Example 2-1 that
assigns the date and time to the Label Text property implicitly con-
verts DateTime.Now from a DateTime type to a String type. In C#, this
implicit conversion does not occur, so you must use the following line
of code instead:

1blPageload.Text = DateTime.Now.ToString();

VB CHEAT SHEET

Booleans

The Boolean variable is a special type of variable that can have only one of two values:
true or false. They’re very useful for evaluating simple conditions, and taking an
action based on whether the condition is true. IsPostBack is a Boolean variable, and
has the value of True if the page loads as the result of a postback. The Not keyword is
used to indicate the opposite of whatever Boolean value follows, so in this case, Not
IsPostBack is True if the page is loading for the first time. In this case, the value of the
Boolean is used to control the behavior in the If statement. You’ll see this technique
used a lot.

Run the application. If it is the first time the web site has been run, the IDE will offer
to modify the web.config file to enable debugging. Click OK to that. A browser will
open with text similar to that shown in Figure 2-4.

Buttons post back to the server even if you do not implement an event handler for
their Click event. Click the button a few times. As you can see, each time you click
the button, the page is posted back. You will see the second Label updated each
time, but the first Label still shows only the time the page was first loaded.

Take a look at the status bar to see the change to the page being sent back to the
“server” (in quotes because in this case the server is your local machine). For each
postback, the page is reloaded, triggering a Page_Load event. This in turn causes the
Load event handler to run and the Label’s text to be updated with the current time.

28 | Chapter2: Building Web Applications

@ Untitled Page - Internet Explorer @M

@'\J « | Ie] http://localnost:49510/Postbacks/Defar + | 4 | X || Google o -

Eile Edit View Favorites Tools Help

e ol {& Untitled Page ‘_| @ﬁ 0 x @ . i.-'_:_‘,"Eagevig}Tgolsv =

Page First Loaded at: 6/3/2008 8:22:40 PM

Page posted back at- 6/3/2008 8:25:35 PM

&) Internet | Protected Mode: On H100% -

Figure 2-4. When you run the Postback page for the first time, the times will be identical. After
you click the button, the IbIPostBackPageLoad Label will update, but the IbIFirstPageLoad Label
will not.

The if-then block in the Load event handler tests the value of IsPostBack. If it is
False, that is, if it is the first time the page is loaded, then the first Label is updated.
On subsequent postbacks, that line of code will not be reached, and so that Label is
not updated. However, the second Label is updated every time.

If you are adventurous, you can put a break point in the Pageload
event handler. Open the code behind file, navigate to the Page_Load
method, and then click in the left margin next to the line with the
1blPageload.Text instruction. If a red dot appears in the margin, you’ll
know you’ve done it right. Press F5 to run the app in debugging mode.
You will see this break point stop the application each time the page is
about to run. We will cover debugging in detail in Chapter 8, but we
couldn’t resist showing you that this really works. After you're done,
click on the red dot again to remove the break point.

You can achieve the same result by clicking the refresh button on your browser,
which forces a refresh of the current page, and thus a post back to the server. When
you’re done, close your browser to stop the application.

Adding asynchronous postbacks

With traditional postback code in place, you’ll modify this application to add the
ability to make an asynchronous postback using AJAX.

Return to default.aspx by double-clicking on it in Solution Explorer, then click the
Design tab to switch to Design view. Bring up the Toolbox and pin it in place.
Expand the AJAX extensions section in the Toolbox. Place the cursor after the

Mastering Web Site Fundamentals | 29

VB CHEAT SHEET

Methods, Event Handlers, Parameters, Arguments

In Visual Basic.NET, a method is implemented either as a sub (which returns no value)
or a function (which returns a value).

Methods may declare values that are passed into the method and used as if they were
declared as local variables. In VB.NET, you must declare the type of the value to be
passed in. When the method is called, you must pass in a value. The declaration and
the value passed in are called either parameter or argument. Some old-school computer
scientists distinguish between these terms, but we will use them interchangeably.

Event handlers are special methods that run when an event is raised by a control, or by
the operating system, or by something else happening in your program that requires a
response. By convention, event handlers in ASP.NET always take two arguments. The
first, marked as type object, is the object that caused the event, and is named, by con-
vention, sender. The second is marked as type EventArgs or a type that derives from
EventArgs. (Derivation is a concept from object-oriented programming. It can be sum-
marized as “specialization.” When you derive a Cat from Animal, you say that a Cat is
an animal, but a special type of animal, with special characteristics or special behav-
iors.) This second parameter, the EventArgs, is usually called e.

Event handlers in VB.NET are linked to the event that they handle with the Handles
keyword. Thus, you might mark the method Page_Load with the keywords Handles
Load or Handles Me.Load where Me is a keyword that refers to the object itself (in this
case, the page) signaling .NET that this method handles the Load event of the page.

1blPostBackPageload control and press the Enter key to move the cursor down to the
next line. Drag an UpdatePanel from the Toolbox onto the design surface.

The AJAX UpdatePanel control is the key to asynchronous updates. Any controls that
you place within the UpdatePanel will be updated asynchronously, including both
standard ASP.NET and HTML controls. The panel acts as an asynchronous portal
back to the server.

To display the time the UpdatePanel was updated, add the following text inside the
UpdatePanel:

Partial-Page Update at:

Scroll back up within the Toolbox to the Standard controls and drag another Label
control into the UpdatePanel. Be sure this control is inside the UpdatePanel or this
example won’t work. Make sure the new label is selected, and update its properties.
Change its ID to 1blPartialUpdate and set its Width property to 200px.

30 | Chapter2: Building Web Applications

VB CHEAT SHEET

If-Then Statements

When you’re working with data, you usually don’t know what the data will be when
you’re writing your code. You might want to take different actions depending on the
value of a variable. That’s what the If-Then statement is for:

If chkMyCheckBox.Checked = True Then

txtMyTextBox.Text = "It's truel”

End If
The condition you want to evaluate comes after the If, but before the Then. In this case,
you want to determine if the checkbox is checked, so the condition is chkMyCheckBox.
Checked = True.

If it’s true, the statement after the Then keyword is executed, setting txtMyTextBox. Text
to “It’s true!” You can execute any number of statements in the Then section.

If the condition is false, nothing happens.

You must insert the statement End If at the end of the Then block so that your code
knows where the Then block ends and can continue executing as normal from that
point.

The Else statement comes into play when you want to take one of two actions. With
just an If-Then statement, if the condition you’re evaluating is false, nothing happens.
However, you might want to take one action if the condition is true, and another if it’s
false, like this:

If chkMyCheckBox.Checked = True Then
txtMyTextBox.Text = "It's true!"
Else
txtMyTextBox.Text = "Not true!"
End If

This code sends one message to txtMyTextBox if the condition is true, and a different
message if it’s false.

You have lots of options when you specify conditions, which are based on a set of oper-
ators that you’re probably already familiar with. For example, instead of testing to see
if one part of your condition is equal (=) to another, you could use one of these other
operators:

* <> notequal to

* <less than

* > greater than

* <= less than or equal to

* >=greater than or equal to

—continued—

Mastering Web Site Fundamentals |

3

In short, you can test for any condition that evaluates to true or false—in other words,
a Boolean. In fact, the Checked property of a TextBox is a Boolean all by itself, so you
could have used this for the condition:

If chkMyCheckBox.Checked Then

You can also add these controls in Source view, either typing the code
by hand, or by dragging a control from the Toolbox. You can then set
properties in the Properties window or type in attributes directly in the

code window.

Drag a Button control into the UpdatePanel. In the Properties Window, change the ID
of that Button to btnPartialUpdate, and set the Text property to “Partial Update.”
The Design view should look something like Figure 2-5.

[E] Postbacks - Visual Web Developer 2008 Express Edition (=l E
File Edit View Website Build Debug Format Table Tools Window Help
i@-iE-El ¢ @B T = = 2 | XHTML1O Transitioni = = P b 1l @ @[% 52 [Z %= |He| B -1
i (None) - (DefauitFont) ~ Defaull~ | B Z U | A & |= -|iZ i= | . Style Application: Manual » Target Rule: (NewInlineStyle) = %
@ Toolbox ~ 3 X Start PBSEi Defauk,aspx.vprn‘?hm‘ « 3 |Solution Explorer >3 x
= | & Standard = VB EE e e E e
8| & Pointer ScriptManager - ScriptManagerl 2 CA\..\Postbacks\
e | A Label App_Data
H = 3 [E] Defautaspx
z !
- v 55
[ad] T.axton Page First Loaded at Label Postback o4 = Dafau.\t‘aspx‘vb
LinkButton Page posted back at- Label - kb web.config
ImageButton B |
A Hyperlink P
o : N artial Update
. Partial- Page Update at Label paate |
= i Solution Ex... [Database E...
[£3 ListBox
CheckBox ‘ Properties TR
8= CheckBoxList DOCUMENT -
@ RadioButton
£= RadioButtonList ryP———
= st L
3 Image asterPageFi 5
& ImageMa it [
= b‘g L+ StyleSheetThe
S = Theme >
= BulletedList v -
S HiddenField K 4 :h;lk f all active links in th
olor of all active links in the
B Litersl _|||[@ Design | = spiit | @ Source | [4][<espButtonzbinPartialUpd...> B ||l document.
=
Ready Ln33 Coll ch1

Figure 2-5. After you've added the UpdatePanel and the Partial Postback controls, your Design

view should look

like this.

Next, you need to add an event handler for btnPartialUpdate’s Click event. Double-
click on btnPartialUpdate. The default event for a button is its Click event, and
when you double-click on a control, the default event handler is created for you. The
code behind file will open within the default event handler. As you have already
seen, the event handler gets its name from the control and the event, separated by an
underscore, in this case btnPartialUpdate Click.

32

Chapter 2:

Building Web Applications

Enter the highlighted line of code from Example 2-2 in the click event handler for
btnPartialUpdate.

Example 2-2. Click Event Handler for btnPartialUpdate
Protected Sub btnPartialUpdate Click(_
ByVal sender As Object,
ByVal e As System.EventArgs)
1blPartialUpdate.Text = DateTime.Now
End Sub

Once you’ve made the change, run the updated application. After the page loads,
click each of the buttons a few times. You will see something similar to Figure 2-6.

Depending on which region your computer is in and how your region
options are set, you may see the date and time displayed using a differ-

ent format.
{& Untitled Page - Internet Explorer @M
&9 () - [E] nttp/tocalnost49510/Postbacks/Defar ~ [43 | X | [Google 2 |

File Edit View Favorites Tools Help

{\? ahy |@Untitledpage ‘_| fﬁ ¥ - '@EEQE'RQTQNS' =

Page First Loaded at- 6/3/2008 83527 PM

Page posted back at: 6/3/2008 8:38:04 PM

Partial-Page Update at- 6/3/2008 8:40-18 PM

& Internet | Protected Mode: On H100%

Figure 2-6. After you click the Partial Update button, the label in your UpdatePanel refreshes, but
the labels outside the UpdatePanel do not. Likewise, the Postback button only refreshes the
postback label, not the label inside the UpdatePanel.

Note the following results:

* Clicking on the Partial Update button updates the label in the UpdatePanel con-
trol, but not the labels outside the UpdatePanel.

* Clicking on the Postback button updates only the postback label outside the
UpdatePanel, but not the first load label, nor the label inside the UpdatePanel.

* The UpdatePanel is invisible to the user (though its effects are not).

When you’re done, close the browser.

Mastering Web Site Fundamentals | 33

What’s great about updating just a portion of a page this way is that it not only elim-
inates “flicker,” but your entire application will seem faster and more responsive to
the end user.

Silverlight

In March of 2007, Microsoft unveiled Silverlight 1.0 in Beta and started a new chapter
for .NET programmers. That chapter is still being written as this book goes to print,
though with the release of Silverlight 2.0 Beta 1 in March of 2008 the shape of Silver-
light and its potential impact is much easier to see.

There are now five distinct technologies within .NET for writing applications, and they
form a spectrum from entirely server-side to entirely client side:

* ASP.NET

¢ ASP.NET with AJAX

* Silverlight (potentially integrated with ASP.NET or ASP.NET with AJAX)
* Windows Forms

¢ Windows Presentation Foundation (WPF)

The sweet spot for most developers is in the center: applications delivered through the
browser, but ones that also provide a very rich, interactive, responsive experience for the
user. Microsoft now offers two technologies to accomplish this: AJAX and Silverlight.

AJAXis, in truth, not a new technology at all; it is the aggregation of mature technol-
ogies in new ways (JavaScript and XML delivered asynchronously) supplemented by
some very cool well-tested code written by Microsoft (the AJAX libraries) and others.

AJAX has the advantage in that it runs on any browser that supports industry standard
protocols.

Silverlight, on the other hand, requires a browser plug-in that the user has to accept.
That plug-in contains a carefully chosen subset of the CLR, allowing Silverlight appli-
cations to use managed code languages like VB.NET or C# and to implement applica-
tions built on a subset of XAML, the mark up language used by WPF (and Work Flow).

The net result is that Silverlight applications are much faster, richer and have capabili-
ties that are simply not possible with AJAX, but they are limited to running (at the time
of this writing) on IE, Firefox, Safari on Windows, the Mac, and Linux.

Learning Silverlight is not hard, but there is quite a bit to it. A full discussion would be
a book in itself (see Programming Silverlight by Jesse Liberty and Tim Heuer
[O’Reilly]).

There may come a time when Silverlight is as much a part of every ASP.NET program-
mer’s skill set as AJAX is today, but we’re not quite there yet, and to keep this book at
a manageable size, we’ve decided to defer a full discussion of Silverlight for now. To
learn more, take a look at Essential Silverlight by Christian Wenz (O’Reilly) and the
extensive material available at http://Silverlight.net.

34 | Chapter2: Building Web Applications

http://Silverlight.net

Using Controls

As you’ve seen in both examples so far, when you drag a control from the Toolbox
onto the design surface, it is generally represented as a visible widget to the user.
Some controls, however, are used not for display, but for manipulating other objects
(for example, database manipulation controls), and these are displayed in a special
area at the bottom of the main window.

In any case, every control is identified by a unique ID property. Both Visual Web
Developer and Visual Studio will automatically assign an ID to your control as you
drag it onto your page. These automatically generated IDs are rarely meaningful, and
we suggest that you rename them. For example, while the IDE might name your
label “Label2,” you will probably find it much more useful to rename that label
something like 1b1PartialUpdate.

When you click on a control in Design or Source views, its properties are shown in
the Properties window. You can change any property value in the Properties win-
dow or directly in Source view, and any changes you make will be reflected in both
places immediately.

Organizing the Properties Window

Within the Properties window, you can group properties by category or alphabeti-
cally. Figure 2-7 shows the Accessibility, Appearance, and Behavior categories of a
button, though there are others. You can click the appropriate buttons in the menu
bar to toggle between the Categorized and Alphabetical views. (When organized
alphabetically, the ID of the Control is placed at the top of the list, out of order, for
convenience.)

Virtually every control has events associated with it. To view a control’s events, click
the lightning bolt button. To switch back to properties click the Properties button.

Finding properties with IntelliSense

You don’t need to use the Properties window to edit control properties if you don’t
want to—you can type the properties and their values directly into Source view. If you
prefer to work in Source view rather than Design view, you can enlist IntelliSense to
help you find both the properties and events for any given control. With the cursor
inside the markup for a given control, as you press the Space bar, the list of members
for the control will be displayed. You can then select a member or value from the list.
If you change your mind and don’t want to use the IntelliSense list, press Esc to dis-
miss it. As you type, IntelliSense will help you fill in the appropriate property or
event, as shown in Figure 2-8.

Using Controls | 35

Alphabetical ~ Properties Events Property pages

. B
k Systern. Web.ULWebContr ~
| =

H Accessibility -

(ategorized

AccessKey
TabIndex 0
B Appearance
BackColor
BorderColor
BorderStyle NotSet
BorderWidth
CssClass
Font
ForeColor

Postback

EH Behavior

1

CausesValidation True

___CommandAraurr

Figure 2-7. The Properties window, as you would expect, shows you the properties of the control
you select. You can organize the properties by category, as shown here, or alphabetically. You can
also view the events associated with the control.

Basic Controls

We could simply review the basic controls in a vacuum, but that’s not very interesting.
Instead, in this section you’ll create a simple business application using the ASP.NET
and AJAX controls in context. The application will be for a fictitious company called
AdventureWorks, a recreational equipment retailer.

To begin, close the Postback site, if it’s still open (File— Close Project), then create a
new web site using the ASP.NET Web Site template (similar to what you did in the
previous example). Name your new project AdventureWorks.

For this version of the program, you’ll use hardcoded data. In later chapters, you will
add dynamic content with data retrieved from a database. Also, to keep this simple,
you will not initially use any AJAX features; that will be added in the next chapter.

The first page you're going to build is the order form. The finished page will look
something like Figure 2-9, where all the types of controls are labeled. This somewhat
contrived web page (see the upcoming sidebar “Good Sites Look Good”) is intended to
demonstrate many of the available ASP.NET controls for various applications.

36 | Chapter2: Building Web Applications

[5] Postbacks - Visual Web Developer 2008 Express Edition [E=E)
Fle Edit View Website Buld Debug Format Tools Window Help
i@-E-FH e %R -8B B -2 #2852 | KHTML1. Transition + o

{[(None) — -|[(DefauitFort) <|[Defauti=]| B £ U | A 2 | = -|i= i= | @ || styleApplication: Manual ~ Target Rule: (NewInlineStyle) « stz [Ta]2
| [ui|| Teolbox ~ & X| Defaultaspx” | Start Page | + x |Database Explorer i
O || = Standard - =] [¥ |
: [= - toemy BE=
g — = - (1] Data Connections
S || A Label 14 </asp:ScriptManager> =
© TextBox i gBE
= 16 Page loaded at:
5 Button L 17 <asp:Label ID="1blPageload" runat="server” Text="Labsl"
| [E) LinkButton 18 <asp:Button ID="btnPostback" runat="server" Text="Postb

(&) ImageButton 19

A Hyperlink 208 <asp:UpdatePanel ID="UpdatePanell” runat="server"> =

A DropDownList 219 <ContentTemplate>

3 ListBox E: Par:ial—pagf update atf

23 <asp:Label ID="1blPartialUpdate” runat="server"|

CheckBox

22 <asp:Button [ID="btnPartialUpdate” runat="serve|E|||[&5olition Ex. | Sy Database Ex...
£= CheckBoxlist 25| </ContentTemp — =
@ RadioButton 26| </asp:UpdatePansl :"ia S |2 e =

ackColor L :
%= RadioButtonlList 7 . =| | ||| |btnPartialupdate <BUTTON> ~
S @ BorderColor E
|l Image @ BorderStyle
e </form>
[§ ImageMap Criags @ BorderWidth UseSubmitBel True =
= Tavle </neml> : EE”‘E‘VE‘;T”“" " ValidationGro
i= BulletedList 32 ommandArgument
i i . @ CommandName Visible K
Biotinie @ CssClass E Layout
B Literal @ Enabled _|[| Height
Calendar = = T - Width E
LA, Bl Misc
43 Toolbox [4] €55 Fro. | | @ Design | O Spiit [E Source | [«][<ContentTemplate> || <asp:Button#btnPartialUpd...>] O =
Ready Ln24 Col 30 Ch30

Figure 2-8. IntelliSense provides a drop-down as you type, so that you can select the property or
event you want to use.

In Solution Explorer, rename default.aspx to OrderForm.aspx by right-clicking on the
file name and selecting Rename. The code-behind file is automatically renamed, as
well as almost all the internal references.

When you use automatic renaming, be careful about names that are
used in text or in page directives (at the top of HTML files)—they will
not be renamed for you. Also, the name of the class in the code-behind
file will not be updated automatically.

In this example, you’ll work in Design and Source views, moving back and forth
depending on which is most convenient for the task at hand. Feel free to use Split
view to see both views at once.

Open OrderForm.aspx and select Source view. Change the text between the <title>
tags from Untitled Page to AdventureWorks, and then run the application. At this
point, an empty browser will come up with AdventureWorks in the title bar.

That was fun. Now, add some substance to the page, beginning with header text.
Close the browser. In Source view, type in the following HTML between the <div>
tags:

<h1>AdventureWorks Order Form</hi>

Notice how IntelliSense helps by entering the closing tag for you.

Using Controls | 37

AdventureWorks Order Form

Customer Name:

Address: TextBoxes
City-

State: Alabama ~ ~ —— DropDownlList
ZIP code:

E-mail address:
TextBox with
TextMode=Password

Comments: TextBox with
) 5 TextMode=Multiline

Password:

RadioButtons

Provide personal information: | ©) Yes @
Areas of Interest Age Category
[Biking @ Under 21
[[]Scuba Diving ©21to 30
[[] Gaming © 311050 RadioButtonList
[F1Mountain Climbing|| © Over 50
[['Web Surfing
[[1Real Surfing

Panel

CheckBoxList

Category: Bikes - Subcategory: Brakes -
\ Handlebars E]

. Chains
DropDownList Cranks i

Summary

Category: | HTMLtable with table cells ListBox
Subcategory as HTML server controls

Mailing Address:
Submit _
Button

Show product photo? CheckBox
py . § 3

/i’__ L %‘. i

Image

Jesse Liberty's Portal ————— Hyperlink

Figure 2-9. This is what the AdventureWorks Order Form in this example will look like when it’s
finished. It’s not the prettiest page, but it uses lots of the controls you’ll be using in this book.

Alternatively, in Design view, you can just type in the text on the design surface and
then highlight the text and click on the Block Format drop-down menu in the For-
matting toolbar, as shown in Figure 2-10.

38 | Chapter2: Building Web Applications

Good Sites Look Good

Our only excuse for how ugly the forms in this book are is that we are consciously
avoiding all styling to keep the examples as simple as possible.

We do believe, however, that the creation of professional quality web sites requires
going beyond just the programming, and includes creating professional looking web-
sites as well.

Unfortunately, using style sheets, let alone image buttons, images, gradients, and all of
the other ingredients necessary for a truly professional looking web site would clutter
up the examples in the book, making it longer than necessary, and would only get in
the way of what you really want to learn about—ASP.NET.
We will return to style sheets in Chapter 7, and we do cover all of these subjects in
some detail in Programming ASP.NET. However, the art and skill of creating truly pro-
fessional looking web sites requires many books, as this approaches an art form.
Among the resources we recommend are the highly acclaimed web site http://www.
csszengarden.com/, and its associated book, The Zen of CSS Design: Visual Enlighten-
ment for the Web by Dave Shea and Molly Holzschlag (Peachpit), as well as the follow-
ing books:
* The Non-Designer’s Design Book by Robin Williams (Peachpit)
* Don’t Make Me Think: A Common Sense Approach to Web Usability by Steve
Krug (New Riders)
* The complete Classroom in a Book series by Adobe
* The Total Training computer-based courses: Adoebe Creative Suite 3 and Adobe
Macromedia Studio 8 bundles
For other recommendations, please go to http://www.LibertyAssociates.com and click
on “Books,” then click on “Recommendations,” then “Technical and Programming.”

Creating Tables

To position the controls on the page, you’ll need to create a table. If you’re comfort-
able with HTML, you can certainly insert your table row and column tags manually
in Source view and receive assistance from IntelliSense as you go. If you prefer, how-
ever, VS and VWD offer an insert table wizard.

To see this at work, switch to Design view (some of the procedures that follow can-
not be done in Source view), position the cursor immediately after the heading you
just entered, and press Enter once to start a new line. Click on the Table — Insert
Table menu item to bring up the insert table dialog box and enter, for this example,
eight rows and two columns, as shown in Figure 2-11.

Using Controls | 39

http://www.csszengarden.com/
http://www.csszengarden.com/
http://www.LibertyAssociates.com

[E] AdventureWorks - Visual Web Developer 2008 Express Edition (= |
File Edit View Website Buld Debug Format Table Tools Window Help
- TR e = - NI IRE= N SO R o = (R W il = "2 | XHTML1.0 Transitioni -~ _

(| EETITR) |-| efautt Fort) - Defouti - |[B| 2 U |A & |=-[i= i= |8 . istyleAppiication: Manual ~ Target Rule: <Automatic> - [w])2
TLNﬂ"el " * Rart Page” OrderForm.aspx” | + x| Solution Explorer IR
aragraph <p> @ = i
E eadirc 1 i HE g E=eFi=l=1ick)

el \dventureWorks Order Form e

Heading <h5» [l OrdeFormasspd
Heading 6 <h6> [web.config
Unordered List

Ordered List

Defined Term <dt>

Definition <dd> -
T =N DropDownList

[ListBox ‘ ‘
CheckBon i Solution Ex... [Database Ex..
8= CheckBoxList
@ RadioButton
= RadioButtonList
1] Image

[§ ImageMap

[Table

i= BulletedList

il HiddenField
B Literal

[T calendar =

e
;TWTEO, AycssPren | ||[3 Design | o Split | B Source | [4][<htmi>] [<body>| [<forme#ormL> || <div>][<h1>

Ready Ln12 Col 34

[atunn A AL

Broperties TEX
<H1> =

] »

an

INS

Figure 2-10. You can enter this heading in Source view, or you can enter it in Design view, and
apply the formatting with the Block Format drop-down menu.

Figure 2-11 demonstrates how you can use this dialog to set various attributes for the
table, although you can also adjust these attributes later in the Source view. Click
OK to create the table.

You’ll use this table to align all of the prompts in the left column, and the user input
in the right column. As is typical with most ASP.NET pages, you’ll use HTML to
generate the display text for your prompts, and ASP.NET TextBox controls for most
of the user input. Figure 2-12 shows the end result for this portion of the page.

Type in the text shown in the left column in Figure 2-12, and then add the controls
to the right column. For the Customer Name, Address, City, ZIP code, and E-mail
fields, the controls are simple TextBoxes, so you can just drag them from the Tool-
box into the appropriate table cells. The Password and Comment fields are special
TextBoxes that we’ll cover in the next section. The State field is a drop-down list that
we’ll get to a bit later in this chapter. You can leave those cells empty for the
moment.

Every ASP.NET control must have a unique ID, and when you drag your text boxes
onto the page, the IDE will assign a simple default ID for you. We strongly recom-
mend, however, that you rename each text box with a meaningful name to make
your code easier to read and maintain. It is far easier to understand code that refers
to txtName than code that refers to the same field as TextBox1. Name the TextBoxes (in
order): txtName, txtAddress, txtCity, txtZip, txtEmail, txtPassword, and txtComments
(skipping the DropDownList).

40 | Chapter2: Building Web Applications

Insert Table m

Size

Rows: |8 '3«* Columns: I}‘_ |-

Layout

Alignment: :Def‘clult E‘ [¥] spedfy width:

T = () In pixels
Float: Default I IIUU 1 i
l - : E‘ (@ In percent
Cell padding: I:l :}. [7] spedify height:
= - In pixels
Cell spacing: Il = 0

In percent

Borders
Size: IU_. *:H
Color: - -
7] collapse table border

Background

Color: -

[Use background picture

I Browse... Properties... -

Set
|| set as default for new tables

Lok J[concel |

Figure 2-11. For this example, enter 8 rows and 2 columns in the Insert Table dialog box.

Setting Properties

There are four ways to set the properties of your controls: programmatically, in the
markup, in the Properties window, or through a wizard.

For example, the TextBox control has a Text property. You can set this property either
declaratively in your markup or programmatically in your code-behind file. You can
also read from that property programmatically. You might, for example, write:

Dim City As String

City = txtCity.Text
You can set the font characteristics for text in a text box in the markup, programmat-
ically, or in the Properties window, as shown in Figure 2-13.

The TextMode property for text boxes allows you one of three settings: Singleline,
Multiline, or Password. If you choose Password, the text that is entered will appear as
dots. Select the TextBox for the password, and change the TextMode property to
Password.

Using Controls | 41

Tables, Page Layouts, and the HTML/CSS Debate

To lay out an .aspx page with the necessary precision, you have a number of options.
The two most common and successful of methods are to use either HTML tables or
Cascading Style Sheets (CSS).

Many CSS aficionados believe that HTML should only be used to describe “content,”
and cascading style sheets should be used to describe layout. It would be their position
that HTML tables should be used only to create tabular data, and never as a tool for
manipulating the layout of the page. Certainly it is true that when using HTML tables
for layout, you will find yourself forced to use “nested tables,” that is, tables within
tables (within tables, ad infinitum) to get the level of precise control your page might
need. It is argued that this is not only inefficient but difficult to maintain.

Whatever the theoretical or practical merits of this argument, few would disagree that
the use of HTML tables for layout is a well-established tradition, and is certainly easier
to demonstrate than using CSS. In any case the layouts we will be using for our sample
applications will be simple enough that we will be satisfied with HTML tables for
layout.

ASP.NET provides an ASP.NET Table control, which you can drag onto your form
from the Toolbox. We believe it is more inconvenient than it is worth though because
it does not size properly in design view and using HTML tables is generally easier,
faster, and less resource-intensive on the web server.

AdventureWorks Order Form

Customer Name: |
Address: |
City- |
State: lmr
ZIP code: |
E-mail address: |

|

Password:

=
=

Comments:

Figure 2-12. You’'ll use a two-column table to hold the user prompts and input fields in this
example.

)

| Chapter2: Building Web Applications

Properties E
txtName Systern.Web.ULWebControls, -
-
Columns 0
CssClass
o | 0
Bold False -
Italic False 1
Mame [] | 4
Marnes
Overline False
Size
Strikeout False
Underline False
ForeColor
Text
|51 Babasiar e

Figure 2-13. Use the Font section of the Properties window to set the font characteristics of the
TextBoxes in your page.

ASP.NET controls treat the font family, or individual character
attributes such as bold, as a property of the TextBox class, while for
HTML controls, it would be more typical to use styles, set most typi-
cally from a style sheet. We cover style sheets in Chapter 6.

Now, set the TextMode property on the comment text box to MultilLine. Set the Rows
property to 3 to create a three-line comment field. Run your application again, and
try typing in the Password and Comments fields to see how these special text fields
work.

Selection Controls

ASP.NET offers a number of different controls to create lists from which the user can
make a selection. These include the ListBox, the DropDownList, RadioButtons and
RadioButtonLists, CheckBoxes, and CheckBoxLists. All of these controls work more
or less the way you’d expect them to.

While not used for selection, ASP.NET has one more kind of list used for organiza-
tion: the BulletedList. BulletedLists have a BulletStyle property, which can be set to
numbered, lower- or uppercase alphabetic, lower- or uppercase Roman numeral,
disk, circle, square, or a custom image.

Using Controls | 43

Radio button lists and checkbox lists are convenient for creating and grouping more
than one radio button or checkbox at a time. Table 2-1 reviews the use of each of
these different types of selection controls.

Table 2-1. Summary of selection controls

Control type Selection Best for?
CheckBox Multiple Short lists
CheckBoxList Multiple Short lists
RadioButton Single Short lists
RadioButtonList Single Short lists
DropDown Single Long lists
ListBox Multiple Long lists

Referring back to Figure 2-9, just below the table that gathers the user’s name and
address, you want to add a control to prompt the user to decide whether to provide
certain personal information. Because the decision is either yes or no—a mutually
exclusive choice—we will use two radio buttons. In Source view, just below the
table, insert the text “Provide personal information:” Following the text, drag two
radio buttons onto your Source view. Edit the properties for the two radio buttons so

they look like this:

<asp:RadioButton ID="rbYes" runat="server" AutoPostBack="True"
Checked="True" GroupName="grpPersonalInfo"
Text="Yes"
ToolTip="Click Yes to gather personal information; No to skip that step" />

<asp:RadioButton ID="rbNo" runat="server" AutoPostBack="True"

GroupName="grpPersonalInfo"

Text="No"

ToolTip="Click Yes to gather personal information; No to skip that step" />
Each radio button has a unique ID; the first, rbYes, and the second, rbNo. You’ll also
notice that both radio buttons have the attribute runat="server". You'll see this
attribute on all controls that are evaluated at the server; it’s inserted for you
automatically.

The text that is displayed next to the RadioButton is assigned in the Text attribute. You
saw earlier in this chapter that a Button control performs a postback when it’s clicked,
by default, but that not all controls do that. In the example, you want the radio but-
tons to perform a postback, which isn’t their normal behavior, so the attribute
AutoPostBack="True" signals that every time this RadioButton is clicked, the page will be
sent back to the server for processing. RadioButtons are mutually exclusive within their
own grouping, meaning that only one button of the group can be checked at a time.
The group is established by assigning each radio button a group name, with the
GroupName property, in this case grpPersonalInfo.

44 | Chapter2: Building Web Applications

Finally, each of these buttons is assigned a tool tip. In this case the tool tip for each
button is the same, though that need not be true.

Radio buttons get their name from old-fashioned automobile radios
which had mechanical buttons to select the station unlike modern
electronic ones that can be used to select more than one station
depending on other settings on the radio. These old-fashioned radio
buttons physically adjusted the tuner to the desired location. This
design was so standardized across all automobiles, that setting and
using radio buttons in a car required no more thought than using a
water fountain.

For more on this curious idea about self-evident design, we highly rec-
ommend the seminal work The Design of Everyday Things by Donald
A. Norman (Basic Books), which, along with Don’t Make Me Think by
Steve Krug (New Riders) should be required reading for all web appli-
cation programmers and designers.

The purpose of this radio button group is to allow the user to display or hide the
Panel described in the next section. You’ll enable that functionality in Chapter 3; for
the moment, the radio buttons won’t do anything.

Panels

The personal information that you will be gathering will be clustered together within
an ASP.NET Panel control. Panels give you the opportunity to provide a background
color if you choose, or to make the panel itself visible or invisible as a whole. In this
example, the visibility of the Panel will be controlled by the radio buttons, although
you won’t enable that feature until the next chapter.

Begin by dragging a Panel control from the Standard section of the Toolbox into the
page in Source view, underneath the radio buttons you just added, and giving it the ID
and properties as shown here:
<asp:Panel ID="pnlPersonalInfo" runat="server"
BorderWidth="1px" Width="300px" BackColor="beige">

What you’ve done here is pretty self-explanatory: you’ve defined the width of the
panel as 300 pixels, with a one-pixel border. If you hadn’t defined the width prop-
erty, the panel would have sized itself to fit the user’s browser automatically. You’ve
also set the background color to beige.

List Selection Controls
Create an HTML table within the panel, like this:

<table>
<tr valign="top">
<td>

Using Controls | 45

The valign property in your first row sets the vertical alignment for all elements
within that row to be top-aligned, helping ensure that all of the contents will align
properly. Notice that IntelliSense automatically creates the closing tag for each open-
ing tag you type.

Create the first cell by inserting the <td> tag, and type “Areas of Interest.” Next, drag
a CheckBoxList control into the cell—after the <td> tag and after the text you just
added. Switch to Design view; the display should look something like Figure 2-14.
Notice the small arrow on the CheckBoxList control; this is a Smart Tag. Smart Tags
are convenient helpers that provide fast access to essential properties for many con-
trols. Clicking on the arrow opens a small menu.

_Iasp:PaneI#pInPersonaIInfo]JﬂﬁOII i Yes & No

[asp:CheckBoxListZChedBodistl |
1 ™ Unboundi®| CheckBoxList Tasks

Choose Data Source...

Edit tems...
[] Enable AutoPostBack

Figure 2-14. The CheckBoxList you just added shows a Smart Tag to help you set the critical
properties of the control.

Adding items with the Item editor

Click the Smart Tag arrow and select the Edit Items... option to add items to the
CheckBoxListcontrol, using the ListItem Collection Editor, shown in Figure 2-15.

With the exception of CheckBox and RadioButton, all the list controls in Table 2-1 hold
a collection of ListItem objects. Each ListItem has a Textproperty, which is what is dis-
played to the user, and a Value property, which you can access programmatically.

This allows you to display text to the user—“Scuba Diving,” for example—but when
the user selects that option, you’ll return a different value to your program—*“SC”
perhaps, or “4,” or whatever value will be meaningful in your application.

The ability to tie a “value” to a “Text property” becomes particularly
useful when displaying values retrieved from a database, as we’ll see
later in this book. You can retrieve, for example, all your vendors, and
display them by name, but when one is selected, you can retrieve the
vendorID from the value field.

The list is empty when you start, so click the Add button to insert an item. As soon
as you add an item, you’ll see some familiar-looking properties in the box on the
right. Click in the Text field and type “Biking.” Notice that you can set the Text and
Value properties separately if you choose. If you don’t, the Wizard defaults to the

46 | Chapter2: Building Web Applications

same name for both. You can also set the Selected property to True (causing that
item to appear as checked when the page is first loaded). For this specific example,
add all the items shown in Figure 2-15, set the Text and Value properties to the same
value, and leave all the items unselected and enabled.

Listltem Collection Editor m
Members: Biking properties:
.
; Sécauba Diving z o Misc
ming ..
Enabled T
3| Meuntain Climbing Snla cted Fnl-le
4| Web Surfing s i
5| Real Surfing e By
Value Biking
Add l ’ Remove
ok || Cance

Figure 2-15. When you select “Edit Items” from the Smart Tag, you’ll see the ListItem Collection
Editor, where you can enter each item in the list.

Once you’ve added all the items to your list, click OK to close the dialog box. Return
to the properties window and change the ID property of the CheckBoxList to
cblAreas. Set the AutoPostBack property to True so that each time a checkbox item is
checked or unchecked, the page will be sent back to the server for processing.

Adding items in Source view

Click Source view to see the markup. Press Ctrl-F to bring up the Find dialog, and
enter “pnlPersonallnfo” in the Find what box to locate the Panel control. Your IDE
should look something like Figure 2-16.

Notice the CheckBoxList declaration with its end tag. Between the opening and clos-
ing tags are a series of ListItem declarations. These are the items you added with the
Listltem Collection Editor, and you can change their properties here, if you want.

Using Controls | 47

Now go back to constructing your table—add a second set of cell tags (<td></td>) in
the same row as the first cell. Press Enter to create a new line, then use the Tab key
to indent. Type in the following HTML to form a heading;:

Age Category

[E] AdventureWorks - Visual Web Developer 2008 Express Edition =l E .

File Edit View Website Build Debug Format Tools Window Help
(- - @ %GR -5 b [@ priPersonalnfo .
i(None) -[[(DefaultFort) <|[Defouti-]| B 7 U | A 2 |=-[i= =@ : Style Applicat]

il s sE | = 2 | XHIMI 1.0 Transition:
Find and Replace (=]

= 3 k Find [~ | 4% k Replace ~
| Toolbox =X SunPage’ OrderFormasp’| [5 Quick Find |- | A% Quick Replace
O || E Standard - Findwhat:
B || Client Objects & Events ~ (Mo Events) = —
2| & Pointer priPersonallnf « [»
Z | A Labe 7 Checked="true" GroupName="grpPersonall B
s = :
= ToolTip="Click Yes to enter perscnal #| Lookin:
© TextBox = i ol S SR
E - <asp:RadioButton ID="rbNo" runat="servd [Cumne B v]
o = Checked="true" GroupName="grpPersonall
i LinkButton ToolTip="Click Yes to enter personal 1 Find pptions
(@) ImageButton <asp:Panel ID="[GERIErECPEBGEsl" runat=
A Hyperlink BorderWidth="1px" Width="300px" BackC [Find Next H ‘Bookmark All I
T DropDownlist Kpabley
" = <tr valign="top">
ListB
E3l ListBox <tdshreas of Interest<asp:CheckSoxList ID="cb
CheckBox RutoPostBack="True™>
5= CheckBoxlist <asp:ListItem>Biking</asp:ListItem>
@ RadioButton <asp:ListItem>Scuba Diving</asp:ListItem>
2= RadioButtonList <asp:ListItem>Gaming</asp:ListItem>
& Image <asp:ListItem>Mountain Climbing</asp:List|S
B ImageMop <asp:ListItem>Web Surfing</asp:ListItem> HorizontalAlic Notset -
= Tab <asp:ListItem>Real Surfing</asp:ListIltem> ScrollBars None
e 96 </asp:CheckBoxList> Width 300,
= BulletedList </td> b = P
bl HiddenField </tr> lrap ue
B Literal </table> B Misc
L. 1001 </asp:Panel> -) prlPessonallnfc
= =S| i] i runat server E
5 Toolbox 4] €56 Pra. ||| @ Design | 0 spiit [source | [4][<form=form1]|<div>|| <asp:PanciZpniPersanalinios ¥ -
Find "pniPersonalinfo’, Hidden, Current Document Lngd Col 39 Ch39 INS

Figure 2-16. The Source view shows the markup for the Panel control, showing the table and the
list items you added.

Drag a RadioButtonlList control from the Toolbox onto the source view, directly
after the
 tag. Set the ID for the new RadioButtonList to rblAge, AutoPostBack
to True, and the Width to 150. This time, you’ll add ListItems to the radio button list
by hand. Between the opening tag and the closing tag of the radio button list, type
<asp:ListItems>. IntelliSense will help you, as shown in Figure 2-17.

<asp:RadicButtonlList ID="rblhge™ runat="=zerver"
hutoPostBack="true™ Width="150px">

<asp:listIten>Under 2Z1</asp:ListItem>

</asp:RadicButtonlisty

Figure 2-17. Creating a RadioButtonList by hand. IntelliSense completes the ListItem entry for
you.

48 | Chapter2: Building Web Applications

Why would you want to add Listltems by hand, rather than use the
nifty UI provided by the IDE? Often, it is just a matter of personal
preference. Other times, you are already in Source view, and it is just
more convenient to stay there. Sometimes, hand editing is the only
way to get the markup exactly as you need it to be. And often times, it
is just faster by hand because you can copy and paste similar lines of
code and change only one or two attributes.

You have now added one list item, Under21, and opened the angle bracket for a sec-
ond ListItem. IntelliSense knows the only possible control that can go in this loca-
tion is an ASP.NET ListItem, and so it offers that option to you. You can click on the
ListItem offered by IntelliSense to explicitly select it, or simply press tab to accept it.

When you enter the closing angle bracket (>), the IDE will immediately create a clos-
ing tag for you:

<asp:ListItem></asp:ListItem>

You need only put your new value between the tags. Thus, you can quickly build the
contents of your radio button list. Add the rest of the ListItems now, so the Source
view looks like this:
<asp:RadioButtonList ID="rblAge" runat="server"
AutoPostBack="True" Width="150px">
<asp:ListItem>Under 21</asp:ListItem>
<asp:ListItem>21 to 30</asp:ListItem>
<asp:ListItem>31 to 50</asp:ListItem>
<asp:ListItem>Over 50</asp:ListItem>
</asp:RadioButtonList>
Placing the text inside the tags like this is equivalent to setting the Text property of
the ListItem, which is what you did in the Listltem editor. Now, switch back to
Design view. You should see something like Figure 2-18.

In the layout table at the top of the page, you gathered the user’s name and address.
You’ll remember that we planned to use a drop-down list for the state field. It would
be convenient to display the full name of the state while setting the corresponding
value property to the two-letter postal abbreviation.

Go back up to the layout table and drag a DropDownList control into the cell for State,
and name the control dd1State. At this point, you have two options for setting the
text and value property: you can either use the ListItem Collection Editor in Design
view, or you can fill in the list items by hand in Source view. Add the following four
items to the DropDownList now, so the Source view looks like this:
<asp:DropDownList ID="ddlState" runat="server">
<asp:ListItem Value="AL">Alabama</asp:ListItem>
<asp:ListItem Value="AK">Alaska</asp:ListItem>

<asp:ListItem Value="CA">California</asp:ListItem>
<asp:ListItem Value="CT">Connecticut</asp:ListItem>

Using Controls | 49

[E] AdventureWorks - Visual Web Developer 2008 Express Edition [|
File Edit View Website Build Debug Format Table Tools Window Help

Cg-EH-BH@ | s B9 -5 b @@ polPersonalnfo 1 -HERS = 2 | XHTML1.0 Transition = =
i(Nomg) - (Defauitfort) - (Defoub- | B £ U |A & | =-|iS i= | | styleApplication: Manual = TergetRule: (MewInlinestyle) = o[£
Tl Taoos\bux . = & X| ot ags” Orderformaasprc| - x_|[Solution Bxplorer ~Ix
=] tandare 1 3 = | R = 4
2 R Point || iState: Unbound ¥/ a L.;.\;JIEID\@B
< GuPEL S &P C\.\AdventureWorks\
2| A Label ZIP code: (3 App_Data
5 | [Tegox i adbisi oy - [E OrderForm.aspx
s Button s . [L. 8 OrderForm.aspevh
| @ tinkButtan 3 ool [web.config
(&) ImageButton et E
A H Comments:
A Hyperlink =
DropDownList : . . =
5 ListBox Provide personal information: & Yes & No
Er R Ase Category cRSolution Ex... (£ Database Ex..
E= CheckBoxlist I~ Biking « Under 21 ~ax
© RadioButton I™ Scuba Diving 21030 z
5: IRadeuttonLlst I Gaming 311050
mage. B
& ImageMap ™ Mountain Clhmbing ¢ Over 50 -
[Table ™ Web Surfing
i= BulletedList I~ Real Surfing =|
' HiddenField =
n
B Literal

[calendar

%ETWJ\EO, AjcssPren | ||[3 Design | o Spit | B Source | [4][<htmi>] [<body>| [<form#form1 > |[<div>

Ready Ln112 Col5 Chs

<

Figure 2-18. Design view with personal information controls in place in a Panel control.

In a production environment, you would probably retrieve the text
and the value from columns in a database table.

More Selection Controls

Again referring to Figure 2-9, you need to create two more list selection controls: one
for the product category, and one for the subcategory. Begin by inserting a new lay-
out table just as you did previously, but below pnlPersonalInfo. Give the table one
row and four columns. In the first cell, type “Product Category:”; in the third cell,
type “Subcategory:”.

Drag a DropDownlList into the second cell and a ListBox into the fourth cell. Using the
Properties window, change the IDs of these two controls, and set the following
properties.

Property DropDownlList ListBox

1D ddlCategory 1bSubcategory
SelectionMode Single

ToolTip Select a category Select a subcategory
AutoPostBack True True

50 | Chapter2: Building Web Applications

Use the Smart Tag and the ListItem Collection Editor, as you did in Figure 2-15, to

enter the following ListItems for each control.

DropDownList
Bikes
Components
Clothing
Accessories
Scuba

Parasailing

ListBox

Brakes
Handlebars
Chains

Cranks

Bottom Brackets
Tires

Wheels

Seats

Derailleurs

One final layout tweak: go to Source view, find the HTML <table> currently under
construction, then add a valign attribute to the row tag, <tr valign="top"> to top

align all the elements in the row to the top of the table.

Look at this section of the page in Design view. Figure 2-19 shows how the product
table should appear at this point.

[5] AdventureWorks - Visual Web Developer 2008 Express Edition =lE e
File Edit View Website Build Debug Format Table Tool Window Help
i - Bl @] s B9 - F-E| b & @ pnlPersonalnfo | = ' | XHTML 10 Transition: =
i(Nome) - (DefaultFont) ~ (Defaul- | B 7 U | A & | -|i= {=| @ _ :styleApplication: Manual ~ Target Rule: (Newnline Style) - [ss|Ta|
[l Toolbox > X - Start pig?mugﬂp.,rmqnq + ¥ |Selution Explarer -3 X
2 | & Standara B 1 T2 B EE e
£ || & Pointer - C_\AdventureWorks\
|| A Lobel Comments: 5 App_Data
2 - |
° TextBox x ; ; = - [OrderForm.aspsx
= S ||| Provide personal information: & Yes & No -) O ot
2 g ;
Wl LinkButton Areas of Interest Age Category 5 web.config
(@) 1mageButton I Biking © Under 21
A Eypeilink [Seua Diving 211030 L
28 DropDownList .
| [1 Gamice I - -
CheckBox I~ Mountain Climbing ~ € Over 50 RlSolution Ex... [FfDatabase Ex...
£= CheckBoxlist [~ Web Surfing
9 RadioButton " I Real Surfng
£= RadioButtoni el L
[Tmage [td]
[ImageMap Category: Bikes - Subcategory: Brakes a| B Misc &
[Table ic‘h dieb) £
— ains Abbr
1= Bulletedlist
o Cranks o i
Gl HiddenField (£ S i‘('g”
B Literal =]
= <l BgColor
[Calendar =
‘) Char
= aan
5 Toalbox | 5] €55 Pre. || | 3 Design | o split | 2 Source | [4][<bodys || <formHarm1+|[<div| [<table stylel | [<trs] | <td | [1] CharOff -
Ln149 Col17 th17

Ready

Figure 2-19. Design view of the product category lists after adding the last set of selection

controls.

Using Controls |

51

Using Selections to Display Text

So far, you’ve created controls that provide choices to the user, but you haven’t seen
how your page knows what items the user selected, or how to do anything with
them. The answer lies in the properties of the selection controls. The DropDownlist
control, and all of the other list controls back in Table 2-1 (except CheckBox and
RadioButton) provide three properties for retrieving selections:

SelectedIndex
Returns or sets the index of the selected item. The index is a number (an inte-
ger) indicating which ListItem you chose. The index always starts with zero, so
the first item in the list is index 0, the second item is index 1, and so on. If more
than one item is selected, it returns the lowest index of all the selected items, or
—1 if nothing is selected. If you set this property, it deselects all the selected items
except the one with the specified index.

SelectedItem
Returns the selected ListItem. If more than one item is selected, it returns the
one with the lowest index. If nothing is selected, it returns Nothing (null in C#).

SelectedValue
Returns or sets the Value property of the selected item as a String. If more than
one item is selected, it returns the Value of the selected item with the lowest
index. If none of the items in the list control matches the SelectedValue, an error
message is sent.

When a user submits this form, you want to provide feedback regarding the selected
product category, subcategory, and the mailing address to which the purchase will
be sent. A summary table is the solution.

To demonstrate three different ways of displaying text:

* You’'ll display the chosen Category in a label.
* You'll display the chosen Subcategory in a read-only text box.

* Finally, you'll display the Mailing Address by modifying the inner HTML of the
table cell itself. (Inner HTML is the content between the opening and closing
tags.)

To begin, you need to create the layout table with three rows and two columns
underneath the existing controls. You can type it directly into the source, or use the
Insert Table Wizard we showed you earlier. Whichever method you choose, the table
should end up looking like this in Source view:

Summary

<table>
<tr valign="top">
<td>
Category:
</td>

52 | Chapter2: Building Web Applications

<td>
<asp:Label ID="Categorylabel" runat="server" Text="" />
</td>
</tr>
<tr valign="top">
<td>
SubCategory:
</td>
<td>
<asp:TextBox ID="SubCategoryTextBox" runat="server"
ReadOnly="true" />
</td>
</tr>
<tr valign="top">
<td >
Mailing Address:
</td>
<td id="tdAddress" runat="server" style="width:200px">
</td>
</tr>
</table>

This is a fairly straightforward HTML table. The left column has “Category” in the
first row, “Subcategory” in the second, and “Mailing Address” in the third row.

In the right column, place a Label control in the first row with an ID of
Categorylabel, but with its Text property set to an empty string. You’ll fill that at
runtime. In the second row, insert a TextBox control that has its ReadOnly property set
to true, so that the user cannot type into the text box (you're using it for display
only).

The third row’s second column is a bit unusual; the <td> itself has an id and a runat
attribute, making this an HTML server control. This allows you to modify the cell
itself programmatically.

If you want to populate the summary table, you’ll need to perform a postback to
evaluate and process the code (as discussed in Chapter 1). To do that, you’ll need a
Submit button. In Design view, drag a Button control onto the page just below the
summary table. Change its ID to btnSubmit, and its text to “Submit.”

The Submit button’s Click event handler will populate the Text properties of the
Label and of the TextBox, and will set the inner HTML of the third row’s second col-
umn, the one which is an HTML server control. Double-click the Submit button
from Design view, and you’ll be automatically taken to the Click event handler in the
code behind file. Add the following code to wire up the functionality:
Protected Sub btnSubmit Click(_
ByVal sender As Object,

ByVal e As System.EventArgs)
Handles btnSubmit.Click

Using Controls | 53

Categorylabel.Text = ddlCategory.SelectedItem.Text
SubCategoryTextBox.Text = lbSubCategory.SelectedItem.Text

Dim strMailingAddress As String

strMailingAddress = txtName.Text + "
" +
txtAddress.Text + "
" +
txtCity.Text + ", " + _
ddlState.SelectedValue + " " +
txtZip.Text

tdAddress.InnerHtml = strMailingAddress

End Sub

Let’s take a closer look at this code. The event handler retrieves the selected item
from the drop-down list for Categories (dd1Category) and asks it for its Text prop-
erty, which it then assigns to the Text property of the CategorylLabel:

Categorylabel.Text = ddlCategory.SelectedItem.Text

Similarly, the text is retrieved from the SelectedItem property of the ListBox that
holds the Subcategory, and that text is assigned to the Text property of the read-only
TextBox:

SubCategoryTextBox.Text = 1bSubCategory.SelectedItem.Text

Finally, and this is a bit tricky, the text of the various address fields are retrieved
(including the selected value from the state drop-down), joined into a single text
string, and assigned to the local variable strMailingAddress. That value is then
assigned to the InnerHtml property of tdAddress. This is, you’ll remember, the ID
assigned to the second <td> tag of the third row. The net result is that the cell is filled
with the address string:

Dim strMailingAddress As String

strMailingAddress = txtName.Text + "
" +
txtAddress.Text + "
" +
txtCity.Text + ", " + _
ddlState.SelectedValue + " " +
txtzZip.Text

tdAddress.InnerHtml = strMailingAddress

If you run this code and click on the Submit button without first
selecting a SubCategory, you will get an error that says “NullReference-
Exception was unhandled by user code—ODbject reference not set to an
instance of an object”. (You will learn how to debug this in Chapter 8.)
This error is caused by the fact that the SelectedItem property returns
Nothing if nothing is selected, and our code is trying to get the Text
property of Nothing, which does not exist. To fix this, set the Checked
property of one of the ListItems to True, as in:

<asp:ListItem Selected="True">Brakes</asp:ListItem>

The final result is shown in Figure 2-20. Run your application and try it out. When
you enter text in the text boxes and make selections in the category fields, and then
click the Submit button, the Summary table updates with the text you’ve entered.

54 | Chapter2: Building Web Applications

VB CHEAT SHEET

Variables and Strings

In the first two controls in the Summary section of the example, you simply assigned
the Text property of a SelectedItem property to the Text property of another control;
that’s easy enough. But for the third control, you took the Text properties of several
controls, joined them together, and assigned them as a whole.

The trick to this is using a variable. Simply put, a variable is like a bucket in your code,
which can be used to hold a value. You can retrieve the value later, change it, or replace
it with another value. You don’t need to worry about what the value is when you’re
writing your code; you just need to know the name of the variable. In this example,
you’re using a variable named strMailingAddress to hold the text of the user’s address.

In VB, you create a new variable using the Dim statement, followed by the name you
want to give the variable:

Dim strMailingAddress As String

You also need to give the variable a type, which tells the compiler what kind of data it
can expect to find in the variable. In this example, the variable consists of text, and in
VB, a sequence of text is called a string. You use the keyword As to declare a variable
named strMailingAddress, of type String. The important thing to know about strings
is that all literal string values are surrounded by double quotes ("").

One of the useful things about strings is that you can take two strings and put them
together into a single, longer string. This is called concatenation, and it’s very easy to
do in VB; you just use the + operator. Look at this bit of code:
txtName.Text + "
" + txtAddress.Text + "
"

All this does is take the string in txtName.Text, add to it the string that represents a line
break in HTML (
), add the string from txtAddress.Text, and then add another
line break. All of that gets assigned to the variable strMailingAddress, which in turn
gets assigned to the inner HTML of the <td> element.

Summary

Category: Components
Subcategory: Derailleurs
Mailing Address: Jesse Liberty

100 Main Street
Anvtown, CA 12345

Figure 2-20. This is what the Summary Table of the page looks like after the user has entered
values in the top part of the page.

Using Controls

55

Images

Images are an important addition to any web site. An image can be a photograph, a
drawing, a logo—any graphic.

ASP.NET provides several controls to work with images:

* An Image control is used to display an image. We will demonstrate this
momentarily.

* An ImageButton is used to create an image that can be clicked, thus giving it the
behavior of a normal button.

* An ImageMap control provides an image with multiple clickable hotspots. Each of
the hotspots behaves like a separate hyperlink.

Now insert an Image control into the form. To do so, insert some room below the
Summary table and the Submit button by hitting the Return key a few times, and
then drag a CheckBox and an Image control onto the form. In the Properties window,
set the ID of the CheckBox to cbDisplayPhoto, and be sure to set AutoPostBack to True,
Checked to True, and Text to “Show product photo?” Also, set the TextAlign property
to Left.

Set the ID for the image to imgPhoto and the ImageURL to “Dan at Vernal Pool.jpg”.
We've provided an image for you to use in this example. You can download that
image with the code for the book from www.LibertyAssociates.com. Once you have
the file, simply drag and drop it onto the AdventureWorks folder in Solution
Explorer. You’ll see the image file appear in the file tree alongside your other solu-
tion files. You can also use any image file you have handy.

The Image control has only three essential properties: the ID (so that you can address
the control programmatically), the ubiquitous runat="server", and the ImageUrl that
identifies the location of the image. Because you put this image in the base directory
of the application, you do not need a pathname, only the name of the file itself.

On this page, the CheckBox control offers the user the opportunity to make the image
visible or not. It has its AutoPostBack property set to true to force a postback every
time the Checked property changes. To make use of this, of course, you must write an
event handler for the CheckedChanged event. Double-click the CheckBox to create an
event handler for CheckChanged, and add the following highlighted line of code:
Protected Sub cbDisplayPhoto CheckedChanged(
ByVal sender As Object,
Byval e As System.EventArgs)
Handles cbDisplayPhoto.CheckedChanged

imgPhoto.Visible = cbDisplayPhoto.Checked
End Sub

This event handler changes the Visible property of the Image. When the property is
set to false, the image isn’t rendered. Go ahead and try it out. You’ll see that when
you uncheck the box, the page posts back, and the image vanishes.

56 | Chapter2: Building Web Applications

http://www.LibertyAssociates.com

Links

Hyperlinks provide immediate redirection to another page in the application or to a
location elsewhere on the Internet without posting back to the server. We’ll use a
HyperLink control to provide a link to Jesse’s home page, serving here very much the
same function as an <a> tag would do in HTML.

Add the text, “For help, contact”, and then drag a HyperLink control onto the bot-
tom of your form. Set the ID to hypContact, its NavigateURL to http://www.
JesseLiberty.com, and its text (which will become its inner HTML) to “Jesse Lib-
erty’s Portal”. Finally, set the Target to "_blank" (we’ll explain this property in just a
moment).

Switch to Source view, and you’ll see that the markup produced looks something like
this:

For help, contact

<asp:HyperLink ID="hypContact" runat="server"
NavigateUrl="http://www.Jesseliberty.com"
Target="_blank">
Jesse Liberty's Portal

</asp:HyperLink>

This last property, Target, specifies in which window or frame the new page will
open. You can specify a window by name, or use one of the special values listed in
Table 2-2.

Table 2-2. Special values of the Target attribute

Target value Description

_blank Renders the content in a new unnamed window without frames.

_new Not documented, but behaves the same as_blank.

_parent Renders the content in the parent window or frameset of the window or frame with the hyperlink. If
the child container is a window or top-level frame, it behaves the same as_self.

_self Renders the content in the current frame or window with focus. This is the default value.

_top Renders the content in the current full window without frames.

By setting the value of Target to _blank, clicking on the link instructs the target page
to open in a new browser window.

One significant advantage of using this control over an <a> tag is the ID and
runat="server" properties, which allow you to address the control programmati-
cally. For example, you could set the NavigateUrl to a different location from within
your code, based on conditions established while the program is running.

Using Controls | 57

http://www.JesseLiberty.com
http://www.JesseLiberty.com

LinkButtons

Remember that a hyperlink redirects immediately and does not post back first; thus,
there is no server-side processing possible when the user clicks the link. If you want
the appearance of a hyperlink, but need to perform server-side processing before
departing for the new page (e.g., to save data to a database) then use a LinkButton
control. The LinkButton behaves like a Button but looks like a HyperLink, and the
behavior is to post back to the server, do its work and then redirect the user to a new
location. You already have a HyperlLink control on this page, so you won’t add a
LinkButton.

In order to accomplish the redirection to the new page, you’d need to use the
Response.Redirect method, as shown in the following click event handler:

Protected Sub MyLinkButton Click(_
ByVal sender As Object,
Byval e As System.EventArgs) _
Handles MylLinkButton.Click
'‘Save data to db
Response.Redirect("http://www.JesseLiberty.com")
End Sub

Source Code

For your convenience (in case you are away from your computer) the complete
source code is shown below. The OrderForm markup is shown in Example 2-3. The
code behind file is shown directly after in Example 2-4.

Example 2-3. OrderForm.aspx
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="OrderForm.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>AdventureWorks</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<h1>
AdventureWorks Order Form</hi>
<table >
<tr>
<td>Customer Name:</td>
<td>
<asp:TextBox ID="txtName" runat="server"></asp:TextBox>
</td>

58 | Chapter2: Building Web Applications

Example 2-3. OrderForm.aspx (continued)

</tr>
<tr>
<td>Address:</td>
<td>
<asp:TextBox ID="txtAddress" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>City:</td>
<td>
<asp:TextBox ID="txtCity" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>State:</td>
<td>
<asp:DropDownList ID="ddlState" runat="server">
<asp:ListItem Value="AL">Alabama</asp:ListItem>
<asp:ListItem Value="AK">Alaska</asp:ListItem>
<asp:ListItem Value="CA">California</asp:ListItem>
<asp:ListItem Value="CT">Connecticut</asp:ListItem>
</asp:DropDownList>
</td>
</tr>
<>
<td>Zip:</td>
<td>
<asp:TextBox ID="txtZip" runat="server"></asp:TextBox>
</td>
</tr>
<>
<td>E-mail:</td>
<td>
<asp:TextBox ID="txtEmail" runat="server"></asp:TextBox>
</td>
</tr>
<>
<td>Password:</td>
<td>
<asp:TextBox ID="txtPassword" runat="server"
TextMode="Password"></asp:TextBox>
</td>
</tr>
<tr>
<td>Comment:</td>
<td>
<asp:TextBox ID="txtComment" runat="server" Rows="3"
TextMode="Multiline"></asp:TextBox>
</td>
</tr>
</table>

Provide Personal Information:

Source Code

Example 2-3. OrderForm.aspx (continued)
<asp:RadioButton ID="rbYes" runat="server" AutoPostBack=true
Checked="true" GroupName="grpPersonalInfo"
Text="Yes"
ToolTip="Click Yes to gather personal information; No to skip that step" />
<asp:RadioButton ID="rbNo" runat="server" AutoPostBack=true
GroupName="grpPersonalInfo"
Text="No"
ToolTip="Click Yes to gather personal information; No to skip that step" />
<asp:Panel ID="pnlPersonalInfo" runat="server"
BorderWidth="1px" Width="300px" BackColor="Beige">

<table>
<tr valign="top">
<td>
Areas of Interest
<asp:CheckBoxList ID="cblAreas" runat="server"
AutoPostBack="True">
<asp:ListItem>Biking</asp:ListItem>
<asp:ListItem>Scuba Diving</asp:ListItem>
<asp:ListItem>Gaming</asp:ListItem>
<asp:ListItem>Mountain Climbing</asp:ListItem>
<asp:ListItem>Web Surfing</asp:ListItem>
<asp:ListItem>Real Surfing</asp:ListItem>
</asp:CheckBoxList>
</td>
<td>
Age Category

<asp:RadioButtonlList ID="rblAge" runat="server"
AutoPostBack="true" Width="150px">
<asp:ListItem>Under 21</asp:ListItem>
<asp:ListItem>21 to 30</asp:ListItem>
<asp:ListItem>31 to 50</asp:ListItem>
<asp:ListItem>Over 50</asp:ListItem>
</asp:RadioButtonlist>
</td>
</tr>
</table>
</asp:Panel>
<table>
<tr valign="top">
<td>
Product Category
</td>
<td>

<asp:DropDownlList ID="ddlCategory" runat="server"
AutoPostBack="true"
ToolTip="Select a category">
<asp:ListItem>Bikes</asp:ListItem>
<asp:ListItem>Components</asp:ListItem>
<asp:ListItem>Clothing</asp:ListItem>
<asp:ListItem>Accessories</asp:ListItem>

60 | Chapter2: Building Web Applications

Example 2-3. OrderForm.aspx (continued)
<asp:ListItem>Scuba</asp:ListItem>
<asp:ListItem>Parasailing</asp:ListItem>

</asp:DropbownlList>
</td>
<td>
SubCategory
</td>
<td>
<asp:ListBox ID="1bSubCategory" runat="server"
AutoPostBack="true"
SelectionMode="Single"
ToolTip="Select a sub-category">
<asp:ListItem Selected="True">Brakes</asp:ListItem>
<asp:ListItem>Handlebars</asp:ListItem>
<asp:ListItem>Chains</asp:ListItem>
<asp:ListItem>Cranks</asp:ListItem>
<asp:ListItem>Bottom Brackets</asp:ListItem>
<asp:ListItem>Tires</asp:ListItem>
<asp:ListItem>Wheels</asp:ListItem>
<asp:ListItem>Seats</asp:ListItem>
<asp:ListItem>Derailleurs</asp:ListItem>
</asp:ListBox>
</td>
</tr>
</table>
<table border="1">
<tr valign="top">
<td>
Category:
</td>
<td>
<asp:Label ID="Categorylabel" runat="server" Text="" />
</td>
</tr>
<tr valign="top">
<td>
SubCategory:
</td>
<td>
<asp:TextBox ID="SubCategoryTextBox" runat="server"
ReadOnly="true" />
</td>
</tr>
<tr valign="top">
<td>
Mailing Address:
</td>
<td id="tdAddress" runat="server" style="width: 200px">
</td>
</tr>
</table>

Source Code

Example 2-3. OrderForm.aspx (continued)
<asp:Button ID="btnSubmit" runat="server" Text="Submit" />

<asp:CheckBox ID="cbDisplayPhoto" runat="server" AutoPostBack="True"
Checked="True" Text="Show product photo?" TextAlign="Left" />

<asp:Image ID="imgPhoto" runat="server" ImageUrl="Dan at Vernal Pool.jpg" />

<asp:HyperlLink ID="hypContact" runat="server"
NavigateUrl="http://www.JesselLiberty.com" Target=" blank">
Jesse Liberty's Portal
</asp:HyperLink>
</div>
</form>
</body>
</html>

Example 2-4. OrderForm.aspx.vb
Partial Class Default
Inherits System.Web.UI.Page

Protected Sub btnSubmit Click(_
ByVal sender As Object,
Byval e As System.EventArgs) _
Handles btnSubmit.Click

Categorylabel.Text = ddlCategory.SelectedItem.Text

SubCategoryTextBox.Text = 1bSubCategory.SelectedItem.Text

Dim strMailingAddress As String

strMailingAddress = txtName.Text + "
" +
txtAddress.Text + "
" + _
txtCity.Text + ", " + _
ddlState.Selectedvalue + " " +
txtZip.Text

tdAddress.InnerHtml = strMailingAddress

End Sub

Protected Sub cbDisplayPhoto CheckedChanged(_

ByVal sender As Object,

Byval e As System.EventArgs)

Handles cbDisplayPhoto.CheckedChanged
imgPhoto.Visible = cbDisplayPhoto.Checked

End Sub

End Class

62 | Chapter2: Building Web Applications

Summary

* A postback occurs when an event happens on your page that causes the page to
return to the server, handle the events, and then send the same page back to the
browser. The contents of the page may have changed, but the page object itself is
the same.

* Postbacks can be either synchronous, in which case the entire page is returned to
the server, or, with AJAX, asynchronous, in which case only part of the page is
returned to the server.

* A control is a tool that lets your web page take an action. It could be as simple as
displaying some text, or as complicated as interacting with a database. Most
controls have some visual representation that the user sees, although not all do.

* Placing a control in your web page is as simple as dragging it from the Toolbox
onto your page; the IDE inserts the appropriate markup for you. Controls all
come with at least a few properties and methods, which you can use to custom-
ize their appearance and behavior, respectively.

* Every control has a unique identifier, its ID property. The IDE assigns a default
ID automatically, but you can (and usually should) rename them to be more
meaningful.

* Almost every control has associated events, as well as properties. You can access
these by clicking the Events button in the Properties window.

* You can create tables by hand in Source view, or you can use the Insert Table
Wizard by selecting Layout — Insert Table in Design view.

* The TextBox control is a relatively simply control that allows the user to enter
text that you can retrieve later. You can change the TextMode property of a
TextBox to create single-line entry fields, multiline fields, or to hide the text for a
password field.

* ASP.NET has a number of selection controls, including the ListBox,
DropDownList, RadioButton, RadioButtonlList, CheckBox, and CheckBoxList, which
display various options for the user to choose from. You decide which control to
use based on its appearance, and whether you want the user to be able to make
only one selection from within a list or multiple selections.

* If the AutoPostBack property of a control is set to True, the page is posted back to
the server whenever that control’s value changes.

* Radio buttons can be assigned to a group, by setting each button’s GroupName
property. That ensures that only one button in a group can be selected at a time.
You can also use a RadioButtonList to accomplish the same thing.

* You can use a Panel control to group other controls together, and also to make
the content in the panel visible or invisible as a group.

Summary | 63

Many controls have a Smart Tag, which is a small menu that provides quick
access to the most common tasks for that control. In the case of selection con-
trols, the Smart Tag lets you access the ListItem editor.

The selection controls each contain a collection of ListItem objects, which you
use to offer the user choices to select from. The Value property of the ListItem
can be different from the Text property that you display to the user, and you can
retrieve the selected value for later use. The Listltem Collection Editor makes it
easy to add ListItems, but you can also add them by hand in Source view.

There are three properties that let you retrieve the items that users select from a
selection control: SelectedIndex gets the index of the selected item, SelectedItem
gets the Text property, and SelectedValue gets the Value property. You can use
these values to display the selected item in another control, or to use it in other
ways.

There are several ways to display dynamically generated read-only text in your
page: among others, you can set the property of a Label control, you can use a
read-only TextBox control, or you can set the inner HTML of an HTML element.

You use an Image control to display an image or graphic. The ImageButton con-
trol displays an image, and acts like a button. An ImageMap control displays an
image that has multiple areas that the user can click, each acting like a hyperlink
or button.

The Visible property of a control determines whether that control is rendered
on the page. You can change the value of this property programmatically, and
cause the control to appear or disappear with a postback.

A HyperLink control works like an HTML anchor <a> tag. You can set the
NavigateURL property and the text of the hyperlink separately. You can also spec-
ify if the link’s target will open in a new page or a new frame with the Target
property.

You’ve got a lot of things in your toy box now, and you can do a lot more than just
the label and button from Hello World in Chapter 1. In fact, in this chapter, you’ve
just seen the more common controls—there are many others out there that are more
specialized, such as the Calendar and AdRotator controls, and that’s not even leaving
the General tab of the Toolbox. Feel free to experiment with them. Now that you
have a base to work from, in the next chapter, we’ll show you how you can use AJAX
to do some clever things with the plain-vanilla controls you just learned about.

64

Chapter 2: Building Web Applications

BRAIN BUILDER

Quiz
1. What is a postback?

2. What are the two types of postbacks in ASP.NET, and what is the difference
between them?

3. What property is found on every control?

4. What control would you use to have the user enter a password, but keep the text

hidden?

5. What control would you use if you have a list of 20 items, and the user can select
as many as they want?

. How do you make single radio buttons mutually exclusive?

6

7. What can you use a Panel control for?

8. What does the SelectedItem property retrieve?
9

. How do you include a control on the page, but not render it?

10. What do you do to make the target of a HyperLink control open in a new window?

Exercises

Exercise 2-1. Now that you’ve played with Hello World, you’re going to make a
change to the Postbacks example from this chapter, so you can see how flexible the
UpdatePanel control is. Open the Postbacks web site (similar to how you opened
Hello World in the previous exercise). In Design view, drag another UpdatePanel con-
trol inside the first one, after the button. Click inside the new UpdatePanel and type the
text “Another partial-page update:”. Drag another Label control inside the new
UpdatePanel. In the Properties window, set the label’s name to 1bl0therPartialUpdate,
and set its width to 200px. (Note that you can’t give this label the same name as the
other label—or any other control on the page—or you’ll get an error.) Now, add
another Button to the new UpdatePanel, under the label, set its name to
btnOtherPartialUpdate, and change the text to “Another Partial Update”.

You need the event handler for your new button, so double-click it, and you’ll be
taken to the code-behind file. You’ll see the event handlers for the two existing but-
tons already there, and the skeleton for the new event handler. Add the following
line of code to this new event handler so it will update with the current time, like the
other two buttons do:

1blOtherPartialUpdate.Text = DateTime.Now

Run your application, and click the buttons. If all went well, you’ll see that each
label updates independently from the others, and that the two buttons in the update
panels don’t cause any page flicker. Your page should look something like
Figure 2-21.

Exercises | 65

[(& Exercise 2-1 - Internet Explorer LI_I&J‘:' Gl]
bt |é, http://localhost:50169/Exercise%202-1/Default.aspx ~ | ‘",r| b4 | | Google el -
W i;é Exercise 2-1 |_|]’:?i ~ B - rm = |2k Page = {CF Tools = =
Page Loaded at: 2/15/2008 5:38:17 PM Postback
Partial-Page update at: 2/15/2008 5:40:06 PM I Partial Update]
Another partial-page update at 2/15/2008 5:42:22 PM | Another Partial Update |
& Internet | Protected Made: On H100% ~

Figure 2-21. Your goal for Exercise 2-1. Each label should update independently of the others.

Exercise 2-2. When you’re creating a web page, often knowing which controls to use
is a bigger challenge than using the controls properly. That’s what you’re going to
practice here. Imagine a page for a busy ice cream shop that lets you preorder an ice
cream cone so it will be ready for you when you get to the counter. The page should
have three controls. The first control asks users to select the type of ice cream from
the following list: Vanilla, Chocolate, Strawberry, Mint, Butter Pecan, Coffee, Pista-
chio, Coconut, Bubble Gum, and Cotton Candy. Only one type of ice cream is
allowed per order. The second control asks the user to select the toppings they want:
chocolate sprinkles, rainbow sprinkles, hot fudge, caramel, cookie dough, Oreo
cookies, pretzel bits, walnuts, coffee beans, or crushed candy bars. It’s a gourmet ice
cream shop, so customers can have as many toppings as they like. The third control
asks users to choose a cone or a dish. Obviously, only one is allowed. Make sure to
include a way for users to submit their order.

Exercise 2-3. Now that you’ve made a working page with different controls, it’s time
to try retrieving a value. Create a page with a simple TextBox that asks the user to
enter his or her password. The password should be disguised as the user types it.
Then, with shocking disregard for security, use a label control to repeat the user’s
password back to him. The page should look something like Figure 2-22.

66 | Chapter2: Building Web Applications

& Exercise 2-3 - Internet Explorer SHICH X |
@__} v |£_i, http://localhost:50255/Exercise%e2l ~ | *fl A | | Google L ~|
n i — - 5 *»
W daf |;é Exercise 2-3 | | ffﬁ > B + mm x|k Page v (T} Tools =
Enter your pa:.sword_'|
The password you entered is: SecurityRisk
Submit
& Internet | Protected Mode: On #100% ~

Figure 2-22. Your goal for Exercise 2-3.

Exercise 2-4. Now you're ready to try a slightly more complicated example. Create a
drop-down list that presents a number of fine books from your authors; call it
dd1BookList. This time, the Text and Value properties of the ListItems in the drop-

down should be different, according to the following table.

Text Value

Programming ASP.NET 00916X
Programming Ci# 006993
Programming Visual Basic.NET 004385
Learning G# 2008 102097

These values are part of each book’s ISBN, and were you a bookstore or a ware-
house, you would probably use a database with these numbers to help keep track of
the books you have in stock. In this case, though, you’ll just show the user what they
selected, including the value. Add two labels to show the results, as shown in

Figure 2-23.

Exercises | 67

& Exercise 2-4 - Internet Explorer SHACH X
oy
@__} v |§, http:/flocalhost:50272/Exercise%2l ~ | *fl A | | Google L ~|

o = = - »
W | & Exercise 2-4 | | 'F-} .2 ~ (= « |~} Page v {(f Tools =
Which book are vou interested in?

Learning C# 2008 -

Thank you for your interest in

102097

Learning C# 2008

& Internet | Protected Mode: On #100% ~

Figure 2-23. Your goal for Exercise 2-4.

68

| Chapter2: Building Web Applications

CHAPTER 3
Snappier Web Sites with AJAX

AJAX has revolutionized ASP.NET, and from this moment forward, most ASP.NET
applications will routinely integrate AJAX controls. AJAX moves ASP.NET applica-
tions from being 99% server-side code to offering the option for a great deal of the
processing to happen on the user’s browser. The net effect is a tremendous increase
in both real and perceived performance of ASP.NET applications.

To demonstrate how much more dynamic and responsive AJAX is, you’ll rewrite the
order form from Chapter 2, applying AJAX techniques. You’ll enhance the site by
adding a watermark to user entry fields. A watermark is a bit of text that appears in
the text field itself, but disappears as soon as the user starts typing. It serves as an ele-
gant prompt to the user. You will also create a pop-up panel to hide controls until
the user needs them, and you’ll add a collapsible text field to display product infor-
mation in a very space-efficient manner.

Take a Walk on the Client Side

While server-based web applications have wonderful advantages, they have the obvi-
ous disadvantage that any time you want to run any code (or retrieve any data) you
must endure the cost of a “round trip” from the browser to the server and back, and
the page must be redrawn from scratch. Round trips can be slow (though the Inter-
net is getting faster all the time), and redrawing the page causes a noticeable flicker.

AJAX (which more accurately should be spelled AJX, but that’s harder to pro-
nounce) is an acronym for Asynchronous JavaScript and XML—that is, it is a tech-
nique for combining well established (some might say old) Internet technology in
new ways to greatly enhance the performance of web applications. AJAX enabled
applications are very hot—they outperform server-based applications in ways that
would make your jaw drop.

69

Microsoft, realizing this was not a technology they could ignore, and having learned
the lesson that they must leave open standards open, chose to take this very good
idea and make it much much better, without making it proprietary.

AJAX Doesn’t Exist

There really isn’t any such thing as AJAX. It isn’t a product or a standard; it isn’t even
a technology. It is just a way to refer to a set of existing technologies used together in
new ways to do cool things.

The first use of the term as an acronym for “Asynchronous JavaScript and XML” was
by Jesse James Garrett in February 2005. Garrett thought of the term while in the
shower (if you must know), when he realized the need for a shorthand term to repre-
sent the suite of technologies he was proposing to a client (who, we are assured, was
not in the shower with him).

On the other hand, the first use of the term at all may have been nearly 3000 years earlier,
by Homer, who wrote about Ajax the Great (and also Ajax the Lesser) in the Iliad (Book
7, 181-312). Ajax the Great was the tallest and strongest of the Achaeans, and second
only to Achilles in skill as a warrior. It isn’t clear if the tale of AJAX-The-Technology will
be told 3,000 years from today (or even 3,000 days), though we’re pretty certain there is
a parallel between the Trojan War and the desktop wars, but that is for another book.

According to Garrett, “AJAX...is really several technologies, each flourishing in its
own right, coming together in powerful new ways.” AJAX incorporates:

* Standards-based presentation using XHTML and CSS, with dynamic display and
interaction using the Document Object Model (DOM). This allows AJAX,
through JavaScript code, to directly manipulate any element on the page.

* Data interchange and manipulation using XML and XSLT, a nonproprietary and
platform independent way of working with data, allowing AJAX to work on any
platform using industry standard technology.

* Asynchronous data requests and retrieval to request units of information com-
prising less than an entire page. This has two very important benefits: much less
information needs to be sent “through the wire,” and the browser can continue
working with other portions of a page while waiting for a response from the
server.

* Heavy emphasis on client-side processing, to eliminate as many round trips as
possible and to greatly improve the performance of the application.

* JavaScript binds everything together. AJAX takes advantage of the industry stan-
dard scripting language that is implemented by virtually every browser on every
desktop.

70 | Chapter3: Snappier Web Sites with AJAX

They did so by combining the power, speed, and flexibility of AJAX with the drag-
and-drop simplicity of ASP.NET. They created a library of AJAX controls that are as
easy to use as the server-side ASP.NET controls we’ve been using since the Middle
Ages. Even more important, they made it relatively easy to create drag-and-drop
AJAX controls, although that’s beyond the scope of this chapter.

This means you can get started using Microsoft’s AJAX controls without first learn-
ing how to program in JavaScript or how to write DHTML. That lowers the usability
bar enough that there really is no reason not to integrate AJAX into all your ASP.NET
applications immediately.

Don’t panic if you like JavaScript and you want to write your own
AJAX controls; you are still free to do so. Just as with custom con-

trols, you can always extend—or even invent—if you are so moved.

Now, you can eat your cake and have it, too. You can continue to create ASP.NET
applications using the same IDE, but add client script with asynchronous postbacks
(especially asynchronous data retrieval!), and you can do so with a library of tested,
ready-to-use controls that fully encapsulate all the JavaScript for you.

The key point, however, is that asynchronous updates improve the performance of
your application and the user’s perception of that performance. This is because the
page is not posted back to the server, but instead data is retrieved independently of
the page being recreated, thus there is no flicker, and data retrieval is far faster.

ScriptManager and UpdatePanel

Microsoft realized that the job of integrating the standard ASP.NET controls and
pages with AJAX controls (that encapsulate JavaScript and DHTML) would be diffi-
cult, tedious, and repetitious. So, they did it for you with the ScriptManager control,
ensuring that you have access to a fully tested, reliable control that manages the
grunt work. Adding a ScriptManager control to your page solves the problem, and
having one on the page even when you don’t need it comes at virtually no cost. Here
is the declaration that must appear in every page:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

The ScriptManager control will be visible in Design view, as shown in Figure 3-1, but
will not be visible when the web site is run.

Implementing partial-page updates is surprisingly easy using ASP.NET AJAX—you
just leave drag a ScriptManager control onto the page and leave its
EnablePartialRendering property set to its default value of True.

Having done the hard work of not changing that property, you can then drag one or
more UpdatePanel controls onto your page. Each UpdatePanel is updated individually
and asynchronously, without affecting one another or anything else on the page.

ScriptManager and UpdatePanel | 71

That’s it. Instant and unmistakable performance enhancement with almost no pro-
grammer effort.

ScriptManager control
[5] AJAX Web Site - Visual Web Developer 2008 Express Edition =
File Edit View Website Build Debug| Format Table Tools Window Help
i@ EH- S @ % B9 BB b €@ pnlPersonalnfo =@ 2 | XHTML1.0 Transitioni » _
i (None) ~ Segoe Ul - 12 e r uALIE-|E S : Style Application: Manual + TargetRule: (MewInline Style) = |:
Tlg\bomx‘ - 2 X| Defaultaspx” | ftart Page] - x ?i\utlon Explorer > I x
i “||[[2sp:scriptmanager#seriptianager] wIL=T E\ IER=R1ok]
: i ‘I =2 ScriptManager - ScriptManagerl &P CAVAIAX Web Site\
[Pane | T N (3 App_Data
5] PlaceHolder %] Default.aspx
0 View [web.config
[i3] Substitution
46 Localize
Data
Validation
Navigation
i & Solution Ex... B8 Database Ex...
MchEdrts — Properties TEX
E AJAX Extensions i
X Pevis ScriptManagerl System.Web.Ul =
[ScriptManager 8
&3 ScriptManagerPr... ScriptPath -
% Timer = Scripts (Collection)
) UpdatePanel Services (Collection)
&1 UpdateProgress = Data
HTML (Expressions)
Ajax Control Tool... | - || |2 mise 3
General 2) o) ScriptManagei |
3 Toolbos [a] €55 Prope.. || @ Design | = spit | & Saurce | [4][<formetom1>|[<div>][<aspScriptManageréseript..> [-
Ready Lnl4 Col 9 Ch2

Figure 3-1. The ScriptManager control is visible on the page in Design view, but you won’t see it
in the browser.

To see this effect, you will modify the AdventureWorks project from the previous
chapter, using update panels to improve performance. Recall in that example (shown
in Figure 2-9), a pair of radio buttons was created (but never fully enabled) to con-
trol the visibility of a Panel control whose purpose was to collect personal informa-
tion. You’ll enable that feature now.

The way that you created the example in Chapter 2, clicking on the radio buttons
causes a postback because the radio butttons’ AutoPostBack property is set to true.
This would cause the page to flicker as it was redrawn. With an AJAX UpdatePanel,
however, the postback and update will be done asynchronously, and there will be no
page flicker.

Begin by making a copy of the AdventureWorks Order Form site. Call it
AdventureWorksRevisited. Run it to ensure that it works as expected.

See Appendix B for instructions on copying a web site.

72 | Chapter3: Snappier Web Sites with AJAX

To simplify the page, remove all the controls below the pnlPersonalInfo panel
(everything below that Panel down to—but not including—the closing div and form
tags).

You will also need to delete the no-longer relevant event handlers from
the code-behind. (You can easily tell which code-behind methods are
no longer relevant by trying to run the web page and looking at the

build errors.) As it turns out, this includes all the event handlers from
the AdventureWorks form.

Drag a ScriptManager control from the AJAX Extensions section of the Toolbox onto
the page in either Source or Design view. It doesn’t matter too much where it is, as
long as it is inside the opening <forms tag, but the top of the page is a good choice.

In this example, you will add an AJAX UpdatePanel to surround the radio buttons
and the Panel containing the personal information. The finished application is shown
in Figure 3-2, which shows the panel both visible and hidden.

@& AdventureWorks - Internet Explorer ==
@\J + [£] httpeflocatnostsosaza v [4] x | Googie £~

vy o |§AdventureWorks I_‘ i ~ | @ AdventursWorks - Internet Explorer (= [[

&) - [E rpiocainostsoezzra + |+ x | [Google o -

AdventureWorks Orde . . r— ———— =

Customer Name: i

e AdventureWorks Order Form

Cly. Customer Name:

State: Alabama = Address:

ZIP code: .

City:

E-mall address: State: Alzbama

Biswoid ZIP code:

c enis: E-mail address:

Password:

Provide personal information: @ Yes © No T

Areas of Interest Age Category Comments:

[T Biking © Under 21 =

[]Scuba Diving ©21t030 Provide personal information:) Yes @ No

[C] Gaming @311050

[F1Mountain Climbing © Over 50

[C1Web Surfing

[[IReal Surfing

@ Internet | Protected M
Done & Internet | Protected Mode: On #®100% ~

Figure 3-2. The AdventureWorksRevisited web site with the Panel visible and hidden. You’ll see
that the AJAX version works much more smoothly than the version from Chapter 2.

ScriptManager and UpdatePanel | 73

First, let’s give the Yes and No RadioButtons something to do. Select each of the
RadioButton controls and take a look at the Properties window. First, be sure the Text
property is set correctly for each button—Yes or No. Next, make sure that the
AutoPostBack property for each RadioButton is set to true. As we mentioned in
Chapter 2, when AutoPostBack is set to true, the RadioButton immediately initiates a
postback to the server when it is clicked, executing any action that should happen.

If you were to inadvertently double-click on one of the RadioButton
controls, instead of single clicking to select it, then an event handler
method would be created for the CheckChanged event. This is not what
you want to happen at this point, because as you will see in a moment,
you will want both radio buttons to call the same event handler. If it
does happen, just go to the code-behind file and delete the just-created
empty event handler method.

As you saw in Chapter 2, you indicate what action should be taken with event han-
dlers. In Design view, set the event handler for the Yes button by single-clicking on
the rbYes radio button. In the Properties window, click on the lightning bolt button
to switch from properties to events. You will see that one of the events is
CheckedChanged.

In the space to the right of the event name, enter the text YesNoEventHandler. Press
tab (or Enter) to open the code-behind file, with the cursor positioned in the skele-
ton of the new event handler, ready for you to enter your custom code. Before you
fill in the code for the event handler, though, return to Design view and single click
on the rbNo radio button. Again, click in the space next to the same CheckedChanged
event handler. This time, a down arrow will appear. Clicking that arrow will give you
the opportunity to select an existing event handler, as shown in Figure 3-3.

Select YesNoEventHandler. Once again, the IDE will take you directly to the event
handler in the code-behind file. Notice that the Handles statement now shows that
this event handler handles the CheckChanged event for both radio buttons. Add the
text shown highlighted in the following code snippet:
Protected Sub YesNoEventHandler(_

Byval sender As Object,

ByVal e As System.EventArgs)

Handles rbYes.CheckedChanged, rbNo.CheckedChanged

pnlPersonalInfo.Visible = rbYes.Checked
End Sub

Run the program and click the Yes and No radio buttons in turn. You should see that
the panel is displayed when the Yes button is checked, and hidden when the No but-
ton is checked. As you saw in the previous chapter, the Visible attribute specifies

whether the panel is rendered, and now you’ve tied it to the value of the rbYes
control.

74 | Chapter3: Snappier Web Sites with AJAX

Properties 1 X
rbMNo System.Web.ULWebControls.RadicButton -

AN =

B Action
B
B Data F’eanE\rentHandler
DataBinding
= Misc
Disposed
Init
Load
PreRender
Unload

CheckedChanged
Fires when the checked state of the control chang...

Figure 3-3. Clicking the arrow next to the property of the CheckChanged control will let you wire
the control to an event handler that’s already created.

As you click each button, however, you will probably notice a distinct flicker of the
display as the entire page is redrawn. There may even be a detectable delay. This is
because each time you click the button, the entire page is sent back to the server for
processing, the event handler is run, and the entire page is sent back to the browser
and redrawn.

AJAX solves this problem by asynchronously updating only portions of a page. By
updating segments “in the background,” you avoid reposting and redrawing the
entire page.

In the AdventureWorks example as it is currently written, this post-
back also causes the user’s position on the page to be lost. When the
page is rendered from scratch, the browser effectively scrolls back to
the top of the page, which can be very annoying.

You can rectify this by setting the MaintainScrollPositionOnPostback
property of the Page directive to true. To do so, open the markup file
in Source view and edit the Page directive at the top of the file, adding
the following highlighted code:

<%@ Page Language="VB" AutoEventWireup="true"
CodeFile="OrderForm.aspx.vb" Inherits="_Default"
MaintainScrollPositionOnPostback="true"%>
Select the ScriptManager control in Design view and look at the Properties window. If
the Properties window is not visible, right-click on the control and select Properties
or press F4. Verify that the EnablePartialRendering property is set to True.

ScriptManager and UpdatePanel | 75

Your goal is to update only the Panel named pnlPersonalInfo when the user clicks
one of the radio buttons. To do that, you need to wrap the Panel and the radio but-
tons inside an UpdatePanel control, which you’ll find in the AJAX Extensions section
in your Toolbox.

Make sure that you are in Design view, open the AJAX Extensions tab of the Toolbox,
and drag an UpdatePanel onto the form (you can do the same in Source view, of
course). Now, highlight the text prompt, the radio buttons, and the
pnlPersonalInfoPanel, and drag them all onto that UpdatePanel. That’s all there is to it.

If you look at the resulting page in Source view, you will see not only the UpdatePanel
elements, but also opening and closing <ContentTemplate> tags inside the
UpdatePanel. All of your content must be inside these <ContentTemplate> tags. For
example, if you had a Button and a TextBox inside an UpdatePanel, the markup would
look like this:

<asp:UpdatePanel ID="UpdatePanell" runat="server">
<ContentTemplate>
<asp:Button ID="Button1" runat="server" Text="Button" />
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
</ContentTemplate>
</asp:UpdatePanel>

Doing this in Source view is very similar: drag the UpdatePanel from
the Toolbox onto the window, and then move the relevant markup
inside the UpdatePanel. However, if you do this in Source view, the
<ContentTemplate> tags will not be created automatically, and you
must manually type them into the markup.

Run the program again, and then click the radio buttons to see the difference. This
time, there should be no flicker as only the panel reloads. Feel free to say “Wow!”

Controlling Browser History

It has been said that “he who controls history, controls the future.” That is certainly
true when using a browser. Everyone is familiar with the browser Forward and Back
buttons, which allow the user to navigate back and forth amongst the pages already
visited in the current session. Forward and Back are central to the browsing experience.

The browser automatically enables and disables these buttons as necessary, if there
are appropriate pages to navigate to. For example, if you are at the first page visited
that session, then the Back button will be disabled because you can’t go back any
further.

The browser maintains a history which contains a list of all the URLs sent back to
the server as page requests. However, it is here that the benefits of AJAX turn around

76 | Chapter3: Snappier Web Sites with AJAX

and bite us. With asynchronous postbacks, the URL is not posted back to the server
as a page request. This means that AJAX asynchronous postbacks are not added to
the browser’s history, do not affect the Forward or Back buttons, and are not accessi-
ble to those buttons or in any history lists. Bummer.

You can see this in the previous example, AdventureWorksRevisited. Run that exam-
ple again, and notice that the Forward and Back buttons in your browser are
disabled—that’s because this is the only page you’ve visited so far. Now change the
radio buttons that control the display of personal information. Even though the con-
tent of the page appeared to change, neither the Forward nor Back buttons are
enabled. This is because a full page request is not being made of the server, so the
browser doesn’t know that there’s been a request and response from the server.

Out in the real world of deployed web sites, if the navigation buttons are enabled as
a result of previously navigating to other pages, they will not take you where you
intuitively think you ought to go if you've used any AJAX-enabled controls. And
worst of all in that case, you will lose any work you have done in any AJAX-enabled
controls on the page.

With ASP.NET 3.5 Service Pack 1, you can fix this, although it does take some cod-
ing on your part (something we try to avoid as much as possible in this book). There
are two things you need to deal with. The first is to create a history point and add it
to the browser history when the state of the page changes. The second is to handle
the clicks when the user clicks the brower’s Forward and Back buttons or history
lists and to restore the state of the page as it was earlier. The ScriptManager control
included on every ASP.NET AJAX web page, along with the UpdatePanel control,
provides the means to accomplish both of these ends.

An example will show how this works. Create a new ASP.NET web site called
AjaxHistory.

Before you can manage browser history, you must add and configure the
ScriptManager control. In either Source or Design view, drag a ScriptManager control
from the AJAX Extensions section of the Toolbox onto the page. Then, put the cur-
sor on the ScriptManager control so that its properties are visible in the Properties
window. Set the EnableHistory property to True, as shown in Figure 3-4. With this
property set, history is enabled for all AJAX-enabled controls on the page, that is, for
all controls inside UpdatePanel controls. The default setting of this property is False,
which is why the Forward and Back buttons were disabled when you tried them a
moment ago.

Drag an UpdatePanel control from the AJAX Extensions section of the Toolbox onto
the page. You will place all the other controls whose history is to be tracked inside
this UpdatePanel. For this example, the page will contain a RadioButtonlList with

Controlling Browser History | 77

e

(5] AjaxHistory - Visual Web Developer 2008 Express Edition =)

LX)

File Edit View Website Build Debug Tools Window Help

HEn R R = I - e e N L R R e S T W) M ;5 = 2 |[XHTML L0 Transition: -
i[(None) —<|[Segoe LT iz B oz w | A 7= | iE T style Application: [Manusl <] Target Rule: [(New Inline Style) =] aw* %
Toolbox 3 x DE‘M“I:SBR nge] ~ X | Solution Explorer - x
S HiddenField =~ 71 = b
: Client Objects & Events + (No Events) - | ‘zl 2 E®
| Literal T
= o P T T A 2P CA\-\AjaxHistory\
m Calendar 1 <%@ Page Language="VB" AutcEventWireup="false = - 3 App_Data
AdRotat p 7 H
= e 3 <!DOCTYPE html PUBLIC "—//W3C//DTD XHTML 1.0 ° ‘j‘ Belaut s
) FileUpload i - 3 web.config
4 Wizard SE<html =mlns="hrrp:// www.ws.org/1999/xhtml™>
[Xml 6F <head runat="server">
MultiView ki <titlex</title>
[7] Panel | 8 -</head> 3
Bl Hold S <body>
% e 100 <form id="forml" runat="server”>
0 View 115 <divs
i Substitution 12) Solution Explorer (5 Database Explorer |
& Localize 3 <asp:ScriptManager ID="ScriptManagerl - —
Data 14 </asp:ScriptManagers> Properties -1 x
Validati £ 15 , — ||| ScriptManager1 System.Web.ULScriptManager ~
= 16 </div> T =
Navigation =
= 17 </form> 4 ‘ 718
9 18! -</body> AsyncPostBackTimeo: 80
Mchfaks 19 b</html> AuthenticationService il
Il AJAX Extensi... 20 CompositeScript El
R _Pointer e EnableHistory True =
[ScriptManager, EnablePageMethods False
&3 ScriptManag... EnablePartialRenderin True
& Timer EnahleScrintGlnhalizat False >
] UpdatePanel g v EmbleHistf:ry)
B Enables ScriptManager to manage browser history
35T [AJC.. M. | | @ Design | = split | Source [4][<asp:ScriptManager#Script...» |E| on supported browsers.

Ready

Figure 3-4. Set the EnableHistory property on the ScriptManager control to turn on history
control for all the controls inside UpdatePanel controls anywhere on the page.

three options, a ListBox with three items, plus a button for updating the history. The
finished page is shown in Figure 3-5.

Switch to Design view. Drag a RadioButtonList from the Standard section of the
Toolbox inside the UpdatePanel. Click on the Smart Tag of the RadioButtonlList and
select Edit Items. Add three items, as shown in Figure 3-5. Let the IDE set the default
Value property of each ListItem to be the same as the Text property. With the
RadioButtonList still selected, set the AutoPostBack property to True, so the control
will force an immediate postback whenever a change is made. Remember, because
this control is inside the UpdatePanel, that postback will be an asynchronous, partial
page postback.

Drag a Label control onto the page. This will display the value of the selected radio
button every time a different radio button is selected. To make this happen, double-
click on the RadioButtonList control in Design view to open an event handler
method in the code-behind. Add the highlighted line of code in Example 3-1.

78 | Chapter3: Snappier Web Sites with AJAX

(€ http:/flocalhost49167/AjaxHistory/Default.aspx - Windows Intemet... [— || =]
T ;
‘_/“\..) - |§, http://localhost:491 ~ | *f| .4 | | Live Search

»

Ve @ | @ hipsflocalhosta9i6y.. [_| T

) Radiol

) Radio2

@ Radio3
Radio3

[temA,
ltemB

Snapshot

€D Internet | Protected Mode: On HI100%

Figure 3-5. The sample page for exercising the browser history with AJAX controls looks like this.

Example 3-1. The SelectedIndexChanged event handler of the RadioButtonList updates the label
with the new selected value
Protected Sub RadioButtonlList1 SelectedIndexChanged(ByVal sender As Object,
Byval e As System.EventArgs)
Handles RadioButtonlisti.

SelectedIndexChanged
Label1.Text = RadioButtonListi1.SelectedValue
End Sub

Next, switch back to Default.aspx in Design view, and drag a ListBox control from
the Standard section of the Toolbox onto the page, inside the UpdatePanel. You
might first want to hit Enter after the Label to make some space. Click the Smart Tag
of the ListBox and click on Edit Items, just as you did for the RadioButtonList. This
time, add the three items shown in the ListBox in Figure 3-5. Because we are not
doing anything with the selected value anywhere in this example, there is no need to
set AutoPostBack to True, nor is there any code-behind associated with this control.

There are two general strategies you can follow. The first would be to create a his-
tory point whenever a control changes state. In this case, you would add code to the
default event handler for any (or every) control of interest. This works well when you
are only tracking a single control on the page, but gets cumbersome if you want to
track multiple controls, as is the case with this example.

Controlling Browser History | 79

The second strategy, which we’ll demonstrate in this example, only creates a history
point when the user clicks a button, at which point the state of all the relevant con-
trols is saved. To implement this, drag a Button control onto the page, again inside
the UpdatePanel, underneath the ListBox. Change its Text property to “Snapshot”.
Double-click on the Button to get the event handler for the Click event. Add the
highlighted code from Example 3-2.

Example 3-2. Clicking on the Button creates a history point for each of the controls on the page
Protected Sub Buttoni Click(ByVval sender As Object,
Byval e As System.EventArgs)
Handles Buttoni1.Click
Dim strRadioButtonListValue As String = RadioButtonListi.SelectedValue
Dim strListBoxValue As String = ListBox1.SelectedValue
Dim strTitle As String = "History: " + strRadioButtonListValue + _

- " + strListBoxValue

ScriptManager1.AddHistoryPoint("RadioButtonList", _
strRadioButtonListValue, strTitle)
ScriptManager1.AddHistoryPoint("ListBox", _
strListBoxValue, strTitle)
End Sub

This code, which runs every time the button is clicked, gets the selected values of the
two controls, assigning them to String variables. It also constructs a String variable,
strTitle, from a concatenation of the two selected values.

Next, you call the AddHistoryPoint method of the ScriptManager control twice, once
for each of the controls you are interested in preserving, and passing in the strTitle
string that you created. The AddHistoryPoint method, as its name implies, adds a his-
tory point to the History object. There are several variants, or overloads, of this
method. The one used here takes three arguments:

ScriptManageri.AddHistoryPoint("RadioButtonList", strRadioButtonListValue, strTitle)

The first argument is the key that identifies this history point. A key is simply an
identifier that can be associated with a value. Each history point that you save will
have its own key that you can use later to retrieve that history point state. In this line
of code, the key is hardcoded to be RadioButtonList. Later, by retrieving the state
named RadioButtonlList, you’ll be able to set the radio buttons to their earlier state.

The second argument is the value associated with this key. This second argument is
the state that you want to save at that moment. This typically would be information
such as which radio button is selected, what item is selected in a list, what the value
is in a text box, and so on. It’s up to you to determine what state you want to save,
and also how you want to save it. There is no predefined format for state data; you
will retrieve it later during navigation, so you can use any format that will help you
restore the state later if needed.

80 | Chapter3: Snappier Web Sites with AJAX

In this example, the state to be saved for both controls is the value of the
Selectedvalue property. This way, the retrieval method (which you’ll see in a
moment) can use the key to refer to the selected item. The third argument is the title,
which will be displayed when the browser displays history lists. The title is a string
concatenation of a literal with the variables naming the selected items:

Dim strTitle As String = "History:

+ strRadioButtonListValue + _
+ strlListBoxValue

With this code in place, history points will be added to the browser’s history when-
ever the user clicks the Snapshot button.

That’s a start, but this code doesn’t tell the Forward and Back buttons what to do
automatically. For that, you need to handle the Navigate event. You saw the default
Click event for a Button control above, and the Navigate event isn’t much different.
When the user clicks on the Forward or Back button or selects an entry from one of
the history lists provided by the browser, the ScriptManager raises the Navigate event.

To handle this event, switch back to Default.aspx in Design view, and select the
ScriptManager control. In the Properties window, click the lightning bolt button to
see all the available events. Double-click in the box next to the Navigate event.

You will be taken to the code editor, inside a newly constructed event handler, ready
to type your code. Add the highlighted code from Example 3-3.

Example 3-3. Handle the Navigate event to process the Forward and Back buttons and history
lists
Protected Sub ScriptManageri Navigate(ByVal sender As Object,
Byval e As System.Web.UI.HistoryEventArgs) _
Handles ScriptManageri.Navigate
' set the value of the RadioButtonList
Dim strRadioButtonList As String = String.Empty
If Not e.State("RadioButtonList") Is Nothing Then
strRadioButtonList = e.State("RadioButtonList")
End If

If (strRadioButtonList.Length > 0) Then
RadioButtonList1.SelectedValue = strRadioButtonList
Else
RadioButtonList1.SelectedIndex = -1
End If
Label1.Text = strRadioButtonList

' set the value of the ListBox

Dim strListBox As String = String.Empty

If Not e.State("ListBox") Is Nothing Then
strListBox = e.State("ListBox")

End If

If (strListBox.Length > 0) Then
ListBox1.SelectedValue = strListBox
Else

Controlling Browser History | 81

Example 3-3. Handle the Navigate event to process the Forward and Back buttons and history

lists (continued)
ListBox1.SelectedIndex = -1
End If

Page.Title = "History - " + strRadioButtonList + " - " + strlListBox

End Sub

Notice the second argument in the method declaration is of type HistoryEventArgs.
This parameter carries information about the history point that is being navigated to.
HistoryEventArgs has a single property called State. State is a NameValueCollection
object, which means that it consists of one or more pairs of strings. The first half of
each pair is the key, or name, of the pair. The second half of each pair is the value of the
pair. Together they constitute a name/value pair. If you know the name, you can
retrieve the value by using the name as an index into the State collection. That is, you
retrieve the value of the pair in the State collection for the RadioButtonList with the
name "RadioButtonlist", and assign it to a new string variable, strRadioButtonlist.
You then do the same for the ListBox. In either case, you always want to test if that
State collection exists before trying to read it, otherwise an error will result. The fol-
lowing snippet achieves this. The string variable is declared outside the If-Then
block, so it will be available to the code further down whether or not the State col-
lection exists:

Dim strRadioButtonList As String = String.Empty

If Not e.State("RadioButtonList") Is Nothing Then

strRadioButtonList = e.State("RadioButtonList")

End If
Back in Exercise 3-2, when you called AddHistoryPoint, the first parameter passed in
was the key, and the second parameter was the value of the State property. Now
you've retrieved the values of those history points, and assigned them to
strRadioButtonList and strlListBox. With this information, you can set the selected
value of the RadioButtonList and it’s associated Label.Text property, as well as the
selected value of the ListBox. If nothing was selected for either control, set the index
to -1, which has the effect of selecting nothing.

The last thing this event handler does is set the Title of the page.

The end result is shown in Figure 3-6 after clicking on the radio buttons several times
and showing the history list under the Forward button.

Notice that the title of the browser window reflects the title information that you
passed when you called AddHistoryPoint. More interestingly, notice that the URL in
the Address box contains not just the name of the page (Default.aspx), but a string of
characters that look like gibberish. That’s your saved state. It’s encoded in a way that
allows it to be added to a URL. As you navigate back and forth in the browser, you’ll
see that this state string changes (although the base page name does not). And each
time you navigate, that state is sent to the server, where you handle it in the Navigate

82 | Chapter3: Snappier Web Sites with AJAX

@ Histary - Radio3 - ItemC - Windows Internet Explorer E

@ m |@. http://localhost:491 ~ ‘ 3 | ® | | i ek

¥ History: Radio3 - Item(C @ - > v

»»

History: Radio2 - ItemA
History: Radio3 - ItemB
http://localhost:49167/AjaxHistory,/Scri

£9 History Ctrl+5hift+H

Radio3
[tema
ltemB

&) Internet | Protected Mode: On H100% -

Figure 3-6. The Back and Forward buttons work as expected, along with history lists.

event. This really is the whole secret of how ASP.NET manages AJAX navigation.
ASP.NET creates a new URL that includes your state each time your page performs
an asynchronous postback, and it adds the new URL to the browser’s history auto-
matically. When you click the browser’s Back button, the browser simply goes back
one item in its history, just like it always does. Now, though, the browser’s history
contains URLs with all the history points that have been saved, and the browser ends
up always doing the right thing during navigation.

It might be obvious, but being able to restore state during navigation does not allow
you to magically reverse the effect of something like a database update. (Unless in
your code for the Navigation handler you implement this functionality yourself.) As
you’'ve seen, browser history isn’t really doing anything as such; it’s simply storing
information for you that you might need later in response to user navigation. This is
a very welcome feature in ASP.NET AJAX, but it does require that you think care-
fully about what constitutes state at any given point in your web application, and
about what information you need to save.

Extending Controls with the Control Toolkit

The AJAX Control Toolkit is a shared-source collection of pre-built AJAX controls,
available for download from the Microsoft web site, which integrates directly into
the IDE. Before you proceed with this section, make sure you have installed the

Extending Controls with the Control Toolkit | 83

AJAX Control Toolkit, as described in Appendix A. These controls are developed by
the community, so the list of available controls changes regularly, and the controls
may not have the same reliability you’d expect from the built-in ASP.NET controls.
They’re also not officially supported by Microsoft, but you can get great support
from the community.

The AJAX Control Toolkit provides a number of additional AJAX-enabled controls
you can use to enhance the functionality of your web application. Some of the more
useful controls in the Control Toolkit are listed in Table 3-1.

Table 3-1. A sample of the AJAX Toolkit controls

Toolkit control

Accordion

AlwaysVisibleControlExtender

Calendar

CascadingDropDown

CollapsiblePanelExtender

ConfirmButtonExtender

DragPanelExtender
DropShadow

FilteredTextBoxExtender

HoverMenuExtender

MutuallyExclusive-CheckBoxExtender

NoBot

PasswordStrength
PopupControlExtender

Reorderlist

RoundedCornersExtender

Slider

TextBoxWaterMarkExtender

Description

A control that provides multiple panes, only one of which is
visible at a time

Keeps a control visible as the user scrolls the page

(an be attached to an ASP.NET TextBox to provide a pop-
up calendar control for selecting a date to enter in the
TextBox

The user's selection from one drop down control determines
the choices available in the next drop down

Allows any Panel to collapse and expand

When the user clicks a button, a dialog box pops up to con-
firm the choice

Lets the user drag a panel around on the page
Applies a drop shadow effect to an ASP.NET Panel control

Ensures that only “valid” text may be entered into a
TextBox

Pops up a menu when the mouse hovers over a control

Pick none or one of several checkboxes; this provides func-
tionality similar to radio buttons, but with the ability to
uncheck all the checkboxes

A control which attempts to prevent spam or robot interac-
tion with a web site

Helps the user pick a good password

(an be attached to any control to provide a pop-up window
with additional content relevant to the attached control

Lets the user reorder the members of a list by dragging them
into place

Applies rounded corners to a target control

Extends a TextBox control with a horizontal or vertical
slider for selecting a numeric value from a range of values

Displays helpful text in a textbox until you start to type

84 | Chapter3: Snappier Web Sites with AJAX

TextBoxWaterMarkExtender

Many of the Toolkit controls are “extenders”—that is, rather than acting alone, they
extend the behavior of one of the standard controls. For example, the
TextBoxWaterMarkExtender works with a TextBox to add the watermark effect. The
extender has properties to identify which TextBox it will modify, what text will be
used as the watermark, and what style should be applied to the watermark text itself.
Figures 3-7 and 3-8 demonstrate watermarks in action.

Customer Name: Your name

Address: Home address

Figure 3-7. This is what the watermarked control looks like before the user enters any data. The
watermark serves as a reminder of what the user should enter, and makes it clear that the field is
currently empty.

Customer Name: Jesse Liberty

Address: Home address

Figure 3-8. When the user types in the TextBox, the watermarked style is applied, which shows an
obvious change from the watermarked style.

To demonstrate the watermark effect, just copy the previous example, called
AdventureWorksRevisited, to a new web site called AdventureWorksWaterMarks.

Before modifying the page, you need to create a style sheet that will specify the styles
for the watermarked and unwatermarked text.

Styles and style sheets are explained fully in Chapter 6, so we will only
show the bare basics here.

To create a style sheet, click Website -+ Add New Item.... In the Add New Item dia-
log box, select Style Sheet, accept the default name of StyleSheet.css, and then click
the Add button, as shown in Figure 3-9.

This will open a style sheet in the editor with an empty body element. Add the high-
lighted code from Example 3-4 to this style sheet.

In this style sheet, you’re adding two style classes, watermarked and unwatermarked,
that will be applied to the text in the example. You don’t need a specific style sheet
to use the TextBoxWaterMarkExtender, but it makes things easier.

Extending Controls with the Control Toolkit | 85

Add New Item - C\LearningASP\Chapter 3\AdventureWorksWaterMarks\,

Templates:

Visual Studio installed templates
@Web Form
3] AJAX Client Behavior
] AJAX Master Page
] Browser File
.E! Generic Handler

ij Master Page

5] AJAX Client Control

5] AJAX Web Form

1] Class

.ﬂ Global Application Class

:i_ ‘Web User Control

5] AJAX Client Library

%% AJAX-enabled WCF Service
|&] Dataset

|#] HTML Page

@JScnpt File @UNQto SQL Classes @Rauurce File

78] Site Map 5 Skin File [J 5QL Server Database
A3 Style Sheet =] Text File E3WCF Service

|:5% Web Configuration File 4] Web Service =] XML File

& X5LT File

Wy Templates
_J Search Online Templates...

A cascading style sheet used for rich HTML style definitions

Name: SterSheet.cssl

Lenguage: Visual Basic - | Place code in separate file

| Select master page

[Add || concel

Figure 3-9. To add a style sheet to the web site, use the Add New Item dialog box.

Example 3-4. This StyleSheet file is added to your project to define the styles for the watermarks;
you don’t need to know what the exact styles do right now
body {

}

.watermarked {

padding:2px 0 0 2px;
border:1px solid #BEBEBE;
background-colox:#FOF8FF;
color:Gray;
font-family:Verdana;
font-weight:lighter;

}

.unwatermarked {
height:18px;
width:148px;
font-weight:bold;

}

Next, in Design view, go to OrderForm.aspx. Select the Customer Name Text Box,
txtName, and in the Properties window, set the CssClass property to unwatermarked.
(The style class names are case sensitive.) Do the same for txtAddress. This sets the
style class that will apply to the text the user types into these text boxes, as illus-
trated previously in Figure 3-8.

Click on the Customer Name TextBox in Design view to bring up the smart tag,
and then click on the tag and select Add Extender... from the drop-down menu.

86 | Chapter3: Snappier Web Sites with AJAX

You will see an Extender Wizard dialog box. Slide along until you find the
TextBoxWatermarkExtender, and select it. Before clicking OK, notice the default ID
assigned to it, as shown in Figure 3-10. You could change it, but it is a reasonable
name, so we will leave it as is.

Extender Wizard m
Choose an Extender
Choose the functionality to add to txtName:
'?‘] ERG: 1 = =
= g (B =& [D o+ =g
n... MaskedEdi.. ModalPop.. NumericU... PasswordSt.. PopupCo.. ResizableC... RoundedC.. Sliderbxten... QESaEI0RNEG
rmarkExtend
er
4 1 | »
Description:
Specify an ID for the extender:
ﬁdName_TextEanatermarkExtender
[oK] l Cancel

Figure 3-10. The Extender Wizard provides a convenient list of the available extenders you can
use. When you select one, the wizard generates a default ID for you.

If you switch to Source or Split view, you can see that the wizard automatically sets
the ID property of the control to txtName TextBoxWatermarkExtender and the
TargetControlID property to txtName. The ID property is the same as the ID proper-
ties for all the other controls you’ve seen so far, but the TargetControlID property
(which, strangely enough, is not visible in the Properties window for the control)
specifies the control that you want the watermark effect to apply to—in this case, it’s
the TextBox control, txtName. Add a similar TextBoxWatermarkExtender to the Address
TextBox; the screen should look something like Figure 3-11.

There are two other properties you need to set for this control: WatermarkCssClass
and WatermarkText. Unfortunately, these properties are not accessible through the
Properties window, so you need to switch to Source view to manually type them in.

Extending Controls with the Control Toolkit | 87

@ AdventureWorksWaterMarks - Visual Web Developer 2008 Express Edition E‘@

File Edit View Website Build Debug Format Tools Window Help
i@ - - @ % B9 -F-CL| b @@ enlPersonalinfo =B L 2 | XHTML 1.0 Transition: - _

i[(Noneg) -J[DefeultFont) -[[Defouli=]| B 7 U | A 2 | =-|i= i= | & | :Style Application: Manual = Target Rule: [(New Auto Class "un -|a2 %

Eutbw ~ % X| OrderForm.aspx" | Start Page| + x| Solution Explorer ~Ix
= i 2] &5 E

(||| Client Objects & Events + (Mo Events) - Eil El Lok)
o & G\ My -

A Lsbel 3 = [App_Data

[ab]] TextBox g - B (& Bin

Button : [&) AjaxControlToolkit.dll|=

LinkButton ox ID="txtName" runat="server" CssClass="upwagermarked"></as,] AmiContioiToolkttpd

(@) ImageButton oxWatermarkExtender [[i="txtName T Dan at Vernal Pool jpg

A Hyperlink "server" Enabled="True” [larget 110="txtName (=] OrderForm.aspx
DropDownList BoxWatermarkExtender> / StyleSheet.css &
= I v
[EZ ListBox
&l [I / » Solution Expl... |58 Database Ex..
CheckBox | = pl.. [

>

Properties > Ix

8= CheckBoxList ScriptManager - ScriptManagerl
@ RadioButton

i racsuontit | AdventureWorks Order Form

txtName_TextBoxWatermarkEx -

|

[Image 7]

g : ’ o = Behavior B
= TmhalgE = Customer Name: SkinID

3 Table
i= BulletedList - dihreass " I(JE;;ES;M;) 3
il HiddenField City: E Misc
[@rj 1 >
Literal | Qrata- Alshams 1% BehaviorlD btName TextBo
[Catendar ho| L5 : Enabled True
S Toolbox [AJ €55 Pr.. | | [Design [Split | @ Source | [][<tr>][<1a>][<cetTextBoxWatermarkExte...> Bl =
Ready n29 Col 66 Ché6 NS

Figure 3-11. When you add the TextBoxWatermarkExtender control to the form by using the
Smart Tag on the TextBox, the wizard automatically sets the TargetControlID property, and
suggests an ID property.

Switch to Source view and add the WatermarkCssClass and WatermarkText attributes.
Add those two lines of code to each control, so that the result looks like
Example 3-5.

Example 3-5. Add two properties to the TextBoxWatermarkExtender in the markup
file
<tr>
<td style="width: 100px">
Customer Name:
</td>
<td style="width: 150px">
<asp:TextBox ID="txtName" runat="server"
CssClass="unwatermarked" >
</asp:TextBox>
<ccl:TextBoxWatermarkExtender
ID="txtAddress TextBoxWatermarkExtender"
runat="server"
Enabled="True"
TargetControlID="txtName"
WatermarkCssClass="watermarked"
WatermarkText="Your name" >
</ccl:TextBoxWatermarkExtender
</td>
</tr>
<tr>

88 | Chapter3: Snappier Web Sites with AJAX

Example 3-5. Add two properties to the TextBoxWatermarkExtender in the markup
file (continued)
<td style="width: 100px">
Address:</td>
<td style="width: 150px">
<asp:TextBox ID="txtAddress" runat="server"
CssClass="unwatermarked" >
</asp:TextBox>
<ccl:TextBoxWatermarkExtender
ID="txtAddress TextBoxWatermarkExtender"
runat="server"
TargetControlID="txtAddress"
WatermarkCssClass="watermarked"
WatermarkText="Home address" >
</ccl:TextBoxWatermarkExtender
</td>
</tr>

These two watermark attributes add the watermark itself to the TextBox control
before the user types anything in. The WatermarkText property sets the text that will
appear in the TextBox, and the WatermarkCssClass property applies the style class that
you defined earlier in the style sheet. The result is that the TextBox fields have a nicely
styled reminder text in them before the user types anything, as you saw in Figure 3-7.

One final step is to add the following line of HTML to the markup file, inside the
<head> element to make the style sheet visible to the page. Without this line, none of
the style classes you created earlier will apply to the page:

<style type="text/css">@import url(StyleSheet.css);</style>

Now run the page. The Customer Name and Address fields will look like Figure 3-7.
When you type in the text box, the change is noticeable and removes any potential
confusion, as shown previously in Figure 3-8.

PopupControlExtender

Screen real estate on a web page is often at a premium, so the PopupControlExtender
is a very useful tool for presenting the maximum information in a minimum of space.
You attach a PopupControlExtender to a control. When the user clicks that control, a
pop-up window appears with additional content. If you put an UpdatePanel into the
pop up, it can display data retrieved asynchronously from the server—a very power-
ful effect.

To see how you can make this feature work for you, you’ll modify the previous
example, enhancing the RadioButtonlist used for selecting an age category with a
TextBox. You’ll add a PopupControlExtender and attach it to the TextBox. The
PopupControlExtender will use an UpdatePanel to present the RadioButtonList as a

pop up.

Extending Controls with the Control Toolkit | 89

Figure 3-12 shows the TextBox waiting to be clicked on. To prompt the user to click
inside the TextBox, there’s also a TextBoxWatermarkExtender.

Provide personal information: @ Yes © No

Areas of Interest Age Category Textbox with
[[Biking Click here for age categories ———— WatermarkExtender and

. PopupControlExtender

[[] Scuba Diving
[[] Gaming
[[IMountain Climbing
[['Web Surfing
[[|Real Surfing

Figure 3-12. The TextBox has a PopupControlExtender attached to it, and also a
TextBoxWatermarkExtender to invite users to click it.

Figure 3-13 shows what happens when the user clicks in the TextBox. The water-
mark disappears, and the pop-up window appears, containing the RadioButtonlList
showing the categories the user may pick from. Because the list is inside an
UpdatePanel, there is no postback to the server (and thus no screen flicker); every-
thing happens on the client side.

Provide personal informationn @ Yes © No
Areas of Interest Age Category
[Biking
[[] Scuba Diving Under 21 When the user clicks
] the Textbox, the
[[] Gaming ©21t030 1 RadioButtonlist
7] Mountain Climbing © 311050 appeats
[[Web Surfing) Ower 50
[[IReal Surfing

Figure 3-13. When the user clicks on the TextBox with the PopupControlExtender, the pop-up
panel opens, showing the radio buttons.

When the user chooses a radio button, the choice is “posted back,” but again, using
an UpdatePanel, so the rest of the page is unaffected. The panel closes and the choice
is displayed in the TextBox, as shown in Figure 3-14.

To implement this example, copy the previous example, AdventureWorksWatermarks,
to a new web site, called AdventureWorksPopupControl. First, you’ll do all the drag-
ging and dropping and coding, and then we’ll follow with an explanation of how it
all works.

90 | Chapter3: Snappier Web Sites with AJAX

Provide personal informationr @ Yes © No

After the user selects

Areas of Interest Age Category aradio button, the
[F1 Biking 3110 50 - Life is Good e he
) Scuba Diving theTodtor
[[] Gaming
[Mountain Climbing
[Web Surfing
[[1Real Surfing

Figure 3-14. After the user makes a selection, the UpdatePanel is closed and the TextBox is
updated.

The previous example had the following markup for the layout table cell containing
the Age Category caption and radio buttons:
<td style="width: 1024px">
Age Category

<asp:RadioButtonList ID="rblAge" runat="server"
AutoPostBack="True" Width="125px">
<asp:ListItem>Under 21</asp:ListItem>
<asp:ListItem>21 to 30</asp:ListItem>
<asp:ListItem>31 to 50</asp:ListItem>
<asp:ListItem>Over 50</asp:ListItem>
</asp:RadioButtonlList>
</td>

In Design view, drag a TextBox control from the Toolbox to the cell that currently
contains rblAge. Set its ID property to txtAgeCategory, and its Width property to
175px. Next, click on the Smart Tag of the TextBox and click on Add Extender. From
the Extender Wizard dialog box, add a TextBoxWatermarkExtender to the TextBox,
then click the Smart Tag again, and add a PopupControlExtender. You can accept the
default IDs for these two extenders. Next, drag a standard Panel control into the cell
and set its ID property to pnlAgeCategories.

Switch to Source view, and you’ll see that the TargetControlID property of the
TextBoxWatermarkExtender has already been set to txtAgeCategory (the ID of new
TextBox). You also want to set its WatermarkText property to “Click here for age cate-
gories” (you need to set this property in Source view because extender controls are
not selectable in Design view). You could also set the WatermarkCssClass property, as
we did in the previous section, but we will not bother to do so here.

While still in Source view (again, not all the properties are visible in Design view),
look at the properties of the PopupControlExtender. The TargetControlID is already
set to the ID of the TextBox (txtAgeCategory). This will cause the pop up to appear
when txtAgeCategory is clicked. Set PopupControlID to pnlAgeCategories. This is the
control that will pop up when the TextBox is clicked (you will populate that Panel in

Extending Controls with the Control Toolkit | 91

a moment). Finally, set the Position property of the PopupControlExtender to Bottom.
(IntelliSense is a big help in setting these properties.)

You will also see the following attributes in the markup:
ExtenderControlID=""
DynamicServicePath=""

These are spurious and may either be left in place or deleted. We will
delete them from our example for clarity.

Now you need to populate the Panel. This is easiest to do while remaining in Source
view. From the AJAX Extensions section of the Toolbox, drag an UpdatePanel control
into pnlAgeCategories. Manually enter an opening and closing <ContentTemplate> tag
inside the UpdatePanel. (IntelliSense will help you.) Next, drag the pre-existing
RadioButtonList (rblAge) inside the UpdatePanel you just placed within the
<ContentTemplate> tags.

You could stop right here and this would work as is, but edit the RadioButtonList to
add explicit Value properties to each of the items. In Design view, click on the Smart
Tag of the RadioButtonList, then Edit Items to bring up the Listltem Collection Edi-
tor, as shown in Figure 3-15.

Listltem Collection Editor m
Members: Under 21 properties:
B =
BE o) Ewe
o
3| Over 50 Enabled True
Selected False
Text Under 21
Value Under 21 - Enjoy it
Add l ’ Remove
ok || cance

Figure 3-15. After clicking the Smart Tag of the RadioButtonList, you get this ListItem Collection
Editor for editing the items in the list.

92 | Chapter3: Snappier Web Sites with AJAX

Click on each of the Members in turn, and change the Value properties as follows.

Text Value

Under 21 Under 21 - Enjoy it!
211030 21t030- Livin' Large
31t050 311050 - Life Is Good
Over 50 Over 50 - Golden Years

When you have modified all the values, Design view should look something like that
shown in Figure 3-16.

-
E AdventureWorksPopup - Visual Web Developer 2008 Express Edition E@g
File Edit View Webste Build Debug Format Table Tools Window Help
e -E-EHE 4 LR -5 8 2 2 | XHTML 10 Transition =
i (Nong) - (DefaultFont) - (Defauli-|B J U |A & |=-|iZ = T :Style Application: Manual - &
Toolbox -~ 3% /omerFurmaspu‘[Start Page » X | Solution Explorer T
[sUbstitation s, 2 E e [= o
B Localize = ||[P [Alabama =] RN =A==k)
D ZIP code: I = C\.\AdventureWorksPopup\
Mablation E-mail address: | 3 ‘;‘iﬁ‘p—m“
-g Password: I [8] Dan st Vernal Pooljpg
Login ﬁ = OrderForm.aspx
WebParts 3
— - et 11§ &9 StyleSheet.css
N Pointer (|| [asp:UndatePanel#Updateranei] A ~ i web.config
3 Scripthariager aspiPanclZpniPersonaifopation: & Yes € No L]
= >
&3 ScriptManager... Areas of Interest Age Category Il'—l clSolution Expl... 24 Database Ex..
@) Timer ™ Biking asp:PanelZpnlAgeCategonies|[asp:UpdatePanel#Up datePansl| T R
L4 SRRl azs x%"—l roperties =
21 UpdatePanel Diving :: " Under 21 2
B UpdateProgress [15cuba Duving =| || UpdatePanel2 System Web.ULUp: ~
Gamin 21030
HTML L 2
£l Ajax Control To... ™ Mountain | ©31te30 Visible True -
& Pointer Climbing ! © Over 50 E Data
= Accordion ™ Web Surfing (Expressions)
2 AccordionPane I Real Surfing LAI||B Layout B
o AlwaysVisibleC... RenderMode Block !
i+ Animationbde... L T8 Misc T
7| v
=1 AutoComnlete (ID) UpdatePanel2 '
4 Toolbox [A] €55 Pr.. 0 Design | O Split | B Source | |1||<asp:Updaﬁ:ePaneI#UpdaﬁePa...>| IE -
Ready Ln147 Col51 Ch51

Figure 3-16. The Design view of your form with the PopupControlExtender in place. Notice the
UpdatePanel with the RadioButtonList inside it.

The final step is to create an event handler for the RadioButtonList control (rblAge) to
handle a selection change. You can do this easily, as you’ve seen before—double-click
on rblAge in Design view. This will open up the code-behind file, create a skeleton
event handler called rblAge SelectedIndexChanged, and then place the cursor inside
that method, ready for typing. Enter the following line of code:

txtAgeCategory PopupControlExtender.Commit(rblAge.SelectedValue)

This line of code will be executed each time the user changes the selection within the
RadioButtonlList. The value the user selected is retrieved, and the Commit method is
called to tell the PopupControlExtender to force the page to automatically update itself.

Extending Controls with the Control Toolkit | 93

Looking at the Source view, the table cell containing the Age Category components
should now look like the code in Example 3-6.

Example 3-6. The PopupControlExtender control has a target control, and a separate control that
pops up
<td >
Age Category

<asp:TextBox ID="txtAgeCategory" runat="server" Width="175px">
</asp:TextBox>
<ccl:TextBoxWatermarkExtender ID=" txtAgeCategory TextBoxWatermarkExtender "
runat="server" Enabled="True"
TargetControlID="txtAgeCategory"
WatermarkText="Click here for age categories">
</ccl:TextBoxWatermarkExtender>
<ccl:PopupControlExtender ID=" txtAgeCategory PopupControlExtender "
runat="server" Enabled="True"
TargetControlID="txtAgeCategory"
PopupControlID="pnlAgeCategories"
Position="Bottom">
</cc1:PopupControlExtender>

<asp:Panel ID="pnlAgeCategories" runat="server" >
<asp:UpdatePanel ID="UpdatePanel2" runat="server">
<ContentTemplate>
<asp:RadioButtonlList ID="rblAge" runat="server"
AutoPostBack="True" Width="150px">
<asp:ListItem Value="Under 21 - Enjoy it!">
Under 21</asp:ListItem>
<asp:ListItem Value="21 to 30 - Livin' Large">
21 to 30</asp:ListItem>
<asp:ListItem Value="31 to 50 - Life Is Good">
31 to 50</asp:ListItem>
<asp:ListItem Value="Over 50 - Golden Years">
Over 50</asp:ListItem>
</asp:RadioButtonList>
</ContentTemplate>
</asp:UpdatePanel>
</asp:Panel>
</td>

Don’t panic! While this looks complicated, it breaks down very simply.

All you have is a TextBox control (with an ID of txtAgeCategory), two extenders, and
a Panel control. The first extender is a TextBoxWaterMarkExtender, and the second is a
PopupControlExtender (their relative order is unimportant). Both extenders have a
TargetControlID attribute and they are both set to the ID of the TextBox
(txtAgeCategory), which makes perfect sense. The PopupControlExtender and the
TextBoxWaterMarkExtender are each “extending” the behavior of the TextBox named
txtAgeCategory, so they both have txtAgeCategory as a common target.

94 | Chapter3: Snappier Web Sites with AJAX

The TextBoxWaterMarkExtender stands on its own, but the PopupControlExtender
needs a bit of help. It not only needs to know its target (who is it popping up for) but
it also needs to know the ID of its PopupControl—that is, the control it will pop up
when it is time to go “Pop!”

In this case, the control it is popping up is pnlAgeCategories, which is an ASP.NET
Panel control, and which serves to “hold” other controls within it. The first control
held within this Panel is an UpdatePanel named UpdatePanel2. As you know, any-
thing within an UpdatePanel is updated asynchronously, so you place the
RadioButtonlList right into the UpdatePanel.

The RadioButtonList itself consists of a series of ListItems. A ListItem may have two
very important properties (and in this case, it does)—the text to display (placed between
the opening and closing brackets) and a Value property. The Value property can come in
handy—it gives the programmer a way to say “what value is attached to the selected
radio button?” and not necessarily get back only the text that was displayed.

You also added an event handler for the SelectedIndexChanged event of the
RadioButtonList. Each time the user picks a radio button, the method that you desig-
nate (in this case rblAge SelectedIndexChanged) will be called, allowing the control to
react to the change. (You can see this from the Handles clause added to the event
handler declaration in the code-behind file.) The way to react in this case is to get the
value stashed away with the ListItem, and display it in the text box. The way you do
this is to call the Commit method of the PopupControlExtender.

The Position property of the PopupControlExtender is set to Bottom, which places the
pop-up window below the target control. The options available for the Position
property are Bottom, Center, Left, Right, and Top.

Go ahead and try out your page now. You'll see that the PopupControlExtender
behaves as shown previously in Figures 3-12 through 3-14.

CollapsiblePanelExtender

The CollapsiblePanelExtender control extends the Panel control, allowing it to col-
lapse and expand. This allows you to add regions to the page which the user can col-
lapse and expand at will. A typical use for the collapsible extender would be a
product detail sheet that the user can display if interested.

In our case, we'll fill the panel with “Lorem Ipsum” text and a photo of one of the
authors so that his kids will believe he really contributed to this book, however little.

Lorem Ipsum has been the printing industry’s standard placeholder
text for over 600 years, and it is typically called greeking by typogra-
phers (which is ironic since it more closely resembles Latin). The text
is designed to allow the reader to ignore the words and focus on the
layout, though it does have its roots in Cicero’s finibus bonorum et
malorum (The Purpose of Good and Evil).

Extending Controls with the Control Toolkit | 95

You can hide or expand the panel at will. When the CollapsiblePanelExtender is col-
lapsed, the page will look something like Figure 3-17. When it is expanded, it will
look like Figure 3-18.

Provide personal information: @ Yes © No
Areas of Interest Age Category
[Biking Click here for age categories
[[] Scuba Diving
[[] Gaming
[Mountain Clmbing
[[1Web Surfing
[[|Real Sufing

Prodhet Tafarmation
[Product Information (Show Details...) }

Figure 3-17. When the CollapsiblePanelExtender is collapsed, it hides out of the way, with only
the arrow indicating it’s there. Note the Tooltip attached to the image.

[Web Surfing
[Real Surfing

|

5

Peoadiat Tof £
[Product Information (Hide Details...) i

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam eleffend,
turpis sit amet tincidunt emismod, wrna eros mattis neque, vitae facilisis mlla
dui ut dolor. Proin pretivm. Etiam ultrices eleffend neque. Mauris
vestibulum purus quis nibh. Phasellus dignissim. Vivamus laoreet magna id
purus. In hac habitasse platea dictumst. Vivamus congue elit quis arcu. Sed
lorem mauris, convallis non, porta sed, interdum id, nisl. Aenean id tortor.
Sed ac quam. Suspendisse ornare luctus sapien. Praesent aliquet, lacus nec
venenatis placerat, massa metus mattis dolor, non eleifend pede sapien et
lorem Curabitur dapibus fancibus nunc.

Figure 3-18. When the user clicks the arrow, the CollapsiblePanelExtender is expanded, showing
the text and images. Note that the Tooltip now indicates that clicking the image will collapse the
panel.

96 | Chapter3: Snappier Web Sites with AJAX

To create this example, copy the previous web site, AdventureWorksPopupControl,
to a new web site called AdventureWorksCollapsiblePanelExtender. See Appendix B
for instructions on copying web sites.

Open the OrderForm.aspx page by double-clicking it in Solution Explorer. In Design
view, drag a standard ASP.NET Panel control (not an AJAX UpdatePanel) from the
Standard section of the Toolbox onto your page, below the other controls already on
the page. Set the ID of that Panel to pnlProductInfoHeader. Within the Panel, you
need the image for the collapse button and the text to tell the user what is inside the
collapsed panel. For the graphic, drag a standard Image control into the Panel, then
use the Properties window to set its ID to imgProductInfo ToggleImage and its
ImageUrl property to collapse.jpg. Type the text “Product Information” directly into
the Panel.

The arrow graphics seen above the words “Product Information” in
Figures 3-17 and 3-18 are called collapse.jpg and expand.jpg, respec-
tively. Both images are available with the downloadable code for this
book. In order to select these, or any image files directly from the
Properties window, you must first add the image files to the web site
by using the Website =+ Add Existing Item... menu item.

The markup for this Panel, which you can see by switching to Source view, should
look something like this:
<asp:Panel ID="pnlProductInfoHeader" runat="server" >
<asp:Image ID="imgProductInfo ToggleImage"
runat="server" ImageUrl="~/collapse.jpg" />

Product Information
</asp:Panel>

It doesn’t much matter in this Image declaration if you set the ImageUrl
to expand.jpg or collapse.jpg because the CollapsiblePanelExtender
control will actually be controlling which image is displayed.

Below that panel, drag a second Panel onto the design surface. This panel will con-
tain the contents of the “expanded” Panel. Using the Properties window, set the ID to
pnlProductInfo, set its BackColor to LightGray (either type that in directly or choose
something similar from the color picker), and set its Width to 450. From the Toolbox,
drag a standard Label control and a standard Image control into this Panel. In either
Design or Source view, set the ID and Text properties of the Label, along with the ID
and ImageUrl properties of the Image control, as shown in the following code snippet:
<asp:Panel ID="pnlProductInfo" runat="server" BackColor="lightgray" Width="450px">

<asp:label ID="mylLabel" runat="server" Text="
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Aliquam eleifend, turpis sit amet tincidunt euismod, urna eros mattis
neque, vitae facilisis nulla dui ut dolor. Proin pretium. Etiam ultrices

Extending Controls with the Control Toolkit | 97

eleifend neque. Mauris vestibulum purus quis nibh. Phasellus dignissim.
Vivamus laoreet magna id purus. In hac habitasse platea dictumst. Vivamus
congue elit quis arcu. Sed lorem mauris, convallis non, porta sed, interdum
id, nisl. Aenean id tortor. Sed ac quam. Suspendisse ornare luctus sapien.
Praesent aliquet, lacus nec venenatis placerat, massa metus mattis dolor,
non eleifend pede sapien et lorem. Curabitur dapibus faucibus nunc." />

<asp:Image ID="Imagel" runat="server"

ImageUrl="Dan at Vernal Pool.jpg" />

</asp:Panel>

With the collapsed and expanded Panels in place, you can now add the AJAX
control—the CollapsiblePanelExtender—and set its attributes. Switch to Design
view, click on the pnlProductInfo Panel control, and then click on its Smart Tag,
selecting the Add Extender menu item. Select the CollapsiblePanelExtender from
the extenders presented. Use the default ID of pnlProductInfo_
CollapsiblePanelExtender. Switch to Source view and set all the other properties to
match the following control declaration:
<ccl:CollapsiblePanelExtender ID="pnlProductInfo CollapsiblePanelExtender"

runat="server" Enabled="True"

CollapseControlID="pnlProductInfoHeader"

Collapsed="true"

CollapsedImage="expand.jpg"

CollapsedText="Product Information (Show Details...)"

ExpandControlID="pnlProductInfoHeader"

ExpandedImage="collapse.jpg"

ExpandedText="Product Information (Hide Details...)"

ImageControlID="imgProductInfo ToggleImage"

SuppressPostBack="true"

TargetControlID="pnlProductInfo">

</cc1:CollapsiblePanelExtender>

Here again, you must use Source view as this is another of the controls with proper-
ties that are not accessible in Design view.

The Design view of the web site will look something that shown in Figure 3-19.
The meaning of these properties is as follows:

CollapseControlID/ExpandControlID
The controls that will expand or collapse the panel on a click, respectively. If
these values are the same, as they are in this example, the panel will toggle its
state with each click. Set both of these to pnlProductInfoHeader.

Collapsed
Indicates the initial state of the collapsible Panel. For this example, set to true, it
will start out in the collapsed state; if this is set to false, it will start out open.
You would usually want the panel to start out collapsed.

98 | Chapter3: Snappier Web Sites with AJAX

™ Real Surfing

CheckBox

E= CheckBoxList
® RadioButton
2= RadioButtonList

E:? imageM £ ||| iturpis sit amet tincidunt enismod. urna eros mattis neque. vitae facilisis nulla
g::e g dui ut dolor. Proin pretium. Etiam ultrices eleifend neque. Mauris
able

vestibulum purns quis nibh Phasellus dignissim Vivanms laoreet magna id
purus. In hac habitasse platea dictumst. Vivammus congue elit quis arcu. Sed
lorem mauris, convallis non, porta sed, mterdum id, nisl. Aenean id tortor.
Sed ac quam_ Suspendisse ornare luctus sapien Praesent aliquet, lacus nec
venenatis placerat, massa metus mattis dolor. non eleifend pede sapien et
lorem. Curabitur dapibus faucibus nunc.

|
5 AdRotator
) FileUpload
4+ Wizard
[Xml
MultiView
|41 PlaceHaolder
0 View
[iz] Substitution
a Localize

& Data

Calendar

al 4 [

?‘,Twm;@ &SSP, ‘ 03 Design | O Split | E Source | |4||(form#forml>“<asp:Pana|#pnIPdeuctInfo>‘

-

m

[E] AdventureWorksColl ai der - Visual Web Developer 2008 Express Edition =i
File Edit View Website Build Debug Format Table Tools Window Help

e -E-EEE B9 -5 B ? 2 | XHTML 10 Transition =
i (Nong) - (DefaultFont) - (Defaul-|B J U |A & |=-|iZ = 7 :Style Application: Manual - &
Toolbox A x| DnierFormzpu("[S}artPag_e! ~ % |Solution Explorer -3 x
[=3 ListBox 7~

B HREEE e
C\.\dventureWorksCollapsil
(3 App_Data

@ Bin

[8 collapsejpg

18l Dan at Vernal Pooljpg
[l expandjpg

\j OrderForm.aspx

A3 styleSheet.css

B

| web.config

) [—TTr—

3

il Solution Expl... ‘{5 Database Ex...

Properties >3 x
pnlProductinfo System Web.ULW ~
=] |5
Direction NotSet -
Height
HorizontalAligi NotSet
ScrollBars Mone
Width 450px
Wrap True
El Misc
) panmductInfoE

=

Ready

Figure 3-19. Design view of the AdventureWorksCollapsiblePanelExtender web site showing the
Panel control to be extended and the CollapsiblePanelExtender control that does the extending.

ImageControlID

The ID of an Image control into which an icon indicating the status (collapsed or
expanded) of the Panel will be placed. The extender will replace the source of
this Image with the CollapsedImage and ExpandedImage URLs as appropriate. If
the ExpandedText or CollapsedText properties are set, they are used as the alter-
nate text for the image, also displaying as a tool tip. Set this to imgProductInfo_
ToggleImage.

CollapsedImage

The path to an image used by ImageControlID when the Panel is collapsed. If the
Panel is collapsed, you want readers to see an icon indicating that they can
expand it. Therefore, set this property to expand. jpg.

CollapsedText

The text to show in the control specified by CollapseControlID when the Panel is
collapsed. This text is used as the alternate text of the image if ImageControlID is set,
also displaying as a tool tip. Set this to “Product Information (Show Details...).”

ExpandDirection

This property can be set to Vertical or Horizontal to determine whether the
Panel expands top-to-bottom or left-to-right. For this exercise, set it to Vertical.

Extending Controls with the Control Toolkit | 99

ExpandedImage
The path to an image used by ImageControlID when the Panel is expanded. If the
Panel is expanded, you want readers to see an icon indicating that they can col-
lapse it. Therefore, set this to collapse. jpg.

ExpandedText
The text to show in the control specified by ExpandControlID when the Panel is
expanded. This text is used as the alternate text of the image if ImageControlID is
set, also displaying as a tool tip. Set this text to “Product Information (Hide
Details...).”

SuppressPostBack
If set to true, ensures that the control does not cause a post back when the con-
trol is expanded or contracted. That’s what you want, so set this property to
true.

TargetControlID
The control that will be expanded or collapsed, in this case, pn1ProductInfo. The
key thing to realize here is that the CollapsiblePanelExtender does not itself
expand or collapse, it is used to expand and collapse a different control and this
property (TargetControlID) identifies the panel it will extend.

Run the web site and you will initially see the Panel collapsed, as shown back in
Figure 3-17. Click on the icon above Product Information and the Panel expands,
displaying its information, as shown previously in Figure 3-18.

Source Code Listing

The complete source code for the final example in this chapter is shown in
Example 3-7.

Example 3-7. OrderForm.aspx
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="OrderForm.aspx.vb"
Inherits=" Default" %>

<@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="cc1" %>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>AdventureWorks</title>
<style type="text/css">
@import url(StyleSheet.css);
</style>
</head>
<body>
<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server">

100 | Chapter3: Snappier Web Sites with AJAX

Example 3-7. OrderForm.aspx (continued)
</asp:ScriptManager>

<div>
<h1>
AdventurelWorks Order Form</hi>
<table>
<tr>
<td>
Customer Name:
</td>
<td>
<asp:TextBox ID="txtName" runat="server"
CssClass="unwatermarked"></asp:TextBox>
<ccl:TextBoxWatermarkExtender ID="txtName TextBoxWatermarkExtender"
runat="server" Enabled="True" TargetControlID="txtName"
WatermarkCssClass="watermarked" WatermarkText="Your name">
</ccl:TextBoxWatermarkExtender>
</td>
</tr>
<>
<td>
Address:
</td>
<td>

<asp:TextBox ID="txtAddress" runat="server"
CssClass="unwatermarked"></asp:TextBox>
<ccl:TextBoxWatermarkExtender ID="txtAddress TextBoxWatermarkExtender
runat="server" Enabled="True" TargetControlID="txtAddress"
WatermarkCssClass="watermarked" WatermarkText="Your address">
</ccl:TextBoxWatermarkExtender>
</td>
</tr>
<tr>
<td>
City:
</td>
<td>
<asp:TextBox ID="txtCity" runat="server"></asp:TextBox>
</td>
</tr>
<>
<td>
State:
</td>
<td>
<asp:DropDownlist ID="ddlState" runat="server">
<asp:ListItem Value="AL">Alabama</asp:ListItem>
<asp:ListItem Value="AK">Alaska</asp:ListItem>
<asp:ListItem Value="CA">California</asp:ListItem>
<asp:ListItem Value="CT">Connecticut</asp:ListItem>
</asp:DropDownList>
</td>
</tr>

Source Code Listing | 101

Example 3-7. OrderForm.aspx (continued)
<>
<td>
Zip:
</td>
<td>
<asp:TextBox ID="txtZip" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>
E-mail:
</td>
<td>
<asp:TextBox ID="txtEmail" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>
Password:
</td>
<td>
<asp:TextBox ID="txtPassword" runat="server"
TextMode="Password"></asp:TextBox>
</td>
</tr>
<tr>
<td>
Comment :
</td>
<td>
<asp:TextBox ID="txtComment" runat="server" Rows="3"
TextMode="Multiline"></asp:TextBox>
</td>
</tr>
</table>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
Provide Personal Information:
<asp:RadioButton ID="rbYes" runat="server" AutoPostBack="true"
Checked="true" GroupName="grpPersonalInfo" Text="Yes"
ToolTip="Click Yes to gather personal information - no to skip that step"
/>
<asp:RadioButton ID="rbNo" runat="server" AutoPostBack="true"
GroupName="grpPersonalInfo" Text="No"
ToolTip="Click Yes to gather personal information - no to skip that step"
/>
<asp:Panel ID="pnlPersonalInfo" runat="server" BorderWidth="1px"
Width="300px" BackColor="Beige">
<table>
<tr valign="top">
<td>
Areas of Interest

102 | Chapter3: Snappier Web Sites with AJAX

Example 3-7. OrderForm.aspx (continued)
<asp:CheckBoxList ID="cblAreas" runat="server"
AutoPostBack="True">
<asp:ListItem>Biking</asp:ListItem>
<asp:ListItem>Scuba Diving</asp:ListItem>
<asp:ListItem>Gaming</asp:ListItem>
<asp:ListItem>Mountain Climbing</asp:ListItem>
<asp:ListItem>Web Surfing</asp:ListItem>
<asp:ListItem>Real Surfing</asp:ListItem>
</asp:CheckBoxList>
</td>
<td>
Age Category

<asp:TextBox ID="txtAgeCategory" runat="server"
Width="175px"></asp:TextBox>
<ccl:TextBoxWatermarkExtender

ID="txtAgeCategory TextBoxWatermarkExtender" runat="server"

Enabled="True" TargetControlID="txtAgeCategory"
WatermarkText="Click here for age categories">
</ccl:TextBoxWatermarkExtender>
<ccl:PopupControlExtender
ID="txtAgeCategory PopupControlExtender" runat="server"
Enabled="True" PopupControlID="pnlAgeCategories"
Position="Bottom" TargetControlID="txtAgeCategory">
</cc1:PopupControlExtender>
<asp:Panel ID="pnlAgeCategories" runat="server">
<asp:UpdatePanel ID="UpdatePanel2" runat="server">
<ContentTemplate>
<asp:RadioButtonList ID="rblAge" runat="server"
AutoPostBack="true" Width="150px">
<asp:ListItem Value="Under 21 - Enjoy it!">
Under 21</asp:ListItem>
<asp:ListItem Value="21 to 30 - Livin' Large">
21 to 30</asp:ListItem>
<asp:ListItem Value="31 to 50 - Life Is Good">
31 to 50</asp:ListItem>
<asp:ListItem Value="Over 50 - Golden Years"»>
Over 50</asp:ListItem>
</asp:RadioButtonList>
</ContentTemplate>
</asp:UpdatePanel>
</asp:Panel>
</td>
</tr>
</table>
</asp:Panel>
</ContentTemplate>
</asp:UpdatePanel>
</div>
<asp:Panel ID="pnlProductInfoHeader" runat="server">
<asp:Image ID="imgProductInfo ToggleImage" runat="server"
ImageUrl="~/collapse.jpg" />

Source Code Listing

103

Example 3-7. OrderForm.aspx (continued)
Product Information
</asp:Panel>
<asp:Panel ID="pnlProductInfo" runat="server" BackColor="LightGray" Width="450px">

<asp:label ID="mylLabel" runat="server" Text="
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam eleifend, turpis sit amet tincidunt euismod, urna eros mattis
neque, vitae facilisis nulla dui ut dolor. Proin pretium. Etiam ultrices
eleifend neque. Mauris vestibulum purus quis nibh. Phasellus dignissim.
Vivamus laoreet magna id purus. In hac habitasse platea dictumst. Vivamus
congue elit quis arcu. Sed lorem mauris, convallis non, porta sed, interdum
id, nisl. Aenean id tortor. Sed ac quam. Suspendisse ornare luctus sapien.
Praesent aliquet, lacus nec venenatis placerat, massa metus mattis dolor,
non eleifend pede sapien et lorem. Curabitur dapibus faucibus nunc." />

<asp:Image ID="Imagel" runat="server" ImageUrl="Dan at Vernal Pool.jpg" />

</asp:Panel>
<ccl:CollapsiblePanelExtender ID="pnlProductInfo CollapsiblePanelExtender"
runat="server" Enabled="True"
CollapseControlID="pnlProductInfoHeader" Collapsed="true"
CollapsedImage="expand.]jpg" CollapsedText="Product Information (Show Details...
ExpandControlID="pnlProductInfoHeader"
ExpandedImage="collapse.jpg" ExpandedText="Product Information (Hide Details...
ImageControlID="imgProductInfo ToggleImage"
SuppressPostBack="true" TargetControlID="pnlProductInfo">
</cc1:CollapsiblePanelExtender>
</form>
</body>
</html>

The code-behind for this page is contained in Example 3-8.

Example 3-8. OrderForm.aspx.vb
Partial Class Default
Inherits System.Web.UI.Page

Protected Sub YesNoEventHandler(Byval sender As Object, _
ByvVal e As System.EventArgs) _
Handles rbNo.CheckedChanged, rbYes.CheckedChanged

pnlPersonalInfo.Visible = rbYes.Checked
End Sub

Protected Sub rblAge SelectedIndexChanged(ByVal sender As Object, _
Byval e As System.EventArgs)
Handles rblAge.SelectedIndexChanged
txtAgeCategory PopupControlExtender.Commit(rblAge.SelectedValue)
End Sub
End Class

104 | Chapter3: Snappier Web Sites with AJAX

Summary

AJAX is a technique for shifting much of the processing off the server and to the
user’s browser, which dramatically increases performance, both actual and
perceived.

The ASP.NET AJAX control library contains a number of controls that can be
used just as easily as standard ASP.NET controls, meaning you don’t need to
know the JavaScript that makes the controls work.

The ScriptManager control is the key control that makes ASP.NET AJAX possi-
ble by managing the JavaScript for you behind the scenes. The control is placed
on every AJAX-enabled page by default, and its EnablePartialRendering prop-
erty is set to True, so you don’t need to do anything yourself.

Placing controls inside an UpdatePanel control enables you to update those con-
trols without posting back to the server.

AJAX asynchronous postbacks are not added to the browser’s history, which can
cause unexpected behaviors of page controls when the Forward and Back
browser buttons are used. With ASP.NET 3.5 Service Pack 1, you can create his-
tory points that allow the Forward and Back buttons of the user’s browser to
function as expected.

The AJAX Control Toolkit, which is a separate download, has a number of
controls called extenders that enhance existing controls, rather than having
stand-alone functionality themselves. Extender controls have a TargetControlID
property that you use to set the existing control that the extender is extending.

The TextBoxWaterMarkExtender adds a watermark effect to an existing textbox,
providing a prompt for the reader to enter data.

TextBoxWaterMarkExtender can apply a separate style to a text box, if you have a
style sheet defined for the project, or it can just add the text you specify.

The PopupControlExtender can help you make efficient use of the space on your
page, by hiding some content until the user clicks on a control.

You can apply the CollapsiblePanelExtender to a regular Panel control, causing
it to hide most of its content until the user clicks on it. The Panel then expands,
displaying its content, until the user collapses it.

Now you have a good handle on the basic controls, and you’ve also seen how to use
some of the AJAX extenders to apply some really clever effects to them. The
AdventureWorks order form you’ve been progressively building is becoming pretty
sophisticated by now. As we’ve mentioned, though, it doesn’t connect to anything
behind the scenes, so users can’t see the AdventureWorks products, and can’t yet
place their orders. To do that, you need to learn how to interact with a database.
ASP.NET provides a number of controls for retrieving data from a database and dis-
playing it in a number of different ways. With AJAX, they get even better. You’ll
learn all about them in the next chapter.

Summary | 105

BRAIN BUILDER

Quiz

O 0 N O U

10.

. What do you need to do to use AJAX-enabled controls on your site?
. Which property of the ScriptManager control enables asynchronous postback?

. What control do you need to place on your page to enable asynchronous

updates?

. Which event do you need to handle on the ScriptManager control to modify the

behavior of the browser Forward and Back buttons for AJAX controls?

. Can you make a page that contains only an extender control?

. What property is common to all the AJAX extender controls?

. What view do you use to set the WatermarkText property?

. What’s the advantage of using the PopupControlExtender?

. What method of the PopupControlExtender do you need to call to display the

results?

What control does the CollapsiblePanelExtender work with?

Exercises

Exercise 3-1. We'll start things off simply. Suppose you have a store that ships only
to certain states in the northeastern United States. In your order form, you want to
restrict users to only those states as their shipping destination, so you want to use a
drop-down list. You also want to save space on your form, though, so you want to
hide that delivery list in a Panel with a PopupControlExtender. For this exercise, you’ll
only produce the part of the form where users would enter the shipping State. The
finished form should look like Figure 3-20.

The drop-down list should contain just the six states shown in Figure 3-20. When
the user chooses one of the states, the state’s two-letter postal abbreviation should
appear in the text box.

106

| Chapter3: Snappier Web Sites with AJAX

fé Exercise 3-1 - Internet Explorer ﬂlﬁ

e lagt |é, http://localhost:49780, ~ ‘ *?‘ X | | Google o ~|
w4l i:_éExerciseB—l ‘_| iyi"r = = F?‘ '.'_L}’EEQE' ”

Shipping State: PA
Pennsylvania -

Connecticut
Massachusetts

Rhode Island

Don & Internet | Protected Mode: On H100% -

e

Figure 3-20. Your goal for Exercise 3-1.

Exercise 3-2. Most of the AJAX control extenders that we’ve shown you in this chap-
ter just do one thing, although they do it very well. There are, however, many more
extenders that we haven’t shown you, and more are being added all the time. Each
one is different, and covering them all in detail would require more space than we
have—or would be out of date almost immediately. The best way to learn about the
AJAX control extenders is to go to the ASP.NET AJAX Control Toolkit page at http://
ajax.asp.net/ajaxtoolkit/. There you’ll find the latest extenders with examples of how
to use them. Many of the extenders are fairly simple, and have properties you can set
easily. In this exercise, you’ll need to use that documentation as you try out a new
extender.

For this exercise, you’ll use the RoundedCorners extender. Create a new page that
includes a Panel with the dimensions 150 pixels x 100 pixels, colored light gray. The
Panel should contain a Label, 50 pixels wide, colored dark gray, with text that’s
white and bold (feel free to use livelier colors; we’re choosing ones here that will
show up in the printed book). The Panel should have only its top corners rounded to
a radius of 8. The Label should have all its corners rounded to a radius of 2. You’ll
need the documentation to tell you how to do all that. The result should look like
Figure 3-21.

Exercises | 107

http:/
http:/

& Exercise 3-2 - Internet Explorer l =) B S

ey |§, http://localhost:49942 ~ | *:P| X | | Google o
n I Fa - s P
WA | & Exercise 3-2 | | iR ~ pm = |k Page «

Don &) Internet | Protected Mode: On H100% -

Figure 3-21. Your goal for Exercise 3-2.

Exercise 3-3. The SliderExtender is another interesting extender, but slightly more
complicated than it looks. Create a new page that uses the slider extender to simu-
late a volume control. The slider should be set horizontally, and should have a range
from 0 to 10. The results should look like Figure 3-22. (Hint: the documentation is
somewhat unclear. You’ll need two TextBoxes—the slider prevents one from display-
ing, so you need to use a second TextBox, called a bound control, to see the value the
slider is set to.)

108 | Chapter3: Snappier Web Sites with AJAX

é Exercise 3-3 - Internet Explorer ﬂlﬂ_hj

o) |§, http://localhost:49979, ~ | *:P| X | | Google o
P T - »
WA |,é Exercise 3-3 | | 5~ ~ pm = |k Page v
Volume Level: |5

Don &) Internet | Protected Mode: On H100% -

Figure 3-22. Your goal for Exercise 3-3.

Exercise 3-4. For this exercise, you’ll need to use Visual Web Developer (or Visual
Studio 2008) with Service Pack 1. If you don’t have that version, this exercise won’t
work. Create a website that contains a ScriptManager and an UpdatePanel. Inside the
UpdatePanel should be a single TextBox and a Button. Use the technique for control-
ling the browser history so that you can enter text in the textbox, save it to the his-
tory, change the text, and then use the Forward and Back buttons to restore the
previously entered text. The result should look like Figure 3-23. (Note that in Figure
3-23, we’ve moved the controls down on the page so that the history menu won’t
cover them. You don’t need to do that, though.)

Exercises | 109

& Exercise 3-4 - Windows Internet Explorer =

@@Eﬂé http://localhost53Z ~ | +,| , |

Histery: That is the question I | | ff‘ﬁ ~ B - d= o~

Live Search

»

Histary: Or not to be
v History: To be
Exercise 3-4

&) History Ctrl+Shift+H

To be | Save History

@ Internet | Protected Mode: On H100% -

Figure 3-23. Your goal for Exercise 3-4.

110 | Chapter3: Snappier Web Sites with AJAX

CHAPTER 4
Saving and Retrieving Data

So far, you’ve seen how to make functional web pages with clever and useful con-
trols. You know how to change the appearance of the page in response to user selec-
tions, and how to use AJAX to enhance the performance of your application. But the
applications you’ve made so far have been limited in what they can actually do. In
this chapter, we add the most frequently sought-after functionality: the ability to
retrieve, display, change, and store data.

Think about the web sites you visit most often, and you’ll find that almost all of them
have one thing in common—they interact with persistent data. Persistent data is data
that survives a single session; data that you expect will be there the next time you visit.
In fact, it may even be data that can have significant financial consequences.

Shopping sites have databases to track their inventories and customer transactions.
News sites keep databases with articles and photos in them, perhaps referenced by
topic and date. Search engines use unimaginably large (and wicked-fast) databases.

Nearly every real-world commercial web application must be able to perform the
four essential “CRUD” interactions with a database: Create, Read, Update, and
Delete.

Fortunately, ASP.NET provides controls that make it easy and fast to perform these
essential activities. We will demonstrate these interactions with SQL Server Express
Edition (or its big brother, SQL Server) but they work equally well—or nearly so—
with Microsoft Access and most commercial databases. In theory, you can interact
with virtually any collection of data or with XML files, but that is an advanced topic
we won'’t go into here.

Along the way, we’ll show you enough about database interactions that even if
you’ve never used a relational database, such as SQL Server Express, you’ll have lit-
tle trouble working with one through your web application.

m

Getting Data from a Database

To see how to interact with a database, you’ll begin by creating a web application
that you can use to display information about the AdventureWorks database. You’ll
start out by simply retrieving and displaying a selection of data. These exercises will
teach you how to connect your controls to a database, to retrieve, filter, and sort the
data, and then use the myriad options for presenting it attractively.

As you may remember, AdventureWorks is a free database from Microsoft that rep-
resents a fictional company that sells outdoor and extreme sports gear. The database
tracks products, inventory, customers, transactions, and suppliers.

See Appendix A for instructions on installing this sample database if
you have not already done so.

ASP.NET includes a number of controls specifically designed for displaying data.
We'll focus on the GridView control, but other data controls include the ListView,
Datalist, Repeater, DetailsView, and Formview. The Gridview control displays col-
umns and rows of data and allows sorting and paging. It is by far the most popular
data display control, and is ideal for understanding how data display controls inter-
act with data-retrieval controls and code. The Gridview control allows the user to
click on a column header to sort the data. Gridviews also let you present just a small
subset of the data at one time, called a page, with links for easy access to other
pages—this process is called “paging” through data. You can do these, and for
numerous other data manipulations, with very little programming. A Gridview with
data from the AdventureWorks database is shown in Figure 4-1.

The other data controls mentioned here are used in scenarios where a straight, tabu-
lar display of data is not what you are looking for.

The DetailsView control is used for displaying the data one record at a time. The
Formview is used to for displaying a single record in a master/detail relationship. The
ListView (which is new in version 3.5 of the .NET Framework), Datalist and
Repeater controls offer the maximum flexibility for displaying data. These three con-
trols have no inherent look of their own, but require that you, the developer,
construct templates that describe how the data will appear.

The ListView, in particular, offers all the features of the GridView, including paging,
sorting, data update, and so on, with unlimited display flexibility. You can use it to
display repeating data in a nontabular format or to group records according to some
criteria.

For complete coverage of these other data controls, see our more advanced book,
Programming ASP.NET, Fourth Edition (O’Reilly).

112 | Chapter4: Savingand Retrieving Data

Click on column headers
to sort the grid
@ Untitled Page - Internet Explorer [E=RE >
\JU | EE] hitp://localhost:51380/ AWProductata/Defaultaspx | 4 | X || Google o~
W el [@untmedpage]_| v B v @ v [Page v £ Tooks »
|1 _|Ad;ustab1e Race |AR 5381 | O |1000 |?
2 'Bearing Ball BA-8327 = 1000 1750
3 BBBallBearing | BE-2349 @ 1800 600
4 Headset Ball Bearings | BE-2908 = 1800 600
316 Blade BL-2036 (@ 1800 600
1317 'LL Crankarm |CA-5965 [= 1500 1375
318 ML Crankarm |CA-6738 = 1500 1375
319 HL Crankarm cA-7457 = 1500 1375
1320 | Chaining Bokts |cB-2903 [= 1000 1750
1321 | Chainring Nut CN-6137 = |1000 1750
| 12345678910
Done & Internet | Protected Mode: On H100% -
Links to grid pages

Figure 4-1. This GridView control displays data from the AdventureWorks database in a table
format that makes it easier to read, and allows users to click the column headings to sort the data.

Binding Data Controls

Database information is stored in memory as tables (just as it is retrieved from a rela-
tional database). Tables consist of rows and columns that match nicely to the
Gridview control.

You could write code to pick out each piece of data you want and write it into the
appropriate row or column of the data control, but that’s time-consuming and error-
prone. It’s more efficient and safer to bind the control directly to the underlying data.

In the early days of Graphical User Interface (GUI) programming,
binding was a bit of a “trick”—great for simple programs, but useless
for commercial applications because the minute you wanted to do
anything out of the ordinary, the binding would become a strait-
jacket. Microsoft has solved that in ASP.NET by exposing events on
the data controls that allow you to insert custom code at every stage of
the retrieval and binding of the data to the control.

Getting Data from a Database | 113

SQL CHEAT SHEET

Relational Database Concepts

Within a relational database, data is stored in tables, and those tables consist of rows
and columns, an arrangement that’s easy to visualize. You might have columns for cus-
tomer numbers, names, and addresses, for example. Each column represents a differ-
ent type of data, and each row represents an individual data record. In this example, a
row would have the customer number, name, and address of an individual customer.

Within a given table, you generally need a way to uniquely identify a specific row, so
that you can retrieve just that row and no other. That’s called a primary key or a unique
key. In this example, you might designate the customer number to be a unique key.

The thing that makes a database relational is its use of foreign keys. For example, you
might have a table of customer transactions named Orders, listing the items a customer
ordered and when. You could store the customer’s shipping information in that table
as well, but if Mr. Smith orders from you a dozen times every month, you’d have his
shipping information stored in the table many times over, which is wasteful. Instead,
you could just store the customer number as a column in your Orders table, and keep
Mr. Smith’s address information in a separate, but related table, where you’d only have
to store it once. The customer number in this case is the foreign key in the Orders
table—it defines the relationship between the Orders table and the Customers table.

To read the data from a relational database, you use a query to define the data that you
want to retrieve. In plain English, you’d say something like, “Get me the names of all
the customers who live in Philadelphia.” Of course, you need a formal way of relaying
that instruction to the database, and that’s where SQL comes in. SQL (pronounced
“sequel”) stands for “Structured Query Language,” and gives you a way to define the
queries. In SQL, the query we just mentioned might look like this:

SELECT Name FROM Customers WHERE City = "Philadelphia"

There’s a lot more to SQL than that, enough to fill books on its own, and you’ll see
some more as you go through the chapter.

Binding is most often used with the larger data controls such as Gridview and
ListView, but you can also bind many other controls, such as DropDownList, ListBox,
CheckBoxList, and RadioButtonList. All of these controls have a DataSource property
that identifies the source to which the control is bound. For example, you might
keep a list of all your customers’ names in a database. Binding that data to a ListBox
can be a convenient way to allow a customer service representative to quickly pick a
customer rather than typing in a name that might otherwise be difficult to spell.

To see how all this works, you’ll build the Gridview from Figure 4-1. Once you have
it up and running, you’ll add some features to it, including the ability to use the grid
to update the database with new data. Later in the chapter, you will also build an
example using the ListView control.

114 | Chapter4: Savingand Retrieving Data

Create a Sample Web Page
To begin, create a new web site named AWProductData.

Drag the all-important ScriptManager control from the AJAX Extensions section of
the Toolbox onto your page. Next, open the Data tab of the Toolbox. You’ll find
two types of objects: display controls, which are designed to present data, and
DataSource controls, which are designed to manage interacting with data, as shown
in Figure 4-2.

Toolbox E
El Data

& Pointer

A GridView |
] DataList

(B DetailsView
|J__| EormnWicw Display controls
=] ListView

*

55 Repeater =
=

uzw DataPager _ |
[] SglDataSource
Lb AccessDataSource o
% LingDataSource

._;g ObjectDataSource

LCL, XmlDataSource J

L}h SiteMapDataSource

m

DataSource controls

Figure 4-2. The Data tab in the Toolbox contains the controls that you’ll need to display data, and
to interact with data sources.

Using a DataSource Control

By default, the Data controls are arranged in the Toolbox so the display controls are
on top, and the DataSource controls are below (You can drag them into any order
you like or arrange them alphabetically by right-clicking on any control and select-
ing Sort Items Alphabetically.) There is a DataSource control for use with Microsoft
SQL Server or SQL Server Express, one for Microsoft Access, one for using LINQ
(Language Integrated Query, which is covered at the end of this chapter), one for any
type of Object, one for use with SiteMaps (for binding to menu controls—more on
this in Chapter 6), and one for XML documents as a data source.

Because the AdventureWorks database is a SQL Server database, you’ll use the
SglDataSource control, whether you are using SQL Server or SQL Server Express.
This control will allow you to access the AdventureWorks database, but first you
need to direct the control where to find it.

Getting Data from a Database | 115

Switch to Design view and drag the SgqlDataSource control from the Toolbox directly
onto the design surface. A Smart Tag will open, as seen in Figure 4-3.

| asp:sgldatasource#5qlDataSourcel |
SqlDataSource - SqlDataSourcel | SqlDataSource Tasks
Configure Data Source...

Add Extender...

Figure 4-3. A Smart Tag opens when you drag the SqlDataSource control onto your page,
allowing you to configure the data source.

When you click on Configure Data Source, you invoke a wizard that will walk you
through the steps of configuring your data source—hooking up the control to the
underlying data table(s).

The first step is to create (or choose) a data connection as seen in Figure 4-4.

Configure Data Source - SglDataSourcel @lﬂ

| 4#} Choose Your Data Connection

Which data connection should your application use to connect to the database?

['] I Mew Connection...

Connection string

< Previous Mext = Finish Cancel

Figure 4-4. To configure your DataSource control, you need to provide it with a data connection.
You can choose a preexisting connection from the list (if you have previously created any for this
web site), or create a new data connection by clicking the New Connection button.

116 | Chapter4: Savingand Retrieving Data

Any data connections that you’ve made before, for this web site or any other, will
appear in the drop-down list. Most likely, though, you haven’t created any data con-
nections yet, so the list will be empty. To make a new connection, click the New
Connection... button to get the Add connection dialog shown in Figure 4-5.

r

Add Cennection @l&]

Enter information to connect to the selected data source or click "Change” to
choose a different data source and/or provider.

Data source:

Microsoft SQL Server (SqlClient)

SErvEr name:

Log on to the server

0-@1 Usze Windows Authentication
(7 Use SQL Server Authentication
User narme:

wirord:

Save my password

Connect to a database

9-’0:" Select or enter a database name:

AdventureWorks -
(7 Attach a database file: o
Browse...
Logical name:

(oo]® oo |l oms]

Figure 4-5. The Add Connection dialog is where you specify a new connection for your data
source. Select the server, the logon credentials, and finally the database you want to use.

Following the steps in Figure 4-5, prepare your connection to the database:

1. Select your server from the Server Name drop-down menu. If it is not there, type
the name of the server. Typically, if you are using SQLExpress, the name will be

Getting Data from a Database | 117

“\SqlExpress” (dot, slash, then SqlExpress), and if you are using SQL Server, it
will be the name of your computer, or it will be (local)—including the parentheses.

2. Leave the radio button set to “Use Windows Authentication.”

If Windows Authentication does not work, you may need to use SQL
Server authentication. If so, your database administrator will tell you
what credentials to enter. They may or may not be the same as your
Windows login credentials.

3. Select the option, “Select or enter a database name:”.
4. Choose the AdventureWorks database in the database name drop-down.
5. Click the Test Connection button to verify that it all works.

This dialog box constructs a connection string, which provides the information neces-
sary to connect to a database.

Click OK to complete the connection string and return to the Configure Data Source
Wizard. Click the plus mark next to “Connection string” to see the connection string
you’ve just created, as shown in Figure 4-6. The segment IntegratedSecurity=True
was created when you chose Windows Authentication rather than SQL Server
Authentication.

Configure Data Source - SglDataSourcel m

| | - Choose Your Data Connection

Which data connection should your application use to connect to the database?

[|aptop\;qlexpre;;.ndventureWorks.dbo '] [Mew Connection...

[=] Connection string

Data Source=\SqlExpress;Initial Catalog=AdventureWorks;Integrated Security=True -

Cancel

Figure 4-6. Click the plus sign to view the connection string you just created. This is what gives
your control access to the database.

118 | (Chapter4: Savingand Retrieving Data

In Figure 4-6, the Wizard displays an expanded data connection in the
drop-down menu, consisting of the name of the server (in this case,
the local machine, laptop, concatenated with sqlexpress, followed by
the name of the database and database owner). You don’t need to
enter this information yourself; it is created for you.

When you click Next, the wizard will ask if you’d like to save this connection string
in the “application configuration file.” The configuration file is an XML file that
stores various settings for the web site. In an ASP.NET web site, the application con-
figuration file is web.config, and saving the connection string there is an excellent
idea; that way, all the pages of your web site will be able to use the connection. Make
sure that the checkbox is checked, and give the string a name you can easily remem-
ber. The Wizard will make a suggestion for the name of the connection string, as
shown in Figure 4-7.

Configure Data Source - SglDataSourcel @Iﬁ

| | . Save the Connection String to the Application Configuration File

Staring connection strings in the application configuration file simplifies maintenance and deployment. To save the connection
string in application configuration file, enter a name in the text box and then click Next. If you choose not to do this, the
connection string is saved in the page as a property of the data source control.

Do you want to save the connection in the application configuration file?
Yes, save this connection as:

AdventureWorksConnectionString

< Previous

Figure 4-7. It’s a good idea to save the connection string in the application’s web.config file, so you
can use it again with other controls.

This will cause the following lines to be written to the web.config file:

<connectionStrings>
<add name="AdventureWorksConnectionString"
connectionString="Data Source=.\SglExpress;
Initial Catalog=AdventureWorks;Integrated Security=True"

Getting Data from a Database | 119

providerName="System.Data.SqlClient"/>
</connectionStrings>
The Wizard next prompts you to configure the SELECT statement. The SELECT state-
ment is the SQL code the control uses to retrieve the exact subset of data you are
looking for from the database. Fortunately, if you are not fluent in SQL, the Wizard
will help you build the statement.

Starting with the radio buttons at the top of the dialog box, select “Specify columns
from a table or view.” (You would select the other button if you had a custom SQL
statement prepared, as you’ll see shortly.)

Selecting that radio button displays the table drop-down menu. Here, you are pre-
sented with the various tables that represent the different sets of data in the data-
base. For this exercise, choose the Product table. The various columns from the
Product table will be displayed, as shown in Figure 4-8.

Configure Data Source - SglDataSourcel m

| AqJJ:‘) Configure the Select Statement

How would you like to retrieve data from your database?

() Specify a custom SQL statement or stored procedure
@ Specify columns from a table or view
MName:

[Product ']

Columns:

™ [Color [7] SizeUnitMeasureC [Z] Return only unique rows
ProductlD SafetyStockLevel [F] WeightUnitMeasur
Name T | et
Producthumber [StandardCost [F] DaysToManufactu
MakeFlag [ListPrice [F] ProductLine _

[FinishedGoodsFlag [Size [F] Class
4| [T | +

SELECT statement:

SELECT [ProductID], [Mame], [ProductMumber], [MakeFlag], [SafetyStockLevel], [ReorderPoint] FROM [Product] -

< Previous l [Meat =]

Cancel

Figure 4-8. To configure the SELECT statement, specify the table and columns within it you want
to retrieve, and the Wizard builds the proper SQL statement for you...more or less.

Simply check the columns you want retrieved, and they’ll be added to the SELECT
statement. The choices you make will be displayed in the text box at the bottom of
the dialog. For this exercise, select the ProductID, Name, ProductNumber, Make-
Flag, SafetyStockLevel, and ReorderPoint columns (you may have to scroll to the

120 | Chapter4: Savingand Retrieving Data

right to see them all). You could narrow the set of data with the WHERE button, or
specify the sort order in which to retrieve the data with the ORDER BY button. For
the moment, you can ignore them both.

Pay No Attention to That Man Behind the Curtain

When you’ve completed the table setup, click Next to move to the last page of the
Wizard, and then click the Test Query button. The test fails, as shown in Figure 4-9.

[E] AWProductData - Visual Web Developer 2008 Express Edition [=[=] %]

File Edit_Miew \ebsite Build Debug Format Table Tools Window Help
7 - —
@ - q Conﬁgu.re D-ah Source-ali}ata&mmel ’ T Y Fr @_J

Isitioni ~ _

i (one) || [m - 27|
Toolbox Test Query TAx
& Xmi ol
Multiy i\

0 preview the data returned by this data source, click Test Query. To complete this wizard, click Finish.
[panel| | Top he da d by this d Jick Test Query. To complete th d, click Finish
<1 Placel|
I View
[i5] Substi|
£ Locall) Visual Web Developer 2008 Express Editio
Ol Data

Rk Pointg| There was an error executing the query. Please check the syntax of the
A Gridviy| command and if present, the types and values of the parameters and
(2] Datal{y ensure they are correct.

|[pbase Ex...

(77 Detaig) Invalid object name ‘Product’.
[Form
List¥i
EZ Repeal
+2r DataPy
[§o Acces]
({5 LingDj
L& Objed
[, XmiD:
[, sitend
Validati

Navi gl T — T ket | T — — ’

> 3%
Web. ULV =

SELECT statement: <

SELECT [ProductD], [Name], [ProductNumber], [MakeFlag], [SafetyStockLevel], [ReorderPaint] FROM [Product] - Ifion)

< Previous]\ Next > H Finich H Cancel I

Drag margin handles to resize margins. Press SHIFT or CTRL for more option Ln 20 Col79 Ch79

Figure 4-9. The Wizard let you down; the query test failed and you’re looking at this error
message because this database requires a schema name in front of the table names.

In this instance, the Wizard falls on its face. It turns out that the AdventureWorks
database prefixes a schema name in front of each table name and the Wizard is
unprepared for that. It generates a SELECT statement without schema names, as you
saw in Figure 4-8.

Schema in this context refers to an optional name used for organizing the tables in a
large database. For example, in the AdventureWorks database, all the tables relating
to the HR department have the schema name HumanResources prefixed to every table
name, separated by a period, such as HumanResources.EmployeeAddress. Other sche-
mas in the AdventureWorks database include Person, Production, Purchasing, and
Sales.

Getting Data from a Database | 121

As mentioned, a schema name is optional in SQL. In our experience, they are rarely
used, and in fact, the Wizard is unaware of them. However, the AdventureWorks
database (which ships as part of Microsoft SQL Server) does use them, the Wizard
becomes confused and flies off to Kansas leaving you on your own.

The square brackets surrounding each field and table name in the gen-
erated SELECT statement are not required, but are used to guarantee
that there will be no problems if the name includes any space charac-
ters (usually a very bad idea in any case). We often remove them from
the finished statement to enhance readability.

Think of this as proof that people are not yet entirely replaceable by automation. Hit
the Previous button to go back one step and fix the SELECT statement manually. Click
the radio button captioned “Specify a custom SQL statement or stored procedure,”
and then click Next. In the SQL Statement box, shown in Figure 4-10, type in:

SELECT ProductID, Name, ProductNumber, MakeFlag, SafetyStocklLevel, ReorderPoint
FROM Production.Product

Configure Data Source - SglDataSourcel @lﬁ

| 14__;‘/ Define Custom Statements or Stored Procedures

Click a tab to create a SQL statement for that operation.

SELECT | UPDATE | INSERT | DELETE

@ SOL statement:

SELECT ProductlD, Name, ProductMumber, MakeFlag, SafetyStocklevel, ReorderPoint FROM Production.Product -

Ouery Builder...

() Stored procedure:

| uspGetBillOfMaterials

< Previous

Figure 4-10. The SQL statement editing dialog, after adding the schema name to the table name,
and removing all the extraneous square brackets.

122 | Chapter4: Savingand Retrieving Data

As you can see, this is nearly the same SELECT statement that you built with the Wiz-
ard in Figure 4-8, except the Product table now has the required schema (Production)
in front of it. We’ve also left out the square brackets on the columns, as mentioned
in the note above.

Click Next to proceed to the next page of the Wizard, and then click Test Query.
This time, you should get the results shown in Figure 4-11.

Configure Data Source - SglDataSourcel m

l_ %‘D? Test Query

To preview the data returned by this data source, click Test Query. To complete this wizard, click Finish,

ProductlD MName ProductMumber MakeFlag SafetyStocklevel ReorderPoint o

h Adjustable Race AR-5381 B |00 750 L4
2 Bearing Ball BA-8327 [1000 750
3 BE Ball Bearing BE-2349 800 600
4 Headset Ball Bearings BE-2908 [} 800 600
316 Blade BL-2036 800 600
317 LL Crankarm CA-5965 [500 375

318 ML Crankarm CA-6738 [500 315 -

SELECT statement:

SELECT ProductlD, Name, ProductMumber, MakeFlag, SafetyStocklevel, ReorderPoint FROM Production.Product -

Figure 4-11. When you test the SELECT statement this time, you'll see the results you were
looking for.

Behold—the triumph of 3 billion years of random mutation and natural selection
over 50 years of automation!

Click Finish to save your work. It may not look like much, but you’ve just enabled
your application to access the AdventureWorks database, meaning all that data is
now under your control.

GridView Control

Now that the DataSource control is providing the data you want, you need a way to dis-
play it. From the Data section of the Toolbox, drag a GridView control onto the page.
The Gridview control recognizes automatically that a SqlDataSource is on the page.

GridView Control | 123

If you had dragged the Gridview onto the page first, it would have
given you the opportunity to create a SqlDataSource rather than
assuming you’d like to use one already in existence. It pretty much
amounts to the same thing.

Click on the Smart Tag of the Gridview (if it is not already open). Click the drop-
down menu next to “Choose Data Source” and select the DataSource control you just
created, as shown in Figure 4-12.

ScriptManager - ScriptManagerl

IDataSource - SglDataSourcel
asp:aridview#Gridviewl

Column0 Column] Column2 <] GridView Tasks

abc labc abc Auto Format...
abc Ebc abc Cheoose Data Source; |(N0r‘|e) E
z K z Edit Columns... aaSnulcp_'l
| Add New Column... | <New data source..»
e s e Add Extender...
Edit Templates

Figure 4-12. The Smart Tag of the GridView control lets you select the data source you want to
use.

Once the data source is set, the data grid is redrawn, with a column for each field
returned by the data source. The column headers are filled in for you based on the
column names in the table that the data source represents.

You’ll have an opportunity to make the grid look much prettier in just
a short while.

Open the Smart Tag again and check “Enable Paging,” which allows the grid to show
a limited number of entries on each page and provide links to the other pages provid-
ing access to all the data. Also check “Enable Sorting,” which allows the user to sort
the grid by clicking on a column header.

Set the page to be the start page for the application (right-click the page in the Solu-
tion Explorer and select “Set As Start Page”) and then run the application.
Figure 4-13 demonstrates how the screen should appear.

Notice that the MakeFlag column (which is a Boolean value of some obscure use to the
AdventureWorks business model) is shown as a checkbox. Also note that the column
headers are shown as links. Click on one of them now—ryou see that the grid is sorted
by that column. Also notice that at the bottom of the grid are links to page through
more data, 10 rows at a time. Click on some of those, too, to see the various pages.

124 | Chapter4: Savingand Retrieving Data

[/& Untitled Page - Internet Explarer @M
'\-./”\:/I |@, http://localhost51380/AWProductData/Default.asp « | "}l X | | Google e v|
52? a‘ﬁ? [@ Untitled Page l_l @ S i @ ¥ |_5}’ Page ~ @TQ‘)'S S
ProductID Name ProductNumber MakeFlag SafetvStockLevel ReorderPoint
1 Adjustable Race AR-5381 1000 750
2 Bearing Ball BA-8327 1000 750
3 BE Ball Bearing BE-2349 800 600
4 Headset Ball Bearings BE-2908 800 600
316 Blade BL-2036 800 600
317 LL Crankarm CA-5965 500 375
318 ML Crankarm CA-6738 500 375
319 HL Crankarm CA-7457 500 375
320 Chainring Bolts CB-2903 1000 750
321 Chainring Nut CN-6137 1000 750
12345678910..
Done &) Internet | Protected Mode: On H100%

Figure 4-13. With the GridView in place and connected to the data source, you can see the data
you asked for. Notice the clickable headings and the paging links.

Each time you click on one of the columns or one of the page numbers, the entire
page is posted back to the server, and you’ll encounter a noticeable delay and flicker.
You know how to fix that!

Close the browser and return to Design view. Drag an UpdatePanel control onto the
page from the AJAX Extensions section of the Toolbox. Drag the SqlDataSource and
Gridview controls already on the page into the UpdatePanel.

Run the application again. Notice there are no visible postbacks when you page or
sort, and consequently, no flicker.

Auto-Generated Code

Switch to Source view and look at the markup code that was generated for the
Gridview. It should appear as highlighted in Example 4-1.

Example 4-1. The GridView auto-generates a lot of control source code for you; you don’t have to
write any of this
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits=" Default" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

GridView Control | 125

Example 4-1. The GridView auto-generates a lot of control source code for you; you don’t have to
write any of this (continued)
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server"»
</asp:ScriptManager>
<div>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:SqlDataSource ID="SqglDataSourcel" runat="server"
ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
SelectCommand="SELECT ProductID, Name, ProductNumber, MakefFlag,
SafetyStocklLevel, ReorderPoint
FROM Production.Product"></asp:SqlDataSource>
<asp:GridView ID="GridView1" runat="server" AllowPaging="True"
AllowSorting="True" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="SqlDataSource1">
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
InsertVisible="False"
ReadOnly="True" SortExpression="ProductID" />
<asp:BoundField DataField="Name" HeaderText="Name"
SortExpression="Name" />
<asp:BoundField DataField="ProductNumber"
HeaderText="ProductNumber" SortExpression="ProductNumber" />
<asp:CheckBoxField DataField="MakeFlag"
HeaderText="MakeFlag" SortExpression="MakeFlag" />
<asp:BoundField DataField="SafetyStockLevel"
HeaderText="SafetyStockLevel" SortExpression="SafetyStockLevel" />
<asp:BoundField DataField="ReorderPoint"
HeaderText="ReorderPoint" SortExpression="ReorderPoint" />
</Columns>
</asp:GridView>
</ContentTemplate>
</asp:UpdatePanel>
</div>
</form>
</body>
</html>

The IDE has done a lot of work for you. It has examined the data source and created
a BoundField for each column in the data. Further, it has set the HeaderText to the
name of the column in the database, represented by the DataField attribute. It has set
the AllowPaging and AllowSorting properties to true. In addition, it has also set the
SortExpression property to the name of the field. Finally, you’ll notice on the decla-
ration of the GridView that it has set AutoGenerateColumns to False.

126 | Chapter4: Savingand Retrieving Data

If you were creating the GridView by hand, and if you wanted to let the grid create all
the columns directly from the retrieved data, you could simplify the code by setting
AutoGenerateColumns to True. (If AutoGenerateColumns is set to True, and you also
include explicitly bound columns, then you will display duplicate data.)

To see this at work, create a second Gridview by dragging another Gridview control
from the Toolbox inside the UpdatePanel, below the first. In the Smart Tag, set the
Data Source to the same source as that of the first, SqlDataSource1. Click on the
“Enable Paging” and “Enable Sorting” checkboxes.

Now go to Source view. If necessary, delete the <columns> collection from the new
grid, Gridview2. Change AutoGenerateColumns to the default value: True. The declara-
tion for this second GridView should look something like the following:
<asp:CridView ID="GridView2" runat="server"
AllowPaging="True" AllowSorting="True"
DataSourceID="SqlDataSource1" >
</asp:CridView>
Run the page. Both grids behave identically and are visually indistinguishable. So
why does the IDE create the more complex version? When you turn off
AutoGenerateColumns, the IDE gives you much greater control over the presentation
of your data. For example, you can set the headings on the columns (such as chang-
ing ProductNumber to Product No.). You can change the order of the columns or
remove columns you don’t need, and you can add new columns with controls for
manipulating the rows.

You can make these changes by manually coding the HTML in the Source view, or
by switching to Design view and clicking the Smart Tag for the Gridview and choos-
ing Edit Columns. Do that now for GridViewl, and you’ll see the Fields dialog box,
as shown in Figure 4-14.

This dialog box is divided into three main areas: the list of available fields, the list of
selected fields (with buttons to remove fields or reorder the list), and the properties
window on the right. When you click on a selected field (such as ProductID), you can
set the way that field will be displayed in the data grid (such as changing the header
to ID).

While you’re examining what you can do with the Gridview, let’s make it look a lit-
tle nicer. First, delete or comment out the second (simpler) grid (Gridview2) you just
created a few moments ago. Second, open the Smart Tag on the original grid. Click
AutoFormat and choose one of the formatting options. Of course, you can format it
by hand, but why work so hard for a simple example? We’ll choose “Brown Sugar”
because it shows up well in the printed book. Run the application. The output
should appear as in Figure 4-15.

GridView Control | 127

[Fietas [P el

Available fields: BoundField properties:

=] BoundField

- EhECkEDiT:I.Elli B Accessibili B
@E I yperFllnldle AccessibleHeaderText
-l ImageFiel

£| ButtonField S e

‘& CommandField FooterText =
i3] TemplateField Headerlmagelrl

HeaderText 1D

E Behavior |
ApplyFormatinEditMode False

Selected fields: ConvertEmptyStringToh True

B HtmlEncode True
é N L * | HtmlEncodeFormatStrin True
D " a:'e Nurh E InsertVisible False
h;:k:;ltag”m 2 E NullDisplayText "
5 F
[Z] safetyStockLevel HeaderText
[Z] ReorderPoint The text within the header of this field.

Auto-generate fields Convert this field into a TemplateField

g Convert this field into a TemplateField
Refresh Schema
| ok || concel

Figure 4-14. The Fields dialog lets you change the properties of your data columns, without
having to do it in Source view.

Adding Insert, Update, and Delete Statements

At this point, the SqlDataSource you’ve created has only a SELECT statement to extract
data from the database:

SelectCommand="SELECT ProductID, Name, ProductNumber,

MakeFlag, SafetyStocklLevel, ReorderPoint

FROM Production.Product” >
That’s fine, if all you want to do is display the data in the database. To take the next
step, though, you probably want to be able to add new data, edit existing data, and
even delete data.
You can do all that just as easily as you did the SELECT statement, by asking your data
source control to generate the remaining Create, Retrieve, Update, and Delete state-
ments (fondly known as CRUD statements), using a wizard to make your work

easier.

128 | Chapter4: Savingand Retrieving Data

[@ Untitled Page - Internet Explorer (=] B e
\JU |] http:/localhost:51380/AWProductData/Defaultaspr | 43 | X || Google o |
ok [@umiﬂed Page]_| f v B ~ ® v [rPage~ LhTools v
|1 |Ad]'ustable Race |AR 5381 | O |1000 |?5
2 ' Bearing Ball BA-8327 = 1000 750
3 BB Ball Bearing | BE-2349 @ 1800 600
4 Headset Ball Bearings | BE-2908 O 1800 1600
316 ‘Blade BL-2036 @ 1800 600
1317 'L Crankarm | CA-5965 [= 1500 1375
318 ML Crankarm CA-6738 [= 1500 375
319 HL Crankarm cA-7457 O 1500 1375
1320 Chaining Bolts |CB-2903 O 1000 1750
1321 | Chainring Nut |CN-6137] 1000 750
| 12345678910,
Done & Internet | Protected Mode: On H100% -

Figure 4-15. The AutoFormat option in the GridView’s Smart Tag lets you choose the formatting
option that best fits your site, and applies it automatically.

To see this in action, switch to Design view, click on the Smart Tag for the
SglDataSource, and choose Configure Data Source. The Configure Data Source
Wizard opens, displaying your current connection string. Click Next; the Configure
Select Statement dialog box is displayed, as shown earlier in Figure 4-8.

Recall the previous time you used the Configure Data Source Wizard—it did not cor-
rectly identify the table in the autogenerated SELECT statement, omitting the schema
name. You worked around that by specifying your own SQL statement. Because the
SELECT statement you needed was relatively simple to type in, that was not a problem.

However, there is a lot of typing involved for all the CRUD statements. So for the rest
of these statements, you will use the Wizard to generate the SQL code, and then just
fix the table names.

Make sure the “Specify columns from a table or view” radio button is selected, and the
Product table is selected. Check the columns you want returned by the SELECT state-
ment (ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel, ReorderPoint). This
will create a new SELECT statement.

GridView Control | 129

Click the Advanced button to open the Advanced SQL Generation Options dialog
box. Select the “Generate INSERT, UPDATE, and DELETE statements” checkbox,
as shown in Figure 4-16.

I b
Advanced SQL Generation Options Iil&]

Additional INSERT, UPDATE, and DELETE statements can be generated to update the data

SOUrce,

Generate INSERT, UPDATE, and DELETE statements

Generates INSERT, UPDATE, and DELETE statements based on your SELECT
statement. You must have all primary key fields selected for this option to be
enabled.

[7] Use optimistic concurrency

Modifies UPDATE and DELETE statements to detect whether the database has
changed since the record was loaded into the DataSet, This helps prevent
concurrency cenflicts,

OK] I Cancel

Figure 4-16. You’'ll use the Advanced SQL Options dialog box to automatically create the SQL
statements to add, edit, and delete data from your data source.

Clicking this checkbox instructs the Wizard to create the remaining CRUD state-
ments, and also enables the second checkbox, “Use optimistic concurrency.” This is
a feature that helps safeguard your data in case another user makes a change to the
database at the same time you do. Leave this option unchecked for now and click
OK. When you return to the Wizard, click Next, and then Finish. You may be asked
to update your grid, which unfortunately will wipe out all your customization, but
the good news is that you are now bound to a data source control that provides all
four CRUD methods.

Open the Smart Tag on the GridView control again, and reapply the look and feel you
want. Also—and this is important—select the checkboxes “Enable Editing” and
“Enable Deleting.”

Switch to Source view. The SqlDataSource markup will appear similar to
Example 4-2, with the new SQL commands added. You'll still need to modify the
table names, or else you’ll get the error you saw earlier (see Figure 4-9). Add the
schema name [Production] to each of the four statements highlighted in
Example 4-2. (You can use Visual Studio’s Quick Find feature (Ctrl + F) to quickly
locate each instance of [Product] in your code.)

130 | Chapter4: Savingand Retrieving Data

Example 4-2. After you update the properties of the SqlDataSource control with CRUD
statements, it should look like this
<asp:SqlDataSource ID="SglDataSourcel" runat="server"
ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
SelectCommand=" SELECT [ProductID], [Name], [ProductNumber],
[MakeFlag], [SafetyStockLevel], [ReorderPoint]
FROM [Production].[Product]"
DeleteCommand="DELETE FROM [Production].[Product]
WHERE [ProductID] = @ProductID"
InsertCommand="INSERT INTO [Production].[Product] ([Name],
[ProductNumber],
[MakeFlag], [SafetyStockLevel], [ReorderPoint])
VALUES (@Name, @ProductNumber, @MakeFlag,
@SafetyStockLevel,
@ReorderPoint)"
UpdateCommand="UPDATE [Production].[Product] SET [Name] = @Name,
[ProductNumber] = @ProductNumber,
[MakeFlag] = @MakeFlag,
[SafetyStockLevel] = @SafetyStockLevel,
[ReorderPoint] = @ReorderPoint
WHERE [ProductID] = @ProductID" >
<DeleteParameters>
<asp:Parameter Name="ProductID" Type="Int32" />
</DeleteParameters>
<UpdateParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="ProductNumber" Type="String" />
<asp:Parameter Name="MakeFlag" Type="Boolean" />
<asp:Parameter Name="SafetyStocklLevel" Type="Int16" />
<asp:Parameter Name="ReorderPoint" Type="Int16" />
<asp:Parameter Name="ProductID" Type="Int32" />
</UpdateParameters>
<InsertParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="ProductNumber" Type="String" />
<asp:Parameter Name="MakeFlag" Type="Boolean" />
<asp:Parameter Name="SafetyStockLevel" Type="Int16" />
<asp:Parameter Name="ReorderPoint" Type="Int16" />
</InsertParameters>
</asp:SqlDataSource>

Switch back to Design view and notice the Edit and Delete buttons on each row.
They are the result of checking the Enable Editing and Enable Deleting checkboxes.

Taking apart the code in Example 4-2, on the first line is the declaration for the
SqlDataSource (and its corresponding closing tag at the bottom). After the ID, the oblig-
atory runat="server", and the ConnectionString attribute, you see four attributes: the
SelectCommand (which was there previously), and the new DeleteCommand,
InsertCommand, and UpdateCommand.

GridView Control | 131

If you run this web site and click on the Delete button to delete a row
from the Product table, you will get the following error, raised by the
database:

Sys.WebForms.PageRequestManagerServerErrorException:
The DELETE statement conflicted with the REFERENCE
constraint"FK ProductInventory Product ProductID".
The conflict occurred in database "AdventureWorks",
table "Production.ProductInventory",

column 'ProductID'.

The statement has been terminated.

This error is caused by a constraint on the data, enforced by the data-
base, which prevents the deletion of a record that is referenced else-
where in the database. In other words, the product you are trying to
delete is referenced in the ProductInventory table. If you were to delete
that record from the Product table, there would be orphan records left
behind in the ProductInventory table, which is a violation of the busi-
ness rules of this database.

In a real-world application, the way to handle this would be to write
some custom SQL code, called a stored procedure, which would first
delete all the child records from the ProductInventory table, then
delete the record from the Product table. The SqlDataSource control
would then be configured to use that stored procedure for the Delete
command, rather than the SQL statement it is currently configured to
use. Unfortunately, stored procedures are beyond the scope of this
book. However, our more advanced book, Programming ASP.NET,
Fourth Edition, does cover this sort of situation.

The DeleteCommand takes a single parameter (@ProductID), which is specified in the
DeleteParameters element:
<DeleteParameters>

<asp:Parameter Name="ProductID" Type="Int32" />
</DeleteParameters>e

SQL CHEAT SHEET

Parameters

A parameter in a SQL statement allows parts of the statement to be replaced when the
statement is actually run. SQL parameters are always preceded with the @ symbol. So,
in the following SQL statement:

delete from Products where ReorderPoint > @ReorderPoint

all of the records with a value of ReorderPoint greater than some specified value will be
deleted from the Products table. One time the statement is run, that value might be
100, the next time it might be 5. The value depends on how the parameter was defined
beforehand.

132 | Chapter4: Savingand Retrieving Data

The UpdateCommand control requires more parameters, one for each column you’ll be
updating, as well as a parameter for ProductID (to make sure the correct record is
updated). Similarly, the InsertCommand takes parameters for each column for the new
record. All of these parameters are within the definition of the SqlDataSource.

Displaying and Updating the Data

Now that your SqlDataSource object is ready to go, you only have to set up your
Gridview control. In Design view, click on the Gridview Smart Tag. Verify that the
checkboxes to enable editing and deleting are selected, as shown in Figure 4-17.

||| h_" L\—\HWI"roductl}a‘ta‘. | [

I R corderPoin GridView Tasks
b I| Auto Format..
‘ Databound

Choose Data Source: | SqlDataSourcel E|
| Databound

Configure Data Source...
|Darabound Refresh Schema

-Hm Edit Columns...

Databomnd Add New Column...
ataboun Move Column Left

| Databound Mowve Column Right

|| Dl Remove Column

[@] Enable Pagi
|Datbomnd ||~ 0

" Enable Sorting
Databound

) Enable Editing Make sure these

i L— two boxes are
| Databound Enable Deleting checked

[Enable Selection

iewl>

Add Extender...
Edit Templates

|
- |

g |

Il

Figure 4-17. Select the Smart Tag on the GridView, and check the boxes to enable editing and
deleting.

If you prefer to have buttons for Edit and Delete, rather than links, click on the
Smart Tag and select “Edit Columns....” When the Fields dialog box opens, click
the Command Field entry in the Selected Fields area (on the lower left). This brings
up the Command Field Properties in the right-hand window. In the Appearance sec-
tion of the Fields editor, choose ButtonType and then change Link to Button in the
drop-down menu next to ButtonType, as shown in Figure 4-18.

Displaying and Updating the Data | 133

Fields (2] =% |
Available fields: CommandField properties:
BoundField } | =
CheckBoxField
B Accessibility i
£Z] HyperLinkField . =
I Field AccessibleHeaderText
mageFiel
ButtonField BhLE =
‘& CommandField butioniype Button |Z|
‘5] TemplateField Cancellmagelrl
CancelText Image
Deletelmagellrl Link
Derteren oo
Selected fields: EcitlmageUd
- EditText Edit
l%a Eor;mc:[rE]dFl e § * FooterText
él Nm » E HeaderlmageUrl
=] Name
HeaderText
[E] ProductMNurmber X
MakeFlag ButtonType
[E] SafetyStockLevel The type of the button to be rendered in the field. The
5] ReorderPaoint values are Link, Button, and Image.
uto-generate fields onvert this field into a TernplateFie
Auto-g field C his field i TemplateField
Refresh Schema
ok || Conce
\,

Figure 4-18. Click the Smart Tag of the GridView, then click Edit Columns to get this Fields
dialog box, where you can select and edit the columns in the GridView. Here, the CommandField
button type is being changed.

The result is that the commands (Edit and Delete) are shown as buttons, as shown in
Figure 4-19.

Take It for a Spin

Start the application. The product database information is loaded into your Gridview.
When you click the Edit button, the data grid automatically enters edit mode. You’ll
notice that the text fields you can edit change to text boxes and checkboxes, as
appropriate, and the command buttons change from Edit and Delete to Update and
Cancel. Make a small change to one field, as shown in Figure 4-20.

When you click the Update button for that row, the grid and the database are both
updated, which you can confirm by opening the table in the database, as shown in
Figure 4-21.

To open the database table, stop the application first. Then, on the right side of the
IDE, click the Database Explorer tab (it is called Server Explorer in VS). Expand the
AdventureWorks node, and then expand the Tables node. Scroll down until you find

134 | Chapter4: Savingand Retrieving Data

& Untitled Page - Internet Explorer =] B [
uv |] http/localhost:51380/AWProductData) Default.aspx -] 4] || Google 2 -
e [gunﬁﬂed Page [_| 5 o- ~ e v [:)Page v i Tooks +
[[PuoisciD] Name | ProaciNunber|Maalae| SafStockevel RorirPuin [l
|E [Delete] |1 |Ad]ustable Race |AR 5381 | |1000 |?su
|E [Delete | |2 |Beanng Bal |BA-832? | (@ |1000 |?50
En 3 BB BalBearing |BE 2349 E 1500 /600
| ‘4 |HeadsetBa]1 Bearings |BE-29[]8 | |800 '|500
| 316 |Blade |BL-2036 | |800 |600
317 |LL Crankam lcassss |O 1500 1375
| ‘318 |\-‘[L Crankamm |CA-6738 | O |500 375
| ‘319 |HL Crankarm |CA-7457 | |500 |3?5
(Et] 30 |ChaimingBolts | CB-2903 E 11000 '|750
| ‘321 |Chairm‘ngl\-'ut |CN-6137 | O |1000 |750
5 .
| '\] 12345678910
\ @ Intemnet | Protected Mode: On B 100% ~
=

Look, buttons!

Figure 4-19. You can change the Edit and Delete links in the GridView to buttons, if you prefer.

the Product (Production) table (in the IDE, the schema name is displayed in paren-
theses after the table name—go figure), then right-click it, and select “Show Table
Data.” This will show you the contents of the table from within the IDE.

Modifying the Grid Based on Conditions

Suppose you would like to modify the grid so the contents of the Name column are red
when the MakeFlag column is checked, that is, when its value is True. In addition, you
want all the ProductNumbers that begin with the letters CA to display in green. You
can do this by handling the RowDataBound event. As the Gridview is populated with
data, each row of data is bound to the Gridview individually, and the RowDataBound
event is fired once for each row.

To modify the Gridview, switch to Design view, click the Gridview, click the light-
ning bolt in the Properties window, and double-click in the method name column
(currently blank) to the right of the RowDataBound event. The IDE will create an event
handler named Gridviewl RowDataBound() and then place you in the code-behind file
within the skeleton of that method, ready for you to start typing code.

Displaying and Updating the Data | 135

[@ Untitled Page - Internet Explorer = E s
U - [pnocaossisso/awbroducDuaiDetoukass - [42] X | [oogte 2 -]
T < [@ummdpage]7| Liov B v # v [rPage v (FTools v
Adjustable Race AR-5381 1000 |_
Edit and Delete ‘Bmg Ball IBA-8327 ||] ‘1000
buttons change BB Ball B BE-234%10¢ 800 (
to Update and = N
Cancel Headset Ball Bearings BE- Fields becom ‘ 800 €
Blade BL203s editable ‘300 g
‘LL Crankarm CA-5965 500 |3
ML Crankarm CA-6738 300 3
HL Crankarm CA-7457 (| 500 3
}Chaiﬂn‘ng Bolts |CB-2903 | (] ‘ 1000 |7
‘Chainn'ng Nut |CN-6137 |] ‘ 1000 |7
12345678210 4
4 .] 3
& Internet | Protected Mode: On ®100% -
Figure 4-20. When you click Edit on a row, that row enters edit mode. Any fields that can be
edited change to text boxes and checkboxes.
[AWProductData - Visual Web Developer 2008 Express Edition | &
Fle Edit View Build Debug Data QueryDesigner Tools Window Help
i | % B2 B9 | @ Product] P
Change Type- | 1 kel | [g
[3£] . Product (Product..s. AdventureWorks]| Start Page | Defauttaspx| ~ x [Database Explorer ~Ix
g ProductlD Name ProductNumber _MakeFlag FinishedGoods... Coler sarery = || L ELELL T
sil» | Adjustable Race AR-5381 False False NULL 1000 - [Product (Production) ~
= 2 Bearing Ball BA-8327 False False NULL weo ||| (3] Productid
: 5] Name
3 BB Ball Bearing True False NULL 300 = ProductNumber
4 Headset Ball Be... BE-2008 False NULL 800 MakeFlag
316 Blade BL-2036 True Yourchanges NULL 800 meshedGoodsFla%
37 LL Crankarm CA-5965 False aresaved Black 500 Galor I
SafetyStockLevel
318 ML Crankarm CA-6738 False False Black 500 %
eorderPoint
319 HL Crankarm CA-7457 False False Black 500 StandardCost
20 Chainring Bolts CB-2003 False False Sitver 1000 ListPrice
3 Chaining Nut ~ CN-6137 False False Sitver 1000 Size
) SizeUnitMeasureC
32 Chainring CR-7833 False False Black 1000 Vit
E) CrownRsce CR-9981 False False NuLL 1000 Weight
324 Chain Stays C5-2812 True False NuLL 1000 5] DaysToManufoct:
325 Decall DC-8732 False False NULL 1000] Sl pprduciiine
326 Decal2 DC-9824 False False NULL 1000 EfSolution Bxpl.. | Datsbsse .. |
327 Down Tube DT-2377 True False NuLL 800 :
Properties -~ X
328 Mountain End ... EC-M092 True False NuLL 000
i I r &
o4 1 of 504 | b b| ke | () | Cellis Read Only.
Ready

Figure 4-21. If you view the table in the database after editing it in the GridView, you'll see that

the changes have been saved.

136 | Chapter4: Savingand Retrieving Data

The second argument to this method is of type GridviewRowEventArgs. This object
has useful information about the row that is being data bound, which is accessible
through the Row property of the event argument.

Enter the code shown in Example 4-3.

Example 4-3. The handler for the RowDataBound event lets you extract individual cells and work
with them
Protected Sub GridvViewl RowDataBound(ByVal sender As Object, _
Byval e As System.Web.UI.WebControls.GCridViewRowEventArgs)
Handles GridView1.RowDataBound
If e.Row.RowType = DataControlRowType.DataRow Then
Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber column
If cellProductNumber.Text.Substring(0, 2) = "CA" Then
cellProductNumber.ForeColor = Drawing.Color.Green
End If

Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
If cb.Checked Then
e.Row.Cells(2).ForeColor = Drawing.Color.Red
End If
End If
End Sub

The first If statement (highlighted in Example 4-3) tests if the type of Row passed in
as a parameter—in other words, the row that was bound and triggered this event—is
a DataRow (rather than a header, footer, or something else).

Once you know you are dealing with a DataRow, you can extract the cell(s) you want
to examine from that row. Here, we will look at two cells: the ProductNumber cell is
the fourth cell in the row, at offset (index) 3, and the MakeFlag cell is the fifth cell in,
at offset 4. (Remember, all indexes are zero-based.)

To access the ProductNumber cell, you define a new variable, cellProductNumber,
defined as a TableCell with the As keyword, and set it equal to the cell at offset 3 in
the row, like this:

Dim cellProductNumber As TableCell = e.Row.Cells(3)

Once you have the cell as a variable, you want to get the text contained in the cell to
compare to your known value. You do that by accessing the Text property of
cellProductNumber, and then using the Substring() function.

The Substring() function, as you might guess from its name, extracts a smaller string
from a larger one. This is a pretty simple function to work with. First, you call the func-
tion on a string, and you give it two numbers as parameters: the index of the start of
the substring, and the length of the substring. As with all other indexes, the first char-
acter in the string is position zero. You want the first two characters from the Text
string, so the starting index is 0, and the length of the substring is 2. Therefore, to get

Displaying and Updating the Data | 137

the first two characters from your string, you use the function Substring(0,2). Once
you have that substring, you can use a simple If statement to compare it to the string
you want to match, “CA”:

If cellProductNumber.Text.Substring(0, 2) = "CA" Then

It there is a match, you want to set the ForeColor property of the cell to green, which
you can do using the Drawing.Color.Green property:

cellProductNumber.ForeColor = Drawing.Color.Green

In the case of the MakeFlag field, it is somewhat more complicated. It’s easy enough
to isolate the cell that contains the checkbox—it’s at index 4—and then assign that
value to a new variable called cellMakeFlag:

Dim cellMakeFlag As TableCell = e.Row.Cells(4)

This is the same technique you used to isolate the ProductNumber cell. In this case,
though, the Text property of this cell will always be empty. However, the cell does
contain a CheckBox control, which is the only control in the cell. Instead of reading
the text in the cell, you want to read the value of the Checked property of that
CheckBox control. Each cell has a collection of all the controls contained in the cell,
called Controls, which has a zero-based index. Because the checkbox you want is the
only control in the collection, you know it’s at cellMakeFlag.Controls(0). Next, you
define a new variable, cb, which you define as a CheckBox. Then, you use the CType
function on the control you just isolated, to convert the control to a CheckBox. This
works because we know it is a CheckBox:

Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
Then, you test the Checked property of the CheckBox:
If cb.Checked Then

If the box is checked, cb.Checked will evaluate to true. If it is checked, you want to
set the ForeColor property of the third cell in the row (offset 2), the ProductName
column:

e.Row.Cells(2).ForeColor = Drawing.Color.Red

You set the color of the cell the same way you did for ProductNumber, but notice this
time you’re not changing the color of the checkbox cell itself—you’re changing a dif-
ferent cell in the table.

Run the web site. It will look identical to Figure 4-19 (shown earlier in this chapter),
except the product names for which the MakeFlag field is checked will display in red,
and some of the product numbers will display in green, although you may need to
page through the data to find them. (Neither of these changes will be obvious in the
printed book, so we will forego a figure showing the color changes.)

138 | Chapter4: Saving and Retrieving Data

VB CHEAT SHEET

(Type Method

(Type converts its first argument into an object of a new type as specified by its second
argument. In the case shown here, it is converting an object to a CheckBox. If the object
you pass is not of the appropriate type, CType generates an error. Read this statement:
Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
as follows: “Find the first item in the Controls collection in cellMakeFlag and convert
it to type CheckBox.” The result will be an object of type CheckBox or an exception will
be thrown. If no exception is thrown, assign the result to the variable cb, which is of
type CheckBox.

If you want to be extra careful, you can wrap the CType conversion in a Try/Catch block,
discussed in Chapter 8, but that isn’t really necessary here as you know it is a checkbox.

Note to C# users: This is one of the few methods available in VB but not in C#.
Instead, in C#, you cast from one type to another by enclosing the target type in paren-
theses, as in the following C# statement equivalent to the one above in VB:

CheckBox cb = (CheckBox)cellMakeFlag.Controls[0];

Selecting Data from the GridView

Often you need to select a row from the grid and extract data from that row. This is
easy to do using the SelectedIndexChanged event of the GridView.

To see how this works, drag a Label control from the Standard section of the Tool-
box onto the Design view, below the grid, but within the UpdatePanel control.
Change the Text property of this Label to Name. Then, drag a TextBox control next to
the Label. Change its ID property to txtName and set its ReadOnly property to True.
You now have a place to display the name of the selected item from the grid.

Click on the Smart Tag of the Gridview and check the “Enable Selection” checkbox.
This will cause a Select button to display in the first column of the grid, next to the
Edit and Delete buttons already there, as shown in Figure 4-22.

Now all you need to do is set up the event handler to respond to the Select buttons.
Double-click on the Select button in the first row of the grid. This will open up the
code-behind file with the skeleton of the SelectedIndexChanged already created for
you, ready to accept your custom code. Enter the highlighted code from the follow-
ing snippet:
Protected Sub Gridviewl SelectedIndexChanged(Byval sender As Object, _
Byval e As System.EventArgs)
Handles GridView1.SelectedIndexChanged

If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
Dim cellName As TableCell = GridViewl.SelectedRow.Cells(2) ' Name column

Displaying and Updating theData | 139

txtName.Text = cellName.Text
End If
End Sub

i - Scri erl
asp:UpdatePanel#UpdatePanell |

i SqlDutaSource - SqlDatSourcel ‘
—) e e e e
| Ecit | Detets | SS‘SCt”Databomd Databound | Datebound Databound ‘Datﬁb—mmd
| Ecit | Detete || Solect [| Databound | Databound | Databound | i Databound
ﬂ De\etel Se\ectl Databound | Databound | Databound . Id .Databou.ud ‘Databmmd
ﬂ De\etel Se\ectl Databound |Databound | Databound Ird Databound ‘Databmmd
ﬂ De\etel Se\ectl Databound |Databound | Databound . Ird .Databou.ud Databound
ﬂl DE\EIE' SE‘ECll Databound |Databound | Databound . Icd .Databou.ud Databound
ﬂl De\etel SE‘SCll Databound |Databound | Databound . 4 .Databou.ud Databound
ﬂl De\etel Se\ectl Databound |Databound | Databound . 4 .Databou.ud Databound
| Ecit | Detete || Select [| Databound | Databound | Databound |e i ‘Datﬁb—mmd
| Edit | Delete || Solect [| Databound | Databound | Databound = - Databound
12

- EEEE

Select buttons are added

Figure 4-22. Clicking Enable Selection in the Smart Tag causes Select buttons to appear in a
GridView.

This code first tests to determine if the selected row is a DataRow (as opposed to a
HeaderRow or a FooterRow). If it is a DataRow, it creates a variable of type TableCell, to
which you assign the third cell in the selected row (because of zero-based indexing,
the third item will have an index value of 2). Then the Text property of the TextBox is
set equal to the Text property of that cell.

Run the app and click on one of the Select buttons. The name from the selected row
appears in the TextBox.

Passing Parameters to the SELECT Query

Sometimes you do not want to display all the records in a table. For example, you
might want to have users select a product from your grid and display the order
details for that product somewhere else on the current page. To do this, you’ll need a
way to select a product as well as a way to pass the ID of the selected product to the

140 | Chapter4: Savingand Retrieving Data

second grid. The Select buttons are already in place from the previous example, so all
you need to do now is pass the ID of the selected product to the second grid.

To keep your examples clear, copy the previous example, AWProductData to a new
web site, AWProductDataOrderDetails.

See Appendix B for details about copying a web site.

You need to create a second Gridview, which will be used to display the order details.
From the Toolbox, drag the second Gridview onto the page below the first, after the
Label and TextBox, and inside the pre-existing UpdatePanel. Open the Smart Tag for the
Gridview. In the Choose Data Source field of the Smart Tag, select <New Data Source>
this time instead of using an existing DataSource control. The Data Source Configura-
tion Wizard appears, but with a new screen this time, shown in Figure 4-23. Select the
Database option, and name the data source AdventureWorksOrderDetails.

Data Source Configuration Wizard m

| | N Choose a Data Source Type

Where will the application get data from?

b 1 [d 4
= U B & B W
Access Database LING Object Site Map XML File
Database

.Connect to any 5QL database supported by ADO.NET, such as Microsoft SQL Server, Oracle, or OLEDB,

Specify an ID for the data source:

AdventureWorksOrderDetails

l 0K] l Cancel

Figure 4-23. You’re creating a new data source control this time, instead of using one you've already
placed on the page. Select Database as the type, and name it AdventureWorksOrderDetails.

Displaying and Updating the Data | 141

Click OK, and you’ll see the connection string screen from Figure 4-4; use the exist-
ing connection string. Choose the SalesOrderDetail table, select the columns
SalesOrderID, CarrierTrackingNumber, OrderQty, UnitPrice, UnitPriceDiscount, and
LineTotal, and then click the WHERE button, as shown in Figure 4-24.

Configure Data Source - AdventureWorksOrderDetails @lﬂ

| AqJL-_;‘/ Configure the Select Statement

How would you like to retrieve data from your database?

() Specify a custom SQL statement or stored procedure

@ Specify columns from a table or view

OrderGty
[ProductlD
[SpecialOfferlD

MName:

[salesOrdeDetai -

Columns:

e UnitPrice [Return enly unique rows
SalesOrderID UnitPriceDiscount T

[SalesOrderDetaillD LineTotal =Tt
CarrierTrackingMumber [F] rowguid _

[[] ModifiedDate

ORDER BY...

SELECT statement:

SELECT [SalesOrderID], [CarrierTrackingMumber], [OrderQty], [UnitPrice], [UnitPriceDiscount], [LineTotal] FROM
[SalesCrderDetail]

»

< Previous

[Next = Finish

Cancel

Figure 4-24. Configuring the SalesOrderDetail table SELECT statement is similar to the way you
set up the first DataSource, but this time, you’ll add a WHERE clause.

A WHERE clause is a SQL language construct used to narrow the set of data returned
by the SELECT statement. In other words, you’re saying, “Get me all the records from
this table, where this condition is true.” The condition could be defined any number
of ways—where the amount in inventory is less than 10, where the customer name is
“Smith,” or where the copyright date is after 1985. It all depends on the types of
information you have stored in your tables, and what you need for this circumstance.

When you click the WHERE button, the Add WHERE Clause dialog opens, which
you can see in Figure 4-25. First, you pick the column you want to match on; in this
case, ProductID. Next, pick the appropriate operator for your condition statement.
Your choices include (among others): equal to, less than/greater than, like, and con-
tains. For this exercise, use the default (=).

142 | Chapter4: Savingand Retrieving Data

The third drop-down lets you pick the source for the ProductID—that is, where you
will get the term you want to match on. You can pick from any one of several objects
in the menu, or choose None if you’ll be providing a source manually. In this case,
you’ll obtain the source of the ProductID from the first Gridview, so choose Control.

When you choose Control, the Parameter properties panel of the dialog wakes up.
You are asked to provide the ID of the Control containing the target parameter. Select
Gridviewl. Once you’ve made all your choices, the screen will resemble Figure 4-25.

Add WHERE Clause (D [

Add one or more conditions to the WHERE clause for the statement. For each condition you can specify either a literal value or
a parameterized value. Parameterized values get their values at runtime based on their properties.

LColumn: Parameter properties
IProductID v] Control ID:

Operator: GridViewl x
[: ,] Default value:

Source: [

[Contrul v‘

SQL Expression: Value:

[ProductiD] = @ProductID GridViewl.5electedValue Add
WHERE clause:

SQL Expression Value Remove

Figure 4-25. Add a WHERE clause to your SELECT statement with the Add WHERE Clause
dialog. You select the column, the operator, and the source here.

Click Add. When you do, the upper portion of the dialog returns to its initial (blank)
state, and the WHERE clause is added to the WHERE Clause window. You could add
additional WHERE clauses at this point, to further restrict the data, but that is not nec-
essary for this example.

Click OK to return to the ConfigureData Source dialog box. While you are at it, sort
the results by the SalesOrderID column by clicking on the ORDER BY button. The
Add ORDER BY Clause dialog with the SalesOrderID column selected is shown in
Figure 4-26. The ORDER BY clause is another SQL construct, and this one does just
what its name implies—it sorts the results using the specified field for the sort order.

Displaying and Updating the Data | 143

Add ORDER BY Clause [[

Specify the columns you would like to order by.

Sort by
@ Ascending
| SalesOrderlD -| -
(Z) Descending
Then by
| it s
SELECT statement:
SELECT [SalesOrderID], [CarrierTrackingMumber], [OrderQty], [UnitPrice], -

[UnitPriceDiscount], [LineTotal] FROM [SalesOrderDetail] WHERE ([ProductID] =
@ProductllY) ORDER BY [SalesOrderlD]

| ok || concel

Figure 4-26. Add an ORDER BY clause to sort the results of your SELECT statement.

Click OK, then Next, then Finish, and the Configure Data Source Wizard is finished.

Switch to Source view and again fix the name of the tables in the SQL statements
that were auto-generated. This time, you’ll need to add [Sales] in front of the
[SalesOrderDetail] item because this data is from the Sales table. The markup for
the second Gridview and its associated SqlDataSource is shown in Example 4-4, with
the corrected table name highlighted. Also highlighted are the results of the WHERE
and ORDER BY buttons from the Configure Data Source Wizard.

Example 4-4. Visual Studio supplies the select parameters for you, but you still need to fix the
schema in the second GridView
<asp:Cridview ID="GridView2" runat="server"
DataSourceID="AdventureWorksOrderDetails">
</asp:Gridview>
<asp:SqlDataSource ID="AdventureWorksOrderDetails" runat="server"
ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
SelectCommand="SELECT [SalesOrderID], [CarrierTrackingNumber], [OrderQty],
[UnitPrice], [UnitPriceDiscount], [LineTotal]
FROM [Sales].[SalesOrderDetail]
WHERE ([ProductID] = @ProductID)
ORDER BY [SalesOrderID]"»>

144 | (Chapter4: Saving and Retrieving Data

Example 4-4. Visual Studio supplies the select parameters for you, but you still need to fix the
schema in the second GridView (continued)
<SelectParameters>
<asp:ControlParameter
ControlID="GridView1"
Name="ProductID"
PropertyName="SelectedValue"
Type="Int32" />
</SelectParameters>
</asp:SqlDataSource>

The SELECT statement now has a WHERE clause that includes a parameterized value
(@ProductID). In addition, within the definition of the SqlDataSource control is a defini-
tion of the SelectParameters. This includes one parameter of type ControlParameter,
which is a parameter that knows how to get its value from a control (in our example,

Gridview1). In addition, a second property, PropertyName, tells it which property in

the

Gridview to check. A third property, Type, tells it that the type of the value it is getting is

of type Int32, so it can properly pass that parameter to the SELECT statement.

You may now reformat your grid and edit the columns as you did for the first grid,

and then try out your new page, which should look something like Figure 4-27.

{& Untitied Page - Intemet Explorer (=5 |
QO - [] nttp/iocalhost49315/AWProductDataOrderDetails/ Defauit.aspx [41| x || Googie Rl
W I@Untiﬁed?age 1_‘ o~ v dh v [hPage v (@ Teols

 [ewbd] Name | Productiumbo] Makofias|SaenStockLeval] Resrdspoi
[Select | | 706 ‘Hl Road Frame - Red, 58 |FR RY2R-58 | |<00 ‘37<
[Select] |7os Sport-100 Hetmet Black |HL-U509

[Dslete | |709 ‘\Jiomtam Bike Socks, M |S0-B909-M | O |4
[Delete | |7w ‘Mou.ntam Bike Socks, L |SD—B§09—L | O |4 ‘3
[Select | | 711 Sport-100 Helmet, Blue HL-U509-B . O .4 3
[Select | | 712 AWC Logo Cap CA-1098 O 4 3
[Dslete | |713 ‘Long—Sleeve Logo Jersey, § |LJ-0192-§ | 0 |4 ‘3
[Delete] |714 ‘Longﬁlea-e Logo Jersey, M |LI-0192-M | 0 |4 ‘3
|715 ‘ng-smm Logo Jersey, L |LJ-0192-L | 0 .|4 ‘3

Name Sporl 100 Helmet, Rad

43665 19F0-4638-8E 1 20.1865 |0.0000 20.186500

43668 |365D-4C9A-BE

2 1201865 |0.0000 140 373000
|43673 | 260F-4DCF-A1 [4 20,1865 |0.0000 | 20.746000
|43677 |8E3A-4364-99 1 |20.1865 |0.0000 |20.186500

& Internet | Protected Mode: On ®100% v

Figure 4-27. When you select a product in the first grid, the order details appear below in the

second grid.

Displaying and Updating the Data | 145

The AdventureWorks database has no order details for any of the
entries with ProductIDs below 707. The first entry with details is on
page 22 of the grid, so be sure to move to page 22 (or later) to see
product details (or click the ProductID header to see the products in
descending order). If you select a product that does not have any order
details, the second grid will not appear.

LINQ

As we mentioned earlier, most relational databases use some variant of SQL to
retrieve and manipulate data. Much of the business logic of the application is con-
tained within this SQL code—either as SQL statements passed to the database by
your web app for execution, or as calls to stored procedures on the database server.
A stored procedure is a predefined set of instructions that you can call from some-
where else in your code. Because you can dynamically build the SQL statements and
pass parameters at runtime, this is a very powerful and flexible paradigm.

However, it has its shortcomings. The first is the headache of maintaining the code.
In almost any typically complex web site, you probably want to implement most, if
not all, of the database logic in stored procedures. This means that, at best, you will
have source code in two separate locations—the file system where all your markup,
code behind, and associated files live, and the database itself, where the stored proce-
dures are. Even assuming that you have a suitable system in place for source code
management (which in itself is the topic of many books), before you can implement
features or fix bugs, you (the developer) must first determine if that piece of logic is
handled on the file system or in the database.

A second, subtle but more important shortcoming has to do with what is referred to
as the impedance mismatch between the object-oriented nature of .NET projects ver-
sus the table-oriented nature of relational data. In other words, in an object-oriented
environment such as .NET, you work with instances of classes called objects. These
classes may have properties, which describe the object, and methods, which define
actions of the object. On the other hand, databases are constructed of tables, which
contain rows and columns.

For example, you might have a class called Dog, with the properties of Breed, Color,
and Weight. It also might have methods to create a new Dog, retrieve or modify a pre-
existing Dog, and save a Dog to the database. So your code might create an instance of
a Dog, called coco, set some properties, and save the Dog to the database with code
similar to the following:

Dim coco As Dog = New Dog()

coco.Breed = "Black Lab"

coco.Color = Drawing.Color.Black

coco.Weight = 52
coco.Save()

146 | Chapter4: Savingand Retrieving Data

The Save() method would have to handle the not-so-trivial chore of converting the
object into data that the database can save. Typically, this means the object itself
would be represented by a row in a table, and the properties would be represented by
columns within that row. Likewise, when retrieving data from the database, that data
must be converted to the appropriate objects and properties for your program to
work with it.

To address these issues, the .NET Framework 3.5 introduces a new language capa-
bility called LINQ, which stands for Language Integrated Query. LINQ is now part
of all .NET 3.5 languages, including VB.NET and C#. It integrates query capability
directly into the language as a first class feature, just like .NET languages include fea-
tures such as data types, events, and conditional logic. Using LINQ, you can now
interact with your data in a truly object-oriented fashion, writing code in VB or C#
rather than in SQL.

To accomplish LINQ, several new language features have been added,
such as type inference, anonymous types, and lambda expressions,
which we are not going to cover in this book. LINQ is a big topic—it
merits its own books, as well as chapters in several other books,
including Programming .NET 3.5 by Jesse Liberty and Alex Horovitz,
Programming C# 3.0, Fifth Edition, by Jesse Liberty and Donald Xie,
and Programming Visual Basic 2008 by Tim Patrick, all published by
O’Reilly.

To go along with LINQ, VS 2008 and VWD 2008 provide some significant new
tools, including the Object Relational Designer and the LingDataSource control.

LINQ is an advanced topic for developers, and the classes it employs are well beyond
anything we use elsewhere in this book. In that sense, our discussion here goes
against the “minimal coding” promise that we made at the beginning of this book.
There’s no other way to discuss LINQ except in terms of the classes it creates, how-
ever. In addition, we feel that LINQ is an interesting technology that addresses a
couple of problems, but it’s not yet developed enough to be useful at the beginner
level. We're including it here because it’s a major part of ASP.NET 3.5 that you
should know about, but we don’t think you’re likely to use it much in its current
version.

Creating the Object Model

LINQ works with an object model, a set of classes mapped to your database. You can
create those classes manually by typing in a lot of code (IntelliSense will help), or you
can let the IDE do most of the heavy lifting by using the Object Relational Designer.
The Object Relational Designer, or O/R Designer, is a visual tool that performs two
crucial tasks.

LINQ | 147

First, it creates the classes, or entities, that represent a database. Each table is
mapped to its own class. Within that class, there will be property for each column in

the table.

The properties are strongly typed. In other words, the data type of each property
matches the data type of the corresponding column in the database table. This is
important because it provides one of the big benefits of working with LINQ. Sup-
pose the table has a column called ProductID, which is an integer (that would be an
int in Transact SQL). The corresponding property in VB would of type Integer. This
would be reflected by IntelliSense anywhere it was appropriate to use this property,
and if you attempted to assign, say, a string to this property, the IDE would immedi-
ately flag this as invalid code and it would not build.

The other important task performed by the O/R Designer is to create a DataContext,
which is an object used to send and receive data between your entities and the data-
base. In other words, the DataContext is the bridge between the LINQ object model
and the actual database. This will all become clear in a moment when we show you
an example.

Just as ASP.NET provides a SqlDataSource control to provide easy access to data
using SQL commands, it also provides a LingDataSource control to provide similar
access using LINQ. Once you have created your object model and DataContext with
the O/R Designer, the LingDataSource control can use that to be a binding source to
other controls, such as a GridView.

To see this in action, create a new web site. Call it LingDataSource. Select the
Website — Add new Item... menu command. When the Add New Item dialog box
comes up, select the LINQ to SQL Classes template. The default name will be
DataClasses.dbml. Change this to AdventureWorks.dbml, and click the Add button.
You will immediately be presented with the warning dialog box shown in
Figure 4-28. Click Yes to accept this recommendation. (We will explain this in a
moment.)

Visual Web Developer 2008 Express Edition ﬁ

. You are attempting to add a special file type (LINGQ to S5QL Classes) to
L an ASP.MET Web site. In general, to use this type of item in your site,
you should place it in the "App_Code' folder, Do you want to place the
file in the ‘App_Code' folder?

| Yes | ’ No l l Cancel

Figure 4-28. When you create a LINQ to SQL Classes file, you are prompted to place it in a
special folder. Click Yes to accept this recommendation.

148 | Chapter4: Savingand Retrieving Data

After the IDE cooks for a bit, you will see in the Solution Explorer a new folder called
App_Code as part of the web site. Within this folder will be a file called
AdventureWorks.dbml with a plus sign next to it. Clicking on that plus sign expands
it out to show two associated files also in the App_Code folder, AdventureWorks.
dbml.layout and AdventureWorks.designer.vb, as shown in Figure 4-29.

Solution Explorer =

HlalfA ok

&P CA..\LingDataSource\

E & App_Code

B ,*_{'_, AdventureWorks.dbml

----- 9 AdventureWorks.dbml.layout
! e %] AdventureWorks.designer.vb
[App_Data

|j Default.aspx

[web.config

] Solution Explarer 2 Database Explorer

Figure 4-29. After you add a LINQ to SQL Classes file, three new files will appear in an App_
Code fold.

The design surface of the IDE will now be showing the Object Relational Designer,
which contains two panes side by side. Clicking anywhere within the O/R Designer
will show the properties of the AdventureWorksDataContext (whew! that’s a mouth-
ful) in the Properties window. The IDE will now look something like that shown in
Figure 4-30.

A lot has just happened here, so let’s look at this a bit more carefully.

First, when you added the new item to the web site, the name of the template was
“LINQ To SQL Classes”. Notice it is plural, which might seem to be a typo. Remem-
ber, however, that the O/R Designer maps each individual database table to its own
class. So, in the typical case, there will be multiple classes contained in this single
item. Those classes will all be created for you in the file AdventureWorks.designer.vb.

Open this file in the IDE by double-clicking it in the Solution Explorer. A lengthy
comment at the top reminds you that this file is auto-generated and warns against
making any changes. At this point, the file contains just a small amount of boiler-
plate code, as you have not yet added any tables to the O/R Designer. The key
point to notice here is that this source code declares a class called
AdventureWorksDataContext, which inherits from System.Data.ling.DataContext:

Partial Public Class AdventureWorksDataContext
Inherits System.Data.ling.DataContext

LINQ | 149

[E] LingDataSource - Visual Web Developer 2008 Express Edition @E‘g

File Edit View Website Build Debug Tools Window Help

le-E-FH@ | % RE|-C-E-5] (G| Zip wom @ %[Ha| B -1
@ Toolbox + 3 x ,’AFP_WE-’MVE"‘WEW‘"M““]|’Defauh.§p(Start Page « 3 | Solution Explorer 3 X
= | [2_Object Relational Desi. | = 2| HE e
£ | R Pointer F 2 CA\ALingDataSource'
A = Class - [App_Code
= || & Association | B 2 AdventureWorks.dbml
| 4~ Inheritance = : %) AdventureWorks.dbml.la
= General ﬁ] AdventureWorks.design:
3 App_Data
There are no usable 2 Default.aspx
controls in this group. L4 i [web.config
Drag an item onto this
text to add it to the
to < .] r

toolbox.

Create g Solution Explo... ‘E’g Database Expl...
dragging its
Database Explors

this design surface,

om

Create data classes by dragging items from
Database Explorer or Toolbox onto this design

surface,

™ | [Properties TEX

AdventureWorksDataContext Datal ~

Generation =
Access Public

Base Class System.Data.Ling.
Context Names)

Entity Namespa 3
Inheritance Mot (Mone)

MName AdventureWorks|
Serialization Mo None B

B Data -

4 [b

Ready

Figure 4-30. After creating the LINQ to SQL Classes files, the O/R Designer will open in the IDE.

Remember, the DataContext is the bridge between the object model, or classes, and
the database. The class name is created automatically from the name you gave to the
“LINQ to SQL Classes” item you added to the web site, concatenated with
DataContext. Close this file when you’ve finished looking at it.

In Figure 4-30, the AdventureWorks.dbml file is selected in the Solution Explorer,
which displays the O/R Designer on the design surface. The Properties window
shows the properties of this object model. This reflects details of the class declara-
tion in the above code snippet.

The next question you might ask is “Why put these files into the special folder called
App_Code?”. For any class to be available to a .NET application, the class must be
compiled into a dll, or dynamic link library, and properly referenced by the applica-
tion. Fortunately, the .NET Framework and VS/VWD makes it easy to accomplish
this by accommodating two special folder names within the project. The first special
folder name is bin. Any pre-compiled dll files contained within the bin folder are
automatically referenced by the application. The second special folder is the afore-
mentioned App_Code folder. Any class source code files, typically with an extension
of .vb (for an app written with VB.NET; the equivalent extension for a C# app is .cs)
in the App_Code tolder will automatically be compiled and referenced when the
application is built.

150 | Chapter4: Savingand Retrieving Data

Along the left side of Figure 4-30, the Toolbox contains controls available to use in
the O/R Designer. You can create your own classes by dragging the Class control
onto the design surface. You can add properties to that class by right-clicking the
class and selecting Add — Property. You can also create relationships between classes
with the Association and Inheritance controls. We will not be using these controls
in this book, although they can be very useful in more advanced scenarios.

With the O/R Designer open, you are ready to start building your object model from
the database. Open the Database Explorer (Server Explorer in Visual Studio). You
should already have a Data Connection to the AdventureWorks database from the
previous examples in this chapter. If not, right-click on Data Connections and click
Add Connection.... Follow the steps outlined in Figure 4-5 to create the connection.

Expand the connection to the AdventureWorks database by clicking on the plus sign
next to it. Then, expand the list of tables by clicking the plus sign next to Tables. Scroll
down to find the Product table and drag that table onto the left pane of the O/R
Designer. The screen should like something like Figure 4-31.

[] LingDataSource - Visual Web Developer 2008 Express Edition [=E] %
File Edit View Website Build Debug Tools Window Help
(- S S ERB9-0-F-5 b G| enor =2y u @ @] 5=k He | T -0
|| Toolbox ot | —— ‘App_Code/AdventureWorks.dbmi" | Defaultaspi| = x | Database Explorer ~Ix
= || = Object Relational Desi.. = El 4|8
2] - [BillOfMaterials (Productic &
2 || B Clss [Culture (Production)
= | € Association Product @ [=1 Document (Praduction)
21 4 Inheritance - [Dlustration (Production)
£ General E Properties : g Location (Production) |&
| [Product (Production)
There are no usable }g :::KHD T - [ProductCategory (Produs
controls in this group. = producthiumber [ProductCostHistory (Proc
Drag an item onto this @~ [ProductDescription (Proc
teiicadd i the & Makeriag [ProductDocument (Prodi
toolbox. = FinishedGoadsFlag
[[Productinventory (Produ
;ﬁ Color - 1 ProductlistPriceHistory (
EF SafetyStocklevel - [ProductMode! (Productic ~
ZF ReorderPoint o =] =
2 StandardCost EgSoltion Explorer| 2 Databsse Explorer | |
B ListPrice
R Size Broperties X
[SizeUnitMeasureCode Product Data Class =
=} WeightUnitMeasureC
2 Weight
P DaysToManufacture tio
= ProductLine Access Public
B Class Inheritance Madifie (None)
5 Syle Name Product
B ProductSubcategorylD = Data
PR ProductModellD Source Production.Product
2 SellStartDate = Default Methods
' SellEndDate Delste Use Runtime
7 DiscontinuedDate Insert Use Runtime
5 rowguid Update Use Runtime
' ModifiedDate
« i] v
Ready

Figure 4-31. Drag a table from the Database Explorer onto the O/R Designer to create a class
representing that table.

While you’re at it, drag a few more tables onto the O/R Designer so you can get a
better idea of how the tool creates the classes. Drag the ProductInventory and
Location tables from the Database Explorer onto the design surface. Once they are

LINQ | 151

on the surface, you can drag them around with the mouse to reposition them for bet-
ter viewing. The design surface will now look similar to Figure 4-32.

AppﬁCudE/Advent...mks.d5|"ner.vb)rAPP_mefM"‘?m'"ew"rMh"‘ r‘}/DEfauh.as"u rStarl Pagel - X
-
rPl'bdl.ld -\
= Properties
35 ProductlD 1S

= Name Productinventory = E

B ProductNumber

B MakeFlag & Properties

5 FinishedGoodsFlag 7EF ProductD

ﬁ Coler > '?ﬁ LecationID

B SafetyStockLevel 2 Shelf

B ReorderPoint = Bin L

B StandardCost = Quantity

= ListPrice B rowguid

 Size EF ModifiedDate Create methods by dragging

B SizelnitMeasureCode . < items fr c':r %m

B WeightUnitMeasureC.. onto this design surface,

B Weight T

ey DaysToManufacture s =

B Productline Location

7 Class

ey Style = Properties

= ProductSubcategorylD i PEP LocationlD L

B ProductModellD P Name

B SellStartDate R CostRate

B SellEndDate B Availability

' DiscontinuedDate %7 ModifiedDate

) rowguid s

B ModifiedDate

4 [I] 3

Figure 4-32. After you drag multiple tables onto the O/R Designer from the Database Server, you
can see the relationships between the tables.

Because the database defined relationships between these tables, those relationships
are reflected in the visual data model. More importantly, those relationships are now
reflected in the underlying classes created by the tool.

We are not going to go into great detail about the underlying files, but it is very
instructive to see how they are constructed. The .dbml file is an XML file which con-
tains the structure of the tables in the O/R Designer. Normally, double-clicking this
file opens up the visual designer, as shown in Figures 4-31 and 4-32. To see the
actual XML code, close the visual designer, right-click on the .dbml file, select Open
With..., and select XML Editor. You will see that the XML defines a <Table> ele-
ment for each table. Within each <Table> element are a number of <Column> ele-
ments. Also, if there are any relationships with other tables, they are also defined
within the <Table> element as <Association> elements.

152 | Chapter4: Savingand Retrieving Data

The .layout file is used by the tool to keep track of the visual location and other
design aspects of each table on the design surface. It does not have any real bearing
on the object model or its underlying classes.

The .vb file contains the real meat. We looked at this file briefly above to see that it
included the class declaration. If you open it now, having added tables with relation-
ships, you will see there is a lot more to it. There is a lot of boilerplate code, which
makes it easy to get lost, but essentially, this file defines three classes associated
within the AdventureWorksDataContext class, one for each of the tables. Within each
of these classes, there is a public property for each column in the table. You can see
that each property has the same data type as the corresponding column in the table.

Save all these files and close them.

Using the Object Model

Now that you have an object model created, let’s use it with a LingDataSource con-
trol to display data in a Gridview. Switch to Design view of Default.aspx. Drag two
controls onto the page from the Data section of the Toolbox—a LingDataSource and
a GridView.

Select the LingDataSource control, click on the Smart Tag, and select Configure Data
Source.... This will bring up the Configure Data Source wizard, which is very simi-
lar to the wizard you saw earlier in this chapter used for configuring a SqlDataSource
control. The first step in the wizard asks you to specify the context object, as shown
in Figure 4-33.

All the available DataContext objects are available to choose from in the drop-down.
In this case, there is only one, the AdventureWorksDataContext you created above, so
click Next.

The next step asks you to select the table and fields, as shown in Figure 4-34.

Just as you did with the SqlDataSource back in Figure 4-8, select the Products table
and the ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel and
ReorderPoint columns. Then, click the Finish button.

Next, select the GridView, click on the Smart Tag, and then Choose Data Source. You
will see that one of the available data sources is LingDataSource1, the LingDataSource
control you just configured. Select that.

Immediately, the Gridview will redraw in Design view to show the columns you have
configured the data source to return.

While the Smart Tag is open, check the Enable Paging and Enable Sorting check-
boxes, then run the page. You will see something identical to Figure 4-13, with pag-
ing and sorting fully implemented, except it is based on the LingDataSource rather
than the SqlDataSource.

LNQ | 153

Configure Data Source - LingDataSourcel Iilg

,.I Choose a Context Object

Select a context object that can be used to retrieve or update data.

Show only DataContext objects

Lhoose your context object:

[AdventureWorksDataContext x

Figure 4-33. The first step in the Configure Data Source wizard for a LingDataSource asks you to
select a DataContext object.

So, what is the difference between the two data sources, as the end result in these
examples is identical? As we mentioned above, LINQ is a language feature that
allows you to construct database queries directly in your language of choice, rather
than using SQL. Back in Example 4-1, you saw the markup generated by the
SglDataSource control. It included a ConnectionString and a SelectCommand. The lat-
ter consists of this SQL statement:

SELECT ProductID, Name, ProductNumber, MakeFlag, SafetyStocklLevel, ReorderPoint
FROM Production.Product

If you look at Default.aspx in Source view, you will see the following markup for the
LingDataSource control:

<asp:LingDataSource ID="LingDataSourcel" runat="server"
ContextTypeName="AdventureWorksDataContext"
Select="new (ProductID, Name, ProductNumber, MakeFlag, SafetyStocklevel,
ReorderPoint)"
TableName="Products">
</asp:LingDataSource>

Instead of a ConnectionString attribute pointing to a database, it has a
ContextTypeName attribute specifying the DataContext class you created with the O/R

154 | Chapter4: Savingand Retrieving Data

Configure Data Source - LingDataSourcel m

Configure Data Selection

Table:

[Producr_s (Table<Product=) v]

GroupBy:

[[None] vJ

Select:

- |:| Productline [rowguid
ProductlD [F] StandardCost [F] Class [F] ModifiedDate

Mame [ListPrice [F] Style [ProductInventories OrderBy...
ProductNumber [Size [] ProductSubcategor

MakeFlag [SizeUnitMeasureCo["] ProductModellD Advanced
|| FinishedGoodsFlag[~] WeightUnitMeasun|| SellStartDate

[Color [Weight [] SellEndDate

SafetyStockLevel [T DaysToManufactur[| DiscontinuedDate

Figure 4-34. The next step in the wizard asks you to select a table and fields to display.

Designer. Instead of a SelectCommand attribute with a SQL statement, it has a Select
attribute with a LINQ statement for selecting properties from the table class speci-
fied in the TableName attribute.

Just to reiterate the point that LINQ is a language feature, you could omit the
LingDataSource control from the page entirely and just construct your query directly
in the VB code-behind.

To see this, add another Gridview control to the page, which will be called Gridview2.
Do not choose a data source for this second Gridview. Open the code-behind for the
page and create a Page_Load method by selecting (Page Events) from the Class Name
drop-down at the upper left of the editing surface and Load from the right drop-
down. Then enter the highlighted code from Example 4-5.

Example 4-5. Page_Load for databinding a GridView using LINQ statements
Protected Sub Page Load(ByVal sender As Object, _
Byval e As System.EventArgs) Handles Me.load
If Not IsPostBack then
Dim dataContext As New AdventureWorksDataContext()
Dim products = From p In dataContext.Products _
Order By p.Name _
Select p.ProductID, p.Name, p.ProductNumber, p.MakeFlag, _
p.SafetyStockLevel, p.ReorderPoint

LNQ | 155

Example 4-5. Page_Load for databinding a GridView using LINQ statements (continued)
GridView2.DataSource = products
GridView2.DataBind()

End If

End Sub

Now when you run the page, you see that both grids display the same data. How-
ever, the second grid displays the columns in a different order, and it does not have
paging and sorting enabled. You can fix the order of the columns by changing the
markup for Gridview2 to set the AutoGenerateColumns attribute to False (the default is
True) and add the same BoundField column declarations, as shown in the highlighted

code in Example 4-6.

Example 4-6. Markup for Default.aspx with two GridView controls, one populated from a
LingDataSource and one from the code-behind
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"

Inheri

ts=" Default" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">

<title

</head>
<body>

<form
<div>
<as

</a
</div>

>Untitled Page</title>

id="form1" runat="server">

p:LingDataSource ID="LingDataSource1l" runat="server"

ContextTypeName="AdventureWorksDataContext"

Select="new (ProductID, Name, ProductNumber, MakeFlag, SafetyStocklevel,
ReorderPoint)"

TableName="Products">

sp:LingDataSource>

<asp:Cridview ID="GridView1" runat="server" AllowPaging="True" AllowSorting="True"

Aut

oGenerateColumns="False" DataSourceID="LingDataSource1">

<Columns>

<asp:BoundField DataField="ProductID" HeaderText="ProductID"
ReadOnly="True" SortExpression="ProductID" />

<asp:BoundField DataField="Name" HeaderText="Name" ReadOnly="True"
SortExpression="Name" />

<asp:BoundField DataField="ProductNumber" HeaderText="ProductNumber"
ReadOnly="True" SortExpression="ProductNumber" />

<asp:CheckBoxField DataField="MakeFlag" HeaderText="MakeFlag"
ReadOnly="True" SortExpression="MakeFlag" />

<asp:BoundField DataField="SafetyStocklLevel" HeaderText="SafetyStockLevel"
ReadOnly="True" SortExpression="SafetyStocklLevel" />

<asp:BoundField DataField="ReorderPoint" HeaderText="ReorderPoint"
ReadOnly="True" SortExpression="ReorderPoint" />

</Columns>

</asp:

Gridview>

156

| Chapter4: Savingand Retrieving Data

Example 4-6. Markup for Default.aspx with two GridView controls, one populated from a
LingDataSource and one from the code-behind (continued)
<asp:GridView ID="GridView2" runat="server" AutoGenerateColumns="False">
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
ReadOnly="True" />
<asp:BoundField DataField="Name" HeaderText="Name" ReadOnly="True" />
<asp:BoundField DataField="ProductNumber" HeaderText="ProductNumber"
ReadOnly="True" />
<asp:CheckBoxField DataField="MakeFlag" HeaderText="MakeFlag"
ReadOnly="True" />
<asp:BoundField DataField="SafetyStockLevel" HeaderText="SafetyStockLevel"
ReadOnly="True" />
<asp:BoundField DataField="ReorderPoint" HeaderText="ReorderPoint"
ReadOnly="True" />
</Columns>
</asp:Gridview>
</form>
</body>
</html>

Notice that Gridview2 does not have paging and sorting enabled, and the
BoundColumns do not have a SortExpression specified. You could set the AllowPaging
and AllowSorting attributes and include the SortExpressions in the Column declara-
tions. If you did that, Gridview2 would appear to support paging and sorting, but an
error would result when you tried to actually page or sort the grid. This is because
the LingDataSource automatically handles those chores for you. If you are binding
directly from your code-behind without benefit of the LingDataSource control, then
you must write your own code to handle the paging and sorting events. This is not
terribly difficult, but it is a bit beyond the scope of this book.

Editing Data in LINQ

The LingDataSource control can also work with the Gridview to easily allow for edit-
ing of your data, as long as the data source is configured to return all the columns of
the table. The Gridview does not have to display all the columns, but the
LingDataSource must select all the columns.

To see this, create a new web site called LingDataSourceEditing. Just as you did in
the previous example, add a LINQ to SQL Classes item to the web site and call it
AdventureWorks. Allow it to be placed in the App_Code folder. Open the Database
Explorer (Server Explorer in VS) and drag the Product table onto the left side of the
O/R Designer.

Then, open the page, Default.aspx, in Source or Design view, and drag a
LingDataSource control and a GridView control onto the page from the Data section
of the Toolbox. In Design view, open the Smart Tag of the LingDataSource control
and click on Configure Data Source.... As before, verify that AdventureWorksData-
Context is chosen and click Next.

LINQ | 157

By default, the only table available, Products, should already be selected and the first
column checkbox with an asterisk in it (to select all the fields) should be checked, as
shown in Figure 4-35.

If no tables or fields are visible in the dialog, Cancel the dialog and
click Build — Build Website to build the web site. Then try again.

Configure Data Source - LingDataSourcel @lﬂ

Configure Data Selection

Table:

[Products (Table<Product>) vl

GroupBy:

[[None] v]

Select:

* [F] ReorderPoint [Productline [rowguid
[ProductlD [StandardCost [E] Class [F] ModifiedDate

[] Name | ListPrice [F] Style OrderBy...

[F] Producthlumber [] Size [ProductSubcategor

[F] MakeFlag [SizeUnitMeasureCol| ProductModellD
[T FinishedGoodsFlag [7] WeightUnitMeasur(] SellStartDate

[F] Color [] Weight [SellEndDate

[SafetyStockLevel [DaysToManufactur[”| DiscontinuedDate

MNeat = Finish I [Cancel

Figure 4-35. To select all the fields of a table, check the asterisk.

Click on the Advanced button to get the options shown in Figure 4-36.

Check all three checkboxes, then click OK, and then Finish. The Smart Tag for the
control will now show checkboxes, all checked, for enabling Deletes, Inserts, and
Updates, as shown in Figure 4-37.

If you look at the declaration for the LingDataSource control in Source view, you will
see the code in Example 4-7.

158 | Chapter4: Savingand Retrieving Data

Advanced Options M

The data source can automatically insert, update, and delete data.

Enable the LingDataSource to perform automatic deletes
Enable the LingDataSource to perform automatic inserts

Enable the LingDataSource to perform automatic updates

oK] [Cancel

Figure 4-36. When configuring the LingDataSource, clicking on the Advanced button allows you
to configure advanced options.

. Defaultaspx* | App_Code/AdventureWorks.dbml | Start Page | ¥
| asp:lingdatasource#LingDataSourcel | -

LingDataSource - LingDataSourcel *| LingDataSource Tasks

Configure Data Source...

Refresh Schema

Column0 Column] Column?2|
abc abc abc
abc abc abc
abc :abc abc
abc labc abc Enable Update

abc abc abc Add Bdender...

Enable Delete
Enable Insert

Figure 4-37. After configuring the LingDataSource, you can enable Deletes, Inserts, and Updates.

Example 4-7. Declaration for a LingDataSource which enables editing
<asp:LingDataSource ID="LingDataSourcel" runat="server"
ContextTypeName="AdventureWorksDataContext" EnableDelete="True"
EnableInsert="True" EnableUpdate="True" TableName="Products">
</asp:LingDataSource>

If you compare this with the equivalent declaration in Example 4-6, you will see that
not only does this have attributes to enable Deletes, Inserts, and Updates, but it does
not have a Select attribute returning specific columns, so all the columns are
returned from the database.

LNQ | 159

Now, click on the Smart Tag for the Gridview. Choose the DataSource to be
LingDataSourcel. The Gridview will immediately redraw with every column in the
table, which is more than we want to display.

There are two ways to trim the unwanted fields. The UI way is to click on Edit Col-
umns in the Smart Tag, to get the Fields editor, which you saw back in Figure 4-14.
You can delete the unwanted fields by selecting them, one at a time, from the list box
in the lower left corner of the dialog and clicking the red X button.

The easy way to get rid of the unwanted fields is to switch into Source view and just
delete the undesired BoundField declarations from within the Columns element. So do
that, removing all the BoundField declarations except for the ProductID, Name,
ProductNumber, MakeFlag, SafetyStockLevel, and ReorderPoint columns, so that it
will match the previous example.

Now, one last step: go back to the Smart Tag for the GridView. It will now have two
new checkboxes in addition to the checkboxes you saw previously—Enable Editing
and Enable Deleting. Check those, as shown in Figure 4-38.

GridView Tasks
Auto Format...

Choose Data Source: | LingDataSourcel E“

Configure Data Source...
Refresh Schema

Edit Columns...
Add Mew Column...
Move Column Left
Move Column Right
Remove Column
Enable Paging
Enable Sorting

Enable Editing

Enable Deleting
[7] Enable Selection

Add Bdender...

Edit Templates

Figure 4-38. The GridView Smart Tag now enables editing and deleting.

Run the web site. You will get a grid that is functionally equivalent to that shown
back in Figure 4-19, which you created with a SqlDataSource. The difference in
appearance is only because we formatted that earlier grid and did not bother to do so
with this latest example.

160 | Chapter4: Savingand Retrieving Data

; Just as you saw with the SqlDataSource example earlier in the chapter,
if you try to delete a record from the Products table, you will get a
database error caused by the fact that there are other tables with
dependencies on the Products table. If you were allowed to delete
products, it would leave orphan records in other tables. To deal with
this, you would construct custom queries that first deleted the depen-
dent records, then delete the product record. However, this is beyond
the scope of this book.

ASP.NET Dynamic Data

Dynamic Data is a new feature of ASP.NET 3.5, introduced in Service Pack 1. It
allows you to create a fully functional website implementing the four CRUD opera-
tions—Create, Read, Update, and Delete—with very little effort and virtually no
handcoding. Depending on the requirements of the site you are building, this may
save a lot of development effort.

The most obvious benefit of Dynamic Data is that it makes it easy and very fast to
create a web site that lets users display and edit data, as seen in the example in this
section. But Dynamic Data is more fundamentally about linking the presentation
layer (how users view and work with data in web pages) with the data model (how
the data is managed and stored).

In data-based applications, the database defines the type of data that can be store—
for example, it defines whether a column consists of text, numbers, or dates, and it
defines information such as how many characters a column value can contain. In
addition, it defines how the data in one table relates to data in another table (that is,
what relationships the tables have).

In most web sites that work with data, much of this information about the data has
to be duplicated in the web site code. What data should be displayed in this page?
How should the data be formatted? How can users edit this data? How should user
input be validated? How does the data in a page work with related data in another
page? These are all questions that web developers traditionally have to think about
and to solve in web page after web page, and all by adding controls or code by hand
to each individual page. The database already understands the data that it contains,
yet the same information must be recoded in the web application by the web site
developer.

To eliminate this type of redundancy, Dynamic Data makes the presentation layer
“smart.” Web pages can infer information about the data from the data layer at run-
time—that is, dynamically. The result is the behavior that you see in this section. For
example, web pages can automatically display data appropriately. Boolean data (true/
false) is automatically displayed by using a check box, foreign keys are automatically
displayed so that they link to related tables, and so on. Similarly, when a web page lets
users edit or insert data, Dynamic Data infers the appropriate validation tests, based

ASP.NET DynamicData | 161

directly on what the database allows. This ability to infer information and behavior
from the data is sometimes referred to as scaffolding, and pages that can take advan-
tage of this behavior are sometimes referred to as scaffolded pages.

Because every application is different, Dynamic Data is built so that you can custom-
ize its built-in behavior. And if that isn’t sufficient, you can extend Dynamic Data to
include new ways of interacting with data. Dynamic Data is a new feature of ASP.NET
(in fact, it is still being developed), so the full potential of the feature has not yet been
explored. But it has great promise, as we show you here.

This feature builds on the Object Relational Designer that you saw with LINQ, and
the object model (data model) that it creates for you. It combines the object model
with the extensive use of templates to produce fully editable pages representing any
or all of the tables in your database, including all of the relationships between the
tables.

Templates are controls or pages that define how users can interact with data. Field
templates are used to define the look and behavior of individual data types from the
data model. For example, a Text field template defines how string data is displayed;
a TextEdit field template defines how users can edit and insert string data. Addi-
tional field templates are available for Boolean data, date/time data, and so on, and
for displaying and working with foreign keys. Page templates define how sets of data
(or tables) are displayed. There are page templates for simply listing data, for display-
ing master/detail data, for presenting editable data, and so on. Dynamic Data uses
these templates automatically to display whatever data you are working with.

Dynamic Data is a big and complex topic, especially when you begin to customize
how things are presented. We will present here a very simple example just to give
you a feel for what is possible.

In VS/VWD, create a new web site. In the New Web Site dialog box, select the
Dynamic Data Web Site template. Call the new web site DynamicAdventureWorks.

In the Solution Explorer, you will see a folder in the web site called DynamicData,
which contains four subfolders that contain the templates. These are shown, some-
what expanded, in Figure 4-39.

Re-create the object model used in the two previous LINQ examples, adding the Prod-
uct, ProductInventory, and Location tables to the object model. Recall from the discus-
sion above that the O/R Designer will create a class called AdventureWorksDataContext.
You will refer to this class in a moment.

Now comes the only coding you must do. Among the other files created for you by
the IDE when creating a Dynamic Data web site is one called global.asax in the main
folder of the web site. Double-click on this file in the Solution Explorer to open that
file in the editor.

162 | Chapter4: Savingand Retrieving Data

[——————————
Solution Explorer - C\...\Dynamic... [E]

| 2]l B @

|_:_| | DynamicData]
- C3 Content

B Cd CustomPages

2 [FieldTemplates

- Boolean.ascx

- Boolean_Edit.ascx
- Children.ascx

- DateTime.ascx
- DateTime_Edit.asc
- Decimal_Edit.ascx
Fl-- ForeignKey.ascx
- ForeignKey_Edit.as
- Integer_Edit.ascx
- Text.ascx

H- (@) Text_Edit.ascx

i |82 TextArea_Edit.ascx
2 [PageTemplates

o T e OO OO O e OO e OO s OO e OO g OO e OO e OO |

i [E] Details.aspx
- |E| Edit.aspx
i [Z] Insert.aspx
H

H

Z| List.aspx
| ListDetails.aspx ~ —
..... 2 web.canfig

- [E] Default.aspx

..... 4] Global.asax T4
< 1 [

i Solution Expl.. Za Database Ex...

o TN e OO O o O

Figure 4-39. A Dynamic Data web site has a folder called DynamicData which contains all the
templates.

The first method in global.asax is called RegisterRoutes, which initially looks like

Example 4-8.

Example 4-8. The original global.asax before, you make any edits
Public Shared Sub RegisterRoutes(Byval routes As RouteCollection)
Dim model As New MetaModel

' IMPORTANT: DATA MODEL REGISTRATION

Uncomment this line to register LINQ to SOL classes or an ADO.NET Entity Data
model for ASP.NET Dynamic Data. Set ScaffoldAllTables = true only if you are sure
that you want all tables in the data model to support a scaffold (i.e. templates)
view. To control scaffolding for individual tables, create a partial class for
the table and apply the [Scaffold(true)] attribute to the partial class.

-

ASP.NET DynamicData |

163

Example 4-8. The original global.asax before, you make any edits (continued)
' Note: Make sure that you change "YourDataContextType" to the name of the data
' context class in your application.
model.RegisterContext(GetType(YourDataContextType), New ContextConfiguration() _
With {.ScaffoldAllTables = False})

The following statement supports separate-page mode, where the List, Detail, Insert,
and Update tasks are performed by using separate pages. To enable this mode,

' uncomment the following route definition, and comment out the route definitions

' in the combined-page mode section that follows.

routes.Add(New DynamicDataRoute("{table}/{action}.aspx") With { _

.Constraints = New RouteValueDictionary(New With {.Action = _
"List|Details|Edit|Insert"}), _

.Model = model})

The following statements support combined-page mode, where the List, Detail, Insert,
and Update tasks are performed by using the same page. To enable this mode,

' uncomment the following routes and comment out the route definition in the

' separate-page mode section above.

"routes.Add(New DynamicDataRoute("{table}/ListDetails.aspx") With { _

.Action = PageAction.List,

.ViewName = "ListDetails", _

' .Model = model})

'routes.Add(New DynamicDataRoute("{table}/ListDetails.aspx") With { _
' .Action = PageAction.Details,
.ViewName = "ListDetails", _
' .Model = model})
End Sub

You are going to modify one line in global.asax, the highlighted line in Example 4-8.
In the original, this is actually a single, long commented line, but you are going to
uncomment it in a moment, so we inserted a line continuation character to prepare it
to wrap for readability.

Uncomment this highlighted line and make two edits. First, replace
YourDataContextType with AdventureWorksDataContext. Second, change the value of
ScaffoldAllTables from False to True. (Scaffolding is disabled by default because it
adds some overhead to the web site, so you only want to enable it when you want to
use Dynamic Data with all pages in the web site.) The line should now look like the
following:

model.RegisterContext (GetType(AdventureWorksDataContext),

New ContextConfiguration() With {.ScaffoldAllTables = True})

That’s it. In Solution Explorer, right-click Default.aspx, and then click View in
Browser. You will get a page like that shown in Figure 4-40.

164 | Chapter4: Savingand Retrieving Data

‘E ijnamk Data Site - Windows Internet E{pimer EIN

o N
{(_J{) = |&] nttp://iocalnost49292/Dynamicdve = | 43 | x || Live Search 2 -
% 4o | @ Dynamic Dtasie | | B v B - 8 - lbege v (Toos~

-

DYNAMIC DATA SITE

& Back to home page

My tables

Table Name
Locations
Productinventories

Products

Done €D Internet | Protected Mode: On H100% -

Figure 4-40. This Dynamic Data web site was created from templates with virtually no
handcoding.

There are links for each of the tables you put in your object model. Clicking on any
of these links brings up the data for that table, as shown in Figure 4-41.

Each page automatically includes a huge amount of functionality. Drop-downs at the
top of the page allow you to filter the records displayed. You can click on any col-
umn heading to sort the table by that column. The first column includes links for
editing, deleting, or selecting the row. Clicking on the Edit link allows you to edit the
row with appropriate controls for the type of data (a TextBox for text data, for exam-
ple, or a CheckBox for a Boolean data), and then either accept or cancel the edits. The
Delete link deletes the row, and the Details link displays details about the row on a
separate page. Also, not visible in this figure, the bottom of the grid has links for pag-
ing through the data. Links are also provided to rows in related tables, although they
are also not shown in this figure.

All of this is totally customizable and extendable by editing the template files in the
DynamicData folder.

ASP.NET DynamicData | 165

' « | £] hitp://localhost49202/DynamicAdy ~ | 43 | X || Live Search 2 -
e I@Products [_| - v s v |k Page v { Tools » =

-

DYNAMIC DATA SITE

@& Back to home page

Products

MakeFlag Al ~ FinishedGoodsFlag Al -

Name ProductNumber MakeFlag FinishedGoodsFlag C

Edit Delete Select AdJUStable | \p gogy O il
Race
; Bearing -
Edit Delete Select Ball BA-8327 | [l
£k Dt S B B‘?‘“ BE-2349 | O
Bearing
Headset
Edit Delete Select Ball BE-2908 1]
Bearings
« i |
& Internet | Protected Mode: On #100% -

Figure 4-41. The dynamically generated page for the Products table showing command links in
the first column to Edit, Delete, or Select a row, and filter drop-downs for all the Boolean fields.

Source Code Listings

The complete markup for the Default.aspx file in the AWProductData site is shown
in Example 4-9, with the code-behind shown directly after in Example 4-10.

Example 4-9. Default.aspx for AWProductData

<@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits=" Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head runat="server">

166 | Chapter4: Savingand Retrieving Data

Example 4-9. Default.aspx for AWProductData (continued)
<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

<div>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>
<asp:SglDataSource ID="SqlDataSource1" runat="server"
ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"

SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [MakeFlag],
[SafetyStockLevel], [ReorderPoint] FROM [Production].[Product]”

DeleteCommand="DELETE FROM [Production].[Product]

WHERE [ProductID] = @ProductID"

InsertCommand="INSERT INTO [Production].[Product] ([Name], [ProductNumber],
[MakeFlag], [SafetyStocklLevel], [ReorderPoint])

VALUES (@Name, @ProductNumber, @MakeFlag, @SafetyStockLevel,
@ReorderPoint)"

UpdateCommand="UPDATE [Production].[Product] SET [Name] = @Name,
[ProductNumber] = @ProductNumber, [MakeFlag] = @MakeFlag,
[SafetyStockLevel] = @SafetyStockLevel, [ReorderPoint] = @ReorderPoint
WHERE [ProductID] = @ProductID" >

<DeleteParameters>
<asp:Parameter Name="ProductID" Type="Int32" />

</DeleteParameters>

<UpdateParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="ProductNumber" Type="String" />
<asp:Parameter Name="MakeFlag" Type="Boolean" />
<asp:Parameter Name="SafetyStockLevel" Type="Int16" />
<asp:Parameter Name="ReorderPoint" Type="Int16" />
<asp:Parameter Name="ProductID" Type="Int32" />

</UpdateParameters>

<InsertParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="ProductNumber" Type="String" />
<asp:Parameter Name="MakeFlag" Type="Boolean" />
<asp:Parameter Name="SafetyStockLevel" Type="Int16" />
<asp:Parameter Name="ReorderPoint" Type="Int16" />

</InsertParameters>

</asp:SqlDataSource>
<asp:Cridview ID="GridView1" runat="server" AllowPaging="True"

AllowSorting="True" AutoCenerateColumns="False"

DatakKeyNames="ProductID" DataSourceID="SqlDataSource1"

BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"

BorderWidth="1px" CellPadding="3" CellSpacing="2">

<FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />

<RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />

<Columns>
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True"

Source Code Listings | 167

Example 4-9. Default.aspx for AWProductData (continued)
ButtonType="Button" ShowSelectButton="True" />
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
InsertVisible="False"
ReadOnly="True" SortExpression="ProductID" />
<asp:BoundField DataField="Name" HeaderText="Name"
SortExpression="Name" />
<asp:BoundField DataField="ProductNumber"
HeaderText="ProductNumber" SortExpression="ProductNumber" />
<asp:CheckBoxField DataField="MakeFlag"
HeaderText="MakeFlag" SortExpression="MakeFlag" />
<asp:BoundField DataField="SafetyStockLevel"
HeaderText="SafetyStocklLevel" SortExpression="SafetyStockLevel" />
<asp:BoundField DataField="ReorderPoint"
HeaderText="ReorderPoint" SortExpression="ReorderPoint" />
</Columns>
<PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
<SelectedRowStyle BackColor="#738A9C" Font-Bold="True" ForeColor="White" />
<HeaderStyle BackColor="#A55129" Font-Bold="True" ForeColor="White" />
</asp:Gridview>
<asp:lLabel ID="Label1" runat="server" Text="Name"></asp:Label>
<asp:TextBox ID="txtName" runat="server" ReadOnly="True"></asp:TextBox>
</ContentTemplate>
</asp:UpdatePanel>
</div>
</form>
</body>
</html>

Example 4-10. Default.aspx.vb for AWProductData

Partial Class Default
Inherits System.Web.UI.Page

Protected Sub Gridviewl RowDataBound(ByVal sender As Object, _
Byval e As System.Web.UI.WebControls.CridvViewRowEventArgs)
Handles GridViewl.RowDataBound
If e.Row.RowType = DataControlRowType.DataRow Then
Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber column
If cellProductNumber.Text.Substring(0, 2) = "CA" Then
cellProductNumber.ForeColor = Drawing.Color.Creen
End If

Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
If cb.Checked Then
e.Row.Cells(2).ForeColor = Drawing.Color.Red
End If
End If

End Sub

Protected Sub Gridviewl SelectedIndexChanged(ByVal sender As Object,

168 | Chapter4: Savingand Retrieving Data

Example 4-10. Default.aspx.vb for AWProductData (continued)
ByVal e As System.EventArgs) _
Handles GridView1.SelectedIndexChanged
If CridViewl.SelectedRow.RowType = DataControlRowType.DataRow Then
Dim cellName As TableCell = GridViewil.SelectedRow.Cells(2) ' Name column
txtName.Text = cellName.Text
End If
End Sub
End Class

The complete markup for the Default.aspx file in the AWProductDataOrderDetails
site is shown in Example 4-11, and the code-behind is shown in Example 4-12.

Example 4-11. Default.aspx for AWProductDataOrderDetails
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_
Default" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<div>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<asp:SglDataSource ID="SqlDataSource1" runat="server"

ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>

SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [MakeFlag],
[SafetyStockLevel], [ReorderPoint] FROM [Production].[Product]”

DeleteCommand="DELETE FROM [Production].[Product]

WHERE [ProductID] = @ProductID"

InsertCommand="INSERT INTO [Production].[Product] ([Name],
[ProductNumber], [MakeFlag], [SafetyStocklLevel], [ReorderPoint])
VALUES (@Name, @ProductNumber, @MakeFlag, @SafetyStockLevel,
@ReorderPoint)"

UpdateCommand="UPDATE [Production].[Product] SET [Name] = @Name,
[ProductNumber] = @ProductNumber, [MakeFlag] = @MakeFlag,
[SafetyStockLevel] = @SafetyStockLevel, [ReorderPoint] = @ReorderPoint
WHERE [ProductID] = @ProductID">

<DeleteParameters>
<asp:Parameter Name="ProductID" Type="Int32" />

</DeleteParameters>

<UpdateParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="ProductNumber" Type="String" />
<asp:Parameter Name="MakeFlag" Type="Boolean" />
<asp:Parameter Name="SafetyStockLevel" Type="Int16" />
<asp:Parameter Name="ReorderPoint" Type="Int16" />

Source Code Listings | 169

Example 4-11. Default.aspx for AWProductDataOrderDetails (continued)

<asp:Parameter Name="ProductID" Type="Int32" />
</UpdateParameters>
<InsertParameters>
<asp:Parameter Name="Name" Type="String" />
<asp:Parameter Name="ProductNumber" Type="String" />
<asp:Parameter Name="MakeFlag" Type="Boolean" />
<asp:Parameter Name="SafetyStockLevel" Type="Int16" />
<asp:Parameter Name="ReorderPoint" Type="Int16" />
</InsertParameters>
</asp:SqlDataSource>
<asp:GridView ID="GridView1" runat="server"
AllowPaging="True" AllowSorting="True"
AutoGenerateColumns="False"
DatakeyNames="ProductID" DataSourceID="SqlDataSource1"
BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
BorderWidth="1px" CellPadding="3" CellSpacing="2">
<FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
<RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
<Columns>
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
ButtonType="Button" ShowSelectButton="True" />
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
InsertVisible="False"
ReadOnly="True" SortExpression="ProductID" />
<asp:BoundField DataField="Name" HeaderText="Name"
SortExpression="Name" />
<asp:BoundField DataField="ProductNumber" HeaderText="ProductNumber"
SortExpression="ProductNumber" />
<asp:CheckBoxField DataField="MakeFlag" HeaderText="MakeFlag"
SortExpression="MakeFlag" />
<asp:BoundField DataField="SafetyStocklLevel"
HeaderText="SafetyStockLevel" SortExpression="SafetyStockLevel" />
<asp:BoundField DataField="ReorderPoint" HeaderText="ReorderPoint"
SortExpression="ReorderPoint" />
</Columns>
<PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
<SelectedRowStyle BackColor="#738A9C" Font-Bold="True" ForeColor="White"
<HeaderStyle BackColor="#A55129" Font-Bold="True" ForeColor="White" />
</asp:CridView>
<asp:Label ID="Label1" runat="server" Text="Name"></asp:Label>
<asp:TextBox ID="txtName" runat="server" ReadOnly="True"></asp:TextBox>

<asp:Gridview ID="CridView2" runat="server"
DataSourceID="AdventureWorksOrderDetails"
BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
BorderWidth="1px"
CellPadding="3" CellSpacing="2">
<FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
<RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
<PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
<SelectedRowStyle BackColor="#738A9C" Font-Bold="True" ForeColor="White"
<HeaderStyle BackColor="#A55129" Font-Bold="True" ForeColor="White" />

/>

/>

170

Chapter4: Saving and Retrieving Data

Example 4-11. Default.aspx for AWProductDataOrderDetails (continued)
</asp:Gridview>
<asp:SqglDataSource ID="AdventureWorksOrderDetails" runat="server"

ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
SelectCommand="SELECT [SalesOrderID], [CarrierTrackingNumber], [OrderQty],

[UnitPrice], [UnitPriceDiscount], [LineTotal]
FROM [Sales].[SalesOrderDetail]
WHERE ([ProductID] = @ProductID)
ORDER BY [SalesOrderID]">
<SelectParameters>
<asp:ControlParameter ControlID="GridView1" Name="ProductID"
PropertyName="SelectedValue" Type="Int32" />
</SelectParameters>
</asp:SqlDataSource>
</ContentTemplate>
</asp:UpdatePanel>
</div>
</form>
</body>
</html>

Example 4-12. Default.aspx.vb for AWProductDataOrderDetails

Partial Class Default
Inherits System.Web.UI.Page

Protected Sub GridvViewl RowDataBound(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
Handles GridView1.RowDataBound
If e.Row.RowType = DataControlRowType.DataRow Then
Dim cellProductNumber As TableCell = e.Row.Cells(3) " ProductNumber column
If cellProductNumber.Text.Substring(0, 2) = "CA" Then
cellProductNumber.ForeColor = Drawing.Color.CGreen
End If

Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
If cb.Checked Then
e.Row.Cells(2).ForeColor = Drawing.Color.Red
End If
End If

End Sub

Protected Sub GridViewl SelectedIndexChanged(ByVal sender As Object,
ByVal e As System.EventArgs)
Handles GridView1.SelectedIndexChanged
If CridViewl.SelectedRow.RowType = DataControlRowType.DataRow Then
Dim cellName As TableCell = GridViewil.SelectedRow.Cells(2) ' Name column
txtName.Text = cellName.Text
End If
End Sub
End Class

Source Code Listings

17

Summary

Most useful web sites make use of a database. ASP.NET provides controls that
make it easy to connect to a database, and retrieve and edit data.

The GridView is the most commonly used control for displaying data, although
there are others. The Gridview can sort data, and present it in pages, for easy
reading.

Data controls need to be bound to a data source to display data. To do that, you
provide a DataSource control, which connects to the database and retrieves the
data.

You configure a DataSource control using a wizard that allows you to set a con-
nection string, and then helps you construct a SQL query for retrieving data, or
you can enter your own custom query.

You create a new connection with the Add Connection dialog, and then you can
save it in your web.config file for future use.

The SQL SELECT statement allows you to specify which columns of data you
want to retrieve, and from which table. The Wizard can configure this statement
for you automatically.

The SQL INSERT, UPDATE, and DELETE statements allow you to add, edit, and
remove data, respectively. The Wizard can also generate these statements for
you automatically, and you can easily add buttons to perform these functions in
your GridView.

Optimistic concurrency is a technique that protects your data by only changing
the database if no one else has changed it since you read the data. Again, the
Wizard can enable optimistic concurrency for you.

The WHERE SQL clause filters the data you retrieve by specifying a condition for
the data. A row will only be retrieved if that condition is true.

You can create event handlers for the Gridview, which enables you to take action
on rows as they’re bound, and also allows you to take action on rows as they’re
selected.

You can provide parameters to the SELECT query, which enables you to display
data in a GridView based on the value of another control, even another Gridview.

Language Integrated Query (LINQ) is a new language capability that allows you
to keep all of your code in one place, instead of separating it between the data-
base and the page, and also allows you to treat data in databases as code objects
that you can manipulate with object-oriented languages.

LINQ maps the database to a set of classes. The easiest way to accomplish that
mapping in VS/VWD is with the Object Relational Designer.

The DataContext is an object that transfers data between the object model and
the database itself.

172

| Chapter4: Savingand Retrieving Data

* The LingDataSource control provides access to LINQ, just as the SqlDataSource
does for a SQL database.

* Adding a LINQ to SQL Classes item to your site adds a .dbml file to the App_Code
folder for your site, which holds the structures you create in the O/R designer.

e The .dbml file is associated with a .vb or .cs file that contains the actual data
classes.

* You configure the LingDataSource control much the same as you would the
SglDataSource control using the Configure Data Source wizard.

* Behind the scenes, the LingDataSource control uses the ContextTypeName attribute
to connect to the DataContext class, and the Select attribute to specify proper-
ties to be selected from the table named in the TableName attribute.

* You can also use the LingDataSource to edit the data in a GridView, but to do
that, the LingDataSource must select all the columns of the table, even if they’re
not displayed in the GridView.

* Dynamic Data, a feature of ASP.NET 3.5 Service Pack 1, links the presentation
of data with the way that data is stored and managed.

* With Dynamic Data, web pages can determine, at runtime, the appropriate pre-
sentation for data stored in the database, a technique called scaffolding.

* Dynamic Data builds on the Object Model created by LINQ.

* Dynamic Data makes use of templates: field templates define the behavior of
individual data types; page templates define the behavior of entire sets of data.
You can customize these templates to fit your needs.

Adding the ability to access a database is arguably the most powerful improvement
you can make to your site. It’s easy see how accessing a database would make the
Order Form site from previous chapters that much more useful. Even the best order
form, though, can’t retrieve the right data if users don’t give it valid input—if they
enter a four-digit zip code, for example, or an improperly formatted credit card num-
ber. The whole thing would work much more smoothly if there was a way to check
that the user’s responses are valid before you spend the time accessing the database.
The good news is that ASP.NET provides such a way, called validation, and that’s
what you’ll learn about in the next chapter.

Summary | 173

BRAIN BUILDER

Quiz

1.

What type of control do you need to retrieve data from the database?

2. What is the name of the process for allowing a control, such as a Gridview, to

N L W

extract data from the retrieved tables and format it properly?

. What is a connection string?
. What are the four elements of CRUD?
. How do you attach a data source to a Gridview?

. If your table has many rows, what should you do in the Gridview to make it eas-

ler to read?

. How can you enable users to change the contents of the database from your

Gridview?

8. How can you take an action based on the data in a row, as the table is loaded?

10.

. If you’re using a using a LingDataSource control connected to a Gridview, and

you want users to be able to edit the data in the database, how do you need to
configure the data that the LingDataSource retrieves?

What are templates, in terms of Dynamic Data?

Exercises

Exercise 4-1. We'll start out easy, letting you create your own GridView. Create a
new web site called Exercise 4-1. Add to it a GridView control that shows records
from the Product table with a Weight greater than 100. The GridView should list the
Product ID, Product Name, Product Number, Color, and List Price. The user should
be able to update and delete records, sort by rows, and page through the content.
Use the Professional formatting scheme to give it some style. The result should look
like Figure 4-42.

174

| Chapter4: Savingand Retrieving Data

& Exercise 4-1 - Internet Explorer E@ﬁ

() | E] hitp://localhost49625/Exercise32(v | +¢| X || Googte 2 ~|
o<l ‘@Exercised,-l [_| B~ B ~ @ ~|hPage~ Tools v
ProductID Name ProductNumber Color ListPrice
Edit Delete 507 LL Mountain Rim RM-M464 0.0000
Edit Delete 508 ML Mountain Rim RM-M692 0.0000
Edit Delete 509 HL Mountain Rim RM-M823 0.0000
Edit Delete 510 LL Road Rim RM-R436 0.0000
Edit Delete 511 ML Road Rim RM-R600 0.0000
Edit Delete 512 HL Road Rim RM-RR00 0.0000
Edit Delete 513 Touring Rim RM-T801 0.0000
Edit Delete 818 LL Road Front Wheel FW-R623 Black 85.5650
Edit Delete 819 ML Road Front Wheel FW-R762 Black 2483850
Edit Delete 820 HL Road Front Wheel FW-R820 Black 330.0600

Done & Internet | Protected Mode: On H100% =

A

Figure 4-42. Your goal for Exercise 4-1.

Exercise 4-2. This one is a little trickier, but it lets you see how users could interact
with the data in a Gridview. Copy the web site from Exercise 4-1 to a new web site,
called Exercise 4-2. Add the ability to select rows in your Gridview. Add two labels
and two read-only textboxes below the GridView to show the selected item’s Product
Name and color. The result should look like Figure 4-43.

Exercises | 175

[@8 Exercise 4-2 - Intemet Explarer = B |
@ (L)~ | &) htp://tocalhost49701 /Exercise%204-2/Defautt.ac | 43 | X || Google P -
s | @ Exercised-2 |_| - - @ v [} Page v i Tools v

ProductNumber Color
Edit Delete Select 826 LL Road Rear Wheel RW-R623 Black 112.5650
Edit Delete Select 827 ML Road Rear Wheel RW-R762 Black 2753850
Edit Delete Select 828 HL Road Rear Wheel RW-R820 Black 357.0600
Edit Delete Select 894 Rear Derailleur RD-2308 Sitver 121 4600
Edit Delete Select 907 Rear Brakes RB-9231 Silver 106.5000
Edit Delete Select 935 LL Mountain Pedal =~ PD-M282 Sitver/Black 40.4900
Edit Delete Select 936 ML Mountain Pedal PD-M340 Silver/Black 62.0900
Edit Delete Select 937 HL Mountain Pedal =~ PD-M3562 Sitver/Black 80.9900
Edit Delete Select 938 LL Road Pedal PD-R347 Sitver/Black 40.4900
Edit Delete Select 939 ML Road Pedal PD-R563 Sitver/Black 62.0900
Name: ML Mountain Pedal Color: Silver/Black
&) Internet | Protected Mode: On H100% ~

Figure 4-43. Your goal for Exercise 4-2.

Exercise 4-3. Now it’s time to combine what you’ve learned from previous chapters
with the new stuff, and throw a little AJAX into the mix as well. Create a new web
site called Exercise 4-3. This site should have a radio button that gives readers the
opportunity to select whether they want to see data from the Employee table or the
Customer table. Use two Panel controls. The Employee panel should have a Gridview
showing the EmployeelD, ManagerID, and Title. The Customer panel should have a
Gridview showing the Customer ID, Account Number, and Customer Type. The
table that the reader chooses should appear dynamically in a new panel; the other

one should be invisible. The result should look like Figure 4-44.

176 | Chapter4: Savingand Retrieving Data

& Exercise 4-3 - Internet Explorer @&J

(W) ~ |&] httpi/localnosta9178 Exercise%204-3/Defauttas v | 43 | X || Goagle P -
g e | @& Brercise 43 |_| - - @ v [} Page v {FTools v
Select the table you would like to see: 3
@ Show Employees
(©) Show Customers
EmploveeID ManagerID Title
1 16 Production Technician - WC60
2 6 Marketing Assistant
3 12 Engineering Manager
4 3 Senior Tool Designer L
5 263 ol Lhients [
6 109 Marketing Manager
7 21 Production Supervisor - WC60
8 185 Production Technician - WC10
9 3 Design Engineer
10 185 Production Technician - WC10

Done & Internet | Protected Mode: On H100% ~

%

Figure 4-44. Your goal for Exercise 4-3.

Exercise 4-4. Ready for a bit of a challenge? Sure you are. You’re going to see how to
retrieve data based on multiple customer selections—like you would in a shopping
site. Create a new web site called Exercise 4-4. This site should have three drop-
down menus:

* A Category drop-down list that lists the product categories from the
ProductCategory table

* A Subcategory drop-down list that lists the subcategories of the Category listed
in the first drop-down, by using the ProductSubcategory table

* A Color drop-down list that lists the available product colors from the Product
drop-down list

In addition, there should be a Submit button that users click. Below all of this is a
Gridview that displays the Products (from the Product table) that match the chosen
subcategory and color. (You don’t need to match the category—all that control does
is dictate the contents of the Subcategory table.) The Gridview should display the
ProductID, Name, Product number, and the color, just so you can tell it’s working.

Exercises | 177

(Hint: You can use the DISTINCT SQL statement to avoid duplication in the grid.) It
should look like Figure 4-45. Note that many of the possible combinations in the
drop-down lists won’t produce any results in the grid. You can test your solution
with the choices shown in Figure 4-45.

& Exercise 4-4 - Internet Explorer ﬂl@
@‘_} = |é, http://localhost:49339/Exercise?a204-4/Default.as ~ | "'fl x | | Google 2 ~|

W i 168 Exercise 4-4

|| - B - & v [dBege Grlook~ "

Category: Clothing

884

Short-Sleeve Classic Jersey, S
Short-Sleeve Classic Jersey, M

Short-Sleeve Classic Jersey, L

Short-Sleeve Classic Jersey, XL SJ-0194-X Yellow

v Subcategory: Jerseys ~ Color: Yellow - | Submit

ProductNumber Color

S5J-0194-S Yellow
5J-0194-M Yellow
5J-0194-L Yellow

& Internet | Protected Mode: On H100%

Figure 4-45. Your goal for Exercise 4-4.

178

Chapter4: Saving and Retrieving Data

CHAPTER 5
Validation

As you have seen in the preceding chapters, many web applications involve user
input. The sad fact is, however, that users make mistakes: they skip required fields,
they put in six-digit phone numbers, and they return all manner of incorrectly for-
matted data to your application. Your database routines can choke on corrupted
data, and orders can be lost. An incorrectly entered credit card number or omitted
address may result in a missed sales opportunity. Fortunately, you can write code
that checks the user’s input before it gets anywhere near your database code, or any-
thing else dangerous. The process of verifying the user’s input is called validation.

Traditionally, it takes a great deal of time and effort to write reliable validation code.
You need to check each field and create routines for ensuring data integrity. If bad
data is found, you need to display an error message so the user knows there is a
problem and how to correct it.

In any given application, you may choose to verify that the data is formatted cor-
rectly, or that the values fall within a given range, or that certain fields have a value at
all. For example, if you’re processing an order, you may need to ensure that the user
has input an address and phone number, that the phone number has the right num-
ber of digits (and no letters), and that the Social Security number entered is in the
appropriate form of nine digits separated by hyphens.

Some applications require more complex validation, in which you validate that one
field is within a range established by two other fields. For example, you might ask in
one field what date the customer wishes to arrive at your hotel, and in a second field
you might ask for the departure date. When the user books a dinner reservation,
you’ll want to ensure that the date the user chooses is between the arrival and depar-
ture dates.

There is no limit to the complexity of the validation routines you may need to write.
Credit cards have checksums built into their values, as do ISBN numbers. Zip and
postal codes follow complex patterns, as do international phone numbers. You may
need to validate passwords, membership numbers, dollar amounts, dates, runway
choices, or launch codes.

179

In addition, you usually want all of this validation to happen client side so you can
avoid the delay of repeated round trips (postbacks) to the server while the user is
tinkering with his input. In the past, this was solved by writing client-side JavaScript
to validate the input, and then writing server-side script to handle input from brows-
ers that don’t support client-side programming. In addition, as a security check, you
may want to do server-side validation even though you have validation implemented
in the browser, as users can circumvent client-side validation code by creating a mali-
cious page that masquerades as a legitimate page (a tactic known as spoofing). Typi-
cally, these security measures involved writing your validation code twice, once for
the client and once for the server.

As you can see, in traditional web programming, validation requires extensive custom
programming. The ASP.NET framework simplifies this process by providing rich con-
trols for validating user input. In addition to checking the validity of the data entered,
the validation controls allow you to specify how and where error messages will be dis-
played: either inline with the input controls, aggregated in a summary report, or both.
You can use these controls to validate input for HTML and ASP.NET server controls.
In this chapter, you’ll learn how to use all these validation controls, and you’ll create a
number of pages that you can adapt right away to use on your site.

Validation Controls

You add validation controls to your ASP.NET document as you would add any other
control. As a property of the validation control, you specify which other control you’re
validating. You may freely combine the various validation controls, and you may even
write your own custom validation controls, as you’ll see later in this chapter.

With current browsers that support DHTML, .NET validation is done on the client
side, avoiding the necessity of a round trip to the server. (This client-side validation
uses JavaScript but is not part of the AJAX library.) With older browsers, your code
is unchanged, but the code sent to the client ensures validation at the server.

Validation occurs whenever the page tries to post back to the server. Sometimes you
don’t want any validation to occur, such as when a Cancel button is clicked. To pre-
vent validation in these circumstances, many postback controls—such as Button,
ImageButton, LinkButton, ListControl, and TextBox—have a CausesValidation prop-
erty, which you can set to dictate whether validation is performed on the page when
the control’s default event is raised.

If CausesValidation is set to true, the default value—the postback—will not occur if
any control on the page fails validation. This is a big deal, because it means the page
will not post to the server unless all of the controls on the page are in a valid state. If
CausesValidation is set to false, however, no validation will occur when that button
is used to post the page.

180 | Chapter5: Validation

Sometimes you need a postback to be allowed to proceed even if some controls on
the page are invalid. For example, suppose you have a page that gathers both address
and tax information. A button on the page processes the address fields, which might
be before the user has entered some unrelated tax information. However, if a
required tax field is missing, the page will not post.

You solve this problem by using the ValidationGroup property. You can group a
bunch of validation controls together with the control (or controls) that causes the
postback so that only validation controls that are members of the group will be
applied. In this example, you can require that all the address controls are valid before
allowing the Address button to post, but allow the post even if some tax fields are
invalid.

ASP.NET includes the following validation controls:

RequiredFieldValidator

Ensures the user does not leave the field blank and skip over your input con-
trol. A RequiredFieldvalidator can be tied to a text box, which means that
the page will only pass validation if the user enters something into the text
box. With selection controls, such as a drop-down or radio buttons, the
RequiredFieldvalidator ensures the user makes a selection other than the default
value you specify. The RequiredFieldValidator does not examine the validity of
the data; it only ensures that some data is entered or chosen.

RangeValidator
Ensures that the value entered is within a specified lower and upper boundary.
You can specify the range to be within a pair of numbers (such as greater than 10
and less than 100), a pair of characters (greater than D and less than K), or a pair
of dates (after 1/1/08 and before 2/28/08).

CompareValidator
Compares the user’s entry against another value. It can compare against a con-
stant you specify at design time, or against a property value of another control. It
can also compare against a database value.

RegularExpressionValidator
One of the most powerful validators, it compares the user’s entry with a regular
expression you provide. Regular expressions are a powerful way to match a pat-
tern of letters, numbers, or symbols, as you’ll see later in the chapter. You can
use this validator to check for valid Social Security numbers, phone numbers,
password strength, and so forth.

CustomValidator
If none of these controls meets your needs, you can create your own using the
CustomValidator. This checks the user’s entry against whatever algorithm you
provide in a custom method.

Validation Controls | 181

In the remainder of this chapter, we’ll examine how to use each of these controls to
validate data in ASP.NET applications.

The RequiredFieldValidator

The RequiredFieldValidator ensures the user provides a value for your control, or in
the case of drop drop-down lists, that the user picks something other than the
default value.

To get started, create a new web site called RequiredFieldvalidator. In this section,
you’re going to create the shipping selection web page shown in Design view in
Figure 5-1. This is a pretty standard shipping form, as you can see on any number of
web sites. You can imagine how you’d incorporate such a page into your own site.

Although ASP.NET validation controls do much of their work client-
side using JavaScript, they neither use nor depend on AJAX, including
the ScriptManager control, so you don’t need to include one for this

page.

@ RequiredFieldValidator - Visual Web Developer 2008 Express Edition E@g

Eile Edit View Website Build Debug Format Table Tools Window Help

ie-E-FHd | aB|9-0-F-5 b8 HE

‘2 | XHTML L0 Transition: > _

i (None) - (DefaultFont) - (Defauli- | B F U |A & |=-|i i= | _ :Style Application: Manual - g
13| . StartPage| Defaultasprvb” Defaultaspx| + x| Solution Explorer -1 x
3 w=ea] D | B @

Z ||| [bMsg] 2 C\.\RequiredFieldValidator\

3

- [y App_Data
Default.aspx

Shippml— Please Select a Shipper — | Please Select a Shipper

Urgency: ¢ Today ¥ Defaultasprvb
¢ 2ad Day - [web.config
N Please select an Urgency
© Yesterday 5 Solution Expl... L Database

Instructions 5| i g o Properties 31X
Please provide special instructions
=~ DOCUMENT -

Submit Elﬂ =]

BgColor -
Class

Id

Link

e 5 Style E
3 Design | o Spit | B Source | [4][<div>|[<tablex <asp:Button®binSubmit> [et -
Ready Lng&3 Coll Chl

Figure 5-1. This shipping selection page incorporates RequiredFieldValidator controls to ensure
that users make selections in each field.

When the user clicks the Submit button, the page is validated to ensure that each
field has been modified. If not, the offending field is marked with an error message in
red, as shown in Figure 5-2.

182 | Chapter5: Validation

You’ll use a five-row, three-column HTML table to create the page layout, into
which you’ll place the necessary controls. Using what you’ve learned from the previ-
ous chapters, you can create the table fairly easily, either directly in Source view, or
using the Table Wizard, so we won’t go over that here. Adding the controls to the
form is also pretty easy, as you’ll see.

The first column of the table contains some descriptive captions for the input fields,
with the middle column containing the controls to be validated (a DropDownList, a
RadioButtonlList, and a TextBox). The third column will contain the validation con-
trols and any error messages they want to display.

The first row of the table should be a single cell spanning all three columns (using
the HTML colspan attribute) containing a Label for displaying any messages. Set the
ID of that Label to 1blMsg, and set the Text property to an empty string (Text="").

@ Required Field Validation - Internet Explorer E@Iﬂ

Ql\;}l |§, http://localhost:43667/RequiredFieldValidat ~ | ‘1‘| x | | Google L |

_| o v v |=h Page v ik Tools v =

-

W | & Required Field Validation

Shipper: Please Select a Shipper
Urgency: @ Today
© 2nd Day
© Normal
© Yesterday
Instructions =

Please select an Urgency

Please provide special instructions

Submit

& Internet | Protected Mode: On H100% -

Figure 5-2. The user of this page didn’t provide any shipping information before clicking Submit,
so the RequiredFieldValidator controls return errors, which you can see in the column on the right.

The first row of user input controls has a DropDownList in the middle column named
ddlShipper. Use the Listltem Collection Editor to set the values for the Shipper
DropDownList to the following:

-- Please Select a Shipper --
US Postal Service
Overnight Express

United Shipping Service

The RequiredFieldValidator | 183

WHL
Pony Express
Starship Transporter

The first item is particularly important, as you’ll see in a minute.

For each field that you want validated, add a RequiredFieldvalidator control, which
is a control like any other. Open the Validation section of the Toolbox, and drag
three RequiredFieldValidator controls into the table, into the third cell of each of the
three middle rows, as shown previously in Figure 5-1.

The RequiredFieldvalidator control has its own ID, and it also asks for the ID of the
control you wish to validate. Therefore, set the ID of the first RequiredFieldValidator
you added to rfvShipper, and set its ControlToValidate property to dd1Shipper (the
drop-down list that you are validating). Delete the text in the ErrorMessage property
for the moment; you don’t need it right now. You’ll need to include some text to
show to the user if he doesn’t make a selection, though, so include the text “Please
select a shipper” between the opening and closing tags of the control. You could also
set this text using the Text property.

The RequiredFieldvalidator has an additional attribute, Initialvalue, which you
should set to the initial value of the control being validated, in this case, the drop-
down box. If the user clicks Submit, this initial value will be compared with the value
of the drop-down, and if they are the same, the error message will be displayed. This
forces the user to change the initial value. In this case, the first item in the drop-
down is the bit of text asking the user to make a choice. That isn’t a valid selection,
so you need to make sure that the user chooses something else, by setting
InitialValue to be the same as that text prompt. You don’t want to use Initialvalue
if you have a default shipper, for example, because that would prevent the user from
selecting the default. All this is shown in the following snippet in Source view:
<asp:RequiredFieldValidator ID="rfvShipper" runat="server"

ControlToValidate="ddlShipper"

Initialvalue="-- Please Select a Shipper --">

Please Select a Shipper

</asp:RequiredFieldvalidator>

Make sure the Display attribute is set to Static (the default), which tells ASP.NET to
allocate room on the page for the validator whether there is a message to display or
not. If you set this to Dynamic, space will not be allocated until (and unless) an error
message is displayed. Dynamic allocation is powerful, but it can cause your controls
to bounce around on the page when the message is displayed. We’ll show you how
this looks in a minute.

In the second input row, add a RadioButtonList called rblUrgency, with the items
shown previously in Figure 5-1. Give the second RequiredFieldvalidator an ID of
rfvlrgency, and set its ControlToValidate property to rblUrgency, to ensure that one

184 | (Chapter5: Validation

of the radio buttons in rblUrgency is selected. Also, change the Text property to
“Please select an Urgency”:
<asp:RequiredFieldvalidator ID="rfvUrgency" runat="server"
ControlToValidate="rblUrgency"
Display="Static">
Please select an Urgency
</asp:RequiredFieldValidator>

You do not need to indicate an initial value this time. Because the control is a radio
button list, the validator knows the user is required to pick one of the buttons; if any
button is chosen, the validation will be satisfied.

Finally, to complete the example, add a multiline text box in the third row and
assign it an ID of txtInstructions. Use the third RequiredFieldvalidator, named
rfvInstructions, to require the user to enter some text in it. The validator is straight-
forward; set the text box as ControlToValidate, and enter the error message “Please
provide special instructions” into the Text property, for display if the box is left
empty:
<asp:RequiredFieldValidator ID="rfvInstructions" runat="server"
ControlTovalidate="txtInstructions"
Display="Static">
Please provide special instructions
</asp:RequiredFieldvalidator>

In a real site, the Special Instructions field would probably be optional, but we’ll
make it required for this example.

In the last row, place a Button in the middle column, call it btnSubmit, and set its
Text to “Submit”. The only code required in the code-behind file is the event han-
dler for the Submit button. Double-click on the button in Design view, and you’ll be
taken to the Click event handler, as usual. Enter the highlighted code from
Example 5-1.

Example 5-1. The Button Click event handler for RequiredFieldValidator checks the validation for
every control on the page
Protected Sub btnSubmit Click(ByVal sender As Object,
Byval e As System.EventArgs) _
Handles btnSubmit.Click
If Page.IsValid Then
1blMsg.Text = "Page is valid!"
Else
' this code never reached
1blMsg.Text = "Some of the required fields are empty."
End If
End Sub

The RequiredFieldValidator | 185

When the Submit button is clicked, the validation for each control is checked, and if
every control is valid, the IsValid property of the page will return true.

Now, go back and set the Display property of all the validation controls to Dynamic.
Run the application and see what happens. No space is allocated for the validation
controls, and the browser will consider your table to be only two columns wide
rather than three. That is, the table will not allocate any space for the validation mes-
sages, and will recognize only one column for the prompt and the other for the con-
trols. When you validate the controls (by clicking the Submit button), the table will
widen, which can be either disconcerting or attractive, depending on how you design
the layout of the page. In this case, you can see the controls jump around when you
click Submit, which probably isn’t what you want, so after you’ve played with it a
bit, go back and change the controls back to Static.

Take a look back at Example 5-1. Notice the comment that says the else clause will
never be reached. Recall that the validation occurs client-side. If the page is not valid,
it is never even posted to the server, and the server-side code does not run (unless, of
course, you set the CausesValidation property to false, as described at the begin-
ning of this chapter).

You can make your pages a bit friendlier for your users by placing the focus on the
first control that fails validation. To do so, add the SetFocusOnError property to each
validation control and set it to true (the default is false):

<asp:RequiredFieldValidator runat=server
id="rfvInstructions"
ControlToValidate="txtInstructions"
Display="Static"
SetFocusOnError="true"
Width="100%" >
Please provide special instructions
</asp:RequiredFieldValidator>

Run your application again, and click Submit without adding special instructions.
After validation, you not only get the message asking you to provide them, but the
focus is on the TextBox control, ready for you to enter text. If you set SetFocusOnError
on more than one control, and if the page is invalid, the focus will be set to the first
control that fails validation and has this property set to true.

The complete source code for the markup file, default.aspx, for this example is listed
in Example 5-2.

Example 5-2. Default.aspx forRequiredFieldValidator

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits=" Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

186 | Chapter5: Validation

Example 5-2. Default.aspx forRequiredFieldValidator (continued)
<head runat="server">
<title>Required Field Validation</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<table>
<tr>
<td colspan="3">
<asp:lLabel ID="1lbIMsg" runat="server" Text="" />
</td>
</tr>
<>
<td align="right" valign="top">Shipper:</td>
<td>
<asp:DropDownlist ID="ddlShipper" runat="server">
<asp:ListItem>-- Please Select a Shipper --</asp:ListItem>
<asp:ListItem>US Postal Service</asp:lListItem>
<asp:ListItem>Overnight Express</asp:ListItem>
<asp:ListItem>United Shipping Service</asp:ListItem>
<asp:ListItem>WHL</asp:ListItem>
<asp:ListItem>Pony Express</asp:ListItem>
<asp:ListItem>Starship Transporter</asp:ListItem>
</asp:DropDownList>
</td>
<td>
<asp:RequiredFieldValidator ID="rfvShipper" runat="server"
ControlToValidate="ddlShipper"
InitialValue="-- Please Select a Shipper --
SetFocusOnError="true">
Please Select a Shipper
</asp:RequiredFieldvalidator>
</td>
</tr>
<tr>
<td align="right" valign="top">Urgency:</td>
<td >
<asp:RadioButtonlList ID="rblUrgency" runat="server">
<asp:ListItem>Today</asp:ListItem>
<asp:ListItem>2nd Day</asp:ListItem>
<asp:ListItem>Normal</asp:ListItem>
<asp:ListItem>Yesterday</asp:ListItem>
</asp:RadioButtonlist>
</td>
<td>
<asp:RequiredFieldvalidator ID="rfvUrgency" runat="server"
ControlToValidate="rblUrgency"
Display="Static"
SetFocusOnError="true">
Please select an Urgency
</asp:RequiredFieldvalidator>
</td>

The RequiredFieldValidator

187

Example 5-2. Default.aspx forRequiredFieldValidator (continued)
</tr>
<tr>
<td align="right" valign="top">Instructions</td>
<td>
<asp:TextBox ID="txtInstructions" runat="server"
Rows="3" TextMode="Multiline"></asp:TextBox>
</td>
<td>
<asp:RequiredFieldValidator ID="rfvInstructions" runat="server"
ControlTovalidate="txtInstructions"
Display="Static"
SetFocusOnError="true">
Please provide special instructions
</asp:RequiredFieldValidator>
</td>
</tr>
<tr>
<td></td>
<td>
<asp:Button ID="btnSubmit" runat="server" Text="Submit" />
</td>
<td></td>
</tr>
</table>
</div>
</form>
</body>
</html>

The Summary Control

As you saw in the previous example, putting your validation feedback next to each con-
trol can be useful, but it leads to some possible layout problems. Fortunately, ASP.NET
lets you decide how you want to report validation errors. For example, rather than put-
ting error messages alongside the control, you can summarize all the validation fail-
ures with a ValidationSummary control. This control can place a summary of the
errors in a bulleted list, a simple list, or a paragraph that appears elsewhere on the
web page or in a pop-up message box.

To see how this works, create a copy of the RequiredFieldvalidator web application
called RequiredFieldvalidatorSummary. Switch to Source view. From the Validation
section of the Toolbox, drag a ValidationSummary control onto the bottom of the
page, after the </table> tag.

The steps for copying a web site to a new web site are presented in
Appendix B.

188 | Chapter5: Validation

Set the attributes of this ValidationSummary control to the values highlighted in the
following code snippet (you can do this in the Properties window as well, of course):

<asp:ValidationSummary ID="vsSummary" runat="server"
DisplayMode="BulletList"
HeaderText="The following error(s) were found:"
ShowSummary="true" />

To make this work, you’ll need to add an ErrorMessage attribute to the other valida-
tion controls. For example, modify the first validation control for the Shipper drop-
down menu as follows:

<asp:RequiredFieldValidator ID="rfvShipper" runat="server"
ControlToValidate="dd1Shipper"
Display="Static"
Initialvalue="-- Please Select a Shipper --
ErrorMessage="You did not select a shipper from the drop-down."
SetFocusOnError="true">*

</asp:RequiredFieldvalidator>

Note that the asterisk (*) is added after the opening tag for the validator, and not in
the Text property this time. If this control reports a validation error, the text in the
ErrorMessage attribute will be displayed in the summary. You’ve also modified the
validator to display an asterisk rather than the more complete error message. Now
that you have a summary, you don’t need to put a complete error message by each
control; you need only flag the error. Now, make similar changes for each of the
other RequiredFieldValidator controls (you can use the error text displayed in
Figure 5-3, or feel free to improvise).

Run your application, and click Submit without making any choices, so that none of
the validation controls pass muster. The results are shown in Figure 5-3.

In Figure 5-3, the summary of validation errors is presented as a bulleted list. This is
the default display mode, although we did set it explicitly. Messages can also be dis-
played as a simple list or a single paragraph by setting the DisplayMode property of
the ValidationSummary to Bulletlist, List, or SingleParagraph, respectively.

The Compare Validator

While the ability to ensure the user has made some sort of entry is great, you will
often want to validate that the entry content is within certain guidelines. A common
requirement is to compare the user’s input to a constant value, the value of another
control, or a database value.

To see this at work, make a new copy of the RequiredvalidationSummary web site and
name the new web site CompareValidator. In this example, you’ll add a new control
that asks the user how many packages she expects to receive as part of a shipment.

The Compare Validator | 189

& Required Field Validation Summary - Internet Explorer [EM

QQ - |] httpi//iocalnost:49956 /RequiredFieldValidat: + | 43 | x || Google o -
i [@ Required Field Validation Summary]_| @‘ = = @ - |2k Page ¥ @Tgﬂls -7

-

Shipper: 26 ki
Urgency: @ Today
© 2nd Day
@ Normal
@ Yesterday
Instructions -

The following error(s) were found-

s You did not select a shipper from the drop-down.
s You did not select an urgency.
« You did not enter any special instructions. 8

9 Internet | Protected Mode: On ®100% -

Figure 5-3. When you use a Validation Summary, the controls that didn’t pass validation are
marked, but more importantly, the summary appears on the page telling the user exactly what’s
wrong.

To do so, you'll first need to add a new table row before the row that contains the
Submit button. You can do this in Source or Design view, although the latter makes
it very easy.

Click anywhere in the row containing the Submit button. Then, right-click to get a
pop-up menu and select Insert, then Row Above to insert a new table row above the
current row, as shown in Figure 5-4.

This will insert a blank HTML table row above the selected row. In that new row,
insert some caption text, a text box (call it txtNumPackages), a required field valida-
tor, and a compare validator into the correct table cells. You may want to switch to
Source view to tweak the layout with a
 between the two validation controls.
Adjust the properties for the two new validators as shown in Example 5-3.

190 | Chapter5: Validation

[E] Comp i - Visual Web Developer 2008 Express Edition (= B e
File Edit View Website Build Debug Fermat Tasble Tools Window Help
- E -G HE % RBR -0 P G g = '2 | XHTML1.0 Transition: + .
i (None) + - | B I U|A Z|=-[i= =] @ _ StyleApplication: Manual - 2
3] Defaultaspx| Start Page -~ x |Solution E%rzr -1 X
3 : 2@ EE =#
H Shi eri— B i =
g hipp: S| Please Select a Shipper — ¥ C\-\CompareValidator\
= Urgency: ¢ Today = (53 App_Data
& 2ud Day Default.aspx
= web.config
¢ Normal
" Yesterday
Instructions. -
| = 5 Solution Explu.lg‘'_g[)atabasaﬁz‘..
> =
~||| | Properties > X
Qubomit_|
| % | Cut
3 e found:
53| Copy
[| Paste
Paste Alternate
K | Delete L4
m Insert 4 Rows or Columns... v
[Delete > Columntotheleft | <formsformi>|[<div>][<tablex|[<trs] ¥
— Select 3 .
Ready Column to the Right Tt S T
bdy : Row Above
liestiode Row Below
(€ | View in Browser R
Show Smart Tag Cell to the Right
[Z]| Refresh Caption
Properties |

Figure 5-4. When you select a table row and right-click, the pop-up menu gives you options for

inserting a new row or cell where you want.

Example 5-3. The CompareValidator control compares a control to a set value
<tr>
<td>Number of packages</td>
<td>
<asp:TextBox ID="txtNumPackages" runat="server"></asp:TextBox>
</td>
<td>
<asp:RequiredFieldValidator ID="rfvNumPackages" runat="server"
ControlToValidate="txtNumPackages"
ErrorMessage="You did not enter the number of packages."
SetFocusOnError="True">*
</asp:RequiredFieldvalidator>

<asp:CompareValidator ID="cvNumPackages" runat="server"
ControlToValidate="txtNumPackages"
ErrorMessage="Invalid number of packages"
Operator="GreaterThan" SetFocusOnError="True"
Type="Integer" ValueToCompare="0">*
</asp:CompareValidator>
</td>
</tr>

The Compare Validator

191

The table now looks like Figure 5-5 in Design view, with the two validation controls
in the last cell circled.

E CompareValidator - Visual Web Developer 2008 Express Edition @E‘g
Ele Edit View Website Build Debug Format Table Tools Window Help

e-E-FHd % @B - -5 G P

2 | XHTML1.0 Transition: » _

¢ (Nong) - (DefauitFont) - (Defaut - | B J U | AZ|=-|=i-|® % : Style Application: Manual ~ ks
Toolbox o A Defwhasw‘l:smvagei ~ X |Solution Explorer ~ 3 x

Fanel = P
o e 5 JREREEE E e
5] PlaceHolder -
=l [TeMsg] C:\..\CompareValidator\

iew

Shij s 585 * 3 App_Data
\E‘ S hipper: | Please Select a Shipper ;i PP
X U i Default.aspx
& Localize rgency- ¢ Today 3 web.config
Data ¢ 2nd Day =
Iz Validation
(@ rmal

K Pointer Mo
= RequiredFieldValid... € Yesterday
(% RangeValidator Inshrnctions =
B Regulsi eIt . =| | [g50lution Expl... [Database Ex..
& ot] _ = —r=

=
& CustomValidator 1 ; l— Two Va||dat0r DOCUMENT i
Number of packages: controls

|| ValidationSummary

Beaination Submit =
Login : StyleSheetTher -
WebParts Zl|| The following error(s) were found: THeme
[AJAX Extensions Trace o
HIML * Brror message 1. TraceMode H
2 L3
Ajax Control Toolkit * Error message 2. UICulture
£ General AN (/|2 Body
' K Alink
Therearenousable ||| 3 Design | o Split | @ Source | 4] <div>|| <aspiValidationSummary#vs...> Background g
e

Ready Ln108 Coll Chl

Figure 5-5. A new table row with a TextBox to be validated, and the RequiredFieldValidator and
CompareValidator validation controls in Design view.

Run your application again, and try entering various values into the field. You’ll see
that if you enter 0, or a negative number, the validation fails. If you enter a positive
number, the control passes validation. If you leave it blank, you’ll notice that it still
fails. Without the RequiredFieldvalidator, though, it would have passed.

Both validators are placed into the same cell in the table, and both validators vali-
date the same control: txtNumPackages. The RequiredFieldvalidator is needed
because the CompareValidator will always return true for null or empty values, as
nonintuitive as that sounds.

The CompareValidator’s ValueToCompare attribute takes a constant; in this case, zero.
The Operator attribute determines how the comparison will be made (that is, how
the input value must be related to the ValueToCompare).

The possible values for the Operator attribute are Equal, NotEqual, GreaterThan,
GreaterThanEqual, LessThan, LessThanEqual, and DataTypeCheck. In this example, to
be valid, the input value must be greater than the ValueToCompare constant. Or to put
in more relevant terms, the user must send more than zero packages.

192 | Chapter5: Validation

You must use the Type attribute to tell the control what type of value it is using. The
Type attribute takes one of the ValidationDataType enumerated values: Currency,
Date, Double (a Double is VB-speak for a noninteger number, i.e., a decimal number),
Integer, or String. In the example, the values are compared as integers, and thus,
entering (for example) a character will cause the validation to fail.

Checking the Input Type

Rather than checking that the number of packages is greater than zero, you might
want to check that it is a number at all (rather than a letter or date). To do this, you
make a minor change to the CompareValidator.

Remove the ValueToCompare attribute and change the Operator attribute from
GreaterThan to DataTypeCheck. Because the Type attribute is Integer, the control will
report any integer value as valid. Use the following code to replace that for the
CompareValidator you added in the last section:
<asp:CompareValidator ID="cvNumPackages" runat="server"
ControlToValidate="txtNumPackages"
ErrorMessage="Invalid number of packages"
Operator="DataTypeCheck" SetFocusOnError="True"
Type="Integer" >*
</asp:CompareValidator>
Now, run the application again, and try entering random data in the text box. You’ll
see that numbers, even zero or negative numbers, pass validation, while anything else
fails. You can imagine how this sort of validation would be useful for order num-
bers, credit card numbers, or anyplace where the type of data is important.

Comparing to Another Control

You can compare a value in one control to the value in another control, rather than
to a constant. A classic use of this might be to ask the user to enter his password
twice and then validate that both entries are identical.

The common scenario is that you've asked the user to pick a new password. For
security, when the password is entered, the text is disguised with asterisks. Because
this will be the password the user will need to log in, you must validate that the user
entered the password as intended, without errors. The typical solution is to ask the
user to enter the password a second time, and then check that the same password
was entered each time. The CompareValidator is perfect for this.

To demonstrate this, you’ll need to add two table rows to your page, each with a
TextBox for use as a password field. The first of these password fields will have a
RequiredFieldValidator control; the second will have both a RequiredFieldvalidator
and a CompareValidator. You can add these rows and controls as you just did in
Design view, or directly in Source view. Either way, the markup will look something

The Compare Validator | 193

like that listed in Example 5-4. Be sure to set the correct ControlToValidate attributes
of all these new validation controls, as well as the other attributes.

Example 5-4. You can perform password validation using the CompareValidator control by
comparing one control to another
<!-- Text fields for passwords -->
<tr>
<td>Enter your password:</td>
<td>
<asp:TextBox ID="txtPassword1" runat="server"
TextMode="Password" Width="80"></asp:TextBox>
</td>
<td>
<asp:RequiredFieldvalidator ID="rfvIxtPasswordi" runat="server"
ControlToValidate="txtPassword1"
ErrorMessage="Please enter your password."
SetFocusOnError="True">*
</asp:RequiredFieldvalidator>
</td>
</tr>
<!-- Second password for comparison -->
<tr>
<td>Re-Enter your password:</td>
<td>
<asp:TextBox ID="txtPassword2" runat="server"
TextMode="Password" Width="80"></asp:TextBox>
</td>
<td>
<asp:RequiredFieldvalidator ID="rfvIxtPassword2" runat="server"
ControlToValidate="txtPassword2"
ErrorMessage="Please re-enter your password."
SetFocusOnError="True">*
</asp:RequiredFieldvalidator>

<lI-- Second password must match the first -->
<asp:CompareValidator ID="cvPasswords" runat="server"
ControlTovalidate="txtPassword2"
ControlToCompare="txtPassword1"
SetFocusOnError="true"
Type="String"
Operator="Equal"
ErrorMessage="Passwords do not match">*
</asp:CompareValidator>
</td>
</tr>

Go ahead and test it out. If the strings you enter don’t match, the control will fail
validation.

The first new table row contains the TextBox control with its TextMode attribute set to
Password. It also contains a RequiredFieldValidator to ensure the user doesn’t leave

the field blank.

194 | Chapter5: Validation

The second row contains a second password text box and a second
RequiredFieldvalidator (again, the user cannot leave the field blank), but it uses a
CompareValidator to check the value of its associated TextBox (txtPassword2) against
that of the first TextBox (txtPasswordl) to verify they both have the same content.
The Operator property is set to Equal, and the Type property is set to String, so the
two strings must match. Notice the two properties set:

ControlToValidate="txtPassword2"
ControlToCompare="txtPassword1"

Both text boxes must have a RequiredField validator. If the
CompareValidator compares a string against a null or empty string
value, it will pass validation.

Range Checking

At times, you’ll want to validate that a user’s entry falls within a specific range. That
range can be within a pair of numbers, characters, or dates. In addition, you can
express the boundaries for the range by using constants or by comparing its value
with values found in other controls.

In this example, you’ll prompt the user for a number between 10 and 20, and then
validate the answer to ensure it was entered properly. To do so, create a new web site
named RangeValidator. You’ll create this exercise entirely in Design mode. To begin,
drag four controls onto your page: a label, a text box, a button, and of course, a
RangeValidator control, as shown in Figure 5-6.

@ RangeValidator - Visual Web Developer 2008 Express Edition @E@
Eile Edit View Website Build Debug Format Table Tools Window Help

(R -E-EHl@ 4B -E-5 3 Bl = s | XHTML 1.0 Transition: = _
: {None] -~ (DefaultFont) - (Defeuli~ B I U |A L |=-|=i= | z ! Style Application: Manual ~ I

Toolbox i Deh"m-]i StariPaggl + X |Solution Explorer ~ X
W Wizard = -

[Xml i
MultiView La_beﬂ %mge\'ﬁhdmor
{71 Panel

[=4] PlaceHolder
0 View

[Substitution
& Localize 5] Solution Expl... |2 Database Ex...
Data ¥
TS Properties >3 x
k Pointer L DOCUMENT -

=¥ RequiredFieldValid... 1

"% RangeValidator

% RegularExpression... —

i3 web.config

i, CompareValidator

~» CustomValidator

]
ValidationSummary

b
i 3 Design | O Split | E Source | E| <asp:RangeValidator#Range...> E|
iy s tion ¥

Ready Ln2l Coll Chl

Figure 5-6. Create the RangeValidator page in Design mode. Notice how the RangeValidator
control shows up.

Range Checking | 195

Click on the Label and set its Text property to “Enter a number between 10 and 20:”.
Click on the TextBox, set its ID to txtValue. Click the button and set its Text to
Submit. Finally, click on the RangeValidator, and in the Properties window, click
Type. Choose Integer from the drop-down list. Set the MinimumValue property to 10
and the MaximumValue property to 20. Next, click on the ControlTovalidate property,
pick the text box, and set the Text property to “Between 10 and 20 please.”

Run your application. Enter a value and click Submit. The text “Between 10 and 20
please” will be displayed if the value is not within the range of values specified by the
MinimumValue and MaximumValue attributes. The Type attribute designates how the
value should be evaluated and may be any of the following types: Currency, Date,
Double, Integer, or String.

If there are no validation errors, the page can be submitted; otherwise, the range
checking error message is displayed.

If the user leaves the field blank, the validation will pass and the page will be submit-
ted. You’ll want to ensure some value is entered, so add a RequiredFieldvalidator in
addition to the Rangevalidator.

Regular Expressions

Often, a simple value or range check is insufficient; you must check that the form of
the data entered is correct. For example, you may need to ensure that a zip code is five
digits with the option to accept an extra four digits, an email address is in the form
name@place.com, credit card information matches the right format, and so forth.

A regular expression validator allows you to verify that a text field matches a regular
expression. Regular expressions are a language for describing and manipulating text.

For complete coverage of regular expressions, see Mastering Regular
Expressions, by Jeffrey E. F. Friedl (O’Reilly).

A regular expression consists of two types of characters: literals and metacharacters.
A literal is a character you wish to match in the target string. A metacharacter is a
special character or sequence of characters that acts as a command to the regular
expression parser. (The parser is the engine responsible for understanding the regu-
lar expression.) Consider this regular expression:

Md{5}$

This will match any string that has exactly five numerals. The initial metacharacter, *,
indicates the beginning of the string. The second metacharacter, \d, indicates a digi.
The third metacharacter, {5}, indicates five of the digits, and the final metacharacter, $,
indicates the end of the string. Thus, this regular expression matches five digits
between the beginning and end of the line and nothing else.

196 | Chapter5: Validation

name@place.com

When you use a RegularExpressionValidator control with client-side
validation, the regular expressions are matched using JScript, the
Microsoft version of JavaScript. This may differ in small details from
the regular expression checking done on the server.

A more sophisticated algorithm might accept a five-digit zip code or a nine-digit zip
code in the format of 12345-1234 by using the | metacharacter, which represents the
“or” operator. Rather than using the \d metacharacter, you could designate the range
of acceptable values:

[0-9]{5}[[0-91{5}-[0-91{4}

To see how this works, make a copy of the RangeValidator web site you just created,
and name it RegularExpressionValidator. Change the Label text to “Enter a U.S. zip

code:”. Replace the RangevValidator control with a RegularExpressionValidator
control.

Use the Properties window to set the ControlToValidate to txtValue and set the text
to “Please enter a valid U.S. zip code.” Click on the property for Validation Expres-
sion, and click on the ellipsis. A Regular Expression Editor pops up with a few com-

mon regular expressions; you can also enter your own. Scroll down and choose U.S.
ZIP code, as shown in Figure 5-7.

[E] RegularExpressionValidator (2) - Visual Web Developer 2008 Express Edition |M‘
File Edit View Website Build Debug Format Tools Window Help
- e % Ba@| 9 T 2 | [XHTML10 Transitioni =]/l i » 0 @ @ | % S5 (= = |Hex |E - -
§|_Nnne) v”lDEfaultantJ v”(DEfauH v“ B 7 U| = i= | @ | i Style Application: [Manual - =
| @ Toolbox -0 x Default.aspx + % | Solution Explorer - CA..v. v 0 X
= | & Standard - : A= el A RN Noh]
2 | K Pointer [asp:RegularExpres..#Regi I Pee— 1 P G T
@ | A Label [Enter a U.S. zip cod _lPleaseentera = 5 A ED - P
. e (25 App_Data
= Button a valid US zip code Default.aspx
= TextBox £ web.config
LinkButton Regular Expression Editor m
ImageButton L%
) Standard expressions:
A HyperlLink
e - P.R.C. postal code = ‘ n v
DropDownList P.R.C. Social Security number (ID number) Solution Ex.. [T Databose By
EZ ListBox U.S. phone number - =
CheckBox U.5. Social Security number L] Properties ~ 0 x
g " U5, ZIP code >, . N
8= CheckBoxList RegularExpressionValidatorl Sy -~
(%) RadioButton Validation expression:
2= RadioButtonList dI51-\d{an?
d{S)(-\d{4]) SkinlD i
|8l Tmage ToalTi
colTip
& 1 M Tl
(Bl 1mageMap ValidetionExp \d(5)-\dp?
[Table —
= ValidationGre -
i= BulletedList - = =
b HiddenField e * :ﬁdrtmmrés?ndet i
eqular expression to determine
B Literal 3 Design | O Spiit Source <div> || <asp:RegularExpressionVal...> || ¥
El - piit | | [pRegularExpi [||| vaidity.
Ready

Figure 5-7. The Regular Expression Editor makes it a snap to use the RegularExpressionValidator.
Just select the ValidationExpression in the Properties window, and then click the ellipsis button to
open the editor.

Regular Expressions | 197

Run the program, and test out the field by entering some responses. You will see that
anything with a format of either a standard five digit zip code or a “Zip+4” will pass
validation, but anything else will fail. Note, though, that this validator simply checks
the format of the input; it doesn’t check whether the input is actually a valid zip
code.

If you choose “Custom,” the Validation expression box will be blank,
allowing you to enter any expression you choose. For help with creat-
ing custom regular expressions, we recommend the program RegEx
Buddy (http://www.RegExBuddy.com).

Custom Validation

There are times when the validation of your data is so specific to your application
that you will need to write your own validation method. The Customvalidator is
designed to provide all the infrastructure support you need. You write a method that
tests the user’s input in whatever way you need, and returns a Boolean value: true or
false. Then, you add a Customvalidator control to the page and point it to your vali-
dation method. The Customvalidator control takes care of all the rest of the work.

Because validation can be performed on the client (depending on the browser) and
the server, the Customvalidator has attributes for specifying a server-side and client-
side method for validation. The server-side method can be written in any .NET lan-
guage, such as C# or VB.NET, but the client-side method must be written in a
scripting language understood by the browser, such as VBScript or JavaScript.

The code functionality is duplicated on the server for two reasons. First, as men-
tioned at the beginning of this chapter, it prevents a malicious user from bypassing
the client-side validation, and second, it makes the page compatible with older
browsers that may not support client-side validation or browsers that have script

disabled.

To get you started, once again copy the RegularExpressionValidator web site to a
new site named CustomValidator. In this example, you want to ensure that the user
enters an even number.

This time, you’ll report an error if the number is not evenly divisible by 2. You can
imagine, however, that you could use this technique to perform a checksum on a
credit card or ISBN number or otherwise perform complex data checking.

Most of these checks can be done more easily with a Regular Expres-
sion Validator; the custom validator should be used only as a last
resort.

198 | Chapter5: Validation

http://www.RegExBuddy.com

Replace the RegularExpressionValidator with a CustomvValidator. Set the
ControlToValidate field to the ID of the appropriate TextBox, and make sure that
EnableClientScript is set to true (the default). Update the Label text, and set the
Text property to “Please enter an even number.”

CustomValidators have an additional property that can save you a lot of special cod-
ing: ValidateEmptyText:
ValidateEmptyText=false

If you set this property to false (the default), the text field will be considered invalid
if it is empty, avoiding the need for the RequiredFieldvalidator that you needed in
the previous examples.

The key to making your custom validator work is in setting the client-side validator,
which you do in the ClientValidationFunction property. Set this property to
ClientValidator, which is the name of a JavaScript function you are going to write
momentarily. Also, click the Events lightning bolt button, and set the Servervalidate
event handler to ServerValidator, a method in the code-behind you are also going to
write in just a bit.

To create the JavaScript function, add the following code directly to the markup file
in Source view, between the closing </head> element and the opening <body>
element:
<script language="javascript" type="text/javascript" >
function ClientValidator(source, args)

{
if (args.value % 2 == 0)
args.IsValid=true;
else
args.IsValid=false;
return;

}

</script>

IntelliSense will attempt to help by autocompleting as you type this
JavaScript. Do not be alarmed when this syntax does not appear as
one of the options. This code will work. Remember, however, that
JavaScript is case-sensitive.

In this function, the args parameter is an object that you use for validation. The
user’s input is in the args object’s value property. The value that the user has entered
is passed to this function in the args parameter passed to the script by the validator.
If it is an even number, the function sets the IsValid property of the args object to
true. Otherwise, it sets it to false.

Custom Validation | 199

The standard test for determining if an integer is even or odd is to
divide by 2 and check the remainder. If the remainder is 0, the integer
is even. If it’s 1, the integer is odd.

The operator for determining the remainder is called the modulus. In
JavaScript (as in most programming languages), the % operator repre-
sents the modulus. In other words, if your integer is stored in the vari-
able value, then value % 2 is equal to 0 if value is even.

In VB.NET, the modulus is represented by the Mod operator, not the %
operator.

You’ll implement the server-side method in the code behind file, default.aspx.vb.
Copy the highlighted code from Example5-5 to the code skeleton for
ServerValidator you created above.

Example 5-5. The server-side custom validation code tests whether a number is odd or even
Protected Sub ServerValidator(ByVal source As Object,
ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _
Handles cvValue.ServerValidate
args.IsValid = False
Dim evenNumber As Integer = Int32.Parse(args.Value)
If evenNumber Mod 2 = 0 Then
args.IsValid = True
End If
End Sub

This method does the same thing as the client-side validator, only in VB rather than
in JavaScript. There are a few things to notice about these methods. First, the value
that the Customvalidator is examining is passed to your routine as the Value prop-
erty of the ServerValidateEventArgs event argument. You convert that string to an
int using the Int32 object’s Parse method, as shown.

The declaration for the Customvalidator in the content file sets the client-side
method and the server-side method you’ve designated.
<asp:CustomValidator ID="cvValue" runat="server"
ControlToValidate="txtValue"
ValidateEmptyText="false"
ClientValidationFunction="ClientValidator">

Please enter an even number.
</asp:CustomValidator>

If you run this program in a current browser and enter an odd number, the page will
never be posted back to the server; the JavaScript handles the validation on the

browser. If you enter an even number, however, the client-side script and the server-
side script will run (to protect against spoofing from the client).

200 | Chapter5: Validation

Summary

Users will enter improperly formatted data into your forms, but validation can
allow the controls to check that data before it’s accepted by your server.

ASP.NET provides validation controls that can check for a number of common
user errors.

Current browsers can validate input on the client side, eliminating a round trip
to the server.

The RequiredFieldvalidator simply checks that the user has made an entry in
the specified control. On TextBoxes and DropDownlists, this validator can also
make certain that the user has selected an item other than the initial value.

If you set the SetFocusOnError property to true, the focus is automatically placed
on the control that fails validation, making it easier for the user to find.

You can use the ValidationSummary control to provide detailed feedback to the
user in a single spot on your page. You can still mark the individual controls that
failed validation, but you don’t need to put a lengthy error message next to the
control.

With the CompareValidator control, you can check the user’s input against a con-
stant value, a database value, or the value of another control. You can check if
the input is greater than, less than, or equal to the specified value, or you can
simply check that the input is of the desired data type.

The RangeValidator control checks to see if the user’s input falls within an
appropriate range. You can specify the maximum and minimum values of the
range.

Regular expressions are a language that uses literals and metacharacters to
describe and search text strings.

With the RegularExpressionValidator, you can check that the user’s input meets
the expected pattern for data such as a phone number, a zip code, an email
address, or other variations. The Regular Expression Editor provides some com-
mon regular expressions, or you can provide your own.

If none of the existing controls provides the validation you need, you can use a
CustomValidator to add custom JavaScript code to evaluate the user’s input.
Your custom code can do anything you like, but it can only return true or false.

You’ve created a lot of pages so far, and most of them have had familiar elements
that you see as you browse the web every day—form controls, database access, and
postbacks, among others. What you have not done so far, though, is create a page
that looks like something you’d see on the Web. For that, you need style, and we
don’t just mean good fashion sense. In the next chapter, you’ll learn how to pro-
vide a uniform, professional look to all your pages, and how to include special
touches—such as navigation tools—that separate a quality web site from just a col-
lection of controls.

Summary | 201

BRAIN BUILDER

Quiz
1. What is the reason for validation?
2. What do you do if you want a button to post the page without checking
validation?
3. What is the best type of validator to use for a radio button list?
4. What’s the difference between the Static and Dynamic values of the Display

property?

. Suppose the first item in your drop-down list is “Choose a payment method.”

How do you make sure users choose one?

. What’s the benefit of using the ValidationSummary control?

. What control should you use to make sure the user can’t order more of a single

item than you actually have in stock?

. Suppose you run a hotel that requires at least two guests stay in a double room,

but no more than five guests. What control should you use on the “Number of
guests” field?

. How do you check that the user has entered a valid email address?
10.

Suppose your theme park offers discounts to customers between the ages of 6
and 12, and also to customers over 65. What kind of control would you use to
validate whether the customer is eligible for a discount, while still using a single
age field?

Exercises

Exercise 5-1. In the exercises in this chapter, you’re going to create a form that users
can fill out if they want to participate in a friendly phone survey (I'm told some peo-
ple like to get survey calls in the middle of dinner). To begin, create a page with a
table with three columns, one each for a label, control, and validator. Then, add text
boxes for the user’s name, address, city, state, and zip code. Be sure to add the
appropriate validators for each field—don’t worry about the format of the input
right now; you just want to make sure that something is filled in. Finally, add a Sub-
mit button. It doesn’t matter too much what this form looks like, but it could look
something like Figure 5-8.

202

| Chapter5: Validation

El Exercise 3-1 - Visual Web Developer 2008 Express Edition =)
Eile Edit View Website Build Debug Format Table Tools Window Help
@-iE-Eda =W N % i= XHTML L0 Transitions = _ © b 1 @ 5= [= %= |Hex | B - 2
(None) - (DefsultFont) - (Defoul~|B 7 U | A & . _ Style Application: Manual - TargetRule: (NewlnlineStyle) = =
Toolbox ~ % X| “Sripage’ Defaultaspx| ~ 3 | Solution Explorer - G, » 1 X
El Standard [Bl EE E R
R Pointer ‘ s s . CA\\Exercise 5-1\
A Labe .| Phone Survey Participation Form e
|= 3 App_
Button ‘ Default.aspx
[sbll TextBox = Name: Please enter your name i3 web.config
LinkButti
T Street address: Please enter your address
(&) ImageButton
A HyperLink City: Please enter your city ‘.:j Solution Ex... | % Database Ex..
DropDownList State: Please enter your state Properties -1 x
thou ZIP code Please enter your ZIP code DOCUMENT T
CheckBox
= CheckBoxlist Submi | =
@ RadioButton =
:= RadioButtonList -
[Image L ; Alink
[ImageMap |] Color of all active links in the
3 Table _||[® pesign | o spiit | @ source [][<form#form1 || <div> [<tablex| [<trs|[<td>| [+] ||| document.
Ready

Figure 5-8. Your goal for Exercise 5-1.

Exercise 5-2. Let’s make things a little more interesting this time. For starters, move
the text from the individual validators to error messages, and add a summary con-
trol at the bottom of the form, above the Submit button. Next, you don’t want any-
one participating in the survey if they’re under 18, so add another label and field
asking for the user’s age. Add appropriate validators to make sure the user isn’t too
young. Because you’re polite, you’ll ask for a date when you should call the user, but
your survey is only going on in July 2009. Add another table row with a label and a
field asking for a date, and add the appropriate validators to make sure the date is
sometime in July 2009. Your form should look something like Figure 5-9.

Exercises |

203

[5] Exercise 5-2 - Visual Web Developer 2008 Express Edition =] 6
Eile Edit View Webste Build Debug Format Table Tools Window Help
@ -iE-EFH@ b 2B i 2 | XHTML10 Transitioni ~ _ © b 2 2
[Mone] - (DefaultFont) - (Defali-|B I U |A & = i= | @ _ iStyleApplication: Manual ~ Target Rule: (New InlineStyle) = 2
Toolbox - 3% Defauttaspx” | StanPage] + % |Solution Bxplorer e
[.5.‘_ _'.5"!“_"{__1’ [=" SOl |
R Pointer s . [Ci\-\Exercise 5-2\
A Labe Phone Survey Participation Form N
3 App_|
Button | Default.aspx
fabl| TextBox E Name: * -~ [y web.config
LinkButt
e Street ad&ess:i—_‘; g
ImageButton
A HyperLink 14 City-
=3 DropDownlList State: o
E3 ListBox Peode] * |2
CheckBox ‘.;?SulutiunEx.” T Database Ex...
Z, Age: bt B BN R e
= CheckBosList ! —— Tz
@ RadioButten Enter a date for us to o v
= RadioButtonList call you, in July. 2009 * DOCUMENT: i
1] Image (format mm/dd/yyyy): 8] E
[} ImageMap The following error(s) were found: Sty‘asheeﬂ'.hil =
[Table Theme
i BulletedList + Error message 1. ;-

Frr |
it HiddenField * Error message 2. | TraceMode |=
B Literal UlICulture =
“H Calendar Submit ‘ 4 |1
= AdRotator I ; ALink -
s e e
1) FileUpload | B Design | o Split | & Source | [4][<form#form1s|[<divs|[<tablex|[<trs|[<ta=| [¥] ||| Atink
4+ Wizard Tliee——_ — == — ——

Ready Ln13s Coll ch1 INS

Figure 5-9. Your goal for Exercise 5-2.

Exercise 5-3. If the user doesn’t mind being called at home, you might as well make
a follow-up call to ask additional survey questions. This call still has to take place in
July, but if it’s a follow-up call, it would have to be later than the first call. Add a row
to the table with a label and text box where users can enter a date for the follow-up
call, and add appropriate validators to make sure the follow-up call comes after the
initial call, but still in July 2009. The result should look something like Figure 5-10.

204 | Chapter5: Validation

[E] Exercise 5-3 - Visual Web Developer 2008 Express Editian

File Edit View Website Build Debug Format Tgble Tools Window Help
@ -iG-EHad| % @9 o 3 2 | XHTML10 Transition: = _ i b 1l @

(None) - (DefeultFont) - (Defaull- | B 7 U | A

[abl] TextBox Name: *
LinkButts

Imcaen E Street address: 3

ImageButton

A HyperLink City: =

=3 DropDownlList State: i

istBox ZIP code ’— x

CheckBox

Toolbox = & %| Statpage’ Defaultaspx| - x
=1 Standard =i =
K Pointer . . . I
A Lot Phone Survey Participation Form

Button

. | Style Application: Manual - Target Rule: (New Inline Style)
Solution Explorer - G » B X

FAElEE | 5

2P C\.\Exerdise 5-3\
3 App_Data

@ [F] Default.aspx
&3 web.config

i= CheckBoxList Age: 32

@ RadioButton Enter a date for us to 3 | Solution .. [EDatabess b
:= RadioButtonList call you. in July. 2009 > B

@ Image (format mm/dd/yyyy): Properties i

& ImageMap Enter a date for us to DOCUMENT =

[Table make a follow-up call, j.nj— e { 8]

i= Blletd ol oty 2009 ooy MasterPageFil -
| HiddenFicld mm/dd/yyyy): S

B Literal The following error(s) were found: StyleSheetThe!)

7 Calendar Theme ‘

[= AdRotator + Eror message 1 Trace 3

) FileUpload * Error message 2 TraceMode e

4 Wizard UlCulture

& Xml Submit | Bk

E Multiview Iy ; b Alink =

[] Panel s) S— Backarund

2] Blaceiiokiés .|| Design |2 spit | @ source _4|| <formxform1>!|"<dw>_H“<tab|e>||_<tr>\\$ B ALink

Ready Ln158 Coll Ch1 NS

Figure 5-10. Your goal for Exercise 5-3.

Exercise 5-4. If you’re going to call the user at home, you’ll need a phone number to
call. If the user is willing to give out his phone number, you might as well get his
email address as well. After all, you never know when you’ll need it. But if the user
forgets a digit, or leaves off the “.com” from his email address, it’ll do you no good.
Add two more rows to the table, with labels and text fields where the user can enter
a phone number and email address. Then, add the appropriate validators to make
sure that the input is in the correct form. The form should look something like

Figure 5-11.

Exercises

205

[5] Exercise 5-4 - Visual Web Developer 2008 Express Editian =B
File Edit View Website Build Debug Fermat Tgble Tools Window Help
-iA-EHE| %R~ ® : XHTML1.0 Transition: - _ b 1l @ = | Hex | B ~
(None) ~ (DefaultFont) - (Defeul - |B 7 U @, _ Style Application: Manual - TargetRule: (NewInlineStyle) ~ 2
Toolbox i > Defaultaspx| + x| Solution Explorer - Ciluw: = & X
El Standard ~|[r & 1
K Peinter Phone Survey Participation Form
A Label
Button N W .
[sbl] TextBox [web.config
T =
LinkButton | Street address:
ImageButton City- *
A

DropDownList

HyperLink Statew r
i WPeode|
CheckBox Age[e
CheckBoxList Phone:| **

e

@_ 23:!D:u§Dant E-maladdress: | ** |z Solution Ex... [FDatabase Ex..
= RadioButtonLi e
[Image Enter a date for us to Properties -1 x
[ImageMap call vou, in July, 2009 2t DOCUMENT -
3 Table (format mm/d Y)Y
= BulletedList Enter a date for us to rrTT—— T
| HiddenField make a foll Ow-ip call in| - | ey ?
B Literal July, ‘-@35"“”# StyleSheetThe!
7F] Calendar i sl : . Theme
(= AdRotator The following error(s) were found: Trace
3 FileUpload TraceMode
4+ Wizard UlCulture
& Xml =]
B MultiView I Tl Aink
Panel " o Backarsund
\E] p:l;nmy _||||= Design | 2 spiit | & Source [4][<htmi>| [<body> [¥] || Atk
Ready Ln10 Col5 Ch5

Figure 5-11. Your goal for Exercise 5-4.

206

| Chapter5: Validation

CHAPTER 6

Style Sheets, Master Pages, and
Navigation

Back in the early mists of time, when the Earth was young and the Web was new
(circa 1994), we created web pages in HTML (HyperText Markup Language). After
many eons (or so it seemed), we were able to add styles to the HTML elements,
allowing us to take greater control over the presentation of web pages.

Eventually content (the HTML) was divided from presentation and layout through
the use of styles, and that was good. In fact, it came to pass that presentation infor-
mation was given its own file—a style sheet—to allow for reuse, a consistent
presentation across many pages, and easier maintenance, and that was very good

indeed.

Styles and style sheets are a significant (but often overlooked) tool for web develop-
ers, too often ignored by “programmers” who disparage style sheets as being in the
realm of “designers”—leading to the creation of web applications that are ugly and
terribly difficult to maintain.

A powerful technique for creating sites with a common look and feel across all of the
pages is master pages, covered later in this chapter. Master pages cannot only define
the layout of the pages in your site, but they can also contain menus and other navi-
gational aids such as site maps and bread crumbs, and these, too, will be covered in
this chapter.

Styles and Style Sheets

A style specifies how an object will be displayed on an output device, typically a
browser. Styles can be used to manipulate the layout and appearance of controls and
text, detailing every aspect from border color to font size to position on the page.

Web applications use styles to ensure attractive and reasonable display on a wide
variety of devices, including desktop and laptop computers, tablet PCs, mobile PCs,
telephones, PDAs, televisions, printers, audio devices, and media not yet imagined.

207

HTML and ASP.NET controls apply styles through the use of properties and
attributes. There are three ways to apply styles to an element on a web page:

Inline
The style is implemented as an attribute of a specific element.

Document
A set of styles are defined on and for a single HTML page.

External
A style sheet is created as a separate file and “included” in one or more HTML

pages.

Cascading Styles

Style rules cascade down from the most general (the external style sheet), to the more
specific (document level styles), to the most specific (styles applied to particular ele-
ments), hence the term cascading style sheets (CSS).

If your style sheet says that text boxes should have a white background, but one par-
ticular page says that its textboxes will have gray backgrounds, and on that page the
seventh text box has its own style calling for a yellow background, the rules will cas-
cade—style sheet, to document, to element. All other pages in your web site will
have text boxes whose background color is controlled by the style sheet. Your one
document will have text boxes with gray backgrounds, except for the seventh text
box, which will have...you guessed it! A yellow background.

For a complete discussion of CSS, see the following books: HTML &
XHTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy,
or CSS: The Definitive Guide, by Eric A. Meyer (both published by
O’Reilly).

Inline Styles

You can apply styles to a specific element using the inline style attribute, as shown
in the following snippet of HTML:
<input type="text" value="Sample text" style="color:Red;font-family:Arial;
font-weight:bold;width:150px;" />
The style attribute contains one or more style properties, each consisting of a prop-
erty name and value separated by a colon. Each property-value pair is separated from
the next pair by a semicolon.

When you’re using ASP.NET controls, you may set inline styles either in the markup
or as properties in design view.

To see this, create a new web site called AspNetInLineStyles. Switch to Design view
and drag a TextBox control from the Standard section of the Toolbox onto the page.

208 | Chapter6: Style Sheets, Master Pages, and Navigation

In the Properties window, set the following properties (you’ll need to expand the
Font group to set the first two properties).

Property Value
Font-Bold True
Font-Name Arial
ForeColor Red

Text Sample Text
Width 150px

The resulting Design view should look something like Figure 6-1.

E AspNetInlineStyles - Visual Web Developer 2008 Express Edition =B g

Eile Edit View Website Build Debug Format Tools Window Help
i@ -E-EH @ BRBRY- -5 @@ L

{{iNone) +|[Anal -|Ocfeti-|| B 7 O |A 2 |=-|:=

2 | [XHTML 1.0 Transition; =|'=
Style Application: |Manual - :

Toolbox ~ 4 x Defaulhispx“@' ~ 3 |Solution Explorer -3 x
=l Standard || TaspitaxtboxzTodBad - el | = @
R Pointer [Sample Text 2P CA_\AspNetlnlineStyles\
A Label = u]

3 App_Data

Button] Default.aspx
- 3 webconi

LinkButton
ImageButton

A Hyperlink -

=3 DropDownList @Solut\on Ex.. %4 Database Ex..
ListB:

EN [stBox Properties ~ 4 x

CheckBox

8= CheckBoxlist TextBox1 System.Web ULWebC -

& RadicButton | |E|# |E

5 : |

2= RadioButtonList CssClass -

| Image Font Arial

& ImageMap ForeColor Red 3

[Table Text Sample Text

:= BulletedList i B Behavior

4 »
i i AutoC let N
Eldenbacld ’m‘ O Split | @ Source | E| (a;p:TﬂtBﬂx#TatB[B roomp one -
B Literal A2
Ready

Figure 6-1. You've set the inline style properties on this TextBox by using the IDE.

When you set the Font Name property, the IDE automatically fills in
the Names property for you.

Run the application. When the page comes up in the browser, view the source by
clicking on the View — Source menu item in IE6 or Page — View Source in IE7.

Styles and Style Sheets | 209

Notice how this ASP.NET TextBox is rendered to the page:

<input name="TextBox1" type="text" value="Sample text" id="TextBox1"
style="color:Red;font-family:Arial;font-weight:bold;width:150px;" />
It is the same as if you had coded HTML with inline styles, which is in fact what
ASP.NET sends to the browser based on the ASP.NET controls and their properties.

You can also set or change style properties programmatically (as you can any control
property).

To see this, close the browser, then drag a Button control from the Standard section
of the Toolbox onto the page. Using an If-Then-Else statement, change its Text
property to toggle between two colors.

Double-click the Button in Design view to open up the event handler for the Click
event. Enter the highlighted code from Example 6-1.

Example 6-1. The ButtonClick Event handler toggles the inline styles
Protected Sub Buttoni Click(Byval sender As Object, _
ByVal e As System.EventArgs) Handles Buttoni.Click
If TextBoxi.ForeColor = Drawing.Color.Red Then
TextBox1.ForeColor = Drawing.Color.Green
Else
TextBox1.ForeColor = Drawing.Color.Red
End If
End Sub

Run the application. Each time you click the button, the ForeColor property will tog-
gle between Red and Green, which it does by changing the style attribute of the
HTML that the page renders.

Pros and cons

Inline properties are excellent for overriding the styles in your existing stylesheet for
a particular control. Unfortunately, they are very easy to use instead of style sheets,
and programmers are often seduced into using inline styles to excess, creating
markup that is very difficult to maintain.

Document-Level Styles

Just as you can use inline styles to override a style sheet for a single control, you can
also add styles to a single document to set or override a particular setting for that one
page. This is an error-prone technique for any multipage web site (that is, for virtu-
ally any serious web site), so we will be brief in our presentation of how to use them.

Document level styles are added to a page with a <style> element in the <head> sec-
tion of the page as shown in Example 6-2. (You don’t need to create this one your-
self.) In this web site, called AspNetDocumentLevelStyles, the style for the top-level

210 | Chapter6: Style Sheets, Master Pages, and Navigation

heading, <h1>, will be overridden to display in red, bold, and italicized text. Also, a
new style will be defined, called GreenText.

Example 6-2. Default.aspx for AspNetDocumentLevelStyles; notice the document styles defined
within the comment tags
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"

Inherits=" Default" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server"»
<title>ASP.NET Document Level Styles</title>
<style type="text/css">
<l--
h1 {color:Red; font-style:italic; font-weight:bold;}
.GreenText {color:Green;}
-->
</style>
</head>
<body>
<form id="form1" runat="server">
<div>
<h1>Custom H1 Heading</h1>
<asp:Label ID="Label1" runat="server"
Text="Creen text in an ASP.NET Label control."
CssClass="GreenText"></asp:Label>

</div>

</form>
</body>
</html>

Note the period in front of the GreenText style name; it is required. Also, style names
are case-sensitive.

Also, notice that the style definitions are embedded between HTML comment char-
acters. This is for the benefit of very old browsers that may not recognize styles; they
will ignore the styles enclosed in comments.

Figure 6-2 displays the results of these style settings.

Pros and cons

It is tempting to use a document-level style either to set the styles for that page or to
override the general styles for the entire site. This can be effective, but tends to be
hard to maintain.

Styles and Style Sheets | 211

@ ASP.NET Document Level Styles - Internet Explorer E@Iﬁ

QU - [] hitp://localhost49830/AspNetD: v | 45 | X || Google o+
ol ‘@ASP.NHDucumentLeveIStyla‘_l o~ v v [ih Page v {J Tools » ~

Custom H1 Heading

Green text in an ASP NET Label control.

Done €D Internet | Protected Mode: On #100% -

Figure 6-2. The result of using document-level styles. It looks perfectly fine for this one page, but
across a whole site, using document-level styles is tough to maintain.

Experience shows that collecting styles into a set of external style sheets, even if some
styles are targeted at a subset of pages (where that subset could be as small as a sin-
gle page) tends to be far easier to maintain in the long term.

External Style Sheets

The net result is that in most applications, styles are defined in an external file, called
(somewhat confusingly) a style sheet (or, as already mentioned, a “Cascading Style
Sheet,” or even an “External Style Sheet”). This style sheet is “linked” or “imported”
into each page by a directive at the top of the .aspx page.

To complicate things further, you are not limited to a single style sheet for your
entire application. In fact, you are free to create separate style sheets for different sec-
tions of your application, or for rendering to different devices.

You first saw the use of a CSS style sheet back in Chapter 3, where you used styles to
differentiate the watermarked and unwatermarked text boxes. Look at the CSS Style
sheet created for that application, reproduced here in Example 6-3.

Example 6-3. The StyleSheet.css for the AdventureWorksWatermarks web site is very simple, but
style sheets can be much longer and more complex
body {

.watermarked {
padding:2px 0 0 2px;

212 | Chapter6: Style Sheets, Master Pages, and Navigation

Example 6-3. The StyleSheet.css for the AdventureWorksWatermarks web site is very simple, but
style sheets can be much longer and more complex (continued)

border:1px solid #BEBEBE;

background-color: #FOF8FF;

color:gray;

font-family:Verdana;

font-weight:lighter;
}

.unwatermarked {
height:18px;
width:148px;
font-weight:bold;

¥

There are two style classes in this style sheet: watermarked and unwatermarked.

Style classes are defined with a leading period, followed by the name of the class, and
then the definition of the style class enclosed in braces. To use a style class, the ele-
ment must specifically identify the class it wants to use, such as:

<asp:TextBox CssClass="watermarked"...

When you’re applying a style to a web server control, you use the
CssClass property. When you’re applying a style to an HTML control,
you use the class property instead.

Your style sheet can also define styles for “selectors,” and these styles will automati-
cally be applied to matching elements. For example, if you define a selector for the
<p> (paragraph) element, all paragraph elements would have that style applied.

The application of styles to both classes and selectors can become complex once you
begin nesting, which is why we strongly recommend reading a solid book on CSS
syntax (such as those mentioned in the note above).

The names used for style rules and classes are case sensitive. If your style sheet has a
class called watermarked and you assign the class name Watermarked (with a capital
W) it will be ignored, with no error message, leading to many happy hours of
debugging.

To see style sheets at work, create a new web site called AspNetExternalStyles.

Click on the Website -+ Add New Item... menu item, and select Style Sheet from the

list of templates. You could use the default name of StyleSheet.css, as we will only be
using a single style sheet in this web site, but let’s call it MyStyleSheet.css.

The new style sheet will be visible on the editing surface, with an empty selector for
the body element:

body {
}

Styles and Style Sheets | 213

You will now add additional style classes for three different headings and the body
text, plus an overridden selector for all paragraph elements.

Right-click anywhere on the editing surface and select Add Style Rule... to bring up
the Add Style Rule dialog box. Select the Class Name radio button and enter the style
class name .MyHeading1 (either with or without the leading period—the style will be
inserted into the style sheet with exactly a single leading period in either case). Click
OK; this will insert an empty style class called MyHeadingl, so your style sheet will
now look like the following:

body {

}
.MyHeading1

}

Place the mouse pointer anywhere between the curly braces following MyHeading1,
right click, and select Build Style to bring up the Modify Style dialog box.

Add the styles listed in Table 6-1.

Table 6-1. Styles in .MyHeading1

Category Style Value
Font font-family Arial, Helvetica, sans-serif
font-size xx-large
font-weight bold
font-style normal
Color #FF0000 (Red)
Block line-height 1.25in
Background background-color #OOFFFF (Aqua)
Box padding-top J5in
(Uncheck “Same for all”) padding-right Sin
padding-bottom 0.25in
padding-left Sin

When you are done, it should look like Figure 6-3 (showing the Font styles).

Click OK to accept the style modifications, and you will see the style attributes
added to the MyHeading1 class in MyStyleSheet.css.

That’s just one of the heading styles, however; you still have two others to go, plus a
body text style. You can either add the additional styles in a similar manner, using
the values in Example 6-4, or you can edit the style sheet directly. In any event, cre-
ate the styles so that the finished style sheet looks something like Example 6-4.

214 | Chapter6: Style Sheets, Master Pages, and Navigation

-
Modify Style (2
Category:
tock font-family: !nr_lal: Hereu:..a,_s.arjs-senf |Z||
C— =1
Background font-size: IXJHEI'QE El! =1 text-decoration:
Enc;:er funtwcight; E"’E—El [underline
R overline
Position font-style: |normal E‘I EI' s
—_— ine-throug
Layout .
oA font-variant: | g‘ [blink
Tablz text-transform: | E" [Tl none
color: [#rroooo [[l
Preview:
Description: font-family: Arial, Helvetica, sans-serif; font-size: xxarge; font-weight: bold; font-style:
normal; color: #FFO000; line-height: 1.25in; background-color: #00FFFF; padding: . 75in
.3in ,.25in . 5in
Lok || coned |

Figure 6-3. There are a lot of different style attributes for the .MyHeading]1 style class, but the
Modify Style dialog makes them easy to keep track of.

As you type, IntelliSense will show all possible style attributes and provide hints for
valid values.

Example 6-4. You can edit MyStyleSheet.css directly if you like, or you can use the Modify Style
dialog to do it for you
body {

¥
.MyHeadingl

padding: .75in .5in .25in .5in;
font-family: Arial, Helvetica, sans-serif;
font-size: xx-large;
font-weight: bold;
font-style: normal;
color: #FF0000;
background-color: #OOFFFF;
line-height: 1.25in;}
.MyHeading2

font-family: Arial, Helvetica, sans-serif;

Styles and Style Sheets | 215

Example 6-4. You can edit MyStyleSheet.css directly if you like, or you can use the Modify Style

dialog to do it for you (continued)
font-style:normal;
font-weight:bold;
font-size:x-large;
background-color:Aqua;
color:Blue;
padding-left:.1in;
padding-right:.1in;
padding-top:.2in;
padding-bottom:.2in;
line-height:.75in;

¥

.MyHeading3

{
font-family: Arial, Helvetica, sans-serif;
font-style:normal;
font-weight:bold;
font-size:large;
color:Black;

}

.BodyText

{
font-family:Times New Roman, Serif;
font-style:normal;
font-weight:bolder;
font-size:medium;

¥

P

{

}

You can specify colors either using named colors, e.g., Red, Black, or Aqua, or using
RGB values, e.g., #FF0000. The IDE tools insert RGB values, but when you’re edit-
ing manually, it is often easier to use named colors unless you must specifically
match a very precise color. RGB specifies colors by relative amounts of red, green,
and blue. The value always begins with the pound sign, then three pairs of charac-
ters, each of which is a hexadecimal number from 00 through FF, representing red,
green, and blue, respectively.

color:Blue;

There are a number of possible units of measurement you can use for attributes that
require absolute values, such as padding and line-height. In addition, Relative units,
which are relative to the other content on the page, are also available.

Before the styles in a style sheet will take effect, you need to attach the style sheet to
the page. You can do this one of two ways, which have essentially the same result.
The first way is to manually enter an @import statement inside a style element
between the opening and closing head tags in the markup file:

<head runat="server">
<style type="text/css">@import url(MyStyleSheet.css);</style>

216 | Chapter6: Style Sheets, Master Pages, and Navigation

<title>Untitled Page</title>
</head>

In this case, a relative URL is provided, which refers to your style sheet in the cur-
rent directory. Because it is a URL, it can be either relative or absolute. For example,

you could provide an absolute URL such as http://Corporate WebSite.com/stylesheets/
handhelds.css.

The @import command must appear in the <head> element, and before
any conventional style rules are specified. Otherwise, the imported
style sheet will be ignored. This allows the browser to properly cas-
cade styles from the external style sheet down to the element-level
styles.

The second technique is to use a link tag, which also goes inside the head tags in the
markup file. You can also enter this manually, but the IDE provides an easier way.
Make sure that the .aspx page is visible in Design view. Click on the View — Manage
Styles menu item to get the Manage Styles window shown in Figure 6-4.

Manage Styles =

i New Style. .. Optons ~ |

Al Attach Style Sheet...

€55 styles:

Selected style preview:

Figure 6-4. Clicking on View — Manage Styles brings up this window for attaching a style sheet to
the page, then working with that style sheet.

Styles and Style Sheets | 217

http://CorporateWebSite.com/stylesheets/handhelds.css
http://CorporateWebSite.com/stylesheets/handhelds.css

There should be three styles-related items under the View menu item:
CSS Properties, Manage Styles, and Apply Styles. If you don’t see these
items while looking at the page, switch to Design view. Then they
should be visible in either Design, Split, or Source view.

Click on the Attach Style Sheet... link. This will bring up a Select Style Sheet dialog
box, listing all the available style sheets. In this case, there will be only a single style
sheet available: MyStyleSheet.css. Select it and click OK. This will automatically add
the following highlighted line to the .aspx file:
<head runat="server">
<title>Untitled Page</title>
<link href="MyStyleSheet.css" rel="stylesheet" type="text/css" />
</head>
Now that you have created the style sheet with several styles and attached the style
sheet to the page, you will add controls to the page and apply the styles. Open the
default.aspx file in the IDE. Switch to Design view, and drag a Label control onto the
page. Set the Text property to “Heading 1”. Set the CssClass property to MyHeading1
by clicking on CssClass in the Properties window and selecting from the available
styles that you created earlier.

Type in some text on the page, select it, and apply the paragraph style to it by select-
ing “Paragraph <p>” from the Block Format drop-down in the Style Application
toolbar (indicated in Figure 6-5).

Now, drag a second Label control onto the page. Set its Text property to “Heading
2” and the CssClass property to MyHeading2. Type some more text on the page after
the label.

Drag a third label on the page. Set the Text property to “Heading 3” and the CssClass
property to MyHeading3. Type some more text on the page.

Add two more Label controls with the CssClass set to MyHeading2 and MyHeading3,
along with some text.

To format the text under both MyHeading3 headings, switch to Source view and insert
some <div> or elements so that you can apply the BodyText style, like this:

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut dolore magna aliqua.

To apply a style to an ASP.NET control, use the CssClass property.
However, to apply a style to an HTML control, use the class property.

And, just as a bit of HTML refresher, both <div> and elements
are used primarily to apply style to some content. The difference is
that a <div> element incorporates a line break before and after, while a
 element does not, displaying its content inline with its con-
tainer. It is convenient to think of a <div> as creating a block, while a
 delineates a series of inline characters.

218 | Chapter6: Style Sheets, Master Pages, and Navigation

Block format tool

[5] AspMetExtamalStyles - Visual Web Developer 2008 Express Edition [ESEER=>)
File Edit View Website Build Debug Format Table Tools Window Help
i@-pl-EHA | B9 - - B-EL b [dass o-F = 2 | XHTML L0 Transition: + _
{(Nona} - |Oefautt Fort) - (Defaul~ | B 7 U | A & | =~ |iZ = | _ Style Application: Manual + Target Rule: (New Infine Style) ~ [a7 [T
Toolbox + 2 X| Defaultaspx” | Start Page | « x |Solution Bxplorer - Ix
AP : NeEEsEEe
K Pointer H 2P C\\AspNetExternalStyles\
A Label 5 Tl - G
o Heading 1
[sb] TextBox
LinkButton - [web.config
ImageButton
A HyperLink This is a blue paragraph.
DropDownList
=2 ListBox
CheckBox Heading]
E= CherkRovl ist .
Manage Styles ~Ix|
A 5 . S 3 N =|||eq50lution Ex... [Database Ex..
A New Style... Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do einsmod tempor 9 A
Adl Attach Style Sheet... incididunt ut labore et dolore magna aliqua. Properties -4
55 styles: i DOCUMENT -
E MysStyleSheet.css Headl_ng 3 . L .
(@)body Lorem ipsum dolor sit amet, d elit, sed do d e e
(@) MyHeading1 tempor incididunt ut labore et dolore magna aliqua. Languege } L =
(:5) MyHeading2 MasterPageFi
@) MyHeading3 = Strict L
(@) .BodyText Another Heading 2 StyleSheetThe
e Theme £
Another Heading 3 Trace
Selected style preview: E =
i Lorem ipsum dolor sit amet, dipisicing elit, sed do ei d TraceMode
tempor incididunt ut labore et dolore magna aliqua. o UlCulture
L Bl Body
« v
ALink
@ Design | 0 Split | & Source | [4][<htmi>|[<body> [A -
Ready Ln30 Coll Chl NS

Figure 6-5. Your AspNetExternalStyles page, in Design view, where you can see all the styles
applied.

The Design view will now look something like Figure 6-5.

Example 6-5 presents the Source view for Default.aspx.

Example 6-5. The Default.aspx for AspNetExternalStyles shows how the style classes are applied
to each element, but the style definitions aren’t in this file
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"

Inherits=" Default" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>
<link href="MyStyleSheet.css" rel="stylesheet" type="text/css" />
</head>
<body>
<form id="form1" runat="server">
<asp:Label ID="Label1" runat="server" CssClass="MyHeadingl" Text="Heading 1">
</asp:Label>
<p>
This is a blue paragraph.</p>

Styles and Style Sheets | 219

Example 6-5. The Default.aspx for AspNetExternalStyles shows how the style classes are applied
to each element, but the style definitions aren’t in this file (continued)
<asp:lLabel ID="Label2" runat="server" CssClass="MyHeading2" Text="Heading 2">
</asp:Label>
<p>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.</p>
<asp:lLabel ID="Label3" runat="server" CssClass="MyHeading3" Text="Heading 3">
</asp:Label>
<div class="BodyText">
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
</div>
<asp:Label ID="Label4" runat="server" CssClass="MyHeading2"
Text="Another Heading 2">
</asp:Label>

<asp:Label ID="Label5" runat="server" CssClass="MyHeading3"
Text="Another Heading 3">
</asp:lLabel>
<div class="BodyText">
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
</div>
</form>
</body>
</html>

The resulting page is shown in Figure 6-6.

Master Pages

A master page acts as a shell or frame shared by all the pages (or some of the pages)
on your site. It is common to put a logo and perhaps a menu into the master page so
that these elements appear at the same location on every page without your having to
recode them.

Within the master page, you place one or more content placeholder areas, which will
be filled with the contents of each of the content pages. This is shown in Figure 6-7.

Unlike cascading style sheets (CSS), which help ensure that similar
controls have similar appearances (see the previous section), master
pages ensure that all the pages on your site have common elements
such as logos, headings, footers, or navigation aids.

To use master pages, follow these steps:
1. Create a new web site.
2. Add a master page to the site.
3. Add content pages that fit the placeholders on the master page.

220 | Chapter6: Style Sheets, Master Pages, and Navigation

& Untitled Page - Internet Explorer [E=REER
\:)Q : |g, http:f'f.loca|ho51;49845,"AspNetE)ct.emalStylafDa‘Fault.a:px * | ‘1| x | | Google 2 v|

| BB - B - eger Glods v

-

Wl | /& Untitled Page

Heading 1

This is a blue paragraph.

Heading 2

m

Lorem ipsum dolor sit amet. consectetur adipisicing elit. sed do emsmod tempor incididunt ut labore et dolore
magna aliqua.

Heading 3

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.

Another Heading 2

Another Heading 3
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.

Done & Internet | Protected Mode: On H100% -

Figure 6-6. This is what the AspNetExternalStyles page looks like in your browser.

Creating a Master Page

To begin, create a new web site and call it MasterPages. Once the new site opens
click on Website = Add New Item.... Select Master Page in the dialog box and give
it the name, CorpMasterPage.master, as shown in Figure 6-8. Be sure to check the
“Place code in separate file” checkbox, as indicated in the figure.

Even though we don’t actually use any server-side code in the master
page in this chapter, it is good practice to segregate all your server-side
code in a code-behind file, rather than in a script block in the markup

file.

Your new master page has been created with two ContentPlaceHolder controls
already in place, one inside the head tags, and one in the body of the page.

MasterPages | 221

CorpMianterPupe.manter” | Defoh sops | St Part | - % Home nps® | Copbanterfagemiter | Defustasgs | Start Page. ite]
iﬂ:‘f.mum“' Oehs CUrD: Ady enmre“ orks Corp.
[I . o)
;llome I’age T
Lesrving ASP NET CCopyright 2008
+ Learning ASP NET CCopyright 2008
5 Deign | = Splt | 5 Source 3 Denign | 2 Sple | W Sowrc [[captontenaContert » |[<ha =
Master page design (ontent page design
f‘ et Fuge - Intermet, Lupiorer
|+ [ie] mtpnecamon 3002 Mtaczeeragent = | oy | ¢ || Google
| Unatied Page Siov) v oemov e iTosh
AdventureWorks Corp.
Home Page
Lewmning ASP NET CCopyright 2004
e @ Inteman | Protested Mode On H100% =

Figure 6-7. The master page defines the content that should appear on every page of your site, and
has placeholders for the content of the individual content pages. When you put them together, you
get a web site with a uniform appearance.

All master pages must have the extension .master.

Switch to Source view and change the ID of the placeholder in the body of the page
to something more meaningful, such as cphCorpMaster, as in the following code:

<asp:ContentPlaceHolder ID="cphCorpMaster" runat="server"s
</asp:ContentPlaceHolder>

You can have more than one ContentPlaceHolder control on a master page (each has
its own ID). This gives you tremendous flexibility in laying out your pages, though
experience shows that the majority of sites actually use only a single
contentPlaceHolder per master page. To keep this example simple, delete the
<asp:ContentPlaceHolder> that is within the head tags.

Normally, content inside the head tags is not displayed directly by the
browser, but is used to convey information about the page, such as the
title, styles, metadata, etc. You can also include certain ASP.NET con-
trols, such as the ContentPlaceHolder and Label, which will display at
the top of every page.

222 | Chapter6: Style Sheets, Master Pages, and Navigation

Select the Master Page template

Add New Item - C\LearningASP\Chapter T\MasterPages', / m
Templates: /
Visual Studio installed templates
=] Web Form 8] Web User Control
SE]AJAX Client Behavior 8] AJAX Client Control B AJAX Client Library
EAJAX Master Page |j AJAX Web Form E%AJAX—enabled WCF Service
@] Browser File %) Class |&] DataSet
= Generic Handler ﬂG\obalAppllcatlon Class @HTMLPage
Y)5cript File |21 LINQ to SQL Classes (i Resource File
,ﬂ Site Map |2 Skin File L_J SQL Server Database
A Style Sheet) Text File FERWCF Service
i Web Configuration File | Web Service 2] XML File
' ¥SLT File
My Templates
J Search Online Templates...
Be sure to check this box

A Master Page for Web Applications

Name: CorpMasterPage.master

Language: Visual Basic v] [#] Place code in separate file
|| Select master page

| Add][e]

Figure 6-8. You add a master page from the Website - Add New Item dialog. Be sure to check the
“Place code in separate file” checkbox.

The placeholder will be filled by the contents of the content page, which in turn will
be surrounded by whatever else you place on the master page. Within the master
page, you may add anything you like surrounding the ContentPlaceHolder control.
For example, you might add a logo at the top of the page and a copyright notice at
the bottom. Perhaps you may want navigation controls to appear consistently posi-
tioned along the side of your pages. You can even add other content placeholders,
giving each a unique ID.

For this example, place an <h1> header on the page above the ContentPlaceHolder
within the body of the page, and an HTML table below as a footer. The Source view
should look something like Example 6-6. Add the highlighted code to your page.

Example 6-6. You’ll be adding some basic content to CorpMasterPage.master
<%@ Master Language="VB" CodeFile="CorpMasterPage.master.vb"
Inherits="CorpMasterPage" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.01g/1999/xhtml">
<head runat="server">

<title>Untitled Page</title>
</head>

MasterPages | 223

Example 6-6. You'll be adding some basic content to CorpMasterPage.master (continued)
<body>
<form id="form1" runat="server">
<div>
<h1>AdventurelWorks Corp.</h1>
<asp:ContentPlaceHolder ID="cphCorpMaster" runat="server">
</asp:ContentPlaceHolder>

<hr />
<table width="100%">
<tr>
<td width="50%" align="left">Learning ASP.NET</td>
<td width="50%" align="right">©Copyright 2008</td>
</tr>
</table>
</div>
</form>
</body>
</html>

Switch to Design view; the master page will look something like that shown in
Figure 6-9.

E MasterPages - Visual Web Developer 2008 Express Edition @E@
File Edit View Website Build Debug Format Table Tools Window Help
i -iE-EHE % B9~ -E-E G g = 2 | XHTMLL0 Transition: - _
i (None) - (DefaultFont) - (Defaull- | B J U |A & |=-|iZ i= 7 istyleApplication: Manual ~ g
g /CurpMaﬂerPage.mmer‘]: Default.asp i-ﬁtﬂ‘lpﬂﬁgl - % | Solution Explorer -3 x
g N BB EE S
& P C\.\MasterPages\
2| AdventureWorks Corp. g
Master -~ 33 App_Data
@ | cphCorpMaster]] CorpMasterPage.master
g <—— (ontent ——>] Default aspx
= | web.config
]
=1
@
2| Leaming ASPNET 4 ©Copyright 2008
2 | i Solution Ex... L3 Database Ex...
Properties - 1 X
cphCorpMaster System.Web.UL -~
-
(Expressions) B
= (| [B Misc =
€ L (ID) (pl\(oorpMsie_
L4 Design | O Split | & Source | 5
Ready Ln1 Coll Chl

Figure 6-9. This is what your master page looks like in Design view. The heading at the top and
the footer at the bottom will be applied to all of your content pages. The content from your content
pages will appear in the placeholder, which doesn’t look very large when it’s empty, but it expands
as you add things.

224 | Chapter6: Style Sheets, Master Pages, and Navigation

Adding Content Pages

The pages you’ll add that will use this master page will put all of their content into
the ContentPlaceHolder defined in body of the master page. When combined, the

twoO create a content page.

For this example, you’ll add two new .aspx pages, Home.aspx and SecondPage.aspx.

There are two ways to do this.

One way is to click on the Website -+ Add Content Page menu item. However, this
will produce a page with a default name, which you will almost certainly want to
change, which is more of a nuisance than it is worth.

The better way is to click on Website - Add New Item..., then add a “normal” Web
Form. Call the new page Home.aspx, and be sure to check both the “Select master
page” and “Place code in separate file” checkboxes, as indicated in Figure 6-10.

Select the Web Form template

/

Add New Ite r}{— CAlearningASP\Chapter T\MasterPages',

Iemp\atﬁz

Visual/Studio installed templates
;@Web Form \j Master Page
iE]AJAX Client Behavior 8] AJAX Client Control
3AJAX Master Page |jA.IAX Web Form
@] Browser File ¥e] Class
=) Generic Handler ﬂG\obalAppllcatlon Class
£5]JScript File |21 LINQ to SQL Classes
,ﬂilteMap |2 Skin File
A] Style Sheet |2 Text File
i3 Web Configuration File | Web Service
' ¥SLT File

My Templates
J Search Online Templates...

d’ ‘Web User Control

S AJAX Client Library
E%AJAX—Enabled WCF Service
|&] DataSet

|#] HTML Page

[Resource File

L_] SQL Server Database
EGWCF Service

2] XML File

A form for Web Applications

Name: Home.aspx

Language: Visual Basic

- [¥] Place code in separate file

/vféalact master page

Check both boxes/

[Add

| [concel

]

Figure 6-10. The easiest way to add a content page is by adding a new Web Form, and making

sure to check the “Place code in separate file” and “Select master page” checkboxes.

When you click the Add button, the Select a master page dialog will open. Choose
CorpMasterPage.master (the only master page available at this point), and click OK.

Then, switch to Design view.

Master Pages

225

Your new Home.aspx page will be shown within the master page. The Content box
will allow you to add any content you like, including controls, text, and so forth. The
contents of the master page will be visible, but inaccessible.

Add some text and format it as HTML Heading 1 using the Block Format drop-down
menu, as indicated in Figure 6-11.

E MasterPages - Visual Web Developer 2008 Express Edition E@g
File Edit View Website Build Debug Format Table Tools Window Help
i -iE-EH e R - -85 e S 2 | XHTML 1.0 Transition » _
{ Headingl - (DefaultFont) - (Defaull - [B] 7 U | A & | =-[i= i= 7 istyle Application: Manual = i
g _/Homeﬁpﬂ(*li(:m Mactobaoe o tecs I:Q:fauﬁas Iisﬁ“ Fage] « ¥ |Solution Explorer >3 x
g CorpMasterPage.master| Lr‘% | El @ ‘ E ’3
= &2 C:\..\MasterPages\
= E@ App Dat
| AdventureWorks Corp. g
@] CorpMasterPage.master
- cphCorpMaster {Custom)| [h1] 5 Defaultaspx
z Home.aspx
¢ | Home Page ﬁJ - 4
2 |5 web.config
%}
=
e | il Solution Fx.., |-E'gDatabase e
Leaming ASP.NET ©Copyright 2008 Properties - 3x
-
left 1
I« L Itr
3 Design | O Split | B Source | E| <asp:Content#Contentl » |z| -
Ready Ln5 Col18 Ch18 INS

Figure 6-11. When you create a content page, you add content within the placeholder you created
before. The contents of the master page are there for you to view, but they’re grayed out.

The Design view allows you to see how your new page will look when it is combined
with the master page at runtime.

The terminology can get a bit confusing, so let’s clarify. A master page
has an empty ContentPlaceHolder control.

You create a separate file called a content page. A content page is a
normal .aspx file, with a Page directive but minus the <html>, <forms,
<head>, and <body> tags, which are provided by the master page. Typi-
cally, you’ll create many content pages for each master.

The contents of each content page are displayed as if they were
inserted into the ContentPlaceHolder control. In effect, the Master
Page is “wrapped around” the content page, allowing all the content
pages to share the contents of the master page.

Create the next page, SecondPage.aspx, using the same master page. Using the mas-
ter page ensures that the look and feel of the two pages will be identical.

226 | Chapter6: Style Sheets, Master Pages, and Navigation

Take a quick look at the markup generated for the second page:

<%@ Page Language="VB"

MasterPageFile="~/CorpMasterPage.master"
AutoEventWireup="false"
CodeFile="SecondPage.aspx.vb"
Inherits="SecondPage"
title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphCorpMaster" Runat="Server"s

</asp:Content>

The Page directive contains a reference to the master page for the second page, as
well as some other information necessary to the page. An ASP.NET Content control
was added for you automatically. Visual Studio knows which master page you are
using automatically, and links the Content control to the ContentPlaceholder control

on the master page.

You can put some simple text in the Content control and then run the two pages, as

shown in Figure 6-12.

/& Untitled Page - Internet Explorer = [B]
()W) - [nttpsriocainostsonzsMasterpages/ « | 45| % |[Gosgle 2 -
w B & Untitled Page |_| - ~ =~ [ih Page ~ i} Tools = =
AdventureWorks Corp.
Home Page , —
(& Untitled Page - Internet Explorer =] B [
\:}u] http://localhost:50025/MasterPages/s ~ | 42| X || Google 2 -
Learning ASP.NET % 4l | @ Unitled Page }7| L= B = @ v [hPage v i Tools v
AdventureWorks Corp.
Done
This is the second page of the site, using the corporate master page.
Learning ASP NET ©Copyright 2008
Done & Intemet | Protected Mode: On H100% -

Figure 6-12. This is what your content pages look like when you run the application. As you can
see, the header and footer from the master page appear in both.

This example does not provide any means of navigating from page to
page. In order to see these pages, select the page in the Solution
Explorer and run the web site. Later in this chapter, we will look at
ways to navigate from page to page within a web site.

MasterPages | 227

Using Nested Master Pages

You may want certain elements to appear throughout the entire web site, while other
elements should be shared only within a specific part of your application. For exam-
ple, you might have a company-wide header, but need division-specific elements as
well. For situations like these, ASP.NET lets you create nested master pages. Any
given web page can be combined with a nested master page or with the original mas-
ter, whichever makes more sense for that individual page.

Copy the previous example, MasterPages, to a new application, NestedMasterPages.

Add a new master page to the web site, called SalesMasterPage.master. As shown
back in Figure 6-8, be sure to check the “Place code in separate file” checkbox.

Look at the Source view; the IDE puts the following boilerplate markup code in
SalesMasterPage.master:

<%@ Master Language="VB" CodeFile="SalesMasterPage.master.vb"
Inherits="SalesMasterPage" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Untitled Page</title>
<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:contentplaceholder id="ContentPlaceHolder1" runat="server">
</asp:contentplaceholder>
</div>
</form>
</body>
</html>

In order to make this a nested master page, delete all of this except for the Master
directive. Then, add the highlighted code shown in Example 6-7. Again, notice how
IntelliSense helps you.

Example 6-7. Add some additional content to SalesMasterPage.master

<%@ Master Language="VB" CodeFile="SalesMasterPage.master.vb"
MasterPageFile="~/CorpMasterPage.master"
Inherits="SalesMasterPage" %>

<asp:Content ID="SalesMasterContent" runat="server"
ContentPlaceHolderID="cphCorpMaster">
<table>
<tr>

228 | Chapter6: Style Sheets, Master Pages, and Navigation

Example 6-7. Add some additional content to SalesMasterPage.master (continued)
<td>
<h3>Sales Department master page</h3>
Put information here to display on all the Sales pages.

</td>
</tr>
<tr>
<td>
<asp:ContentPlaceHolder ID="cphSalesContent" runat="server">
Default content for Sales
</asp:ContentPlaceHolder>
</td>
</tr>
</table>
</asp:Content>

The Master directive has an additional attribute, MasterPageFile, which points to its
own master page. This is how ASP.NET knows that this is a nested master page. In
this way, master pages can be nested as deep as necessary.

This master page for the Sales department has an ASP.NET Content control, called
SalesMasterContent, which contains the content to display on all the Sales pages. In
this example, that content consists of an HTML table for layout, along with some
additional markup.

Like all Content controls, it has a ContentPlaceHolderID attribute that specifies which
ContentPlaceHolder control on its master page it will populate—in this case,
cphCorpMaster on the CorpMasterPage.master master page.

The markup also includes a ContentPlaceHolder control called cphSalesContent. Con-
tent pages that use this nested master page will put their content inside this
ContentPlaceHolder.

Switch to Design view for this nested master page, as shown in Figure 6-13. You can
see the top-level master page, CorpMasterPage.master, except it is not editable, just
as the master page of a normal content page is not editable in Design view.

To see the nested master page in action, add two new pages to the web site. Call
them Sales_Orders.aspx and Sales_Stores.aspx. For each, check the “Select master
page” checkbox shown previously in Figure 6-10. Now, when the Select a master
page dialog comes up, you have two master pages to choose from. Select SalesMas-
terPage.master and click OK, as shown in Figure 6-14.

Add some content to each page to distinguish it. The markup for Sales_Orders.aspx
is shown in Example 6-8.

MasterPages | 229

-
E MestedMasterPages - Visual Web Developer 2008 Express Edition

P

File Edit View Website Build Debug Table

e -E-EH @ B -E-5 b

Format Tools

Window Help

Style Application: Manual - i

= | AHTML1.0 Transitioni » _

Ready

i Noneg) - (DefaultFont) ~ (Defah-|B I U | A &
g/sdes-MasterPage_mrlel“t:M + 3 | Solution Explorer > 3 x
= CorpMasterPage.master | @ | ‘ E *
g
g | 2 C\.\NestedMasterPages)
e | 4 App_Dat
| AdventureWorks Corp. e e
@ [CorpMasterPage.mastel =
cphCorpMaster {Custom)) Default.aspx
5
2 || | Sales Department Master Page Home.aspx
&
o : E! SalesMasterPage. master _
2 ||| [Put information here to display on all the Sales pages. £ |Pr—r ’
L% |||) 5 Solution Ex... %8 Database Ex...
|Defa.uh content for Sales | -
! Properties -3 X
<TD> -
Leaming ASP.NET ©Copyright 2008
[
e »
3 Design | O Split | B Source | EH<asp:CDnienmSalesMasierC...>||<tabla>‘ |E| BgColor ¥
Ln19 Col10 Ch10 INS

Figure 6-13. When you view nested master pages in Design view, the child master page is editable,

but the top-level master page is not.

Select a Master Page

(2 o

Project folders:

Contents of folder:

E-EP C\..\NestedMasterPages\,
[App_Data

|| CorpMasterPage.master

SalesMasterPage master

—T—

Cancel

Figure 6-14. When your site uses more than one master page, you have a choice whenever you

add a new page.

230 | Chapter6: Style Sheets, Master Pages, and Navigation

Example 6-8. Sales_Orders.aspx is a simple content page to display with your master pages
<%@ Page Language="VB" MasterPageFile="~/SalesMasterPage.master"

AutoEventWireup="false" CodeFile="Sales Orders.aspx.vb"
Inherits="Sales Orders" title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphSalesContent"
Runat="Server">

<h3>0rders</h3>

Display Orders information here.
</asp:Content>

Place similar content in the Sales_Stores.aspx page, but change the text so that it
reads “stores” instead of “orders.”

The results for both pages are shown in Figure 6-15.

r & Untitled Page - Internet Explarer E‘m
() - [E] nttpinocainostsooea/NestedMast +| 47| x | [Googie 2 -
Wz ‘@ Untitled Page

] - B B - B GTeos "
AdventureWorks Corp.

Sales Department Master Page

Put information here to display on all the Sales pages.

Orders [& Untitled Page - Internet Explorer e e
Qv [] httpi//localnost50063/NestedMast ~ | 43| X | [Google D -
Display Orders mformation here. - —— 2
W | & Untitled Page

|7| ﬁ. - - @ Vi:_;}vEEgE'@TQO‘SV =
Learning ASP NET

AdventureWorks Corp.

Done

Sales Department Master Page

Put information here to display on all the Sales pages.

Stores

Display information about the stores here.

Learning ASP.NET ©Copyright 2008

Done &) Internet | Protected Mode: On

B100% v

Figure 6-15. This is what your nested master pages look like when you run the application. You

can see the AdventureWorks master page—and the sales department master page—with the child
content inside.

MasterPages | 231

Changing the Master Page at Runtime

You may decide that in response to certain events, you’'d like to reach up into the
master page (from a content page) and change its presentation. To do so, you need
to add a public property in the master page that can be accessed by any of the con-
tent pages.

To see how this is done, copy the previous example MasterPages to a new web site
called ChangingTheMasterPage.

In Source view, open the master page, CorpMasterPage.master. From the Standard
section of the Toolbox, drag a Label control onto the page between the <h1> heading
and the existing ContentPlaceHolder control. Change the ID of the Label to
1blMessage and remove the Text property. Add an HTML line break and a horizon-
tal rule (<hr/>) after the Label control while you are at it. The Source view of the
master page markup will look like Example 6-9, with the new Label control and the
additional HTML formatting highlighted.

Example 6-9. CorpMasterPage.master with the Label control added
<%@ Master Language="VB" CodeFile="CorpMasterPage.master.vb"
Inherits="CorpMasterPage" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<h1>AdventurelWorks Corp.</h1>
<asp:Label ID="lblMessage" runat="server" ></asp:Label>

<hr />
<asp:contentplaceholder id="cphCorpMaster" runat="server">
</asp:contentplaceholder>

<hr />
<table width="100%">
<tr>
<td width="50%" align="left">Learning ASP.NET</td>
<td width="50%" align="right">©Copyright 2008</td>
</tr>
</table>
</div>
</form>
</body>
</html>

232 | Chapter6: Style Sheets, Master Pages, and Navigation

If you run the web site now, this label will not be visible on any of the content pages
because its Text property has no value.

Open the code-behind for the master page by right-clicking on CorpMasterPage.master
in the Solution Explorer and selecting View Code. Type in the code highlighted in
Example 6-10 to implement the public property.

Notice how IntelliSense helps you complete the code for the property.

Example 6-10. CorpMasterPage.master.vb with the public property that will set the value of the
label
Partial Class CorpMasterPage
Inherits System.Web.UI.MasterPage
Public Property Messagelabel() As Label
Get
Return lblMessage
End Get
Set(ByVal value As Label)
1blMessage = value
End Set
End Property

End Class

Before a content page can use a public property of the master page, it needs to be
told the name of the class, or type, that contains the master page. This is done with
another directive at the top of the markup of the page. You have already seen Page
directives at the top of normal .aspx pages, as well as the Master directive at the top
of the master pages. Now, add the following MasterType directive to the top of
SecondPage.aspx, after the existing Page directive and before any page content:

<%@ MasterType TypeName="CorpMasterPage" %>

If you look at the code-behind for the master page CorpMasterPage.master, you will
see that the name of the class is CorpMasterPage. This code, shown in the following
snippet, was generated for you automatically by the IDE:
Partial Class CorpMasterPage
Inherits System.Web.UI.MasterPage

Now that the content page has a reference to the class of the master page, it can
access members of the master page in code. To see this, switch SecondPage.aspx to
Design view. Drag a Button from the Standard section of the Toolbox into the Con-
tent section of the page. Change the ID of the Button to btnMessage and its Text
property to Message Master. Figure 6-16 shows the page in Design view.

Double-click on the button to create an event handler for the Click event in the code-
behind. Enter the highlighted code from Example 6-11 to this event handler to
change the message label on the master page when the button is clicked.

MasterPages | 233

E ChangingTheMasterPage - Visual Web Developer 2008 Express Edition @m

File Edit View Website Build Debug Format Tools Window Help

i@ - E e %R BB [B 5] a= st 2 | [XHTML L0 Transitioni =] <
§|Paragraph v”EDefauIthntl -”(Defaull v|| B J U|A & | =-|:=i=|@& < : Style Application: |Manual - :
@/S&m}dPageaspx Cor P ter.vb” | Start P E] ~ 3 |Solution Explorer -4 x
§ CorpMasterPage master | \El E | @ “
2 ||| @ cA-\ChangingTheMasterPa ~
@ App_Dat:
2| AdventureWorks Corp. = s
= [T CorpMasterPage.master |
2 I| [eehCorpMaster {Custom) %) CorpMasterPage.mas|
|| [asp:Button#birMessagelze of the site, nsing the corporate master page. ’ Default.aspx
::; ‘ Message Master ~ Home.aspx S
% e \ »
1= | @SDlution Exp... |_—"§ Database Ex...
Leaming ASP.NET ©Copyright 2008 e G
btnMessage System.Web.ULWebt -
sl (2] 7 | =
SkinID £
ToolTip
UseSubmitBeh True
L - ValidationGrowu I
% b Visible True
(3 Design |3 Split | & Source | E <asp:Button®binMessage> E = Data B
Ready

Figure 6-16. You’re adding a button to SecondPage.aspx that you're going to use to send a
message to the master page.

Example 6-11. SecondPage.aspx.vb doesn’t seem to do much, but it affects the label on the master

page
Partial Class SecondPage
Inherits System.Web.UI.Page

Protected Sub btnMessage Click(Byval sender As Object, _
Byval e As System.EventArgs)
Handles btnMessage.Click
Me.Master.MessagelLabel.Text = "Button on SecondPage pushed."
End Sub
End Class

Run SecondPage.aspx.vb and click the button. The result will look similar to
Figure 6-17.

Navigation

Modern commercial web sites can be surprisingly complex, often consisting of doz-
ens, even hundreds of pages. Users will have a more satistying experience if you pro-
vide navigational hints and menus to help them avoid getting lost, and to enable
them to conveniently find all the features of the site.

234 | Chapter6: Style Sheets, Master Pages, and Navigation

& Untitled Page - Internet Explorer E@lﬂ

@KJ - | &] hitp://localhost:50090/ChangingTt ~ | 43 | X || Goagle n .
o ahe (& Untitled Page ‘_| - v = v |-k Page v {(J} Tools v =

AdventureWorks Corp.

Button on SecondPage pushed.

This is the second page of the site, using the corporate master page.
Message Master

Learning ASP.NET ©Copyright 2008

Done &) Internet | Protected Mode: On H100%

Figure 6-17. When you click the button on SecondPage, the message is sent to the master page and
displayed.

The ASP.NET toolset includes a number of controls that facilitate this assistance.
There are controls for creating both “bread crumbs” (how did I get to this page?) and
site maps (how do I find that other page?).

Often you will want these features to be present on every page, and thus master
pages are a great asset. If you change the site map or the control, you only need to
update the master page, and all the other pages are automatically current.

Buttons and HyperLinks

The simplest form of navigation is through the use of Buttons, LinkButtons, and
Hyperlinks. All three will take the user to a different page. Superficially, LinkButtons
and Hyperlinks look the same, while buttons look different (see Figure 6-18). Under
the covers, however, LinkButtons and Buttons have much more in common, while
Hyperlinks are very different.

Let’s clarify. When you click a Hyperlink, you are taken directly to a new page. The
first page does not post back to the server. You are immediately transferred to the
new page—do not pass Go, do not collect $200.

Navigation | 235

VB CHEAT SHEET

Access Modifiers

You’ve seen lots of properties throughout this book. For example, most controls have
a Text property. You have also seen the use of local variables in the classes defined in
the code-behind files. The declaration for properties and variables include a keyword
known as the access modifier, which specifies what parts of the program can see that
property or variable. The most common access modifiers are public, private, and
protected.

If a class member is declared public, that member is available anywhere in the applica-
tion. All you have to do to access the public member is declare an instance of that class.
On the other hand, if a class member is declared private, then only the code within the
class itself can access that member.

To put this into relevant terms, in Example 6-10, the property MessageLabel has declared
public. Code outside the class (outside the master page) can refer to that property by
referring to an instance of the class and the property using dot notation, as will be dem-
onstrated below. If the property were private, only code in the CorpMasterPage class
would be able to access it, which would defeat the purpose here because we want other
pages to be able to access this property. If it were protected, only CorpMasterPage and
classes that inherit from CorpMasterPage could use the property.

If a member is public, then it will be displayed by IntelliSense where appropriate. If it
is private or protected, IntelliSense will never display it if you’re writing code outside
the class.

If you do not declare an access modifier, the default is public, but it is always good
practice to explicitly declare it, even if public is what you intend.

With a LinkButton (which looks like a Hyperlink) or a Button (which looks like a but-
ton), however, the page is posted back, and there is an opportunity for you, the
developer, to run an event handler before control is handed over to the new page.

Hyperlinks are faster for the user (and simpler for the developer), but they do not
give you the opportunity to run code before the user leaves the page, which is the
trade off you’ll have to make each time you decide between a Hyperlink and one of
the alternatives.

To see how buttons and links can be used for navigation, copy the example from ear-
lier in this chapter, MasterPages, to a new web site called ButtonNavigation.

Open Home.aspx in Design view. Drag a Button control onto the page below the
header. Change the Text property of the Button to “Page 2”. It will look something
like Figure 6-19.

236 | Chapter6: Style Sheets, Master Pages, and Navigation

VB CHEAT SHEET

The Me Object

So far, your event handlers have always affected the properties of controls on the same
page. In this case, however, you want to change the property of a control on the master
page. SecondPage.aspx.vb doesn’t know where that control is. Fortunately, every con-
tent page does know its own master. When you want a class to call a method on itself,
or access one of its own properties, you use the Me keyword. Me, as you might expect,
refers to the class that’s calling the method or accessing the property. In this case, you
want to access the master page of SecondPage.aspx.vb, so you do that with a reference
to Me.Master. From there, it’s easy to access the Messagelabel.Text property on the
master page. You don’t strictly need to use the Me keyword in this case; if you leave it
out, the code works just fine. However, it is good practice to use Me so that people read-
ing your code will know what you’re referring to.

The equivalent object in C# is called this.

& Untitled Page - Internet Explarer [E=EER X

() - [E] http//tocalhosts0d ~] 42 [x | [Google 2
W ‘@Untmedpage I_| B

[This is a Buttan l‘[‘hjs is a HyperLink

&) Internet | Protected Mode: On H100% -

Figure 6-18. A Button control looks like you would expect a button to look, and ditto for the
HyperLink control.

As previously mentioned, you need to add custom code to make the navigation hap-
pen. You'll need to provide some code to handle the Click event, so in Design view,
double-click the button and then enter the highlighted lines of code shown in
Example 6-12.

Navigation | 237

E MasterPages - Visual Web Developer 2008 Express Edition @E‘Q
File Edit View Website Build Debug Format Tools Window Help
i@ -im-E e %R B [i 5] a= 2 ||[XHTML 1.0 Transitioni =| =
§|lfNone] -”[DefauIthntl v”(DefauII v|| B I U ‘.} o ‘ = v| = QE| 2, < Style Application: |Manual - :
@ i.Starl_ PEE-‘tH‘-‘"’?‘“E vb "Home.aspu“} ~ 3 |Solution Explorer -1 x
% CorpMasterPage.master| E} | @l E | @ :
é - [App_Data -
o [CorpMasterPage.mas—
2| AdventureWorks Corp. £ it et e
5 %) CorpMasterPage.| 3
e ||| | ephCorpMaster (Custom) : efault.aspx b
Home.aspx T
Home Page it
asp:Button=Buttonl) in
R i _ 1 | +
| P2 1 il Solution E... 4 Database ..
Buttonl Systern.Web.ULWeb! -
PR
3 : = -
Leaming ASP.NET ©Copyright 2008 L2 Font
ForeColor
Text Page 2 [
L. - |[|E Behavior
% + CausesValic True
(3 Design | O Split | & Source | E|<asp:CDntent#Coﬂtenil>||<asp:BuliDn#BuﬂDn1>| E Command# 5
Ready

Figure 6-19. You've placed a navigation button on the home page, which will help users find
where they’re going.

Example 6-12. Home.aspx.vb showing theButton Click event handler

Partial Class Home
Inherits System.Web.UI.Page

Protected Sub Buttoni Click(Byval sender As Object, _
Byval e As System.EventArgs) Handles Buttoni1.Click
' do something here
Response.Redirect("SecondPage.aspx")
End Sub
End Class

Before the button event handler redirects to the new page, you can run some other
code. You might do so, for example, to retrieve the status of other controls on the
page, interact with a database, perform computations or, very commonly, to stash a
value in Session State that will be retrieved by the new page. (We’ll discuss Session

state in Chapter 7; you don’t need to worry about it for the moment.)

The Button’s Click event handler is not the only place where your
code is executed during postbacks. You can place code in event han-
dlers for any number of events. By far, the most common is Page Load,
where it is routine to place code to process the page. Page Load and
other life cycle issues are covered in Chapter 8.

238 | Chapter6: Style Sheets, Master Pages, and Navigation

The actual navigation is accomplished with the Redirect method of the HttpResponse
class. It is the programmatic equivalent of a hyperlink, immediately transferring to
the new page without first posting back to the server. The argument to the method is
a string representing the URL of the target page.

It is somewhat confusing that the syntax for calling the Redirect
method of the HttpResponse class is:
Response.Redirect()
and not:

HttpResponse.Redirect()

but there you have it. This oddity is for historical reasons.

The URL can either be relative (as in this example) or absolute. In this example, it
refers to a web page in the same directory as the current page. An absolute URL
would be completely qualified, regardless of the current location, such as http:/
LibertyAssociates.com/Samples/SecondPage.aspx.

Run the page now to see how it works. Clicking on the button posts the page back
to the server. If there were a method called Page Load to handle the Page Load
event, it would be executed. Then, the code in the Button Click event handler
from Example 6-12 would run. The last line in that method would be the
Response.Redirect to perform the navigation.

The main attraction to using buttons and links for navigation is that they are very
simple and direct. The big problem is that it can be tedious to implement, as you
must place every button or link on every page, specify the URL, and handle the Click
event for each (for Buttons and LinkButtons). As a case in point, this example so far
allows you to navigate from the home page to the Second page, but not back (with-
out using the browser’s Back button). For a web site with many pages and routes,
this approach quickly breaks down.

At any rate, add a HyperLink control to SecondPage.aspx to allow easy navigation
back to the home page. Go to SecondPage.aspx in Design view, hit the Enter key a
few times at the end of the line of text already there then drag a HyperlLink control on
to the page. In the Properties window, set the Text property to Home Page, and the
NavigateUrl property to Home.aspx. Figure 6-20 shows the home page link in Design
view.

Now, if you run the page, there will be hyperlink on the second page to take you
back to the home page. In this example, they behave identically, but if you needed
custom code to execute on SecondPage.aspx, that would not happen with the
HyperLink.

Navigation | 239

http://LibertyAssociates.com/Samples/SecondPage.aspx
http://LibertyAssociates.com/Samples/SecondPage.aspx

E MasterPages - Visual Web Developer 2008 Express Edition

(= [E [

' SecondPage.aspx* | Start Page | Home.aspivb | Home.aspi® |

File Edit View Website Build Debug Format Table Tools
-E-EHA | @925 b 8|
: Paragraph - (DefaultFont) - (Defaull ~ | B I ‘ AZ|=-|==|

Window Help

- X

AdventureWorks Corp.

cphCorpMaster (Custon)|

‘sa\fus abeuey @|

CorpMasterPag e.master|

-

This is the second page of the site, using the corporate master page.

iéterApp\icat\on; Manual - i

2 | XHTML 1.0 Transitioni ~ _

Solution Explorer -3 x
B EREEEG 2

%) CorpMasterPage.

"] Home.aspxwb
econdPage.aspx

|

web.config |
Home Page| *] T i] i
il Solution E... 4 Database ..
Properties -1 x
Learning ASP NET ©Copyright 2008 HyperLink1 System.Web.ULW »
3l =] ¥ |E
CssClass &
Font
ForeColor [
L, - ImageUrl
4 ’ Text Home Page
($ Design | O Split | [l Source | E <asp:HyperLink#HyperLinkl> E = Behavior -

Home.aspx

Figure 6-20. A HyperLink in Design view showing the properties set to give it a target page to
navigate to.

Menus and Bread Crumbs

You’ve probably seen menus and bread crumbs for navigation on many commercial
sites. Menus are familiar from the earliest windowing environments; they offer a set
of choices for navigation (they can be pull-down or pop-up selections). Bread crumbs
take their name from the story of Hansel and Gretel, who left a trail behind them so
they could find their way home. In ASP.NET, bread crumbs typically consist of a set
of links back through the web site, making it easy for users to reverse course and take
different forks in what otherwise would be a confusing tree of alternative pages.

To see menus and bread crumbs at work, you’ll need a web site with a few pages to
simulate a complex web site of hundreds of web pages (feel free to create hundreds
of web pages if you like; we’ll wait). Figure 6-21 shows how the finished web site will

appear.

To build this web site, you will use a single master page, several normal web pages,
and a site map to provide information for the menu and the bread crumbs. Later in
the chapter, you will see how to spiff up the appearance of the menu and the bread
crumbs.

240 | Chapter6: Style Sheets, Master Pages, and Navigation

& Untitled Page - Internet Explarer [E=E

'\:)"\.J - | €] hitp//localnost:50504 WebSiteNavig + | 44 | X || Gaogle o -]
"EZ? afiy ‘@Untitled Page |_| ﬁ b - @ hd i'-'_;}‘EEEIE i @Tguls' =

AdventureWorks Corp.

Home

= Home
= Sales
Orders Home Page
Stores
Production
Human Resources

Learning ASP. NET ©Copyright 2008

Done @ Internet | Protected Mode: On H100% -

Figure 6-21. When you’ve completed the web site with menus and bread crumbs, it will look like
this.

First, you will create the web site with the master page, minus the navigation con-
trols, and all the content pages. Next, you will add the site map and the navigation
controls.

Create a new web site called WebSiteNavigation. Close the Default.aspx page if it
was opened when you created the site. Then, delete Default.aspx by clicking on it in
the Solution Explorer and pressing the Delete key. Confirm the deletion by clicking
OK.

Add a master page, exactly as you did previously in this chapter. Make certain that
you have the root of the website selected in the Solution Explorer, and click on
Website - Add New Item.... In the Add New Item dialog box, select master page.
You can retain the default file name of MasterPage.master. Be sure to select the
“Place code in separate file” checkbox (see Figure 6-8, earlier in this chapter).

When the master page opens in Source view, the only markup inside the <div> ele-
ments is the default ContentPlaceHolder control. Replace that with the highlighted
code shown in Example 6-13, and also delete the ContentPlaceHolder control inside
the <head> elements. This is nearly identical to the CorpMasterPage.master from the
example shown earlier in the chapter, except the ContentPlaceHolder control is

Navigation | 241

placed inside an HTML table for layout control. Notice that the first cell in the only
row in that table is empty at the moment. You will put the menu in that cell shortly.

Example 6-13. This is what MasterPage.master looks like before you add the navigation controls
<%@ Master Language="VB" CodeFile="MasterPage.master.vb"
Inherits="MasterPage" %>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.01g/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<h1>Adventurelorks Corp.</h1>

<hr />
<table width="100%">
<tr>
<td></td>
<td>
<asp:ContentPlaceHolder ID="cphCorpMaster" runat="server"s
</asp:ContentPlaceHolder>
</td>
</tr>
</table>

<hr />
<table width="100%">
<tr>
<td width="50%" align="left">Learning ASP.NET</td>
<td width="50%" align="right">©Copyright 2008</td>
</tr>
</table>
</div>
</form>
</body>
</html>

As you can see from the menu in Figure 6-21 shown previously, there are six pages in
this web site. Add all six of those pages to the web site now. In all cases, be sure to
check the “Select master page” checkbox (see Figure 6-10, earlier in this chapter),
and to select MasterPage.master as the master page (the only choice). The names of
the pages to create are:

* Home.aspx
* HR.aspx

* Production.aspx

242 | Chapter6: Style Sheets, Master Pages, and Navigation

* Sales.aspx
* Sales_Orders.aspx
* Sales_Stores.aspx

To keep things simple, add only an <h1> heading to the Content area of each page
identifying the name of the page.

You are now ready to prepare the site map and add the navigation controls.

Site Maps

Site maps are used as a data source for navigation controls such TreeViews, Menus,
and SiteMapPaths (which provide bread crumbs). Used in conjunction with master
pages, these allow for easy, central navigation without having to place navigation
controls on every page of the web site.

Add a site map to the current web site by clicking on Website -+ Add New Item....
When the Add New Item dialog appears, select Site Map and accept the default
name, Web.sitemap, as shown in Figure 6-22.

Add New [tem - C\LearningASP\Chapter 7\WebSiteNavigation', m

Templates:
Visual Studio installed templates

=] Web Form I Master Page [&-] Web User Contral

i8] AJAX Client Behavior i8] AJAX Client Control 5 AJIAX Client Library

] AIAX Master Page] AJAX Web Form 8% AJAX-enabled WCF Service

\EJ Browser File 1] Class @ DataSet

) Generic Handler] Global Application Class [#] HTML Page

8] JScript File [LING to SQL Classes [Resource File

] Site Mapi [Z skin File [J 5QL Server Database

A3 Style Sheet) Text File FERWCF Service

|5 Web Configuration File] Web Service =] XML File

B XSLT File
My Templates

| Search Online Templates...

A file used to create a site map

Name: ‘Web.sitemap

Language: Visual Basic - | Place code in separate file

| Select master page

[add [cancel |

Figure 6-22. To create a new Site Map, select Website — Add New Item, and then choose Site
Map.

When you click Add, the file Web.sitemap is added to your web site, and the skele-
ton of a site map is provided for you, as shown in Example 6-14.

Navigation | 243

Example 6-14. When you choose to add a new site map, Visual Studio creates this Web.sitemap
skeleton for you
<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode url="" title="" description="">
<siteMapNode url="" title="" description="" />
<siteMapNode url="" title="" description="" />
</siteMapNode>
</siteMap>

The url attribute specifies the page this navigation link will point to. The title
attribute defines the text that is displayed as the link, and the description attribute is
used in the tool tip.

Neither VWD nor VS2008 provide drag-and-drop support for creat-
ing your site map file. You can implement your own SiteMap provider
to automate this process, or get the site map from another source
(such as a database) but that is a very advanced topic beyond the
scope of this book.

Replace the contents of Web.sitemap with the site map XML shown in Example 6-15.

Example 6-15. Visual Studio created the skeleton of the Web.sitemap, but you need to provide the
actual content
<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode url="~/Home.aspx" title="Home" description="Home page">
<siteMapNode url="~/Sales.aspx" title="Sales" description="Sales">
<siteMapNode url="~/Sales Orders.aspx" title="Orders"
description="0Orders" />
<siteMapNode url="~/Sales_Stores.aspx" title="Stores"
description="Stores" />
</siteMapNode>
<siteMapNode url="~/Production.aspx" title="Production"
description="Production" />
<siteMapNode url="~/HR.aspx" title="Human Resources" description="HR" />
</siteMapNode>
</siteMap>

The site map is an XML file, as indicated by the first line in the file. The hierarchy of
the web site is represented by a set of nested <siteMapNode> elements. The root ele-
ment is a single <sitemap> element that defines the namespace:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

Within the siteMap element is nested exactly one <SiteMapNode> (in this case, Home).
Nested within that first <SiteMapNode>, however, is any number of children
<SiteMapNode> elements. Each <SiteMapNode> element can in turn have any number of
children <SiteMapNode> elements.

244 | Chapter6: Style Sheets, Master Pages, and Navigation

In Example 6-15, there are three such children: Sales, Production, and Human
Resources. Nested within each of these <SiteMapNode> elements can be more nodes.
For example, Sales contains Orders and Stores. You may nest the nodes as deep as
you wish.

ASP.NET is configured to protect files with the extension .sitemap so
they cannot be seen by a browser.

Once the site map file is in place, you need to make it available to the master page.
You do that by dragging a SiteMapDataSource control from the Data section of the
Toolbox onto the master page. By default, the SiteMapDataSource control will look
for and use the file named Web.sitemap.

It doesn’t matter where you place this SiteMapDataSource control, as long as it is
somewhere between the «<form> and </form> tags in Source view. The
SiteMapDataSource will be visible in Design view but will not appear when the web
site is run.

The Design view should look something like Figure 6-23.

-
E WebSiteNavigation - Visual Web Developer 2008 Express Edition E@g
File Edit View Website Build Debug Format Table Tools Window Help
e-E-GHE@| % RE9-c @5 O] = 2 [XHTMLLO Transition. =
: Headingl - Segoe Ul - 12 -|B I U |A Z|=-|i= i=| @ _ styleApplication: Manual - TargetRule: (NewlInlineStyle) = 2
|| Toolbox ~ & X| MasterPage.master”| Start Page + % |Solution Explorer >3 x
v =
= | A cridview “ ||| [asp:sitemapdataso...#SiteMapDataSo.. - | E‘ = | &1 @
é (E) Datalist | SiteMapDataSource - SiteMapDataSourcel (=] Home.aspx -
@ =
2 & DetailsView 3] HR.aspx
8| G Formview AdventureWorks Corp. i (] MasterPage mastes
| B ListView [F] Production.aspx =
= Sales.aspic
£ Repentes Sales_Orders.aspx
wa» DataPager i [E] Sales Stores.aspx ™
[J SqlDataSource - =
[Je AccessDataSource g Solution Ex... (S8 Datsbase Ex...
[%y LingDataSource Properties -3 x
[ObjectDataSource F Learning ASP NET ©Copyright 2008 SiteMapDataSourcel System.\\ ~
[}, XmiDataSource -
[j2, SiteMapDataSource || _
Validati 3 StartingMode -
e E Data
Navigation
= (Expressions)
WebParts E - (|8 Misc :
— « ’ (D} SiteMapDataSa|
T _|||[@ Design | o splt | @ Source | [4][<n1>][<asp:SiteMapDataSourcesSi...> [l -
Drag margin handles to resize margins. Press SHIFT or CTRL for more options. Ln13 Col75 Ch75

Figure 6-23. Place your SiteMapDataSource control on the master page. It’ll show up in Design
view, but not in any of the pages that use the master page.

Navigation | 245

Using Sitemaps

There are two types of controls that can read a site map and provide navigation capa-
bility: a TreeView control and a Menu control. To see both at work, you’ll first create a
TreeView control, then you will disable that and add a Menu control.

TreeView

The TreeView provides the familiar hierarchical view of items. One common use of a
TreeView is the Windows Explorer view of folders and subfolders.

Recall when you created the master page for this example there was an empty table
cell in the layout. Switch to Source view, and then, from the Navigation section of
the Toolbox, drag a TreeView control into that empty cell. (You can do this in Design
view, of course, but we find it easier to use Source view when dragging elements into
a cell.)

Switch back to Design view and click on the Smart Tag of the TreeView. Click on the
drop-down next to Choose Data Source, and select SiteMapDataSource1, the ID of the
SiteMapDataSource you just placed on the master page, as shown in Figure 6-24.

m— 3
E WebSiteMNavigation - Visual Web Developer 2008 Express Edition {M‘
File Edit View Website Build Debug Format Table Tools Window Help
-iE-EFHA | BRRE|9-0-8-5] 4|3 2 | XHTML 1.0 Transition: = _
i(None) - (DefeultFont) -~ (Defaull~| B 7 U |A & | = -|iZ I=| & _ iStyleApplication: Manual + TargetRule: (NewlInline Style) = 2
HE MR] gl ty =
|| Toolbox + 2 X| MasterPage.master” | Start Page| + % | Solution Explorer > 3 x
i . tart Page
Z | 4 wizard A -
o E
2| @ xm SiteMapDataSource - SiteMapDataSourcel
§ Multiview &
2| [pone AdventureWorks Corp. O
| 152 PlaceHolder =| Production.aspx =
= v Sales.aspx
Sl Sales_Orders.aspx
ContentPlaceHolder {asp:TreeView#TreeViewl]] Sales_Stores.aspx Il
i5] Substitution <| TreeView Tasks 2 3.
[& Home ol Solution Ex.. [$4Database Ex..
4 Localize = Sales Auto Format...
Data Properti - Ix
- s Choose Data Source: | SiteMapDataSourcel [B
Naldation Stores 7 * TreeViewl System Web.ULWeb ~
£l Navigation, = Prodhuct Refresh Schema iy ey | [@]# 3
K Pointer Human Resources | | Edit TreeNode Databi| <New data source...>
= SiteMapPath B Layout =
[T Show Lines
(il Height
Add Extender... B Width
= I Learning ASP NET ©OCopyright 2008 - |[|@ misc) ad
WebParts 3 ¥) TreeViewl
AJAX Extensions _|||[® Design | = split | @ Source | [4][<trs][<td> | [<espiTreciewsTrecViewd> | [] ||| Modes (Collection) -
Drag margin handles to resize margins. Press SHIFT or CTRL for more options.

Figure 6-24. Select the data source for the TreeView control from the Smart Tag. In this case, you
just have the one SiteMapDataSource control on the master page.

As soon as you select the data source for the TreeView, it will display the nodes from
the site map file in Design view.

Set Home.aspx as the startup page by right-clicking on it in the Solution Explorer and
selecting “Set As Start Page” from the menu.

246 | Chapter6: Style Sheets, Master Pages, and Navigation

Run the web site now and see the TreeView menu in action. Click on any of the menu
items along the left of the web site and observe how it navigates from page to page. If
you click on the Stores menu item, it will look almost exactly like Figure 6-21 from
earlier in this chapter. The only difference is the bread crumbs are missing because
you have not yet placed that control on the page.

Menu items that contain subitems of their own, such as Home and Sales, display a
small icon next to them. Clicking on this icon toggles between expanded and col-
lapsed views of these subitems. This structure directly flows from the nesting of
SiteMapNodes in the site map file.

Customizing the look and feel of the TreeView

The Treeview control has many properties, methods, and events that allow you to
customize the look and feel of the Treeview.

Adjusting the Root Node

If you don’t like the way the root node sticks out, you can adjust it. Set the
ShowStartingNode property of the SiteMapDataSource control to False, then edit the
Web.sitemap file so that the original root node is now one level in, and an empty root
node takes its place, as in the following:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/
AspNet/SiteMap-File-1.0" >
<siteMapNode title="Root" >
<siteMapNode url="~/Home.aspx" title="Home"
description="Home page" />
<siteMapNode url="~/Sales.aspx" title="Sales"
description="Sales" >
<siteMapNode url="~/Sales Orders.aspx"
title="Orders"
description="0Orders" />
<siteMapNode url="~/Sales Stores.aspx"
title="Stores"
description="Stores" />
</siteMapNode>
<siteMapNode url="~/Production.aspx"
title="Production”
description="Production" />
<siteMapNode url="~/HR.aspx"
title="Human Resources"
description="HR" />
</siteMapNode>
</siteMap>

The only attribute actually required of the root node is the Title.

Navigation | 247

The easiest way to change the appearance of the TreeView is to view the page in
Design view, click the TreeView’s Smart Tag, and then click Auto Format..., as
shown in Figure 6-25.

[E] WebSiteNavigation - Visual Web Developer 2008 Express Edition [=lE] = |

File Edit View Website Build Debug Format Table Tools Window Help
A -E- @S RB|9-¢ B E
: (None) - (DefaultFont) + (Defaull - | B I

2 | XHTML L0 Transition: = _

'k AutoFormat T —
&|[Toolbox ~ 0 X| G page” Master
ol rr— = = Select a scheme: Preview:
s S
2 Pasinter ; Remove Formatting
z : ot SiteMapDataSourcd | | o e -
| B i v
= Button Ad Bulleted List olas =
3 = Ve]ltll z b Orders
= TextBox 3 Bulleted List 2 e
Bulieted List 3 =
g Bulleted List 4 b Froduction
(@ ImageButton I Human Resources
2 {asp:TreeView=TreeV])| | Buleted List 5
A Hyperlink = SH Bulleted List 6 F
=% DropDownlList one Contacts K.
3 ListBox S Events |
FA
CheckBox s e
= ch Stores o 8-
8= CheckBoxList i MSDN
@ RadioButton Production || ,,,,; |
i= RadioButtonList St | ?”‘;‘EZ E
= 2 imple
Q Imagt Table of Contents
L@ ImageMap 5 } Windows Help
[Table | Learning ASP.NEJ || xp File Explorer -
i= BulletedList 4 * ¢ z
S HiddenField _|||| @ Design | = Split [ok | [cancel |[2y ||
Ready

Figure 6-25. The Auto Format options, found in the Smart Tag of the TreeView, provide a
number of prebuilt formatting options.

Most of the TreeView’s properties have to do with the styles used for the various
nodes. There are properties for general nodes, parent nodes, child (leaf) nodes, root
nodes, selected nodes, and nodes when the mouse is hovering over them. For each of
these node types you can set font attributes, CSS class, fore- and back-colors, spac-
ing and padding, borders, and so on.

Replacing the TreeView with a menu control

Open MasterPage.master in Source view and locate the TreeView control. Comment
it out with HTML comment tags and replace it with a Menu control. Remember to set
the Data Source, either in the Smart Tag or directly in Source view:
<l--<asp:TreeView ID="TreeViewl" runat="server"
DataSourceID="SiteMapDataSourcel"

</asp:TreeView> -->
<asp:Menu ID="Menul" runat="server" DataSourceID="SiteMapDataSource1" />

Run the application. Presto! A menu control for navigation. Hover over Home (open-
ing the next level), and then hover over Sales (opening the third level). Finally, click
Stores. The results should look like Figure 6-26.

248 | Chapter6: Style Sheets, Master Pages, and Navigation

/& Untitled Page - Internet Explarer E@Iﬁ

@l\;jl v |§, http://localhost:50504/WebSiteMavigation/Sales_Store | ‘1| X | | Google 2 'I
v o /& Untitled Page |_| - v (= v [k Page ¥ {(} Tools =

AdventureWorks Corp.

Home P Sales » Orders Sto res
Production Stores
Human Resources
[stores }
e
Learning ASP NET ©Copyright 2008
http://localhost:50504/WebSiteMNavic & Internet | Protected Mode: On H100% -

Figure 6-26. You've replaced the TreeView with a menu control, which does all the work for you.
When you hover over Stores in the Menu Control, you can navigate to that page.

If the menus start to eat into your content space, you can set their Orientation prop-
erty to Horizontal (the default is Vertical) and rearrange your layout table to make
room for them.

Accessing site map nodes programmatically

There are times when you may want access to the current node and its subnodes so
you can manipulate them programmatically. For example, you may want to log the
user’s current menu choice to a log file. You can add code to a page to get that infor-
mation. In the next example, you will display the names of the current node and its
subnodes in the Sales.aspx page. First, switch to the master page and remove the
menu control you added in the previous example, and uncomment the TreeView.
Now, switch to Sales.aspx, and add the highlighted code in Example 6-16 inside the
Content tags, including the <hr/> to provide a bit of a visual break.

Example 6-16. Sales.aspx with added Label controls for display of the current and child nodes
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
CodeFile="Sales.aspx.vb" Inherits="Sales" Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphCorpMaster"
runat="Server">
<h1>
Sales</h1>
<hr />
<table>

Navigation | 249

Example 6-16. Sales.aspx with added Label controls for display of the current and child nodes
<tr>
<td>
Current Node:
</td>
<td>
<asp:Label ID="lblCurrentNode" runat="server" />
</td>
</tr>
<tr>
<td valign="top">
Child Nodes:
</td>
<td>
<asp:Label ID="1blChildNodes" runat="server" />
</td>
</tr>
</table>
</asp:Content>

You have added two labels, 1blCurrentNode and 1b1ChildNodes, but they have noth-
ing to display yet. For that, you’ll need an event handler.

Open the code-behind for this page (click the plus next to Sales.aspx in Solution
Explorer, then double-click Sales.aspx.vb that appears below it). Add the highlighted
code in Example 6-17 to create an event handler for the Page Load event. You can
have the IDE create the skeleton of the event handler for you by selecting (Page
Events) from the drop-down at the top left of the editing window and selecting Load
from the drop-down menu at the top right of the editing window.

Example 6-17. Sales.aspx.vb showing thePage_Load event handler
Partial Class Sales
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
Try
Me.lblCurrentNode.Text = SiteMap.CurrentNode.Title
If SiteMap.CurrentNode.HasChildNodes Then
For Each node As SiteMapNode In SiteMap.CurrentNode.ChildNodes
Me.1lblChildNodes.Text += node.Title + "
"
Next
End If
Catch exNull As System.NullReferenceException
Me.lblCurrentNode.Text = "The XML file is not in the site map!"
Catch ex As System.Exception
Me.lblCurrentNode.Text = "Exception! " + ex.Message
End Try
End Sub

End Class

250 | Chapter6: Style Sheets, Master Pages, and Navigation

In this code, you are setting the Text property of 1blCurrentNode to reflect the Title
property of the SiteMap’s CurrentNode. The SiteMap is an in-memory representation of
a site’s navigational structure. The SiteMap object itself is created by the site map
provider (in this case, by the SiteMapDataSource).

VB CHEAT SHEET

For Each

As you’ve seen throughout this book, lots of objects contain collections of other
objects. Frequently, you’ll want to take some action on every object in a collection, but
you won’t know how many there are. That’s where the For Each loop comes in.

In this case, the SiteMap has a collection called ChildNodes, which is a collection of
SiteMapNode objects. You want to grab each node in order, extract the Title property,
and add it to a label. Here’s how the For Each loop breaks down:
For Each node As SiteMapNode In
SiteMap.CurrentNode.ChildNodes

You start with the For Each statement, and then you define a variable, node, which is of
type SiteMapNode. Like all variables, node is a placeholder; in this case, you’re using node
to indicate “the node I'm looking at right now.” You use As to indicate that node is of
the type SiteMapNode because that’s the kind of objects that ChildNodes contains.

Then, you use In to indicate where the loop should find the SiteMapNode objects to use,
which in this case is inside SiteMap.CurrentNode.ChildNodes. When the loop starts, the
first node from the ChildNodes collection gets loaded into node. You take an action on
node, in this case, extracting the title and adding it to the label, followed by a line
break:

Me.lblChildNodes.Text += node.Title + "
"

You could take more than one action, of course, assuming you want that action to be
repeated multiple times.

The loop ends with Next. When the loop reaches that point, it dumps the current con-
tent of node, and repeats the loop on the next SiteMapNode object from ChildNodes.
When the loop has gone through each item in the collection, it stops, and execution of
the code continues from after the loop.

The CurrentNode property returns an object of type SiteMapNode, and the Title prop-
erty of that SiteMapNode returns the title of that SiteMapNode.

The SiteMapNode’s property HasChildNodes returns a Boolean, which is True if there
are subnodes to the SiteMapNode. If this is the case, you can iterate through the
SiteMapNodeCollection returned by the ChildNodes property. If there are no child
nodes, this code does nothing.

Navigation | 251

VB CHEAT SHEET

Catching Errors

In Example 6-17, you can see the code that sets the text of your labels is contained
within a block named Try. This is how VB accounts for unexpected errors. If an error
occurs inside the Try block (known as throwing an exception), you can take action spe-
cific to the error by putting error-handling code in a Catch block. In this case, there are
two Catch blocks: the first one occurs if an error is thrown of type System.
NullReferenceException, meaning that the page doesn’t have a valid reference to the
XML file that stores the site map. If that happens, 1blCurrentNode outputs an error
message specific to the problem. The second Catch block is a general case, invoked for
any error of type System.Exception. In this case, 1IblCurrentNode displays a general error
message, and adds the Message property of the captured error, which is automatically
generated by ASP.NET. Neither message fixes the problem, but at least the user will
know what happened if an exception is thrown. In a real-world web site, you might
have some code that supplies a substitute object, logs the error, or takes some other
action to allow the user to continue.

Notice that the Try block ends with an End Try statement, which comes after all the
Catch blocks.

When you view this page, the labels display the name of the current node and all its

child nodes, as shown in Figure 6-27.

Bread Crumbs

The final thing to add to your example is bread crumbs. As we mentioned earlier,
bread crumbs are an indicator of where you are in the page hierarchy and how you

got there. This is done using the ASP.NET SiteMapPath control.

To see this, go back to MasterPage.master in Design view. From the Navigation sec-
tion of the Toolbox, drag a SiteMapPath control onto the page between the Adven-

tureWorks heading and the horizontal rule, as shown in Figure 6-28.

That’s all there is to it!

Run the site and you’ll see how the breadcrumbs tell you where you are at all times.

It is uncommon in production applications to provide both a TreeView
and bread crumbs on the same page.

252

| Chapter6: Style Sheets, Master Pages, and Navigation

[& Untitled Page - Internet Explarer [E=ET
@Q « | €] hitp://localost:50504/WebSiteNavig + | ¢4 | X || Gaogle o -

'ﬂ? ale [@Unt’rﬂedpage]_‘ ﬁ 2 = @ '@EBQE'@TQoIsv »

-~

AdventureWorks Corp.

= Home Sales

= Sales -
Orders r
Stor :CS Current Node: Sales
Production Child Nodes: Orders
Human Resources Stores
Learning ASP NET ©Copyright 2008 —
e Internet | Protected Mode: On ®100% -

Figure 6-27. You’ve added the code that allows you to access the current node and the child nodes,

and that lists them for the user to see.

E WebSiteNavigation - Visual Web Developer 2008 Express Edition E@u

Eile Edit View Website Bulld Debug Format Table Tools Window Help

- A-F il b BRBR(I-C-E-5]F G & 2 | XHTMLLO Transition: =
i (Nong) - (DefaultFont) - (Defauli-| B 7 U |A & |=-|iZ =] 2 Style Application: Manual - TargetRBule: (NewInlineStyle) = 2
[i@] Toolbex -1 x L@/Mﬂe,pm_mw] + x| Solution Explorer - 1x
oV = .
S| o v = B EREEE ER
=1 ContentPlaceHolder " Tl - i
- Gk SiteMapDataSource - SiteMapDataSourcel 2P C\.\WebSiteNavigation\
S || &l substitution E
1]
= | ¥ Localize L
B e AdventureWorks Corp. 3
asp h#SiteMapPathi] [MasterPage.master
[Root Node > Parent Node > Current Node/ <] si ath Tasks Piaductionaspx

Auto Format... Sales.aspx

mn

Py
= Home Add Extender... i Solution Ex... [E Database Ex..
= Sales

Edit Templates

Orders Properties > I x
Login T Stores SiteMapPath1 System.Web.ULV +
WebParts Production
AJAX Extensions Human Resources = =
T 3 pressions) -
Ajax Control Toolkit || Edmess
5 General : . Height
| Learning ASP NET ©Copyright 2008 . Width E
Therearenousable ||| — L [i=he
controls n this group, _ ||| |3 Design | = Split | @ Source | [4][<div>|[<aspiSiteMapPathaSiteMapP..>| [o] o) SiteMapPathl ~
Ready Ln16 Col27 ch27]

Figure 6-28. Adding navigation with bread crumbs to your site is as simple as placing a
SiteMapPath control in Design view.

Navigation

253

Similar to the TreeView, the SiteMapPath provides many ways to customize the look
and feel. Click on the Auto Format item in the Smart Tag shown in Figure 6-29 to
see a number of predefined formats. Alternatively, the Properties window provides a
similar, if smaller, set of properties, just as it did for the TreeView.

In the previous example, the bread crumbs separated the various pages with the
greater-than symbol (>). This is easy to change with the PathSeparator property. For
example, to use an arrow as the separator symbol, edit the SiteMapPath control in
Source view to look like the following:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" PathSeparator="->" />

The result is shown in Figure 6-29. Compare this with the original bread crumbs
shown earlier in Figure 6-21.

/& Untitled Page - Internet Explorer (=l B [

@KJ - | €] http://localhost50504/WebSite ~ | 44 | X | | Google o |
Wk /& Untitled Page [_| - v = v |r:hPage v {0 Tools v =

o

AdventureWorks Corp.

Home->Sales->5tores

= Home
B Sales
Orders Stores
Stores
Production
Human Resources

Learning ASP NET ©Copyright 2008

& Internet | Protected Mode: On HI00% -

Figure 6-29. You can change the PathSeparator property of your SiteMapPath control to alter the
look of your bread crumbs, in this case, with an arrow symbol.

254 | Chapter6: Style Sheets, Master Pages, and Navigation

Summary

Style sheets hold presentation information for an entire site in a separate file to
ensure a consistent look throughout the site.

A style specifies how a specific element is rendered visually in the browser.

Style rules are applied in a hierarchical manner, such that more specific styles
take precedence over general styles.

A style property is defined by a property name, followed by a colon, followed by
a value. Style properties are separated by semicolons.

Styles can be applied inline or at the document level, but these methods are
error-prone and difficult to maintain. The most effective way to apply styles is
with a style sheet.

A master page is a template that holds content that you want to appear on all
pages of your site. The master page also contains content placeholder areas
where you can insert the content of each content page.

To create a master page, select Website = Add New Item, and choose Master
Page from the Add New Item dialog.

To add content pages that use your master page, select Website - Add New
Item, select Web Form from the Add New Item dialog, and be sure to check the
“Select master page” checkbox. When you click Add, you’ll be asked to choose
which master page you want to use. Content pages have a Page directive that
indicates their master page.

You can nest one master page inside another. Create a new master page and
delete all of the content except for the Master directive. Then, insert a
MasterPageFile attribute that points to the primary master page. The new submas-
ter page will appear inside the master page, with its own content placeholders.

You can change the content of the master page at runtime by implementing a
public property on the master page and adding a MasterType directive to the top
of a content page. Once the content page has a reference to the class of the mas-
ter page, the content page can programmatically interact with public properties
of the master page.

You can add simple Button controls that allow users to navigate from the cur-
rent page to the button’s target. The Response.Redirect method transfers the
user directly to the new page without first posting back to the server.

ASP.NET provides a number of predefined navigation controls that make it sim-
ple to help users move around your site.

Summary | 255

The site map is a data source that provides the information you need to imple-
ment a navigation tree, menu, or breadcrumbs on your site. It’s an XML file that
contains a series of nodes, each representing a page in your site. The IDE doesn’t
create this file, although it does provide a skeleton if you select Website - Add
New Item and choose Site Map.

After you’ve created the site map, you can add a SiteMapDataSource control to a
page. The SiteMapDataSource control uses the file named Web.sitemap by default.

Once you have a SiteMapDataSource in place, you can easily add a TreevView to
your site. You set the data source for the TreeView to point to the
SiteMapDataSource, and ASP.NET does the rest for you automatically. You can
format the TreeView any way you like, from a set of predefined formats, or you
can specify your own custom format.

You can use a Menu control in the same way as the TreeView control. Simply add
the Menu control to your page, point its data source to the SiteMapDataSource,
and the IDE does the rest for you. You can change the format of the Menu con-
trol, or change the orientation from horizontal to vertical.

You can access the nodes in your site map programmatically, using the
CurrentNode and ChildNodes properties.

Bread crumbs are a tool that indicates the current page and the preceding pages
in the hierarchy. They’re more concise and compact than a TreeView or a Menu.
To use bread crumbs, place a SiteMapPath control on the page with the
SiteMapDataSource. You don’t need to specify the data source; it’s done automat-
ically. You can format the bread crumbs as you see fit.

This chapter is one of the first times in this book that you’ve seen sites that consist of
multiple pages. Obviously, most sites in the real world consist of more than one
page, and here you’ve taken your first steps toward more complex sites. You also
learned in this chapter how you can make controls in content pages that affect the
content of the master page. That’s a great technique, but you’ll notice that any con-
tent you change vanishes as soon as you navigate to another page. If you’re going to
have sites with multiple pages, you’ll need some way of passing data from page to
page, or between postbacks. That’s called preserving state, and you’ll learn several
ways of doing it in the next chapter.

256

| Chapter6: Style Sheets, Master Pages, and Navigation

BRAIN BUILDER

Quiz
1. What’s the most effective way to apply styles on your web page?

2. If a style sheet has rules applying to the text of the whole page, but one specific
paragraph has a different style rule applied, which takes precedence?

3. What two commands can you use to apply a style sheet to your page, and where
do you place them?

4. What is the purpose of a master page?

5. How many different master pages can you associate with a particular content
page?

6. When you are trying to change the content of a master page at runtime, what
does the content page need to affect the master page?

7. What method could you use in a Button Click event handler to navigate to
another page?

8. What file do you need for all the navigation controls to work? How is this file
generated?

9. What control do you use to enable the navigation controls to access the file?

10. What do you have to do to connect the SiteMapPath control to a data source?

Exercises

Exercise 6-1. In this set of exercises, you’ll create a web site for a travel agency called
Ajax Travel. First, create a master page containing all of the elements that should
appear on each page of the site, with the company name at the top, and a copyright
notice at the bottom. In addition, Ajax Travel’s portfolio of destinations is divided
into two categories: Sun and Snow. The home page of the site should offer users a
choice between these two categories. Each category should have its own heading,
which appears in addition to the company heading. Also, each page in the Sun cate-
gory should carry a message at the bottom reading “Ask about our honeymoon spe-
cials!” Each page in the Snow category should carry a message at the bottom reading,
“Ask about our ski vacation packages!” To keep things simple, create just two con-
tent pages for each category: the Sun category should have one page for Bermuda,
and one for Maui; the Snow category should have one page for Vail, Colorado, and
one for St. Moritz, Switzerland.

The Maui page should look like Figure 6-30.
The Vail page should look like Figure 6-31.

Exercises | 257

,é Ajax Travel - Maui - Internet Explorer ID—“EIIQ;—“J
@'\‘/ - |é, http://localhost:50601/Exercise?a207- ~ | "f| X | | Google 2 ~|
n " pr— — 3 »
A VIR |:@AjaxTraveI - Maui | | f:h * B ~ mm -)b Page v il Tools v
L]
Ajax Travel Agency
Sunny Destinations
Come visit gorgeous Mani!
Ask about our honeymoon specials!
©2008 Ajax Travel Agency. All rights reserved.
Done €D Internet | Protected Mode: On HA00% -

Figure 6-30. Your goal for the “Maui” page of Exercise 6-1.

@ Ajax Travel - Vail, CO - Internet Explorer I‘:'—“E”&J
@l\mf v |é, http://localhost:50601/Exercise?:207- ~ | "f| X | | Google 2+
T T e - > »

W aar | @ Ajax Travel - Vail, CO | i o v B - o= - [Page = (T Tooks =

-
Ajax Travel Agency
Snow Destinations
Come wisit lovely Vail, Colorado!
Ask about our ski packages!
©2008 Ajax Travel Agency. All rights reserved.
Done €D Internet | Protected Mode: On H100% -
M

Figure 6-31. Your goal for the “Vail” page of Exercise 6-1.

258 | Chapter6: Style Sheets, Master Pages, and Navigation

Exercise 6-2. Add a control to the home page of the Ajax Travel site asking the user

to enter his name. Update the master page of the site so that “Welcome, <name>!’

displayed at the top of the page. The home page should look like Figure 6-32.

> s

& Ajax Travel - Internet Explorer =] [

®\.,/ « |] http/flocalhost:50601/Exercise 2071/ + | 43 | x || Googie)

. |

S —— :] 3
WA | @ Ajax Travel | | - v = v ;b Page v i Tools ~

Ajax Travel Agency
Welcome, Brian!
Welcome to Ajax Travel! Please select your desired trip:

s Sun and Surf packages
« Snow and Ski packages

Submit

©2008 Ajax Travel Agency. All ights reserved.

Please enter your name: Brian

@ Internet | Protected Mode: On L 100%

-

A

Figure 6-32. Your goal for Exercise 6-2.

Exercise 6-3. Remove the user greeting control from the master page. Implement a
TreeView and a Menu for site navigation, both on the master page. Let users choose
between the two types of navigation controls by using a control on the master page,

as shown in Figure 6-33.

Exercises |

259

& Ajax Travel - Internet Explorer = | E] |

@\\J - |£_‘!, http://localhost50703/Exercise%:207-3/Home.as ~ | *1| X | | Google 2 ~|
ool i@AjaxTravEl |_| .,?ﬁ' B - f!-'] ~ |izh Page ~ {G Tools =

Ajax Travel Agency

@ Tree view © Memu
= Home
= Sun
Bermuda
Maui
B Snow
St. Moritz
Vail

m

Welcome to Ajax Travel! Please select your desired trip:

+ Sun and Suf packages
+ Snow and Ski packages

22008 Ajax Travel Agency. All ights reserved

& Internet | Protected Mode: On HI10% -

Figure 6-33. Your goal for Exercise 6-3.

Exercise 6-4. Add breadcrumbs to your site on the master page, as shown in

Figure 6-34.
& Ajax Travel - Bermuda - Internet Explorer ﬂ‘ihj
@\/ - |é, http://localhost:50745/Exercise%207-4/Bermuda ~ | "7| X | | Google 2 |
o T — = g R »
W daf |@AjaxTrave\ - Bermuda | | .’i} ~ B ~ == v ibkPage v {(f Tooks ~

Ajax Travel Agency

Home > Sun > Bermuda

@ Tree view @ Menn

Home » Sun » Bermuda
Snow ¥ Maui

Sunny Destinations

Come visit beautifil sunny Bermuda!

Ask about our honeymoon specials!

S2008 Ajax Travel Agency. All rizhts reserved

http://localhost:50745/Exercise @ Internet | Protected Mode: On H100% ~

Figure 6-34. Your goal for Exercise 6-4.

260 | Chapter6: Style Sheets, Master Pages, and Navigation

CHAPTER 7
State and Life Cycle

Most of the web sites you have built in this book have been confined to a single page.
In Chapter 6, you learned techniques to provide a single look and feel throughout
the site.

When you created the examples in Chapter 6, you may have noticed that any data
you entered on a page didn’t stick around if you went to a different page and came
back, even if you issued a postback on the page you were on. That’s because the
pages you’ve built up until now haven’t had any way to preserve that kind of infor-
mation, called state.

In each chapter up until now, you’ve learned about the different kinds of controls
and how you use them. We're going to take a slightly different approach in this
chapter, first taking you behind the scenes so you can understand what the page
actually does when you click the Submit button. Next, you’ll find out more about
state, and how to hold onto it. By the time you’ve finished this chapter, you’ll have
built several sites that can retain state, no matter how much the user clicks around.

Page Life Cycle

A user sits at her browser and types in a URL. A web page appears with text, images,
buttons, and so forth. She fills in a text box and clicks a button. New data appears in
response. How does this work?

Before we begin, it is important to understand a little bit about the “architecture” of
the World Wide Web. In the applications you’ve developed to this point, you've
been able to do everything on one computer. But in order for these exercises to work,
your single computer is standing in for three or four important pieces of the puzzle,
as shown in Figure 7-1.

In the original model of the Web, a browser would send a request for a page, identi-
fied by a Universal Resource Locater (URL), and then some remote server would
return that page. Information would be presented using HTML, a simple markup

261

language that the browser would display. Pages were imagined to be display-only,
with interaction limited to clicking on hyperlinks to move from page to page. Each
page was designed to be independent of all the others, and it didn’t matter who was
looking at a given page, or when.

Server .
Local machine

-
Internet

e A T -

Database

Figure 7-1. When you enter a URL in your browser, your request crosses the Internet to the web
server, which may access a database, and then returns the page to your local machine.

In a traditional desktop application, on the other hand, you assume that a single user
sits down, starts the application, uses it continuously for a while, and then closes the
application. This period of time when the user is interacting with the application is
called a session. If the user enters her name at some point, the application should
hold onto that name for the duration of the session in case it needs to be retrieved at
some later point. No matter where the user goes in the application, that name is
assumed to be the same, and so the application may need to pass that name around
to different methods within the code as needed. The user’s name, along with any
other changes she makes, is part of the state of the application, and the application
needs to preserve that state for at least the duration of the session, and sometimes
between sessions.

Desktop applications were always intended to preserve the application state; web
pages were not. In fact, the Web was consciously and explicitly designed to be
“stateless.” This plan worked just fine for a while, but nowadays, web users expect
web applications to behave like desktop applications. That is, if you enter something
in a textbox, and then switch to work in a different application for a while, the con-
tent of the textbox is still there when you come back. That means web applications
need a way to preserve state.

To create a session-based interactive application on top of the Web, ASP.NET uses
pages that extend traditional HTML pages. These are stored on the web server and
combine markup and code to produce HTML for the user’s browser.

Some code runs on the server when the page is requested. Some code runs on the
server in response to actions taken by the user (pressing a button, for example).
Some code is embedded in the page and runs in the browser (AJAX and JavaScript
client-side code).

262 | Chapter7: Stateand Life Cycle

To understand when different bits of code are run, and how the page that is sent to
the browser is assembled, you need to understand the life cycle of the ASP.NET page.

When an ASP.NET page is requested from the server, the server loads the page into
server memory, processes the page, sends the page to the user, and then unloads it
from memory. From the beginning of the life cycle to the end, the goal is to render
appropriate HTML to the requesting browser. At each step, methods and events are
available that allow you to override the default behavior or add your own program-
matic enhancements.

In ASP.NET, the Page class handles the responses. When a browser requests a page,
an instance of the Page class is created, and that instance creates a hierarchical tree of
all the controls on the page: the control tree.

To see this, you’ll create a simple web site called LifeCycle. This site will consist of a
single page containing a single Button control. Clicking on the Button will do noth-
ing but cause the page to post back to the server.

In Source view, open Default.aspx, and then drag a Button control onto the page
between the two <div> tags.

Add the Trace attribute to the Page directive at the top of the file and set its value to
true, as shown in Figure 7-2.

Default.aspx™ | Start Page - X

Client Objects 8 Events * (Mo Events) -

<%@ Page Language="VB" AutcEventWireup="false"
CodeFile="Default.aspx.vb" par:
Inherits="_Defaulc”
Trace="true" %>

<!DOCTYFE html PUBLIC "-//W3C//DID XHIML 1.0 Transitional//EN" "

<1 o o B L Ry

m

0 <html xmlns="http://www.w3.orq/1999/xhtml">
f—]{head runat="server”>

<title>Untitled Page</title>

11i </ head> L

=TI

] <body>
E <form id="forml™ runat="server"r
= <div>

<asp:Button ID="Buttonl"™ runat="server" Text="Button"™ />
- <fdivs
17i </ form>
F</body>
</ html >

[
] om o s L R |

oD m

el

< | 1 | 3

Figure 7-2. The LifeCycle Default page in Source view shows the single control on the page and
the Trace attribute within the Page directive.

PagelifeCyde | 263

We haven’t yet formally introduced the Trace control, but you need it for this exer-
cise. You can see the control tree for any page by adding Trace="true" to the Page
directive. We'll cover tracing in detail in Chapter 8.

Run the page. You will see the single button at the top, followed by a ton of informa-
tion at the bottom. For now, just slide down to the section labeled Control Tree, as
shown in Figure 7-3.

"_,é Untitled Page - Internet Explorer E@I&J
eliad |§, http://localhost:51220/LifeCycle/Default.aspx . | *+ | A | | Google o ~|
- T—— — 5 ata »
b I | ,é Untitled Page | | {-} i > . > |p Page > i} Tools >
aspx.page End Render 0.00780825495977841 0.001913 -
Control Tree
Render Size ViewState ControlState
Control o Bytes Size Bytes Size Bytes e
Uniqguetp 'YP (including (excluding (excluding !E‘
children) children) children) | B
__Page ASP.default_aspx 719 0 0
ctlo2 System.Web.UILiteralControl 174 0 0
ctloo System.Web.UL.HtmlControls.HtmIHead46 0 0
ctlDl System.Web.UL.HtmIControls.HtmITitle 33 0 0
ctlo3 System.Web.UILiteralControl 14 0 0
form1 System.Web.UL.HtmlControls.HtmIForm465 0 0
ctlo4 System.Web.Ul.LiteralControl 21 0 0
Buttonl System.Web.UI.WebControls.Button 66 0 0
ctlo5 System.Web.Ul.LiteralControl 18 0 0
ctloe System.Web.UILiteralControl 20 0 0
Session State
< | R — | *
Done @ Internet | Protected Mode: On #100% ~

Figure 7-3. The page Trace contains a lot of information about the page, but for now, you’re only
interested in the Control Tree section, which shows all the controls on the current page.

The Page itself is at the root of the tree. All the named controls are included in the
tree, referenced by control ID. In our simple example, there are only two named con-
trols: form1 and Button1.

Static text, including whitespace, newlines, and HTML tags, are represented in the
tree as LiteralControls. The order of controls in the tree is strictly hierarchical.
Within a given level of the hierarchy, the controls are in the order in which they
appear in the markup file.

Web components, including the Page, go through their entire life cycle every time the
page is loaded. Events fire first on the Page, then recursively on every object in the con-
trol tree. Just to emphasize the point: every time the page is posted back to the server,
it goes away, and an entirely new page, with an entirely new set of controls, is created
by the server and sent to the browser. This page and these controls will be nearly iden-
tical to those on the previous page.

264 | Chapter7: Stateand Life Cycle

There are two slightly different sequences in the life cycle: one for the first time a
page is loaded, and a second when the page reloads itself in a postback. The life cycle
is shown schematically in Figure 7-4.

During the first page load, the life cycle consists of the following steps:

1. A request for the page is made from a browser to the web server. The ASP.NET
Framework first determines whether the page already exists in a cache (a section
of memory specifically reserved for recently used items). If so, the page is
retrieved and returned to the browser and we are done. If not, then the actual
page life cycle starts at this point.

2. During the Start phase, the postback mode is determined. If the page was
requested by a different page, then it was not a postback. If the page was
returned to the server for processing and redisplay, then it is a postback. The
IsPostBack and PreviousPage properties are set accordingly. The Request and
Response properties of the page along with a number of other properties are also
set.

3. The Page Initialization phase contains two events often handled by your code:
PreInit and Init. If you do not handle these explicitly yourself, ASP.NET will
perform the default behavior on your behalf. During the PrelInit event, the tar-
get device is determined before the page is initialized, the master page is set, the
control tree is built, and the controls are assigned unique IDs, which are made
available to your code. Personalization and themes are loaded and applied to the
page in this step (these are discussed in Chapter 10). PreInit is the first event in
the life cycle that can be trapped and handled. That is, this is the first event that
you can write your own code for, to change the default behavior of initializing
the page.

4. During the Init event, control properties are read or initialized. If this is a post-
back, it is important to realize that the controls won’t reflect any changes to the
page made before the postback—that happens in the PreRender phase. They will
contain values specified in the markup file.

5. During the Load event, all the control properties are set. View state information
is available, and controls in the page’s control hierarchy can be accessed. The
load phase is routinely modified in a Page_Load method.

6. During the Validation phase, the Validate method is called on all the validation
controls on the page. The IsValid property is set for all those controls and for
the page as a whole.

7. During the Rendering phase, personalization, control, and view state is saved.
Each control on the page is called in succession to render itself to the browser,
that is, to compose itself into HTML that is included in the page’s Response
property. It is very common to handle the PreRender event with a Page PreRender
method, typically when you must take some action based on the final value of
some other control on the page. During the Render event, the HTML is actually

PagelifeCyde | 265

InitComplete

Retrieve

et fm

No

Start Set Request, Response &

IsPostBack properties

fl Page 4 B Load s
' initialization Prelnit \ No
1 ' | LoadState i—>| ProcessPostDatai
| i |
! 1 Yes

Create child
controls, apply
view & control
state

ProcessPostData
(second try)

ChangedEvents

PostBackEvents

Rendering y \ Perform

Postback control
PreRender event events
' handling ,

Commonly handled
event

[
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
\

Figure 7-4. Schematic of ASP.NET page life cycle. Events are in rectangles, with commonly
handled events in bold rectangles. Areas of functionality are indicated in circles. The dashed round-
cornered rectangles delineate the major phases of the cycle.

266 | Chapter7: Stateand Life Cycle

generated and sent to the requesting page, although this event is rarely handled
unless you are developing custom controls.

8. Unload is the last event of the life cycle. It gives you an opportunity to do any
final cleanup (i.e., closing open files and releasing references to expensive
resources, such as database connections).

During postback, the life cycle is the same as during the first load, except for the
following:

1. During the Load phase, after initialization is complete, the view state and the
control state are loaded and applied as necessary.

2. After the Validation phase completes, postback data is processed. Control event
handlers are now executed. This is important: control event handlers, such as a
Button Click, are not called until after the Page Initialization and Load events are
handled. This is important because it is often critical in which order code in the
various event handlers is executed.

You can easily see the order in which events are fired on a page by turning on tracing
for the page as you did above (setting Trace to true in the Page directive). As shown
in Figure 7-5, the Trace Information section of the sample lists all the page events
along with the number of seconds it took for that event to run from the start of the
life cycle and from the previous event.

If you click the button to cause a postback, the trace information will include the
additional events indicated previously in Figure 7-4, including ProcessPostData
Second Try, ChangedEvents, and PostBackEvent. Often, when you’re trying to track
down why your page is behaving a certain way or why some of your code does not
seem to work as you would expect, looking at the life cycle behavior can be
illuminating.

State

State, in the case of a web page, is the current value of all the controls and variables
for the current user, in the current session. The Web is inherently a stateless envi-
ronment, which means that each time a page is posted to the server and then sent
back to the browser, the page is created again from scratch. Unless the state of all
the controls is explicitly preserved before the page is posted, the state is lost and all
of the controls will be created with default values. One of the great strengths of
ASP.NET is that it automatically maintains state for server controls—both HTML
and ASP.NET—so you do not have to write any code to accomplish this. This sec-
tion will explore how this is done and how you can make use of the ASP.NET state
management capabilities.

State | 267

/& Untitled Page - Internet Explorer @EI&J
N A |§, http://localhost:51220/LifeCycle/Default.aspx - | "?| X | | Google ye -
W [@Untiﬂed Page]] & - ~ @ v [c}Page v {F Tools v
Encoding: Unicode (UTF-8 Response Encoding: Unicode (UTF-8 i

Trace Information

Category M g From First(s) From Last(s)

aspx.page Begin Prelnit E

aspx.page End Prelnit 6.98412787100036E-05 0.000070

aspx.page Begin Init 0.000128857159219957 0.000059

aspx.page End Init 0.000190527008322089 0.000062

aspx.page Begin InitComplete 0.000227333362201062 0.000037

aspx.page End InitComplete 0.000262742890507034 0.000035

aspx.page Begin PreLoad 0.000297454006025906 0.000035

aspx.page End PreLoad 0.000331466708757677 0.000034

aspx.page Begin Load 0.000365619094046869 0.000034

aspx.page End Load 0.000402215924090911 0.000037

aspx.page Begin LoadComplete 0.000441396881447223 0.000039

aspx.page End LoadComplete 0.000481066727754505 0.000040

aspx.page Begin PreRender 0.000515917525830797 0.000035

aspx.page End PreRender 0.00056787943719104 0.000052

aspx.page Begin PreRenderComplete 0.000616488967173202 0.000049

aspx.page End PreRenderComplete 0.000652457225708854 0.000036

aspx.page Begin SaveState 0.00133396842336107 0.000682

aspx.page End SaveState 0.00164329544676768 0.000309

aspx.page Begin SaveStateComplete 0.00168771450002724 0.000044

aspx.page End SaveStateComplete 0.00172284466321837 0.000035

aspx.page Begin Render 0.00177243197110247 0.000050

aspx.page End Render 0.00262065430103547 0.000848

:
1 s || —— b
Done & Internet | Protected Mode: On H100% -

Figure 7-5. The Trace Information section of the page Trace shows all the page events.

ASP.NET manages four types of state:

Control state
Used to provide features such as paging and sorting of GridView controls. Con-
trol state cannot be modified, accessed directly, or disabled.

View state
The state of all the controls on the page. View state only lasts for that one page
display, and is updated every time the page is redrawn. It can be disabled for
specific controls, the page, or the entire web site.

Session state
Data specifically saved across page posts, for use by all the pages in a web
application.

Application state
Data available to all the users of a web application, even across multiple
sessions.

268 | Chapter7: Stateand Life Cycle

Table 7-1 compares the kinds of state management (other than Control state, which
is not accessible to the developer).

Table 7-1. Comparison of types of state

Feature View state Session state Application state
Uses server resources No Yes Yes

Uses bandwidth Yes No No

Times out No Yes No
Security exposure Yes Depends No
Optimized for nonprimitive types No Yes Yes
Available for arbitrary data Yes Yes Yes
Programmatically accessible Yes Yes Yes

Scope Page Session Application
Survives restart Yes Depends on configuration No

View State

The view state is the state of the page and all its controls. View state is automatically
maintained across posts by the ASP.NET Framework. When a page is posted to the
server, the view state is read. Just before the page is sent back to the browser, the
view state is restored.

The view state is saved in a hidden field on the page. Because the view state is main-
tained via a form field, this technique works with all browsers. The information
saved in the hidden field is Base64 encoded, but not encrypted. As such, any infor-
mation stored in view state is not immune to prying eyes.

If there is no need to maintain the view state for a given page, you can boost perfor-
mance by disabling view state for that page. For example, if the page does not post
back to itself or if the only control on a page that might need to have its state main-
tained is populated from a database with every round trip to the server, then there
will be no need to maintain the view state for that page. To disable view state for a
page, add the EnableViewState attribute with a value of false to the Page directive:

<%@ Page Language="VB" EnableViewState="false" %>
The default value for EnableviewState is true.
You can also disable the view state for an entire application by setting the

EnableViewState property to false in the <pages> section of the web.config configura-
tion file.

State | 269

You can even maintain or disable the view state for individual controls. This is done
with the Control.EnableViewState property, which is a Boolean value with a default
of true. Disabling view state for a control, just as for the page, will improve perfor-
mance. This would be appropriate, for example, in a situation where a GridView is
populated from a database every time the page is loaded. In this case, the contents of
the control would be overridden by the database query, so there is no point in main-
taining view state for that control. If the Gridview in question were named gv, the fol-
lowing line of code would disable its view state:

gv.EnableViewState = false;

The simple controls, TextBox, RadioButton, CheckBoxList, and
RadioButtonlList, ignore the EnableViewState properties, as the current
value is always saved in view state and posted back to the server any-
way. Complex controls such as the Gridview do respect the
EnableViewState property. In cases where a DataSource control is used
as the data source for a GridView, the data is gathered fresh with every
page post. In this case, it is more performant to disable view state.

There are some situations where view state is not the best place to store data. If you
need to store a large amount of data, view state is not an efficient mechanism
because the data is transferred back and forth to the server with every page post. If
you have security concerns about the data, and the data is not being displayed on the
page, then including it in view state increases the security exposure. Finally, view
state is optimized only for strings, integers, Booleans, arrays, ArrayLists, and hash-
tables. Other .NET types may be saved in view state, but will result in degraded per-
formance and a larger view state footprint.

In some of these instances, session state might be a better alternative; on the other
hand, view state does not consume any server resources and does not time out as ses-
sion state does.

To see view state in action, create a new web site called ViewState.

This web site will have a TextBox, a Label, and a GridView control. It will also have a
Button control to force a postback to the server. To better demonstrate view state,
you will not use a DataSource control to populate the Gridview; rather, you’ll use
ADO.NET code in the code-behind to gather the data the first time the page loads
(don’t worry, we’ll show you what to do).

The finished Design view of the page will look similar to Figure 7-6.

While in Design view, drag a Button control and a TextBox control onto the page.
Change the Text property of the Button to Post to indicate that it will post back to
the server.

Press the Enter key several times, and then drag a Label control onto the page.

270 | Chapter7: Stateand Life Cycle

-
[5] ViewState - Visual Web Developer 2008 Express Edition == -
File Edit View Website Build Debug Format Tools Window Help
H AR~ - N e R R = = U S R) i = 2 |[XHTML10 Transition: =] =
i[(None) <|[DefauttFort) ~[[Defeuti~]| B 7 1 | A 2 | = ~|:= = | & 1 i siyle Application: [Manual +| Target Rule: [(New Infine Style)] %
@ Toolbox > 1 X . DE"‘““"”‘*KSSEEPEEEI ~ % | Solution Explorer > I X
£| B xm 7 SRlERlEE &R
3
a2 MultiView Post 2P C\..\ViewState
o | E1 Panel ’ - [App_Data
= | 5 PlaceHolder Default.aspx
&l = Label e
| & View 5 web.config
[Substitution
& Localize Column0 Columnl Column2
£ Data =
K Pointer abc abc abc ﬂSolutmn Exoue |._§Databa;e G
i abc abc abc
P cTw
] Datalist £(|| labc abc abc
Defaultaspx Web File Propertie =
[Detsilsview abe abe abe
(] FormView ||| ‘abe abc abc
=] Listview
0 Repeater FileName Defaultaspx
wz» DataPager N Full Path ChLearningASPd
D SqlDataSource T ¥
& st LI 3 Design | 2 Split | @ Source | [4][<div>][<aspiGridView#GridViewl >
LinaNataSnur B
Rescly

Figure 7-6. You'll create the ViewState page for this example so that it looks like this in Design
view.

Press the Enter key a few more times. Now, drag a GridView control from the Data
section of the Toolbox onto the page.

The Gridview will be populated from the AdventureWorks database. In preparation
for this, add a connection string to the web.config file by double-clicking on that file
in the Solution Explorer to open the file in the editing window.

Replace this single line (if it exists):
<appSettings />

with the lines that follow. If the above line of code is not in the file, add the text
below after the opening <configuration> element anyway (the quoted value should
not wrap in your code, as it does on this printed page):
<appSettings>
<add key="AdventureWorks"
value="Data Source=<server name>;
Initial Catalog=AdventureWorks;

Integrated Security=True;" />
</appSettings>

Replace the Data Source with the appropriate SQL Server name for your machine. If
you are using SQL Express, the Data Source will be something like (note the single
period before the back slash):

Data Source=.\SqlExpress;

State | 271

Open the code-behind for the page by double-clicking on Default.aspx.vb in the
Solution Explorer. Create an event handler for the Page Load event by selecting (Page
Events) in the Class Name drop-down menu at the top left of the editing window,
and in the Method Name drop-down at the top right of the editing window, select
the Load event. This will insert an empty code skeleton for the Page Load event

handler.

Type the highlighted code inside the Page Load method from Example 7-1. (Note the
two Imports statements that must appear before the Partial Class line.)

Example 7-1. The Default.aspx.vb for the ViewState web site has a simple Page_Load method that
calls a more elaborate helper method

Imports System.Data

Imports System.Data.SqlClient

Partial Class Default
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then
Label1.Text = "Hello World"
PopulateGrid()
End If
End Sub

Private Sub PopulateGrid()
Dim connectionString As String =
ConfigurationManager.AppSettings("AdventureWorks")
Dim connection As SglConnection = _
New SglConnection(connectionString)
Dim queryString As String =
"select top 1000 AddressLinel, AddressLine2, City, " + _
"StateProvincelID, PostalCode from Person.Address"”
Dim ds As DataSet = New DataSet()
Try
Dim dataAdapter As SqlDataAdapter =
New SqlDataAdapter(queryString, connection)
dataAdapter.Fill(ds, "Addresses")
GridViewl.DataSource = ds.Tables("Addresses")
GridView1.DataBind()
Catch ex As Exception
"' Handle exception
Finally
connection.Close()
End Try
End Sub

End Class

272 | Chapter7: Stateand Life Cycle

Also from Example 7-1, add the helper method called PopulateGrid, which actually
does the work of gathering and binding the data for the Gridview. (Again, as with the
Trace control earlier, it is not important in this example for you to understand
exactly how PopulateGrid works.) In order for PopulateGrid to build properly, you
must include the two Imports statements at the top of the code-behind file in
Example 7-1.

VB CHEAT SHEET

Helper Methods

When your event handler has a lot of code that you might want to use again elsewhere,
it’s a good idea to separate that code out into another method. You can run that
method from various other points in your code, which is known as calling the method.
To create a helper method, you create a new Sub in the code-behind file. Be careful to
place it before the End Class statement and give it a name. The following example
shows what this looks like:

Private Sub PopulateGrid()

" Your code goes here.

End Sub
To call the method, you simply type the name the function, with the parentheses, at
the point in the code where you want the method to execute, as in:

PopulateGrid()

The execution of the application jumps to the beginning of the method, and then exe-
cutes the method. When the execution reaches the End Sub statement at the end of the
helper method, it returns to the line in the event handler where it left from and contin-
ues from there.

If you need to pass values (called parameters) from the calling method into the helper
method, you would include them in the parentheses of the method call. This example
doesn’t pass any parameters.

Run the application. Enter some text in the TextBox and observe the result. Your
screen will appear similar to Figure 7-7.

If you run the page and there is no data visible in the grid after click-
ing the Post button, you’ve probably disabled view state for the page
(as you are instructed to do below). Make sure the EnableViewState
attribute is set to true in the Page directive at the top of the markup
file:
<%@ Page Language="VB" AutoEventWireup="false"
CodeFile="Default.aspx.vb" EnableViewState="true"
Inherits="_Default" %>

State | 273

[/& Untitled Page - Internet Explorer E@g
@Q - |@, http://localhost:51247/ViewState/Default.aspx v|"'f| X | | Google Fe o
127 ﬁ'ﬁ? [@Untitled Page l_l @ % e E@ ' @Eage b @TQ‘J'S s
test =
Hello World
AddressLinel AddressLinel City StateProvincelID PostalCode
#300-75 O'Connor Street Ottawa 57 K4B 152
#9900 2700 Production Way Burnaby 7 ViA 4X1
00, rue Saint-Lazare Dunkerque 145 59140
02, place de Fontenoy Verrieres Le Buisson 177 91370
035, boulevard du Montparnasse Verrieres Le Buisson 177 91370
081, boulevard du Montparnasse Saint-Denis 179 93400
081, boulevard du Montparnasse Seattle 79 98104
084, boulevard du Montparnasse Les Ulis 177 91940
1 Corporate Center Drive Miami 15 33127
1 Mt. Dell Drive Portland 58 97205
1 Smiling Tree Court Space 55 Los Angeles 9 20012
1, allée des Princes Courbevoie 178 92400 =
Done €D Internet | Protected Mode: On H100% -

Figure 7-7. After you've entered some text in the TextBox, the ViewState page will look like this.
This is the expected result with View state enabled.

Click on the Post button. The page will be posted back to the server, as indicated by
the progress indicator in the status line at the bottom of the browser. However, noth-
ing on the page will change.

The contents of the TextBox are preserved by the built-in view state capability of
ASP. NET. You have written no code anywhere to do this, it just happens.

Looking at the Page Load event handler, you can see that the Text property of the
Label control is set when the page is first loaded, but not on subsequent post back.
Ditto for the Gridview—it is populated only the first time the page is loaded. Again,
ASP.NET view state is taking care of preserving the data between postbacks.

Now, watch what happens when you disable view state for the page. Open
Default.aspx in Source view. Add the EnableViewState attribute to the Page direc-
tive at the top of the file, and set its value to false, as shown highlighted in the
following code snippet:
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
EnableViewState="false" Inherits="_Default" %>

Run the page again and enter some text in the TextBox. It initially looks the same as
Figure 7-7. Click the Post button to post the page back to the server.

The page is very different, as shown in Figure 7-8.

274 | Chapter7: Stateand Life Cycle

& Untitled Page - Internet Explorer (=] B e
@u - |g http://localhost:51247/ViewState ~ | "}| X | | Google L '!
- — _ ~ = oy »
v o ‘:g Untitled Page ‘ | Eﬁ = ~ g=h - |i-b Page = {{} Tools ~
-
test
Label
Done €D Internet | Protected Mode: On ®100% -

Figure 7-8. When you post the page back with View state disabled, the results are very different.

The TextBox still shows the current value. As mentioned in the note above, simple
controls such as TextBox ignore the EnableViewState property and always preserve
view state. However, the Label and GridView controls do respect that property.
Because they are only populated the first time the page is loaded, they no longer dis-
play the current data after the page is posted back to the server. The Label reverts to
its default Text property, and the GridView is not even rendered if there is no data
bound to it.

In addition to preserving the values of controls, view state is very handy for some-
thing else—you can programmatically stash your own stuff in a data structure
known as the state bag, using the ViewState keyword. The state bag stores data as
attribute/value pairs in a dictionary. The attribute is a string, which is the name of
the object stored as the value. The types of objects that can be stored efficiently are
the primitive data types, including integers, strings, bytes, and Booleans. You can
also store arrays of primitive types. Complex types, such as DataSets and custom
objects can be stored as well, but performance will suffer.

The next example demonstrates stashing values in the state bag and then retrieving
them. In this example, a counter keeps track of the number of times a button on a
page has been clicked. As long as the page is current, the count will be correct. If you
move to another page and then return to this page, the count will start over because
view state will be reinitialized for the new page.

Create a new web site called StateBag. On the Default page, drag on a Label, name it
1blCounter, and then add two buttons. Set the Text property of one button to
Increment Counter, and the Text property of the other button to Navigate.

State | 275

VB CHEAT SHEET

Arrays and Dictionaries

You’ve seen variables in previous chapters, and you’ve seen collections, like the collec-

tion of ListItems in a RadioButtonList. An array is simply another type of collection,

in which you can store a bunch of objects in a single variable, provided they’re all of

the same type. You declare an array similar to the way you would create a variable:
Dim myArray(5) As Integer

This code creates an array called myArray, which can hold integers. Specifically, the (5)
states that the array can hold six integers. Why not five as the code suggests? Because
just as with controls, array indexes begin at zero. To access the third integer in the
array, you’d just use this syntax:

myArray(2)
Use curly braces if you want to initialize the array when you create it:

Dim myArray() As Integer = {42, 36, 128, 53, 7, 85}

Notice you don’t have to specify the length of the array in this case; the compiler will
automatically set it to a length of six.

A two-dimensional array is like an array of arrays-each entry of the array is itself an
array, which simulates rows and columns. So, to access the fifth entry in the third
array, you use this syntax:

myTwoDimensionalArray(2,4)
Arrays are particularly useful with ForEach loops, like this:

ForEach i In myArray

i=1+1

Next i
That little loop increments each element in the array by 1, and you don’t need to know
what values are in the array, or how many there are. One drawback to arrays is that if
you want to retrieve a value from an array, you either have to know the index of the
value you want, or else loop through the array until you find it. The dictionary is a spe-
cific kind of array (also known as a Hashtable) that solves this problem by associating
each value with a key, instead of an index. For example, you could have a dictionary of
U.S. states, using their abbreviations as the key values. Then, to retrieve a state’s name,
you’d just have to know the abbreviation (the key). The following code snippet creates
and partially populates a Hashtable to hold the states:

Dim States as New Hashtable()

States.Add("CA", "California")

States.Add("MA", "Massachusetts")

States.Add("PA", "Pennsylvania")
To retrieve the name of the dictionary entry with the key value of MA, you would use
the following code:

Dim strStateName as string = States("MA").ToString()

In the case of the state bag, the attribute names are the keys, and the values of those
attributes are stored as the value part of each dictionary pair.

276

| Chapter7: Stateand Life Cycle

Add another page to the web site by clicking on Website + Add New Item.... Call
this new page AnotherPage.aspx. Be sure the “Place code in separate file” checkbox is
checked. On that page, add a Button control, with its Text property set to Home.

While still in AnotherPage.aspx, switch to Design view, and double-click the Home
button to open the Click event handler. Add the highlighted code below:
Protected Sub Buttoni Click(Byval sender As Object, _
ByVal e As System.EventArgs) Handles Buttoni.Click

Response.Redirect("Default.aspx")
End Sub

This button will now navigate back to the Default page.

Open Default.aspx in Design view. Double-click the Navigate button to open an
event handler for that button, and add the highlighted code in Example 7-2 to the
Click event handler.

Right-click on Default.aspx in the Solution Explorer and set it as the Start page. Run
the web site and verify you can navigate back and forth between the two pages.

Stop the web site, then open the code-behind for the Default page, Default.aspx.vb.
It already has an event handler for the Navigate button. There is no code necessary
for the Increment Counter button.

Add an event handler for the Load event for the Default page. Next, add the high-
lighted code from Example 7-2 to the Page_Load method.

Example 7-2. The Default.aspx.vb for the StateBag web site has a Page_Load method that
increments the counter each time the page is loaded
Partial Class Default

Inherits System.Web.UI.Page

Protected Sub Button2 Click(Byval sender As Object, _
ByVal e As System.EventArgs) Handles Button2.Click
Response.Redirect("AnotherPage.aspx")
End Sub

Protected Sub Page Load(ByVal sender As Object, _
Byval e As System.EventArgs) Handles Me.load
ViewState("Counter") += 1
1blCounter.Text = ViewState("Counter").ToString()
End Sub
End Class

Run the site. It will open with something like Figure 7-9. The counter will be initial-
ized to 1.

Click the Increment Counter button. You will see the counter increment in the label.
Navigate to the other page and back, however, and the counter will be reset back to
1. Just as in the previous example, the view state is retained through postbacks for
controls on the same page, but once you transfer to a different page, that state is
abandoned. This is called scope—the ViewState data is scoped to the page.

State | 277

@& Untitled Page - Internet Explorer [E= RN
() - [E] http//iocalhostas178/stated ~ [43| X | [Google 2 -
— A - kg
$§ ¢ | @8 Untitled Page | l o~ ~ = v | Page v {0 Tools »
1
’ Increment Counter H MNavigate]
Done €} Internet | Protected Mode: On #100% -

Figure 7-9. When you open the StateBag page, the counter initializes to 1.

VB CHEAT SHEET

+= Operator

The += operator is VB shorthand for adding the specified amount, and assigning the
result to the original variable—in this case, incrementing by 1. The following two state-
ments are equivalent:

myVariable = myVariable + 1

myVariable += 1
There are also -=, *=, and /= operators. In addition, there is an &= operator specifically
for concatenating strings, although += works for strings as well.

In the Page_Load method in Example 7-2, examine the following line:
ViewState("Counter") += 1

This line creates a ViewState dictionary object if it does not already exist, creates a
key in the dictionary called Counter, and associates the value of 1 with Counter.
When you click the Increment Counter button, the page posts back, which means
that the Load event is raised, and the method is called again. The Counter item
already exists in the dictionary, so its value is increased by 1. Note that if the page
had a dozen buttons, clicking any of them would increment the counter, as all it
takes is a postback to run the code in Page_Load.

278 | Chapter7: Stateand Life Cycle

It is interesting to note that if you simply refresh the browser, rather
than click a button on the page, the counter will not be incremented.

For this example, that works fine. However, in the general case, it is usually best to
first test to see if the object in view state exists before trying to use it.

Consider the case where a string array is put into the state bag in Page_Load with the
following lines of code:
Dim strArray() As String = New String() {"a", "b", "c"}
ViewState("TestArray") = strArray
Then, somewhere else in your code, maybe a Button Click event handler, for exam-
ple, you want to retrieve the contents of that ViewState object and do something with
it. You must first verify that the object exists before trying to use it, because if for
some reason it does not exist, it will throw an exception and crash your program.
You can verify the object’s existence with an If...Then block that tests to see if the
ViewState object is not Nothing, as in the following code snippet:
If ViewState("TestArray") IsNot Nothing Then
Dim strNewArray() As String
strNewArray = CType(ViewState("TestArray"), String())
End If
Then, once you are sure the ViewState object exists, you retrieve it by using the CType
function to explicitly convert the object to the desired type. This is necessary no mat-
ter what type is stashed into the ViewState object because regardless of what type of
object is stashed in the bag, what comes out is of type Object unless you convert it

back.

Session State

When you connect to an ASP.NET web site, you create a session. The session
imposes state on the otherwise stateless Web and allows the web site to recognize
that subsequent page requests are from the same browser that started the session.
This allows the web site to maintain state across pages until you explicitly end the
session by closing the browser, or until the session times out. (The default timeout is
20 minutes, which you can change by editing the web.config file.)

The scope of a session assumes a single user making many different page requests.
The session is not lost until the timeout period goes by with no requests from the
browser. If the user goes to lunch and does not click on anything for more than 20
minutes (assuming the default timeout period), the session will terminate. On the
other hand, if she clicks once every 19 minutes, the session will be maintained
indefinitely.

While an application is running, there may be many sessions, essentially one for each
user interacting with the web site, as indicated in Figure 7-10.

State | 279

Dan’s session

Amy’s session

7

= Web server [=]

www.OurWebSite.com

7 O

Jesse’s session

Jill's séssion

Figure 7-10. A web site can have many simultaneous sessions, one for each user who has not
timed out.

ASP.NET provides session state with the following features:

* Works with browsers that have cookies either enabled or disabled.

* Identifies if a request is part of an existing session.

* Stores session-scoped data for use across multiple requests.

* Raises session events such as Session Start, which you can handle in applica-
tion code.

* Automatically releases session resources if the session ends or times out.

Similar to the ViewState state bag, session data is stored as a collection of attribute/
value pair dictionary entries.

You set and retrieve the dictionary objects using the Session keyword, as shown in
the next example, which presents a set of radio buttons. Selecting one of the radio
buttons sets three session dictionary objects—two strings and a string array. These
session dictionary objects are then used to populate a Label control and a
DropDownList control.

Create a new web site called SessionState and switch to the Design view for
default.aspx. Drag a RadioButtonlist control onto the page. Set its AutoPostBack
property to True, so the effects will occur as soon as you make a selection.

Use the ListItem Collection Editor to create three items, with their Text and Value
properties set in the following table.

280 | Chapter7: Stateand Life Cycle

Text Value

NET N
Database D
Hardware H

You might also want to set the RepeatDirection property to Horizontal, and set the
CellSpacing property to 20, perhaps, to spread things out a bit.

If this were part of a real application, it might make sense to make this
an AJAX-enabled web site and wrap all this in an UpdatePanel to get
much snappier performance. For this example, that is neither neces-
sary nor particularly noticeable.

Drag a Label control onto the page and set its ID to lblMessage. Clear its Text
property. Drag a DropDownList control onto the page. Set its ID to ddl and its Visible
property to False so that it will initially be invisible. The Design view will look some-
thing like Figure 7-11.

ig SessionState - Visual Web Developer 2008 Express Edition lﬂm
File Edit View Website Build Debug Format Table Tools Window Help
e-iE-SHE s L@ 00 Bm

= ‘ KHTML 1.0 Transition: =

¢ (None) ~ [DefaultFont) - (Defauli~- | B 7 U | .ﬁ LI E-|i=i= - : Style Application: Manual = &
@ Toolbox * & X Defaultaspx" tﬁiérti’aiél ~ x | Solution Explorer ~ax
= | = Standard - B @R E e e
é R Pointer 2P C\.-\SessionState\

2 | A Label L © NET ¢ Database (Hardware - [App_Datz

-% Button Default.aspx

| [sbl] TextBox

web.config

[IoMessage]

LinkButton Unbound vI

ImageButton g

3 Solution Ex... [#4 Database Ex..
A Hyperlink 4|7
DropDownList Properties ~ 0 x
% ListBox DOCUMENT -

CheckBox
8= CheckBoxlist

TraceMode
(3 RadioButton UlCulture
£= RadioButtonl.. | |L " |ll= Body E
< »
&l Image ALink
[ImageMap _ ||| 3 Design | O Split | @ Source | E <asp:DropDownListédd| > |E| e g X:
Ready Ln 26 Coll Ch1l

Figure 7-11. This is what the SessionState Default page should look like in Design view once
you’ve created it. However, populating the drop-down list is different than you might expect.

Double-click the RadioButtonlList to open the code-behind in an event handler for
the default event for that control, SelectedIndexChanged. Enter the code highlighted
in Example 7-3. Notice that in addition to the code inside the event handler itself,
there is also a helper method called DisplayStuff.

State | 281

Example 7-3. The Default.aspx.vb for the SessionState web site contains a helper method that can
retrieve content directly from the session state dictionary

Partial

Class Default

Inherits System.Web.UI.Page

Protected Sub RadioButtonlList1 SelectedIndexChanged(Byval sender As Object, _

Dim

Byval e As System.EventArgs) Handles RadioButtonList1.SelectedIndexChanged
Books(3) As String

Session("cattext") = RadioButtonList1.SelectedItem.Text
Session("catcode") = RadioButtonList1.SelectedItem.Value
Select Case RadioButtonListi.SelectedItem.Value

Case "N"
Books(0) = "Programming Visual Basic 2008"
Books(1) = "Programming ASP.NET"
Books(2) = "Programming C#"
Case "D"
Books(0) = "Oracle & Open Source"
Books(1) = "SQOL in a Nutshell"
Books(2) = "Transact SQL Programming"
Case "H"
Books(0) = "PC Hardware in a Nutshell"
Books(1) = "Dictionary of PC Hardware and Data Communications Terms"

Books(2) = "Linux Device Drivers"
End Select
Session("books") = Books
DisplayStuff()
End Sub
Private Sub DisplayStuff()

If RadioButtonListi.SelectedIndex = -1 Then

lblMessage.Text = "You must select a book category"

Else

End
End Sub

Dim str As String = String.Empty

str += "You have selected the category "

str += CType(Session("cattext"), String)

str += " with code

str += CType(Session("catcode"), String)

str 4= "'."

lblMessage.Text = str

ddl.Visible = True

Dim CatBooks() As String = CType(Session("books"), String())
' populate the DropDownList

ddl.Items.Clear()

For i As Integer = 0 To CatBooks.Length - 1 Step 1

ddl.Items.Add(New ListItem(CatBooks(i)))
Next
If

End Class

Run the application and select one of the radio buttons. Then, open the drop-down
list to see that the items have been populated, as shown in Figure 7-12. Now, select

282 |

Chapter7: State and Life Cycle

one of the other radio buttons. Notice the page posts back immediately, and the con-
tent of the drop-down list changes.

VB CHEAT SHEET

Select Case Statement

You saw the If statement back in Chapter 4. The Select Case statement is a way to

string together multiple If statements in a clearer manner. The Select Case statement

opens with the keywords Select Case, followed by the variable being evaluated:
Select Case myVariable

Next is a series of Case statements, each with a different condition that will be com-
pared against the value of myVariable. Each case is followed by some code that runs if
the value of the variable matches the condition. Assuming myVariable is a string that
represents a size, the Case statements might go like this:
Case "Small"
1bIMyLabel.Text
Case "Medium"
1bIMyLabel.Text
Case "lLarge"
1bIMyLabel.Text = "Super-size me."

"Just a little."

"Standard size."

Once a case is matched, only the code for that case is executed; the rest of the code is
ignored. In Example 7-3 (shown previously), the variable being evaluated is
RadioButtonList1. SelectedItem.Value, the value that the user chose.

The first thing that happens in this code is the Text the user selected is added to ses-
sion state and associated with the key "cattext" in the dictionary. Similarly, the
Value that goes with that text is stored in Session associated with the key "catcode".
Session("cattext") = RadioButtonlList1.SelectedItem.TextSession("catcode") =
RadioButtonList1.SelectedItem.Value
The Select Case statement is used to populate the drop-down list, depending on the
user’s selection. In each case, a three-item array called Books is created, but the text
for each item varies depending on the Case statement. After Books is populated, it,
too, is saved to Session state:

Session("books") = Books

Then, the DisplayStuff() helper method is called. Because cattext, catvalue, and
books have all been saved in session state, you don’t need to pass their values to the
helper method. DisplayStuff() can retrieve them directly from the Session dictio-
nary, for example, when it concatenates cattext to the string:

str += CType(Session("cattext"), String)

State | 283

- -
& Untitled Page - Internet Explorer E@lﬁ

@Q - &l http://localhost49249/Ses = | ¢,| X || Googte 2 |
i:? it @Untit[ed Page [_‘ @‘ = > @ > |k Page ~ =

@ NET () Database) Hardware

You have selected the category NET with code 'N'.
Programming Visual Basic 2008 ~

Programming Visual Basic 2008
Programming ASP_NET
Programming C#

Done €D Internet | Protected Mode: On H100% -

Figure 7-12. When you select one of the radio buttons in the SessionState web site, the content of
the drop-down list changes immediately.

Remember, you need to use the CType method to convert the value to a string before
you can use it.

Similarly, the helper method retrieves the books object, uses CType to convert it to an
array of strings, and stores it in the new array CatBooks():

Dim CatBooks() As String = CType(Session("books"), String())
Next, the method uses CatBooks() in a loop to populate the drop-down list.

Session state is enabled by default and works right out of the box. To increase perfor-
mance, you can disable session state on a per-page, per-web site, or per-machine
basis.

To disable session state for a page, include the following highlighted attribute in the
Page directive at the top of the markup file:
<%@ Page Language="VB" AutoEventWireup="false"
CodeFile="Default.aspx.vb"

Inherits=" Default"
EnableSessionState="False

"o

0>

Valid values for EnableSessionState are True, False, and ReadOnly. ReadOnly provides
better performance than True as long as you do not need to edit the values stored in
session. How do the values get into session state if it is set to ReadOnly? From another
page whose value is True.

284 | Chapter7: Stateand Life Cycle

To configure session state on a per-web site or per-machine basis, you must edit the
configuration file, web.config, in the web site virtual directory.

For simple single-server, single-processor web sites with relatively low traffic (mea-
sured in hits per minute rather than hundreds or thousands of hits per minute), the
default configuration is probably good enough. In more complex or demanding sce-
narios, you can configure session state to accommodate a wide range of require-
ments. This would include the length of the timeout, whether browser cookies are
used, where the session information is stored (in memory on the local machine, in
memory on a state server, or in a database somewhere), and so on.

Application State

You have seen how view state, when accessed with the ViewState keyword, is scoped
to the page. You have also seen that session state, when accessed with the session
keyword, is scoped to the Session. Finally, there is application state, which when
accessed with the Application keyword, is scoped across the entire application; that
is, it applies to all sessions.

The syntax for getting and setting values in Application state are exactly analogous
to ViewState and Session, so we will not include an example here. There are several
things to consider, however.

First, because multiple sessions can access the same Application dictionary object, it
is possible for two people to change the value simultaneously. This is not an issue for
read-only access. However, if the application data is editable by users, it is possible
for two (or more) users to overwrite each other’s values, resulting in faulty data at
best. To prevent this, you can lock the Application object, but that can cause the
application to grind to a halt.

Second, unlike view state and specially configured session state, application state
always consumes server memory, so do not store too much “stuff” in application
state.

Third, data stored in application state will not survive a server restart or crash. If
something needs to persist across application halts, you need to store it elsewhere,
such as in web.config as an AppSetting (but only if it is read-only), or in a database.

And finally, application state is specific to a single processor on a single machine. If
your environment includes either multiprocessor servers (web garden) or multiple
web servers (web farm), do not use application state. If you need this type of
functionality, you will need to create it from scratch, perhaps storing the requisite
values in a database.

State | 285

Summary

When you issue a request from your browser, that request is sent across the
Internet to a remote server, which processes the request, possibly accesses a
database, and then returns the HTML to the browser, where the page is
rendered.

A session is the period where a single user interacts with the web application, no
matter how many different pages are visited in that application.

The values of all the controls on the page are referred to as state. The Web was
originally intended not to preserve state, but that has evolved over time.

Each step of the ASP.NET life cycle has events that allow you to change or add
to the default behavior for that step.

The control tree is a hierarchical representation of all the controls on a single
page.

The Trace attribute lets you see a great deal of information about your page,
including the control tree.

The page life cycle differs slightly depending on whether the page is loaded as a
result of a postback.

The Start phase determines whether the page was requested by another page, or
is a postback.

The Initialization phase applies personalization and themes to the page, and also
reads or initializes control properties.

The Load phase sets the control properties.

The Validation phase is where validation methods are checked on all eligible
controls on the page.

The Rendering phase is where each control is called to render itself in the
browser.

The Unload phase is last, and allows you to clean up any resources you need to.
ASP.NET can automatically maintain state for server controls, avoiding the need
to write any custom code.

View state is the state of the page and any controls on it.

You can disable the view state by adding EnableViewState="false" to the Page
directive. Simple controls such as text boxes, radio buttons, and checkboxes
always preserve view state, no matter what you set in the Page directive. More
complex controls, however, can have their view state disabled.

Although the view state is maintained automatically, you can use the state bag of
view state to store your own values from post to post, using the ViewState
keyword.

286

| Chapter7: Stateand Life Cycle

* The state bag uses a dictionary structure, with keys and values that you define as
needed.

* Session state is not automatically maintained from page to page, but you can
specify that objects be preserved in session state.

* Session state also uses a dictionary that you define as needed. You use the
Session keyword to add items to this dictionary.

* You can disable session state for the page by placing the attribute
EnableSessionState="False" in the Page directive, or for the entire site by editing
web.config.

* Application state is similar to view state and session state. You can access the
dictionary with the Application keyword.

By now, you’ve developed a lot of skills and created many web pages that look and
act professional, both up front and under the hood. When you take your shiny web
site with its fancy controls out for a spin in the real world, though, you’re going to
come up against a tough reality: stuff breaks...a lot. As you may have already discov-
ered from the exercises in this book, a typo in the wrong place or a misconfigured
property can lead to a site that doesn’t work and a lot of time staring at the code try-
ing to figure out where you went wrong. Even when all of your code works perfectly,
you can still run into problems with outside data sources, user errors, and other
things beyond your control. Errors and bugs are part of programming, and nobody
expects you to write perfect code the first time. What you want to learn, though, is
how to find and fix bugs in the shortest possible time. The IDE has a host of tools to
help you do just that, and that’s what we’ll discuss next.

Summary | 287

BRAIN BUILDER

Quiz
1. What is a session?

2. What is the state of a page?

3. What setting can you use to see information about the different stages of the
page life cycle?

4. In which life cycle phase does the page determine if it was called as the result of a
postback?

5. What event is usually used to take actions during the Load phase?

6. What are the four kinds of state that ASP.NET manages? Which one can you not
affect in any way?

7. What does the EnableViewState="false" setting do?

8. Where would you store the value of a counter that is incremented each time the
page is loaded?

9. Suppose you wanted to ask the user to enter her name on a page, and you
wanted to retain that value the entire time the user is at your site. What’s the
best mechanism to use?

10. What’s the proper syntax for storing and retrieving that user name?

Exercises

Exercise 7-1. You’ll start out with a simple exercise that uses your knowledge of the
page life cycle. Create a simple page with a label, 1blPostBack, and a button,
btnPostBack, with a Text property of “Post Back”. Write the appropriate code to
cause the label to display the message “You're seeing this page for the first time!”
when the page initially loads. Whenever the page is loaded as a result of a postback,
the label should display the message “Welcome back to the page.”

Exercise 7-2. Create a page with a label, 1blMessage, and a button, btnPostBack. The
first time you access the page, the label should output the message “Page first
accessed at,” followed by the date and time. Each time the button is clicked, use the
state bag to add a new line to the label with the message “Page posted back at,” fol-
lowed by the date and time. (Hint: If you don’t recall how to access the current date
and time, see Chapter 3.) Your page should look something like Figure 7-13.

288 | Chapter7: Stateand Life Cycle

& Exercise 7-2 - Internet Explorer l':'l_Ellﬂ_hJ

G-

& | http://localhost:50460/Exercise® « | *;r| “ | | Google Fein g

Eile Edit View Favortes Tools Help

2 = — - 53
W R |;§Exercise?-2 I i - v v Page v (0 Tools v

Post Back

Page first accessed at 7/13/2008 8:47:29 PM.
Page posted back at 7/13/2008 8:47-59 PML
Page posted back at 7/13/2008 8:50:16 PML
Page posted back at 7/13/2008 8:52:49 PM.

Default.aspx &) Internet | Protected Mode: On 100% -

Figure 7-13. Your goal for Exercise 7-2, after clicking the Post Back button a few times.

Exercise 7-3. Copy Exercise 7-2 to a new web site, and make the Default.aspx page
the home page. Add two more pages to the project; call them SecondPage.aspx and
ThirdPage.aspx. Add an <h1> to Default.aspx to identify it, and then add two naviga-

tion buttons to navigate to each of the other two pages.

SecondPage.aspx and ThirdPage.aspx should each contain an <h1> to identify them, a
button for posting back, two buttons for navigating to each of the other two pages,
and a label that displays the string created on the home page. Both of these pages
should add a message to the string indicating when they were accessed for the first
time and when they are posted back. After you’ve navigated around the site for a bit,

it should look like Figure 7-14.

Exercises |

289

& Exercise 7-3 - Internet Explorer

@l\“/ - |.p_i http://localhost:50497/Ex ~ | *f| X | | Google

File Edit View
v ke

Favorites Tools Help

& Exercise 7-3

l lf.ﬁﬁvvg;-_;vl-_z}agagev

Home Page

Post Back

l Second Page ” Third Page

Home page first accessed at 7/14/2008 12:03:24 PM.
Home page posted back at 7/14/2008 12:05:25 PM