
DNS on Windows 2000, 2nd Edition

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street,
Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly
logo are registered trademarks of O'Reilly & Associates, Inc. The
association between the image of a raven and DNS on Windows 2000
is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps
or initial caps. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for
errors or omissions, or for damages resulting from the use of the
information contained herein.

While every precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

DNS on Windows 2000, 2nd Edition

Preface
 Versions
 What's New in This Edition
 Organization
 Audience
 Obtaining the Example Programs
 Conventions Used in This Book
 How to Contact Us
 Quotations
 Acknowledgments

1. Background
 1.1 A (Very) Brief History of the Internet
 1.2 On the Internet and Internets
 1.3 The Domain Name System, in a Nutshell
 1.4 The History of the Microsoft DNS Server
 1.5 Must I Use DNS?

2. How Does DNS Work?
 2.1 The Domain Namespace
 2.2 The Internet Domain Namespace
 2.3 Delegation
 2.4 Name Servers and Zones
 2.5 Resolvers
 2.6 Resolution
 2.7 Caching

3. Where Do I Start?
 3.1 Which Name Server?
 3.2 Choosing a Domain Name

4. Setting Up the Microsoft DNS Server
 4.1 Our Zone
 4.2 The DNS Console
 4.3 Setting Up DNS Data
 4.4 Running a Primary Master Name Server
 4.5 Running a Slave Name Server
 4.6 Adding More Zones
 4.7 DNS Properties
 4.8 What Next?

5. DNS and Electronic Mail
 5.1 MX Records
 5.2 Adding MX Records with the DNS Console
 5.3 What's a Mail Exchanger, Again?
 5.4 The MX Algorithm
 5.5 DNS and Exchange

6. Configuring Hosts
 6.1 The Resolver
 6.2 Resolver Configuration
 6.3 Advanced Resolver Features
 6.4 Other Windows Resolvers
 6.5 Sample Resolver Configurations

7. Maintaining the Microsoft DNS Server
 7.1 What About Signals?
 7.2 Logging

 7.3 Updating Zone Data
 7.4 Zone Data File Controls

8. Growing Your Domain
 8.1 How Many Name Servers?
 8.2 Adding More Name Servers
 8.3 Registering Name Servers
 8.4 Changing TTLs
 8.5 Planning for Disasters
 8.6 Coping with Disaster

9. Parenting
 9.1 When to Become a Parent
 9.2 How Many Children?
 9.3 What to Name Your Children
 9.4 How to Become a Parent: Creating Subdomains
 9.5 Subdomains of in-addr.arpa Domains
 9.6 Good Parenting
 9.7 Managing the Transition to Subdomains
 9.8 The Life of a Parent

10. Advanced Features and Security
 10.1 DNS NOTIFY (Zone Change Notification)
 10.2 WINS Linkage
 10.3 System Tuning
 10.4 Name Server Address Sorting
 10.5 Building Up a Large Sitewide Cache with Forwarders
 10.6 A More Restricted Name Server
 10.7 A Nonrecursive Name Server
 10.8 Securing Your Name Server

11. New DNS Features in Windows 2000
 11.1 Active Directory
 11.2 Dynamic Update
 11.3 Aging and Scavenging
 11.4 Incremental Zone Transfer
 11.5 Unicode Character Support

12. nslookup
 12.1 Is nslookup a Good Tool?
 12.2 Interactive Versus Noninteractive
 12.3 Option Settings
 12.4 Avoiding the Search List
 12.5 Common Tasks
 12.6 Less-Common Tasks
 12.7 Troubleshooting nslookup Problems
 12.8 Best of the Net

13. Troubleshooting DNS
 13.1 Is DNS Really Your Problem?
 13.2 Checking the Cache
 13.3 Potential Problem List
 13.4 Interoperability Problems
 13.5 Problem Symptoms

14. Miscellaneous
 14.1 Using CNAME Records
 14.2 Wildcards
 14.3 A Limitation of MX Records
 14.4 DNS and Internet Firewalls

 14.5 Dial-up Connections
 14.6 Network Names and Numbers
 14.7 Additional Resource Records

A. DNS Message Format and Resource Records
 A.1 Master File Format
 A.2 DNS Messages
 A.3 Resource Record Data

B. Installing the DNS Server from CD-ROM

C. Converting from BIND to the Microsoft DNS Server
 C.1 Step 1: Change the DNS Server Startup Method to File
 C.2 Step 2: Stop the Microsoft DNS Server
 C.3 Step 3: Change the Zone Data File Naming Convention
 C.4 Step 4: Copy the Files
 C.5 Step 5: Get a New Root Name Server Cache File
 C.6 Step 6: Restart the DNS Server
 C.7 Step 7: Change the DNS Server Startup Method to Registry

D. Top-Level Domains

Colophon

Preface

You may not know much about the Domain Name System—yet—but whenever you
use the Internet, you use DNS. Every time you send electronic mail or surf the Web,
you rely on the Domain Name System.

You see, while you, as a human being, prefer to remember the names of computers,
computers like to address each other by number. On an internet, that number is 32 bits
long, or between zero and four billion or so.1 That's easy for a computer to remember
because computers have lots of memory ideal for storing numbers, but it isn't nearly
as easy for us humans. Pick 10 phone numbers out of the phone book at random, and
then try to recall them. Not easy? Now flip to the front of the book and attach random
area codes to the phone numbers. That's about how difficult it would be to remember
10 arbitrary internet addresses.

This is part of the reason we need the Domain Name System. DNS handles mapping
between hostnames, which we humans find convenient, and internet addresses, which
computers deal with. In fact, DNS is the standard mechanism on the Internet for
advertising and accessing all kinds of information about hosts, not just addresses. And
DNS is used by virtually all internetworking software, including electronic mail,
remote terminal programs such as telnet, file transfer programs such as ftp, and web
browsers such as Netscape Navigator and Microsoft Internet Explorer.

Another important feature of DNS is that it makes host information available all over
the Internet. Keeping information about hosts in a formatted file on a single computer
helps only users on that computer. DNS provides a means of retrieving information
remotely from anywhere on the network.

More than that, DNS lets you distribute the management of host information among
many sites and organizations. You don't need to submit your data to some central site
or periodically retrieve copies of the "master" database. You simply make sure your
section, called a zone, is up to date on your name servers. Your name servers make
your zone's data available to all the other name servers on the network.

Because the database is distributed, the system also needs to be able to locate the data
you're looking for by searching a number of possible locations. The Domain Name
System gives name servers the intelligence to navigate through the database and find
data in any zone.

Of course, DNS does have a few problems. For example, the system allows more than
one name server to store data about a zone for redundancy's sake, but inconsistencies
can crop up between copies of the zone data.

The worst problem with DNS is that despite its widespread use on the Internet, there's
really very little documentation about managing and maintaining it. Most
administrators on the Internet make do with the documentation their vendors see fit to

1 And, with IP Version 6, it's soon to be a whopping 128 bits long, or between zero and a 39-digit decimal number.

provide and with whatever they can glean from following the Internet mailing lists
and Usenet newsgroups on the subject.

This lack of documentation means that the understanding of an enormously important
internet service—one of the linchpins of today's Internet—is either handed down from
administrator to administrator like a closely guarded family recipe or relearned
repeatedly by isolated programmers and engineers. New zone administrators suffer
through the same mistakes made by countless others.

Our aim with this book is to help remedy this situation. We realize that not all of you
have the time or the desire to become DNS experts. Most of you, after all, have plenty
to do besides managing your zones and name servers: system administration, network
engineering, or software development. It takes an awfully big institution to devote a
whole person to DNS. We'll try to give you enough information to allow you to do
what you need to do, whether that's running a small zone or managing a multinational
monstrosity, tending a single name server or shepherding a hundred of them. Read as
much as you need to know now, and come back later if you need to know more.

DNS is a big topic—big enough to require two authors, anyway—but we've tried to
present it as sensibly and understandably as possible. The first two chapters give you
a good theoretical overview and enough practical information to get by, and later
chapters fill in the nitty-gritty details. We provide a roadmap up front to suggest a
path through the book appropriate for your job or interest.

When we talk about actual DNS software, we'll concentrate on the Microsoft DNS
Server, which is a popular implementation of the DNS specs included in Windows
2000 Server (and Windows NT Server 4.0 before it). We've tried to distill our
experience in managing and maintaining zones into this book (One of our zones,
incidentally, was once one of the largest on the Internet, but that was a long time ago.)

We hope that this book will help you get acquainted with DNS on Windows 2000 if
you're just starting out, refine your understanding if you're already familiar with it,
and provide valuable insight and experience even if you know it like the back of your
hand.

Versions

This book deals with name servers that run on Windows 2000 Server, particularly the
Microsoft DNS Server. We will also occasionally mention other name servers that run
on Windows 2000, especially ports of BIND, a popular implementation of the DNS
specifications. However, if you need a book on BIND, we suggest this book's sister
edition, DNS and BIND by Paul Albitz and Cricket Liu (O'Reilly). This book is
essentially a Windows 2000 edition of DNS and BIND.

We use nslookup, a name server utility program, a great deal in our examples. The
version of nslookup we use is the one shipped with Windows 2000 Server. Other
versions of nslookup provide similar functionality to that in the Windows nslookup.
We have tried to use commands common to most nslookups in our examples; when
this was not possible, we tried to note it.

What's New in This Edition

The first edition of this book was called DNS on Windows NT and dealt with
Microsoft's DNS implementation for that operating system. This new edition has been
comprehensively updated to document the many changes to DNS, large and small,
found in Windows 2000. The most significant new feature in Windows 2000 is Active
Directory, and this edition describes how Active Directory depends on DNS,
including the extra DNS resource records required for a domain controller to function
properly. Other new DNS features explained are dynamic update, incremental zone
transfer, and storing DNS zone information in Active Directory itself rather than in a
text file on disk. The new material appears throughout the book, but many features are
described in a new chapter for this edition, Chapter 11. The resolver, or client side of
DNS, has also changed in Windows 2000, and Chapter 6 has been updated to
document the behavior of the Windows 2000 and Windows 98 resolvers.

Organization

This book is organized, more or less, to follow the evolution of a zone and its
administrator. Chapter 1 and Chapter 2 discuss Domain Name System theory. Chapter
3 through Chapter 6 help you to decide whether to set up your own zones, then
describe how to go about it, should you choose to. The middle chapters, Chapter 7
through Chapter 11, describe how to maintain your zones, configure hosts to use your
name servers, plan for the growth of your zones, create subdomains, secure your name
servers, and integrate DNS with Active Directory. The last chapters, Chapter 12
through Chapter 14, deal with common problems and troubleshooting tools.

Here's a more detailed, chapter-by-chapter breakdown:

• Chapter 1 provides a little historical perspective and discusses the problems
that motivated the development of DNS, then presents an overview of DNS
theory.

• Chapter 2 goes over DNS theory in more detail, including the DNS
namespace, domains, and name servers. We also introduce important concepts
such as name resolution and caching.

• Chapter 3 covers how to choose and acquire your DNS software if you don't
already have it and what to do with it once you've got it; that is, how to figure
out what your domain name should be and how to contact the organization
that can delegate your domain to you.

• Chapter 4 details how to set up your first two name servers, including creating
your name server database, starting up your name servers, and checking their
operation.

• Chapter 5 deals with DNS's MX record, which allows administrators to
specify alternate hosts to handle a given destination's mail. The chapter covers
mail-routing strategies for a variety of networks and hosts, including networks
with security firewalls and hosts without direct Internet connectivity.

• Chapter 6 explains how to configure a Windows resolver.

• Chapter 7 describes the periodic maintenance administrators must perform to
keep their domains running smoothly, such as checking name server health
and authority.

• Chapter 8 covers how to plan for the growth and evolution of your domain,
including how to get big and how to plan for moves and outages.

• Chapter 9 explores the joys of becoming a parent domain. We explain when to
become a parent (i.e., create subdomains), what to call your children, how to
create them (!), and how to watch over them.

• Chapter 10 goes over less common name server configuration options that can
help you tune your name server's operation, secure your name server, and ease
administration.

• Chapter 11 describes the new bells and whistles in Microsoft's DNS
implementation for Windows 2000 that weren't present in Windows NT.

• Chapter 12 shows the ins and outs of the most popular tool for doing DNS
debugging, including techniques for digging obscure information out of
remote name servers.

• Chapter 13 covers many common DNS problems and their solutions and then
describes a number of less common, harder-to-diagnose scenarios.

• Chapter 14 ties up all the loose ends. We cover DNS wildcarding; special
configurations for networks that connect to the Internet through firewalls;
hosts and networks with intermittent Internet connectivity via dial-up; network
name encoding; and new, experimental record types.

• Appendix A contains a byte-by-byte breakdown of the formats used in DNS
queries and responses as well as a comprehensive list of the currently defined
resource record types.

• Appendix B describes how to load the Microsoft DNS Server from the
Windows 2000 Server CD-ROM.

• Appendix C covers migrating from an existing BIND 4 name server to the
Microsoft DNS Server.

• Appendix D lists the current top-level domains in the Internet domain
namespace.

Audience

This book is intended primarily for Windows 2000 system administrators who
manage zones and one or more name servers, but it also includes material for network
engineers, postmasters, and others. Not all the book's chapters will be equally
interesting to a diverse audience, though, and you don't want to wade through 14
chapters to find the information pertinent to your job. We hope this road map will
help you plot your way through the book.

System administrators setting up their first zones should read Chapter 1 and Chapter 2
for DNS theory, Chapter 3 for information on getting started and selecting a good
domain name, then Chapter 4 and Chapter 5 to learn how to set up a zone for the first
time. Chapter 6 explains how to configure hosts to use the new name servers. Soon
after, they should read Chapter 7, which explains how to "flesh out" their
implementation by setting up additional name servers and adding additional zone
data. Chapter 12 and Chapter 13 describe useful troubleshooting tools and techniques.

Experienced administrators may benefit from reading Chapter 6 to learn how to
configure DNS resolvers on different hosts and Chapter 7 for information on
maintaining their zones. Chapter 8 contains instructions on how to plan for a zone's
growth and evolution, which should be especially valuable to administrators of large
zones. Chapter 9 explains parenting—creating subdomains—which is essential
reading for those considering the big move. Chapter 10 covers security features of the
Microsoft DNS Server, many of which may be useful for experienced administrators.
The new-to-Windows 2000 features covered in Chapter 11 will be helpful to
experienced administrators making the jump from Windows NT. Chapter 12 and
Chapter 13 describe tools and techniques for troubleshooting, which even advanced
administrators may find worth reading.

System administrators on networks without full Internet connectivity should read
Chapter 5 to learn how to configure mail on such networks and Chapter 14 to learn
how to set up an independent DNS infrastructure.

Network administrators not directly responsible for any zones should still read
Chapter 1 and Chapter 2 for DNS theory, then Chapter 12 to learn how to use
nslookup, plus Chapter 13 for troubleshooting tactics.

Postmasters should read Chapter 1 and Chapter 2 for DNS theory, then Chapter 5 to
find out how DNS and electronic mail coexist. Chapter 12, which describes nslookup,
will also help postmasters dig mail routing information out of the domain namespace.

Interested users can read Chapter 1 and Chapter 2 for DNS theory, and then whatever
else they like!

Note that we assume you're familiar with basic Windows 2000 system administration
and TCP/IP networking. We don't assume you have any other specialized knowledge,
though. When we introduce a new term or concept, we'll do our best to define or
explain it. Whenever possible, we'll use analogies from Windows (and from the real
world) to help you understand.

Obtaining the Example Programs

The example programs in this book are available from this URL:

http://www.oreilly.com/catalog/dnswin2/

Extract the files from the archive using WinZip by typing:

C:\temp>
winzip dns.zip

If WinZip is not available on your system, get a copy from http://www.winzip.com/.

Conventions Used in This Book

We use the following font and format conventions:

Italic

Used for new terms where first defined, Registry values, domain names,
filenames, and command lines when they appear in the body of a paragraph
exactly as a user would type them (for example: run dir to list the files in a
directory). Italic is also used for Windows commands when they are
mentioned in passing and not as part of a command line (for example: to find
more information on nslookup, a user could consult the Windows help
system).

Bold

Used for menu names and for text appearing in windows and dialog boxes,
such as names of fields, buttons, and menu options. For example: enter a
domain name in the Server name field and then click the OK button.

Constant width

Used for excerpts from scripts or configuration files. For example, a snippet of
Perl:

if (-x /winnt/system32/dns.exe)
{
 system(/winnt/system32/dns.exe);
}

Sample interactive sessions showing command-line input and corresponding
output are also shown in a constant width font, with user-supplied input in
constant width bold:

C\>
more <\winnt\system32\drivers\etc\hosts
Copyright (c) 1993-1999 Microsoft Corp.

This is a sample HOSTS file used by Microsoft TCP/IP for
Windows.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/dnswin2/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O'Reilly Network, see the O'Reilly web site at:

http://www.oreilly.com/

Quotations

The Lewis Carroll quotations that begin each chapter are from the Millennium
Fulcrum Edition 2.9 of the Project Gutenberg electronic text of Alice's Adventures in
Wonderland and Through the Looking-Glass. Quotations in Chapter 1, Chapter 2,
Chapter 5, Chapter 6, Chapter 8, Chapter 11, and Chapter 14 come from Alice's
Adventures in Wonderland, and those in Chapter 3, Chapter 4, Chapter 7, Chapter 9,
Chapter 10, Chapter 12, and Chapter 13 come from Through the Looking-Glass.

Acknowledgments

The authors would like to thank their technical reviewer for this edition, Levon
Esibov, as well as Jon Forrest and David Blank-Edelman, technical reviewers for DNS
on Windows NT, for their invaluable contributions to this book. Paul Robichaux
provided assistance from his wealth of Exchange knowledge for Chapter 5, and John
Peterson offered helpful suggestions based on his production Windows 2000
environment.

Matt would like to thank his wife, Sonja, for her support and unflagging patience, and
Cricket for asking him to help with this book. He'd also like to thank his manager at
VeriSign Global Registry Services, Aristotle Balogh, for his support.

Cricket would like to thank his wife, Paige, for her support during the writing of this
book. Thanks also to Walter B and Dakota and Annie, for providing occasional but
much-needed relief from writing.

We would also like to thank the folks at O'Reilly & Associates for their hard work
and patience. Credit is especially due to our editors, Mike Loukides and Deb
Cameron.

Chapter 1. Background

The White Rabbit put on his spectacles. "Where shall I begin, please
your Majesty?" he asked.

"Begin at the beginning," the King said, very gravely, "and go on till
you come to the end: then stop."

It's important to know a little ARPANET history to understand the Domain Name
System (DNS). DNS was developed to address particular problems on the
ARPANET, and the Internet—a descendant of the ARPANET—remains its main
user.

If you've been using the Internet for years, you can probably skip this chapter. If you
haven't, we hope it'll give you enough background to understand what motivated the
development of DNS.

1.1 A (Very) Brief History of the Internet

In the late 1960s, the U.S. Department of Defense's Advanced Research Projects
Agency, ARPA (later DARPA), began funding an experimental wide area computer
network that connected important research organizations in the U.S., called the
ARPANET. The original goal of the ARPANET was to allow government contractors
to share expensive or scarce computing resources. From the beginning, however,
users of the ARPANET also used the network for collaboration. This collaboration
ranged from sharing files and software and exchanging electronic mail—now
commonplace—to joint development and research using shared remote computers.

The TCP/IP (Transmission Control Protocol/Internet Protocol) protocol suite was
developed in the early 1980s and quickly became the standard host-networking
protocol on the ARPANET. The inclusion of the protocol suite in the University of
California at Berkeley's popular BSD Unix operating system was instrumental in
democratizing internetworking. BSD Unix was virtually free to universities. This
meant that internetworking—and ARPANET connectivity—were suddenly available
cheaply to many more organizations than were previously attached to the ARPANET.
Many of the computers being connected to the ARPANET were being connected to
local area networks (LANs), too, and very shortly the other computers on the LANs
were communicating via the ARPANET as well.

The network grew from a handful of hosts to tens of thousands of hosts. The original
ARPANET became the backbone of a confederation of local and regional networks
based on TCP/IP, called the Internet.

In 1988, however, DARPA decided the experiment was over. The Department of
Defense began dismantling the ARPANET. Another network, funded by the National
Science Foundation and called the NSFNET, replaced the ARPANET as the backbone
of the Internet.

Even more recently, in the spring of 1995, the Internet made a transition from using
the publicly-funded NSFNET as a backbone to using multiple commercial backbones,
run by long-distance carriers such as MCI and Sprint, and long-time commercial
internetworking players such as PSINet and UUNET.

Today, the Internet connects millions of hosts around the world. In fact, a significant
proportion of the non-PC computers in the world are connected to the Internet. Some
of the new commercial backbones can carry a volume of several gigabits per second,
tens of thousands of times the bandwidth of the original ARPANET. Tens of millions
of people use the network for communication and collaboration daily.

1.2 On the Internet and Internets

A word on "the Internet," and on "internets" in general, is in order. In print, the
difference between the two seems slight: one is always capitalized, one isn't. The
distinction between their meanings, however, is significant. The Internet, with a
capital "I," refers to the network that began its life as the ARPANET and continues
today as, roughly, the confederation of all TCP/IP networks directly or indirectly
connected to commercial U.S. backbones. Seen up close, it's actually quite a few
different networks—commercial TCP/IP backbones, corporate and U.S. government
TCP/IP networks, and TCP/IP networks in other countries—interconnected by high-
speed digital circuits.

A lowercase internet, on the other hand, is simply any network made up of multiple
smaller networks using the same internetworking protocols. An internet (little "i")
isn't necessarily connected to the Internet (big "I"), nor does it necessarily use TCP/IP
as its internetworking protocol. There are isolated corporate internets, and there are
Xerox XNS-based internets and DECnet-based internets.

The new term "intranet" is really just a marketing term for a TCP/IP-based "little i"
internet, used to emphasize the use of technologies developed and introduced on the
Internet within a company's internal corporate network. An "extranet," on the other
hand, is a TCP/IP-based internet that connects partner companies, or a company to its
distributors, suppliers, and customers.

1.2.1 The History of the Domain Name System

Through the 1970s, the ARPANET was a small, friendly community of a few hundred
hosts. A single file, HOSTS.TXT, contained a name-to-address mapping for every host
connected to the ARPANET. The familiar Unix host table, /etc/hosts, was compiled
from HOSTS.TXT (mostly by deleting fields Unix didn't use).

HOSTS.TXT was maintained by SRI's Network Information Center (dubbed "the
NIC") and distributed from a single host, SRI-NIC.2 ARPANET administrators
typically emailed their changes to the NIC and periodically ftped to SRI-NIC and
grabbed the current HOSTS.TXT file. Their changes were compiled into a new

2 SRI is the former Stanford Research Institute in Menlo Park, California. SRI conducts research into many different areas,
including computer networking.

HOSTS.TXT file once or twice a week. As the ARPANET grew, however, this scheme
became unworkable. The size of HOSTS.TXT grew in proportion to the growth in the
number of ARPANET hosts. Moreover, the traffic generated by the update process
increased even faster: every additional host meant not only another line in
HOSTS.TXT, but potentially another host updating from SRI-NIC.

When the ARPANET moved to the TCP/IP protocols, the population of the network
exploded. Now there was a host of problems with HOSTS.TXT:

Traffic and load

The toll on SRI-NIC, in terms of the network traffic and processor load
involved in distributing the file, was becoming unbearable.

Name collisions

No two hosts in HOSTS.TXT could have the same name. However, while the
NIC could assign addresses in a way that guaranteed uniqueness, it had no
authority over hostnames. There was nothing to prevent someone from adding
a host with a conflicting name and breaking the whole scheme. Adding a host
with the same name as a major mail hub, for example, could disrupt mail
service to much of the ARPANET.

Consistency

Maintaining consistency of the file across an expanding network became
harder and harder. By the time a new HOSTS.TXT file could reach the farthest
shores of the enlarged ARPANET, a host across the network may have
changed addresses or a new host may have sprung up.

The essential problem was that the HOSTS.TXT mechanism didn't scale well.
Ironically, the success of the ARPANET as an experiment led to the failure and
obsolescence of HOSTS.TXT.

The ARPANET's governing bodies chartered an investigation into a successor for
HOSTS.TXT. Their goal was to create a system that solved the problems inherent in a
unified host table system. The new system should allow local administration of data,
yet make that data globally available. The decentralization of administration would
eliminate the single-host bottleneck and relieve the traffic problem. And local
management would make the task of keeping data up-to-date much easier. It should
use a hierarchical namespace to name hosts. This would ensure the uniqueness of
names.

Paul Mockapetris, then of USC's Information Sciences Institute, was responsible for
designing the architecture of the new system. In 1984, he released RFCs 882 and 883,
which describe the Domain Name System. These RFCs were superseded by RFCs
1034 and 1035, the current specifications of the Domain Name System.3 RFCs 1034

3 RFCs are Request for Comments documents, part of the relatively informal procedure for introducing new technology on
the Internet. RFCs are usually freely distributed and contain fairly technical descriptions of the technology, often intended for
implementers.

and 1035 have since been augmented by many other RFCs, which describe potential
DNS security problems, implementation problems, administrative gotchas,
mechanisms for dynamically updating name servers and for securing zone data, and
more.

1.3 The Domain Name System, in a Nutshell

The Domain Name System is a distributed database. This structure allows local
control of the segments of the overall database, yet data in each segment is available
across the entire network through a client/server scheme. Robustness and adequate
performance are achieved through replication and caching.

Programs called name servers constitute the server half of DNS's client/server
mechanism. Name servers contain information about some segments of the database
and make that information available to clients, called resolvers. Resolvers are often
just library routines that create queries and send them across a network to a name
server.

The structure of the DNS database, shown in Figure 1-1, is similar to the structure of
the Windows filesystem. The whole database (or filesystem) is pictured as an inverted
tree, with the root node at the top. Each node in the tree has a text label, which
identifies the node relative to its parent. This is roughly analogous to a "relative
pathname" in a filesystem, like bin. One label—the null label, or ""—is reserved for
the root node. In text, the root node is written as a single dot (.). In the Windows
filesystem, the root is written as a backslash (\).

Figure 1-1. The DNS database versus a Windows filesystem

Each node is also the root of a new subtree of the overall tree. Each of these subtrees
represents a partition of the overall database—a "directory" in the Windows
filesystem, or a domain in the Domain Name System. Each domain or directory can

be further divided into additional partitions, called subdomains in DNS, like a
filesystem's "subdirectories." Subdomains, like subdirectories, are drawn as children
of their parent domains.

Every domain has a unique name, like every directory. A domain's domain name
identifies its position in the database, much as a directory's "absolute pathname"
specifies its place in the filesystem. In DNS, the domain name is the sequence of
labels from the node at the root of the domain to the root of the whole tree, with dots
(.) separating the labels. In the Windows filesystem, a directory's absolute pathname is
the list of relative names read from root to leaf (the opposite direction from DNS, as
shown in Figure 1-2), using a slash to separate the names.

Figure 1-2. Reading names in DNS and in a Windows filesystem

In DNS, each domain can be broken into a number of subdomains, and responsibility
for those subdomains can be doled out to different organizations. For example, the
InterNIC runs the edu (educational) domain, but delegates responsibility for the
berkeley.edu subdomain to U.C. Berkeley (Figure 1-3). This is similar to remotely
mounting a filesystem: certain directories in a filesystem may actually be filesystems
on other hosts, mounted from remote hosts. The administrator on host winken, for
example (again, Figure 1-3), is responsible for the filesystem that appears on the local
host as the directory /usr/nfs/winken.

Figure 1-3. Remote management of subdomains and of filesystems

Delegating authority for berkeley.edu to U.C. Berkeley creates a new zone, an
autonomously administered piece of the namespace. The zone berkeley.edu is now
independent from edu, and contains all domain names that end in berkeley.edu. The
zone edu, on the other hand, contains only domain names that end in edu but aren't in
delegated zones like berkeley.edu. berkeley.edu may be further divided into
subdomains, like cs.berkeley.edu, and some of these subdomains may themselves be
separate zones, if the berkeley.edu administrators delegate responsibility for them to
other organizations. If cs.berkeley.edu is a separate zone, the berkeley.edu zone
doesn't contain domain names that end in cs.berkeley.edu (Figure 1-4).

Figure 1-4. The edu, berkeley.edu, and cs.berkeley.edu zones

Domain names are used as indexes into the DNS database. You might think of data in
DNS as "attached" to a domain name. In a filesystem, directories contain files and
subdirectories. Likewise, domains can contain both hosts and subdomains. A domain
contains those hosts and subdomains whose domain names are within the domain.

Each host on a network has a domain name, which points to information about the
host (see Figure 1-5). This information may include IP addresses, information about
mail routing, etc. Hosts may also have one or more domain name aliases, which are
simply pointers from one domain name (the alias) to another (the official or canonical
domain name). In Figure 1-5, mailhub.nv... is an alias for the canonical name
rincon.ba.ca....

Figure 1-5. An alias in DNS pointing to a canonical name

Why all the complicated structure? To solve the problems that HOSTS.TXT had. For
example, making domain names hierarchical eliminates the pitfall of name collisions.

Each domain has a unique domain name, so the organization that runs the domain is
free to name hosts and subdomains within its domain. Whatever name they choose for
a host or subdomain won't conflict with other organizations' domain names, since it
will end in their unique domain name. For example, the organization that runs hic.com
can name a host puella (as shown in Figure 1-6), since it knows that the host's domain
name will end in hic.com, a unique domain name.

Figure 1-6. Solving the name collision problem

1.4 The History of the Microsoft DNS Server

The first implementation of the Domain Name System was called JEEVES, written by
Paul Mockapetris himself. A later implementation was BIND, an acronym for
Berkeley Internet Name Domain, written for Berkeley's 4.3BSD Unix operating
system by Kevin Dunlap. BIND is now maintained by the Internet Software
Consortium.4

Although the Microsoft DNS Server can read BIND's configuration and data files, it
is not BIND. Microsoft wrote its server from scratch, according to the DNS
specifications. The first version of the Microsoft DNS Server was a beta version that
ran on NT 3.51. Microsoft made it available for some time from one of its FTP
servers. The first product version of the DNS server was shipped with Microsoft
Windows NT Server 4.0 (but not with NT Workstation 4.0). The server was updated
in several NT Service Packs, including the latest (as of this writing), Service Pack 6a.
The DNS server shipped with Windows 2000 Server comes from the same code base
as the NT DNS server—it's really just a later version.

There are other name servers that run on Windows. For example, the Internet
Software Consortium provides a free port of BIND 8.2.4, which runs on Windows NT
and Windows 2000. Check Point offers a commercial version of the BIND 8.2.3
server. It also runs on both Windows NT and Windows 2000.

4 For more information on the Internet Software Consortium and its work on BIND, see http://www.isc.org/bind.html.

1.5 Must I Use DNS?

Despite the usefulness of the Domain Name System, there are some situations in
which it doesn't pay to use it. There are other name-resolution mechanisms besides
DNS, some of which may be standard with your operating system. Sometimes the
overhead involved in managing zones and their name servers outweighs the benefits.
On the other hand, there are circumstances in which you have no other choice but to
set up and manage name servers. Following are some guidelines to help you make
that decision.

1.5.1 If You're Connected to the Internet...

...DNS is a must. Think of DNS as the lingua franca of the Internet: nearly all of the
Internet's network services use DNS. That includes the World Wide Web, electronic
mail, remote terminal access, and file transfer.

On the other hand, this doesn't necessarily mean that you have to set up and run zones
by yourself for yourself. If you've got only a handful of hosts, you may be able to join
an existing zone (see Chapter 3) or find someone else to host your zones for you. If
you pay an Internet service provider for your Internet connectivity, ask if they'll host
your zone for you, too. Even if you aren't already a customer, there are companies
who will help out, for a price.

If you have a little more than a handful of hosts, or a lot more, you'll probably want
your own zone. And if you want direct control over your zone and your name servers,
you'll want to manage it yourself. Read on!

1.5.2 If You Have Your Own TCP/IP-Based Internet...

...you probably want DNS. By an internet, we don't mean just a single Ethernet of
workstations using TCP/IP (see the next section if you thought that was what we
meant); we mean a fairly complex "network of networks." Maybe you have a forest of
AppleTalk nets and a handful of Apollo token rings.

If your internet is basically homogeneous and your hosts don't need DNS (say you
have a big DECnet or OSI internet), you may be able to do without it. But if you've
got a variety of hosts, especially if some of those run some variety of Unix, you'll
want DNS. It'll simplify the distribution of host information and rid you of any kludgy
host-table distribution schemes you may have cooked up.

1.5.3 If You Have Your Own Local Area Network or Site Network...

...and that network isn't connected to a larger network, you can probably get away
without using DNS. You might consider using Microsoft's Windows Internet Name
Service (WINS), host tables, or Sun's Network Information Service (NIS) product.

But if you need distributed administration or have trouble maintaining the consistency
of data on your network, DNS may be for you. And if your network is likely to soon
be connected to another network, such as your corporate internet or the Internet, it'd
be wise to start up your zones now.

Chapter 2. How Does DNS Work?

"... and what is the use of a book," thought Alice, "without pictures or
conversations?"

The Domain Name System is basically a database of host information. Admittedly,
you get a lot with that: funny dotted names, networked name servers, a shadowy
"namespace." But keep in mind that, in the end, the service DNS provides is
information about internet hosts.

We've already covered some important aspects of DNS, including its client-server
architecture and the structure of the DNS database. However, we haven't gone into
much detail, and we haven't explained the nuts and bolts of DNS's operation.

In this chapter, we'll explain and illustrate the mechanisms that make DNS work.
We'll also introduce the terms you'll need to know to read the rest of the book (and to
converse intelligently with your fellow zone administrators).

First, though, let's take a more detailed look at the concepts introduced in the previous
chapter. We'll try to add enough detail to spice it up a little.

2.1 The Domain Namespace

DNS's distributed database is indexed by domain names. Each domain name is
essentially just a path in a large inverted tree, called the domain namespace. The tree's
hierarchical structure, shown in Figure 2-1, is similar to the structure of the Windows
2000 filesystem. The tree has a single root at the top.5 In the Windows filesystem, this
is called the root directory and is represented by a backslash (\). DNS simply calls it
"the root." Like a filesystem, DNS's tree can branch any number of ways at each
intersection point, or node. The depth of the tree is limited to 127 levels (a limit you're
not likely to reach).

5 Clearly this is a computer scientist's tree, not a botanist's.

Figure 2-1. The structure of the DNS namespace

2.1.1 Domain Names

Each node in the tree has a text label (without dots) that can be up to 63 characters
long. A null (zero-length) label is reserved for the root. The full domain name of any
node in the tree is the sequence of labels on the path from that node to the root.
Domain names are always read from the node toward the root ("up" the tree), with
dots separating the names in the path.

If the root node's label actually appears in a node's domain name, the name looks as
though it ends in a dot, as in "www.oreilly.com.". (It actually ends with a dot—the
separator—and the root's null label.) When the root node's label appears by itself, it is
written as a single dot, ".", for convenience. Consequently, some software interprets a
trailing dot in a domain name to indicate that the domain name is absolute. An
absolute domain name is written relative to the root and unambiguously specifies a
node's location in the hierarchy. An absolute domain name is also referred to as a fully
qualified domain name, often abbreviated FQDN. Names without trailing dots are
sometimes interpreted as relative to some domain name other than the root, just as
directory names without a leading slash are often interpreted as relative to the current
directory.

DNS requires that sibling nodes—nodes that are children of the same parent—have
different labels. This restriction guarantees that a domain name uniquely identifies a
single node in the tree. The restriction really isn't a limitation, because the labels need
to be unique only among the children, not among all the nodes in the tree. The same
restriction applies to the Windows 2000 filesystem: you can't give two sibling
directories or two files in the same directory the same name. As illustrated in Figure
2-2, just as you can't have two hobbes.pa.ca.us nodes in the namespace, you can't
have two \Temp directories. You can, however, have both a hobbes.pa.ca.us node and
a hobbes.lg.ca.us node, as you can have both a \Temp directory and a \WinNT\Temp
directory.

Figure 2-2. Ensuring uniqueness in domain names and Windows pathnames

2.1.2 Domains

A domain is simply a subtree of the domain namespace. The domain name of a
domain is the same as the domain name of the node at the very top of the domain. So,
for example, the top of the purdue.edu domain is a node named purdue.edu, as shown
in Figure 2-3.

Figure 2-3. The purdue.edu domain

Likewise, in a filesystem, at the top of the \Program Files directory you'd expect to
find a node called \Program Files, as shown in Figure 2-4.

Figure 2-4. The \Program Files directory

Any domain name in the subtree is considered a part of the domain. Because a domain
name can be in many subtrees, a domain name can also be in many domains. For
example, the domain name pa.ca.us is part of the ca.us domain and also part of the us
domain, as shown in Figure 2-5.

Figure 2-5. A node in multiple domains

So in the abstract, a domain is just a subtree of the domain namespace. But if a
domain is simply made up of domain names and other domains, where are all the
hosts? Domains are groups of hosts, right?

The hosts are there, represented by domain names. Remember, domain names are just
indexes into the DNS database. The "hosts" are the domain names that point to
information about individual hosts, and a domain contains all the hosts whose domain
names are within the domain. The hosts are related logically, often by geography or
organizational affiliation, and not necessarily by network or address or hardware type.
You might have 10 different hosts, each of them on a different network and perhaps
even in a different country, all in the same domain.

One note of caution: don't confuse domains in DNS with domains in NIS. Though an
NIS domain also refers to a group of hosts and both types of domains have similarly
structured names, the concepts are quite different. NIS uses hierarchical names, but
the hierarchy ends there: hosts in the same NIS domain share certain data about hosts
and users, but they can't navigate the NIS namespace to find data in other NIS
domains. NT domains, which provide account-management and security services, also
don't have any relationship to DNS domains. Active Directory domains, however, are
DNS domains. We discuss the relationship between DNS and Active Directory
domains in Chapter 11.

Domain names at the leaves of the tree generally represent individual hosts, and they
may point to network addresses, hardware information, and mail-routing information.
Domain names in the interior of the tree can name a host and point to information
about the domain; they aren't restricted to one or the other. Interior domain names can
represent both the domain they correspond to and a particular host on the network.
For example, hp.com is both the name of the Hewlett-Packard Company's domain and
the domain name of the hosts that run HP's main web server.

The type of information retrieved when you use a domain name depends on the
context in which you use it. Sending mail to someone at hp.com would return mail-
routing information, while telneting to the domain name would look up the host
information (in Figure 2-6, for example, hp.com's IP address).6

Figure 2-6. An interior node with both host and domain data

A simple way of determining if a domain is a subdomain of another domain is to
compare their domain names. A subdomain's domain name ends with the domain
name of its parent domain. For example, the domain la.tyrell.com must be a
subdomain of tyrell.com, because la.tyrell.com ends with tyrell.com. It's also a
subdomain of com, as is tyrell.com.

Besides being referred to in relative terms, as subdomains of other domains, domains
are often referred to by level. On mailing lists and in Usenet newsgroups, you may see
the terms top-level domain or second-level domain bandied about. These terms simply
refer to a domain's position in the domain namespace:

• A top-level domain is a child of the root.

6 The terms "domain" and "subdomain" are often used interchangeably, or nearly so, in DNS documentation. Here, we use
"subdomain" only as a relative term: a domain is a subdomain of another domain if the root of the subdomain is wi thin the
domain.

• A first-level domain is a child of the root (a top-level domain).
• A second-level domain is a child of a first-level domain, and so on.

2.1.3 Resource Records

The data associated with domain names is contained in resource records, or RRs.
Records are divided into classes, each of which pertains to a type of network or
software. Currently, there are classes for internets (any TCP/IP-based internet),
networks based on the Chaosnet protocols, and networks that use Hesiod software.
(Chaosnet is an old network of largely historic significance.) The internet class is by
far the most popular. (We're not really sure if anyone still uses the Chaosnet class, and
use of the Hesiod class is mostly confined to MIT.) In this book, we concentrate on
the internet class.

Within a class, records come in several types, which correspond to the different
varieties of data that may be stored in the domain namespace. Different classes may
define different record types, though some types are common to more than one class.
For example, almost every class defines an address type. Each record type in a given
class defines a particular record syntax to which all resource records of that class and
type must adhere. (For details on all internet resource record types and their syntaxes,
see Appendix A.)

If this information seems sketchy, don't worry—we'll cover the records in the internet
class in more detail later. The common records are described in Chapter 4, and a
comprehensive list is included as part of Appendix A.

2.2 The Internet Domain Namespace

So far, we've talked about the theoretical structure of the domain namespace and what
sort of data is stored in it, and we've even hinted at the types of names you might find
in it with our (sometimes fictional) examples. But this won't help you decode the
domain names you see on a daily basis on the Internet.

The Domain Name System doesn't impose many rules on the labels in domain names,
and it doesn't attach any particular meaning to the labels at a particular level. When
you manage a part of the domain namespace, you can decide on your own semantics
for your domain names. Heck, you could name your subdomains A through Z and no
one would stop you (though they might strongly recommend against it).

The existing Internet domain namespace, however, has some self-imposed structure to
it. Especially in the upper-level domains, the domain names follow certain traditions
(not rules, really, as they can be and have been broken). These traditions help to keep
domain names from appearing totally chaotic. Understanding these traditions is an
enormous asset if you're trying to decipher a domain name.

2.2.1 Top-Level Domains

The original top-level domains divided the Internet domain namespace
organizationally into seven domains:

com

Commercial organizations, such as Hewlett-Packard (hp.com), Sun
Microsystems (sun.com), and IBM (ibm.com).

edu

Educational organizations, such as U.C. Berkeley (berkeley.edu) and Purdue
University (purdue.edu).

gov

Government organizations, such as NASA (nasa.gov) and the National
Science Foundation (nsf.gov).

mil

Military organizations, such as the U.S. Army (army.mil) and Navy (navy.mil).

net

Formerly organizations providing network infrastructure, such as NSFNET
(nsf.net) and UUNET (uu.net). Since 1996, however, net has been open to any
commercial organization, like com is.

org

Formerly noncommercial organizations, such as the Electronic Frontier
Foundation (eff.org). Like net, though, restrictions on org were removed in
1996.

int

International organizations, such as NATO (nato.int).

Another top-level domain called arpa was originally used during the ARPANET's
transition from host tables to DNS. All ARPANET hosts originally had hostnames
under arpa, so they were easy to find. Later, they moved into various subdomains of
the organizational top-level domains. However, the arpa domain remains in use in a
way you'll read about later.

You may notice a certain nationalistic prejudice in the examples: we've used primarily
U.S.-based organizations. That's easier to understand—and forgive—when you
remember that the Internet began as the ARPANET, a U.S.-funded research project.

No one anticipated the success of the ARPANET, or that it would eventually become
as international as the Internet is today.

Today, these original domains are called generic top-level domains, or gTLDs. By the
time you read this, we may have a few more of these, such as biz, pro, info, and name,
to accommodate the rapid expansion of the Internet and the need for more domain
name "space." The organization now responsible for management of the Domain
Name System, the Internet Corporation for Assigned Names and Numbers, or
ICANN, has decided to add seven new gTLDs. For information on their work, see
http://www.icann.org/. We'll talk more about ICANN later in this chapter.

To accommodate the increasing internationalization of the Internet, the implementers
of the Internet namespace compromised. Instead of insisting that all top-level domains
describe organizational affiliation, they decided to allow geographical designations,
too. New top-level domains were reserved (but not necessarily created) to correspond
to individual countries. Their domain names followed an existing international
standard called ISO 3166.7 ISO 3166 establishes official, two-letter abbreviations for
every country in the world. We've included the current list of top-level domains as
Appendix D.

2.2.2 Further Down

Within these top-level domains, the traditions and the extent to which they are
followed vary. Some of the ISO 3166 top-level domains closely follow the U.S.'s
original organizational scheme. For example, Australia's top-level domain, au, has
subdomains such as edu.au and com.au. Some other ISO 3166 top-level domains
follow the uk domain's lead and have organizationally oriented subdomains such as
co.uk for corporations and ac.uk for the academic community. In most cases,
however, even these geographically oriented top-level domains are divided up
organizationally.

That's not true of the us top-level domain, though. The us domain has 50 subdomains
that correspond to—guess what?—the 50 U.S. states.8 Each is named according to the
standard two-letter abbreviation for the state—the same abbreviation standardized by
the U.S. Postal Service. Within each state's domain, the organization is still largely
geographical: most subdomains correspond to individual cities. Beneath the cities, the
subdomains usually correspond to individual hosts.

2.2.3 Reading Domain Names

Now that you know what most top-level domains represent and how their namespaces
are structured, you'll probably find it much easier to make sense of most domain
names. Let's dissect a few for practice:

lithium.cchem.berkeley.edu

7 Except for Great Britain. According to ISO 3166 and Internet tradition, Great Britain's top-level domain name should be gb.
Instead, most organizations in Great Britain and Northern Ireland (i.e., the United Kingdom) use the top-level domain name
uk. They drive on the wrong side of the road, too.
8 Actually, there are a few more domains under us: one for Washington, D.C., one for Guam, and so on.

You've got a head start on this one, as we've already told you that berkeley.edu
is U.C. Berkeley's domain. (Even if you didn't already know that, though, you
could have inferred that the name probably belongs to a U.S. university
because it's in the top-level edu domain.) cchem is the College of Chemistry's
subdomain of berkeley.edu. Finally, lithium is the name of a particular host in
the domain—and probably one of about a hundred or so, if they've got one for
every element.

winnie.corp.hp.com

This example is a bit harder, but not much. The hp.com domain in all
likelihood belongs to the Hewlett-Packard Company (in fact, we gave you this
earlier, too). Their corp subdomain is undoubtedly their corporate
headquarters. And winnie is probably just some silly name someone thought
up for a host.

fernwood.mpk.ca.us

Here you'll need to use your understanding of the us domain. ca.us is
obviously California's domain, but mpk is anybody's guess. In this case, it
would be hard to know that it's Menlo Park's domain unless you knew your
San Francisco Bay Area geography. (And no, it's not the same Menlo Park that
Edison lived in—that one's in New Jersey.)

daphne.ch.apollo.hp.com

We've included this example just so you don't start thinking that all domain
names have only four labels. apollo.hp.com is the former Apollo Computer
subdomain of the hp.com domain. (When HP acquired Apollo, it also acquired
Apollo's Internet domain, apollo.com, which became apollo.hp.com.)
ch.apollo.hp.com is Apollo's Chelmsford, Massachusetts site. daphne is a host
at Chelmsford.

2.3 Delegation

Remember that one of the main goals of the design of the Domain Name System was
to decentralize administration? This is achieved through delegation. Delegating
domains works a lot like delegating tasks at work. A manager may break up a large
project into smaller tasks and delegate responsibility for each of these tasks to
different employees.

Likewise, an organization administering a domain can divide it into subdomains. Each
of those subdomains can be delegated to other organizations. This means that an
organization becomes responsible for maintaining all the data in that subdomain. It
can freely change the data nd even divide its subdomain into more subdomains and
delegate those. The parent domain retains only pointers to sources of the subdomain's
data, so that it can refer queriers there. The domain stanford.edu, for example, is
delegated to the folks at Stanford who run the university's networks (Figure 2-7).

Figure 2-7. stanford.edu is delegated to Stanford University

Not all organizations delegate away their whole domain, just as not all managers
delegate all their work. A domain may have several delegated subdomains and also
contain hosts that don't belong in the subdomains. For example, the Acme
Corporation (it supplies a certain coyote with most of his gadgets), which has a
division in Rockaway and its headquarters in Kalamazoo, might have a
rockaway.acme.com subdomain and a kalamazoo.acme.com subdomain. However, the
few hosts in the Acme sales offices scattered throughout the U.S. would fit better
under acme.com than under either subdomain.

We'll explain how to create and delegate subdomains later. For now, it's important
only that you understand that the term delegation refers to assigning responsibility for
a subdomain to another organization.

2.4 Name Servers and Zones

The programs that store information about the domain namespace are called name
servers. Name servers generally have complete information about some part of the
domain namespace, called a zone, which they load from a file or from another name
server. The name server is then said to have authority for that zone. Name servers can
be authoritative for multiple zones, too.

The difference between a zone and a domain is important, but subtle. All top-level
domains and many domains at the second level and lower, such as berkeley.edu and
hp.com, are broken into smaller, more manageable units by delegation. These units
are called zones. The edu domain, shown in Figure 2-8, is divided into many zones,
including the berkeley.edu zone, the purdue.edu zone, and the nwu.edu zone. At the
top of the domain, there's also an edu zone. It's natural that the folks who run edu
would break up the edu domain: otherwise, they'd have to manage the berkeley.edu
subdomain themselves. It makes much more sense to delegate berkeley.edu to
Berkeley. What's left for the folks who run edu? The edu zone, which contains mostly
delegation information for the subdomains of edu.

Figure 2-8. The edu domain broken into zones

The berkeley.edu subdomain is, in turn, broken up into multiple zones by delegation,
as shown in Figure 2-9. There are delegated subdomains called cc, cs, ce, me, and
more. Each of these subdomains is delegated to a set of name servers, some of which
are also authoritative for berkeley.edu. However, the zones are still separate and may
have totally different groups of authoritative name servers.

Figure 2-9. The berkeley.edu domain broken into zones

A zone contains all the domain names the domain with the same domain name
contains, except for domain names in delegated subdomains. For example, the top-
level domain ca (for Canada) has subdomains called ab.ca, on.ca, and qc.ca, for the
provinces Alberta, Ontario, and Quebec. Authority for the ab.ca, on.ca, and qc.ca
domains may be delegated to name servers in each of the provinces. The domain ca
contains all the data in ca plus all the data in ab.ca, on.ca, and qc.ca. However, the

zone ca contains only the data in ca (see Figure 2-10), which is probably mostly
pointers to the delegated subdomains. ab.ca, on.ca, and qc.ca are separate zones from
the ca zone.

The zone also contains the domain names and data in any subdomains that aren't
delegated away. For example, the bc.ca and sk.ca (British Columbia and
Saskatchewan) subdomains of the ca domain may exist but not be delegated. (Perhaps
the provincial authorities in B.C. and Saskatchewan aren't yet ready to manage their
subdomains, but the authorities running the top-level ca domain want to preserve the
consistency of the namespace and implement subdomains for all of the Canadian
provinces right away.) In this case, the zone ca has a ragged bottom edge, containing
bc.ca and sk.ca, but not the other ca subdomains, as shown in Figure 2-11.

Figure 2-10. The domain ca...

Figure 2-11. ...versus the zone ca

Now it's clear why name servers load zones instead of domains: a domain may
contain more information than the name server needs, since it can contain data

delegated to other name servers.9 Since a zone is bounded by delegation, it will never
include delegated data.

If you're just starting out your domain probably won't have any subdomains. In this
case, since there's no delegation going on, your domain and your zone will contain the
same data.

2.4.1 Delegating Subdomains

Even though you may not need to delegate parts of your domain just yet, it's helpful to
understand a little more about how the process of delegating a subdomain works.
Delegation, in the abstract, involves assigning responsibility for some part of your
domain to another organization. What really happens, however, is the assignment of
authority for your subdomain to different name servers. (Note that we said "name
servers," not just "name server.")

Your zone's data, instead of containing information in the subdomain you've
delegated, includes pointers to the name servers that are authoritative for that
subdomain. Now if one of your name servers is asked for data in the subdomain, it
can reply with a list of the right name servers to contact.

2.4.2 Types of Name Servers

The DNS specs define two types of name servers: primary masters and secondary
masters. A primary master name server for a zone reads the data for the zone from a
file on its host. A secondary master name server for a zone gets the zone data from
the name server that is authoritative for the zone, called its master server. Quite often,
the master server is the zone's primary master, but that's not required: a secondary
master can load zone data from another secondary. When a secondary starts up, it
contacts its master name server and, if necessary, pulls the zone data over. This is
referred to as a zone transfer. Nowadays, the preferred term for a secondary master
name server is a slave, though many people (and some software, including Microsoft's
DNS console) still use the old term.

Both the primary master and slave name servers for a zone are authoritative for that
zone. Despite the somewhat disparaging name, slaves aren't second-class name
servers. DNS provides these two types of name servers to make administration easier.
Once you've created the data for your zone and set up a primary master name server,
you don't need to copy that data from host to host to create new name servers for the
zone. You simply set up slave name servers that load their data from the primary
master for the zone. The slaves you set up will transfer new zone data when
necessary.

Slave name servers are important because it's a good idea to set up more than one
name server for any given zone. You'll want more than one for redundancy, to spread
the load around, and to make sure that all the hosts in the zone have a name server
close by. Using slave name servers makes this administratively workable.

9 If a root name server loaded the root domain instead of the root zone, it would load the entire namespace!

Calling a particular name server a primary master name server or a slave name server
is a little imprecise, though. We mentioned earlier that a name server can be
authoritative for more than one zone. Similarly, a name server can be a primary
master for one zone and a slave for another. Most name servers, however, are either
primary for most of the zones they load or slave for most of the zones they load. So if
we call a particular name server a primary or a slave, we mean that it's the primary
master or a slave for most of the zones for which it's authoritative.

2.4.3 Data Files

The files from which primary master name servers load their zone data are called,
simply enough, zone data files. We often refer to them as data files. Slave name
servers can also load their zone data from data files. Slaves are usually configured to
back up the zone data they transfer from a master name server to data files. If the
slave is later killed and restarted, it will read the backup data files first, then check to
see whether its zone data is current. This both obviates the need to transfer the zone
data if it hasn't changed and provides a source of the data if the master is down.

2.5 Resolvers

Resolvers are the clients that access name servers. Programs running on a host that
need information from the domain namespace use the resolver. The resolver handles:

• Querying a name server
• Interpreting responses (which may be resource records or an error)
• Returning the information to the programs that requested it

In Windows 2000, the resolver is just a set of library routines that is linked into
programs such as telnet and ftp. It's not even a separate process. It has the smarts to
put together a query, to send it and wait for an answer, and to resend the query if it
isn't answered, but that's about all. Most of the burden of finding an answer to the
query is placed on the name server. The DNS specs call this kind of resolver a stub
resolver.

Other implementations of DNS have had smarter resolvers that can do more
sophisticated things, such as build up a cache of information already retrieved from
name servers. In fact, Windows 2000 includes a caching resolver.

2.6 Resolution

Name servers are adept at retrieving data from the domain namespace. They have to
be, given the limited intelligence of most resolvers. Not only can they give you data
about zones for which they're authoritative, they can also search through the domain
namespace to find data for which they're not authoritative. This process is called name
resolution or simply resolution.

Because the namespace is structured as an inverted tree, a name server needs only one
piece of information to find its way to any point in the tree: the domain names and
addresses of the root name servers (is that more than one piece?). A name server can
issue a query to a root name server for any domain name in the domain namespace,
and the root name server will start the name server on its way.

2.6.1 Root Name Servers

The root name servers know where there are authoritative name servers for each of
the top-level zones. (In fact, some of the root name servers are authoritative for the
generic top-level zones.) Given a query about any domain name, the root name
servers can at least provide the names and addresses of the name servers that are
authoritative for the top-level zone the domain name ends in. In turn, the top-level
name servers can provide the list of name servers that are authoritative for the domain
name's second-level zone. Each name server queried either gives the querier
information about how to get "closer" to the answer it's seeking or provides the
answer itself.

The root name servers are clearly important to resolution. Because they're so
important, DNS provides mechanisms—such as caching, which we'll discuss a little
later—to help offload the root name servers. But in the absence of other information,
resolution has to start at the root name servers. This makes the root name servers
crucial to the operation of DNS; if all the Internet root name servers were unreachable
for an extended period, all resolution on the Internet would fail. To protect against
this, the Internet has 13 root name servers (as of this writing) spread across different
parts of the network. One is on PSINet, a commercial Internet backbone; one is on the
NASA Science Internet; two are in Europe; and one is in Japan.

Being the focal point for so many queries keeps the roots busy; even with 13, the
traffic to each root name server is very high. A recent informal poll of root name
server administrators showed some roots receiving thousands of queries per second.

Despite the load placed on root name servers, resolution on the Internet works quite
well. Figure 2-12 shows the resolution process for the address of a real host in a real
domain, including how the process corresponds to traversing the domain namespace
tree.

Figure 2-12. Resolution of girigiri.gbrmpa.gov.au on the Internet

The local name server queries a root name server for the address of
girigiri.gbrmpa.gov.au and is referred to the au name servers. The local name server
asks an au name server the same question, and is referred to the gov.au name servers.
The gov.au name server refers the local name server to the gbrmpa.gov.au name
servers. Finally, the local name server asks a gbrmpa.gov.au name server for the
address and gets the answer.

2.6.2 Recursion

You may have noticed a big difference in the amount of work done by the name
servers in the previous example. Four of the name servers simply returned the best
answer they already had—mostly referrals to other name servers—to the queries they
received. They didn't have to send their own queries to find the data requested. But
one name server—the one queried by the resolver—had to follow successive referrals
until it received an answer.

Why couldn't the local name server simply have referred the resolver to another name
server? Because a stub resolver wouldn't have had the intelligence to follow a referral.
And how did the name server know not to answer with a referral? Because the
resolver issued a recursive query.

Queries come in two flavors, recursive and iterative, also called nonrecursive.
Recursive queries place most of the burden of resolution on a single name server.
Recursion, or recursive resolution, is just a name for the resolution process used by a
name server when it receives recursive queries. As with recursive algorithms in

programming, the name server repeats the same basic process (querying a remote
name server and following any referrals) until it receives an answer.

Iteration, or iterative resolution, on the other hand, refers to the resolution process
used by a name server when it receives iterative queries.

In recursion, a resolver sends a recursive query to a name server for information about
a particular domain name. The queried name server is then obliged to respond with
the requested data or with an error stating either that data of the requested type doesn't
exist or that the domain name specified doesn't exist.10 The name server can't just
refer the querier to a different name server, because the query was recursive.

If the queried name server isn't authoritative for the data requested, it will have to
query other name servers to find the answer. It can send recursive queries to those
name servers, thereby obliging them to find the answer and return it (and passing the
buck), or it can send iterative queries and possibly be referred to other name servers
"closer" to the domain name it's seeking. Current implementations are polite and do
the latter, following the referrals until an answer is found.11

A name server that receives a recursive query that it can't answer itself will query the
"closest known" name servers. The closest known name servers are the servers
authoritative for the zone closest to the domain name being looked up. For example, if
the name server receives a recursive query for the address of the domain name
girigiri.gbrmpa.gov.au, it will first check whether it knows which name servers are
authoritative for girigiri.gbrmpa.gov.au. If it does, it will send the query to one of
them. If not, it will check whether it knows the name servers for gbrmpa.gov.au, and
after that gov.au, and then au. The default, where the check is guaranteed to stop, is
the root zone, since every name server knows the domain names and addresses of the
root name servers.

Using the closest known name servers ensures that the resolution process is as short as
possible. A berkeley.edu name server receiving a recursive query for the address of
waxwing.ce.berkeley.edu shouldn't have to consult the root name servers; it can
simply follow delegation information directly to the ce.berkeley.edu name servers.
Likewise, a name server that has just looked up a domain name in ce.berkeley.edu
shouldn't have to start resolution at the root to look up another ce.berkeley.edu (or
berkeley.edu) domain name; we'll show how this works in the upcoming section on
caching.

The name server that receives the recursive query always sends the same query that
the resolver sent it; for example, for the address of waxwing.ce.berkeley.edu. It never
sends explicit queries for the name servers for ce.berkeley.edu or berkeley.edu, though
this information is also stored in the namespace. Sending explicit queries could cause
problems: there may be no ce.berkeley.edu name servers (that is, ce.berkeley.edu may
be part of the berkeley.edu zone). Also, it's always possible that an edu or
berkeley.edu name server would know waxwing.ce.berkeley.edu's address. An explicit

10 The Microsoft DNS Server can be configured to ignore recursive queries; see Chapter 10 for how and why you'd want to
do this.
11 The exception is a name server configured to forward all unresolved queries to a designated name server, called a
forwarder. See Chapter 10 for more information on using forwarders.

query for the berkeley.edu or ce.berkeley.edu name servers would miss this
information.

2.6.3 Iteration

Iterative resolution doesn't require nearly as much work on the part of the queried
name server. In iterative resolution, a name server simply gives the best answer it
already knows back to the querier. No additional querying is required. The queried
name server consults its local data (including its cache, which we'll talk about
shortly), looking for the data requested. If it doesn't find the answer there, it finds the
names and addresses of the name servers closest to the domain name in the query in
its local data and returns that as a referral to help the querier continue the resolution
process. Note that the referral includes all of the name servers listed in the local data;
it's up to the querier to choose which one to query next.

2.6.4 Choosing Between Authoritative Name Servers

Some of the card-carrying Mensa members in our reading audience may be
wondering how the name server that receives the recursive query chooses between the
name servers authoritative for the zone. For example, we said that there are 13 root
name servers on the Internet today. Does the name server simply query the one that
appears first in the referral? Does it choose randomly?

The Microsoft DNS Server uses roundtrip time (RTT) to choose between name
servers authoritative for the same zone. Roundtrip time is a measurement of how long
a remote name server takes to respond to queries. Each time a Microsoft DNS Server
sends a query to a remote name server, it starts an internal stopwatch. When it
receives a response, it stops the stopwatch and makes a note of how long that remote
name server took to respond. When the name server must choose which of a group of
authoritative name servers to query, it simply chooses the one with the lowest
roundtrip time.

Before a Microsoft DNS Server has queried a name server, it gives it a random
roundtrip time value lower than any real-world value. This ensures that the server
queries all of the name servers authoritative for a given zone in a random order before
playing favorites.

On the whole, this simple but elegant algorithm allows Microsoft DNS Servers to
"lock on" to the closest name servers quickly and without the overhead of an out-of-
band mechanism to measure performance.

2.6.5 The Whole Enchilada

What this amounts to is a resolution process that, taken as a whole, looks like Figure
2-13.

Figure 2-13. The resolution process

A resolver queries a local name server, which then sends iterative queries to a number
of other name servers in pursuit of an answer for the resolver. Each name server it
queries refers it to another name server that is authoritative for a zone further down in
the namespace and closer to the domain name sought. Finally, the local name server
queries the authoritative name server, which returns an answer. All the while, the
local name server uses each response it receives—whether a referral or the answer—
to update the RTT of the responding name server, which will help it decide which
name servers to query to resolve domain names in the future.

2.6.6 Mapping Addresses to Names

One major piece of functionality missing from the resolution process as explained so
far is how addresses get mapped back to domain names. Address-to-name mapping is
used to produce output that is easier for humans to read and interpret (e.g., in log
files). It's also used in some authorization checks. Unix hosts map addresses to
domain names to compare against entries in .rhosts and hosts.equiv files, for example.
When using host tables, address-to-name mapping is trivial. It requires a
straightforward sequential search through the host table for an address. The search
returns the official hostname listed. In DNS, however, address-to-name mapping isn't
so simple. Data, including addresses, in the domain namespace is indexed by name.
Given a domain name, finding an address is relatively easy. But finding the domain
name that maps to a given address would seem to require an exhaustive search of the
data attached to every domain name in the tree.

Actually, there's a better solution that's both clever and effective. Because it's easy to
find data once you're given the domain name that indexes that data, why not create a
part of the domain namespace that uses addresses as labels? In the Internet domain
namespace, this portion of the namespace is the in-addr.arpa domain.

Nodes in the in-addr.arpa domain are labeled after the numbers in the dotted-octet
representation of IP addresses. (Dotted-octet representation refers to the common
method of expressing 32-bit IP addresses as four numbers in the range 0 to 255,
separated by dots.) The in-addr.arpa domain, for example, could have up to 256
subdomains, one corresponding to each possible value in the first octet of an IP
address. Each of these subdomains could have up to 256 subdomains of its own,
corresponding to the possible values of the second octet. Finally, at the fourth level
down, there are resource records attached to the final octet giving the full domain
name of the host at that IP address. That makes for an awfully big domain: in-
addr.arpa, shown in Figure 2-14, is roomy enough for every IP address on the
Internet.

Figure 2-14. The in-addr.arpa domain

Note that when read in a domain name, the IP address appears backward because the
name is read from leaf to root. For example, if winnie.corp.hp.com's IP address is
15.16.192.152, the corresponding node in the in-addr.arpa domain is
152.192.16.15.in-addr.arpa, which maps back to the domain name
winnie.corp.hp.com.

IP addresses could have been represented the opposite way in the namespace, with the
first octet of the IP address at the bottom of the in-addr.arpa domain. That way, the IP
address would have read correctly (forward) in the domain name. IP addresses are
hierarchical, however, just like domain names. Network numbers are doled out much
as domain names are, and administrators can then subnet their address space and
further delegate numbering. The difference is that IP addresses get more specific from
left to right, while domain names get less specific from left to right. Figure 2-15
shows what we mean.

Figure 2-15. Hierarchical names and addresses

Making the first octets in the IP address appear highest in the tree gives administrators
the ability to delegate authority for in-addr.arpa zones along network lines. For
example, the 15.in-addr.arpa zone, which contains the reverse-mapping information
for all hosts whose IP addresses start with 15, can be delegated to the administrators
of network 15.0.0.0. This would be impossible if the octets appeared in the opposite
order. If the IP addresses were represented the other way around, 15.in-addr.arpa
would consist of every host whose IP address ended with 15—not a practical zone to
try to delegate.

2.7 Caching

The whole resolution process may seem awfully convoluted and cumbersome to
someone accustomed to simple searches through the host table. Actually, though, it's
usually quite fast. One of the features that speeds it up considerably is caching.

A name server processing a recursive query may have to send out quite a few queries
to find an answer. However, it discovers a lot of information about the domain
namespace as it does so. Each time it's referred to another list of name servers, it
learns that those name servers are authoritative for some zone, and it learns the
addresses of those servers. At the end of the resolution process, when it finally finds
the data the original querier sought, it can store that data for future reference, too. The
Microsoft DNS Server even implements negative caching: if an authoritative name
server responds to a query with an answer that says the domain name or data type in
the query doesn't exist, the local name server will also temporarily cache that
information.

Name servers cache all this data to help speed up successive queries. The next time a
resolver queries the name server for data about a domain name the name server knows
something about, the process is shortened quite a bit. The name server may have
cached the answer, positive or negative, in which case it simply returns the answer to
the resolver. Even if it doesn't have the answer cached, it may have learned the
identities of the name servers that are authoritative for the zone the domain name is in
and be able to query them directly.

For example, say our name server has already looked up the address of
eecs.berkeley.edu. In the process, it cached the names and addresses of the
eecs.berkeley.edu and berkeley.edu name servers (plus eecs.berkeley.edu's IP
address). Now if a resolver were to query our name server for the address of
baobab.cs.berkeley.edu, our name server could skip querying the root name servers.
Recognizing that berkeley.edu is the closest ancestor of baobab.cs.berkeley.edu about

which it knows, our name server would start by querying a berkeley.edu name server,
as shown in Figure 2-16. On the other hand, if our name server had discovered that
there was no address for eecs.berkeley.edu, the next time it received a query for the
address, it could simply have responded appropriately from its cache.

Figure 2-16. Resolving baobab.cs. berkeley.edu

In addition to speeding up resolution, caching obviates a name server's need to query
the root name servers to answer any queries it can't answer locally. This means it's not
as dependent on the roots, and the roots won't suffer as much from all its queries.

2.7.1 Time to Live

Name servers can't cache data forever, of course. If they did, changes to that data on
the authoritative name servers would never reach the rest of the network; remote
name servers would just continue to use cached data. Consequently, the administrator
of the zone that contains the data decides on a time to live (TTL) for the data. The
time to live is the amount of time that any name server is allowed to cache the data.
After the time to live expires, the name server must discard the cached data and get
new data from the authoritative name servers. This also applies to negatively cached
data: a name server must time out a negative answer after a period in case new data
has been added on the authoritative name servers.

Deciding on a time to live for your data is essentially deciding on a trade-off between
performance and consistency. A small TTL will help ensure that data in your zones is
consistent across the network, because remote name servers will time it out more
quickly and be forced to query your authoritative name servers more often for new
data. On the other hand, this will increase the load on your name servers and lengthen
the average resolution time for information in your zones.

A large TTL will shorten the average time it takes to resolve information in your
zones because the data can be cached longer. The drawback is that your information

will be inconsistent for a longer time if you make changes to the data on your name
servers.

But enough of this theory—I'll bet you're antsy to get on with things. Some homework
is necessary before you can set up your zones and your name servers, though, and
we'll assign it in the next chapter.

Chapter 3. Where Do I Start?

"What do you call yourself?" the Fawn said at last. Such a soft sweet
voice it had!

"I wish I knew!" thought poor Alice. She answered, rather sadly,
"Nothing, just now."

"Think again," it said: "that won't do."

Alice thought, but nothing came of it. "Please, would you tell me what
you call yourself?" she said timidly. "I think that might help a little."

"I'll tell you, if you come a little further on," the Fawn said. "I can't
remember here."

Now that you understand the theory behind the Domain Name System, we can attend
to more practical matters. Before you set up your zones, you may need to get name
server software. While a name server is included as a standard part of Windows 2000
Server, you may want to look at alternatives. Once you've got the software to run your
name server, you need to decide on a domain name for your main zone—which may
not be quite as easy as it sounds, because it entails finding an appropriate place in the
Internet namespace. That decided, you need to contact the administrators of the parent
of the zone whose domain name you've chosen.

One thing at a time, though. Let's talk about how to decide on name server software
and where to get it.

3.1 Which Name Server?

If you plan to set up your own domain and run name servers for it, you'll need name
server software first. Even if you're planning on having someone else run your
domain, it's helpful to have the software around. For example, you can use your local
name server to test your data files before giving them to your remote domain
administrator.

Microsoft ships a name server on the Windows 2000 Server CD-ROM, but you have
to install it separately. This server, which we call the Microsoft DNS Server, is the
server we cover in this book. It's notable because it sports a nice graphical frontend
for configuring the server. This isn't the only name server available for Windows
2000, however. There are several others. Most are ports of BIND, which has
traditionally been a Unix-based name server. If you're more comfortable configuring
BIND than learning to configure a new name server (even with a GUI), you might
consider these options:

Meta IP/DNS

Meta IP/DNS is a commercial port (that is, you gotta pay for it) of the BIND
8.2.3 server to Windows 2000. As such, it supports DNS NOTIFY, dynamic
updates, and all the security features BIND 8.2.3 offers. Meta IP/DNS is also
integrated with WINS and can forward- and reverse-map NetBIOS names with
the help of a WINS server. It runs on Windows 2000 as well as on Windows
NT Workstation and Server.

Meta IP/DNS is actually part of a larger IP-management product called Meta
IP, but it's available separately, too. For more information, see
http://www.checkpoint.com/products/metaip/index.html.

The Internet Software Consortium's BIND 8.2.4 distribution

The BIND 8.2.4 name server now compiles for Windows NT and Windows
2000 without any modification to the source code. Since few people have the
necessary software to compile it, the Internet Software Consortium distributes
a compiled version on its web site. See
http://www.isc.org/products/BIND/bind8.html.

If you decide to use one of these ports of BIND to Windows 2000, we suggest you
pick up a copy of DNS and BIND. That book concentrates on the BIND
implementation; this book emphasizes the Microsoft DNS Server.

3.1.1 Getting the DNS Server

If you've read to this section, we'll assume you've decided to use the Microsoft DNS
Server. Before proceeding, you'll need to install the DNS server and its configuration
frontend from the Windows 2000 Server CD-ROM. For detailed instructions on this
process, see Appendix B.

3.1.2 Handy Mailing Lists and Usenet Newsgroups

Now that you've installed your name server, it's important to keep abreast of DNS and
name server developments. Two Usenet newsgroups are helpful for this:
microsoft.public.win2000.dns and comp.protocols.dns.bind.
microsoft.public.win2000.dns concentrates on the Microsoft DNS Server and is a
good place to find out about new bugs. comp.protocols.dns.bind is more BIND-
centric (as the name indicates) but is an excellent source of information about the art
and practice of running domains and name servers. It arguably has a better signal-to-
noise ratio than the Microsoft newsgroup and is also available as a mailing list, bind-
users@isc.org.12 A searchable archive of the list can be found at
http://www.isc.org/ml-archives/bind-users/.

12 To ask a question on an Internet mailing list, all you need to do is send a message to the mailing list's address. If you'd
like to join the list, however, you have to send a message to the list's maintainer first, requesting that he or she add your
email address to the list. Don't send this message to the list itself; that's considered rude. The Internet convention is that you
can reach the maintainer of a mailing list by sending mail to list-request@domain, where list@domain is the address of the
mailing list. So, for example, you can reach the BIND users mailing list's administrator by sending mail to bind-users-
request@isc.org.

Microsoft's online support site, at http://support.microsoft.com/support/,is a valuable
source of information about known bugs in the DNS server and updates to the code.
Also, be sure to check Andras Salamon's "DNS Resource Directory" at
http://www.dns.net/dnsrd/for pointers to online DNS resources and documentation.

Another mailing list you might be interested in is the namedroppers list. Folks on the
namedroppers mailing list are involved in the IETF working group that develops
extensions to the DNS specifications, DNSEXT. For example, the discussion of a
new, proposed DNS record type would probably take place on namedroppers instead
of the BIND users mailing list. For more information on DNSEXT's charter, see
http://www.ietf.org/html.charters/dnsext-charter.html.

The address for the namedroppers mailing list is namedroppers@ops.ietf.org, and it is
gatewayed into the Internet newsgroup comp.protocols.dns.std. To join the
namedroppers mailing list, send mail to namedroppers-request@ops.ietf.org with the
text "subscribe namedroppers" as the body of the message.

3.1.3 Finding IP Addresses

You'll notice that we gave you a number of domain names of hosts that have ftpable
software, and the mailing lists we mentioned include domain names. This should
underscore the importance of DNS: see what valuable software and advice you can
get with the help of DNS? Unfortunately, it's also something of a chicken-and-egg
problem: you can't send email to an address with a domain name in it unless you've
got DNS set up, so how can you ask someone on the list how to set up DNS?

Well, we could give you the IP addresses for all the hosts we mentioned, but since IP
addresses change often (in publishing timescales, anyway), we'll show you how you
can temporarily use someone else's name server to find the information instead. As
long as your host has Internet connectivity and the nslookup program, you can retrieve
information from the Internet namespace.

To look up the IP address for ftp.microsoft.com, for example, you could use:

C:\>
nslookup ftp.microsoft.com. 207.69.188.185

This instructs nslookup to query the name server running on the host at the IP address
207.69.188.185 to find the IP address for ftp.microsoft.com and should produce output
like:

Server: ns1.mindspring.com
Address: 207.69.188.185

Name: ftp.microsoft.com
Address: 198.105.232.1

Now you can ftp to ftp.microsoft.com's IP address, 198.105.232.1.

How did we know that the host at IP address 207.69.188.185 runs a name server? Our
ISP, Mindspring, told us—it's one of their name servers. If your ISP provides name
servers for its customers' use (and most do), use one of them. If your ISP doesn't
provide name servers (shame on them!), you can temporarily use one of the name
servers listed in this book. As long as you only use it to look up a few IP addresses or
other data, the administrators probably won't mind. It's considered very rude,
however, to point your resolver or query tool at someone else's name server
permanently.

Of course, if you already have access to a host with Internet connectivity and have
DNS configured, you can use it to ftp what you need.

Once you've got a working version of the Microsoft DNS Server, you're ready to start
thinking about your domain name.

3.2 Choosing a Domain Name

Choosing a domain name is more involved than it may sound, because it entails both
choosing a name and finding out who runs the parent zone. In other words, you need
to find out where you fit in the Internet domain namespace, then find out who runs
that particular corner of the namespace.

The first step in picking a domain name is finding where in the existing domain
namespace you belong. It's easiest to start at the top and work your way down: decide
which top-level domain you belong in, then which of that top-level domain's
subdomains you fit into.

Note that in order to find out what the Internet domain namespace looks like (beyond
what we've already told you), you'll need access to the Internet. You don't need access
to a host that already has name service configured, but it would help a little. If you
don't have access to a host with DNS configured, you'll have to "borrow" name
service from other name servers (as in our previous ftp.microsoft.com example) to get
you going.

3.2.1 On Registrars and Registries

Before we go any further, we need to define a few terms: registry, registrar,and
registration. These terms aren't defined anywhere in the DNS specs. Instead, they
apply to the way the Internet namespace is managed today.

A registry is an organization responsible for maintaining a top-level domain's (well,
zone's, really) data files, which contain the delegation to each subdomain of that top-
level domain. Under the current structure of the Internet, a given top-level domain can
have no more than one registry. A registrar acts as an interface between customers
and the registry, providing registration and value-added services. It submits to the
registry the zone data and other data (including contact information) for each of its
customers in a single top-level domain.

Registration is the process by which a customer tells a registrar which name servers to
delegate a subdomain to and provides the registrar with contact and billing
information. The registrar makes these changes through the registry.

VeriSign, Inc. currently acts as both the exclusive registry and as a registrar for the
com, net, org, and edu top-level domains. And now, back to our story.

3.2.2 Where in the World Do I Fit?

If your organization is attached to the Internet outside of the United States, you first
need to decide whether you'd rather request a subdomain of one of the generic top-
level domains, such as com, net, and org, or a subdomain of your country's top-level
domain. The generic top-level domains aren't exclusively for U.S. organizations. If
your company is a multi- or transnational company that doesn't fit in any one
country's top-level domain, or if you'd simply prefer a generic top-level to your
country's top-level domain, you're welcome to register in one. If you choose this
route, skip to Section 3.2.3.2 later in this chapter.

If you opt for a subdomain under your country's top level, you should check whether
your country's top-level domain is registered and, if it is, what kind of structure it has.
Consult our list of the current top-level domains (Appendix D) if you're not sure what
the name of your country's top-level domain would be.

Some countries' top-level domains, such as New Zealand's nz, Australia's au, and the
United Kingdom's uk, are divided organizationally into second-level domains. The
names of their second-level domains, such as co or com for commercial entities,
reflect organizational affiliation. Others, like France's fr domain and Denmark's dk
domain, are divided into a multitude of subdomains managed by individual
universities and companies, such as the University of St. Etienne's domain, univ-st-
etienne.fr, and the Danish Unix Users Group's dkuug.dk. Many top-level domains
have their own web sites that describe their structure. If you're not sure of the URL for
your country's top-level domain's web site, start at http://www.allwhois.com/, a
directory of links to such web sites.

If your country's top-level domain doesn't have a web site explaining how it's
organized, you may have to use a tool like nslookup to grope around and figure out its
structure. (If you're uncomfortable with our rushing headlong into nslookup without
giving it a proper introduction, you might want to skim Chapter 12.) For example,
here's how you could list the au domain's subdomains using nslookup:

C:\>
nslookup - 207.69.188.185 -- Use the name server at
207.69.188.185
Default Server: ns1.mindspring.com
Address: 207.69.188.185

>
 set type=ns -- Find the name servers (ns)
>
 au. -- for the au domain
Server: ns1.mindspring.com
Address: 207.69.188.185

au nameserver = MUNNARI.OZ.AU
au nameserver = MULGA.CS.MU.OZ.AU
au nameserver = NS.UU.NET
au nameserver = NS.EU.NET
au nameserver = NS1.BERKELEY.EDU
au nameserver = NS2.BERKELEY.EDU
au nameserver = VANGOGH.CS.BERKELEY.EDU
MUNNARI.OZ.AU internet address = 128.250.1.21
MULGA.CS.MU.OZ.AU internet address = 128.250.1.22
MULGA.CS.MU.OZ.AU internet address = 128.250.37.150
NS.UU.NET internet address = 137.39.1.3
NS.EU.NET internet address = 192.16.202.11
NS1.BERKELEY.EDU internet address = 128.32.136.9
NS1.BERKELEY.EDU internet address = 128.32.206.9
NS2.BERKELEY.EDU internet address = 128.32.136.12
NS2.BERKELEY.EDU internet address = 128.32.206.12

>
 server ns.uu.net. -- Now query one of these name servers --
preferably a close one!
Default Server: ns.uu.net
Addresses: 137.39.1.3

>
 ls -t au. -- List the au zone.
 -- The zone's NS records mark delegation to
subdomains
 -- and will give you the names of the subdomains.
 -- Note that not all name servers will allow you to
list zones,
 -- for security reasons.
 [ns.uu.net]
$ORIGIN au.
@ 3D IN NS mulga.cs.mu.OZ
 3D IN NS vangogh.CS.Berkeley.EDU.
 3D IN NS ns1.Berkeley.EDU.
 3D IN NS ns2.Berkeley.EDU.
 3D IN NS ns.UU.NET.
 3D IN NS ns.eu.NET.
 3D IN NS munnari.OZ
ORG 1D IN NS mulga.cs.mu.OZ
 1D IN NS rip.psg.COM.
 1D IN NS munnari.OZ
 1D IN NS yalumba.connect.COM
info 1D IN NS ns.telstra.net.
 1D IN NS ns1.telstra.net.
 1D IN NS munnari.oz
 1D IN NS svc01.apnic.net.
otc 4H IN NS ns2.telstra.com
 4H IN NS munnari.oz
 4H IN NS ns.telstra.com
OZ 1D IN NS mx.nsi.NASA.GOV.
 1D IN NS munnari.OZ
 1D IN NS mulga.cs.mu.OZ
 1D IN NS dmssyd.syd.dms.CSIRO
 1D IN NS ns.UU.NET.
csiro 1D IN NS steps.its.csiro
 1D IN NS munnari.OZ
 1D IN NS manta.vic.cmis.csiro
 1D IN NS dmssyd.nsw.cmis.csiro

 1D IN NS zoiks.per.its.csiro
COM 1D IN NS mx.nsi.NASA.GOV.
 1D IN NS yalumba.connect.COM
 1D IN NS munnari.OZ
 1D IN NS mulga.cs.mu.OZ
 1D IN NS ns.ripe.NET.
>
^D

The basic technique we used is straightforward: look up the list of name servers for
the top-level domain -- because they're the only ones with complete information about
the corresponding zone -- then query one of those name servers and list the name
servers for the delegated subdomains.

If you can't tell from the names of the subdomains which one you belong in, you can
look up the contact information for the corresponding zone and send email to the
technical contact asking, politely, for advice. Similarly, if you think you should be
part of an existing subdomain but aren't sure, you can always ask the folks who
administer that subdomain to double-check.

To find out who to ask about a particular subdomain, you'll have to look up the
corresponding zone's start of authority (SOA) record. In each zone's SOA record,
there's a field that contains the electronic mail address of the zone's technical
contact.13 (The other fields in the SOA record provide general information about the
zone -- we'll discuss them in more detail later.)

You can look up the zone's SOA record with nslookup, too. For example, if you're
curious about the purpose of the csiro subdomain, you can find out who runs it by
looking up csiro.au's SOA record:

C:\>
nslookup - 207.69.188.185
Default Server: ns1.mindspring.com
Address: 207.69.188.185

>
set type=soa -- Look for start of authority data
>
csiro.au. -- for csiro.au
Server: ns1.mindspring.com
Address: 207.69.188.185

csiro.au
 origin = steps.its.csiro.au
 mail addr = hostmaster.csiro.au
 serial = 2000041301
 refresh = 10800 (3H)
 retry = 3600 (1H)
 expire = 3600000 (5w6d16h)
 minimum ttl = 86400 (1D)

13 The subdomain and the zone have the same domain name, but the SOA record really belongs to the zone, not the
subdomain. The person at the zone's technical contact email address may not manage the whole subdomain (there may be
additional delegated subdomains beneath), but he should certainly know the purpose of the subdomain.

The mail addr field is the Internet address of csiro.au's contact. To convert the
address into Internet email address format, you'll need to change the first "." in the
address to an "@". So hostmaster.csiro.au becomes hostmaster@csiro.au.14

3.2.2.1 whois

The whois service can also help you figure out the purpose of a given domain.
Unfortunately, there are many whois servers—most good administrators of top-level
domains run one—and they don't talk to each other, like name servers do.
Consequently, the first step to using whois is finding the right whois server.

One of the easiest places to start your search for the right whois server is at
http://www.allwhois.com/(Figure 3-1). We mentioned earlier that this site has a list of
the web sites for each country code's top-level domain; it also has a list of top-level
domains with whois URLs—pages with HTML-based interfaces to query whois
servers.

Figure 3-1. The Allwhois.com web site

Scrolling down to Australia (au), you can click on Jump to Whois and go directly to
a page where you can enter csiro.au, as shown in Figure 3-2.

Figure 3-2. Web interface for au's whois server

14 This form of Internet mail address is a vestige of two former DNS records, MB and MG. MB (mailbox) and MG (mail
group) were to be DNS records specifying Internet mailboxes and mail groups (mailing lists) as subdomains of the
appropriate domain. MB and MG never took off, but the address format they would have dictated is used in the SOA record,
maybe for sentimental reasons.

Clicking on Submit retrieves the information in Figure 3-3 for you.

Figure 3-3. Information about csiro.au from the au whois server

Perhaps even more interesting for the inertially challenged is the work done by
WebMagic to provide a unified whois lookup service on the Web. Their web site, at
http://www.webmagic.com/whois/index.html, lets you choose the top-level domain

(and sometimes the second-level domain) in which the subdomain you're looking for
resides, then transparently contacts the right whois server.

Obviously, these are both useful web sites if you're looking for the contact for a
domain outside of the U.S.

Once you've found the right web site or the right contact, you've probably found the
registrar. Outside the U.S., most domains have a single registrar. A few, though, such
as Denmark's dk and Great Britain's co.uk and org.uk, have multiple registrars.
However, the process described above will still lead you to them.

3.2.3 Back in the U.S.A.

In true cosmopolitan spirit, we covered international domains first. But what if you're
from the good ol' U.S. of A.?

If you're in the U.S., where you belong depends mainly upon what your organization
does, how you'd like your domain names to look, and how much you're willing to pay.
If your organization falls into one of the following categories, you're encouraged to
join us:

• K-12 (kindergarten through twelfth grade) schools
• Community colleges and technical vocational schools
• State and local government agencies

Even if you don't fall into one of these categories, if you'd like a domain name that
indicates your location, like acme.boulder.co.us, you can register in the us top-level
domain. The us domain delegates subdomains under third-level domains largely
named after "localities" (usually cities or counties); the second-level domains
correspond to the appropriate U.S. Postal Service two-letter state abbreviation (recall
our discussion in Section 2.2 in Chapter 2). So, for example, if all you need is a
subdomain to hold the two internetworked hosts in your basement in Colorado
Springs, Colorado, you can register toms-basement.colorado-springs.co.us.

Finally, there's the issue of cost. It's usually cheaper to register a subdomain of the us
top-level domain than to register under com, net,or org, and sometimes it's even free.

If you'd like more detailed information on the structure of the us domain and the rules
that govern it, check out the U.S. NIC's web site, at http://www.nic.us/.

Of course, folks in the U.S. can also ask for a subdomain of one of the generic top-
level domains. As long as you don't ask for one that's already taken, you should get
the one you request. We'll cover registration under the generic top-level domains later
in this chapter.

3.2.3.1 The us domain

Let's go through an example to give you an idea of how to comb the us domain
namespace for the perfect domain name. Say you're helping out your son's

kindergarten in Boulder, Colorado, and you want to register a domain name for the
school.

Using an account you still have on a host at Colorado University (from your
undergrad days), you can check to see whether a domain for Boulder exists. (If you
didn't have an account there, but you did have Internet connectivity, you could still
use nslookup to query a well-known name server.)

C:\>
nslookup
Default Server: boulder.colorado.edu
Address: 128.138.238.18, 128.138.240.1

>
set type=ns -- Look up the name servers
>
co.us. -- for co.us
Default Server: boulder.colorado.edu
Address: 128.138.238.18, 128.138.240.1

co.us nameserver = VENERA.ISI.EDU
co.us nameserver = NS.ISI.EDU
co.us nameserver = RS0.INTERNIC.NET
co.us nameserver = NS.UU.NET
co.us nameserver = ADMII.ARL.MIL
co.us nameserver = EXCALIBUR.USC.EDU

This gives you the names of the co.us name servers. Without exiting nslookup, change
to one of the co.us name servers, say venera.isi.edu, and check to see if there are any
subdomains:

>
server venera.isi.edu. -- Change server to venera.isi.edu
Default Server: venera.isi.edu
Address: 128.9.0.32

>
ls -t co.us. -- List the co.us zone to look for NS records
[venera.isi.edu]
$ORIGIN co.us.
@ 1W IN NS NS.ISI.EDU.
 1W IN NS RS0.INTERNIC.NET.
 1W IN NS NS.UU.NET.
 1W IN NS ADMII.ARL.MIL.
 1W IN NS EXCALIBUR.USC.EDU.
 1W IN NS VENERA.ISI.EDU.
officemate1.monument 1W IN NS ns1.direct.ca.
 1W IN NS ns2.direct.ca.
la-junta 1D IN NS ns2.cw.net.
 1D IN NS usdns.beltane.com.
 1D IN NS usdns2.beltane.com.
morrison 1W IN NS NS1.WESTNET.NET.
 1W IN NS NS.UTAH.EDU.
littleton 1W IN NS NS1.WESTNET.NET.
 1W IN NS NS.UTAH.EDU.
mus 1W IN NS NS1.WESTNET.NET.
 1W IN NS NS.UTAH.EDU.
ci.palmer-lake 1W IN NS DNS1.REGISTEREDSITE.COM.

 1W IN NS DNS2.REGISTEREDSITE.COM.
co.adams 1W IN NS ns1.rockymtn.net.
 1W IN NS ns2.rockymtn.net.
[...]

Aha! So there is life in Colorado! There are subdomains called la-junta, morrison,
littleton, mus, and many others. There's even a subdomain for Boulder (called, not
surprisingly, boulder):

boulder 1W IN NS NS1.WESTNET.NET.
 1W IN NS NS.UTAH.EDU.

How do you find out how to contact the administrator of boulder.co.us? You can try
whois, but since boulder.co.us isn't a top-level country domain or a subdomain of a
generic top-level domain, you won't find much. Fortunately, the U.S. NIC provides a
list of email addresses of contacts for each third-level subdomain of us. See the NIC
website for more information http://www.nic.us/. If you can't find the information you
need there, you can use nslookup to find the SOA record for the boulder.co.us zone,
just as you did to find out whom to ask about csiro.au. Though the person or persons
who read mail sent to the address in the SOA record may not handle registration
themselves (technical and administrative functions for the zone may be divided), it's a
good bet they know the folks who do and can direct you to them.

Here's how you'd use nslookup to dig up the SOA record for boulder.co.us:

C:\>
nslookup
Default Server: boulder.colorado.edu
Address: 128.138.238.18, 128.138.240.1

>
set type=soa -- Look up SOA record
>
boulder.co.us. -- for boulder.co.us
Default Server: boulder.colorado.edu
Address: 128.138.238.18, 128.138.240.1

boulder.co.us
 origin = ns1.westnet.net
 mail addr = cgarner.westnet.net
 serial = 200004101
 refresh = 21600 (6H)
 retry = 1200 (20M)
 expire = 3600000 (5w6d16h)
 minimum ttl = 432000 (5D)

As in the csiro.au example, you need to swap the first "." in the mail addr field with
an "@" before you use it. Thus, cgarner.westnet.net becomes cgarner@westnet.net.

To request delegation of a subdomain of boulder.co.us, you can download a copy of
the registration form template from http://www.nic.us/cgi-bin/template.pl and mail it
to the contact. If, however, you find that the subdomain for your locality hasn't yet
been created, read through the us domain's delegation policy at
http://www.nic.us/register/locality.html. Then fill out the registration form at
http://www.nic.us/cgi-bin/template.pl.

3.2.3.2 The generic top-level domains

As we said, there are many reasons why you might want to ask for a subdomain of
one of the generic top-level domains, like com, net, and org: you work for a multi- or
transnational company, you like the fact that they're better-known, or you just prefer
the sound of your domain name with "com" on the end. Let's go through a short
example of choosing a domain name under a generic top-level domain.

Imagine you're the network administrator for a think tank in Hopkins, Minnesota.
You've just gotten a connection to the Internet through a commercial ISP. Your
company has never had so much as a UUCP link, so you're not currently registered in
the Internet namespace.

Since you're in the United States, you have the choice of joining either us or one of
the generic top-level domains. Your think tank is world-renowned, though, so us
wouldn't be a good choice. A subdomain of com would be best.

The think tank is known as The Gizmonic Institute, so you decide gizmonics.com
might be an appropriate domain name. Now you've got to check whether the name
gizmonics.com has been taken by anyone, so you use an account you have at the
University of Minnesota:

C:\> nslookup
Default Server: ns.unet.umn.edu
Address: 128.101.101.101

> set type=any -- Look for any records
> gizmonics.com. -- for gizmonics.com
Server: ns.unet.umn.edu
Address: 128.101.101.101

gizmonics.com nameserver = NS2.SFO.WENET.NET
gizmonics.com nameserver = NS1.SFO.WENET.NET

Whoops! Look like gizmonics.com is already taken (who would have thought?).15
Well, gizmonic-institute.com is a little longer, but still intuitive:

C:\> nslookup
Default Server: ns.unet.umn.edu
Address: 128.101.101.101

> set type=any -- Look for any records
> gizmonic-institute.com. -- for gizmonic-institute.com
Server: ns.unet.umn.edu
Address: 128.101.101.101

*** ns.unet.umn.edu can't find gizmonic-institute.com.: Non-existent
host/domain

gizmonic-institute.com is free, so you can go on to the next step: picking a registrar.

15 Actually, gizmonics.com is taken by Joel Hodgson, the guy who dreamed up The Gizmonic Institute and "Mystery Science
Theater 3000" in the first place.

3.2.3.3 Choosing a registrar

Choose a registrar? Welcome to the brave new world of competition! Before the
spring of 1999, a single company, Network Solutions, Inc., was both the registry and
sole registrar for com, net, and org,as well as edu.To register a subdomain of any of
the generic top-level domains, you had to go to Network Solutions.

In June 1999, ICANN, the organization that manages the domain namespace (we
mentioned them in the last chapter) introduced competition to the registrar function of
com, net, and org. There are now dozens of com, net, and org registrars from which
you can choose (see http://www.internic.net/regist.html).

We won't presume to tell you how to pick a registrar, but take a look at the price and
any other services the registrar might provide that interest you. See if you can get a
nice package deal on registration and aluminum siding, for example.

3.2.4 Checking That Your Network Is Registered

Before proceeding, you should check whether or not your IP network or networks are
registered. Some registrars won't delegate a subdomain to name servers on
unregistered networks, and network registries (we'll talk about them shortly) won't
delegate an in-addr.arpa zone that corresponds to an unregistered network.

An IP network defines a range of IP addresses. For example, the network 15/8 is
made up of all IP addresses in the range 15.0.0.0 to 15.255.255.255. The network
199.10.25/24 starts at 199.10.25.0 and ends at 199.10.25.255.

A Sidebar on CIDR

Once upon a time, when we wrote the first edition of this book, the Internet's
32-bit address space was divided up into three main classes of networks:
Class A, Class B, and Class C. Class A networks were networks in which the
first octet (the first eight bits) of the IP address identified the network, and
the remaining bits were used by the organization assigned the network to
differentiate hosts on the network. Most organizations with Class A networks
also subdivided their networks into subnetworks, or subnets, adding another
level of hierarchy to the addressing scheme. Class B networks devoted two
octets to the network identifier and two to the host; Class C networks gave
three octets to the network identifier and one to the host.

Unfortunately, this small/medium/large system of networks didn't work well
for everyone. Many organizations were large enough to require more than a
Class C network, which could accommodate at most 254 hosts, but too small
to warrant a full Class B network, which could serve 65534 hosts. Many of
these organizations were allocated Class B networks anyway. Consequently,
Class B networks quickly became scarce.

To help solve this problem and create networks that were just the right size
for all sorts of organizations, Classless Inter-Domain Routing, or CIDR

(pronounced "cider"), was developed. As the name implies, CIDR does away
with the old Class A, Class B, and Class C network designations. Instead of
allocating either one, two, or three octets to the network identifier, the
allocator could assign any number of contiguous bits of the IP address to the
network identifier. So, for example, if an organization needed an address
space roughly four times as large as a Class B network, the powers-that-be
could assign it a network identifier of 14 bits, leaving 18 bits (four Class Bs'
worth) of space to use.

Naturally, the advent of CIDR made the "classful" terminology outdated—
although it's still used a good deal in casual conversation. Now, to designate
a particular CIDR network, we specify the particular high-order bit value
assigned to an organization, expressed in dotted octet notation, and how
many bits identify the network. The two terms are separated by a slash. So
15/8 is the old, Class A-sized network that begins with the eight-bit pattern
00001111. The old, Class B-sized network 128.32.0.0 is now 128.32/16. And
the network 192.168.0.128/25 consists of the 128 IP addresses from
192.168.0.128 to 192.168.0.255.

The InterNIC was once the official source of all IP networks; they assigned all IP
networks to Internet-connected networks and made sure no two address ranges
overlapped. Nowadays, the InterNIC's old role has been largely assumed by Internet
service providers (ISPs), who allocate space from their own networks for customers to
use. If you know your network came from your ISP, the larger network from which
your network was carved is probably registered (to your ISP). You may still want to
double-check that your ISP took care of registering their network, but you don't have
to (and probably can't) do anything yourself, except nag your ISP if they didn't
register their network. Once you've verified their registration, you can skip the rest of
this section and move on.

If your network was assigned by the InterNIC, way back when, or you are an ISP,
you should check to see whether your network is registered. Where do you go to
check whether your network is registered? Why, to the same organizations that
register networks, of course. These organizations, called (what else?) network
registries, each handle network registration in some part of the world. In the Western
Hemisphere, ARIN, the American Registry of Internet Numbers
(http://www.arin.net/), hands out IP address space and registers networks. In Asia and
the Pacific, APNIC, the Asia Pacific Network Information Center
(http://www.apnic.net/), serves the same function. In Europe, it's the RIPE Network
Coordination Centre (http://www.ripe.net/). Each registry may also delegate
registration authority for a region; for example, ARIN delegates registration authority
for Mexico and Brazil to network registries in each country. Be sure to check for a
network registry local to your country.

If you're not sure your network is registered, the best way to find out is to use the
whois services provided by the various network registries to look for your network.
Here are the URLs for each registry's whois page:

ARIN

http://www.arin.net/whois/index.html

APNIC

http://www.apnic.net/search/index.html

RIPE

http://www.ripe.net/cgi-bin/whois/

If you find out your network isn't registered, you'll need to get it registered before
setting up your in-addr.arpa zones. Each registry has a different process for
registering networks, but most involve money changing hands (from your hands to
theirs, unfortunately).

You may find out that your network is already assigned to your ISP. If this is the case,
you don't need to register independently with the network registry.

Once all your Internet-connected hosts are on registered networks, you can register
your zones.

3.2.5 Registering Your Zones

Different registrars have different registration policies and procedures, but most, at
this point, handle registration online, through their web sites. Since you found or
chose your registrar earlier in the chapter, we'll assume you know which web site to
use.

The registrar will need to know the domain names and addresses of your name servers
and enough information about you to send you a bill or charge your credit card. If
you're not connected to the Internet, give them the addresses of the Internet hosts that
will act as your name servers. Some registrars also require that you already have
operational name servers for your zone. (Those that don't may ask for an estimate of
when the name servers will be fully operational.) If that's the case with your registrar,
skip ahead to Chapter 4 and set up your name servers. Then contact your registrar
with the requisite information.

Most registrars will also ask for some information about your organization, including
an administrative contact and a technical contact for your zone (who can be the same
person). If your contacts aren't already registered in the registrar's whois database,
you'll also need to provide information to register them in whois. This includes their
names, surface mail addresses, phone numbers, and electronic mail addresses. If they
are already registered in whois, just specify their whois "handles" (unique
alphanumeric IDs) in the registration.

There's one more aspect of registering a new zone that we should mention: cost. Most
registrars are commercial enterprises and charge money for registering domain names.
Network Solutions, the original registrar for com, net,and org, charges $35 per year to

register subdomains under the generic top-level domains. (If you already have a
subdomain under com, net, or org and haven't received a bill from Network Solutions
recently, it'd be a good idea to check your contact information with whois to make
sure they've got a current address and phone number for you.)

If you're directly connected to the Internet, you should also have the in-addr.arpa
zones corresponding to your IP networks delegated to you. For example, if your
company was allocated the network 192.201.44/24, you should manage the
44.201.192.in-addr.arpa zone. This will let you control the IP address-to-name
mappings for hosts on your network. Chapter 4 also explains how to set up your in-
addr.arpa zones.

In Section 3.2.4, we asked you to find the answers to several questions: is your
network a slice of an ISP's network? Is your network, or the ISP network that your
network is part of, registered? If so, in which network registry? You'll need these
answers to have your in-addr.arpa zones delegated to you.

If your network is part of a larger network registered to an ISP, you should contact the
ISP to have the appropriate subdomains of their in-addr.arpa zone delegated to you.
Each ISP uses a different process for setting up in-addr.arpa delegation. Your ISP's
web page is a good place to research that process. If you can't find the information
there, try looking up the SOA record for the in-addr.arpa zone that corresponds to
your ISP's network. For example, if your network is part of UUNET's 153.35/16
network, you could look up the SOA record of 35.153.in-addr.arpa to find the email
address of the technical contact for the zone.

If your network is registered directly with one of the regional network registries,
contact them to get your in-addr.arpa zone registered. Each network registry makes
information on its delegation process available on its web site.

Now that you've registered your zones, you'd better take some time to get your house
in order. You've got some name servers to set up, and in the next chapter, we'll show
you how.

Chapter 4. Setting Up the Microsoft DNS Server

"It seems very pretty," she said when she had finished it, "but it's
rather hard to understand!" (You see she didn't like to confess, even to
herself, that she couldn't make it out at all.) "Somehow it seems to fill
my head with ideas—only I don't exactly know what they are!"

If you have been diligently reading each chapter of this book, you're probably anxious
to get a name server running. This chapter is for you. Let's set up a couple of name
servers. Some of you may have read the table of contents and skipped directly to this
chapter. (Shame on you!) If you are one of those people who cuts corners, be aware
that we may use concepts from earlier chapters and expect you to understand them.

Several factors influence how you should set up your name servers. The biggest factor
is what sort of access you have to the Internet: complete access (for example, you can
ftp to ftp.uu.net), limited access (limited by a security firewall), or no access at all.
This chapter assumes you have complete access. We'll discuss the other cases in
Chapter 14.

In this chapter, we'll set up two name servers for a fictitious domain as an example for
you to follow in setting up your own domain. We'll cover the topics in this chapter in
enough detail for you to get your first two name servers running. Subsequent chapters
will fill in the holes and go into greater depth. If you already have your name servers
running, skim through this chapter to familiarize yourself with the terms we use or
just to verify that you didn't miss something when you set up your servers.

4.1 Our Zone

Our fictitious zone serves a college. Movie University studies all aspects of the film
industry and researches novel ways to distribute films. One of our most promising
projects is research into using IP as a distribution medium. After visiting our
registrar's web site, we have decided on the domain name movie.edu. A recent grant
has enabled us to connect to the Internet.

Movie U. currently has two Ethernets, and we have plans for another network or two.
The Ethernets have network addresses 192.249.249/24 and 192.253.253/24. A portion
of our host table contains the following entries:

127.0.0.1 localhost

These are our killer machines

192.249.249.2 robocop.movie.edu robocop
192.249.249.3 terminator.movie.edu terminator bigt
192.249.249.4 diehard.movie.edu diehard dh

These machines are in horror(ible) shape and will be replaced
soon.

192.253.253.2 misery.movie.edu misery

192.253.253.3 shining.movie.edu shining
192.253.253.4 carrie.movie.edu carrie

A wormhole is a fictitious phenomenon that instantly transports
space travelers over long distances and is not known to be
stable. The only difference between wormholes and routers is
that routers don't transport packets as instantly--especially
ours.

192.249.249.1 wormhole.movie.edu wormhole wh wh249
192.253.253.1 wormhole.movie.edu wormhole wh wh253

The network is pictured in Figure 4-1.

Figure 4-1. The Movie University network

4.2 The DNS Console

To manage a Microsoft DNS Server and maintain your DNS data, you'll use a tool
called the DNS console, a snap-in for the Microsoft Management Console (MMC).
(MMC is a general-purpose program that hosts administrative tools. It's new for
Windows 2000 and replaces the "one-off" administrative tools found in Windows NT
4.0, such as DNS Manager, WINS Manager, DHCP Manager, and the like.) The DNS
console has a graphical user interface (surprise) and is capable of managing multiple
name servers. The DNS console is located on the Administrative Tools menu,
provided you've already installed the DNS service. The DNS console communicates
with the Microsoft DNS Server using a proprietary management protocol built on
Microsoft's RPC (remote procedure call). That means the DNS console manages only
the Microsoft DNS Server and not other name servers, such as BIND.

The main DNS console window looks like Figure 4-2 (or will look like it, after we've
set everything up in the course of this chapter).

Figure 4-2. The DNS console main window

The left pane is called the console tree. It shows name servers, zones, and domains,
while the right pane shows either informational messages or resource records.

This particular DNS console knows about only one name server, terminator. That
name server is authoritative for three zones: movie.edu, 249.249.192.in-addr.arpa,
and 253.253.192.in-addr.arpa. The DNS console segregates forward lookup zones
(which hold primarily address records) and reverse lookup zones (which hold
primarily pointer records). If any of these zones had subdomains, they would show up
as subfolders under the appropriate zone. For example, comedies.movie.edu would be
represented as a folder called comedies under movie.edu.

There are two rows of menus. The top row, which lists the Console, Window, and
Help menus, are menus for the MMC application itself and, to be honest, they're not
that interesting. The Console menu has only one choice: Exit. The Window menu has
the expected options to manage MMC subwindows, but you'll find that all the DNS
administrative action happens in a single window for the DNS console snap-in.
Choosing New Window produces another DNS console window; we haven't found a
need to have more than one DNS console window open, but you might find multiple
windows useful. Finally, the Help menu also has the usual suspects: Help Topics
brings up the MMC help system, which offers quick jumps to help with the MMC
application and the DNS console snap-in.

The second row holds the Action and View menus, which all other MMC plug-ins
also have. The really important commands are in the Action menu: adding new name
servers, creating zones and domains, and creating resource records. You can also
delete objects and view objects' properties. We'll explain the various commands
throughout this chapter.

But let's take a moment to go over the choices on the View menu. Since this is a
standard MMC menu, not all the options are useful with the DNS console. An
example is the first choice, Choose Columns..., which allows you to customize the
columns in the right pane. That's nice, except that they don't need customization:

you'll always want to see all three columns showing a resource record's name, type,
and data. The next set of choices is Large Icons , Small Icons , List,and Detail, and
the selection determines the display format in the right pane. We recommend
choosing Detail when you first start the DNS console and leaving the view that way
forever: otherwise you don't see the aforementioned three columns and their useful
information about each resource record.

Next is Advanced, which toggles between a more basic, or beginner's, view and an
advanced view more suitable for you DNS experts out there. There are a couple
differences. The first is the display value in the type column of the right pane: in basic
mode you'll see a description of the type of resource record; advanced mode shows
the actual type you'd see in a DNS zone data file. For example, in the basic view you
see Start of Authority records versus the advanced view's SOA records. The second
difference is whether or not the DNS console displays some additional information in
the console tree on the left. Advanced mode shows the three zones for which every
Microsoft DNS Server is authoritative—0.in-addr.arpa, 127.in-addr.arpa, and 255.in-
addr.arpa—as well as an icon allowing access to the name server's cache of records
from previous lookups. We'll talk more about these zones and the cache later in this
chapter.

The Filter... selection brings up a dialog box like the one shown in Figure 4-3.
Filtering is handy when you've got a really large zone with hundreds or even
thousands of resource records. Rather than displaying them all in the righthand pane,
you can limit the display with this option.

Figure 4-3. Filter dialog box

Customize is another choice standard to the View menu on all MMC snap-ins. It
controls which MMC menus and toolbars appear. We recommend leaving these
options at their default settings, as shown in Figure 4-4, since those settings are
optimal.

Figure 4-4. Customize dialog box

But enough about the DNS console's generic knobs and switches. Let's move on to
some DNS administrative tasks.

4.3 Setting Up DNS Data

Let's configure the first of Movie U.'s name servers. We'll use the DNS console for
most of this process, so start it up if you haven't already done so. You don't have to
run the DNS console on the machine running the name server, but for now it's easier
if you do. You'll also need to have Administrator privileges to use the DNS console;
otherwise, you'll only be able to start the application, not manage any name servers
with it.

4.3.1 Adding a New Server to the DNS Console

The first step is configuring the DNS console to manage the primary master name
server for your zone. The primary master for a zone—also called just the primary—
stores information about the zone on its disk. You make all changes to your zone on
the primary master.

Select Action Connect To Computer... and specify where the name server you
want manage—the primary master—is running, either on the local machine or
somewhere else. If the name server isn't local, enter its name or IP address. The DNS
console adds an icon in the left pane for that name server, as in Figure 4-5.

Figure 4-5. The DNS console with a new server

It's important to understand what we just did here. We told the DNS console about a
name server for it to manage and it added that name server to its configuration. The
DNS console did not start the name server on the target machine. If the name server
isn't already installed and running, the DNS console can't manage it and will complain
with the message, "The server is unavailable. Would you like to add it anyway?"

Selecting Connect To Computer adds that name server to the list of servers the DNS
console knows about. As you might expect, selecting the server and choosing Action

Delete (or just pressing the Delete key) removes the server from the DNS console's
configuration but doesn't change anything on the name server itself. The server will
still be running—you can use Connect To Computer... to add it, and you'll be right
back where you started.

4.3.2 Creating a New Zone

Now it's time to create the movie.edu zone. Select the name server on the left where
you want to create the zone. (There's only one server now, terminator, but the DNS
console could know about multiple servers.) Choose Action New Zone . You'll see
the New Zone Wizard, as in Figure 4-6.

Figure 4-6. New Zone Wizard, first window

To continue, click Next. In the next window (Figure 4-7), you have three choices for
the type of zone: Active Directory integrated, Standard primary and Standard
secondary. For now, choose Standard primary and click Next. We'll talk more
about Active Directory integration of zones in Chapter 11.

Figure 4-7. New Zone Wizard, second window

Now you need to choose the whether this is a forward- or reverse-mapping zone, as
shown in Figure 4-8. movie.edu is, of course, a forward-mapping zone, so make that
selection and click Next.

Figure 4-8. New Zone Wizard, third window

Getting tired of all these windows yet? In the next one, shown in Figure 4-9, type the
domain name of the zone, which is movie.edu. Click Next.

Figure 4-9. New Zone Wizard, fourth window

Now you need to specify the file that will hold all the zone information, as shown in
Figure 4-10.

Figure 4-10. New Zone Wizard, fifth window

The zone file, also called a zone data file, is the zone's permanent storage location. It's
the file on the name server's disk where all the information about the zone is stored: it
contains all the zone's resource records. Other name servers require you to edit the
zone data file to make changes to the zone, but the DNS console allows you to avoid
any hand-editing. As a result, you probably won't see the zone data files very much.
We'll talk about their format later in this chapter.

Even if you won't be looking at it often, you need to specify a zone data filename
when you create a zone. The server expects these files to be in
%SystemRoot%\System32\DNS. Microsoft's suggested naming convention uses the
domain name of the zone followed by the .dns extension. (Notice that the DNS
console has filled in the filename based on the zone name.) You can name the zone
file whatever you want, but as long as the DNS console fills in the field for you, we

recommend sticking with its suggestion. You may be familiar with other naming
conventions, such as db. followed by the zone's domain name (e.g., db.movie.edu). In
fact, that's the recommendation in our sister book, DNS and BIND.

When you've entered a filename (or left the automatically chosen name alone), click
Next, and you'll see the confirmation window shown in Figure 4-11.

Figure 4-11. New Zone Wizard confirmation window

Click Finish to create the zone. If we double-click on terminator in the left pane, then
double-click on Forward Lookup Zones and select the movie.edu zone, we see a
window like the one pictured in Figure 4-12. The DNS console has created the zone
and a few resource records. Let's talk about them one by one.

Figure 4-12. The DNS console with a new zone

4.3.2.1 The SOA record

The first record displayed is the start of authority, or SOA,16 resource record for the
movie.edu zone. It's a little tricky to see that the name of this record is really
movie.edu, since the DNS console displays (same as parent folder) in the Name
column. You need to look at the domain name selected in the left pane to know the
domain name of this resource record.

The SOA record indicates that this name server is the best source of information for
the data within this zone. Our name server is authoritative for the movie.edu zone
because of the SOA record. An SOA record is required in each zone, and there can be
one, and only one, SOA record in a zone.

Double-click the SOA record to view its details. You'll see a window like the one in
Figure 4-13.

Figure 4-13. The movie.edu SOA record

Let's skip that first field, Serial number, for now—don't worry, we'll cover it later in
the chapter—and go on to the next field. The second field is the name of the primary
master name server for this zone. (You may hear it called the MNAME field, which is
its official name.) The third field contains the email address of the person in charge of
the zone (if you replace the first dot with an at sign, @). The DNS console defaults to
a username of administrator, but in other zones you'll often see root, postmaster, or
hostmaster as the email address. Name servers won't use these names—they are
meant for human consumption. If you notice a problem in someone's zone, you can
send an email message to the listed email address.

16 Here's where a difference between normal (i.e., nonadvanced) and advanced mode comes in. Figure 4-12 shows the
record type as Start of Authority because the DNS console is in basic mode. In advanced mode, the record type would
show up as simply SOA.

Most of the remaining fields are for use by slave name servers and are discussed when
we introduce slave name servers later in this chapter. For now, assume these are
reasonable values.

4.3.2.2 The NS record

The next record is an NS (name server) resource record. There should be one NS
record for each name server authoritative for the zone. Like the SOA record, NS
records are attached to the zone's domain name. In our example, the NS records are
attached to movie.edu. Right now there's only one name server (the primary master),
but as we configure slave name servers, we'll add NS records. The DNS console
created an NS record for terminator because it's a name server—the primary master
name server—for movie.edu.

4.3.2.3 The missing A record

Unfortunately, we're missing a required record: the address (A) record for
terminator.movie.edu, the host running the name server. Address records fulfill the
main purpose of DNS: they provide name-to-address mapping. Each A record maps a
domain name, like terminator.movie.edu, to an IP address, like 192.249.249.3.

Every NS record needs a corresponding A record in some zone. Think about it: an NS
record says, "To find out information about this zone, go to this name server." To use
the NS record, you need the IP address of the name server it specifies. In this case, the
name of the name server, terminator.movie.edu, is contained in the movie.edu zone
we just created, so we need an A record for terminator.movie.edu in our zone that will
specify its IP address. We're bringing this up now because those of you familiar with
Windows NT 4.0 might remember that DNS Manager (the former incarnation of the
DNS console) would have automatically created an A record for terminator.movie.edu
when the movie.edu zone was created.We will have to manually add this A record, but
not just yet: it's best to create the reverse-mapping (in-addr.arpa) zones first.

4.3.3 Creating a New Reverse-Mapping Zone

Zones like movie.edu handle mapping names to addresses using A records. But
mapping addresses back to names—reverse mapping—is just as important. As you
may recall from Chapter 2, a special portion of the namespace, the in-addr.arpa
domain, is designated for reverse mapping. There's one domain name in in-addr.arpa
for every possible IP address, and PTR (pointer) records attached to a domain name
provide the actual reverse mapping. Just think of a PTR record as the opposite of an A
record.

So after we create movie.edu, we're not done. Movie U. has two /24 networks,
192.249.249/24 and 192.253.253/24. We need to create the corresponding in-
addr.arpa zones for reverse mapping with the DNS console: 249.249.192.in-
addr.arpa and 253.253.192.in-addr.arpa.

The process for creating an in-addr.arpa zone is the same as that for creating any
other zone. Select terminator in the left pane and choose Action New Zone....
Follow the prompts in the New Zone Wizard as we did earlier, except this time

choose Reverse lookup zone in the third window. Figure 4-14 shows the fourth
window of the New Zone Wizard when creating a reverse-mapping zone.

Figure 4-14. Specifying the network number or name of a reverse -mapping zone

We specified the network number (see the selected field), and the DNS console
automatically calculated the zone name (see the grayed-out field). Click Next and the
wizard concludes as shown earlier.

Select the newly created zone in the left pane to see its contents in the right pane.
Note that, just as it did with the movie.edu zone, the DNS console automatically
creates the SOA record and an NS record.

For Movie U., we'll repeat this process to create the 253.253.192.in-addr.arpa zone.
You will create in-addr.arpa zones according to the networks you have. Usually
there's one in-addr.arpa zone per /24 (or smaller) network. Larger networks are often
broken into several in-addr.arpa zones to make management easier. The zones
usually correspond to subnets. This topic is covered in more detail in Chapter 9.

4.3.4 Adding Resource Records

Now that we've created Movie U.'s zones, we can add information about all its
machines. Each machine requires two resource records: an A record in the movie.edu
zone to provide name-to-address mapping and a PTR record in the appropriate in-
addr.arpa zone to provide address-to-name mapping. Adding the A record is intuitive,
but it's easy to forget about the PTR record. The DNS console makes the job easier
with the New Host command, which creates an A record and a PTR record in one
pass.

Select a forward-mapping zone (like movie.edu) and choose Action New Host....
Enter the name of the host and its IP address. To create the PTR record as well, you
also need to check the Create associated pointer (PTR) record box. The window
looks like the one in Figure 4-15.

Figure 4-15. The New Host window

You'll notice that we typed a relative domain name (terminator) and not a fully
qualified domain name (terminator.movie.edu.) The DNS console requires a relative
domain name in this field. (It won't even let you type a period!) It appends the domain
name of the zone selected in the DNS console's left pane (and shown in the Location
field in the window) to create a fully qualified domain name.

4.3.4.1 Aliases

Looking back at Movie U.'s host table in the beginning of the chapter, you'll see that
some hosts have aliases. (The aliases are any additional names after the first one
listed.) For example, terminator is also known as bigt. A special resource record
called the CNAME record is used to make an alias. The name of this record is
confusing because CNAME is short for canonical name, which means the "real" name
of the host. But a CNAME record doesn't make a canonical name; it makes an alias.
All other types of records make a canonical name. We recommend thinking of it this
way: CNAME records point to canonical names while other record types make
canonical names.

To create an alias, select the zone to which you want to add the record on the left, and
choose Action New Alias.... You'll see a window that looks like the one in Figure
4-16.

The input in Figure 4-16 will generate an alias from bigt.movie.edu to
terminator.movie.edu. The Parent domain field is just a reminder of the current
domain. As was the case with the New Host command, you must enter a single-label
(that is, no periods) name in the Alias name field: the Alias name field is always
relative to the current domain. There is no such restriction for the canonical name
field (labeled Fully qualified name for target host)—you can point this alias
anywhere. We could alias bigt.movie.edu to www.whitehouse.gov if we wanted to. An
important note, however: if you leave off the domain in the canonical name field, the
zone's domain name is not appended automatically (as was the case with DNS
Manager in Windows NT 4.0). You should always enter a fully qualified domain
name in the last field.

Figure 4-16. Creating a CNAME record

It's important to know that the name server handles CNAME records in a different
manner than aliases are handled in the host table. When a name server looks up a
name and finds a CNAME record, it replaces the alias name with the canonical name
and looks up the new name. For example, when the name server looks up
bigt.movie.edu, it finds a CNAME record pointing to terminator.movie.edu. Then it
looks up terminator.movie.edu, and its address is returned.

One thing you must remember about aliases like bigt is that they should never appear
in the data portion (that is, on the right side) of a resource record. Stated differently,
always use the canonical name (terminator) in the data portion of the resource record.
Notice that the NS records use the canonical name.

Sometimes you can use an A record to get the effect of an alias. Suppose you have a
router, like wormhole, and you want to check one of the interfaces. One common
troubleshooting technique is to ping the interface to verify that it is responding. If you
ping the name wormhole, the name server returns the addresses of both interfaces.
ping uses the first address in the list. But which address is first?

The solution is to create two A records for wormhole. We could use the New Host
command to create them as we did above, but we'll show you another way. The Other
New Records command lets you choose from 19 different resource records to create.
Choose Action Other New Records... and you'll see a window like Figure 4-17.
Select a record type to see its description. We've selected Host (which is the
nonadvanced-mode way of specifying an A record), and after we select Create
Record... we'll see the same New Host window that we showed earlier, which we'll
use to add an A record for wh249.movie.edu.

With the host table, we chose the address we wanted by using either wh249 or
wh253—each name referred to one of the host's addresses. To provide equivalent
capability with DNS, we didn't make wh249 and wh253 into aliases (CNAME
records). That would result in both addresses for wormhole being returned when we
looked up the alias. Instead, we used address records. Now, to check the operation of

the 192.253.253.1 interface on wormhole, we ping wh253 since it refers to only one
address. The same applies to wh249.

Figure 4-17. Other new records window

To state this as a general rule: if a host is multihomed (i.e., has more than one network
interface), create an address (A) record for each alias unique to one address. Create a
CNAME record for each alias common to all the addresses.

4.3.4.2 One more note about PTR records

We now have two A records, wormhole.movie.edu and wh249.movie.edu, pointing to
the same address, 192.249.249.1. We also have a PTR record pointing from
1.249.249.192.in-addr.arpa to wormhole.movie.edu. (This record was added
automatically to the 249.249.192.in-addr.arpa zone by the New Host command.
Remember that addresses are looked up as names: the IP address is reversed, and in-
addr.arpa is appended.) Thus, 192.249.249.1 maps to wormhole.movie.edu and not to
wh249.movie.edu. Should you create another PTR record that maps 192.249.249.1 to
wh249.movie.edu? You can create two PTR records—it's perfectly legal—but most
systems are not prepared to see more than one name for an address. We recommend
that you don't bother with multiple PTR records since so few systems can use them.

4.3.5 Where Is All This Information Stored?

You may be wondering what's happened to all the resource records we've been
entering. Where are they being stored? The answer is: in the memory of the DNS
server process. We mentioned earlier that the DNS console communicates with the
DNS server using an RPC mechanism. As you add records to a zone with the DNS
console, they are added "on the fly" to the name server's memory. Of course, the name
server's memory is transient—when the name server process stops, its memory is lost.
Obviously it needs a permanent storage location, too.

This is where the zone data files we specified when we created the zones come in.
The zone data files are the zones' permanent storage location, holding all the zones'
resource records. If you use the DNS console to make a change to a zone, the copy of

the zone in the name server's memory is changed, and a flag is set to update that
zone's data file. The name server updates the zone data file when it exits, unless you
tell it to update the file sooner. The command Action Update Server Data Files
causes the name server to update the zone data files of all the zones for which it's a
primary (if the version of a zone in the server's memory is more recent than the
version on disk). To avoid losing data, we recommend using Action Update
Server Data Files after any changes—use it like you use the Save command in other
applications. Of course, the difference here is that the server will save your data if it
exits gracefully. You don't have to use Action Update Server Data Files after a
batch of changes, but it doesn't hurt anything and you'll be able to sleep better.

As you've probably guessed, when the name server starts up, it reads the zone data
files into memory. When you select Action Refresh or press F5, the DNS console
queries the name server and updates the console's display.

If you've been keeping track, you'll realize that DNS information exists in three
places: zone data files, the name server's memory, and the DNS console's window.
The diagram in Figure 4-18 helps explain how the information flows.

Figure 4-18. Where everything is stored

4.3.6 The Zone Data Files

Let's take a look at the zone data files for Movie U. After inputting the remaining host
table entries, we end up with the display shown previously in Figure 4-2. (Of course,
this view shows only the contents of movie.edu. The 249.249.192.in-addr.arpa and
253.253.192.in-addr.arpa zones are populated with PTR records.)

Next we select Action Update Server Data Files, and the server generates three
files in %SystemRoot%\System32\DNS: movie.edu.dns, 249.249.192.in-addr.arpa.dns,
and 253.253.192.in-addr.arpa.dns. They look like the following.

Contents of movie.edu.dns:

;
; Data file movie.edu.dns for movie.edu zone.
; Zone version: 4l
;

@ IN SOA terminator.movie.edu.
administrator.movie.edu. (
 1 ; serial number

 3600 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

;
; Zone NS records
;

@ IN NS terminator

;
; Zone records
;

bigt IN CNAME terminator
carrie IN A 192.253.253.4
dh IN CNAME diehard
diehard IN A 192.249.249.4
misery IN A 192.253.253.2
robocop IN A 192.249.249.2
shining IN A 192.253.253.3
terminator IN A 192.249.249.3
wh IN CNAME wormhole
wh249 IN A 192.249.249.1
wh253 IN A 192.253.253.1
wormhole IN A 192.249.249.1
 IN A 192.253.253.1

Contents of 249.249.192.in-addr.arpa.dns:

;
; Data file 249.249.192.in-addr.arpa.dns for 249.249.192.in-
addr.arpa zone.
; Zone version: 5l
;

@ IN SOA terminator.movie.edu.
administrator.movie.edu. (
 5 ; serial number
 3600 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

;
; Zone NS records
;

@ IN NS terminator.movie.edu.

;
; Zone records
;

1 IN PTR wormhole.movie.edu.
2 IN PTR robocop.movie.edu.
3 IN PTR terminator.movie.edu.
4 IN PTR diehard.movie.edu.

Contents of 253.253.192.in-addr.arpa.dns:

;
; Data file 253.253.192.in-addr.arpa.dns for 253.253.192.in-
addr.arpa zone.
; Zone version: 4l
;

@ IN SOA terminator.movie.edu.
administrator.movie.edu. (
 4 ; serial number
 3600 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

;
; Zone NS records
;

@ IN NS terminator.movie.edu.

;
; Zone records
;

1 IN PTR wormhole.movie.edu.
2 IN PTR misery.movie.edu.
3 IN PTR shining.movie.edu.
4 IN PTR carrie.movie.edu.

4.3.7 Zone Data File Format

The format of zone data files is specified in the DNS standards. That means all name
servers, whether Microsoft DNS Server or the BIND name server, can read each
other's zone data files.

You've probably already guessed that the semicolon is the comment character. It can
appear anywhere on a line, and anything to the right is considered a comment and is
ignored by the name server. Blank lines are okay, too.

Each resource record must start in the first column of the file—no preceding
whitespace. (Don't be confused by the examples in this book, which are indented
because of the way the book is formatted.) Resource records are case-insensitive—
you can use uppercase or lowercase. The name server doesn't preserve the case,
though. It matches the case of the reply to the case of the query. For example, if a
record is written as terminator in the zone data file but you query for Terminator, the
server responds with Terminator.

Resource records are broken up into fields, with any amount of whitespace (tabs or
spaces) separating the fields.

The first field, called the owner, is the domain name of the record. Put another way,
it's the node in the namespace to which the resource record is attached. You've seen
the domain name on the left side of the right pane of the DNS console. (Got that?)

The next field in our examples is the class, IN, which stands for Internet. There are
other classes, but none of them are currently in widespread use. Our examples use
only the IN class.

The field after that is the record type. We've already discussed the SOA, NS, A, PTR,
and CNAME record types, and you've probably browsed through the list of other
record types in the DNS console's Other New Records window. The type simply
specifies what type of data is associated with the domain name on the right: A means
IP address, NS means the name of an authoritative name server, and so on.

That's a good lead-in to the final field, the RDATA or resource record data. This field
holds the kind of data specified by the record type. It can be divided into multiple
subfields, depending on the type. For example, A records may specify only one
parameter, an IP address, but the SOA record specifies seven parameters (remember
all those fields in Figure 4-13?).

Speaking of the SOA record, you'll notice in the examples that it's the only record
spanning multiple lines. If you ever have to edit zone data files by hand, you can use
parentheses to allow a resource record to span multiple lines. This trick works for all
record types, not just SOA.

Domain names appear a lot in resource records. The left side of every resource record
is a domain name, and the right side (RDATA field) of many record types also
contains domain names (for example, NS and SOA records). Using a fully qualified
domain name in each case is perfectly legal, but it would be a lot of work: imagine
having to type movie.edu at the end of every hostname if you were entering these files
by hand. Fortunately, abbreviations are allowed. You need to understand the
abbreviations because the Microsoft DNS Server uses them in records it generates.

4.3.7.1 Appending domains

Every zone has a domain name: it's just the name of the zone. (This probably strikes
you as pretty obvious.) This domain name is the key to the most useful shortcut. This
domain name is the origin of all the data in the data file. The origin is appended to all
domain names in the file not ending in a dot. The origin is different for each file
because each file is associated with a different zone, each of which has a different
domain name.

Since the origin is appended to names, instead of entering robocop's address in
movie.edu.dns as this:

robocop.movie.edu. IN A 192.249.249.2

the server generated it like this:

robocop IN A 192.249.249.2

In 192.249.249.in-addr.arpa.dns, this is the long way to write this record:

2.249.249.192.in-addr.arpa. IN PTR robocop.movie.edu.

But since 249.249.192.in-addr.arpa is the origin, the server generated:

2 IN PTR robocop.movie.edu.

Notice that all the fully qualified domain names in the file end in a dot. That tells the
server that this domain name is complete and should be left alone. Suppose you forgot
the trailing dot. An entry like this:

robocop.movie.edu IN A 192.249.249.2

turns into an entry for robocop.movie.edu.movie.edu, which you didn't intend at all.

4.3.7.2 @ notation

If the domain name is the same as the origin, the name can be specified with an at
sign (@). This is most often seen in the SOA record in data files generated by hand,
but the Microsoft DNS Server also uses the @ notation in the NS records. In the
movie.edu.dns file in the previous example, the @ stands for movie.edu. Of course, in
the 249.249.192.in-addr.arpa.dns file, the @ stands for 249.249.192.in-addr.arpa,
and in the 253. 253.192.in-addr.arpa.dns file... well, you get the idea.

4.3.7.3 Repeat last name

If there is a space or a tab in column one, the name from the last resource record is
used. This shortcut gets used when there are multiple resource records for a name.
Here is an example where there are two address records for one name:

wormhole IN A 192.249.249.1
 IN A 192.253.253.1

In the second address record, the name wormhole is implied. You can use this shortcut
even if the resource records are of different types—for example, if wormhole also had
a TXT (arbitrary text) record.

4.3.8 The Loopback Address

Those of you familiar with the BIND name server may be wondering if we forgot
about the loopback address. If we were setting up a BIND name server, it would need
one additional zone data file to cover the loopback network: the special address that
hosts use to direct traffic to themselves. This network is (almost) always 127.0.0.0,
and the host number is (almost) always 127.0.0.1. Therefore, the name of this file
would be 0.0.127.in-addr.arpa.dns, and it would look like the other in-addr.dns files.

The following would be the contents of the 0.0.127.in-addr.arpa.dns file:

@ IN SOA terminator.movie.edu.
administrator.movie.edu. (
 1 ; serial number
 3600 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

;
; Zone NS records
;

@ IN NS terminator.movie.edu.

;
; Zone records
;

1 IN PTR localhost.

Why do name servers need this file? Think about it for a second. No one was given
responsibility for network 127.0.0.0, yet systems use it for a loopback address. Since
no one has direct responsibility, everyone who uses it is responsible for it
individually. If you omit this file on a BIND name server, it will still operate.
However, a lookup of 127.0.0.1 might fail: the name server will send the query to a
root name server that might not be configured to map 127.0.0.1 to a name.

With the Microsoft DNS Server, you don't have to worry about creating this file and
making your name server authoritative for the in-addr.arpa zone corresponding to
network 127.0.0.0. The server is authoritative for this zone by default. It's called an
automatically created zone and is visible in the DNS console only in advanced mode.
Select View Advanced and you can see the three automatically created zones
shown in Figure 4-19.

Figure 4-19. The DNS console showing automatically created zones

We've drilled down into the 127.in-addr.arpa zone to show that there's a PTR record
for 1.0.0.127.in-addr.arpa pointing to the domain name localhost. In other words, a
Microsoft DNS Server will reverse-map the IP address 127.0.0.1 to the domain name
localhost "out of the box" without any work on your part.

The 0.in-addr.arpa and 255.in-addr.arpa zones are empty, save for NS and A records.
Some hosts attempt to reverse-map the IP addresses 0.0.0.0 and 255.255.255.255, and
these zones cause the local server to return an immediate NXDOMAIN (name not
found) error for those queries rather than asking a root name server.

4.3.9 The Root Hints Data

Besides your local information, the name server also needs to know where the name
servers for the root zone are. (Remember that the resolution process starts at the root
zone, so knowing which name servers are authoritative for the root zone is critical.)
This information is stored in a file called the root name server hints file, which is
named %SystemRoot%\System32\DNS\cache.dns on your name server. The Microsoft
DNS Server ships with a version of this file that looks like this (or at least it did when
this book was published):

; This file holds the information on root name servers needed
; to initialize cache of Internet domain name servers
; (e.g., reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC registration services
; under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; -OR- under Gopher at RS.INTERNIC.NET
; under menu InterNIC Registration Services (NSI)
; submenu InterNIC Registration Archives
; file named.root
;
; last update: Aug 22, 1997
; related version of root zone: 1997082200
;
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
; formerly TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;
; formerly NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; formerly NS.ISC.ORG
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
;
; formerly NS.NIC.DDN.MIL

;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;
; formerly AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
;
; formerly NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;
; temporarily housed at NSI (InterNIC)
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10
;
; housed in LINX, operated by RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
;
; temporarily housed at ISI (IANA)
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
;
; housed in Japan, operated by WIDE
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
; End of File

This information can also be retrieved from the Internet host ftp.rs.internic.net
(198.41.0.7). Use anonymous FTP to retrieve the file named.root from the domain
subdirectory. The domain name "." refers to the root zone. Since the root zone's name
servers change over time, don't assume this list is current. Pull a new version of
named.root.

You can also view this information from within the DNS console: select a name
server in the left pane and choose Action Properties. Then select the Root Hints
tab to see a window like the one shown in Figure 4-20.

It's worth noting that the root NS records are not put into the cache and used directly.
Rather, upon startup the server queries one of the root servers in the cache file for the
list of root servers. The list returned is the one used by the name server to start the
resolution process and is the list you see when you double-click the Cache icon.

Figure 4-20. Root hints window

You may be wondering what the 3600000s are for. In older versions of this file, this
number was 99999999. It dates back to the behavior of early versions of BIND, the
reference implementation of the name server. The BIND name server used to put the
contents of the cache file directly into its cache, and it had to know how long to keep
these records active. The 99999999smeant a very long time. The root name server
data was to be kept active for as long as the server ran. Since both BIND and the
Microsoft DNS Server now store the cache file data in a special place and don't
discard it if it times out, the TTL is unnecessary. But it's not harmful to have the
3600000s,and it makes for interesting DNS folklore when you pass responsibility to
the next name server administrator.

4.4 Running a Primary Master Name Server

Your primary name server is already up and running; you've been talking to it via the
DNS console. You've created a zone and populated it with information. Then you
directed the server to write out zone data files with the Action Update Server
Data Files command. To be sure that everything is okay, you should stop and restart
the server and then check the Event Log for any messages or errors.

4.4.1 Starting and Stopping the DNS Server

There are several ways to start and stop the DNS server. First, you can control it just
like any other Windows 2000 service: with the Services MMC snap-in. Select Start

Programs Administrative Tools Services. You'll see a window like Figure
4-21.

Your system should look like this: the server should be running (that is, it should be
started). Select the server as we've done by clicking anywhere on the DNS Server
line. Select Action Stop. After the server stops, select Action Start. In a few
seconds, the server should be running again.

Figure 4-21. Windows 2000 Services control window

While you've got this window open, check to make sure that the DNS server is being
started automatically on bootup. You want to see Automatic in the Startup Type
column (and not Manual or Disabled). To change the startup behavior, double-click
on the service and choose the appropriate behavior in the Startup Type field of the
resulting window.

You can also start and stop the DNS server from within the DNS console. With the
server selected in the left pane, select Action All Tasks. You'll see a menu with
choices that include Start, Stop, and Restart. (The latter does just what you'd expect:
stops, then starts, the server.)

Finally, you can start and stop the DNS server from the good old DOS command line:
net start dns will start the server, and net stop dns stops it. Of course, this command
must be run on the system on which the DNS server is running, which is not
necessarily the same system on which the DNS console is running.

4.4.2 Check the Event Log for Messages and Errors

Now you need to check the Event Log. Start the Event Viewer by selecting Start
Programs Administrative Tools Event Viewer. Under Windows 2000, the
DNS server has its own category in the Event Log. Select DNS Server in the left pane
and you should see a window like the one in Figure 4-22.

DNS Server Event ID 3 is "The DNS server has shutdown." and Event ID 2 is "The
DNS server has started." (More events are listed in Chapter 7.) These two events are
just what you want to see: a normal server shutdown and startup. We're reading from
bottom to top since Event Viewer's default view shows newest events first. We also
cleared the Event Log before we stopped and started the server—that's why only these
two events are showing.

Figure 4-22. Event Viewer

If there were any other messages or errors, we'd take steps to correct them now. To be
honest, we didn't expect any problems because we entered all the data via the DNS
console. Since it performs some syntax and sanity checking, it's hard to enter bad data
to make the name server upset enough to complain in the Event Log. Still, it doesn't
hurt to check. If you ever start editing zone data files by hand (which we don't
recommend), you definitely need to check the Event Log.

4.4.3 Testing Your Setup with nslookup

If you have correctly set up your local domain and your connection to the Internet is
up, you should be able to look up a local and a remote domain name. We'll step you
through the lookups with nslookup. This book contains an entire chapter on this topic
(Chapter 12), but we will cover nslookup in enough detail here to do basic name-
server testing.

4.4.3.1 Look up a local name

You can use nslookup to look up any type of resource record, and it can be directed to
query any name server. By default, it looks up A (address) records using the name
server on the local system. To look up a host's address with nslookup, run nslookup
with the host's name as the only argument. A lookup of a local name should return
almost instantly.

We ran nslookup to look up carrie:

C:\> nslookup carrie
Server: terminator.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4

If looking up a local name works, your local name server has been configured
properly for your domain. If the lookup fails, you'll see something like this:

*** terminator.movie.edu can't find carrie: Non-existent domain

This means that either carrie is not in your data—check the DNS console or the zone
data file—or some name server error occurred (but you should have caught the error
when you checked the Event Log).

4.4.3.2 Look up a local address

When nslookup is given an address to look up, it knows to make a PTR query instead
of an address query. We ran nslookup to look up carrie's address:

C:\> nslookup 192.253.253.4
Server: terminator.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4

If looking up an address works, your local name server has been configured properly
for your in-addr.arpa domain. If the lookup fails, you'll see the same error message as
when you looked up a name.

4.4.3.3 Look up a remote name

The next step is to use the local name server to look up a remote name, such as
ftp.uu.net or another system you know on the Internet. Don't forget to add a period at
the end of your input so the system doesn't automatically append the origin,
movie.edu.

This command may not return as quickly as the last one. If nslookup fails to get a
response from your name server, it will wait a little over a minute before giving up:

C:\> nslookup ftp.uu.net.
Server: terminator.movie.edu
Address: 192.249.249.3

Name: ftp.uu.net
Address: 192.48.96.9

If this lookup works, your name server knows where the root name servers are and
how to contact them to find information about domains other than your own. If it
fails, there is a problem with the cache file or the network. The cache file might be
empty or missing address records for the root name servers. Or perhaps the network is
broken somewhere and you can't reach the name servers for the remote domain. Try a
different remote domain name.

If these first three lookups succeeded, congratulations! You have a primary master
name server up and running. At this point, you are ready to start configuring your
slave name server.

4.4.3.4 One more test

While you are testing, though, run one more test. Try having a remote name server
look up a name in your zone. This will work only if your parent name servers have
already delegated your zone to the name server you just set up. If your parent required
you to have your two name servers running before delegating your zone, skip ahead to
the next section.

To make nslookup use a remote name server to look up a local name, give the local
host's name as the first argument and the remote server's name as the second
argument. Again, if this doesn't work, it may take a little longer than a minute before
nslookup gives you an error message. For instance, to have gatekeeper.dec.com look
up carrie, we'd enter:

C:\> nslookup carrie gatekeeper.dec.com.
Server: gatekeeper.dec.com.
Address: 204.123.2.2

Name: carrie.movie.edu
Address: 192.253.253.4

If the first two lookups worked but using a remote name server to look up a local
name failed, you may not be registered with your parent name server. That is not a
problem at first because systems within your zone can look up the names of other
systems within and outside your zone. You'll be able to send email and ftp to local and
remote systems. Some systems won't allow FTP connections if they can't map your
address back to a name. But not being registered will shortly become a problem.
Hosts outside of your zone cannot look up names within your zone. You will be able
to send email to friends in remote domains, but you won't get their responses. To fix
this problem, contact someone responsible for your parent zone and have them check
the delegation of your zone.

4.5 Running a Slave Name Server

You need to set up another name server for robustness. You can (and probably will)
set up more than two name servers. Two servers are the minimum. If you have only
one name server and it goes down, no one can look up names in your zone. A second
name server splits the load with the first server or handles the whole load if the first
server is down. You could set up another primary master name server, but we don't
recommend it. Set up a slave name server instead.

How does a server know if it is a primary master or a slave for a zone? The DNS
server configuration information in the Registry tells the server it is a primary master
or a slave on a per zone basis. The NS records don't tell us which server is the primary
master for a zone and which servers are slaves for a zone—they only say who the
servers are. (Globally, DNS doesn't care; as far as the actual name resolution goes,
slave servers are as good as primary master servers.)

What is different between a primary master name server and a slave name server? The
crucial difference is where the server gets its data. A primary master name server
reads its data from files. A slave name server loads its data over the network from
another name server. This process is called a zone transfer.

A slave name server is not limited to loading zones from a primary master name
server; a slave server can load from another slave server. The big advantage of slave
name servers is that you maintain only one set of zone data files, the ones on the

primary master name server. You don't have to worry about synchronizing the files
among name servers; the slaves do that for you.

A slave name server doesn't need to retrieve all of its data files over the network; the
cache.dns file is the same as on a primary master, so keep a local copy on the slave.

One point about slaves may become confusing: slaves used to be
called secondary master name servers. We'll use the term slave
in this book, but you'll see that the DNS console still uses the
term secondary. As we said, the two are synonymous.

4.5.1 Add a New Server to the DNS Console

The first step in configuring a slave server is to add the server to the DNS console's
world view. Just as we did when configuring the primary master, select Action
Connect To Computer..., then enter the IP address of the slave. In this case our slave
will be wormhole with IP address 192.249.249.1. Of course, the DNS server has to be
installed and running on the slave-to-be for the DNS console to be able to manage it.

4.5.2 Create a New Zone

This new server will be a slave for every zone on the primary, so we'll have to go
through the new zone process for each zone. Let's start with movie.edu. Select Action

New Zone.... This time, select Standard secondary (remember, this is
synonymous with slave) in the second window of the wizard. In the third window,
select Forward lookup zone . The fourth window is shown in Figure 4-23.

Figure 4-23. Creating a new secondary zone: specifying the zone's domain name

In the Name field, enter the domain name of the zone (in this case, movie.edu). In the
Server field, enter the IP address of the primary master name server. You can type
this information or take advantage of a shortcut offered by the DNS console. When
you click the Browse button, the DNS console shows you a view of the zones on all
the name servers it's managing. So rather than typing out movie.edu, we could have
drilled down to find that zone in the Browse window, as shown in Figure 4-24.

Figure 4-24. Finding a zone with the Browse window

Whether you enter the zone and server manually or use the Browse shortcut, click
Next to get the next window, shown in Figure 4-25.

Figure 4-25. Creating a new secondary zone: specifying master servers

At this point, the process of creating a primary master zone and a slave zone really
diverge. This is the screen where you specify where this name server will get the zone
data. In this example, we're making wormhole a slave for the movie.edu zone. We
need to tell wormhole to load the zone from terminator, the primary master. In fact,
on this screen you can specify multiple IP addresses. In advanced (and complicated)
configurations, sometimes there are multiple primaries or multiple sources from
which a slave can get the zone information. The DNS console supports those
configurations. You could also just specify the IP address of another slave after that of
the primary: in case the primary is down, this slave can load from another slave. Of
course, Movie U. doesn't have another slave (yet).

For now, we just specify terminator's IP address, 192.249.249.3. (Once again you can
click the Browse button and find terminator among the DNS console's list of known
name servers to avoid having to type its IP address.) Then click Next. The final

window in the process is the same as when creating a primary zone: it just tells you
that you're done now and asks you to click Finish. We'll omit showing it to you.

When you're done, the new slave immediately initiates a zone transfer to the primary
to download the zone. Within a few seconds you should be able to double-click the
slave's icon for the zone and see the records in the zone.

4.5.3 Add an NS Record for the New Slave Name Server

Your new slave won't be much good if the rest of the world doesn't know about it. As
a general rule, when you add another name server for a zone, you also need to add an
NS record for it. (We'll discuss the exceptions to this in Chapter 8.)

You need to add an NS record on the zone's primary. (Remember that all changes to a
zone are made on the primary and propagate automatically to the slaves. Don't get
confused by the fact that the DNS console lets you see all your name servers—you
make the changes only to the zone's primary.) In our case, we need to add an NS
record for wormhole to the movie.edu zone. So we highlight movie.edu under
terminator and select Action Properties. Click on the Name Servers tab and
you'll see a window like the one in Figure 4-26.

Figure 4-26. NS records for the movie.edu zone

This window shows that right now there's only one NS record for the movie.edu zone,
which specifies terminator.movie.edu as an authoritative name server. To add another,
click Add... and you'll see the window shown in Figure 4-27.

Figure 4-27. Adding an NS record

Enter the name and IP address of the slave name server and click OK.

4.5.4 Don't Forget the in-addr.arpa Zones!

Now repeat this slave zone creation process with the 249.249.192.in-addr.arpa and
253. 253.192.in-addr.arpa zones.

4.5.5 SOA Values

Remember this SOA record for the movie.edu zone?

@ IN SOA terminator.movie.edu. administrator.movie.edu. (
 1 ; serial number
 3600 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

We never explained what the values in between the parentheses were for.

The serial number applies to all the data within the zone. We chose to start our serial
number at 1, a logical place to start. The DNS console automatically increments the
serial number in a zone's SOA record whenever you make a change to the zone. If
you've maintained zone data files by hand, you might have encoded the date in the
serial number—for example, 2000102301. This format is YYYYMMDDNN, where
YYYY is the year, MM is the month, DD is the day, and NN is a count of how many
times the zone data were modified that day. Unfortunately, you can't use that
convention with the DNS console. It just increments the serial number by one each
time a change is made and doesn't understand the date encoding.

When a slave name server contacts a primary master server for zone data, it first asks
for the serial number of the data. If the slave's serial number is lower than the
primary's, the slave's zone data is out of date. In this case, the slave pulls a new copy
of the zone. As you might guess, if you ever modify the zone data files on the primary

master by hand, you must increment the serial number, too. Updating zone data files
is covered in Chapter 7.

The next four fields specify various time intervals in seconds:

refresh

The refresh interval tells the slave how often to check that its data is up to
date. To give you an idea of the system load this feature causes, a slave will
make one SOA query per zone per refresh interval. The default value
generated by the DNS console when the zone was created, one hour, is
reasonably aggressive. Most users will tolerate a delay of half a working day
for things like name server data to propagate when they are waiting for their
new workstation to be operational. If you provide one-day service for your
site, consider raising this value to eight hours. If your data doesn't change very
often, or if all your slaves are spread over long distances (as the root name
servers are), consider a longer value, such as 24 hours.

retry

If a slave fails to reach the primary name server(s) after the refresh period (the
hosts or hosts could be down), it starts trying to connect every retry seconds.
The retry interval is usually shorter than the refresh interval, but it doesn't
have to be.

expire

If a slave fails to contact the primary server(s) for expire seconds, the slave
expires its data. Expiring the data means the slave stops giving out answers
about the data because the data is too old to be useful. Essentially, this field
says: at some point, the data is so old that having no data is better than having
stale data. We think Microsoft's default expire time of 86,400 seconds (24
hours) is awfully short. Expire times on the order of a week are common, and
the interval can be longer (up to a month) if you frequently have problems
reaching your updating source. The expiration time should always be much
larger than the retry and refresh intervals; if the expire time is smaller than the
refresh interval, your slaves will expire their data before trying to load new
data.

minimum TTL

TTL stands for time to live. This value applies to all the resource records in
the zone data file. The name server supplies this TTL in query responses,
allowing other servers to cache the data for the TTL interval. If your data
doesn't change much, you might consider using a minimum TTL of several
days. One week is about the longest value that makes sense. Again, the default
value of 3,600 seconds (one hour) is very short, which we don't recommend
because of the amount of DNS traffic it causes.

What values you choose for your SOA record will depend upon the needs of your site.
In general, longer times cause less loading on your systems and lengthen the
propagation of changes; shorter times increase the load on your systems and speed up
the propagation of changes. We find the following values work well for most sites;
they're also a good starting point if you're not sure what values to use:

 10800 ; Refresh 3 hours
 3600 ; Retry 1 hours
 2592000 ; Expire 30 days
 86400 ; Minimum TTL 1 day

One final note about TTL values: the DNS console displays them in a somewhat
cryptic fashion. Take a look back at the NS record we added in Figure 4-27. Notice
the TTL specified as 0: 1: 0: 0. "What the heck is that?" you ask. Well, the first field
is days, then hours, minutes, and seconds. So rather than display a value in seconds
and make you do the math, the DNS console lets you specify a TTL in a (slightly)
more convenient way.

4.6 Adding More Zones

Now that you have your name servers running, you might want to handle more zones.
What needs to be done? Nothing special, really. Just use the DNS console to select the
appropriate server in the left pane, then choose Action New Zone.... Follow the
instructions earlier in this chapter according to whether you are creating a primary or
a slave (secondary) zone.

At this point, it's useful to repeat something we said in an earlier chapter. Calling a
given name server a primary master name server or slave name server is a little silly.
Name servers can be authoritative for more than one zone. A name server can be a
primary master for one zone and a slave for another. Most name servers, however, are
either primary master for most of the zones they load or slave for most of the zones
they load. So if we call a particular name server a primary master or a slave, we mean
that it's the primary master or a slave for most of the zones it loads.

4.7 DNS Properties

Let's finish this chapter with an explanation of the Action Properties selection.
The Properties selection on the Action menu is context-sensitive. When selected, the
DNS console displays the properties of the resource record, zone, or server that is
highlighted.

4.7.1 Resource Record Properties

Select a resource record on the right by single-clicking it. Then choose Action
Properties. The window should look familiar: it's the same one you used to add the
record. You can get the same effect by simply double-clicking the record, too.

4.7.2 Zone Properties

The zone properties window is viewed by selecting a zone on the left and choosing
Action Properties. Unlike resource record properties, some zone information can
be changed only from this window. It has five tabs:

General

This window shows the name of the zone's data file as well as indicating if it's
a primary or slave (secondary) zone. The type of the zone can be changed
from primary to slave or vice versa. Dynamic updates and aging/scavenging
are advanced topics that we'll cover in Chapter 11. The window for the
movie.edu zone is shown in Figure 4-28.

Figure 4-28. Zone properties window, General tab

Start of Authority (SOA)

This window shows the zone's SOA record. The display is the same as the
window shown way back in Figure 4-13 and is no different than if you double-
click the SOA record in the right panel.

Name Servers

We've already seen this window—see Figure 4-26.

WINS

The WINS tab is covered in Chapter 10.

Zone Transfers

The Zone Transfers tab and Notify settings are also covered in Chapter 10.

4.7.3 Server Properties

You can view the server properties by selecting a server on the left and choosing
DNSProperties. It has three tabs:

Interfaces

This window allows you to specify the interfaces on which the server will
listen for queries. If you have multiple interfaces (as for virtual web hosting),
you might not need them all to be listed here. The default behavior is for the
server to listen on all interfaces. The window is shown in Figure 4-29.

Figure 4-29. Server properties, Interfaces tab

Forwarders, Advanced, Logging, and Monitoring

These tabs are all covered in Chapter 10.

Root Hints

We discussed this window earlier—see Figure 4-20.

4.8 What Next?

In this chapter, we showed you how to set up a primary master and a slave name
server. There is more work to do to complete setting up your local domain: you need
to modify your DNS data for email, configure the other hosts in your domain to use
name servers, and possibly start up more name servers. These topics are covered in
the next few chapters.

Chapter 5. DNS and Electronic Mail

And here Alice began to get rather sleepy, and went on saying to
herself, in a dreamy sort of way, "Do cats eat bats? Do cats eat bats?"
and sometimes "Do bats eat cats?" for, you see, as she couldn't answer
either question, it didn't much matter which way she put it.

I'll bet you're drowsy too, after that looong chapter. Thankfully, this next chapter
discusses a topic that will probably be very interesting to you system administrators
and postmasters: how DNS impacts electronic mail. And even if it isn't interesting to
you, at least it's shorter than the last chapter.

One of the advantages of the Domain Name System over host tables is its support of
advanced mail routing. When mailers had only the HOSTS.TXT file (and its
derivatives, /etc/hosts in the Unix world and %SYSTEM
ROOT%\system32\drivers\etc\HOSTS under Windows) to work with, the best they
could do was to attempt delivery to a host's IP address. If that failed, they could either
defer delivery of the message and try again later or bounce the message back to the
sender.

DNS offers a mechanism for specifying backup hosts for mail delivery. The
mechanism also allows hosts to assume mail-handling responsibilities for other hosts.
This lets diskless hosts that don't run mailers, for example, have mail addressed to
them processed by their servers.

DNS, unlike host tables, allows arbitrary names to represent electronic mail
destinations. You can?and most organizations on the Internet do?use the domain name
of your main forward-mapping zone as an email destination. Or you can add domain
names to your zone that are purely email destinations and don't represent any
particular host. A single logical email destination may also represent several mail
servers. With host tables, mail destinations were hosts, period.

Together, these features give administrators much more flexibility in configuring
electronic mail on their networks.

5.1 MX Records

DNS uses a single type of resource record to implement enhanced mail routing, the
MX record. Originally, the MX record's function was split between two records, the
MD (mail destination) and MF (mail forwarder) records. MD specified the final
destination to which a message addressed to a given domain name should be
delivered. MF specified a host that would forward mail on to the eventual destination,
should that destination be unreachable.

Early experience with DNS on the Internet showed that separating the functions didn't
work very well. A mailer needed both the MD and MF records attached to a domain
name (if both existed) to decide where to send mail—one or the other alone wouldn't

do. But an explicit lookup of one type or another (either MD or MF) would cause a
name server to cache just that record type. So mailers either had to do two queries,
one for MD and one for MF data, or they could no longer accept cached answers. This
meant that the overhead of running mail was higher than that of running other
services, which was eventually deemed unacceptable.

The two records were integrated into a single record type, MX, to solve this problem.
Now a mailer just needed all the MX records for a particular domain name destination
to make a mail routing decision. Using cached MX records was fine, as long as the
TTLs matched.

MX records specify a mail exchanger for a domain name: a host that will either
process or forward mail for the domain name (through a firewall, for example).
"Processing" the mail means either delivering it to the individual to whom it's
addressed or gatewaying it to another mail transport, such as X.400. "Forwarding"
means sending it to its final destination or to another mail exchanger "closer" to the
destination via SMTP, the Internet's Simple Mail Transfer Protocol. Sometimes
forwarding the mail involves queuing it for some amount of time, too.

In order to prevent mail routing loops, the MX record has an extra parameter, besides
the domain name of the mail exchanger: a preference value. The preference value is
an unsigned 16-bit number (between 0 and 65535) that indicates the mail exchanger's
priority. For example, the MX record:

peets.mpk.ca.us. IN MX 10 relay.hp.com.

specifies that relay.hp.com is a mail exchanger for peets.mpk.ca.us at preference value
10.

Taken together, the preference values of a destination's mail exchangers determine the
order in which a mailer should use them. The preference value itself isn't important,
only its relationship to the values of other mail exchangers: is it higher or lower than
the values of this destination's other mail exchangers? Unless there are other records
involved, this:

plange.puntacana.dr. IN MX 1 listo.puntacana.dr.
plange.puntacana.dr. IN MX 2 hep.puntacana.dr.

does exactly the same thing as:

plange.puntacana.dr. IN MX 50 listo.puntacana.dr.
plange.puntacana.dr. IN MX 100 hep.puntacana.dr.

Mailers should attempt delivery to the mail exchangers with the lowest preference
values first. This may seem a little counterintuitive—the most preferred mail
exchanger has the lowest preference value. But since the preference value is an
unsigned quantity, this lets you specify a "best" mail exchanger at preference value 0.

If delivery to the most preferred mail exchanger(s) fails, mailers should attempt
delivery to less preferred mail exchangers (those with higher preference values), in
order of increasing preference value. That is, mailers should try more-preferred mail

exchangers before they try less-preferred mail exchangers. More than one mail
exchanger may share the same preference value, too. This gives the mailer its choice
of which to send to first. The mailer must try all the mail exchangers at a given
preference value before proceeding to the next higher value, though.

For example, the MX records for oreilly.com might be:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Interpreted together, these MX records instruct mailers to attempt delivery to
oreilly.com by sending to:

1. ora.oreilly.com first
2. Either ruby.oreilly.com or opal.oreilly.com next, and finally
3. The remaining preference 10 mail exchanger (the one not used in step 2)

Of course, once the mailer successfully delivers the mail to one of oreilly.com's mail
exchangers, it can stop. A mailer successfully delivering oreilly.com mail to
ora.oreilly.com doesn't need to try ruby.oreilly.com or opal.oreilly.com.

Note that oreilly.com isn't a particular host; it's the domain name of O'Reilly &
Associates' main forward-mapping zone. O'Reilly & Associates uses the domain name
as the email destination for everyone who works there. It's much easier for
correspondents to remember the single email destination oreilly.com than to
remember which host—ruby.oreilly.com? amber.oreilly.com?—each employee has an
email account on.

This requires, of course, that the mailer on ora.oreilly.com keep track of the host on
which each user at O'Reilly & Associates has an email account. That's usually done
by maintaining a master aliases file on ora.oreilly.com that forwards email from
ora.oreilly.com to its eventual destination.

What if a destination doesn't have any MX records, but it has one or more A records?
Will a mailer simply not deliver mail to that destination? It depends on the mail
server. Both Exchange and the SMTP servers provided with Windows 2000 require
the presence of a valid MX record for any domain to which you want to deliver mail.
However, sendmail, a popular mail transport agent from the Unix world, is different.
Recent versions of sendmail can be compiled with the functionality to deliver mail to
a destination with no MX records but at least one A record. Most vendors have
compiled their sendmails with this more forgiving feature: if no MX records exist but
one or more A records do, they'll at least attempt delivery to the address. sendmail
Version 8, compiled "out of the box," will try the address of a mail destination
without MX records. Check your vendor's documentation if you're not sure whether
your mail server will send mail to destinations with only address records. Even though
nearly all mailers will deliver mail to a destination with just an address record and no
MX records, it's still a good idea to have at least one MX record for each legitimate
mail destination. Most mailers, including sendmail, will always look up the MX
records for a destination first when there is mail to deliver. If the destination doesn't

have any MX records, a name server—usually one of your authoritative name
servers—still must answer that query, and then sendmail will go on to look up A
records. That takes extra time, slows mail delivery, and adds a little load to your
zone's authoritative name servers. If you simply add an MX record for each
destination pointing to a domain name that maps to the same address that an address
lookup would return, the mailer will have to send only one query, and the mailer's
local name server will cache the MX record for future use.

5.2 Adding MX Records with the DNS Console

Now that you're familiar with MX records as they appear in zone data files, let's cover
how to add them with the DNS console. First, right-click on the domain name of the
zone to which you'd like to add the MX record. You'll access the drop-down menu
shown in Figure 5-1.

Figure 5-1. Adding an MX record to a zone

Choose New Mail Exchanger... from the pop-up menu. A small window, shown in
Figure 5-2, will be displayed.

In Figure 5-2, we're adding an MX record for terminator.movie.edu at preference 10,
pointing to terminator.movie.edu itself. The record that's added to the zone data file
looks like this:

terminator IN MX 10 terminator

Figure 5-2. Adding an MX record for terminator.movie.edu

5.3 What's a Mail Exchanger, Again?

The idea of a mail exchanger is probably new to many of you, so let's go over it in a
little more detail. A simple analogy should help here: imagine that a mail exchanger is
an airport, and instead of setting up MX records to instruct mailers where to send
messages, you're advising your in-laws on which airport to fly into when they come to
visit you.

Say you live in Los Gatos, California. The closest airport for your in-laws to fly into
is San Jose, the second closest is San Francisco, and the third Oakland. (We'll ignore
other factors such as price of the ticket, Bay Area traffic, etc.) Don't see the parallel?
Then picture it like this:

los-gatos.ca.us. IN MX 1 san-jose.ca.us.
los-gatos.ca.us. IN MX 2 san-francisco.ca.us.
los-gatos.ca.us. IN MX 3 oakland.ca.us.

The MX list is just an ordered list of destinations that tells mailers (your in-laws)
where to send messages (fly) if they want to reach a given email destination (your
house). The preference value tells them how desirable it is to use that destination—
you can think of it as a logical "distance" from the eventual destination (in any units
you choose), or simply as a "top ten"-style ranking of the proximity of those mail
exchangers to the final destination.

With this list, you're saying, "Try to fly into San Jose, and if you can't get there, try
San Francisco and Oakland, in that order." It also says that if you reach San
Francisco, you should take a commuter flight to San Jose. If you wind up in Oakland,
you should try to get a commuter to San Jose or at least to San Francisco.

What makes a good mail exchanger, then? The same qualities that make a good
airport:

Size

You wouldn't want to fly into tiny Reid-Hillview Airport to get to Los Gatos,
because the airport's not equipped to handle large planes or many people.
(You'd probably be better off landing a big jet on Interstate 280 than at Reid-
Hillview.) Likewise, you don't want to use an emaciated, underpowered host
as a mail exchanger; it won't be able to handle the load.

Uptime

You know better than to fly through Denver International Airport in the
winter, right? Then you should know better than to use a host that's rarely up
or available as a mail exchanger.

Connectivity

If your relatives are flying in from far away, you've got to make sure they can
get a direct flight to at least one of the airports in the list you give them. You
can't tell them their only choices are San Jose and Oakland if they're flying in
from Helsinki. Similarly, you've got to make sure that at least one of your
hosts' mail exchangers is reachable to anyone who might conceivably send
you mail.

Management and administration

How well an airport is managed has a bearing on your safety while flying into
or just through the airport and on how easy it is to use. Think of these factors
when choosing a mail exchanger. The privacy of your mail, the speed of its
delivery during normal operations, and how well your mail is treated when
your hosts go down all hinge upon the quality of the administrators who
manage your mail exchangers.

Keep this example in mind, because we'll use it again later.

5.4 The MX Algorithm

That's the basic idea behind MX records and mail exchangers, but there are a few
more wrinkles you should know about. To avoid routing loops, mailers need to use a
slightly more complicated algorithm than what we've described when they determine
where to send mail.17

Imagine what would happen if mailers didn't check for routing loops. Let's say you
send mail from your workstation to nuts@oreilly.com, raving (or raging) about the
quality of this book. Unfortunately, ora.oreilly.com is down at the moment. No
problem! Recall oreilly.com's MX records:

oreilly.com. IN MX 0 ora.oreilly.com.

17 This algorithm is based on RFC 974, which describes how Internet mail routing works.

oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Your mailer falls back and sends your message to ruby.oreilly.com, which is up.
ruby.oreilly.com's mailer then tries to forward the mail on to ora.reilly.com but can't
because ora.oreilly.com is down. Now what? Unless ruby.oreilly.com checks the
sanity of what she is doing, she'll try to forward the message to opal.oreilly.com or
maybe even to herself. That's certainly not going to help get the mail delivered. If
ruby.oreilly.com sends the message to herself, we have a mail routing loop. If
ruby.oreilly.com sends the message to opal.oreilly.com, opal.oreilly.com will either
send it back to ruby.oreilly.com or send it to herself, and we again have a mail routing
loop.

To prevent this from happening, mailers discard certain MX records before they
decide where to send a message. A mailer sorts the list of MX records by preference
value and looks in the list for the canonical domain name of the host on which it's
running. If the local host appears as a mail exchanger, the mailer discards that MX
record and all MX records in which the preference value is equal or higher (that is,
equally or less-preferred mail exchangers). That prevents the mailer from sending
messages to itself or to mailers "farther" from the eventual destination.

Let's think about this in the context of our airport analogy. This time, imagine you're
an airline passenger (a message) trying to get to Greeley, Colorado. You can't get a
direct flight to Greeley, but you can fly to either Fort Collins or Denver (the two next-
highest mail exchangers). Since Fort Collins is closer to Greeley, you opt to fly to
Fort Collins.

Now, once you've arrived in Fort Collins, there's no sense in flying to Denver, away
from your destination (a lower-preference mail exchanger). (And flying from Fort
Collins to Fort Collins would be silly, too.) So the only acceptable flight to get you to
your destination is now a Fort Collins-Greeley flight. You eliminate flights to less-
preferred destinations to prevent frequent-flyer looping and wasteful travel time.

One caveat: most mailers will look only for their local host's canonical domain name
in the list of MX records. They don't check for aliases (domain names on the left side
of CNAME records). Unless you always use canonical names in your MX records,
there's no guarantee that a mailer will be able to find itself in the MX list, and you'll
run the risk of having your mail loop.

If you do list a mail exchanger by an alias and it unwittingly tries to deliver mail to
itself, most mailers will detect the loop and bounce the mail with an error. Here's the
error message from recent versions of sendmail:

554 MX list for movie.edu points back to relay.isp.com
554 <root@movie.edu>... Local configuration error

The moral: in an MX record, always use the mail exchanger's canonical name.

One more caveat: the hosts you list as mail exchangers must have address records. A
mailer needs to find an address for each mail exchanger you name or else it can't
attempt delivery there.

To go back to our oreilly.com example, when ruby.oreilly.com received the message
from your workstation, her mailer would have checked the list of MX records:

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

Finding the local host's domain name in the list at preference value 10,
ruby.oreilly.com's mailer would discard all the records at preference value 10 or
higher (the records in bold):

oreilly.com. IN MX 0 ora.oreilly.com.
oreilly.com. IN MX 10 ruby.oreilly.com.
oreilly.com. IN MX 10 opal.oreilly.com.

leaving only:

oreilly.com. IN MX 0 ora.oreilly.com.

Since ora.oreilly.com is down, ruby.oreilly.com would defer delivery until later and
queue the message.

What happens if a mailer finds itself at the highest preference (lowest preference
value) and has to discard the whole MX list? Some mailers attempt delivery directly
to the destination host's IP address as a last-ditch effort. In most mailers, however, it's
an error. It may indicate that DNS thinks the mailer should be processing (not just
forwarding) mail for the destination, but the mailer hasn't been configured to know
that. Or it may indicate that the administrator has ordered the MX records incorrectly
by using the wrong preference values.

Say, for example, the folks who run acme.com add an MX record to direct mail
addressed to acme.com to a mailer at their Internet service provider:

acme.com. IN MX 10 mail.isp.net.

Most mailers need to be configured to identify their aliases and the names of other
hosts for which they process mail. Unless the mailer on mail.isp.net is configured to
recognize email addressed to acme.com as local mail, it will assume it's being asked
to relay the mail and attempt to forward the mail to a mail exchanger closer to the
final destination.18 When it looks up the MX records for acme.com, it will find itself
as the most-preferred mail exchanger and will bounce the mail back to the sender.

You may have noticed that we tend to use multiples of 10 for our preference values.
Ten is convenient because it allows you to insert other MX records temporarily at
intermediate values without changing the other weights, but otherwise there's nothing
magical about it. We could just as easily have used increments of 1 or 100—the effect
would have been the same.

18 Unless, of course, mail.isp.net's mailer is configured not to relay mail for unknown domains. In this case, it would simply
reject the mail.

5.5 DNS and Exchange

If you're running Microsoft Exchange Server, you need to know how it interoperates
with DNS, whether or not you're using the Microsoft DNS Server. There are some
subtle differences between various versions of Exchange and Windows NT or
Windows 2000:

• If you're using Exchange 4.x or 5.x on Windows NT, you can run Exchange
without DNS. However, before you can install the Internet Mail Service
(which is what Microsoft calls its SMTP server), you must have A and MX
records defined for the host and domain on which you're installing the IMS.
You also need to make sure that the Exchange server's DNS settings are set
correctly so it can look up mail forwarders for outgoing mail.

• If you're using the SMTP server that comes with the Windows NT Option
Pack, Internet Information Server 4.x, or Windows 2000, you need an MX
record if you want to receive mail; to send mail you only need access to a
name server.

• If you're using Windows 2000 Active Directory, you'll find that your need for
DNS is pervasive—Active Directory depends on DNS to find domain
controllers, logon servers, and other services. We'll cover the DNS needs of
Active Directory in Chapter 11.

• Exchange 2000 uses Active Directory as its directory service, so it is totally
dependent on the underlying OS's DNS setup. In particular, Exchange 2000
needs access to SRV records so it can find global catalog servers, instant
messaging hosts, and domain controllers. Don't worry—SRV records are also
covered in Chapter 11.

Chapter 6. Configuring Hosts

They were indeed a queer-looking party that assembled on the bank—
the birds with draggled feathers, the animals with their fur clinging
close to them, and all dripping wet, cross, and uncomfortable.

Now that you or someone else in your organization has set up name servers for your
zones, you'll want to configure the hosts on your network to use them. That involves
configuring those hosts' resolvers, which you can do by telling the resolvers which
name servers to query and which domain names to search. This chapter covers these
topics and focuses on the Windows 2000 resolver. It also briefly describes
configuring the resolver in Windows 95, Windows 98, and Windows NT.

6.1 The Resolver

We introduced resolvers way back in Chapter 2, but we didn't say much more about
them. The resolver, you'll remember, is the client half of the Domain Name System.
It's responsible for translating a program's request for host information into a query to
a name server and for translating the response into an answer for the program.

We haven't done any resolver configuration yet because the occasion for it hasn't
arisen. When we set up our name servers in Chapter 4, the resolver's default behavior
worked just fine for our purposes. But if we'd needed the resolver to do more than or
behave differently from the default, we would have had to configure the resolver.

There's one thing we should mention up front: what we describe in the next few
sections is the behavior of the Windows 2000 resolver. There are lots of other
resolvers, though. Every version of Windows has its own resolver, and the
configuration and behavior of each one is slightly different.19 Unix hosts normally use
some variant of the BIND resolver, discussed in O'Reilly's DNS and BIND, and many
Unix vendors have extended their resolvers' functionality. Still, the basic concepts
behind the operation of each resolver are quite common.

6.2 Resolver Configuration

So, what exactly does the resolver allow you to configure? Most resolvers let you
configure at least three aspects of their behavior: the DNS suffix,20 the search list, and
the name server(s) that the resolver queries.

19 Installing a Service Pack or a different Winsock version (e.g., upgrading to Windows 95 OSR2) can also change resolver
behavior.
20 We're using the Windows 2000 term here for clarity. You may know the DNS suffix as the default domain if you've
configured the BIND resolver before.

6.2.1 DNS Suffix

The DNS suffix is the DNS domain in which a system resides. Under certain
circumstances, the resolver uses the DNS suffix to generate the search list (which we
discuss next). Don't confuse the DNS suffix, which is obviously a DNS domain name,
with the name of the Active Directory domain of which the system is a member. The
two values are usually the same because the DNS suffix defaults to a host's Active
Directory domain, but they don't have to be. As we'll see in a moment, you can
configure a host's DNS suffix to be different from the Active Directory domain of
which it's a member. We're going to talk much more about domain names—both DNS
and Active Directory—in Chapter 11. For now, though, it's not necessary to know
anything more about Active Directory domains to understand resolver configuration.

All configuration options for the Windows NT 4.0 resolver were found in a single
window. The Windows 2000 resolver configuration settings, however, are located on
three separate windows. The first of these windows is where you change a host's DNS
suffix. To get there, open the Control Panel and double-click on System, then click
the Network Identification tab to display the window shown in Figure 6-1.

Figure 6-1. Network Identification tab

Here you see the host's fully qualified domain name, which Windows 2000 refers to
as the Full computer name . It's the concatenation of the host's single-label computer
name and its primary DNS suffix. The value listed as Domain is not the DNS suffix;
it's the host's Active Directory domain. To change the primary DNS suffix, click
Properties, and you'll see a window like the one shown in Figure 6-2.

You can change the computer name—the first label of the host's name—only from
this window. The Member of box again refers to Active Directory domain
membership, which, strictly speaking, doesn't affect resolver behavior. To change the
DNS suffix, click on More... to display the window shown in Figure 6-3.

Figure 6-2. Identification Changes window

Figure 6-3. DNS Suffix window

Here—finally!—is where you can change the DNS suffix. This window also shows
the only linkage between Active Directory and DNS resolver behavior. A host's DNS
suffix stays the same as its Active Directory domain as long as the Change primary
DNS suffix when domain membership changes box is checked, which is the default
setting. By unchecking this box and changing the Primary DNS suffix of this
computer setting, you can decouple the DNS default domain and Active Directory
domain. You do this only if you want your hosts to reside in (that is, be named in) a
different domain than your Active Directory domain. Few organizations who set up
Active Directory want to do this, and Microsoft does not recommend setting the
primary DNS suffix to any value other than the DNS name of an Active Directory
domain to which the computer is joined. But enough about Active Directory until
Chapter 11.

The Windows 2000 resolver also supports a different DNS suffix for each network
interface on the system. In fact, each network interface (or adapter in Windows 2000
parlance) has its own resolver configuration. Getting to the connection-specific
resolver configuration windows is a little involved, though: click on Start, then

Settings, then Network and Dial-up Connections . This brings up the window shown
in Figure 6-4.

Figure 6-4. Network and Dial-up Connections window

This particular Windows 2000 host has two network interfaces. (We've gone to the
trouble of naming them because the default names assigned by Windows were Local
Area Connection and Local Area Connection 2—how boring!) Right-click on a local
area network adapter and choose Properties. This brings up a window like the one
shown in Figure 6-5.

Figure 6-5. Local area connection properties window

Double-click on Internet Protocol (TCP/IP). This displays the second of the three
windows used for resolver configuration, which is shown in Figure 6-6.

Further resolver configuration options are available by clicking the Advanced...
button and selecting the DNS tab, which produces the third and final window with
resolver settings; it's shown in Figure 6-7.

Figure 6-6. Internet Protocol (TCP/IP) Properties window

Figure 6-7. Advanced TCP/IP Settings window, DNS tab

The connection-specific DNS suffix is set in the DNS suffix for this connection
field. Connection-specific DNS suffixes do affect resolver behavior (as we'll talk
about in the next section, which discusses the search list), but their primary purpose is
to assist with DNS registration. As we'll discuss in Chapter 11, Windows 2000 hosts

automatically register their names in DNS. You'd specify a connection-specific suffix
if your host connects to multiple networks and needs a different fully qualified
domain name on each network. For example, perhaps one interface is connected to a
network in which the host is named diehard.movie.edu, and another interface is
connected to a network in which the host has a different fully qualified domain name,
such as diehard.fx.movie.edu.

6.2.2 Search List

The primary DNS suffix and any connection-specific suffixes determine the default
search list. The search list was designed to make users' lives a little easier by saving
them some typing. The idea is to search one or more domains for incomplete names—
that is, names that might not be fully qualified domain names.

Most Windows networking commands that take a domain name as an argument, such
as ftp and ping, apply the search list to those arguments.

With the Windows 2000 resolver, a user can indicate that a domain name is fully
qualified by adding a trailing dot to it.21 For example, the trailing dot in the command:

C:\> ftp ftp.oreilly.com.

means "don't bother searching any other domains; this domain name is fully
qualified." This is analogous to the leading backslash in full pathnames in the
Windows filesystem. Pathnames without a leading backslash are interpreted as
relative to the current working directory while pathnames with a leading backslash are
absolute, anchored at the root.

The default search list includes the primary DNS suffix and any connection-specific
suffixes. If the Append parent suffixes of the primary DNS suffix box is checked
(see Figure 6-7), each of the primary DNS suffix's parent domains with two or more
labels is also included in the default search list. So on a Windows 2000 host
configured with a primary DNS suffix of cv.hp.com and the Append parent suffixes
of the primary DNS suffix box checked, the default search list would contain first
cv.hp.com, the primary DNS suffix, then hp.com (the primary DNS suffix's parent),
but not com, as it has only one label.22

The search list is usually applied after the name is tried as-is. As long as the argument
you type has at least one dot in it, it's looked up exactly as you typed it before any
element of the search list is appended. If that lookup fails, the search list is applied.

Why is it better to try the argument first if it contains one or more dots? From
experience, people who wrote resolvers found that, more often than not, if a user
bothered to type in a name with even a single dot in it, she was probably typing in a
fully qualified domain name without the trailing dot. Better to see right away whether

21 Note that we said the resolver can handle a trailing dot. Some programs, particularly mail user agents, don't deal correctly
with a trailing dot in email addresses. They cough even before they hand the domain name in the address to the resolver.
22 One reason resolvers don't append just the top-level domain is that there are few hosts at the second level of the
Internet's namespace, so just tacking on com or edu to foo is unlikely to result in the domain name of a real host. Also,
looking up the address of foo.com or foo.edu might well require sending a query to a root name server, which taxes the roots
and can be time-consuming.

the name was a fully qualified domain name than to create nonsense domain names
unnecessarily by appending the elements of the search list to it.

Thus, a user typing:

C:\> telnet pronto.cv.hp.com

causes a lookup of pronto.cv.hp.com first since the name contains three dots, which is
certainly more than one. If the resolver doesn't find an address for pronto.cv.hp.com,
it then tries pronto.cv.hp.com.cv.hp.com, and, if necessary, pronto.cv.hp.com.hp.com.

A user typing:

C:\> telnet asap

on the same host causes the resolver to look up first asap.cv.hp.com and then
asap.hp.com,if necessary, but not just asap.

Note that application of the search list stops as soon as a prospective domain name
finds the needed data. In the asap example, the search list would never get around to
appending hp.com if asap.cv.hp.com resolved to an address.

6.2.2.1 Setting the search list manually

What if you don't like the default search list you get when you set your local domain?
Windows lets you set the search list explicitly, domain name by domain name, in the
order in which you want the domains searched. You do this with the Append these
DNS suffixes (in order) field on the main resolver configuration window (Figure 6-
8).

You can add as many domain names as you like to this field,23 in the order in which
you want them appended, and this becomes the host's search list. Setting the search
list with Append these DNS suffixes (in order) overrides the default search list.

The user interface is simple to use: click Add... to add a domain name to the list;
select a domain name and click Remove to remove it from the list; or click Edit... to
change the domain name. You can also use the Up and Down arrow buttons to
reorder the list. The basic search algorithm still applies: the resolver looks up domain
name arguments as-is if they contain at least one dot.

The settings shown in Figure 6-8, for example, instruct the resolver to search the
corp.hp.com domain first, then paloalto.hp.com, then both domains' parent, hp.com.

23 Or so it appears: we stopped after adding 10.

Figure 6-8. A search order example

This setup might be useful on a host whose users frequently access hosts in both
corp.hp.com and paloalto.hp.com. On the other hand, the configuration shown in
Figure 6-9 has the resolver search only corp.hp.com (and not that domain's parent,
hp.com) when the search list is applied.

This might be useful if the host's users access hosts only in the local domain or if
connectivity to the parent name servers isn't good, because the configuration
minimizes unnecessary queries to the parent name servers.

Figure 6-9. Another search order example

6.2.3 Name Servers to Query

This section discusses how to tell your resolver which name servers to query. By
default, the resolver looks for a name server running on the local host, which is why
we could use nslookup on terminator and wormhole right after we configured their
name servers. You can, however, instruct the resolver to look to another host for name
service. This configuration is sometimes called a DNS client.

The DNS server addresses, in order of use field (see Figure 6-7) tells the resolver
the IP addresses of the name server(s) to query. What's potentially confusing is that
the information in this field is linked to the Use the following DNS server addresses
field in the main TCP/IP properties window (see Figure 6-6). You can specify as
many name servers as you want in the DNS server addresses, in order of use field.24
As with the list of DNS suffixes in Figure 6-8, the Add..., Edit..., and Remove
buttons have the expected effect. You can also use the Up and Down arrows to
reorder the list of addresses. The first two addresses show up as the Preferred DNS
server and Alternate DNS server 25 on the main TCP/IP properties window.
Likewise, changes made to the Preferred DNS server and Alternate DNS server
fields are reflected in this list.

24 As with the DNS suffix list, we stopped after entering 10 values.
25 Kudos to Microsoft for clarifying their labels. In previous versions of Windows, name servers were sometimes labeled
Primary DNS and Secondary DNS . This sometimes misled users into l isting the primary master and slave (secondary
master) name servers for some zone or another in those fields. Besides, "DNS" is an abbreviation for "Domain Name
System," not "domain name server."

The settings in Figure 6-7 instruct the resolver to send queries to the name servers
running at IP addresses 192.249.249.3 and 192.249.249.1. Typically, you configure
the resolvers on your hosts to query your own name servers, but you can configure
your resolver to query almost anyone's name server. Of course, configuring your host
to use someone else's name server without first asking permission is presumptuous, if
not downright rude, and using one of your own usually gives you better performance,
so we'll consider this only an emergency option.

If you want the resolver to query the name server running on the local host, you have
two choices: you can specify the address of one of the host's adapters, or you can
specify the loopback IP address of 127.0.0.1.

6.2.3.1 Query behavior

The way the Windows 2000 resolver determines which of the name servers you
specify to query is significantly different than in other versions of Windows. Older
versions of Windows send a query to the first name server specified. If that name
server doesn't respond—say it's down or there's a network problem—the resolver tries
subsequent name servers in the order configured, waiting a few seconds between each
query. If it queries all configured name servers without getting a response, it cycles
through the list again—six more times on some Windows resolvers! In the case of
Windows NT SP3, if three name servers are configured and none of them are
responding, the resolver tries for 75 seconds before finally giving up.

Microsoft's customers must have complained about this long resolver timeout,
because things changed drastically with the release of Service Pack 4 for Windows
NT. The resolver retransmission algorithm became much more aggressive. The
Windows 2000 resolver exhibits the same behavior.

Here's how the Windows 2000 resolver behaves after it applies the search list to
determine the name to look up:

1. The resolver first checks its local cache, which is systemwide (and therefore
shared by all applications calling the resolver). If the desired record is not in
the cache, the resolver has to send at least one query to a name server.

2. The resolver queries the first name server of the preferred network adapter and
waits just one second.

3. If no answer is received, the resolver resends the query simultaneously to the
first name server configured for each network adapter and waits two seconds.
If the host has only one network adapter, this step is skipped.

4. If no answer is received, the resolver resends the query simultaneously to all
name servers configured for all adapters and waits two seconds.

5. If no answer is received, the resolver resends the query simultaneously to all
name servers configured for all adapters and waits four seconds.

6. If no answer is received, the resolver resends the query simultaneously to all
name servers configured for all adapters and waits eight seconds.

7. If after all this time no name server has returned an answer, the resolver gives
up.

What does the resolver do after it gives up? It times out and returns an error to the
calling application. Typically this results in an error like:

C:\> ping tootsie
Bad IP address tootsie.

Adding up all the waiting time, you can see that the maximum timeout is much less
than in older resolvers: 17 seconds (1+2+2+4+8), as opposed to 75 seconds for
Windows NT SP3—quite a difference!

As soon as the resolver receives a positive answer during this process, it stops and
returns that answer to the calling application. A positive answer is a list of resource
records answering the query. If the resolver receives a negative answer (indicating
that a domain name doesn't exist or that the particular type of record queried doesn't
exist for a domain name), it doesn't immediately halt and return that answer. Instead,
it just removes from consideration all name servers configured on the network adapter
from which it received a negative answer for the duration of that query round. Only if
it receives a negative answer from a name server configured for each adapter does it
return a negative answer. If the resolver receives even a single positive answer from a
name server, it returns that. The net effect of this mechanism is that if the resolver is
configured to query name servers on multiple adapters that have different "views" of
the namespace, the resolver sees the aggregate view.

The resolver also tracks the response time of individual name servers and shuffles the
fastest-responding one to the top of the list. In other words, it adaptively changes the
order of the name servers you specify (although these changes are not permanent, nor
are they reflected in the resolver configuration windows). As you can see from the
retransmission algorithm, the first name server gets only two or three seconds to reply
before the resolver begins blasting queries to all configured name servers. By tracking
how fast individual name servers respond and favoring the best performer, the
resolver tries to minimize simultaneous querying.

The Windows 2000 Professional resolver adds another twist: if no name servers from
a particular adapter respond during a query round, all name servers from that adapter
are ignored—that is, not queried—for 30 seconds. This penalty-box treatment cuts
down on unnecessary retransmission: if a network connection appears to be dead,
there's no sense trying its name servers for every query.

6.3 Advanced Resolver Features

The Windows 2000 resolver has some advanced features that are worth describing
here.

6.3.1 Caching

The Windows 2000 resolver stores every record it receives in a shared cache available
to all programs on the system. The Windows NT 4.0 resolver caches, but only on a
per-process basis. For example, if you have two different web browsers running (say,

Internet Explorer and Netscape Navigator), each has its own copy of the resolver with
a separate cache. Windows 98, 95, and 3.1 resolvers don't do any caching.

The Windows 2000 resolver obeys the TTL (time to live) field on resource records it
caches, up to a maximum of 24 hours by default. So if a record specifies a TTL longer
than that, the resolver rounds down to 24 hours. This maximum TTL is configurable
with a Registry setting:

MaxCacheEntryTtlLimit
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Paramet
ers
Data type: REG_DWORD
Range: 0x0 - 0xFFFFFFFF seconds
Default value: 0x15180 (86,400 seconds = 24 hours)

The Windows 2000 resolver also supports negative caching. It caches negative
responses for five minutes by default. This negative caching timeout is also
configurable with a Registry setting:

NegativeCacheTime
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Paramet
ers
Data type: REG_DWORD
Range: 0x0 - 0xFFFFFFFF seconds
Default value: 0x12C (300 seconds = 5 minutes)

To disable negative caching altogether, set this value to zero.

To view the resolver's cache, use ipconfig /displaydns. To clear the cache, type
ipconfig /flushdns.

6.3.2 Subnet Prioritization

This feature is analogous to the BIND resolver's address-sorting feature. When the
resolver receives multiple address records for the same domain name, it examines the
IP address in each record and adjusts the order of the records before returning the list
to the calling application: any records with IP addresses on the same subnets as the
host on which the resolver is running are moved to the top of the list. Since most
applications use addresses in the order returned by the resolver, this behavior causes
traffic to remain on local networks.

For example, Movie University has two mirrored web servers on two different
subnets:

www.movie.edu. IN A 192.253.253.101
www.movie.edu. IN A 192.249.249.101

Let's say the resolver on terminator.movie.edu (192.249.249.3) sends a query and
receives these records. It sorts the record with address 192.249.249.101 to the top of
the list because terminator shares a network with that address.

Note that this behavior defeats the round-robin feature implemented by most name
servers. Round robin refers to the name server behavior of rotating the order of
multiple address records in successive responses to distribute the load among the
servers (again taking advantage of the behavior of most applications to use the first
address in the list returned by the resolver). With subnet prioritization enabled, the
order of the records is subject to shuffling by the resolver. You can disable subnet
prioritization with a Registry setting:

PrioritizeRecordData
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Paramet
ers
Data type: REG_DWORD
Range: 0 - 1
Default value: 1 (Subnet prioritization enabled)

6.3.3 Loose Response Acceptance

By default, the Windows 2000 resolver accepts and caches any response it receives,
even if it arrives from an unexpected source (i.e., a name server the resolver did not
query)! We think this behavior is more than a little dangerous because it opens up
your resolver to spoofing attacks. It's easy to forge a DNS response and send it to an
unsuspecting resolver, which then caches it. Fortunately, this behavior can be disabled
with a Registry setting:

QueryIpMatching
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNSCache\Paramet
ers
Data type: REG_DWORD
Range: 0 - 1
Default value: 0 (IP addresses of responses are not checked)

6.4 Other Windows Resolvers

Since you probably have hosts running older versions of Windows on your network,
it's helpful to know how these older resolvers behave, too.

6.4.1 Windows 95

Windows 95 includes its own TCP/IP stack with a DNS resolver. In fact, Windows 95
actually includes two TCP/IP stacks: one for TCP/IP over LANs and another for
TCP/IP over dial-up connections. To get to the main DNS configuration panel, go to
the Control Panel, then select Network. Select TCP/IP, then click the Properties
button. This brings up a new dialog, which looks similar to the one in Figure 6-10.
Choose the tab labeled DNS Configuration.

Figure 6-10. Resolver configuration under Windows 95

Configuration using this panel is fairly self-explanatory: first select Enable DNS to
turn on DNS resolution, then fill in the PC's hostname (in this case, the first label of
its domain name) in the Host field and the local domain name (everything after the
first dot) in the Domain field. Add the IP addresses of up to three name servers you
want to query, in the order in which you want to query them, under DNS Server
Search Order. Finally, fill in the domain names in the search list under Domain
Suffix Search Order in the order in which you want them appended. If you leave out
the Domain Suffix Search Order, the Windows 95 resolver derives one from the
local domain name in the same way a Windows 2000 resolver does: appending
successive parent domains with at least two labels.

One interesting note about the current version of Windows 95: you can configure a
different set of name servers for each dial-up connection you might have to an ISP in
the Dial-Up Networking (DUN) configuration. To configure DUN-specific resolver
settings, double-click on the My Computer icon on your desktop, then double-click
on Dial-Up Networking, right-click on the name of the connection whose resolver
settings you'd like to configure, and select Properties. Select the Server Types tab
and click on TCP/IP Settings. You'll see the window shown in Figure 6-11.

Figure 6-11. DUN resolver configuration under Windows 95

If you leave the Server assigned name server addresses radio button checked, the
resolver retrieves the name servers it should query from the server you dial into. If
you check Specify name server addresses and specify the addresses of one or two
name servers, Windows 95 tries to use those name servers when the DUN connection
is active.

This is really useful if you use multiple ISPs and each has its own name servers.
However, configuring name servers in the TCP/IP Properties panel overrides the
DUN-specific name servers. To use the DUN-specific name server feature, you must
leave the TCP/IP Properties panel blank except for enabling DNS and specifying the
local hostname. This limitation is due to a lack of integration between the dial-up and
LAN TCP/IP stacks and is corrected in DUN 1.3. See Knowledge Base article
Q191494 for details.26

6.4.2 Windows 98

The resolver in Windows 98 is almost identical to Windows 95's resolver.
(Graphically, in fact, it is identical, so we won't show you any screen shots.) The
major differences between the two resolvers are due to the fact that Windows 98 ships
with Winsock 2.0.27 Winsock 2.0, for example, sorts responses as we described in the
previous section on subnet prioritization. For details, see Knowledge Base article
Q182644.

Configuring DUN-specific name servers also works with Windows 98. The resolver
queries the name servers listed in the TCP/IP Properties panel and the DUN-specific

26 To access a Microsoft Knowledge Base article by article ID number, go to http://search.support.microsoft.com/kb/ and
check the Specific article ID number radio button, then type the article ID number in the search field.
27 The version of Winsock in Windows 95 can be upgraded to 2.0; see Knowledge Base article Q182108.

name servers simultaneously and takes the first positive answer it receives from either
set. If the resolver receives only negative answers, it returns a negative answer.

6.4.3 Windows NT 4.0

In Windows NT, LAN resolver configuration is done from a single panel that looks
remarkably similar to Windows 95's, since NT 4.0 incorporated the Windows 95
"shell." In fact, other than the presence of the new Editbutton and the handy little
arrows that allow you to reorder name servers and elements of the search list, there's
really no semantic difference between them, as shown in Figure 6-12.

Figure 6-12. Resolver configuration under Windows NT

To get to the DNS Configurationpanel, go to the Control Panel, click on Network,
and select the Protocols tab. Double-click on TCP/IP Protocol, then select the DNS
tab.

Windows NT also allows users to configure resolver settings specific to particular
dial-up networking connections. To configure these, click on the My Computer icon,
select Dial-Up Networking, pull down the top selection box, and choose the name of
the DUN connection whose resolver you'd like to configure. Then click on the More
pull-down and select Edit Entry then Modem Properties. Select the Server tab on
the resulting window, and click on the TCP/IP Settings button. You'll see the same
window you'd see in Windows 95 (shown earlier).

If you leave the Server assigned name server addresses radio button checked, the
resolver retrieves the name servers it should query from the server you dial into. If
you check Specify name server addresses and specify the addresses of one or two
name servers, Windows NT uses those name servers when the DUN connection is

active. When you drop the DUN connection, NT reverts to using the LAN resolver's
settings.

The Windows NT 4.0 resolver caches name-to-address mappings on a per-process
basis, according to the TTL on the returned address records, as mentioned earlier.

Microsoft updated the resolver fairly extensively in Windows NT 4.0, Service Pack 4.
The SP4 resolver supports subnet prioritization. See Microsoft Knowledge Base
article Q196500 for details. The SP4 resolver also lets you turn off caching in the
resolver using a Registry value. For details, see Knowledge Base article Q187709.
The SP4 resolver uses the same, more aggressive retransmission algorithm as the
Windows 2000 resolver. See Knowledge Base article Q198550 for details.

6.5 Sample Resolver Configurations

Let's go over what some Windows 2000 resolver configurations look like on real
hosts. Resolver configuration needs vary depending on whether or not a host runs a
local name server, so we'll cover both cases: hosts using remote name servers and
hosts running name servers locally.

6.5.1 Remote Name Server

We, as the administrators of movie.edu, have been asked to configure a professor's
new workstation, which doesn't run a name server. Deciding which domain the
workstation belongs in is easy: there's only movie.edu to choose from. However, the
professor is working with researchers at Pixar on new shading algorithms, so perhaps
it'd be wise to put pixar.com in her workstation's list of DNS suffixes to append.

The new workstation is on the 192.249.249.0 network, so the closest name servers are
wormhole.movie.edu (192.249.249.1) and terminator.movie.edu (192.249.249.3). As a
rule, you should configure hosts to first use the closest name server available. (The
closest possible name server is a name server on the local host; the next closest is a
name server on the same subnet or network.) In this case, both name servers are
equally close, but we know that wormhole is bigger (it's a faster host, with more
capacity).

Since this particular professor is known to get awfully vocal when she has problems
with her computer, we'll also add terminator.movie.edu (192.249.249.3) as a backup
name server. That way, if wormhole is down for any reason, the professor's
workstation can still get name service (assuming terminator and the rest of the
network are up).

Figure 6-13 shows what her workstation's resolver configuration will look like.

Figure 6-13. Example resolver configuration

6.5.2 Local Name Server

Next, we have to configure the university mail hub, postmanrings2x, to use DNS.
postmanrings2x is shared by all groups in the movie.edu domain. We've recently
configured a name server on the host to help cut down the load on the other name
servers, so we should make sure the resolver queries the name server on the local host
first.

If we decide we need a backup name server—a prudent decision—we can add a name
server to the DNS server addresses, in order of use field. Whether or not we
configure a backup name server depends largely on the reliability of the local name
server. A robust name server implementation will keep running for longer than some
operating systems, so there may be no need for a backup. If the local name server has
a history of problems, though—say it hangs occasionally and stops responding to
queries—it's prudent to add a backup name server.

To add a backup name server, we just list the local name server first in the list of DNS
suffixes to append and then list one or two backup name servers. Since we'd rather be
safe than sorry, we're going to add two backup name servers. postmanrings2x is on
the 192.249.249.0 network, too, so terminator and wormhole are the closest name
servers to it (besides its own). The final configuration is shown in Figure 6-14.

Figure 6-14. Another example resolver configuration

Chapter 7. Maintaining the Microsoft DNS Server

"Well, in our country," said Alice, still panting a little, "you'd
generally get to somewhere else—if you ran very fast for a long time as
we've been doing."

"A slow sort of country!" said the Queen. "Now, here, you see, it takes
all the running you can do, to keep in the same place. If you want to
get somewhere else, you must run at least twice as fast as that!"

This chapter discusses a number of related topics pertaining to name server
maintenance. We'll talk about commands you can (and can't) send to a running name
server, modifying the zone data files, and keeping the root name server cache file up
to date. We'll also list common Event Log messages.

This chapter doesn't cover troubleshooting problems. Maintenance involves keeping
your data current and watching over your name servers as they operate.
Troubleshooting involves putting out fires—those little DNS emergencies that flare
up periodically. Firefighting is covered in Chapter 13.

7.1 What About Signals?

Those of you familiar with the BIND name server know that it's possible to signal a
running name server to perform certain tasks, such as rereading its configuration file
or turning on debugging information. The Microsoft DNS Server has no exact analog
to a BIND name server's signals, but you can still make it perform certain tasks while
running. We'll go over the tasks possible using signals on a BIND name server and
show how to accomplish the same thing (if possible) with the Microsoft DNS Server:

Restart the name server

You can signal a BIND name server to reread its configuration file and zone
data files. There's no comparable Microsoft DNS Server command. If the
server obtains its configuration information from the Registry (the default
mode), this command isn't necessary: as you make configuration changes with
the DNS console, they take effect immediately in the running name server. If
the server is using a BIND-style boot file, you must stop and restart the server
after making a change to the boot file. For more information on the server
"boot method," see Appendix C.

Dump a copy of the name server's internal database to a file

A BIND server can dump its entire memory database of authoritative data,
cached data, and root name server "hints" to a file. There's no direct Microsoft
DNS Server equivalent, but you can come close—all this information is
visible in the DNS console. To see authoritative data, just select the
appropriate zone. By selecting the Cached Lookups folder, you can see the

contents of the name server's cache as well as the list of root name servers it's
using.28

Dump name server statistics to a file

You can't dump the Microsoft DNS Server's usage statistics to a file, but you
can view them from System Monitor (a Microsoft Management Console snap-
in). Statistics are covered in detail at the end of this chapter.

Start/stop writing debugging information to a file

The Microsoft DNS Server can log several different kinds of debugging-
related information to a file. This behavior is controlled from the Loggingtab
of the server properties window, where you can select the types of debugging
information that should be logged.

Log all queries

As with a BIND server, you can also direct the Microsoft DNS Server to log
individual queries processed. Use the Query option on the Logging tab.

The main thing you can do to a running Microsoft DNS Server is stop it and start it
again. What happens when you stop and start the server? Remember that the name
server answers queries from its in-memory database. This database includes three
kinds of information: authoritative data (zones for which the server is a primary
master or slave), cached data (answers from other name servers), and root name
server "hints" (the list of root name servers from the root name server cache file,
cache.dns). When you stop the name server, this data is lost.

When you restart the server, it reloads the authoritative data from the zone data files
on its disk. Zones for which the server is a primary master are loaded and not read
again for the lifetime of the server process. (Of course, you can make a change to a
primary zone with the DNS console and direct the server to write to the zone data file
with Action Update Server Data Files, but the server reads the zone data file only
at startup.) Zones for which the server is a slave are also loaded from the zone data
files. But for each zone, the server queries its master (usually the zone's primary
master) for the SOA record to compare serial numbers. If the master's serial number is
larger than the serial number in the zone just loaded from disk, the server performs a
zone transfer.

The server also reads cache.dns at startup. In Chapter 4, we described how root name
server information is used not directly, but as a "hint" to find the current list of root
name servers: the server queries a root name server from cache.dns for the current list
of root name servers, and the results are the first records in the cache. Remember, the
cache is empty when the server starts up.

28 You can see the Cached Lookups folder only if the DNS console is showing the advanced view: select View
Advanced.

7.2 Logging

The version of the Microsoft DNS Server shipped with Windows 2000 is much
improved over its Windows NT 4.0 predecessor when it comes to logging and
debugging. Previous versions of the server were like a "black box" you couldn't see
inside of. But now you can direct the server to write several different kinds of helpful
logging and debugging information while it's running.

To enable this feature, right-click on a server in the left pane of the DNS console,
choose Properties, then select the Logging tab. The window looks like the one
shown in Figure 7-1.

Figure 7-1. Server properties, Logging tab

7.3 Updating Zone Data

For nearly all changes to your zones, you'll use the DNS console. In Chapter 4 we
described how to add a name server to the DNS console, create zones, and create
resource records. Deleting these objects is easy: just select the object by left-clicking
it, then press Delete (or select Action Delete). Modifying objects is also
straightforward. Name server names and zone names cannot be changed but must be
deleted and added with the new name. For example, if the name of a name server
you're managing changes, you have to delete the name server within the DNS console
and replace it with the new name. The same thing goes if you change the name of a
zone, say from movie.edu to movie.net.

Changing resource record data is easy, too. Just double-click the record in the right
pane (or select it with a single click and choose Action Properties). You'll see the
same window as when you added the record. Note that you can change resource

record data (also called RDATA) but not the name of the record (the owner). In other
words, you can change the right side of the record but not the left side (as viewed in
the DNS console's right pane or in the zone data file). So you can change the IP
address of terminator's A record, but you can't change terminator to terminator2. If
you need to change the owner, you'll have to delete the record and replace it with the
new owner.

7.3.1 Adding and Deleting Resource Records by Hand

Most of the time, you really should use the DNS console to make changes to your
zones. The DNS console is much more versatile than its Windows NT 4.0
predecessor, the DNS Manager, but still isn't suited for some tasks—sometimes you
might want to edit the zone data files by hand. For example, adding, deleting, or
changing a lot of records at once is tough with the DNS console but easy with a little
Perl code or a good text editor. If you run a name server for long enough, you'll
eventually want to make a change outside the DNS console.

Editing by hand is a little complicated because you have to manually perform some
steps that the DNS console does for you automatically. The following list describes
what to do:

1. Remember that all changes must be made on a zone's primary master name
server. This is the case whether you're using the DNS console or editing by
hand. If you make changes to the zone data file on a slave, the next zone
transfer from the primary master will overwrite your work.

2. If you've made any changes using the DNS console since you started the name
server (that usually means since the last reboot), stop the name server. Here's
why: when you change a zone with the DNS console, the change takes effect
in the primary master name server's memory right away, but the zone data file
on disk is not updated immediately. The name server sets an internal "update
pending" flag to remind itself that that zone's data file needs updating. If you
select Action Update Server Data Files, all the zone data files of changed
zones are updated and any flags are cleared. But if the server stops (whether
it's halted by you or by a system reboot—or for any other reason) and some
zones have their update pending flags set, the server updates the corresponding
zone data files before terminating. So you can see what happens if you make a
change by hand but forget about a recent change made with the DNS console:
when you stop and restart the server to put the manual change into effect, the
zone data file gets updated, and your manual editing is lost.

3. Find the zone data file of the zone you want to change. Recall from Chapter 4
that the zone data files are stored in %SystemRoot%\system32\dns and the
default naming convention is the name of the zone followed by the .dns
extension—for example, movie.edu.dns.

4. Bring up the zone data file in your favorite text editor. Notepad is a good
choice; Microsoft Word isn't. Whatever you use, make sure you eventually
save the file in plain text format. That's why we like Notepad—you can't save
a file as anything but plain text.

5. Increment the serial number in the SOA record at the top of the file. (See the
next section for more information on SOA serial numbers.) Since the SOA

record is at the top of the file, it's a good idea to update it first so you won't
forget to do it later.

6. Make whatever changes you need to make. If you're adding a host, you might
need MX records in addition to the A record. For example, we added the
following resource records to movie.edu.dns when we added the new host cujo
to our network:

7. cujo IN A 192.253.253.5
8. IN MX 10 cujo

 IN MX 20 terminator

9. When you're done, don't forget to save the file!
10. Don't forget to add PTR records! If you're adding a host, you should add a

PTR record to the appropriate in-addr.arpa zone for each of its IP addresses.
This step is easy to forget, because the DNS console adds PTR records for you
automatically. And remember—if you change a zone, don't forget to
increment the serial number in its SOA record. Our new host cujo has only
one IP address, 192.253.253.5, so we added one PTR record to the
253.253.192.in-addr.arpa.dns file:

5 IN PTR cujo.movie.edu.

Your changes won't take effect until you restart the primary master name server: stop
it, and then start it again. This is another task handled by the DNS console. When you
make changes with the DNS console, the changes take effect immediately in the name
server's memory and get written to disk later. Editing by hand reverses the process:
you make the changes first on disk and have to restart the name server to get the
changes into its memory.

Slave name servers will load the new data after some length of time within the time
interval defined in the SOA record for refreshing their data. Sometimes your users
won't want to wait for the slaves to pick up the new data—they'll want it available
right away. (Are you wincing or nodding knowingly as you read this?) Can you force
a slave to load the new information right away? If you've enabled zone change
notification, the slaves will pick up the new data quickly because the primary master
notifies the slave of changes within 15 minutes of the change. (See Chapter 10 for
more information on zone change notification.) If you don't have notification set up,
you should! But you can get the same effect the hard way by restarting the name
server on each of the slaves. When the name server starts up, it does a serial number
compare with its master for every zone for which it's a slave. If it discovers an out-of-
date zone, it immediately performs a zone transfer.

To delete a host, remove all the resource records pertaining to it from the appropriate
zone data files. Make sure you remove the A record, any MX records, and the PTR
record. Also be sure to increment the serial number in each zone data file you modify
and restart your primary master name server. (But, realistically, deleting hosts is best
done with the DNS console.)

7.3.2 SOA Serial Numbers

Every zone has a serial number. Every time the data in a file is changed, the zone's
serial number must be incremented. If the serial number is not incremented, slave

name servers for the zone will not pick up the updated data. The change is simple. If
the original data file had the following SOA record:

movie.edu. IN SOA terminator.movie.edu. al.robocop.movie.edu. (
 100 ; Serial
 10800 ; Refresh
 3600 ; Retry
 604800 ; Expire
 86400) ; Minimum TTL

the updated data file would have the following SOA record:

movie.edu. IN SOA terminator.movie.edu. al.robocop.movie.edu. (
 101 ; Serial
 10800 ; Refresh
 3600 ; Retry
 604800 ; Expire
 86400) ; Minimum TTL

This simple change is the key to distributing the data to all of your slaves. Failing to
increment the serial number is the most common mistake made when updating by
hand. The first few times you make a change manually, you'll remember to update the
serial number because this process is new and you are paying close attention. After
modifying zone data files becomes second nature (we bet you can't wait for that),
you'll make some "quickie" little change, forget to update the serial number... and
none of the slaves will pick up the new data. Eternal vigilance is the price of
modifying zone data files by hand.

There are several good ways to manage integer serial numbers. The obvious way is
just to use a counter: increment the serial number by one each time the file is
modified. That's what the DNS console does. Every time it updates a zone, it
increments the zone's serial number. If you make changes with the DNS console,
you're locked into this method. If you modify the zone data files only by hand, you
have other options, such as deriving the serial number from the date. For example,
you could use the eight-digit number formed by <year><month><day>. Suppose
today is March 5, 2001. In this form, your serial number would be 20010305. This
scheme allows only one update per day, though, and that may not be enough. Add
another two digits to this number to indicate how many times the file has been
updated that day. The first number for March 5, 2001, would then be 2001030500.
The next modification that day would change the serial number to 2001030501. This
scheme allows 100 updates per day. Whatever scheme you choose (or are forced to go
along with), the serial number must fit in a 32-bit integer. And since you probably
want to use the DNS console at least some of the time, you may just want to follow its
numbering scheme.

7.3.3 Additional Records

After you've been running a name server for a while, you may want to add data to
your name server to help you manage your domain. Have you ever been stumped
when someone asked you where one of your hosts is? Maybe you don't even
remember what kind of host it is. Administrators have to manage larger and larger
populations of hosts these days, making it easy to lose track of this information. The

name server can help you out. And if one of your hosts is acting up and someone
notices remotely, the name server can help them get in touch with you.

So far, we've covered records critical to everyday operation: SOA, NS, A, CNAME,
MX, and PTR. Name servers need these records to operate, and applications look up
data of these types. Two other useful resource record types are TXT (text) and RP
(Responsible Person); these can be used to tell you the machine's location and who is
responsible for it. But DNS defines still more data types. For a complete list of the
resource records, see Appendix A.

7.3.3.1 General text information

TXT stands for TeXT. These records contain simply a list of strings. The Microsoft
DNS Server supports one string of up to 255 characters per TXT record. TXT records
can be used for anything you want; a common use is to list a host's location. Creating
a TXT record is easy: just highlight the zone or domain in the DNS console's left pane
and select Action Other New Records.... In the Resource Record Type window,
choose TXT and select Create Record..., then fill in the fields as shown in Figure 7-
2.

Figure 7-2. Creating a TXT record

The TXT record shown in Figure 7-2 looks like this in a zone data file:

cujo IN TXT "Location: machine room dog house"

7.3.3.2 Responsible Person

Domain administrators will undoubtedly develop a love/hate relationship with the
Responsible Person (RP) record. The RP record can be attached to any domain name,
internal or leaf, and indicates who is responsible for that host or domain. This enables

you to locate the miscreant responsible for the host peppering you with DNS queries,
for example. But it also leads people to you when one of your hosts acts up.

The record takes two arguments as its record-specific data: an electronic mail address,
in domain name format; and a domain name, which points to additional data about the
contact. The electronic mail address is in the same format the SOA record uses: it
substitutes a dot (.) for the at sign (@). The next argument is a domain name, which
must have a TXT record associated with it. The TXT record contains free-format
information about the contact, such as a full name and phone number. You can omit
either field and specify the root (.) as a placeholder instead.For example, let's say that
the Movie U. Network Hotline is responsible for the host robocop. It also happens
that the Movie U. hotline reads all mail sent to root@movie.edu. You'd add the RP
record shown in Figure 7-3 with Action Other New Records....

Figure 7-3. Creating an RP record

You'd also add the TXT record shown in Figure 7-4 for hotline.movie.edu.

Here's what these records would look like in a zone data file:

robocop IN RP root.movie.edu. hotline.movie.edu.
hotline IN TXT "Movie U. Network Hotline, (415) 555-4111"

Note that a TXT record for root.movie.edu isn't necessary since it's only the domain
name encoding of an electronic mail address, not a real domain name.

Figure 7-4. Creating an associated TXT record

7.3.4 Keeping db.cache Current

As we explained in Chapter 4, the cache.dns file tells your server where the servers
for the root zone are. We also explained that, unlike a BIND name server (which
never modifies the cache file), a Microsoft DNS Server updates cache.dns with its
current notion of the root name servers every time it exits.

The root name servers don't change very often, but they do change. A Microsoft DNS
Server that starts with a proper cache file should, in theory, always have the current
list of root name servers in its cache file. A good practice and a part of maintaining
your name server is to check your cache.dns file a couple times a year. In Chapter 4,
we told you to get the current cache file by ftping to ftp.rs.internic.net. That's
probably the best method to keep the file current. Remember that you must stop the
name server before updating cache.dns! If you don't, the cache file you install will be
overwritten the next time the server does stop.

You can use dig,29 a utility that works like nslookup, to retrieve the current list of
roots just by running:

C:\> dig @a.root-servers.net . ns > cache.dns

29 dig is a powerful DNS query tool that comes with BIND. Unfortunately, it isn't shipped with Windows 2000, but you can get
a version of dig that runs on Windows 2000 from ftp://ftp.isc.org/isc/bind/contrib/ntbind-8.2.4/BIND8.2.4Tools.zip.

7.4 Zone Data File Controls

The data files for all name servers, whether Microsoft or BIND, can include two
control entries: $ORIGIN and $INCLUDE. $ORIGIN changes the origin, and
$INCLUDE inserts a new file into the current file. These control entries are not
resource records; they facilitate the maintenance of DNS data. They were designed
back in the "good old days" as a shortcut for people who had to edit zone data files by
hand. If you make changes to your zones with the DNS console only, you won't
encounter these controls: the Microsoft DNS Server doesn't use them in the zone data
files it generates. However, some day you might need to work with zone data files
created by hand, so it's important that you understand these controls.

7.4.1 Changing the Origin in a Data File

The default origin for a DNS data file is just the domain name of the zone. The origin
is a domain name that is appended automatically to all names not ending in a dot. This
origin can be changed within the zone data file using $ORIGIN, which must be
followed by a domain name. (Don't forget the trailing dot if you give the full domain
name!) From that point in the file on, the new will be origin appended to all names not
ending in a dot.

If we didn't have the DNS console to make changes and had to edit files by hand, we'd
run into times when $ORIGIN would save us some work. For example, if your name
server were responsible for a number of subdomains, you could use the $ORIGIN
entry to reset the origin and simplify the files. For example, from the movie.edu zone
data file:

$ORIGIN classics.movie.edu.
maltese IN A 192.253.253.100
casablanca IN A 192.253.253.101

$ORIGIN comedy.movie.edu.
mash IN A 192.253.253.200
twins IN A 192.253.253.201

We'll discuss creating subdomains in Chapter 9.

7.4.2 Including Other Data Files

To continue our example of editing zone data files by hand: once you've subdivided
your domain like this, you might find it more convenient to keep the subdomain
records in separate files. The $INCLUDE statement would let you do this:

$ORIGIN classics.movie.edu.
$INCLUDE classics.dns

$ORIGIN comedy.movie.edu.
$INCLUDE comedy.dns

To simplify the file even further, the new origin can be specified on the $INCLUDE
line:

$INCLUDE classics.dns classics.movie.edu.
$INCLUDE comedy.dns comedy.movie.edu.

When you specify the origin on the $INCLUDE line, it applies only to the particular
file that you're including. For example, the comedy.movie.edu origin applies only to
the names in comedy.dns. After comedy.dns has been included, the origin returns to
what it was before $INCLUDE, even if comedy.dns contained an $ORIGIN entry.

Remember that, strictly speaking, you don't need to know anything about these
directives to create subdomains with the DNS console, and the Microsoft DNS Server
doesn't generate zone data files using these shortcuts. But you do need to know about
them to complete your knowledge of zone data files.

7.4.3 Keeping Everything Running Smoothly

A significant part of maintenance is being aware when something has gone wrong—
before it becomes a real problem. If you catch a problem early, chances are it'll be that
much easier to fix. As the adage says, an ounce of prevention is worth a pound of
cure.

This isn't quite troubleshooting—we'll devote an entire chapter to troubleshooting
(Chapter 13)—but you can think of it as "pre-troubleshooting." Troubleshooting (the
pound of cure) is what you have to do if you ignore maintenance, after your problem
has developed complications, when you need to identify the problem by its symptoms.

The next two sections deal with preventive maintenance: looking periodically at the
Event Log and the name server statistics to see whether any problems are developing.
Consider this a name server's medical checkup.

7.4.4 Common Event Log Messages

The Microsoft DNS Server logs events to the System Log. To view the events, use the
Event Viewer, which you start with Start Programs Administrative Tools
Event Viewer. The DNS server logs to a special category called, appropriately
enough, DNS Server. Make sure you're looking at the correct log messages by
selecting DNS Serverin the left pane. To save space, when we describe an event we
won't show a screen shot of the complete event. Instead, we'll list just the description
from the event detail. (Double-click an event to see its details.) We'll also list the
Event ID in parentheses after the text of the event.

When the server starts up (either at boot time or because you restarted it) and is ready
to answer queries, you'll see this event:

The DNS Server has started. (ID 2)

For a healthy server, you should see this event after booting. If you stop the server
manually, you'll see this event:

The DNS Server has shutdown. (ID 3)

If a server is a slave for a zone, it will notify you every time it performs a zone
transfer:

A more recent version, version 2000120500 of zone movie.edu was found
at DNS server
at 192.249.249.3. Zone transfer is in progress. (ID 6522)

The DNS server wrote version 2000120500 of zone movie.edu to file
movie.edu.dns.
(ID 3150)

You'll also see that last message on the primary master when you make a change to a
zone through the DNS console and select Action Update Server Data Files. After
the server writes the updated file to disk, it logs that event.

If the primary master is not authoritative for the zone—another error condition—
you'll see this on the slave:

Zone transfer request for secondary zone movie.edu refused by master
server at 192.
249.249.3. Check the zone at the master server 192.249.249.3 to
verify that zone
transfer is enabled to this server. To do so, use the DNS console,
and select master
server 192.249.249.3 as the applicable server, then in secondary zone
movie.edu
Properties, view the settings on the Zone Transfers tab. Based on the
settings you
choose, make any configuration adjustments there (or possibly in the
Name Servers
tab) so that a zone transfer can be made to this server. (ID 6525)

Unfortunately, if the name server simply can't reach the primary master (e.g., if it has
gone down), the DNS server never logs an error.

On the other hand, a server that's a primary master for a zone will notify you when a
slave does a zone transfer:

The DNS server successfully completed transfer of zone movie.edu to
DNS server at
192.249.249.1. (ID 6001)

If you're missing the cache file, cache.dns, or a zone data file, the server will log a
flurry of messages. A missing or empty cache file produces these events:

The DNS server could not open the file dns\cache.dns. Check that the
file exists in
the %SystemRoot%\System32\Dns directory and that it contains valid
data. The event
data is the error code. (ID 1000)

The DNS server could not find or open zone file dns\cache.dns. in the
%SystemRoot%\
System32\Dns directory. Verify that the zone file is located in this
directory and
that it contains valid data. (ID 1004)

The DNS server is not root authoritative and no root hints were
specified in the
cache.dns file.
Where the server is not a root server, this file must specify root
hints in the form
of at least one name server (NS) resource record, indicating a root
DNS server and a
corresponding host (A) resource record for that root DNS server.
Otherwise, the DNS
server will be unable to contact the root DNS server on startup and
will be unable to
answer queries for names outside of its own authoritative zones. To
correct this
problem, use the DNS console to update the server root hints. For
more information,
see the online Help. (ID 707)

The DNS server does not have a cache or other database entry for root
name servers.
Either the root hints file, cache.dns, or Active Directory must have
at least one
name server (NS) resource record, indicating a root DNS server and a
corresponding
host (A) resource record for that root DNS server. Otherwise, the
DNS server will be
unable to contact the root DNS server on startup and will be unable
to answer queries
for names outside of its own authoritative zones. To correct this
problem, use the
DNS console to update the server root hints. For more information,
see the online
Help. (ID 706)

The somewhat cryptic message "The event data is the error code" makes more sense
when viewing the message in Event Viewer. This message means there's a specific
error code listed in the Data field at the bottom of the Event Properties window for
this event.

A missing zone data file, say movie.edu.dns, generates these events:

The DNS server could not open the file dns\movie.edu.dns. Check that
the file exists
 in the %SystemRoot%\System32\Dns directory and that it contains
valid data. The event
data is the error code. (ID 1000)

The DNS server could not find or open zone file dns\movie.edu.dns.
in the
%SystemRoot%\System32\Dns directory. Verify that the zone file is
located in this
directory and that it contains valid data. (ID 1004)

The server also logs a syntax error in a zone data file. If you always make changes to
your zones using the DNS console, you shouldn't see syntax errors. Editing by hand
can get you into trouble, though. Here's what happens when the server encounters a
syntax error:

The DNS server unexpected end of line, in zone file movie.edu.dns at
line 5. To
correct the problem, fix this line in the zone file, which is located
in the
%SystemRoot%\System32\Dns directory. (ID 1505)

The DNS server is ignoring an invalid resource record in zone file
movie.edu.dns at
line 5.
See the previously logged event for a description of the error.
Although the DNS server continues to load, ignoring this RR, it is
recommended that
you investigate the error associated with this record and either
correct it or remove
it from the zone file. (ID 1508)

If you put an invalid IP address (such as an IP address not corresponding to a network
interface on the server) in the DNS Server IP Addresses field of the Server
PropertiesInterfaces window, you'll see this:

The DNS server list of restricted interfaces contains IP addresses
that are not
configured for use at the server computer.
Use the DNS manager server properties, interfaces dialog, to verify
and reset the IP
addresses the DNS server should listen on. For more information, see
"To restrict a
DNS server to listen only on selected addresses" in the online Help.
(ID 409)

Note that the server will not receive queries sent to the wildcard address 0.0.0.0.

For a list of most of the events logged by a Microsoft DNS Server, see article
Q259302 in the Microsoft Knowledge Base:
http://support.microsoft.com/support/kb/articles/Q259/3/02.ASP.

7.4.5 Understanding Name Server Statistics

You should periodically look over the statistics on some of your name servers. Name
server statistics are viewed with the System Monitor. To start it, select Start
Administrative Tools Performance. Make sure System Monitor is selected in
the left pane, right-click in the right pane, and select Add Counters.... Select DNS in
the Performance objectpull-down list. You'll see a list of all the server parameters
that you can monitor in real time. A brief explanation of each parameter is available in
the Windows 2000 online help system document entitled "Monitoring server
performance." To view this document, choose Start Help, select the Index tab,
and type Performance, DNS servers.

Selecting all parameters is not useful—it produces too much information. To get an
idea of the amount of memory being used by the server, choose Caching Memory
and Database Node Memory. To see how busy the server is—that is, how many
queries it is handling—look at Total Query Received/sec and Total Response
Sent/sec. To select several parameters, hold down the Ctrl key while single-clicking.
When you've selected all the ones you want, choose Add, then Close. Note that you

have to save this list if you want to avoid selecting the list of parameters again. Select
Console Save As... to produce a .msc file that you can use for subsequent
monitoring sessions.

Chapter 8. Growing Your Domain

"What size do you want to be?" it asked.

"Oh, I'm not particular as to size," Alice hastily replied; "only one
doesn't like changing so often, you know...."

"Are you content now?" said the Caterpillar.

"Well, I should like to be a little larger, sir, if you wouldn't mind...."

8.1 How Many Name Servers?

We set up two name servers in Chapter 4. Two servers are as few as you'll ever want
to run and, depending on the size of your network, you may need to run many more. It
is not uncommon to run from five to seven servers, with one of them off-site. How
many name servers are enough? You'll have to decide that based on your network.
Here are some guidelines to help out:

• Run at least one name server on each network or subnet you have. This
removes routers as a point of failure. Make the most of any multihomed hosts
you may have since they are (by definition) attached to more than one
network.

• If you have a file server and some diskless nodes, run a name server on the file
server to serve this group of machines.

• Run name servers near, but not necessarily on, large multiuser computers. The
users and their processes probably generate a lot of queries and, as
administrators, you will work harder to keep a multiuser host up. But balance
their needs against the risk of running a name server—a security-critical
server—on a system to which lots of people have access.

• Run one name server off-site. This makes your data available when your
network isn't. You might argue that it's useless to look up an address when you
can't reach the host. Then again, the off-site name server may be available if
your network is reachable but your other name servers are down. If you have a
close relationship with an organization on the Internet—say another university
or a business partner—they may be willing to run a slave for you.

Figure 8-1 shows a sample topology and a brief analysis to show you how this might
work.

Figure 8-1. Sample network topology

Notice that if you follow our guidelines, there are still a number of places you could
choose to run a name server. Host d, the file server for hosts a, b, c, and e, could run a
name server. Host g, a big, multiuser host, is another good candidate. But probably
the best choice is host f, the smaller host with interfaces on both networks. You'll need
to run only one name server, instead of two, and it will run on a closely watched host.
If you want more than one name server on either network, you can also run one on d
or g.

8.1.1 Where Do I Put My Name Servers?

In addition to giving you a rough idea of how many name servers you'll need, these
criteria should help you decide where to run name servers (e.g., on file servers and
multihomed hosts). But there are other important considerations when choosing the
right host.

Other factors to keep in mind are the host's connectivity, the software it runs (for
example, the Microsoft DNS Server or BIND), the security of your host, and
maintaining the homogeneity of your name servers:

Connectivity

It's important that name servers be well connected. Running a name server on
the fastest, most reliable host on your network won't do you any good if the
host is mired in some backwater subnet of your network behind a slow, flaky
serial line. Try to find a host close to your link to the Internet (if you have
one), or find a well-connected Internet host to act as a slave for your zone. On
your own network, try to run name servers near the hubs.

It's doubly important that your primary master name server be well connected.
The primary needs good connectivity to all the slaves that update from it, for
reliable zone transfers. And, like any name server, it will benefit from fast,
reliable networking.

Software

Another factor to consider in choosing a host for a name server is the software
the host runs. If you bought this book, we'll assume it's because you want to
run the Microsoft DNS Server. Keep in mind that you'll be able to manage
remote name servers with the DNS console only if they're running the
Windows 2000 version of the Microsoft DNS Server.

If managing servers with the DNS console isn't important to you (maybe you
like the DNS console frontend for managing zone data, but you're comfortable
editing BIND configuration files by hand), you might consider running some
BIND name servers on your network. Newer BIND name servers are fast and
robust and can interoperate with Microsoft's DNS Server. If you do decide to
implement some BIND name servers, it would be a good idea to run the most
recent version of BIND, BIND 9. BIND 9 servers can use a more efficient
zone transfer protocol with Microsoft DNS Servers. (See Chapter 10 and
Chapter 13 for more information on interoperability between the Microsoft
DNS Server and BIND.)

Security

Since you would undoubtedly prefer that hackers not commandeer your name
server to assist them in attacking your own hosts or other networks across the
Internet, it's important to run your name server on a secure host. Don't run a
name server on a big, multiuser system if you can't trust its users. Computers
that are dedicated to hosting network services but don't permit general logins
are good candidates for running name servers. If you have only one or a few
really secure hosts, consider running the primary master name server on one of
those, since its compromise would be more significant than the compromise of
the slaves.

Homogeneity

One last thing to take into account is the homogeneity of your name servers.
Hopping between Windows 2000 and different versions of Unix can be
frustrating and confusing. Avoid running name servers on lots of different
platforms, if you can. You can waste a lot of time porting your scripts (or
ours!) from one operating system to another or looking for the location of
nslookup on three different operating systems.

Though these are really secondary considerations—it's more important to have a name
server on a given subnet than to have it running on the perfect host—do keep these
criteria in mind when deciding where to run your name servers.

8.1.2 Capacity Planning

If you have heavily populated networks or users who do a lot of name server-intensive
work, you may find you need more name servers than we've recommended to handle
the load. Likewise, our recommendations may be fine for a little while, but as people
add hosts to your networks or install new name server-intensive programs, you may
find your name servers bogged down by queries.

Just which tasks are "name server-intensive"? Surfing the Web can be, as can sending
electronic mail, especially to large mailing lists. Programs that make lots of remote
procedure calls to different hosts can also be name server-intensive. Even running
certain graphical user environments can tax your name server. The astute (and
precocious) among you may be asking, "But how do I know when my name servers
are overloaded? What do I look for?" An excellent question!

Memory utilization is probably the most important aspect of a name server's operation
to monitor. dns.exe, the name server process, can get very large on a name server that
is authoritative for many zones. If dns.exe's size, plus the size of the other processes
you run, exceeds the size of your host's real memory, your host may swap furiously
("thrash") and not get anything done. Another criterion you can use to measure the
load on your name server is the load the name server process places on the host's
CPU. Correctly configured name servers don't use much CPU time, so high CPU
usage is often symptomatic of a configuration error. Windows 2000's Performance
tool can help you characterize your name server's average CPU utilization. To see the
name server's CPU utilization, start the Performance tool (StartPrograms
Administrative Tools Performance) and select System Monitor in the left pane.
Click on the Add icon (shaped like a plus sign) in the right pane. In the resulting
window, choose Process under Performance object, then choose % Processor Time
in the left list and DNS in the right list, as in Figure 8-2. Click on the Add button,
then the Close button. A chart now shows the percentage of processor time the name
server is using.

Figure 8-2. Adding counters to monitor DNS server CPU utilization

Unfortunately, there are no absolute rules when it comes to acceptable CPU
utilization. We offer a rough rule of thumb, though: 5% average CPU utilization is
probably acceptable; 10% is a bit high, unless the host is dedicated to providing name
service.

Another statistic to look at is the number of queries the name server receives per
minute (or second, if you have a busy name server). Again, there are no absolutes
here: a multiprocessor server with oodles of RAM running Windows 2000 can handle
thousands of queries per second without breaking into a sweat, while a less powerful
PC might have problems with more than a few queries per second.

To check the volume of queries your name server is receiving, use the Performance
tool again. This time, select DNS under Performance object. You'll see there are
several counters to choose from: you can monitor many different aspects of the DNS
server's behavior. To see how busy your server is, pay particular attention to these
counters: Total Query Received, Total Query Received/sec, Total Response Sent,
and Total Response Sent/sec. More information about using the Performance tool to
monitor DNS server performance can be found in Section 7.4.5 in Chapter 7.

You should pay special attention to peak periods. For example, Monday morning is
often busy because many people like to respond to mail they've received over the
weekend first thing on Mondays.

You might also want to take a sample starting just after lunch, when people are
returning to their desks and getting back to work—all at about the same time. Of
course, if your organization is spread across several time zones, you'll have to use
your judgment to determine a busy time.

Even if your host is fast enough to handle the volume of queries it receives, you
should make sure the DNS traffic isn't placing undue load on your network. On most
LANs, DNS traffic will be too small a proportion of the network's bandwidth to worry
about. Over slow leased lines or dial-up connections, though, DNS traffic could
consume enough bandwidth to merit concern.

To get a rough estimate of the volume of DNS traffic on your LAN, multiply the
number of queries received plus the number of answers sent in an hour by 800 bits
(100 bytes, a rough average size for a DNS message), and divide by 3,600 (seconds
per hour) to find the bandwidth utilized. This should give you a feeling for how much
of your network's bandwidth is being consumed by DNS traffic.

To give you an idea of what's normal, the last NSFNET traffic report (in April 1995)
showed that DNS traffic constituted just over 5% of the total traffic volume (in bytes)
on their backbone. The NSFNET's figures were based upon actual traffic sampling,
not calculations like ours using the name server's statistics.30 If you want to get a more
accurate idea of the traffic your name server is receiving, you can always do your own
traffic sampling with a LAN protocol analyzer.

30 We're not sure how representative of the current state of the Internet these numbers are, because it's extremely difficult to
wheedle equivalent numbers out of the commercial backbone providers that succeeded the NSFNET.

If you find that your name servers are overworked, what then? First, it's a good idea to
make sure that your name servers aren't being bombarded with queries by a
misbehaving program. To do that, you'll need to find out the sources of all the queries.

Fortunately, Microsoft added some slick logging capabilities to the Windows 2000
DNS Server (the Windows NT DNS Server was woefully lacking in this area).
Logging is configured through the Logging tab of the server properties window
(right-click on a server in the DNS console and choose Properties, then click on the
Logging tab). You'll want to enable the Query category, which logs a record of every
query to the file %SystemRoot%\system32\dns\dns.log. A sample logging properties
window is shown in Figure 8-3.

Figure 8-3. The Logging tab of the properties window

When poring over the example, look for hosts sending repeated queries, especially for
the same or similar information. That may indicate a misconfigured or buggy program
running on the host or a foreign name server pelting your name server with queries.

If all the queries appear to be legitimate, add a new name server. Don't put the name
server just anywhere, though; use the logging information to help you decide where
it's best to run one. If DNS traffic is gobbling up your LAN, it won't help to choose a
host at random and create a name server there. You need to consider which hosts are
sending most of the queries, then figure out how to best provide them name service.
Here are some hints to help you decide:

• Look for queries from resolvers on hosts that share the same file server. You
could run a name server on that file server.

• Look for queries from resolvers on large, multiuser hosts. You could run a
name server there.

• Look for queries from resolvers on another subnet. Those resolvers should be
configured to query a name server on their local subnet. If there isn't one on
that subnet, create one.

• Look for queries from resolvers on the same bridged segment (if you use
bridging). If you run a name server on the bridged segment, the traffic won't
need to be bridged to the rest of the network.

• Look for queries from hosts connected to each other via another, lightly
loaded network. You could run a name server on the other network.

8.2 Adding More Name Servers

When you need to create new name servers for your domain, the simplest recourse is
to add slaves. You already know how—we went over it in Chapter 4—and once
you've set up one slave, cloning it is a piece of cake. But you can run into trouble if
you add slaves indiscriminately.

If you run a large number of slave servers for a zone, the primary master name server
can take quite a beating just keeping up with the slaves' polling to check that their
zone data is current. There are a number of courses of action to take for this problem,
as described in the sections that follow:

• Eliminate the slave name servers altogether by using Active Directory
integration.

• Increase the refresh interval so that the slaves don't check so often.
• Direct some of the slave name servers to load from other slave name servers.
• Create caching-only name servers.
• Create partial-slave name servers.

8.2.1 Active Directory Integration

We discuss this new feature for Windows 2000 in Chapter 11. Briefly, this feature
eliminates the load on the primary master from slaves' polling by eliminating the
slaves! Remember that the main purpose of the primary master/slave relationship is
zone data replication: the DNS designers created the zone transfer mechanism as a
way to spread zone data among multiple authoritative name servers. Windows 2000
stores all kinds of information about the network in Active Directory and replicates
this information, too. With Windows 2000, you have the option of storing the
definitive version of your zones' data in Active Directory rather than in zone data files
on the primary master. All authoritative name servers load the zone data stored in
Active Directory, which also takes care of replicating changes to the data. See
Chapter 11 for more details and instructions on setting up this new feature.

8.2.2 Slave Servers

You can have some of your slaves load zone data from other slave name servers
instead of from a primary name server. The slave name server can't tell if it's loading
from a primary or another slave. It's only important that the name server serving the
zone transfer is authoritative for the zone. There's no trick to configuring this. Instead

of specifying the IP address of the primary in the slave's configuration, you simply
specify the IP address of another slave.

When you go to this second level of distribution, though, be aware that it can take up
to twice as long for the data to percolate from the primary name server to all the
slaves. Remember that the refresh interval is the period after which the slave servers
check to make sure that their zone data is still current. Therefore, it can take the first-
level slave servers the entire length of the refresh interval to get a new copy of the
zone from the primary master server. Similarly, it can take the second-level slave
servers the entire refresh interval to get a new copy of the zone from the first-level
slave servers. The propagation time from the primary master server to all the slave
servers can therefore be twice the refresh interval.

Fortunately, using the DNS NOTIFY feature, which we'll describe in Chapter 10,
avoids this delay. This feature is on by default and will trigger zone transfers soon
after the zone is updated on the primary master. Unfortunately, it doesn't work with
any BIND Version 4 slaves (they'll receive the NOTIFY messages but will not
understand them). Active Directory integration, described in Chapter 11, also avoids
zone synchronization delays.

If you decide to configure your network with two (or more) tiers of slave servers, be
careful to avoid updating loops. If we configured wormhole to update from diehard
and then accidentally configured diehard to update from wormhole, neither would
ever get data from the primary master. They would merely check their out-of-date
serial numbers against each other and perpetually decide that they were both up-to-
date.

8.2.3 Caching-Only Servers

Creating caching-only name servers is another alternative when you need more
servers. Caching-only name servers are name servers not authoritative for any zones
(except 0.0.127.in-addr.arpa). The name doesn't imply that primary master and slave
name servers don't cache—they do—but rather that the only function this server
performs is looking up data and caching it. As with primary master and slave name
servers, a caching-only name server needs a cache.dns file and the automatically
created zones, 0.in-addr.arpa, 127.in-addr.arpa, and 255.in-addr.arpa. The
configuration of a caching-only server looks like Figure 8-4.

A caching-only name server can look up domain names inside and outside your zone,
as can primary master and slave name servers. The difference is that when a caching-
only name server initially looks up a name within your zone, it ends up asking one of
the primary master or slave name servers in your zone for the answer. A primary or
slave would answer the same question out of its authoritative data. Which primary or
slave does the caching-only server ask? As with name servers outside of your domain,
it finds out which name servers serve your zone from one of the name servers for your
parent zone. Is there any way to prime a caching-only name server's cache so it knows
which hosts run primary and slave name servers for your zone? No, there isn't. You
can't use cache.dns—the cache.dns file is only for root name server hints.

Figure 8-4. The DNS console showing a caching-only name server

A caching-only name server's real value comes after it builds up its cache. Each time
it queries an authoritative name server and receives an answer, it caches the records in
the answer. Over time, the cache will grow to include the information most often
requested by the resolvers querying the caching-only name server. And you avoid the
overhead of zone transfers—a caching-only name server doesn't need to do them.

8.2.4 Partial-Slave Servers

In between a caching-only name server and a slave name server is another variation: a
name server that is a slave for only a few of the local zones. We call this a partial-
slave name server (although probably nobody else does). Suppose movie.edu had 20
/24-sized (the old Class C) networks (and a corresponding 20 in-addr.arpa zones).
Instead of creating a slave server for all 21 zones (all the in-addr.arpa subdomains
plus movie.edu), we could create a partial-slave server for movie.edu and only those
in-addr.arpa zones the host itself is in. If the host had two network interfaces, its
name server would be a slave for three zones: movie.edu and the two in-addr.arpa
zones.

Let's say we scare up the hardware for another name server. We'll call the new host
zardoz.movie.edu, with IP addresses 192.249.249.9 and 192.253.253.9. We'll create a
partial-slave name server on zardoz, with the configuration shown in Figure 8-5.

This server is a slave for movie.edu and only 2 of the 20 in-addr.arpa zones. A "full"
slave would have 21 different zone statements in named.conf.

What's so useful about a partial-slave name server? They're not much work to
administer because their configuration doesn't change much. On a server authoritative
for all the in-addr.arpa zones, we'd need to add and delete in-addr.arpa zones as our
network changed. That can be a surprising amount of work on a large network.

Figure 8-5. The DNS console on a partial-slave server

A partial slave can still answer most of the queries it receives, though. Most of these
queries will be for data in movie.edu and the two in-addr.arpa zones. Why? Because
most of the hosts querying the name server are on the two networks to which it's
connected, 192.249.249/24 and 192.253.253/24. And those hosts probably
communicate primarily with other hosts on their own network. This generates queries
for data within the in-addr.arpa zone that corresponds to the local network.

8.3 Registering Name Servers

When you get around to setting up more and more name servers, a question may
strike you—do I need to register all of my primary and slave name servers with my
parent zone? The answer is no. Only those servers you want to make available to
name servers outside of your zone need to be registered with your parent. For
example, if you run nine name servers for your zone, you may choose to tell the
parent zone about only four of them. Within your network, you use all nine servers.
Five of those nine servers, however, are queried only by resolvers on hosts that are
configured to query them. Their parent name servers don't delegate to them, so they'll
never be queried by remote name servers. Only the four servers registered with your
parent zone are queried by other name servers, including caching-only and partial-
slave name servers on your network. This setup is shown in Figure 8-6.

Figure 8-6. Registering only some of your name servers

Besides being able to pick and choose which of your name servers are hammered by
outside queries, there's a technical motivation for registering only some of your zone's
name servers: there is a limit to how many servers will fit in a UDP response packet.
In practice, around 10 name server records should fit. Depending on the data (how
many servers are in the same domain), you can get more or fewer.31 There's not much
point in registering more than 10 servers, anyway—if none of those 10 servers can be
reached, it's unlikely the destination host can be reached.

If you've set up a new authoritative name server and you decide it should be
registered, make a list of the parents of the zones for which it's authoritative. You'll
need to contact the administrators for each of these parent zones. For example, let's
say we want to register the name server we just set up on zardoz. To get this slave
registered in all the right zones, we'll need to contact the administrators of edu and in-
addr.arpa. (For help determining who runs your parent zones, turn back to Chapter
3.)

When you contact the administrators of a parent zone, be sure to follow the process
they specify (if any) on their web site. If there's no standard modification process,
you'll have to send them the domain name of the zone (or zones) for which the new
name server is authoritative. If the new name server is in the new zone, you'll also
need to give them the IP address(es) of the new name server. In fact, if there's no
official format for submitting the information, it's often best just to send your parent
the complete list of registered name servers for the zone, plus any addresses
necessary, in zone data file format. That avoids any potential confusion.

31 The domain names of the Internet's root name servers were changed because of this. All the roots were moved into the
same domain, root-servers.net, to take the most advantage of domain-name compression and to allow information about as
many roots as possible to be stored in a single UDP packet.

Since our networks were originally assigned by the InterNIC, we used the web-based
process at http://www.arin.net/cgi-bin/amt.pl to change our registration. (If we'd
preferred to do things manually, we could have sent them the form at
http://www.arin.net/regserv/templates/modifytemplate.txt.) If they hadn't had a
template for us to use, our message to the administrator of in-addr.arpa might have
read something like this:

Howdy!

I've just set up a new slave name server on zardoz.movie.edu for the
249.249.192.in-addr.arpa and 253.253.192.in-addr.arpa zones. Would you
please add NS records for this name server to the in-addr.arpa zone?
That would make our delegation information look like:

253.253.192.in-addr.arpa. 86400 IN NS terminator.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS wormhole.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS zardoz.movie.edu.

249.249.192.in-addr.arpa. 86400 IN NS terminator.movie.edu.
249.249.192.in-addr.arpa. 86400 IN NS wormhole.movie.edu.
249.249.192.in-addr.arpa. 86400 IN NS zardoz.movie.edu.

Thanks!

Albert LeDomaine
al@robocop.movie.edu

Notice that we specified explicit TTLs on the NS and A records. That's because our
parent name servers aren't authoritative for those records; our name servers are. By
including them, we're indicating our choice of a TTL for our zone's delegation. Of
course, our parent may have other ideas about what the TTL should be.

In this case, glue data—A records for each of the name servers—isn't necessary, since
the domain names of the name servers aren't within the in-addr.arpa zones. They're
within movie.edu, so a name server that was referred to terminator.movie.edu or
wormhole.movie.edu could still find their addresses by following delegation to the
movie.edu name servers.

Is a partial-slave name server a good name server to register with your parent zone?
Actually, it's not ideal because it's authoritative for only some of your in-addr.arpa
zones. Administratively, it may be easier to register only servers backing up all the
local zones; that way, you don't need to keep track of which name servers are
authoritative for which zones. All of your parent zones can delegate to the same set of
name servers: your primary master and your "full" slaves.

If you don't have many name servers, though, or if you're good at remembering which
name servers are authoritative for which zones, go ahead and register a partial-slave.

Caching-only name servers, on the other hand, must never be registered. A caching-
only name server rarely has complete information for any given zone; it just has the
bits and pieces of the zone that it has looked up recently. If a parent name server were
to mistakenly refer a foreign name server to a caching-only name server, the foreign
name server would send the caching-only name server a nonrecursive query. The
caching-only name server might have the data cached, but then again, it might not. If
it didn't have the data, it would refer the querier to the best name servers it knew

(those closest to the domain name in the query)—which might include the caching-
only name server itself! The poor foreign name server might never get an answer.
This kind of misconfiguration—actually, delegating a zone to any name server not
authoritative for that zone—is known as lame delegation.

8.4 Changing TTLs

An experienced domain administrator needs to know how to set the time to live on his
zone's data to his best advantage. The TTL on a resource record, remember, is the
time for which any server can cache that record. So if the TTL for a particular
resource record is 3,600 seconds and a server outside your network caches that record,
it will have to remove the entry from its cache after an hour. If it needs the same data
after the hour is up, it'll have to query your name servers again.

When we introduced TTLs, we emphasized that your choice of a TTL would dictate
how current you would keep copies of your data, at the cost of increased load on your
name servers. A low TTL would mean that name servers outside your network would
have to get data from your name servers often and that the data would therefore be
kept current. On the other hand, your name servers would be peppered by the name
servers' queries.

You don't have to choose a TTL once and for all, though. You can—and experienced
administrators do—change TTLs periodically to suit your needs.

Suppose we know that one of our hosts is about to be moved to another network. This
host houses the movie.edu film library, a large collection of files our site makes
available to hosts on the Internet. During normal operation, outside name servers
cache the address of our host according to the minimum (default) TTL in the SOA
record. (We set the movie.edu TTL to be one day in our sample files.) A name server
caching the old address record just before the change could have the wrong address
for as long as a day. A loss of connectivity for a full day is unacceptable, though.
What can we do to minimize the loss of connectivity? We can lower the TTL so that
outside servers cache the address record for a shorter period. By reducing the TTL, we
force the outside servers to update their data more frequently, which means that any
changes we make when we actually move the system will be propagated to the outside
world quickly. How short can we make the TTL? Unfortunately, we can't safely use a
TTL of zero, which should mean "don't cache this record at all." Some older BIND
Version 4 name servers can't cope with a zero TTL. Small TTLs, like 30 seconds, are
okay, though. The easiest change is to lower the TTL in the movie.edu SOA record. If
you don't place an explicit TTL on resource records, the name server applies this
minimum (default) TTL from the SOA record to each resource record. If you lower
the minimum (default) TTL field, though, the new, lower TTL applies to all zone
data, not just the address of the host being moved. The drawback to this approach is
that your name server will be answering a lot more queries since the querying servers
will cache all the data in your zone for a shorter period. A better alternative is to put a
different TTL only on the affected address record.

To add an explicit TTL on an individual resource record, you'll need to be in the DNS
console's "advanced" view so that you can actually see individual records' TTLs:
choose View Advanced.

Click on the domain name of the zone in the left panel, then double-click the record
when it appears in the right panel. The Properties window is displayed, and you can
type the TTL. Recall that the subfields in the TTL field are (from left to right) days,
hours, minutes, and seconds.

Figure 8-7 provides an example of an explicit TTL from movie.edu.

Figure 8-7. An explicit TTL on cujo.movie.edu

The record the DNS console adds to the movie.edu zone data file looks like this:

cujo 3600 IN A 192.253.253.5

Note the explicit TTL of 3,600 seconds (one hour) in the TTL field, overriding the
TTL in the zone's SOA record.

You may have seen the last field of the SOA record called simply the "minimum"
field (some versions of nslookup display it that way, for example). So why does it
show up in the DNS console as "Minimum (default)"? (To see what we mean, take a
look at the SOA record shown back in Section 4.3.2.1, in Figure 4-14.) If the
Microsoft DNS Server followed the DNS RFCs, the TTL field in the SOA record
would really define the minimum TTL value for all resource records in the zone.
Thus, you could only specify explicit TTLs larger than this minimum. Neither
Microsoft nor BIND name servers work this way, though. In other words, in real life,
"minimum" is not really minimum. Instead, the name server implements the minimum
TTL field in the SOA record as a "default" TTL—hence the "Minimum (default)"
wording. If there is no TTL on a record, the minimum applies. If there is a TTL on the

resource record, the name server allows it even if it is smaller than the minimum. That
one record is sent out in responses with the smaller TTL, while all other records are
sent out with the "Minimum (default)" TTL from the SOA record.

You should also know that when giving out answers, a slave supplies the same TTL a
primary master does—that is, if a primary gives out a TTL of one hour for a particular
record, a slave will, too. The slave doesn't decrement the TTL according to how long
it has been since it loaded the zone. So, if the TTL of a single resource record is set
smaller than the SOA minimum, both the primary and slave name servers give out the
resource record with the same, smaller TTL. If the slave name server has reached the
expiration time for the zone, it expires the whole zone. It will never expire an
individual resource record within a zone.

So the Microsoft DNS Server does allow you to put a small TTL on an individual
resource record if you know that the data is going to change shortly. Thus, any server
caching that data caches it only for a brief time. Unfortunately, while the name server
makes tagging records with a small TTL possible, most administrators don't take the
time to do it. When a host changes addresses, you often lose connectivity to it for a
while.

More often than not, the host having its address changed is not one of the main hubs
on the site, so the outage impacts few people. If one of the mail hubs or a major web
server or ftp archive—like the film library—is moving, though, a day's loss of
connectivity may be unacceptable. In cases like this, the administrator should plan
ahead and reduce the TTL on the data to be changed.

Remember that the TTL on the affected data will need to be lowered before the
change takes place. Reducing the TTL on a workstation's address record and changing
the workstation's address simultaneously may do you little or no good; the address
record may have been cached seconds before you made the change and may linger
until the old TTL times out. You must also be sure to factor in the time it'll take your
slaves to load from your primary master. For example, if your minimum TTL is 12
hours and your refresh interval is 3 hours, be sure to lower the TTLs at least 15 hours
ahead of time, so that by the time you move the host, all the old, longer TTL records
will have timed out. Of course, if all of your slaves are using NOTIFY, the slaves
shouldn't take the full refresh interval to sync up.

8.4.1 Changing Other SOA Values

We briefly mentioned increasing the refresh interval as a way of offloading your
primary name server. Let's discuss refresh in a little more detail and go over the
remaining SOA values, too.

The refresh value, you'll remember, controls how often a slave checks whether its
zone data is up-to-date. The retry value becomes the refresh time after the first failure
to reach a master name server. The expire value determines how long zone data can
be held before it's discarded when a master is unreachable. Finally, the minimum TTL
sets how long zone information may be cached.

Suppose we've decided we want the slaves to pick up new information every hour
instead of every three hours. We change the refresh value to one hour in each of the
zones. Since retry is related to refresh, we should probably reduce retry, too—to every
15 minutes or so. Typically, retry is less than refresh, but that's not required. Although
lowering the refresh value will speed up the distribution of zone data, it will also
increase the load on the server from which data is being loaded, since the slaves will
check more often. The added load isn't much, though; each slave makes a single SOA
query during each zone's refresh interval to check its master's copy of the zone. So
with two slave name servers, changing the refresh time from three hours to one hour
will generate only four more queries (per zone) to the primary master in any three-
hour span.

If all of your slaves use NOTIFY, of course, refresh doesn't mean as much. But if you
have even one BIND Version 4 slave, your zone data may take up to the full refresh
interval to reach it.

Some older versions of BIND slaves stopped answering queries during a zone load.
As a result, BIND was modified to spread out the zone loads, reducing the periods of
unavailability. So, even if you set a low refresh interval, your slaves may not check
exactly as often as you request. BIND Version 4 name servers attempt a certain
number of zone loads and then wait 15 minutes before trying another batch. On the
other hand, BIND Version 4.9 and later may also refresh more often than the refresh
interval. These newer BINDs will wait a random number of seconds between one-half
of the refresh interval and the full refresh interval to check serial numbers.

Expiration times on the order of a week—longer if you frequently have problems
reaching your updating source—are common. The expiration time should always be
much larger than the retry and refresh intervals; if the expire time is smaller than the
refresh interval, your slaves will expire their data before trying to load new data. If
your zone's data doesn't change much, you might consider raising the minimum
(default) TTL. The SOA's minimum (default) TTL value is typically one day (86,400
seconds), but you can make it longer. One week is about the longest value that makes
sense for a TTL. If it's longer than that, you may find yourself unable to change bad,
cached data in a reasonable amount of time.

8.5 Planning for Disasters

It's a fact of life on a network that things go wrong. Hardware fails, software has bugs,
and people occasionally make mistakes. Sometimes this results in minor
inconveniences, like having a few users lose connections. Sometimes the results are
catastrophic and involve the loss of important data and valuable jobs.

Because the Domain Name System relies so heavily on the network, it is vulnerable to
network outages. Thankfully, the design of DNS takes into account the imperfection
of networks: it allows for multiple, redundant name servers, retransmission of queries,
retrying zone transfers, and so on.

DNS doesn't protect itself from every conceivable calamity, though. There are types
of network failures—some of them quite common—that DNS doesn't or can't protect
against. But with a small investment of time and money, you can minimize the threat
of these problems.

8.5.1 Outages

Power outages, for example, are relatively common in many parts of the world. In
some parts of the U.S., thunderstorms or tornadoes may cause a site to lose power, or
to have only intermittent power, for an extended period. Elsewhere, typhoons,
volcanoes, or construction work may interrupt your electrical service. And at the time
of this writing, those of you in California might lose power in a rolling blackout from
lack of electrical capacity.

If all your hosts are down, of course, you don't need name service. Quite often,
however, sites have problems when power is restored. Following our
recommendations, they run their name servers on file servers and big, multiuser
machines. And when the power comes up, those machines are naturally the last to
boot—because all those disks need to be checked and fixed first! Which means that
all the on-site hosts that are quick to boot do so without the benefit of name service.

This can cause all sorts of wonderful problems, depending on what services your
hosts access when they boot. For example, your PCs may mount your servers' drives
(via net use) when they boot. If they do, they almost certainly specify the servers'
domain names or NetBIOS names.

Using hostnames in commands is admirable because it allows administrators to
change the servers' IP addresses without changing all the startup files on-site.
However, if name service isn't available when your PCs boot, the net use command
will fail, which may cause successive commands to fail, too. This will certainly not
help your users' productivity.

8.5.2 Recommendations

Our recommendation is to add the names and IP addresses of critical hosts to your
PCs' HOSTS files. Any host whose name is referenced during the boot process should
appear in this file. You can synchronize the file by copying it from share to share. On
Windows 2000, the default location for the file is
%ServerRoot%\System32\Drivers\Etc, often C:\WinNT\System32\Drivers\Etc. The
format of the file is just like the format of the Unix /etc/hosts file: each line consists of
an IP address (in dotted-octet notation), which starts in the first column, followed by
whitespace and the canonical name of the host. Optionally, one or more aliases may
follow the canonical name. For example:

192.249.249.1 wormhole.movie.edu wormhole
192.249.249.3 terminator.movie.edu terminator

Now, if your PC needs to look up wormhole or wormhole.movie.edu when it boots, it
will be able to resolve the name.

However, there's some danger in using HOSTS files: unless you take care to keep the
files up-to-date, the information in them may become stale. And since the Windows
2000 resolver uses HOSTS before querying a name server, a stale entry can cause
resolution failures that are hard to diagnose.

The best solution to this problem is to run a name server on a host with uninterruptible
power. If you rarely experience extended power loss, battery backup might be
enough. If your outages are longer and name service is critical to you, you should
consider an uninterruptible power system (UPS) with a generator of some kind.

If you can't afford luxuries like these, you might just try to track down the fastest-
booting host around and run a name server on it. Hosts with small filesystems should
boot quickly, since they don't have many disks to check.

Once you've located the right host, you'll need to make sure the host's IP address
appears in the resolver configurations of all of your hosts that need full-time name
service. You'll probably want to list the backed-up host last since, during normal
operation, hosts should use the name server closest to them. Then, after a power
failure, your critical applications will still have name service, albeit at a small
sacrifice in performance.

8.6 Coping with Disaster

When disaster strikes, it really helps to know what to do. Knowing to duck under a
sturdy table or desk during an earthquake can save you from being pinned under a
toppling monitor. Knowing how to turn off your gas can save your house from
conflagration.

Likewise, knowing what to do in a network disaster (or even just a minor mishap) can
help you keep your network running.

8.6.1 Long Outages (Days)

If you lose network connectivity for a long time, your name servers may have
problems. If they lose connectivity to the root name servers for an extended period,
they'll stop resolving queries outside their authoritative zone data. If the slaves can't
reach their master, sooner or later they'll expire the zone.

In case your name service really goes haywire because of the connectivity loss, it's a
good idea to keep a sitewide or workgroup HOSTS file around, as we recommended
earlier in this chapter. If your name servers all go down, your hosts will still be able to
resolve the names of hosts in the HOSTS file.

As for slaves, you can reconfigure a slave that can't reach its master to run
temporarily as a primary master. Just right-click on the zone's domain name in the
DNS console, select Properties, make sure the General tab is selected, and click on
Change... to change the zone type from secondary to primary. If more than one slave

for the same zone is cut off, you can configure one as a primary master temporarily
and reconfigure the other to load from the temporary primary.

8.6.2 Really Long Outages (Weeks)

If an extended outage cuts you off from the Internet—say for a week or more—you
may need to restore connectivity to root name servers artificially to get things
working again. Every name server needs to talk to a root name server occasionally.
It's a bit like therapy: the name server needs to contact the root to regain its
perspective on the world.

To provide root name service during a long outage, you can set up your own root
name servers, but only temporarily. Once you're reconnected to the Internet, you must
shut off your temporary root servers. The most obnoxious vermin on the Internet are
name servers that believe they're root name servers but don't know anything about
most top-level domains. A close second is the Internet name server configured to
query—and report—a false set of root name servers.

That said, and our alibis in place, here's what you have to do to configure your own
root name server. First, you need to create the root zone. The root zone will delegate
to the highest-level zones in your isolated network. For example, if movie.edu were to
be isolated from the Internet, we might create a root zone data file, root.dns, for
terminator:

. IN SOA terminator.movie.edu. al.robocop.movie.edu. (
 1 ; Serial
 10800 ; Refresh after 3 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 86400) ; Minimum TTL of 1 day

; Refresh, retry, and expire really don't matter since all
; roots are primaries. Minimum TTL could be longer, since
; the data is likely to be stable.

 IN NS terminator.movie.edu. ; terminator is the temp. root

; Our root only knows about movie.edu and our two
; in-addr.arpa domains

movie.edu. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

249.249.192.in-addr.arpa. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

253.253.192.in-addr.arpa. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

terminator.movie.edu. IN A 192.249.249.3
wormhole.movie.edu. IN A 192.249.249.1
 IN A 192.253.253.1

Then we need to add the zone with the DNS console and update all of our name
servers (except the new, temporary root) with a cache.dns file that includes just the

temporary root name server (it's best to move the old cache file aside—we'll need it
later, once connectivity is restored).

Here are the contents of the db.cache file:

. 99999999 IN NS terminator.movie.edu.

terminator.movie.edu. IN A 192.249.249.3

This process will keep movie.edu name resolution going during the outage. Then,
once Internet connectivity is restored, we can delete the root zone on terminator and
restore the original cache files on all our other name servers.

Chapter 9. Parenting

The way Dinah washed her children's faces was this: first she held the
poor thing down by its ear with one paw, and then with the other paw
she rubbed its face all over, the wrong way, beginning at the nose: and
just now, as I said, she was hard at work on the white kitten, which
was lying quite still and trying to purr— no doubt feeling that it was
all meant for its good.

Once your domain reaches a certain size, or you decide you need to distribute the
management of parts of your domain to various entities within your organization,
you'll want to divide the domain into subdomains. These subdomains will be the
children of your current domain on the domain tree; your domain will be the parent. If
you delegate responsibility for your subdomains to another organization, each
becomes its own zone, separate from its parent zone. We like to call the management
of your subdomains—your children—parenting.

Good parenting starts with carving up your domain sensibly, choosing appropriate
names for your subdomains, and then delegating the subdomains to create new zones.
A responsible parent also works hard at maintaining the relationship between the
name servers authoritative for her zone and its children; she ensures that delegation
from parent to child is current and correct.

Good parenting is vital to the success of your network, especially as name service
becomes critical to navigating between sites. Incorrect delegation to a child zone's
name servers can render a site effectively unreachable, while the loss of connectivity
to the parent zone's name servers can leave a site unable to reach any hosts outside the
local zone.

In this chapter we present our views on when to create subdomains, and we go over
how to create and delegate them in some detail. We also discuss management of the
parent-child relationship and, finally, how to manage the process of carving up a large
domain into smaller subdomains with minimal disruption and inconvenience.

9.1 When to Become a Parent

Far be it from us to tell you when you should become a parent, but we will be so bold
as to offer you some guidelines. You may find some compelling reason to implement
subdomains that isn't on our list, but here are some of the most common reasons:

• A need to delegate or distribute management of the domain to a number of
organizations

• The large size of your domain—dividing it would make it easier to manage
and offload the name servers for the domain

• A need to distinguish hosts' organizational affiliations by including them in
particular subdomains

Once you've decided to have children, the next question to ask yourself is, naturally,
how many children to have.

9.2 How Many Children?

Of course, you won't simply say, "I want to create four subdomains." Deciding how
many subdomains to implement is really choosing the organizational affiliations of
those subdomains. For example, if your company has four branch offices, you might
decide to create four subdomains, each of which corresponds to a branch office.

Should you create subdomains for each site, for each division, or even for each
department? You have a lot of latitude in your choice because of DNS's scalability.
You can create a few large subdomains or many small subdomains. There are trade-
offs whichever you choose, though.

Delegating to a few large subdomains isn't much work for the parent, because there's
not much delegation to keep track of. However, you wind up with larger subdomains,
which require more memory to load and faster name servers, and administration isn't
as distributed. If you implement site-level subdomains, for example, you may force
autonomous or unrelated groups at a site to share a single namespace and a single
point of administration.

Delegating to many smaller subdomains can be a headache for the parent's
administrator. Keeping delegation data current involves keeping track of which hosts
run name servers and which zones they're authoritative for. The data changes each
time a subdomain adds a new name server or the address of a name server for the
subdomain changes. If the subdomains are all administered by different people, that
means more administrators to train, more relationships for the parent's administrator
to maintain, and more overhead for the organization overall. On the other hand, the
subdomains are smaller and easier to manage, and the administration is more widely
distributed, allowing closer management of zone data.

Given the advantages and disadvantages of either alternative, it may seem difficult to
make a choice. Actually, there's probably a natural division in your organization.
Some companies manage computers and networks at the site level; others have
decentralized, relatively autonomous workgroups that manage everything themselves.
Here are a few basic rules to help you find the right way to carve up your namespace:

• Don't shoehorn your organization into a weird or uncomfortable domain
structure. Trying to fit 50 independent, unrelated U.S. divisions into four
regional subdomains may save you work (as the administrator of the parent
zone), but it won't help your reputation. Decentralized, autonomous operations
demand different zones—that's the raison d'être of the Domain Name System.

• The structure of your domain should mirror the structure of your organization,
especially your organization's support structure. If departments run networks,
assign IP addresses, and manage hosts, they should also manage the
subdomains.

• If you're not sure or can't agree about how the namespace should be organized,
try to come up with guidelines for when a group within your organization can
carve off its own subdomain (for example, how many hosts are needed to
create a new subdomain and what level of support the group must provide)
and grow the namespace organically, only as needed.

9.3 What to Name Your Children

Once you've decided how many subdomains you'd like to create and what they
correspond to, you must choose names for them. Rather than unilaterally deciding on
your subdomains' names, it's considered polite to involve your future subdomain
administrators and their constituencies in the decision. In fact, you can leave the
decision entirely to them if you like.

This can lead to problems, though. It's preferable to use a relatively consistent naming
scheme across your subdomains. This practice makes it easier for users in one
subdomain, or outside your domain entirely, to guess or remember your subdomain
names and to figure out in which domain a particular host or user lives.

Leaving the decision to the locals can result in naming chaos. Some will want to use
geographical names; others will insist on organizational names. Some will want to
abbreviate; others will want to use full names.

Therefore, it's often best to establish a naming convention before choosing subdomain
names. Here are some suggestions from our experience:

• In a dynamic company, the names of organizations can change frequently.
Naming subdomains organizationally in a climate like this can be disastrous.
One month the Relatively Advanced Technology group seems stable enough,
the next month they've been merged into the Questionable Computer Systems
organization, and the following quarter they're all sold to a German
conglomerate. Meanwhile, you're stuck with well-known hosts in a subdomain
whose name no longer has any meaning.

• Geographical names are more stable than organizational names but sometimes
not as well known. You may know that your famous Software Evangelism
Business Unit is in Poughkeepsie or Waukegan, but people outside your
company may have no idea where it is (and might have trouble spelling either
name).

• Don't sacrifice readability for convenience. Two-letter subdomain names may
be easy to type, but impossible to recognize. Why abbreviate "Italy" to "it" and
have it confused with your Information Technology organization when for a
paltry three more letters you can use the full name and eliminate any
ambiguity?

• Too many companies use cryptic, inconvenient domain names. The general
rule seems to be the larger the company, the more indecipherable the domain
names. Buck the trend: make the names of your subdomains obvious!

• Don't use existing or reserved top-level domain names as subdomain names. It
might seem sensible to use two-letter country abbreviations for your
international subdomains or to use organizational top-level domain names like
net for your networking organization, but doing so can cause nasty problems.

For example, naming your Communications department's subdomain com
might impede your ability to communicate with hosts under the top-level com
domain. Imagine the administrators of your com subdomain naming their new
Sun workstation sun and their new HP 9000 hp (they aren't the most
imaginative folks): users anywhere within your domain sending mail to friends
at sun.com or hp.com could have their letters end up in your com subdomain,
since the name of your parent zone may be in some of your hosts' search lists.

9.4 How to Become a Parent: Creating Subdomains

Once you've decided on names, creating the child domains is easy. But first, you've
got to decide how much autonomy you're going to give your subdomains. Odd that
you have to decide that before you actually create them....

Thus far, we've assumed that if you create a subdomain, you'll want to delegate it to
another organization, thereby making it a separate zone from the parent. Is this always
true, though? Not necessarily.

Think carefully about how the computers and networks within a subdomain are
managed when choosing whether or not to delegate it. It doesn't make sense to
delegate a subdomain to an entity that doesn't manage its own hosts or networks. For
example, in a large corporation, the personnel department probably doesn't run its
own computers: the MIS (Management Information Systems) or IT (Information
Technology—same animal as MIS) department manages them. So while you may
want to create a subdomain for personnel, delegating management for that subdomain
to them is probably wasted effort.

9.4.1 Creating a Subdomain in the Parent's Zone

You can create a subdomain without delegating it, however. How? By creating
resource records that refer to the subdomain within the parent's zone.

Say one day a group of students approaches us, asking for a DNS entry for a web
server for student home pages. The name they'd like is www.students.movie.edu. You
might think that we'd need to create a new zone, students.movie.edu, and delegate to it
from the movie.edu zone. Well, that's one way to do it, but there's an easier way: just
create an A record for www.students.movie.edu in the movie.edu zone. We find that
few people realize this is perfectly legal. You don't need a new zone for each new
level in the namespace. A new zone would make sense if the students were going to
run students.movie.edu by themselves and wanted to administer their own name
servers. But they just want one A record, so creating a whole new zone is more work
than necessary.

It's easy to add this record with the DNS console. First create a students.movie.edu
subdomain in the movie.edu zone, then add the www.students.movie.edu A record. To
create the subdomain, right-click on the zone in the left pane and select New
Domain.... You'll see the window shown in Figure 9-1.

Figure 9-1. Creating a subdomain in a zone

Enter the name of the new subdomain. You don't need to append movie.edu -- the
DNS console knows what you mean. You'll then see a folder icon for the new domain
in the DNS console, as shown in Figure 9-2.

Figure 9-2. The students.movie.edu subdomain in the movie.edu zone

To enter the www.students.movie.edu A record, just select the students folder and
follow the procedures described previously to add a new host.

Now users can access www.students.movie.edu to get to the students' home pages. We
could make this setup especially convenient for students by adding students.movie.edu
to their PCs' or workstations' search lists; they'd need to type only www as the URL to
get to the right host.

Notice there's no SOA record for students.movie.edu? There's no need for one since
the movie.edu SOA record indicates the start of authority for the entire movie.edu
zone. Since there's no delegation to students.movie.edu, it's part of the movie.edu
zone.

9.4.2 Creating and Delegating a Subdomain

If you decide to delegate your subdomains—to send your children out into the world,
as it were—you'll need to do things a little differently. We're in the process of doing it
now, so you can follow along with us.

We need to create a new subdomain of movie.edu for our special-effects lab. We've
chosen the name fx.movie.edu -- short, recognizable, unambiguous. Because we're
delegating fx.movie.edu to administrators in the lab, it'll be a separate zone. The hosts
bladerunner and outland, both within the special-effects lab, will serve as the zone's
name servers (bladerunner will serve as the primary master). We've chosen to run two

name servers for the zone for redundancy—a single fx.movie.edu name server would
be a single point of failure that could effectively isolate the entire special-effects lab.
Since there aren't many hosts in the lab, though, two name servers should be enough.

The special-effects lab is on movie.edu's new 192.253.254/24 network. Here are the
partial contents of HOSTS:

192.253.254.1 movie-gw.movie.edu movie-gw
fx primary
192.253.254.2 bladerunner.fx.movie.edu bladerunner br
fx secondary
192.253.254.3 outland.fx.movie.edu outland
192.253.254.4 starwars.fx.movie.edu starwars
192.253.254.5 empire.fx.movie.edu empire
192.253.254.6 jedi.fx.movie.edu jedi

First, we make sure the Microsoft DNS Server is installed on the new server,
bladerunner. Then we create the new zone fx.movie.edu on bladerunner using the
process described in Section 4.3.2 in Chapter 4. We also create the corresponding in-
addr.arpa zone, 254.253.192.in-addr.arpa. Next, we populate the zone with all the
hosts from our snippet of HOSTS, making sure the DNS console automatically adds
the PTR records that correspond to our A records. We then add MX records for all of
our hosts, pointing to starwars.fx.movie.edu and wormhole.movie.edu, at preferences
10 and 100, respectively.

The zone data file we end up with, called fx.movie.edu.dns, looks like this:

;
; Data file fx.movie.edu.dns for fx.movie.edu zone.
; Zone version: 27
;

@ IN SOA bladerunner.fx.movie.edu.
administrator.fx.movie.edu. (
 27 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

;
; Zone NS records
;

@ NS bladerunner.fx.movie.edu.
@ NS outland.fx.movie.edu.

;
; Zone records
;

@ MX 10 starwars.
@ MX 100 wormhole.movie.edu.
bladerunner A 192.253.254.2
 MX 10 starwars.
 MX 100 wormhole.movie.edu.
br CNAME bladerunner.fx.movie.edu.

empire A 192.253.254.5
 MX 10 starwars.
 MX 100 wormhole.movie.edu.
jedi A 192.253.254.6
 MX 10 starwars.
 MX 100 wormhole.movie.edu.
outland A 192.253.254.3
 MX 10 starwars.
 MX 100 wormhole.movie.edu.
starwars A 192.253.254.4
 MX 10 starwars.
 MX 100 wormhole.movie.edu.

The 254.253.192.in-addr.arpa.dns file ends up looking like this:

;
; Data file 254.253.192.in-addr.arpa.dns for 254.253.192.in-
addr.arpa zone.
; Zone version: 11
;

@ IN SOA terminator.movie.edu.
administrator.movie.edu. (
 11 ; serial number
 900 ; refresh
 600 ; retry
 86400 ; expire
 3600) ; minimum TTL

;
; Zone NS records
;

@ NS terminator.movie.edu.

;
; Zone records
;

1 PTR movie-gw.movie.edu.
2 PTR bladerunner.fx.movie.edu.
3 PTR outland.fx.movie.edu.
4 PTR starwars.fx.movie.edu.
5 PTR empire.fx.movie.edu.
6 PTR jedi.fx.movie.edu.

Notice that the PTR record for 1.254.253.192.in-addr.arpa points to movie-
gw.movie.edu. That's intentional. The router connects to the other movie.edu
networks, so it really doesn't belong in fx.movie.edu. There's no requirement that all
the PTR records in 254.253.192.in-addr.arpa map into a single zone, although they
should correspond to the canonical names for those hosts.

Now we need to configure bladerunner's resolver. Following the directions in Chapter
6, we configure bladerunner to send queries to its ownIP address. Then we set
bladerunner's domain to fx.movie.edu.

Now we'll use nslookup to look up a few hosts in fx.movie.edu and in 254.253.192.in-
addr.arpa:

C:\>
nslookup
Default Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

>
jedi
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

Name: jedi.fx.movie.edu
Address: 192.253.254.6

>
set type=mx
>
empire
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

empire.fx.movie.edu MX preference = 10, mail exchanger = starwars
empire.fx.movie.edu MX preference = 100, mail exchanger =
wormhole.movie.edu

>
ls fx.movie.edu
[bladerunner.fx.movie.edu]
 fx.movie.edu. NS server =
bladerunner.fx.movie.edu
 fx.movie.edu. NS server = outland.fx.movie.edu
 bladerunner A 192.253.254.2
 empire A 192.253.254.5
 jedi A 192.253.254.6
 outland A 192.253.254.3
 starwars A 192.253.254.4
>
set type=ptr
>
192.253.254.3
Server: bladerunner.fx.movie.edu
Address: 192.253.254.2

3.254.253.192.in-addr.arpa name = outland.fx.movie.edu
>
ls 254.253.192.in-addr.arpa
[bladerunner.fx.movie.edu]
 254.253.192.in-addr.arpa. NS server = terminator.movie.edu
 1 PTR host = movie-gw.movie.edu
 2 PTR host =
bladerunner.fx.movie.edu
 3 PTR host = outland.fx.movie.edu
 4 PTR host = starwars.fx.movie.edu
 5 PTR host = empire.fx.movie.edu
 6 PTR host = jedi.fx.movie.edu
>
exit

The output looks reasonable, so it's safe to set up a slave name server for fx.movie.edu
and then delegate fx.movie.edu from movie.edu.

9.4.2.1 An fx.movie.edu slave

Setting up the slave name server for fx.movie.edu is simple: use the DNS console to
add outland as a new server, then add two slave (secondary) zones, according to the
instructions in Chapter 4.

Like bladerunner, outland's resolver will point to the local name server, and we'll
configure the local domainto be fx.movie.edu.

9.4.2.2 On the movie.edu primary master name server

All that's left now is to delegate the fx.movie.edu subdomain to the new fx.movie.edu
name servers on bladerunner and outland. The whole delegation process is much
improved in Windows 2000's DNS console. Right-click on the parent domain,
movie.edu, in the left pane and choose New Delegation..., which starts the New
Delegation Wizard. Click Next in the welcome screen to display a screen like the one
shown in Figure 9-3. The first step is entering the name of the delegated subdomain,
which we've done.

Figure 9-3. Entering the name of the delegated subdomain

Click Next and you'll be presented with a window to choose the name servers to host
(i.e., be authoritative for) the delegated zone. Our two servers are
bladerunner.fx.movie.edu and outland.fx.movie.edu, so we enter the appropriate
information by clicking Add... (we have to run through the add process twice, once
for each name server), resulting in a window like Figure 9-4.

Figure 9-4. Choosing name servers for the delegated zone

The final window of the wizard is just for confirmation, so we won't bother to show it.
Click Finish and you've delegated a zone. The DNS console adds a special gray icon
for delegated zones; if you select this icon, you'll see the NS records added by the
wizard. These records perform the actual delegation. A sample DNS console view
showing the fx.movie.edu delegation appears in Figure 9-5.

Figure 9-5. The DNS console showing a delegated zone

According to RFC 1034, the domain names in the resource record-specific portion
(the "right side") of the bladerunner.fx.movie.edu and outland.fx.movie.edu NS
records must be the canonical domain names for the name servers. A remote name
server following delegation expects to find one or more address records attached to
that domain name, not an alias (CNAME) record. Actually, the RFC extends this
restriction to any type of resource record that includes a domain name as its value—
all must specify the canonical domain name.

These two records alone aren't enough, though. Do you see the problem? How can a
name server outside of fx.movie.edu look up information within fx.movie.edu? Well, a
movie.edu name server would refer it to the name servers authoritative for

fx.movie.edu, right? That's true, but the NS records in db.movie.edu give only the
names of the fx.movie.edu name servers. The foreign name server needs the IP
addresses of the fx.movie.edu name servers in order to send queries to them. Who can
give it those addresses? Only the fx.movie.edu name servers. A real chicken-and-egg
problem!

The solution is to include the addresses of the fx.movie.edu name servers in
movie.edu. While these aren't strictly part of the movie.edu zone, delegation to
fx.movie.edu won't work without them. Of course, if the name servers for fx.movie.edu
weren't within fx.movie.edu, these addresses—called glue records -- wouldn't be
necessary. A foreign name server would be able to find the address it needed by
querying other name servers.

We don't have to worry about adding these records, though—the New Delegation
Wizard takes care of it for us.

Also, remember to keep the glue up-to-date. If bladerunner gets a new network
interface, and hence another IP address, you'll need to update the glue data. The DNS
console doesn't let you edit the glue records directly, though. You have use the name
server modification window. With the DNS console showing a view like Figure 9-5,
double-click on an NS record in the right pane to produce a window like the one
shown in Figure 9-6.

Figure 9-6. Name server modification window

If fx.movie.edu's delegation changes—i.e., a name server gets added or deleted or a
name server's IP address changes—use the Add..., Edit..., or Remove buttons to
make the appropriate changes.

We might also want to include aliases for any hosts moving into fx.movie.edu from
movie.edu. For example, if we move plan9.movie.edu, a server with an important
library of public-domain special-effects algorithms, into fx.movie.edu, we should
create an alias under movie.edu pointing the old domain name to the new one. In the
zone data file, the record would look like this:

plan9 IN CNAME plan9.fx.movie.edu.

This will allow people outside of movie.edu to reach plan9 even though they're using
its old domain name, plan9.movie.edu.

Don't get confused about the zone in which this alias belongs. The plan9 alias record
is actually in the movie.edu zone, so it belongs in movie.edu.dns. An alias pointing
p9.fx.movie.edu to plan9.fx.movie.edu, on the other hand, is in the fx.movie.edu zone
and belongs in fx.movie.edu.dns.

9.4.2.3 Delegating an in-addr.arpa zone

We almost forgot to delegate the 254.253.192.in-addr.arpa zone! This is a little
trickier than delegating fx.movie.edu because we don't manage the parent zone.

First, we need to figure out what 254.253.192.in-addr.arpa's parent zone is and who
runs it. Figuring this out may take some sleuthing; we covered how to do this in
Chapter 3.

As it turns out, the in-addr.arpa zone is 254.253.192.in-addr.arpa's parent. And, if
you think about it, that makes sense. There's no reason for the administrators of in-
addr.arpa to delegate 253.192.in-addr.arpa or 192.in-addr.arpa to a separate
authority because, unless 192/8 or 192.253/16 is all one big CIDR block, networks
like 192.253.253/24 and 192.253.254/24 don't have anything in common with each
other. They may be managed by totally unrelated organizations.

You might remember (from Chapter 3) that the in-addr.arpa zone is managed by
ARIN, the American Registry of Internet Numbers. (Of course, if you didn't
remember, you could always use nslookup to find the contact address in in-
addr.arpa's SOA record, like we showed you in Chapter 3.) All that's left is for us to
use the web-based "ARIN Modify Tool" at http://www.arin.net/cgi-bin/amt.pl to
request registration of our reverse-mapping zone.

9.4.2.4 Adding a movie.edu slave

If the special-effects lab gets big enough, it may make sense to put a movie.edu slave
somewhere on the 192.253.254/24 network. That way, a larger proportion of DNS
queries from fx.movie.edu hosts can be answered locally. It seems logical to make one
of the existing fx.movie.edu name servers into a movie.edu slave, too—that way, we
can make better use of an existing name server instead of setting up a brand-new
name server.

We've decided to make bladerunner a slave for movie.edu. This won't interfere with
bladerunner's primary mission as the primary master name server for fx.movie.edu. A
single name server, given enough memory, can be authoritative for literally thousands

of zones. One name server can load some zones as a primary master and others as a
slave.32

The configuration change is simple: we use the DNS console to add a slave
(secondary) zone to bladerunner and tell bladerunner to get the movie.edu zone data
from terminator'sIP address, per the instructions in Chapter 4.

9.5 Subdomains of in-addr.arpa Domains

Forward-mapping domains aren't the only domains you can divide into subdomains
and delegate. If your in-addr.arpa namespace is large enough, you may need to divide
it, too. Typically, you divide the domain that corresponds to your network number
into subdomains that correspond to your subnets. How that works depends on the type
of network you have and on your network's subnet mask.

9.5.1 Subnetting on an Octet Boundary

Since Movie U. has just three /24 (Class C-sized) networks, one per segment, there's
no particular need to subnet those networks. However, our sister university, Altered
State, has a Class B-sized network, 172.20/16. Their network is subnetted between the
third and fourth octet of the IP address; that is, their subnet mask is 255.255.255.0.
They've already created a number of subdomains of their domain: altered.edu,
including fx.altered.edu (okay, we copied them); makeup.altered.edu; and
foley.altered.edu. Since each of these departments also runs its own subnet (their
Special Effects department runs subnet 172.20.2/24, Makeup runs 172.20.15/24, and
Foley runs 172.20.25/24), they'd like to divvy up their in-addr.arpa namespace
appropriately, too.

Delegating in-addr.arpa subdomains is no different from delegating subdomains of
forward-mapping domains. First, they or their departments create three new zones,
2.20.172.in-addr.arpa, 15.20.172.in-addr.arpa, and 25.20.172.in-addr.arpa. The
20.172.in-addr.arpa administrators also need to add the NS records with the New
Delegation Wizard, as we described in the fx.movie.edu example earlier in this
chapter.

After running the New Delegation Wizard, the NS records in 20.172.in-addr.arpa.dns
would look something like the following partial listing of the file's contents:

;
; Delegated sub-zone: 15.20.172.in-addr.arpa.
;
15 NS
prettywoman.makeup.altered.edu.
prettywoman.makeup.altered.edu. A 172.20.15.2
15 NS priscilla.makeup.altered.edu.
priscilla.makeup.altered.edu. A 172.20.15.3
; End delegation

32 Clearly, though, a name server can't be both the primary master and a slave for a single zone. The name server gets the
data for a given zone either from a local zone data file (and is a primary master for the zone) or from another name server
(and is a slave for the zone).

;
; Delegated sub-zone: 2.20.172.in-addr.arpa.
;
2 NS gump.fx.altered.edu.
gump.fx.altered.edu. A 172.20.2.1
2 NS toystory.fx.altered.edu.
toystory.fx.altered.edu. A 172.20.2.5
; End delegation

;
; Delegated sub-zone: 25.20.172.in-addr.arpa.
;
25 NS blowup.foley.altered.edu.
blowup.foley.altered.edu. A 172.20.25.10
25 NS muppetshow.foley.altered.edu.
muppetshow.foley.altered.edu. A 172.20.25.2
; End delegation

The Altered State administrators needed to use the fully qualified domain names of
the name servers in the NS records because the default origin in this file is 20.172.in-
addr.arpa. Strictly speaking, those glue address records aren't needed since the names
of the name servers to which they delegated the zone weren't in the delegated zones.
We were a little chagrined to discover that the DNS console forced us to enter IP
addresses for these name servers and then put them in 20.172.in-addr.arpa.dns. The
server even includes them in a zone transfer of the 20.172.in-addr.arpa zone. Since
the glue records are not required, all that is unnecessary.

9.5.2 Subnetting on a Nonoctet Boundary

What do you do about networks that aren't subnetted neatly on octet boundaries, like
subnetted /24 (Class C-sized) networks? In these cases, you can't delegate along lines
that match the subnets. This forces you into one of two situations: you have multiple
subnets per in-addr.arpa zone or you have multiple in-addr.arpa zones per subnet.
Neither is particularly pleasing.

9.5.2.1 Class A and B networks

Let's take the case of the /8 (Class A-sized) network 15/8, subnetted with the subnet
mask 255.255.248.0 (a 13-bit subnet field and an 11-bit host field, or 8,192 subnets of
2,048 hosts). In this case, the subnet 15.1.200.0, for example, extends from 15.1.200.0
to 15.1.207.255. Therefore, the delegation for that single subdomain in db.15, the
zone data file for 15.in-addr.arpa, might look like this:

200.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
200.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
201.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
201.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
202.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
202.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
203.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
203.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
204.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
204.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.

205.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
205.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
206.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
206.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.
207.1.15.in-addr.arpa. 86400 IN NS ns-1.cns.hp.com.
207.1.15.in-addr.arpa. 86400 IN NS ns-2.cns.hp.com.

That's a lot of delegation for one subnet!

You'd set this up with the DNS console by adding two levels of subdomains under
15.in-addr.arpa and then running the New Delegation Wizard (eight times!) with the
1.15.in-addr.arpa zone selected.

9.5.2.2 /24 (Class C-sized) networks

In the case of a subnetted /24 (Class C-sized) network, say 192.253.254/24, subnetted
with the mask 255.255.255.192, you have a single in-addr.arpa zone, 254.253.192.in-
addr.arpa, that corresponds to subnets 192.253.254.0/26, 192.253.254.64/26,
192.253.254.128/26, and 192.253.254.192/26. This can be a problem if you want to
let different organizations manage the reverse-mapping information that corresponds
to each subnet. You can solve this in one of three ways, none of which is pretty.

9.5.2.2.1 Solution 1

The first solution is to administer the 254.253.192.in-addr.arpa zone as a single entity
and not even try to delegate. This requires either cooperation between the
administrators of the four subnets involved or the use of a tool like the DNS console
to allow each of the four administrators to take care of his own data.

9.5.2.2.2 Solution 2

The second solution is to delegate at the fourth octet. That's even nastier than the /8
delegation we just showed. You'll need at least a couple of NS records per IP address.
To set this up with the DNS console, you'd need to create the 254.253.192.in-
addr.arpa zone and run the new delegation wizard 254 times, one for each usable
value in the fourth octet. Here's how the 254.253.192.in-addr.arpa.dns file might end
up looking (we've removed the unnecessary glue A records for clarity and brevity):

;
; Delegated sub-zone: 1.254.253.192.in-addr.arpa.
;
1 IN NS ns1.foo.com.
1 IN NS ns2.foo.com.
; End delegation

;
; Delegated sub-zone: 2.254.253.192.in-addr.arpa.
;
2 IN NS ns1.foo.com.
2 IN NS ns2.foo.com.
; End delegation

...

; Delegated sub-zone: 65.254.253.192.in-addr.arpa.
;
65 IN NS gw.bar.com.
65 IN NS relay.bar.com.
; End delegation

; Delegated sub-zone: 66.254.253.192.in-addr.arpa.
;
66 IN NS gw.bar.com.
66 IN NS relay.bar.com.
; End delegation

...

;
; Delegated sub-zone: 129.254.253.192.in-addr.arpa.
;
129 IN NS mail.baz.com.
129 IN NS www.baz.com
; End delegation

;
; Delegated sub-zone: 193.254.253.192.in-addr.arpa.
;
193 IN NS mail.baz.com.
192 IN NS www.baz.com
; End delegation

And so on, all the way down to 254.254.253.192.in-addr.arpa. Of course, on
ns1.foo.com, you'd also expect the name server to be authoritative for
1.254.253.192.in-addr.arpa, and in the zone data file for 1.254.253.192.in-addr.arpa,
you'd find just the one PTR record (plus an SOA and two NS records):

@ IN SOA ns1.foo.com. root.ns1.foo.com. (
 1 ; Serial
 10800 ; Refresh
 3600 ; Retry
 608400 ; Expire
 86400 ; Default TTL

 IN NS ns1.foo.com.
 IN NS ns2.foo.com.

 IN PTR thereitis.foo.com.

Note that the PTR record is attached to the zone's domain name, since the zone's
domain name corresponds to just one IP address. (And, as far as we can tell, it's not
possible to create a PTR record with the same name as the zone—as in the earlier
example zone—with the DNS console. You have to create that zone by hand.) Now,
when a 254.253.192.in-addr.arpa name server receives a query for the PTR record for
1.254.253.192.in-addr.arpa, it will refer the querier to ns1.foo.com and ns2.foo.com,
which will respond with the one PTR record in the zone.

9.5.2.2.3 Solution 3

Finally, there's a clever technique that obviates the need to maintain a separate zone
data file for each IP address.[2] The organization responsible for the overall /24

network creates CNAME records for each of the domain names in the zone, pointing
to domain names in new subdomains, which are then delegated to the proper servers.
These new subdomains can be called just about anything, but names like 0-63, 64-
127, 128-191, and 192-255 clearly indicate the range of addresses each subdomain
will reverse map. Each subdomain then contains only the PTR records in the range for
which the subdomain is named.

[2] We first saw this explained by Glen Herrmansfeldt at CalTech in the newsgroup comp.protocols.tcp-
ip.domains. It's now codified as RFC 2317.

Here are the partial contents of the 254.253.192.in-addr.arpa.dns file:

1.254.253.192.in-addr.arpa. IN CNAME 1.0-63.254.253.192.in-
addr.arpa.
2.254.253.192.in-addr.arpa. IN CNAME 2.0-63.254.253.192.in-
addr.arpa.

...

0-63.254.253.192.in-addr.arpa. 86400 IN NS ns1.foo.com.
0-63.254.253.192.in-addr.arpa. 86400 IN NS ns2.foo.com.

65.254.253.192.in-addr.arpa. IN CNAME 65.64-127.254.253.192.in-
addr.arpa.
66.254.253.192.in-addr.arpa. IN CNAME 66.64-127.254.253.192.in-
addr.arpa.

...

64-127.254.253.192.in-addr.arpa. 86400 IN NS
relay.bar.com.
64-127.254.253.192.in-addr.arpa. 86400 IN NS gw.bar.com.

129.254.253.192.in-addr.arpa. IN CNAME 129.128-191.254.253.192.in-
addr. arpa.
130.254.253.192.in-addr.arpa. IN CNAME 130.128-191.254.253.192.in-
addr. arpa.

...

128-191.254.253.192.in-addr.arpa. 86400 IN NS
mail.baz.com.
128-191.254.253.192.in-addr.arpa. 86400 IN NS
www.baz.com.

The zone data file for 0-63.254.253.192.in-addr.arpa, 0-63.254.253.192.in-
addr.arpa.dns, can contain just PTR records for IP addresses 192.253.254.1 through
192.253.254.63.

Here are the partial contents of the0-63.254.253.192.in-addr.arpa.dns file:

@ IN soa ns1.foo.com. root.ns1.foo.com. (
 1 ; Serial
 10800 ; Refresh
 3600 ; Retry
 608400 ; Expire
 86400) ; Default TTL

 IN NS ns1.foo.com.
 IN NS ns2.foo.com.

1 IN PTR thereitis.foo.com.
2 IN PTR setter.foo.com.
3 IN PTR mouse.foo.com.
...

The way this setup works is a little tricky, so let's go over it. A resolver requests the
PTR record for 1.254.253.192.in-addr.arpa, causing its local name server to go look
up that record. The local name server ends up asking a 254.253.192.in-addr.arpa
name server, which will respond with the CNAME record indicating that
1.254.253.192.in-addr.arpa is actually an alias for 1.0-63.254.253.192.in-addr.arpa
and that the PTR record is attached to that name. The response will also include NS
records telling the local name server that the authoritative name servers for 0-
63.254.253.192.in-addr.arpa are ns1.foo.com and ns2.foo.com. The local name server
then queries either ns1.foo.com or ns2.foo.com for the PTR record for 1.0-
63.254.253.192.in-addr.arpa and receives the PTR record.

9.6 Good Parenting

Now that the delegation to the fx.movie.edu name servers is in place, we—responsible
parents that we are—should check that delegation using host. What? We haven't given
you host yet? A version of host that works on Windows 2000 is available via
anonymous ftp from ftp://ftp.nikhef.nl/pub/network/host_970908.exe.Z. To
uncompress host, you'll need WinZip or a similar Windows utility. WinZip is
available from http://www.winzip.com/.

Once you uncompress host_970908.exe, install it as host.exesomewhere on your
computer. (We install it in the same directory as nslookup.exe.) Next, set up a
resolv.conffile in your %WINDIR%directory. (If you're not sure where %WINDIR%is,
type set from a DOS prompt.)

hostmakes it easy to check delegation. With host, you can look up the NS records for
your zone on your parent zone's name servers. If those look good, you can use hostto
query each name server listed for the zone's SOA record. The query is nonrecursive,
so the name server queried doesn't query other name servers to find the SOA record.
If the name server replies, host checks the reply to see whether the aa (authoritative
answer) bit in the reply packet is set. If it is, the name server checks to make sure that
the packet contains an answer. If both these criteria are met, the name server is
flagged as authoritative for the zone. Otherwise, the name server is not authoritative,
and host reports an error.

Why all the fuss over bad delegation? Incorrect delegation can slow name resolution
or cause the propagation of old and erroneous root name server information. When a
name server is queried for data in a zone for which it is not authoritative, it does its
best to provide useful information to the querier. This "useful information" comes in
the form of NS records for the closest ancestor zone the name server knows. (We

mentioned this briefly in Chapter 8, when we discussed why you shouldn't register a
caching-only name server.)

For example, say one of the fx.movie.edu name servers mistakenly receives an
iterative query for the address of carrie.horror.movie.edu. It knows nothing about the
horror.movie.edu zone (except for what it might have cached), but it likely has NS
records for movie.edu cached since those are its parent name servers. So it would
return those records to the querier.

In that scenario, the NS records may help the querying name server get an answer.
However, it's a fact of life on the Internet that not all administrators keep their root
hints files up-to-date. If one of your name servers follows a bad delegation and
queries a remote name server for records it doesn't have, look what can happen:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3
> set type=ns
> .
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
(root) nameserver = D.ROOT-SERVERS.NET
(root) nameserver = E.ROOT-SERVERS.NET
(root) nameserver = I.ROOT-SERVERS.NET
(root) nameserver = F.ROOT-SERVERS.NET
(root) nameserver = G.ROOT-SERVERS.NET
(root) nameserver = A.ROOT-SERVERS.NET
(root) nameserver = H.ROOT-SERVERS.NETNIC.NORDU.NET
(root) nameserver = B.ROOT-SERVERS.NET
(root) nameserver = C.ROOT-SERVERS.NET
(root) nameserver = A.ISI.EDU -- These three name
(root) nameserver = SRI-NIC.ARPA -- servers are no longer
(root) nameserver = GUNTER-ADAM.ARPA -- roots

A remote name server tried to "help out" our local name server by sending it the
current list of roots. Unfortunately, the remote name server was corrupt and returned
NS records that were incorrect. And our local name server, not knowing any better,
cached that data.

Queries to misconfigured in-addr.arpa name servers often result in bad root NS
records because the in-addr.arpa and arpa zones are the closest ancestors of most in-
addr.arpa subdomains, and name servers very seldom cache either in-addr.arpa's or
arpa's NS records. (The roots rarely give them out since they delegate directly to
lower-level subdomains.) Once your name server has cached bad root NS records,
your name resolution will almost certainly suffer: your name server won't be
contacting the "official" root name servers, and who knows what information they
will hand out?

Those root NS records may have your name server querying a root name server that is
no longer at that IP address or a root name server that no longer exists at all. If you're
having an especially bad day, the bad root NS records may point to a real, non-root

name server that is close to your network. Even though it won't return authoritative
root data, your name server will favor it because of its proximity to your network.

9.6.1 Using host

If our little lecture has convinced you of the importance of maintaining correct
delegation, you'll be eager to learn how to use host to ensure that you don't join the
ranks of the miscreants.

The first step is to use host to look up your zone's NS records on a name server for
your parent zone and make sure they're correct. Here's how we'd check the
fx.movie.edu NS records on one of the movie.edu name servers:

C:\> host -t ns fx.movie.edu. terminator.movie.edu.

If everything's okay with the NS records, we'll simply see the NS records in the
output:

fx.movie.edu NS bladerunner.fx.movie.edu
fx.movie.edu NS outland.fx.movie.edu

This tells us that all the NS records delegating fx.movie.edu from
terminator.movie.edu are correct.

Next, we'll use host's "SOA check" mode to query each of the name servers in the NS
records for the fx.movie.edu zone's SOA record. This will also check whether the
response was authoritative:

C:\> host -C fx.movie.edu.

Normally, this will produce the NS records above, along with the contents of the
fx.movie.edu zone's SOA record:

fx.movie.edu NS bladerunner.fx.movie.edu
bladerunner.fx.movie.edu hostmaster.fx.movie.edu (1 10800 3600
608400 3600)
fx.movie.edu NS outland.fx.movie.edu
bladerunner.fx.movie.edu hostmaster.fx.movie.edu (1 10800 3600
608400 3600)

If one of the fx.movie.edu name servers—say outland—were misconfigured, we might
see this:

fx.movie.edu NS bladerunner.fx.movie.edu
fx.movie.edu NS outland.fx.movie.edu
fx.movie.edu SOA record currently not present at outland.fx.movie.edu
fx.movie.edu has lame delegation to outland.fx.movie.edu

This indicates that the name server on outland is running, but it's not authoritative for
fx.movie.edu.

If one of the fx.movie.edu name servers weren't running at all, we'd see:

fx.movie.edu NS bladerunner.fx.movie.edu
bladerunner.fx.movie.edu hostmaster.fx.movie.edu (1 10800 3600
608400 3600)
fx.movie.edu NS outland.fx.movie.edu
fx.movie.edu SOA record not found at outland.fx.movie.edu,
try again

In this case, the try again message indicates that hostsent outland a query and didn't
get a response back in an acceptable amount of time.

While we could have checked the fx.movie.edu delegation using nslookup, host's
powerful command-line options make the task especially easy.

9.6.2 Managing Delegation

If the special-effects lab gets bigger, we may find that we need additional name
servers. We dealt with setting up new name servers in Chapter 8 and even went over
what information to send to the parent zone's administrator. But we never explained
what the parent needed to do.

It turns out that the parent's job is relatively easy, especially if the administrators of
the subdomain send complete information. Imagine that the special-effects lab
expands to a new network, 192.254.20/24. They have a passel of new, high-powered
graphics workstations. One of them, alien.fx.movie.edu, will act as the new network's
name server.

The administrators of fx.movie.edu (we delegated it to the folks in the lab) send their
parent zone's administrators (that's us) a short note:

Hi!

We've just set up alien.fx.movie.edu (192.254.20.3) as a name server
for fx.movie.edu.
Would you please update your delegation information? I've attached
the NS
records you'll need to add.

Thanks,

Arty Segue
ajs@fx.movie.edu

----- cut here -----

fx.movie.edu. 86400 IN NS bladerunner.fx.movie.edu.
fx.movie.edu. 86400 IN NS outland.fx.movie.edu.
fx.movie.edu. 86400 IN NS alien.fx.movie.edu.

bladerunner.fx.movie.edu. 86400 IN A 192.253.254.2
outland.fx.movie.edu. 86400 IN A 192.253.254.3
alien.fx.movie.edu. 86400 IN A 192.254.20.3

Our job as the movie.edu administrator is straightforward: add the NS and A records
to movie.edu. Once again, it's the New Delegation Wizard to the rescue: select the
gray fx.movie.edu folder in the DNS console's left pane and then double-click on any

of the NS records in the right pane. You'll see a window like the one shown back in
Figure 9-6. Select Add... to add the new NS record for alien.fx.movie.edu.

The final step for the fx.movie.edu administrator is to send a similar message to
mailto:hostmaster@arin.net(administrator of the in-addr.arpa zone), requesting that
the 20.254.192.in-addr.arpa subdomain be delegated to alien.fx.movie.edu,
bladerunner.fx.movie.edu, and outland.fx.movie.edu.

9.7 Managing the Transition to Subdomains

We won't lie to you—the fx.movie.edu example we showed you was unrealistic for
several reasons. The main one is the magical appearance of the special-effects lab's
hosts. In the real world, the lab would have started out with a few hosts, probably in
the movie.edu zone. After a generous endowment, an NSF grant, or a corporate gift,
they might expand the lab a little and buy a few more computers. Sooner or later, the
lab would have enough hosts to warrant the creation of a new subdomain. By that
point, however, many of the original hosts would be well known by their names under
movie.edu.

We briefly touched on using CNAME records in the parent zone (in our plan9.
movie.edu example) to help people adjust to a host's change of domain. But what
happens when you move a whole network or subnet into a new subdomain?

The strategy we recommend uses CNAME records in much the same way, but on a
larger scale. Using the DNS console, you can create CNAMEs for hosts. This allows
users to continue using the old domain names for any of the hosts that have moved.
When they telnet or ftp (or whatever) to those hosts, however, the command will
report that they're connected to a host in fx.movie.edu:

C:\> telnet plan9

Trying...
Connected to plan9.fx.movie.edu.
Escape character is '^]'.

HP-UX plan9.fx.movie.edu A.09.05 C 9000/735 (ttyu1)

login:

Some users, of course, don't notice subtle changes like this, so you should also do
some public relations work and notify folks of the change.

How do you create all these aliases? Well, you could do it manually using the DNS
console, CNAME record by CNAME record. Or you could use a Perl script to create
CNAME records for every host in fx.movie.edu.dns:

Simple Perl script to create aliases
Run with <script> <domain name of child zone>

die "Usage: $0 <child zone>\n" if $#ARGV!=0;

open(ZDF, "$ARGV[0].dns") || die "Couldn't open $ARGV[0]: $!\n";

($label, $parent) = split(/\./, $ARGV[0], 2);
$parent .= ".dns";

open(PZDF, ">>$parent") || die "Couldn't open $parent: $!\n";

while (<ZDF>) {
 if (/\s+IN\s+A\s+/) {
 ($host, $rest) = split(/[\s\.]/, $_, 2);
 printf PZDF "%s IN CNAME %s.%s.\n", $host, $host,
$ARGV[0];
 }
};

9.7.1 Removing Parent Aliases

Although parent-level aliases are useful for minimizing the impact of moving your
hosts, they're also a crutch of sorts. Like a crutch, they'll restrict your freedom. They'll
clutter up your parent namespace when one of your motivations for implementing a
subdomain may have been making the parent zone smaller. And they'll prevent you
from using the names of hosts in the subdomain as names for hosts in the parent zone.

After a grace period—which should be well advertised to users—you should remove
all the aliases, with the possible exception of aliases for extremely well-known
Internet hosts. During the grace period, users can adjust to the new domain names and
modify scripts and the like. But don't get suckered into leaving all those aliases in the
parent zone; they defeat part of the purpose of DNS because they prevent you and
your subdomain administrator from naming hosts autonomously.

You might want to leave CNAME records for well-known Internet hosts or central
network resources intact because of the potential impact of a loss of connectivity. On
the other hand, rather than moving the well-known host or central resource into a
subdomain at all, it might be better to leave it at the parent zone level.

9.8 The Life of a Parent

That's a lot of parental advice to digest in one sitting, so let's recap the highlights of
what we've talked about. The life cycle of a typical parent goes something like this:

1. You have a single zone with all of your hosts in that zone.
2. You break your zone into a number of subdomains, some of them in the same

zone as the parent, if necessary. You provide CNAME records in the parent
zone for well-known hosts that have moved into subdomains.

3. After a grace period, you delete any remaining CNAME records.
4. You handle subdomain delegation updates, either manually or by using stubs,

and periodically check delegation.

Okay, now that you know all there is to parenting, let's go on to talk about more
advanced name server features. You may need some of these tools to keep those kids
in line.

Chapter 10. Advanced Features and Security

"What's the use of their having names," the Gnat said, "if they won't
answer to them?"

In this chapter, we'll cover some of the Microsoft DNS Server's more advanced
features and suggest how they might come in handy in your DNS infrastructure. (We
do save some of the hardcore firewall material for Chapter 14, and we cover advanced
features specific to Windows 2000 in Chapter 11.)

10.1 DNS NOTIFY (Zone Change Notification)

Traditionally, slaves have used a polling scheme to determine when they need a zone
transfer. The polling interval is called the refresh time. Other parameters in the zone's
SOA record govern other aspects of the polling mechanism.

Wouldn't it be nice if the primary master name server could tell its slave servers when
the information in a zone changed? After all, the primary master name server knows
the data has changed: every time a zone is changed with the DNS console, the DNS
console notifies the server, which immediately changes the zone in its memory. The
primary's notification can come soon after the actual modification instead of waiting
for the refresh interval to expire.

RFC 1996 proposed a mechanism that allowed primary master servers to notify their
slaves of changes to a zone's data. The Microsoft DNS Server implements this
scheme, called DNS NOTIFY for short.

DNS NOTIFY works like this: when a primary master name server notices a change
to data in a zone, it sends a special notification message to all slave servers for that
zone. It uses the list of NS records in the zone to build the list of slave servers for the
zone. The primary master removes the NS record corresponding to the name server
listed in the first field in the zone's SOA record (which by convention lists the name
of the primary master name server for the zone), as well as the local host. Removing
those name servers prevents the primary master from sending a notification message
to itself.

The special NOTIFY request is identified by its opcode in the query header. The
opcode for most queries is QUERY. NOTIFY messages have a special opcode,
NOTIFY. Other than that, the request looks much like a query for the SOA record for
the zone: it specifies the zone's domain name, class, and a type of SOA.

When a slave receives a NOTIFY request for a zone from one of its configured master
name servers, it sends a NOTIFY response. The response tells the master that the
slave received the NOTIFY request and to stop sending NOTIFY messages for the
zone. Then the slave proceeds just as if the refresh timer had expired: it queries the
master server for the SOA record for the zone the master claimed had changed. If the
serial number is higher, the slave performs the zone transfer.

Why doesn't the slave simply take the master's word that the zone has changed? It's
possible that a miscreant could forge NOTIFY requests to our slaves, causing lots of
unnecessary zone transfers that might amount to a denial-of-service attack against our
master server.

If the slave actually transfers the zone, RFC 1996 says that it should issue its own
NOTIFY requests to the other authoritative name servers for the zone. The idea is that
the primary master may not be able to notify all the slave servers for the zone itself,
since it's possible that some slaves can't communicate directly with the primary
master and so use another slave as their master. However, the Microsoft DNS Server
doesn't implement this, and Microsoft DNS Server slaves don't send NOTIFY
messages unless explicitly configured to do so.

Here's how this process works in practice: on our network, terminator.movie.edu is
the primary master for movie.edu, and wormhole.movie.edu and zardoz.movie.edu are
slaves (as shown in Figure 10-1).

Figure 10-1. movie.edu zone transfer example

When we update movie.edu on terminator, terminator sends NOTIFY messages to
wormhole and zardoz. Both slaves check to see whether movie.edu's serial number has
been incremented and, if they find it has, perform a zone transfer.

Let's also look at a more complicated zone transfer scheme. In Figure 10-2, a is the
primary master name server for the zone and b's master server, but b is c's master
server. Moreover, b has two network interfaces.

In this scenario, a notifies both b and c after the zone is updated. b checks to see
whether the zone's serial number has been incremented and initiates a zone transfer.
However, c ignores a's NOTIFY message because a is not c's configured master name
server (b is). If b is explicitly configured to notify c, after b's zone transfer completes
it sends c a NOTIFY message, which prompts c to check the serial number b holds for
the zone.

Figure 10-2. Complex zone transfer example

Older BIND slave name servers, and other name servers that don't support NOTIFY,
respond with a "Not Implemented" (NOTIMP) error, wait until their refresh timers
expire, and then transfer the zone. The Microsoft DNS Server just ignores the
NOTIMP error.

NOTIFY is controlled on a zone-by-zone basis and is enabled by default for every
zone. The controls for NOTIFY are somewhat hidden: highlight a zone in DNS
console's left pane, select Action Properties, and choose the Zone Transfers tab
of the zone properties window, which produces a window like the one shown in
Figure 10-3.

Figure 10-3. Zone transfer configuration for movie.edu

Figure 10-4. NOTIFY configuration for movie.edu

Select the Notify... button to open the window shown in Figure 10-4, which illustrates
the NOTIFY configuration for the movie.edu zone on the zone's primary, terminator.
You have two choices for configuring which servers get NOTIFY messages for a
zone. The first is to check Servers listed on the Name Servers tab, which lets the
server decide based on the name servers listed in the zone's NS records. (The Name
Servers tab of the zone properties window simply shows the name servers listed in
the zone's NS records.) The second choice is to specify exactly which slave servers
should receive NOTIFY messages. This option is required if you have slave servers
not listed in the zone's NS records: such slaves are effectively hidden, and the only
way the primary master knows to send NOTIFY messages to them is if you tell it to.

10.2 WINS Linkage

Our next topic requires a short detour into the world of Microsoft networking.
Networks based on NetBT (NetBIOS over TCP) need to perform name resolution,
too: hosts need a way to map NetBIOS names33 to IP addresses. The way this name
resolution works has evolved over time. In the early days, hosts broadcasted a query
on the LAN to resolve a NetBIOS name. This forced all hosts to listen to every
broadcast. Since broadcasts don't leave the local LAN, this method didn't allow name
resolution beyond the local subnet. The next evolutionary step was the LMHOSTS
file, which is just a list of NetBIOS names and IP addresses. Every host needed an
LMHOSTS file to resolve names beyond the local subnet. This model didn't scale very
well, either: it was tough to keep the LMHOSTS files up-to-date and distribute them.
And the introduction of the Dynamic Host Configuration Protocol (DHCP) essentially
made basing a network's NetBIOS name resolution on LMHOSTS files impossible.

A detailed description of DHCP is beyond the scope of this book,34 but suffice it to
say that DHCP eliminates the requirement of configuring a static IP address on every
one of your hosts. If those hosts support DHCP, they can contact a DHCP server

33 A host's NetBIOS name is simply the name by which it's known for NetBT networking purposes. NetBIOS names are
limited to one label of up to 15 octets (that is, no multiple-label names like DNS domain names). On Windows 2000 systems

the NetBIOS name is set in the System Properties window's Network Identification tab (choose Control Panel
System). A host's NetBIOS name need not be the same as the hostname portion of its fully qualified domain name in DNS.
34 But see another book from O'Reilly & Associates, TCP/IP Network Administration by Craig Hunt.

when they boot to obtain an IP address and other configuration parameters, such as
the IP addresses of the default router, name servers, and WINS servers.

WINS, which stands for Windows Internet Naming Service, is a Microsoft invention
introduced in Windows NT 3.5. The server component of WINS is an implementation
of a NetBIOS Name Server as described in RFCs 1001 and 1002. The idea is nothing
new; the RFCs date from early 1987. The function of a NetBIOS Name Server is
simple: it maps NetBIOS names to IP addresses.

The name and IP address information in a WINS server comes from the various hosts
on the network. Once a host sets its IP address using the value sent by a DHCP server,
the host registers its name with the WINS server the DHCP server told it about.
Actually, any modern NetBT host registers its name with a WINS server, regardless
of how it obtained its IP address (e.g., dynamically from a DHCP server or statically
from a user-input configuration). Modern NetBT hosts also know to contact a WINS
server for NetBIOS name resolution, rather than relying solely on broadcasting or an
LMHOSTS file.

So where does DNS fit in to all this? Before Windows 2000, it wasn't possible to
make the new name-to-IP address mappings generated by the DHCP server visible to
DNS. Microsoft realized there would be some value to enabling a DNS server to
query a WINS server, which knows about names for dynamically assigned IP
addresses. After all, a NetBIOS name in the WINS server is usually the same as a
machine's hostname (the first label of its fully qualified domain name in DNS), which
is what it would be in the DNS server if there were an easy way to get it there.
(Remember, we're talking about the days before Windows 2000 with its improved
integration with DNS.) So a Microsoft DNS Server can be configured to ask a WINS
server when it receives a query for a domain name that's not in its zone data.

You may be thinking that a name server contacting a WINS server is kind of silly;
isn't there a way for name servers to know what the DHCP servers are doing directly?
There is. In a Windows 2000 network, DHCP servers can update name servers after
every assignment using the DNS Dynamic Update protocol. We cover this new
functionality in Chapter 11. The importance of WINS in Windows 2000 is greatly
reduced, too. Windows 2000 hosts can resolve NetBIOS names with DNS rather than
WINS, although WINS is still required to support older, legacy clients. You can find
more information about how Windows 2000 hosts use DNS for hostname lookups in
Chapter 6.

10.2.1 Configuring WINS Lookup

WINS lookup, as it's called, is enabled on a zone-by-zone basis using the WINS tab
of the zone properties window. When the DNS server receives an address (A) record
query for which it doesn't know the answer, if the zone where the record will exist has
WINS lookup enabled, the DNS server queries a WINS server. The NetBIOS name
sent to the WINS server is the first label of the domain name in the A record query.
For example, if the domain name in the A record query is terminator.movie.edu, the
NetBIOS name queried is terminator. If the WINS server responds with an IP address
for terminator, the DNS server synthesizes an A record for terminator.movie.edu and
returns it to the original querier.

The WINS lookup configuration for the movie.edu zone on the zone's primary master,
terminator, is shown in Figure 10-5.

Figure 10-5. WINS lookup settings for movie.edu

WINS lookup is enabled by checking the Use WINS forward lookup box. You can
specify the IP addresses of up to five WINS servers, and the DNS server will try them
in the order listed.

By default, the WINS lookup configuration you establish on the primary master takes
effect on the slaves as well. The primary master inserts a special WINS record that
gets transferred with the rest of the zone to the slaves. If the slaves are Microsoft DNS
Servers, they understand the WINS record and perform WINS lookups accordingly. If
the slaves are BIND name servers, they complain about the unknown WINS record.
You can suppress sending this WINS record to the slaves by checking Do not
replicate this record.

The Time to live (TTL) field in the lower left corner specifies the TTL for the special
WINS record itself. We're not sure why anyone would ever care about this value: a
record's TTL applies only to servers that cache it, and the WINS record is meaningful
only on a zone's authoritative servers.

Pressing the Advanced... button yields a window like that in Figure 10-6. Cache
time-out controls how long the DNS server will cache the synthesized A records. The
default value is 15 minutes. That value may seem small, but it's a good choice:
information in the WINS server is transient by nature, so you don't want the DNS
server to hold on to it for a long time. If it needs a name again, the DNS server can
just ask the WINS server for it. Lookup time-out controls how long the DNS server
will wait after querying a WINS server. The default is 2 seconds.

Figure 10-6. Advanced WINS lookup settings

You can enable WINS lookup on in-addr.arpa zones, too. It's called WINS reverse
lookup, and it's implemented differently than plain WINS lookup. When the name
server receives a PTR query it can't answer and WINS reverse lookup is enabled for
the zone, it sends a NetBIOS Adapter Status request directly to the IP address
referenced by the PTR record. In other words, the name server asks the host directly
what its name is. The name server can't ask a WINS server because lookups based on
IP address aren't supported: you can't give a WINS server an IP address and get the
corresponding NetBIOS name back. WINS servers have obviously never heard of
Jeopardy! ("The host with IP address 192.249.249.3." "What is terminator?")

WINS reverse lookup is configured similarly to WINS lookup: select the WINS-R tab
of the zone properties window of any in-addr.arpa zone. The WINS reverse lookup
configuration for the 249.249.192.in-addr.arpa zone on the zone's primary master,
terminator, is shown in Figure 10-7.

Figure 10-7. WINS reverse lookup settings for 249.249.192.in-addr.arpa

Use WINS-R lookup enables the NetBIOS Adapter Status requests for unknown PTR
records in this zone. Do not replicate this record has the same effect as its WINS
forward-lookup counterpart. If you look in an in-addr.arpa zone data file, though,
you'll see a WINS-R record instead of a WINS record. The Domain to append to
returned name field takes a DNS domain name that will be appended to the
NetBIOS name returned by the host to form a fully qualified domain name. The
Advanced... button controls cache and lookup timeouts, just like its WINS forward-
lookup counterpart.

10.2.2 Using WINS Lookup and WINS Reverse Lookup

What's WINS lookup good for? In most networks, not a lot. For one thing, Windows
2000 now integrates tightly with DNS so that in a properly configured network, all
Windows 2000 hosts have forward- and reverse-mapping information in DNS. (More
information about this new integration with DNS is found in Chapter 11.) But let's say
you still have a lot of older Windows hosts on your network. Do you need WINS
lookup? Well, we still can't get excited about it. Think about it this way: the names
that get resolved the most are the servers, and they usually have fixed IP addresses
and thus static DNS entries. They're resolved directly in DNS, not via the WINS
lookup detour. Most networks don't have much peer-to-peer networking; your average
desktop host usually doesn't offer network services, such as a web server, name
server, and so on. It's the need to reach those kinds of network services that require
DNS name resolution to work for every host. (Sure, there's a lot of NetBIOS-based
file and print sharing among desktop hosts, but that process uses WINS natively.)

If you do need to support WINS lookup in your network, a big problem with it is that
the standard BIND name server doesn't support it.35 Many people find that they need
WINS lookup after they have a DNS infrastructure in place using BIND name servers.
One option is to replace all those name servers with the Microsoft DNS Server and
enable WINS lookup. That's not realistic for most people. A better, but not perfect,
option is to create a new subdomain for DHCP clients resolvable via WINS lookup
and delegate the subdomain to a set of Microsoft DNS Servers.

For example, let's say the folks running the domain acme.com suddenly find
themselves with dozens of PCs doing peer-to-peer networking with DHCP-assigned
IP addresses. Since they've already got a BIND infrastructure in place, they decide to
create the domain pcs.acme.com for these PCs. (The domain name could be anything:
dhcp.acme.com, wins.acme.com, whatever.) They configure a couple of Microsoft
DNS Servers for this zone and enable WINS lookup. Finally, they delegate to the
pcs.acme.com zone from the acme.com zone.

In practice, we find WINS reverse lookup is much more useful. It's really nice to have
complete reverse-mapping information for your network in DNS. Network-
management applications can report names rather than IP addresses. Web servers can
log usage statistics by name and make named-based authorization decisions, such as
giving access only to hosts in the movie.edu domain. Troubleshooting is easier as
well. Without WINS reverse lookup, the name server can't reverse map dynamically
assigned IP addresses in networks with older Windows hosts. Of course, for you to be
able to use WINS reverse lookup in your network, all the name servers for your in-
addr.arpa zones need to support it.

10.3 System Tuning

While the default configuration values will work fine for most sites, yours may be one
of the rare sites that needs some further tuning. The following tuning requires changes

35 Check Point has ported BIND to Windows 2000 and added WINS lookup and WINS reverse lookup. See
http://www.checkpoint.com/products/metaip/index.html.

to the Registry. All DNS parameters referenced in this section are values of this
Registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNS\Parameters

10.3.1 More Efficient Zone Transfers

A zone transfer, we said earlier, comprises many DNS messages sent end-to-end over
a TCP connection. Traditional zone transfers put only a single resource record in each
DNS message. That's a waste of space: you need a full header on each DNS message,
even though you're carrying only a single record. It's like being the only person in a
Chevy Suburban. A DNS message can carry many more records.

The Microsoft DNS Server understands a relatively new zone-transfer format that
puts as many records as possible into a single DNS message. The resulting "many
answers" zone transfer takes less bandwidth because there's less overhead and less
CPU time because less time is spent unmarshaling DNS messages.

The DNS server uses the "many answers" format by default, which is fine if all your
slaves can understand it. Older BIND name servers (prior to Version 4.9.4) can't cope
with this format and require the traditional one. Fortunately, you can tell the
Microsoft DNS Server to use the traditional method by changing the BindSecondaries
Registry value. When set to one, the server sends traditional zone transfers to satisfy
older BIND servers. The default value is one, but that doesn't affect zone transfers
between two Microsoft DNS Servers. They recognize each other, and the master uses
the "many answers" format to the slave.

You should change this value only if you have no BIND slaves or if all your BIND
slaves are running Version 4.9.4 or later.

10.4 Name Server Address Sorting

When you are contacting a host that has multiple network interfaces, using a
particular interface may give you better performance. If the multihomed host is local
and shares a network (or subnet) with your host, one of the multihomed host's
addresses is "closer."

Suppose you have an FTP server on two networks, cleverly called network A and
network B, and hosts on both networks access the server often. Hosts on network A
will experience better performance if they use the host's interface to network A.
Likewise, hosts on network B would benefit from using the host's interface to network
B as the address for their FTP client.

In Chapter 4, we mentioned that the Microsoft DNS Server returns all the addresses
for a multihomed host. There was no guarantee of the order in which the DNS server
would return the addresses, so we assigned aliases (wh249 and wh253 for wormhole)
to the individual interfaces. If one interface is preferable, you (or more realistically, a
DNS client) can use an appropriate alias to get the correct address. You can use

aliases to choose the "closer" interface but, because of address sorting, they are not
always necessary.

The Microsoft DNS Server sorts addresses by default. The server compares the IP
address of the querier with the IP addresses of A records in a pending response. It
moves those records with the same network as the querier to the top of the list in the
response. This comparison is based on the class of network from which each IP
address originates. For Class A networks, only the first octet is compared. For Class B
networks, the first two octets are compared, and for Class C networks, the first three
octets are significant in the comparison. (Nowadays the whole notion of IP network
classes is mostly meaningless, having been made obsolete by Classless Inter-Domain
Routing, or CIDR. For more information on IP addressing, see Appendix B of
O'Reilly's Internet Core Protocols: The Definitive Guide by Eric Hall.)

In Figure 10-8, assume that a Microsoft DNS Server is running on notorious. When
spellbound sends a query to notorious looking up the addresses of notorious, it gets
back an answer with notorious's network A address first. When charade looks up the
addresses of notorious, it gets back an answer with notorious's network B address
first. In both cases, the name server sorts the addresses in the response based on its
comparison of the querier's address with the addresses in the response.

Figure 10-8. Communicating with a local multihomed host

There's a small catch with the DNS server's address sorting: it disables round robin
(see Section 10.8.3 later in this chapter). In the Microsoft DNS Server, address sorting
is enabled by default and round robin is disabled. If you want round robin and can live
without address sorting (unfortunately, they're mutually exclusive), you can disable
address sorting with the LocalNetPriority registry setting. Set it to zero to disable
address sorting and enable round robin. Note, though, that this value doesn't exist in
the Registry by default. You need to add it before you can change its value to zero.

10.5 Building Up a Large Sitewide Cache with Forwarders

Certain network connections discourage sending large volumes of traffic off-site,
either because the network connection is pay-per-packet or because it is a slow link
with a high delay, as with a remote office's satellite connection to the company's
network. In these situations, you want to limit the off-site DNS traffic to the bare
minimum. The Microsoft DNS Server has a feature called forwarding to handle this.

If you designate one or more servers at your site as forwarders, all off-site queries are
sent to the forwarders first. The idea is that the forwarders handle all off-site queries
generated at the site, building up a rich cache of information. For any given query in a
remote domain, there is a high probability that the forwarder can answer the query
from its cache, avoiding the need for the other servers to send packets off-site.
Nothing special is done to these servers to make them forwarders; you modify all the
other servers at your site to direct their queries through the forwarders.

A primary master or slave name server's mode of operation changes slightly when it is
directed to use a forwarder. If the requested information is already in its database of
authoritative data and cache data, it answers with this information; this part of the
operation hasn't changed. However, if the information is not in its database, the name
server sends the query to a forwarder and waits a short period for an answer before
resuming normal operation and contacting the remote servers itself. What the name
server is doing that's different is sending a recursive query to the forwarder, expecting
it to find the answer. At all other times, the name server sends out nonrecursive
queries to other name servers and deals with responses that refer only to other name
servers.

Forwarding is by server, not by zone: a server is either forwarding or it isn't. It's
configured by selecting the Forwarders tab on the server properties window. Figure
10-9 shows how a movie.edu name server is configured to use forwarders, assuming
wormhole and terminator are the site's forwarders. (Remember, forwarding is
configured on every name server except the forwarders themselves—wormhole and
terminator in this case.)

Enable forwarders enables forwarding on this name server. You can specify up to
five forwarders. This name server forwards to them in the order in which they're
listed, using a default timeout of five seconds per forwarder; that is, if the first
forwarder doesn't respond within five seconds, try the next, wait five more seconds,
try the next, and so on. The forwarding timeout can be changed with the Forward
time-out field. This value is stored in a Registry value, ForwardingTimeout, which
you can also change. (The list of forwarders is stored in the Forwarders value.) We'll
talk about the Do not use recursion option in the next section.

Figure 10-9. Forwarders configuration tab

When you use forwarders, try to keep your site configuration simple. You can end up
with configurations that are really twisted. Follow these tips:

• Avoid having "mid-level" servers forward packets (that is, avoid configuring
forwarding on your mid-level name servers). Mid-level servers mostly refer
name servers to subdomain name servers. If they have been configured to
forward packets, do they refer to subdomain name servers, or do they contact
the subdomain name server to find out the answer? Whichever way it works,
you're probably making your site configuration too hard for mere mortals (and
subdomain administrators) to understand.

• Avoid chaining your forwarders. Don't configure server a to forward to server
b, and configure server b to forward to server c (or worse yet, back to server
a).

10.6 A More Restricted Name Server

You may want to restrict your name servers even further—stopping them from even
trying to contact an off-site server if their forwarder is down or doesn't respond. You
can do this by telling the server not to fall back to using the recursive resolution
process if no forwarders respond: check the Do not use recursion box on the
Forwarders configuration tab (see Figure 10-9). The terminology is confusing: this
checkbox has nothing to do with the kind of query being sent to the forwarders. As we
said earlier, a name server that's forwarding always sends a recursive query to its
forwarders. What this checkbox determines is what happens after that recursive query
is sent, which we discuss next. The BIND name server configuration syntax calls this
kind of forwarding name server a forward-only server, which we think is a good
name.

A forward-only server is a variation on a server that forwards. It still answers queries
from its authoritative data and cache data. However, it relies completely on its
forwarders; it doesn't try to contact other servers for information if the forwarders
don't give it an answer.

The slave server contacts each forwarder only once, and it waits a short time for the
forwarder to respond. Listing the forwarders multiple times directs the forward-only
server to retransmit queries to the forwarders and increases the overall length of time
the forward-only name server will wait for an answer from forwarders. You might
want to consider listing the forwarders' IP addresses more than once for redundancy:
if the first query to a forwarder is lost, the second might still get through and be
answered.

However, you must ask yourself if it ever makes sense to use a forward-only server.
Such a server is completely dependent on the forwarders. You can achieve much the
same configuration (and dependence) by not running a forward-only server at all;
instead, configure your hosts' resolvers to point to the forwarders you were using.
Thus, you are still relying on the forwarders, but now your applications are querying
the forwarders directly instead of having a forward-only name server query them for
the applications. You lose the local caching the forward-only server would do as well
as the address sorting, but you reduce the overall complexity of your site
configuration by running fewer "restricted" name servers.

10.7 A Nonrecursive Name Server

By default, resolvers send recursive queries, and name servers do the work required to
answer the queries. (If you don't remember how recursion works, refer to Chapter 2.)
In the process of finding the answer to recursive queries, the name servers build up a
cache of nonauthoritative information about other zones.

In some circumstances, it is undesirable for name servers to do the extra work
required to answer a recursive query or to build up a cache of data. The root name
servers are an example of these circumstances. The root name servers are too busy to
spend extra effort to recursively find the answer to a request. Instead, they send a
response based only on the authoritative data they have. The response may contain the
answer, but it is more likely that the response contains a referral to other name
servers. And since the root servers do not support recursive queries, they do not build
up nonauthoritative data caches, which is good because their caches would be huge.36

You can induce the Microsoft DNS Server to run as a nonrecursive name server by
setting the NoRecursion Registry value to true. By default, the name server supports
recursion, and this value is false.

If you choose to make one of your servers nonrecursive, do not configure any of your
hosts' resolvers to use it. While you can make your name server nonrecursive, there is

36 Note that a root name server doesn't normally receive recursive queries unless a name server's administrator configured it
to use a root server as a forwarder, a host's administrator configured its resolver to use the root server as a name server, or
a user pointed nslookup at the root server.

no corresponding option to make your resolver work with a nonrecursive name
server.37

You can list a nonrecursive name server as one of the servers authoritative for your
zone data (that is, you can tell a parent name server to refer queries about your zone to
this server). This works because name servers send nonrecursive queries between
themselves.

Do not list a nonrecursive name server as a forwarder. When a name server is using
another server as a forwarder, it sends the query to the forwarder as a recursive query
instead of a nonrecursive query.

10.8 Securing Your Name Server

Compared to a modern BIND name server, the Microsoft DNS Server is short on
security features, but you do have some options. In this section, we discuss how to
prevent unauthorized zone transfers from your servers and how to "lock down" a
name server directly connected to the Internet.

10.8.1 Preventing Unauthorized Zone Transfers

It's important to ensure that only your real slave name servers can transfer zones from
your primary master name server. Users on remote hosts that can query your name
server's zone data can look up data (for example, addresses) only for hosts whose
domain names they already know, one at a time. Users who can start zone transfers
from your server can list all the hosts in your zones. It's the difference between letting
random folks call your company's switchboard and ask for John Q. Cubicle's phone
number and sending them a copy of your corporate phone directory.

You control which name servers can perform a zone transfer with settings on the
Zone Transfers tab of the zone properties window (see Figure 10-3 earlier in this
chapter). You can allow any host to perform zone transfers, or only those name
servers listed in the zone's NS records, or only a specific set of name servers you list
by IP address.

For a primary master name server accessible from the Internet, you definitely want to
limit zone transfers to just your slave name servers. You probably don't need to
restrict zone transfers on name servers inside your firewall, unless you're worried
about your own employees listing your zone data.

10.8.2 Delegated Name Server Configuration

Some of your name servers answer nonrecursive queries from other name servers on
the Internet because your name servers appear in NS records delegating your zones to
them. We'll call these name servers delegated name servers.

37 In general. Clearly, programs designed to send nonrecursive queries (or ones that can be configured to send nonrecursive
queries, like nslookup) would still work.

You can take special measures to secure your delegated name servers. But first, you
should make sure these servers don't receive any recursive queries (i.e., that you don't
have any resolvers configured to use these servers and that no name servers use them
as forwarders). Some of the precautions we'll take—such as disabling recursive
queries—preclude your resolvers from using these servers.

Once you know your name server answers queries only from other name servers, you
can turn off recursion. This eliminates a major vector of attack: the most common
spoofing attacks involve inducing the target name server to query name servers under
the hacker's control by sending the target a recursive query for a domain name in a
zone served by the hacker's servers. Disabling recursion is described in Section 10.7
earlier in this chapter. You should also restrict zone transfers of your zones to known
slave servers, as described in the previous section.

10.8.3 Load Sharing Between Mirrored Servers

The Microsoft DNS Server has a feature called round robin (named after the
equivalent feature in the BIND name server): the server rotates address records for the
same domain name between responses. For example, if the domain name foo.bar.baz
has three address records for IP addresses 192.1.1.1, 192.1.1.2, and 192.1.1.3, the
round-robin feature causes the name server to give them out first in the order:

192.1.1.1 192.1.1.2 192.1.1.3

then in the order:

192.1.1.2 192.1.1.3 192.1.1.1

and then in the order:

192.1.1.3 192.1.1.1 192.1.1.2

before starting over again with the first order and repeating the rotation ad infinitum.

This functionality is enormously useful if you have a number of equivalent network
resources, such as mirrored FTP servers, web servers, or terminal servers, and you'd
like to spread the load among them. You establish one domain name that refers to the
group of resources and configure clients to access that domain name, and the name
server inverse-multiplexes the accesses between the IP addresses you list.

It's a good idea to reduce the records' TTLs, too. This ensures that, if the addresses are
cached on an intermediate name server that doesn't support round robin, they'll time
out of the cache quickly. If the intermediate name server looks up the name again,
your authoritative name server can round-robin the addresses again.

Note that this is really load sharing, not load balancing: the name server gives out the
addresses in a completely deterministic way, without regard to the actual load or
capacity of the servers servicing the requests. In our example, the server at address
192.1.1.3 could be a 486DX33 running Linux and the other two servers could be
HP9000 K420s, and the Linux box would still get a third of the queries.

Note that round robin is disabled by default in favor of name server address sorting.
See the end of Section 10.4 for instructions on how to disable name server address
sorting and enable round robin.

Chapter 11. New DNS Features in Windows 2000

The Hatter opened his eyes very wide on hearing this; but all he said
was, "Why is a raven like a writing desk?"

"Come, we shall have some fun now!'" thought Alice. "I'm glad they've
begun asking riddles—I believe I can guess that," she added aloud.

"Do you mean that you think you can find out the answer to it?" said
the March Hare.

Windows 2000 includes many new DNS bells and whistles. The DNS server itself is
much improved, with more features than ever that make it more functional and easier
to manage. From a client perspective, Windows 2000 as an operating system is more
dependent on DNS than any previous operating system from Microsoft. And then
there's Active Directory....

11.1 Active Directory

Active Directory is the major new feature of Windows 2000. It's a hierarchical
database of information about all objects in the network: computers, printers, users,
and so on. Both users and computers access the information in Active Directory. The
Active Directory database is partitioned into domains for administrative purposes, and
one or more domain controllers store information about particular domains. (Compare
this to DNS's namespace, which is partitioned into zones, with one or more name
servers authoritative for each zone.) The most important fact about Active Directory
for our purposes is that it is integrated tightly with DNS. For more—much more—
information about Active Directory, see Windows 2000 Active Directory by Alistair
G. Lowe-Norris (O'Reilly).

11.1.1 Active Directory Domain Names

The most obvious connection between Active Directory and DNS is the naming of
domains—Active Directory domains, that is. In the past, under Windows NT, domain
names followed the NetBIOS host-naming rules: names consisted of a single label
(i.e., no dots) and could contain letters, digits, and limited punctuation. Most
Windows dialog boxes forced domain-name input to uppercase, so while they were
case-insensitive, you usually saw domain names written in all uppercase. For
example, Movie University's Windows NT domain name was MOVIEU.

With Windows 2000, all Active Directory domain names are DNS domain names,
but—and this is important—not every DNS domain name is an Active Directory
domain name.38 So while an organization's Active Directory namespace resembles its
DNS namespace, the two don't have to be and probably won't be identical. While it's
beyond the scope of this book to give an exhaustive explanation of Active Directory

38 And every square is a rectangle, but not all rectangles are squares. All registered mail is certified, but not all certified mail
is registered. You get the idea.

namespace design, we can give you some examples to clarify the connection between
the naming of Active Directory domains and DNS domains.

Consider Movie University. After reading this far, you're familiar with Movie U.'s
DNS namespace: the apex (or top) of the namespace is movie.edu, and there are
subdomains named fx.movie.edu, classics.movie.edu, and comedies.movie.edu. This
namespace is represented in Figure 11-1.

Now let's talk about Movie U.'s Active Directory namespace. An organization's
Active Directory domain names correspond to some of its DNS domain names, and
the Active Directory domain at the top of an organization's domain tree usually
corresponds to a subdomain of the apex of its DNS namespace. In Movie U.'s case,
however, the root of the Active Directory domain tree is the same as the apex of the
DNS namespace, movie.edu. Figure 11-1 shows Movie U.'s Active Directory domain
tree beside its DNS namespace. Note how the two diverge, though. For various
administrative reasons, the folks over in fx.movie.edu need to run their own Active
Directory domain. But everyone else at Movie U. is a part of the movie.edu Active
Directory domain, even though individual hosts fall into different DNS domains.

Figure 11-1. Movie University's namespace

11.1.2 DNS as Location Broker

You may be wondering why Active Directory domain names are DNS domain names.
The answer is that Windows 2000 systems (running in native mode) use DNS as a
location broker; that is, to find services. Previous versions of Windows used NetBIOS
to find domain controllers, but Windows 2000 hosts use DNS. Take the case of a
Windows 2000 Professional host at Movie U. that's been joined to the movie.edu
Active Directory domain. When this system boots up, it sends a series of DNS queries
to its configured name server to find a domain controller for the movie.edu domain.

11.1.2.1 The SRV resource record

The particular query sent by the Windows 2000 client is for a resource record type
you may not have heard of: the SRV (service location) record. The SRV record,

introduced in RFC 2782, is a general mechanism for locating services. Before we can
talk in detail about exactly how a Windows 2000 client finds its domain controller
using SRV records, we need to describe the SRV record itself.

Locating a service or a particular type of server within a zone is a difficult problem if
you don't know which host it runs on. Some zone administrators have attempted to
solve this problem by using service-specific aliases in their zones. For example, at
Movie U. we created the alias ftp.movie.edu and pointed it to the domain name of the
host that runs our FTP archive:

ftp.movie.edu. IN CNAME plan9.fx.movie.edu.

This makes it easy for people to guess a domain name that will get them to our FTP
archive and separates the domain name people use to access the archive from the
domain name of the host on which it runs. If we were to move the archive to a
different host, we could simply change the CNAME record.

Another option, for clients that understand it, is the SRV record. In addition to simply
allowing a client to locate the host on which a particular service runs, SRV provides
powerful features that allow zone administrators to distribute load and provide backup
services, similar to what the MX record provides.

A unique aspect of the SRV record is the format of the domain name to which it's
attached. Like the service-specific aliases described earlier, the domain name an SRV
record is attached to gives the name of the service sought, but it also includes the
protocol it runs over, concatenated with a domain name. The labels representing the
service name and the protocol begin with an underscore to distinguish them from
labels in the domain name of a host. So, for example:

_ftp._tcp.movie.edu

represents the SRV records someone ftping to movie.edu should retrieve in order to
find the movie.edu FTP servers, while:

_http._tcp.www.movie.edu

represents the SRV records someone accessing the URL http://www.movie.edu should
look up in order to find the www.movie.edu web servers.

The names of the service and protocol must come from the latest Assigned Numbers
RFC (the most recent as of this writing is RFC 1700) or be unique names used only
locally. Don't use the port or protocol numbers, just the names. When entering SRV
records with the DNS console, the service name is limited to eight common services.

The SRV record has four resource record-specific fields: priority, weight, port, and
target. Priority, weight, and port are unsigned 16-bit numbers (between 0 and 65535).
Target is a domain name.

Priority works similarly to the preference in an MX record: the lower the number in
the priority field, the more desirable the associated target. When searching for the

hosts offering a given service, clients should try targets with the same priority value
before trying those with a higher value in the priority field (lower priority values
indicate higher priority—confusing, eh?).

Weight allows zone administrators to distribute load to multiple targets. Clients
should query targets at the same priority in proportion to their weight. For example, if
one target has a priority of zero and a weight of one and another target has a priority
of zero but a weight of two, the second target should receive twice as much load (in
queries, connections, etc.) as the first. It's up to the service's clients to direct that load:
they typically use a system call to choose a random number. If the number is, say, in
the top one-third of the range, they try the first target, and if the number is in the
bottom two-thirds of the range, they try the second target.

Port specifies the port on which the service being sought is running. This allows zone
administrators to run servers on nonstandard ports. For example, an administrator can
use SRV records to point web browsers at a web server running on port 8000 instead
of the standard HTTP port (80).

Finally, target specifies the domain name of a host on which the service is running (on
the port specified in the port field). Target must be the canonical name of the host (not
an alias), with address records attached to it.

So, for the movie.edu FTP server, we might add two SRV records to the movie.edu
zone. Adding the first with the DNS console is shown in Figure 11-2.

Figure 11-2. Adding an SRV record with the DNS console

After adding the second record, the movie.edu zone data file (movie.edu.dns) contains
these records:

_ftp._tcp.movie.edu. IN SRV 1 0 21 plan9.fx.movie.edu.
 IN SRV 2 0 21 thing.fx.movie.edu.

This instructs SRV-capable FTP clients to try the FTP server on plan9.fx.movie.edu's
port 21 first when accessing movie.edu's FTP service and then to try the FTP server
on thing.fx.movie.edu's port 21 if plan9.fx.movie.edu's FTP server isn't available.

The records:

_http._tcp.www.movie.edu. IN SRV 0 2 80 www.movie.edu.
 IN SRV 0 1 80 www2.movie.edu.
 IN SRV 1 1 8000
postmanrings2x.movie.edu.

direct web queries for www.movie.edu (the web site) to port 80 on www.movie.edu
(the host) and www2.movie.edu, with www.movie.edu getting twice the queries
www2.movie.edu does. If neither is available, queries go to postmanrings2x.movie.edu
on port 8000.

But don't get excited and add SRV records for your FTP and web servers: few clients
actually use SRV records to locate their servers. In fact, we're not aware of any FTP
clients or web browsers that look up SRV records. On the other hand, when Microsoft
was looking for a way to have Windows 2000 clients find their domain controllers,
SRV records fit the bill perfectly.

11.1.2.2 DNS resource records needed by a domain controller

A Windows 2000 client needs to reach several services on its domain controller.
Clients communicate with Active Directory itself using the Lightweight Directory
Access Protocol (LDAP).39 Authentication and authorization are handled by
Kerberos.40 A domain controller needs DNS to "advertise" the availability of these
services. The resource records needed by the movie.edu Active Directory domain look
like this:

movie.edu. 600 IN A 192.249.249.3
_ldap._tcp.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.
_ldap._tcp.pdc._msdcs.movie.edu. 600 IN SRV 0 100 389
terminator.movie.edu.
_ldap._tcp.6e10690c-40a2-4383-98a7-
c716ef9266d1.domains._msdcs.movie.edu.
 600 IN SRV 0 100 389 terminator.movie.edu.
260aad2b-3ce7-41c2-923e-8e7bec165788._msdcs.movie.edu. 600 IN CNAME
 terminator.movie.edu.
_kerberos._tcp.dc._msdcs.movie.edu. 600 IN SRV 0 100 88
terminator.movie.edu.
_ldap._tcp.dc._msdcs.movie.edu. 600 IN SRV 0 100 389
terminator.movie.edu.
_kerberos._tcp.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kerberos._udp.movie.edu. 600 IN SRV 0 100 88 terminator.movie.edu.
_kpasswd._tcp.movie.edu. 600 IN SRV 0 100 464 terminator.movie.edu.
_kpasswd._udp.movie.edu. 600 IN SRV 0 100 464 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100
389
 terminator.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.dc._msdcs.movie.edu.

39 LDAP is an Internet standard defined in RFC 2251.
40 Kerberos is also an Internet standard—see RFC 1510.

 600 IN SRV 0 100 88 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.movie.edu.
 600 IN SRV 0 100 389 terminator.movie.edu.
_kerberos._tcp.Default-First-Site-Name._sites.movie.edu.
 600 IN SRV 0 100 88 terminator.movie.edu.
_ldap._tcp.gc._msdcs.movie.edu. 600 IN SRV 0 100 3268
terminator.movie.edu.
gc._msdcs.movie.edu. 600 IN A 192.249.249.3
_gc._tcp.movie.edu. 600 IN SRV 0 100 3268 terminator.movie.edu.
_ldap._tcp.Default-First-Site-Name._sites.gc._msdcs.movie.edu.
 600 IN SRV 0 100 3268 terminator.movie.edu.
_gc._tcp.Default-First-Site-Name._sites.movie.edu. 600 IN SRV 0 100
3268
 terminator.movie.edu.

The movie.edu domain has one domain controller, terminator.movie.edu. You can see
that the target of every SRV record (that is, the host providing the service) is
terminator. Notice the various services provided by terminator: LDAP over TCP,
Kerberos over TCP and UDP, etc. For an explanation of the function of each of the
records needed by a domain controller, see Microsoft Knowledge Base article
Q178169.

Also notice two A records hiding among all those SRV records:

movie.edu. 600 IN A 192.249.249.3
gc._msdcs.movie.edu. 600 IN A 192.249.249.3

The first A record is for LDAP clients that don't understand SRV records. Since
Windows 2000 clients do use SRV records to locate the LDAP service on the domain
controller, you don't need that domain A record (the one for movie.edu) unless you're
using other LDAP clients. (And even then, you can just point those clients at the
domain controller using its fully qualified name: terminator.movie.edu, in this case.)
It's good that the A record isn't required, because a lot of folks already have an A
record at the apex of their DNS namespace. This record usually points to a web
server, not to an Active Directory server. For example, Movie U.'s main web server is
accessible via both www.movie.edu and movie.edu. However, note that the second A
record, which points to the Global Catalog service on the domain controller, is
required.

This discussion begs the question: how do those SRV records get there? Are you
dreading that you'll have to type them in yourself? Never fear—the domain controller
adds these records to DNS itself, using a recent DNS protocol enhancement called
dynamic update. We'll discuss dynamic update soon, along with more details about
how domain controllers update DNS with the records they require.

One final note: if we had multiple domain controllers for movie.edu, there would be
an additional set of records for each one.

11.1.3 Storing Zones in Active Directory

Zone storage is another Active Directory-DNS integration point. With the previous
version of the Microsoft DNS Server in NT Server 4.0 (or a standard BIND name
server, for that matter), a name server loads zones from two places. If the name server

is a primary master for a zone, it loads that zone from a file on disk. If the name
server is a secondary master (or a slave, to use the newer term used by recent DNS-
related RFCs), it loads the zone from another authoritative server (usually the primary
master) over the network, using a zone transfer. The purpose of this traditional
primary/secondary relationship is to facilitate replication. A zone needs multiple
authoritative servers for redundancy and to spread the query load. The zone transfer is
DNS's built-in replication mechanism: as you know, just change the zone on the
primary, and the change eventually percolates to the secondaries.

The Microsoft DNS Server gives you a third option, called Active Directory
integration. Rather than being stored in a file on the primary master's disk, the zone
data is stored in the Active Directory database. This option is available only when the
DNS server is running on a domain controller. The reasoning is that since Active
Directory already has its own replication topology—a "multimaster" scheme in which
each domain controller can accept changes and propagate them to the other domain
controllers—why not just take advantage of Active Directory's replication for DNS
zones, rather than designing a separate primary/secondary topology?

There are at least a couple of reasons why you'd want to opt for Active Directory
integration for your zones. While it does save you from designing and implementing
primary/secondary relationships for all your name servers and zones, the main reason
is secure dynamic update. Microsoft has extended the standard DNS dynamic update
protocol, allowing it to work with the Active Directory security model, but this
feature is available only with Active Directory-integrated zones. Secure dynamic
update alone is enough reason to store zone information in Active Directory.

One other note about Active Directory-integrated zones: strictly speaking, you don't
have to make every name server for a zone Active Directory integrated. Since all
authoritative servers allow zone transfers, a server that loads a zone from Active
Directory will happily respond to zone transfers. So you can conceivably make only a
zone's primary master name server Active Directory integrated and have the
secondaries continue to load from the primary. However, it defeats one of the
purposes of Active Directory integration—letting Active Directory handle zone
replication—to use traditional zone transfers. The other huge advantage of Active
Directory integration is secure dynamic update, which isn't possible if only the
primary master is Active Directory integrated. So to take full advantage of Active
Directory integration, all name servers for a zone should store the zone in Active
Directory.

11.2 Dynamic Update

Dynamic update is a major new feature implemented in the Microsoft DNS Server.
Like many other protocols used by Windows 2000, it's an Internet standard, defined in
RFC 2136. Dynamic update is simply a protocol that allows a name server to be
updated by sending it a message over the network. This is a big improvement over the
traditional method, which requires a human to fire up the DNS console to make the
change in person. Dynamic update allows nonhumans—i.e., programs—to easily
update DNS information.

No security is built into the dynamic update protocol. It's up to an individual name
server to decide whether or not to accept an update message. About the only means of
authentication a name server has is to look at the source IP address of the dynamic
update message, and that's not a very strong means of authentication at all: it's easy to
"spoof" or forge a packet's source IP address. And since a complete dynamic update
message travels in a single UDP packet, all an attacker needs to know is an IP address
that the name server accepting dynamic updates trusts. The Bad Guy just creates a
dynamic update with a spoofed source IP address and sends it to the unsuspecting
name server.

This deficiency begs for some stronger security based on cryptography, which
fortunately has been developed. The DNS standards community developed a protocol
extension to use transaction signatures to sign any kind of DNS message—including
dynamic updates—sent between two parties: client to server, server to server,
dynamic updater to server, etc.

The transaction signatures, or TSIGs for short, in DNS use a technique called HMAC
(Keyed-Hashing for Message Authentication),41 which employs a shared secret and a
one-way cryptographic hash function to sign data. A shared secret is like a password
known only to the two parties. A one-way cryptographic hash function computes a
fixed-size checksum based on any amount of input. What differentiates a
cryptographic hash function, such as MD5 or SHA1, from a run-of-the-mill
checksum, such as a CRC (Cyclic Redundancy Check), is that it's computationally
infeasible to find two different input streams that produce the same hash output. With
a CRC checksum, on the other hand, the algorithm is easily reversible: given any
checksum, it's trivial to calculate an input stream to generate that checksum. Another
property of a good cryptographic hash function is that varying the input by even a
small amount—such as changing just one bit—produces a major change in the hash
output. In other words, the hash output is like a fingerprint of the original input.

A transaction signature is so-named because it's ephemeral: the signature applies only
to a single transaction and is not reusable. Let's say a client wants to send a dynamic
update signed with a TSIG to the appropriate name server. After generating the
dynamic update message, it appends the secret it shares with the server to the message
and runs everything through MD5. The output is the TSIG itself, which is placed into
a TSIG resource record that goes in the dynamic update message. Since TSIGs are
generated on the fly like this, you see a TSIG record only on a packet sniffer, never in
the DNS console or a zone data file. Note that TSIG doesn't encrypt the data being
sent: it only authenticates it. HMAC is illustrated in Figure 11-3.

41 See RFC 2104.

Figure 11-3. HMAC illustrated

One difficulty with TSIG is distributing the shared secrets. Imagine having hundreds
of clients that need to send TSIG-signed dynamic updates to a name server: that
requires generating hundreds of keys and distributing them securely to each client.
Microsoft found itself in just such a predicament. As we'll see shortly, individual
Windows 2000 clients do send dynamic updates to name servers. TSIG is a
requirement for these transactions to happen securely, but it's not feasible to statically
configure shared secrets on each Windows 2000 client. The solution: Kerberos to the
rescue!

As we mentioned earlier, Windows 2000 uses Kerberos for authentication and
authorization. Kerberos allows two parties who want to communicate securely to
negotiate the necessary information to do so. Every Windows 2000 domain controller
is a Kerberos Key Distribution Center, or KDC. Every Windows 2000 client and
server is a Kerberos "principal." Every Kerberos principal shares a secret with the
KDC. (This shared secret is generated when the host is joined to the domain.) The
KDC acts as a trusted third party that allows two principals to communicate securely.
For example, suppose a client named Alice wants to send an encrypted message to a
client named Bob. Alice asks the KDC to help negotiate a session key42 with Bob.
Alice and Bob don't (yet) trust each other, but they do trust the KDC, which facilitates
distributing the session key to both of them. This explanation is quite an
oversimplification of how Kerberos actually works, but it does show the underlying
concepts.

Microsoft extended TSIG in Windows 2000 to use Kerberos. A Windows 2000 client
that wants to send a TSIG-signed dynamic update message to a name server doesn't
have to be statically configured to share a secret with that server. The client uses
Kerberos to obtain a session key, which serves as a one-time shared secret. This
variant of TSIG is called GSS-TSIG and is documented in an Internet-Draft.43

42 As the name implies, a session key is a short -lived key usually used for a single conversation.
43 GSS stands for Generic Security Service. At the time of this writing, GSS-TSIG was not yet an Internet standard but was
on track to become one. Internet-Drafts may be found at ftp://ftp.ietf.org/internet-drafts/.

11.2.1 Domain Controller Behavior

Earlier we showed the records required by domain controllers for clients to locate
them. To ensure that these important records are always present, the Netlogon service
running on the domain controller attempts to add them to DNS using dynamic update
once per hour. A copy of these records can be found in the file
%SystemRoot%\system32\config\netlogon.dns.

It's worth describing exactly how the Netlogon service attempts to add these records.
As an example, we'll show the steps followed by the movie.edu domain controller to
register this SRV record (which happens to be the first one in the list of records we
showed previously):

_ldap._tcp.movie.edu. 600 IN SRV 0 100 389 terminator.movie.edu.

The steps are:

1. Look up the SOA record for _ldap._tcp.movie.edu on the local name server.
Though there isn't an SOA record for that domain name, the authority section
of the NXDOMAIN (negative) response includes the SOA record of the zone
that should contain the _ldap._tcp.movie.edu SRV record, which in this case is
movie.edu.

2. Look up the address of the name server in the MNAME field of the SOA
record, terminator.movie.edu (if necessary). Recall that the MNAME field of
the SOA record lists the zone's primary master name server, which is where
the dynamic update should be sent. Along with the SOA record, the Microsoft
DNS Server returns the A record corresponding to the MNAME field in the
additional section of the negative response. In that case, no extra A record
lookup is needed.

3. Send a dynamic update to terminator.movie.edu to add the SRV record for the
domain name _ldap._tcp.movie.edu.

These steps are repeated for every record: first the SOA query as a "probe" to
discover which zone the record should reside in, then the A-record query, and then the
dynamic update itself. Note the significance of the SOA query: this means that you
don't have to have a zone corresponding to each Active Directory domain. For
example, imagine Movie U. has another Active Directory domain named fx.movie.edu
but no fx.movie.edu zone in the DNS namespace. Now consider the behavior when the
fx.movie.edu domain controller attempts to register its first SRV record for
_ldap._tcp.fx.movie.edu. It sends an SOA query for this domain name but, since
there's no fx.movie.edu zone, the negative response includes the SOA record for the
movie.edu zone. As a result, the domain controller attempts to add the
_ldap._tcp.fx.movie.edu SRV record to the movie.edu zone. In fact, if there were no
movie.edu zone, the domain controller would even try to update the edu zone! It
doesn't attempt to send dynamic updates to the root zone, though, which is a good
thing.

Two Registry settings are used to control the Netlogon service's dynamic update
behavior.44

First, to stop Netlogon from attempting to register the necessary records with dynamic
update once an hour, create the following Registry key:

UseDynamicDns
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Paramet
ers

Data type: REG_DWORD
Range: 0 - 1
Default value: 1

Set the value to zero. The Netlogon service periodically checks this Registry key, so
you don't need to restart the service or reboot the machine.

You'll want to suppress repeated dynamic updates if you don't want to enable dynamic
updates on your name server or if it doesn't allow dynamic updates. However, with
Microsoft's secure dynamic update, there's really no reason not to enable dynamic
updates. If you're running a BIND name server (which doesn't support Microsoft's
particular version of secure dynamic update), however, you might want to disable
dynamic update and instead add the necessary resource records to your zone by hand.
In that case, it's pointless to have the domain controllers continuously attempting to
send dynamic updates.45

Another useful Registry setting prevents Netlogon from registering A records with
dynamic update:

RegisterDnsARecords
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Paramet
ers

Data type: REG_DWORD
Range: 0 - 1
Default value: 1

Set this key to zero to stop Netlogon from registering the two A records from
movie.edu's zone:

movie.edu. 600 IN A 192.249.249.3
gc._msdcs.movie.edu. 600 IN A 192.249.249.3

Recall that the first one is not required, so setting this key to zero stops Netlogon from
repeatedly registering an A record for your domain that might conflict with other
records, such as those for your web server. On the other hand, the second record is
required, so if you disable automatic A-record registration, you have to add the
second record by hand. Remember that you can always check

44 See Microsoft Knowledge Base article Q246804 for more information about all aspects of Windows 2000 dynamic update
behavior.
45 The fourth (and latest) edition of our sister book, DNS and BIND, discusses Windows 2000 and BIND name server
coexistence in Chapter 16.

%SystemRoot%\system32\config\netlogon.dns for the exact list of records your
domain controller expects to be present in DNS.

11.2.2 Windows 2000 Client Behavior

Every Windows 2000 host uses dynamic update to maintain the proper DNS
information about itself. The DHCP client service sends the updates, regardless of
whether the host actually uses DHCP to obtain any IP addresses. If a Windows 2000
host does not use DHCP, it attempts to register name and address information for
itself in DNS. Specifically, it sends dynamic updates to the appropriate authoritative
name servers to add the appropriate A and PTR records. If the host does get an
address from a DHCP server, it still registers the A record itself but allows the DHCP
server to register the corresponding PTR record.46

This self-registration with dynamic update is feasible only with Microsoft's secure
dynamic update. With Kerberos, the Windows 2000 host attempting the registration
can authenticate itself to the DNS server. The DNS server can, in turn, implement a
fine-grained authorization policy that allows a host to change only the A and PTR
records corresponding to its own domain name and IP address.

This feature extends a client's behavior dealing with its NetBIOS name to the DNS
world. If a Windows (including Windows 2000) host is configured to use a WINS
server, it registers its NetBIOS name and address with that server.

Dynamic update behavior is controlled from the DNS tab of the Advanced TCP/IP
Settings window for each network interface. Getting to this window takes a fair
amount of clicking:

1. Choose Settings Network and Dial-up Connections
2. Double-click on a LAN interface to display its status window.
3. Click Properties to display the properties window for the interface. Make sure

the General tab is selected.
4. Click on Internet Protocol (TCP/IP), then click Properties to display the

Internet Protocol (TCP/IP) Properties window.
5. Click Advanced, which displays the Advanced TCP/IP Settings window.
6. Select the DNS tab, and you'll see a window like the one shown in Figure 11-

4.

Most of the settings on the Advanced TCP/IP Settings window deal with resolver
configuration, which we discussed in Chapter 6. The dynamic update settings are at
the bottom of the window. Register this connection's addresses in DNS is checked
by default, and this setting controls whether or not the client attempts registration with
dynamic update (whether it registers both A and PTR records or just an A record is
determined by the DHCP settings, as we mentioned previously).

46 Actually, a host will register one A record for each IP address it has.

Figure 11-4. Advanced TCP/IP Settings

By default, the host registers its fully qualified domain name. Windows 2000 calls the
fully qualified domain name the full computer name. It's the concatenation of the
host's single-label computer name and the primary DNS suffix which, by default, is
set to the DNS name of the Active Directory domain to which the computer is joined.
The full computer name is displayed on the Network Identification tab of the
System Control Panel document, which is shown in Figure 11-5. To change the
computer name, click Properties.

Figure 11-5. Network Identification tab

If you'd like the host to register an additional FQDN in addition to the primary FQDN
(or full computer name), enter another domain name in the DNS suffix for this
connection field and check Use this connection's DNS suffix in DNS registration.
The additional FQDN is a concatenation of a single-label computer name and the
connection-specific DNS suffix. If you don't specify the DNS suffix for this
connection but check Use this connection's DNS suffix in DNS registration, the
DNS suffix is specified by the DHCP server. In that case, the fully qualified domain
name registered consists of the host's single-label computer name followed by the
contents of the suffix field.

So what gets added when a client registers? Let's reboot a Windows 2000 client in the
special-effects lab and see.

Our client is called mummy.fx.movie.edu. It has the fixed IP address 192.253.254.13
(it doesn't get its address from our DHCP server). The dynamic update routines on the
client go through the following steps at boot time:

1. Look up the SOA record for mummy.fx.movie.edu on the local name server.
Though there isn't an SOA record for that domain name, the authority section
of the response includes the SOA record of the zone that contains
mummy.fx.movie.edu, fx.movie.edu.

2. Look up the address of the name server in the MNAME field of the SOA
record, bladerunner.fx.movie.edu.

3. Send a dynamic update to bladerunner.fx.movie.edu with two prerequisites:
that mummy.fx.movie.edu not be an alias (i.e., that it not own a CNAME
record) and that it not already have an address record pointing to
192.253.254.13. The dynamic update contains no update section; it's just a
probe to see what's out there.

4. If mummy.fx.movie.edu already points to its address, stop. Otherwise, send
another dynamic update to bladerunner.fx.movie.edu with the prerequisites
that mummy.fx.movie.edu not be an alias and that it not have an A record
already. If the prerequisites are satisfied, the update adds an A record pointing
mummy.fx.movie.edu to 192.253.254.13. If mummy.fx.movie.edu already has
an A record, the client sends an update to delete that A record and add its own.

5. Look up the SOA record for 254.253.192.in-addr.arpa.
6. Look up the address of the name server in the MNAME field of the SOA

record (though since the MNAME field contains bladerunner.fx.movie.edu,
which we looked up recently, and Windows 2000 has a caching resolver, this
shouldn't require another query).

7. Send a dynamic update to bladerunner.fx.movie.edu with the prerequisite that
13.254.253.192.in-addr.arpa not be an alias. If the prerequisite is satisfied, the
update adds a PTR record mapping 192.253.254.13 back to
mummy.fx.movie.edu. If 13.254.253.192.in-addr.arpa is an alias, stop.

11.2.2.1 Registry settings

Several Registry settings affect a Windows 2000 host's dynamic DNS behavior:

Address conflict behavior

This is one Registry entry you should consider changing if you are aren't using
a Windows 2000 Microsoft DNS Server and your name server is therefore
forced to accept unsigned dynamic updates. By default, a Windows 2000 host
unceremoniously deletes what it considers old A records for itself. For
example, if the host we rebooted earlier discovered other A records for
mummy.fx.movie.edu, it would delete them and then add a new one with its
current IP address. The problem is, what if those were legitimate records? The
host could be configured with the wrong name; maybe those A records are for
the real mummy.fx.movie.edu. Setting this key to a value of one disables the
overwriting behavior.

DisableReplaceAddressesInConflicts
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Para
meters

Data type: REG_DWORD
Range: 0 - 1
Default value: 0
Scope: Affects all adapters

Reregistration interval

By default, the DHCP client service sends a dynamic update every 24 hours to
register a host's A (and PTR, if applicable) records. This behavior is an
insurance policy against the records being lost from the zone. There's little
reason to change this value.

DefaultRegistrationRefreshInterval
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Para
meters

Data type: REG_DWORD
Range: 0x0 - 0xFFFFFFFF seconds
Default value: 0x15180 (86,400 seconds = 24
hours)
Scope: Affects all adapters

Default TTL

By default, dynamically added resource records have a time to live of 20
minutes. It makes sense to lower this value if you have a large number of hosts
changing addresses frequently (such as laptops moving around) and you find
DNS information is getting outdated. Recall, however, that this value doesn't
affect the authoritative name servers for the zone containing the dynamically
added records. Changes to authoritative servers take effect immediately and
are propagated quickly, thanks to the NOTIFY protocol. The issue is records
remaining in the cache of other name servers after the hosts move.

DefaultRegistrationTTL
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Para
meters

Data type: REG_DWORD

Range: 0x0 - 0xFFFFFFFF seconds
Default value: 0x4B0 (1,200 seconds = 20 minutes)
Scope: Affects all adapters

Maximum number of addresses to register

If a network adapter has multiple virtual addresses, by default only the first is
registered using dynamic update. This value sets the maximum number of
virtual addresses to register on a per-interface basis. Setting the value to zero
disables dynamic updates for this interface.

MaxNumberOfAddressesToRegister
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Para
meters\Adapters\
interface-name

Data type: REG_DWORD
Range: 0x0 - 0xFFFFFFFF
Default value: 0x1
Scope: Affects this adapter only

Update security level

By default, a Windows 2000 host first sends unsigned dynamic updates (i.e., it
doesn't use Microsoft's security-enhanced method). If those updates fail, it
attempts to negotiate a session key and sign the updates. The default value is
0x0. A value of 0x10 means send only nonsecure updates, and a value of
0x100 means send only secure updates. If you have only Windows 2000 name
servers (or only non-Windows 2000 name servers), you can set this value
accordingly to avoid sending unnecessary updates.

UpdateSecurityLevel
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Para
meters

Data type: REG_DWORD
Range: 0x0 | 0x10 | 0x100
Default value: 0x0
Scope: Affects all adapters

A reboot is required to make any of these Registry changes effective.

11.2.3 DHCP Server Behavior

Still another Windows 2000 component that uses dynamic update is the Windows
2000 DHCP server. The dynamic update behavior is set on a per-scope basis. Every
scope has a properties window, and dynamic update is configured using the settings
on its DNS tab. Right-click on a scope in the DHCP console and select Properties to
produce a window like the one shown in Figure 11-6.

Figure 11-6. Scope properties, DNS tab

Note that the DHCP server itself has a properties window (right-click on a particular
server in the DHCP console and select Properties) with an identical DNS tab, but the
server settings provide defaults only for newly created scopes. The settings of a given
scope control the server's dynamic update behavior for addresses given out from that
scope. Figure 11-6 shows the default dynamic update settings for an unconfigured
server. If you don't change them, every scope created has these dynamic update
settings.

The wording of the settings is a little confusing. The first one, Automatically update
DHCP client information in DNS, applies only to DHCP clients that support the
DHCP Fully Qualified Domain Name (FQDN) option, which has code number 81.
This option has been defined only recently: at the time of this writing, the document
describing it is an Internet-Draft and not yet an RFC. The FQDN option lets a DHCP
client inform the DHCP server of its fully qualified domain name and also tell the
server its intention about registering A and PTR records. This option can also be sent
from server to client to let the server respond to the client's request and specify its
intentions. In the Microsoft operating system family, only Windows 2000 DHCP
clients support the FQDN option, and we've already mentioned how Windows 2000
DHCP clients use it: they specify their FQDN (computer name plus its primary DNS
suffix) and inform the server of their intention to register their own A records.

If Automatically update DHCP client information in DNS is selected, you must
tell the server how to deal with a DHCP client's FQDN option request regarding
dynamic update. The default setting is Update DNS only if DHCP client requests,
which causes the server to honor the client's dynamic update requests. On the other
hand, checking Always update DNS causes the server to always send dynamic
updates for both A and PTR records, regardless of the client's request.

The next setting, Discard forward (name-to-address) lookups when lease expires,
applies to A records. When a Windows 2000 DHCP server is configured to send
dynamic updates—that is, when the Automatically update DHCP client
information in DNS box is checked—the server always sends a dynamic update to

remove a client's PTR record when its lease expires. Checking this box causes the
server to remove the client's A record with dynamic update, too.

The final setting, Enable updates for DNS clients that do not support dynamic
update, applies to any DHCP client that doesn't send the FQDN option—in other
words, all versions of Windows before Windows 2000. If this box is checked, the
DHCP server always updates A and PTR records for every lease issued to clients that
don't pass the FQDN option. Since the client doesn't inform the server of its FQDN,
the server has to calculate it by concatenating the values from two other DHCP
options: Host Name (code 12) and DNS Domain Name (code 15). The DHCP server
uses the value of the Host Name option sent by the client plus the value of the DNS
Domain Name option defined in the scope from which the address is being leased.
The server ignores any client-set value for the DNS Domain Name option.

Another dynamic update-related feature of the Windows 2000 DHCP server is the
DnsUpdateProxy built-in security group. This group solves a couple of problems. The
first is when multiple DHCP servers perform secure dynamic update. The Microsoft
DNS Server's access controls allow only the owner of a dynamically created record to
change or delete it. Imagine a DHCP registering a PTR record on a client's behalf,
then failing and being replaced by a backup DHCP server. If the original server
became the owner of the record when creating it, the backup server would be unable
to delete the record when the lease expired. The DnsUpdateProxy group solves this
problem: when members of this group register records with dynamic update, they
aren't marked as the owner. The first nonmember of DnsUpdateProxy to modify the
records becomes the owner. To solve the DHCP server problem mentioned earlier,
both computers should be members of the DnsUpdateProxy group. Another problem
solved is when a DHCP server registers a PTR record on behalf of a "legacy" (i.e.,
non-Windows 2000) client that can't perform its own dynamic updates. If the client
were later upgraded to Windows 2000, without this feature it wouldn't be able to
update its own record.

The "you touch it, you own it" properties of this group can cause problems, though.
Since group ownership applies to the entire computer and not just the DHCP server,
any records registered by the computer have this no-owner property. Recall that
domain controllers register all kinds of important records. So if you run a DHCP
server on a domain controller and you make that machine a member of
DnsUpdateProxy, anyone can come along and take ownership of the (very important)
records registered by the domain controller's Netlogon service. In addition, a DHCP
server running on a domain controller uses local system privileges to modify the DNS
records and therefore may update records registered by other computers in a secure
zone. (This particular problem and its solution are described in Microsoft Knowledge
Base article Q255134.) For these reasons, Microsoft recommends that you don't run a
DHCP server on a domain controller.

11.3 Aging and Scavenging

Zones with dynamic update enabled are prone to stale records; that is, A or PTR
records that are dynamically added but not properly removed when no longer
necessary. Most DHCP clients—including Windows clients—don't release their
addresses on shutdown, which means they don't send the corresponding dynamic

update message to remove their A records (nor does the DHCP server send a dynamic
update message to remove the PTR record). Imagine a transient host, such as a laptop,
that receives but never releases an address, leaving A and PTR records in DNS.
Microsoft refers to these records as stale, and the DNS server in Windows 2000 can
track their age and remove, or scavenge, them when they are no longer necessary.

The DNS server knows a record is not stale when it receives a dynamic update request
for it. A Windows 2000 host sends a dynamic update message for its A record (and
PTR record, if configured with a static address) every 24 hours by default. Windows
2000 hosts also send dynamic updates on lease renewal. An update of an existing
record is called a refresh. (Before sending the update to make any changes, clients
actually probe for a record's existence by sending a dynamic update message with
only a prerequisite section. The DNS server counts such a message as a refresh, too.)
A refresh is the signal to the server that a particular client is still alive and using its
records.

The idea behind aging and scavenging is to remove records that haven't been
refreshed within a certain interval. The primary master server stores a timestamp for
each resource record in zones with aging and scavenging enabled. Every time a record
is created, modified, or refreshed, the server updates the timestamp with the current
time. If the primary master is Active Directory integrated, it replicates these
timestamps to the other servers (since all primary masters may need to perform aging
and scavenging). A large number of dynamic updates means a large number of refresh
events and corresponding timestamp updates, which means a lot of replication traffic
if the zone is Active Directory integrated.

To reduce the replication burden of this algorithm, Microsoft introduced the concept
of a "no-refresh" interval. After a record is refreshed and its timestamp is updated, the
server will not process additional refresh events (nor update the record's timestamp)
for the length of the no-refresh interval. Note that each record has its own refresh or
no-refresh timer ticking away. The record can still be changed, though, which does
cause its timestamp to be updated. Remember, a refresh is just a dynamic update that
doesn't cause any changes47 because the records specified in the update are already
present in the zone. The no-refresh interval is like a cooling-off period that cuts down
on replication: since refresh events aren't recorded during this interval, a record's
timestamp isn't updated and therefore doesn't have to be replicated.

The DNS server's default refresh and no-refresh interval are both seven days. Aging
and scavenging is enabled on a zone-by-zone basis. At a configurable interval, the
server makes a scavenging pass to remove any stale records in zones enabled for
aging and scavenging. Stale records have a timestamp older than the current time
minus the no-refresh interval minus the refresh interval. Figure 11-7 shows the phases
of a record from creation through refreshing to scavenging. Since this record was
never refreshed, it's eligible for scavenging. Figure 11-8 corresponds to another record
from a live client that is sending periodic dynamic updates to keep its A record
refreshed. This record won't be scavenged.

47 Or the prerequisite check we described.

Figure 11-7. Nonrefreshed record

Figure 11-8. Periodically refreshed record

11.3.1 Configuring Aging and Scavenging

Aging and scavenging is disabled by default, since its improper use is dangerous. If
you set the refresh and no-refresh intervals too low, records that aren't stale can be
inadvertently removed. A global setting controls aging and scavenging for the entire
DNS server. It's located on the Advanced tab of the server properties window, which
is shown in Figure 11-9. The Scavenging period setting controls how often the server
makes a scavenging pass through all authoritative zones.

Once aging and scavenging has been enabled on a given server, you must still enable
it for a particular zone. From the General tab of a zone's properties window, click the
Aging button to produce a window like the one shown in Figure 11-10. Click
Scavenge stale resource records to enable aging and scavenging for this zone. The
refresh and no-refresh intervals are set on a per-zone basis.

Figure 11-9. Enabling aging and scavenging for an entire server

Figure 11-10. Enabling aging and scavenging for a particular zone

In addition, a DNS server may be configured to apply the zone parameters values to
all the existing and future zones.

11.3.2 When Scavenging Occurs

The server stores a parameter called StartScavenging for each primary zone, which is
the time after which the zone is eligible for scavenging. A DNS server performs a

zone-scavenging pass only if the current time is greater than StartScavenging. (In
addition, scavenging must be enabled for the server and the zone, and dynamic update
must be enabled for the zone.) The StartScavenging parameter is set to the current
time plus the refresh interval of the zone when the following events happen:

• When scavenging is enabled for the zone
• When dynamic update is enabled for the zone
• When the zone is loaded
• When the zone is resumed

11.3.3 Other Notes on Aging and Scavenging

Static records (i.e., those added with the DNS console) are considered "permanent."
They have a creation/refresh timestamp of zero and are ignored during a scavenging
pass.

The DNS server needs to retain each record's creation/refresh timestamp across server
restarts, which means writing this information to disk. For Active Directory-integrated
zones, this information goes in—surprise!—Active Directory. For standard zones, the
server has to store the information in the zone data file. Thus, for standard zones with
aging and scavenging enabled, the zone data file format includes an extra field that is
incompatible with non-Windows 2000 name servers. An outbound zone transfer of a
zone with aging and scavenging enabled is not affected, so you can still have non-
Windows 2000 name servers as secondaries. But if aging and scavenging is enabled
for a zone, you can't take the actual zone file from a Windows 2000 name server and
load it on, say, a BIND name server.

11.4 Incremental Zone Transfer

The Microsoft DNS Server in Windows 2000 supports a new kind of zone transfer.
Incremental zone transfer, or IXFR for short, is specified in RFC 1995, and it does
exactly what you'd expect based on its name. A traditional zone transfer always
transfers the entire contents of a zone, even if only one record has changed.
Incremental zone transfers allow a name server to send a list of just the records that
have changed since the last zone transfer (whether it was a full or incremental one).

This new feature is critical for zones that change frequently. Imagine the scenario
with dynamic update: every dynamic update is a change to the zone that requires a
zone transfer. Doing a full zone transfer with every small change wastes bandwidth
and CPU time. The situation is compounded when the zone being updated and
transferred is large.

For IXFR to function, the master servers need to keep track of the differences
between successive versions of the zone. A secondary requests an incremental zone
transfer and presents its current serial number. The master server calculates and sends
the changes needed on the secondary to make its version of the zone current. If the
master server can't calculate the changes for whatever reason—perhaps the secondary
has an old version of the zone and the primary hasn't kept a record of changes that far

back—the primary is allowed to say "Sorry, but you've got to accept a full zone
transfer."

A Microsoft DNS Server acting as a secondary requests an incremental zone transfer
by default. If the master server doesn't support incremental zone transfer, the
Microsoft DNS Server asks for a standard full zone transfer. A Microsoft DNS Server
acting as a primary master stores a record of changes going back several versions. The
number of versions the server keeps in memory depends on the zone's size: it keeps
25% of the total number of resource records of the zone, up to a total of 64,000. For
example, given a zone of 100 resource records, the server would store changes
corresponding to the last 25 versions of the zone. It responds with a full zone transfer
instead of an incremental when it doesn't have the necessary information to produce
the list of changes to the zone or when the list of changes would be larger than a full
zone transfer.

Active Directory-integrated zones introduce an extra wrinkle. Any of these zones'
authoritative servers can accept a dynamic update for the zone. The change is stored
locally and replicated to the other servers using Active Directory. This situation
means that different servers can potentially apply changes to the zone in a different
order. To maintain a consistent view of changes to a zone, a secondary must always
use the same master server. If a particular master server becomes unavailable and a
secondary is forced to use another, it automatically requests a full zone transfer for the
first transfer from that server to avoid inconsistencies.

11.5 Unicode Character Support

The Microsoft DNS Server allows any character from the Unicode character set to be
used in a domain name. These characters are represented in UTF-8, a particular
method of encoding Unicode characters.48 The vast majority of DNS domain names
are represented with a subset of the ASCII character set: alphanumeric characters (i.e.,
the uppercase and lowercase letters A-Z and the digits 0-9) and the hyphen. In fact,
the DNS specification has always permitted any binary value to be used in domain
names, though RFC 1035—one of the core RFCs that define DNS—recommends that
domain names be limited to the characters just listed to avoid problems using the
domain names with other protocols. For example, the Internet standards dealing with
valid hostname syntax (RFCs 952 and 1123) restrict hostnames to the same ASCII
alphanumeric subset. Since this hostname syntax is referenced in Internet standards
for electronic mail, domain names used in email addresses must use this same limited
syntax.

Until Windows 2000, however, networking in Microsoft operating systems was based
on NetBIOS, which has more liberal hostname-syntax rules than strict alphanumerics
and the hyphen. As we mentioned earlier in this chapter, limited punctuation is
allowed in NetBIOS names, as well. Since DNS is the protocol used to name hosts in
Windows 2000, sites that upgrade can run into trouble with hosts named according to
NetBIOS syntax rules that are no longer valid according to the accepted DNS syntax

48 More information about the Unicode Standard is available at http://www.unicode.org/.

rules. As a result, Microsoft extended the DNS server and the DNS console user
interfaces to support a wider character set—everything in Unicode.

The Microsoft DNS Server can check the syntax of domain names in zones for which
it is authoritative. This behavior, called name checking, is controlled on the
Advanced tab of the server properties window (see Figure 11-9). The default value is
to check according to UTF-8 syntax rules, but domain names can also be restricted to
alphanumerics and the hyphen or name checking can be disabled completely.

A word of caution is in order here: just because the Microsoft DNS Server allows you
to use all kinds of crazy characters in domain names, it doesn't mean you should.
Many other protocols have certain expectations for syntax of domain names, and
violating these expectations can cause applications to exhibit strange and
unpredictable behavior. We recommend sticking to the accepted alphanumerics and
the hyphen until standards for using additional characters are developed by the IETF
(they're working on such standards at the time of this writing). If you absolutely must
use other characters, do so only for hostnames used inside your organization, not
those visible to the entire Internet.

Chapter 12. nslookup

"Don't stand chattering to yourself like that," Humpty Dumpty said,
looking at her for the first time, "but tell me your name and your
business."

"My name is Alice, but—"

"It's a stupid name enough!" Humpty Dumpty interrupted impatiently.
"What does it mean?"

"Must a name mean something?" Alice asked doubtfully.

"Of course it must," Humpty Dumpty said with a short laugh....

To be proficient at troubleshooting name server problems, you'll need a special tool
to make DNS queries, one that gives you complete control. We'll cover nslookup in
this chapter because it's distributed with Windows 2000 and with many other
operating systems.

Note that this chapter isn't comprehensive; there are aspects of nslookup -- mostly
obscure and seldom used—that we won't cover. You can always consult the manual
pages for information on those aspects.

12.1 Is nslookup a Good Tool?

Much of the time you'll use nslookup to make queries in the same way the resolver
makes them. Sometimes, though, you'll use nslookup to query other name servers as
a name server would. Which one you emulate will depend on the problem you're
trying to debug. You might wonder, "How accurately does nslookup emulate a
resolver or a name server? Does nslookup actually use the Windows resolver library
routines?" No, nslookup uses its own routines for querying name servers, but those
routines are based on the resolver routines. Consequently, nslookup's behavior is
very similar to the resolver's behavior, but it does differ slightly. We'll point out some
of those differences. As for emulating name server behavior, nslookup allows us to
query another server with the same query message that a name server would use,
but the retransmission scheme is quite different. Like a name server, though,
nslookup can pull a copy of the zone data. So nslookup does not exactly emulate
either the resolver or the name server, but it does emulate them well enough to make
a good troubleshooting tool. Let's delve into those differences to which we've alluded.

12.1.1 Multiple Servers

nslookup talks to only one name server at a time. This is the major difference
between nslookup's behavior and the resolver's behavior. The resolver makes use of
all the name servers listed in the Windows resolver configuration window. If two
name servers are listed, the resolver tries the first name server, then the second,
then the first, then the second, until it receives a response or gives up. The resolver
does this for every query. On the other hand, nslookup tries the first name server
listed and keeps retrying until it finally gives up on the first name server and tries the
second. Once it gets a response, it locks onto that server and doesn't try the other.

But you want your troubleshooting tool to talk with only one name server, so you can
reduce the number of variables when analyzing a problem. If nslookup used more
than one name server, you wouldn't have as much control over your troubleshooting
session. So talking to only one server is the right thing for a troubleshooting tool to
do.

12.1.2 Timeouts

The nslookup timeouts are similar to the resolver timeouts when the resolver is
querying only one name server. A name server's timeouts, however, are based on
how quickly the remote server answered the last query, a dynamic measure.
nslookup will never match name server timeouts, but that's not a problem either.
When you're querying remote name servers with nslookup, you probably care only
what the response was, not how long it took.

12.1.3 The Search List

nslookup implements the search list just as the resolver code does. Name servers
don't implement search lists, so, to act like a name server, the nslookup search
function must be turned off—more on that later.

12.1.4 Zone Transfers

nslookup will do zone transfers just like a name server. Unlike the name server,
though, nslookup does not check SOA serial numbers before pulling the zone data;
you'll have to do that manually, if you want to.

12.1.5 Using NetBIOS Names

This last point doesn't compare nslookup to the resolver or name server but rather to
ways of looking up names in general. nslookup, as distributed by Microsoft, only uses
DNS; you can't use it to look up NetBIOS names via broadcast, LMHOSTS, or WINS.
Before using nslookup to try to find your lookup problem, you need to determine if
your problem is really with DNS. For example, if an application is using a different IP
address than you expect, perhaps it's treating a value as a NetBIOS name and not a
DNS domain name. To diagnose this kind of problem, you need to understand how
the Windows resolver, which we discussed in Chapter 6, works. Just remember that
nslookup talks only to name servers.

12.2 Interactive Versus Noninteractive

Let's start our tutorial on nslookup by looking at how to start it and how to exit from it.
You can run nslookup either interactively or noninteractively. If you want to look up
only one piece of data, you should use the noninteractive form. If you plan on doing
something more extensive, such as changing servers or options, use an interactive
session.

To start an interactive session, just type nslookup:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ^Z

If you need help, type ? or help.

When you want to exit, type ^Z (Ctrl-Z) and press Enter. You can also exit from
nslookup with ^C or ^Break (Ctrl-Break). This behavior is different from nslookup's
operation on a Unix host, where if you send nslookup an interrupt, it catches it, stops
whatever it is doing (like a zone transfer), and gives you the > prompt. There's no
way to just interrupt Microsoft's nslookup: you just have to stop nslookup completely
and restart it.

For a noninteractive lookup, include the name you are looking up on the command
line:

C:\> nslookup carrie
Server: terminator.movie.edu
Address: 192.249.249.3

Name: carrie.movie.edu
Address: 192.253.253.4

12.3 Option Settings

nslookup has its own set of dials and knobs called option settings. All the option
settings can be changed. We'll discuss here what each of the options means. We'll
use the rest of the chapter to show you how to use them.

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set all
Default Server: terminator.movie.edu
Address: 192.249.249.3

Set options:
 nodebug
 defname
 search
 recurse
 nod2
 novc
 noignoretc
 port=53
 type=A
 class=IN
 timeout=2
 retry=1
 root=A.ROOT-SERVERS.NET.
 domain=movie.edu
 MSxfr
 IXFRversion=1
 srchlist=movie.edu

> ^Z

Before we get into the options, we need to cover the introductory lines. The default
name server is terminator.movie.edu. This means that every query sent by nslookup
will be sent to terminator.

The options come in two flavors: Boolean and value. The options that do not have an
equals sign after them are Boolean options. They have the interesting property of
being either "on" or "off." The value options can take on different, well, values. How
can we tell which Boolean options are on and which are off? The option is off when a
"no" precedes the option's name. nodebug means that debugging is off. As you might
guess, the option search is on.

How you change Boolean or value options depends on whether or not you are using
nslookup interactively. In an interactive session, you change an option with the set
command, as in set debug or set domain=classics.movie.edu. From the command
line, you omit the word set and precede the option with a hyphen, as in nslookup -
debug or nslookup -domain=classics.movie.edu. The options can be abbreviated to
their shortest unique string—for example, nodeb for nodebug. In addition to its
abbreviation, the querytype option can also be entered simply as type.

Let's go through each of the options:

[no]debug

Debugging is turned off by default. If it is turned on, nslookup displays the
complete contents of the response messages from the name server. See
[no]d2 for a discussion of debug level 2.

[no]defname

This option reflects nslookup's BIND heritage. By default, nslookup adds the
default domain name to names without a dot in them. Before search lists
existed, the BIND resolver code would only add the default domain to names
without any dots in them; this option reflects that behavior. nslookup can
implement the presearch list behavior (with search off and defname on), or it
can implement the search list behavior (with search on).

[no]search

The search option "overshadows" the default domain name (defname) option.
That is, defname applies only if search is turned off. By default, nslookup
appends the domain names in the search list (srchlist) to names that don't
end in a dot. nslookup's search list is constructed from the Domain Suffix
Search Order field of the Windows resolver configuration window.

[no]recurse

nslookup requests recursive service by default. This turns on the recursion-
desired bit in query messages. The Windows resolver sends recursive
queries in the same way. Name servers, however, send nonrecursive queries
to other name servers.

[no]d2

Debugging at level 2 is turned off by default. If it is turned on, you see the
query messages sent to the name server in addition to the regular debugging

output. Turning on d2 also turns on debug. Turning off d2 turns off d2 only;
debug is left on. Turning off debug turns off both debug and d2.

[no]vc

By default, nslookup makes queries using UDP instead of over a TCP
connection (virtual circuit). Most Windows resolver queries are made with
UDP, so the default nslookup behavior matches the resolver.

[no]ignoretc

By default, nslookup doesn't ignore truncated messages. If a message is
received that has the "truncated" bit set—indicating that the name server
couldn't fit all the important information in the UDP response message—
nslookup doesn't ignore it; it retries the query using a TCP connection instead
of UDP.

port=53

The DNS service is on port 53. You can start a name server on another
port—for debugging purposes, for example—and nslookup can be directed to
use that port.

type=A

By default, nslookup looks up A (address) resource record types. In addition,
if you type in an IP address (and the nslookup query type is address or
pointer), nslookup will invert the address, append in-addr.arpa, and look up
PTR (pointer) data instead.

class=IN

The only class that matters is Internet. Well, there's the Hesiod (HS) class,
too, if you are an MITer or run Ultrix.

timeout=2

If the name server doesn't respond within two seconds, nslookup resends the
query and doubles the timeout (to four and then eight seconds). The Windows
resolver uses different timeouts when querying a single name server—see
Chapter 6.

retry=1

The query is sent just once before giving up. After each retry, the timeout
value is doubled. Again, the Windows resolver behaves slightly differently as
discussed in Chapter 6.

root=A.ROOT-SERVERS.NET.

A convenience command called root switches your default server to the
server named here. Executing the root command from nslookup's prompt is
equivalent to executing server A.ROOT-SERVERS.NET. You can change the
default "root" server with set root=server.

domain=movie.edu

This is the default domain name appended if the defname option is on. If the
defname option is not on, no default domain name is appended.

[no]MSxfr

The Microsoft DNS Server implements a feature that Microsoft calls "fast"
zone transfers. Those of you familiar with the BIND name server know this as
the "many answers" zone-transfer format, in which multiple records are
packed into the answer section of a single DNS message during a zone
transfer. (The method implemented by older BIND name servers uses one
DNS message per record, which is somewhat wasteful of bandwidth.) This
option indicates whether or not to request one of these "fast" zone transfers.

IXFRversion=1

The Microsoft DNS Server also supports a protocol called incremental zone
transfer (IXFR). IXFR requests include a version number. The default value of
1 corresponds to the IXFR version supported by the Microsoft DNS Server. At
this point, there's no reason to change this value.

srchlist=movie.edu

If search is on, these are the domain names appended to names that do not
end in a dot. The domain names are listed in the order in which they will be
tried and are separated by slashes.

12.4 Avoiding the Search List

nslookup implements the search list, as the resolver does. When you are debugging,
the search list can get in your way. You need to either turn the search list off
completely (set nosearch) or add a trailing dot to the fully qualified domain name you
are looking up. We prefer the latter, as you'll see in our examples.

12.5 Common Tasks

You'll come to use nslookup for little chores almost every day: for example, finding
out the IP address or MX records for a given domain name or querying a particular
name server for data. We'll cover these common tasks before moving on to the more
occasional stuff.

12.5.1 Looking Up Different Data Types

By default, nslookup looks up the address for a name or the name for an address.
You can look up any data type by changing the querytype, as we show in this
example:

C:\> nslookup

Default Server: terminator.movie.edu
Address: 192.249.249.3

> misery
 -- Look up address
Server: terminator.movie.edu
Address: 192.249.249.3

Name: misery.movie.edu
Address: 192.253.253.2

> 192.253.253.2
 -- Look up name
Server: terminator.movie.edu
Address: 192.249.249.3

Name: misery.movie.edu
Address: 192.253.253.2

> set q=mx
 -- Look up MX data
> wormhole Server: terminator.movie.edu
Address: 192.249.249.3
wormhole.movie.edu MX preference = 10, mail exchanger =
wormhole.movie.edu
wormhole.movie.edu internet address = 192.249.249.1
wormhole.movie.edu internet address = 192.253.253.1

> set q=any
 -- Look up data of any type
> diehard
Server: terminator.movie.edu
Address: 192.249.249.3

diehard.movie.edu internet address = 192.249.249.4
diehard.movie.edu MX preference = 10, mail exchanger =
diehard.movie.edu
diehard.movie.edu internet address = 192.249.249.4

These are only a few of the valid DNS data types, of course. For the complete list,
see Appendix A.

12.5.2 Authoritative Versus Nonauthoritative Answers

If you've used nslookup before, you might have noticed that it sometimes precedes
its answers with the phrase "Non-authoritative answer":

C:\> nslookup
Default Server: relay.hp.com
Address: 15.255.152.2

> slate.mines.colorado.edu.
Server: relay.hp.com
Address: 15.255.152.2

Non-authoritative answer:
Name: slate.mines.colorado.edu
Address: 138.67.1.3

This phrase indicates that the name server is not authoritative for the data in the
answer. (Recall that a name server is authoritative for data when it's a primary
master or slave for the zone containing the data.) There are two reasons why you'll
see a nonauthoritative response. The first is that the name server you queried didn't
have the data you were looking for and had to query a remote name server to get it.
The remote name server is authoritative for the data (that's the reason it was
queried!) and returns it with the "authoritative answer" bit set in the DNS message
header. The Microsoft DNS Server you queried puts this data in its cache and returns
it to you marked nonauthoritative. If you ask for the same data again, this time the
name server can answer from its cache and will mark the data nonauthoritative:
that's the second reason you'll see a nonauthoritative answer.

Authoritative answers are not announced by nslookup: the absence of the
nonauthoritative message means the answer is authoritative.

This brings up a significant difference between the Microsoft DNS Server and the
BIND name server. When you send a query to a BIND name server and it has to
contact an authoritative name server to find the answer, the BIND name server
returns the answer to you marked authoritative (unlike the Microsoft DNS Server).
The BIND name server, in effect, passes the authoritative response directly back to
you. Then, like the Microsoft DNS Server, it caches the response, and subsequent
queries for the data result in a nonauthoritative answer.

Notice that we ended the domain name with a trailing dot each time we looked it up.
The response would have been the same had we left it off. Sometimes it is critical
that you use the trailing dot while debugging, but not always. Rather than stopping to
decide if this name needs a trailing dot, we always add one if we know the name is
fully qualified (except, of course, for the example where we turn off the search list).

12.5.3 Switching Servers

Sometimes you want to query another name server directly—for example, if you think
it is misbehaving. You can switch servers with nslookup by using the server or lserver
commands. The difference between server and lserver is that lserver queries your
"local" server—the one you started out with—to get the address of the server you
want to switch to; server uses the default server instead of the local server. This
difference is important to know because the server to which you just switched may
not be responding, as we'll show in this example:

C:\> nslookup
Default Server: relay.hp.com
Address: 15.255.152.2

When we start up, our first server, relay.hp.com, becomes our lserver (this will matter
later on in this session):

> server galt.cs.purdue.edu.
Default Server: galt.cs.purdue.edu
Address: 128.10.2.39

> cs.purdue.edu.
Server: galt.cs.purdue.edu
Address: 128.10.2.39

DNS request timed out.
 timeout was 2 seconds.

*** Request to galt.cs.purdue.edu timed-out
>

At this point we try to switch back to our original name server. But there is no name
server running on galt to look up relay's address:

> server relay.hp.com.
DNS request timed out.
 timeout was 2 seconds.
*** Can't find address for server relay.hp.com.: Timed out

Instead of being stuck, though, we use the lserver command to have our local server
look up relay's address:

> lserver relay.hp.com.
Default Server: relay.hp.com
Address: 15.255.152.2

>

Since the server on galt did not respond—it's not even running a name server—it
wasn't possible to look up the address of relay to switch back to using relay's name
server. Here's where lserver comes to the rescue: the local name server, relay, was
still responding, so we used it. Instead of using lserver, we could have recovered by
using relay's IP address directly—server 15.255.152.2.

You can even change servers on a per-query basis. To specify that you'd like
nslookup to query a particular server for information about a given domain name, you
can specify the server as the second argument on the line, after the domain name to
look up—like so:

C:\> nslookup
Default Server: relay.hp.com
Address: 15.255.152.2

> saturn.sun.com. ns.sun.com.
Server: ns.sun.com
Address: 192.9.9.3

Name: saturn.sun.com
Address: 192.9.25.2

> ^Z

And, of course, you can change servers from the command line. You can specify the
server to query as the argument after the domain name to look up, like this:

C:\> nslookup -type=mx fisherking.movie.edu. terminator.movie.edu.

This instructs nslookup to query terminator.movie.edu for MX records for fisherking.
movie.edu.

To specify an alternate default server and enter interactive mode, you can use a
hyphen in place of the domain name to look up:

C:\> nslookup - terminator.movie.edu.

One final note about switching servers: those of you who are familiar with using
nslookup to talk to BIND name servers have probably entered an address of 0.0.0.0
or 127.0.0.1 to mean "this host." The Microsoft DNS Server never responds to
queries sent to the loopback address—you need to use the IP address of one of the
host's network interfaces.

12.6 Less-Common Tasks

The following sections describe tricks you'll probably have to use less often but are
still handy to have in your repertoire. Most of these will be helpful when you're trying
to troubleshoot a DNS problem; they'll enable you to grub around in the messages
the resolver sees and mimic a name server querying another name server or
transferring zone data.

12.6.1 Seeing the Query and Response Messages

If you need to, you can direct nslookup to show you the queries it sends out and the
responses it receives. Turning on debug shows you the responses. Turning on d2
shows you the queries as well. When you want to turn off debugging completely, you
have to use set nodebug, since set nod2 turns off only level 2 debugging. After the
following trace, we'll explain some parts of the message output. If you want, you can
pull out your copy of RFC 1035, turn to page 25, and read along with our explanation.

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set q=mx
> acmebw.com.
Server: terminator.movie.edu
Address: 192.249.249.3

Got answer:
 HEADER:
 opcode = QUERY, id = 9, rcode = NOERROR
 header flags: response, want recursion, recursion avail.
 questions = 1, answers = 2, authority records = 0,
additional = 2

 QUESTIONS:
 acmebw.com, type = MX, class = IN
 ANSWERS:
 -> acmebw.com
 type = MX, class = IN, dlen = 29
 MX preference = 10, mail exchanger = store-
forward.MSPRING.NET
 ttl = 86400 (1 day)
 -> acmebw.com
 type = MX, class = IN, dlen = 17
 MX preference = 0, mail exchanger = domain-relay.MSPRING.NET
 ttl = 86400 (1 day)
 ADDITIONAL RECORDS:
 -> store-forward.MSPRING.NET
 type = A, class = IN, dlen = 4
 internet address = 207.69.231.6

 ttl = 3600 (1 hour)
 -> domain-relay.MSPRING.NET
 type = A, class = IN, dlen = 4
 internet address = 207.69.231.10
 ttl = 3600 (1 hour)

Non-authoritative answer:
acmebw.com
 type = MX, class = IN, dlen = 29
 MX preference = 10, mail exchanger = store-
forward.MSPRING.NET
 ttl = 86400 (1 day)
acmebw.com
 type = MX, class = IN, dlen = 17
 MX preference = 0, mail exchanger = domain-relay.MSPRING.NET
 ttl = 86400 (1 day)

store-forward.MSPRING.NET
 type = A, class = IN, dlen = 4
 internet address = 207.69.231.6
 ttl = 3600 (1 hour)
domain-relay.MSPRING.NET
 type = A, class = IN, dlen = 4
 internet address = 207.69.231.10
 ttl = 3600 (1 hour)

>
> set d2
> acmebw.com.
Server: terminator.movie.edu
Address: 192.249.249.3

This time the query is also shown:

SendRequest(), len 28
 HEADER:
 opcode = QUERY, id = 9, rcode = NOERROR
 header flags: query, want recursion
 questions = 1, answers = 0, authority records = 0,
additional = 0

 QUESTIONS:
 acmebw.com, type = MX, class = IN

Got answer (130 bytes):

The answer is the same as in the previous example.

The text between the dashes are the query and response messages. As promised,
we will go through the message contents. DNS messages are composed of five
sections:

Header section

The Header section is present in every query and response. The operation
code is always QUERY. The only other opcodes are inverse query (IQUERY)
and status (STATUS), but those aren't used. The ID is used to associate a
response with a query and to detect duplicate queries or responses. You
have to look in the header flags to see which messages are queries and
which are responses. The string "want recursion" indicates that the querier
wants the name server to do all the work. The flag is parroted in the
response. The string "auth. answer," when present, means that the response
is authoritative—in other words, that the response comes from the name
server's authoritative data, not from its cache data. (This response isn't
authoritative, so that string is absent.) The response code, rcode, can be one
of no error, server failure, name error (also known as "NXDOMAIN" or
"nonexistent domain"), not implemented, or refused. The server failure, name
error, not implemented, and refused response codes cause the nslookup
"Server failed," "Nonexistent domain," "Not implemented," and "Query
refused" errors, respectively. The last four entries in the Header section are
counters—they indicate how many resource records there are in each of the
next four sections.

Question section

There is always one question in a DNS message; it includes the name and
the requested data type and class. There is never more than one question.
Handling more than one question in a DNS message would require a
redesign of its format. For one thing, the single authority bit would have to be
changed, because the Answer section could contain a mix of authoritative
answers and nonauthoritative answers. In the present design, setting the
authoritative answer bit means that the name server is an authority for the
domain name in the Question section.

Answer section

This section contains the resource records that answer the question. There
can be more than one resource record in the response. For example, if the
host is multihomed, there will be more than one address resource record.

Authority section

The Authority section is where name server records are returned. When a
response refers the querier to some other name servers, those name servers
are listed here.

Additional section

The Additional records section adds information that may complete
information included in other sections. For instance, if a name server is listed
in the Authority section, the name server's address is added to the Additional
records section. After all, to contact the name server, you need to have its
address.

For you sticklers for detail, there is a time when the number of questions in a query
message isn't one: in an inverse query, when it's zero. In an inverse query, there is

one answer in the query message, and the Question section is empty. The name
server fills in the question. But, as we said, inverse queries are almost nonexistent.
The Microsoft DNS Server doesn't even support them.

12.6.2 Querying Like a Name Server

You can make nslookup send out the same query message a name server would.
Name server query messages are not much different from resolver messages. The
primary difference in the query messages is that resolvers request recursion and
name servers seldom do. Recursion is the default with nslookup, so you have to
explicitly turn it off. The difference in operation between a resolver and a name server
is that the resolver implements the search list and the name server doesn't. By
default, nslookup implements the search list, so that, too, has to be turned off. Of
course, judicious use of the trailing dot will have the same effect.

In raw nslookup terms, this means that to query like a resolver, you use nslookup's
default settings. To query like a name server, use set norecurse and set nosearch.
On the command line, that's nslookup -norecurse -nosearch.
When a name server gets a query, it looks for the answer in its cache. If it doesn't
have the answer and it is authoritative for the zone, the name server responds that
the name doesn't exist or that there is no data for that type. If the name server
doesn't have the answer and it is not authoritative for the zone, it starts walking up
the namespace looking for NS records. There will always be NS records somewhere
higher in the domain tree. As a last resort, it will use the NS records at the root
domain, the highest level.

If the name server received a nonrecursive query, it would respond to the querier by
giving the NS records that it had found. On the other hand, if the original query was a
recursive query, the name server would then query the remote name servers in the
NS records that it found. When the name server receives a response from one of the
remote name servers, it caches the response and repeats this process, if necessary.
The remote server's response will contain either the answer to the question or a list
of name servers lower in the namespace and closer to the answer.

Let's assume for our example that we are trying to satisfy a recursive query and that
we didn't find any NS records until we checked the gov domain. That is in fact the
case when we ask the name server on relay.hp.com about www.whitehouse.gov—it
doesn't find any NS records until the gov domain. From there we switch servers to a
gov name server and ask the same question. It directs us to the whitehouse.gov
servers. We then switch to a whitehouse.gov name server and ask the same
question:

C:\> nslookup
Default Server: relay.hp.com
Address: 15.255.152.2

> set norec -- Query like a name server: turn off
recursion
> set nosearch -- Turn off the search list
> www.whitehouse.gov -- We don't need to dot-terminate since
we've turned search off
Server: relay.hp.com
Address: 15.255.152.2

Name: www.whitehouse.gov
Served by:

- H.ROOT-SERVERS.NET
 128.63.2.53
 gov
- B.ROOT-SERVERS.NET
 128.9.0.107
 gov
- C.ROOT-SERVERS.NET
 192.33.4.12
 gov
- D.ROOT-SERVERS.NET
 128.8.10.90
 gov
- E.ROOT-SERVERS.NET
 192.203.230.10
 gov
- I.ROOT-SERVERS.NET
 192.36.148.17
 gov
- F.ROOT-SERVERS.NET
 192.5.5.241
 gov
- G.ROOT-SERVERS.NET
 192.112.36.4
 gov
- A.ROOT-SERVERS.NET
 198.41.0.4
 gov

Switch to a gov name server. You may have to turn recursion back on temporarily, if
the name server doesn't have the address already cached:

> server e.root-servers.net
Default Server: e.root-servers.net
Address: 192.203.230.10

Ask the same question of the gov name server. It will refer us to name servers closer
to our desired answer:

> www.whitehouse.gov.
Server: e.root-servers.net
Address: 192.203.230.10

Name: www.whitehouse.gov
Served by:
- SEC1.DNS.PSI.NET
 38.8.92.2
 WHITEHOUSE.GOV
- SEC2.DNS.PSI.NET
 38.8.93.2
 WHITEHOUSE.GOV

Switch to a whitehouse.gov name server—either of them will do:

> server sec1.dns.psi.net.
Default Server: sec1.dns.psi.net
Address: 38.8.92.2

> www.whitehouse.gov.
Server: sec1.dns.psi.net

Address: 38.8.92.2

Name: www.whitehouse.gov
Addresses: 198.137.240.91, 198.137.240.92

We hope this example gives you a feeling for how name servers look up names. If
you need to refresh your understanding of what this looks like graphically, flip back to
Figure 2-12 and Figure 2-13.

Before we move on, notice that we asked each of the servers the very same
question: "What's the address for www.whitehouse.gov?" What do you think would
happen if the gov name server itself had already cached www.whitehouse.gov's
address? The gov name server would have answered the question out of its cache
instead of referring us to the whitehouse.gov name servers. Why is this significant?
Suppose you messed up a particular host's address in your zone. Someone points it
out to you, and you clean up the problem. Even though your name server now has
the correct data, some remote sites find the old, messed-up data when they look up
the name. One of the name servers higher up in the domain tree has cached the
incorrect data; when it receives a query for that host's address, it returns the incorrect
data instead of referring the querier to your name servers. What makes this problem
hard to track down is that only one of the "higher up" name servers has cached the
incorrect data, so only some of the remote lookups get the wrong answer—the ones
that use this server. Fun, huh? Eventually, though, the "higher up" name server will
time out the old record. If you're pressed for time, you can contact the administrators
of the remote name server and ask them to kill and restart their name servers to flush
the cache. Of course, if the remote name server is an important, much-used name
server, they may tell you where to go with that suggestion.

12.6.3 Zone Transfers

You can use nslookup to transfer a whole zone with the ls command. This feature is
useful for troubleshooting, for figuring out how to spell a remote host's name, or just
for counting how many hosts are in some remote zone. Since the output can be
substantial, nslookup allows you to redirect the output to a file.

Beware: a lot of hosts won't let you pull a copy of their zones, either for security
reasons or to limit the load on their name server hosts. The Internet is a friendly
place, but administrators have to defend their turf.

nslookup filters zone transfer data: it shows you only some of the zone unless you tell
it otherwise. By default, you see only address and name server data. You will see all
of the zone data if you tell nslookup to display data of any type. The nslookup help
(available in the main Windows 2000 help) or command summary (shown by typing
help at the nslookup prompt) tells you all the parameters to the ls command. We are
going to show only the -t parameter, since the others can be emulated with -t. The -t
option takes one argument: the data type to filter on. So, to pull a copy of a zone and
see all the MX data, use ls -t mx. Let's do some zone transfers:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ls movie.edu.
 -- List NS and A records for movie.edu
[terminator.movie.edu]
 movie.edu. NS server = terminator.movie.edu

 movie.edu. NS server = wormhole.movie.edu
 carrie A 192.253.253.4
 diehard A 192.249.249.4
 misery A 192.253.253.2
 robocop A 192.249.249.2
 shining A 192.253.253.3
 terminator A 192.249.249.3
 wh249 A 192.249.249.1
 wh253 A 192.253.253.1
 wormhole A 192.253.253.1
 wormhole A 192.249.249.1
> ls -t any movie.edu > /temp/movie.edu.txt
 -- List all data into \temp\
 -- movie.edu.txt
[terminator.movie.edu]
Received 25 records.

Those forward slashes in the ls command aren't a misprint—nslookup was originally
written for Unix as part of the BIND distribution. Microsoft must have missed the
slashes when porting nslookup to Windows 2000.

12.7 Troubleshooting nslookup Problems

The last thing you want is to have problems with your troubleshooting tool.
Unfortunately, some types of failures render the troubleshooting tool mostly useless.
Other types of nslookup failures are, at best, confusing because they don't give you
any direct information to work with. While there may be a few problems with nslookup
itself, most of the problems you encounter will be with name server configuration and
operation. We'll cover a few odd problems here.

12.7.1 Looking Up the Right Data

This isn't really a problem, per se, but it can be awfully confusing. If you use nslookup
to look up a type of data for a domain name and the domain name exists but no data
of the type you're looking for exists, you'll get an error like this:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> movie.edu.

*** No address (A) records available for movie.edu.

So what types of records do exist? You can use set type=any to find out:

> set type=any
> movie.edu.
Server: terminator.movie.edu
Address: 192.249.249.3

movie.edu nameserver = terminator.movie.edu
movie.edu nameserver = wormhole.movie.edu
movie.edu
 primary name server = terminator.movie.edu
 responsible mail addr = administrator.movie.edu

 serial = 6
 refresh = 3600 (1 hour)
 retry = 600 (10 mins)
 expire = 86400 (1 day)
 default TTL = 3600 (1 hour)
movie.edu MX preference = 10, mail exchanger =
wormhole.movie.edu
terminator.movie.edu internet address = 192.249.249.3
wormhole.movie.edu internet address = 192.253.253.1
wormhole.movie.edu internet address = 192.249.249.1
wormhole.movie.edu internet address = 192.249.249.1
wormhole.movie.edu internet address = 192.253.253.1

Why are the IP addresses for terminator and wormhole returned? If you receive the
NS records for movie.edu listing these two hosts as that zone's name servers,
chances are the next thing you'll want are those hosts' IP addresses. The name
server anticipates that and sends along address records in the Additional section.
The same thing goes for the movie.edu MX record pointing to wormhole: if you get
that record, you'll want wormhole's IP address next. That explains why wormhole's IP
addresses show up twice, but this is arguably a bug in the Microsoft DNS Server.

12.7.2 No PTR Data for Name Server's Address

Here's a cryptic message:

C:\> nslookup
*** Can't find server name for address 192.249.249.3: Non-existent
domain
*** Can't find server name for address 192.249.249.3: Non-existent
domain
*** Default servers are not available
Default Server: UnKnown
Address: 192.249.249.3

>

The "Non-existent domain" message means that there's no PTR record for
3.249.249.192.in-addr.arpa. In other words, nslookup couldn't find the name for
192.249.249.3, which is the first name server the resolver is configured to query. The
only reason nslookup looks up this address is to print the "Default Server" startup
message. Obviously, this name server's data is messed up, at least for the
249.249.192.in-addr.arpa zone, so nslookup prints "UnKnown".

At least we've got the nslookup prompt: even if the server doesn't know its own
name, it might still be able to answer other queries. This behavior is a vast
improvement over the standard version of nslookup in the BIND distribution (the one
shipped with most versions of Unix). That version of nslookup refuses even to run
unless it can successfully reverse map the default server's IP address.

Still, the "Default servers are not available" message in the example is misleading.
After all, a name server is there to say the address doesn't exist. More often, you'll
see the error "timed out" if the name server isn't running on the host or the host can't
be reached. Only then does the "Default servers are not available" message make
sense.

12.7.3 Timeouts

What if your resolver is pointing to a name server that isn't running or a host that
can't be reached? We kinda gave the answer away in the previous section, but here's
what happens:

C:\> nslookup
DNS request timed out.
 timeout was 2 seconds.
*** Can't find server name for address 192.249.249.4: Timed out
DNS request timed out.
 timeout was 2 seconds.
*** Can't find server name for address 192.249.249.4: Timed out
*** Default servers are not available
Default Server: UnKnown
Address: 192.249.249.4

>

The resolver is configured to use the name server 192.249.249.4 (and only that
name server). nslookup tries valiantly to contact it—it goes through its timeout
sequence twice in attempt to get the name server to reverse map its own IP address.
Finally nslookup gives up, prints "UnKnown" for the default server, and gives you a
prompt. You can't really do anything productive without changing servers at this
point—after all, no server is running at that IP address—but at least you've got a
prompt. Again, this is a better than the standard nslookup, which would have dumped
us back to the command line.

Note that if your resolver is configured to send queries to more than one name
server, nslookup tries the servers in order until it finds one that responds:

C:\> nslookup
DNS request timed out.
 timeout was 2 seconds.
*** Can't find server name for address 192.249.249.1: Timed out
Default Server: terminator.movie.edu
Address: 192.249.249.3

>

Occasionally you'll see timeouts during the course of an nslookup session. If you are
looking up some remote information, the name server could fail to respond because it
is still trying to look up the item and nslookup gave up waiting. How can you tell the
difference between a name server that isn't running and a name server that is
running but didn't respond? Use the ls command to point out the difference. In this
case, no name server is running, or the host couldn't be reached:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ls foo.
ls: connect: No error
*** Can't list domain foo.: Unspecified error

If a name server is running, you'll see the following error message:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ls foo.
[terminator.movie.edu]
*** Can't list domain foo.: Non-existent domain

That is, unless there's a top-level foo domain in your world.

12.7.4 Query Refused

You generally see a "query refused" error message under two conditions. The first is
when you attempt a zone transfer and the server refuses for security reasons (for
example, because you checked Only Allow Access From Secondaries Included
on Notify List in the zone properties Notify window). This is what you'll see:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> ls movie.edu
 —This attempts a zone transfer
[terminator.movie.edu]
*** Can't list domain movie.edu: Query refused
>

You might also see a "query refused" error from a name server running a recent
version of BIND, which has the ability to restrict queries to different zones based on
the querier's source IP address.

12.7.5 Unspecified Error

You may run into a rather unsettling problem called "unspecified error." We have an
example of this error here:

C:/> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set type=ns
> .
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
(root) nameserver = NS.NIC.DDN.MIL
(root) nameserver = B.ROOT-SERVERS.NET
(root) nameserver = E.ROOT-SERVERS.NET
(root) nameserver = D.ROOT-SERVERS.NET
(root) nameserver = F.ROOT-SERVERS.NET
(root) nameserver = C.ROOT-SERVERS.NET
(root) nameserver = G.ROOT-SERVERS.NET
(root) nameserver = hpfcsx.fc.hp.com
(root) nameserver = hp-pcd.cv.hp.com
(root) nameserver = hp-ses.sde.hp.com
(root) nameserver = hpsatc1.gva.hp.com
(root) nameserver = named_master.ch.apollo.hp.com

(root) nameserver = A.ISI.EDU
(root) nameserver = SRI-NIC.ARPA
(root) nameserver = GUNTER-ADAM.ARPA

Authoritative answers can be found from:
(root) nameserver = NS.NIC.DDN.MIL
(root) nameserver = B.ROOT-SERVERS.NET
(root) nameserver = E.ROOT-SERVERS.NET
(root) nameserver = D.ROOT-SERVERS.NET
(root) nameserver = F.ROOT-SERVERS.NET
(root) nameserver = C.ROOT-SERVERS.NET
(root) nameserver =

*** Error: record size incorrect (1050690 != 65519)

*** terminator.movie.edu can't find .: Unspecified error

What happened here is that there was too much data to fit into a UDP datagram.49
The name server stopped filling in the response when it ran out of room. The name
server didn't set the truncation bit in the response message, or nslookup would have
retried the query over a TCP connection. The name server must have decided that
enough of the "important" information fit. You won't see this kind of error very often.
You'll see it if you create too many NS records for a zone, so don't create too many.
(Advice like this makes you wonder why you bought this book, right?) How many is
too many depends upon how well the names can be "compressed" in the message,
which in turn depends upon how many name servers share the same domain in their
domain name. The root name servers were renamed to all be in the root-servers.net
domain for this very reason—more names fit in DNS messages if they share a
common domain, which allows more root name servers to support the Internet. As a
rule of thumb, don't go over 10 NS records.

12.8 Best of the Net

System administrators have a thankless job. They are asked certain questions,
usually quite simple ones, over and over again. And sometimes, in a creative mood,
they come up with a clever way to help their users. When the rest of us find out about
their ingenuity, we can only sit back, smile admiringly, and wish we had thought of it
ourselves. Here is one such case, where a system administrator found a way to
communicate the solution to the sometimes perplexing puzzle of how to end an
nslookup session:

C:\> nslookup
Default Server: envy.ugcs.caltech.edu
Address: 131.215.134.135

> quit
Server: envy.ugcs.caltech.edu
Addresses: 131.215.134.135, 131.215.128.135

Name: ugcs.caltech.edu
Addresses: 131.215.128.135, 131.215.134.135
Aliases: quit.ugcs.caltech.edu
 use.exit.to.leave.nslookup.-.-.-.ugcs.caltech.edu

49 What are all those hp.com name servers doing in there? This example illustrates a problem besides just filling a UDP
datagram: under some conditions, older BIND name servers can easily be contaminated with "bogus" root name servers.
This output shows a query to such a name server.

> exit

Chapter 13. Troubleshooting DNS

"Of course not," said the Mock Turtle. "Why, if a fish came to me, and
told me he was going on a journey, I should say, `With what
porpoise?'"

"Don't you mean `purpose'?" said Alice.

"I mean what I say," the Mock Turtle replied, in an offended tone. And
the Gryphon added, "Come, let's hear some of your adventures."

In the last chapter, we demonstrated how to use nslookup to make queries. In this
chapter, we'll show you how to use nslookup -- plus traditional TCP/IP networking
tools like trusty ol' ping -- to troubleshoot real-life problems with DNS.

Troubleshooting, by its nature, is a tough subject to teach. You start with any of a
world of symptoms and try to work your way back to the cause. We can't cover the
whole gamut of problems you may encounter on the Internet, but we will certainly do
our best to show you how to diagnose the most common of them. And along the way,
we hope to teach you troubleshooting techniques that will be valuable in tracking
down more obscure problems that we don't document.

13.1 Is DNS Really Your Problem?

Before we launch into a discussion of how to troubleshoot a DNS problem, we should
make sure you know how to tell whether a problem is caused by DNS, not by another
naming service. On Windows hosts, figuring out whether the culprit is actually DNS
can be difficult. Windows supports a whole panoply of naming services: DNS, WINS,
HOSTS, LMHOSTS, and more. The stock Windows 2000 nslookup, however, doesn't
pay any attention to these other naming services. You can run nslookup on a
Windows 2000 box and query the name server 'till the cows come home while the
service with the problem is using a different naming service.

How do you know where to put the blame? First, you need to consider what kind of
program is having the problem. If it's a TCP/IP client, such as telnet or ftp, the
possible culprits are DNS and the HOSTS file. If it's a utility that supports NetBIOS
naming, such as net (as in net use), the likely suspects also include WINS and the
LMHOSTS file. Other clients, such as ping, that also take either a DNS name or a
NetBIOS name as an argument can use any of these naming services.

Next, consider the order in which Windows uses the naming services. You should
look through the various services in that order when troubleshooting the problem.

These hints should help you identify the guilty party or at least exonerate one
suspect. If you narrow down the suspects and DNS is still implicated, you'll just have
to read this chapter.

13.2 Checking the Cache

As we've said earlier, you can check the contents of your name server's cache with
the DNS console. This can come in handy if you suspect that your name server has
cached bad or out-of-date data from another server. To inspect a server's cache,
click the plus sign to the left of the name of the server in the DNS console's left pane.
You'll see a folder named Cached Lookups. Either click on the plus sign to the left
of it or double-click the folder icon or the label to expand the next level. This shows
you the top-level domains for which your name server has cached data. Expand your
way to the domain name to which the cached data you're looking for is attached. In
Figure 13-1, we've clicked our way down to acmebw.com to look for cached data.

Figure 13-1. NS and A records for acmebw.com in the cache

As you can see in the right pane, our name server has cached three NS records and
one A record for acmebw.com. If we double-clicked net and then acmebw, we could
find the cached addresses of these name servers, too.

If you'd like to see the TTL on the cached data, double-click on a record in the right
pane. Provided the DNS console is in advanced view mode (select View
Advanced), the resulting window shows the record's TTL. For example, in Figure 13-
2, we've double-clicked the acmebw.com A record.

Figure 13-2. The TTL on a cached record

Be sure to refresh the DNS console with Action Refresh or F5 before checking
the TTL, or the TTL you see may be bigger than the current TTL.

If you right-clicked the record, you may have noticed a Delete Record selection. Now
there's something you can't do in BIND. Using the DNS console, you can actually
delete cached data record by record! If you know that some records in your name
server's cache are out of date, you can delete them and let your name server pick up
updated records from an authoritative name server.

13.3 Potential Problem List

Let's go through some common real-world DNS problems. Many of these problems
are easy to recognize and correct. We cover these problems as a matter of course—
they're some of the most common problems because they're caused by some of the
most common mistakes. Here are the contestants, in no particular order.

13.3.1 1. Forget to Increment Serial Number

This particular problem will occur only if you make changes to your zone data file by
hand, without using the DNS console. The DNS console remembers to increment the
serial number in the SOA record each time it changes zone data, so you don't have
to worry about it. However, this also means that you probably won't be in the habit of
updating the serial number, so you may forget when making that one-off manual
modification.

The main symptom of this problem is that slave name servers don't pick up any
changes you make to the zone on the primary server. The slaves think the zone data
hasn't changed since the serial number is still the same.

How do you check if you remembered to increment the serial number? Unfortunately,
that's not so easy. If you don't remember what the old serial number was and your

serial number gives you no indication of when it was updated, there's no direct way
to tell whether it has changed50When you start the primary, it will load the updated
zone data file regardless of whether you've changed the serial number. About the
best you can do is to use nslookup to compare the data returned by the primary and
by a slave. If they return different data, you probably forgot to increment the serial
number. If you can remember a recent change you made, you can look for that data.
If you can't remember a recent change, you can try transferring the zone from a
primary and from a slave, sorting the results, and using a file-comparison tool to
compare them.

The good news is that, although determining whether the zone was transferred is
tricky, making sure the zone is transferred is simple. Just increment the serial
number on the primary's copy of the zone by double-clicking the SOA record in the
DNS console and manually editing the serial number field. The slaves should pick up
the new data within their refresh interval, or sooner if they use NOTIFY.

13.3.2 2. Forget to Restart Primary Master Server

Like the last problem, you'll see this problem only if you make changes to your zone
data files by hand. The DNS console adds and deletes data on the fly, so there's no
need to restart your primary master name server.

If you're not using the DNS console, though, you may forget to restart your primary
master name server after editing a zone data file. The name server won't know to
load the new data—it doesn't automatically check the file to see if it has changed.

Consequently, any changes you've made won't be reflected in the name server's
data: new zones won't be loaded, and new records won't percolate out to the slaves.
To check when you last restarted the name server, scan the Event Viewer output for
the last entry that looks like this:

The DNS Server has started.

The date and time on these events will tell you the last time you restarted the name
server.

If the time of the restart doesn't correlate with the time you made the last change, use
the DNS console to stop and restart the name server and reload its data. Check that
you incremented the serial numbers on the zone data files you changed, too.

13.3.3 3. DNS Server Loses Manual Changes

One final but important note about making manual changes: remember that the
Microsoft DNS Server periodically updates its zone data files. Each time you make
changes to a zone's data using the DNS console, a write is pending: before the DNS
server exits, it must rewrite the zone's data file or it will lose the changes you made.
Think of this as a dirty page in memory: the operating system must write it to disk
before exiting.

If you make a manual change to a zone data file while a write is pending, you'll
mysteriously lose the change when the name server exits. Say you add delegation to

50 On the other hand, if you encode the date into the serial number, as many people do (for example, 1998010500 is the first
rev of data on January 5, 1998), you may be able to tell at a glance whether you updated the serial number when you made
the change. However, the DNS console makes this almost impossible since it just increments by one for each change.

a new subdomain of movie.edu while the server is running and a write is pending.
After you've made the change, you have to stop the server and start it again to get it
to read the zone data again. But as the server exits, it rewrites the movie.edu zone
data file, and your delegation disappears. If you're watching the Event Viewer
carefully (like you should be), you'll see this message before the server stops:

The DNS server wrote version 37 of zone movie.edu to file
movie.edu.dns.

Once you force the server to rewrite its zone data files with Action Update Server
Data Files, the server is in sync with the zone data files and doesn't have to rewrite
them on exit. So, if you're going to make manual changes to the zone data files, you
should either stop the server first (although that means your server won't answer
queries while you make the change), or use the DNS console to sync the server with
the zone data files and then make the change.

13.3.4 4. Slave Server Can't Load Zone Data

If a slave name server can't get the current serial number for a zone from its master
server, you won't be warned about it initially. However, if the problem persists and
the slave can't determine within the expire interval whether or not its data is up to
date, it will expire the zone. On a Microsoft DNS Server, you'll see a message like
this in the Event Viewer:

Zone movie.edu expired before it could obtain a successful zone
transfer or update
from a master server acting as its source for the zone. The zone has
been shut down.

Once the zone has expired, you'll start getting SERVFAIL errors when you query the
name server for data in the zone:

C:\> nslookup robocop wormhole.movie.edu.
Server: wormhole.movie.edu
Addresses: 192.249.249.1, 192.253.253.1

*** wormhole.movie.edu can't find robocop.movie.edu: Server failed

There are three leading causes of this problem: a loss in connectivity to the master
server due to network failure, an incorrect IP address configured for the master
server, and a syntax error in the zone data file on the master server.
First, use the DNS console to check the address of the master server(s) from which
the slave is attempting to load data. Right-click the domain name of the zone in the
left pane, choose Properties, and look at the General tab, shown in Figure 13-3.

Figure 13-3. Zone properties window showing master server(s)

Make sure that's really the IP address of the master name server. If it is, check
connectivity to that IP address:

C:\> ping 192.249.249.3
Pinging 192.249.249.3 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

If the master server isn't reachable, make sure that the server's host is really running
(for example, is powered on) or look for a network problem.

You may also want to check that the master server is returning authoritative
responses to queries for data in the zone. If the master server is responding as not
authoritative for the zone, the slave won't transfer the zone from it. Here's how you
could use nslookup to check for an authoritative response for the zone's SOA record
from the master server:

C:\> nslookup -norec -type=SOA movie.edu. 192.249.249.3

This command sends a nonrecursive query for the SOA record for movie.edu to the
name server at 192.249.249.3. We need to send a nonrecursive query so that the
name server at 192.249.249.3 doesn't try to forward the query to another server.
If this master server is correctly configured, the answer to this query should be
authoritative. (Remember that unless nslookup reports "Non-authoritative answer,"
the answer is authoritative.) A nonauthoritative reply may indicate that the master
server had a problem loading the zone, usually because of a syntax error in the zone
data file. Contact the administrator of the master server and have him check his
Event Viewer or syslog output for indications of a syntax error. We've never seen a
Windows 2000 name server go nonauthoritative for a zone based on a syntax error in
a zone data file, but older BIND name servers exhibit this behavior. So if your name

server is a slave to a zone whose primary master is a BIND name server that's not
claiming authority for the zone, a syntax error could be your problem.

If the answer to the query is authoritative but the slave server still can't transfer the
zone successfully, you can use the nslookup's ls command to try to transfer the zone
manually (ls, as we said in Chapter 12, performs a zone transfer). If you see an error
like this, it's a good bet that the master server restricts zone transfers:

C:\> nslookup - 192.249.249.3
Default Server: terminator.movie.edu
Address: 192.249.249.3
> ls movie.edu
[terminator.movie.edu]
*** Can't list domain movie.edu: Query refused
>

Contact the administrator of the master server and ask whether she is restricting
zone transfers. Ask her to check the options on the Zone Transfers tab of the
Properties window for the zone you're trying to transfer (if she's running the
Microsoft DNS Server). If the remote server is running BIND, ask if she's using the
xfrnets or allow-transfer features to restrict zone transfers.

Once the problem has been cleared up and your server successfully transfers the
zone, you'll see messages like these in the Event Viewer:

A more recent version, version 212 of zone movie.edu was found at DNS
server at 192.
249.249.3. Zone transfer is in progress.

The DNS server wrote version 212 of zone movie.edu to file
movie.edu.dns.

13.3.5 5. Add Address to Zone, but Forget to Add Corresponding PTR
Record

Because the mappings from hostnames to IP addresses are disjointed from the
mappings from IP addresses to hostnames in DNS, it's easy to forget to add a PTR
record for a new host. Adding the A record is intuitive, but many people who are used
to host tables assume that adding an address record takes care of the reverse
mapping, too. That's not true—you need to add a PTR record for the host to the
appropriate in-addr.arpa zone. Thankfully, the DNS console makes that easy by
providing a checkbox to Create associated pointer (PTR) record when you choose
New Host....
Neglecting to add the PTR record for a host usually causes that host to fail
authentication checks. For example, users on the host won't be able to rsh or rcp to
other hosts. The servers these programs talk to need to be able to map the
connection's IP address to a domain name to check authorization files.

In addition, many large FTP archives, including ftp.uu.net, refuse anonymous ftp
access to hosts whose IP addresses don't map back to domain names. ftp.uu.net's
FTP server emits a message that reads, in part:

530- Sorry, we're unable to map your IP address 140.186.66.1 to a
hostname
530- in the DNS. This is probably because your nameserver does not
have a

530- PTR record for your address in its tables, or because your
reverse
530- nameservers are not registered. We refuse service to hosts whose
530- names we cannot resolve.
That makes the reason you can't use anonymous ftp pretty evident. Other FTP sites,
however, don't bother printing informative messages; they simply deny service.

nslookup is handy for checking whether or not you've forgotten the PTR record:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> beetlejuice
 -- Check for a hostname-to-address mapping
Server: terminator.movie.edu
Address: 192.249.249.3

Name: beetlejuice.movie.edu
Address: 192.249.249.23

> 192.249.249.23
 -- Now check for a corresponding address-to-hostname mapping
Server: terminator.movie.edu
Address: 192.249.249.3

*** terminator.movie.edu can't find 192.249.249.23: Non-existent
domain

On the primary master for 249.249.192.in-addr.arpa, a quick check of the DNS
console or the 249.249.192.in-addr.arpa.dns file will tell you if the PTR record has
been added to the zone yet.

13.3.6 6. Wrong Domain Name in RDATA of Record

When you add CNAME, MX, and NS records with the DNS console, remember to
specify the fully qualified domain name of the host for the resource record-specific
data. The DNS console assumes that the name you type as the RDATA field is fully
qualfied. So if you try to create a CNAME record as shown in Figure 13-4, the
CNAME record looks like this in the zone data file:
bigt IN NS terminator.

This is probably not what you intended, since there's no top-level terminator domain.
You probably assumed the DNS console would append the name of the zone to the
name if you left off the dot. Nope.

Figure 13-4. Creating a CNAME record (the wrong way)

These mistakes are easy to discover if you simply examine the zone data file (after
Action Update Server Data Files) or use nslookup:

C:\> nslookup -type=ns movie.edu.
Server: terminator.movie.edu
Address: 192.249.249.3

movie.edu nameserver = wormhole.movie.edu
movie.edu nameserver = terminator
wormhole.movie.edu internet address = 192.253.253.1
wormhole.movie.edu internet address = 192.249.249.1

13.3.7 7. Loss of Network Connectivity

Though the Internet is more reliable today than it was back in the wild and woolly
days of the ARPANET, network outages are still relatively common. These failures
usually look like poor performance:

C:\> nslookup nisc.sri.com.
Server: terminator.movie.edu
Address: 192.249.249.3

DNS request timed out.
 timeout was 2 seconds.
DNS request timed out.
 timeout was 4 seconds.
DNS request timed out.
 timeout was 8 seconds.
*** Request to terminator.movie.edu timed-out

Using nslookup, you can look up the names and addresses of the name servers your
name server needs to talk to in order to resolve the name:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> set type=ns
> sri.com.
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
sri.com nameserver = NS.sri.com
sri.com nameserver = NS.CSL.sri.com
sri.com nameserver = TURTLE.MCC.COM
sri.com nameserver = NS1.sri.com

NS.sri.com internet address = 128.18.30.66
NS.CSL.sri.com internet address = 130.107.4.94
NS.CSL.sri.com internet address = 192.12.33.94
TURTLE.MCC.COM internet address = 128.62.1.215
NS1.sri.com internet address = 128.18.30.65
> com.
Server: terminator.movie.edu
Address: 192.249.249.3

Non-authoritative answer:
com nameserver = C.ROOT-SERVERS.NET
com nameserver = D.ROOT-SERVERS.NET
com nameserver = E.ROOT-SERVERS.NET
com nameserver = I.ROOT-SERVERS.NET
com nameserver = F.ROOT-SERVERS.NET
com nameserver = G.ROOT-SERVERS.NET
com nameserver = J.GTLD-SERVERS.INTERNIC.NET
com nameserver = A.ROOT-SERVERS.NET
com nameserver = H.ROOT-SERVERS.NET
com nameserver = B.ROOT-SERVERS.NET

C.ROOT-SERVERS.NET internet address = 192.33.4.12
D.ROOT-SERVERS.NET internet address = 128.8.10.90
E.ROOT-SERVERS.NET internet address = 192.203.230.10
I.ROOT-SERVERS.NET internet address = 192.36.148.17
F.ROOT-SERVERS.NET internet address = 192.5.5.241
G.ROOT-SERVERS.NET internet address = 192.112.36.4
J.GTLD-SERVERS.INTERNIC.NET internet address = 198.41.0.21
A.ROOT-SERVERS.NET internet address = 198.41.0.4
H.ROOT-SERVERS.NET internet address = 128.63.2.53
B.ROOT-SERVERS.NET internet address = 128.9.0.107

Then you can check your host's connectivity to those servers. Odds are, ping won't
have much better luck than your name server did. If it does, you should check that
the remote name servers are really running.

C:\> ping 128.18.30.66 -- ping first sri.com name server
Pinging 128.18.30.66 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
C:\> ping 130.107.4.94 -- ping second sri.com name server
Pinging 130.107.4.94 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.

Request timed out.

Now all that's left to do is to locate the break in the network. Utilities like tracert can
help you determine whether the problem is on your network, on the destination
network, or somewhere in the middle.

You should also use common sense when tracking down the break. If, for example,
your ping testing showed that you couldn't reach any of the Internet's root name
servers, it's not likely that each root's local network went down or that the Internet's
commercial backbone networks collapsed entirely. Occam's razor says that the
simplest condition that could cause this behavior—namely, the loss of your network's
link to the Internet—is the most likely cause.

13.3.8 8. Missing Subdomain Delegation

Even though your ICANN-accredited registrar does its best to process your requests
as quickly as possible, it may take a week or two for your subdomain's delegation to
appear in the root name servers. Depending on your parent (whether an ICANN-
accredited registrar or some other zone administrator), your mileage may vary. Some
parents are quick and responsible; others are slow and inconsistent. Just like in real
life, though, you're stuck with them.

Until your delegation data appear in your parent zone's name servers, your name
servers will be able to look up data in the Internet domain namespace, but no one
else on the Internet (outside of your domain) will know how to look up data in your
namespace.

That means that even though you can send mail outside of your domain, the
recipients won't be able to reply to it. Furthermore, no one will be able to telnet to, ftp
to, or even ping your hosts by name.

Remember that this applies equally to any in-addr.arpa subdomains you may run.
Until the parent delegates those subdomains to your servers, name servers on the
Internet won't be able to reverse-map addresses on your networks.

To determine whether or not your zone's delegation has made it into your parent
zone's name servers, query a parent name server for the NS records for your zone. If
the parent name server has the data, any name server on the Internet can find it:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> server a.root-servers.net.
 -- Query a root name server
Default Server: a.root-servers.net
Address: 198.41.0.4

> set norecurse -- Instruct the server to answer
out of
> set type=ns -- its own data and to look for NS records
> 249.249.192.in-addr.arpa. -- for 249.249.192.in-addr.arpa
Server: a.root-servers.net
Address: 198.41.0.4

*** a.root-servers.net can't find 249.249.192.in-addr.arpa.: Non-
existent domain

Here, the delegation clearly hasn't been added yet. You can either wait patiently or, if
an unreasonable amount of time has passed since you requested delegation from
your parent zone, you can contact your parent zone's administrator and ask what's
up.

13.3.9 9. Incorrect Subdomain Delegation

Incorrect subdomain delegation is another familiar problem on the Internet. Keeping
delegation up-to-date requires human intervention—informing your parent zone's
administrator of changes to your set of authoritative name servers. Consequently,
delegation information often becomes inaccurate as administrators make changes
without letting their parents know. Far too many administrators believe that setting up
delegation is a one-shot deal: they let their parents know which name servers are
authoritative once, when they set up their zones, and then they never talk to them
again. They don't even call on Mother's Day.

An administrator may add a new name server, decommission another, and change
the IP address of a third, all without telling the parent zone's administrator. Gradually,
the number of name servers correctly delegated to by the parent zone dwindles. In
the best case this leads to long resolution times, as querying name servers struggle
to find an authoritative name server for the zone. If the delegation information
becomes badly out-of-date and the last authoritative name server host is brought
down for maintenance, the information within the zone will be inaccessible.

If you suspect bad delegation, whether from your parent to your zone, from your zone
to one of your children, or from a remote zone to one of its children, you can check
with nslookup:

C:\> nslookup
Default Server: terminator.movie.edu
Address: 192.249.249.3

> server a.gtld-servers.net. -- Set server to the parent name
 -- server you suspect has bad
delegation
Default Server: a.gtld-servers.net
Address: 198.41.0.4

> set type=ns -- Look for NS records
> hp.com. -- for the zone in question
Server: a.gtld-servers.net
Address: 198.41.0.4

Non-authoritative answer:
hp.com nameserver = RELAY.HP.COM
hp.com nameserver = HPLABS.HPL.HP.COM
hp.com nameserver = NNSC.NSF.NET
hp.com nameserver = HPSDLO.SDD.HP.COM

Authoritative answers can be found from:
hp.com nameserver = RELAY.HP.COM
hp.com nameserver = HPLABS.HPL.HP.COM
hp.com nameserver = NNSC.NSF.NET
hp.com nameserver = HPSDLO.SDD.HP.COM

RELAY.HP.COM internet address = 15.255.152.2
HPLABS.HPL.HP.COM internet address = 15.255.176.47
NNSC.NSF.NET internet address = 128.89.1.178
HPSDLO.SDD.HP.COM internet address = 15.255.160.64
HPSDLO.SDD.HP.COM internet address = 15.26.112.11

Let's say you suspect that the delegation to hpsdlo.sdd.hp.com is incorrect. Query
hpsdlo for data in the hp.com zone, and check the answer:

> server hpsdlo.sdd.hp.com.
Default Server: hpsdlo.sdd.hp.com
Addresses: 15.255.160.64, 15.26.112.11

> set norecurse
> set type=soa
> hp.com.
Server: hpsdlo.sdd.hp.com
Addresses: 15.255.160.64, 15.26.112.11

Non-authoritative answer:
hp.com
 origin = relay.hp.com
 mail addr = hostmaster.hp.com
 serial = 1001462
 refresh = 21600 (6 hours)
 retry = 3600 (1 hour)
 expire = 604800 (7 days)
 minimum ttl = 86400 (1 day)

Authoritative answers can be found from:
hp.com nameserver = RELAY.HP.COM
hp.com nameserver = HPLABS.HPL.HP.COM
hp.com nameserver = NNSC.NSF.NET
RELAY.HP.COM internet address = 15.255.152.2
HPLABS.HPL.HP.COM internet address = 15.255.176.47
NNSC.NSF.NET internet address = 128.89.1.178

If hpsdlo really were authoritative, it would have responded with an authoritative
answer. The administrator of the hp.com zone can tell you whether hpsdlo should be
an authoritative name server for hp.com, so that's who you should contact.

13.4 Interoperability Problems

The Microsoft DNS Server has at least one known interoperability issue with BIND
name servers: zone transfers sometimes fail because of the proprietary WINS
record.

When a Microsoft DNS Server is configured to consult a WINS server for names it
can't find in a given zone, it inserts a special record into the zone data file. The
record looks like this:

@ IN WINS <IP address of WINS server>

Unfortunately, WINS is not a standard record type in the IN class. Consequently, any
BIND slaves that transfer this zone will choke on the WINS record and refuse to load
the zone. Here's the message the administrator of the BIND server would see in his
syslog output:

May 23 15:58:43 terminator named-xfer[386]: "fx.movie.edu IN 65281" -
unknown type (65281)

The workaround for this problem is to configure the Microsoft DNS Server to filter out
the proprietary record before transferring the zone. You do this by selecting the zone
in the left pane of the DNS console, right-clicking it, and selecting Properties. Click
on the WINS tab in the resulting properties window, which is shown in Figure 13-5.

Figure 13-5. "Do not replicate this record" checkbox

Checking Do not replicate this record will filter out the WINS record for that zone.
However, any Microsoft DNS Server slaves won't see the record, even though they
could use it.

13.5 Problem Symptoms

Some problems, unfortunately, aren't as easy to identify as the ones we've listed.
You'll probably experience some misbehavior that you won't be able to attribute
directly to its cause, often because any of a number of problems may cause the
symptoms you see. For cases like this, we'll suggest some of the common causes of
these symptoms and ways to isolate them.

13.5.1 Can't Look Up Local Name

The first thing to do when a program like telnet or ftp can't look up a local name is to
use nslookup to try to look up the same name. When we say "the same name," we
mean literally the same name—don't add a domain name and a trailing dot if the user
didn't type either one. Don't query a different name server than the user did.

As often as not, the user will have mistyped the name or misunderstood how the
search list works and just needs direction. Occasionally, you'll turn up real host
configuration errors, such as a mistake in the resolver configuration (e.g., the wrong
IP address for a name server). You can check for errors like this using nslookup's set
all command.

If nslookup points to a problem with the name server, rather than with the host
configuration, check for the problems associated with the type of name server. If the
name server is the primary master for the zone but it doesn't respond with data you
think it should:

• Check that the zone or zone data file contains the data in question.
• Ensure that the domain names in the records are correct (problem 6).

If the name server is a slave server, you should first check whether or not its master
has the correct data. If it does, and the slave doesn't:

• Make sure you've incremented the serial number on the primary
(problem 1).

• Look for a problem on the slave in updating the zone (problem 4).

If the primary doesn't have the correct data, of course, diagnose the problem on the
primary.

If the problem server isn't authoritative for the zone that contains the data, check that
your parent zone's delegation to your zone exists and is correct (problems 8 and 9).
Remember that to that name server, your zone looks just like any other remote zone.
Even though the host it runs on may be inside your zone, the name server must be
able to locate an authoritative server for your zone from your parent zone's servers.

13.5.2 Can't Look Up Remote Names

If your local lookups succeed but you can't look up names outside your local zones,
there is a different set of problems to check:

• Can you ping the remote zone's name servers? Maybe you can't reach the
remote zone's servers because of connectivity loss (problem 7).

• Is the remote zone new? Maybe its delegation hasn't yet appeared (problem
8). Alternatively, the delegation information for the remote zone may be wrong
or out of date, due to neglect (problem 9).

• Does the domain name actually exist on the remote zone's servers? Does it
exist on all of them (problems 1, 2, and 4)?

13.5.3 Wrong or Inconsistent Answer

If you get the wrong answer when looking up a local name or you get an inconsistent
answer, depending on which name server you ask or when you ask, first check the
synchronization between your name servers:

• Are they all holding the same serial number for the zone? Did you forget to
increment the serial number on the primary after you made a manual change
(problem 1)? If you did, the name servers may all have the same serial
number, but they will answer differently out of their authoritative data.

• Did you forget to restart the primary after making a manual change (problem
2)? Then the primary will return (via nslookup, for example) a different serial
number than the serial number in the zone data file.

• Are the slaves having trouble updating from the primary (problem 4)?
• Is the name server's round-robin feature rotating the addresses of the domain

name you're looking up?

If you get these results when looking up a name in a remote zone, you should check
whether the remote zone's name servers have lost synchronization. You can use
tools like nslookup to determine whether the remote zone's administrator has
forgotten to increment the serial number, for example. If the name servers answer
differently from their authoritative data but show the same serial number, the serial
number probably wasn't incremented. If the primary's serial number is much lower
than the slaves', the primary's serial number was probably accidentally reset. We
usually assume a zone's primary name server is running on the host listed as the
origin in the SOA record.

You probably can't determine conclusively that the primary hasn't been restarted,
though. It's also difficult to pin down updating problems between remote name
servers. In cases like this, if you've determined that the remote name servers are
giving out incorrect data, contact the zone administrator and (gently) relay what
you've found. This will help the administrator track down the problem on the remote
end.

13.5.4 Lookups Take a Long Time

Long name resolution periods are usually due to one of two problems:

• Connectivity loss (problem 7), which you can diagnose with tools like ping and
tracert

• Incorrect delegation information (problem 9), which points to the wrong name
servers or the wrong IP addresses

Usually, sending a few pings will point to one or the other of these causes. Either you
can't reach the name servers at all, or you can reach the hosts but the name servers
aren't responding.

Sometimes, though, the results are inconclusive. For example, the parent name
servers may delegate to a set of name servers that don't respond to pings or queries,
but connectivity to the remote network seems all right (a tracert, for example, will get
you to the remote network's "doorstep"—the last router between you and the host). Is
the delegation information so badly out-of-date that the name servers have long
since moved to other addresses? Are the hosts simply down? Or is there really a
remote network problem? Usually, finding out will require a call or a message to the
administrator of the remote zone. (And remember, whois gives you phone numbers!)

That's about all we can think of to cover. It's certainly a less than comprehensive list,
but we hope it'll help you solve the more common problems you encounter with DNS
and give you ideas about how to approach the rest. Boy, if we'd only had a
troubleshooting guide when we started!

Chapter 14. Miscellaneous

"The time has come," the Walrus said, "To talk of many things: Of
shoes—and ships—and sealing-wax—Of cabbages—and kings—And
why the sea is boiling hot—And whether pigs have wings."

It's time we tied up loose ends. We've already covered the mainstream
of DNS, but we haven't explored a handful of interesting niches. Some
of these, like instructions on how to set up DNS on a network without
Internet connectivity, may actually be useful; others may just be
interesting. We can't in good conscience send you out into the world
without completing your education!

14.1 Using CNAME Records

We talked about CNAME resource records in Chapter 4. We didn't tell you all about
CNAME records, though; we saved that for this chapter. When you set up your first
name servers, you didn't care about the subtle nuances of the magical CNAME
record. Maybe you didn't realize there was more to it than we explained; maybe you
didn't care. Some of this trivia is interesting, some is arcane. We'll let you decide
which is which.

14.1.1 CNAMEs Attached to Interior Nodes

If you've ever renamed your zone because of a company reorganization, you may
have considered creating a single CNAME record that pointed from the zone's old
domain name to the new domain name. For instance, if the fx.movie.edu zone were
renamed to magic.movie.edu, we'd be tempted to create a single CNAME record to
map all the old names to the new names:

fx.movie.edu. IN CNAME magic.movie.edu.

With this record in place, you'd expect a lookup of empire.fx.movie.edu to result in a
lookup of empire.magic.movie.edu. Unfortunately, this doesn't work—you can't have
a CNAME record attached to an interior node like fx.movie.edu if it owns other
records. Remember that fx.movie.edu has an SOA record and NS records, so
attaching a CNAME record to it violates the rule that a domain name be either an
alias or a canonical name, not both. So, instead of using a single CNAME record to
rename a complete zone, you'll have to do it the old-fashioned way—a CNAME
record for each individual host within the zone:

empire.fx.movie.edu. IN CNAME empire.magic.movie.edu.
bladerunner.fx.movie.edu. IN CNAME bladerunner.magic.movie.edu.

If the subdomain isn't delegated and consequently doesn't have an SOA record and
NS records attached to it, you can create an alias for fx.movie.edu, but it will apply
only to the domain name fx.movie.edu and not to domain names in fx.movie.edu.

Hopefully, the tool you use to manage your DNS data files will handle creating
CNAME records for you.

14.1.2 CNAMEs Pointing to CNAMEs

You may have wondered whether it was possible to have an alias (CNAME record)
pointing to another alias. This might be useful in situations where an alias points from
a domain name outside of your zone to a domain name inside your zone. You may
not have any control over the alias outside of your zone. What if you want to change
the domain name to which it points? Can you simply add another CNAME record?

The answer is yes: you can chain together CNAME records. The Microsoft DNS
Server supports it, and the RFCs don't expressly forbid it. But, while you can chain
CNAME records, is it a wise thing to do? The RFCs recommend against it because of
the possibility of creating a CNAME loop and because it slows resolution. You may
be able to do it in a pinch, but you probably won't find much sympathy on the Net if
something breaks.

14.1.3 CNAMEs in the Resource Record Data

For any other record besides a CNAME record, you must have the canonical domain
name in the resource record data. Applications and name servers won't operate
correctly otherwise. As we mentioned back in Chapter 5, for example, many mailers
recognize only the canonical name of the local host on the right side of an MX record.
If a mailer doesn't recognize the local host, it won't strip out the right MX records
when paring down the MX list and may deliver mail to itself or to less-preferred hosts,
causing mail to loop.

14.1.4 Looking Up CNAMEs

At times you may want to look up a CNAME record itself, not data for the canonical
name. With nslookup, this is easy to do. You can set the query type either to cname
or to any and then look up the name:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> set query=cname
> bigt
Server: wormhole.movie.edu
Address: 192.249.249.1

bigt.movie.edu canonical name = terminator.movie.edu
> set query=any
> bigt
Server: wormhole.movie.edu
Address: 192.249.249.1

bigt.movie.edu canonical name = terminator.movie.edu

14.1.5 Finding Out a Host's Aliases

One thing you can't easily do with DNS is find out a host's aliases. With the host
table, it's easy to find both the canonical name of a host and any aliases. No matter
which you look up, they're all there together on the same line, as shown in the
following excerpt from HOSTS:

192.249.249.3 terminator.movie.edu terminator bigt

With DNS, however, if you look up the canonical name, all you get is the canonical
name. There's no easy way for the name server or the application to know whether
aliases exist for that canonical name:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> terminator
Server: wormhole.movie.edu
Address: 192.249.249.1

Name: terminator.movie.edu
Address: 192.249.249.3

If you use nslookup to look up an alias, you'll see that alias and the canonical name.
nslookup reports both the alias and the canonical name in the packet. But you won't
see any other aliases that might point to that canonical name.

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> bigt
Server: wormhole.movie.edu
Address: 192.249.249.1

Name: terminator.movie.edu
Address: 192.249.249.3
Aliases: bigt.movie.edu

About the only way to find out all the CNAMEs for a host is to transfer the whole zone
and pick out the CNAME records where that host is the canonical name. You can
have nslookup filter on CNAME records:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> ls -t cname movie.edu
[wormhole.movie.edu]
 bigt terminator.movie.edu
 wh wormhole.movie.edu
 dh diehard.movie.edu

Even this method will show you only the aliases within that zone—there could be
aliases in a different zone, pointing to canonical names in this zone.

14.2 Wildcards

Something else we haven't covered yet is DNS wildcards. At times you want a single
resource record to cover any possible name, rather than creating zillions of resource
records that are all the same except for the domain name to which they apply. DNS
reserves a special character, the asterisk (*), to be used in a DNS data file as a

wildcard name. It will match any number of labels in a name, as long as it isn't an
exact match with a name already in the DNS database.

Most often, you'd use wildcards to forward mail to non-Internet-connected networks.
Suppose your site is not connected to the Internet, but you have a host that will relay
mail between the Internet and your network. You could add a wildcard MX record to
the movie.edu zone for Internet consumption that points all your mail to the relay.
Here is an example:

*.movie.edu. IN MX 10 movie-relay.nea.gov.

Since the wildcard matches one or more labels, this resource record would apply to
names like terminator.movie.edu, empire.fx.movie.edu, or
casablanca.bogart.classics.movie.edu. The danger with wildcards is that they clash
with search lists. This wildcard also matches cujo.movie.edu.movie.edu, making
wildcards dangerous to use in your internal zone data. Remember that some mailers
apply the search list when looking up MX records:

C:\> nslookup
Default Server: wormhole.movie.edu
Address: 192.249.249.1

> set type=mx -- Look up MX records
> cujo.movie.edu -- for cujo
Server: wormhole.movie.edu
Address: 192.249.249.1

cujo.movie.edu.movie.edu -- This isn't a real host's name!
 preference = 10, mail exchanger = movie-relay.nea.gov

What are the limitations of wildcards? Wildcards do not match names for which there
is already data. Suppose you did use wildcards within your zone data:

*.movie.edu. IN MX 10 mail-hub.movie.edu.
et.movie.edu. IN MX 10 et.movie.edu.
jaws.movie.edu IN A 192.253.253.113

Mail to terminator.movie.edu will be sent to mail-hub, but mail to et.movie.edu will be
sent directly to et. An MX lookup of jaws.movie.edu would result in a response that
says there is no MX data for that name. The wildcard doesn't apply because an A
record exists. Can you use wildcards safely within your zone data? Yes. We'll cover
that case a little later in this chapter.

14.3 A Limitation of MX Records

While we are on the topic of MX records, let's talk about how they can result in mail
taking a longer path than necessary. The MX records are a list of data returned when
a name is looked up. The list is not ordered according to which exchanger is closest
to the sender. Here is an example of this problem. Your non-Internet-connected
network has two hosts capable of relaying Internet mail to your network. One host is
in the U.S., and one host is in France. Your network is in Greece. Most of your mail
comes from the U.S., so you have someone maintain your zone and install two
wildcard MX records—with the highest preference to the U.S. relay and a lower
preference to the France relay. Since the U.S. relay is at a higher preference, all mail
will go through that relay (as long as it is reachable). If someone in France sends you

a letter, it will travel across the Atlantic to the U.S. and back because there is nothing
in the MX list to indicate that the French relay is closer to that sender.

14.4 DNS and Internet Firewalls

The Domain Name System wasn't designed to work with Internet firewalls. It's a
testimony to the flexibility of DNS that you can configure DNS to work with, or even
through, an Internet firewall.

That said, configuring the Microsoft DNS Server to work in a firewalled environment,
although not difficult, takes a good, complete understanding of DNS. Describing it
also requires a large portion of this chapter, so here's a roadmap.

We start by describing the two major families of Internet firewall software: packet
filters and application gateways. The capabilities of each family have a bearing on
how you'll need to configure your DNS servers to work through the firewall. The next
section details the two most common DNS architectures used with firewalls,
forwarders and internal roots, and describes the advantages and disadvantages of
each. Finally, we discuss split namespaces and the configuration of the bastion host,
the host at the core of your firewall system.

14.4.1 Types of Firewall Software

Before you start configuring your DNS servers to work with your firewall, it's
important that you understand what your firewall is capable of. Your firewall's
capabilities will influence your choice of DNS architecture and will determine how you
implement it. If you don't know the answers to the questions in this section, track
down someone in your organization who does know and ask. Better yet, work with
your firewall's administrator when designing your DNS architecture to ensure it will
coexist with the firewall.

Note that this is far from a complete explanation of Internet firewalls. These few
paragraphs describe only the two most common types of Internet firewalls and only in
enough detail to show how the differences in their capabilities impact name servers.
For a comprehensive treatment of Internet firewalls, see Elizabeth Zwicky, Simon
Cooper, D. Brent Chapman, and Deborah Russell's Building Internet Firewalls
(O'Reilly).

14.4.1.1 Packet filters

The first type of firewall we'll cover is the packet-filtering firewall. Packet-filtering
firewalls operate largely at the transport and network levels of the TCP/IP stack
(layers three and four of the OSI reference model, if you dig that). They decide
whether to route a packet based upon packet-level criteria such as the transport
protocol (e.g., whether it's TCP or UDP), the source and destination IP addresses,
and the source and destination ports (see Figure 14-1).

Figure 14-1. Packet filters operate at the network and transport layers of the stack

What's most important to us about packet-filtering firewalls is that you can typically
configure them to selectively allow DNS traffic between hosts on the Internet and
your internal hosts. That is, you can let an arbitrary set of internal hosts communicate
with Internet name servers. Some packet-filtering firewalls can even permit your
name servers to query name servers on the Internet, but not vice versa. All router-
based Internet firewalls are packet-filtering firewalls. Check Point's FireWall-1,
Cisco's PIX, and Sun's SunScreen are popular commercial packet-filtering firewalls.

14.4.1.2 Application gateways

Application gateways operate at the application protocol level, several layers higher
in the OSI reference model than most packet filters (Figure 14-2). In a sense, they
"understand" the application protocol in the same way a server for that particular
application would. An FTP application gateway, for example, can make the decision
to allow or deny a particular FTP operation, like a RETR (a get) or a STOR(a put).

Figure 14-2. Application gateways operate at the application layer of the stack

The bad news, and what's important for our purposes, is that most application
gateway-based firewalls handle only TCP-based application protocols. DNS, of
course, is largely UDP-based, and we know of no application gateways for DNS. This
implies that if you run an application gateway-based firewall, your internal hosts will
likely not be able to communicate directly with name servers on the Internet.

The popular Firewall Toolkit from Trusted Information Systems (TIS, now part of
Network Associates) is a suite of application gateways for common Internet protocols
such as Telnet, FTP, and HTTP. Network Associates' Gauntlet product is also based
on application gateways, as is Axent's Eagle Firewall.

Note that these two categories of firewalls are really just generalizations. The state of
the art in firewalls changes very quickly, and by the time you read this, you may have
a firewall that includes an application gateway for DNS. Which family your firewall
falls into is important only because it suggests what that firewall is capable of; what's
more important is whether your particular firewall will let you permit DNS traffic
between arbitrary internal hosts and the Internet.

14.4.2 A Bad Example

The simplest configuration is to allow DNS traffic to pass freely through your firewall
(assuming you can configure your firewall to do that). That way, any internal name
server can query any name server on the Internet, and any Internet name server can
query any of your internal name servers. You don't need any special configuration.
Unfortunately, this is a bad idea, for two reasons:

Version control
The developers of the Microsoft DNS Server are constantly finding and fixing
security-related bugs in the code. Consequently, it's important to run a recent version
of the server, especially for name servers that are directly exposed to the Internet. If
one or just a few of your name servers communicate directly with name servers on
the Internet, upgrading them to a new version is easy. If all of the name servers on
your network do, upgrading all of them is vastly more difficult.

Possible vector for attack
Even if you're not running a name server on a particular host, a hacker might be able
to take advantage of the fact that you allow DNS traffic through your firewall to attack
that host. For example, a co-conspirator working on the inside could set up a Telnet
daemon listening on the host's DNS port, allowing the hacker to telnet right in.

For the rest of this chapter, we'll try to set a good example.

14.4.3 Internet Forwarders

Given the dangers of allowing bidirectional DNS traffic through the firewall
unrestricted, most organizations elect to limit the internal hosts that can "talk DNS" to
the Internet. With an application gateway firewall, or any firewall without the ability to
pass DNS traffic, the only host that can communicate with Internet name servers is
the bastion host (see Figure 14-3).

Figure 14-3. A small network, showing the bastion host

With a packet-filtering firewall, the firewall's administrator can configure the firewall to
let any set of internal name servers communicate with Internet name servers. Often,

this is a small set of hosts that run name servers under the direct control of the
network administrator (see Figure 14-4).

Figure 14-4. A small network, showing select internal name servers

Internal name servers that can query name servers on the Internet directly don't
require any special configuration. Their root hints files contain the Internet's root
name servers, which enables them to resolve Internet domain names. Internal name
servers that can't query name servers on the Internet, however, need to know to
forward queries they can't resolve to one of the name servers that can. This is done
with the Forwarders tab on the server's Properties window, described in Chapter
10.

Figure 14-5 illustrates a common forwarding setup, with internal name servers
forwarding queries to a name server running on a bastion host.

Figure 14-5. Using forwarders

At Movie U., we put in a firewall to protect ourselves from the Big Bad Internet
several years ago. Ours is a packet-filtering firewall, and we negotiated with our
firewall administrator to allow DNS traffic between Internet name servers and two of
our name servers, terminator.movie.edu and wormhole.movie.edu. Figure 14-6
shows how we configured the other internal name servers at the university.

Figure 14-6. Internal name server forwarding configuration

When configuring different internal name servers, we vary the order in which the
forwarders appear to help spread the load among them.

When an internal name server receives a query for a name it can't resolve locally,
such as an Internet domain name, it forwards that query to one of our forwarders,
which can resolve the name using name servers on the Internet. Simple!

14.4.3.1 The trouble with forwarding

Unfortunately, it's a little too simple. Forwarding starts to get in the way once you
delegate subdomains or build an extensive network. To explain what we mean, take
a look at zardoz.movie.edu. zardoz.movie.edu is a slave for movie.edu and uses our
two forwarders. What happens when zardoz.movie.edu receives a query for a name
in fx.movie.edu? zardoz.movie.edu, as an authoritative movie.edu name server, has
the NS records that delegate fx.movie.edu to its authoritative name servers. But it's
also been configured to forward queries it can't resolve locally to
terminator.movie.edu and wormhole.movie.edu. Which will it do?

It turns out that zardoz.movie.edu will ignore the delegation information and forward
the query to terminator.movie.edu. That'll work since terminator.movie.edu will
receive the recursive query and ask an fx.movie.edu name server on
zardoz.movie.edu's behalf. But it's not particularly efficient, since zardoz.movie.edu
could easily have sent the query directly.

Now imagine the scale of the network is much larger: a corporate network that spans
continents, with tens of thousands of hosts and hundreds or thousands of name
servers. All of the internal name servers that don't have direct Internet connectivity—
the vast majority of them—use a small set of forwarders. There are several things
wrong with this picture:

Single point of failure

If the forwarders fail, your name servers lose the ability to resolve both
Internet domain names and internal domain names that they don't have
cached or in authoritative data.

Concentration of load

The forwarders will have an enormous query load placed on them. This is
both because of the large number of internal name servers that use them and
because the queries are recursive and require a good deal of work to answer.

Inefficient resolution

Imagine two internal name servers, authoritative for west.acmebw.com and
east.acmebw.com, respectively, both on the same network segment in
Boulder, Colorado. Both are configured to use the company's forwarder in
Bethesda, Maryland. To resolve a name in east.acmebw.com, the
west.acmebw.com name server sends a query to the forwarder in Bethesda.
The forwarder in Bethesda then sends a query back to Boulder to the
east.acmebw.com name server, the original querier's neighbor. The
east.acmebw.com name server replies by sending a response back to
Bethesda, which the forwarder sends back to Boulder.

In a traditional configuration with root name servers, the west.acmebw.com
name server would quickly have learned that an east.acmebw.com name
server was next door and would favor it (because of its low roundtrip time).
Using forwarders "short-circuits" the normally efficient resolution process.

The upshot is that forwarding is fine for small networks and simple namespaces but
probably inadequate for large networks and complex namespaces. We found this out
the hard way at Movie U. as our network grew and we were forced to implement
internal roots.

14.4.4 Internal Roots

If you want to avoid the scalability problems of forwarding, you can set up your own
root name servers. These internal roots will serve only the name servers in your
organization. They'll know about only the portions of the namespace relevant to your
organization.

What good are they? By using an architecture based on root name servers, you gain
the scalability of the Internet namespace (which should be good enough for most
companies), plus redundancy, distributed load, and efficient resolution. You can have
as many internal roots as the Internet has roots—13 or so—whereas having that
many forwarders may be an undue security exposure and a configuration burden.

Most of all, the internal roots don't get used frivolously. Name servers need to consult
an internal root only when they time out the NS records for your top-level zones.
Using forwarders, name servers may have to query a forwarder once per resolution.
The moral of our story is that if you have, or intend to have, a large namespace and
lots of internal name servers, internal root name servers will scale better than any
other solution.

14.4.4.1 Where to put internal root name servers

Since name servers "lock on" to the closest root name server by favoring the one
with the lowest roundtrip time, it pays to pepper your network with internal root name
servers. If your organization's network spans the U.S., Europe, and the Pacific Rim,
consider locating at least one internal root name server on each continent. If you
have three major sites in Europe, give each of them an internal root.

14.4.4.2 Forward-mapping delegation

Here's how an internal root name server is configured. An internal root delegates
directly to any zones you administer. For example, on the movie.edu network, the
root zone's data file would contain:

movie.edu. 86400 IN NS terminator.movie.edu.
 86400 IN NS wormhole.movie.edu.
 86400 IN NS zardoz.movie.edu.
terminator.movie.edu. 86400 IN A 192.249.249.3
wormhole.movie.edu. 86400 IN A 192.249.249.1
 86400 IN A 192.253.253.1
zardoz.movie.edu. 86400 IN A 192.249.249.9
 86400 IN A 192.253.253.9

On the Internet, this information would appear in the edu name servers' zone data
files. On the movie.edu network, of course, there aren't any edu name servers, so
you delegate directly to movie.edu from the root.

Notice that this example doesn't contain delegation to fx.movie.edu or any other
subdomain of movie.edu. The movie.edu name servers know which name servers
are authoritative for all movie.edu subdomains, and all queries for information in
those subdomains pass through the movie.edu name servers, so there's no need to
delegate them here.

14.4.4.3 in-addr.arpa delegation

We also need to delegate from the internal roots to the in-addr.arpa zones that
correspond to the networks at the university:

249.249.192.in-addr.arpa. 86400 IN NS terminator.movie.edu.
 86400 IN NS wormhole.movie.edu.
 86400 IN NS zardoz.movie.edu.
253.253.192.in-addr.arpa. 86400 IN NS terminator.movie.edu.
 86400 IN NS wormhole.movie.edu.
 86400 IN NS zardoz.movie.edu.
254.253.192.in-addr.arpa. 86400 IN NS bladerunner.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.
 86400 IN NS alien.fx.movie.edu.
20.254.192.in-addr.arpa. 86400 IN NS bladerunner.fx.movie.edu.
 86400 IN NS outland.fx.movie.edu.

 86400 IN NS alien.fx.movie.edu.
Notice that we did include delegation for the 254.253.192.in-addr.arpa and
20.254.192.in-addr.arpa zones, even though they both correspond to the
fx.movie.edu zone. We didn't need to delegate to fx.movie.edu because we'd already
delegated to its parent, movie.edu. The movie.edu name servers delegate to
fx.movie.edu, so by transitivity the roots delegate to fx.movie.edu. Since neither of
the other in-addr.arpa zones is a parent of 254.253.192.in-addr.arpa or
20.254.192.in-addr.arpa, we needed to delegate both zones from the root.

As we've explained earlier, we don't need to add address records for the three
Special Effects name servers, bladerunner.fx.movie.edu, outland.fx.movie.edu, and
alien.fx.movie.edu, because a remote name server can already find their addresses
by following delegation from movie.edu.

14.4.4.4 The root.dns file

All that's left is to add an SOA record for the root zone and NS records for this
internal root name server and any others:

. IN SOA rainman.movie.edu. hostmaster.movie.edu. (
 1 ; serial
 10800 ; refresh
 3600 ; retry
 604800 ; expire
 86400) ; default TTL

 IN NS rainman.movie.edu.
 IN NS awakenings.movie.edu.

rainman.movie.edu. IN A 192.249.249.254
awakenings.movie.edu. IN A 192.253.253.254

rainman.movie.edu and awakenings.movie.edu are the hosts running internal root
name servers. We shouldn't run an internal root on a bastion host because if a name
server on the Internet accidentally queries it for data it's not authoritative for, the
internal root will respond with its list of roots—all internal!

So the whole root.dns file (by convention, we call the root zone's data file root.dns)
looks like this:

. IN SOA rainman.movie.edu. hostmaster.movie.edu. (
 1 ; serial
 10800 ; refresh
 3600 ; retry
 604800 ; expire
 86400) ; default TTL

 IN NS rainman.movie.edu.
 IN NS awakenings.movie.edu.

rainman.movie.edu. IN A 192.249.249.254
awakenings.movie.edu. IN A 192.253.253.254

movie.edu. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.
 IN NS zardoz.movie.edu.

terminator.movie.edu. IN A 192.249.249.3

wormhole.movie.edu. IN A 192.249.249.1
 IN A 192.253.253.1
zardoz.movie.edu. IN A 192.249.249.9
 IN A 192.253.253.9

249.249.192.in-addr.arpa. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.
 IN NS zardoz.movie.edu.
253.253.192.in-addr.arpa. IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.
 IN NS zardoz.movie.edu.
254.253.192.in-addr.arpa. IN NS bladerunner.fx.movie.edu.
 IN NS outland.fx.movie.edu.
 IN NS alien.fx.movie.edu.
20.254.192.in-addr.arpa. IN NS bladerunner.fx.movie.edu.
 IN NS outland.fx.movie.edu.
 IN NS alien.fx.movie.edu.

Creating the root zone with the DNS console on both of the internal root name
servers, rainman and awakenings, is just like creating any primary zone: right-click
on the server's name in the left pane, then choose New Zone.... For the zone's
domain name, choose . (a single dot). The DNS console helpfully uses root.dns as
the default filename for this zone.

If you don't have a lot of idle hosts sitting around that you can turn into internal roots,
don't despair! Any internal name server (i.e., one that's not running on a bastion host
or outside your firewall) can serve double duty as an internal root and as an
authoritative name server for whatever other zones you need it to load. Remember, a
single name server can be authoritative for many, many zones, including the root
zone.

14.4.4.5 Configuring other internal name servers

Once you've set up internal root name servers, configure all the name servers on
hosts anywhere on your internal network to use them. Any name server running on a
host without direct Internet connectivity (i.e., behind the firewall) should list the
internal roots in its root hints file:

; Internal cache.dns file, for Movie U. hosts without direct
; Internet connectivity
;
; Don't use this file on a host with Internet connectivity!
;

. 99999999 IN NS rainman.movie.edu.
 99999999 IN NS awakenings.movie.edu.

rainman.movie.edu. 99999999 IN A 192.249.249.254
awakenings.movie.edu. 99999999 IN A 192.253.253.254

Name servers running on hosts using this root hints file will be able to resolve domain
names in movie.edu and in Movie U.'s in-addr.arpa domains but not outside of those
domains.

14.4.4.6 How internal name servers use internal roots

To tie together how this whole scheme works, let's go through an example of name
resolution on an internal caching-only name server using these internal root name

servers. First, the internal name server receives a query for a domain name in
movie.edu, say the address of gump.fx.movie.edu. If the internal name server doesn't
have any "better" information cached, it starts by querying an internal root name
server. If it has communicated with the internal roots before, it has a roundtrip time
associated with each, which tells it which of the internal roots is responding to it most
quickly. It sends a nonrecursive query to that internal root for gump.fx.movie.edu's
address. The internal root answers with a referral to the movie.edu name servers on
terminator.movie.edu, wormhole.movie.edu, and zardoz.movie.edu. The caching-only
name server follows up by sending another nonrecursive query to one of the
movie.edu name servers for gump.fx.movie.edu's address. The movie.edu name
server responds with a referral to the fx.movie.edu name servers. The caching-only
name server sends the same nonrecursive query for gump.fx.movie.edu's address to
one of the fx.movie.edu name servers and finally receives a response.

Contrast this with the way a forwarding setup would have worked. Let's imagine that
instead of using internal root name servers, our caching-only name server were
configured to forward queries first to terminator.movie.edu and then to
wormhole.movie.edu. In that case, the caching-only name server would have
checked its cache for the address of gump.fx.movie.edu and, not finding it, would
have forwarded the query to terminator.movie.edu. terminator.movie.edu would have
queried an fx.movie.edu name server on the caching-only name server's behalf and
returned the answer. Should the caching-only name server need to look up another
name in fx.movie.edu, it would still ask the forwarder, even though the forwarder's
response to the query for gump.fx.movie.edu's address probably contained the
names and addresses of the fx.movie.edu name servers.

14.4.4.7 The trouble with internal roots

Unfortunately, just as forwarding has its problems, internal root architectures have
their limitations. Chief among these is the fact that your internal hosts can't see the
Internet namespace. On some networks this isn't an issue, because most internal
hosts don't have direct Internet connectivity. The few that do can have their resolvers
configured to use a name server on the bastion host. Some of these hosts will
probably need to run proxy servers to allow other internal hosts access to services on
the Internet.

On other networks, however, the Internet firewall or other software may require that
all internal hosts have the ability to resolve names in the Internet namespace. For
these networks, an internal root architecture won't work.

14.4.5 A Split Namespace

Many organizations would like to advertise different zone data to the Internet than
they do internally. In most cases, much of the internal zone data is irrelevant to the
Internet because of the organization's Internet firewall. The firewall may not allow
direct access to most internal hosts and may also translate internal, unregistered IP
addresses into a range of IP addresses registered to the organization. Therefore, the
organization may need to trim out irrelevant information from the external view of the
zone or change internal addresses to their external equivalents.

Unfortunately, the Microsoft DNS Server doesn't support automatic filtering and
translation of zone data. Consequently, many organizations manually create what
have become known as "split namespaces." In a split namespace, the real

namespace is available only internally while a pared-down, translated version of it,
called the shadow namespace, is visible to the Internet.

The shadow namespace contains the name-to-address and address-to-name
mappings of only those hosts that are accessible from the Internet through the
firewall. The addresses advertised may be the translated equivalents of internal
addresses. The shadow namespace may also contain one or more MX records to
direct mail from the Internet through the firewall to a mail server.

Since Movie U. has an Internet firewall that greatly limits access from the Internet to
the internal network, we elected to create a shadow namespace. For the movie.edu
zone, the only information we need to give out is about the domain name movie.edu
(an SOA record and a few NS records), the bastion host
(postmanrings2x.movie.edu), and our new external name server, ns.movie.edu,
which also functions as an external web server, www.movie.edu. The address of the
external interface on the bastion host is 200.1.4.2, while the address of the
name/web server is 200.1.4.3. The shadow movie.edu zone data file looks like this:

@ IN SOA ns.movie.edu. hostmaster.movie.edu. (
 1 ; Serial
 10800 ; Refresh
 3600 ; Retry
 604800 ; Expire
 86400) ; Default TTL

 IN NS ns.movie.edu.
 IN NS ns1.isp.net. ; our ISP's name server is a
movie.edu slave

 IN A 200.1.4.3
 IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

www IN CNAME movie.edu.

postmanrings2x IN A 200.1.4.2
 IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

;postmanrings2x.movie.edu handles mail addressed to ns.movie.edu
ns IN A 200.1.4.3
 IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

* IN MX 10 postmanrings2x.movie.edu.
 IN MX 100 mail.isp.net.

Note that there's no mention of any of the subdomains of movie.edu, including any
delegation to the name servers for those subdomains. That information isn't
necessary, since there's nothing in any of the subdomains you can get to from the
Internet and inbound mail addressed to hosts in the subdomains is caught by the
wildcard.
The 4.1.200.in-addr.arpa.dns file, which we need to reverse map the two Movie U. IP
addresses that hosts on the Internet might see, looks like this:

$TTL 1d
@ IN SOA ns.movie.edu. hostmaster.movie.edu. (
 1 ; Serial

 10800 ; Refresh
 3600 ; Retry
 604800 ; Expire
 86400) ; Default TTL

 IN NS ns.movie.edu.
 IN NS ns.isp.net.

2 IN PTR postmanrings2x.movie.edu.
3 IN PTR ns1.movie.edu.

One precaution we need to take is to make sure that the resolver on our bastion host
isn't configured to use the server on ns.movie.edu. Since that server can't see the
real, internal movie.edu, using it would render postmanrings2x.movie.edu unable to
map internal names to addresses or internal addresses to names.

14.4.5.1 Configuring the bastion host

The bastion host is a special case in a split-namespace configuration. The bastion
host has a foot in each environment: one network interface connects it to the Internet
and another connects it to the internal network. Now that we have split our
namespace in two, how can our bastion host see both the Internet namespace and
our internal namespace? If we configure it with the Internet's root name servers in its
root hints file, it will follow delegation from the Internet's edu name servers to an
external movie.edu name server with shadow zone data. It would be blind to our
internal namespace, which it needs to see to log connections, deliver inbound mail,
and more. On the other hand, if we configure it with our internal roots it won't see the
Internet namespace, which it clearly needs to do in order to function as a bastion
host. What to do?

If we have internal name servers that can resolve both internal and Internet domain
names—using the forwarding configuration earlier in this chapter, for example—we
can simply configure the bastion host's resolver to query those name servers. But if
we use forwarding internally, depending on the type of firewall we're running we may
also need to run a forwarder on the bastion host itself. If the firewall won't pass DNS
traffic, we'll need to run at least a caching-only name server, configured with the
Internet roots, on the bastion host so that our internal name servers will have
somewhere to forward their unresolved queries.

If our internal name servers aren't configured to forward zones, the name server on
our bastion host must be configured as a slave for movie.edu and any in-addr.arpa
zones in which it needs to resolve addresses. This way, if it receives a query for a
domain name in movie.edu, it'll use its local authoritative data to resolve the name. (If
our internal name servers support forward zones and are configured correctly, the
name server on our bastion host will never receive queries for names in movie.edu.)
If the domain name is in a subdomain of movie.edu, it'll follow NS records in the zone
data to query an internal name server for the name. Therefore, it doesn't need to be
configured as a slave for any movie.edu subdomains, such as fx.movie.edu, just the
"topmost" zone (see Figure 14-7).

Figure 14-7. A split DNS solution

14.5 Dial-up Connections

Another relatively recent development in networking that presents a challenge to
DNS is the dial-up Internet connection. When the Internet was young and DNS was
born, there was no such thing as a dial-up connection. With the enormous explosion
in the Internet's popularity and the propagation of Internet service providers who offer
dial-up Internet connectivity to the masses, a whole new breed of problems with
name service has been introduced.

We'll separate dial-up connections into two categories: simple dial-up, by which we
mean a single computer that connects to the Internet occasionally, when a user
manually initiates a connection; and dial-on-demand, which means one or more
computers that connect to the Internet automatically whenever they generate traffic
bound for the Internet. Often, the device that makes this dial-on-demand connectivity
possible is a small dial-up router with an analog modem or ISDN interface, such as
an Ascend Pipeline 25.

14.5.1 Simple Dial-up

The easiest way to deal with simple dial-up is to configure your dial-up computer's
resolver to use a name server provided by your ISP. Most ISPs run name servers for
their subscribers' use. If you're not sure whether your ISP provides name servers for
your use or if you don't know what their IP addresses are, check their web site, send
them email, or give them a call.

Some operating systems, including all modern versions of Windows, will let you
define a set of name servers for a particular dial-up provider. So, for example, you
can configure one set of name servers to use when you dial up Netcom and another
to use when you dial up your office. Unfortunately, if you're still using Windows 95,
defining name servers for your LAN connection overrides all your precious dial-up
settings.51
This configuration is usually adequate for most casual dial-up users. Name resolution
fails unless the dial-up connection is up, but that's not likely to be a problem since

51 A handy shareware utility called Netswitcher allows Windows 95 users to change resolver settings easily. For more
information, see http://www.netswitcher.com/.

there's no use for Internet name service without Internet connectivity. If you have
special needs that aren't addressed by this configuration, take a look at the
recommendations in the next section.

14.5.2 Dial-on-Demand

A more sophisticated dial-up solution is dial-on-demand. Dial-on-demand Internet
connections often use dedicated hardware, such as a small dial-up router, to provide
connectivity whenever it's needed. If you initiate a connection to the Internet from the
"remote" end of a dial-on-demand router, it dials up another router on the Internet
and routes your packets across. If the connection is idle for more than a specified
amount of time, the router drops the connection.

The challenge with DNS is to keep a local name server from continuously bringing
the dial-on-demand connection up and down like a yo-yo. This could be costly,
because you sometimes pay a premium for connection setup with technologies like
ISDN.

The most important strategy for minimizing this off-net traffic is to configure your
resolvers to use a minimal search list (or DNS suffix list, as it's called in Windows).
The default Windows search list (which you get when you don't specify an explicit list
of DNS suffixes to search) searches the ancestors of your local domain, which can
cause unnecessary remote traffic. For instance, say your local domain is
tinyoffice.majorcorp.com, and you have a dial-on-demand connection to Majorcorp's
enterprise network. On hosts without an explicit DNS suffix list, your default search
list is:

tinyoffice.majorcorp.com
majorcorp.com

A user typing telnet foo.tinyoffice.majorcorp.com to log into the workstation next to
him might inadvertently cause lookups of both of these addresses:

foo.tinyoffice.majorcorp.com.tinyoffice.majorcorp.com
foo.tinyoffice.majorcorp.com.majorcorp.com

before the correct domain name, foo.tinyoffice.majorcorp.com, is looked up.52 Since
your local name server is probably authoritative for tinyoffice.majorcorp.com, it can
tell that the first domain name, foo.tinyoffice.majorcorp.com.tinyoffice.majorcorp.com,
is bogus. (It ends in com.tinyoffice.majorcorp.com, so it would require the existence
of a com subdomain of your local domain, and there isn't one.) But it can't tell about
the second domain name without talking to a majorcorp.com name server first. If
there isn't one locally, it'll have to bring up that dial-on-demand connection.

The easiest way to prevent these unnecessary queries is to trim the parent domain
out of your search list explicitly by setting a DNS suffix list in the resolver
configuration. In this example, a DNS suffix list tinyoffice.majorcorp.com (just one
entry) would probably cause fewer failed off-site lookups.
If many of the names your users look up are in your parent zone, you might also
consider configuring your local name server as a slave for your parent zone. At least
that way you'll bring up the link at most only once per refresh interval to resolve

52 The exact behavior depends on which version of Windows the user is running. Older versions of Windows exhibit this
behavior, but newer versions of Windows try to resolve any domain names containing at least one dot by themselves before
appending the search list. You'll find more details about resolver behavior in Chapter 6.

names in your parent zone. The same logic could be applied to nearly any zone your
local name server queries often.

14.6 Network Names and Numbers

The original DNS definitions didn't provide the ability to look up network names
based on a network number—a feature that was provided by the original HOSTS.TXT
file. More recently, a procedure for storing network names has been defined; this
procedure also works for subnets and subnet masks, so it goes significantly beyond
HOSTS.TXT. Moreover, it doesn't require any modification to the DNS server
software at all; it's based entirely on the clever use of pointer and address records.

If you remember, to map an IP address to a name in DNS, you reverse the IP address,
append in-addr.arpa, and look up the PTR data. This same technique is used to map a
network number to a network name; for example, to map network 15.0.0.0 to "HP
Internet." To look up the network number, include the trailing zeros to make it four
bytes and look up PTR data just as you would with a host's IP address. For example,
to find the network name for the old ARPANET, network 10.0.0.0, look up PTR data
for 0.0.0.10.in-addr.arpa. You'd get back an answer like ARPANET.ARPA.

If the ARPANET were subnetted, you'd also find an address record at 0.0.0.10.in-
addr.arpa. The address would be the subnet mask (255.255.0.0, for instance). If you
were interested in the subnet name instead of the network name, you'd apply the mask
to the IP address and look up the subnet number.

This technique allows you to map the network number to a name. To provide a
complete solution, there must be a way to map a network name to its network number.
This, again, is accomplished with PTR records. The network name has PTR data that
points to the network number (reversed, with in-addr.arpa appended).

Let's see what the data might look like in HP's zone data files (the HP Internet has
network number 15.0.0.0) and step through mapping a network number to a network
name.

Here are the partial contents of the hp.com.dns file:

;
; Map HP's network name to 15.0.0.0.
;
hp-net.hp.com. IN PTR 0.0.0.15.in-addr.arpa.

Following are the partial contents of the corp.hp.com.dns file:

;
; Map corp's subnet name to 15.1.0.0.
;
corp-subnet.corp.hp.com. IN PTR 0.0.1.15.in-addr.arpa.

Here are the partial contents of the 15.in-addr.arpa.dns file:

;
; Map 15.0.0.0 to hp-net.hp.com.
; HP's subnet mask is 255.255.248.0.
;
0.0.0.15.in-addr.arpa. IN PTR hp-net.hp.com.
 IN A 255.255.248.0

And here are the partial contents of the 1.15.in-addr.arpa.dns file:

;
; Map the 15.1.0.0 back to its subnet name.
;
0.0.1.15.in-addr.arpa. IN PTR corp-subnet.corp.hp.com.

Here's the procedure to look up the subnet name for the IP address 15.1.0.1:

1. Apply the default network mask for the address's class. Address 15.1.0.1 is a
Class A address, so the mask is 255.0.0.0. Applying the mask to the IP address
makes the network number 15.

2. Send a query (type=a or type=any) for 0.0.0.15.in-addr.arpa.

The query response contains address data. Since address data is at 0.0.0.15.in-
addr.arpa (the subnet mask—255.255.248.0), apply the subnet mask to the IP
address. This yields 15.1.0.0.

3. Send a query (type=a or type=any) for 0.0.1.15.in-addr.arpa.

The query response does not contain address data, so 15.1.0.0 is not further
subnetted.

4. Send a PTR query for 0.0.1.15.in-addr.arpa.

The query response contains the network name for 15.1.0.1: corp-
subnet.corp.hp.com.

In addition to mapping between network names and numbers, you can also list all the
networks for your domain with PTR records:

movie.edu. IN PTR 0.249.249.192.in-addr.arpa.
 IN PTR 0.253.253.192.in-addr.arpa.

Now for the bad news: despite the fact that RFC 1101 contains everything you need to
know to set this up, we know of only one software package that actually uses this type
of network name encoding, and very few administrators go to the trouble of adding
this information. Until software actually makes use of DNS-encoded network names,
about the only reason for setting this up is to show off. But that's a good enough
reason for many of us.

14.7 Additional Resource Records

There are a number of resource records that we haven't covered yet in this book. The
first of these, HINFO, has been around since the beginning but hasn't been widely
used. The others were defined in RFC 1183 and several successive RFCs. Most are
experimental, but some are on the standards track and are coming into more prevalent
use. We'll describe them here to give you a little head start in getting used to them.

14.7.1 Host Information

HINFO stands for host information. The record-specific data is a pair of strings
identifying the host's hardware type and operating system. The strings are supposed to
come from the MACHINE NAMES and OPERATING SYSTEM NAMES listed in
the Assigned Numbers RFC (currently RFC 1700), but this requirement is not
enforced; you can use your own abbreviations. The RFC isn't at all comprehensive, so
it's quite possible you won't find your system in the list anyway. Originally, host
information records were intended to let services like FTP determine how to interact
with a remote system. This would have made it possible to negotiate data type
transformations automatically, for example. Unfortunately, this didn't happen—few
sites supply accurate HINFO values for all their systems. Some network
administrators use HINFO records to help them keep track of the machine types,
instead of recording the machine types in a database or a notebook. Here are two
examples of HINFO records (note that the values in the CPU type and Operating
system fields must be surrounded with quotes if they include any whitespace):

;
; These machine names and system names did not come from RFC 1700
;
wormhole IN HINFO ACME-HW ACME-GW
cujo IN HINFO "Watch Dog Hardware" "Rabid OS"

You'd see the window shown in Figure 14-8 if you added an HINFO record with the
DNS console.

Figure 14-8. Adding an HINFO record with the DNS console

If you include whitespace in the values you type in the CPU type and Operating
systemfields, the DNS console will automatically put double quotes around them, so
don't use double quotes in either field—you'll get double double quotes.

Before you go adding them to your zone—particularly a zone visible from the
Internet—you should know that HINFO records can present a security risk. By
providing easily accessible information about a system, you may be making it easier
for a hacker to break into it.

14.7.2 AFSDB

AFSDB has a syntax like that of the MX record and semantics a bit like that of the NS
record. An AFSDB record gives either the location of an AFS cell database server or
of a DCE cell's authenticated name server. The type of server the record points to, and
the name of the host running the server, are contained in the record-specific data
portion of the record.

So what's an AFS cell database server? Or AFS, for that matter? AFS originally stood
for the Andrew File System, designed by the good folks at Carnegie-Mellon
University as part of the Andrew Project. (It's now an IBM product.) AFS is a
network filesystem, like NFS, but one that handles the latency of wide-area networks
much better than NFS does and provides local caching of files to enhance
performance. An AFS cell database server runs the process responsible for tracking
the location of filesets (groups of files) on various AFS file servers within a cell (a
logical group of hosts). So being able to find the AFS cell database server is the key to
finding any file in the cell.

And what's an authenticated name server? It holds location information about all sorts
of services available within a DCE cell. A DCE cell? That's a logical group of hosts

that share services offered by The Open Group's Distributed Computing Environment
(DCE).

And now, back to our story. To access another cell's AFS or DCE services across a
network, you must first find out where that cell's cell database servers or authenticated
name servers are. Hence the new record type. The domain name to which the record is
attached gives the name of the cell the server knows about. Cells are often share
names with DNS domains, so this usually doesn't look at all odd.

As we said, the AFSDB record's syntax is like the MX record's syntax. In place of the
preference value, you specify the number 1 for an AFS cell database server or 2 for a
DCE authenticated name server.

In place of the mail exchanger host, you specify the name of the host running the
server. Simple!

Say an fx.movie.edu system administrator sets up a DCE cell (which includes AFS
services) because she wants to experiment with distributed processing to speed up
graphics rendering. She runs both an AFS cell database server and a DCE name server
on bladerunner.fx.movie.edu, another cell database server on empire.fx.movie.edu, and
another DCE name server on aliens.fx.movie.edu. She should set up the AFSDB
records as follows:

; Our DCE cell is called fx.movie.edu, same as the domain name of the
zone
fx.movie.edu. IN AFSDB 1 bladerunner.fx.movie.edu.
 IN AFSDB 2 bladerunner.fx.movie.edu.
 IN AFSDB 1 empire.fx.movie.edu.
 IN AFSDB 2 aliens.fx.movie.edu.

14.7.3 X25, ISDN, and RT

These three record types were created specifically in support of research on next-
generation internets. Two of the records, X25 and ISDN, are simply address records
specific to X.25 and ISDN networks, respectively. Both take record-specific data
appropriate to the type of network. The X25 record type uses an X.121 address
(X.121 is the ITU-T recommendation that specifies the format of addresses used in
X.25 networks.) The ISDN record type uses an ISDN address.

ISDN stands for Integrated Services Digital Network. Telephone companies around
the world use ISDN protocols to allow their telephone networks to carry both voice
and data, creating an integrated network. Although ISDN's availability is spotty
throughout the U.S., it has been widely adopted in some international markets. Since
ISDN uses the telephone companies' networks, an ISDN address is just a phone
number and, in fact, consists of a country code, followed by an area code or city code,
then by a local phone number. Sometimes there are a few extra digits you wouldn't
see in a phone number at the end, called a subaddress. The subaddress is specified in a
separate field in the record-specific data.

Examples of the X25 and ISDN record types are:

relay.pink.com. IN X25 31105060845

delay.hp.com. IN ISDN 141555514539488
hep.hp.com. IN ISDN 141555514539488 004

These records are intended for use in conjunction with the Route Through (RT) record
type. RT is syntactically and semantically similar to the MX record type: it specifies
an intermediate host that will route packets (instead of mail) to a destination host. So
now, instead of being able to route mail only to a host that isn't directly connected to
the Internet, you can route any kind of IP packet to that host by using another host as
a forwarder. The packet could be part of a Telnet or FTP session or perhaps even a
DNS query!

Like MX, RT includes a preference value, which indicates how desirable delivery to a
particular host is. For example, the records:

housesitter.movie.edu. IN RT 10 relay.pink.com.
 IN RT 20 delay.hp.com.

instruct hosts to route packets bound for housesitter.movie.edu through relay.pink.com
(the first choice) or through delay.hp.com (the second choice).

The way RT works with X25 and ISDN (and even A) records is like this:

1. Internet host A wants to send a packet to host B, which is not connected to the
Internet.

2. Host A looks up host B's RT records. This search also returns all address
records (A, X25, and ISDN) for each intermediate host.

3. Host A sorts the list of intermediate hosts and looks for its own domain name.
If it finds it, it removes it and all intermediate hosts at higher preference
values. This is analogous to sendmail's "paring down" a list of mail
exchangers.

4. Host A examines the address record(s) for the most-preferred intermediate
host that remains. If host A is attached to a network that corresponds to the
type of address record indicated, it uses that network to send the packet to the
intermediate host. For example, if host A were trying to send a packet through
relay.pink.com, it would need connectivity to an X.25 network.

5. If host A lacks appropriate connectivity, it tries the next intermediate host
specified by the RT records. For example, if host A lacked X.25 connectivity,
it might fall back to connecting via ISDN to delay.hp.com.

This process continues until the packet is routed to the most-preferred intermediate
host. The most-preferred intermediate host may then deliver the packet directly to the
destination host's address (which may be A, X25, or ISDN).

Appendix A. DNS Message Format and
Resource Records

This appendix outlines the format of DNS messages and enumerates all the resource
record types. The resource records are shown in their textual format, as you would
specify them in a zone data file, and in their binary format, as they appear in DNS
messages. You'll find a few resource records here that weren't covered in the book
because they are experimental or obsolete.

We've included the portions of RFC 1035, written by Paul Mockapetris, that deal with
the textual format of master files (what we called zone data files in the book) or with
the DNS message format (for those of you who need to parse DNS packets).

A.1 Master File Format

(From RFC 1035, pages 33-35)

The format of these files is a sequence of entries. Entries are predominantly line-
oriented, though parentheses can be used to continue a list of items across a line
boundary, and text literals can contain CRLF within the text. Any combination of tabs
and spaces acts as a delimiter between the separate items that make up an entry. The
end of any line in the master file can end with a comment. The comment starts with a
semicolon (;).

The following entries are defined:

blank[comment]

$ORIGIN domain-name [comment]

$INCLUDE file-name [domain-name] [comment]

domain-namerr [comment]

blankrr [comment]

Blank lines, with or without comments, are allowed anywhere in the file.

Two control entries are defined: $ORIGIN and $INCLUDE. $ORIGIN is followed by
a domain name and resets the current origin for relative domain names to the stated
name. $INCLUDE inserts the named file into the current file and may optionally
specify a domain name that sets the relative domain name origin for the included file.
$INCLUDE may also have a comment. Note that an $INCLUDE entry never changes
the relative origin of the parent file, regardless of changes to the relative origin made
within the included file.

The last two forms represent RRs. If an entry for an RR begins with a blank, then the
RR is assumed to be owned by the last stated owner. If an RR entry begins with a
domain-name, then the owner name is reset.

rr contents take one of the following forms:

[
TTL] [
class]
type RDATA
[
class] [
TTL]
type RDATA

The RR begins with optional TTL and class fields, followed by a type and RDATA
field appropriate to the type and class. Class and type use the standard mnemonics;
TTL is a decimal integer. Omitted class and TTL values default to the last explicitly
stated values. Since type and class mnemonics are disjoint, the parse is unique.

domain-names make up a large share of the data in the master file. The labels in the
domain name are expressed as character strings and separated by dots. Quoting
conventions allow arbitrary characters to be stored in domain names. Domain names
that end in a dot are called absolute, and are taken as complete. Domain names that do
not end in a dot are called relative; the actual domain name is the concatenation of the
relative part with an origin specified in an $ORIGIN, $INCLUDE, or argument to the
master file-loading routine. A relative name is an error when no origin is available.

character-string is expressed in one of two ways: as a contiguous set of characters
without interior spaces, or as a string beginning with " and ending with ". Inside a " -
delimited string any character can occur, except for " itself, which must be quoted
using a backslash (\).

Because these files are text files, several special encodings are necessary to allow
arbitrary data to be loaded. In particular:

.

Of the root.

@

A free-standing @ is used to denote the current origin.

\X

Where X is any character other than a digit (0-9), \ is used to quote that
character so that its special meaning does not apply. For example, \. can be
used to place a dot character in a label.[A]

[A] Not implemented by BIND 4.8.3.

\DDD

Where each D is a digit in the octet corresponding to the decimal number
described by DDD. The resulting octet is assumed to be text and is not
checked for special meaning.[B]

[B] Not implemented by BIND 4.8.3.

()

Parentheses are used to group data that crosses a line boundary. In effect, line
terminations are not recognized within parentheses.[C]

[C] BIND 4.8.3 allows parentheses only on SOA and WKS resource records.

;

A semicolon is used to start a comment; the remainder of the line is ignored.

A.1.1 Character Case

(From RFC 1035, page 9)

For all parts of the DNS that are part of the official protocol, all comparisons between
character strings (e.g., labels, domain names, etc.) are done in a case-insensitive
manner. At present, this rule is in force throughout the domain system without
exception. However, future additions beyond current usage may need to use the full
binary octet capabilities in names, so attempts to store domain names in 7-bit ASCII
or use of special bytes to terminate labels, etc., should be avoided.

A.1.2 Types

Following is a complete list of resource record types. The textual representation is
used in master files. The binary representation is used in DNS queries and responses.
These resource records are described on pages 13-21 of RFC 1035.

A (address) (From RFC 1035, page 20)

Textual representation:

owner ttl class A address

Example:

localhost.movie.edu. IN A 127.0.0.1

Binary representation:

Address type code: 1
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ADDRESS

A 32 bit Internet address.

CNAME (canonical name) (From RFC 1035, page 14)

Textual representation:

owner ttl class CNAME canonical-dname

Example:

wh.movie.edu. IN CNAME wormhole.movie.edu.

Binary representation:

CNAME type code: 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / CNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

CNAME

A domain-name which specifies the canonical or primary name for the owner.
The owner name is an alias.

HINFO (host information) (From RFC 1035, page 14)

Textual representation:

owner ttl class HINFO cpu os

Example:

grizzly.movie.edu. IN HINFO VAX-11/780 UNIX

Binary representation:

HINFO type code: 13
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / CPU /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / OS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

CPU

A character-string which specifies the CPU type.

OS

A character-string which specifies the operating system type.

MB (mailbox domain name—
experimental)

(From RFC 1035, page
14)

Textual representation:

owner ttl class MB mbox-dname

Example:

al.movie.edu. IN MB robocop.movie.edu.

Binary representation:

MB type code: 7
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MADNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MADNAME

A domain-name which specifies a host which has the specified mailbox.

MD (mail destination—obsolete)

MD has been replaced with MX.

MF (mail forwarder—obsolete)

MF has been replaced with MX.

MG (mail group member—
experimental)

(From RFC 1035, page
16)

Textual representation:

owner ttl class MG mgroup-dname

Example:

admin.movie.edu. IN MG al.movie.edu.
 IN MG ed.movie.edu.
 IN MG jc.movie.edu.

Binary representation:

MG type code: 8
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MGMNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MGMNAME

A domain-name which specifies a mailbox which is a member of the mail
group specified by the domain name.

MINFO (mailbox or mail list information—
experimental)

(From RFC 1035,
page 16)

Textual representation:

owner ttl class MINFO resp-mbox error-mbox

Example:

admin.movie.edu. IN MINFO al.movie.edu. al.movie.edu.

Binary representation:

MINFO type code: 14
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / RMAILBX /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / EMAILBX /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

RMAILBX

A domain-name which specifies a mailbox which is responsible for the
mailing list or mailbox. If this domain name names the root, the owner of the
MINFO RR is responsible for itself. Note that many existing mailing lists use
a mailbox X-request for the RMAILBX field of mailing list X, e.g., Msgroup-
request for Msgroup. This field provides a more general mechanism.

EMAILBX

A domain-name which specifies a mailbox which is to receive error messages
related to the mailing list or mailbox specified by the owner of the MINFO RR
(similar to the ERRORS-TO: field which has been proposed). If this domain
name names the root, errors should be returned to the sender of the message.

MR (mail rename—experimental) (From RFC 1035, page 17)

Textual representation:

owner ttl class MR new-mbox

Example:

eddie.movie.edu. IN MR eddie.bornagain.edu.

Binary representation:

MR type code: 9
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / NEWNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NEWNAME

A domain-name which specifies a mailbox which is the proper rename of the
specified mailbox.

MX (mail exchanger) (From RFC 1035, page 17)

Textual representation:

owner ttl class MX preference exchange-dname

Example:

ora.com. IN MX 0 ora.ora.com.
 IN MX 10 ruby.ora.com.
 IN MX 10 opal.ora.com.

Binary representation:

MX type code: 15
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / EXCHANGE /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PREFERENCE

A 16 bit integer which specifies the preference given to this RR among others
at the same owner. Lower values are preferred.

EXCHANGE

A domain-name which specifies a host willing to act as a mail exchange for
the owner name.

NS (name server) (From RFC 1035, page 18)

Textual representation:

owner ttl class NS name-server-dname

Example:

movie.edu. IN NS terminator.movie.edu

Binary representation:

NS type code: 2
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / NSDNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NSDNAME

A domain-name which specifies a host which should be authoritative for the
specified class and domain.

NULL (null—experimental) (From RFC 1035, page 17)

Binary representation:

NULL type code: 10
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / anything /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Anything at all may be in the RDATA field so long as it is 65535 octets or less.

NULL is not implemented by BIND.

PTR (pointer) (From RFC 1035, page 18)

Textual representation:

owner ttl class PTR dname

Example:

1.249.249.192.in-addr.arpa. IN PTR wormhole.movie.edu.

Binary representation:

PTR type code: 12
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / PTRDNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PTRDNAME

A domain-name which points to some location in the domain name space.

SOA (start of authority) (From RFC 1035, pages 19-20)

Textual representation:

owner ttl class SOA source-dname mbox (serial refresh retry expire
minimum)

Example:

movie.edu. IN SOA terminator.movie.edu. al.robocop.movie.edu. (
 1 ; Serial
 10800 ; Refresh after 3 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 86400) ; Minimum TTL of 1 day

Binary representation:

SOA type code: 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / RNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | SERIAL |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | REFRESH |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RETRY |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | EXPIRE |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | MINIMUM |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MNAME

The domain-name of the name server that was the original or primary source
of data for this zone.

RNAME

A domain-name which specifies the mailbox of the person responsible for this
zone.

SERIAL

The unsigned 32 bit version number of the original copy of the zone. Zone
transfers preserve this value. This value wraps and should be compared using
sequence space arithmetic.

REFRESH

A 32 bit time interval before the zone should be refreshed.

RETRY

A 32 bit time interval that should elapse before a failed refresh should be
retried.

EXPIRE

A 32 bit time value that specifies the upper limit on the time interval that can
elapse before the zone is no longer authoritative.

MINIMUM

The unsigned 32 bit minimum TTL field that should be exported with any RR
from this zone.

TXT (text) (From RFC 1035, page 20)

Textual representation:

owner ttl class TXT txt-strings

Example:

cujo.movie.edu. IN TXT "Location: machine room dog house"

Binary representation:

TXT type code: 16
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TXT-DATA /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

TXT-DATA

One or more character-strings.

WKS (well-known services) (From RFC 1035, page 21)

Textual representation:

owner ttl class WKS address protocol service-list

Example:

terminator.movie.edu. IN WKS 192.249.249.3 TCP (telnet smtp ftp
shell domain)

Binary representation:

WKS type code: 11
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PROTOCOL | |
 +--+--+--+--+--+--+--+--+ |
 | |

 / BIT MAP /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ADDRESS

A 32 bit Internet address.

PROTOCOL

An 8 bit IP protocol number.

BIT MAP

A variable length bit map. The bit map must be a multiple of 8 bits long.

A.1.3 New Types from RFC 1183

AFSDB (Andrew File System Data Base—experimental)

Textual representation:

owner ttl class AFSDB subtype hostname

Example:

fx.movie.edu. IN AFSDB 1 bladerunner.fx.movie.edu.
 IN AFSDB 2 bladerunner.fx.movie.edu.
 IN AFSDB 1 empire.fx.movie.edu.
 IN AFSDB 2 aliens.fx.movie.edu.

Binary representation:

AFSDB type code: 18
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | SUBTYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / HOSTNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

SUBTYPE

Subtype 1 is an AFS cell database server. Subtype 2 is a DCE authenticated
name server.

HOSTNAME

A domain-name that specifies a host that has a server for the cell named by the
owner of the RR.

ISDN (Integrated Services Digital Network address—
experimental)

Textual representation:

owner ttl class ISDN ISDN-address sa

Example:

delay.hp.com. IN ISDN 141555514539488
hep.hp.com. IN ISDN 141555514539488 004

Binary representation:

ISDN type code: 20
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / ISDN ADDRESS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / SUBADDRESS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ISDN ADDRESS

A character-string that identifies the ISDN number of owner and DDI
(Direct Dial In), if any.

SUBADDRESS

An optional character-string specifying the subaddress.

RP (Responsible Person—experimental)

Textual representation:

owner ttl class RP mbox-dname txt-dname

Example:

; The current origin is fx.movie.edu
@ IN RP ajs.fx.movie.edu. ajs.fx.movie.edu.
bladerunner IN RP root.fx.movie.edu. hotline.fx.movie.edu.
 IN RP richard.fx.movie.edu. rb.fx.movie.edu.
ajs IN TXT "Arty Segue, (415) 555-3610"
hotline IN TXT "Movie U. Network Hotline, (415) 555-4111"
rb IN TXT "Richard Boisclair, (415) 555-9612"

Binary representation:

RP type code: 17
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MAILBOX /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TXTDNAME /
 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MAILBOX

A domain-name that specifies the mailbox for the responsible person.

TXTDNAME

A domain-name for which TXT RRs exist. A subsequent query can be
performed to retrieve the associated TXT resource records at txt-dname.

RT (Route Through—experimental)

Textual representation:

owner ttl class RT preference intermediate-host

Example:

sh.prime.com. IN RT 2 Relay.Prime.COM.
 IN RT 10 NET.Prime.COM.

Binary representation:

RT type code: 21
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / INTERMEDIATE /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PREFERENCE

A 16 bit integer that specifies the preference given to this RR among others at
the same owner. Lower values are preferred.

EXCHANGE

A domain-name that specifies a host that will serve as an intermediate in
reaching the host specified by owner.

X25 (X.25 address—experimental)

Textual representation:

owner ttl class X25 PSDN-address

Example:

relay.pink.com. IN X25 31105060845

Binary representation:

X25 type code: 19
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / PSDN ADDRESS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PSDN ADDRESS

A character-string that identifies the PSDN (Public Switched Data
Network) address in the X.121 numbering plan associated with owner.

A.1.4 New Types from RFC 1664

PX (pointer to X.400/RFC 822 mapping information)

Textual representation:

owner ttl class PX preference RFC822 address X.400 address

Example:

ab.net2.it. IN PX 10 ab.net2.it. O-ab.PRMD-net2.ADMDb.C-it.

Binary representation:

PX type code: 26
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PREFERENCE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MAP822 /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MAPX400 /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PREFERENCE

A 16 bit integer which specifies the preference given to this RR among others
at the same owner. Lower values are preferred.

MAP822

A domain-name element containing rfc822-domain, the RFC 822 part of the
RFC 1327 mapping information.

MAPX400

A domain-name element containing the value of x400-in-domain-syntax
derived from the X.400 part of the RFC 1327 mapping information.

A.1.5 New Types from RFC 2052

SRV (service location)

Textual representation:

owner ttl class SRV priority weight port target

Example:

_http._tcp.movie.edu. IN SRV 1 2 80 www.fx.movie.edu.
 IN SRV 1 1 8080 www1.fx.movie.edu.

Binary representation:

SRV type code: 33
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PRIORITY |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | WEIGHT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PORT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / TARGET /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PRIORITY

As for MX, the priority of this target host. A client MUST attempt to contact
the target host with the lowest-numbered priority it can reach; target hosts with
the same priority SHOULD be tried in pseudorandom order. The range is 0-
65535.

WEIGHT

Load balancing mechanism. When selecting a target host among those that
have the same priority, the chance of trying this one first SHOULD be
proportional to its weight. The range of this number is 1-65535. Domain
administrators are urged to use Weight 0 when there isn't any load balancing
to do, to make the RR easier to read for humans (less noisy).

PORT

The port on this target host of this service. The range is 0-65535. This is often
as specified in Assigned Numbers but need not be.

TARGET

As for MX, the domain name of the target host. There MUST be one or more
A records for this name. Implementors are urged, but not required, to return
the A record(s) in the Additional Data section. Name compression is to be
used for this field. A Target of "." means that the service is decidedly not
available at this domain.

A.1.6 Classes

(From RFC 1035, page 13)

CLASS fields appear in resource records. The following CLASS mnemonics and
values are defined:

IN

1: the Internet

CS

2: the CSNET class (obsolete—used only for examples in some obsolete
RFCs)

CH

3: the CHAOS class

HS

4: the Hesiod class

A.2 DNS Messages

To write programs that parse DNS messages, you need to understand the message
format. DNS queries and responses are most often contained within UDP datagrams.
Each message is fully contained within a UDP datagram. If the query and response
are sent over TCP, they are prefixed with a 2-byte value indicating the length of the
query or response, excluding the 2-byte length. The format and content of the DNS
message are as follows.

A.2.1 Message Format

(From RFC 1035, page 25)

All communications inside of the domain protocol are carried in a single format called
a message. The top level format of the message is divided into 5 sections (some of
which are empty in certain cases), shown below:

 +---------------------+
 | Header |
 +---------------------+
 | Question | the question for the name server
 +---------------------+
 | Answer | RRs answering the question
 +---------------------+
 | Authority | RRs pointing toward an authority
 +---------------------+
 | Additional | RRs holding additional information
 +---------------------+

The Header section is always present. The header includes fields that specify which of
the remaining sections are present, and also specify whether the message is a query or
a response, a standard query or some other opcode, etc.

The names of the sections after the header are derived from their use in standard
queries. The Question section contains fields that describe a question to a name
server. These fields are a query type (QTYPE), a query class (QCLASS), and a query
domain name (QNAME). The last three sections have the same format: a possibly
empty list of concatenated resource records (RRs). The Answer section contains RRs
that answer the question; the Authority section contains RRs that point toward an
authoritative name server; and the Additional records section contains RRs which
relate to the query, but are not strictly answers for the question.

A.2.2 Header Section Format

(From RFC 1035, pages 26-28)

The header contains the following fields:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ID

A 16 bit identifier assigned by the program which generates any kind of query.
This identifier is copied into the corresponding reply and can be used by the
requester to match up replies to outstanding queries.

QR

A one bit field which specifies whether this message is a query (0), or a
response (1).

OPCODE

A four bit field which specifies the kind of query in this message. This value is
set by the originator of a query and copied into the response. The values are:

0

A standard query (QUERY)

1

An inverse query (IQUERY)

2

A server status request (STATUS)

3-15

Reserved for future use

AA (Authoritative Answer)

This bit is valid in responses, and specifies that the responding name server is
an authority for the domain name in the Question section. Note that the
contents of the Answer section may have multiple owner names because of
aliases. The AA bit corresponds to the name which matches the query name,
or the first owner name in the Answer section.

TC (TrunCation)

This bit specifies that this message was truncated due to length greater than
that permitted on the transmission channel.

RD (Recursion Desired)

This bit may be set in a query and is copied into the response. If RD is set, it
directs the name server to pursue the query recursively. Recursive query
support is optional.

RA (Recursion Available)

This bit is set or cleared in a response, and denotes whether recursive query
support is available in the name server.

Z

Reserved for future use. Must be zero in all queries and responses.

RCODE (Response Code)

This 4 bit field is set as part of responses. The values have the following
interpretation:

0

No error condition

1

Format Error—The name server was unable to interpret the query.

2

Server Failure—The name server was unable to process this query due to a
problem with the name server.

3

Name Error—Meaningful only for responses from an authoritative name
server, this code signifies that the domain name referenced in the query does
not exist.

4

Not Implemented—The name server does not support the requested kind of
query.

5

Refused—The name server refuses to perform the specified operation for
policy reasons. For example, a name server may not wish to provide the
information to the particular requester, or a name server may not wish to
perform a particular operation (e.g., zone transfer) for particular data.

6-15

Reserved for future use.

QDCOUNT

An unsigned 16 bit integer specifying the number of entries in the Question
section.

ANCOUNT

An unsigned 16 bit integer specifying the number of resource records in the
Answer section.

NSCOUNT

An unsigned 16 bit integer specifying the number of name server resource
records in the Authority records section.

ARCOUNT

An unsigned 16 bit integer specifying the number of resource records in the
Additional records section.

A.2.3 Question Section Format

(From RFC 1035, pages 28-29)

The Question section is used to carry the "question" in most queries, i.e., the
parameters that define what is being asked. The section contains QDCOUNT (usually
1) entries, each of the following format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / QNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QTYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QCLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

QNAME

A domain name represented as a sequence of labels, where each label consists
of a length octet followed by that number of octets. The domain name
terminates with the zero length octet for the null label of the root. Note that
this field may be an odd number of octets; no padding is used.

QTYPE

A two octet code which specifies the type of the query. The values for this
field include all codes valid for a TYPE field, together with some more
general codes which can match more than one type of RR.

QCLASS

A two octet code that specifies the class of the query. For example, the
QCLASS field is IN for the Internet.

QCLASS values (From RFC 1035, page 13)

QCLASS fields appear in the Question section of a query. QCLASS values are a
superset of CLASS values; every CLASS is a valid QCLASS. In addition to CLASS
values, the following QCLASS is defined:

*

255 Any class

QTYPE values (From RFC 1035, pages 12-13)

QTYPE fields appear in the Question part of a query. QTYPES are a superset of
TYPEs, hence all TYPEs are valid QTYPEs. Also, the following QTYPEs are
defined:

AXFR

252 A request for a transfer of an entire zone

MAILB

253 A request for mailbox-related records (MB, MG, or MR)

MAILA

254 A request for mail agent RRs (obsolete—see MX)

*

255 A request for all records

A.2.4 Answer, Authority, and Additional Section Format

(From RFC 1035, pages 29-30)

The Answer, Authority, and Additional sections all share the same format: a variable
number of resource records, where the number of records is specified in the
corresponding count field in the header. Each resource record has the following
format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / /
 / NAME /
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | CLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TTL |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RDLENGTH |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
 / RDATA /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NAME

A domain name to which this resource record pertains.

TYPE

Two octets containing one of the RR type codes. This field specifies the
meaning of the data in the RDATA field.

CLASS

Two octets which specify the class of the data in the RDATA field.

TTL

A 32 bit unsigned integer that specifies the time interval (in seconds) that the
resource record may be cached before it should be discarded. Zero values are

interpreted to mean that the RR can only be used for the transaction in
progress, and should not be cached.

RDLENGTH

An unsigned 16 bit integer that specifies the length in octets of the RDATA
field.

RDATA

A variable length string of octets that describes the resource. The format of
this information varies according to the TYPE and CLASS of the resource
record. For example, if the TYPE is A and the CLASS is IN, the RDATA field
is a 4 octet ARPA Internet address.

A.2.5 Data Transmission Order

(From RFC 1035, pages 8-9)

The order of transmission of the header and data described in this document is
resolved to the octet level. Whenever a diagram shows a group of octets, the order of
transmission of those octets is the normal order in which they are read in English. For
example, in the following diagram, the octets are transmitted in the order they are
numbered.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 1 | 2 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 3 | 4 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 5 | 6 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Whenever an octet represents a numeric quantity, the left most bit in the diagram is
the high order or most significant bit. That is, the bit labeled zero is the most
significant bit. For example, the following diagram represents the value 170
(decimal).

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |1 0 1 0 1 0 1 0|
 +-+-+-+-+-+-+-+-+

Similarly, whenever a multi-octet field represents a numeric quantity, the left most bit
of the whole field is the most significant bit. When a multi-octet quantity is
transmitted the most significant octet is transmitted first.

A.3 Resource Record Data

A.3.1 Data Format

In addition to two- and four-octet integer values, resource record data can contain
domain-names or character-strings.

Domain name (From RFC 1035, page 10)

Domain names in messages are expressed in terms of a sequence of labels. Each label
is represented as a one octet length field followed by that number of octets. Since
every domain name ends with the null label of the root, a domain name is terminated
by a length byte of zero. The high order two bits of every length octet must be zero,
and the remaining six bits of the length field limit the label to 63 octets or less.

Message compression (From RFC 1035, page 30)

In order to reduce the size of messages, the domain system utilizes a compression
scheme which eliminates the repetition of domain names in a message. In this
scheme, an entire domain name or a list of labels at the end of a domain name is
replaced with a pointer to a prior occurrence of the same name.

The pointer takes the form of a two octet sequence:

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 1 1| OFFSET |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The first two bits are ones. This allows a pointer to be distinguished from a label,
since the label must begin with two zero bits because labels are restricted to 63 octets
or less. (The 10 and 01 combinations are reserved for future use.) The OFFSET field
specifies an offset from the start of the message (i.e., the first octet of the ID field in
the domain header). A zero offset specifies the first byte of the ID field, etc.

Character string (From RFC 1035, page 13)

character-string is a single length octet followed by that number of characters.
character-string is treated as binary information, and can be up to 256 characters
in length (including the length octet).

Appendix B. Installing the DNS Server from CD-
ROM

This brief appendix guides you through installing the Microsoft DNS Server from
CD-ROM.

1. Insert the Windows 2000 Server CD-ROM into your CD-ROM drive.
2. After a moment you'll see the CD's installation window. Click the Install

Add-On Components option.
3. When the Windows Components Wizard window appears, scroll down and

double-click on Networking Services.
4. In the resulting Networking Services window, check the box to the left of

Domain Name System (DNS) and click OK to close the window.
5. Click Next in the Windows Components Wizard window. After the

installation is finished, you'll be prompted to click Finished to end the wizard.
6. After the installation, you'll need to reboot. Following the reboot, the DNS

server will be running, and you'll see DNS in the Administrative Tools menu.

Appendix C. Converting from BIND to the
Microsoft DNS Server

This appendix covers the steps necessary to convert a BIND Version 4 name server to
a Microsoft DNS Server. This process is straightforward, since the Microsoft DNS
Server can read a BIND Version 4-style configuration file to obtain its configuration.
If you're running BIND Version 8 or 9, you're no doubt aware that the configuration
file format is drastically different. Unfortunately, the Microsoft DNS Server can't read
this version of the BIND configuration file. You should still read through this
appendix to see what's involved in the conversion, but you'll need to manually
"downgrade" your BIND configuration file to a format readable by the Microsoft
DNS Server.

C.1 Step 1: Change the DNS Server Startup Method to File

The first step is directing the DNS server to obtain its configuration from a file rather
than the Registry or an Active Directory server (or a combination of both). Start the
DNS console, right-click on the server name in the left pane, and choose Properties.
In the server properties window, click on the Advanced tab, which produces a
window like the one shown in Figure C-1.

Figure C-1. Changing the DNS server startup method

Change the Load zone data on startup parameter to From file and click OK.

C.2 Step 2: Stop the Microsoft DNS Server

The next step is stopping the DNS server: right-click on the server name in the DNS
console's left pane and choose All Tasks Stop.

C.3 Step 3: Change the Zone Data File Naming Convention

This step is optional. Chances are, your BIND zone data files don't follow the same
naming convention used by the Microsoft DNS Server. Recall from Chapter 4 that the
Microsoft convention is the name of the zone followed by the .dns extension—for
example, movie.edu.dns. You can continue to use your current naming convention,
but if you add new zones with the DNS console, they'll have the .dns extensions
unless you go out of your way to make the names conform to your scheme. If you're
not particularly attached to your naming scheme and don't want to fight the DNS
console every time you create a new zone, this Perl script will rename your zone data
files in the .dns style and modify your named.boot file accordingly:

name-convert.pl—Convert zone data file naming convention in a BIND
named.boot file to Microsoft *.dns format

die "usage: name-convert.pl path-to-named.boot\n" unless $ARGV[0];

open (BOOTIN, $ARGV[0]) || die "Can't open boot file for reading:
$!\n";
open (BOOTOUT, ">boot") || die "Can't open boot file for writing:
$!\n";

while (<BOOTIN>) {
 $dir="$1/" if /^directory\s+(.+).*$/;
 &changeit (1, $1, $2) if /^primary\s+(.+)\s+(.+)$/;
 &changeit (2, $1, $5, $2) if
/^secondary\s+([\w\.]+)\s+(((\d{1,3}\.){3}\
 d{1,3}\s+)+)(.+)$/;
 &changeit (3, "cache", $1) if /^cache\s+\.\s+(.+)$/;
}

sub changeit {
 local ($zonetype, $zonename, $oldfilename, $mastersips) = @_;
 $newfilename="$zonename.dns";
 rename ($dir.$oldfilename, $dir.$newfilename) || print "Error
renaming
 $oldfilename to $newfilename!\n";
 if ($zonetype == 1) {
 print BOOTOUT "primary $zonename $newfilename\n";
 } elsif ($zonetype == 2) {
 print BOOTOUT "secondary $zonename $mastersips
$newfilename\n";
 } else {
 print BOOTOUT "cache . $newfilename\n";
 }
}

The script takes one argument, the name of the name server boot file. For example:

name-convert.pl /etc/named.boot

It outputs a file called boot in the current directory, which is a Microsoft DNS Server
boot file with the zone data filenames changed. It's probably easiest to run the script
on the BIND name server (which is probably running Unix and therefore has Perl
installed), then copy over boot and the newly renamed *.dns zone data files.

C.4 Step 4: Copy the Files

The next step is copying the necessary files from the BIND name server to the
Windows 2000 server. You'll need to copy the name server configuration file, called
the boot file (which is usually /etc/named.boot) and all the zone data files for which
the BIND server is a primary master. The zone data files will be in the directory
specified by the directory directive in the boot file. The files should be copied to the
%SystemRoot%\system32\dns directory on the Windows 2000 server. The named.boot
file goes in that directory, too, but you need to rename it to just boot. One final note:
only the primary, secondary, and cache directives are supported. Any other directives
are ignored.

C.5 Step 5: Get a New Root Name Server Cache File

Now is a good time to make sure you've got the latest and greatest root name server
cache file. Follow the instructions in Chapter 4 to retrieve the file from
ftp.rs.internic.net. Be sure the name matches the one in the boot file's cache directive.
If you went through the name conversion process (step two), the file should be called
cache.dns.

C.6 Step 6: Restart the DNS Server

Restart the DNS server. The server will now read the BIND boot file for its
configuration information and—here's the nice part—update its configuration
information in the Registry to match what it read from the boot file.

If you want to the server to use the boot file permanently, you're finished now. You
can even add or delete zones using the DNS console; the server will update the boot
file. That's a nice improvement over Windows NT, which silently converted back to
loading startup data from the Registry if you made any changes with its DNS
Manager administration tool.

C.7 Step 7: Change the DNS Server Startup Method to Registry

Finally, you can configure the DNS server to load its configuration information from
the Registry or Active Directory (or both). Using the instructions from step one
above, change the boot method back to From registry or From Active Directory
and registry.

Appendix D. Top-Level Domains

This table lists all the two-letter country codes and all the top-level domains that aren't
countries. Not all of the countries are registered in the Internet namespace at the time
of this writing, but there aren't many missing.

Domain Country or organization Domain Country or organization
AC Ascension Island BF Burkina Faso
AD Andorra BG Bulgaria

AE United Arab Emirates BH Bahrain
AF Afghanistan BI Burundi
AG Antigua and Barbuda BJ Benin

AI Anguilla BM Bermuda
AL Albania BN Brunei Darussalam
AM Armenia BO Bolivia

AN Netherlands Antilles BR Brazil
AO Angola BS Bahamas
AQ Antarctica BT Bhutan

AR Argentina BV Bouvet Island
ARPA ARPA Internet BW Botswana
AS American Samoa BY Belarus

AT Austria BZ Belize
AU Australia CA Canada
AW Aruba CC Cocos (Keeling) Islands

AZ Azerbaijan CD
Congo, Democratic Republic
of the

BA Bosnia and Herzegovina CF Central African Republic

BB Barbados CG Congo
BD Bangladesh CH Switzerland
BE Belgium CI Cote d'Ivoire

CK Cook Islands GE Georgia
CL Chile GF French Guiana

CM Cameroon GG
Guernsey, Alderney, and Sark
(British Channel Islands)

CN China GH Ghana
CO Colombia GI Gibraltar

COM
Generic (formerly
Commercial) GL Greenland

CR Costa Rica GM Gambia

CU Cuba GN Guinea
CV Cape Verde GOV U.S. Federal Government
CX Christmas Island GP Guadeloupe

CY Cyprus GQ Equatorial Guinea
CZ Czech Republic GR Greece

DE Germany GS
South Georgia and the South
Sandwich Islands

DJ Djibouti GT Guatemala

DK Denmark GU Guam
DM Dominica GW Guinea-Bissau

DO Dominican Republic GY Guyana
DZ Algeria HK Hong Kong
EC Ecuador HM Heard and McDonald Islands

EDU Education HN Honduras
EE Estonia HR Croatia
EG Egypt HT Haiti

EH Western Sahara HU Hungary
ER Eritrea ID Indonesia
ES Spain IE Ireland

ET Ethiopia IL Israel
FI Finland IM Isle of Man
FJ Fiji IN India

FK
Falkland Islands
(Malvinas) INT International entities

FM
Micronesia, Federated
States of

IO British Indian Ocean Territory

FO Faroe Islands IQ Iraq
FR France IR Iran

FX France, metropolitan IS Iceland
GA Gabon IT Italy
GB United Kingdoma JE Jersey (British Channel Island)

GD Grenada JM Jamaica
a In practice, the United Kingdom
uses "UK" for its top-level
domain.

JO Jordan MR Mauritania
JP Japan MS Montserrat

KE Kenya MT Malta
KG Kyrgyzstan MU Mauritius
KH Cambodia MV Maldives

KI Kiribati MW Malawi
KM Comoros MX Mexico
KN Saint Kitts and Nevis MY Malaysia

KP
Korea, Democratic
People's Republic of MZ Mozambique

KR Korea, Republic of NA Namibia

KW Kuwait NATO
North Atlantic Treaty
Organization

KY Cayman Islands NC New Caledonia

KZ Kazakhstan NE Niger

LA
Lao People's Democratic
Republic NET

Generic (formerly Networking
Organizations)

LB Lebanon NF Norfolk Island
LC Saint Lucia NG Nigeria
LI Liechtenstein NI Nicaragua

LK Sri Lanka NL Netherlands
LR Liberia NO Norway

LS Lesotho NP Nepal
LT Lithuania NR Nauru

LU Luxembourg NU Niue
LV Latvia NZ New Zealand
LY Libyan Arab Jamahiriya OM Oman

MA Morocco ORG
Generic (formerly
Organizations)

MC Monaco PA Panama

MD Moldova, Republic of PE Peru
MG Madagascar PF French Polynesia
MH Marshall Islands PG Papua New Guinea

MIL U.S. Military PH Philippines

MK
Macedonia, the Former
Yugoslav Republic of PK Pakistan

ML Mali PL Poland
MM Myanmar PM St. Pierre and Miquelon
MN Mongolia PN Pitcairn

MO Macau PR Puerto Rico
MP Northern Mariana Islands PS Palestinian Authority
MQ Martinique PT Portugal

PW Palau TK Tokelau
PY Paraguay TM Turkmenistan
QA Qatar TN Tunisia

RE Reunion TO Tonga
RO Romania TP East Timor
RU Russian Federation TR Turkey

RW Rwanda TT Trinidad and Tobago
SA Saudi Arabia TV Tuvalu
SB Solomon Islands TW Taiwan, Province of China

SC Seychelles TZ Tanzania, United Republic of
SD Sudan UA Ukraine
SE Sweden UG Uganda

SG Singapore UK United Kingdom

SH St. Helena UM
United States Minor Outlying
Islands

SI Slovenia US United States

SJ
Svalbard and Jan Mayen
Islands UY Uruguay

SK Slovakia UZ Uzbekistan
SL Sierra Leone VA Holy See (Vatican City State)

SM San Marino VC
Saint Vincent and The
Grenadines

SN Senegal VE Venezuela
SO Somalia VG Virgin Islands (British)

SR Suriname VI Virgin Islands (U.S.)
ST Sao Tome and Principe VN Vietnam

SU
Union of Soviet Socialist
Republics

VU Vanuatu

SV El Salvador WF Wallis and Futuna Islands

SY Syrian Arab Republic WS Samoa
SZ Swaziland YE Yemen

TC Turks and Caicos Islands YT Mayotte
TD Chad YU Yugoslavia

TF
French Southern
Territories

ZA South Africa

TG Togo ZM Zambia
TH Thailand ZR Republic of Zaire

TJ Tajikistan ZW Zimbabwe

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of DNS on Windows 2000 is an African white-necked raven
(Corvus albicollis), a subspecies of raven, the largest of the crow-like birds at about
24 inches long. The sexes look alike; the female is slightly smaller. Perceived as
spirited or even impudent, the raven has a distinctive, hoarse, carrying call. They are
excellent flyers, hovering and gliding, and are safe in flight from predators. Ravens
are scavengers and eat carrion and small live animals, as well as some plants. They
sometimes hide and store excess food, and will occasionally carry food in their feet.

African raven nests, built in niches in rocks, are crafted of an underlying stick
structure, covered by grass, dirt, and rocks, then smaller twigs with soft materials such
as moss or rags, and finally a layer of grass or similar plant material. Ravens lay 3-6
mottled grayish-green eggs, and the young hatch after 18-20 days of incubation. Both
parents (a pair mated for life) will change the nest lining materials to adjust for
changes in temperature and climate.

The raven is a popular figure, both profane and sacred, in many legends. Ravens,
along with their relatives jays and crows, have long been considered omens of evil in
folklore, possibly due to the supposed annual tribute in feathers paid to the Devil; this
legend is probably based on the molting of feathers every summer, during which the
raven stays relatively well hidden-only this and nothing more. The Old Testament
lists ravens among "unclean" birds; ravens also fed Elijah by the brook. Other ancient
and medieval cultures considered the raven a symbol of virility or wisdom. An ancient
Norse saga describes the use of ravens by ocean navigators as guides to land, and
Norse mythology describes ravens as scouts for Odin. Native American folklore tells
that the raven created the world and its creatures.

Because they prey on locusts, mice, and rats, the white-necked raven is generally
welcomed in Africa (despite the occasional theft of domestic fowl). Like that of many
other wild animals, the raven's habitat is dwindling with expansion of the human
population.

Rachel Wheeler was the production editor and proofreader for DNS on Windows
2000, and Mary Anne Weeks Mayo was the copyeditor. Mary Brady provided quality
control, and Sada Preisch, Kimo Carter, and Edie Shapiro provided production
assistance. Nancy Crumpton wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout
with Quark™XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato.
Anne-Marie Vaduva converted the files from Microsoft Word to FrameMaker 5.5.6

using tools created by Mike Sierra. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon was
written by Nancy Kotary.

