

Advanced Rails

Other resources from O’Reilly

Related titles Ajax on Rails

Learning Ruby

Rails Cookbook™

RESTful Web Services

Ruby on Rails: Up and
Running

Ruby Pocket Reference

Test Driven Ajax (on Rails)

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Advanced Rails

Brad Ediger

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Advanced Rails
by Brad Ediger

Copyright © 2008 Brad Ediger. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Rachel Monaghan
Production Services: Octal Publishing, Inc.

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:

December 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Advanced Rails, the image of a common zebra, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51032-2

ISBN-13: 978-0-596-51032-9

[C]

http://safari.oreilly.com
mailto:corporate@oreilly.com

v

Table of Contents

Preface . ix

1. Foundational Techniques . 1
What Is Metaprogramming? 1
Ruby Foundations 4
Metaprogramming Techniques 23
Functional Programming 36
Examples 41
Further Reading 45

2. ActiveSupport and RailTies . 46
Ruby You May Have Missed 46
How to Read Code 49
ActiveSupport 57
Core Extensions 60
RailTies 75
Further Reading 78

3. Rails Plugins . 79
About Plugins 79
Writing Plugins 83
Plugin Examples 85
Testing Plugins 90
Further Reading 95

vi | Table of Contents

4. Database . 96
Database Management Systems 96
Large/Binary Objects 101
Advanced Database Features 109
Connecting to Multiple Databases 116
Caching 119
Load Balancing and High Availability 120
LDAP 124
Further Reading 126

5. Security . 127
Application Issues 127
Web Issues 137
SQL Injection 144
Ruby’s Environment 145
Further Reading 146

6. Performance . 147
Measurement Tools 148
Rails Optimization Example 155
ActiveRecord Performance 165
Architectural Scalability 173
Other Systems 181
Further Reading 184

7. REST, Resources, and Web Services . 185
What Is REST? 185
Benefits of a RESTful Architecture 205
RESTful Rails 209
Case Study: Amazon S3 231
Further Reading 235

8. i18n and L10n . 236
Locale 236
Character Encodings 237
Unicode 238
Rails and Unicode 241
Rails L10n 250
Further Reading 269

Table of Contents | vii

9. Incorporating and Extending Rails . 271
Replacing Rails Components 271
Incorporating Rails Components 284
Contributing to Rails 289
Further Reading 295

10. Large Projects . 296
Version Control 296
Issue Tracking 308
Project Structure 309
Rails Deployment 315
Further Reading 322

Index . 325

ix

Preface1

When I started working with Ruby and Rails in late 2004, there was almost no docu-
mentation on the Rails framework. Since then, there has been a tremendous number
of books, blogs, and articles written about creating web applications with Rails. But
many of them seemed to follow a common pattern: you could create a blog in 15
minutes; a to-do list application was simple. Many of the books I saw devoted an
entire chapter to installing Ruby and Rails. Today, there is no lack of resources for
the beginning and intermediate Rails developer.

But Rails is clearly useful for much more than toy blogs and to-do lists. The
37signals applications (Basecamp, Highrise, Backpack, and Campfire) are all built
with Rails; many of the Internet’s high-traffic sites such as Twitter, Penny Arcade,
and Yellowpages.com use it. Rails is now used in many high-profile places, yet
developers often have to fend for themselves when building such large applications,
as the most current and relevant information is often only found spread across vari-
ous other developers’ blogs.

Development and deployment of complex web projects is a multidisciplinary task,
and it will always remain so. In this book, I seek to weave together several different
topics relevant to Rails development, from the most basic foundations of the Ruby
programming language to the development of large Rails applications.

Prerequisites
As its title suggests, Advanced Rails is not a book for beginners. Readers should have
an understanding of the architecture of the Web, a good command of Ruby 1.8, and
experience building web applications with Ruby on Rails. We do not cover installa-
tion of Rails, the Rails API, or the Ruby language; working-level experience with all
of these is assumed.

x | Preface

I would recommend the following books as a prelude to this one:

• Programming Ruby, Second Edition, by Dave Thomas (Pragmatic Bookshelf):
Known as “the Pickaxe,” this is an excellent introduction to Ruby for program-
mers, and a comprehensive reference that will serve you for years. Without a
doubt the most essential book for Rails developers, no matter what skill level.

• The Ruby Programming Language, by David Flanagan and Yukihiro Matsumoto
(O’Reilly): Scheduled to be released in January 2008, this book is a comprehen-
sive introduction and reference to Ruby 1.8 as well as 1.9. It does an excellent job
of covering even the most difficult aspects of Ruby while still being accessible to
programmers learning it.

• Best of Ruby Quiz by James Edward Gray II (Pragmatic Bookshelf): 25 selected
quizzes from the Ruby Quiz (http://www.rubyquiz.com/); includes both the quiz-
zes and a discussion of their solutions. Solving programming puzzles and shar-
ing solutions with others is a great way to hone your Ruby skills.

• Agile Web Development with Rails, Second Edition, by Dave Thomas and David
Heinemeier Hansson (Pragmatic Bookshelf): The best and most comprehensive
book for learning Ruby on Rails. The second edition covers Rails 1.2, but most
concepts are applicable to Rails 2.0.

• Rails Cookbook, by Rob Orsini (O’Reilly): This contains “cookbook-style” solu-
tions to common problems in Rails, each one of which may be worth the price of
the book in time saved. Also worth reading are the similar books Rails Recipes by
Chad Fowler and Advanced Rails Recipes by Mike Clark and Chad Fowler (Prag-
matic Bookshelf).

Many varied subjects are covered in this book; I make an effort to introduce subjects
that may be unfamiliar (such as decentralized revision control) and provide refer-
ences to external resources that may be useful. Each chapter has a “Further Read-
ing” section with references that clarify or expand on the text.

I take a bottom-up approach to the concepts in this book. The first few chapters
cover the mechanics of metaprogramming in Ruby and the internals of Rails. As the
book progresses, these concepts assimilate into larger concepts, and the last several
chapters cover the “big-picture” concepts of managing large Rails software develop-
ment projects and integrating Rails into other systems.

This book is written for Rails 2.0. At the time of this writing, Rails 2.0 has been
released as a release candidate, but not in its final form. Details are subject to change,
but the concepts and techniques discussed in this book should be valid for Rails 2.0.

Preface | xi

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, keyboard accelerators (such
as Alt and Ctrl), plugins, gems, and libraries.

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, controls, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, interfaces, XML tags, HTML tags, macros, the
contents of files, or the output from commands.

Constant width italic
Shows text that should be replaced with user-supplied values.

Constant width bold
Used to highlight portions of code.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

xii | Preface

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Advanced Rails, by Brad Ediger.
Copyright 2008 Brad Ediger, 978-0-596-51032-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596510329

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see the web site:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596510329
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

Preface | xiii

Acknowledgments
No book is created without the help of many people. I owe a great debt of gratitude
to the many who helped create this work. Without their help and support, these
ideas would still be rattling around in my head.

Mike Loukides, my editor at O’Reilly, was instrumental in creating the idea for this
book. He helped me understand the type of book I really wanted to write, and provided
the encouragement needed to turn sketches of ideas into prose. Mike’s extensive knowl-
edge of the industry, the authorship process, and computer science in general were
invaluable.

I had an amazing team of technical reviewers, who caught many of my errors in the
manuscripts. Thanks are due to James Edward Gray II, Michael Koziarski, Leonard
Richardson, and Zed Shaw for their revisions. Any remaining errors were originated
and perpetuated on my own. (Should you find one of these errors, we’d love to hear
about it at http://www.oreilly.com/catalog/9780596510329/errata/.)

The production department at O’Reilly was very professional and accommodating of
my odd schedule; Keith Fahlgren, Rachel Monaghan, Rob Romano, Andrew Savikas,
Marlowe Shaeffer, and Adam Witwer all helped make this book usable and attractive.

I have many friends and colleagues who offered advice, support, criticism, and
review. Thanks to Erik Berry, Gregory Brown, Pat Eyler, James Edward Gray II,
Damon Hill, Jim Kane, John Lein, Tim Morgan, Keith Nazworth, Rob Norwood,
Brian Sage, Jeremy Weathers, and Craig Wilson for your input. Thanks also to Gary
and Jean Atkins, who, although they know nothing about Rails or software develop-
ment, never failed to ask me about my book’s progress and offer encouragement.

Others provided inspiration through their books and writings online, as well as dis-
cussions on mailing lists: François Beausoleil, David Black, Avi Bryant, Jamis Buck,
Ryan Davis, Mauricio Fernández, Eric Hodel, S. Robert James, Jeremy Kemper, Rick
Olson, Dave Thomas, and why the lucky stiff.

None of this would have been possible without Ruby or Rails. Thanks to Yukihiro
Matsumoto (Matz) for creating such a beautiful language, to David Heinemeier
Hansson for creating such a fun framework, and to the Ruby and Rails committers
and communities for maintaining them.

Thanks to my parents for their continual support.

Finally, thanks to my wonderful wife, Kristen, who put up with a year-long writing
process. She encouraged me to write a book when I thought it impossible, and sup-
ported me every step of the way.

1

Chapter 1 CHAPTER 1

Foundational Techniques1

Simplicity is prerequisite for reliability.
—Edsger W. Dijkstra

Since its initial release in July 2004, the Ruby on Rails web framework has been
steadily growing in popularity. Rails has been converting PHP, Java, and .NET devel-
opers to a simpler way: a model-view-controller (MVC) architecture, sensible
defaults (“convention over configuration”), and the powerful Ruby programming
language.

Rails had somewhat of a bad reputation for a lack of documentation during its first
year or two. This gap has since been filled by the thousands of developers who use,
contribute to, and write about Ruby on Rails, as well as by the Rails Documentation
project (http://railsdocumentation.org/). There are hundreds of blogs that offer tutori-
als and advice for Rails development.

This book’s goal is to collect and distill the best practices and knowledge embodied by
the community of Rails developers and present everything in an easy-to-understand,
compact format for experienced programmers. In addition, I seek to present facets of
web development that are often undertreated or dismissed by the Rails community.

What Is Metaprogramming?
Rails brought metaprogramming to the masses. Although it was certainly not the first
application to use Ruby’s extensive facilities for introspection, it is probably the most
popular. To understand Rails, we must first examine the parts of Ruby that make
Rails possible. This chapter lays the foundation for the techniques discussed in the
remainder of this book.

Metaprogramming is a programming technique in which code writes other code or
introspects upon itself. The prefix meta- (from Greek) refers to abstraction; code that
uses metaprogramming techniques works at two levels of abstraction simultaneously.

2 | Chapter 1: Foundational Techniques

Metaprogramming is used in many languages, but it is most popular in dynamic lan-
guages because they typically have more runtime capabilities for manipulating code as
data. Though reflection is available in more static languages such as C# and Java, it is
not nearly as transparent as in the more dynamic languages such as Ruby because the
code and data are on two separate levels at runtime.

Introspection is typically done on one of two levels. Syntactic introspection is the low-
est level of introspection—direct examination of the program text or token stream.
Template-based and macro-based metaprogramming usually operate at the syntactic
level.

Lisp encourages this style of metaprogramming by using S-expressions (essentially a
direct translation of the program’s abstract syntax tree) for both code and data.
Metaprogramming in Lisp heavily involves macros, which are essentially templates
for code. This offers the advantage of working on one level; code and data are both
represented in the same way, and the only thing that distinguishes code from data is
whether it is evaluated. However, there are some drawbacks to metaprogramming at
the syntactic level. Variable capture and inadvertent multiple evaluation are direct
consequences of having code on two levels of abstraction in the source evaluated in the
same namespace. Although there are standard Lisp idioms for dealing with these prob-
lems, they represent more things the Lisp programmer must learn and think about.

Syntactic introspection for Ruby is available through the ParseTree library, which
translates Ruby source into S-expressions.* An interesting application of this library
is Heckle,† a test-testing framework that parses Ruby source code and mutates it,
changing strings and flipping true to false and vice versa. The idea is that if you have
good test coverage, any mutation of your code should cause your unit tests to fail.

The higher-level alternative to syntactic introspection is semantic introspection, or
examination of a program through the language’s higher-level data structures.
Exactly how this looks differs between languages, but in Ruby it generally means
working at the class and method level: creating, rewriting, and aliasing methods;
intercepting method calls; and manipulating the inheritance chain. These techniques
are usually more orthogonal to existing code than syntactic methods, because they
tend to treat existing methods as black boxes rather than poking around inside their
implementations.

Don’t Repeat Yourself
At a high level, metaprogramming is useful in working toward the DRY principle
(Don’t Repeat Yourself). Also referred to as “Once and Only Once,” the DRY prin-
ciple dictates that you should only need to express a particular piece of informa-
tion once in a system. Duplication is usually unnecessary, especially in dynamic

* http://www.zenspider.com/ZSS/Products/ParseTree/

† http://rubyforge.org/projects/seattlerb

http://www.zenspider.com/ZSS/Products/ParseTree/
http://rubyforge.org/projects/seattlerb

What Is Metaprogramming? | 3

languages like Ruby. Just as functional abstraction allows us to avoid duplicating
code that is the same or nearly the same, metaprogramming allows us to avoid dupli-
cating similar concepts when they recur throughout an application.

Metaprogramming is primarily about simplicity. One of the easiest ways to get a feel
for metaprogramming is to look for repeated code and factor it out. Redundant code
can be factored into functions; redundant functions or patterns can often be fac-
tored out through the use of metaprogramming.

Design patterns cover overlapping territory here; patterns are designed
to minimize the number of times you have to solve the same problem.
In the Ruby community, design patterns have acquired something of a
negative reputation. To some developers, patterns are a common
vocabulary for describing solutions to recurring problems. To others,
they are overengineered.

To be sure, patterns can be overapplied. However, this need not be the
case if they are used judiciously. Design patterns are only useful inso-
far as they reduce cognitive complexity. In Ruby, some of the fine-
grained patterns are so transparent that it would be counterintuitive to
call them “patterns”; they are really idioms, and most programmers
who “think in Ruby” use them without thinking. Patterns should be
thought of as a vocabulary for describing architecture, not as a library
of prepackaged implementation solutions. Good Ruby design patterns
are vastly different from good C++ design patterns in this regard.

In general, metaprogramming should not be used simply to repeat code. You should
always evaluate the options to see if another technique, such as functional abstrac-
tion, would better suit the problem. However, in a few cases, repeating code via
metaprogramming is the best way to solve a problem. For example, when several
very similar methods must be defined on an object, as in ActiveRecord helper meth-
ods, metaprogramming can be used.

Caveats
Code that rewrites itself can be very hard to write and maintain. The programming
devices you choose should always serve your needs—they should make your life eas-
ier, not more difficult. The techniques illustrated here should be more tools in your
toolbox, not the only tools.

Bottom-Up Programming
Bottom-up programming is a concept borrowed from the Lisp world. The primary
concept in bottom-up programming is building abstractions from the lowest level. By
writing the lowest-level constructs first, you are essentially building your program on
top of those abstractions. In a sense, you are writing a domain-specific language in
which you build your programs.

4 | Chapter 1: Foundational Techniques

This concept is extremely useful in ActiveRecord. After creating your basic schema
and model objects, you can begin to build abstractions on top of those objects. Many
Rails projects start out by building abstractions on the model like this, before writ-
ing a single line of controller code or even designing the web interface:

class Order < ActiveRecord::Base
 has_many :line_items

 def total
 subtotal + shipping + tax
 end

 def subtotal
 line_items.sum(:price)
 end

 def shipping
 shipping_base_price + line_items.sum(:shipping)
 end

 def tax
 subtotal * TAX_RATE
 end
end

Ruby Foundations
This book relies heavily on a firm understanding of Ruby. This section will
explain some aspects of Ruby that are often confusing or misunderstood. Some of
this may be familiar, but these are important concepts that form the basis for the
metaprogramming techniques covered later in this chapter.

Classes and Modules
Classes and modules are the foundation of object-oriented programming in Ruby.
Classes facilitate encapsulation and separation of concerns. Modules can be used as
mixins—bundles of functionality that are added onto a class to add behaviors in lieu
of multiple inheritance. Modules are also used to separate classes into namespaces.

In Ruby, every class name is a constant. This is why Ruby requires class names to
begin with an uppercase letter. The constant evaluates to the class object, which is an
object of the class Class. This is distinct from the Class object, which represents the
actual class Class.* When we refer to a “class object” (with a lowercase C), we mean
any object that represents a class (including Class itself). When we refer to the “Class
object” (uppercase C), we mean the class Class, which is the superclass of all class
objects.

* If that weren’t confusing enough, the Class object has class Class as well.

Ruby Foundations | 5

The class Class inherits from Module; every class is also a module. However, there is
an important distinction. Classes cannot be mixed in to other classes, and classes
cannot extend objects; only modules can.

Method Lookup
Method lookup in Ruby can be very confusing, but it is quite regular. The easiest
way to understand complicated situations is to visualize the data structures that
Ruby creates behind the scenes.

Every Ruby object* has a set of fields in memory:

klass
A pointer to the class object of this object. (It is klass instead of class because
the latter is a reserved word in C++ and Ruby; if it were called class, Ruby
would compile with a C compiler but not with a C++ compiler. This deliberate
misspelling is used everywhere in Ruby.)

iv_tbl
“Instance Variable Table,” a hashtable containing the instance variables belong-
ing to this object.

flags
A bitfield of Boolean flags with some status information, such as the object’s
taint status, garbage collection mark bit, and whether the object is frozen.

Every Ruby class or module has the same fields, plus two more:

m_tbl
“Method Table,” a hashtable of this class or module’s instance methods.

super
A pointer to this class or module’s superclass.

These fields play a huge role in method lookup, and it is important that you under-
stand them. In particular, you should pay close attention to the difference between
the klass and super pointers of a class object.

The rules

The method lookup rules are very simple, but they depend on an understanding of
how Ruby’s data structures work. When a message is sent to an object,† the follow-
ing steps occur:

* Except immediate objects (Fixnums, symbols, true, false, and nil); we’ll get to those later.

† Ruby often co-opts Smalltalk’s message-passing terminology: when a method is called, it is said that one is
sending a message. The receiver is the object that the message is sent to.

6 | Chapter 1: Foundational Techniques

1. Ruby follows the receiver’s klass pointer and searches the m_tbl of that class
object for a matching method. (The target of a klass pointer will always be a
class object.)

2. If no method is found, Ruby follows that class object’s super pointer and contin-
ues the search in the superclass’s m_tbl.

3. Ruby progresses in this manner until the method is found or the top of the super
chain is reached.

4. If the method is not found in any object on the chain, Ruby invokes method_
missing on the receiver of the original method. This starts the process over again,
this time looking for method_missing rather than the original method.

These rules apply universally. All of the interesting things that method lookup
involves (mixins, class methods, and singleton classes) are consequences of the struc-
ture of the klass and super pointers. We will now examine this process in detail.

Class inheritance

The method lookup process can be confusing, so we’ll start simple. Here is the sim-
plest possible class definition in Ruby:

class A
end

This code generates the following data structures in memory (see Figure 1-1).

The double-bordered boxes represent class objects—objects whose klass pointer
points to the Class object. A’s super pointer refers to the Object class object, indicat-
ing that A inherits from Object. For clarity, from now on we will omit default klass
pointers to Class, Module, and Object where there is no ambiguity.

Figure 1-1. Data structures for a single class

Object

A

Classsuper

klass

klass

klass

Ruby Foundations | 7

The next-simplest case is inheritance from one class. Class inheritance simply fol-
lows the super pointers. For example, we will create a B class that descends from A:

class B < A
end

The resulting data structures are shown in Figure 1-2.

The super keyword always delegates along the method lookup chain, as in the fol-
lowing example:

class B
 def initialize
 logger.info "Creating B object"
 super
 end
end

The call to super in initialize will follow the standard method lookup chain, begin-
ning with A#initialize.

Class instantiation

Now we get a chance to see how method lookup is performed. We first create an
instance of class B:

obj = B.new

This creates a new object, and sets its klass pointer to B’s class object (see
Figure 1-3).

Figure 1-2. One level of inheritance

Object

A

super

B

super

8 | Chapter 1: Foundational Techniques

The single-bordered box around obj represents a plain-old object instance. Note that
each box in this diagram is an object instance. However, the double-bordered boxes
represent objects that are instances of the Class class (hence their klass pointer
points to the Class object).

When we send obj a message:

obj.to_s

this chain is followed:

1. obj’s klass pointer is followed to B; B’s methods (in m_tbl) are searched for a
matching method.

2. No methods are found in B. B’s super pointer is followed, and A is searched for
methods.

3. No methods are found in A. A’s super pointer is followed, and Object is searched
for methods.

4. The Object class contains a to_s method in native code (rb_any_to_s). This is
invoked, yielding a value like "#<B:0x1cd3c0>". The rb_any_to_s method exam-
ines the receiver’s klass pointer to determine what class name to display; there-
fore, B is shown even though the method invoked resides in Object.

Including modules

Things get more complicated when we start mixing in modules. Ruby handles mod-
ule inclusion with ICLASSes,* which are proxies for modules. When you include a

Figure 1-3. Class instantiation

* ICLASS is Mauricio Fernández’s term for these proxy classes. They have no official name but are of type
T_ICLASS in the Ruby source.

Object

A

super

B

super

obj klass

Ruby Foundations | 9

module into a class, Ruby inserts an ICLASS representing the included module into
the including class object’s super chain.

For our module inclusion example, let’s simplify things a bit by ignoring B for now.
We define a module and mix it in to A, which results in data structures shown in
Figure 1-4:

module Mixin
 def mixed_method
 puts "Hello from mixin"
 end
end

class A
 include Mixin
end

Here is where the ICLASS comes into play. The super link pointing from A to Object
is intercepted by a new ICLASS (represented by the box with the dashed line). The
ICLASS is a proxy for the Mixin module. It contains pointers to Mixin’s iv_tbl
(instance variables) and m_tbl (methods).

From this diagram, it is easy to see why we need proxy classes: the same module may
be mixed in to any number of different classes—classes that may inherit from differ-
ent classes (thus having different super pointers). We could not directly insert Mixin
into the lookup chain, because its super pointer would have to point to two different
things if it were mixed in to two classes with different parents.

When we instantiate A, the structures are as shown in Figure 1-5:

objA = A.new

Figure 1-4. Inclusion of a module into the lookup chain

Object

Mixin

super

A

super

Mixinklass

10 | Chapter 1: Foundational Techniques

We invoke the mixed_method method from the mixin, with objA as the receiver:

objA.mixed_method
>> Hello from mixin

The following method-lookup process takes place:

1. objA’s class, A, is searched for a matching method. None is found.

2. A’s super pointer is followed to the ICLASS that proxies Mixin. This proxy object
is searched for a matching method. Because the proxy’s m_tbl is the same as
Mixin’s m_tbl, the mixed_method method is found and invoked.

Many languages with multiple inheritance suffer from the diamond problem, which is
ambiguity in resolving method calls on objects whose classes have a diamond-shaped
inheritance graph, as shown in Figure 1-6.

Given this diagram, if an object of class D calls a method defined in class A that has
been overridden in both B and C, there is ambiguity about which method should be
called. Ruby resolves this by linearizing the order of inclusion. Upon a method call,
the lookup chain is searched linearly, including any ICLASSes that have been
inserted into the chain.

First of all, Ruby does not support multiple inheritance; however, multiple modules
can be mixed into classes and other modules. Therefore, A, B, and C must be mod-
ules. We see that there is no ambiguity here; the method chosen is the latest one that
was inserted into the lookup chain:

module A
 def hello
 "Hello from A"
 end
end

Figure 1-5. Method lookup for a class with an included module

Object

Mixin

super

A

super

Mixinklass

objA klass

Ruby Foundations | 11

module B
 include A
 def hello
 "Hello from B"
 end
end

module C
 include A
 def hello
 "Hello from C"
 end
end

class D
 include B
 include C
end

D.new.hello # => "Hello from C"

And if we change the order of inclusion, the result changes correspondingly:

class D
 include C
 include B
end

D.new.hello # => "Hello from B"

In this last example, where B is included last, the object graph looks like Figure 1-7
(for simplicity, pointers to Object and Class have been elided).

Figure 1-6. The diamond problem of multiple inheritance

A

B C

D

12 | Chapter 1: Foundational Techniques

The singleton class

Singleton classes (also metaclasses or eigenclasses; see the upcoming sidebar, “Single-
ton Class Terminology”) allow an object’s behavior to be different from that of other
objects of its class. You’ve probably seen the notation to open up a singleton class
before:

class A
end

objA = A.new
objB = A.new
objA.to_s # => "#<A:0x1cd0a0>"
objB.to_s # => "#<A:0x1c4e28>"

class <<objA # Open the singleton class of objA
 def to_s; "Object A"; end
end

objA.to_s # => "Object A"
objB.to_s # => "#<A:0x1c4e28>"

The class <<objA notation opens objA’s singleton class. Instance methods added to
the singleton class function as instance methods in the lookup chain. The resulting
data structures are shown in Figure 1-8.

Figure 1-7. Ruby’s solution for the diamond problem: linearization

A

C

B

super

D

super

klass

klass C

super

A

B

A

super

klass

klass

Ruby Foundations | 13

The objB instance is of class A, as usual. And if you ask Ruby, it will tell you that objA
is also of class A:

objA.class # => A

However, something different is going on behind the scenes. Another class object has
been inserted into the lookup chain. This object is the singleton class of objA. We
refer to it as “Class:objA” in this documentation. Ruby calls it a similar name:
#<Class:#<A:0x1cd0a0>>. Like all classes, the singleton class’s klass pointer (not
shown) points to the Class object.

The singleton class is marked as a virtual class (one of the flags is used to indicate that a
class is virtual). Virtual classes cannot be instantiated, and we generally do not see them
from Ruby unless we take pains to do so. When we ask Ruby for objA’s class, it traverses
the klass and super pointers up the hierarchy until it finds the first nonvirtual class.

Figure 1-8. Singleton class of an object

Singleton Class Terminology
The term metaclass is not particularly accurate when applied to singleton classes. Call-
ing a class “meta” implies that it is somehow more abstract than an ordinary class. This
is not the case; singleton classes are simply classes that belong to a particular instance.

True metaclasses are found in languages such as Smalltalk that have a rich metaobject
protocol. Smalltalk’s metaclasses are classes whose instances are classes. By parallel,
Ruby’s only metaclass is Class, because all Ruby classes are instances of Class.

A somewhat popular alternate term for a singleton class is eigenclass, from the German
eigen (“its own”). An object’s singleton class is its eigenclass (its own class).

Object

A

super

Class:objA
(virtual)

super

objA klass

objB klass

14 | Chapter 1: Foundational Techniques

Therefore, it tells us that objA’s class is A. This is important to remember: an object’s
class (from Ruby’s perspective) may not match the object pointed to by klass.

Singleton classes are called singleton for a reason: there can only be one singleton
class per object. Therefore, we can refer unambiguously to “objA’s singleton class” or
Class:objA. In our code, we can assume that the singleton class exists; in reality, for
efficiency, Ruby creates it only when we first mention it.

Ruby allows singleton classes to be defined on any object except Fixnums or symbols.
Fixnums and symbols are immediate values (for efficiency, they’re stored as themselves in
memory, rather than as a pointer to a data structure). Because they’re stored on their
own, they don’t have klass pointers, so there’s no way to alter their method lookup
chain.

You can open singleton classes for true, false, and nil, but the singleton class
returned will be the same as the object’s class. These values are singleton instances
(the only instances) of TrueClass, FalseClass, and NilClass, respectively. When you
ask for the singleton class of true, you will get TrueClass, as the immediate value
true is the only possible instance of that class. In Ruby:

true.class # => TrueClass
class << true; self; end # => TrueClass
true.class == (class << true; self; end) # => true

Singleton classes of class objects

Here is where it gets complicated. Keep in mind the basic rule of method lookup:
first Ruby follows an object’s klass pointer and searches for methods; then Ruby
keeps following super pointers all the way up the chain until it finds the appropriate
method or reaches the top.

The important thing to remember is that classes are objects, too. Just as a plain-old
object can have a singleton class, class objects can also have their own singleton
classes. Those singleton classes, like all other classes, can have methods. Since the
singleton class is accessed through the klass pointer of its owner’s class object,
the singleton class’s instance methods are class methods of the singleton’s owner.

The full set of data structures for the following code is shown in Figure 1-9:

class A
end

Class A inherits from Object. The A class object is of type Class. Class inherits from
Module, which inherits from Object. The methods stored in A’s m_tbl are instance
methods of A. So what happens when we call a class method on A?

A.to_s # => "A"

The same method lookup rules apply, with A as the receiver. (Remember, A is a constant
that evaluates to A’s class object.) First, Ruby follows A’s klass pointer to Class. Class’s
m_tbl is searched for a function named to_s. Finding none, Ruby follows Class’s super
pointer to Module, where the to_s function is found (in native code, rb_mod_to_s).

Ruby Foundations | 15

This should not be a surprise. There is no magic here. Class methods are found in
the exact same way as instance methods—the only difference is whether the receiver
is a class or an instance of a class.

Now that we know how class methods are looked up, it would seem that we could
define class methods on any class by defining instance methods on the Class object
(to insert them into Class’s m_tbl). Indeed, this works:

class A; end

from Module#to_s
A.to_s # => "A"

class Class
 def to_s; "Class#to_s"; end
end

A.to_s # => "Class#to_s"

That is an interesting trick, but it is of very limited utility. Usually we want to define
unique class methods on each class. This is where singleton classes of class objects
are used. To open up a singleton class on a class, simply pass the class’s name as the
object to the singleton class notation:

class A; end
class B; end

class <<A
 def to_s; "Class A"; end
end

A.to_s # => "Class A"
B.to_s # => "B"

The resulting data structures are shown in Figure 1-10. Class B is omitted for brevity.

Figure 1-9. Full set of data structures for a single class

Object

Module

super

Class

super

A klass

super

16 | Chapter 1: Foundational Techniques

The to_s method has been added to A’s singleton class, or Class:A. Now, when A.to_s
is called, Ruby will follow A’s klass pointer to Class:A and invoke the appropriate
method there.

There is one more wrinkle in method definition. In a class or module definition, self
always refers to the class or module object:

class A
 self # => A
end

So, inside A’s class definition, class <<A can also be written class <<self, since inside
that definition A and self refer to the same object. This idiom is used everywhere in
Rails to define class methods. This example shows all of the ways to define class
methods:

class A
 def A.class_method_one; "Class method"; end

 def self.class_method_two; "Also a class method"; end

 class <<A
 def class_method_three; "Still a class method"; end
 end

 class <<self
 def class_method_four; "Yet another class method"; end
 end
end

def A.class_method_five
 "This works outside of the class definition"
end

class <<A
 def A.class_method_six
 "You can open the metaclass outside of the class definition"
 end
end

Figure 1-10. Singleton class of a class

Class:Object
(virtual)

Class:A
(virtual)

super

Object

A

super

klass

klass

Ruby Foundations | 17

Print the result of calling each method in turn
%w(one two three four five six).each do |number|
 puts A.send(:"class_method_#{number}")
end

>> Class method
>> Also a class method
>> Still a class method
>> Yet another class method
>> This works outside of the class definition
>> You can open the metaclass outside of the class definition

This also means that inside a singleton class definition—as in any other class defini-
tion—self refers to the class object being defined. When we remember that the
value of a block or class definition is the value of the last statement executed, we can
see that the value of class <<objA; self; end is objA’s singleton class. The class
<<objA construct opens up the singleton class, and self (the singleton class) is
returned from the class definition.

Putting this together, we can open up the Object class and add an instance method to
every object that returns that object’s singleton class:

class Object
 def metaclass
 class <<self
 self
 end
 end
end

This method forms the basis of Metaid, which is described shortly.

Method missing

After all of that confusion, method_missing is remarkably simple. There is one rule: if
the whole method lookup procedure fails all the way up to Object, method lookup
is tried again, looking for a method_missing method rather than the original method.
If the method is found, it is called with the same arguments as the original method, with
the method name prepended. Any block given is also passed through.

The default method_missing function in Object (rb_method_missing) raises an exception.

Metaid
why the lucky stiff has created a tiny library for Ruby metaprogramming called
metaid.rb. This snippet is useful enough to include in any project in which meta-
programming is needed:*

* “Seeing Metaclasses Clearly.” http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html

http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html

18 | Chapter 1: Foundational Techniques

class Object
 # The hidden singleton lurks behind everyone
 def metaclass; class << self; self; end; end
 def meta_eval &blk; metaclass.instance_eval &blk; end

 # Adds methods to a metaclass
 def meta_def name, &blk
 meta_eval { define_method name, &blk }
 end

 # Defines an instance method within a class
 def class_def name, &blk
 class_eval { define_method name, &blk }
 end
end

This library defines four methods on every object:

metaclass
Refers to the singleton class of the receiver (self).

meta_eval
The equivalent of class_eval for singleton classes. Evaluates the given block in
the context of the receiver’s singleton class.

meta_def
Defines a method within the receiver’s singleton class. If the receiver is a class or
module, this will create a class method (instance method of the receiver’s single-
ton class).

class_def
Defines an instance method in the receiver (which must be a class or module).

Metaid’s convenience lies in its brevity. By using a shorthand for referring to and
augmenting metaclasses, your code will become clearer rather than being littered
with constructs like class << self; self; end. The shorter and more readable these
techniques are, the more likely you are to use them appropriately in your programs.

This example shows how we can use Metaid to examine and simplify our singleton
class hacking:

class Person
 def name; "Bob"; end
 def self.species; "Homo sapiens"; end
end

Class methods are added as instance methods of the singleton class:

Person.instance_methods(false) # => ["name"]
Person.metaclass.instance_methods -
 Object.metaclass.instance_methods # => ["species"]

Using the methods from Metaid, we could have written the method definitions as:

Person.class_def(:name) { "Bob" }
Person.meta_def(:species) { "Homo sapiens" }

Ruby Foundations | 19

Variable Lookup
There are four types of variables in Ruby: global variables, class variables, instance
variables, and local variables.* Global variables are stored globally, and local vari-
ables are stored lexically, so neither of them is relevant to our discussion now, as
they do not interact with Ruby’s class system.

Instance variables are specific to a certain object. They are prefixed with one @ sym-
bol: @price is an instance variable. Because every Ruby object has an iv_tbl struc-
ture, any object can have instance variables.

Since a class is also an object, a class can have instance variables. The following code
accesses an instance variable of a class:

class A
 @ivar = "Instance variable of A"
end

A.instance_variable_get(:@ivar) # => "Instance variable of A"

Instance variables are always resolved based on the object pointed to by self. Because
self is A’s class object in the class A ... end definition, @ivar belongs to A’s class object.

Class variables are different. Any instance of a class can access its class variables (which
start with @@). Class variables can also be referenced from the class definition itself.
While class variables and instance variables of a class are similar, they’re not the same:

class A
 @var = "Instance variable of A"
 @@var = "Class variable of A"

 def A.ivar
 @var
 end

 def A.cvar
 @@var
 end
end

A.ivar # => "Instance variable of A"
A.cvar # => "Class variable of A"

In this code sample, @var and @@var are stored in the same place: in A’s iv_tbl. How-
ever, they are different variables, because they have different names (the @ symbols are
included in the variable’s name as stored). Ruby’s functions for accessing instance vari-
ables and class variables check to ensure that the names passed are in the proper format:

A.instance_variable_get(:@@var)
~> -:17:in `instance_variable_get': `@@var' is not allowed as an instance
 variable name (NameError)

* There are also constants, but they shouldn’t vary. (They can, but Ruby will complain.)

20 | Chapter 1: Foundational Techniques

Class variables can be somewhat confusing to use. They are shared all the way down
the inheritance hierarchy, so subclasses that modify a class variable will modify the
parent’s class variable as well.

>> class A; @@x = 3 end
=> 3
>> class B < A; @@x = 4 end
=> 4
>> class A; @@x end
=> 4

This may be useful, but it may also be confusing. Generally, you either want class
instance variables—which are independent of the inheritance hierarchy—or the
class inheritable attributes provided by ActiveSupport, which propagate values in
a controlled, well-defined manner.

Blocks, Methods, and Procs
One powerful feature of Ruby is the ability to work with pieces of code as objects.
There are three classes that come into play, as follows:

Proc
A Proc represents a code block: a piece of code that can be called with argu-
ments and has a return value.

UnboundMethod
This is similar to a Proc; it represents an instance method of a particular class.
(Remember that class methods are instance methods of a class object, so
UnboundMethods can represent class methods, too.) An UnboundMethod must be
bound to a class before it can be invoked.

Method
Method objects are UnboundMethods that have been bound to an object with
UnboundMethod#bind. Alternatively, they can be obtained with Object#method.

Let’s examine some ways to get Proc and Method objects. We’ll use the Fixnum#+
method as an example. We usually invoke it using the dyadic syntax:

3 + 5 # => 8

However, it can be invoked as an instance method of a Fixnum object, like any other
instance method:

3.+(5) # => 8

We can use the Object#method method to get an object representing this instance
method. The method will be bound to the object that method was called on, 3.

add_3 = 3.method(:+)
add_3 # => #<Method: Fixnum#+>

This method can be converted to a Proc, or called directly with arguments:

Ruby Foundations | 21

add_3.to_proc # => #<Proc:0x00024b08@-:6>
add_3.call(5) # => 8
Method#[] is a handy synonym for Method#call.
add_3[5] # => 8

There are two ways to obtain an unbound method. We can call instance_method on
the class object:

add_unbound = Fixnum.instance_method(:+)
add_unbound # => #<UnboundMethod: Fixnum#+>

We can also unbind a method that has already been bound to an object:

add_unbound == 3.method(:+).unbind # => true
add_unbound.bind(3).call(5) # => 8

We can bind the UnboundMethod to any other object of the same class:

add_unbound.bind(15)[4] # => 19

However, the object we bind to must be an instance of the same class, or else we get
a TypeError:

add_unbound.bind(1.5)[4] # =>
~> -:16:in `bind': bind argument must be an instance of Fixnum (TypeError)
~> from -:16

We get this error because + is defined in Fixnum; therefore, the UnboundMethod object
we receive must be bound to an object that is a kind_of?(Fixnum). Had the + method
been defined in Numeric (from which both Fixnum and Float inherit), the preceding
code would have returned 5.5.

Blocks to Procs and Procs to blocks

One downside to the current implementation of Ruby: blocks are not always Procs,
and vice versa. Ordinary blocks (created with do...end or { }) must be attached to a
method call, and are not automatically objects. For example, you cannot say code_
block = { puts "abc" }. This is what the Kernel#lambda and Proc.new functions are for:
converting blocks to Procs.*

block_1 = lambda { puts "abc" } # => #<Proc:0x00024914@-:20>
block_2 = Proc.new { puts "abc" } # => #<Proc:0x000246a8@-:21>

There is a slight difference between Kernel#lambda and Proc.new. Returning from a
Proc created with Kernel#lambda returns the given value to the calling function;
returning from a Proc created with Proc.new attempts to return from the calling func-
tion, raising a LocalJumpError if that is impossible. Here is an example:

def block_test
 lambda_proc = lambda { return 3 }
 proc_new_proc = Proc.new { return 4 }

* Kernel#proc is another name for Kernel#lambda, but its usage is deprecated.

22 | Chapter 1: Foundational Techniques

 lambda_proc.call # => 3
 proc_new_proc.call # =>

 puts "Never reached"
end

block_test # => 4

The return statement in lambda_proc returns the value 3 from the lambda. Conversely,
the return statement in proc_new_proc returns from the calling function, block_test—
thus, the value 4 is returned from block_test. The puts statement is never executed,
because the proc_new_proc.call statement returns from block_test first.

Blocks can also be converted to Procs by passing them to a function, using & in the
function’s formal parameters:

def some_function(&b)
 puts "Block is a #{b} and returns #{b.call}"
end

some_function { 6 + 3 }
>> Block is a #<Proc:0x00025774@-:7> and returns 9

Conversely, you can also substitute a Proc with & when a function expects a block:

add_3 = lambda {|x| x+3}
(1..5).map(&add_3) # => [4, 5, 6, 7, 8]

Closures

Closures are created when a block or Proc accesses variables defined outside of its
scope. Even though the containing block may go out of scope, the variables are kept
around until the block or Proc referencing them goes out of scope. A simplistic exam-
ple, though not practically useful, demonstrates the idea:

def get_closure
 data = [1, 2, 3]
 lambda { data }
end
block = get_closure
block.call # => [1, 2, 3]

The anonymous function (the lambda) returned from get_closure references the local
variable data, which is defined outside of its scope. As long as the block variable is in
scope, it will hold its own reference to data, and that instance of data will not be
destroyed (even though the get_closure function returns). Note that each time
get_closure is called, data references a different variable (since it is function-local):

block = get_closure
block2 = get_closure

block.call.object_id # => 76200
block2.call.object_id # => 76170

Metaprogramming Techniques | 23

A classic example of closures is the make_counter function, which returns a counter
function (a Proc) that, when executed, increments and returns its counter. In Ruby,
make_counter can be implemented like this:

def make_counter(i=0)
 lambda { i += 1 }
end

x = make_counter
x.call # => 1
x.call # => 2

y = make_counter
y.call # => 1
y.call # => 2

The lambda function creates a closure that closes over the current value of the local
variable i. Not only can the variable be accessed, but its value can be modified. Each
closure gets a separate instance of the variable (because it is a variable local to a par-
ticular instantiation of make_counter). Since x and y contain references to different
instances of the local variable i, they have different state.

Metaprogramming Techniques
Now that we’ve covered the fundamentals of Ruby, we can examine some of the
common metaprogramming techniques that are used in Rails.

Although we write examples in Ruby, most of these techniques are applicable to any
dynamic programming language. In fact, many of Ruby’s metaprogramming idioms
are shamelessly stolen from either Lisp, Smalltalk, or Perl.

Delaying Method Lookup Until Runtime
Often we want to create an interface whose methods vary depending on some piece of
runtime data. The most prominent example of this in Rails is ActiveRecord’s attribute
accessor methods. Method calls on an ActiveRecord object (like person.name) are trans-
lated at runtime to attribute accesses. At the class-method level, ActiveRecord offers
extreme flexibility: Person.find_all_by_user_id_and_active(42, true) is translated
into the appropriate SQL query, raising the standard NoMethodError exception should
those attributes not exist.

The magic behind this is Ruby’s method_missing method. When a nonexistent method
is called on an object, Ruby first checks that object’s class for a method_missing
method before raising a NoMethodError. method_missing’s first argument is the name of
the method called; the remainder of the arguments correspond to the arguments passed
to the method. Any block passed to the method is passed through to method_missing.
So, a complete method signature is:

24 | Chapter 1: Foundational Techniques

def method_missing(method_id, *args, &block)
...

end

There are several drawbacks to using method_missing:

• It is slower than conventional method lookup. Simple tests indicate that method
dispatch with method_missing is at least two to three times as expensive in time
as conventional dispatch.

• Since the methods being called never actually exist—they are just intercepted at
the last step of the method lookup process—they cannot be documented or
introspected as conventional methods can.

• Because all dynamic methods must go through the method_missing method, the
body of that method can become quite large if there are many different aspects
of the code that need to add methods dynamically.

• Using method_missing restricts compatibility with future versions of an API.
Once you rely on method_missing to do something interesting with undefined
methods, introducing new methods in a future API version can break your users’
expectations.

A good alternative is the approach taken by ActiveRecord’s generate_read_methods
feature. Rather than waiting for method_missing to intercept the calls, ActiveRecord
generates an implementation for the attribute setter and reader methods so that they
can be called via conventional method dispatch.

This is a powerful method in general, and the dynamic nature of Ruby makes it pos-
sible to write methods that replace themselves with optimized versions of them-
selves when they are first called. This is used in Rails routing, which needs to be very
fast; we will see that in action later in this chapter.

Generative Programming: Writing Code On-the-Fly
One powerful technique that encompasses some of the others is generative
programming—code that writes code.

This technique can manifest in the simplest ways, such as writing a shell script to
automate some tedious part of programming. For example, you may want to popu-
late your test fixtures with a sample project for each user:

brad_project:
 id: 1
 owner_id: 1
 billing_status_id: 12

john_project:
 id: 2
 owner_id: 2
 billing_status_id: 4

...

Metaprogramming Techniques | 25

If this were a language without scriptable test fixtures, you might be writing these by
hand. This gets messy when the data starts growing, and is next to impossible when
the fixtures have strange dependencies on the source data. Naïve generative pro-
gramming would have you writing a script to generate this fixture from the source.
Although not ideal, this is a great improvement over writing the complete fixtures by
hand. But this is a maintenance headache: you have to incorporate the script into your
build process, and ensure that the fixture is regenerated when the source data changes.

This is rarely, if ever, needed in Ruby or Rails (thankfully). Almost every aspect of
Rails application configuration is scriptable, due in large part to the use of internal
domain-specific languages (DSLs). In an internal DSL, you have the full power of the
Ruby language at your disposal, not just the particular interface the library author
decided you should have.

Returning to the preceding example, ERb makes our job a lot easier. We can inject
arbitrary Ruby code into the YAML file above using ERb’s <% %> and <%= %> tags,
including whatever logic we need:

<% User.find_all_by_active(true).each_with_index do |user, i| %>
<%= user.login %>_project:
 id: <%= i %>
 owner_id: <%= user.id %>
 billing_status_id: <%= user.billing_status.id %>

<% end %>

ActiveRecord’s implementation of this handy trick couldn’t be simpler:

yaml = YAML::load(erb_render(yaml_string))

using the helper method erb_render:

def erb_render(fixture_content)
 ERB.new(fixture_content).result
end

Generative programming often uses either Module#define_method or class_eval and
def to create methods on-the-fly. ActiveRecord uses this technique for attribute
accessors; the generate_read_methods feature defines the setter and reader methods
as instance methods on the ActiveRecord class in order to reduce the number of
times method_missing (a relatively expensive technique) is needed.

Continuations
Continuations are a very powerful control-flow mechanism. A continuation repre-
sents a particular state of the call stack and lexical variables. It is a snapshot of a
point in time when evaluating Ruby code. Unfortunately, the Ruby 1.8 implementation
of continuations is so slow as to be unusable for many applications. The upcoming
Ruby 1.9 virtual machines may improve this situation, but you should not expect good
performance from continuations under Ruby 1.8. However, they are useful constructs,

26 | Chapter 1: Foundational Techniques

and continuation-based web frameworks provide an interesting alternative to frame-
works like Rails, so we will survey their use here.

Continuations are powerful for several reasons:

• Continuations are just objects; they can be passed around from function to
function.

• Continuations can be invoked from anywhere. If you hold a reference to a con-
tinuation, you can invoke it.

• Continuations are re-entrant. You can use continuations to return from a func-
tion multiple times.

Continuations are often described as “structured GOTO.” As such, they should be
treated with the same caution as any kind of GOTO construct. Continuations have lit-
tle or no place inside application code; they should usually be encapsulated within
libraries. I don’t say this because I think developers should be protected from them-
selves. Rather, continuations are general enough that it makes more sense to build
abstractions around them than to use them directly. The idea is that a programmer
should think “external iterator” or “coroutine” (both abstractions built on top of
continuations) rather than “continuation” when building the application software.

Seaside* is a Smalltalk web application framework built on top of continuations.
Continuations are used in Seaside to manage session state. Each user session corre-
sponds to a server-side continuation. When a request comes in, the continuation is
invoked and more code is run. The upshot is that entire transactions can be written
as a single stream of code, even if they span multiple HTTP requests. This power
comes from the fact that Smalltalk’s continuations are serializable; they can be writ-
ten out to a database or to the filesystem, then thawed and reinvoked upon a request.
Ruby’s continuations are nonserializable. In Ruby, continuations are in-memory only
and cannot be transformed into a byte stream.

Borges (http://borges.rubyforge.org/) is a straightforward port of Seaside 2 to Ruby.
The major difference between Seaside and Borges is that Borges must store all cur-
rent continuations in memory, as they are not serializable. This is a huge limitation
that unfortunately prevents Borges from being successful for web applications with
any kind of volume. If serializable continuations are implemented in one of the Ruby
implementations, this limitation can be removed.

The power of continuations is evident in the following Borges sample code, which
renders a list of items from an online store:

class SushiNet::StoreItemList < Borges::Component

 def choose(item)
 call SushiNet::StoreItemView.new(item)
 end

* http://seaside.st/

http://seaside.st/
http://borges.rubyforge.org/

Metaprogramming Techniques | 27

 def initialize(items)
 @batcher = Borges::BatchedList.new items, 8
 end

 def render_content_on(r)
 r.list_do @batcher.batch do |item|
 r.anchor item.title do choose item end
 end

 r.render @batcher
 end

end # class SushiNet::StoreItemList

The bulk of the action happens in the render_content_on method, which uses a
BatchedList (a paginator) to render a paginated list of links to products. But the fun
happens in the call to anchor, which stores away the call to choose, to be executed
when the corresponding link is clicked.

However, there is still vast disagreement on how useful continuations are for web
programming. HTTP was designed as a stateless protocol, and continuations for
web transactions are the polar opposite of statelessness. All of the continuations
must be stored on the server, which takes additional memory and disk space. Sticky
sessions are required, to direct a user’s traffic to the same server. As a result, if one
server goes down, all of its sessions are lost. The most popular Seaside application,
DabbleDB (http://dabbledb.com/), actually uses continuations very little.

Bindings
Bindings provide context for evaluation of Ruby code. A binding is the set of vari-
ables and methods that are available at a particular (lexical) point in the code. Any
place in Ruby code where statements may be evaluated has a binding, and that bind-
ing can be obtained with Kernel#binding. Bindings are just objects of class Binding,
and they can be passed around as any objects can:

class C
 binding # => #<Binding:0x2533c>
 def a_method
 binding
 end
end
binding # => #<Binding:0x252b0>
C.new.a_method # => #<Binding:0x25238>

The Rails scaffold generator provides a good example of the use of bindings:

class ScaffoldingSandbox
 include ActionView::Helpers::ActiveRecordHelper
 attr_accessor :form_action, :singular_name, :suffix, :model_instance

http://dabbledb.com/

28 | Chapter 1: Foundational Techniques

 def sandbox_binding
 binding
 end

 # ...
end

ScaffoldingSandbox is a class that provides a clean environment from which to ren-
der a template. ERb can render templates within the context of a binding, so that an
API is available from within the ERb templates.

part_binding = template_options[:sandbox].call.sandbox_binding
...
ERB.new(File.readlines(part_path).join,nil,'-').result(part_binding)

Earlier I mentioned that blocks are closures. A closure’s binding represents its
state—the set of variables and methods it has access to. We can get at a closure’s
binding with the Proc#binding method:

def var_from_binding(&b)
 eval("var", b.binding)
end

var = 123
var_from_binding {} # => 123
var = 456
var_from_binding {} # => 456

Here we are only using the Proc as a method by which to get the binding. By access-
ing the binding (context) of those blocks, we can access the local variable var with a
simple eval against the binding.

Introspection and ObjectSpace: Examining Data and Methods at
Runtime
Ruby provides many methods for looking into objects at runtime. There are object
methods to access instance variables. These methods break encapsulation, so use
them with care.

class C
 def initialize
 @ivar = 1
 end
end

c = C.new
c.instance_variables # => ["@ivar"]
c.instance_variable_get(:@ivar) # => 1

c.instance_variable_set(:@ivar, 3) # => 3
c.instance_variable_get(:@ivar) # => 3

Metaprogramming Techniques | 29

The Object#methods method returns an array of instance methods, including single-
ton methods, defined on the receiver. If the first parameter to methods is false, only
the object’s singleton methods are returned.

class C
 def inst_method
 end

 def self.cls_method
 end
end

c = C.new

class << c
 def singleton_method
 end
end

c.methods - Object.methods # => ["inst_method", "singleton_method"]
c.methods(false) # => ["singleton_method"]

Module#instance_methods returns an array of the class or module’s instance methods.
Note that instance_methods is called on the class, while methods is called on an
instance. Passing false to instance_methods skips the superclasses’ methods:

C.instance_methods(false) # => ["inst_method"]

We can also use Metaid’s metaclass method to examine C’s class methods:

C.metaclass.instance_methods(false) # => ["new", "allocate", "cls_method",
 "superclass"]

In my experience, most of the value from these methods is in satisfying curiosity.
With the exception of a few well-established idioms, there is rarely a need in produc-
tion code to reflect on an object’s methods. Far more often, these techniques can be
used at a console prompt to find methods available on an object—it’s usually
quicker than reaching for a reference book:

Array.instance_methods.grep /sort/ # => ["sort!", "sort", "sort_by"]

ObjectSpace

ObjectSpace is a module used to interact with Ruby’s object system. It has a few use-
ful module methods that can make low-level hacking easier:

• Garbage-collection methods: define_finalizer (sets up a callback to be called
just before an object is destroyed), undefine_finalizer (removes those call-
backs), and garbage_collect (starts garbage collection).

• _id2ref converts an object’s ID to a reference to that Ruby object.

• each_object iterates through all objects (or all objects of a certain class) and
yields them to a block.

30 | Chapter 1: Foundational Techniques

As always, with great power comes great responsibility. Although these methods can
be useful, they can also be dangerous. Use them judiciously.

An example of the proper use of ObjectSpace is found in Ruby’s Test::Unit frame-
work. This code uses ObjectSpace.each_object to enumerate all classes in existence
that inherit from Test::Unit::TestCase:

test_classes = []
ObjectSpace.each_object(Class) {
 | klass |
 test_classes << klass if (Test::Unit::TestCase > klass)
}

ObjectSpace, unfortunately, greatly complicates some Ruby virtual machines. In par-
ticular, JRuby performance suffers tremendously when ObjectSpace is enabled,
because the Ruby interpreter cannot directly examine the JVM’s heap for extant
objects. Instead, JRuby must keep track of objects manually, which adds a great
amount of overhead. As the same tricks can be achieved with methods like
Module.extended and Class.inherited, there are not many cases where ObjectSpace
is genuinely necessary.

Delegation with Proxy Classes
Delegation is a form of composition. It is similar to inheritance, except with more con-
ceptual “space” between the objects being composed. Delegation implies a “has-a”
rather than an “is-a” relationship. When one object delegates to another, there are
two objects in existence, rather than the one object that would result from an inherit-
ance hierarchy.

Delegation is used in ActiveRecord’s associations. The AssociationProxy class dele-
gates most methods (including class) to its target. In this way, associations can be
lazily loaded (not loaded until their data is needed) with a completely transparent
interface.

DelegateClass and Forwardable

Ruby’s standard library includes facilities for delegation. The simplest is
DelegateClass. By inheriting from DelegateClass(klass) and calling super(instance)
in the constructor, a class delegates any unknown method calls to the provided
instance of the class klass. As an example, consider a Settings class that delegates to
a hash:

require 'delegate'
class Settings < DelegateClass(Hash)
 def initialize(options = {})
 super({:initialized_at => Time.now - 5}.merge(options))
 end

Metaprogramming Techniques | 31

 def age
 Time.now - self[:initialized_at]
 end
end

settings = Settings.new :use_foo_bar => true

Method calls are delegated to the object
settings[:use_foo_bar] # => true
settings.age # => 5.000301

The Settings constructor calls super to set the delegated object to a new hash. Note
the difference between composition and inheritance: if we had inherited from Hash,
then Settings would be a hash; in this case, Settings has a hash and delegates to it.
This composition relationship offers increased flexibility, especially when the object
to be delegated to may change (a function provided by SimpleDelegator).

The Ruby standard library also includes Forwardable, which provides a simple inter-
face by which individual methods, rather than all undefined methods, can be dele-
gated to another object. ActiveSupport in Rails provides similar functionality with a
cleaner API through Module#delegate:

class User < ActiveRecord::Base
 belongs_to :person

 delegate :first_name, :last_name, :phone, :to => :person
end

Monkeypatching
In Ruby, all classes are open. Any object or class is fair game to be modified at any
time. This gives many opportunities for extending or overriding existing functionality.
This extension can be done very cleanly, without modifying the original definitions.

Rails takes advantage of Ruby’s open class system extensively. Opening classes and
adding code is referred to as monkeypatching (a term from the Python community).
Though it sounds derogatory, this term is used in a decidedly positive light; monkey-
patching is, on the whole, seen as an incredibly useful technique. Almost all Rails
plugins monkeypatch the Rails core in some way or another.

Disadvantages of monkeypatching

There are two primary disadvantages to monkeypatching. First, the code for one
method call may be spread over several files. The foremost example of this is in
ActionController’s process method. This method is intercepted by methods in up to
five different files during the course of a request. Each of these methods adds another
feature: filters, exception rescue, components, and session management. The end
result is a net gain: the benefit gained by separating each functional component into
a separate file outweighs the inflated call stack.

32 | Chapter 1: Foundational Techniques

Another consequence of the functionality being spread around is that it can be diffi-
cult to properly document a method. Because the function of the process method
can change depending on which code has been loaded, there is no good place to doc-
ument what each of the methods is adding. This problem exists because the actual
identity of the process method changes as the methods are chained together.

Adding Functionality to Existing Methods
Because Rails encourages the philosophy of separation of concerns, you often will
have the need to extend the functionality of existing code. Many times you will want
to “patch” a feature onto an existing function without disturbing that function’s
code. Your addition may not be directly related to the function’s original purpose: it
may add authentication, logging, or some other important cross-cutting concern.

We will examine several approaches to the problem of cross-cutting concerns, and
explain the one (method chaining) that has acquired the most momentum in the
Ruby and Rails communities.

Subclassing

In traditional object-oriented programming, a class can be extended by inheriting
from it and changing its data or behavior. This paradigm works for many purposes,
but it has drawbacks:

• The changes you want to make may be small, in which case setting up a new
class may be overly complex. Each new class in an inheritance hierarchy adds to
the mental overhead required to understand the code.

• You may need to make a series of related changes to several otherwise-unrelated
classes. Subclassing each one individually would be overkill and would separate
functionality that should be kept together.

• The class may already be in use throughout an application, and you want to
change its behavior globally.

• You may want to add or remove a feature at runtime, and have it take effect glo-
bally. (We will explore this technique with a full example later in the chapter.)

In more traditional object-oriented languages, these features would require complex
code. Not only would the code be complex, it would be tightly coupled to either the
existing code or the code that calls it.

Aspect-oriented programming

Aspect-oriented programming (AOP) is one technique that attempts to solve the
issues of cross-cutting concerns. There has been much talk about the applicability of
AOP to Ruby, since many of the advantages that AOP provides can already be

Metaprogramming Techniques | 33

obtained through metaprogramming. There is a Ruby proposal for cut-based AOP,*

but it may be months or years before this is incorporated.

In cut-based AOP, cuts are sometimes called “transparent subclasses” because they
extend a class’s functionality in a modular way. Cuts act as subclasses but without
the need to instantiate the subclass rather than the parent class.

The Ruby Facets library (facets.rubyforge.org) includes a pure-Ruby cut-based AOP
library.† It has some limitations due to being written purely in Ruby, but the usage is
fairly clean:

class Person
 def say_hi
 puts "Hello!"
 end
end

cut :Tracer < Person do
 def say_hi
 puts "Before method"
 super
 puts "After method"
 end
end

Person.new.say_hi
>> Before method
>> Hello!
>> After method

Here we see that the Tracer cut is a transparent subclass: when we create an instance
of Person, it is affected by Tracer without having to know about Tracer. We can also
change Person#say_hi without disrupting our cut.

For whatever reason, Ruby AOP techniques have not taken off. We will now intro-
duce the standard way to deal with separation of concerns in Ruby.

Method chaining

The standard Ruby solution to this problem is method chaining: aliasing an existing
method to a new name and overwriting its old definition with a new body. This new
body usually calls the old method definition by referring to the aliased name (the
equivalent of calling super in an inherited overriden method). The effect is that a fea-
ture can be patched around an existing method. Due to Ruby’s open class nature,
features can be added to almost any code from anywhere. Needless to say, this must
be done wisely so as to retain clarity.

* http://wiki.rubygarden.org/Ruby/page/show/AspectOrientedRuby

† http://facets.rubyforge.org/api/more/classes/Cut.html

http://wiki.rubygarden.org/Ruby/page/show/AspectOrientedRuby
http://facets.rubyforge.org/api/more/classes/Cut.html
facets.rubyforge.org

34 | Chapter 1: Foundational Techniques

There is a standard Ruby idiom for chaining methods. Assume we have some library
code that grabs a Person object from across the network:

class Person
 def refresh
 # (get data from server)
 end
end

This operation takes quite a while, and we would like to time it and log the results.
Leveraging Ruby’s open classes, we can just open up the Person class again and
monkeypatch the logging code into refresh:

class Person
 def refresh_with_timing
 start_time = Time.now.to_f
 retval = refresh_without_timing
 end_time = Time.now.to_f
 logger.info "Refresh: #{"%.3f" % (end_time-start_time)} s."
 retval
 end

 alias_method :refresh_without_timing, :refresh
 alias_method :refresh, :refresh_with_timing
end

We can put this code in a separate file (perhaps alongside other timing code), and, as
long as we require it after the original definition of refresh, the timing code will be
properly added around the original method call. This aids in separation of concerns
because we can separate code into different files based on its functional concern, not
necessarily based on the area that it modifies.

The two alias_method calls patch around the original call to refresh, adding our tim-
ing code. The first call aliases the original method as refresh_without_timing (giving
us a name by which to call the original method from refresh_with_timing); the sec-
ond method points refresh at our new method.

This paradigm of using a two alias_method calls to add a feature is common enough
that it has a name in Rails: alias_method_chain. It takes two arguments: the name of
the original method and the name of the feature.

Using alias_method_chain, we can now collapse the two alias_method calls into one
simple line:

 alias_method_chain :refresh, :timing

Modulization
Monkeypatching affords us a lot of power, but it pollutes the namespace of the patched
class. Things can often be made cleaner by modulizing the additions and inserting the
module in the class’s lookup chain. Tobias Lütke’s Active Merchant Rails plugin uses
this approach for the view helpers. First, a module is created with the helper method:

Metaprogramming Techniques | 35

module ActiveMerchant
 module Billing
 module Integrations
 module ActionViewHelper
 def payment_service_for(order, account, options = {}, &proc)

...
 end
 end
 end
 end
end

Then, in the plugin’s init.rb script, the module is included in ActionView::Base:

require 'active_merchant/billing/integrations/action_view_helper'
ActionView::Base.send(:include,
 ActiveMerchant::Billing::Integrations::ActionViewHelper)

It certainly would be simpler in code to directly open ActionView::Base and add the
method, but this has the advantage of modularity. All Active Merchant code is con-
tained within the ActiveMerchant module.

There is one caveat to this approach. Because any included modules are searched for
methods after the class’s own methods are searched, you cannot directly overwrite a
class’s methods by including a module:

module M
 def test_method
 "Test from M"
 end
end

class C
 def test_method
 "Test from C"
 end
end

C.send(:include, M)
C.new.test_method # => "Test from C"

Instead, you should create a new name in the module and use alias_method_chain:

module M
 def test_method_with_module
 "Test from M"
 end
end

class C
 def test_method
 "Test from C"
 end
end

36 | Chapter 1: Foundational Techniques

for a plugin, these two lines would go in init.rb
C.send(:include, M)
C.class_eval { alias_method_chain :test_method, :module }

C.new.test_method # => "Test from M"

Functional Programming
The paradigm of functional programming focuses on values rather than the side
effects of evaluation. In contrast to imperative programming, the functional style
deals with the values of expressions in a mathematical sense. Function application
and composition are first-class concepts, and mutable state (although it obviously
exists at a low level) is abstracted away from the programmer.

This is a somewhat confusing concept, and it is often unfamiliar even to experienced
programmers. The best parallels are drawn from mathematics, from which func-
tional programming is derived.

Consider the mathematical equation x = 3. The equals sign in that expression indi-
cates equivalence: “x is equal to 3.” On the contrary, the Ruby statement x = 3 is of a
completely different nature. That equals sign denotes assignment: “assign 3 to x.” In
a functional programming language, equals usually denotes equality rather than
assignment. The key difference here is that functional programming languages spec-
ify what is to be calculated; imperative programming languages tend to specify how
to calculate it.

Higher-Order Functions
The cornerstone of functional programming, of course, is functions. The primary
way that the functional paradigm influences mainstream Ruby programming is in the
use of higher-order functions (also called first-class functions, though these two terms
are not strictly equivalent). Higher-order functions are functions that operate on
other functions. Higher-order functions usually either take one or more functions as
an argument or return a function.

Ruby supports functions as mostly first-class objects; they can be created, manipu-
lated, passed, returned, and called. Anonymous functions are represented as Proc
objects, created with Proc.new or Kernel#lambda:

add = lambda{|a,b| a + b}
add.class # => Proc
add.arity # => 2

call a Proc with Proc#call
add.call(1,2) # => 3

alternate syntax
add[1,2] # => 3

Functional Programming | 37

The most common use for blocks in Ruby is in conjunction with iterators. Many pro-
grammers who come to Ruby from other, more imperative-style languages start out
writing code like this:

collection = (1..10).to_a
for x in collection
 puts x
end

The more Ruby-like way to express this is using an iterator, Array#each, and passing
it a block. This is second nature to seasoned Ruby programmers:

collection.each {|x| puts x}

This method is equivalent to creating a Proc object and passing it to each:

print_me = lambda{|x| puts x}
collection.each(&print_me)

All of this is to show that functions are first-class objects and can be treated as any
other object.

Enumerable
Ruby’s Enumerable module provides several convenience methods to be mixed in to
classes that are “enumerable,” or can be iterated over. These methods rely on an each
instance method, and optionally the <=> (comparison or “spaceship”) method.
Enumerable’s methods fall into several categories.

Predicates

These represent properties of a collection that may be true or false.

all?
Returns true if the given block evaluates to true for all items in the collection.

any?
Returns true if the given block evaluates to true for any item in the collection.

include?(x), member?(x)
Returns true if x is a member of the collection.

Filters

These methods return a subset of the items in the collection.

detect, find
Returns the first item in the collection for which the block evaluates to true, or
nil if no such item was found.

select, find_all
Returns an array of all items in the collection for which the block evaluates to
true.

38 | Chapter 1: Foundational Techniques

reject
Returns an array of all items in the collection for which the block evaluates to
false.

grep(x)
Returns an array of all items in the collection for which x === item is true. This
usage is equivalent to select{|item| x === item}.

Transformers

These methods transform a collection into another collection by one of several rules.

map, collect
Returns an array consisting of the result of the given block being applied to each
element in turn.

partition
Equivalent to [select(&block), reject(&block)].

sort
Returns a new array of the elements in this collection, sorted by either the given
block (treated as the <=> method) or the elements’ own <=> method.

sort_by
Like sort, but yields to the given block to obtain the values on which to sort. As
array comparison is performed in element order, you can sort on multiple fields
with person.sort_by{|p| [p.city, p.name]}. Internally, sort_by performs a
Schwartzian transform, so it is more efficient than sort when the block is expen-
sive to compute.

zip(*others)
Returns an array of tuples, built up from one element each from self and others:

puts [1,2,3].zip([4,5,6],[7,8,9]).inspect
>> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

When the collections are all of the same size, zip(*others) is equivalent to
([self]+others).transpose:

puts [[1,2,3],[4,5,6],[7,8,9]].transpose.inspect
>> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

When a block is given, it is executed once for each item in the resulting array:
[1,2,3].zip([4,5,6],[7,8,9]) {|x| puts x.inspect}
>> [1, 4, 7]
>> [2, 5, 8]
>> [3, 6, 9]

Functional Programming | 39

Aggregators

These methods aggregate or summarize the data.

inject(initial)
Folds an operation across a collection. Initially, yields an accumulator (initial
provides the first value) and the first object to the block. The return value is used
as the accumulator for the next iteration. Collection sum is often defined thus:

module Enumerable
 def sum
 inject(0){|total, x| total + x}
 end
end

If no initial value is given, the first iteration yields the first two items.

max
Returns the maximum value in the collection, as determined by the same logic as
the sort method.

min
Like max, but returns the minimum value in the collection.

Other

each_with_index
Like each, but also yields the 0-based index of each element.

entries, to_a
Pushes each element in turn onto an array, then returns the array.

The Enumerable methods are fun, and you can usually find a customized method to
do exactly what you are looking for, no matter how obscure. If these methods fail
you, visit Ruby Facets (http://facets.rubyforge.org) for some inspiration.

Enumerator
Ruby has yet another little-known trick up its sleeve, and that is Enumerator from the
standard library. (As it is in the standard library and not the core language, you must
require "enumerator" to use it.)

Enumerable provides many iterators that can be used on any enumerable object, but it
has one limitation: all of the iterators are based on the each instance method. If you
want to use some iterator other than each as the basis for map, inject, or any of the
other functions in Enumerable, you can use Enumerator as a bridge.

http://facets.rubyforge.org

40 | Chapter 1: Foundational Techniques

The signature of Enumerator.new is Enumerator.new(obj, method, *args), where obj is
the object to enumerate over, method is the base iterator, and args are any arguments
that the iterator receives. As an example, you could write a map_with_index function
(a version of map that passes the object and its index to the given block) with the fol-
lowing code:

require "enumerator"
module Enumerable
 def map_with_index &b
 enum_for(:each_with_index).map(&b)
 end
end

puts ("a".."f").map_with_index{|letter, i| [letter, i]}.inspect
>> [["a", 0], ["b", 1], ["c", 2], ["d", 3], ["e", 4], ["f", 5]]

The enum_for method returns an Enumerator object whose each method functions like
the each_with_index method of the original object. That Enumerator object has
already been extended with the instance methods from Enumerable, so we can just
call map on it, passing the given block.

Enumerator also adds some convenience methods to Enumerable, which are useful to
have. Enumerable#each_slice(n) iterates over slices of the array, n-at-a-time:

(1..10).each_slice(3){|slice| puts slice.inspect}
>> [1, 2, 3]
>> [4, 5, 6]
>> [7, 8, 9]
>> [10]

Similarly, Enumerable#each_cons(n) moves a “sliding window” of size n over the col-
lection, one at a time:

(1..10).each_cons(3){|slice| puts slice.inspect}
>> [1, 2, 3]
>> [2, 3, 4]
>> [3, 4, 5]
>> [4, 5, 6]
>> [5, 6, 7]
>> [6, 7, 8]
>> [7, 8, 9]
>> [8, 9, 10]

Enumeration is getting a facelift in Ruby 1.9. Enumerator is becoming part of the core
language. In addition, iterators return an Enumerator object automatically if they are
not given a block. In Ruby 1.8, you would usually do the following to map over the
values of a hash:

hash.values.map{|value| ... }

This takes the hash, builds an array of values, and maps over that array. To remove
the intermediate step, you could use an Enumerator:

hash.enum_for(:each_value).map{|value| ... }

Examples | 41

That way, we have a small Enumerator object whose each method behaves just as
hash’s each_value method does. This is preferable to creating a potentially large array
and releasing it moments later. In Ruby 1.9, this is the default behavior if the iterator
is not given a block. This simplifies our code:

hash.each_value.map{|value| ... }

Examples

Runtime Feature Changes
This example ties together several of the techniques we have seen in this chapter. We
return to the Person example, where we want to time several expensive methods:

class Person
 def refresh
 # ...
 end

 def dup
 # ...
 end
end

In order to deploy this to a production environment, we may not want to leave our
timing code in place all of the time because of overhead. However, we probably want
to have the option to enable it when debugging. We will develop code that allows us
to add and remove features (in this case, timing code) at runtime without touching
the original source.

First, we set up methods wrapping each of our expensive methods with timing com-
mands. As usual, we do this by monkeypatching the timing methods into Person
from another file to separate the timing code from the actual model logic:*

class Person
 TIMED_METHODS = [:refresh, :dup]
 TIMED_METHODS.each do |method|
 # set up _without_timing alias of original method
 alias_method :"#{method}_without_timing", method

 # set up _with_timing method that wraps the original in timing code
 define_method :"#{method}_with_timing" do
 start_time = Time.now.to_f
 returning(self.send(:"#{method}_without_timing")) do
 end_time = Time.now.to_f

* This code sample uses variable interpolation inside a symbol literal. Because the symbol is defined using a
double-quoted string, variable interpolation is just as valid as in any other double-quoted string: the sym-
bol :"sym#{2+2}" is the same symbol as :sym4.

42 | Chapter 1: Foundational Techniques

 puts "#{method}: #{"%.3f" % (end_time-start_time)} s."
 end
 end
 end
end

We add singleton methods to Person to enable or disable tracing:

class << Person
 def start_trace
 TIMED_METHODS.each do |method|
 alias_method method, :"#{method}_with_timing"
 end
 end

 def end_trace
 TIMED_METHODS.each do |method|
 alias_method method, :"#{method}_without_timing"
 end
 end
end

To enable tracing, we wrap each method call in the timed method call. To disable it,
we simply point the method call back to the original method (which is now only
accessible by its _without_timing alias).

To use these additions, we simply call the Person.trace method:

p = Person.new
p.refresh # => (...)

Person.start_trace
p.refresh # => (...)
-> refresh: 0.500 s.

Person.end_trace
p.refresh # => (...)

Now that we have the ability to add and remove the timing code during execution,
we can expose this through our application; we could give the administrator or
developer an interface to trace all or specified functions without restarting the appli-
cation. This approach has several advantages over adding logging code to each func-
tion separately:

• The original code is untouched; it can be changed or upgraded without affecting
the tracing code.

• When tracing is disabled, the code performs exactly as it did before tracing; the
tracing code is invisible in stack traces. There is no performance overhead when
tracing is disabled.

Examples | 43

However, there are some disadvantages to writing what is essentially self-modifying
code:

• Tracing is only available at the function level. More detailed tracing would
require changing or patching the original code. Rails code tends to address this
by making methods small and their names descriptive.

• Stack traces do become more complicated when tracing is enabled. With trac-
ing, a stack trace into the Person#refresh method would have an extra level:
#refresh_with_timing, then #refresh_without_timing (the original method).

• This approach may break when using more than one application server, as the
functions are aliased in-memory. The changes will not propagate between serv-
ers, and will revert when the server process is restarted. However, this can actu-
ally be a feature in production; typically, you will not want to profile all traffic in
a high-traffic production environment, but only a subset of it.

Rails Routing Code
The Rails routing code is perhaps some of the most conceptually difficult code in
Rails. The code faces several constraints:

• Path segments may capture multiple parts of the URL:

— Controllers may be namespaced, so the route ":controller/:action/:id"
can match the URL "/store/product/edit/15", with the controller being
"store/product".

— Routes may contain path_info segments that destructure multiple URL seg-
ments: the route "page/*path_info" can match the URL "/page/products/
top_products/15", with the path_info segment capturing the remainder of
the URL.

• Routes can be restricted by conditions that must be met in order for the route to
match.

• The routing system must be bidirectional; it is run forward to recognize routes
and in reverse to generate them.

• Route recognition must be fast because it is run once per HTTP request. Route
generation must be lightning fast because it may be run tens of times per HTTP
request (once per outgoing link) when generating a page.

Michael Koziarski’s new routing_optimisation code in Rails 2.0
(actionpack/lib/action_controller/routing_optimisation.rb) addresses the
complexity of Rails routing. This new code optimizes the simple case
of generation of named routes with no extra :requirements.

44 | Chapter 1: Foundational Techniques

Because of the speed needed in both generation and recognition, the routing code
modifies itself at runtime. The ActionController::Routing::Route class represents a
single route (one entry in config/routes.rb). The Route#recognize method rewrites
itself:

class Route
 def recognize(path, environment={})
 write_recognition
 recognize path, environment
 end
end

The recognize method calls write_recognition, which processes the route logic and
creates a compiled version of the route. The write_recognition method then over-
writes the definition of recognize with that definition. The last line in the original
recognize method then calls recognize (which has been replaced by the compiled
version) with the original arguments. This way, the route is compiled on the first call
to recognize. Any subsequent calls use the compiled version, rather than having to
reparse the routing DSL and go through the routing logic again.

Here is the body of the write_recognition method:

def write_recognition
 # Create an if structure to extract the params from a match if it occurs.
 body = "params = parameter_shell.dup\n#{recognition_extraction * "\n"}\nparams"
 body = "if #{recognition_conditions.join(" && ")}\n#{body}\nend"

 # Build the method declaration and compile it
 method_decl = "def recognize(path, env={})\n#{body}\nend"
 instance_eval method_decl, "generated code (#{__FILE_ _}:#{_ _LINE_ _})"
 method_decl
end

The local variable body is built up with the compiled route code. It is wrapped in a
method declaration that overwrites recognize. For the default route:

map.connect ':controller/:action/:id'

write_recognition generates code looking like this:

def recognize(path, env={})
 if (match = /(long regex)/.match(path))
 params = parameter_shell.dup
 params[:controller] = match[1].downcase if match[1]
 params[:action] = match[2] || "index"
 params[:id] = match[3] if match[3]
 params
 end
end

Further Reading | 45

The parameter_shell method returns the default set of parameters associated with
the route. This method body simply tests against the regular expression, populating
and returning the params hash if the regular expression matches. If there is no match,
the method returns nil.

Once this method body is created, it is evaluated in the context of the route using
instance_eval. This overwrites that particular route’s recognize method.

Further Reading
Minero AOKI’s Ruby Hacking Guide is an excellent introduction to Ruby’s internals.
It is being translated into English at http://rhg.rubyforge.org/.

Eigenclass (http://eigenclass.org/) has several more technical articles on Ruby.

Evil.rb is a library for accessing the internals of Ruby objects. It can change objects’
internal state, traverse and examine the klass and super pointers, change an
object’s class, and cause general mayhem. Use with caution. It is available at http://
rubyforge.org/projects/evil/. Mauricio Fernández gives a taste of Evil at http://eigenclass.
org/hiki.rb?evil.rb+dl+and+unfreeze.

Jamis Buck has a very detailed exploration of the Rails routing code, as well as sev-
eral other difficult parts of Rails, at http://weblog.jamisbuck.org/under-the-hood.

One of the easiest-to-understand, most well-architectured pieces of Ruby software I
have seen is Capistrano 2, also developed by Jamis Buck. Not only does Capistrano
have a very clean API, it is extremely well built from the bottom up. If you haven’t
been under Capistrano’s hood, it will be well worth your time. The source is avail-
able via Subversion from http://svn.rubyonrails.org/rails/tools/capistrano/.

Mark Jason Dominus’s book Higher-Order Perl (Morgan Kaufmann Publishers) was
revolutionary in introducing functional programming concepts into Perl. When
Higher-Order Perl was released in 2005, Perl was a language not typically known for
its functional programming support. Most of the examples in the book can be trans-
lated fairly readily into Ruby; this is a good exercise if you are familiar with Perl.
James Edward Gray II has written up his version in his “Higher-Order Ruby” series,
at http://blog.grayproductions.net/categories/higherorder_ruby.

The Ruby Programming Language, by David Flanagan and Yukihiro Matsumoto
(O’Reilly), is a book covering both Ruby 1.8 and 1.9. It is due out in January 2008.
The book includes a section on functional programming techniques in Ruby.

http://rhg.rubyforge.org/
http://eigenclass.org/
http://rubyforge.org/projects/evil/
http://rubyforge.org/projects/evil/
http://eigenclass.org/hiki.rb?evil.rb+dl+and+unfreeze
http://eigenclass.org/hiki.rb?evil.rb+dl+and+unfreeze
http://weblog.jamisbuck.org/under-the-hood
http://svn.rubyonrails.org/rails/tools/capistrano/
http://blog.grayproductions.net/categories/higherorder_ruby

46

Chapter 2CHAPTER 2

ActiveSupport and RailTies 2

[Programs] must be written for people to read, and
only incidentally for machines to execute.
—H. Abelson and G. Sussmann

Structure and Interpretation of Computer
Programs, MIT Press, 1985

We continue in our bottom-up view of Rails by examining the pieces that form the
basis for Rails. ActiveSupport is a library that provides generic, reusable functions
that are not specific to any one part of Rails. We can use many of these methods our-
selves when writing our application code. RailTies is the other half, containing parts
that glue Rails together in a Rails-specific way. Although we will not usually use Rail-
Ties functions in our own code, it is important and instructive to examine them.

Most of this chapter is nonsequential; feel free to skip around. However, in accor-
dance with our bottom-up approach to Rails, later chapters will build on this material.

Ruby You May Have Missed
It is very easy to overlook some of Ruby’s more useful methods. The best way to find
them is to read code. Here are some of the more obscure, but helpful, ones.

Array
• Array#* can operate as Array#join (if given a string or stringlike argument); it also does

repetition:
[1, 2, 3] * "; " # => "1; 2; 3"

[0] * 5 # => [0, 0, 0, 0, 0]

• Array#pack and String#unpack are useful for working with binary files. why the lucky
stiff uses Array#pack to stuff a series of numbers into a BMP-formatted sparkline graph
without any heavy image libraries, in 13 lines of code (http://redhanded.hobix.com/
inspect/sparklinesForMinimalists.html).

http://redhanded.hobix.com/inspect/sparklinesForMinimalists.html
http://redhanded.hobix.com/inspect/sparklinesForMinimalists.html

Hash

Dir | 47

Dir
• Dir.[] is shorthand for Dir.glob:

Dir["/s*"] # => ["/scripts", "/srv", "/selinux", "/sys", "/sbin"]

Enumerable
• Enumerable#all? returns true if the given block returns a true value for all items in the

enumerable. Similarly, Enumerable#any? returns true if the block returns a true value
for any item.

(1..10).all?{|i| i > 0 && i < 15} # => true

(1..10).any?{|i| i*i == 9} # => true
(1..10).any?{|i| i*i == 8} # => false

• Enumerable#grep filters an enumerable against another object using ===, affording all of
the usual flexibility of the === method:

[1, 2, 3].methods.grep(/^so/) # => ["sort!", "sort", "sort_by"]

[1, :two, "three", 4].grep(Fixnum) # => [1, 4]

• Enumerable#sort_by sorts the enumerable by the value of the given block, by perform-
ing a Schwartzian transform* on the data. It builds up a set of input elements, each
stored with the result of applying the block to that element. Because the block should
return the same value when called with the same input, it only needs to be called once
per input. Thus, O(n) calculations are done rather than O(n lg n).

However, the sort_by technique is counterproductive when key calculation is inexpen-
sive; in such cases, Enumerable#sort should be called with a custom comparison as a
block.

File
• File.join(*parts) is a platform-independent way to join path segments:

File.join("..", "test.rb") # => "../test.rb"

• File.open can take a block, which will automatically close the file when exited.

Hash
• Hash.new accepts a block, which provides a way to calculate a default value if the hash

has none. This is useful for caching. The first time a cached method is called with a
particular set of arguments, the block is invoked; it calculates the value and stores it
in the hash for future access. ActiveSupport has an implementation of hash caching in
caching_tools.rb, which generates hashes like this:

Hash.new do |as, a|
 as[a] = Hash.new do |bs, b|

* Named after Randal Schwartz, who popularized the map-sort-unmap technique in Perl.

Kernel

48 | Chapter 2: ActiveSupport and RailTies

 bs[b] = slow_method(a, b)
 end
end

• Hash#delete removes a value from the hash and returns it. This is useful for stripping
out keyword arguments from a hash before passing it along somewhere.

Kernel
• Kernel#Array tries to coerce its argument into an array:

Array([1,2,3]) # => [1, 2, 3]
Array(1..3) # => [1, 2, 3]
Array(1) # => [1]

Module
• Module#remove_method removes a method from the specified class. Module#undef_method,

on the other hand, actively prevents that method from being invoked on the class; it
inserts a special entry into the m_tbl that stops method lookup.

Proc
• Proc#[] is shorthand for Proc.call.

p = lambda{|x| x * 2}
p[3] # => 6

String
• String#%(args) interpolates the arguments into itself in the manner of sprintf. To pro-

vide more than one value for interpolation, you must supply an array.
"%.5f" % Math::PI # => "3.14159"

"%.5f, %.5f" % [Math::PI, Math::E] # => "3.14159, 2.71828"

• String#[](regex) returns the portion of the string that matches the given regular
expression. If there is no matching portion, nil is returned.

"asdf"[/sd/] # => "sd"
"asdf"[/^sd/] # => nil
"asdf"[/d(.)/,1] # => "f"

• String#scan(regex) collects all of the regular expression’s matches against the string
into an array. If the pattern has captures, each element of the array is itself an array of
captured text.

"asdf".scan(/[a-e]/) # => ["a", "d"]
"hello ruby; hello regex".scan(/hello (\w+)/) # => [["ruby"], ["regex"]]

How to Read Code | 49

How to Read Code
As implied by the quote introducing this chapter, the primary purpose of source
code should not be expressing implementation to a computer; it should be express-
ing meaning to people. Programming languages are an incredibly expressive and
terse medium for the concepts programmers talk about. Proposals to make program-
ming languages more English-like inevitably fail not because of poor implementa-
tion but because there is an inherent impedance mismatch between the domains of
English language and computer programming.

Thus, computer programming languages should be compared not by their levels of
raw power (any Turing-complete language trivially satisfies this requirement) or
speed of execution (for most applications, speed is not critical) but by their program-
mer efficiency—the speed at which a programmer can accurately translate his
thoughts into code.

Closely related to programmer efficiency is maintainer efficiency: the ability of a
maintainer (who may be the original developer, 12 months later) to read the code
and deduce what is going on. Perl is often criticized for being “write-only”; it is easy
to write code that is nearly unreadable to future developers. Such code would have
high programmer efficiency at the cost of maintainer efficiency.*

Ruby wins on both fronts: most Ruby code is easy to write and read, once you know
the basic syntax and semantics.† Still, diving into any large project such as Rails is
difficult. Here, we discuss ways to begin reading a codebase.

How to Locate Code
One disadvantage of the dynamic nature of Ruby is that there is little opportunity for
development-time reflection on Ruby code. When using a more static language, IDEs
can infer the type of variables, and from that deduce the methods available to those vari-
ables. Thus, they can offer assistance in coding by suggesting variable and method
names. In Ruby, in principle the only way to know the methods available to an object is
to evaluate the expression returning that object’s value. This is clearly impractical due to
side effects of evaluation or differences in development and execution environment. The
effect is that it is impossible to write a general code-completion-style IDE for Ruby.

In practice, this is usually not a problem. Ruby follows a development style that is
closer to Lisp than to C/C++. Developers interact with their application while cre-
ating it, and usually answer questions about the state of the system by asking

* I don’t mean to bash Perl here. It is very possible to write structured, easily readable code in Perl. But it takes
some self-discipline.

† For some amusing counterexamples, see http://iorcc.blogspot.com/.

http://iorcc.blogspot.com/

50 | Chapter 2: ActiveSupport and RailTies

questions of it while it is running. There are some methods to find information via
static examination of the code, though:

• A good text editor will help you cull through large amounts of source.

— TextMate (http://macromates.com/) is the semi-official editor of the Ruby on
Rails core team. It has great facilities for search (including search by regular
expressions) and comes with some pretty impressive Ruby and Rails features. It
supports projects (entire source trees managed as one unit). However, it is
available for Mac OS X only and costs 39 at the time of this writing.

— Vim (http://vim.org/) is an incredible open source text editor available for
just about every platform. It has a long learning curve, but it is extremely
powerful. If you use Vim with Rails, do yourself a favor and install the vim-
ruby package (http://rubyforge.org/projects/vim-ruby/).

• In conjunction with a good text editor, you should familiarize yourself with
command-line tools for text processing. Regular expressions (used with the tool
of your choice such as sed, Perl, or egrep) provide a more powerful query lan-
guage for finding patterns within large bodies of source.

• Search the Web. The popularity of Rails has created a fury of bloggers who write
about Ruby and Rails, and they usually fill in the gaps where the official docu-
mentation is lacking. Google Code Search* indexes thousands of open source
projects, and has useful features such as search by regular expression.

Reading the Call Stack
Most Rails developers are familiar with reading a stack trace when debugging excep-
tions. It can be very helpful to know the sequence in which framework and applica-
tion functions were called when something goes wrong. But what if we are just
curious? It doesn’t make sense to raise an exception just to generate a readable back-
trace. Luckily, we have some tools at our disposal to analyze the call stack in run-
ning code, nondestructively.

The first such tool is Ruby’s standard Kernel#caller method, which gives us a sim-
ple backtrace as an array of strings:

#!/usr/local/bin/ruby1.8.4

use the pretty-printer; call stacks can be huge
require 'pp'

class Test
 def foo
 bar
 end

* http://www.google.com/codesearch

http://www.google.com/codesearch
http://macromates.com/
http://vim.org/
http://rubyforge.org/projects/vim-ruby/

How to Read Code | 51

 def bar
 pp caller
 'baz'
 end
end

puts Test.new.foo

This gives us the call stack:

["./call_stack1.8.4.rb:8:in `foo'", "./call_stack1.8.4.rb:17"]
baz

However, this method is clunky. There is very little information that we can use pro-
grammatically; this is mainly for informational use. A more flexible stack trace mecha-
nism comes from Mauricio Fernández’s call_stack library,* which hooks entry and exit
of every method, providing that information at the request of the global call_stack
method. This library was developed because Ruby 1.8.5 broke the old implementation
of Binding.of_caller (which relied on a bug in 1.8.4). However, call_stack works on
1.8.4 as well. We get much more information through call_stack:

#!/usr/local/bin/ruby

require 'rubygems'
require 'call_stack'
require 'pp'

class Test
 def foo
 bar
 end

 def bar
 pp call_stack(-1)
 "baz"
 end
end

call_stack_on

puts Test.new.foo

call_stack_off

The call_stack_on and call_stack_off functions add and remove the hook func-
tions that keep track of function execution, so you must call call_stack_on before
starting to capture frames. The call_stack function yields an array of stack frames;
each frame is an array containing [class_name, method_name, filename, line, binding,
language]. This code prints:

* http://eigenclass.org/hiki.rb?call_stack

http://eigenclass.org/hiki.rb?call_stack

52 | Chapter 2: ActiveSupport and RailTies

[[:unknown, :unknown, "./call_stack1.8.5.rb", 18, nil, nil],
 [Test, :foo, "./call_stack1.8.5.rb", 9, #<Binding:0x13c8ba0>, :Ruby],
 [Test, :bar, "./call_stack1.8.5.rb", 13, #<Binding:0x13c8b78>, :Ruby]]
baz

The first line of that backtrace corresponds to the call_stack_on method. A warn-
ing: since call_stack works by hooking every method call and return, it slows execu-
tion even when the data collected is not being used.

We can use call_stack to our advantage to trace the flow of execution through a
Rails request. After installing the call_stack gem, place these two lines at the end of
environment.rb:

require 'call_stack'
call_stack_on

Then, you can place the following line in an action to log a stack trace with the class
name and function name for each stack frame:

logger.info(call_stack(-1).map{|frame| "#{frame[0]} : #{frame[1]}"} * "\n")

Debugging Ruby and Rails
Ruby ships with a built-in debugger, rdebug. However, Kent Sibilev has improved
upon this and released his own Ruby debugging library, ruby-debug. This is a full-
featured Ruby debugger that also includes breakpoint support for Rails.

Rails used to have built-in debugging support, based on Binding.of_
caller, that exploited a Ruby 1.8.4 bug. When the bug was fixed in
Ruby 1.8.5, the breakpointer broke and we had to rely on third-party
utilities to debug Rails applications.

To start using ruby-debug, install it with gem:

$ sudo gem install ruby-debug

When installed, ruby-debug installs an rdebug binary that is called just like the Ruby
executable. To debug simple Ruby scripts, just run your scripts with rdebug rather
than ruby. This is an extremely helpful way to examine the path Ruby takes to exe-
cute a script.

We can see an example of this with a simple time-reporting script based on Ruby
Reports: http://rubyreports.org/. This script reads a CSV file and generates a simple
PDF based on it:

time_report.rb

#!/usr/local/bin/ruby

require "rubygems"
require "ruport"

http://rubyreports.org/

How to Read Code | 53

table = Table('time.csv')
table.to_pdf(:file => 'time.pdf')

We load up this script under ruby-debug:

$ rdebug time_report.rb
./time_report.rb:3 require "rubygems"
(rdb:1)

The debugger breaks at the first line of Ruby code. We will skip over the require
statements with next (abbreviated n; it is the equivalent of “step over” in other
debuggers). We can also just hit the Return key to repeat the last command:

./time_report.rb:3 require "rubygems"
(rdb:1) n
./time_report.rb:4 require "ruport"
(rdb:1)
./time_report.rb:6 table = Table('time.csv')
(rdb:1)

Now we are at the first interesting line of code. We can “step into” Ruport’s code
(follow the function call downward) with step or s:

./time_report.rb:6 table = Table('time.csv')
(rdb:1) s
/usr/local/lib/ruby/gems/1.8/gems/ruport-1.2.0/lib/ruport/data/table.rb:805 table=
(rdb:1)

Now we are in Ruport’s library code, but we don’t have enough context to know
what is going on. Using the list (l) command, we show the context from the source:

(rdb:1) l
[800, 809] in .../gems/ruport-1.2.0/lib/ruport/data/table.rb
 800 # # accepts all Data::Table.load options, including block
 801 #
 802 # t = Table("foo.csv")
 803 # t = Table("bar.csv", :has_names => false)
 804 def Table(*args,&block)
=> 805 table=
 806 case(args[0])
 807 when Array
 808 opts = args[1] || {}
 809 Ruport::Data::Table.new(f={:column_names => args[0]}.
 merge(opts),&block)

The backtrace (bt) command shows the series of stack frames in which we are
nested:

(rdb:1) bt
--> #0 .../gems/ruport-1.2.0/lib/ruport/data/table.rb:805
 in 'Table'
 #1 ./time_report.rb:6
(rdb:1)

And we can step through the code until we have satisfied our curiosity, at which point
we use cont (c) to exit the debugger and allow the program’s execution to continue:

54 | Chapter 2: ActiveSupport and RailTies

(rdb:1) n
.../gems/ruport-1.2.0/lib/ruport/data/table.rb:806 case(args[0])
(rdb:1)
.../gems/ruport-1.2.0/lib/ruport/data/table.rb:807 when Array
(rdb:1)
.../gems/ruport-1.2.0/lib/ruport/data/table.rb:810 when /\.csv/
(rdb:1) c
$

The debugger has many other commands and features. Breakpoints can be set and
cleared on arbitrary lines or methods, and they can be conditional:

(rdb:1) break table.rb:805 if args.first =~ /\.csv/
Set breakpoint 1 at table.rb:805
(rdb:1) c
Breakpoint 1 at table.rb:805
.../gems/ruport-1.2.0/lib/ruport/data/table.rb:805 table=
(rdb:1)

The irb command (still experimental) will start up an interactive Ruby session
within the context of the current code, allowing you to examine the environment:

.../gems/ruport-1.2.0/lib/ruport/data/table.rb:805 table=
(rdb:1) irb
>> pp args
["time.csv"]
=> nil
>>

The help command will show you information on the available command lan-
guage—there are several more commands and options available.

Debugging Rails with ruby-debug

Now that we understand the basics of the debugger console, we can see how it inte-
grates with Rails. The process is quite simple and easy; ruby-debug is built to be used
with Rails with virtually no setup.

1. Require the ruby-debug library from config/environments/development.rb so that
it is only loaded in the development environment:

require 'ruby-debug'

2. Insert a call to debugger anywhere you want to stop the application’s execution
and drop into the debugger.

class SignupController < ApplicationController

 def check_for_service
 debugger
 @query = params[:q]
 (...)

3. Start up the Rails server. The debugger only works with WEBrick and Mon-
grel, because the running code still has access to the tty under those servers.

How to Read Code | 55

Under FastCGI, the worker processes would not be able to interact with the
console.

$ script/server
=> Booting Mongrel (use 'script/server webrick' to force WEBrick)
=> Rails application starting on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. TERM => stop. USR2 => restart. INT => stop (no restart).
** Rails signals registered. HUP => reload (without restart). It might not
 work well.
** Mongrel available at 0.0.0.0:3000
** Use CTRL-C to stop.

4. Interact with your application as needed to trigger the debugger. The request
will hang in the browser, and the server console will drop into the debugger con-
sole and show the line of code it is paused on:

app/controllers/signup_controller.rb:5 @query = params[:q]
(rdb:1)

Since we called the debugger from within the controller, our debugger console has
full access to the controller’s lexical environment (the binding from which debugger
was called). Thus, we can examine request parameters and step through code just as
in the previous example. We have the full set of ruby-debug commands available:

app/controllers/signup_controller.rb:5 @query = params[:q]
(rdb:1) pp params
{"commit"=>"Check for Service",
 "action"=>"check_for_service",
 "q"=>"Nevada, MO",
 "controller"=>"signup"}
(rdb:1) n
app/controllers/signup_controller.rb:6 if @query
(rdb:1)
app/controllers/signup_controller.rb:7 @result = Geocoder.geocode @query
(rdb:1)
app/controllers/signup_controller.rb:8 if @result
(rdb:1) pp @result
{:point=>
 #<GeoRuby::SimpleFeatures::Point:0x32c2d08
 @m=0.0,
 @srid=4326,
 @with_m=false,
 @with_z=false,
 @x=-94.359055,
 @y=37.842806,
 @z=0.0>,
 :address=>"Nevada, MO, USA"}

56 | Chapter 2: ActiveSupport and RailTies

Finally, when we leave the debugger with cont (c), the request continues loading in
the web browser, and our debugger console becomes a server console again.

(rdb:1) c
Rendered /layouts/_nav (0.00012)
Rendered /layouts/_footer (0.00008)
Completed in 39.54861 (0 reqs/sec) | Rendering: 0.01811 (0%) | DB: 0.15506 (0%)
 | 200 OK [http://localhost/signup/check_for_service]

Where to Start

Pick something interesting

Don’t discount the importance of finding something you like and running with it.
This approach has several advantages. It keeps you looking at aspects that interest
you, while taking you across the basic components, such as ActiveSupport, that you
will need to know. You will also pick up the idioms that other Rails programmers
use, and you will probably learn something new in the process.

Learn to love global search. Find an interesting method and search Rails for all of the
places that method is called.

Start at the top

The end of this chapter will explain how Rails initialization works. These functions
provide good entry points for studying the Rails source. You can start from
Initializer and trace a request down through a sequence of calls to your applica-
tion, following the same path that Ruby takes when executing your code.

Read the Tests
Rails has an extremely comprehensive set of tests. In fact, the tests are sometimes
more helpful than the official documentation, because the tests specify proper behav-
ior through code. The tests provide credible, proven examples of how to work with
the library in question. Since many of the tests are written in a Test-Driven Develop-
ment (test-first) style, they often provide more implementation details than the docu-
mentation does.

For example, this code from ActiveRecord’s binary_test.rb proves that ActiveRecord
is binary-clean:

def setup
 Binary.connection.execute 'DELETE FROM binaries'
 @data = File.read(BINARY_FIXTURE_PATH).freeze
end

...

Dependencies

ActiveSupport | 57

def test_load_save
 bin = Binary.new
 bin.data = @data

 assert @data == bin.data, 'Newly assigned data differs from original'

 bin.save
 assert @data == bin.data, 'Data differs from original after save'

 db_bin = Binary.find(bin.id)
 assert @data == db_bin.data, 'Reloaded data differs from original'
end

Stay Current
Rails is a moving target: people continually contribute patches, and the core team is
always looking for ways to improve. The best way to stay on top of the fast-paced
changes is to monitor the Rails Trac timeline (http://dev.rubyonrails.org/timeline). An
RSS feed is available.

Also keep an eye on the ruby-core and rails-core mailing lists, which detail changes
being made to the Ruby and Rails core, respectively.

ActiveSupport
ActiveSupport is the library of utility methods that Rails uses. We examine them in
detail here for two reasons. First, they can be useful to our application code—we can
directly use many of these libraries and methods to our advantage when writing Rails
applications. Secondly, we can learn many things about Ruby programming by dis-
secting these parts. They are small and relatively easy to digest.

Dependencies dependencies.rb

Dependencies autoloads missing constants by trying to find the file associated with the
constant. When you attempt to access a nonexistent constant, such as Message, Dependencies
will try to find and load message.rb from any directory in Dependencies.load_paths.

Dependencies defines Module#const_missing and Class#const_missing, which both proxy to
Dependencies.load_missing_constant(const_parent, const_id). That method searches the
load paths for a file with the appropriate name; if found, Dependencies loads the file and
ensures that it defined the appropriate constant.

Alternatively, Rails will create an empty module to satisfy nesting in the case of nested
models and controllers. If a directory named app/models/store/ exists, Store will be created
as an empty module, by the following process:

1. Some piece of code references the undefined constant Store.

2. Ruby calls const_missing.

http://dev.rubyonrails.org/timeline

Deprecation

58 | Chapter 2: ActiveSupport and RailTies

3. const_missing calls Dependencies.load_missing_constant(Object, :Store).

4. load_missing_constant attempts to find and load store.rb somewhere in its list of load
paths (Dependencies.load_paths). It fails to find such a file.

5. load_missing_constant sees that app/models/store exists and is a directory. It creates a
module, assigns it to the appropriate constant, and returns.

Deprecation deprecation.rb

The ActiveSupport::Deprecation module provides a method by which old APIs are marked
for removal. At its core, it is just a fancy warning mechanism. When old APIs are used, they
generate a warning in development or test mode. Deprecation warnings are invoked
through the ActiveSupport::Deprecation.warn(message, callstack) method. The
ActiveSupport::Deprecation.silence method silences those warnings for the duration of
the provided block.

The deprecate class method provides an easy way to mark a method as deprecated while
still making it available. It decorates the given method with the deprecation warning.

def find_first(conditions = nil, orderings = nil, joins = nil) # :nodoc:
 find(:first, :conditions => conditions, :order => orderings, :joins => joins)
end
deprecate :find_first => "use find(:first, ...)"

ActiveSupport::Deprecation.behavior is a Proc that is called when a deprecation warning is
triggered. It takes two arguments: the deprecation message and the callstack. It can be
replaced to modify the default behavior. By default, in the test environment, deprecation
warnings print to the standard error stream. In development, they go to the logger. In
production, deprecation warnings are silenced.

Deprecated instance variables

ActionController defines a set of objects that are made available to controllers. These
objects used to be publicly available instance variables; this usage is now deprecated. For
example, the session object (available to controllers through the session and session=
methods) used to be accessible as @session. This creates a problem: how do we intercept
access to these deprecated instance variables? Ruby isn’t so helpful as to provide us a hook
that informs us upon instance variable access.

Rails uses a neat trick: a proxy class. The protected objects were moved out of those
instance variables and moved into “internal” instance variables (which begin with an
underscore). The old instance variables were replaced with instances of ActiveSupport::
Deprecation::DeprecatedInstanceVariableProxy, which proxies to the real objects. When a
method is called on these proxies (such as @session.id), a warning is generated before dele-
gating the call to the real object. This is a common Ruby trick that is used in several other
places in Rails—replacing a standard object with a proxy object that responds in a special
way to certain methods.

JSON

Inflector | 59

Inflector inflections.rb, inflector.rb

The Inflector module provides a set of simple transformations on English words to facili-
tate ActiveRecord’s manipulations of class and table names. Following the policy of
“convention over configuration,” for example, a model class named Message would corre-
spond to a table name of messages.

The core of Inflector is the pluralization rules, contained in inflections.rb. The default set
of rules is fairly broad, but additional rules can be added easily in config/initializers/
inflections.rb or a similar configuration file, after the framework loads:

Inflector.inflections do |inflect|
 inflect.plural /^(ox)$/i, '\1\2en'
 inflect.singular /^(ox)en/i, '\1'

 inflect.irregular 'octopus', 'octopi'

 inflect.uncountable "equipment"
end

Inflector.inflections yields a singleton instance of the inflections object. Rules are
prepended to the list of inflections, so these rules will override the default as long as they
are loaded after the Rails framework. Another consequence of the load order is that the
rules should be ordered from most general to most specific within a block; the last appro-
priate inflection rule seen will be used.

The regular expression captures and backreferences ensure that initial capitals are handled
correctly; the initial letters (upper- or lowercase) are captured with a case-insensitive regex
and substituted into the replacement. The irregular and uncountable rules take care of that
work for us:

"ox".pluralize # => "oxen"
"Ox".pluralize # => "Oxen"
"Octopus".pluralize # => "Octopi"
"Equipment".pluralize # => "Equipment"

Inflector’s module methods, which actually perform the transformations, are proxied
from the core extensions to String and Integer; they are usually not called directly on the
Inflector module object.* See the respective sections in the Core Extensions documenta-
tion later in the chapter for more information.

JSON json.rb, json/encoders.rb, json/encoders/core.rb

JSON (JavaScript Object Notation, pronounced “Jason”) is a lightweight subset of Java-
Script’s notation for literal objects (hash tables) used for data interchange on the Web.
ActiveSupport::JSON provides encoders for most basic Ruby data types. The encoders are
proxied by the Object#to_json method, added by Core Extensions.

(1..5).to_json # => "[1, 2, 3, 4, 5]"
{:a => 1, :b => [2, 3]}.to_json # => "{b: [2, 3], a: 1}"

* "thing".pluralize reads better than Inflector.pluralize("thing").

Whiny Nil

60 | Chapter 2: ActiveSupport and RailTies

The JSON library protects against circular references, which cannot be encoded into JSON:

a = {}
b = {:a => a}
a[:b] = b
a # => {:b=>{:a=>{...}}}

a.to_json
!> ActiveSupport::JSON::CircularReferenceError: object references itself

Whiny Nil whiny_nil.rb

The extensions to NilClass are an ingenious part of ActiveSupport. They are designed to
help trap unexpected nil values as early as possible, and to provide more sensible error
messages to the developer when nil is encountered.

Without these extensions, calling one of Array’s instance methods on an object that
happened to be nil would generate a standard NoMethodError if NilClass did not also
contain the method. This could be frustrating to track down, especially if the method was
called from deep in the framework.

Whiny Nil intercepts those NoMethodErrors with method_missing and makes a suggestion
about the type of object the developer may have been expecting (either Array or
ActiveRecord::Base), based on the name of the method called.

nil.sort
!> NoMethodError: You have a nil object when you didn't expect it!
!> You might have expected an instance of Array.

nil.save
!> NoMethodError: You have a nil object when you didn't expect it!
!> You might have expected an instance of ActiveRecord::Base.

The Whiny Nil extensions also redefine NilClass#id, which raises an error. Without this
extension, nil.id would return 4 (Ruby’s immediate representation of nil, the same as
nil.object_id). This would be confusing when chaining methods together. Under the
Whiny Nil system, this raises a more informative exception:

nil.id
!> RuntimeError: Called id for nil, which would mistakenly be 4 --
!> if you really wanted the id of nil, use object_id

The Whiny Nil system can be turned off in the Rails configuration by setting config.whiny_
nils to false.

Core Extensions
The Core Extensions are ActiveSupport’s collection of extensions to Ruby’s core
classes and modules. They are basic design patterns solving problems that are
encountered often in Ruby. These methods are one level below the Rails API; they
are the internal functions that Rails uses. However, we describe them here because

Array

Array | 61

they are extremely useful during the process of building a Rails application. The core
extensions are low-level utility methods for Ruby; they do not make the impossible
possible, but they do help to simplify application code.

Array

Conversions core_ext/array/conversions.rb

• Array#to_sentence joins the array’s elements and converts to a string:
%w(Larry Curly Moe).to_sentence # => "Larry, Curly, and Moe"

• Array#to_s(:db) collects an array of ActiveRecord objects (or other objects that
respond to the id method) into a SQL-friendly string.

• Array#to_xml converts an array of ActiveRecord objects into XML. This is usually used
to implement REST-style web services. It relies on the contained objects’ implementa-
tion of to_xml (such as ActiveRecord::XmlSerialization.to_xml).

render :xml => Product.find(:all).to_xml

Note that render(:xml => ...) and render(:json => ...) are new synonyms for
render(:text => ...) that change the response’s MIME type appropriately.

Grouping core_ext/array/grouping.rb

• Array#in_groups_of(size, fill_with) groups elements of an array into fixed-size groups:
(1..8).to_a.in_groups_of(3) # => [[1, 2, 3], [4, 5, 6], [7, 8, nil]]
(1..8).to_a.in_groups_of(3, 0) # => [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
(1..8).to_a.in_groups_of(3, false) # => [[1, 2, 3], [4, 5, 6], [7, 8]]

• Array#split splits an array on a value or the result of a block:
(1..8).to_a.split(4) # => [[1, 2, 3], [5, 6, 7, 8]]
(1..8).to_a.split {|i| i == 2} # => [[1], [3, 4, 5, 6, 7, 8]]

Option processing core_ext/array/extract_options.rb

• Array#extract_options! removes and returns the last array item if it is a hash; other-
wise, it returns an empty hash. This supports the common pattern of using a hash as
the last argument to provide keyword arguments to a method:

def example(*args)
 options = args.extract_options!
 "#{args.inspect} :: #{options.inspect}"
end

example 1 # => "[1] :: {}"
example 1, 2 # => "[1, 2] :: {}"
example 1, 2, :a => 3 # => "[1, 2] :: {:a=>3}"

Random selection core_ext/array/random_access.rb

• Array#rand returns an element selected at random from the array:
(1..10).map{ (1..10).to_a.rand } # => [2, 7, 7, 7, 7, 1, 10, 10, 2, 5]

Blank

62 | Chapter 2: ActiveSupport and RailTies

Blank core_ext/blank.rb

ActiveSupport adds the blank? instance method to all objects. This method returns true for
the empty string, a string consisting only of whitespace, false, nil, [], or {}. This provides
an easy shortcut to test for missing values—for example, a string can be tested with s.blank?
rather than (s.nil? || s.empty?).

Class Attribute Accessors core_ext/class/attribute_accessors.rb

ActiveSupport extends the Class class to provide friendly attribute accessors specific to a
Class object. These attribute accessors (cattr_reader, cattr_writer, and cattr_accessor)
mirror the attr_reader, attr_writer, and attr_accessor methods on Module. They define
accessors at both the class and instance level.

class C
 cattr_accessor :log
 self.log = ""

 def initialize
 log << "#{self.inspect} created\n"
 end
end

3.times {C.new}

puts C.log
>> #<C:0x10a7d6c> created
>> #<C:0x10a78d0> created
>> #<C:0x10a7894> created

These methods use class variables instead of instance variables:

C.log == (class C; @@log; end) # => true

There are also module-level attribute accessors: mattr_reader, mattr_writer, and mattr_
accessor.

Class Inheritable Attributes core_ext/class/inheritable_attributes.rb

Inheritable attributes are attributes defined on a class object (as with class attribute acces-
sors). However, the attributes and their values are cloned to children when the class is
subclassed. There are three flavors of inheritable attributes: normal, array, and hash. As
with class attribute accessors, accessor methods are defined at both the class and instance
level, so they can be accessed from instances of the class.

Class inheritable attributes support the inheritance structure used by ActiveRecord. Attributes
such as connection specifications can be defined in ActiveRecord::Base, and they will be
passed on to subclasses, while they can still be overridden in the subclasses if needed.

Date and Time

Date and Time | 63

The accessors are defined just as with regular class attributes:

class Parent
 class_inheritable_array :log
 self.log = []

 def initialize
 super
 log << "#{self.inspect} created"
 end
end

Parent.new

Parent.log # => ["#<Parent:0x10a07c4> created"]

The attributes and their values are inherited to children. This attribute inheritance only
happens at the time of class inheritance. After the child class has inherited from the parent
class, the attributes are separate and do not interact.

class Child < Parent
end

Parent.log # => ["#<Parent:0x10a07c4> created"]
Child.log # => ["#<Parent:0x10a07c4> created"]

Parent.new
Child.new

Parent.log # => ["#<Parent:0x10a07c4> created", "#<Parent:0x109fd9c> created"]
Child.log # => ["#<Parent:0x10a07c4> created", "#<Child:0x109fd88> created"]

Date and Time

Conversions core_ext/date/conversions.rb, core_ext/time/conversions.rb

• Date#to_time, Date#to_time(:utc), Date#to_date, Time#to_date, Time#to_time: These
methods allow you to use dates and times in a roughly interchangeable way.

• Date#to_s(format) formats a date in one of several formats (Table 2-1). The :default
format is used if no format is specified.

• Time#to_s(format) formats a date and time in one of several formats (Table 2-2). The
:default format is used if no format is specified.

Table 2-1. Date formats

Format Example

:default 2006-12-28

:short 28 Dec

:long December 28, 2006

Date and Time

64 | Chapter 2: ActiveSupport and RailTies

Conversions from Numeric core_ext/numeric/time.rb

ActiveSupport adds support methods to the Numeric class to support calculations on dates
and times. Numbers can be added to and subtracted from Time objects; the numbers are
treated as seconds. ActiveSupport’s conversion methods convert numbers to seconds. Both
singular and plural time units are supported.

1 == 1.second
60.seconds == 1.minute
60.minutes == 1.hour
24.hours == 1.day
7.days == 1.week
2.weeks == 1.fortnight
30.days == 1.month
365.25.days == 1.year

Time.now # => Thu Dec 28 13:30:39 CST 2006
Time.now - 3.days # => Mon Dec 25 13:30:39 CST 2006
3.days.ago # => Mon Dec 25 13:30:39 CST 2006
5.hours.from_now # => Thu Dec 28 18:30:39 CST 2006

Time calculations core_ext/time/calculations.rb

• Time.days_in_month(month, year) returns the number of days in the provided month.
Year is optional, but if provided, the function will take leap years into account.

Time.days_in_month(2) # => 28
Time.days_in_month(2, 2003) # => 28
Time.days_in_month(2, 2004) # => 29

• Time#change(options) resets one or more components of the time. The hour, min, sec,
and usec options cascade downward—for example, if the hour but not the minute is
specified, the minute will be set to zero.

t = Time.now
t # => Thu Dec 28 13:39:18 CST 2006
t.change(:min => 31, :sec => 12) # => Thu Dec 28 13:31:12 CST 2006
t.change(:hour => 12) # => Thu Dec 28 12:00:00 CST 2006

• The ago and since methods, formerly operating on Time, now operate on
ActiveSupport::Duration objects, to support exact time values. Methods such as
Fixnum#months and Fixnum#year now return ActiveSupport::Duration objects:

Table 2-2. Time formats

Format Example

:default Thu Dec 28 13:12:23 CST 2006

:db 2006-12-28 13:12:23

:time 13:12

:short 28 Dec 13:12

:long December 28, 2006 13:12

:rfc822 Thu, 28 Dec 2006 13:12:23 -0600

Enumerable

Enumerable | 65

1.month # => 1 month
1.month.ago # => Mon Sep 24 23:57:04 -0500 2007
1.month.since(1.year.ago) # => Fri Nov 24 23:57:04 -0600 2006

The addition of ActiveSupport::Duration fixes many subtle problems with time calcu-
lations, because it stores durations as exact values (years, months, days, hours, min-
utes, and seconds). Prior to its addition, errors could easily accumulate, as some
duration functions assumed 30-day months and 365.25-day years.

• Time#advance adds the specified (exact) values to the given time:
t = Time.now # => Wed Oct 24 23:50:11 -0500 2007
t.advance :days => 1 # => Thu Oct 25 23:50:11 -0500 2007
t.advance :months => 1 # => Sat Nov 24 23:50:11 -0600 2007
t.advance :years => 1 # => Fri Oct 24 23:50:11 -0500 2008

• Convenient shorthand methods, listed below (all are instance methods of Time that
take no arguments):

— last_year and next_year

— last_month and next_month

— beginning_of_week (aliased as monday and at_beginning_of_week) and next_week

— beginning_of_day (aliased as midnight, at_midnight, and at_beginning_of_day) and
end_of_day

— beginning_of_month (also at_beginning_of_month) and end_of_month (also at_end_
of_month)

— beginning_of_quarter (at_beginning_of_quarter)

— beginning_of_year (at_beginning_of_year)

— yesterday, tomorrow

Enumerable core_ext/enumerable.rb

• Enumerable#group_by groups the values into a hash based on the result of a block.
(1..5).to_a.group_by {|x| x%3} # => {0=>[3], 1=>[1, 4], 2=>[2, 5]}

• Enumerable#index_by indexes values based on the result of a block. It differs from
group_by in that it only keeps one value per index key.

(1..5).to_a.index_by {|x| x%3} # => {0=>3, 1=>4, 2=>5}

• Enumerable#sum returns the sum of the values (or the result of mapping the given block
over the values, if a block is given). The optional first argument provides a value to use
if the enumerable is empty.

(1..5).to_a.sum # => 15
(1..5).to_a.sum {|x| x ** 2} # => 55

This makes statistical calculations easy:
module Enumerable
 def mean
 (sum.to_f) / length
 end

 def variance
 m = mean

Exception

66 | Chapter 2: ActiveSupport and RailTies

 sum {|x| (x-m)**2} / length
 end

 def standard_deviation
 variance ** 0.5
 end
end

"%.2f" % [1,2,3,4,5].standard_deviation # => "1.41"

Exception core_ext/exception.rb

Four methods are added to Exception for more intuitive stack traces:

• clean_message runs the exception message through Pathname.clean_within, which
cleans any pathnames contained within the message (removes extra slashes and
resolves . and .. paths).

• clean_backtrace runs the entire backtrace through Exception::TraceSubstitutions and
Pathname.clean_within, to clean the pathnames. TraceSubstitutions is used by Action-
View’s templates to hide certain unsightly parts of the backtrace when template com-
pilation fails.

• application_backtrace returns the set of frames belonging to the Rails application,
excluding those that are part of the Rails framework.

• framework_backtrace returns the set of frames that are part of the Rails framework.
Together with application_backtrace, this is used on the default Rails rescue pages in
the development environment.

File core_ext/file.rb

File.atomic_write atomically writes to a file; it creates a temporary file, yields it to a block
for writing, and then renames it to the destination. The advantage over a standard write is
that the destination file does not exist in a half-written state at any point.

File.atomic_write('important_file') do |important_file|
 important_file.write data
end

Float core_ext/float.rb

Float#round rounds a floating-point number to the specified decimal place:

Math::PI # => 3.14159265358979
Math::PI.round # => 3
Math::PI.round(1) # => 3.1
Math::PI.round(2) # => 3.14
Math::PI.round(3) # => 3.142

Hash

Hash | 67

Hash

Conversions core_ext/hash/conversions.rb

Many methods are provided to convert back and forth between hashes and XML represen-
tation. These are useful for round-tripping a hash to and from XML for web services.

• Hash#to_xml converts a single-level hash to XML:
{:a => "One", :b => "Two", :int => 1, :opt => false}.to_xml

yields:
<?xml version="1.0" encoding="UTF-8"?>
<hash>
 <a>One
 Two
 <int type="integer">1</int>
 <opt type="boolean">false</opt>
</hash>

• Hash.from_xml creates a hash from the provided XML document. Note that the root
element is included in the hash.

xml = <<EOXML
<?xml version="1.0" encoding="UTF-8"?>
<hash>
 <a>One
 Two
</hash>
EOXML

Hash.from_xml(xml)["hash"] # => {"a"=>"One", "b"=>"Two"}

Option processing core_ext/hash/diff.rb, core_ext/hash/keys.rb, core_ext/hash/reverse_merge.rb,
core_ext/hash/slice.rb, core_ext/hash/except.rb

Rails uses hashes to provide keyword arguments to many methods. This is mostly due to a
bit of syntactic sugar on Ruby’s part; if a hash is passed as a function’s last argument, the
brackets can be omitted, resembling keyword arguments. However, Ruby has no native
keyword argument support, so Rails has to provide some supporting features. ActiveSupport
powers this option processing with extensions on the Hash class.

• Hash#diff(other) collects a hash with key/value pairs that are in one hash but not
another.

a = {:a => :b, :c => :d}
b = {:e => :f, :c => :d}
a.diff(b) # => {:e=>:f, :a=>:b}

• Hash#stringify_keys (which returns a copy) and Hash_stringify_keys! (which modi-
fies the receiver in place) convert the hash’s keys to strings. Hash#symbolize_keys and
Hash#symbolize_keys! convert the keys to symbols. The symbolize methods are aliased
as to_options and to_options!.

Hash

68 | Chapter 2: ActiveSupport and RailTies

h = {:a => 123, "b" => 456}

h.stringify_keys # => {"a"=>123, "b"=>456}
h.symbolize_keys # => {:a=>123, :b=>456}

• Hash#assert_valid_keys(:key1, ...) raises an ArgumentError if the hash contains keys
not in the argument list. This is used to ensure that only valid options are provided to
a keyword-argument-based function.

• Hash#reverse_merge and Hash#reverse_merge! (in-place) work like Hash#merge, but in
reverse order; in the case of duplicate keys, existing tuples beat those in the argument.
This can be used to provide default arguments to a function.

options = {:a => 3, :c => 5}
options.reverse_merge!(:a => 1, :b => 4)
options # => {:a=>3, :b=>4, :c=>5}

• Hash#slice returns a new hash with only the keys specified. Inversely, Hash#except
returns a new hash excluding the specified keys:

options = {:a => 3, :b => 4, :c => 5}
options.slice(:a, :c) # => {:c=>5, :a=>3}
options.except(:a) # => {:b=>4, :c=>5}

Hash#slice and Hash#except also come in in-place versions, respectively: Hash#slice!
and Hash#except!.

HashWithIndifferentAccess core_ext/hash/indifferent_access.rb

A HashWithIndifferentAccess is a hash whose elements can be accessed with either string
or symbol keys:

options = {:a => 3, :b => 4}.with_indifferent_access

options.class # => HashWithIndifferentAccess
options[:a] # => 3
options["a"] = 100
options[:a] # => 100

HashWithIndifferentAccess is primarily used to offer a nice API to users, for example, so
that a developer can write params[:user] or params["user"]. The stringify_keys or
symbolize_keys methods should be used in option processing.

However, HashWithIndifferentAccess also fixes a class of security exploits in Rails. In Ruby
1.8, symbols are not garbage collected, so a params hash purely keyed on symbols (as it
used to be) could lead to a denial-of-service attack. A malicious client could leak memory
and exhaust the symbol table by issuing many requests with unique parameter names. Inci-
dentally, Ruby 1.9 will obviate the need for HashWithIndifferentAccess, because symbols
and strings will be treated identically (:aoeu == 'aoeu').

Kernel

Integer | 69

Integer core_ext/integer/even_odd.rb, core_ext/integer/inflections.rb

• Integer#multiple_of?(number), Integer#even?, and Integer#odd? test for divisibility.
3.even? # => false
3.odd? # => true
3.multiple_of? 3 # => true

• Integer#ordinalize converts an integer to an ordinal number.
puts (1..10).map {|i| i.ordinalize}.to_sentence
>> 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, and 10th

Kernel

Daemonize core_ext/kernel/daemonizing.rb

Normally, when a process is attached to a console and that console exits, the program
terminates. Kernel#daemonize is used to detach a Ruby process from the console, allowing it
to persist even if the console goes away. A typical daemon process will use daemonize as in
the following example:

server setup; process options

daemonize # detach from tty

loop do
 # wait for request
 # process request
end

Sending SIGTERM to a daemonized process kills it.

Reporting core_ext/kernel/reporting.rb

The top-level methods in this file control console messages that might be displayed.

• silence_warnings turns warnings off for the duration of the block. enable_warnings
turns warnings on for the duration of the block.

• silence_stream(stream) silences the given stream (usually STDOUT or STDERR) for the
duration of the block.

• suppress(*exception_classes) ignores errors of the specified classes during the execu-
tion of the block.

Module

70 | Chapter 2: ActiveSupport and RailTies

Module

Aliasing core_ext/module/aliasing.rb

• alias_method_chain(target, feature) wraps a method in a new function, usually to
add a new feature. This mechanism was discussed in Chapter 1. The method call:

alias_method_chain :target, :feature

is equivalent to:
alias_method :target_without_feature, :target
alias_method :target, :target_with_feature

One consequence is that the target_with_feature method must exist before the alias_
method_chain call. Punctuation (at the end of ?, !, and = methods) is properly moved to
the end of the method names.

• alias_attribute(new_name, old_name) aliases an ActiveRecord attribute to a new name,
adding the getter, setter, and predicate (for example, person.name?) methods.

Delegation core_ext/module/delegation.rb

The delegate method provides a simple way to delegate one or more methods to an object:

class StringProxy
 attr_accessor :target
 delegate :to_s, :to => :target
 def initialize(target)
 @target = target
 end
end

proxy = StringProxy.new("Hello World!")
proxy.to_s # => "Hello World!"
proxy.target = "Goodbye World"
proxy.to_s # => "Goodbye World"

More detailed control over delegation can be obtained with Delegator from the standard
library.

Introspection core_ext/module/inclusion.rb, core_ext/module/introspection.rb

• Module#included_in_classes iterates over all classes (using ObjectSpace), collecting the
classes and modules in which the receiver is included.

Enumerable.included_in_classes.include? Array # => true
Enumerable.included_in_classes.include? String # => true
Enumerable.included_in_classes.include? Numeric # => false

• Module#parent and Module#parents inspect the module namespace hierarchy:
module A
 module B
 class C
 end
 end
end

Object

Numeric Conversions | 71

A::B::C.parent # => A::B
A::B.parent # => A
A.parent # => Object

A::B::C.parents # => [A::B, A, Object]

Numeric Conversions core_ext/numeric/bytes.rb

These methods convert byte expressions, such as 45.megabytes, into the equivalent number
of bytes (45.megabytes == 47_185_920). As with numeric conversions to time units, both
singular and plural units are accepted (1.kilobyte or 3.kilobytes). Valid units are bytes,
kilobytes, megabytes, gigabytes, terabytes, petabytes, and exabytes.

Object

instance_exec core_ext/object/extending.rb, core_ext/proc.rb

The instance_exec method allows us to evaluate a block in the context of an instance. It is
like instance_eval, except it allows arguments to be passed into the block. An implementa-
tion is in object/extending.rb.

The instance_exec implementation uses the Proc#bind implementation from proc.rb. This
method allows Procs to be treated like UnboundMethods; they can be bound to an object and
invoked as methods. The implementation is instructive:

class Proc #:nodoc:
 def bind(object)
 block, time = self, Time.now
 (class << object; self end).class_eval do
 method_name = "_ _bind_#{time.to_i}_#{time.usec}"
 define_method(method_name, &block)
 method = instance_method(method_name)
 remove_method(method_name)
 method
 end.bind(object)
 end
end

The class_eval block is evaluated in the context of the object’s singleton class, so the
method created is specific to that object. A method with a (hopefully) unique name is
created, using the Proc as the method body. The instance_method method grabs the newly
created method object as an UnboundMethod from the class. Because we hold a reference to
the method, we can safely remove it from the singleton class using remove_method, and the
method will remain in existence (anonymously). The last line in the class_eval returns
the method from the class_eval; the method is then bound to the given object and returned.

This definition of instance_exec is a Ruby 1.8 workaround. In Ruby 1.9, instance_exec is a
native method. Also note that this implementation is not threadsafe. It tries to be as safe as
possible, qualifying the method names down to the microsecond and putting them in the
respective objects’ singleton classes, but it will still fail if called twice on the same object
during the same microsecond.

Range

72 | Chapter 2: ActiveSupport and RailTies

Miscellaneous methods core_ext/object/misc.rb

• Object#returning lets you perform some operations on an object and then return it. It
is usually used to encapsulate some incidental operations on an object in a block:

returning(Person.new) do |p|
 p.name = "Brad"
end # => #<Person:0x1e33b4 @name="Brad">

• Object#with_options provides a way to factor out redundant options on multiple
method calls. It is usually seen in routing code:

map.with_options(:controller => "person") do |person|
 person.default "", :action => "index"
 person.details "/details/:id", :action => "details"
end

The with_options call yields an OptionMerger, which is a proxy that forwards all of its
method calls to the context (which, in this example, is the original map). The options
provided are merged into the method call’s last hash argument, so the effect of the
person.default call is the same as:

map.default "", :action => "index", :controller => "person"
map.details "/details/:id", :action => "details", :controller => "person"

There is no magic here that makes this specific to Rails routes; you can use this with
any method that takes a hash of Rails-style keyword arguments as the last parameter.
The proxy object passed into the with_options block delegates any unknown method
calls to the target.

Range core_ext/range/include_range.rb, core_ext/range/overlaps.rb

• Range#include? checks to see whether a range completely includes another range:
(1..10).include?(3..5) # => true
(1..10).include?(3..15) # => false

• Range#overlaps? checks to see whether a range overlaps another range:
>> (1..10).overlaps?(3..15) # => true
>> (1..10).overlaps?(13..15) # => false

String

Inflector core_ext/string/inflections.rb

The methods in this file delegate to the Inflector.

• String#singularize and String#pluralize do what you would think. Corner cases are
more or less supported; you can add custom rules that override the defaults.

"wug".pluralize # => "wugs"
"wugs".singularize # => "wug"
"fish".pluralize # => "fish"

• String#camelize is used to convert file names to class names; String#underscore does
the opposite.

"action_controller/filters".camelize # => "ActionController::Filters"
"ActionController::Filters".underscore # => "action_controller/filters"

String

String | 73

• String#tableize converts class names to table names (as in ActiveRecord).
String#classify converts table names to class names.

"ProductCategory".tableize # => "product_categories"
"product_categories".classify # => "ProductCategory"

• String#constantize tries to interpret the given string as a constant name. This is use-
ful for looking up classes returned from String#classify.

"ProductCategory".constantize rescue "no class" # => "no class"
class ProductCategory; end
"ProductCategory".constantize # => ProductCategory

String i18n core_ext/string/unicode.rb, core_ext/string/iterators.rb

These files provide interfaces to ActiveSupport::Multibyte for support for multibyte charac-
ters. These methods depend on the current value of the $KCODE global variable, which
determines the character encoding in use. $KCODE can take on the following values.

In Rails 1.2, $KCODE is automatically set to u, enabling the multibyte operations.

• String#chars returns an instance of ActiveSupport::Multibyte::Chars, which proxies
for the String class. Chars defines methods that work properly under Unicode (assum-
ing the proper $KCODE setting), and proxies methods it doesn’t know about to String:

str =

$KCODE = "a"
str # => "\344\273\212\346\227\245\343\201\257\344\270\226\347\225\214"
str.length # => 15
str.chars.class # => ActiveSupport::Multibyte::Chars
str.chars.length # => 15

$KCODE = "u"
str # =>
str.length # => 15
str.chars.length # => 5

String#each_char yields each character in turn to the block:
$KCODE = "u"

.each_char {|c| puts c}
>>
>>
>>
>>
>>

$KCODE Encoding

e, E EUC

s, S Shift-JIS

u, U UTF-8

a, A, n, N ASCII (default)

Symbol#to_proc

74 | Chapter 2: ActiveSupport and RailTies

Miscellaneous methods core_ext/string/access.rb, core_ext/string/conversions.rb,
core_ext/string/starts_ends_with.rb

• String#at(position) returns the character at the specified position. This is an easy way
around the fact that Ruby’s String#[] returns a character code rather than a string in
Ruby 1.8:

"asdf"[0] # => 97
"asdf"[0] == ?a # => true
"asdf".at(0) # => "a"

• String#from, String#to, String#first, and String#last work just as their names sug-
gest. As usual, negative indices count from the end of the string:

"asdf".from(1) # => "sdf"
"asdf".to(1) # => "as"
"asdf".from(1).to(-2) # => "sd"

"asdf".first # => "a"
"asdf".last # => "f"
"asdf".first(2) # => "as"
"asdf".last(2) # => "df"

• String#to_time (defaults to UTC), String#to_time(:local), and String#to_date are
easy ways to delegate to ParseDate:

"1/4/2007".to_date.to_s # => "2007-01-04"

"1/4/2007 2:56 PM".to_time(:local).to_s # => "Thu Jan 04 14:56:00 CST 2007"

• String#starts_with?(prefix) and String#ends_with?(suffix) test whether a string
starts with or ends with another string.

"aoeu".starts_with?("ao") # => true
"aoeu".starts_with?("A") # => false
"aoeu".ends_with?("eu") # => true
"aoeu".ends_with?("foo") # => false

Symbol#to_proc symbol.rb

ActiveSupport defines only one extension to Symbol, but it is a powerful one: the ability to
convert a symbol to a Proc using Symbol#to_proc. This idiom is used all over Rails now.
Code such as this:

(1..5).map {|i| i.to_s } # => ["1", "2", "3", "4", "5"]

becomes this, using Symbol#to_proc:

(1..5).map(&:to_s) # => ["1", "2", "3", "4", "5"]

The & symbol tells Ruby to treat the symbol :to_s as a block argument; Ruby knows that
the argument should be a Proc and tries to coerce it by calling its to_proc method. Active-
Support supplies a Symbol#to_proc method that returns just such a Proc; when called, it
invokes the specified method on its first argument.

RailTies | 75

TimeZone
Instances of TimeZone are value objects* representing a particular time zone (an offset from
UTC and a name). They are used to perform conversions between different time zones:

Time.now # => Thu Oct 25 00:10:52 -0500 2007
UTC-05
TimeZone[-5].now # => Thu Oct 25 00:10:52 -0500 2007
TimeZone[-5].adjust(1.month.ago) # => Tue Sep 25 00:10:52 -0500 2007

RailTies
RailTies is the set of components that wire together ActiveRecord, ActionController,
and ActionView to form Rails. We will examine the two most important parts of
RailTies: how Rails is initialized and how requests are processed.

Rails Configuration
The Rails::Configuration class, defined in initializer.rb, holds the configuration
attributes that control Rails. It has several general Rails attributes defined as
attributes on the Configuration class, but there is a little cleverness in the framework
class stubs. The five class stubs (action_controller, action_mailer, action_view,
active_resource, and active_record) act as proxies to the class attributes of their
respective Base classes. In this way, the configuration statement:

config.action_controller.perform_caching = true

is the same as:

ActionController::Base.perform_caching = true

except with a unified configuration syntax.

Application Initialization in 20 Easy Steps
initializer.rb

Rails::Initializer is the main class that handles setting up the Rails environment
within Ruby. Initialization is kicked off by config/environment.rb, which contains the
block:

Rails::Initializer.run do |config|
(configuration)

end

* A value object is an object representing a value, whose identity is defined by that value only. In other words,
two objects compare as equal if and only if they have the same state.

76 | Chapter 2: ActiveSupport and RailTies

Rails::Initializer.run yields a new Rails::Configuration object to the block. Then
run creates a new Rails::Initializer object and calls its process method, which
takes the following steps in order to initialize Rails:

1. check_ruby_version: Ensures that Ruby 1.8.2 or above (but not 1.8.3) is being
used.

2. set_load_path: Adds the framework paths (RailTies, ActionPack,* ActiveSupport,
ActiveRecord, Action Mailer, and Action Web Service) and the application’s
load paths to the Ruby load path. The framework is loaded from vendor/rails or
a location specified in RAILS_FRAMEWORK_ROOT.

3. require_frameworks: Loads each framework listed in the frameworks configura-
tion option. If the framework path was not specified in RAILS_FRAMEWORK_ROOT
and it does not exist in vendor/rails, Initializer will assume the frameworks are
installed as RubyGems.

4. set_autoload_paths: Sets the autoload paths based on the values of the load_
paths and load_once_paths configuration variables. These determine which paths
will be searched to resolve unknown constants. The load_paths option is the
same one that provided the application’s load paths in step 2.

5. load_environment: Loads and evaluates the environment-specific (development,
production, or test) configuration file.

6. initialize_encoding: Sets $KCODE to u for UTF-8 support throughout Rails.

7. initialize_database: If ActiveRecord is being used, sets up its database configu-
ration and connects to the database server.

8. initialize_logger: Sets up the logger and sets the top-level constant RAILS_
DEFAULT_LOGGER to the instance. If logger is specified in the configuration, it is
used. If not, a new logger is created and directed to the log_path specified. If that
fails, a warning is displayed and logging is redirected to standard error.

9. initialize_framework_logging: Sets the logger for ActiveRecord, ActionControl-
ler, and Action Mailer (if they are being used) to the logger that was just set up.

10. initialize_framework_views: Sets the view path for ActionController and Action
Mailer to the value of the view_path configuration item.

11. initialize_dependency_mechanism: Sets Dependencies.mechanism (which deter-
mines whether to use require or load to load files) based on the setting of the
cache_classes configuration item.

12. initialize_whiny_nils: If the whiny_nils configuration item is true, adds the
Whiny Nil extensions (that complain when trying to call id or other methods on
nil) to NilClass.

* ActionPack = ActionController + ActionView.

RailTies | 77

13. initialize_temporary_directories: Sets ActionController’s temporary session
and cache directories if they exist in the filesystem.

14. initialize_framework_settings: Transforms the framework-specific configura-
tion settings into method calls on the frameworks’ Base classes. For example,
consider the configuration option:

config.active_record.schema_format = :sql

The config.active_record object is an instance of Rails::OrderedOptions, which
is basically an ordered hash (ordered to keep the configuration directives in
order). During initialization, the initialize_framework_settings method trans-
forms it into the following:

ActiveRecord::Base.schema_format = :sql

This offers the advantage that the Configuration object doesn’t have to be
updated every time a framework adds or changes a configuration option.

15. add_support_load_paths: Adds load paths for support functions. This function is
currently empty.

16. load_plugins: Loads the plugins from paths in the plugin_paths configuration
item (default vendor/plugins). If a plugins configuration item is specified, load
those plugins respecting that load order. Plugins are loaded close to the end of
the process so that they can override any already loaded component.

17. load_observers: Instantiates ActiveRecord observers. This is done after plugins
so that plugins have an opportunity to modify the observer classes.

18. initialize_routing: Loads and processes the routes. Also sets the controller
paths from the controller_paths configuration item.

19. after_initialize: Calls any user-defined after_initialize callback. These call-
backs are defined in the configuration block by config.after_initialize { ... }.

20. load_application_initializers: Loads all Ruby files in RAILS_ROOT/config/
initializers and any of its subdirectories. Old framework initialization that may
previously have been contained in config/environment.rb can now properly be
broken out into separate initializers.

Now the framework is ready to receive requests.

Request Dispatch
dispatcher.rb, fcgi_handler.rb, webrick_server.rb

The Dispatcher class is the outside world’s interface to Rails. Web servers dis-
patch a request to Rails by calling Dispatcher.dispatch(cgi, session_options,
output). Rails processes the given CGI request and presents the output to the
given location (which defaults to standard output). Rails can be reset by calling
Dispatcher.reset_application! to process multiple requests.

78 | Chapter 2: ActiveSupport and RailTies

There are many ways to serve a Rails application. fcgi_handler.rb contains the
FastCGI handler (RailsFCGIHandler) that shims between a FastCGI-speaking server
(Apache, lighttpd, or even IIS) and Rails. webrick_server.rb is a server based on
WEBrick that can serve Rails.

But the preferred application server for both development and deployment is Zed
Shaw’s Mongrel.* Mongrel contains its own Rails handler that calls the Dispatcher
methods directly, using its own CGI wrapper. Of course, more information can be
found in Mongrel’s source itself.

Further Reading
Diomidis Spinellis’s book Code Reading: The Open Source Perspective (Addison-
Wesley) offers advice on how to approach large codebases, particularly those of open
source software.

The Ruby Facets core library† is another collection of code that aims to provide util-
ity methods for Ruby. This library covers some of the same ground as the Core
Extensions, but also provides additional extensions.

If you need more complicated manipulations to the English language than the Inflec-
tor class allows, look to the Ruby Linguistics project.‡

* http://mongrel.rubyforge.org/

† http://facets.rubyforge.org/

‡ http://www.deveiate.org/projects/Linguistics

http://mongrel.rubyforge.org/
http://facets.rubyforge.org/
http://www.deveiate.org/projects/Linguistics

79

Chapter 3 CHAPTER 3

Rails Plugins3

Civilization advances by extending the number of
important operations which we can perform

without thinking of them.
—Alfred North Whitehead

Ruby on Rails is very powerful, but it cannot do everything. There are many features
that are too experimental, out of scope of the Rails core, or even blatantly contrary to
the way Rails was designed (it is opinionated software, after all). The core team can-
not and would not include everything that anybody wants in Rails.

Luckily, Rails comes with a very flexible extension system. Rails plugins allow devel-
opers to extend or override nearly any part of the Rails framework, and share these
modifications with others in an encapsulated and reusable manner.

About Plugins

Plugin Loading
By default, plugins are loaded from directories under vendor/plugins in the Rails
application root. Should you need to change or add to these paths, the plugin_paths
configuration item contains the plugin load paths:

config.plugin_paths += [File.join(RAILS_ROOT, 'vendor', 'other_plugins')]

By default, plugins are loaded in alphabetical order; attachment_fu is loaded before
http_authentication. If the plugins have dependencies on each other, a manual load-
ing order can be specified with the plugins configuration element:

config.plugins = %w(prerequisite_plugin actual_plugin)

Any plugins not specified in config.plugins will not be loaded. However, if the last
plugin specified is the symbol :all, Rails will load all remaining plugins at that point.
Rails accepts either symbols or strings as plugin names here.

config.plugins = [:prerequisite_plugin, :actual_plugin, :all]

80 | Chapter 3: Rails Plugins

The plugin locator searches for plugins under the configured paths, recursively.
Because a recursive search is performed, you can organize plugins into directories;
for example, vendor/plugins/active_record_acts and vendor/plugins/view_extensions.

The actual plugin locating and loading system is extensible, and you can write your
own strategies. The locator (which by default is Rails::Plugin::FileSystemLocator)
searches for plugins; the loader (by default Rails::Plugin::Loader) determines
whether a directory contains a plugin and does the work of loading it.

To write your own locators and loaders, examine railties/lib/rails/plugin/locator.rb
and railties/lib/rails/plugin/loader.rb. The locators (more than one locator can be
used) and loader can be changed with configuration directives:

config.plugin_locators += [MyPluginLocator]
config.plugin_loader = MyPluginLoader

Installing Rails Plugins
Plugins are most often installed with the built-in Rails plugin tool, script/plugin.
This plugin tool has several commands:

discover/source/unsource/sources
The plugin tool uses an ad-hoc method of finding plugins. Rather than requiring
you to specify the URL of a plugin repository, script/plugin tries to find it for you.
One way it does this is by scraping the “Plugins” page of the Rails wiki* for
source URLs. This can be triggered with the discover command.

The source and unsource commands add and remove source URLs, respectively.
The sources command lists all current source URLs.

install/update/remove
These commands install, update, and uninstall plugins. They can take an HTTP
URL, a Subversion URL (svn:// or svn+ssh://), or a bare plugin name, in which
case the list of sources is scanned.

script/plugin install takes an option, -x, that directs it to manage plugins as Sub-
version externals. This has the advantage that the directory is still linked to the exter-
nal repository. However, it is a bit inflexible—you cannot cherry-pick changes from
the upstream repository. We will examine some better options later.

RaPT

RaPT (http://rapt.rubyforge.org/) is a replacement for the standard Rails plugin
installer, script/plugin. It can be installed with gem install rapt.

The first advantage that RaPT has is that it can search for plugins from the command
line. (The second advantage is that it is extremely fast, because it caches everything.)

* http://wiki.rubyonrails.org/rails/pages/Plugins

http://wiki.rubyonrails.org/rails/pages/Plugins
http://rapt.rubyforge.org/

About Plugins | 81

The rapt search command looks for plugins matching a specified keyword. To
search for plugins that add calendar features to Rails, change to the root directory of
a Rails application and execute:

$ rapt search calendar
Calendar Helper
 Info: http://agilewebdevelopment.com/plugins/show/98
 Install: http://topfunky.net/svn/plugins/calendar_helper
Calendariffic 0.1.0
 Info: http://agilewebdevelopment.com/plugins/show/743
 Install: http://opensvn.csie.org/calendariffic/calendariffic/
Google Calendar Generator
 Info: http://agilewebdevelopment.com/plugins/show/277
 Install: svn://rubyforge.org//var/svn/googlecalendar/plugins/googlecalendar
dhtml_calendar
 Info: http://agilewebdevelopment.com/plugins/show/333
 Install: svn://rubyforge.org//var/svn/dhtmlcalendar/dhtml_calendar
Bundled Resource
 Info: http://agilewebdevelopment.com/plugins/show/166
 Install: svn://syncid.textdriven.com/svn/opensource/bundled_resource/trunk
DatebocksEngine
 Info: http://agilewebdevelopment.com/plugins/show/356
 Install: http://svn.toolbocks.com/plugins/datebocks_engine/
datepicker_engine
 Info: http://agilewebdevelopment.com/plugins/show/409
 Install: http://svn.mamatux.dk/rails-engines/datepicker_engine

One of these could then be installed with, for example, rapt install datepicker_engine.

Piston

In Rails, plugins are perhaps the most common use of code supplied by an external
vendor (other than the Rails framework itself). This requires some special care where
version control is concerned. Managing Rails plugins as Subversion externals has sev-
eral disadvantages:

• The remote server must be contacted on each update to determine whether any-
thing has changed. This can incur quite a performance penalty if the project has
many externals. In addition, it adds an unneeded dependency; problems can
ensue if the remote server is down.

• The project is generally at the mercy of code changes that happen at the remote
branch; there is no easy way to cherry-pick or block changes that happen
remotely. The only flexibility Subversion affords is the ability to lock to a certain
remote revision.

• Similarly, there is no way to maintain local modifications to a remote branch.
Any needed modifications can only be kept in the working copy, where they are
unversioned.

• No history is kept of how external versions relate to the local repository. If you
want to update your working copy to last month’s version, nobody knows what
version the external code was at.

82 | Chapter 3: Rails Plugins

To solve these problems, François Beausoleil created Piston,* a program to manage
vendor branches in Subversion. Piston imports the remote branch into the local
repository, only synchronizing when requested. As a full copy of the code exists
inside the project’s repository, it can be modified as needed. Any changes made to
the local copy will be merged when the project is updated from the remote server.

Piston is available as a gem; install it with sudo gem install --include-dependencies
piston.

To install a plugin using Piston, you need to manually find the Subversion URL of
the repository. Then, simply import it with Piston, specifying the repository URL and
the destination path in your working copy:

$ piston import http://svn.rubyonrails.org/rails/plugins/deadlock_retry \
 vendor/plugins/deadlock_retry
Exported r7144 from 'http://svn.rubyonrails.org/rails/plugins/deadlock_retry/'
to 'vendor/plugins/deadlock_retry'

$ svn ci

The svn ci is necessary because Piston adds the code to your working copy. To Sub-
version, it is as if you wrote the code yourself—it is versioned alongside the rest of
your application. This makes it very simple to patch the vendor branch for local use;
simply make modifications to the working copy and check them in.

When the time comes to update the vendor branch, piston update vendor/plugins/
deadlock_retry will fetch all changes from the remote repository and merge them in.
Any local modifications will be preserved in the merge. piston update can be called
without an argument; in that case, it will recursively update any Piston-controlled
directories under the current one.

Piston-controlled directories can be locked to their current version with piston lock
and unlocked with piston unlock. And for current svn:externals users, existing
directories managed with svn:externals can be converted to Piston all at once with
piston convert.

Piston is also good for managing edge Rails, along with any patches you may apply.
To import Rails from the edge, with all of the features of Piston:

$ piston import http://svn.rubyonrails.org/rails/trunk vendor/rails

Decentralized version control

Piston effectively creates one layer between a remote repository and the working copy.
Decentralized version control systems take this model to its logical conclusion: every
working copy is a repository, equally able to share changes with other repositories. This
can be a much more flexible model than normal centralized version control systems.
We examine decentralized version control systems in more detail in Chapter 10.

* http://piston.rubyforge.org/

http://piston.rubyforge.org/

Writing Plugins | 83

Plugins and other vendor code can be managed very well with a decentralized ver-
sion control system. These systems afford much more flexibility, especially in com-
plicated situations with multiple developers and vendors.

A tool is available, hgsvn,* which will migrate changes from a SVN repository to a
Mercurial repository. This can be used to set up a system similar to Piston, but with
much more flexibility. One repository (the “upstream” or “incoming”) can mirror
the remote repository, and other projects can cherry-pick desired patches from the
upstream and ignore undesired ones. Local modifications suitable for the upstream
can be exported to patches and sent to the project maintainer.

Writing Plugins
Once you know how to extend Rails by opening classes, it is easy to write a plugin.
First, let’s look at the directory structure of a typical plugin (see Figure 3-1).

There are several files and directories involved in a Rails plugin:

about.yml (not shown)
This is the newest feature of Rails plugins—embedded metadata. Right now, this
feature works only with RaPT. The command rapt about plugin_name will give a
summary of the plugin’s information. In the future, more features are expected;
right now, it exists for informational purposes. Metadata is stored in the about.yml
file; here is an example from acts_as_attachment:

author: technoweenie
summary: File upload handling plugin.
homepage: http://technoweenie.stikipad.com
plugin: http://svn.techno-weenie.net/projects/plugins/acts_as_attachment
license: MIT
version: 0.3a
rails_version: 1.1.2+

* http://cheeseshop.python.org/pypi/hgsvn

Figure 3-1. Directory structure of a typical plugin

http://cheeseshop.python.org/pypi/hgsvn

84 | Chapter 3: Rails Plugins

init.rb
This is a Ruby file run upon initialization of the plugin. Typically, it will require
files from the lib/ directory. As many plugins patch core functionality, init.rb may
extend core classes with extensions from the plugin:

require 'my_plugin'
ActionController::Base.send :include, MyPlugin::ControllerExtensions

The send hack is needed here because Module#include is a private method and, at
least for now, send bypasses access control on the receiver.*

install.rb (not shown)
This hook is run when the plugin is installed with one of the automated plugin
installation tools such as script/plugin or RaPT. It is a good idea not to do any-
thing mission-critical in this file, as it will not be run if the plugin is installed
manually (by checking out the source to a directory under vendor/plugins).

A typical use for the install.rb hook is to display the contents of the plugin’s
README file:

puts IO.read(File.join(File.dirname(_ _FILE_ _), 'README'))

lib/
This is the directory in which all of the plugin code is contained. Rails adds this
directory to the Ruby load path as well as the Rails Dependencies load path.

For example, assume you have a class, MyPlugin, in lib/my_plugin.rb. Since it is
in the Ruby load path, a simple require 'my_plugin' will find it. But since
Dependencies autoloads missing constants, you could also load the file simply by
referring to MyPlugin in your plugin.

MIT-LICENSE (or other license file; not shown)
All plugins, no matter how small, should include a license. Failure to include a
license can prevent people from using your software—no matter how insignifi-
cant the plugin may be, it is against the law for someone else to distribute your
code without your permission.

For most projects, the MIT license (under which Rails itself is released) is suffi-
cient. Under that license, anyone can redistribute your software freely, provided
that they include a copy of the license (preserving your copyright notice). Includ-
ing the MIT-LICENSE file in the plugin is important in this case, as it makes
compliance automatic.

Rakefile
This is the core Rake task definition file for the plugin. Usually it is used to
launch tests for the plugin itself or package the plugin for distribution.

* In Ruby 1.9, Object#send will not automatically ignore access control on the receiving object, although the
new method Object#send! will.

Plugin Examples | 85

README
It is helpful to provide a short explanation here of the plugin’s purpose, usage,
and any special instructions. A hook can be included in install.rb (described ear-
lier) to print this file upon plugin installation.

test/
This folder contains the plugin’s tests. These tests are run using Rake, without
loading Rails. Any tests written in this folder must stand alone—they must either
mock out any required Rails functionality or actually load the Rails framework.
We will explore both of these options later.

uninstall.rb (not shown)
This is the uninstall hook, run when a plugin is removed by tools such as
script/plugin or RaPT. Unless you have a very pressing need, the use of this file
is discouraged. Like install.rb, uninstall.rb is not always used—many people sim-
ply delete the plugin directory without thought.

Of course, you should feel free to add any folders required by your plugin. Use
File.dirname(_ _FILE_ _) in init.rb to refer to your plugin’s directory as installed.
None of these files are specifically required; for example, a simple plugin may do all
of its work in init.rb.

You can generate a plugin skeleton with a built-in Rails generator:

$ script/generate plugin my_plugin

This generates a skeleton in vendor/plugins/my_plugin with sample files, a fill-in-the-
blanks MIT license, and instructions.

Plugin Examples
To illustrate the flexibility and design of a typical Rails plugin, we will examine some
of the plugins available from the rubyonrails.org Subversion repository. Most of
these plugins are used fairly commonly; many of them are used in 37signals applica-
tions. Consider them the “standard library” of Rails. They are all available from http://
svn.rubyonrails.org/rails/plugins/.

Account Location
Plugins can be very simple in structure. For example, consider David Heinemeier
Hansson’s account_location plugin. This plugin provides controller and helper
methods to support using part of the domain name as an account name (for exam-
ple, to support customers with domain names of customer1.example.com and
customer2.example.com, using customer1 and customer2 as keys to look up the
account information). To use the plugin, include AccountLocation in one or more of
your controllers, which adds the appropriate instance methods:

http://svn.rubyonrails.org/rails/plugins/
http://svn.rubyonrails.org/rails/plugins/

86 | Chapter 3: Rails Plugins

class ApplicationController < ActionController::Base
 include AccountLocation
end

puts ApplicationController.instance_methods.grep /^account/
=> ["account_domain", "account_subdomain", "account_host", "account_url"]

Including the AccountLocation module in the controller allows you to access various
URL options from the controller and the view. For example, to set the @account vari-
able from the subdomain on each request:

class ApplicationController < ActionController::Base
 include AccountLocation
 before_filter :find_account

 protected

 def find_account
 @account = Account.find_by_username(account_subdomain)
 end
end

The account_location plugin has no init.rb; nothing needs to be set up on load, as all
functionality is encapsulated in the AccountLocation module. Here is the implemen-
tation, in lib/account_location.rb (minus some license text):

module AccountLocation
 def self.included(controller)
 controller.helper_method(:account_domain, :account_subdomain,
 :account_host, :account_url)
 end

 protected

 def default_account_subdomain
 @account.username if @account && @account.respond_to?(:username)
 end

 def account_url(account_subdomain = default_account_subdomain,
 use_ssl = request.ssl?)
 (use_ssl ? "https://" : "http://") + account_host(account_subdomain)
 end

 def account_host(account_subdomain = default_account_subdomain)
 account_host = ""
 account_host << account_subdomain + "."
 account_host << account_domain
 end

 def account_domain
 account_domain = ""
 account_domain << request.subdomains[1..-1].join(".") +
 "." if request.subdomains.size > 1
 account_domain << request.domain + request.port_string
 end

Plugin Examples | 87

 def account_subdomain
 request.subdomains.first
 end
end

The self.included method is a standard idiom for plugins; it is triggered after the
module is included in a class. In this case, that method marks the included instance
methods as Rails helper methods, so they can be used from a view.

Finally, remember that Dependencies.load_paths contains the lib directories of all
loaded plugins, so the act of mentioning AccountLocation searches for account_
location.rb among those lib directories. Because of this, you do not need to require
anything in order to use the plugin—just drop the code into vendor/plugins.

SSL Requirement
The ssl_requirement plugin allows you to specify certain actions that must be pro-
tected by SSL. This plugin conceptually divides actions into three categories:

SSL Required
All requests to this action must be protected by SSL. If this action is requested
without SSL, it will be redirected to use SSL. Actions of this type are specified
with the ssl_required class method.

SSL Allowed
SSL is allowed on this action but not required. Actions of this type are specified
by the ssl_allowed class method.

SSL Prohibited
SSL is not allowed for this action. If an action is not marked with ssl_required or
ssl_allowed, SSL requests to that action will be redirected to the non-SSL URL.

In typical Rails fashion, the methods that specify SSL requirements are a declarative
language. They specify what the requirements are, not how to enforce them. This
means that the code reads very cleanly:

class OrderController < ApplicationController
 ssl_required :checkout, :payment
 ssl_allowed :cart
end

Like the account_location plugin, the ssl_requirement plugin is enabled by includ-
ing a module. The SslRequirement module contains the entire SSL requirement logic:

module SslRequirement
 def self.included(controller)
 controller.extend(ClassMethods)
 controller.before_filter(:ensure_proper_protocol)
 end

 module ClassMethods
 def ssl_required(*actions)

88 | Chapter 3: Rails Plugins

 write_inheritable_array(:ssl_required_actions, actions)
 end

 def ssl_allowed(*actions)
 write_inheritable_array(:ssl_allowed_actions, actions)
 end
 end

 protected

 def ssl_required?
 (self.class.read_inheritable_attribute(:ssl_required_actions) || []).
 include?(action_name.to_sym)
 end

 def ssl_allowed?
 (self.class.read_inheritable_attribute(:ssl_allowed_actions) || []).
 include?(action_name.to_sym)
 end

 private

 def ensure_proper_protocol
 return true if ssl_allowed?

 if ssl_required? && !request.ssl?
 redirect_to "https://" + request.host + request.request_uri
 return false
 elsif request.ssl? && !ssl_required?
 redirect_to "http://" + request.host + request.request_uri
 return false
 end
 end
end

Again, the SslRequirement.included method is triggered when SslRequirement is
included in a controller class. The included method does two things here. First, it
extends the controller with the SslRequirement::ClassMethods module, to include the
ssl_required and ssl_allowed class methods. This is a common Ruby idiom for add-
ing class methods, and it is required because module methods of an included module do
not become class methods of the including class. (In other words, ssl_required and
ssl_allowed could not be module methods of SslRequirement, because they would not
be added as class methods of the controller class.)

The second thing that SslRequirement.included does is to set up a before_filter on
the controller to enforce the SSL requirement. This filter redirects to the proper http://
or https:// URL, depending on the logic declared by the class methods.

Plugin Examples | 89

HTTP Authentication
The final plugin we will examine is the http_authentication plugin, which allows
you to protect certain actions in an application by HTTP Basic authentication (cur-
rently, Digest authentication is stubbed out but not implemented).

The HTTP Authentication plugin is very straightforward; the most common inter-
face is the ActionController class method authenticate_or_request_with_http_basic,
typically used in a before_filter on protected actions. That method takes as para-
meters an authentication realm and a login procedure block that verifies the given
credentials. If the login procedure returns true, the action is allowed to continue. If the
login procedure returns false, the action is blocked and an HTTP 401 Unauthorized
status code is sent, with instructions on how to authenticate (a WWW-Authenticate
header). In that case, the browser will typically present the user with a login and
password and allow three tries before displaying an “Unauthorized” page.

The following is a typical use of the HTTP Authentication plugin:

class PrivateController < ApplicationController
 before_filter :authenticate

 def secret
 render :text => "Password correct!"
 end

 protected

 def authenticate
 authenticate_or_request_with_http_basic do |username, password|
 username == "bob" && password == "secret"
 end
 end
end

Notice that, unlike the two plugins described earlier, here we did not have to include
anything in the PrivateController—the authenticate_or_request_with_http_basic
method was already provided for us. This is because the plugin added some methods
to ActionController::Base (of which ApplicationController is a subclass).

One way to include methods like this is direct monkeypatching. The plugin could
have directly written the methods into ActionController::Base:

class ActionController::Base
 def authenticate_or_request_with_http_basic(realm = "Application",
 &login_procedure)
 authenticate_with_http_basic(&login_procedure) ||
 request_http_basic_authentication(realm)
 end

90 | Chapter 3: Rails Plugins

 def authenticate_with_http_basic(&login_procedure)
 HttpAuthentication::Basic.authenticate(self, &login_procedure)
 end

 def request_http_basic_authentication(realm = "Application")
 HttpAuthentication::Basic.authentication_request(self, realm)
 end
end

This works for small plugins, but it can get clunky. The better solution, chosen by
this plugin, is to first create a module named for the plugin (sometimes including the
developer’s name or company to reduce the chance of namespace collisions). Here is
the abridged code for the HTTP Authentication plugin’s class methods:

module HttpAuthentication
 module Basic
 extend self
 module ControllerMethods
 def authenticate_or_request_with_http_basic(realm = "Application",
 &login_procedure)
 authenticate_with_http_basic(&login_procedure) ||
 request_http_basic_authentication(realm)
 end

 def authenticate_with_http_basic(&login_procedure)
 HttpAuthentication::Basic.authenticate(self, &login_procedure)
 end

 def request_http_basic_authentication(realm = "Application")
 HttpAuthentication::Basic.authentication_request(self, realm)
 end
 end
 end
end

Now, the methods are self-contained within HttpAuthentication::Basic::
ControllerMethods. A simple statement in the plugin’s init.rb file adds the methods to
ActionController::Base:

ActionController::Base.send :include,
 HttpAuthentication::Basic::ControllerMethods

Testing Plugins
Like the rest of Rails, plugins have very mature testing facilities. However, plugin
tests usually require a bit more work than standard Rails tests, as the tests are
designed to be run on their own, outside of the Rails framework. Some things to
keep in mind when writing tests for plugins:

Testing Plugins | 91

• Unlike in the Rails plugin initializer, when running tests, load paths are not set up
automatically, and Dependencies does not load missing constants for you. You
need to manually set up the load paths and require any parts of the plugin that you
will be testing, as in this example from the HTTP Authentication plugin:

$LOAD_PATH << File.dirname(_ _FILE_ _) + '/../lib/'
require 'http_authentication'

• Similarly, the plugin’s init.rb file is not loaded, so you must set up anything your
tests need, such as including your plugin’s modules in the TestCase class:

class HttpBasicAuthenticationTest < Test::Unit::TestCase
 include HttpAuthentication::Basic

 # ...
end

• You must usually recreate (mock or stub) any Rails functionality involved in
your test. In the case of the HTTP Authentication plugin, it would be too much
overhead to load the entire ActionController framework for the tests. The func-
tionality being tested is very simple, and requires very little of ActionController:

def test_authentication_request
 authentication_request(@controller, "Megaglobalapp")
 assert_equal 'Basic realm="Megaglobalapp"',
 @controller.headers["WWW-Authenticate"]
 assert_equal :unauthorized, @controller.renders.first[:status]
end

To support this limited subset of ActionController’s features, the test’s setup
method creates a stub controller:

def setup
 @controller = Class.new do
 attr_accessor :headers, :renders

 def initialize
 @headers, @renders = {}, []
 end

 def request
 Class.new do
 def env
 {'HTTP_AUTHORIZATION' =>
 HttpAuthentication::Basic.encode_credentials("dhh", "secret") }
 end
 end.new
 end

 def render(options)
 self.renders << options
 end
 end.new
end

92 | Chapter 3: Rails Plugins

The Class.new do ... end.new syntax creates an instance of an anonymous class
with the provided class definition. A more verbose, named, equivalent would be:

class MyTestController
 # class definition...
end
@controller = MyTestController.new

• Sometimes, dependencies are complicated enough so as to require actually load-
ing a full framework. This is the case with the SSL Requirement plugin, which
actually loads ActionController and sets up a controller for testing purposes.
First, the code loads ActionController (this either requires RUBYOPT="rubygems" and
a suitable gem version of ActionController, or setting the ACTIONCONTROLLER_PATH
environment variable to a copy of the ActionController source):

begin
 require 'action_controller'
rescue LoadError
 if ENV['ACTIONCONTROLLER_PATH'].nil?
 abort <<MSG
Please set the ACTIONCONTROLLER_PATH environment variable to the directory
containing the action_controller.rb file.
MSG
 else
 $LOAD_PATH.unshift << ENV['ACTIONCONTROLLER_PATH']
 begin
 require 'action_controller'
 rescue LoadError
 abort "ActionController could not be found."
 end
 end
end

Then, the test code loads ActionController’s test_process, which affords access
to ActionController::TestRequest and ActionController::TestResponse. After
that, logging is silenced and routes are reloaded:

require 'action_controller/test_process'
require 'test/unit'
require "#{File.dirname(_ _FILE_ _)}/../lib/ssl_requirement"

ActionController::Base.logger = nil
ActionController::Routing::Routes.reload rescue nil

Finally come the test controller and test case—these follow much the same for-
mat as Rails functional tests, as we have done all of the setup manually.

class SslRequirementController < ActionController::Base
 include SslRequirement

 ssl_required :a, :b
 ssl_allowed :c

 # action definitions...
end

Testing Plugins | 93

class SslRequirementTest < Test::Unit::TestCase
 def setup
 @controller = SslRequirementController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 # tests...
end

The Deadlock Retry plugin, another standard Rails plugin designed to retry dead-
locked database transactions, provides a good example of how to stub out an
ActiveRecord model class:*

class MockModel
 def self.transaction(*objects, &block)
 block.call
 end

 def self.logger
 @logger ||= Logger.new(nil)
 end

 include DeadlockRetry
end

This allows simple features to be tested without introducing a database dependency:

def test_error_if_limit_exceeded
 assert_raise(ActiveRecord::StatementInvalid) do
 MockModel.transaction { raise ActiveRecord::StatementInvalid,
 DEADLOCK_ERROR }
 end
end

Testing Plugin Database Dependencies
The semantics of some plugins makes them difficult to test without relying on a data-
base. But while you would like your tests to run everywhere, you cannot depend on a
particular DBMS being installed. Additionally, you want to avoid requiring your
users to create a test database in order to test a plugin.

Scott Barron has come up with a clever solution, which he uses in his acts_as_state_
machine plugin† (a plugin to assign states to ActiveRecord model objects, such as
pending, shipped, and refunded orders). The solution is to allow the user to test with
any DBMS, and fall back to SQLite (which is widely installed) if none is chosen.

* I would call this a stub, not a mock object, though some do not make the distinction. A stub tends to be
“dumb” and has no test-related logic—it only serves to reduce external dependencies. A mock is much
smarter and has knowledge of the test environment. It may keep track of its own state or know whether it is
“valid” with respect to the test cases that interact with it.

† http://elitists.textdriven.com/svn/plugins/acts_as_state_machine/trunk

http://elitists.textdriven.com/svn/plugins/acts_as_state_machine/trunk

94 | Chapter 3: Rails Plugins

To make this work, a set of test model objects and corresponding fixtures are
included in the plugin’s test/fixtures directory. The plugin also includes a database
schema backing the models (schema.rb) and some statements in test_helper.rb that
load the fixtures into the database. The full test directory structure is shown in
Figure 3-2.

The first piece of the puzzle is the database.yml file, which includes not only configu-
ration blocks for standard DBMSs, but also for SQLite and SQLite3, which save their
database in a local file:

sqlite:
 :adapter: sqlite
 :dbfile: state_machine.sqlite.db
sqlite3:
 :adapter: sqlite3
 :dbfile: state_machine.sqlite3.db
(postgresql and mysql elided)

The schema files, fixtures, and models are self-explanatory; they are a Ruby schema
file, YAML fixtures, and ActiveRecord model classes, respectively. The real magic
happens in test_helper.rb, which ties everything together.

The test helper first sets up Rails load paths and loads ActiveRecord. Then it loads
database.yml and instructs ActiveRecord to connect to the database (defaulting to
SQLite):

config = YAML::load(IO.read(File.dirname(_ _FILE_ _) + '/database.yml'))
ActiveRecord::Base.logger = Logger.new(File.dirname(_ _FILE_ _) + "/debug.log")
ActiveRecord::Base.establish_connection(config[ENV['DB'] || 'sqlite'])

Next, the schema file is loaded into the database:

load(File.dirname(_ _FILE_ _) + "/schema.rb") if
 File.exist?(File.dirname(_ _FILE_ _) + "/schema.rb")

Finally, the plugin’s fixture path is set as TestCase’s fixture path and added to the
load path so that models in that directory will be recognized:

Test::Unit::TestCase.fixture_path = File.dirname(_ _FILE_ _) + "/fixtures/"
$LOAD_PATH.unshift(Test::Unit::TestCase.fixture_path)

Figure 3-2. Plugin testing directory structure

Further Reading | 95

Now, the test (acts_as_state_machine_test.rb) can reference ActiveRecord classes and
their fixture data just as in a standard Rails unit test.

Further Reading
Geoffrey Grosenbach has a two-part article on Rails plugins, including some infor-
mation on writing plugins. The two parts are available from the following:

http://nubyonrails.com/articles/the-complete-guide-to-rails-plugins-part-i
http://nubyonrails.com/articles/the-complete-guide-to-rails-plugins-part-ii

http://nubyonrails.com/articles/the-complete-guide-to-rails-plugins-part-i
http://nubyonrails.com/articles/the-complete-guide-to-rails-plugins-part-ii

96

Chapter 4CHAPTER 4

Database 4

All non-trivial abstractions, to some degree, are leaky.
—Joel Spolsky

For many developers, Rails starts with the database. One of the most compelling
features of Rails is ActiveRecord, the object-relational mapping (ORM) layer.
ActiveRecord does such a good job of hiding the gory details of SQL from the pro-
grammer that it almost seems like magic.

However, as Joel Spolsky says, all abstractions are leaky. There is no perfectly trans-
parent ORM system, and there never will be, due to the fundamentally different
nature of the object-oriented and relational models. Ignore the underlying database
at your own peril.

Database Management Systems
The Rails community has been built around the MySQL database management sys-
tem (DBMS*) for years. However, there are still a lot of misconceptions surrounding
DBMSs, especially when used with Rails. While MySQL has its place, it is certainly
not the only option. In the past few years, support for other databases has vastly
grown. I encourage you to keep an open mind throughout this chapter, and weigh all
criteria before making a decision on a DBMS.

Rails supports many DBMSs; at the time of this writing, DB2, Firebird, FrontBase,
MySQL, OpenBase, Oracle, PostgreSQL, SQLite, Microsoft SQL Server, and Sybase
are supported. You will probably know if you need to use a DBMS other than the
ones mentioned here. Check the RDoc for the connection adapter for any caveats
specific to your DBMS; some features such as migrations are only supported on a
handful of connection adapters.

* Informally, DBMSs are often referred to as “databases.” Consistent with industry practices, in this book
“database management system” refers to the software package or installation thereof, while “database”
refers to the actual data set being managed.

Database Management Systems | 97

PostgreSQL
I list PostgreSQL* first because it is my platform of choice. It is one of the most
advanced open source databases available today. It has a long history, dating back to
the University of California at Berkeley’s Ingres project from the early 1980s. In con-
trast to MySQL, Postgres has supported advanced features such as triggers, stored
procedures, custom data types, and transactions for much longer.

PostgreSQL’s support for concurrency is more mature than MySQL’s. Postgres sup-
ports multiversion concurrency control (MVCC), which is even more advanced than
row-level locking. MVCC can isolate transactions, using timestamps to give each
concurrent transaction its own snapshot of the data set. Under the Serializable isola-
tion level, this prevents such problems as dirty reads, nonrepeatable reads, and phan-
tom reads.† See the upcoming sidebar, “Multiversion Concurrency Control,” for
more information about MVCC.

One advantage that PostgreSQL may have in the enterprise is its similarity to com-
mercial enterprise databases such as Oracle, MS SQL Server, or DB2. Although Post-
gres is not by any means a clone or emulation of any commercial database, it will
nevertheless be familiar to programmers and DBAs who have experience with one of
the commercial databases. It will also likely be easier to migrate an application from
Postgres to (say) Oracle than from MySQL to Oracle.

PostgreSQL has an unfortunate reputation for being slow. It got this reputation
because the default configuration is optimized for performance on a tiny machine.
Therefore, it will perform fairly consistently out of the box on a server with as little
as 64 MB of RAM or as much as 64 GB. Like any database, Postgres must be tuned
for any serious use. The official documentation at http://www.postgresql.org/docs/ has
lots of great information on performance tuning.

One disadvantage of using PostgreSQL is that it has a smaller community around it.
There are more developers, especially in the Rails world, working with MySQL.
There are more tested solutions built around MySQL than PostgreSQL. The com-
pany behind MySQL, MySQL AB, provides commercial support for its product.
There is no such centralized support structure for Postgres, as there is no single com-
pany behind PostgreSQL; however, there are several companies that specialize in
Postgres consulting and provide support contracts.

* Technically pronounced “post-gres-Q-L,” and usually just called “Postgres.” This is a contender for the least
intuitive name in computing today. It has its roots in PostgreSQL’s long-ago predecessor, Postgres, which
did not support SQL.

† For a detailed look at how Postgres handles concurrency, including a summary of the potential problems and
how Postgres handles them, see the documentation at http://www.postgresql.org/docs/8.2/interactive/
transaction-iso.html.

http://www.postgresql.org/docs/8.2/interactive/transaction-iso.html
http://www.postgresql.org/docs/8.2/interactive/transaction-iso.html
http://www.postgresql.org/docs/

98 | Chapter 4: Database

MySQL
The MySQL DBMS is controversial. Some hold it to be a toy, while others consider it
to be a good foundation for web applications. Nevertheless, MySQL is the dominant
DBMS in use for Rails web applications today, and it has improved greatly between
versions 3 and 5.

Part of the Rails scalability mantra is “shared nothing”: each application server
should be able to stand on its own. Thus, you can throw five of them behind a load
balancer and it doesn’t matter if a user is served by different servers throughout the
course of a session. However, the bottleneck is the database. A big assumption of
this shared-nothing architecture is that the application servers all share a database. If
you use a database that doesn’t have great support for concurrency, you will have
problems.

Old versions of MySQL had some fairly serious issues, many revolving around the
issue of data integrity and constraints. The problem was not so much that the issues
existed as that MySQL’s developers seemed to have an attitude of “you aren’t going

Multiversion Concurrency Control
Multiversion concurrency control (MVCC) is one of the most powerful ways to achieve
isolation between concurrent database transactions. MVCC gives each transaction a
snapshot of the data it accesses, as the data existed at the start of the transaction. The
transaction performs actions on the data, which are logged with timestamps. When the
transaction commits, the DBMS checks the logs to ensure there are no conflicts with
other transactions; if the transaction can be performed successfully, it is applied to the
database at once, atomically.

The alternative to MVCC is row-level locking, which is used by MySQL’s InnoDB stor-
age engine. Row-level locking locks only those rows affected by an update during a
transaction (as opposed to page- or table-level locking, which are more coarse). The
primary advantage that MVCC has over locking is that MVCC does not block readers.
Since all update transactions are applied atomically, the database is always in a consis-
tent state. Pending transactions are stored as logs alongside the database to be written
upon commit, rather than being applied to the database in the middle of the transac-
tion. The most significant consequence of this is that reads never block, since they are
read from the database, which is always consistent.

It is important to realize that isolation for concurrent transactions usually trades off
against performance. MVCC uses more storage space than locking because it has to
store a snapshot for each in-progress transaction. And though MVCC never blocks
reads, the DBMS may roll back update transactions if they cause a conflict.

Database Management Systems | 99

to need it.” Even transactions are not supported with the default storage engine
(MyISAM) to this day. In versions prior to 5.0, there were many bugs that would
silently discard incorrect data rather than raising an error. To be fair, new versions of
MySQL are addressing a lot of its issues. I would still recommend PostgreSQL as a
general rule where speed is not the primary criterion, since it has had enterprise-level
features for much longer. If you use MySQL, take these recommendations:

• Use version 5.0 or later. Many of the issues that existed with previous versions
have been fixed or improved in 5.0 and newer versions.

• Use InnoDB for absolutely anything where data integrity or concurrency matter.
MyISAM, the default engine on most MySQL installations, does not support fea-
tures that most RDBMSs consider essential: foreign key constraints, row-level
locking, and transactions. In most business environments, these features are
non-negotiable. InnoDB is a journaled storage engine that is much more resil-
ient to failures. Rails does the right thing here and defaults to the InnoDB stor-
age engine when creating tables.

Unfortunately, InnoDB can be much slower than MyISAM, and the table sizes
are usually several times larger. MyISAM is usually faster when reads vastly out-
number writes or vice versa, while InnoDB is generally faster when reads and
writes are balanced. It all comes down to the requirements of the specific appli-
cation; these are general rules. You should always benchmark with your real
data, and an accurate sample of queries and statements you will be issuing, in a
realistic environment.

There are a few exceptions to this guideline: MyISAM may be a better choice if you
need full-text indexing (which is only supported on MyISAM tables at this time). In
addition, if raw speed of reads or writes is the primary concern, MyISAM can
help. For example, a logging server for web analytics might use MyISAM tables:
you want to be able to dump logs into it as fast as possible, and reads are per-
formed far less often than writes.

• Set the SQL mode to TRADITIONAL. This can be accomplished with the following
command:

SET GLOBAL sql_mode='TRADITIONAL';

This will make MySQL a little bit more strict, raising errors on incorrect data
rather than silently discarding it.

MySQL does have some clear advantages over PostgreSQL in some situations. On
the whole, MySQL tends to be faster. For many web applications, query speed may
be the most important factor. MySQL also has more stable, tested replication and
clustering options available. MySQL is also somewhat better at handling binary data
stored in the database (we discuss this at length later in the chapter). For many web
applications, MySQL may be a clear win.

100 | Chapter 4: Database

SQLite
SQLite is a minimalist database that is excellent for small projects. Although it does
not support many fancy features, it is a great choice for projects that will not grow
very large. It supports ACID transactions* out of the box. SQLite is a library that is
linked into your program; there is no server process to speak of. The library code
residing in your application’s process space accesses a database file.

SQLite provides no concurrency, as there is no server process to enforce the ACID
properties. Therefore, it uses file-level locking: the entire database file is locked at the
filesystem level during a transaction. Still, for many small applications, it fits the bill
perfectly. It is a good replacement for data that may have been stored in flat files, as
it supports most of the SQL-92 standard and would be easy to migrate to a more tra-
ditional DBMS as needs grow.

Microsoft SQL Server
Though Rails grew up in the Linux/Unix world, it has developed great community
support for the Windows platform as well. Not only are Microsoft SQL Server data-
base connections supported in Rails, there are also provisions for connecting to SQL
Server from a Linux-based systems as well, using the FreeTDS library.†

From a Windows client, the standard approach is to use Ruby-DBI (a Ruby database-
independent adapter) with ADO. The configuration looks like this:

development:
 adapter: sqlserver
 host: server_name
 database: my_db
 username: user
 password: pass

Your configuration may vary, depending on the version of SQL Server and the ADO
libraries you have installed. Once the database configuration is in place, the stan-
dard ActiveRecord API methods can be used to manipulate data.

Oracle
Rails supports Oracle versions 8i, 9i, and 10g through the ruby-oci8 library,‡ which
supports the OCI8 API. Windows, Linux, and OS X are supported as clients. The
connection configuration is fairly standard, using oci as the connection adapter name.

* ACID stands for Atomic, Consistent, Isolated, and Durable, which are necessary properties for transactional
integrity within a database. See http://en.wikipedia.org/wiki/ACID for a full definition and explanation.

† Instructions are at http://wiki.rubyonrails.org/rails/pages/HowtoConnectToMicrosoftSQLServerFromRailsOnLinux;
FreeTDS is available from http://www.freetds.org/.

‡ http://rubyforge.org/projects/ruby-oci8/

http://en.wikipedia.org/wiki/ACID
http://wiki.rubyonrails.org/rails/pages/HowtoConnectToMicrosoftSQLServerFromRailsOnLinux
http://www.freetds.org/
http://rubyforge.org/projects/ruby-oci8/

Large/Binary Objects | 101

However, the Oracle client library still maps net service names to connection speci-
fications, so the host parameter provides a service name rather than a physical
hostname:

development:
 adapter: oci
 host: ORCL
 username: user
 password: pass

The ORCL in the preceding configuration corresponds to an entry in the TNSNAMES.
ORA file, which will look something like this:

ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = srv)(PORT = 1521))
)

...
)

Alternatively, you can provide the connection specification on one line with the Rails
database configuration:

development:
 adapter: oci
 host: (DESCRIPTION = (ADDRESS_LIST = (...)))
 username: user
 password: pass

The connection setup is the hardest part. Once the database is connected, Rails sup-
ports Oracle connections just as it does connections to any other DBMS. Stored pro-
cedures and other Oracle-specific syntax are available through the standard methods
that expose an SQL interface, such as ActiveRecord::Base.find_by_sql.

Large/Binary Objects
Sooner or later, many web applications must deal with the issue of LOB (large
object) data. LOB data may be small, but it is usually large compared to other
attributes being stored (tens of kilobytes to hundreds of gigabytes or larger). The defin-
ing characteristic of LOB data, however, is that the application has no knowledge of the
semantics of the internal structure of the data.

The canonical example is image data; a web application usually has no need to know
the data in a JPEG file representing a user’s avatar as long as it can send it to the
client, replace it, and delete it when needed.

LOB storage is usually divided into CLOB (character large object) for text data and
BLOB (binary large object) for everything else. Some DBMSs separate the two as sep-
arate data types. CLOB types can often be indexed, collated, and searched; BLOBs
cannot.

102 | Chapter 4: Database

Database Storage
The DBA types among us might prefer database storage of large objects. From a the-
oretical standpoint, storing binary data in the database is the most clean and straight-
forward solution. It offers some immediate advantages:

• All of your application data is in the same place: the database. There is only one
interface to the data, and one program is responsible for managing the data in all
its forms.

• You have greater flexibility with access control, which really helps when work-
ing with large-scale projects. DBMS permitting, different permissions may be
assigned to different tables within the same database.

• The binary data is not tied to a physical file path; when using filesystem storage,
you must update the file paths in the referring database if you move the storage
location.

There are many practical considerations, though, depending on your DBMS’s imple-
mentation of large objects.

PostgreSQL

PostgreSQL has some downright weird support for binary data. There are two ways to
store binary data in a PostgreSQL database: the BYTEA data type and large objects.

The BYTEA* type is the closest thing PostgreSQL has to a BLOB type—just a
sequence of bytes—but it is really terrible for large amounts of binary data. The pro-
tocol for shuttling BYTEA types back and forth from the database requires escaping
all non-printable bytes, so a single null byte would be encoded as the ASCII string
\000 (4 bytes). Needless to say, this causes unnecessary expansion of the data. In
addition, it is impossible to stream data from the database to the web browser with-
out running it through an unescape filter. Pulling a 2 MB binary file from the data-
base usually means streaming somewhere around 6 MB of data through the unescape
code.† The naïve method runs all of the data through Ruby strings, where it balloons
tremendously in memory. A better option would be to have the postgres C library
handle quoting and unquoting, but this is a lot of work and still suboptimal. Up to 1
GB of data can be stored in a BYTEA column.

The other option is large objects. The large object features in PostgreSQL work well
enough, but they are also a little bit clunky. Files are kept in the pg_largeobject system
catalog in small pages.‡ A pointer is kept in the referring table to the OID (object ID) of
the file. Up to 2 GB of data may be stored in a large object. This method is fast, and has
good APIs, but there are drawbacks. There is no per-table or per-object access control;

* Short for “byte array.”

† Assuming fairly uniform binary data, the BYTEA quoting rules lead to an average expansion ratio of 1:2.9.

‡ The size is defined in LOBLKSIZE. It defaults to 2 KB.

Large/Binary Objects | 103

the pg_largeobject catalog is global to the database, and accessible by anyone with
permission to connect to the database. The large object mechanism is also slightly dep-
recated in favor of in-table storage, as the TOAST storage technique allows values of
up to 1 GB in length to be stored directly as attributes within the table.

My recommendation is to use filesystem storage for all binary objects if you use
PostgreSQL. Although the database might be the more proper place for this type of
data, it just does not work well enough yet. If you have to use the database, large
objects actually perform pretty well. Avoid BYTEA at all costs.

MySQL

MySQL does a fairly good job with binary data. LOB-type columns (including the
TEXT types) can store up to 4 GB of data, using the LONGBLOB type. Actual stor-
age and performance depend on the wire protocol being used, buffer size, and avail-
able memory. Storage is efficient, using up to 4 bytes to store the data length,
followed by the binary data itself. However, MySQL suffers from issues similar to
PostgreSQL with streaming data, and it is always more awkward for a web applica-
tion to stream data from the database than from the filesystem.

Oracle

Oracle supports the BLOB data type, for objects up to 4 GB. It is supported by a
fairly mature API, and can be used directly from Rails.

Oracle also provides the BFILE type, which is a pointer to a binary file on disk. Con-
sider it a formalization of the filesystem storage method discussed below. This may
prove to be of value in some situations.

Filesystem Storage
The reality is that filesystem storage is the best option, as a general rule. Filesystems
are optimized to handle large amounts of binary and/or character data, and they are
fast at it. The Linux kernel has syscalls such as sendfile() that work on physical
files. There are hundreds of third-party utilities that you can only leverage when
using physical files:

• Image processing is arguably the most popular application for storing binary
data. Programs like ImageMagick are much easier to use in their command-line
form, operating on files, rather than getting often-problematic libraries like
RMagick to work with Ruby.

• Physical files can be shared with NFS or AFS, put on a MogileFS host, or other-
wise clustered. Achieving high availability or load balancing with database large
objects can be tricky.

• Any other utility that works on files will have to be integrated or otherwise mod-
ified to work from a database.

104 | Chapter 4: Database

Why Is Filesystem Storage So Fast?
The short answer is that web servers are optimized for throwing binary files down a
TCP socket. And the most common thing you do with binary files is throw them down
a TCP socket.

Long answer: the secret to this performance, under Linux and various BSDs, is the kernel
sendfile() syscall (not to be confused with X-Sendfile, discussed later). The sendfile()
function copies data quickly from a file descriptor (which represents an open file) to a
socket (which is connected to the client). This happens in kernel mode, not user mode—
the entire process is handled by the operating system. The web server doesn’t even have
to think about it. When sendfile() is invoked, the process looks a bit like Figure 4-1.

On the other hand, Rails is necessarily involved with the whole process when reading data
from the database. The file must be passed, chunk by chunk, from the database to Rails,
which creates a response and sends the whole thing (including the file) to the web server.
The web server then sends the response to the client. Using sendfile() would be impos-
sible here because the data does not exist as a file. The data must be buffered in memory,
and the whole operation runs in user mode. The entire file is processed several times by
user-mode code, which is a much more complicated process, as shown in Figure 4-2.

Figure 4-1. Serving files using sendfile()

Figure 4-2. Serving files from the database

Client Linux Apache Rails

Filesystem DB

Client Linux Apache Rails

Filesystem DB

Large/Binary Objects | 105

Sending Data with X-Sendfile
Often you will need to send a file to the client for download after doing some pro-
cessing in Rails. The most common example is an access-controlled file—you need
to verify that the logged-in user has the appropriate level of access before sending the
file, for example. The easy way to do this is with the send_file or send_data API
calls, which stream data from the server to the client:

class DataController < ApplicationController
 before_filter :check_authenticated

 def private_document
 file = File.find params[:id]
 send_file file.path if file
 end

end

This method is easy, but it is slow if you are sending static files. Rails reads the file
and streams it byte-by-byte to the client. The X-Sendfile protocol makes this easy
and fast, by allowing Rails to do its processing but then offloading the “heavy lift-
ing” to the web server (which may offload that processing to the operating system
kernel, as described previously).

The X-Sendfile protocol is a very simple standard, first introduced in the Lighttpd
web server, which directs the web server to send a file from the filesystem to the cli-
ent rather than a response generated by the application server. Because the web
server is optimized for throwing files at the client, this usually yields a decent speed
improvement over reading the file into memory and sending it from Rails with the
send_file or send_data API calls.

Because the web server requires access to the file in order to send it to the client, you
must use filesystem large object storage. In addition, the files to be sent must have
permissions set so as to be accessible to the web server. However, the files should be
outside of the web root, lest someone guess a filename and have free access to your
private files.

X-Sendfile uses the X-Sendfile HTTP header pointing to the server’s path to the file
to send, in conjunction with the other standard HTTP headers. A typical response
using X-Sendfile would look something like this:

X-Sendfile: /home/rails/sample_application/private/secret_codes_69843.zip
Content-Type: application/octet-stream
Content-Disposition: attachment; file="secret_codes.zip"
Content-Length: 654685

Assuming the web server is properly configured, it will ignore any response body and
stream the file from disk to the client.

106 | Chapter 4: Database

From Rails, you can set the response headers by modifying the response.headers
hash:

response.headers['X-Sendfile'] = file_path
response.headers['Content-Type'] = 'application/octet-stream'
response.headers['Content-Disposition'] = "attachment; file=\"#{file_name}\""
response.headers['Content-Length'] = File.size(file_path)

Web server configuration

Of course, the front end web server must be properly configured to recognize and
process the X-Sendfile header. Mongrel does not support X-Sendfile, as it assumes
you will proxy to it from a server more capable of serving static content.

If you are using Lighttpd, it has X-Sendfile support built in. For Lighttpd/FastCGI,
just enable the allow-x-send-file option in the server configuration:

fastcgi.server = (
 ".fcgi" => (
 "localhost" => (

...
 "allow-x-send-file" => "enable",

...
)
)
)

If you are using Apache 2, things are a little more complicated (although not by
much). You have to install the mod_xsendfile module* into Apache. There are two
configuration flags, both accepting on/off values, which can then be used to control
X-Sendfile behavior:

XSendFile
Determines whether the X-Sendfile header is processed at all.

XsendFileAllowAbove
Determines whether that header can send files above the path of the request. It
defaults to off for security reasons.

Both of these configuration options can be used in any configuration context, down
to the .htaccess file (per-directory). Best practice dictates that you should only spec-
ify XSendFile on in the narrowest possible context. Having X-Sendfile unnecessarily
enabled is a security risk, as it allows a server application to send any file that the
web server can access to the client.

To my knowledge, there is no way to use X-Sendfile on Apache 1.3 at this time.

* http://celebnamer.celebworld.ws/stuff/mod_xsendfile/

http://celebnamer.celebworld.ws/stuff/mod_xsendfile/

Large/Binary Objects | 107

Serving Static Files
One advantage of filesystem storage is that as long as the file data doesn’t need to be
protected with access control or otherwise acted upon dynamically, you can leverage
your static web servers to serve that data. By exporting the storage path via NFS (or a
caching filesystem such as AFS to conserve bandwidth), you can share the applica-
tion’s files with the static servers on your content distribution network. This com-
pletely removes the load from the application servers and provides a more scalable
solution.

Managing Uploads in Rails
Most applications that use large objects must deal with uploads. This can be tricky in
any framework, but Rails handles most of the details and there are some best prac-
tices to guide you with the rest.

Attachment plugins

One of the easiest ways to handle Rails uploads is to use one of the popular plugins for
upload processing. The standard plugin used to be Rick Olson’s acts_as_attachment
(http://svn.techno-weenie.net/projects/plugins/acts_as_attachment/). Many Rails devel-
opers are familiar with its interface, and for quite a while it was the standard way to
handle uploaded data. However, there were a few factors that made it unsuitable for
many applications:

• It is tied to RMagick (and therefore ImageMagick) for image processing.
ImageMagick is notoriously difficult to install, primarily because it depends on
many backend libraries for processing different image formats. At the time
acts_as_attachment was written, ImageMagick was the best option. Now, how-
ever, there is a lighter alternative, ImageScience, based on the FreeImage library.

• The entire attachment data must be read into memory and converted to a Ruby
string. For large files, this is expensive—Rails passes the application a TempFile,
which is slurped into a String. If using filesystem storage, the string is then writ-
ten back out into a file!

• There is no support for alternative storage methods such as Amazon’s S3.

Luckily, there is an alternative. Rick has rewritten acts_as_attachment to resolve
these issues. The rewrite is called attachment_fu, and it is publicly available at http://
svn.techno-weenie.net/projects/plugins/attachment_fu/.

The attachment_fu library supports all of acts_as_attachment’s options and more.
It can use RMagick as a processor, but it also supports MiniMagick (a lightweight
alternative to RMagick that still wraps ImageMagick) and ImageScience. It can store
attachments in a database, the filesystem, or S3 out of the box. It also has great
facilities for expansion; it is easy to write your own processor or storage backend.
A typical use of attachment_fu looks like this:

http://svn.techno-weenie.net/projects/plugins/acts_as_attachment/
http://svn.techno-weenie.net/projects/plugins/attachment_fu/
http://svn.techno-weenie.net/projects/plugins/attachment_fu/

108 | Chapter 4: Database

class UserAvatar < ActiveRecord::Base
 belongs_to :user
 has_attachment :content_type => :image,
 :max_size => 100.kilobytes,
 :storage => :file_system,
 :resize_to => [100, 100]
end

Attachment_fu is almost completely backward-compatible with acts_as_attachment.
Simply change the acts_as_attachment method call to has_attachment. Of course,
complete API documentation is provided with the plugin as RDoc.

Rolling your own

The attachment plugins are powerful, but they cannot do everything. If you do
decide to do your own upload processing, here are some things to take into account:

• You must validate the uploaded data. What constitutes a valid file upload? Are
there restrictions on the size of the uploaded data (minimum or maximum size)?
Must the uploaded file have a certain MIME type or extension?

• Rails can hand you any of several different types of objects, depending on what
was uploaded and its size. James Edward Gray II has an article* on how to cor-
rectly and efficiently handle all cases.

• Ensure that files can be cloned properly when the associated record is cloned. (In
the case of filesystem storage, this should just be a FileUtils.cp call.)

• Make sure that you delete the file from storage when the record is deleted. This
can be done with an after_destroy callback on the model. In the case of data-
base storage, you may find it more efficient to use a trigger or rule.

Upload progress

One feature that many applications require is upload progress notification: showing
the user a progress bar that indicates how much of the file has been uploaded. This is
surprisingly hard and server-dependent, but there are tools to make it easier. For sim-
plicity, we will restrict discussion in this section to the Mongrel application server.

Mongrel serializes Rails requests; at any given time, a single Mongrel process can
only execute one Rails request. This is required because ActionController is not
thread-safe. But upload progress requires two simultaneous requests: the upload
itself as well as AJAX requests to check its progress. How do we reconcile this?

The answer is that Mongrel is very conservative about what it locks; it only serializes
requests while they are actually executing controller code. While the file is being
transferred, Mongrel buffers it into memory, but during that time it allows other

* http://cleanair.highgroove.com/articles/2006/10/03/mini-file-uploads

http://cleanair.highgroove.com/articles/2006/10/03/mini-file-uploads

Advanced Database Features | 109

requests to complete. When the file transfer completes, Mongrel processes that Rails
request all at once, only locking during the time the Rails code executes.

The mongrel_upload_progress gem hooks into Mongrel to provide a shared variable
that the multiple requests can use to communicate about the status of file uploads.
This variable is accessible to the Rails handler as Mongrel::Uploads. A simple Rails
action (called via AJAX) calls Mongrel::Uploads.check(upload_id) to check the sta-
tus and update the client.

Though all of this complication makes it possible to use just one Mongrel process,
most moderately trafficked applications will require multiple Mongrels. All actual
Rails requests are still serialized, so the number of requests being processed in Rails
concurrently is limited to the number of Mongrel processes. However, the shared-
memory solution used previously does not work with more than one Mongrel—each
Mongrel is a separate process and they have no shared memory.

The solution is to use DRb (Distributed Ruby). A background process is started as a
shared repository for upload status. Each upload handler notifies the background
process of its status via DRb as it receives blocks from the file. The Rails handlers can
then query the common backend for the status of any file, regardless of which Mon-
grel handled the original upload or status request.

The upload progress gem can be installed with gem install mongrel_upload_progress. A
sample Rails application illustrating how to use the gem is located at http://svn.techno-
weenie.net/projects/mongrel_upload_progress/. The official Mongrel upload progress
documentation is available at http://mongrel.rubyforge.org/docs/upload_progress.html.

Advanced Database Features
Among Rails programmers, advanced database features are often a point of conten-
tion. Some contend that constraints, triggers, and procedures are essential; some
shun them completely, saying that intelligence belongs in the application only. I am
sympathetic to the argument that all business logic belongs in the application; it is
nearly impossible to make agile changes to changing requirements when logic is split
between two locations. Still, I believe that constraints, triggers, and even stored pro-
cedures have their place in enterprise applications. In order to explain why, we’ll
have to examine a distinction that comes up often in relation to this debate: the dif-
ference between application and integration databases.

Application Versus Integration Databases
Martin Fowler differentiates between application databases and integration data-
bases.* The basic distinction is that an integration database is shared among many
applications, while an application database “belongs” to the one application using it.

* http://www.martinfowler.com/bliki/DatabaseStyles.html

http://www.martinfowler.com/bliki/DatabaseStyles.html
http://svn.techno-weenie.net/projects/mongrel_upload_progress/
http://svn.techno-weenie.net/projects/mongrel_upload_progress/
http://mongrel.rubyforge.org/docs/upload_progress.html

110 | Chapter 4: Database

In this sense, “application” can mean one program or multiple programs within an
application boundary (the same logical application). Usually this distinction refers to
how the schema is organized; in Rails, integration databases are often referred to as
databases with “legacy schemas.” In application databases, integration can still be
performed through messaging at the application layer rather than the database layer.

Rails is opinionated about how your database schemas should be structured: the pri-
mary key should be id, foreign keys should be thing_id, and table names should be
plural. This is not database bigotry; Rails has to choose a sensible default for the
“convention over configuration” paradigm to be effective. It is relatively painless to
change almost any of these defaults. Rails plays nice with integration databases.

Many Rails developers shun integration databases as unnecessary; they maintain that
all integration should be done at the application layer. Some take that a step further
and state that data integrity checking belongs in the application only, to keep all
business logic in the same place. Although this might be ideal, the real world is not
always that nice. Even if all integration can be done at the application level, there are
still plenty of valid reasons to use database constraints.

In addition, most databases in the enterprise tend to become integration databases
over time. Databases that are useful for one purpose are often appropriated for
another use. Sometimes you have a database that isn’t under your control, and you
want to use the data without performing a full ETL (extract, transform, load). Even
running a small script against your database without using the ActiveRecord model,
or maintaining the database manually through a console client such as mysql or psql,
means you have something accessing your database outside of your domain model. If
the validations in the domain are the only way to ensure that the data is consistent,
this may lead to problems.

Constraints
Database-level constraints provide a way to explicitly specify an application’s
implicit assumptions about its data. There are two types of constraints, which should
not be confused:

Business logic
“A manager may not manage more than five employees.” The key characteristic
of business logic constraints is that they could conceivably change throughout
the lifetime of the database. Business logic constraints should never be in the
database, barring a very good reason to the contrary.

Integrity
“U.S. Social Security numbers, when provided, must contain exactly nine digits.”
Integrity constraints define the nature of the data being represented. Admit-
tedly, “the nature of the data” is a somewhat nebulous concept; the meaning will
differ between databases. Integrity constraints must reside in the database, if for
no other reason than to provide a last-level sanity check on the data.

Advanced Database Features | 111

As with any other area of data modeling, there are gray areas. An example would be
“an employee’s salary must be positive,” which could conceivably go either way.*

The advantage of constraints is that they narrow the domain of possible results the
database can generate. When you know the DBMS for an online store can never out-
put a negative price for a product, you can sum the prices for the line items belong-
ing to an order without worrying about invalid prices. Though the line is drawn in
different places for different applications, the basic principle is this: the database
should not enforce business logic, but it should enforce consistency and integrity.

Regardless of differences of opinion on check constraints, one type of constraint is
non-negotiable: foreign-key constraints. If a foreign-key relationship is required, an
unassociated record is semantically meaningless and must not be allowed to happen.
It only makes practical sense to formalize that association.

The only truly robust way to ensure that a database maintains integrity over years as it
accumulates data (as databases tend to do) is to declare appropriate constraints on the
data. Unless you can say for certain that every application or person accessing the data-
base will do so through the domain model (going through all associated validations)
every time, the only sensible option is to treat the database as an integration database.

There is a bonus to providing constraints: typically, the more constraints provided
on a database, the better job the query optimizer can do at creating a query plan.

A common complaint about database constraints is that they require you to specify
semantic information in two places: your database and your application code (you
usually want to trap invalid data in your application’s validations before attempting
to insert it into your database, even if the database would catch the error anyway).
The DrySQL library† goes a long way toward removing this duplication. It infers the
schema relationships and validation rules from the database’s types and constraints, so
they don’t have to be specified in the application. DrySQL works with all of the major
DBMSs: PostgreSQL 8 and up, MySQL 5 and up, SQL Server, Oracle, and DB2.

With DrySQL installed, you can simply require the library in the environment con-
figuration file:

require 'drysql'

Then, all that is needed is to inform ActiveRecord of the mapping between tables and
model classes (even that is not necessary if the tables are named according to the
defaults):

class Client
 set_table_name "customers"
end

* I would probably keep that one at the application level, because it contains the business rule that no
employee’s salary is zero. However, “an employee’s salary must be non-negative” would most likely be an
integrity constraint, as it is nearly inconceivable that you would “pay” an employee a negative salary.

† http://drysql.rubyforge.org/

http://drysql.rubyforge.org/

112 | Chapter 4: Database

If the table had been named clients, you would not even need the set_table_name call.
The relationships and constraints will be inferred from the customers table’s constraints.

Composite Keys
Composite keys, primary keys made up of two or more attributes, are best avoided.
Not only are they harder to manage than simple primary keys, they are usually more
fragile. The motivation for using composite keys is usually based in some inherently
unique aspect of the data, which means the composite key will be meaningful (tied
to the data) rather than meaningless (tied to the database only). It is usually much
more resilient to assign a meaningless primary key used only within the database.
That way, data integrity is internal to the database rather than being tied to an exter-
nal system or process.

As an example, consider a database that tracks U.S. members by their driver’s license
numbers. A candidate key would be {Issuing state, License number}. One immediate
advantage of a meaningless key is that integer values are easier to represent than lists; it
is easier to refer to a record as 12345 than as [IL,1234]. This makes foreign keys much
simpler, and it simplifies web services and other protocols used for interoperability.

But the most basic problem is that a primary key is usually treated as a unique, sta-
ble identifier for a record. A composite key may not actually be unique in practice
and may even change. If you were to use the preceding composite key, you should be
prepared to answer questions like:

• What happens when a member moves or has a new license number issued?

• What happens if some inherent characteristic of the key changes? For example,
how would you handle it if license numbers were always 9 digits and changed to
10? This is a problem in general with keying off of meaningful data.

• Are you prepared to have every record with a duplicate or missing key rejected?
Or might it be desirable to have the system hold invalid data for a time until it is
corrected?

There are some valid situations for using composite keys, though. A good example is
in multimaster replication. One big problem in asynchronous multimaster replica-
tion is synchronizing primary key sequences. If you insert two records at roughly the
same time to two master servers, there must be some mechanism to ensure that the
two servers issue different values for the primary keys on each record, lest problems
ensue when the records are replicated.

The composite-key solution to the problem of multimaster sequences is to issue each
server an ID and use that as part of the key; then each server can maintain its own
sequence independently of the others. The two records could have primary keys of
{ServerA, 5} and {ServerB, 5} and there would be no conflict. Note that this is a legit-
imate use of composite keys, since the keys are meaningless (relative to the data
being stored in attributes).

Advanced Database Features | 113

For situations such as this, Dr Nic Williams has made composite keys work with
ActiveRecord. The composite_primary_keys gem is available at http://compositekeys.
rubyforge.org/.

As an example, consider the multimaster sequence problem discussed previously.
We have an Order model that is replicated between two servers using multimaster
replication. We must use a composite key to ensure unique primary keys regardless
of which server an order is created on. First, we install the gem:

gem install composite_primary_keys

Then, we have to require this library in our application. From Rails, we can include
this statement at the end of our environment.rb:

require 'composite_primary_keys'

The next step is to call the set_primary_keys(*keys) method to inform ActiveRecord
that we will be using composite keys:

class Order < ActiveRecord::Base
 set_primary_keys :node_id, :order_id
end

After setting up the composite key, most ActiveRecord operations take place as
usual, with the exception that primary keys are now represented by an array rather
than an integer.

Order.primary_key # => [:node_id, :order_id]
Order.primary_key.to_s # => "node_id,order_id"
Order.find 1, 5 # => #<Order:0x1234567 @attributes={"node_id"=>"1",
 "order_id"=>"5"}>

Even associations work normally; you only have to specify the foreign key explicitly
on both sides of the association. To demonstrate this, we can add a LineItem model
that belongs to a corresponding Order.

class Order < ActiveRecord::Base
 set_primary_keys :node_id, :order_id
 has_many :line_items, :foreign_key => [:order_node_id, :order_id]
end

class LineItem < ActiveRecord::Base
 set_primary_keys :node_id, :line_item_id
 belongs_to :order, :foreign_key => [:order_node_id, :order_id]
end

Note that as in regular associations, the foreign keys are the same on both sides of
the association, as there is only one foreign key that defines the relationship (even
though, in this case, the foreign key is composed of two attributes). This can be con-
fusing if you don’t consider the way the relationship is represented in the schema,
because the foreign_key option defined in Order’s has_many :line_items statement
actually refers to attributes of LineItem.

http://compositekeys.rubyforge.org/
http://compositekeys.rubyforge.org/

114 | Chapter 4: Database

As a final touch, we can set things up so that we don’t have to worry about the keys
at all in code. Remember that the original reason for using composite keys was to
allow us to use independent sequences on each database server. First, we create
those sequences in SQL when creating the tables. The way we set this up is DBMS-
specific; the PostgreSQL syntax would be:

CREATE SEQUENCE orders_order_id_seq;
CREATE TABLE orders(
 node_id integer not null,
 order_id integer not null default nextval('orders_order_id_seq'),
(other attributes)

 PRIMARY KEY (node_id, order_id)
);

CREATE SEQUENCE line_items_line_item_id_seq;
CREATE TABLE line_items(
 node_id integer not null,
 line_item_id integer not null default nextval('line_items_line_item_id_seq'),

 -- FK to orders
 order_node_id integer not null,
 order_id integer not null,

(other attributes)
 PRIMARY KEY (node_id, line_item_id)
);

When we execute this DDL on all database nodes and enable replication between
them, each node has its own sequence independent of the others. Now we just have
to make sure that each node uses its own node ID. We could either do this in the
database with column defaults (if we can use different DDL for each node) or in
the application with a before_create callback (if each application accesses only one
node).

Triggers, Rules, and Stored Procedures
Now we’re in dangerous territory. Let it be known that you should probably have a
good reason to use triggers, rules, or stored procedures for anything terribly compli-
cated. That is not to say that they have no purpose; they can be lifesavers. But they
should be used to address a specific problem or concern, such as the following:

• A complicated process that involves searching through lots of data (such as
OLAP or log analysis) can be much faster if offloaded to the database server. As
always, profiling is key; premature optimization can cost you execution speed,
not just developer time.

• Concerns that have little to do with the application logic, such as audit logs, can
usually be safely moved to the database as triggers.

• PostgreSQL can use rules to create updateable views. Unfortunately, this is cur-
rently the only way to get updateable views.

Advanced Database Features | 115

• When using Postgres large objects, you should use a trigger to delete the large
object when the corresponding record (containing the LOB’s OID) is deleted.
Consider this a form of referential integrity.

• Extended or non-native types will use stored procedures for access. PostGIS, a
geospatial database for Postgres, uses functions to manage spatial data and
indexes.

• The TSearch2 library, integrated into PostgreSQL 8.3 and later, uses functions to
access full-text indexing functions.

Some applications use stored procedures for all data access, in order to enforce
access control. This is definitely not the Rails way. Although it can be made to work,
it will be more difficult than directly accessing tables and views. Views provide suffi-
cient access control for most enterprise applications; only use stored procedures if
you have to. ActiveRecord can transparently use updateable views as if they were
concrete tables.

Examples

Large object deletion

Since PostgreSQL’s large objects are decoupled from their associated record, it is use-
ful to set up a simple rule to delete them when the corresponding record is deleted.
The rule can be implemented as follows:

-- (table name is 'attachments'; LOB OID is 'file_oid')

CREATE RULE propagate_deletes_to_lob AS
 ON DELETE TO attachments
 DO ALSO SELECT lo_unlink(OLD.file_oid) AS lo_unlink

Data partitioning

PostgreSQL has a very powerful rule system that can rewrite incoming queries in
many ways. One use for this rule system is to implement partitioning, where data
from one table is federated into one of several tables depending on some condition.
Consider a database of real estate listings. For historical purposes, we may want to
keep listings that have expired, been sold, or been removed from the system. How-
ever, most of the data being used on a day-to-day basis is derived from listings that
are current and for sale.

In addition, the datasets of “current listings” and “all listings” will have differing
data needs; the former is likely to be used transactionally while the latter is proba-
bly used analytically. It makes sense to store these separately, as they may have dif-
ferent characteristics.

First, we assume that we already have listing data in a table called listings, and it
has a status column representing the status of the listing. We create the two tables,

116 | Chapter 4: Database

current_listings and non_current_listings, which inherit from the main table. This
way, we can say SELECT * FROM listings and Postgres will include the data from the
two inherited tables automatically.

CREATE TABLE current_listings (CHECK (status = 'C'))
 INHERITS (listings);
CREATE TABLE non_current_listings (CHECK (status != 'C'))
 INHERITS (listings);

Next, we create rules that rewrite inserts on the parent table to inserts on the proper
child:

CREATE RULE listings_insert_current AS
 ON INSERT TO listings WHERE (status = 'C')
 DO INSTEAD INSERT INTO current_listings VALUES(NEW.*);
CREATE RULE listings_insert_non_current AS
 ON INSERT TO listings WHERE (status != 'C')
 DO INSTEAD INSERT INTO non_current_listings VALUES(NEW.*);

Now that the rules are set up, we move the existing data in listings to the proper
subtable:

INSERT INTO current_listings SELECT * FROM listings WHERE STATUS = 'C';
INSERT INTO non_current_listings SELECT * FROM listings WHERE STATUS != 'C';
DELETE FROM listings;

We know that the DELETE statement is safe because no new data has been inserted into
the listings table, thanks to the rewrite rules. This is why it is important that the par-
tition conditions are a proper partitioning such as status = 'C' and status != 'C'
(non-overlapping and completely covering all possibilities). This ensures that every
row is inserted into one of the child tables, not the parent. Note that this would not
be a proper partitioning if the status column allowed NULL values, as both condi-
tions would be false.

Now we can insert and select data against listings as if it were one table, while
PostgreSQL transparently handles the partitioning and works with the proper parti-
tion. This is a very simple example. In particular, we need to implement rules for
UPDATE and DELETE queries before using this scheme. This method can easily be
extended to many partitions, even on complicated conditions.

Connecting to Multiple Databases
Occasionally, you will have the need to connect to several different databases from
one application. This is useful for migrating from an old schema to a new one. It is also
helpful if you have differing data requirements within one application; perhaps some
data is more critical and is stored on a high-availability database cluster. In any case, it
is easy in Rails. First, specify multiple database environments in the database.yml con-
figuration file:

Connecting to Multiple Databases | 117

legacy:
 adapter: mysql
 database: my_db
 username: user
 password: pass
 host: legacy_host

new:
 adapter: mysql
 database: my_db
 username: user
 password: pass
 host: new_host

Then, you can simply refer to these configuration blocks from the ActiveRecord class
definition using the ActiveRecord::Base.establish_connection method:

class LegacyClient < ActiveRecord::Base
 establish_connection "legacy"
end

class Client < ActiveRecord::Base
 establish_connection "new"
end

This approach also works with multiple Rails environments. Just specify each envi-
ronment in the database.yml file as usual:

legacy_development:
 # ...

legacy_test:
 # ...

legacy_production:
 # ...

new_development:
 # ...

new_test:
 # ...

new_production:
 # ...

Then, use the RAILS_ENV constant in the database configuration block name:

class LegacyClient < ActiveRecord::Base
 establish_connection "legacy_#{RAILS_ENV}"
end

class Client < ActiveRecord::Base
 establish_connection "new_#{RAILS_ENV}"
end

118 | Chapter 4: Database

You can go one step further and DRY this code up by using class inheritance to
define which database an ActiveRecord class belongs to:

class LegacyDb < ActiveRecord::Base
 self.abstract_class = true
 establish_connection "legacy_#{RAILS_ENV}"
end

class NewDb < ActiveRecord::Base
 self.abstract_class = true
 establish_connection "new_#{RAILS_ENV}"
end

class LegacyClient < LegacyDb
end

class Client < NewDb
end

The self.abstract_class = true statements tell ActiveRecord that the LegacyDb and
NewDb classes cannot be instantiated themselves; since they represent database con-
nections, they are not backed by concrete tables in the database.

Magic Multi-Connections
Dr Nic Williams’s Magic Multi-Connections gem (http://magicmodels.rubyforge.org/
magic_multi_connections/) allows you to connect to different databases concurrently
from the same application. This is very useful when using one master and several
read-only slaves serving the same models. The syntax is transparent; it uses module
namespaces and imports the models (ActiveRecord::Base subclasses) into the
namespaces.

For a single-master situation, you could define another database connection in
database.yml for the read slave:

read_slave:
 adapter: postgresql
 database: read_only_production
 username: user
 password: pass
 host: read_slave_host

This database is backed by a module, which mirrors the ActiveRecord classes using
this database connection:

require 'magic_multi_connections'
module ReadSlave
 establish_connection :read_slave
end

Now, all pre-existing models can be accessed through the read_slave connection by
prefixing the model class with ReadSlave::.

http://magicmodels.rubyforge.org/magic_multi_connections/
http://magicmodels.rubyforge.org/magic_multi_connections/

Caching | 119

use the read-only connection
@user = ReadSlave::User.find(params[:id])

write to the master (can't use @user.update_attributes because it would
try to write to the read slave)
User.update(@user.id, :login => "new_login")

Caching
If you have far more reads than writes, model caching may help lighten the load on
the database server. The standard in-memory cache these days is memcached.* Devel-
oped for LiveJournal, memcached is a distributed cache that functions as a giant
hashtable. Because of its simplicity, it is scalable and fast. It is designed never to
block, so there is no risk of deadlock. There are four simple operations on the cache,
each completing in constant time.

You can actually use memcached in several different places in Rails. It is available as
a session store or a fragment cache store out of the box, assuming the ruby-
memcache gem is installed. It can also be used to store complete models—but
remember that this will only be effective for applications where reads vastly outnum-
ber writes. There are two libraries that cover model caching: cached_model and
acts_as_cached.

The cached_model library (http://dev.robotcoop.com/Libraries/cached_model/index.
html) provides an abstract subclass of ActiveRecord::Base, CachedModel. It attempts
to be as transparent as possible, just caching the simple queries against single objects
and not trying to do anything fancy. It does have the disadvantage that all cached
models must inherit from CachedModel. Use of cached_model is dead simple:

class Client < CachedModel
end

On the other hand, the acts_as_cached plugin (http://errtheblog.com/post/27) gives
you more specificity over what is cached. It feels more like programming against
memcached’s API, but there is more power and less verbosity. It has support for rela-
tionships between objects, and it can even version each key to invalidate old keys
during a schema change. A sample instance of acts_as_cached might look like this:

class Client < ActiveRecord::Base
 acts_as_cached

 # We have to expire the cache ourselves upon significant changes
 after_save :expire_me
 after_destroy :expire_me

 protected

* Pronounced “mem-cache-dee,” for “memory cache daemon.” Available from http://danga.com/memcached/.

http://danga.com/memcached/
http://dev.robotcoop.com/Libraries/cached_model/index.html
http://dev.robotcoop.com/Libraries/cached_model/index.html
http://errtheblog.com/post/27

120 | Chapter 4: Database

 def expire_me
 expire_cache(id)
 end
end

Of course, the proper solution for you will depend on the specific needs of the appli-
cation. Keep in mind that any caching is primarily about optimization, and the old
warnings against premature optimization always apply. Optimization should always
be targeted at a specific, measured performance problem. Without specificity, you
don’t know what metric you are (or should be) measuring. Without measurement,
you don’t know when or by how much you’ve improved it.

Load Balancing and High Availability
Many applications require some form of load balancing and/or high availability.
Though these terms are often used together and they can often be obtained by the
same methods, they are fundamentally two different requirements. We define them
thus:

Load balancing
Spreading request load over several systems so as to reduce the load placed on a
single system.

High availability
Resiliency to the failure of one or several constituent components; the ability to
continue providing services without interruption despite component failure.

These are completely different things, but they are often required and/or provided
together. It is important to understand the difference between them in order to prop-
erly analyze the requirements of an application. It is possible to provide load balanc-
ing without high availability—for example, consider a group of servers presented to
the Internet via round-robin DNS. The load is distributed roughly equally over
the group of servers, but the system is certainly not highly available! If one server
goes down, DNS will still faithfully distribute requests to it, and every one in N
requests will go unanswered.

Conversely, high availability can be provided without load balancing. High availabil-
ity necessitates the use of redundant components, but nothing says that those com-
ponents must be online and in use. A common configuration is the hot spare: a
duplicate server that stays powered up but offline, continually monitoring its online
twin, ready to take over if necessary. This can actually be more economical than try-
ing to balance requests between the two servers and keep them in sync.

In this section, we review the primary load balancing and high availability solutions
for common database management systems.

Load Balancing and High Availability | 121

MySQL

Replication

MySQL has built-in support for master-slave replication. The master logs all transac-
tions to a binlog (binary log). During replication, the binlog is replayed on the slaves,
which apply the transactions to themselves. The slaves can use different storage
engines, which makes this facility useful for ancillary purposes such as backup or
full-text indexing. Master-slave replication works well for load balancing in applica-
tions where reads outnumber writes, since all writes must be applied to the master.

However, master-slave replication as described does not provide high availability;
there is a single master that is a single point of failure. A slave can be promoted to be
the master during failover, but the commands to do this must be executed manually
by a custom monitoring script. There is currently no facility for automatically pro-
moting a slave. Additionally, all clients must be able to determine which member is
currently the master. The MySQL documentation suggests setting up a dynamic
DNS entry pointing to the current master; however, this will introduce another
potential failure point.

MySQL cluster

The primary high-availability solution for MySQL is the MySQL Cluster technology,
available since version 4.1. Cluster is primarily an in-memory database, though as of
version 5, disk storage is supported. The Cluster product is based on the NDB stor-
age engine, backed by data nodes.

MySQL Cluster is designed for localized clusters; distributed clusters are not sup-
ported as the protocol used between nodes is not encrypted or optimized for band-
width usage. The interconnect can use Ethernet (100 Mbps or greater) or SCI
(Scalable Coherent Interconnect, a high-speed cluster interconnect protocol). It is
most effective for clusters with medium to large datasets; the recommended configu-
ration is 1–8 nodes with 16 GB of RAM each.

Because the majority of the data is stored in memory, the cluster must have enough
memory to store as many redundant copies of the full working set as the application
dictates. This number is called the replication factor. With a replication factor of 2,
each piece of data is stored on two separate servers, and you can lose only one server
out of the cluster without losing data.

For high availability, at least three physical servers must be used: two data nodes and
a management node. The management node is needed to arbitrate between the two
data nodes if they become disconnected and out of synchronization with each other.
A replication factor of 2 is used, so the two data nodes must each have enough mem-
ory to hold the working set, unless disk storage is used.

122 | Chapter 4: Database

Since the Cluster software is simply a storage engine, the cluster is accessed through
a standard MySQL server with tables defined with the NDB backend. The server
accesses the cluster to fulfill requests from the client. The overall architecture is
shown in Figure 4-3.

Because the mysqld servers only differ from nonclustered servers in their backend,
they can be replicated with binlogs just as nonclustered servers can. So, it is possible
to achieve long-distance master-slave replication among multiple clusters.

It is also possible to have several mysqld servers accessing the same cluster and serv-
ing the same clients for redundancy. In the preceding diagram, the MySQL server is a
single point of failure; if it goes down, there is no way for the application to access
the cluster. There are three approaches to handling load balancing and failover when
multiple MySQL servers are involved:

• Modify the application code to handle failed servers and retry queries to differ-
ent servers. Each MySQL server will have its own IP address in this scenario.

• Use a separate hardware or software load balancer between the application and
the MySQL servers. This will create one Virtual IP address (VIP) that will be
directed to one of the physical servers via DNAT. This method is expensive, as
you need at least two load balancers for high availability.

Figure 4-3. MySQL Cluster architecture

Application code

mysqld
(NDB backend)

Management node

Data
node

Data
node

Data
node

Cluster

My SQL API

Load Balancing and High Availability | 123

• Use a software high-availability solution such as Wackamole (http://www.
backhand.org/wackamole/). This will expose a pool of virtual IP addresses and
ensure that exactly one live server has each IP address at all times. If a server
fails, its VIPs are redistributed among those remaining. The pool of VIPs is dis-
tributed via a DNS round-robin list, so the application will pick a VIP more or
less at random.

PostgreSQL
There are several load-balancing and high-availability options for PostgreSQL.
Because there is no single company behind PostgreSQL, the options are provided by
different organizations and companies. Each product typically embodies a different
replication or clustering paradigm. Some of the options are described in this section.

High availability: Warm standby

Warm standby is a simple way to achieve high availability under PostgreSQL. It
takes some configuration, but the configuration is documented well. Warm standby
uses the write-ahead log (WAL) that PostgreSQL logs activity to. Changes are writ-
ten in the WAL prior to being committed, so the database state can be reconstructed
even if a transaction is interrupted catastrophically. Log shipping is the process of
sending the WAL as files from the master to a slave.

Under a warm standby setup, a server is on standby, in restore mode. It is continu-
ously restoring from the primary server, using a restore command that waits for
WALs to become available and applies them as soon as they do. If the primary server
dies, a monitoring system (which must be provided by the user) designates the
standby as the new primary server.

Master-slave replication: Slony-I

Slony-I is a master-slave replication system similar to the replication mechanisms
included with MySQL. It supports promoting slaves to masters, but, like MySQL,
does not provide any mechanism to detect that nodes have failed.

An upgrade to Slony, Slony-II, is in the very early stages of development now. It
plans to provide multimaster synchronous replication for PostgreSQL based on the
Spread group-communication framework.

Multimaster replication: PGCluster

PGCluster (http://pgcluster.projects.postgresql.org/) is a product that offers multimaster
replication and clustering for PostgreSQL. It provides both load balancing and high
availability for a database cluster. The software handles failover, and yields a readily
available solution if three or more physical servers are used.

http://www.backhand.org/wackamole/
http://www.backhand.org/wackamole/
http://pgcluster.projects.postgresql.org/

124 | Chapter 4: Database

PGCluster’s replication style is synchronous; updates are propagated to all servers
before the update transaction succeeds. Thus, it should only be used in environ-
ments where all master servers are at the same location and are always connected.
Asynchronous replication, in which changes are propagated to other servers some
time after the transaction commits, is generally considered a hard problem. Asyn-
chronous replication is also application-specific, as the proper way to handle con-
flicts between two committed transactions depends on the application’s needs.

Oracle
Oracle’s clustering product is Oracle Real Application Clusters (RAC). In contrast to
the shared-nothing clustering solutions available for other DBMSs, RAC is a shared-
everything clustering product. In RAC, multiple Oracle instances access a shared
database cluster. The shared-everything architecture depends on a common data
store such as a storage area network (SAN).

Oracle supports many flexible replication options, from simple data-only one-way
replication to distributed multimaster replication. These solutions are very powerful
but also very complicated.

Microsoft SQL Server
Like Oracle, SQL Server has extensive features supporting both replication and clus-
tering. SQL Server even supports “merge replication,” which is essentially asynchro-
nous multimaster replication. Of course, both the clustering and replication options
require large amounts of configuration.

There is no out-of-the-box load-balancing solution for SQL Server yet; once you have
a replicated database, you still must write application code so as to direct requests to
the appropriate server.

LDAP
LDAP, the Lightweight Directory Access Protocol, is a database system optimized for
user directory information. It is most often used in large organizations, integrated
with the enterprise authentication and email systems. However, it is a database in its
own right. We do not have space to cover LDAP in detail, but there are many
resources available for working with LDAP in Rails.

ActiveLDAP
The ActiveLDAP library (http://ruby-activeldap.rubyforge.org/) is an almost drop-in
replacement for ActiveRecord that uses LDAP instead of an RDBMS as a backend.
To use it from Rails, set up a configuration file, config/ldap.yml, as follows:

http://ruby-activeldap.rubyforge.org/

LDAP | 125

development:
 host: (ldap server name)
 port: 389
 base: dc=mycompany,dc=com
 password: my_password

production:
...

Then, at the bottom of config/environment.rb, set up the connection:

ldap_path = File.join(RAILS_ROOT,"config","ldap.yml")
ldap_config = YAML.load(File.read(ldap_path))[RAILS_ENV]
ActiveLDAP::Base.establish_connection(ldap_config)

To set up ActiveLDAP, just subclass ActiveLDAP::Base and set the LDAP mapping on
a class-by-class basis:

class Employee < ActiveLDAP::Base
 ldap_mapping :prefix => "ou=Employees"
end

LDAP queries can then be executed using the class methods on ActiveLDAP::Base:

@dan = Employee.find :attribute => "cn", :value => "Dan"

Authenticating with LDAP
One of the most common reasons for using LDAP is to integrate into an existing
authentication structure. If an LDAP server is provided for a Windows domain, this
will allow the web application to authenticate users against that domain rather than
maintaining its own user models separately.

Set up the ldap.yml file as described previously (without specifying a password), but
do not bind to the LDAP server from environment.rb. We will perform the bind as
part of the authentication process. The following code is adapted from the Rails wiki:*

class LdapUser < ActiveLDAP::Base
 ldap_mapping :prefix => (LDAP prefix for your users)

 LDAP_PATH = File.join(RAILS_ROOT,"config","ldap.yml")
 LDAP_CONFIG = YAML.load(File.read(ldap_path))[RAILS_ENV]

 def self.authenticate username, password
 begin
 ActiveLDAP::Base.establish_connection(config.merge(
 :bind_format => "uid=#{username},cn=users,dc=mycompany,dc=com",
 :password => password,
 :allow_anonymous => false
))
 ActiveLDAP::Base.close
 return true

* http://wiki.rubyonrails.org/rails/pages/HowtoAuthenticateViaLdap

http://wiki.rubyonrails.org/rails/pages/HowtoAuthenticateViaLdap

126 | Chapter 4: Database

 rescue ActiveLDAP::AuthenticationError
 return false
 end
 end
end

Authentication is then very simple:

LdapUser.authenticate "my_username", "password" # => true or false

Further Reading
Chris Date’s Database in Depth (O’Reilly) is a very accessible introduction to rela-
tional theory aimed at software developers who are experienced in the use of relational
databases. It reintroduces readers into the technical foundations behind the rela-
tional model.

Theo Schlossnagle’s Scalable Internet Architectures (Sams) is a short but comprehen-
sive treatment of ways to accomplish scalability (both high availability and load bal-
ancing are covered); it covers ground from the smallest two-server failover cluster up
to global server load balancing.

Both the MySQL manual (http://dev.mysql.com/doc/) and the PostgreSQL manual
(http://www.postgresql.org/docs/) have a wealth of information about general data-
base topics, as well as specific information pertaining to the use of those DBMSs.

http://dev.mysql.com/doc/
http://www.postgresql.org/docs/

127

Chapter 5 CHAPTER 5

Security5

Given a choice between dancing pigs and security,
users will pick dancing pigs every time.

—Ed Felten and Gary McGraw

Security issues are often overlooked on smaller sites or low-traffic applications;
unfortunately, the reach of the Web has expanded to a point where end-to-end secu-
rity is essential on any public-facing web site. There actually are people with nothing
better to do than run a distributed denial-of-service attack on “Aunt Edna’s Funny
Cat Pictures.” Nobody can afford to ignore the dangers that face a site simply as a
consequence of being accessible on the Internet.

In this chapter, we will take a top-down approach to examining the various security-
related issues that plague web application developers. We start by examining the
architectural, application-level principles you should keep in mind. Later, we will get
progressively more detailed. We will examine the security-related issues you should
keep in mind when working at a lower level in Rails.

Application Issues
First, we will examine some important principles that should guide the design of any
web application.

Authentication
The most important guideline in the area of authentication is simple:

Always salt and hash all passwords!

There are very few valid exceptions to this rule, and even fewer apply to web applica-
tions. The only possible reason to store passwords in plain text is if they must be pro-
vided to an external service in plain text. Even then, the passwords should be
symmetrically encrypted with a shared secret, to provide defense in depth.

128 | Chapter 5: Security

Let’s examine the reasoning behind this rule. Hashing passwords prevents them from
being recovered if the database or source code is compromised. Salting them pro-
tects them from rainbow attacks.

Salting is the process of ensuring that the same password hashes to different values
for different users. Consider the following code, which hashes but does not salt.

require 'digest/sha1'

$hashes = {}

def hash(password)
 Digest::SHA1.hexdigest(password)
end

def store_password(login, password)
 $hashes[login] = hash(password)
end

def verify_password(login, password)
 $hashes[login] == hash(password)
end

store_password('alice', 'kittens')
store_password('bob', 'kittens')

$hashes # => {"alice"=>"3efd62ee86d4a141c3e671d86ba1579f934cf04d",
 # "bob"=> "3efd62ee86d4a141c3e671d86ba1579f934cf04d"}

verify_password('alice', 'kittens') # => true
verify_password('alice', 'mittens') # => false
verify_password('bob', 'kittens') # => true

Although this is more secure than storing the passwords in plain text, it is still insecure;
anyone who has the hash file can tell that Alice and Bob have the same password.

More importantly, this scheme is vulnerable to a rainbow attack. An attacker can
precompute rainbow tables by running every word in a dictionary through the hash
function. He can then compare each hash in the rainbow table to each hash in the
password file. Since a password always hashes to the same value, the attacker obtains
all the dictionary passwords in one fell swoop.

This attack can be prevented by salting the passwords when hashing them. Compare
the following code:

require 'digest/sha1'

$hashes = {}
$salts = {}

def hash(password, salt)
 Digest::SHA1.hexdigest("--#{salt}--#{password}--")
end

Application Issues | 129

def generate_salt(login)
 Digest::SHA1.hexdigest("--#{Time.now.to_s}--#{login}--")
end

def store_password(login, password)
 salt = $salts[login] = generate_salt(login)
 $hashes[login] = hash(password, salt)
end

def verify_password(login, password)
 $hashes[login] == hash(password, $salts[login])
end

store_password('alice', 'kittens')
store_password('bob', 'kittens')

$hashes # => {"alice"=>"955b034a284ed2405c8f1a275e2191484161b1c5",
 # "bob"=> "2f7ef18f0f50efd2b8684c49e85befc95509a74f"}
$salts # => {"alice"=>"0682a0e26655e234ee45ea6a68af8ebd3e2c0eaf",
 # "bob"=> "6116fb3dc0e9824b7c99e81f6dac6c17b7a6257b"}

verify_password('alice', 'kittens') # => true
verify_password('alice', 'mittens') # => false
verify_password('bob', 'kittens') # => true

This method ensures that the same password will hash to different values with a high
probability. The acts_as_authenticated plugin (http://technoweenie.stikipad.com/
plugins/show/Acts+as+Authenticated) salts passwords by default.

One common reason that people store passwords as plain text is for password recov-
ery. The reality is that storing and sending passwords in plain text is never a good
idea. The proper way to recover passwords is to send an email to the user with a link
that includes a randomly generated token. The link takes the user to a page that veri-
fies the token and then allows him to enter a new password.

Password hashing in Rails

In a Rails application, there are some standard best practices for working with
hashed passwords. First, the database contains attributes for the hashed password
and salt:

ActiveRecord::Schema.define do
 add_column :users, :crypted_password, :string
 add_column :users, :salt, :string
end

ActiveRecord::Schema.define is a simple way to use Rails schema defi-
nition statements from the Rails console or other Rails code outside of
migrations. The full set of schema definition methods (see
ActiveRecord::ConnectionAdapters::SchemaStatements) is available
inside the block.

http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated
http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated

130 | Chapter 5: Security

The User model has a virtual attribute for the unencrypted password, so that you can
set the password using the instance method User#password= and it will be hashed
automatically. The hashing is performed by a before_save callback:

class User < ActiveRecord::Base
 attr_accessor :password

 before_save :encrypt_password

 protected

 def encrypt_password
 return if password.blank?
 self.salt = Digest::SHA1.hexdigest("--#{Time.now.to_s}--#{login}--") if
 new_record?
 self.crypted_password = encrypt(password)
 end

 def encrypt(password)
 Digest::SHA1.hexdigest("--#{salt}--#{password}--")
 end
end

The actual authentication is handled by the User.authenticate class method, which
takes a login and password and returns either the corresponding user or nil if the
login or password are incorrect.

class User < ActiveRecord::Base
 def self.authenticate(login, password)
 u = find_by_login(login)
 u && u.authenticated?(password) ? u : nil
 end

 def authenticated?(password)
 crypted_password == encrypt(password)
 end
end

Don’t Trust the Client
ActionPack (ActionController plus ActionView) makes a lot of things easier for you
as a developer. To do so, it abstracts away a lot of the details of the HTTP request/
response cycle. This is usually a good thing: you really don’t want to deal with every
detail of the CGI protocol. But it is important not to let this abstraction get in the
way of writing secure code. One of the foundational principles that you should keep
in mind is that you can never trust the information that the web browser (the client)
sends you.

This is one area where the leaky abstraction that Rails provides can hurt. It really
pays to understand how HTTP works, at least to the point that you know whether a
particular piece of information comes from the client, the application framework, or

Application Issues | 131

the environment. You can never, ever trust anything that comes from the client,
because the client can send whatever data it wants. It can insert fake headers, extra
parameters, malformed query strings, or whatever it wants. Here is a short list of the
pieces of data that cannot be trusted. This is not a complete list, but it should get you
thinking.*

• Form parameters (query string and POST data): the most common mistake
made in this area is trusting form parameters provided in an HTTP request. We
discuss this later in the chapter.

• Cookies (however, we will see an exception later).

• Referer† header, which contains the URI of the page that the current page was
linked from. It was included with the intent of helping webmasters track down bro-
ken links. Using it for authentication or security purposes is completely backward.

• User-Agent header, which purportedly identifies the name of the client software
that is accessing the page. Like Referer, this is primarily useful for log analysis
and should never be used for security purposes.

As an example, we can examine poor security design from another platform. PHP
has a configuration option, register_globals, which can cause some serious security
problems when set. When the option is enabled, variables from the query string are
added to the global namespace automatically. The dull but pedagogical example is
that of user authentication code, which authenticates the user and then shows some
secret information depending on the user’s level of access:

<?php
 if(authenticated()) {
 $user_id = get_user_id();
 }
?>

...

<?php
 // Show the secret if the user is authenticated
 if($user_id) {
 echo("Soylent Green is people!");
 }
?>

With register_globals enabled, a malicious user can just access index.php?user_id=4
and the $user_id variable will be set to 4 from the query string. Since we presume the
authenticated() function returns false (as the user is not a legitimate user), the if

* Of course, these only represent vulnerable parts at the HTTP protocol level. Later, we will see how vulnera-
bilities can expose themselves at higher levels. Vulnerabilities at lower levels, such as TCP session hijacking,
are usually not the developer’s concern.

† Yes, this is a misspelling, but it is too deeply entrenched in HTTP history to change now. Consider it a lesson
to protocol designers.

132 | Chapter 5: Security

statement is bypassed. When we get to the part of the code that contains the secret,
$user_id is still 4, and the secret is revealed even though the user was never success-
fully authenticated.

This design leads to huge security problems because the user has the potential to
choose the value of any local variable that you do not explicitly set. Fortunately for
all, the register_globals option in PHP has been disabled for some time now by
default.

Form processing

We have a similar problem in Rails due to a compromise between security and brev-
ity of code. Rails supports mass assignment of form parameters to ActiveRecord
objects, so that form fields named person[first_name], person[last_name], and
person[email] can be used to build an ActiveRecord Person object with one line of
code:

person = Person.new params[:person]

The params[:person] object is a hash mapping attribute names to values, translated
from the form parameters courtesy of ActionController:

{:first_name => "John", :last_name => "Smith", :email => "john@example.com"}

Those parameters are assigned to the Person object, calling the Person#first_name=,
Person#last_name=, and Person#email= setters, respectively. It is just as if we had set
them individually:

person = Person.new
person.first_name = params[:person][:first_name]
person.last_name = params[:person][:last_name]
person.email = params[:person][:email]

This is a handy shortcut, but it leaves us vulnerable. Suppose someone submits the
form with a field named person[access_level]. Remember, the values that they sub-
mit need have no relation to the form we send them. By default, this would call
Person#access_level= with the value provided in the form. Clearly, we need to pro-
tect against this. We can either use the attr_protected or attr_accessible class
methods of ActiveRecord::Base. The attr_protected method specifies which
attributes may not be assigned to via mass assignment:

class Person < ActiveRecord::Base
 attr_protected :access_level
end

Conversely, the attr_accessible method specifies which attributes may be assigned
to with mass assignment; any attributes not on the list are blocked. This is prefera-
ble when the list of attributes may change, as it represents a “default deny” stance. If
new attributes are added to the model, they will be blocked by default.

class Person < ActiveRecord::Base
 attr_accessible :first_name, :last_name, :email
end

Application Issues | 133

Hidden form fields

Rails makes simple CRUD (create, read, update, delete) operations on a single model
object so easy that it is easy to ignore the security implications. Here’s an example of
how not to process a form.

app/models/comment.rb
class Comment < ActiveRecord::Base
 belongs_to :user
end

app/views/comment/new.rhtml
<% form_for :comment do |f| %>
 <%= f.hidden_field :user_id %>
 Comment: <%= f.text_field :comment %>
<% end %>

app/controllers/comments_controller.rb
class CommentsController < ApplicationController
 def new
 @comment = Comment.new :user_id => get_current_user()
 end

 def create
 # Danger Will Robinson!
 @comment = Comment.create params[:comment]
 end
end

This looks innocuous enough, but it has one problem: the hidden field is trusted! By
not verifying that the params[:comment][:user_id] value received in the create
method is sane, we have just allowed anyone to create a comment attached to an
arbitrary user.

Rails can only handle so much for you. The params object is CGI-unescaped and
parsed into nested hashes, but that’s as much as the framework can do for you. Any
time you use the params object, realize that it can contain anything the user wants. If
you need any stronger guarantees about the content of the params object, you need to
use cryptography.

The implications of this are tremendous: every once in a while, some online store
gets in trouble for storing prices as hidden form fields, and not validating them when
an order is placed. Someone with at least a minimal knowledge of HTTP then
teaches them the “don’t trust the client” lesson by ordering a few plasma TVs for a
dollar each.

Client-side validation

A corollary of these form-processing principles is that validation should always take
place on the server. This is not to discount the importance of client-side validation,
but the application must be designed to be secure, no matter what is sent at the
HTTP level.

134 | Chapter 5: Security

It is perfectly OK to validate data at the client. This is useful because when users
make mistakes filling out a form, client-side validation saves a round-trip to the
server. But if the only thing keeping invalid data out of your application is a piece of
JavaScript, malicious users can simply turn off JavaScript and submit your form.

These two methods of validation represent two different perspectives. Client-side
validation (if any) should emphasize usability, while server-side validation should be
driven by security.

Cookies

In Rails, there is usually no need to deal with raw cookies. The session abstraction
provides a way to store data in a way that looks like a cookie but can be trusted. The
session store is usually a server-side data store tied to a unique session identifier in a
cookie. Because session IDs are sparse and hard to guess, it is a safe assumption that
if a user presents a particular session ID, he has access to that session. And since the
application code is the only thing that can access the session store, you can trust that
the data you read is the same as what you wrote.

There is a new method of session storage, CookieStore, that is now the default in
edge Rails and Rails 2.0. It marshals the entire session into a cookie, rather than key-
ing a server-side session from a client-side cookie. The idea is that most sessions are
small, usually containing only a user ID and flash message. Cookies work fine for
this (they usually have a 4 KB limit). Rails ensures data integrity by signing the
cookie with a message authentication code (MAC) and raising a TamperedWithCookie
exception if the data was modified.

Double-check everything

Here is another mistake that is easy to make in Rails. Because the REST philosophy
behind Rails encourages resource-based URIs (each URI represents a particular
resource or object), it can be easy to overlook security. This happens often when
finding a record from the database by primary key—often it is easy to neglect check-
ing for proper ownership. Here is an example that illustrates that problem:

app/models/message.rb
class Message < ActiveRecord::Base
 belongs_to :user
end

app/controllers/messages_controller.rb
class MessagesController < ApplicationController
 def show
 @message = Message.find params[:id]
 end
end

That example would allow anyone to read any message, even messages owned by
other users. In this case, you probably want to restrict viewing of messages to the
users that own them. The proper way to do that is:

Application Issues | 135

def show
 @message = Message.find_by_user_id_and_id(current_user.id,
 params[:id])
end

This automatically gives you protection against users viewing messages they don’t
own, by raising a RecordNotFound exception.

Secure Fallback
Now that many Rails applications incorporate some amount of AJAX, fallback is an
important concern. Depending on your users’ needs, either graceful degradation
(starting with a full-featured site, then testing and fixing for older browsers) or
progressive enhancement (starting with minimal features and adding features for
newer browsers) may be the catch phrase. In either case, developing for older brows-
ers involves fallback, or using a less-preferred option when the preferred option fails.
It is important that fallback is secure—otherwise, attackers could force the applica-
tion into fallback mode in order to subvert its weaknesses.

A typical example of fallback on the Web is using a regular form post when a Java-
Script form post fails:

<form action="/standard_non_ajax_action"
 onsubmit="do_ajax_submit(); return false;">
 ...
</form>

When the user has JavaScript enabled, the do_ajax_submit() function is called and the
standard form post is canceled. Typically, that function will serialize the parameters,
send them to the server, and perform some other action. With Rails’ respond_to
methods, you can actually use the same actions for both standard HTML and Java-
Script responses, differentiated by the HTTP Accept header.

There is no specific security guidance here, except to review your code and be sure
that an attacker cannot bypass your security by using your non-AJAX methods rather
than your AJAX ones. Typically, the AJAX methods are the flashiest, best sup-
ported, and best tested. They get the most attention, but it is just as important to pay
attention to the non-AJAX interfaces.

Avoid Security Through Obscurity
One principle of security is that security through obscurity is no security at all. Secu-
rity should be inherent in the system, and not depend on an attacker’s ignorance of
architecture. This descends from Kerckhoffs’ principle in cryptography: a system’s
security should lie only in its key (rather than in the algorithm). This principle can be
paraphrased for web applications: your application should be designed so as to
remain secure even if your source code, architecture, and configuration (with the
obvious exception of passwords and the like) were published for all to see.

136 | Chapter 5: Security

This is not to say that you should publish your routes and system architecture; there
is no need to aid an attacker. Defense in depth (having multiple redundant layers of
security) is an important principle as well. But the guiding principle is never to rely
on secrecy for security.

Secure Your Error Messages
Error messages can reveal a lot about the configuration of your servers. Even the default
Apache error messages may reveal semi-sensitive information through the server sig-
nature line:

Apache/1.3.36 Server at www.example.com Port 80

You don’t necessarily want to volunteer this information to a potential attacker. In
addition, the HTTP Server header often contains more detailed information, includ-
ing a list of all server modules that are installed and their versions. You can reduce
this information to a minimum with two lines of Apache configuration. Put these at
the top level of the Apache configuration file:

ServerSignature Off
ServerTokens Prod

In Rails, you can also inadvertently expose stack traces and source code on error if
you don’t ensure that Rails knows which requests are “local.” By default, in develop-
ment mode, the ActionController::Base.consider_all_requests_local configura-
tion attribute is set to true. This means that every uncaught exception will show a
stack trace (with source code), regardless of the source IP address. This is fine for
local development, but it is insecure if you have a development server open to the
public Internet. The consider_all_requests_local directive is disabled by default in
production mode.

You can override the default local_request? function in your ApplicationController
if you have more complicated rules regarding what constitutes a local request (such
as addresses on the public Internet from which you develop):

class ApplicationController
 LOCAL_ADDRS = %w(123.45.67.89 98.76.54.32)
 def local_request?
 LOCAL_ADDRS.include? request.remote_ip
 end
end

In any case, try triggering some exceptions on your public servers with a temporary
action like this one:

class UserController < ApplicationController
 def blam
 raise "If you can read this, your server is misconfigured!"
 end
end

Web Issues | 137

This exception should be caught and logged to the Rails development log, but the
client should only see a nice “500 Internal Server Error” page.

Whitelist, Don’t Blacklist
A general principle of network security is that whitelists (lists of what to allow) are
more secure than blacklists (lists of what to block). This principle descends from a
default-deny, or fail-secure, stance. Whitelists err on the side of caution, assuming
malice when presented with something they don’t understand.

Zed Shaw, creator of the Mongrel web server, is a vocal proponent of this philosophy.*

Much of Mongrel’s security comes from its default-deny stance. When presented with
a protocol violation, Mongrel closes the socket, rather than sticking around and trying
to guess what the client meant (possibly getting exploited in the process).

We will revisit this issue in the “Canonicalization: What’s in a Name?” section later
in the chapter.

Web Issues
Now that we have examined some of the architectural ways that you can protect
your application, we will take a look at some of the issues endemic to the Web.

Rails Sessions
Most web frameworks have some form of session management: a persistent server-
side storage mechanism for data specific to one client’s browsing session. The exact
scope of a “browsing session” depends on implementation details and the method of
session tracking. Most commonly, a non-persistent cookie is used, so a session con-
sists of all visits to a site before closing the browser. Alternatively, a persistent cookie
(one with an explicit expiration date) can be used; this will persist even when the
browser is closed. This is useful to remember information (such as a shopping cart)
across visits for otherwise anonymous users. Some frameworks such as Seaside pro-
vide URL-based (query-string) sessions so that a user may even have multiple ses-
sions active at the same time in different browser windows.

Most of Rails’s session storage methods provide the following properties:

Confidentiality
Nobody except the server can read the data stored in the session.

Integrity
Nobody except the server, including the client itself, can modify the data stored
in the session other than by throwing the session out and obtaining a new one. A
corollary is that only the server should be able to create valid sessions.

* http://mongrel.rubyforge.org/docs/security.html

http://mongrel.rubyforge.org/docs/security.html

138 | Chapter 5: Security

The traditional session storage methods in Rails are server-side; they store all of the
session data on the server, generate a random key, and use that as the session ID.
The session ID is not tied to the data other than as an index, so it is safe to present to
the client without compromising confidentiality.

Rails uses as much randomness as possible to create the session ID: it takes an MD5
hash of the current time, a random number, the process ID, and a constant. This is
important: guessable session IDs allow session hijacking. In a session hijacking
attack, an attacker sniffs or guesses a session ID from an authenticated user and pre-
sents it to the server as his own, thus assuming the authenticated user’s session. This
is similar to the TCP sequence-number prediction attack, and the mitigation is the
same: make the session IDs as random as possible.

Cookie-based sessions

There are many problems with server-side session storage. File-based storage, which
marshals the sessions to a local file on the server, is not scalable: to make it work in a
cluster, you either need a shared filesystem or a load balancer that supports sticky
sessions (directing all requests in the same session to one server in the cluster). This
can get tricky and is often inefficient. Database-backed sessions solve this problem
by keeping session state in a central database. However, this database can become a
bottleneck because it must be accessed once for every request that needs session data
(such as for user authentication). The DRb session store is not widely used and
requires running yet another server process.

There is a solution to these problems. Most Rails sessions are lightweight: they usu-
ally contain little more than a user ID (if authenticated) and possibly a flash mes-
sage. This means that they can be stored on the client rather than the server. The
Rails CookieStore does just this: instead of storing the session on the server and stor-
ing its ID on the client in a cookie, it stores the entire session in a cookie.

Of course, security must be taken into account. Remember the all-important rule:
never trust the client. If we just marshaled data into a string and placed it in a cookie,
we would have no way to prevent the client from tampering with the session. The
user could simply send the cookie corresponding to the session data user_id=1 and
trick the server into thinking that he was logged in as the user with ID 1.

To counter this, the CookieStore signs each cookie with an HMAC (keyed-hash mes-
sage authentication code), which is essentially a hash of the cookie data along with a
secret key. The client cannot forge or modify sessions because he cannot generate
valid signatures across the modified data. The server checks the hash on each request
and raises a TamperedWithCookie exception if the hash does not match the data. This is
the standard way to store data with an untrusted client while still assuring integrity.

In Rails 2.0, the CookieStore is now the default session store. The CookieStore
requires a secret key or phrase and session cookie key to be defined; it will raise an

Web Issues | 139

exception if either of these are missing. These options can be set alongside other ses-
sion options in config/environment.rb:

config.action_controller.session = {
 :session_key => "_myapp_session",
 :secret => "Methinks it is like a weasel"
}

There are a few limitations to the CookieStore:

• In most cases, cookies are limited to 4 KB each. The CookieStore will raise a
CookieOverflow exception if the data and HMAC overflow this limit. This is not
an error you want to get in production (as it requires architectural changes to
remedy), so make sure your session data will be well below this limit.

• The entire session and HMAC are calculated, transmitted, and verified on each
request and response. The CookieStore is smart enough not to retransmit the
cookie if it has not changed since the last request, but the client must transmit all
cookies on each request.

• Unlike the server-side session stores, the CookieStore allows the client to read all
session data. This is not usually an issue, but it can be a problem in certain cases.
Some applications require sensitive user data (such as account numbers or credit
card numbers) to be hidden even after a user is logged in, for extra security. Also
consider that the data may be stored as plain text in the browser cache on the cli-
ent. Sensitive data should be stored on the server, not in the session.

• The CookieStore is vulnerable to replay attacks: since the cookies do not incor-
porate a nonce,* a user who has a valid session can replay that session at any
later time, and convince the server that it is current. Never store transient data,
such as account balances, in the session.

Cross-Site Scripting
Cross-site scripting (XSS, to avoid confusion with Cascading Style Sheets and Con-
tent Scramble System) is one of the most common vulnerabilities in web applica-
tions created recently. “Web 2.0”-style applications are particularly vulnerable due
to the shifting emphasis toward user-generated content.

XSS usually is made possible because of inadequate escaping of user-entered code,
particularly in blog posts, comments, and other user-generated content. In an XSS
attack, an attacker inserts code, particularly JavaScript, into a third-party site (the
target) in such a way that the browser treats it as part of the target page for security
purposes.

* A nonce, or “number used once,” is a random value generated by the server that the client must include with
its request. Because the nonce is different on each request, the server can ensure that the same request is not
sent twice.

140 | Chapter 5: Security

In many cases, this is desirable: a blog will allow users to comment on entries, in
some cases adding their own HTML. This can expose a vulnerability: if script tags
are not filtered out before displaying the content, they are exposed to viewers as if
part of the third-party site. This can bypass browser security policies, as browsers
usually restrict scripts’ access permissions based on the origin of the code. If the code
appears to be coming from the target site, it can access information (e.g., cookies)
belonging to the target site.

Mitigation

Defending against XSS vulnerabilities can be either very easy or very difficult. If the
application in question does not allow untrusted users to enter HTML, defending
against XSS is easy. In this case, each HTML character must be escaped before out-
put. The Rails h() method escapes all special HTML characters for you:

<% @post.comments.each do |comment| %>
 <%=h comment.text %>
<% end %>

On occasion, there is debate over whether to store content that must be escaped for
display in its plain-text or escaped forms. The advantage of storing data escaped is that
you never forget to escape it for display; the advantage of storing it unescaped is that it
is in its “natural” state. Cal Henderson makes a good point regarding this: you never
know when you might have to escape data in a different manner for display else-
where, so data should usually be stored in its plain-text form. An exception might be
made for Unicode: it is usually important to ensure that data stored in a Unicode
encoding is well-formed, lest it cause problems in processing. In situations like this,
it is usually best to check for well-formedness at both ingress and egress.

Of course, things are rarely this simple. The reason XSS attacks are still so common
is that often developers want their untrusted users to be able to enter arbitrary
HTML, just not the “verboten tags” and “verboten attributes”—those that can exe-
cute scripts. And filtering them out is harder than it might seem (see the section
“Canonicalization: What’s in a Name?,” later in the chapter, for the reason why).

Rails provides some help here, through the sanitize() method. This method
removes form and script tags, elides the onSomething attributes, and kills any URIs
with the “javascript:” scheme. The default set of prohibited tags and attributes may
be sufficient to block execution of arbitrary script. This method is used just like h():

<% @post.comments.each do |comment| %>
 <%=sanitize comment.html %>
<% end %>

However, you should be very, very careful when using blacklisting such as this. There
are too many edge cases to be absolutely sure that every piece of potentially malicious
code is blocked. Rails security experts advise against the use of blacklisting.*

* See http://www.rorsecurity.info/2007/08/17/dont-use-strip_tags-strip_links-and-sanitize/.

http://www.rorsecurity.info/2007/08/17/dont-use-strip_tags-strip_links-and-sanitize/

Web Issues | 141

Whitelisting

Instead, whitelisting is a good option. Rick Olson has created a whitelisting plugin,
white_list (http://svn.techno-weenie.net/projects/plugins/white_list/), that is the pre-
ferred method for preventing cross-site scripting attacks. It is based on a more sound
philosophy (only allowing that which is explicitly allowed), and it has more exten-
sive tests than the Rails blacklisting helpers. The basic helper usage is very similar to
the other sanitizing methods; after installing the plugin, the whitelisting filter can be
applied as follows:

<%= white_list @post.body %>

The white_list plugin has a default set of tags, attributes, and URI schemes that are
allowed, and by default the <script> tag is never allowed:

WhiteListHelper.bad_tags = %w(script)

WhiteListHelper.tags = %w(strong em b i p code pre tt output samp kbd
 var sub sup dfn cite big small address hr
 br div span h1 h2 h3 h4 h5 h6 ul ol li dt
 dd abbr acronym a img blockquote del ins
 fieldset legend)

WhiteListHelper.attributes = %w(href src width height alt cite datetime
 title class)

WhiteListHelper.protocols = %w(ed2k ftp http https irc mailto news gopher
 nntp telnet webcal xmpp callto feed)

These default options can be changed or augmented by changing those variables
from a configuration file:

WhiteListHelper.tags.merge %w(table td th)
WhiteListHelper.tags.delete 'div'
WhiteListHelper.attributes.merge %w(id class style)

Cross-Site Request Forgery
Cross-site request forgery (CSRF) is an obscure class of web attacks that exploit the
trust a web server places in a session cookie. Unfortunately, although the attack is
obscure, it is very real, and you must protect against it. This is the typical case in
security: the defender must defend against all possible points of attack, but the
attacker only has to pick his favorite one. Luckily, Rails provides tools to defend
against CSRF attacks, provided that you use a little common sense.

The basic flaw leading to a CSRF vulnerability is that a poorly designed site trusts
HTTP requests that come in with the proper authentication cookie, without taking
steps to ensure that the user actually authorized the action. In a CSRF attack, the
attacker’s site convinces your browser to request some URI from the target site (the
vulnerable application), via one of several methods. Assume that you are already
authenticated to the target site, and it verifies that authentication through a cookie.

http://svn.techno-weenie.net/projects/plugins/white_list/

142 | Chapter 5: Security

Since a browser holding a cookie for the target site will send that cookie with each
request, the server receives the request and the cookie and performs the action.

A sample CSRF attack takes place as follows. This process is illustrated in Figure 5-1.

1. The client receives code from the attacker, via either a compromised server or a
script or image tag placed by the attacker on a third-party web site (possibly via
XSS). The code references a URI of the target application that performs some
action.

2. The client requests that URI from the target application, sending the authentica-
tion cookie (because the client is already authenticated to the target). The target
then performs the action on the client’s behalf, even though the end user did not
authorize the action.

CSRF mitigation

The first and foremost way to defend against CSRF is to use the proper HTTP verbs.
This has been the mantra of the Rails core team since before Rails 1.0. GET and HEAD
requests should be safe: they can be called without changing server state. GET, HEAD,
PUT, and DELETE should be idempotent: calling them once or 100 times should have
the same effect. (They are defined this way so that a client, unsure if a request has
completed, can retry the same request with no ill effects.)

So, the primary problem with the preceding example is that it used a verb that
should be safe (GET) with an action that caused side effects (instant_purchase). If the
action had in fact been free of side effects, there would have been no problem. No
confidential information could be leaked directly, as the response went directly from
the target to the client. The basic problem is that the wrong HTTP verb was used.
We will revisit this discussion in Chapter 7, when we discuss the REST architectural
style.

Figure 5-1. Cross-Site Request Forgery

Attacker’s
site

Client Target2
GET /instant_purchase?id=123 HTTP/1.1

Cookie: auth_token=ao98gaw4

1

Web Issues | 143

However, cross-site request forgery is not limited to GET requests. There are several
ways for an attacker to create a POST request using JavaScript, including
XmlHttpRequest and creating and posting hidden forms. Using the proper HTTP
actions alone is not sufficient to defend your application.

In this case, secret form tokens are helpful. The idea is to generate a token for each
session that is included as a hidden field in every form. The token is an HMAC (hash
message authentication code) of the session ID. This gives the token two important
properties:

• It is hard or impossible for an attacker to generate a valid token given only the
session ID, so the token certifies that the server generated the session ID.

• The token changes with each session.

A valid token corresponding to the current session ID must be included with each
request that has side effects. If the token is not present or invalid, the action is can-
celed. This prevents the attack, because the attacker has no way to include a valid
token with the client’s request to the target application.

Rails 2.0 now incorporates request forgery protection by default. Actions with meth-
ods other than GET are checked for a valid token. The form helpers have been
extended to add a token based on a secret key and the session to each generated
form. By default, it tries to do the right thing. See the documentation on
ActionController::RequestForgeryProtection::ClassMethods for detailed information.

The most important thing that needs to be done if not using cookie-based sessions is
to set a secret:

class ApplicationController < ActionController::Base
 protect_from_forgery :secret => 'application-secret-283o39@4%dX963'
end

If you are using cookie-based session storage, ActionController generates a secret
for you anyway; you may omit the secret parameter. Note that it is important that
the session cookie is a true nonpersistent session cookie—that is, it disappears after the
session is over. If the session cookie is persistent, the token ID will be the same
each session and CSRF attacks will still be possible.

Canonicalization: What’s in a Name?
The term canonicalization refers to the process of conforming input to an expected
representation. Loosely, canonicalization issues are problems that arise because the
same resource can be referenced in different ways.

Canonicalization often comes up when working with filesystem paths. On a Unix-like
system, you’d expect the paths /home/joeuser, ~joeuser, and /var/log/../../home/joeuser
to reference the same path, even though they are composed of different characters.

144 | Chapter 5: Security

You would need some form of path normalization if you wanted to compare these
paths. More importantly, you would want to know that /var/www/public/../config/
database.yml is most definitely not within /var/www/public, lest you try to serve it as
plain text to the client. As bad as that is, it is much worse when allowing a user to
upload files.

The double-dot problem (known as a directory traversal attack) is one of the oldest,
most basic canonicalization problems around, but it persists to this day. Path nor-
malization is easy in Ruby using the File.expand_path method, and this should
always be used as a final test for any files opened based on user input:

name = params[:filename]

base_path = File.expand_path(File.join(RAILS_ROOT, "public"))
file_path = File.join(base_path, name)

if File.expand_path(file_path).starts_with?(base_path)
 data = File.read(file_path)
else
 raise "Access denied"
end

Another approach to preventing directory traversal is to blacklist paths containing
characters such as ../. However, this is very, very hard to do right. Path compo-
nents can be URI-encoded, and it is difficult to predict how many levels of decoding
will be performed before hitting the filesystem. With the advent of Unicode and its
many encodings, there are myriad ways one set of characters can be represented to a
web application. Far better to check the thing you actually care about (whether or
not the file is in the right directory) than to check something incidental to it (whether
or not any “funny” characters were used in the pathname).

SQL Injection
SQL injection is an attack against programs that do not take proper precautions
when accessing a SQL-based database. A standard example of vulnerable code is:

search = params[:q]
Person.find_by_sql %(SELECT * FROM people WHERE name = '#{search}%')

Of course, all someone has to do is search for “'; DROP TABLE people; --”, which
yields the following statement:

SELECT * FROM people WHERE name = ''; DROP TABLE people; --%';

Everything after the -- is treated as a SQL comment (otherwise, the attempt might
cause a SQL error). First, the SELECT statement is executed; then the DROP TABLE state-
ment causes havoc. Ideally, the database user that executes that statement should
not have DROP TABLE privileges, but SQL injection is always damaging. There are
plenty of other attack vectors.

Ruby’s Environment | 145

Another typical example of SQL injection is a query such as “' OR 1 = 1; --”, which
yields:

SELECT * FROM people WHERE name = '' OR 1 = 1; --%';

This query would return all records from the people table. This can have security
implications, especially when this sort of code is found in authentication systems.

For applications written against the standard APIs, Rails is amazingly well protected
against SQL injection attacks. All of the standard finders and dynamic attribute find-
ers sanitize single attribute arguments, but there is only so much that they can do.
Remember the cardinal rule: never interpolate user input into a SQL string.

Most of the Rails finders that accept SQL also accept an array, so you can turn code
like "SELECT * FROM people WHERE name = '#{search_name}'" into ["SELECT * FROM people
WHERE name = ?", search_name] nearly anywhere. (Note the lack of quoting around the
question mark; Rails interprets the type of search_name and quotes it appropriately.)
The user-provided name value will have any special SQL characters escaped, so you
don’t have to worry about it.

For any situations where you need to do this quoting yourself, you can steal the pri-
vate sanitize_sql method from ActiveRecord::Base (just don’t tell anyone):

class << ActiveRecord::Base
 public :sanitize_sql
end

name = %(O'Reilly)
puts ActiveRecord::Base.sanitize_sql([%(WHERE name = ?), name])
>> WHERE name = 'O''Reilly'

Ruby’s Environment
No analysis of Rails security would be complete without examining the environment
that Ruby lives in.

Using the Shell
The Kernel.system method is useful for basic interaction with system services
through the command line. As with SQL, though, it is important to ensure that you
know exactly what is being passed, especially if it comes from an external source.

The best way to protect against malicious user input making it to the shell is to use
the multiparameter version of system, only passing the command name in the first
parameter. The subsequent parameters are shell-escaped and passed in, which makes
it much harder to slip something into the command line unnoticed:

def svn_commit(message)
 system("/usr/local/bin/svn", "ci", "-m", message)
end

146 | Chapter 5: Security

The message passed in to that method will always be the third parameter to svn, no
matter what kind of shell metacharacters it contains.

Object Tainting
Tainting is an idea that came to Ruby from Perl. Because data that comes from the
outside is not to be trusted, why not force it not to be trusted by default? Any data
read from the environment or outside world is marked as tainted. Depending on the
current value of a special Ruby global, $SAFE, certain operations are prohibited on
tainted data. Objects may only (officially) be untainted by calling their untaint
method.

This is a good idea that, because of implementation details, has not gained much
traction in the Rails community. It can become a pain to deal with every piece of
data that was derived from user input. There is one Rails plugin, safe_erb, which
leverages tainting to ensure that all user-supplied data is HTML-escaped before being
displayed again. Request parameters and cookies are tainted upon each request, and
an error is raised if tainted data is attempted to be rendered. (The Ruby tainting facil-
ity is not used other than as a flag on the objects, because anything more would
require a $SAFE level greater than zero, which is Rails-unfriendly.) This reduces the
possibility of cross-site scripting attacks. The plugin is available at http://
agilewebdevelopment.com/plugins/safe_erb.

Further Reading
The HTTP/1.1 specification, RFC 2616, has some guiding principles for security at
the HTTP level (http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html).

Current Rails best practices for security are summarized at http://www.quarkruby.com/
2007/9/20/ruby-on-rails-security-guide. This guide provides “cookbook”-style solu-
tions for many real-world problems such as authentication; mitigating SQL injection,
XSS, and CSRF; handling file uploads; and preventing form spam.

http://agilewebdevelopment.com/plugins/safe_erb
http://agilewebdevelopment.com/plugins/safe_erb
http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html
http://www.quarkruby.com/2007/9/20/ruby-on-rails-security-guide
http://www.quarkruby.com/2007/9/20/ruby-on-rails-security-guide

147

Chapter 6 CHAPTER 6

Performance6

Premature optimization is the root of all evil (or at
least most of it) in programming.

—Donald Knuth (attributed to C. A. R. Hoare)

Performance is an interesting beast. Performance optimization often has a bad repu-
tation because it is often performed too early and too often, usually at the expense of
readability, maintainability, and even correctness. Rails is generally fast enough, but
it is possible to make it slow if you are not careful.

You should keep the following guidelines in mind when optimizing performance:

Algorithmic improvements always beat code tweaks
It is very tempting to try to squeeze every last bit of speed out of a piece of code,
but often you can miss the bigger picture. No amount of C or assembly tweak-
ing will make bubblesort faster than quicksort. Start your optimization from the
top down.

As a general rule, maintainability beats performance
Your code should be first easy to read and understand, and only then optimized
for speed.

Only optimize what matters
Typically, the code profile has a lopsided distribution: 80% of the time is spent
in 20% of the code (for some value of 80% and 20%). It makes sense to spend
your limited resources optimizing the sections that will bring the greatest gain in
performance.

Measure twice, cut once
The only way to be certain about where your code is spending its time is to mea-
sure it. And just as in carpentry, you can waste a lot of time if you make changes
without being very sure exactly what those changes should be. In this chapter, we
will explore some of the best tools and methods for determining where to cut.

148 | Chapter 6: Performance

Measurement Tools
Of course, in order to properly measure performance, we need tools. This section is
concerned with analysis of Ruby and Rails code, as well as web applications in gen-
eral. There are a series of tools that can be used to analyze the full Rails stack, from
HTTP down to Ruby’s internals.

Black-Box Analysis
The most basic high-level measurement you will be interested in is: in the ideal case,
how fast can this server serve requests? While the answer is a somewhat nebulous
value that often bears no relation to actual performance under typical load, it is still
useful to compare against itself—for example, when testing caching or deploying a
new feature set.

This technique is called black-box analysis: we measure how much traffic the server
can handle, while treating it as a “black box.” For now, we don’t really care what’s
inside the box, only about how fast it can serve requests. We will leave the minutiae
of profiling and tweaking until later.

For this stage, we will need a benchmarking utility—but first, a brief diversion into
the world of mathematics.

Statistics: The least you need to know

It doesn’t take much knowledge of statistics to properly interpret the results of black-
box analysis, but there are some things you need to know.

Statistical analysis deals with the results of multiple samples, which in this case cor-
respond to HTTP response times. In Ruby fashion, we will illustrate this with a Ruby
array:

samples = %w(10 11 12 10 10).map{|x|x.to_f}

The average, or mean, of these samples is their sum divided by the number of sam-
ples. This is straightforward to translate into Ruby—adding a few methods to
Enumerable:

module Enumerable
 def sum(identity = 0)
 inject(identity) {|sum, x| sum + x}
 end

 def mean
 sum.to_f / length
 end
end

Measurement Tools | 149

This gives us predictable results:

samples.sum # => 53.0
samples.length # => 5
samples.mean # => 10.6

Everyone is familiar with the mean, but the problem is that by itself, the mean is
nearly worthless for describing a data set. Consider these two sets of samples:

samples1 = %w(10 11 12 10 10 9 12 10 9 9).map{|x|x.to_f}
samples2 = %w(2 11 6 14 20 21 3 4 8 13).map{|x|x.to_f}

These two data sets in fact have the same mean, 10.2. But they clearly represent
wildly different performance profiles, as can be seen from their graph (see
Figure 6-1).

We need a new statistic to measure how much the data varies from the mean. That
statistic is the standard deviation. The standard deviation of a sample is calculated by
taking the root mean square deviation from the sample mean. In Ruby, it looks like this:

module Enumerable
 def population_stdev
 Math.sqrt(map{|x| (x - mean) ** 2}.mean)
 end
end

This code maps over the collection, taking the square of the deviation of each ele-
ment from the mean. It then takes the mean of those squared values, and takes the
square root of the mean, yielding the standard deviation.

However, this is only half the story. What has been introduced so far is the
population standard deviation, while what we really want is the sample standard
deviation. Without completely diving into the relevant mathematics, the basic differ-
ence between the two is whether the data represent an entire population or only a
portion of it.

Figure 6-1. Two vastly different response-time profiles with the same mean

samples1

16

2

6

11

20

samples2

150 | Chapter 6: Performance

As our data set represents application response times, from which we want to infer a
mean and confidence interval applicable to data points we have not sampled, we want
to use the sample standard deviation. Using the population standard deviation on our
sample would underestimate our population’s actual standard deviation. Here is the
Ruby code for the sample standard deviation, which we will use from here on out:

module Enumerable
 def stdev
 Math.sqrt(map{|x| (x - mean) ** 2}.sum / (length-1))
 end
end

The standard deviation is a very useful way to get a feel for the amount of variation
in a data set. We see that the second set of samples from above has a much larger
standard deviation than the first:

samples1.stdev # => 1.13529242439509
samples2.stdev # => 6.7954232964384

The standard deviation has the same units as the sample data; if the original data were
in milliseconds, then the samples have standard deviations of 1.1 ms and 6.4 ms,
respectively.

We can use the standard deviations to estimate a confidence interval. The confidence
interval and mean will give us a good idea for the limits of the data. Assuming a nor-
mal distribution,* the following guidelines apply:

• Approximately 68% of the data points lie within one standard deviation (σ) of
the mean.

• 95% of the data is within 2σ of the mean.

• 99.7% of the data is within 3σ of the mean.

Using the second rule, we will generate a 95% confidence interval from the statistics
we have generated. This Ruby code uses the mean and standard deviation to return a
range in which 95% of the data should lie:

module Enumerable
 def confidence_interval
 (mean - 2*stdev) .. (mean + 2*stdev)
 end
end

samples1.confidence_interval # => 7.92941515120981..12.4705848487902
samples2.confidence_interval # => -3.39084659287681..23.7908465928768

* It is reasonable to assume a normal distribution here. We can safely treat series of server response times as
i.i.d. random variables; therefore, by the central limit theorem, the distribution will converge to normal given
enough samples.

Measurement Tools | 151

We see that the server that produced the first set of samples will usually (95% of the
time) respond in between 8 and 12 ms. On the other hand, the data from the second
server varies so wildly as to be nearly meaningless.

When comparing two data sets, it is important to compare not just their means but
their standard deviations and confidence intervals as well. It may look as if you have
made an improvement, but if the confidence intervals overlap by a significant
amount, there is no statistical significance to the result.

Black-box analysis with httperf

Now that we know how to analyze results, we can benchmark a site. The best refer-
ence is Zed Shaw’s instructions about tuning Mongrel using httperf (http://mongrel.
rubyforge.org/docs/how_many_mongrels.html). We will not repeat the procedure
here, but we will give some caveats:

• Ensure that you have the front end server (usually Apache, lighttpd, or nginx)
configured to serve static files. Then do a baseline measurement that requests a
static file from the front end web server. You will never get Rails faster than this.

• Run your tests from a machine as close as possible (in network terms) to the
server. You want to eliminate latency and jitter (variance in latency) from the
results.

• Do not run performance tests from your web server. There are too many interac-
tions between the server and the analyzer that will be confounded with your
results. Even if CPU utilization is not a problem (such as on a multiprocessor
machine), you will not know if I/O contention has skewed the results.

Code Timing
The Ruby standard library includes Benchmark, which can be used to answer simple
questions about code performance. The key word here is simple: it is all too easy to
ignore confounding factors and take the numbers that Benchmark gives you as
gospel.

Suppose we want to compare conventional method dispatch to the idiom of using
method_missing and then examining the method name to decide what action to take.
Here is a simple code example that benchmarks the two options:

require 'benchmark'

class Test
 def test_one
 1 + 1
 end

 def method_missing(method_id)
 case method_id
 when :test_unknown: 1 + 1

http://mongrel.rubyforge.org/docs/how_many_mongrels.html
http://mongrel.rubyforge.org/docs/how_many_mongrels.html

152 | Chapter 6: Performance

 else super
 end
 end
end

t = Test.new

Benchmark.bmbm do |b|
 b.report("Direct method call") do
 1_000_000.times { t.test_one }
 end

 b.report("method_missing") do
 1_000_000.times { t.test_unknown }
 end
end

Note what we are not testing: we are not comparing the raw speed of ordinary
method dispatch versus a bare call to method_missing. We are comparing an ordi-
nary method call to the standard Ruby practice of using method_missing to answer for
one method name. This gives us answers that are more relevant to our question:
“How much will method_missing hurt me in this particular piece of code?”

We use the Benchmark.bmbm method, which runs the entire benchmark suite once (the
“rehearsal”) to minimize startup costs and give the measured code a “warm start.”
To get the most accurate numbers possible, each trial runs one million method calls.

The Benchmark library starts garbage collection before each run, because garbage
collection during the measured run would alter the results. Here is the output of that
benchmark on my computer:

Rehearsal --
Direct method call 0.350000 0.000000 0.350000 (0.352929)
method_missing 0.480000 0.000000 0.480000 (0.476009)
--- total: 0.830000sec

 user system total real
Direct method call 0.320000 0.000000 0.320000 (0.324030)
method_missing 0.480000 0.000000 0.480000 (0.477420)

The rehearsal numbers come first, followed by the actual measurement. We can see
that under this environment, the average cost of a normal method call is 320 nano-
seconds (0.32 seconds per million calls), while a method_missing call and case state-
ment take 480 nanoseconds. Modulo the accuracy of our measurement, this is a 50%
performance penalty for using method_missing. Balanced against the additional
power we get from method_missing, this certainly seems to be a good trade.

Benchmark is a powerful tool, but it can quickly amount to guesswork and black
magic. There is no use optimizing method dispatch unless it is a bottleneck.*

* Here’s a hint: at more than two million method calls per second, method dispatch is probably not your
bottleneck.

Measurement Tools | 153

Don’t just go poking around looking for code to benchmark, though. Profilers are
much more powerful utilities when you don’t know what needs optimization. We
will consider them next.

Rails Analyzer Tools
The Rails Analyzer Tools (http://rails-analyzer.rubyforge.org/) are a set of utilities that
can help profile your Rails application. While Benchmark is Ruby-specific, and
httperf will benchmark any web site, the Rails Analyzer Tools were written with
Rails in mind.

Production log analyzer

The first tool, the Production Log Analyzer, scans your production logfiles to find
the slowest actions in your deployed application. This is very useful for problem
solving, but it has a number of downsides. It requires the logs to go through the
SyslogLogger (provided with the Rails Analyzer Tools), so you must set this up
before the requests come in. The tool also requires a syslogd that supports filtering
on program names, which usually means either running BSD or installing syslog-ng.
For these reasons, we will not go into detail on its use here. Complete setup instruc-
tions are available at http://rails-analyzer.rubyforge.org/pl_analyze/.

Action profiler

Once you know which actions are hurting for performance, you need a way to dig
deeper. Action Profiler is a library (and a corresponding executable, action_profiler)
that glues Rails to a profiler. It profiles a single Rails action through the entire Rails
stack and application code so that you can examine where the most time is being
spent during that action.

Action Profiler can be used with one of several profiling engines: ZenProfiler, ruby-
prof, and Ruby’s built-in Profiler class. They will be tried in that order unless one is
specified on the command line with the -P option. Here is a sample run of Ruby’s
Profiler, showing a flat call profile:

$ action_profiler -P Profiler ListingController#map
Warmup...
Profiling...
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 13.73 0.07 0.07 204 0.34 0.34 ERB::Util.html_escape
 11.76 0.13 0.06 1462 0.04 0.08 String#gsub
 11.76 0.19 0.06 6 10.00 10.00 AssetTagHelper.
 compute_public_path
 9.80 0.24 0.05 89 0.56 0.67 FormOptionsHelper.
 option_value_selected?
 9.80 0.29 0.05 178 0.28 0.28 Array#<<
 3.92 0.31 0.02 44 0.45 6.36 Array#each
 3.92 0.33 0.02 287 0.07 0.07 Kernel.respond_to?

http://rails-analyzer.rubyforge.org/
http://rails-analyzer.rubyforge.org/pl_analyze/

154 | Chapter 6: Performance

 3.92 0.35 0.02 89 0.22 0.45 Array#each_index
 3.92 0.37 0.02 89 0.22 0.34 Inflector.humanize
 1.96 0.38 0.01 179 0.06 0.06 Kernel.===
 1.96 0.39 0.01 67 0.15 0.15 String#concat
 1.96 0.40 0.01 16 0.63 0.63 ActionView::Base#
 template_exists?
 1.96 0.41 0.01 613 0.02 0.02 String#to_s
 1.96 0.42 0.01 7 1.43 1.43 MonitorMixin.synchronize
(and many more lines...)

These results include the following columns.

The generated profile shows that we are spending most of our time in five functions:
html_escape (better known as h()), gsub, compute_public_path, option_value_
selected?, and <<. This is hard to improve upon, and in fact this particular action is
pretty snappy. There is not much that we can do to reduce time spent in methods
like Array#<< except find ways to call them fewer times.

This example demonstrates both the power and weakness of flat profiles. Although
they are very useful to get a general idea of which functions are taking the most time,
they do not help very much with long-running or complicated programs. Rails appli-
cations certainly qualify as complicated—even a simple action can easily have hun-
dreds of lines in the profile. It can be difficult to track down where your expensive
functions are being called.

The solution to this complexity is, believe it or not, more complexity—provided we
introduce some structure to the data. We will see later in the chapter how a graph
profile, though it contains a huge amount of data, can offer better insight into where
time is being spent.

Rails Analyzer Tools

The Rails Analyzer Tools are a collection of miscellaneous parts that help with per-
formance tuning. Two of the utilities, bench and crawl, measure “black-box” perfor-
mance by making rapid-fire HTTP requests to a site. We can already do this, and
more, with httperf.

Column name Description

% Time Percentage of total time spent in only this function.

Cumulative Seconds Total number of seconds spent in this function, including time spent in functions called by
this one.

Self Seconds Total number of seconds spent in only this function, excluding time spent in functions called by
this one.

Calls Total number of calls to this function during the profiling period.

Self ms/call Average number of milliseconds spent in this function per call, excluding calls to other functions.

Total ms/call Average number of milliseconds spent in this function per call, including calls to other functions.

Name Name of the function being profiled.

Rails Optimization Example | 155

The IOTail library mixes in a tail_lines method to IO and StringIO. This method
yields once for each line that is added to an open file, as it is added. This is used in
some of the other utility methods from the Rails Analyzer Tools.

The real gem in this library, however, is rails_stat. This simple command-line util-
ity takes as arguments the path to a Rails production log and an optional refresh
interval, which defaults to 10 seconds. It sits on the logfile, watching for new lines,
and summarizes the traffic to the site, refreshing at the given interval until it receives
SIGINT (Ctrl-C):

$ rails_stat log/production.log
~ 1.4 req/sec, 0.0 queries/sec, 7.9 lines/sec

The implementation of rails_stat is very simple (it is based on IOTail). This code
could be used as the basis for a flexible real-time log analytics system.

Rails Optimization Example
To tie these concepts together, we will look at the process of benchmarking, profil-
ing, and optimizing a Rails action. This example comes from a real application, one
that is fairly large and complicated. We have seen pieces of this application before; it
is a map-based real estate search application. The application deals heavily with
geospatial data, and is based on the PostGIS spatial extensions to PostgreSQL.

We have identified an action to profile: the action that performs the search itself
(POST /searches). This action is not particularly slow in absolute terms, but it is our
most commonly used feature, and any more performance we can get reduces overall
latency and makes our application feel snappier.

Profiling an Action
Once we have decided on an action whose performance we want to improve, we can
profile it to see where our time is being spent. Jeremy Kemper recently added a new
request profiler to Rails, which will be released with the final version of Rails 2.0. Its
library is located at actionpack/lib/action_controller/request_profiler.rb, and it is
accessible through script/performance/request. It is a fairly simple wrapper around the
ruby-prof library, adding some commonly needed Rails functionality:

• Rather than running a single action, the request profiler runs a specified integra-
tion test script, so the test procedure can be arbitrarily complex. This also means
that we can profile non-GET requests, which is a must for the action we wish to
profile.

• The request profiler can run a script multiple times, while only profiling time
actually spent in those actions (not the overhead of starting up the profiler).

• The profiler script opens up both the flat and HTML graph profiles for us; we
will see later how both of these are useful.

156 | Chapter 6: Performance

First, we need to install the ruby-prof gem:

$ sudo gem install ruby-prof

We need to write an integration script that drives the profiler. As mentioned previ-
ously, this script can be arbitrarily complicated, but ours will be a single request. The
script uses the same methods as integration scripts, except that the script’s execu-
tion is wrapped in an integration runner (technically, the script’s text is inserted into
the runner using instance_eval), so the integration session methods can be called as
top-level methods.

test_script.rb
post '/searches', :search => {:pclass => 1, :city_id => 149, :subtype => 'HOUSE'}

We can drive the profiler with this script. We will also specify the number of trials;
this is a fairly long-running action (around half a second on my machine without the
profiling overhead), so we will run 10 trials:

$ script/performance/request -n 10 test_script.rb

This will generate two profiles in the tmp directory (and open them using open on
OS X). The flat profile, which we have seen before, is tmp/profile-flat.txt. The new
graph profile, which is much more detailed, is tmp/profile-graph.html.

The graph profile is extremely complicated, because it is a linearized version of the
call graph for every function that was called during profiling. When opened in a
browser, it starts off as shown in Figure 6-2.

We will examine portions of this graph, but a complete description of these fields is
beyond the scope of this book. An introduction is available at http://ruby-prof.
rubyforge.org/graph.txt.

The profile is divided into blocks, which are separated by horizontal lines. Each
block in this profile is centered around one function—the one in boldface that has
values in the first two columns (%Total and %Self). If we only look at that one line
from each block, we have a fairly standard flat profile, like the one we saw previ-
ously from Ruby’s Profiler. The %Total column indicates the percentage of overall
time spent in this method and any methods it calls (and recursively on down); the
%Self column excludes children and only relates to the current method.

The added value that we receive from the graph profile is the parent and child infor-
mation in each block. Each function has zero or more parents (functions that called
this function) and zero or more children (functions called by this function). Parents
are listed above the current function within a block, and children are listed below the
current function.

http://ruby-prof.rubyforge.org/graph.txt
http://ruby-prof.rubyforge.org/graph.txt

Rails Optimization Example | 157

The meaning of the Calls column is different for different rows. For the primary row
within a block, it simply refers to the total number of calls to the function. For the par-
ent rows, it takes the form calls/total, where calls is the number of times the parent
function called the current function and total is the total number of times the current
function was called. Note that since all functions calling the current function are par-
ents, the calls values of all parents will sum to the calls value of the current function.

For child rows, the semantics are the same, but they are from the child’s point of
view. The calls value of a child row is the number of times the current function calls
the child function, as a fraction of the total number of times the child function was
called. The denominator of this number will be the same as the calls value for the
child function’s own block. This gives a picture of how much impact the current
function has on the child, relative to the child’s other callers.

Figure 6-2. Beginning of a graph profile

158 | Chapter 6: Performance

Optimizing and Reprofiling
Now, we will examine the profile to find areas of our code that are slow. There are
two main columns we need to watch while scanning the profile:

%Self
This value represents the amount of time spent in this method only (excluding
time spent in its children), relative to total profiling time. If one method is doing
an inordinate amount of work, it will have a proportionally higher %Self value.

Calls
This column shows the number of calls made to this function during the profil-
ing period. All of the optimization in the world on one method will not help if
the method is being called too many times. Again, algorithmic optimizations are
always the place to start; then, individual bits of code can be tweaked if more
performance is needed.

A good place to start is the flat profile, as it is sorted by the %Self column, highest
first. (The graph profile is sorted by %Total instead.) The beginning of our flat pro-
file looks like this:

Thread ID: 2057980
Total: 12.69

 %self total self wait child calls name
 9.93 2.06 1.26 0.00 0.80 2730 GeoRuby::SimpleFeatures::
 HexEWKBParser#decode_hex
 6.86 1.43 0.87 0.00 0.56 4430 Array#each_index
 4.65 1.82 0.59 0.00 1.23 4230 Array#each-1
 2.68 0.34 0.34 0.00 0.00 132130 Hash#[]=
 2.68 0.34 0.34 0.00 0.00 156540 Fixnum#==
 2.60 0.38 0.33 0.00 0.05 77550 String#gsub

Most of these values are fairly reasonable (we are doing a lot of necessary data pro-
cessing in Ruby, and it is reasonable that Array#each_index would be a significant
component of this). However, we are spending a lot of time in GeoRuby::
SimpleFeatures::HexEWKBParser#decode_hex. The %Self value of 9.93 means that we are
spending nearly 10% of the total request time inside this method. We should investi-
gate this by looking for that method’s block in the graph profile (see Figure 6-3).

Figure 6-3. The decode_hex method dominates our request time

Rails Optimization Example | 159

Now, we may want to examine the source of these calls to decode_hex. This function
has only one caller, HexEWKBParser#parse. Clicking on that line takes us to its own
block (see Figure 6-4).

Following this chain of callers upward, we find that these calls are coming from the
spatial_adapter plugin that we use to interface with the PostGIS database. These
functions are doing a particularly computationally intensive form of type casting;
they are converting the hex strings coming from PostGIS to Ruby objects such as
points and polygons (EWKB is the extended well-known binary format that PostGIS
uses to represent geometrical objects).

The decode_hex function is pure Ruby. It could probably be rewritten with C,
OCaml, or another high-performance extension language, which would likely
improve performance substantially. However, we should be considering algorithmic
improvements first.

The first thing that catches my eye about this profile is the number of calls. On the
data set being used, our test query returns slightly fewer than 100 geospatial objects.
So why are we decoding geospatial objects 2,730 times? After some investigation, we
find this note in the spatial adapter’s code:

Because ActiveRecord keeps only the string values directly returned from the data-
base, it translates from these to the correct types every time an attribute is read (using
the code returned by this method), which is probably OK for simple types, but might
be less than efficient for geometries. Also, you cannot modify the geometry object
returned directly or your change will not be saved.

So, every time we reference a geospatial column (via Listing#location), it is being
decoded again from the string representation. We can do better than that. We will
keep a cache of the last-seen string value (the EWKB value from PostGIS), as well as
its corresponding geometry (the Ruby object). This is done by inserting the follow-
ing code into the Listing class:

class Listing
 # Cache location information
 # AR wants to cast the HexEWKB string to a Geometry on each access,
 # let's not do that
 def location
 string = location_before_type_cast
 return @location_geometry if string == @location_string

 @location_string = string
 @location_geometry = super

Figure 6-4. Tracing upward through the call stack

160 | Chapter 6: Performance

 end

 # Invalidate cache when new location is assigned
 def location=(val)
 @location_geometry = @location_string = nil
 super
 end

 # Invalidate cache when record is reloaded
 def reload
 @location_geometry = @location_string = nil
 super
 end
end

Now that we have made a substantial change, it is time to reprofile and see how the
numbers compare. After running the profiler again, we see that we have managed to
push that method a few notches down the list:

Thread ID: 2057980
Total: 11.21

 %self total self wait child calls name
 8.56 1.38 0.96 0.00 0.42 4430 Array#each_index
 7.76 2.07 0.87 0.00 1.20 4230 Array#each-1
 4.19 0.74 0.47 0.00 0.27 1040 GeoRuby::SimpleFeatures::
 HexEWKBParser#decode_hex

We have cut the number of calls to decode_hex from 2,730 to 1,040. (This number is
still higher than 100 because there is another spatial class that we have not opti-
mized yet.) In addition, we have cut the total time spent in decode_hex from 1.26 sec-
onds to 0.47 seconds without optimizing the actual function at all. When we
benchmark these different versions of the application, we will see what kind of an
impact the optimizations have on the action as a whole.

Next, we notice from the preceding flat profile that we are spending the most time in
Array#each_index and Array#each-1 (the ruby-prof syntax indicating the first-level
recursive call to Array#each). These are more complicated to track down, primarily
because they have many callers (Array#each is used in many places).

The optimization process for this problem was fairly difficult, and we do not show it
here; it was a fairly boring and highly application-specific optimization. (It involved
rewriting a complicated clustering algorithm to build up the same data set using
fewer intermediate data structures.) But the change did result in a small improve-
ment in the profile, as well as the overall running time:

Thread ID: 2057980
Total: 10.7

 %self total self wait child calls name
 7.94 1.38 0.85 0.00 0.53 4430 Array#each_index
 5.23 1.77 0.56 0.00 1.21 4230 Array#each-1

Rails Optimization Example | 161

 3.64 0.40 0.39 0.00 0.01 133960 Hash#[]=
 3.55 0.70 0.38 0.00 0.32 1040 GeoRuby::SimpleFeatures::
 HexEWKBParser#decode_hex

Benchmarking
Now that we have made optimizations, we should see how they affect the actual per-
formance of our application. We saved this section for later so that we could com-
pare the two optimizations to each other; in reality, you should benchmark after
each optimization to be sure that each change has the desired effect.

We will be comparing the performance of the three versions of the application:

• No optimization (the control)

• The Listing#location optimization

• The rewrite of the clustering algorithm

Source Control and Optimization
Source control is our friend during the optimization process. The application uses Mer-
curial, a distributed version-control system, which makes it very easy to test large,
complicated changes and then pull all, some, or no changes back into the main code-
base, depending on their performance improvement. In this case, we used source con-
trol to run benchmarks on several different optimizations after the fact, to see how
much of an improvement each one made.

We followed the following (simplified) process with Mercurial:

1. Clone the main trunk repository to a new repository and copy over any neces-
sary nonversioned configuration files (such as config/database.yml).

$ hg clone trunk performance-testing
$ cp trunk/config/database.yml performance-testing/config/

2. In the new repository, repeat the profile-optimize-test cycle and check in each
change.

$ cd performance-testing
(make changes, test)
$ hg ci

3. If the performance improvements were successful, pull the changes back into the
main repository.a

$ cd ../trunk
$ hg pull -u ../performance-testing
$ hg up

We examine the distributed version-control paradigm in more detail in Chapter 10.

a The Mercurial Queues extension (also called MQ; its use is detailed at http://www.selenic.com/mercurial/
wiki/index.cgi/MqExtension) makes this process much more straightforward, and makes it easier to cherry-
pick or throw away individual changes (even while working in the main repository). However, it is far
beyond this book’s scope.

http://www.selenic.com/mercurial/wiki/index.cgi/MqExtension
http://www.selenic.com/mercurial/wiki/index.cgi/MqExtension

162 | Chapter 6: Performance

The benchmarking tool we will be using is Railsbench (http://railsbench.rubyforge.org/)
by Stefan Kaes. This provides some very convenient tools for benchmarking Rails
applications and visualizing the results. Railsbench has a slightly complicated instal-
lation procedure. First, install the gem:

$ sudo gem install railsbench

Next, you should add the directory containing the Railsbench scripts to your PATH,
and make them executable. This can be done as follows:

$ eval `railsbench path`
$ sudo railsbench postinstall

Railsbench looks for some environment variables to know where the Rails applica-
tion is and where its data should go, so we need to export those:

$ export RAILS_ROOT=.
$ export RAILS_PERF_DATA=.

Now Railsbench is installed and ready to run. But first, there are some changes we
need to make to the application. We install the Railsbench code into our application:

$ railsbench install

That command provides us with a few files that are used for benchmarking:

config/benchmarks.rb
Railsbench configuration. Use this file to provide Rails with custom session data,
if needed.

config/benchmarks.yml
Defines the set of benchmarks that can be run; each one has a name, URI, HTTP
method, and optional POST data. Most of this file can be generated automati-
cally from the application’s routes; we will do this as our next step.

config/environments/benchmarking.rb
This is a separate Rails environment used for benchmarking. When created, it is
a copy of the production.rb file, but it can be customized to meet the bench-
mark’s needs.

Railsbench has a command to generate the config/benchmarks.yml file based on the
application’s routes. We will run this to create the basic version of the file.

$ railsbench generate_benchmarks

We delete actions from this file that we do not need to benchmark (such as named
routes generated automatically by map.resources, some of which are unused). And
we modify the searches_create benchmark, changing the method to post and add-
ing the POST data we need:

searches_create:
 uri: /searches/
 action: create
 controller: searches
 method: post
 post_data: "search[pclass]=1&search[city_id]=149&search[subtype]=HOUSE"

http://railsbench.rubyforge.org/

Rails Optimization Example | 163

There is one last change we must make. By default, all Rails environments except pro-
duction have a log level of :debug. We want to set the benchmarking environment’s log
level to :info, so that we don’t confound the benchmarking results with I/O issues from
heavy log traffic. Add the following line to config/environments/benchmarking.yml:

config.log_level = :info

Running the benchmark

Now we can run the benchmarks. We use the Railsbench perf_run command, which
takes as an argument the number of requests to make on each trial. We specify the
benchmark from benchmarks.yml with the -bm= option, and we specify 20 trials with
the RAILS_PERF_RUNS variable:

$ RAILS_PERF_RUNS=20 perf_run 100 -bm=searches_create
benchmarking 20 runs with options 100 -bm=searches_create

perf data file: ./perf_run.searches_create.txt
 requests=100, options=-bm=searches_create

loading environment 2.43529

page request total stddev% r/s ms/r
searches_create 44.70490 0.4030 2.24 447.05

all requests 44.70490 0.4030 2.24 447.05

Railsbench can benchmark multiple actions during the same run. We
are only benchmarking one action here, so we can just look at the
searches_create line in this table for our information. The last line is
just a summary.

The data shows us that we averaged 2.24 requests per second (447.05 milliseconds
per request). Each of 20 trials involves 100 requests, so the mean runtime for each
trial was 44.705 seconds. The standard deviation for that figure was 0.4030% of the
mean, or 0.180 seconds. (Thus, 95% of the trials should fall between 44.34 seconds
and 45.06 seconds, two standard deviations away from the mean.)

perf_run saves its raw data for this run in perf_run.searches_create.txt, and we will
feed that file into other utilities for analysis. Between each benchmark, we store this
file away for comparison across the different versions under test.

Interpreting the results

Railsbench includes a utility called perf_comp that will compare results between dif-
ferent runs of perf_run. When run with two arguments (the two data files to be
compared), it will give a summary of each and a comparison between them. Here is
the comparison between the first benchmark (the control) and the second (with the
Listing#location cache improvement):

164 | Chapter 6: Performance

$ perf_comp a/perf_run.searches_create.txt b/perf_run.searches_create.txt
perf data file 1: a/perf_run.searches_create.txt
 requests=100, options=-bm=searches_create

perf data file 2: b/perf_run.searches_create.txt
 requests=100, options=-bm=searches_create

page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
searches_create 44.70490 43.13935 2.2 2.3 447.05 431.39 1.04

all requests 44.70490 43.13935 2.2 2.3 447.05 431.39 1.04

This is mostly information we have seen before. The interesting bit of information is
the far-right number in the table (1.04): the ratio of the old runtime to the new. In
this case, we see that the cache optimization afforded us a 4% improvement in over-
all runtime on this action. This is a decent performance improvement, for an action
that is already fairly well optimized.

Compare that to the second optimization, the refactoring:

$ perf_comp b/perf_run.searches_create.txt c/perf_run.searches_create.txt
perf data file 1: b/perf_run.searches_create.txt
 requests=100, options=-bm=searches_create

perf data file 2: c/perf_run.searches_create.txt
 requests=100, options=-bm=searches_create

page c1 real c2 real c1 r/s c2 r/s c1 ms/r c2 ms/r c1/c2
searches_create 43.13935 42.79449 2.3 2.3 431.39 427.94 1.01

all requests 43.13935 42.79449 2.3 2.3 431.39 427.94 1.01

This change only resulted in a performance gain of 1%, which is probably not worth
pursuing for performance’s sake alone. (In this case, the code under question was in
desperate need of a rewrite, so this was a net gain anyway.)

We should also compare the actual ranges that the trial times fall into, to be sure that
these results have statistical significance. To visualize this, I instrumented the Rails-
bench PerfInfo class to show the actual trial times (not just the mean and standard
deviation), and piped the data through R.* The result is shown in Figure 6-5.

This box-and-whisker plot shows the median value (the heavy line), the first and
third quartile (into which the middle half of the data points fall; represented by the
box), and the complete range (the brackets). From this, we see that the first optimi-
zation was a clear winner; the ranges of values do not even overlap.

The second optimization is not as clear-cut; there is still significant overlap between
the two ranges of observations. If there is any performance gain, it is likely marginal,
as it is overshadowed by the inherent variability of the response times.

* R (http://www.r-project.org/) is a language for statistical computing.

http://www.r-project.org/

ActiveRecord Performance | 165

ActiveRecord Performance
Object-relational mapping systems provide such a high-level environment for work-
ing with data that it is easy to forget about efficiency until it becomes a problem.
Here are some common problems and solutions for ActiveRecord development.

Diving into SQL
When faced with a problem that doesn’t map neatly to the given abstractions, most
programmers have an instinct to jump down a level. When using ActiveRecord, this
means using raw SQL.

For security as well as performance, it is important to understand the SQL that is
being generated from the commands you issue. ActiveRecord provides a useful
abstraction, but if you are not careful, it will bite you.

The simplest way to drop into raw SQL is to use ActiveRecord::Base.find_by_sql.
This is a very flexible method that returns the same results as find(:all, ...), but
allows you to specify custom SQL. It will even sanitize an array for you:

Person.find_by_sql ["SELECT * FROM people WHERE name LIKE ?", "#{name}%"]

Figure 6-5. Performance comparison between the control and two optimized versions

45
.0

44
.5

44
.0

43
.5

43
.0

42
.5

Before optimization Location optimization Refactoring

Re
sp

on
se

 ti
m

e
pe

r 1
00

 re
qu

es
ts

 (s
)

166 | Chapter 6: Performance

The problem with find_by_sql is that it instantiates every object that is returned.
This is usually fine, but sometimes it can be too much overhead. To avoid this, you
may need to bypass ActiveRecord and talk directly with the connection adapter. This
is fairly easy, but you can make it easier by bolting some convenience methods onto
ActiveRecord to sanitize the query automatically:

class <<ActiveRecord::Base
 def select_values(sql)
 connection.select_values(sanitize_sql(sql))
 end
end

sql = %(SELECT id FROM people WHERE last_name = ?)
last_name = %(O'Reilly)

Person.select_values [sql, last_name] # => ["12", "42"]

Because ActiveRecord is not doing any of the work here, the values come across
without any type conversion (as strings here). The complete list of methods available
through the connection adapter (the ActiveRecord::Base.connection object) is listed
in the RDoc for ActiveRecord::ConnectionAdapters::DatabaseStatements.

1+N Problem
The so-called 1+N problem is characteristic of the problems that you can run into if
you are not aware of your tools. It is best illustrated with an example.

Assume that we are using the following model, which splits off a person’s login into
a separate User model:*

class Person < ActiveRecord::Base
 has_one :user
end

class User < ActiveRecord::Base
 belongs_to :person
end

If you want to find the usernames of all people from Illinois, you might write this code:

logins_from_illinois = []
Person.find_all_by_state('IL').each do |person|
 logins_from_illinois << person.user.login
end

Not only is this iterative code bad style in Ruby, it can be inefficient. Even the func-
tional version suffers from the same problem:

logins_from_illinois = Person.find_all_by_state('IL').
 map{|p| p.user.login}

* This style can be very useful, especially when you need to keep track of many people who may or may not
actually be able to log in to a Rails application.

ActiveRecord Performance | 167

Invoking the user method on each Person object will force a separate load from the
database. If the people with IDs 4, 17, 36, and 39 matched the find_all_by_state
method, the following queries would be issued:*

SELECT * FROM people WHERE state = 'IL';
-- returns people with ID in (4, 17, 36, 39)

SELECT * FROM users WHERE person_id = 4;
SELECT * FROM users WHERE person_id = 17;
SELECT * FROM users WHERE person_id = 36;
SELECT * FROM users WHERE person_id = 39;

This is why this problem is called the 1+ N problem. This code issues one query to
find the IDs of the objects to retrieve (or the values of a foreign key, as shown here)
and N queries to retrieve the actual objects. If there were 1,000 objects matching the
query, this method would require 1,001 queries.

This is a very inefficient method of retrieving data. All but the first query return a sin-
gle row. Most of the time is wasted in constructing N queries, transmitting them to
the database server, parsing them (Rails does not use prepared statements, so each
statement must be compiled and planned individually), and retrieving the results.

The solution is to use a SQL join for the first and only query:

SELECT * FROM people LEFT JOIN users ON people.id = users.person_id
 WHERE people.state = 'IL';

That is much faster as it retrieves all needed data in one SQL statement. Rails makes
this easy: we can use the :include option to User.find to create a join:

logins_from_illinois = User.find(:all, :include => :person,
 :conditions => "people.state = 'IL'").map(&:login)

Note the pluralization: in the :include parameter, we use the singular, as it is the
name of the association (a User has-one Person). But since the :conditions are
directly injected into the SQL statement, the table name is used (... WHERE people.
state = 'IL').

Indexing
Another area in which you have to be careful of your database is indexing. Improper
indexing is a common problem; indexing is easily overlooked when creating a data-
base, and you often do not see the results until there is a major performance impact
on the application.

Unfortunately, this is an area where Rails does not (and cannot) help you. Indexing is
quite application-specific. Other than primary keys (which are usually automatically
indexed by the database), you must remember to create the necessary indexes yourself.

* The actual queries have been simplified for clarity. Most of the Rails database adapters reflect on the data-
base’s metadata for information about available tables, columns, and data types.

168 | Chapter 6: Performance

There is really no substitute for understanding what queries are being sent to the
database and how they are being satisfied.

Be sure to think critically about where you need indexes, as well as where you don’t
need them. In particular, you should omit indexes on tables that are very infre-
quently read from (such as audit logs). Gratuitous indexes can hurt write perfor-
mance, as they must be updated when data in the table is changed.

Foreign key indexes

Foreign keys are the most common place where indexes are needed (and often omit-
ted). In fact, MySQL generates an index on the referencing column automatically
when a foreign key is created.* PostgreSQL does not; you must create all indexes
except for those on primary keys manually. Foreign key indexes assist in queries by
associations, such as:

SELECT * FROM projects WHERE user_id = 123;

Without a proper index on user_id, every row in the projects table must be exam-
ined. It is standard practice to create an index on most foreign keys. However, there
are exceptions. Indexes do not help on attributes of low cardinality—those where
there are few unique values. The standard example is an index on the sex column of
a person; there are (generally) only two possible values. For a clause such as WHERE
sex = 'M', an index lookup would probably take longer than a full table scan.

This concern also applies to lookup tables (type tables) that simply serve to define
values for an attribute. If the possible values are small or unevenly distributed, an
index might slow things down. An example would be a foreign key into an order sta-
tus lookup table, as shown in Table 6-1.

Other indexes

Foreign keys are just the beginning, however, and they are the easiest thing to get
right. The rest is highly application-specific, so you will have to look at the queries
you are actually issuing to get a feel for where you need indexes. Indexing can
quickly look more like an art than a science.

* Some would consider this behavior helpful; others consider it presumptuous, as indexes are not always
needed on foreign keys.

Table 6-1. order_status

status_id status

1 opened

2 billed

3 shipped

4 returned

ActiveRecord Performance | 169

One complication in indexing decisions is that certain DBMSs (MySQL 4 and ear-
lier, and PostgreSQL 8.0 and earlier) will use at most a single index on each table per
query. This means that you should choose your indexes carefully. Consider this
query, which shows a list of a user’s payments, showing the most recent first:

SELECT * FROM payments WHERE user_id = 12345 ORDER BY paid_at DESC;

Even if there are separate indexes defined on (user_id) and (paid_at), the best those
DBMSs can do is to use the user_id index and manually sort on paid_at, without the
help of an index. In order to use an index, you must define one that includes both
columns: (user_id, paid_at). This situation happens often when using acts_as_list:
many times you want to filter based on a foreign key and then sort by a position
column.

Check your DBMS manual for details. Some database systems have further restric-
tions or hints. For example, on multicolumn indexes, PostgreSQL performs best
when the most restrictive condition applies to the leftmost column in the index.

In PostgreSQL, it is also possible to create an index on an expression such as
LOWER(last_name). This index would be used, for example, to satisfy clauses like
WHERE LOWER(last_name) = 'smith' or ORDER BY LOWER(last_name) ASC. This is a
tradeoff: the expression must be calculated for each row when the index is created,
but that expression is treated as a constant when querying.

You should take a look at your development log to find common queries that are
either being executed too often or take too long. You may find that you have missed
an index. Common places where indexes are omitted are the following:

• Columns that need to be sorted: position (when using acts_as_list) or any
other natural sort field such as last name, transaction date, or price.

• Lookup fields other than foreign keys: order number, department code, or
username.

• Columns that are commonly used in a GROUP BY query—but be careful that the
indexed attribute has a high enough cardinality (number of unique values) to
make it worth an index.

Full-text indexing

I do not recommend using a DBMS’s built-in full-text indexing capability. Many
applications will quickly outgrow the limitations of the built-in indexing features.
Repopulating a large full-text index can be slow, and it is better to have indexing
under your control in situations where the database may grow.

The industry leader in full-text search is Ferret, Dave Balmain’s port of Lucene. It is
available from http://ferret.davebalmain.com/trac/. It has a great reputation and is
almost infinitely configurable. It keeps most of Lucene’s API, so it will be more famil-
iar to Java programmers.

http://ferret.davebalmain.com/trac/

170 | Chapter 6: Performance

Jens Krämer’s acts_as_ferret library (http://projects.jkraemer.net/acts_as_ferret/)
makes it quite a bit easier to use Ferret to search an ActiveRecord model. The basic
procedure is as follows:

1. Install the Ferret library as a gem:
$ sudo gem install ferret

2. Install acts_as_ferret as a Rails plugin:
$ script/plugin install \
 svn://projects.jkraemer.net/acts_as_ferret/tags/stable/acts_as_ferret

3. Add the acts_as_ferret call to any model that should be indexed. The :remote =>
true option directs acts_as_ferret to connect to a central Ferret server over DRb;
this option is required when using multiple application servers:

class Product < ActiveRecord::Base
 acts_as_ferret :fields => [:title, :description, :product_number],
 :remote => true
end

4. Use the find_by_contents class method to query the index:
results = Product.find_by_contents "toaster"

5. If a manual reindex is necessary, use the rebuild_index class method:
Product.rebuild_index

For those of us who are only killing flies, and thus don’t need a sledgehammer,
Mauricio Fernández has a solution: FTSearch. Although it does not have many of
the features that Ferret provides, it is much lighter (about 3% of the size, as measured in
lines of code) and it has the most commonly used features. FTSearch is available from
http://eigenclass.org/hiki/ftsearch+repository+accessible, and Mauricio has a technical
description at http://eigenclass.org/hiki.rb?simple+full+text+search+engine.

Spatial indexes

Spatial data has a completely different set of requirements than other data, owing
primarily to the types of queries that are typically made against it. Even simple spa-
tial queries can turn into expensive computational geometry problems.

All major DBMSs have some sort of module for working with spatial data: PostGIS,
MySQL Spatial Extensions, Oracle Spatial, and DB2 Spatial Extender. Most com-
monly, these modules use R-tree indexes to categorize spatial objects in the data-
base. As with any index, defining R-tree indexes must be done manually and takes
some skill. As always, consult your DBMS manual for details.

As usual, there is a lighter-touch option available. The GeoKit library (http://geokit.
rubyforge.org/) can work with latitude and longitude columns in an ordinary database,
doing distance calculations for you. This is great for simple applications that involve a
bit of geospatial data, such as store locators (made possible by GeoKit’s distance-based
ActiveRecord finders and automatic interface to geocoding web services):

Store.find :all, :origin => '60685', :within => 10, :order => 'distance asc'

http://projects.jkraemer.net/acts_as_ferret/
http://eigenclass.org/hiki/ftsearch+repository+accessible
http://eigenclass.org/hiki.rb?simple+full+text+search+engine
http://geokit.rubyforge.org/
http://geokit.rubyforge.org/

ActiveRecord Performance | 171

Updating index statistics

The query planner maintains statistics on each index to decide which one to use dur-
ing query planning. While the index is updated whenever the table is modified (as
the index always needs to be up to date), the index statistics are only updated at the
DBA’s request. In PostgreSQL, the command VACUUM ANALYZE table_name is used. In
MySQL, the equivalent commands are ANALYZE TABLE table_name and OPTIMIZE TABLE
table_name, depending on the storage engine.

It is important to run these commands when the “shape” of the table or index
changes substantially—for example, when many rows are inserted or deleted. Under
PostgreSQL, the pg_autovacuum daemon can be set up to run maintenance auto-
matically on a periodic basis. This is highly recommended for better performance,
and it is automatically enabled starting in PostgreSQL 8.3.

Database Performance Measurement
The first place to look for simple query timing is the Rails development log. By
default, the development log lists each SQL query as it is executed, and prepends the
query with its execution time in seconds. This is a fine measure relative to other
actions and queries on the development machine, but it should not be compared to
actions in different environments.

You can diagnose a database bottleneck in a production environment by scanning
the production logs. Although the Rails production logs do not list each query, they
do list the total time spent in the database for each request:

Completed in 0.06189 (16 reqs/sec) | Rendering: 0.04007 (64%) |
 DB: 0.01952 (31%) | 200 OK

Using this information, you can find the database-hungry actions in a real-world
environment. Then, you can break down the queries that comprise that action and
profile each one at the database. This will give you hints about how you might better
design your application or database structure to avoid the bottlenecks.

Examining the query plan

Before any SQL query is executed, it must be compiled and planned. The planning
process decides on the steps that are taken to answer the query. This includes the
selection of indexes and the series of scans, filters, merges, sorts, and other low-level
operations that take place to generate the requested data.

All major DBMSs provide powerful tools that show how the query planner has
decided to execute a query. In PostgreSQL, the EXPLAIN keyword shows the query
plan corresponding to the requested query. The EXPLAIN ANALYZE query syntax is a
variant that actually executes the query and returns actual cost values. Here is an
example of the first variant:

172 | Chapter 6: Performance

listings_development=> EXPLAIN SELECT min(listing_id) as listing_id,
 count(listing_id) as cluster_size, cluster_id, level
 FROM cluster_ancestors
 WHERE listing_id IN (16466,18320,17948)
 GROUP BY cluster_id, level;

 QUERY PLAN
--
HashAggregate (cost=199.48..199.59 rows=7 width=12)
 -> Bitmap Heap Scan on cluster_ancestors (cost=6.22..198.86 rows=62 width=12)
 Recheck Cond: ((listing_id = 16466) OR (listing_id = 18320) OR
 (listing_id = 17948))
 -> BitmapOr (cost=6.22..6.22 rows=62 width=0)
 -> Bitmap Index Scan on cluster_ancestors_listing_id_and_level_idx
 (cost=0.00..2.07 rows=21 width=0)
 Index Cond: (listing_id = 16466)
 -> Bitmap Index Scan on cluster_ancestors_listing_id_and_level_idx
 (cost=0.00..2.07 rows=21 width=0)
 Index Cond: (listing_id = 18320)
 -> Bitmap Index Scan on cluster_ancestors_listing_id_and_level_idx
 (cost=0.00..2.07 rows=21 width=0)
 Index Cond: (listing_id = 17948)
(10 rows)

The different indentation levels form a tree showing how the data is retrieved from
the table and aggregated into a result. Each operation shows a cost estimate, which is
roughly related to the number of disk blocks that must be accessed for that opera-
tion. The first cost number is the estimated cost to calculate the first row; the second
number is the cost to calculate all of the rows. Each step also lists the estimated num-
ber of rows returned from that step, as well as the average width, in bytes, of each
row. The preceding tree represents the following execution plan (in chronological
order):

1. The cluster_ancestors_listing_id_and_level index is scanned for each of the
three listing_id values in the WHERE clause. This is an inexpensive scan because
it is restricted based on a subset of the index. The query planner estimates that
each scan will return 21 rows.

The index scan is a bitmap scan, so instead of returning the rows themselves,
this step just generates a list of the matching rows to be retrieved later. The
width is listed as 0 bytes per row because the actual rows are not returned.

2. The BitmapOr step takes the bitwise OR of the three bitmaps returned from the
lower steps, effectively returning their union. It returns a bitmap itself, so the width
is still 0.

3. The Bitmap Heap Scan uses the bitmap to retrieve the actual rows from the
table. The number of rows stays the same, but the width is now 12.

4. A HashAggregate performs the grouping and processes the aggregate functions—
the min() and count() functions in the SELECT clause.

Architectural Scalability | 173

We can see from this example that there are already sufficient indexes on the table,
and they are being used properly. This is probably as fast as the query will get given
the table size, so there is not much to be gained from more tweaks.

In MySQL, the syntax is the same (without the ANALYZE keyword), but the output is
substantially different. MySQL’s syntax is more simplistic, but it is arguably easier to
understand.

mysql> EXPLAIN SELECT * FROM default_en_listingsdb ldb
 INNER JOIN default_en_listingsdbelements ldbe
 ON ldb.listingsdb_id = ldbe.listingsdb_id
 WHERE ldb.listingsdb_id = 141054;
+----+-------------+-------+-------+----------------+----------------+-------+------+
| id | select_type | table | type | possible_keys | key | ref | rows |
+----+-------------+-------+-------+----------------+----------------+-------+------+
| 1 | SIMPLE | ldb | const | PRIMARY | PRIMARY | const | 1 |
| 1 | SIMPLE | ldbe | ref | idx_listing_id | idx_listing_id | const | 40 |
+----+-------------+-------+-------+----------------+----------------+-------+------+
2 rows in set (0.35 sec)

Rather than defining the steps the database engine takes to fulfill the query, this syn-
tax shows the tables that contribute to the query. As this is a simple inner join, the
two tables that comprise the FROM clause are listed, and the select_type of both is
SIMPLE (which indicates that they are not components of a union or subquery).

The WHERE clause restricts the first table to one row, referenced by the primary key.
The type of that lookup is const, which is the fastest type. The possible_keys col-
umn shows the possible indexes that could satisfy the query (PRIMARY), and the key
column shows the one that the query planner chose.

The second table, indexed by foreign key, uses a ref lookup on the index, which is
fast enough in this case as the number of rows returned (40) is small. If we had not
defined the idx_listing_id index, the type would be ALL rather than ref, indicating
that the entire table must be scanned.

A basic understanding of your database’s query planner is vital to writing good que-
ries and tracking down bad ones. Even for PostgreSQL and MySQL, freely available
open source databases, the documentation is very readable and of excellent quality.

Architectural Scalability
One of the hardest parts of building and deploying a web application is growing it.
Luckily, Rails was designed with scalability in mind. The Rails scalability mantra is
shared-nothing—the idea that each application server should stand on its own, not
having to coordinate with other application servers to handle a request. The only
thing that needs to be shared when scaling upward is the database.*

* Some would consider a shared database to be shared-something, but I digress.

174 | Chapter 6: Performance

Nevertheless, there are a few other concerns that you should be aware of when scal-
ing a Rails application. The biggest concerns are the other shared state besides the
application data: storage for sessions and cached data.

Sessions
The Rails session infrastructure is built on top of Ruby’s CGI::Session from the stan-
dard library.* CGI::Session takes care of the basics of CGI session management. It pro-
vides the following session stores, each implemented as a class within CGI::Session:

FileStore
Stores data in a file as plain text. No attempt is made to marshal the data, so you
must convert any session data into a String first.

MemoryStore
Stores session data natively in the memory of the Ruby interpreter process.

PStore
Similar to FileStore, but marshals the data before storing it. This allows you to
store any type of data in the session. This is a good option for development, but
it is not suitable for a production environment.

Because these options are quite thin and not too suited for large-scale web applica-
tions, Rails provides some session managers that are more helpful. In particular, all
of these options enable sessions to be shared between different application servers.
These implement the same interface as the other CGI::Session stores, so they are
drop-in replacements. We will examine each one in detail here.

ActiveRecordStore

As its name suggests, the ActiveRecordStore is designed to store sessions in a data-
base via ActiveRecord. However, it is flexible, and does not strictly require
ActiveRecord. The standard usage of ActiveRecordStore is very simple if you are
already using ActiveRecord—just set the session store in config/environment.rb:

config.action_controller.session_store = :active_record_store

A Rake task is provided to create the database migration for the sessions table: rake
db:sessions:create. You do not need to create the ActiveRecord Session class, as the
ActiveRecordStore sets one up for you. This class is called CGI::Session::
ActiveRecordStore::Session, so you can poke around its internals if you need to
change anything:

CGI::Session::ActiveRecordStore::Session.table_name = 'web_sessions'

The ActiveRecordStore uses few features of ActiveRecord, so it will actually work
with classes that act like ActiveRecord. This is useful if you are not otherwise using

* Standard library documentation is available at http://www.ruby-doc.org/stdlib/.

http://www.ruby-doc.org/stdlib/

Architectural Scalability | 175

ActiveRecord, or if you are tuning performance and ActiveRecord’s advanced fea-
tures are too heavy.

One such example, SqlBypass, is provided for you. It provides the necessary subset of
ActiveRecord to handle sessions. Activate it by manually changing the session class:

CGI::Session::ActiveRecordStore.session_class =
 CGI::Session::ActiveRecordStore::SqlBypass

Of course, you can easily write your own classes that talk to the session database, and
plug them in by this mechanism. The RDoc on CGI::Session::ActiveRecordStore
explains the exact requirements.

MemCacheStore

The MemCacheStore is a grown-up version of the DRbStore (a very simple central-
ized in-memory session store). It uses Danga Interactive’s memcached daemon to store
sessions. (memcached is discussed in detail in Chapter 4.) For scalability purposes,
memcached is usually preferable to the DRbStore, except in very small settings.

To activate the MemCacheStore, you must install the ruby-memcache gem (gem
install ruby-memcache). Then, start up a memcached server on an appropriate
machine. This command will tell memcached to use up to 512 MB of RAM, listen on
port 11211 (the default memcached port), and daemonize itself:

memcached -d -m 512 -p 11211

Then, set the Rails session store to the MemCacheStore:

config.action_controller.session_store = :mem_cache_store

Any options can be set with the session method. For example, you can specify multi-
ple memcached servers to balance requests:

class ApplicationController
 session :cache => MemCache.new('10.0.0.13:11211', '10.0.0.14:11211')
end

By default, memcached acts as a cache. It takes a -m <MBsize> argument that specifies
how much memory to use, and if it hits that limit it will start deleting the oldest
records to make room for new ones. This is usually undesirable for session storage. If
you use memcached for session storage, ensure that you have enough memory in the
cache to hold all current sessions.

Depending on your tolerance for lost sessions, you may want to consider running
memcached with the -M option. This option tells memcached to return an error when
the memory is full, rather than deleting items from the cache.

Remember that memcached stores data in memory only.* If you stop the
memcached process, you instantly lose all sessions. There is a new session store,

* Storing persistent data in memcached is actually a slight abuse of what it was designed for, but it’s really darn
fast so no one complains.

176 | Chapter 6: Performance

db_memcache_store, which uses memcached as a cache on top of database sessions,
so sessions will not be lost when the memcached server is stopped. It is still slow, but it
looks promising. It can be installed as a Rails plugin from http://topfunky.net/svn/
plugins/db_memcache_store/.

CookieStore

By default, Rails 2.0 assumes that the session will be small (usually a user ID and any
flash data) and stores the entire session in a client-side cookie. This removes a
server-side obligation to keep track of sessions, but it introduces some minor secu-
rity issues. The issues surrounding the cookie session store were discussed in detail
in Chapter 5.

Session management

Of course, the ultimate performance enhancement to sessions is not having to use
them at all. The session class method allows you to specify actions for which ses-
sions are not needed at all. This can save a decent amount of processing power for
actions that are viewed often but do not require the use of a session.

class PersonController < ApplicationController
 session :off, :only => [:list, :show]
end

Caching
Database caching via cached_model and acts_as_cached has been discussed earlier in
the book. If your bottleneck is in retrieving records from a database, memcached and
those solutions will help.

There is another significant bottleneck in most applications, though, and this one
requires more thought. Many applications have rendered pages or parts of rendered
pages that, while dynamic, can be cached to some extent. Rails has a few different
types of caching methods that allow various levels of granularity when deciding what
to cache.

By default, caching is only enabled in production mode, so as not to complicate the
debugging process. You can enable caching in development mode with the following
line in config/environments/development.rb:

config.action_controller.perform_caching = true

Many Rails plugins are available that modify or improve the standard caching func-
tionality. The Agile Web Development plugins database (http://agilewebdevelopment.
com/plugins) is the best place to look if you have a specific need.

http://topfunky.net/svn/plugins/db_memcache_store/
http://topfunky.net/svn/plugins/db_memcache_store/
http://agilewebdevelopment.com/plugins
http://agilewebdevelopment.com/plugins

Architectural Scalability | 177

Page caching

Page caching is conceptually the simplest form of response caching, and it is also the
fastest method. However, it is also the least flexible as it caches an entire page. When
a page is cached, on first access Rails stores the entire HTML response in a file whose
name corresponds to the path used to access the action. For example, the cached
response to the path /people/show/12 would be stored in RAILS_ROOT/public/
people/show/12.html. This enables the web server to answer subsequent requests
directly from the file instead of consulting Rails.*

Because the entire page is cached and served from the filesystem, page caching can-
not be used if even a small part of the page is dynamic. But it is this same characteris-
tic that makes page caching incredibly fast. Page caching is activated with the
caches_page class method:

class PersonController < ActionController::Base
 caches_page :list, :show, :new
end

Once a page is cached in the filesystem, it must be manually removed if the informa-
tion becomes stale. Rails has a method, expire_page, which removes the specified
page from the page cache. It is not recommended to expire pages directly from the
controller, as you must remember to expire at any point where you update the
related models. This gets ugly, and it is way too brittle when code changes. Even
though caching is a controller-related function, cache expiration is much more of a
model-related concern.

Far better is to use cache sweepers, which are model observers that expire the appro-
priate pages when the related model objects change. The sweepers call expire_page
as needed. We will cover sweepers later in this chapter.

Do not use page caching if the output depends on any query string parameters. If you
do, the page will be cached with the parameters passed to the first request, and subse-
quent requests will ignore the parameters as they are served from the filesystem.

If you use page caching, be sure that your generated URLs do not end with a trailing
slash (/controller/action/id/). The route recognizer will function properly in that case, but
page caching will be broken because the web server won’t find the appropriate file.

Action caching

Where page caching is too generic, there is another option: action caching. Action
caching still stores the entire HTML response, but it runs the filters first. This is very
useful if you have static pages that only authenticated users can see. Performance is
worse than page caching, as Rails must process each request.

* When serving Rails applications, web servers are configured to first check the /public directory for a file
matching the request. If the file is not found, they pass the request to Rails.

/controller/action/id/

178 | Chapter 6: Performance

Action caching is triggered by the caches_action method. Here’s an example that
only allows a page to be viewed on Tuesdays:

class UserController < ApplicationController
 before_filter :tuesday?, :only => :happy_tuesday
 caches_action :happy_tuesday

 def happy_tuesday
 render :text => "Happy Tuesday!"
 end

 protected

 def tuesday?
 Time.now.wday == 2
 end
end

Action-cached pages are expired with the expire_action method, which is again best
called from a cache sweeper. Alternatively, since action caching is implemented on
top of fragment caching, you can use the expire_fragment method to expire one or
many actions at once. You can even use a regular expression to expire all cached
instances of one action (or all actions if you like).

Fragment caching

When the preceding options fail, fragment caching can help. Fragment caching is
the most flexible, but least helpful, option. It is designed to store small fragments of
the page, but it makes no assumptions about your data. You can store HTML frag-
ments, XML, JSON, or even images in the fragment cache.

Manual access to the fragment cache uses the read_fragment, write_fragment, and
expire_fragment methods. This example caches barcode images as they are gener-
ated, to avoid generating them every time they are needed:

/barcode/generate/12345
class BarcodeController < ApplicationController
 def generate
 text = params[:id]

 # Retrieve barcode from fragment cache or generate it ourselves
 bc = read_fragment("barcode/generate/#{text}") ||
 write_fragment("barcode/generate/#{text}", Code39.to_jpeg(text))

 # Write the response to the client
 send_data bc, :type => 'image/jpeg', :disposition => 'inline'
 end
end

Architectural Scalability | 179

In this example, we assume that the barcode for a particular piece of text never
changes, so we don’t have to worry about cache expiration. In the real world, we
would want to expire old entries so as not to fill up all available RAM or disk space.
If we are using memcached as a fragment cache store, we do not have to worry about
this; memcached keeps the cache to the size we ask it to by throwing away the old-
est entries when it fills up.

Fragment cache stores. Like the various session stores, there are several fragment cache
stores that can hold your cached data. The default is the memory store, which is the
simplest and requires no options. It stores the fragments in the server’s memory
space. Each Mongrel or FastCGI listener will have its own fragment cache.

The FileStore, as its name implies, stores fragments in a filesystem directory. When
configured, it takes one argument, the path to the cache directory:

config.action_controller.fragment_cache_store = :file_store,
 "/var/rails/fragment_cache"

The DRbStore (fragment_cache_store = :drb_store) requires a running DRb server to
store the fragments. It takes a single configuration argument: the URI of the DRb server
(druby://drb_server_name:9192/). Finally, the MemCacheStore (:mem_cache_store) uses
a memcached server. Its argument is the hostname or IP address of the server run-
ning memcached.

It is technically possible to use the same memcached server for session storage and
caching, as session IDs and fragment cache names are not likely to collide (Mem-
CacheStore session keys begin with session:). However, this is not recommended.
Sessions and fragment caching have fundamentally different needs, and it is not terri-
bly difficult to set up multiple memcached servers (use the -p option to specify a port
number). I recommend keeping separate concerns separated.

Cache stores have more flexibility than session stores when scaling upward. Though
a session must always be reliably available to all of the application servers, you don’t
lose anything from a fragment cache miss (except a small performance penalty as you
have to regenerate the content). Therefore, you could theoretically decide to give
each application server its own memory fragment cache. Although this is usually a
bad idea (it expands the total amount of memory required), it can make sense if the
information to be cached is partitioned along application server boundaries.

Fragment cache helper. The most typical use for fragment caching is in caching an
expensive-to-calculate part of a page that must be displayed often. In most cases,
there is other dynamic information on the page (even something as simple as a block
showing the current user’s login name), so the whole page cannot be cached with
either page caching or action caching.

180 | Chapter 6: Performance

There is a Rails helper for caching part of a page. This helper, called cache, abstracts
away the details of writing to the cache and checking it. The simplest scenario, where
there is at most one cached block per page, looks like this:

Welcome, <%=h @username %>.

<% cache do %>
 The prime factors of 1693371614173 are
 <%=h 1693371614173.prime_factors.to_sentence %>.
<% end %>

The fragment cache store is presented as a hashtable. Fragments are stored by a
string key. The default key scheme uses the path of the current action to index the
hash. When cache is called, it calls url_for with the arguments given to cache (if
any). This gives the fragment a name like example.com/user/welcome.

Additional options can be given to cache to uniquely identify different fragments
within the same action. These options will be passed through to url_for. In particu-
lar, you can use this to differentiate between two or more cached fragments on the
same page:

<% cache(:id => 'one') do %>
 This is cached as example.com/some/action/one.
<% end %>

<% cache(:id => 'two') do %>
 This is cached as example.com/some/action/two.
<% end %>

The url_for function is only used here to provide a unique name for the cached frag-
ment; it does not need to map to a real-world route. But sticking to these conven-
tions (the real action name plus an optional action suffix) will avoid collisions with
names of unrelated fragments.

Fragment expiration. The expire_fragment method removes a fragment from the
cache. It takes either a string or a hash argument, in the same format as the write_
fragment and cache methods. If passed a hash, it will run it through url_for and
delete the appropriate items from the cache.

Alternatively, expire_fragment can take a regular expression as an argument, and it
will delete all pages with keys matching that regexp. This is not recommended. That
syntax is not supported with memcached (which cannot iterate over its keys), and for
all other fragment cache stores, Rails must iterate over every key and check it against
the regular expression. This can slow things down tremendously.

Cache sweepers

As discussed before, cache sweepers are model observers that expire cached pages,
actions, and fragments when their model objects change. Sweepers inherit from
ActionController::Caching::Sweeper and implement the standard callback methods.

Other Systems | 181

class PersonSweeper < ActionController::Caching::Sweeper
 observe Person

 def after_save(record)
 expire_cache(record)
 end

 def after_destroy(record)
 expire_cache(record)
 end

 def expire_cache(record)
 # Actions to take when +record+ is changed or destroyed
 expire_page :controller => 'person', :action => 'show', :id => record.id
 expire_page :controller => 'person', :action => 'list'
 end
end

The sweeper must be activated by name from the controller:

class PersonController < ApplicationController
 caches_page :list, :show, :new
 cache_sweeper :person_sweeper, :only => [:create, :update, :destroy]
end

Because sweepers bridge between the model and controller, it makes sense to create
a new directory for the caching-related classes. Place the sweeper in app/cachers, and
add the following line to your environment.rb file:*

config.load_paths += %W(#{RAILS_ROOT}/app/cachers)

As long as your files are named according to standard Rails conventions (Person-
Sweeper is defined in person_sweeper.rb), Rails will autoload the corresponding file
when an unknown symbol such as PersonSweeper is first encountered. The load_paths
option simply adds to the list of locations that Dependencies searches. We covered
Dependencies in detail in Chapter 2.

Other Systems
The remainder of this chapter is a collection of miscellaneous performance tips and
solutions to common problems. If you have specific trouble, the Rails wiki (http://
wiki.rubyonrails.com/) might help. The wiki is disorganized at times, but it has a
large amount of relevant information on many topics if you are willing to search.

* The idea and implementation of this separation of concerns come from Mephisto, which is a good example
of a cleanly structured Rails application. The code is available from http://svn.techno-weenie.net/projects/
mephisto/trunk/.

http://svn.techno-weenie.net/projects/mephisto/trunk/
http://svn.techno-weenie.net/projects/mephisto/trunk/
http://wiki.rubyonrails.com/
http://wiki.rubyonrails.com/

182 | Chapter 6: Performance

Choosing the Right Tool
A large part of software development consists of selecting the right tools for the job.
This encompasses not only languages but libraries, frameworks, source control,
databases, servers, and all of the other tools and materials that go into a completed
application.

Leveraging external programs

Sometimes the best way to solve a problem is not to have a problem at all. Chances
are, if you have a moderately complicated technical problem, someone else has
solved it. 37signals’ Basecamp takes this approach when resizing images—rather
than dealing with the hassle of installing RMagick, they just shell out to ImageMagick:*

def thumbnail(temp, target)
 system(
 "/usr/local/bin/convert #{escape(temp)} -resize 48x48! #{escape(target)}"
)
end

Part of the beauty of scripting languages is that they were designed out of necessity,
so they have ways to glue disparate parts together. In addition, most scripting lan-
guages have a rich set of community-developed libraries available. Though CPAN
(Perl’s collection of third-party libraries) is the undisputed champion in this arena,
Ruby has Rubyforge (http://rubyforge.org) and the Ruby Application Archive (http://
raa.ruby-lang.org/).

Writing inline C code

Writing Ruby extensions in C used to be hard. If you wanted to rewrite performance-
sensitive functions, there were many things besides the actual code that you had to
deal with. Not so anymore.

Ryan Davis has unleashed an incredible tool, RubyInline,† for integrating C with
Ruby. This tool allows you to embed C/C++ code as strings directly within an appli-
cation. The strings are then compiled into native code (only to be recompiled when
they change) and installed into your classes. The canonical example, the factorial
function, shows just how fast and clean this can be:

require 'rubygems'
require 'inline' # gem install RubyInline
require 'benchmark'

class Test
 # Standard Ruby factorial function

* http://www.loudthinking.com/arc/000598.html

† http://www.zenspider.com/ZSS/Products/RubyInline/Readme.html

http://www.loudthinking.com/arc/000598.html
http://www.zenspider.com/ZSS/Products/RubyInline/Readme.html
http://rubyforge.org
http://raa.ruby-lang.org/
http://raa.ruby-lang.org/

Other Systems | 183

 def factorial(n)
 result = 1
 n.downto(2) { |x| result *= x }
 result
 end

 # Reimplemented in C (compiled on the fly)
 inline do |builder|
 builder.c <<-EOINLINE
 long factorial_c(int max) {
 int i = max,
 result = 1;
 while (i >= 2) { result *= i--; }
 return result;
 }
 EOINLINE
 end
end

We can then set up a benchmark to compare the two implementations:

t = Test.new

Benchmark.bmbm do |b|
 b.report("Ruby factorial") do
 200_000.times { t.factorial(20) }
 end

 b.report("C factorial") do
 200_000.times { t.factorial_c(20) }
 end
end

On my machine, the C implementation is extremely fast—more than 25 times the
speed of the standard Ruby implementation!

 user system total real
Ruby factorial 2.760000 0.010000 2.770000 (2.753621)
C factorial 0.110000 0.000000 0.110000 (0.104440)

The best part of RubyInline is that it keeps your code clean. Ruby and C code
addressing the same area can be intermingled, rather than being spread across multi-
ple files. And RubyInline handles the type conversion for you—you can deal with
ints, longs, and char *s, and they will automatically be converted to and from Ruby
types.

ActionMailer
Email delivery can be a difficult and aggravating aspect of a deployed application.
The SMTP protocol was not designed to withstand the types of attacks that are being
directed at the mail system today, and so delivering mail can be a more complicated
process than it may seem.

184 | Chapter 6: Performance

One common problem is that email delivery via SMTP is quite slow, on the average.
In addition, it is an unknown; the time it takes to send one email is highly variable.
Even when delivering to an SMTP relay on the local network (which is a good idea
for high-volume sites), SMTP delivery is slow.

To counteract this slowness, it is usually desirable to decouple the email sending
from the web request/response cycle. It makes sense to allow the user to continue
working, even if the server is still trying to send email in the background. One option
is to simply fork off a separate OS process, or use a separate interpreter thread (via
Thread.new with a block) to send email asynchronously. However, this solution does
not scale well, as you must handle any concurrency issues that arise on your own. In
addition, you have overhead from starting a new thread or process on each piece of
mail. For high-volume mail situations, you want a mailer daemon running a tight
loop that can send mail without having to start a worker process.

The scalable option is the Robot Co-op’s ar_mailer.* This little library uses the data-
base as an outgoing mail spool. When mail is to be sent, rather than delivering it
externally, Rails just dumps it into the database. The separate ar_sendmail process
picks it up and sends it along. This way, the application does not get backed up
because of slow SMTP performance. ar_sendmail can be run periodically (from cron)
or continuously, as a daemon.

Further Reading
Zed Shaw’s most famous rant, Programmers Need To Learn Statistics Or I Will Kill
Them All (http://www.zedshaw.com/rants/programmer_stats.html), is an excellent (if a
little aggressive) description of the most common misconceptions surrounding per-
formance measurement.

Peepcode has a screencast on benchmarking with httperf at http://peepcode.com/
products/benchmarking-with-httperf. It is $9 but is worth the cost for anyone involved
in performance tuning.

Evan Weaver has a set of MySQL configuration files that are tuned for common Rails
situations at http://blog.evanweaver.com/articles/2007/04/30/top-secret-tuned-mysql-
configurations-for-rails. These are drop-in replacements for the standard my.cnf con-
figuration file, and they are much more current than the examples provided with
MySQL.

* http://blog.segment7.net/articles/2006/08/15/ar_mailer

http://blog.segment7.net/articles/2006/08/15/ar_mailer
http://www.zedshaw.com/rants/programmer_stats.html
http://peepcode.com/products/benchmarking-with-httperf
http://peepcode.com/products/benchmarking-with-httperf
http://blog.evanweaver.com/articles/2007/04/30/top-secret-tuned-mysql-configurations-for-rails
http://blog.evanweaver.com/articles/2007/04/30/top-secret-tuned-mysql-configurations-for-rails

185

Chapter 7 CHAPTER 7

REST, Resources, and Web Services7

There are only two hard things in Computer Science:
cache invalidation and naming things.

—Phil Karlton

The architectural principles of Representational State Transfer, or REST, have been
taking the Rails world by storm. The idea behind REST has been around since Roy
Fielding first described it in his 2000 doctoral dissertation. However, the ideas have only
started to gain traction among Rails developers since David Heinemeier Hansson’s pre-
sentation of those ideas in 2006 and the subsequent adoption of RESTful principles
in Rails 1.2. RESTful design is a new way of thinking about network architecture
based on an observation of how the Web works.

What Is REST?
In short, REST is a unifying theory for how “distributed hypermedia” systems (pri-
marily, the World Wide Web) are best organized and structured. The term was
coined by Roy Fielding, coauthor of the HTTP specification, in his 2000 doctoral dis-
sertation Architectural Styles and the Design of Network-Based Software Architectures.*

The dissertation extracts a set of principles that are common to network architec-
tures, based on an examination of the structure of the Web and the HTTP protocol.
Starting with the “null style,” which is the absence of constraints on architecture,
Fielding arrives at REST by placing a series of constraints on network architecture:

Client-Server
The client-server constraint imposes a separation of data storage from user inter-
face and presentation. The most important benefit of this separation is that cli-
ent and server can exist in separate organizations and be maintained, developed,
and scaled independently.

* Available from http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

186 | Chapter 7: REST, Resources, and Web Services

Stateless
The server may not hold persistent state about its sessions with the client. Each
request from client to server is independent and self-contained. This increases
verbosity, but aids reliability and scalability. When there is little or no stored
context on a server, the system is more resilient to periodic failure, and there are
fewer requirements for inter-server coordination when the system is scaled up.

Cache
This step requires the server to indicate whether or not the client may cache a
response, and to define parameters for such caching. Providing explicit cache
control information allows the client to cache more aggressively, reducing net-
work traffic and increasing performance.

Uniform Interface
A uniform interface is the primary item that distinguishes REST from RPC and
other network styles. Forcing the client and server to communicate using a well-
known uniform interface pushes the application-specific complexity out of the
network layer into the application layer, where it belongs. It allows standardized
software components to be reused for vastly different applications, as they speak
the same language.

Layered System
Architectures are permitted to be broken down into independent layers (in
the sense of the OSI or TCP/IP layered models). Each layer mediates only
between the layers immediately adjacent to itself. In this way, layers can
evolve or be replaced independently with minimal impact to the remainder of
the architecture.

Code-on-Demand
Client software is extensible by retrieving and executing code from a server. This
allows clients to expand their capabilities in an ad-hoc manner after an architec-
ture is deployed.

REST is often referred to as an architectural style, instead of an architecture. Rather
than defining a specific “best” architecture, REST defines principles by which archi-
tectures are created and evaluated—it puts constraints on network architecture.

We often use a linguistic analogy to explain REST; in many ways, the REST princi-
ples are modeled on human communication. Resource names are “nouns,” as they
refer to things. It is important to remember the distinction between resources and
their names. Just as the word “apple” is not itself an apple, the name http://
example.com/person/123 is just a name, not the resource itself. A corollary is that a
resource may have many names (though good REST style indicates that this should
be kept to a minimum, where possible).

In the same way, HTTP methods are referred to as “verbs” because they specify an
action on a resource or its representation.

What Is REST? | 187

Fielding’s thesis is very general; it actually applies to any “network-based architec-
ture.” However, REST is most commonly applied to the World Wide Web and
HTTP, and we will constrain our subject of discussion in this chapter to REST’s
application to HTTP. Necessarily, this will impose constraints and guidelines not
derived from Fielding’s thesis. Therefore, the principles explained in this chapter are
a subset of those of Fielding’s REST.

In some ways, REST is simply “HTTP as it was meant to be.” As the Web grew in
popularity, many of the original design decisions that guided HTTP were ignored.
Developers of web applications tended to see things like HTTP verbs and response
status codes as incidental to the application, or as a triviality to be dealt with when
time allowed. Using HTTP as intended was often seen as unnecessary or arduous.
However, in recent years, a return to REST principles indicates that HTTP was good
enough after all. Developers are learning these lessons:

• Most, if not all, domains can be fairly easily modeled as sets of CRUD (create, read,
update, delete) operations. These operations roughly correspond to HTTP POST,
GET, PUT, and DELETE, respectively. In this way, the set of actions is standardized.

• Names corresponding to resources (/person/123) are generally consistent, robust,
and understandable. Names corresponding to service endpoints (/personService)
tend to be too broad and underspecified, while names corresponding to RPC calls
(/person/show/123, when accessed with GET) are redundant.

• Orthogonality wins. Names should identify resources; nothing more or less. Suc-
cess and failure should be inferred from the HTTP response status, not from an
error message within the payload. A resource can have multiple representations,
but they should all be identified as originating from the same resource (and their
names should reflect that).

The combination of nouns, verbs, and content types is often referred to as the REST
triangle. Together, the three corners of the triangle define the architecture. A REST-
centric design decomposition is often done by deciding on the nouns (identifying and
naming things), selecting a uniform set of verbs (easy if you are using HTTP), and
choosing content types.

Verbs
Verbs correspond to actions on resources. A verb will either send a representation of
a resource from the server to the client or update the resource on the server with
information from the client.

In REST, verbs are a constrained territory. While the set of content types is open for
revision and expansion, and resource names are infinitely expandable, the set of
verbs is fixed. However, the constraints put on the scope of verbs allows them to be
universal; any verb can be applied to any noun.

188 | Chapter 7: REST, Resources, and Web Services

HTTP defines a handful of methods; the set can be expanded by protocols such as
WebDAV, but the basic set is sufficient for REST. The four most common methods
are GET, PUT, DELETE, and POST; we will examine each of them and their purpose here.

We can form some linguistic analogies as a simplification of the four common verbs.
Roughly speaking, this is what they mean, using “this” to refer to the request body,
and “there” to refer to the URI acted upon:

• GET: “Give me whatever is there.”

• PUT: “Store this there.”

• DELETE: “Delete whatever is there.”

• POST: “Hey you there, process this.”

GET

The GET method transfers a representation of a resource from the server to the client.
It is used for read-only access to a resource. GET is by far the most common verb on
the Web; it is often the only method used on static web sites.

A common mistake is to use GET for an action that updates a resource. GET is defined
as a safe method (see the upcoming sidebar, “Safe and Idempotent Methods”); it
should be used for retrieval, not updates. Using GET for updates causes many prob-
lems because it breaks the assumptions that the client and any proxies may have
about the nature of GET requests.

This problem came into the Rails public eye in 2005, when the Google Web Accelera-
tor was released. The Web Accelerator is a proxy that uses the time the user is viewing a
page to prefetch the outgoing links from that page, reducing the latency between click-
ing on a link and seeing the resulting page. Because following a link that updates the
server could have catastrophic results (consider prefetching every “Delete” link on a
page full of users), the Accelerator only followed standard web links (which use GET).

However, many popular web applications (including 37signals’ Backpack) were vul-
nerable. Many Rails applications were affected, as the Rails “pretty URL” convention
dictated URLs like /people/delete/123, rather than the conventions of other web
frameworks, which led to URLs like /people.php?action=delete&id=123. The end result
was a scramble among web developers to convert all GET links with side effects into
POSTs. Later, the Google team added a feature to the Web Accelerator so that it would
not prefetch links with query strings, but there was a scramble nevertheless.

However, all of this fuss was but a symptom of the real problem. The problem was
not so much that GET links performed actions; it was that HTTP was being used
improperly. The contract between clients and servers had been broken. So, when all
of the GET /people/delete/123 actions became POST /people/delete/123, it was an
improvement, but not by much, as POST is not terribly relevant to a “delete person”
action. A more RESTful design would involve an action such as DELETE /people/123.

What Is REST? | 189

PUT

The PUT method updates a resource with the representation provided in the body of
the PUT request. If the resource did not exist before the PUT request, the request cre-
ates a new one with the given representation.

A common point of confusion is how resource names (URIs) apply to PUT versus POST
requests. A PUT request must always be directed toward the URI of the resource in
question; even if creating a new resource, the URI must be that of the resource to be
created. If the client does not know the URI of the resource (for example, if it is
derived from a server-generated ID), a POST request should be used.

Safe and Idempotent Methods
One purpose of the HTTP standard is to define the implicit meanings of the various
HTTP methods. This is the mental working model that many developers use when
working on web applications: GET retrieves a representation, PUT updates a resource,
and so on.

But another, more important, purpose of the HTTP specification is to form an explicit
contract between the server, the client, and any proxies or caches along the way. This
tells each principal what they can and cannot assume about the data they work with.
The concepts of safe and idempotent methods fall under this category.

Safe methods are used for retrieval; the purpose of a safe request should never be to per-
form an update. The HTTP safe methods are GET and HEAD. (HEAD is functionally equiv-
alent to GET, but only returns the response headers, not the body.)

Safety is usually defined at the application level, and the definition of a safe method can
change based on application semantics. A GET operation may incur incidental side
effects, such as loading query results into a cache or updating a hit counter; the action
would still be described as safe. The distinction drawn by the HTTP specification is
that safe requests should not incur an obligation on the user’s behalf (such as an online
payment or creation of a user account). In other words, it must always be the server
that decides to perform an update based on a safe request.

GET, HEAD, PUT, and DELETE are idempotent methods. The result (response as well as
resource state) of an idempotent action is the same, no matter how many times that
action is performed (assuming each action is identical and there is otherwise no change
to resource state). Idempotent methods may change resource state, but they are not
required to (all safe methods are by definition idempotent).

The result of this definition is resiliency; if a client initiates a PUT request and is not
sure whether it completed successfully, it can retry the same request with no negative
consequences.

190 | Chapter 7: REST, Resources, and Web Services

DELETE

As its name implies, the DELETE method deletes the resource identified by its URI. If
the deletion is carried out (the server may not allow a deletion), subsequent GET que-
ries to the same URI should return a status code of 410 (Gone) or 404 (Not Found).

POST

We list POST last because it is the method of last resort. It is neither safe nor idempo-
tent, so there are few technical restrictions to its power. As such, it is abused for
many operations that could better be represented by another verb. Theoretically,
POST could be used for every action on the Web without violating the letter of the
RFC.

Though POST is powerful, it should not be used where GET, PUT, or DELETE would suf-
fice. The semantics of those three methods are much simpler, and the constraints put
on them allow easier caching and scalability. POST can, in theory, be cached via the
Cache-Control and Expires headers, but in practice this is rarely implemented.

POST is primarily used in one of two ways: creation of new objects and annotation of
existing objects. In either case, the URI of the POST is that of the object’s container or
parent. The RFC draws an analogy of a directory structure; to create or update an
object, you POST to its containing “directory.”

To create a resource, its representation is sent via POST to a URI responsible for creat-
ing resources of that type. If the request for creation succeeds, the server issues a
redirect via the Location header pointing to the URI of the created resource.

When annotating a resource, the POST URI is that of the resource to be annotated
(the “parent” of the entity being sent). This is different from a PUT request in that the
resource being POSTed to is not being updated with a new representation, but rather
annotated with additional information.

Resources
The most foundational concept of REST is the resource. The most general definition
of a resource is something with identity. It really is as simple as that. In popular usage,
the term “resource” usually means something that is network-addressable on the
Internet, and it is with these types of resources that we will concern ourselves. But a
resource can really be anything, tangible or intangible, that can be named. As RFC
2396 explains:*

A resource can be anything that has identity. Familiar examples include an electronic
document, an image, a service (e.g., “today’s weather report for Los Angeles”), and a
collection of other resources. Not all resources are network “retrievable”; e.g., human
beings, corporations, and bound books in a library can also be considered resources.

* http://tools.ietf.org/html/rfc2396

http://tools.ietf.org/html/rfc2396

What Is REST? | 191

Implicit in this definition of resources is that resources have state as well (a resource
could have empty state in the degenerate case, but this is atypical). One of the con-
straints that REST places on interaction with resources is that every RESTful
resource has a uniform interface. No client has ad-hoc access (read or write) to a
resource’s state; it is internal to the resource. All access takes place by transferring
representations of the resource’s state* back and forth via a uniform set of methods
(in our case, HTTP).

Name opacity

A controversial principle of REST is whether names should be opaque. An opaque
value, in a network protocol, is a piece of data that the recipient can remember and

Pragmatic REST
REST in Rails is a balance between theoretical purity and pragmatism. The fact is that
many browsers do not support the full set of response codes according to the HTTP
standard.

Resource creation via POST is a good example of a discrepancy. The correct response to
successful creation is a 201 Created code with a Location header pointing to the created
resource. However, most web browsers will not redirect in response to a 2xx-series
response. Rails strikes a balance. When rendering HTML, it uses a 3xx-series redirect
to satisfy web browsers. When rendering XML, it is assumed that the client will be cog-
nizant of all HTTP response codes, and it uses the appropriate response codes.

We see this in action in a typical scaffolded controller:

POST /products
POST /products.xml
def create
 @product = Product.new(params[:product])

 respond_to do |format|
 if @product.save
 flash[:notice] = 'Product was successfully created.'
 format.html { redirect_to(@product) }
 format.xml { render :xml => @product,
 :status => :created, :location => @product }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @product.errors,
 :status => :unprocessable_entity }
 end
 end
end

* Hence the name: Representational State Transfer.

192 | Chapter 7: REST, Resources, and Web Services

return, but cannot interpret. The concept of URIs as opaque values originates not
with Roy Fielding, but with Tim Berners-Lee:

The only thing you can use an identifier for is to refer to an object. When you are not
dereferencing, you should not look at the contents of the URI string to gain other
information.

This is a controversial idea, and the REST community is split over it. URIs have
evolved as a hybrid of opaque and transparent names. Particularly with human-
friendly (“pretty”) URIs, people naturally expect to be able to interpret and modify
the URIs that they use. Upon receiving a 404 Not Found for John Smith’s index of
papers published in 1997 at http://example.edu/~jsmith/papers/1997/index.html, it is
reasonable to expect http://example.edu/~jsmith/, if it exists, to be somehow associ-
ated with John Smith.

URIs tend to self-organize into a hierarchy, in no small way due to their provenance
as filesystem paths. It is not a good idea to break users’ expectations in this regard.
Although it may or may not be desirable for clients to always respect name opacity
(by only using URIs for dereferencing), it is certainly undesirable for servers to force
name opacity by creating inscrutable naming schemes.

Those who believe names should be opaque generally state that relationships
between URIs should be mined through links between resources. If a person (or
machine) retrieves a list of users (GET /users), the response would contain links to
each user in the list (/users/1, /users/2, ...). Commonsense as this may seem, espe-
cially for a machine-consumable service, there are prominent RESTful web services
(such as Amazon S3, which we will examine later) that do not use links at all.

URI templates, described in an Internet Draft (http://www.ietf.org/internet-drafts/
draft-gregorio-uritemplate-02.txt), are a promising new hybrid between link-based
and hierarchical navigation. A URI template provides a structured pattern for URIs,
so that they make sense as hierarchies but can still be treated as opaque:

http://example.com/carts/{cart_id}

A client application could use this template to generate a URI for a shopping cart.
The primary advantage of URI templates is that they are structured; the template can
be provided as an input to a web service client, rather than hardcoding the URI into
the application.

The bottom line is that opacity as a hard-and-fast rule does not always make sense.
Sometimes a graph of data accessed through links makes sense; sometimes a struc-
tured naming system might be more fruitful.

The advantages of a structured name system are apparent with algorithmic
resources, which represent the results of a calculation. These resources are typically
infinite in number, and are accessed through names like http://example.com/search/
banana. In this case, it can make more sense to allow both the client and intermediaries
to infer semantics from the URI.

http://example.edu/~jsmith/papers/1997/index.html
http://example.edu/~jsmith/
http://www.ietf.org/internet-drafts/draft-gregorio-uritemplate-02.txt
http://www.ietf.org/internet-drafts/draft-gregorio-uritemplate-02.txt

What Is REST? | 193

Representations and Content Types
Resources on the Web “live” and hold their state at the server, but they are only ever
accessed through the representations that they expose. Like Plato’s cave, we never
see the resource itself; all that we see are the shadows on the wall—the representa-
tions of that resource.

Different representations of a resource vary based on their content types. The same
resource might be available at /users/1.html, /users/1.xml, and /users/1.js. The
formats of these names imply that they are representations of the same resource
(again, even if the names are treated as opaque and the client cannot rely on this
knowledge, it is a valuable convention).

Selecting a representation

One detail unspecified by REST is how a client requests a particular content type. As
many representations may be available from the same resource, how does the server
know which one to send?

In practice, the answer is either URI extensions or content negotiation. Extensions
are easy to understand and implement: the URI is examined for a filename extension
(such as .js, .html, or .xml). The most suitable representation is then selected based
on a type map (a structure that maps filename extensions to content types). For
example, fetching the URI /orders/124.html might return:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Viewing Order #124</title>
 </head>

Hypermedia Drives Application State
An oft-repeated mantra (originally from Fielding’s thesis) is that of “hypermedia as the
engine of application state.” In other words, given an entry point to a RESTful appli-
cation, hypermedia links can be used to navigate through all necessary application
state. This makes applications more resilient to name changes, as the only URI the cli-
ent must know is that of the entry point. In addition, URIs can be treated as opaque if
desired. This is obviously a desirable architectural quality, as it enables more options.

However, there are not many true implementations of this in the wild. A primary
obstacle to adoption is the dearth of ways to represent semantic metadata in hyper-
media at the moment. RDF is gaining currency in this field, but there are still few well-
known best practices as to how to encode relationships between resources within their
representations.

194 | Chapter 7: REST, Resources, and Web Services

 <body id="order-124">
 <h1>Order #124</h1>
 <p>Items:</p>
 <ul id="order-124-items">
 Office Chair, Medium
 Ergonomic Keyboard

 </body>
</html>

But a request to the same resource with a different URI, at /orders/124.xml, might
result in a more easily machine-readable XML version:

<Order id="124">
 <Items>
 <Item id="1" href="/orders/124/items/1">Office Chair, Medium</Item>
 <Item id="2" href="/orders/124/items/2">Ergonomic Keyboard</Item>
 </Items>
</Order>

The JavaScript representation at /orders/124.js might use JSON:

{"order": {
 "id": 124,
 "items": [
 {"id": 1, "href": "/orders/124/items/1",
 "description": "Office Chair, Medium"},
 {"id": 2, "href": "/orders/124/items/2",
 "description": "Ergonomic Keyboard"}]
}}

Changing content types based on URI extensions is nice and easy, and it plays well
with the way we traditionally expect the Web to work. Among other things, it makes
the URIs look like filenames again, and behave somewhat like filesystem paths.
However, this is not always optimal within the REST model.

All of these are clearly different representations of the same resource, and yet they
have different URIs. Many argue that the URI should name only the resource, and
not the representation. How would it be possible to use the same name to refer to all
of these resources?

The answer is content negotiation. This is a part of the HTTP request and response
where the client and server negotiate some common parameters so that they can
communicate.

As a whole, HTTP content negotiation is very flexible; it can negotiate a representa-
tion based on language (through the Accept-Language request header), character
encoding (through the Accept-Charset header), content coding (Accept-Encoding), or
content type (Accept). It is the latter that we are most concerned with.

Rather than specifying the content type explicitly in the URI, we specify an Accept
header in the HTTP request. This header lists the content types we are willing to

What Is REST? | 195

accept, in decreasing order of priority. Under content negotiation on the preceding
service, this request would return the HTML version:

GET /orders/124 HTTP/1.1
Host: www.example.com
Accept: text/html, application/xhtml+xml, text/*, image/png, image/*, */*

Clients can vary their Accept header to request different representations of the
requested resource, and the server will try to satisfy the request with any representa-
tions it can serve.

Basing the choice of representation on either URI extensions or Accept header con-
tent negotiation is a valid decision. They each have their benefits and drawbacks, and
Rails supports both.

Statelessness
At the network level, HTTP is a stateless protocol. Each client/server interaction
repeats some information on each connection to the server. This costs some redun-
dancy, but it pays off in other areas such as scalability. By definition, Fielding’s REST
is always stateless. The interaction between client and server carries no state at lower
or higher levels.

However, there is a difference between resource state and application state.
Resource state is the internal state that all nontrivial resources carry, and it is essen-
tial to a web application. Examples of resource state would include the changes
made to a hosted document or the content of a to-do list; without this state, there
would be no application.

On the other hand, application state (also called session state) is the state of the cli-
ent’s interaction with the server. Application state tracks a user or client’s progress
through an application. Keeping this state on the server violates REST principles as it
breaks addressability. An implication of REST is that the representation retrieved
from a resource should depend only on that resource’s state and the client’s request.
If the server presents a different representation for the same URI based on the path
that the client took to get to that URI, then the URI loses its addressability. It cannot
be shared or bookmarked.

At the lower levels, application state includes HTTP cookies, which can break REST
in lesser or greater amounts. At the higher levels, web application frameworks (Rails
included) often expose a session persistence mechanism. Typically, a repository of
session state is kept on the server, indexed by a key that is given in an HTTP cookie
to the client.* This is much more self-evidently an application state repository.

* Newer versions of Rails default to a cookie-based session store, which stores the entire session, not just an
index, in the cookie. This has several advantages, but also some security concerns. I discuss the trade-offs in
Chapter 5.

196 | Chapter 7: REST, Resources, and Web Services

REST maintains that all application state should be kept on the client. This is what is
meant by statelessness; not that there is no state within the application, but that each
request can stand on its own; the client/server session itself maintains no state.

HTTP state

Let’s examine how state is typically dealt with in web applications. HTTP provides
cookies as a method for servers to persist small amounts of data on the client. Like
all protocols in layered systems, HTTP uses lower-level (stateless) primitives to build
higher-level (stateful) abstractions. Here, we’ll examine the mechanics of that
process.

By default, unless sessions are manually disabled, Rails sets up a new session on a
client’s first interaction with the application. At the HTTP level, it looks like this
(irrelevant headers elided):

Client ➝ Server
GET / HTTP/1.1
Host: www.example.com

The HTTP Host request header is mandatory in HTTP 1.1. It tells the
server which DNS name was used to contact it. This is essential for
name-based virtual hosting. Thousands of sites may share one IP
address, differentiated only by the Host headers sent by clients.

Server ➝ Client
HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Set-Cookie: _session_id=6cd3556deb0da54bca060b4c39479839; domain=example.com

In this example, the server explicitly sets the cookie domain to
example.com. Without the domain parameter, the cookie’s scope would
be limited to www.example.com (the domain of the original request) and
its subdomains, for security reasons. But since the server set the cookie
with the more general domain, it will be shared between requests to
example.com, www.example.com, shop.example.com, and the like.

When a client requests a URI from a server, it sends any applicable cookies in the
request headers.

Client ➝ Server
GET /protected-resource HTTP/1.1
Host: www.example.com
Cookie: _session_id=6cd3556deb0da54bca060b4c39479839

By using HTTP cookies, application state is made persistent. This can have its advan-
tages. Sometimes it is used for tracking; it is an easy way to watch a visitor as he
progresses through a site. But most often, cookies are used to track user authentica-
tion and/or personalization.

What Is REST? | 197

From an HTTP perspective, it would seem rather odd that another mechanism
would have to be introduced for authentication. HTTP already provides methods for
authenticating users, and they work statelessly.

However, the standard HTTP Basic and Digest authentication mechanisms have
many problems, and they are rarely used on the public Web. There are several fac-
tors affecting their widespread adoption:

• They use the standard browser/operating system controls to prompt for creden-
tials; they cannot be styled.

• They do not easily facilitate logout.

• There is no easy way to request login conditionally, or return different represen-
tations based on whether or not the user is logged in.

• HTTP Basic authentication does not really even attempt to hide the username
and password when transmitting across the network; in Base64 encoding, they
are essentially plain text. Digest authentication is much more secure, but is not
universally supported in older browsers.

Thus, a web application requiring authentication usually presents login forms itself
and keeps track of user authentication using a cookie. Most implementations of this
run contrary to the principles of REST by keeping additional application state out-
side of the request envelope. The cookie itself is stored and transmitted just like an
HTTP authentication request would be, but the difference is that authentication
cookies usually gain their validity from being tied to server-side application state.

Why statelessness?

Statelessness, and its application to web sites and web applications, is often a point
of contention, even among REST’s adherents. Though most developers agree that
minimizing the amount of application state carried on the server is a useful goal, it is
not always clear to what degree the principles should be carried.

The primary benefit of statelessness is that it enables scalability by allowing applica-
tion servers to be treated as black boxes from an architectural perspective. In Rails,
this is often called shared-nothing architecture. If each request is independent of ses-
sion state, it does not matter whether the subsequent requests in a browsing session
are handled by one server or 1,000. In an architecture with 1,000 application serv-
ers, the only communication between the servers is made by changing state in the
resources themselves (typically through a database or filesystem).

Contrarily, in an environment that requires server-side session state, there are two
options. The servers can directly communicate and discuss the session state, which
introduces another interface; besides dealing with resource state, servers must also
communicate about application state. The other option is sticky sessions, direct-
ing the load balancer to funnel all requests from the same session to the same
application server. This can work well, and it eliminates the need for backend
server communication. Avi Bryant (of Seaside fame) endorses this architecture.

198 | Chapter 7: REST, Resources, and Web Services

However, it eliminates the possibility of high availability (sessions cannot be shared
between two servers unless they communicate), and a server that is restarted typi-
cally loses its sessions (unless storing them in persistent storage, which negates many
advantages of sticky sessions). Neither of these options is terribly RESTful, and so we
promote statelessness as far as is practical.

Resourceful session state: An example

So what is the RESTful alternative to holding session state on the server? As with
nearly any problem REST developers face, the solution is to model it as a resource.
With the exception of authentication information (discussed later in the chapter),
nearly anything that would be stored in a session could also be factored into a
resource.

Consider the example of a shopping cart. A typical, simple, non-RESTful Rails
implementation would look something like this:

app/models/cart.rb
A simple Hash that defaults to zero.
Used to map product IDs to quantities to represent a shopping cart.
class Cart < Hash
 def initialize
 super(0)
 end
end

app/controllers/carts_controller.rb
class CartsController < ApplicationController
 before_filter :set_cart

 def add_product
 product_id = params[:id]
 quantity = params[:quantity] || 1

 # Increment cart quantity by provided quantity
 session[:cart][product_id.to_i] += quantity.to_i
 end

 def update_quantity
 product_id = params[:id]
 quantity = params[:quantity]

 # Set cart quantity to provided quantity
 session[:cart][product_id.to_i] = quantity.to_i
 end

 def remove_product
 product_id = params[:id]

What Is REST? | 199

 # Remove specified item from cart
 session[:cart].delete product_id.to_i
 end

 def empty
 session[:cart] = Cart.new
 end

 protected

 def set_cart
 session[:cart] ||= Cart.new
 end
end

config/routes.rb
map.add_to_cart '/carts/add_product/:id',
 :controller => 'carts', :action => 'add_product'
map.update_cart_quantity '/carts/update_quantity/:id',
 :controller => 'carts', :action => 'update_quantity'
map.remove_product '/carts/remove_product/:id',
 :controller => 'carts', :action => 'remove_product'
map.empty_cart '/carts/empty',
 :controller => 'carts', :action => 'empty'

We are using named routes here so that we gain the benefit of the Rails
named URI generators. For non-RESTful Rails applications, named
routes are much preferred over the default :controller/:action/:id
route, as they decouple URIs from their implementation. For example,
the “remove product” action in the views would typically be coded as
follows:

link_to "Remove Product",
 remove_product_path(:id => @product.id),
 :method => :post

If all links are generated through the Rails named route mechanism,
then URIs can be changed simply by changing the template in the
routes file, without touching any of the code that links to the page
being changed.

Though this is a relatively clean implementation, it still requires the use of persistent
session storage on the server. This is not optimal, for the reasons we discussed
earlier.

In addition, this code could use some architectural cleanup. Because a resource can
be any thing, we will choose to model the cart as a resource itself. Rather than URIs
affecting the product, which have effects on the cart in the session, we choose
URIs that explicitly model their effects on our newly created cart resource. Using
some standard RESTful Rails URI conventions, we come up with the following set of
actions.

200 | Chapter 7: REST, Resources, and Web Services

Note that our old code has no action for “create cart,” but the new code requires that
as an explicit step. This is a consequence of RESTful design; we now realize that the
cart resource (along with its child, the cart-product or line-item resource) is a sepa-
rate resource and should be treated as such. Rather than treating cart creation as a
side effect of some other action, we explicitly make cart creation a client-initiated
action.

Also notice that the old code has RPC-style URIs; they contain the method name.
The new URIs have a more proper separation of concerns. The HTTP method
contains the verb or action; the URI contains the name of the object of that action
(the resource); and the optional request body contains information pertaining to the
resource.

Now that we have decided on a set of URLs for the application, we can start writing
code. First, we have identified the types of resources that will be involved. They were
implied previously, but we will describe them:

Cart factory (/carts)
This resource is responsible for generating carts. An empty POST to /carts will
create a new cart and return its URI in the HTTP Location header.

Cart (/carts/4)
Represents a cart; in this model, shopping cart state is kept explicitly in this
resource rather than in the user’s session.

Line Item (/carts/4/products/123)
Represents an instance of a product in a user’s cart. Subordinate to (nested
within) the cart resource.

These three types of resources are just that—types, not resources
themselves. Although there is only one “cart” resource type, there are
potentially infinitely many “cart” resources (/carts/4, /carts/5, and
so on). This is an important distinction to keep in mind. Typically,
resource types will either have cardinality one (such as our “cart fac-
tory” type) or infinity (as with our “carts” type).

In Rails, the first two types are handled by the same controller, by convention. Oper-
ations on the collection as a whole (such as POST /carts) and on its members (such as

Action Non-RESTful URI (POST method) RESTful method and URI

Create cart (N/A) POST /carts

Add item /carts/add_product/123 PUT /carts/4/products/123

Update quantity /carts/update_quantity/
123?quantity=2

PUT /carts/4/products/123

line_item[quantity]=2

Remove item /carts/remove_item/123 DELETE /carts/4/products/123

Empty cart /carts/empty_cart DELETE /carts/4

What Is REST? | 201

DELETE /carts/4) are traditionally routed through the same controller. The third type,
line items, will be routed through a controller nested under the first controller.

First, we write the models corresponding to the newly created Cart and LineItem
resource types. Following Rails conventions, we will store these in the database using
ActiveRecord:

app/models/cart.rb
class Cart < ActiveRecord::Base
 # delete line items on cart destroy
 has_many :line_items, :dependent => :destroy

 def add_product(product_id, quantity)
 quantity ||= 1
 li = line_items.find_or_create_by_product_id(product_id.to_i)
 # Increment the line item's quantity by the provided number.
 LineItem.update_counters li.id, :quantity => quantity
 end

 def update_quantity(product_id, quantity)
 li = line_items.find_by_product_id(product_id.to_i)
 li.update_attributes! :quantity => quantity
 end
end

The ActiveRecord::Base.update_counters method generates one SQL
query to update an integer field with the provided delta (positive or
negative). This avoids two SQL queries (find and update) in favor of
more expressive code like this:

LineItem.update_counters 3, :quantity => -1
>> UPDATE line_items SET quantity = quantity – 1 WHERE id = 3

app/models/line_item.rb
class LineItem < ActiveRecord::Base
 belongs_to :cart
 belongs_to :product

 # Fields:
 # cart_id integer
 # product_id integer
 # quantity integer default(0)
end

The structure of the ActiveRecord models parallels our resource architecture. We define
two instance methods on Cart, add_product (which adds quantity copies of the product
to the cart) and update_quantity (which sets the quantity of the existing product in the
cart to the provided quantity). The cart is emptied by deleting the Cart object (which
destroys it and its dependent LineItems, thanks to the :dependent => :destroy directive
on has_many). Similarly, an item is removed from the cart simply by destroying its corre-
sponding LineItem.

202 | Chapter 7: REST, Resources, and Web Services

Let’s examine the routes that make this work:

config/routes.rb
map.resources :carts do |cart|
 cart.resources :products, :controller => 'line_items'
end

Because we are conforming to the Rails conventions of how RESTful routes should
work, there is very little manual configuration here. We get a lot “for free,” just for
following the conventions:

• Incoming requests are mapped to the proper controller based not only on the
URI but also on the HTTP method used. (Some browsers and proxies do not
support HTTP methods other than GET and POST; we will see later how Rails
works around this.)

• We get named routes completely for free, including the ability to route to a spe-
cific representation such as XML:

carts_path # => /carts

cart_path(some_cart) # => /carts/123
formatted_cart_path(some_cart, :xml) # => /carts/123.xml

products_path(some_cart) # => /carts/123/products
product_path(some_cart, some_product) # => /carts/123/products/456

• The routing system pre-populates the params hash with the ID variables we
need, named appropriately. So, for a request to /carts/123/products/456, the
params hash will contain the pairs :cart_id => 123 and :id => 456. We can use a
before_filter in the controller to pick these off and retrieve them from the
database, cleaning up the controller code.

Later in this chapter, we will explore the Rails RESTful routing system in detail. But
now, let’s take a look at the controllers that power the cart system. For simplicity, we
will ignore any responses that we might render in the real world, and instead focus
on sending correct HTTP response codes with no response body. (For this reason,
we have left out any kind of “view cart” action also.)

app/controllers/carts_controller.rb
class CartsController < ApplicationController
 # POST /carts
 def create
 @cart = Cart.create
 # Return 201 Created to indicate success; point to location of new cart
 render :nothing => true, :status => :created, :location => cart_path(@cart)
 end

 # DELETE /carts/:id
 def destroy
 @cart = Cart.find(params[:id])
 @cart.destroy
 # Return 200 OK to indicate successful delete
 render :nothing => true

What Is REST? | 203

 end
end

The CartsController handles the “create a cart” (POST /carts) and “empty cart”
(DELETE /carts/:id) actions. The routing system maps the requests to the corre-
sponding CRUD actions; they use their traditional Rails names (index, show, new,
create, edit, update, and destroy).

We take great care to return the proper HTTP response status codes upon success so
that the client knows exactly which action was taken. On creation of a cart, we ren-
der with a 201 Created status code and use the Location header to point to the newly
created cart. On cart deletion, we render a 200 OK to tell the client that the request
was successful.

The LineItemsController is slightly more complex, as line item resources are nested
within a cart. We use a set of before_filters to retrieve the corresponding records:

app/controllers/line_items_controller.rb
class LineItemsController < ApplicationController
 # Nested RESTful routes set params[:cart_id] on each action.
 # Use that param to retrieve the cart.
 before_filter :find_cart

 # For member actions (update, destroy), find the line item
 # by looking at params[:id].
 before_filter :find_line_item, :only => [:update, :destroy]

 # PUT /carts/:cart_id/products/:id
 def update
 # Create line item if it does not exist
 @line_item ||= LineItem.new(:cart_id => params[:cart_id],
 :product_id => params[:id], :quantity => 1)

 # Update attributes from params
 @line_item.update_attributes params[:line_item]
 render :nothing => true # Status: 200 OK
 end

 # DELETE /carts/:cart_id/products/:id
 def destroy
 @line_item.destroy
 render :nothing => true
 end

 protected

 def find_cart
 @cart = Cart.find params[:cart_id]
 end

 def find_line_item
 @line_item = @cart.line_items.find(params[:id])
 end
end

204 | Chapter 7: REST, Resources, and Web Services

The preceding update method illustrates a difference between REST in
theory and RESTful Rails in practice. In Rails, the PUT method is
always mapped to update, while REST in general can also use PUT to
create resources. We work around this by allowing creation from the
update method, to allow us to use the more RESTful design.

Traditionally, Rails would use create for this action, which would
require POSTing “product_id=123” to the parent resource at /carts/4/
products. This would be a RESTful design if the server chose the
resulting URI (for example, if the LineItem’s ID was used instead of a
combination of cart and product ID). However, because the client has
all of the information about the resource’s URI (/carts/4/products/
123), it should just PUT the resource to that URI.

At first glance, this code may seem to be much more complicated than the original,
non-RESTful code. However, we have moved a great deal of functionality out of the
framework (removing the dependency on sessions) and made the session state into
an explicit set of resources. One of the big advantages that we gain is that the state
now has all of the benefits of REST; state items are addressable, and we can now use
a stateless server, assisting in scalability. This RESTful architecture is much more
uniform than the old architecture, because it uses standard HTTP and CRUD meth-
ods instead of custom ones.

Authentication

Many web services and web applications need authentication of their users. Unfortu-
nately, RESTful authentication on the human-readable Web is in a sad state.
RESTful HTTP web services designed to be consumed by machines tend to have
more options, because the developer of the application can somewhat dictate how
the client must connect, even if it involves custom authentication schemes.

For browser-based web sites and web applications, there are fewer options; for an
application to be usable by humans on the public Web today, it needs to support the
browsers its clients will be using.

There are two methods commonly supported in browsers for HTTP authentication:
Basic and Digest. Both are defined and explored in RFC 2617 (http://tools.ietf.org/
html/rfc2617). Basic authentication is very simple, but it is insecure. Usernames and
passwords are sent in plain text over the network.* Digest authentication is a step up;
it uses a challenge/response mechanism for the client to prove it knows the pass-
word without sending it over the network.

Digest authentication could technically violate the statelessness principles of REST.
The nonce values that the server generates during the authentication process must be

* The easiest solution, as with forms-based authentication, is to encrypt the entire login transaction with SSL.

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

Benefits of a RESTful Architecture | 205

stored for as long as the sessions are valid (if sessions last an hour, the server must
hold all newly generated nonces for an hour). This serves to prevent replay attacks; if
this information were not kept and verified, an eavesdropper could simply “replay” a
sniffed authentication handshake and convince the server that he is the original user.*

The problem with keeping any application state on the server is that it hinders scal-
ability. For a pool of 100 application servers to implement HTTP Basic authentica-
tion, they need only share the list of valid login/password combinations. But for the
same pool to implement Digest authentication, the servers should share a list of
issued nonce values to defend against replay attacks.

HTTP authentication is desirable from a RESTful perspective, because it minimizes
or eliminates session state kept on the server. There are other options for authentica-
tion; perhaps the most common in Rails is to use the session mechanism to store the
ID of the currently logged-in user. Typically, this session is indexed by a key that is
given to the client. Newer versions of Rails store a server-signed copy of the entire
session in a cookie. This is actually more RESTful, but it is vulnerable to some of the
same replay attacks as Digest authentication (other Rails session storage is not vul-
nerable, as a direct consequence of its server-side state). It is of course up to the
application developer to draw the boundaries, depending on the application’s secu-
rity needs and the consequences of session replay.

There is another solution that can make HTTP authentication practical. For applica-
tions that can handle a JavaScript dependency, Paul James has created an ingenious way
to use HTTP authentication with HTML forms. Details are at http://www.peej.co.uk/
articles/http-auth-with-html-forms.html. This method uses XMLHttpRequest to try
an authentication through HTTP against a remote server. Once the authentication is
complete, the credentials are stored as usual in the browser and used on future
requests to the protected content. There are a few rough edges with browser support
(the logout feature is not supported in Internet Explorer), but otherwise this is a
wonderful solution.

Benefits of a RESTful Architecture
In this chapter, we have touched on some of the benefits that a RESTful application
architecture can provide, and hopefully you have seen some of those benefits for
yourself. Now we will list and explain each of the major benefits that REST strives to
achieve.

* Although RFC 2617 does not mandate any checking of nonce values, it suggests it, subject to the applica-
tion’s need for security against replay attacks.

http://www.peej.co.uk/articles/http-auth-with-html-forms.html
http://www.peej.co.uk/articles/http-auth-with-html-forms.html

206 | Chapter 7: REST, Resources, and Web Services

Conceptual Simplicity
The cornerstone of REST is simplicity. The decision to use a standard set of verbs
(whether the HTTP verbs or some other set) virtually eliminates an entire area of dis-
cussion. The uniform registration and naming system of MIME types certainly
doesn’t settle the debate, but it definitely simplifies it.

With those two corners of the REST triangle taken care of, potentially the biggest
gray area is in identifying and naming resources. Naming is one area where simplic-
ity really pays off, because it is very easy to get it wrong. However, if you stick with a
standard set of verbs and content types religiously, they will help constrain your
choice of nouns.

It is very important to define clean, readable, persistent URIs for your resources. The
REST FAQ (http://rest.blueoxen.net/cgi-bin/wiki.pl?RestFaq) makes a good observa-
tion about naming:

GET is restricted to a single-URL line and that sort of enforces a good design principle
that everything interesting on the Web should be URL-addressable. If you want to
make a system where interesting stuff is not URL-addressable, then you need to justify
that decision.

This is what designers and architects mean when they say “constraints are freeing.”
The principles of REST were derived from examination of how the Web and other
hypertext networks actually work. Rather than being some set of arbitrary restric-
tions, they embody the way that the Web should act.

By working within the principles of REST, any pain you may feel should be treated as
a hint that you might be going against the grain of the Web’s natural architecture. It
is certainly possible that your particular case is a special one. Certain application
domains just do not fit well into the REST paradigm. (REST has been described as
“Turing-complete” in a parallel with programming languages. Though any applica-
tion may be expressed in terms of REST, some may be much more conducive to
REST than others.) But trying to push yourself into the REST paradigm forces you to
defend any exceptions and special cases, and in doing so you may find that the
exceptions were not necessary after all.

Caching and Scalability
REST fits perfectly with the Rails shared-nothing philosophy—the idea that the only
communication between application servers should be through the database (in
REST terms, by “modifying resource state”). We mentioned previously how this
assists scalability; the fewer interactions necessary between application servers, the
easier it is to scale them horizontally when load dictates.

Caching is well known as a hard problem. Phil Karlton famously called cache invali-
dation one of the “two hard things in Computer Science.” One of the requirements
of HTTP caching is transparency; the semantics of the information transferred must

http://rest.blueoxen.net/cgi-bin/wiki.pl?RestFaq

Benefits of a RESTful Architecture | 207

be the same as if no cache were involved. What this means in practice depends not
only on what type of caches are used and where they are placed within a network
architecture, but also on the semantics of updates and “freshness” within the appli-
cation itself.

Because caching behavior is so application-dependent, the decision was made for
HTTP to provide mechanisms for caching without specifying actual behavior or client/
server responsibility in great detail. As Fielding describes it (in section 6.3.2.6 of his
thesis):

Because REST tries to balance the need for efficient, low-latency behavior with the desire
for semantically transparent cache behavior, it is critical that HTTP allow the applica-
tion to determine the caching requirements rather than hard-code it into the protocol
itself. The most important thing for the protocol to do is to fully and accurately
describe the data being transferred, so that no application is fooled into thinking it has
one thing when it actually has something else. HTTP/1.1 does this through the addi-
tion of the Cache-Control, Age, Etag, and Vary header fields.

Section 13 of the HTTP/1.1 specification (RFC 2616) details HTTP’s caching behavior.*

HTTP provides several features for cache control, which interact to provide a frame-
work on which servers, clients, and intermediaries can build a caching policy. These
features include the following:

Conditional GET
A conditional GET is an HTTP GET request containing one or more additional
header fields specifying conditions under which the requested resource should or
should not be sent. It is used in conjunction with the Last-Modified header and/or
entity tags, discussed next.

Last-Modified
The Last-Modified response header contains a date/time value indicating the
time at which the provided resource was last modified. When a client holds a
(potentially old) version of this resource, it can validate that version by perform-
ing a conditional GET with an If-Modified-Since header set to the time its ver-
sion was last modified. If the server has a newer version, it will send the new
version with an updated Last-Modified header. If there is no newer version, the
server will send a 304 Not Modified response with no body, saving time and
bandwidth.

Entity tags (ETags)
Entity tags are short labels that serve to identify a particular version of an entity.
Typically, they are a hash of the response body; in this way, entities can be com-
pared by exchanging the tag rather than the entire body.

Entity tags, like Last-Modified, also use conditional GET. The client sends a request
with an If-No-Match header specifying the ETag of its latest version. If the server
calculates a different ETag for the newest version of that resource, it will send

* http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

208 | Chapter 7: REST, Resources, and Web Services

the entire body. But if the calculated ETag matches the one the client sent, a 304
Not Modified response is returned.

There are many different strategies for calculating entity tags, depending on the
application’s needs. The simple strategy of hashing the response body works,
but it can be inefficient as the server must still generate and hash the response.
For dynamic content, this can be extremely inefficient (and it may be more rea-
sonable to use If-Modified-Since and compare it against a timestamp on the
source data).

The solution often used for static content is to incorporate the file’s inode, as it
can be much faster to stat(2) a file than to open it and read its data into mem-
ory. This works well, but it cannot be used in clusters where the data resides on
separate filesystems among systems in the cluster.

Rails provides transparent ETag support, which we will revisit later in this
chapter.

Cache-Control header
The HTTP Cache-Control header provides a way to specify cache semantics not
covered by other HTTP mechanisms. This header provides the following fea-
tures, and more:

• Clients can request a response that may be old, but by only up to a certain
amount of time (max-age).

• Clients and servers can dictate that certain information never be cached by
intermediate shared caches (private), or by any cache (no-cache).

• The caching protocol can be extended without breaking HTTP semantics, if
agreed upon by the client and server and implemented thus.

Robustness to Change
Another advantage conferred by RESTful design is that the designs tend to be more
resilient to change than RPC-style interfaces. RESTful design drives the architectural
decisions into noun territory. Noun selection tends to be domain-driven, while RPC
interfaces tend to be more implementation-driven, as they expose their procedures
(an implementation detail) as part of the interface. While RPC interfaces often need
an extra layer of indirection to separate the interface from the implementation, REST
cultivates a separation of interface and implementation by encouraging more abstract
interfaces.

Also, because REST distinguishes the idea of “resource” from “representation,” it is
easy to add new content types representing the same resource as new formats are
required. No architectural changes are required, as REST is based on a separation
between an abstract resource and its representations.

RESTful Rails | 209

Uniformity
One of the biggest advantages afforded by the REST guidelines is a uniform inter-
face. The verbs (in our case, the HTTP methods) are universally uniform, across all
application domains. Content types, though not universal (they differ across
domains), are standardized and relatively well known.

The fact that you are limited to such a small set of methods may seem constraining,
but in practice it is not a major concern. Anything you would want to model can eas-
ily be framed in terms of the CRUD operations. This way of thinking about the
world helps to push essential complexity into one part of an architecture, where it is
easily dealt with. Usually, when it seems that you need more than the basic meth-
ods, there is another entity lurking in the model, waiting to be extracted.

Content types are standardized in a different way. Content types are usually some-
what application-specific, and so it would make no sense for them to be universal.
However, to facilitate communication, content types are usually somewhat stan-
dard. In the HTTP world, this means MIME (Multipurpose Internet Mail Exten-
sions), an Internet standard that defines a framework for content types. The set of
MIME types is extensible, so new applications can define local types and even regis-
ter them with the IANA once they are in widespread use.

The uniformity that REST provides tremendously aids standardization efforts. When
bringing multiple systems together (as happens when developing a standard), the
fewer differences there are, the fewer political disagreements. If everyone standard-
izes on a set of verbs (which are universally standardized when using HTTP), then the
only differences that remain are the content types (which are fairly straightforward to
standardize within an application domain) and nouns.

Therefore, complying with a RESTful interface helps to reduce the huge problem of
standardization to the somewhat more manageable problems of representing data
(content types) and naming things (nouns). Though these are still areas where dis-
agreement and politics can interfere, the principles of REST help to focus the discus-
sion by narrowing the topics of discussion.

RESTful Rails
At RailsConf 2006, David Heinemeier Hansson’s keynote marked the beginning of
the RESTful philosophy becoming mainstream in Rails. The keynote, Discovering a
World of Resources on Rails,* presented a roadmap for moving Rails 1.2 toward a
more RESTful, CRUD-based default.

* Presentation slides and video available at http://www.scribemedia.org/2006/07/09/dhh/.

http://www.scribemedia.org/2006/07/09/dhh/

210 | Chapter 7: REST, Resources, and Web Services

One of the key points in the presentation was that resources can be more than things
we might think of as “objects”; examples given were relationships between objects,
events on objects, and object states. This is an important principle in REST. Rather
than adding another method #close on a Case object, it may be more clear to factor
out a Closure object if more information about the closure needs to be persisted.

RESTful Routing
From the outside of an application, the most visible change in RESTful Rails is the new
routing. Classic Rails routing was based around the default route of /:controller
/:action/:id, with any extra parameters usually being carried in the query string.
This had advantages of simplicity and uniformity in routing, but it was brittle to
change. Refactoring actions from one controller to another required updating all
links pointing to that action; they had to be changed from:

link_to 'Close', :controller => 'cases', :action => 'close', :id => @case.id

to:

link_to 'Close', :controller => 'closures', :action => 'create',
 :id => @case.id

The next major innovation in Rails routing was the prevalence of named routes. By
associating each URI with a name, you would get an easy way to refactor route URLs
without changing the inward links. This provided another layer of abstraction on top
of the actual URI parameters:

config/routes.rb
map.close_case '/cases/close/:id', :controller => 'cases', :action => 'close'

_case.rhtml
link_to 'Close', close_case_path(:id => @case.id)

Then, when the action moved, you could simply change the route without touching
the views:

map.close_case '/closures/create/:id', :controller => 'closures',
 :action => 'create'

This greatly improved maintainability, but it increased verbosity. As there was
another layer of abstraction between URIs and actions, there was another file that
needed to be maintained, kept in sync with the rest of the code, and consulted when
tracing a request’s path through the application.

The biggest problem, however, was that these routes tended to be redundant and
overly numerous. The problem was not so much that there was one named route for
each URI, but that the URIs referred to actions on resources instead of resources.
The HTTP phrase “GET /cases/show/1” is redundant. Both HTTP GET and the show
action mean “give me this data.” According to RESTful principles, that phrase
should be “GET /cases/1,” where the HTTP verb specifies the action and the URI
specifies the object of that action. Thus, Rails resource routing was born.

RESTful Rails | 211

Resource-Based Named Routes
Resource routing encapsulates all of the Rails CRUD actions into one routing
statement:

map.resources :cases

The resources method sets up a series of RESTful named routes. Just with that one
statement, you can now use link_to('View All', cases_path), link_to('Destroy',
case_path(@case), :method => :delete), and many more. This is more maintainable
because there are fewer named routes and they are standardized. It also encourages
you to model according to CRUD; you have to think carefully before adding ad-hoc
methods to controllers because each special case must be listed separately in the
route.

The following table shows the seven standard Rails CRUD actions, their semantics,
and the HTTP phrases that they correspond to. It assumes a routing declaration of
map.resources :people.

The controller name defaults to the resource name; in this case, the routing code
would look for a PeopleController. This can be changed; specifying map.resources
:people, :controller => 'members' would instead look for a MembersController.

By default, Rails generates four basic named routes for the map.resources :people
declaration. The four routes are shown below, along with their corresponding URIs
and the parameters that are passed back to the controller in the params hash when
the route is recognized.

Note that the URI generators will accept either an ID or an arbitrary object. Such
objects will be converted to a URI-friendly ID using #to_param, so anything that
responds to #to_param (such as an ActiveRecord::Base or ActiveResource::Base
object) will work.

HTTP Rails Semantics

GET /people index Shows a list of all people

GET /people/new new Shows a form to create a new person

POST /people create Creates a new person; redirects to its URI

GET /people/1 show Shows a representation of the specified person

GET /people/1/edit edit Shows an edit form for the specified person

PUT /people/1 update Updates the specified person with the provided data

DELETE /people/1 destroy Removes the specified person

Named route URI Params

people_path /people {}

person_path(1)
person_path(@person)

/people/1 {:id => 1}

212 | Chapter 7: REST, Resources, and Web Services

You may occasionally see URIs like /people/1;edit when reading
information about RESTful development in Rails. For a time, the semi-
colon was a route component separator (Rails 1.2 still uses it), but it
has since been removed in Rails 2.0.

These routes are also available in a _url variant that includes the scheme, host, and
port. For example, people_path returns /people, while people_url returns http://
localhost:3000/people (of course, with the appropriate scheme, host, and port,
depending on that of the incoming request). In addition, there is a hash_for_ variant
that returns a hash of parameters ready to be passed into url_for, rather than return-
ing the URI directly as a string:

>> app.hash_for_people_path
=> {:action=>"index", :controller=>"people", :only_path=>true,
 :use_route=>"people"}
>> app.hash_for_people_url
=> {:action=>"index", :controller=>"people", :only_path=>false,
 :use_route=>"people"}

The app variable is an instance of ApplicationController::
Integration::Session (used for Rails integration testing) that is made
available at the Rails console. It can be used to troubleshoot control-
ler issues (such as routing), and even to make mock HTTP requests of
the application, just as in integration testing:

$ script/console
Loading development environment.
>> app.get '/hello/world'
=> 200
>> app.response.headers
=> {"Status"=>"200 OK", "type"=>"text/html; charset=utf-8",
 "cookie"=>[], "Cache-Control"=>"no-cache",
 "Content-Length"=>13}
>> app.response.body
=> "Hello, world!"

Extra query string parameters can be added to the named routes, but in the case of
member routes, the member object or ID must be included in the hash as an :id
parameter:

$ script/console
Loading development environment.
>> app.person_path(1)
=> "/people/1"
>> app.person_path(:id => 1)

new_person_path /people/new {}

edit_person_path(1)
edit_person_path(@person)

/people/1/edit {:id => 1}

Named route URI Params

RESTful Rails | 213

=> "/people/1"
>> app.person_path(:id => 1, :section => 'enrollment')
=> "/people/1?section=enrollment"

Similarly, the default collection routes can also take a hash of query string
parameters:

>> app.people_path(:sort => 'last_name')
=> "/people?sort=last_name"

Routes can also be generated with a specific format; any of the formats specified in
Mime::Types (discussed later) are valid. There is another series of formatted_ named
routes for this purpose:

>> app.formatted_person_path(1, :js)
=> "/people/1.js"
>> app.formatted_person_path(1, :xml)
=> "/people/1.xml"
>> app.formatted_people_path(:rss)
=> "/people.rss"

This is useful in conjunction with respond_to, which switches responses based on the
content type accepted by the client. Note that, like the other named routes, if we want
custom query string parameters, we must convert all of the arguments to a hash:

>> app.formatted_person_path(:id => 1, :format => :xml,
 :section => 'enrollment')
=> "/people/1.xml?section=enrollment"

Custom resource routes

The REST helpers also have provisions to create custom named routes pertaining
either to the collection (the parent resource) or the members of the collection (the chil-
dren). These are created with the :collection and :member options to map.resources,
respectively. Each new route must have a corresponding HTTP verb it is to be used
with. The routes directly correspond to actions on the controller. For example, we
may have this declaration in config/routes.rb:

map.resources :people, :collection => { :search => :get },
 :member => { :deactivate => :post }

This sets up search_people_path and deactivate_person_path routes that have restric-
tions so as only to accept the specified HTTP methods. We can try these out at the
console:

$ script/console
Loading development environment.
>> app.search_people_path(:query => 'Brian')
=> "/people/search?query=Brian"
>> app.get app.search_people_path(:query => 'Brian')
=> 200
>> app.request.request_uri
=> "/people/search?query=Brian"
>> app.request.params
=> {"query"=>["Brian"]}

214 | Chapter 7: REST, Resources, and Web Services

The named routes will only be recognized given the proper HTTP method; if called
with other methods, they will return 404:

>> app.deactivate_person_path(1)
=> "/people/1/deactivate"
>> app.post app.deactivate_person_path(1)
=> 200
>> app.get app.deactivate_person_path(1)
=> 404

Note that defining custom routes like this can easily deviate from REST. It is easy to
overload a resource with many custom methods that may better be factored into
resources of their own. For example, rather than POSTing to /people/1/deactivate,
the RESTful action would be either to PUT active=0 to /people/1 or to PUT a value of
0 to /people/1/active, depending on whether active was modeled as a separate
resource or an attribute of the person resource. It is intentional that custom routes
are a bit unpleasant to use, because most of the application domain should be mod-
eled with CRUD and special cases should be the exception rather than the rule.

Nested resource routes

Rails has a provision to specify nested resources when generating named routes. For
example, consider a social networking application where each person can have many
friends; we can express these resource relationships with the nested route declaration:

map.resources :people do |person|
 person.resources :friends
end

In this situation, the friends resources are scoped to a particular person. The URI for
a friend belonging to a person would look like /people/1/friends/2, and a person’s
friends could be viewed at /people/1/friends.

The corresponding named routes are simple, with one minor change: they take an
extra parameter, for the person_id to which they are scoped. Given that route decla-
ration, we now have the following routes (note that the declaration also includes the
base people resources).

Note that we are still in a flat controller namespace. By default, those route declara-
tions will look for PeopleController and FriendsController. If the resources are truly

Named route URI Controller Params

people_path /people people {}

person_path(1) /people/1 people {:id => 1}

friends_path(1) /people/1/friends friends {:person_id => 1}

friend_path(1, 2) /people/1/friends/2 friends {:person_id => 1, :id => 2}

RESTful Rails | 215

nested, and friends are always scoped to a person, it may make more sense to use
controller namespaces. This would involve changing FriendsController to People::
FriendsController and moving it to app/controllers/people/friends_controller.rb.
Then, the route declaration should be changed to:

map.resources :people do |person|
 person.resources :friends, :controller => 'people/friends',
 :name_prefix => 'person_'
end

The name_prefix option adds a prefix to the generated routes. In this case, adding
that option to the person.resources line gives us named routes like person_friends_
path and person_friend_path instead of friends_path and friend_path, which better
reflects the new scoping of our resources.

There is a path_prefix option that will add a prefix to the URIs that the route will
recognize and generate. This comes with nested routes—you don’t have to do any-
thing. The nested routes above could be manually specified as follows:

map.resources :people
map.resources :friends, :controller => 'people/friends',
 :name_prefix => 'person_',
 :path_prefix => '/people/:person_id'

This usage is not as pretty, but it affords more control over the parameter names
your controller is passed. This method makes more sense if the IDs being used in the
routes are something other than ActiveRecord numeric primary keys.

Singleton resource routes

Sometimes, there will be an entity that exists as a singleton, such that there will only
be one in existence within its containing scope. An example would be a subscription
user’s account, which contains billing information. This information is modeled as
a separate resource from the user’s other data. In contrast to the collection
resource /users/1/posts and its member /users/1/posts/1, we have the singleton
resource /users/1/account.

Rails provides a way to map singleton resources with the map.resource statement (in
parallel to map.resources for collections of resources). The resource name is still sin-
gular, but the inferred controller name is plural. Our routing statement for the pre-
ceding example would be:

map.resources :users do |user|
 user.resource :account
end

This code would expect an AccountsController to contain the user account actions.
Singleton resources contain the same methods as collection resources, but with no
index action.

216 | Chapter 7: REST, Resources, and Web Services

The named routes for singleton resources are similar to those for collections, again
missing only the route to the collection.

Depending on the application, not all of these routes may be used. For example, if
the account is created automatically when the user is created, then the new, create,
and destroy actions may not apply.

ActionView Support
The Rails link_to family of helpers can take a :method parameter to define the HTTP
method that will be used when a user clicks on the link. For a method of POST, PUT, or
DELETE, the helpers generate JavaScript that creates a hidden inline form, sets up the
appropriate hidden form field for the _method parameter (as is detailed next in
“Method emulation”), and submits it. The handler returns false so that the link’s
actual target is not followed. For example, the ERb code:

<%= link_to 'Delete', person_path(@person), :method => :delete %>

creates the following link:

<a href="/people/1" onclick="
 var f = document.createElement('form');
 f.style.display = 'none';
 this.parentNode.appendChild(f);
 f.method = 'POST';
 f.action = this.href;
 var m = document.createElement('input');
 m.setAttribute('type', 'hidden');
 m.setAttribute('name', '_method');
 m.setAttribute('value', 'delete');
 f.appendChild(m);
 f.submit();
 return false;
">Delete

HTTP Rails Semantics

GET /users/1/account/new new Shows a form to create user’s account

POST /users/1/account create Creates the user’s account; redirects to its URI

GET /users/1/account show Shows account information

GET /users/1/account/edit edit Shows an edit form for the account

PUT /users/1/account update Updates the account with the provided data

DELETE /users/1/account destroy Removes the account

Named route URI Params

account_path(1) /users/1/account {:user_id => 1}

new_account_path(1) /users/1/account/new {:user_id => 1}

edit_account_path(1) /users/1/account/edit {:user_id => 1}

RESTful Rails | 217

Although this uses JavaScript to accomplish its primary action, it is still safe (though
nonfunctional) in browsers that do not support JavaScript. Those browsers will
ignore the onclick action, instead treating the link as a standard GET link. If the link is
clicked, the browser will send GET /people/1, which will harmlessly call the show
action on that person.

Note that we would not want to fall back to an action that actually calls our delete
method, because it is behind a standard HTML link (once the JavaScript is stripped
out). As the GET action is presumed to be idempotent and safe, proxy caches and user
agents would be permitted to prefetch our link without the user’s request. This is the
same problem that caused the Google Web Accelerator issues discussed earlier. But
the advantage of RESTful design is that we could not name the delete action by URI
alone if we wanted to; it requires the resource’s URI in conjunction with the DELETE
HTTP method, and all of the semantics involved therein.

In applications where non-JavaScript-aware browsers need to be fully
supported, you should use other helpers such as button_to or the stan-
dard form helpers. These create HTML constructs with the proper
semantics; even user agents that do not support JavaScript respect that
<button> or <form> tags are unsafe and should not be followed with-
out the user’s interaction.

Method emulation

REST is designed to use a full set of HTTP methods, which at a minimum include
GET, PUT, POST, HEAD, and DELETE. Unfortunately, there are a few roadblocks to using
these directly. HTML 4 only supports GET and POST as form methods, and of course
standard HTML links only request documents via GET (by design). In addition, many
proxies, caches, and other intermediaries often only support GET and POST, as the
other methods were not in wide use on the Web for many years.

To work around this problem, Rails uses a small hack. Methods other than GET or
POST are sent as POST (the catch-all method as it is neither required to be safe nor
idempotent). To allow the server to determine the original method, it is stored in a
POST variable called _method. The Prototype JavaScript library works in the same way
when calling an action via Ajax.Request or Ajax.Updater with a method other than
GET or POST.

Content Types
The idea that one resource can have multiple representations in different content
types is one of the core principles of REST. It recognizes that different representa-
tions of one thing, whether formatted as JavaScript, HTML, XML, ICS, or in any
other format, is fundamentally the same resource. Rails has introduced rich support
for rendering different responses based on the content type the client wants, via the
respond_to method.

218 | Chapter 7: REST, Resources, and Web Services

The respond_to method yields a responder (an instance of ActionController::
MimeResponds::Responder, usually called format), which can respond to various con-
tent type methods in order to send different content based on the client’s expecta-
tions (as defined in the Accept request header).

Typical responder methods are format.html and format.xml, which define responder
blocks for HTML and XML requests, respectively. As these are standard Ruby
method calls, they can be intermingled with other Ruby code such as conditionals.
The block of the first method call matching the request’s Accept header will be exe-
cuted. This block usually renders a response in the specified format.

The blocks can also be omitted, in which case the default action is taken (the same
action that would have happened had there been no render or redirect calls in the
action). For example:

respond_to do |format|
 format.html # same as format.html { render }
 format.xml { render :xml => @product }
end

If all format blocks are the default, a list of types can simply be provided to respond_
to directly, with no block. For example, this code:

respond_to do |format|
 format.html
 format.xml
end

can be condensed into:

respond_to :html, :xml

The default Rails route has also changed to accommodate different formats. Where
once the default route was /:controller/:action/:id, now it is /:controller/:action
/:id.:format. This passes any provided file extension into the appropriate controller as
params[:format]. This is what respond_to uses internally to decide on a response type.

The set of MIME types that Rails recognizes is defined in actionpack/lib/action_
controller/mime_types.rb. Each mapping has a set of MIME types, as well as the Rails
symbol that is used to denote those types (e.g., :html or :xml). At the time of this
writing, the following types are recognized.

Shortcut MIME types

all */*

text text/plain

html text/html, application/xhtml+xml

js text/javascript, application/javascript, application/x-javascript

css text/css

ics text/calendar

csv text/csv

RESTful Rails | 219

New MIME types can be registered with Mime::Type.register. This method takes
four arguments: the primary MIME type, the Rails shortcut, a set of synonym MIME
types (such as text/x-json for JSON text), and a set of synonym file extensions, used
to force a format where the client does not send an Accept header or sends an
improper one.

The Rails shortcut symbol, such as rss, is also taken to be a file exten-
sion; a request URI ending in .rss will trigger a format.rss block. The
list of synonym extensions adds to this default extension.

For example, suppose we want to add JPEG format support to an application. We
would like to write format.jpg in a respond_to block to render a JPEG response. This
requires mapping the jpg format type to the image/jpeg type, as well as the jpg and
jpeg extensions. We can do this by simply putting the following in our config/
initializers/mime_types.rb:

Mime::Type.register "image/jpeg", :jpg, [], %w(jpeg)

HTTP Caching
Earlier in the chapter, we discussed HTTP’s use of conditional GET for client-side
caching. Under conditional GET, the client requests a resource along with an identi-
fier of the client’s latest copy, so the server doesn’t have to send a resource that the
client already has.

One of the most important parts of caching is inexpensively figuring out the identity
of a given entity. In order to determine whether an entity is stale, you must compare
its content with the canonical version on the server. One trivial way to do this would
be to generate and compare the entire response body, but this is ridiculous. It saves
no bandwidth, CPU time, or I/O. We need a shorter way to identify an entity.

The HTTP standard provides for Entity Tags (usually called ETags, after the HTTP
header in which they are provided), which serve to identify the resource that they
are attached to. You can compare two resources by comparing their ETag. This is
used with conditional GET, where the client sends the ETag associated with its latest
version in an If-None-Match header. The server compares this ETag with that of its

xml application/xml, text/xml, application/x-xml

rss application/rss+xml

atom application/atom+xml

yaml application/x-yaml, text/yaml

multipart_form multipart/form-data

url_encoded_form application/x-www-form-urlencoded

json application/json, text/x-json

Shortcut MIME types

220 | Chapter 7: REST, Resources, and Web Services

latest version; if they match, the client has the latest version and the server renders a
simple 304 Not Modified response.

Often, the ETag is a hash of the response body, but it can be anything that is likely to
change when the body does. Another common method used for static content is to
use some combination of the file’s inode number, last-modified time, and size; this is
very efficient because all of that information can be determined with a stat(2)
syscall. Of course, this method breaks down in clusters (where the static files might
span filesystems) or when serving dynamic content.

Rails has built-in support for transparently generating ETags. The method used is the
“simplest thing that could possibly work”; it is generic because it makes no assump-
tions about the structure or semantics of an application. Its implementation is sim-
ple enough that it can be shown here:

def handle_conditional_get!
 if body.is_a?(String) &&
 (headers['Status'] ? headers['Status'][0..2] == '200' : true) &&
 !body.empty?
 self.headers['ETag'] ||= %("#{Digest::MD5.hexdigest(body)}")
 self.headers['Cache-Control'] = 'private, max-age=0, must-revalidate' if
 headers['Cache-Control'] == DEFAULT_HEADERS['Cache-Control']

 if request.headers['HTTP_IF_NONE_MATCH'] == headers['ETag']
 self.headers['Status'] = '304 Not Modified'
 self.body = ''
 end
 end
end

On each request with a 200 OK response, Rails generates an MD5 hash of the
response body and sets it as the ETag (unless one has already been set; this allows
you to provide custom ETags simply by setting them). It also sets the Cache-control:
must-revalidate flag, which instructs caches (including caching user agents, such as
web browsers) to revalidate the cache against the ETag, using the If-None-Match
header. This ensures that the generated ETags are actually used. Finally, if a response
comes in with an If-None-Match header, and its value is the same as the generated
ETag, the response body is cleared and rendered with a 304 Not Modified status.

The default Rails ETag mechanism works well and is completely transparent, but it
has some drawbacks. The main limitation is that the response body must still be gen-
erated (which often means several trips to the database, template rendering, URI
generation, and, finally, MD5 hashing) before a decision can be made. If the client’s
version was actually the latest, all of that work is discarded. Therefore, the default
ETag implementation only saves bandwidth, not CPU time or I/O. We must get into
more application-specific caching methods in order to avoid rendering a response
altogether.

RESTful Rails | 221

Custom caching

Making cache control more granular requires coupling the caching a bit more with
the application. Assaf Arkin’s restfully_yours plugin* provides some helper methods
for RESTful Rails development, primarily in the domain of cache control. It provides
methods to support both conditional GET (which controls caches using If-Modified-
Since and If-None-Match) and conditional PUT (which prevents stale updates using
If-Unmodified-Since and If-Match).

The first method provided is if_modified, which supports conditional GET. It takes
one or more entities as arguments, which are expected to respond to either the
updated_at or etag methods (or both).† The updated_at method generates Last-
Modified headers, while the etag method generates an ETag header. Any of these
methods can be overridden or defined on custom entities, depending on the applica-
tion’s idea of “last update time” or “identity.”

This behavior works transparently with ActiveRecord entities. If the ActiveRecord
object has timestamps, its updated_at attribute will be used to provide a Last-Modified
time. The restfully_yours plugin also provides a default etag method that uses an
MD5 hash of either the ActiveRecord ID and lock version if using optimistic locking
(this is a cheap way to get a monotonically increasing version number) or all of its
attributes otherwise. This saves all but the initial trip to the database to get the
attributes and instantiate the ActiveRecord object.

Here is a typical use of this plugin’s conditional GET functionality:

def show
 @product = Product.find params[:id]
 if_modified @product do
 render
 end
end

The if_modified function yields to its block if the provided entity (@product in this
case) has been modified from the client’s version, as determined by the appropriate
request headers. If the entity has not been modified, a 304 Not Modified response
will be rendered. This is preferable to the default Rails ETag method because the if_
modified decision is made before rendering the body, which may be expensive. The
disadvantage is that the list of entities to track must always be passed to if_modified,
and they must generate sensible values for updated_at and etag.

The complement to conditional GET is conditional PUT. Both of them use similar
request and response headers, but they use them toward different ends. While condi-
tional GET is used to save bandwidth by not resending duplicate response bodies,

* Available from http://labnotes.org/svn/public/ruby/rails_plugins/restfully_yours.

† updated_on can be used as a synonym for updated_at. In Rails, the _on variants indicate dates, while the _at
variants indicate times.

http://labnotes.org/svn/public/ruby/rails_plugins/restfully_yours

222 | Chapter 7: REST, Resources, and Web Services

conditional PUT is used to prevent stale updates by making PUT requests conditional
on the previous state of the resource.

In other words, a conditional PUT contains an If-Unmodified-Since or If-Match header
(the exact opposites of the If-Modified-Since and If-None-Match headers, respec-
tively) with the Last-Modified date or ETag of the last known representation of that
resource. If the server’s version of the resource (before the requested update) differs
from that requested by the client, the update will be aborted and a 412 Precondition
Failed response code returned. Typical usage is as follows:

def update
 @product = Product.find params[:id]
 if_unmodified @product do
 if @product.update_attributes params[:product]
 redirect_to product_path(@product)
 else
 render
 end
 end
end

Now, before updating the product with the provided attributes, the headers will be
inspected to ensure that the client and server agree on the resource’s state before the
update. If they are the same, the PUT will proceed as usual.

Note that the typical application of this code has a race condition
between if_unmodified checking the headers and actually performing
the update. This is unavoidable from the plugin’s standpoint, as it has
no idea what you will be doing inside the block.

To ensure that this race condition doesn’t cause problems under heavy
concurrency, you will need to wrap the entire SELECT/UPDATE series in a
database transaction, and run the database under a transaction isola-
tion level that prevents nonrepeatable reads (such as SERIALIZABLE).

HTTP Response Status Codes
One often-overlooked part of HTTP is the rich set of response status codes it defines.
The HTTP/1.1 RFC defines many response codes that are appropriate for document-
based interactions; this set was enriched by WebDAV with some status codes that
filled in the gaps for dynamic web applications (such as 422 Unprocessable Entity,
used when the submitted entity is semantically invalid, often as determined by
ActiveRecord validations).

HTTP response codes are three-digit numbers with an optional human-readable expla-
nation. The numbers are defined by RFC 2616 (for HTTP/1.1), but the text is only sug-
gested by RFC. The first digit of the numerical code indicates to which of five categories

RESTful Rails | 223

the response belongs. The categories are divided in this way so that a client that does
not understand an obscure response code can infer some semantic information about
the status (for example, whether the request succeeded or failed, and whether the
request should be tried again) by examining the status code’s first digit.

1xx: Informational
These codes are used for protocol negotiations between client and server. This
series of status codes is not currently in wide use.

2xx: Success
A code in the 2xx series indicates that the request completed successfully. The
request may have either been processed immediately or accepted for processing.

3xx: Redirection
These codes indicate that the client must look elsewhere for the requested
resource. The new location is provided in the Location response header.

4xx: Client Error
These codes indicate that the server cannot understand, cannot fulfill, or refuses
to fulfill the client’s request, apparently due to the client’s error.

5xx: Server Error
5xx response codes indicate that the server understood the request but is incapa-
ble of performing it, temporarily or permanently, due to a server error.

The advantage of using standardized codes, of course, is that everyone (theoreti-
cally) uses them and understands them. In particular, Rails uses a rich set of response
codes when requesting and providing data over a RESTful interface. ActiveResource,
for example, will respond to a 404 by raising ActiveResource::ResourceNotFound (a
parallel of ActiveRecord::RecordNotFound), and to a 422 by raising ActiveResource::
ResourceInvalid (upon failed validations).

ActiveResource: Consuming RESTful Services
One huge advantage of coding web services RESTfully is that clients can then con-
sume them using a standard interface. ActiveResource is a library, now part of edge
Rails, which abstracts RESTful resources using an ActiveRecord-like interface. It fits
well into the Rails model of building applications, and as long as the server was built
using RESTful Rails conventions, using ActiveResource is nearly transparent.

To demonstrate the power of ActiveResource, we will build a very simple applica-
tion (nothing more than a scaffolded interface to a set of ActiveRecord objects) to
manage a set of products in a fictional store. We will first build this as a basic
ActiveRecord application using RESTful principles; then we will use ActiveResource
to disconnect the backend web service from the front end interface.

224 | Chapter 7: REST, Resources, and Web Services

We will be using the scaffold generator (formerly scaffold_resource) to
build some quick RESTful templates for the interface. The use of genera-
tors is debated in Rails; some say that they are a useful way to get code
up and running, while others say they hide too many details and don’t
allow enough flexibility. We will not debate the merits here; we simply
use the generator to build a simple application without letting the details
get in the way.

First, we create the Rails application skeleton:

$ rails products_example
 create
 create app/controllers
 create app/helpers

...
 create log/production.log
 create log/development.log
 create log/test.log
$ cd products_example

Then, after setting up our development database information, we use the scaffold
generator to create the model, controller, and sample templates all at once for the
Product model. The generator will set up the appropriate fields in the database if
they are provided on the command line:

$ script/generate scaffold product \
 name:string description:text price:float quantity:integer \
 created_at:datetime
 exists app/models/
 exists app/controllers/
 exists app/helpers/

...
 create db/migrate
 create db/migrate/001_create_products.rb
 route map.resources :products
$ rake db:migrate
== CreateProducts: migrating ==
-- create_table(:products)
 -> 0.0746s
== CreateProducts: migrated (0.0747s) ===

In practice, prices should not be stored as floating-point values; rather,
they should be stored as integers in the lowest-common-denominator
unit of currency (such as cents when the currency is U.S. dollars). The
Money gem by Tobias Lütke (gem install money) makes this easier in
Rails.

After migrating and tweaking the forms a bit, we have a very simple CRUD applica-
tion for products. Starting the server with script/server, we can see an empty list at
http://localhost:3000/, as shown in Figure 7-1.

http://localhost:3000/

RESTful Rails | 225

We can now enter details for a sample product, which we then see as part of the list.
This process is shown in Figures 7-2 and 7-3.

Figure 7-1. Empty product list

Figure 7-2. Product creation screen

226 | Chapter 7: REST, Resources, and Web Services

We now have a basic CRUD application that uses a RESTful interface. The tem-
plates are written using the RESTful Rails helpers and URL generators. Here is an
example from the New Product template:

app/views/products/new.erb
<h1>New product</h1>

<%= error_messages_for :product %>

<% form_for(:product, :url => products_path) do |f| %>
 <p>
 Name

 <%= f.text_field :name %>
 </p>

...

<% end %>

<%= link_to 'Back', products_path %>

The route definitions can be simplified to one resources method call that sets up all
of the appropriate method-based routes for the ProductsController:

config/routes.rb
ActionController::Routing::Routes.draw do |map|
 map.resources :products
end

The generated controller is a fairly standard scaffolded controller, which responds to
the seven basic CRUD actions with their standard Rails names.

Figure 7-3. List of products

HTTP verb URI Rails method

GET /products index

GET /products/1 show

GET /products/new new

GET /products/1/edit edit

RESTful Rails | 227

Note that the Rails convention is to create a resource by POSTing to its parent (collec-
tion) resource; this is necessary because the server chooses the newly created
resource’s URI (as it contains an arbitrary ID).

The controller actions make use of the HTTP response codes most appropriate for
error messages, success messages, and redirects. Rather than just being useful, as is
often the case with human-consumable web applications, status codes are absolutely
essential for web services. Client libraries such as ActiveResource rely on them to
take the appropriate actions.

One important addition to the old-style Rails scaffolded controllers is the use of
respond_to to send a different content type depending on the Accept header and pos-
sible format parameters in the URI (such as /products.xml).

app/controllers/products_controller.rb
POST /products
POST /products.xml
def create
 @product = Product.new(params[:product])

 respond_to do |format|
 if @product.save
 flash[:notice] = 'Product was successfully created.'
 format.html { redirect_to product_url(@product) }
 format.xml { render :xml => @product, :status => :created,
 :location => product_url(@product) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @product.errors }
 end
 end
end

Here we see the standard use of respond_to; the format.html and format.xml calls are
intermingled with standard Ruby controller code. By default, this RESTful controller
looks at the Accept header to determine whether to render its responses as HTML or
XML. We can add more representations simply by adding a format directive and
appropriate templates. For example, using the built-in Rails JSON serialization func-
tions, we can add a simple JSON representation of a newly created object:

format.js { render :json => @product.to_json, :status => :created,
 :location => product_url(@product) }

POST /products create

PUT /products/1 update

DELETE /products/1 destroy

HTTP verb URI Rails method

228 | Chapter 7: REST, Resources, and Web Services

The render :json variant renders the given text and sets the response’s content type
to text/x-json. We should also present a JSON version of our error codes upon
error, in the else block above:

format.js { render :json => @product.errors.to_json,
 :status => :unprocessable_entity }

We send an HTTP response code of 422 Unprocessable Entity here.
The 422 code is not in the HTTP/1.1 specification; it was added later
by WebDAV. However, it is the most appropriate response code to our
situation (the client has submitted a resource that is unprocessable),
and even Roy Fielding agreed that 422 is the most appropriate code for
this sort of situation. In addition, in Rails 2.0, ActiveResource treats a
422 response as a failed validation.

Now we will turn this simple web application into a client/server application. Here is
where the magic happens. We will disconnect the backend (ActiveRecord and data-
base access) from the front end (the user interface). The backend will become the
server, and the front end will become the client. The two will talk over HTTP using a
RESTful interface.

As the application is already set up to render XML when requested (via an Accept
header of text/xml or a format extension of .xml), no changes are needed to the server.
We can treat the server as a web service simply by requesting XML over HTTP. The
client will require some slight modifications to talk over a RESTful HTTP interface
rather than a database connection, but the changes will be very small as ActiveRe-
source was designed to have an ActiveRecord-like interface.

First, we will copy the entire project (the original of which will become the server)
into a separate directory, which will become the client:

$ cp -R products_example products_example_client

As mentioned previously, the server needs no modification at all. We can start it on
port 4000, which will become the location at which we access the web service:

$ cd products_example_client
$ script/server --port 4000

Now we can open up the code for the client and modify it to query http://localhost:
4000/ for products. We open app/models/product.rb, which was a very straightforward
ActiveRecord model:

class Product < ActiveRecord::Base
end

We change this to an equivalently simple ActiveResource model, backed by the web
service that we have set up:

class Product < ActiveResource::Base
 self.site = "http://localhost:4000/"
end

http://localhost:4000/
http://localhost:4000/

RESTful Rails | 229

Now we have to fix a small glitch due to differences between ActiveRecord and
ActiveResource. Unlike ActiveRecord objects, ActiveResource objects don’t know
their potential set of attributes when they are initialized (as that would take a web
service call to determine). In our client application, the ProductsController#new
action sets up an empty Product with the following:

@product = Product.new

On the server, @product is an ActiveRecord::Base object. That statement fetches
some metadata about the products table’s columns, their data types, and their con-
straints. On the other hand, on the client, @product is an ActiveResource::Base
object. Initializing it with .new does not contact the server, and therefore it knows
nothing about its own attributes.

To resolve this, we will cheat a little. The app/views/products/new.erb view accesses
the product’s attributes with text_field and the like:

<% form_for(:product, :url => products_path) do |f| %>
 <p>
 Name

 <%= f.text_field :name %>
 </p>

...
<% end %>

These methods are helpful; they will use the @product object if it is present (and use
its attribute values as default values in the text boxes). However, if @product is nil,
the helpers will not complain and will just render empty input fields. So, we can get
away with not initializing @product at all. Simply comment out the line initializing
@product, and the situation will be resolved:

 # GET /products/new
 # GET /products/new.xml
 def new
 #@product = Product.new

 respond_to do |format|
 format.html # new.erb
 format.xml { render :xml => @product }
 end
 end

Now we start the client’s web server on port 3000 (with the web service’s web server
still running on port 4000):

$ cd products_example_client
$ script/server

Loading up http://localhost:3000/products in the browser, the application looks and
behaves the same, but it is backed by a RESTful connection over HTTP rather than a
SQL connection.

http://localhost:3000/products

230 | Chapter 7: REST, Resources, and Web Services

We can examine the client’s log to find a fairly standard-looking request and
response:

Processing ProductsController#index (for 127.0.0.1 at 2007-09-14
 14:30:36) [GET]
 Session ID: BAh7Bi...
 Parameters: {"action"=>"index", "controller"=>"products"}
Rendering template within layouts/products
Rendering products/index
Completed in 1.02543 (0 reqs/sec) | Rendering: 0.19423 (18%) |
 DB: 0.00000 (0%) | 200 OK [http://localhost/products]

But, as you may notice here, there is no “Product Load” entry indicating a database
call. If we look at the server’s log, we notice that the client issued a GET request from
ActiveResource for http://localhost:4000/products.xml to load the list of products:

Processing ProductsController#index (for 127.0.0.1 at 2007-09-14
 14:30:38) [GET]
 Session ID: 04bc0d4b88c250a9cd50fb481991e2d9
 Parameters: {"format"=>"xml", "action"=>"index",
 "controller"=>"products"}
 Product Load (0.000591) SELECT * FROM products
Completed in 0.15692 (6 reqs/sec) | Rendering: 0.00255 (1%)
 | DB: 0.00059 (0%) | 200 OK [http://localhost/products.xml]

We can see the XML wire protocol that ActiveResource uses by querying the web
service directly—just navigate to http://localhost:4000/products.xml. The response is
generated by the ActiveRecord XmlSerializer, via @products.to_xml:

<?xml version="1.0" encoding="UTF-8"?>
<products>
 <product>
 <created-at type="datetime">2007-09-08T14:06:08-05:00</created-at>
 <description>Description of the T-shirt</description>
 <id type="integer">1</id>
 <name>Organic cotton T-shirt</name>
 <price type="float">18.5</price>
 <quantity type="integer">15</quantity>
 </product>
</products>

Of course, real-world applications will be more complicated than this. The real prob-
lems come from the complexity involved in integrating different systems. In this
example, we were greatly assisted by having a monoculture—making Rails talk to
Rails is easier than, say, making a J2EE system talk to Rails.

However, the advantage of a RESTful architecture lies in its constraints. Agreeing on
RESTful principles narrows the universe of discourse—it pares down the space in
which two systems can disagree and still call themselves RESTful. And REST con-
strains architecture in a way that has been found to be applicable to most applica-
tions, so it is a reasonable default for new architectures. The conventions of
ActiveResource layer on top of these constraints in a way that is friendly to Rails/
ActiveRecord applications, and not very difficult to integrate with other applications.

http://localhost:4000/products.xml
http://localhost:4000/products.xml

Case Study: Amazon S3 | 231

Action Web Service
Action Web Service (AWS) is a client and server library for SOAP and XML-RPC
web services. It used to be the default web service component in Rails, but it has
actually since been dropped from Rails 2.0 in favor of ActiveResource and RESTful
interfaces.

AWS is still being maintained as a separate library, and is still a good choice for those
who need to interoperate with SOAP or XML-RPC applications. It is discouraged for
greenfield development, though; current best practices support the use of RESTful
HTTP architectures. Thus, we will not go into detail here on its usage. API Docu-
mentation for AWS is available at http://aws.rubyonrails.org/, and the library itself
can be installed as a gem (gem install actionwebservice).

Case Study: Amazon S3
Amazon S3 (Simple Storage Service) is an online file-storage web service provided by
Amazon. It is unique among online storage services in several ways:

• It has a no-minimum pricing structure. Storage is billed by the GB-month, band-
width is billed by the GB, and there is an additional charge per GET, PUT, and LIST
request.

• There is no web interface to create objects; the only full mode of access is
through the API.

• It is generally agreed that the S3 API is the first large public API that calls itself
RESTful and actually lives up to the principles of REST.

• In addition to the rich HTTP web service interface, S3 can serve objects over
plain HTTP (without any custom HTTP headers) and BitTorrent. Many organi-
zations use S3 as a storage network for their static content because it can serve
images, CSS, and JavaScript just as well as a standard web server.

The full documentation for the S3 API is at http://aws.amazon.com/s3. We will now
look into the basic architecture of S3, its concepts, and its set of operations.

Concepts and Terminology
S3 is used to store objects, which are streams of data with a key (a name) and
attached metadata. They are like files in many ways. Objects are stored in buckets,
which also have a key. Buckets are like filesystem directories, with a few differences:

• Bucket names must be unique across the entire S3 system. You cannot pick a
bucket name that has already been chosen by someone else.

• Bucket names must be valid DNS names (alphanumeric plus underscore, period,
and dash).

http://aws.rubyonrails.org/
http://aws.amazon.com/s3

232 | Chapter 7: REST, Resources, and Web Services

• Buckets cannot be nested. There is one level of buckets, which contain objects.
However, we can fake such nesting by giving objects keys like blog/2007/01/05/
index.html. Slash characters, though they often designate hierarchy in URIs, are
treated like any other character in object keys. We can even query keys by pre-
fix, so we can ask to list keys starting with blog/2007/01/05.

Amazon provides three different URI templates by which objects can be accessed. These
are genuine RESTful URIs; they refer to the resources themselves, and nothing else:

• http://s3.amazonaws.com/bucketkey/objectkey

• http://bucketkey.s3.amazonaws.com/objectkey

• http://bucketkey/objectkey

This last URI is an example of a virtual hosted bucket; by using a DNS name as a
bucket key, and pointing that DNS name at s3.amazonaws.com. via a CNAME, S3 will
recognize the bucket key from the Host header and serve the appropriate object. This
makes it possible to serve an entire domain from S3, nearly transparently. If we cre-
ate a bucket called images.example.com, place a JPEG photo in it as an object called
hello.jpg, and ensure the proper CNAME is set up pointing images.example.com. to
s3.amazonaws.com., then our image is accessible at http://images.example.com/hello.jpg
with a standard web browser, just as if we had an HTTP server serving that URI.

Authentication
Because Amazon was not tied to the limitations of existing HTTP clients, it did not
have to bow to the limitations of HTTP Basic or Digest authentication in web brows-
ers when creating S3. The S3 authentication protocol is a thin layer, adding an
HMAC signature to each request. After the message is signed, a header is added to
the HTTP request as follows:

Authorization: AWS AWSAccessKeyId:Signature

The AWSAccessKeyId value indicates the ID of the access key that the bucket owner
generated; it is tantamount to a user ID. The Signature value is the Base64-encoded
result of the HMAC calculation.

Alternative authentication options

S3 is a closed system; the owner of a bucket is billed for most operations on it.
Therefore, all requests to S3 must be signed or otherwise authorized by the bucket
owner, as he is the one ultimately responsible for payment.

However, signing each request can be inconvenient in some situations. A common
example is when an organization uses S3 as an asset server; usually the organization
would want the corresponding bucket to be world-readable. S3 includes access con-
trol lists (ACLs) for this purpose. As long as the owner is comfortable with being
charged for operations by anonymous users, he can give READ access to the AllUsers
group, which will eliminate the need for a signature.

Case Study: Amazon S3 | 233

Another option, which can be incredibly useful, is to delegate access control by
including the authentication information in the query string of the object’s URI. This
is most useful when the object is still private but there are designated users without
an AWS account who should be allowed to retrieve it via plain HTTP or BitTorrent.
Basecamp uses this approach to store a company’s files. The files are kept on S3 with
a locked-down ACL, and when an authorized user requests the file, he is sent to a
URI including a signature, which is valid for a limited period of time. The format of
the URIs is such:

/objectkey?AWSAccessKeyId=AWSAccessKeyId&Expires=Expires&Signature=Signature

The AWSAccessKeyId and Signature values are as described previously, while the
Expires value is a POSIX-time-formatted value indicating when the authorization
expires. The Expires value is also signed by the HMAC so that the recipient cannot
modify it undetected.

Architecture and Operations
S3 has a truly RESTful HTTP interface, in which the URIs correspond to resources
only, the proper HTTP methods are used according to their semantics, and status
codes are used appropriately. There are three types of resources in the S3 system:

Service
Represents the Amazon S3 service; its well-known URI is http://s3.amazonaws.
com/. This resource supports only one HTTP method:

GET service
Returns a list of all buckets owned by the currently authenticated user.

Bucket
Represents one bucket belonging to the authenticated user. Can be accessed
through the following URIs:

• http://s3.amazonaws.com/bucketkey

• http://bucketkey.s3.amazonaws.com/

• http://bucketkey/ (if the key is a valid DNS name with a CNAME pointing
to s3.amazonaws.com)

A bucket resource supports the following three methods:

PUT bucket
Creates a bucket with the given name (as the client gets to choose the name,
this is accomplished with PUT to the resource itself, rather than POST to the
parent). Attempting to create a bucket that already exists will return an
HTTP 409 Conflict error code.

GET bucket
Retrieves a list of objects contained in the specified bucket. Takes a prefix
parameter in the query string to list all keys that begin with a given string.

234 | Chapter 7: REST, Resources, and Web Services

DELETE bucket
Deletes the specified bucket. Only the bucket’s owner may delete a bucket.
A bucket can be deleted only if it is empty; attempting to delete a nonempty
bucket will cause an error with an HTTP status code of 409 Conflict.

Object
Represents an object stored within a bucket. Accessible at the following URIs:

• http://s3.amazonaws.com/bucketkey/objectkey

• http://bucketkey.s3.amazonaws.com/objectkey

• http://bucketkey/objectkey

All object keys, as seen above, are qualified with their bucket key. An object
resource supports the following four methods:

PUT object
Stores the given data at the location specified, creating a new object or over-
writing an existing object.

GET object
Retrieves and returns the object at the specified location.

HEAD object
Returns the headers that would be returned from a GET request on this
object, with no body.

DELETE object
Deletes the object at the given location. By analogy to Unix file permissions,
you must have WRITE access on a bucket to delete objects within it. Delet-
ing a nonexistent object is not an error, but is effectively a no-op.

S3 Clients and Servers
Marcel Molina, Jr.’s AWS::S3 library (http://amazon.rubyforge.org/) is the most
popular client for S3. Its design was inspired by ActiveRecord, and it is simple and
elegant:

require 'aws/s3' # gem install aws-s3

AWS::S3::Base.establish_connection!(
 :access_key_id => 'MyAWSAccessKeyId',
 :secret_access_key => 'MyAWSSecretAccessKey'
)

image_bucket = Bucket.create "images.example.com"

S3Object.store(
 'hello.jpg', # key
 File.read('hello.jpg'), # value
 'images.example.com', # bucket name
 :content_type => 'image/jpeg',
 :access => :public_read
)

http://amazon.rubyforge.org/

Further Reading | 235

The s3fuse project (http://sourceforge.net/projects/s3fuse/) is an implementation of an
S3 client using FUSE (a Linux filesystem framework that runs in userspace rather than
kernel space). This makes it possible to mount an S3 bucket as a Linux filesystem and
use it transparently within unmodified applications.

Park Place, by why the lucky stiff (http://code.whytheluckystiff.net/parkplace), is a
nearly complete clone of the Amazon S3 web service. It is perfect for developing and
testing S3 applications without requiring an S3 account or payment. It does not sup-
port S3’s SOAP interface, but it supports most everything else, including distributing
objects with BitTorrent.

Park Place is written using the excellent Camping web microframework,
also by why the lucky stiff (http://code.whytheluckystiff.net/camping).
Camping is a very stripped-down Ruby framework modeled after Rails
but taking less than 4 kb of source (packed).

Incidentally, the Camping source is a great place to learn Ruby meta-
programming inside and out.

Further Reading
Roy Fielding’s dissertation, Architectural Styles and the Design of Network-Based
Software Architectures, is available online from http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm.

The REST wiki is full of theoretical as well as practical guidance about the principles
of REST: http://rest.blueoxen.net/.

The HTTP/1.1 specification, RFC 2616, is fairly accessible for the working web
developer. Every web application developer should at least be conversant in HTTP.
An HTML version of the RFC is available from http://www.w3.org/Protocols/rfc2616/
rfc2616.html.

Leonard Richardson and Sam Ruby’s RESTful Web Services (O’Reilly) is a very acces-
sible, yet comprehensive, introduction to the principles of RESTful design. Although
it is oriented toward machine-consumable web services, the principles of REST are
generally applicable to any network architecture.

Software architecture has a surprising amount in common with building architec-
ture. For a different perspective on software architecture, Christopher Alexander’s
classic trilogy (The Timeless Way of Building, A Pattern Language, and The Oregon
Experiment) is worth a read. The books describe how architecture influences and is
influenced by life. Alexander’s philosophies on architecture were the inspiration for
the modern software design patterns movement.

http://sourceforge.net/projects/s3fuse/
http://code.whytheluckystiff.net/parkplace
http://code.whytheluckystiff.net/camping
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://rest.blueoxen.net/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

236

Chapter 8CHAPTER 8

i18n and L10n 8

Wer fremde Sprachen nicht kennt,
weiß nichts von seiner eigenen.
(He who ignores foreign languages
knows nothing of his own.)
—Goethe

As the reach of the Web expands, developers find that their web applications must
be customized to match the needs of new audiences of different cultures.
Internationalization is the process of adapting software so that it may be used across
many various cultures and locales. Localization is the process of actually modifying
the product and creating a version customized for a particular language, country, or
locale.

The difference between internationalization and localization can be fuzzy, and it can
change from situation to situation. As a simplistic example, consider a social net-
working site. At a minimum, internationalization would involve adapting the appli-
cation to accept and display data in a wide variety of character sets (say, by using
UTF-8 for all input, output, and storage). Localization would at least involve transla-
tion of user interface elements to several languages, and possibly much more.

The term internationalization is usually abbreviated i18n, short for “i,
18 letters, and then n.” Similarly, “localization” is abbreviated L10n.
To avoid ambiguity, i18n is always written with a lowercase i, while
L10n always uses an uppercase L. I will use this convention through-
out this chapter.

Locale
Although language translation gets the lion’s share of attention in this field, it is but
one part of i18n. A human language may have significant regional differences or vari-
ants between countries where the language is spoken. Dialects aside, there can be
large differences in currency, collation (sort order), number and date format, and
even writing system across regional or political divisions within a country.

Character Encodings | 237

These differences are encapsulated in the concept of locale. A locale is usually
defined as a language plus a country or region. It includes not only language but also
regional and local preferences and possibly a character encoding. A POSIX-style
locale identifier looks like en_US.UTF-8 (English, United States, UTF-8 character
encoding).

Character Encodings
One of the most fundamental topics in i18n is the concept of a character encoding or
character set.* Computers work with numbers; people work with characters. A char-
acter encoding maps one to the other. This is simple enough. The difficulty comes,
as it usually does, because of history.

At the time of this writing, ASCII is nearing its 45th birthday; yet we still see its legacy
today. This should not surprise anyone; data is usually the most long-lived part of a
computing system. As networking protocols and storage formats are built on top of
a character encoding, it should not be a surprise that the character encoding would
be among the most deeply entrenched and hardest to change parts of a protocol stack.

ASCII
ASCII, the American Standard Code for Information Interchange, was one of the first
character encodings to gain widespread use; it was introduced in 1963 and first stan-
dardized in 1967. Most encodings in use today descend from ASCII.

The ASCII standard (ANSI X3.4-1986) defines 128 characters. The first 32 charac-
ters (with hex values 0 through 1F) and the last character (7F) are nonprinting con-
trol characters. The remainder (20 through 7E) are printable. The control characters
have largely lost their original meaning, but the printable characters are nearly
always the same. The standard ASCII table is as follows.

* A character set is a collection of characters (such as Unicode), while a character encoding is a mapping of a
character set to a stream of bytes. For the older character sets such as ASCII, the two terms can generally be
conflated.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1x DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2x ! " # $ % & ' () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ^ _

6x ` a b c d e f g h i j k l m n o

7x p q r s t u v w x y z { | } ~ DEL

238 | Chapter 8: i18n and L10n

Extended ASCII

Although ASCII defines 128 characters and a 7-bit encoding, most computers pro-
cess data in 8-bit bytes. This leaves room for 128 more characters. Of course, com-
puter vendors each chose their own way to deal with this situation. This led to the
development of numerous extended-ASCII character sets, each of which used a dif-
ferent interpretation for the upper octets (80 through FF).

The most widely adopted extended-ASCII standard is ISO 8859. This standard
adopts the ASCII values for the first 128 characters, and provides 15 different “parts”
that each provide a definition for the last 128 characters. In effect, ISO 8859 defines
15 separate character sets.

The most used of these character sets is ISO-8859-1 (Latin-1). This provides nearly
complete coverage for most Western European languages. In fact, the 256 characters
defined by ISO-8859-1 correspond to the first 256 code points of Unicode. ISO-
8859-1 is still in widespread use among languages that use the Latin alphabet.

Problems with ASCII

Though the extended ASCII character encodings were widely successful for years,
they only provided a temporary fix. With so many encodings floating around, it is
difficult for people to communicate. It is always impossible to look at a sequence of
bytes and determine their character encoding; that information must be carried out-
of-band. The more potential character sets in use, the worse this problem becomes.

Another problem with the use of ASCII or extended ASCII is that it has no support
for bidirectional, or bidi, text. Some written languages, such as Hebrew and Arabic,
are written primarily right-to-left (RTL). This causes problems in rendering systems
that were designed with left-to-right (LTR) text in mind. Bidirectional text, which
combines LTR and RTL within a page or paragraph, is usually impossible with
ASCII or extended ASCII.

The worst limitation of the extended-ASCII model is that it still only provides sup-
port for a maximum of 256 characters. This is not nearly enough for East Asian lan-
guages (the so-called CJK or CJKV languages, for Chinese, Japanese, Korean, and
Vietnamese), which are ideographic and can require tens of thousands of characters
for adequate coverage. There are several encodings that cover the CJKV languages
specifically, but they do not solve the general problem of having too many encodings.

Unicode
The extended-ASCII model was successful for many years, and the ISO-8859 encod-
ings provided a good way to support different world scripts. However, the limita-
tions became increasingly bothersome; multiple languages could not be supported

Unicode | 239

within one document, and the CJKV languages had their own independently devel-
oped character sets and encodings. In addition, the Internet began to develop in the
1990s, connecting people and allowing them to exchange digital information with a
far greater reach than before.

So, in 1991, the Unicode Consortium published the first Unicode standard. Unicode
sought to be the “one true character set” in which all text would eventually be repre-
sented. In a large part, that goal is well on the way to being accomplished. Unicode is
a widely known, well-supported standard that is used extensively on the Internet and
in other forms of data exchange today.

Unicode supports all of the world’s writing systems currently in use and many
archaic ones, with very few exceptions. There is no “code page” switching as there
was under the old character-set systems. All of the scripts can be used interchange-
ably within a document, and the encodings are universal; they can be exchanged
over the Internet without worrying too much about differing encodings.

Unicode deals with the world in Platonic ideals. Rather than representing glyphs (the
rendering of a character), each Unicode code point represents a grapheme (the char-
acter abstracted from its representation).* This is consistent with the purpose of a
character encoding: to encode text without specifying presentation. For example, the
following two characters are the same grapheme and would be represented by the
same Unicode code point (U+0061, LATIN SMALL LETTER A), even though they
are different glyphs (see Figure 8-1).

Though the distinction between graphemes and glyphs is relatively easy to make for
English, it can be very difficult and occasionally political for Han characters (the
ideographs common to CJKV languages).†

Unicode Transformation Formats
One of the key factors driving the adoption of Unicode is UTF-8 (8-bit Unicode
Transformation Format). UTF-8 has several clever features (some would call them
compromises) that make it attractive to those who are used to working with ASCII or
Latin-1 text:

* In this chapter, I use grapheme and character synonymously.

Figure 8-1. Alternative glyphs representing the “a” grapheme

† See http://en.wikipedia.org/wiki/Han_unification for one aspect of this situation.

http://en.wikipedia.org/wiki/Han_unification

240 | Chapter 8: i18n and L10n

• In UTF-8, text that only uses standard ASCII characters is byte-for-byte identical
to its ASCII encoding. UTF-8 ensures that the encoding of every code point above
U+007F begins with a high-ASCII character (with a most significant bit of 1).

• Because of this, a UTF-8 encoded string will never contain the null byte (0x00),
except as the encoding of the code point U+0000.

• UTF-8 is somewhat self-synchronizing, which makes it resilient to error. Each
type of byte in UTF-8 (single-byte character, first byte of a multibyte character,
and subsequent bytes of a multibyte character) can be distinguished by its pre-
fix. Therefore, you can start at any byte point in a string and find the next char-
acter without working backward. Similarly, you can find the previous character
by only working backward.

• Because of these unique prefixes, no encoding of a character is a substring of
another character’s encoding. For example, the ASCII character “a” is repre-
sented by 0x61 in UTF-8. No other character’s encoding will contain the byte
0x61, so if you see that byte, you know that it represents the character “a.” This
ingenious design decision means that string searching works with standard, non-
UTF-8-aware algorithms.

However, UTF-8’s similarity to previous encodings can lead to confusion. When
working with UTF-8 text, there are more things to think about:

• The number of code points in a string cannot be determined from the number of
bytes. The entire string must be read and processed to determine the number
of characters.

• Even when the number of code points is known, features such as ligatures, com-
bining characters, bidi text, and control characters make it impossible to deter-
mine how much space is needed to display a string without parsing every byte.

• UTF-8 strings cannot be cut at byte boundaries; they must be cut on character
boundaries. Due to the design of UTF-8, it is easy to find character boundaries
with simple bit operations, but this must still be taken into account.

UTF-8 has largely won out over other encodings, especially on the Internet. Later in
this chapter, we will examine the problems encountered when working with UTF-8
text in Rails, and we will look at the solutions we have available.

The Unicode Basic Multilingual Plane (BMP), which contains most of the scripts in
common use today, covers code points U+0000 through U+FFFF. In UTF-8, code
points in the BMP can be expressed in three or fewer bytes. Though Unicode sup-
ports up to 17 planes of characters (with 65,536 code points each), only about 10%
of the available space has been assigned thus far.

Rails and Unicode | 241

Rails and Unicode
Ruby 1.8 has less-than-ideal Unicode support, when compared to its contemporaries
such as Java and the .NET languages. To Ruby, strings are just sequences of 8-bit
bytes, while the character and string types of the Java runtime and .NET CLR are
based on Unicode code points. While Ruby’s approach simplifies the language, most
developers at this point in time need Unicode support. Luckily, Ruby is flexible
enough that we can tack support for Unicode onto the language in a relatively
friendly way.

It is not surprising that Ruby’s Unicode support is lacking. During the time of Ruby’s
genesis in Japan (the mid-1990s), Unicode was first being developed. In Unicode’s
early stages, its supporters were mainly American and European, with less East Asian
involvement.

Many Japanese people opposed the process of Han unification, or collapsing most of
the Han characters common to CJKV languages into a single set of code points. The
unified Han characters tended to appeal more to Chinese speakers than Japanese
speakers. The people involved in Han unification (primarily Westerners) tended to
collapse characters that were similar, but not identical, across Asian languages. In the
early days of Unicode, rendering software would get confused and display similar,
but incorrect, glyphs for the Han-unified characters. This was at best disconcerting;
at worst, offensive.

There are technical solutions to all of these problems today, but Unicode was a slow
starter in Japan. Other character sets such as Shift_JIS gained more currency in Japan
at the time, which actually may have contributed somewhat to the problem; having
more extant character sets leads to more conversion issues.*

Multilingualization in Ruby 1.9
Ruby 1.9 will support multilingualization (m17n). Rather than a built-in Unicode
assumption, Ruby 1.9 will support interoperability between multiple character sets.
This is more flexible than assuming that all string literals are Unicode, and it is a
more general approach to character set handling. To use UTF-8 for all string and
regex literals, the following pragma can be used:

coding: utf-8

* Matz expresses this sentiment in an interview available at http://blog.grayproductions.net/articles/the_ruby_
vm_episode_iv.

http://blog.grayproductions.net/articles/the_ruby_vm_episode_iv
http://blog.grayproductions.net/articles/the_ruby_vm_episode_iv

242 | Chapter 8: i18n and L10n

ActiveSupport::Multibyte
In lieu of complete multibyte character support in Ruby 1.8, Rails has created a
workaround. We touched on this solution, ActiveSupport::Multibyte, back in
Chapter 2. Here, we will explore it in more detail.

Recall that the global variable $KCODE determines the current character encoding, and
thus influences how Ruby treats your strings. In Rails 1.2 and later, Initializer sets
$KCODE to 'u', so all processing is assumed to be in UTF-8 unless otherwise specified.

Rails includes a library called ActiveSupport::Multibyte that provides a way to deal
with multibyte characters on top of Ruby. At this time, only UTF-8 is supported. The
encoding is derived from the current value of $KCODE.

Multibyte adds a String#chars instance method, which returns a proxy (of type
ActiveSupport::Multibyte::Chars) to that string. This proxy delegates to a handler,
depending on the current encoding. (Right now, the only handlers are a UTF-8 hand-
ler for $KCODE = 'u' and a pass-through handler for everything else.) The Chars object
uses method_missing to trap unknown calls and send them to the handler. If the
handler cannot deal with them, they are sent to the original String.

The most important feature Multibyte provides is the ability to split strings on char-
acter boundaries, rather than byte boundaries. All you need to do is call the
String#chars method and optionally convert back to a String when you are done:

$KCODE = 'u'

str = "résumé" # => "résumé"

str[0..1] # => "r\303"
str.chars[0..1].to_s # => "ré"

Multibyte also provides case conversion, which can differ vastly among languages:

str.upcase # => "RéSUMé"
str.chars.upcase.to_s # => "RÉSUMÉ"

And method calls to chars can be chained, as the Chars methods return a Chars
object rather than Strings. Even methods that are proxied back to the original String
have their String return values converted to Chars objects.

str.chars[0..1].upcase.to_s # => "RÉ"

The implementation of Multibyte is itself fascinating; the tables of composition
maps, codepoints, case maps, and other details are generated automatically from
tables at the Unicode Consortium web site and stored in active_support/values/
unicode_tables.dat. The generator can be found in active_support/multibyte/
generators/generate_tables.rb.

Rails and Unicode | 243

Unicode Normalization
As with any increasingly complicated encoding, normalization and canonicalization
are important issues with Unicode. One representation on paper (or screen) may
map to multiple encodings. In some cases, it may be more desirable to treat those
sequences identically, but in other cases we may need to treat them differently.

One complicating issue is character composition. Unicode provides multiple versions
of some characters, for various reasons. For example, the ö in the German word schön
can be encoded as either ö (U+00F6 LATIN SMALL LETTER O WITH DIAERESIS)
or as the combination of o (U+006F LATIN SMALL LETTER O) and ¨ (U+0308
COMBINING DIAERESIS). The two representations use different byte sequences,
and therefore they would not compare as equivalent to a byte-oriented procedure.

Another example is compatibility characters, or characters that were introduced into
Unicode for compatibility with older encodings. One area where this occurs is typo-
graphical ligatures (see Figure 8-2).

The text on the left does not use a ligature. For typographical reasons, the style on
the right is usually used for the combination of f and i. The original intent of Uni-
code was that a smart rendering system would replace the consecutive code points f
and i with the appropriate ligature. However, many systems turned out not to be
capable of this advanced rendering (Mac OS X being a notable exception). There-
fore, common ligatures were given their own code points, so that they could be
embedded in a body of text and rendered (with a suitable font including those liga-
tures) with a dumb client. In this case, the ligature “fi” is U+FB01 LATIN SMALL
LIGATURE FI.

To support character composition on platforms with less complex rendering sys-
tems, Unicode includes precomposed characters, such as the ö shown earlier (U+00F6
LATIN SMALL LETTER O WITH DIAERESIS). Compatibility characters such as
the typographical ligatures are often precomposed. In order to properly compare and
collate strings that may include both combining characters and precomposed charac-
ters, the strings must be canonicalized, or reduced to a well-known form such that
two strings that are “the same” (by some definition) will always map to the same
sequence of code points.

Figure 8-2. The “fi” sequence shown without a ligature and with a ligature

244 | Chapter 8: i18n and L10n

To canonicalize sequences of code points, we must first determine what our notion
of equivalence is. Unicode defines two types of equivalence: the narrow canonical
equivalence and the broader compatibility equivalence. Canonical equivalence is lim-
ited to characters that are equal in both form and function—the standard example
being the decomposed ö (the two code points o and ¨) versus the precomposed char-
acter ö (one code point). Two sequences of code points, such as those, that are
canonically equivalent are identical in appearance and usage, and can in nearly all
cases be substituted for each other.

Compatibility equivalence is a broader concept. Compatibility equivalence includes
all canonically equivalent characters, plus characters that may have different seman-
tics but are rendered similarly. Examples include the characters f and i versus the fi
ligature, or the superscript 2 versus the ordinary numeral 2.

There are four methods of Unicode normalization: D, C, KD, and KC. (They are also
referred to as NFD, NFC, NFKD, and NFKC, with NF standing for Normalization
Form.) The D forms leave the string in a decomposed form, while the C forms leave
the string canonically composed (by first decomposing, and then recomposing by
canonical equivalence). The K forms decompose by compatibility equivalence, while
those without a K decompose by canonical equivalence. (All composition is done
under canonical equivalence to ensure a consistent composition.)

ActiveSupport provides methods on the UTF-8 handler for Unicode normalization,
supporting all four forms. The following code shows the differences between the four
forms as applied to the string final piñata. The first word includes the fi ligature,
which is compatibility equivalent (but not canonically equivalent) to the separated
characters fi. The second word includes the character ñ, which is both compatibility
equivalent and canonically equivalent to the code points n and ˜.

$KCODE = 'u'

str = "final piñata".chars

str.normalize(:d).to_s # => "final pin˜ata"
str.normalize(:c).to_s # => "final piñata"
str.normalize(:kd).to_s # => "final pin˜ata"
str.normalize(:kc).to_s # => "final piñata"

Filtering UTF-8 Input
Although you may be UTF-8 clean through your entire system (UTF-8 text can be
entered anywhere and is displayed identically upon output), you are still at risk of
problems if you just accept user-provided strings as UTF-8. Users can provide invalid
UTF-8 text (not all byte sequences correspond to valid sequences of UTF-8 code
points). Users will even provide maliciously malformed UTF-8 text in an attempt to
crash or exploit your string-processing functions.

Rails and Unicode | 245

Paul Battley wrote an article addressing the issue of filtering untrusted UTF-8 strings.*

As with most other hard problems in Rails, we cheat. In this case, the iconv library
can clean up UTF-8 strings for us:

require 'iconv'

ic = Iconv.new('UTF-8//IGNORE', 'UTF-8')
valid_string = ic.iconv(untrusted_string + ' ')[0..-2]

The Iconv.new line creates a new Iconv object to translate potentially invalid UTF-8
data into UTF-8 data with invalid characters ignored. The next line works around an
Iconv bug: it will not detect an invalid byte at the end of a string. Therefore, we add a
space (a known-valid byte) and chop it off after performing the conversion.

Ilya Grigorik shows how to use the Oniguruma regular expression engine to filter out
control characters (of the Cx classes).† Note that the Oniguruma engine is standard
in Ruby 1.9, but is also available for Ruby 1.8 (gem install oniguruma).

require 'oniguruma'

Finall all Cx category graphemes
reg = Oniguruma::ORegexp.new("\p{C}", {:encoding => Oniguruma::ENCODING_UTF8})

Erase the Cx graphemes from our validated string
filtered_string = reg.gsub(validated_string, '')

Storing UTF-8
Proper i18n requires that your character set be correctly processed in the application
and correctly stored in the database. For most Rails applications, this means setting up
the database and connection to be UTF-8 clean. Since Rails 1.2, ActiveRecord correctly
processes UTF-8 data and is ready for UTF-8 storage over supported connections. The
specifics differ among database engines, so we’ll examine MySQL and PostgreSQL here.

MySQL

To properly store UTF-8 data in a MySQL database, two things need to be in place.
First, the database and tables need to be configured with the proper encoding. Sec-
ondly, the client connection between ActiveRecord and MySQL needs to use UTF-8.

MySQL ships with Latin1 (ISO-8859-1) as the default character set. Thus, all of the
string operations are by default byte-oriented. You can change the default character
set and collation for the entire database server with the following commands in the
MySQL configuration file (my.cnf):

character-set-server=utf8
default-collation=utf8_unicode_ci

* http://po-ru.com/diary/fixing-invalid-utf-8-in-ruby-revisited/

† http://www.igvita.com/blog/2007/04/11/secure-utf-8-input-in-rails/

http://po-ru.com/diary/fixing-invalid-utf-8-in-ruby-revisited/
http://www.igvita.com/blog/2007/04/11/secure-utf-8-input-in-rails/

246 | Chapter 8: i18n and L10n

The Rails create_database schema definition method will attempt to do the
right thing. If you use create_database to create your databases, they will default to
UTF-8:

>> ActiveRecord::Schema.define do
?> create_database :test_db
>> end
-- create_database(:test_db)
 SQL (0.000585) CREATE DATABASE `test_db` DEFAULT CHARACTER SET `utf8`
 -> 0.0008s
=> nil

However, the create_table method does not specify a character set, but you can pro-
vide an :options parameter that specifies any table creation options, including a
character set. (Bear in mind, though, that by specifying DBMS-specific table creation
syntax, you lose portability between DBMSs.)

>> ActiveRecord::Schema.define do
?> create_table :test do end
>> end
-- create_table(:test)
 SQL (0.028168) CREATE TABLE `test` (`id` int(11) DEFAULT NULL
 auto_increment PRIMARY KEY) ENGINE=InnoDB
 -> 0.1264s
=> nil

>> ActiveRecord::Schema.define do
?> create_table :test2, :options =>
 'ENGINE=InnoDB DEFAULT CHARSET=utf8' do end
>> end
-- create_table(:test2, {:options=>"ENGINE=InnoDB DEFAULT CHARSET=utf8"})
 SQL (0.028386) CREATE TABLE `test2` (`id` int(11) DEFAULT NULL
 auto_increment PRIMARY KEY) ENGINE=InnoDB
 DEFAULT CHARSET=utf8
 -> 0.0287s
=> nil

However, none of these methods will handle preexisting databases. Chances are, if
you have created databases and tables without specifying CHARACTER SET utf8, the
tables are treating the data as Latin1. If the data is actually Latin1 (and you are now
converting the entire application to Unicode at once), the conversion is simple,
though it must be done once for each table:

ALTER TABLE table_name CONVERT TO CHARACTER SET utf8;

If your only need is straight data conversion, this will work. If you are using
ActiveRecord migrations, Graeme Mathieson has written a migration that will perform
this conversion for every table in your database. It is available from http://woss.name/
2006/10/25/migrating-your-rails-application-to-unicode/.

Be very careful converting a table that has existing data. If you have been using Rails 1.2
or later (which support UTF-8 by default) and have not converted your tables to UTF-8,

http://woss.name/2006/10/25/migrating-your-rails-application-to-unicode/
http://woss.name/2006/10/25/migrating-your-rails-application-to-unicode/

Rails and Unicode | 247

you may have UTF-8 data stored in the database as Latin1. If you then convert the
table to UTF-8, the conversion will be performed twice, which will corrupt your
data. The standard procedure in this case is to dump the data as Latin1, piping the
dump through sed to change the output character set to UTF-8:

mysqldump -uusername -p --default-character-set=latin1 mydb \
 | sed -e 's/SET NAMES latin1/SET NAMES utf8/g' \
 | sed -e 's/CHARSET=latin1/CHARSET=utf8/g' >mydb.sql

Then, load the dump back into MySQL as UTF-8:

mysql -uusername -p –default-character-set=utf8 <mydb.sql

The last step in this process is to set up the client connection to support UTF-8. Even if
all of the data is properly configured and using UTF-8, if MySQL thinks the client wants
Latin1 data, that is what it will send. The SQL command to set the client encoding in
MySQL is the following:

SET NAMES utf8;

The Rails MySQL connection adapter has an encoding option that sets the client
encoding as well; in lieu of sending the preceding command, just add the following
to your database.yml:

production:
 adapter: mysql
(...)

 encoding: utf8

At this time, MySQL does not support 4-byte UTF-8 characters. This is generally not
a problem, as characters in the Basic Multilingual Plane can always be encoded in
three or fewer bytes.

PostgreSQL

PostgreSQL is in a similar situation; both the database encoding and client encod-
ing must be specified. The default encoding is SQL_ASCII. This is a special byte-
oriented compatibility encoding; the low-ASCII bytes (0x00 through 0x7F) are
treated as ASCII characters, and the rest (0x80 through 0xFF) are left alone. Because
of the design of UTF-8, the SQL_ASCII encoding is safe to use with UTF-8. How-
ever, it is not optimal, as the database server will not validate any input data.

A new database can be created with UTF-8 encoding, using either the -E option to
createdb or the SQL WITH ENCODING clause:

$ createdb -E UTF-8 new_database

-or-

=> CREATE DATABASE new_database WITH ENCODING 'UTF-8';

Existing databases that were created with another encoding can be dumped and
reloaded to convert them, as with MySQL.

248 | Chapter 8: i18n and L10n

The ActiveRecord PostgreSQL adapter also respects the encoding option to control
client encoding, so remember to set it to UTF-8:

production:
 adapter: postgresql
(...)

 encoding: UTF-8

Serving UTF-8
Properly serving UTF-8 is a matter of telling the browser that you are using UTF-8.
This is done in two ways:

HTTP Content-type header with a charset parameter
This is the preferred way to set the encoding. The server should be configured to
spit out a header like:

Content-Type: text/html; charset=UTF-8

Rails takes care of this for us. As of Rails 1.2, the encoding automatically
defaults to UTF-8.

HTML <meta> tag
This method is often used by those who are not able to change their server’s con-
figuration to add a proper header. The <meta> tag takes the place of the HTTP
header. Put this inside of the <head> tag on your layouts for the same effect as the
header specified previously:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

When used by itself, setting a <meta> tag is less than ideal. This is because once a
browser reaches this tag, it must re-parse the document from the beginning if its
initial assumption about the encoding was incorrect. (This method works
because the characters likely to be used in an HTML document before the <meta>
tag have the same representation in all of the common encodings—they are the
low ASCII characters.)

However, <meta> tags are helpful when used in conjunction with proper server
headers. They allow the browser to determine the proper encoding even if the
file is saved locally (thus removing the header information).

Note that, in the Content-type header, the name “charset” is misleading, as this para-
meter really specifies the encoding.

Character Set Conversion
You must consider the issue of data you receive from external sources in non-UTF-8
encodings. If you serve HTML in UTF-8, the data you receive through form posts
will be UTF-8. But there are other external sources as well:

Rails and Unicode | 249

• Forms from third-party sites pointed at your server may not be encoded in UTF-8.
These forms will post their data in the original character set.

• When interacting with other systems through web services or messaging, a char-
acter set and encoding must be agreed upon.

• When retrieving data from the Web (with net/http or open-uri), you must be
sure to convert text from its source encoding into your working encoding.

To remedy this situation, you can use the iconv library, which is part of the Ruby stan-
dard library. We have seen this earlier; it was used to strip invalid characters out of our
UTF-8. To convert a string from one encoding to another, create an Iconv object, pro-
viding the source and destination encodings, and call its iconv instance method:

require 'iconv'

Latin-1 (ISO-8859-1) equivalent of "café"
Latin-1 E9 == "é"
cafe_latin1 = "caf#{"E9".hex.chr}"

ic = Iconv.new("utf-8", "iso-8859-1") # to_encoding, from_encoding
cafe_utf8 = ic.iconv(cafe_latin1)

We can play with the $KCODE variable to change how we see the output. If we set
$KCODE to "U", the string is interpreted as UTF-8 and we see the properly converted
“café.” If $KCODE is "A", the string is interpreted as a series of bytes, and so we see the
unprintable characters escaped:

cafe_latin1 # => "caf\351"

$KCODE = "U"
cafe_utf8 # => "café"

$KCODE = "A"
cafe_utf8 # => "caf\303\251"

As usual, we can see the byte length of each string with String#length:

cafe_latin1.length # => 4
cafe_utf8.length # => 5

JavaScript URI encoding and UTF-8

There is one important thing to remember if you use JavaScript to URI-encode text
in a UTF-8 environment: always encode data using encodeURI() or
encodeURIComponent(); do not use escape(). The encodeURI forms follow RFC 3986,
converting the text to UTF-8 and percent-encoding each byte. This makes things
much easier on the server end.

The escape() function, on the other hand, escapes one character at a time, using
nonstandard constructs such as %u1234 (corresponding to the code point U+1234). It
escapes extended-ASCII characters as Latin-1, even on a page served as UTF-8:

250 | Chapter 8: i18n and L10n

>>> document.characterSet
"UTF-8"

>>> escape("café")
"caf%E9"

>>> encodeURI("café")
"caf%C3%A9"

Rails L10n
For an application to be truly ready for worldwide visitors, internationalization is just
the beginning. It is vital for an application with global reach to correctly accept, pro-
cess, and store UTF-8 data. But it is also important, when supporting users from differ-
ent regions and locales, to localize the interface and any applicable data to the users’
locales. This can involve any of several things, which we will cover in this section.

Interface/Resource Translation
The way the term “localization” is most often used, it refers to translating interface
text and resources into users’ languages. The traditional software package used for
localizing interface text is GNU gettext.*

gettext

gettext uses literal strings from the program’s source as keys; translators write files
that provide translations for each of the strings. There are several steps to using get-
text in an application. We will use Ruby-Gettext, which is a mostly compatible Ruby
version of GNU gettext.

First, we install the gettext gem:

$ sudo gem install gettext
Successfully installed gettext-1.10.0

Next, we create a very basic skeleton application that loads the gettext gem, binds to
the text domain (application name) hello, and displays a greeting:

hello.rb
#!/usr/local/bin/ruby -w

require 'rubygems'
require 'gettext'

include GetText
bindtextdomain('hello')

puts _("Hello, world!")

* http://www.gnu.org/software/gettext/

http://www.gnu.org/software/gettext/

Rails L10n | 251

The _() function is gettext’s standard method for localization. All literal text that is
to be localized should be wrapped in a call to this method. Our locale is set to U.S.
English, so upon running the program, we see the default U.S. English version with-
out having to do any localization:

$ echo $LC_CTYPE
en_US.UTF-8
$./hello.rb
Hello, world!

The developer now creates a .pot file from the source. This extracts all text to be
translated from the program and puts it in a template, which the translator will work
from. The GNU gettext program to create .pot-files is xgettext; the Ruby-gettext ver-
sion is called rgettext.

$ rgettext hello.rb -o hello.pot

The resulting hello.pot file has several lines of boilerplate, followed by the extracted
strings for translation—in this case, only one:

hello.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2007-10-19 12:20-0500\n"
"PO-Revision-Date: 2007-10-19 12:20-0500\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: hello.rb:9
msgid "Hello, world!"
msgstr ""

This file is ready to be translated. The translator receives hello.pot from the developer
and copies it into a directory corresponding to the destination locale. Ruby-gettext pro-
vides tools for this, but we will use the GNU gettext msginit; the Ruby-gettext
documentation recommends using it if it is available.

$ mkdir -p locale/es
$ cd locale/es/
$ LANG=es_MX msginit -i ../../hello.pot -o hello.po
(...)
Couldn't find out about your email address.
Please enter your email address.

252 | Chapter 8: i18n and L10n

translator@example.com

(...)
Creado hello.po.

Now that the hello.po file is created, the translator will work through it and add
translations for each string:

locale/es/hello.po
Spanish translations for PACKAGE package.
Copyright (C) 2007 THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
Brad Ediger <translator@example.com>, 2007.
#
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2007-10-19 12:20-0500\n"
"PO-Revision-Date: 2007-10-19 12:27-0500\n"
"Last-Translator: Brad Ediger <translator@example.com>\n"
"Language-Team: Spanish\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

#: hello.rb:9
msgid "Hello, world!"
msgstr "¡Hola, mundo!"

When all strings have been translated, the translator ships off the .po files to the
developer. The developer then creates .mo files (binary translations of the .po files;
the binary versions are used directly by the application) using rmsgfmt from Ruby-
gettext (or msgfmt from GNU gettext). When doing local development, we set the
GETTEXT_PATH environment variable to look in our locale directory. If we didn’t do
that, we would have to install our .mo files under a shared location such as /usr/
share/locale so that Ruby-gettext could find them at runtime.

$ export GETTEXT_PATH=locale
$ mkdir locale/es/LC_MESSAGES
$ rmsgfmt locale/es/hello.po -o locale/es/LC_MESSAGES/hello.mo

When we run the script with our locale set to es_MX.UTF-8, gettext searches a series
of paths under GETTEXT_PATH (including locale/es/LC_MESSAGES) for an appropri-
ate .mo-file. Finding the one we just created, it displays the properly localized text:

$ LC_ALL=es_MX.UTF-8 ./hello.rb
¡Hola, mundo!

This is a very simple example, but it illustrates many of the basic aspects of gettext.
There is a document available detailing how to integrate the Ruby bindings to gettext
into a Rails application. See http://manuals.rubyonrails.com/read/chapter/105 for the
full explanation and source files. This is essentially a do-it-yourself approach; it is a
thin layer on top of gettext, and you have to fill in some of the gaps (such as allowing

http://manuals.rubyonrails.com/read/chapter/105

Rails L10n | 253

users to change their locale and dialect) yourself. But there are good examples on
that page, and it is a good start. Also see http://jonathan.tron.name/articles/2007/03/
30/gettext-and-rails for a few miscellaneous concerns if you decide on this approach.

Gibberish

Gettext has a few disadvantages, the primary one being that translated strings are
keyed by the original string. Under gettext, even changing "Hello, world!" to "Hello
world!" would require updating that entry in every .po file and recompiling every-
thing. Even if only the English version changed, every file would require modifica-
tion, as the strings are keyed on the exact source text.

Gibberish,* by Chris Wanstrath, is a very lightweight Rails localization plugin. Like
gettext, it is based on replacing individual strings from a language-dependent
resource file. However, it is much simpler (and, correspondingly, somewhat less flex-
ible) than gettext. It is also tailored toward Ruby’s style and Rails’ needs.

First, install the Rails plugin from Subversion. Its init.rb file will load Gibberish and
any translation files under the lang directory:

$ script/plugin install svn://errtheblog.com/svn/plugins/gibberish

Unlike gettext, which scans your source files to generate translation files, Gibberish
requires you to create translation files yourself. However, they are very easy to create.
A sample Gibberish language file looks like this:

lang/es.yml
welcome: ¡Hola, mundo!

The source syntax is very much like gettext, but with the addition of a symbol tag,
used as a key in place of the string itself. Gibberish overrides the String#[] method
to provide nice syntax for this:

puts "Hello, world!"[:welcome]
>> Hello, world!

The default language is English, so if no language is selected, that statement will out-
put “Hello, world!”. We can change the default language:

Gibberish.use_language :es

puts "Hello, world!"[:welcome]
>> ¡Hola, mundo!

Interpolation variables are available, and values for them can be passed as positional
or keyword arguments. If String#[] is passed non-hash arguments, the second and
subsequent arguments are interpolated into the string, in order:

puts "Date of birth: {dob} ({age} years old)"[:dob, u.dob, u.age]
>> Date of birth: 1/1/95 (12 years old)

* http://require.errtheblog.com/plugins/browser/gibberish/README

http://require.errtheblog.com/plugins/browser/gibberish/README
http://jonathan.tron.name/articles/2007/03/30/gettext-and-rails
http://jonathan.tron.name/articles/2007/03/30/gettext-and-rails

254 | Chapter 8: i18n and L10n

Alternatively, the second argument to String#[] can be a hash. The keys correspond
to the names of the interpolation variables, while the values provide the text to be
inserted. The following code is equivalent, but more descriptive and more resilient to
change in the translated text:

puts "Date of birth: {dob} ({age} years old)"[:dob, {:dob => u.dob, :age => u.age}]
>> Date of birth: 1/1/95 (12 years old)

This example highlights one common problem with localization: it is never straight
translation of text. In most nontrivial situations, the translated text has some level of
dependence on the data that is more complicated than simple string interpolation
(“{age} years”). Later in this chapter, we will see how the Globalize Rails plugin han-
dles these situations.

Gibberish provides good Rails integration. You can automatically set a user’s lan-
guage from a session variable with a simple around filter:

class ApplicationController < ActionController::Base
 around_filter :set_language

 private

 def set_language
 Gibberish.use_language(session[:language]) { yield }
 end
end

Despite its simplicity, Gibberish has one more trick up its sleeve. If you omit the
string key, one will be generated for you:

lang/es.yml
hello_world: ¡Hola, mundo!

hello.rb
Gibberish.use_language :es

puts "Hello, world!"[:hello_world]
>> ¡Hola, mundo!

puts "Hello, world!"[]
>> ¡Hola, mundo!

This method is resilient to small changes (capitalization, punctuation, and anything
else that is removed when folding the string into a symbol), but if this feature is over-
used, you will run into the same fragility problems that gettext presents.

Globalize

For those with heavy localization needs, the Globalize plugin (http://www.globalize-
rails.org/) is the best thing since sliced bread. We will first examine the features of

http://www.globalize-rails.org/
http://www.globalize-rails.org/

Rails L10n | 255

Globalize that compete with gettext, Gibberish, and the other text-based localiza-
tion libraries commonly used with Rails. Later, we will examine some of the other
features that make Globalize so compelling.

As is the custom, Globalize provides a simple method to access translations of a
string; it can be called as String#t or Object#_ (the latter is provided for gettext
compatibility):

<% Locale.set("es-MX") %>

<%=h "Hello, World!".t %>
==> Hello, World!

<%=h _("Hello, World!") %>
==> Hello, World!

However, there is a twist. Unlike gettext and Gibberish, which both use text files to
store translations, Globalize uses the database. Since we had no Mexican Spanish
translation for “Hello, World!”, Globalize passed it through, storing the “Hello,
World!” tag in the database for future reference when you need to translate. This
replaces gettext’s harvesting phase and uses the strings themselves from your appli-
cation to determine what needs to be translated.

When we do add a translation to the database, it works as expected:

Locale.set 'es-MX'
Locale.set_translation 'Hello, World!', '¡Hola, mundo!'

puts "Hello, World!".t
>> ¡Hola, mundo!

Globalize also tries to capture all of the Rails error messages and add them to the
table, to be localized. When they have been translated, Globalize will intercept them
and replace them depending on the current locale.

Globalize includes a collection of data about the world’s languages, to minimize the
amount rote translation of common data. Data provided includes the following:

• ISO codes, English names, and native names for each language (for example,
“FR,” “French,” and “Français”).

• Pluralization rules (for example, is “0 items” inflected the same as “1 item,” or
the same as “2 items,” as in English?).

• Writing direction (left-to-right or right-to-left).

• Date, currency, and number format (for example, “12,345.67” versus “12.345,67”)
for each locale.

• Translation of date information (weekday and month names) for most languages.

256 | Chapter 8: i18n and L10n

Locale-Specific Settings
Beyond simple translation, there are plenty more locale-specific issues. Different
locales, even within the same language, can have vastly different conventions for rep-
resenting dates, times, currency, and numbers.

Luckily, this is more of a data problem than a programming problem. Globalize pro-
vides data to help with all of these issues. The date formatting helpers, Time#localize
and Date#localize, serve as a replacement for Time#strftime that translates day and
month names (both full and abbreviated):

>> Time.now.strftime("%A, %d %B %Y")
=> "Saturday, 02 June 2007"

>> Locale.set 'en-US'
>> Time.now.localize("%A, %d %B %Y")
=> "Saturday, 02 June 2007"

>> Locale.set 'pl-PL'
>> Time.now.localize("%A, %d %B %Y")
=> "Sobota, 02 Czerwiec 2007"

The localize method is also available on Integers and Floats, and provides numbers
localized to the current locale:

>> Locale.set 'en-US'
>> 123456.789.localize
=> "123,456.789"

>> Locale.set 'de-DE'
>> 123456.789.localize
=> "123.456,789"

Globalize also provides a Currency class to handle money. It acts like Tobias Lütke’s
Money class, in that it stores prices as integers in the database. But it is more flexible
in handling multiple currencies. Refer to the API documentation for the full story,
but here is a sample usage:

app/models/product.rb
class Product < ActiveRecord::Base
 composed_of :price, :class_name => 'Globalize::Currency',
 :mapping => [%w(price cents)]
end

Then we can create a product:

@product = Product.new :price => Currency.new(1000_00)
puts @product.price.to_s
>> 1,000.00

The Currency#format method formats the currency according to the specifications of
the current locale (which, as usual, is set with the Locale.set method):

Locale.set 'de-DE'
puts @product.price.format(:code => true)
>> 1.000,00 EUR

Rails L10n | 257

Note that unlike the Money library, which handles basic currency exchange, you
will need to handle any exchange calculations yourself when using Globalize. The
Globalize library only takes care of formatting, not the semantics of the currency.

Model Translation
Model translation is the most complicated, least standardized, and most application-
dependent part of localization. Model translation or content translation refers to the
translation of the content stored within an application for multiple locales. This kind
of localization is the most difficult because it is application-specific. Often, the trans-
lation cycles are much tighter than when only the application itself is localized.

The premier example of an application with a need for content translation is a web
content-management system. Often, web pages and documents need to be main-
tained in parallel in many languages. One of the key selling points of enterprise
content-management systems over their open source brethren is rock-solid support
for managing translations and their workflow.

In these applications, workflow is the key application-dependent factor. The actual
technical practice of selecting and displaying the proper content for a user’s locale is
dead simple compared to the work of coordinating to make sure the content is trans-
lated and available.

On the other hand, it is perfectly possible for an application to require international-
ization but not require any content translation at all. Applications with geographi-
cally localized clients (such as web-based applications with many small clients
located in different countries) may have a need for interface translation, and they cer-
tainly need to handle UTF-8 text properly, but they may not need to interchange
data between different languages. Again, the need is highly application-dependent.

Globalize provides facilities for model translation, closely integrated with
ActiveRecord. There are a few easy steps to follow after installing Globalize:

1. Set a base language, which is the default locale assumed for data without a trans-
lation. This is best done in environment.rb, after Rails is loaded but before the
application serves requests:

Locale.set_base_language 'en-US'

2. Provide a before_filter on your localized actions that sets the locale. This part
is application-specific; the locale can be provided in the URL, a cookie, the ses-
sion, or a user preference in the database. Here is a simple before_filter that
sets the locale based on a locale request parameter:

class ApplicationController < ActionController::Base
 before_filter :set_locale

 protected

 def set_locale

258 | Chapter 8: i18n and L10n

 Locale.set(params[:locale] || Locale.base_language.code)
 end
end

After this filter is set up, you can specify the locale for any action within the applica-
tion by adding the appropriate parameter to the URL (http://example.com/posts/
show/34?locale=zh-CN). Alternatively, you can specify the locale parameter with a
custom route:

map.cms_page ':locale/*path_info', :controller => 'pages', :action => 'show'

This route would support a multilingual content-management system, where the
locale parameter determines the language and the *path_info segment looks up
the page in the database: http://example.com/en-US/about-us/contact-us.

3. Declare that the ActiveRecord class in question contains translated data:
class Page < ActiveRecord::Base
 translates :title, :body
end

4. Find an object that needs translation; set the locale, set the text, and save the
object.

Locale.set 'es-MX'
@page.reload
@page.update_attributes! :body => "¡Hola, mundo!"

5. The ActiveRecord accessors for the attributes specified by the translates
method now automatically check the current locale and look for the proper
translation:

<%= @page.body %>
>> "¡Hola, mundo!"

Globalize Example: An Address Book
To illustrate the use of Globalize for view translation all the way through an applica-
tion, we will construct a simple database that functions like an address book. First
we will develop the address book as an English-only application; later, we will see
what is involved in integrating Globalize and adding translations.

We will use a simple SQLite3 database file for storage:

config/database.yml
development:
 adapter: sqlite3
 database: db/globalize.sqlite3
 encoding: utf8

First, we create the model and migration for the Person model and its corresponding
people table:

Rails L10n | 259

db/migrate/001_create_people.rb
class CreatePeople < ActiveRecord::Migration
 def self.up
 create_table :people do |t|
 t.string :first_name
 t.string :last_name

 t.string :home_phone
 t.string :office_phone
 t.string :mobile_phone

 t.text :address
 t.string :country
 end
 end

 def self.down
 drop_table :people
 end
end

app/models/person.rb
class Person < ActiveRecord::Base

 def full_name
 "#{first_name} #{last_name}"
 end

 def address_with_country
 "#{address}\n#{country}"
 end

end

Running the migration creates the db/globalize.sqlite3 database file:

$ rake db:migrate
== 1 CreatePeople: migrating ==
-- create_table(:people)
 -> 0.0020s
== 1 CreatePeople: migrated (0.0021s) ===

$ ls db/
globalize.sqlite3 migrate schema.rb

Here are the models, views, helpers, and controllers that we create for a very simple
first iteration of the address book. For simplicity, we only include the index (list of all
people in the address book), new (display a form to create a new entry), and show (dis-
play an individual entry’s details) actions.

config/routes.rb
ActionController::Routing::Routes.draw do |map|
 map.resources :people
end

260 | Chapter 8: i18n and L10n

app/controllers/people_controller.rb
class PeopleController < ApplicationController

 def index
 @people = Person.find :all, :order => 'last_name ASC, first_name ASC'
 end

 def create
 @person = Person.create params[:person]
 redirect_to person_path(@person)
 end

 def show
 @person = Person.find params[:id]
 end

end

app/helpers/people_helper.rb
module PeopleHelper
end

app/views/people/index.html.erb
<h1>Address Book</h1>

<% if @people.empty? %>
 <p>Address book is empty.</p>
<% else %>
 <ul id="people">
 <% @people.each do |person| %>
 <li id="person-<%= person.id %>">
 <%= link_to h(person.full_name), person_path(person) %>

 <% end %>

<% end %>

<p><%= link_to 'New person', new_person_path %></p>

app/views/people/new.html.erb
<h1>New Person</h1>

<% form_for :person, @person, :url => people_path,
 :method => :post do |@person_form| %>
 <%= render :partial => "form" %>
 <p>
 <label></label>
 <%= submit_tag "Save" %>
 </p>
<% end %>

app/views/people/_form.html.erb
<p>
 <label for="person_first_name">First name</label>
 <%= @person_form.text_field :first_name %>
</p>

Rails L10n | 261

<p>
 <label for="person_last_name">Last name</label>
 <%= @person_form.text_field :last_name %>
</p>

<p>
 <label for="person_home_phone">Home phone</label>
 <%= @person_form.text_field :home_phone %>
</p>

<p>
 <label for="person_office_phone">Office phone</label>
 <%= @person_form.text_field :office_phone %>
</p>

<p>
 <label for="person_mobile_phone">Mobile phone</label>
 <%= @person_form.text_field :mobile_phone %>
</p>

<p>
 <label for="person_address">Address</label>
 <%= @person_form.text_area :address, :size => '30x5' %>
</p>

<p>
 <label for="person_country">Country</label>
 <%= @person_form.text_field :country %>
</p>

app/views/people/show.html.erb
<h1><%=h @person.full_name %></h1>

<h2>Phone Numbers</h2>
<dl>
 <% unless @person.home_phone.blank? %>
 <dt>Home</dt>
 <dd><%=h @person.home_phone %></dd>
 <% end %>

 <% unless @person.office_phone.blank? %>
 <dt>Office</dt>
 <dd><%=h @person.office_phone %></dd>
 <% end %>

 <% unless @person.mobile_phone.blank? %>
 <dt>Mobile</dt>
 <dd><%=h @person.mobile_phone %></dd>
 <% end %>
</dl>

<h2>Address</h2>
<%= simple_format(h(@person.address_with_country)) %>

<p><%= link_to "Address Book", people_path %></p>

262 | Chapter 8: i18n and L10n

Complete the first iteration with a very simple XHTML layout and stylesheet:

app/views/layouts/people.html.erb
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Address Book</title>
 <%= stylesheet_link_tag 'default' %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

public/stylesheets/default.css
body {
 font-family: sans-serif;
}

form label {
 display: block;
 float: left;
 width: 130px;
 text-align: right;
 padding: 3px 5px;
}

Although this application leaves out many features that you would want in a real
address book, it will serve our purposes to demonstrate localization with Globalize.
The basic English-only interface is shown in Figures 8-3 through 8-6; the user can
create and view address book entries.

Figure 8-3. Blank state of an empty address book

Rails L10n | 263

Localizing the address book

Now we will localize the address book’s interface so that the interface elements
appear in the language of the user’s choice. First we will install the Globalize plugin.
This can be done by any method of your choice (see Chapter 3 for plugin installa-
tion options), but we will use svn export:

$ svn export svn://svn.globalize-rails.org/globalize/trunk vendor/plugins/globalize

Globalize comes with a Rake task to set up the tables. Unfortunately, Globalize
trunk is still broken, and it misidentifies user-created translations as built in. To fix
this, immediately after we create the translation tables, we will change the built_in
column of the globalize_translations table to default to false:

Figure 8-4. Adding a person

264 | Chapter 8: i18n and L10n

$ rake globalize:setup
$ script/console
>> ActiveRecord::Schema.define do
?> change_column_default :globalize_translations, :built_in, false
>> end

Figure 8-5. Viewing a newly created person

Figure 8-6. Viewing all people; one created

Rails L10n | 265

Now, we need to modify the views to use the String#t method, so that the views can
be translated. This can be a tedious process; here is one resulting view:

app/views/people/_form.html.erb
<p>
 <label for="person_first_name"><%= "First name".t %></label>
 <%= @person_form.text_field :first_name %>
</p>

<p>
 <label for="person_last_name"><%= "Last name".t %></label>
 <%= @person_form.text_field :last_name %>
</p>

<p>
 <label for="person_home_phone"><%= "Home phone".t %></label>
 <%= @person_form.text_field :home_phone %>
</p>

<p>
 <label for="person_office_phone"><%= "Office phone".t %></label>
 <%= @person_form.text_field :office_phone %>
</p>

<p>
 <label for="person_mobile_phone"><%= "Mobile phone".t %></label>
 <%= @person_form.text_field :mobile_phone %>
</p>

<p>
 <label for="person_address"><%= "Address".t %></label>
 <%= @person_form.text_area :address, :size => '30x5' %>
</p>

<p>
 <label for="person_country"><%= "Country".t %></label>
 <%= @person_form.text_field :country %>
</p>

Next, we need to integrate Globalize into the controllers. We will use an initializer to
set up Globalize and some locale settings for the application.

config/initializers/globalize.rb
include Globalize
Locale.set_base_language 'en-US'
LOCALES = {
 'en' => 'en-US',
 'es' => 'es-MX'
 }.freeze

The Locale.set_base_language method tells Globalize that our views are in U.S.
English, and it need not bother with translation if the user’s locale is the same.

266 | Chapter 8: i18n and L10n

The LOCALES hash is a list mapping two-letter language codes to the actual locale
names that Globalize uses. The next step is to set up an application-wide filter that
will set the user’s locale so that Globalize knows which translation to look for.

app/controllers/application.rb
class ApplicationController < ActionController::Base
 helper :all

 before_filter :set_locale

 protected

 def set_locale
 # params overrides session, but en-US is only used if both
 # params and session are absent
 session[:locale] = LOCALES[params[:locale]] ||
 session[:locale] ||
 'en-US'
 Locale.set session[:locale]
 end
end

The set_locale filter will notice anytime a page is requested with a locale in the
query string (for example, http://localhost:3000/people?locale=es). It will set the locale
so the views are translated into the correct language, and then it will store the cho-
sen locale in the session so that the locale will be used again, even if the next request
has no locale parameter. The locale defaults to en-US if none can be found in the ses-
sion or params. An application that required user registration would most likely store
the user’s locale preference in the user account, but the session will suffice for our
needs.

One very nice thing that Globalize does for us is to collect a list of text that needs to
be translated. As soon as the String#t method is called, if the appropriate transla-
tion is not in place, it is stored away to be translated. We can use Ruby to strip out a
list of needed translations and send them to a translator. Alternatively, we could
build an administrative interface with Rails that allows our translators to log in, see
any text that needs to be translated, and input translations that are used immedi-
ately. For now, we will stick with the simple approach.

Before we can enter the translations, we need to generate the list of needed transla-
tions. Browse to /people?locale=es and click around until you have visited all of the
pages. (As ActionView doesn’t render templates until they are needed, the String#t
methods will not be called until the page is actually needed.) This will populate the
list of required translations, which we can easily extract at the Rails console. All we
need to do is tell Globalize that we are translating into Mexican Spanish, and then
find the translations that have no corresponding Spanish text:

http://localhost:3000/people?locale=es
/people?locale=es

Rails L10n | 267

>> Locale.set 'es-MX'
>> pp ViewTranslation.find(:all, :conditions =>
 ['text IS NULL AND language_id = ?', Locale.language.id]).map(&:tr_key)
["Address Book",
 "New person",
 "Phone Numbers",
 "Home",
 "Office",
 "Mobile",
 "Address",
 "New Person",
 "First name",
 "Last name",
 "Home phone",
 "Office phone",
 "Mobile phone",
 "Country",
 "Save",
 "Address book is empty."]

We can take this list to our translator, get the translations back, and use the console
(or an administrative interface) to enter translations. This script, run at the Rails con-
sole, will set up our translations.

Locale.set 'es-MX'

translations = {
 "Address Book" => "Libreta de direcciones",
 "New person" => "Nueva persona",
 "Phone Numbers" => "Números de teléfono",
 "Home" => "Casa",
 "Office" => "Oficina",
 "Mobile" => "Móvil",
 "Address" => "Dirección",
 "New Person" => "Nueva Persona",
 "First name" => "Nombre",
 "Last name" => "Apellido",
 "Home phone" => "Teléfono de casa",
 "Office phone" => "Teléfono oficina",
 "Mobile phone" => "Teléfono móvil",
 "Country" => "País",
 "Save" => "Guardar",
 "Address book is empty." => "Libreta de direcciones está vacía."
}

translations.each do |key, text|
 ViewTranslation.update_all ['text = ?', text],
 ['tr_key = ? and language_id = ?', key, Locale.language.id]
end

268 | Chapter 8: i18n and L10n

As a final touch, we will add a language bar that enables the user to switch back and
forth between our supported locales. We create a partial for the language bar, and
update the master layout to include the language bar at the bottom of each page:

app/views/layouts/_language_bar.html.erb
<p>
 <%= LOCALES.keys.map { |code|
 link_to_unless code == Locale.language_code, code, url_for(:locale => code)
 }.join(" | ") %>
</p>

Using url_for() in this manner relies on the fact that it will fill in any
missing required URL parameters from the URL of the current page.
Therefore, url_for(:locale => 'es') will point to the Spanish version
of the current page.

app/views/layouts/people.html.erb
(...)
 <body>
 <%= yield %>
 <%= render :partial => "layouts/language_bar" %>
 </body>
(...)

And with that, the localization is complete. All static resources have been translated
into Spanish, and we have added all necessary features to allow users to choose a
locale. See Figures 8-7 through 8-10 for screenshots of the completed application.

Figure 8-7. Spanish translation: blank state of an empty address book

Further Reading | 269

Further Reading
Sven Fuchs has a great write-up about Globalize on his blog (http://www.artweb-design.
de/2006/11/10/get-on-rails-with-globalize-comprehensive-writeup). The Globalize site
(http://www.globalize-rails.org/) has plenty of information on setting up Globalize.

There is a mailing list for developers involved with internationalization in Rails. The list
information page is available at http://rubyforge.org/mailman/listinfo/railsi18n-discussion.

The Ruby on Rails wiki has a page with good coverage of the current i18n options at
http://wiki.rubyonrails.com/rails/pages/InternationalizationComparison.

Figure 8-8. Spanish translation: creating a new person

http://www.artweb-design.de/2006/11/10/get-on-rails-with-globalize-comprehensive-writeup
http://www.artweb-design.de/2006/11/10/get-on-rails-with-globalize-comprehensive-writeup
http://www.globalize-rails.org/
http://rubyforge.org/mailman/listinfo/railsi18n-discussion
http://wiki.rubyonrails.com/rails/pages/InternationalizationComparison

270 | Chapter 8: i18n and L10n

Figure 8-9. Spanish translation: viewing a newly created person

Figure 8-10. Spanish translation: viewing all people; one created

271

Chapter 9 CHAPTER 9

Incorporating and Extending Rails9

The best way to predict the future is to invent it.
—Alan Kay

Ruby on Rails was designed as a loosely coupled set of components (ActionPack,
ActiveRecord, ActiveResource, ActiveSupport, and ActionMailer) with some glue to
hold them together (RailTies). Although Rails is typically used as a framework (an
environment specialized to programming web applications), the components of Rails
can be replaced with other components more suitable to a project. Alternatively, the
components can be broken out and used apart from the rest of Rails. In this chapter,
we will see how these techniques can be used for maximum flexibility in application
development.

Replacing Rails Components

Replacing ActiveRecord
ActiveRecord, the Rails object-relational mapper, is one of the best-known parts of
the Rails framework. But it represents one of many valid ways to map objects to a
database. Martin Fowler identified and defined the Active Record pattern, along with
other data-source patterns, in his book Patterns of Enterprise Application Architec-
ture. (The Active Record pattern should not be confused with the ActiveRecord
library, which is based on that pattern.) Several Ruby libraries have been developed
based on other patterns. We will look at DataMapper, based on the pattern of the
same name. We will also examine Ambition, an off-the-wall experimental library
that maps Ruby statements directly to SQL.

If you are not using ActiveRecord in a Rails application, you can disable it by remov-
ing it from config.frameworks in config/environment.rb:

config.frameworks -= [:active_record]

272 | Chapter 9: Incorporating and Extending Rails

DataMapper

The DataMapper library (http://www.datamapper.org/) is based on Martin Fowler’s
Data Mapper pattern, which is similar to Active Record but with less coupling.
Active Record’s chief structural weakness is that it ties the database schema to the
object model. We see this happen in Rails when using ActiveRecord. Every struc-
tural change we want to make to the objects must be reflected in the database at the
same time.

The Data Mapper pattern provides a better balance when the object model and data-
base need to evolve separately. The drawback is that there will be some duplication.
Because of the additional layer of indirection, DataMapper cannot infer your object’s
structure from the database like ActiveRecord can. This is the necessary price of
flexibility.

DataMapper confers several other advantages over ActiveRecord:

• DataMapper includes an implementation of the Identity Map pattern, which
ensures that each database record is loaded only once. ActiveRecord will hap-
pily allow a record to be loaded many times, which can potentially cause con-
flicts when one becomes stale.

• Empirically, DataMapper is faster than ActiveRecord. The code is also smaller
and less complicated. This can be good or bad, depending on whether you need
ActiveRecord’s more advanced features.

• DataMapper can generate your database tables from their Ruby description:
class Person < DataMapper::Base
 # (property definitions)
end

Create the table based on the above properties
database.save(Person)

DataMapper defines a top-level method, database, that returns the
current database session. As a top-level method (defined on Object), it
can be used anywhere. DataMapper plays nicely, though—the method
will not be defined if there is already another top-level method with
the same name.

It does not have ActiveRecord’s complex migration support, which means that
any production schema changes must be done manually. But it does have a con-
venient task to recreate the entire schema, destroying any data in the process:

DataMapper::Base.auto_migrate!

DataMapper is very easy to use with Rails. It detects when it is being run under Rails
and reads the config/database.yml file for a connection specification. So, everything
should be ready to go with a gem install datamapper and one line in a Rails initializer:

require 'data_mapper'

http://www.datamapper.org/

Replacing Rails Components | 273

DataMapper uses many of the same constructs as Rails. Start out by defining a model
class that inherits from DataMapper::Base:

class Person < DataMapper::Base
 # ...
end

Within the class definition, property methods define fields that should be mapped
from the class to the relational database:

class Person < DataMapper::Base
 property :first_name, :string
 property :last_name, :string
 property :biography, :text

 # Associations work pretty much like ActiveRecord...
 # belongs_to :company, :foreign_key => 'firm_id'
 # has_many :transactions, :class => FinancialTransaction
end

DataMapper comes with a set of convenience methods that behave like ActiveRecord
object lifecycle methods. For example, the syntax to create a Person is the same as
under ActiveRecord:

>> p = Person.new :first_name => 'John', :last_name => 'Smith',
 :biography => 'Something about John'
=> #<Person:0x13ce99c @new_record=true, @first_name="John",
 @last_name="Smith", @biography="Something about John", @id=nil>
>> p.save
=> 1
>> p
=> #<Person:0x13ce99c @new_record=false, @first_name="John",
 @last_name="Smith", @biography="Something about John", @id=1>

Notice that under DataMapper, the attributes of Person are directly
stored as instance variables of the Person object. In ActiveRecord,
these attributes would be stored in a hash as the @attributes variable.
In some ways, DataMapper’s approach is cleaner, as it avoids another
layer of indirection.

There are many more features behind DataMapper, and the full set of documenta-
tion can be found at http://www.datamapper.org/. API documentation is also avail-
able at http://datamapper.rubyforge.org/.

Ambition

Chris Wanstrath’s Ambition project (http://errtheblog.com/post/10722) is an amaz-
ing little experiment that turns Ruby code into SQL almost transparently. Using
Ryan Davis’s ParseTree library, Ambition walks the Ruby abstract syntax tree and
turns various methods into their corresponding SQL queries.

http://www.datamapper.org/
http://datamapper.rubyforge.org/
http://errtheblog.com/post/10722

274 | Chapter 9: Incorporating and Extending Rails

Ambition is not an object-relational mapper (in fact, it requires ActiveRecord), but it
is a simple interface on top of an ORM. It allows us to write SQL queries as pure
Ruby. It does this using lazy evaluation—putting off SQL queries until the last
possible moment.

To try out Ambition, we will check out the latest code and use the test console pro-
vided with Ambition (which requires us to create a development database first):*

$ git clone git://errtheblog.com/git/ambition
$ cd ambition
$ mysql -uroot -e"create database ambition_development"
$ test/console
(...)
Available models: Admin, Company, Developer, Project, Reply, Topic, and User
>>

This is a standard irb console, from which we can interact with any of these models
as if from a Rails console. We can start off by finding users with a salary of greater
than $50,000:

>> User.select{|u| u.salary > 50_000}
=> Query object: call

Here we see lazy loading in action. Nothing has been sent to the database; instead, a
Query object has been created. Ambition relies on kicker methods to actually run the
query and return results; right now, all that we have is an object representing the query.
(This kind of object is often referred to as a promise; it has the ability to perform an
expensive calculation, but will not do so unless asked.) We can call one of the kicker
methods, map (collect), to run the query and extract the results:

>> User.select{|u| u.salary > 50_000}.map(&:name)
SELECT * FROM users WHERE (users.`salary` > 50000)
=> ["David", "Jamis", "fixture_3", "fixture_4", "fixture_5", "fixture_6",
 "fixture_7", "fixture_8", "fixture_9", "fixture_10", "admin", "Goofy"]

Since the Query object being passed around contains all information necessary to run
the query, additional methods chained onto it can actually modify the query as
needed. For example, asking the Query object for its length changes the query to
select only a count instead of a full list of columns:

>> User.select{|u| u.salary > 50_000}.length
SELECT count(*) AS count_all FROM users WHERE (users.`salary` > 50000)
=> 12

These methods can be chained, augmenting the query as they progress. For exam-
ple, the sort_by method adds an ORDER BY clause:

>> User.select{|u| u.salary > 50_000}.sort_by{|u| u.name}.map(&:name)
SELECT * FROM users WHERE (users.`salary` > 50000) ORDER BY users.name
=> ["admin", "David", "fixture_10", "fixture_3", "fixture_4", "fixture_5",
 "fixture_6", "fixture_7", "fixture_8", "fixture_9", "Goofy", "Jamis"]

* Currently, the only way to fetch the latest Ambition source is using Git, a decentralized version control sys-
tem. We cover the decentralized paradigm in Chapter 10, but for now you can fetch Git from http://git.or.cz/.

Replacing Rails Components | 275

The Query object has a to_hash and a (mostly functional) to_sql method, which help
debug the SQL queries and conditions being generated:

>> User.select{|u| u.salary > 50_000}.sort_by{|u| u.name}.to_sql
=> "SELECT * FROM users WHERE users.`salary` > 50000 ORDER BY users.name"
>> User.select{|u| u.salary > 50_000}.sort_by{|u| u.name}.to_hash
=> {:order=>"users.name", :conditions=>"users.`salary` > 50000"}

There are many more features, including some syntactic sugar on the standard Ruby
Enumerable methods:

>> User.any?{|u| u.salary > 50_000}
SELECT count(*) AS count_all FROM users WHERE (users.`salary` > 50000)
=> true

>> User.all?{|u| u.salary < 500_000}
SELECT count(*) AS count_all FROM users
SELECT count(*) AS count_all FROM users WHERE (users.`salary` < 500000)
=> true

Consult the Ambition blog post for an overview of all the useful methods and syntax
provided. Ambition is still under heavy development and is certainly subject to
change. At this time, the best source of documentation is the README (available
from the Git repository at git://errtheblog.com/git/ambition), as well as the source
itself.

Og

Og (short for ObjectGraph) is yet another object-relational mapping library for
Ruby. It is part of the Nitro project, which is a web framework similar to Rails. Like
Rails, Nitro is composed of layered components. However, these components take a
different approach to solve the same problems as Rails, and so it is much harder to
use Og with Rails than with Nitro. In particular, the Rails Dependencies system
causes many problems with file loading. We can work around these problems, but
this method should still be considered very experimental.

The Og library has less baggage than ActiveRecord, and doesn’t try to do as much,
so the code is a bit more readable. It uses “magic” just as much as ActiveRecord
does, but in a different way. Rather than defining its own set of property accessors
(as DataMapper does), Og overrides the standard Ruby attr_accessor method to
define properties. It uses ObjectSpace to find objects that represent model classes
(based on their use of the new attr_accessor or inclusion of the Og::Model module).
This means that the models can look almost exactly like plain-old Ruby objects. The
only difference is that the types of the properties must be explicitly specified, so that
they can be mapped to SQL types:

class Person
 attr_accessor :first_name, String
 attr_accessor :last_name, String
 attr_accessor :dob, Date
end

git://errtheblog.com/git/ambition

276 | Chapter 9: Incorporating and Extending Rails

This approach leads to very readable code, but it has a couple of drawbacks:

• All models must be loaded before Og is started, because Og only traverses
ObjectSpace when it is first loaded.

• Og’s attr_accessor method will mark a class as an Og model. However, if the
attr_accessor method is not used first thing in a class declaration, the Og meth-
ods will not be pulled in. Consider this example:

class Person
 is Og::Model
 has_many :friends, Friend
end

The is method is a Ruby Facets alias for include that more closely reflects the
semantics of multiple inheritance. Without this declaration or an attr_accessor,
the has_many class method would not exist.

• The process of finding Og models relies on ObjectSpace. ObjectSpace implemen-
tation greatly complicates Ruby interpreter implementation; on platforms with
managed garbage collection such as the .NET CLR or Java, it takes some spe-
cial—and comparatively slow—implementation techniques. Because of this, it is
possible that some of the Ruby 1.9 virtual machines may have limited or no sup-
port for ObjectSpace.

We will now see a highly experimental method of using Og with Rails. This method
works around most of the incompatibilities between Nitro and Rails.

Installing Og from source. Unfortunately, the current stable gem version of Og (0.41.0)
does not work with Rails. We will download the latest version of the code with
Darcs and build a gem ourselves.

Darcs is a distributed version control system written in Haskell. It is
available from http://darcs.net/. If you have a working installation of GHC
(the Glasgow Haskell Compiler), you can install Darcs from source. Oth-
erwise, there are Darcs binaries available for many platforms.

First, we get the latest Nitro code using Darcs:

$ darcs get --partial http://repo.nitroproject.org nitroproject
$ cd nitroproject

Next, we find out what version of Ruby Facets this version of Nitro requires and
install it. The dependency is contained within the gem specification for Glue:*

$ grep facets glue/glue.gemspec
 s.add_dependency("facets", "= 1.8.54")
$ sudo gem install facets --version =1.8.54

* Glue is Nitro’s library that ties all of the components together, similar to ActiveSupport and RailTies in Rails.

http://darcs.net/

Replacing Rails Components | 277

Then we can build the Glue and Og (and, optionally, Raw and Nitro) libraries into
gems and install them:

$ cd glue/
$ gem build glue.gemspec
$ sudo gem install glue-0.50.0.gem
$ cd ../og/
$ gem build og.gemspec
$ sudo gem install og-0.50.0.gem
$ cd ../raw/
$ gem build raw.gemspec
$ sudo gem install raw-0.50.0.gem
$ cd ../nitro/
$ gem build nitro.gemspec
$ sudo gem install nitro-0.50.0.gem

To update the beta gem to the latest source, you can later run darcs
pull from the nitroproject directory. Then recheck the Facets depen-
dency, and run the preceding code again to rebuild and reinstall the
latest gems.

Verify that the Og gem is correctly installed:

$ gem list --local og

*** LOCAL GEMS ***

og (0.50.0)
 State of the art object-relational mapping system

Using Og with Rails. We will use a custom Rails initializer to load Og and work around
a few of its Rails incompatibilities. All Ruby files in config/initializers are loaded auto-
matically on Rails startup, so this is a perfect place to start Og. Here is the initializer:

config/initializers/og.rb
1. Require our custom edge version of Og
gem 'og', '=0.50.0'

2. Work around the RubyGems / Dependencies version of require
class Object
 alias_method :require_with_rubygems, :require
 alias_method :require, :gem_original_require

 require_with_rubygems 'og'

 # Restore the Dependencies require for future require calls
 alias_method :require, :require_with_rubygems
end

3. Define autoload path so the model can find the Orderable mixin.
This is relative to $LOAD_PATH, which includes the lib path in the og
gem directory.

278 | Chapter 9: Incorporating and Extending Rails

Og::Mixin.autoload :Orderable, 'og/model/orderable'

4. Models must be loaded before Og starts
Dir[File.join(RAILS_ROOT, 'app', 'models', '*.rb')].each(&method(:load))

5. Read in database.yml and start Og
config = YAML.load_file(File.join(RAILS_ROOT, 'config', 'database.yml'))
$og = Og.start(config[RAILS_ENV].symbolize_keys)

This does several things to initialize Og:

1. First, as a sanity check, we use the gem method to specify the exact gem version
we installed. As long as the gem specification (og.gemspec) specifies a version of
0.50.0, that is the version that RubyGems will recognize. Therefore, we can
refresh the Og gem from edge for minor changes without updating this line.

2. The class Object block is in place to work around an incompatibility between
Ruby Facets and Rails Dependencies. Og’s initialization methods load methods in
Facets using the require method. However, Dependencies overrides the require
method to keep track of the modules and classes being defined by files as they
are required. The new version of require causes problems and prevents Og’s
dependencies from being loaded properly.

To resolve this, we temporarily disable all special require functionality while
loading Og. First, we store away a copy of the fully functional require, with
RubyGems and Dependencies, as require_with_rubygems. Then we alias gem_
original_require (the no-frills standard Ruby require, which RubyGems help-
fully aliases) as require, so that Og doesn’t notice any of the sneaky things we
are doing. When Og is loaded, we can put the full-featured require_with_
rubygems back into place.

Notice that the actual call requiring Og needs to use require_with_rubygems so
that it will find the gem. We do all of this manipulation so that Og’s nested calls
to require will use the Ruby version, not the RubyGems/Rails version.

3. In this example, we are mixing the Orderable module into our class; Og uses
mixins to add behavior to model classes, where ActiveRecord would convention-
ally use class methods (in this example, acts_as_list). Using Module#autoload,
we designate that Og::Mixin::Orderable can be found under Og’s source tree at
og/model/orderable.rb.

4. As mentioned before, Og needs to see all of the models when it starts, so that it
can inject them with Og model methods. (This is in contrast to the
ActiveRecord and DataMapper method of requiring all models to inherit from a
common base class.) But Rails uses Dependencies to lazy-load models; if we do
not explicitly load them here, they will not exist until their name is referenced.

Replacing Rails Components | 279

(See Chapter 2 for a full explanation of Dependencies.) We load all the Ruby files
in app/models so that ObjectSpace can find them.

5. We start Og, loading its database adapter configuration from the traditional
config/database.yml. The Og manager (an instance of Og::Manager) is stored in
the global variable $og. We do not typically need to use this manager directly; it
finds and injects functionality to (“enchants,” in Og lingo) our model classes.
The exception is if we need two or more database connections. Each manager is
limited to one database connection, so if we need more connections, we need to
create more managers.

The database connection syntax is similar to ActiveRecord’s, but there are some dif-
ferences. A basic configuration using SQLite3 and a database file of todo_list.db has
the following syntax:

config/database.yml
development:
 adapter: sqlite
 name: todo_list

Now we are ready to create model classes. Like DataMapper, Og requires us to
define all attributes to be mapped to the database. Also like DataMapper, Og creates
our schema automatically. Here are some model classes for a very simple to-do list:

app/models/todo_list.rb
class TodoList
 attr_accessor :name, String

 # Orderable is like ActiveRecord's acts_as_list.
 # Equivalent to:
 # include Og::Mixin::Orderable
 # or (as Og::Mixin is included at the top level)
 # include Orderable
 is Orderable

 has_many :todo_list_items, TodoListItem
end

app/models/todo_list_item.rb
class TodoListItem
 attr_accessor :name, String

 belongs_to :todo_list, TodoList
 is Orderable, :scope => :todo_list
end

Now we can open up the Rails console and start playing with the model classes we
have created.

280 | Chapter 9: Incorporating and Extending Rails

To get a better idea of the queries being issued, it is helpful to redirect
the Rails logger to standard output when using the Rails console. This
code, thanks to Chad Humphries and Tim Lucas, will redirect Rails
log activity to the console. Put this block in your ~/.irbrc.

script_console_running = ENV.include?('RAILS_ENV') &&
 IRB.conf[:LOAD_MODULES] &&
 IRB.conf[:LOAD_MODULES].include?('console_with_helpers')
rails_running = ENV.include?('RAILS_ENV') &&
 !(IRB.conf[:LOAD_MODULES] &&
 IRB.conf[:LOAD_MODULES].include?('console_with_helpers'))
irb_standalone_running = !script_console_running &&
 !rails_running
if script_console_running
 require 'logger'
 Object.const_set(:RAILS_DEFAULT_LOGGER, Logger.new(STDOUT))
end

The first run of script/console creates the SQLite database file and our tables.

$ script/console
Loading development environment (Rails 1.2.5)
 INFO: Og uses the Sqlite store.
 INFO: Created table ogtodolistitem.
 INFO: Created table ogtodolist.
 INFO: Created table ogtag.
>>

All Og-managed tables currently start with og and are simply the downcased, alpha-
numeric versions of the class names. The primary key defaults to oid, not id. The
ogtag table was created because the optional tagging module was loaded; it currently
creates a table whether it is in use or not.

Now we can create a to-do list and some items:

>> og = TodoList.create_with :name => 'Og', :position => 1
=> #<TodoList:0x33e75bc @validation_errors={}, @name="Og", @oid=1, @position=1>

>> item1 = TodoListItem.create_with \
 :name => "Make Og work with ActiveSupport's Dependencies",
 :position => 1, :todo_list => og
=> #<TodoListItem:0x33dd3b4 @validation_errors={}, @todo_list_oid=1,
 @name="Make Og work with ActiveSupport's Dependencies", @position=1,
 @oid=1>

>> item2 = TodoListItem.create_with \
 :name => "Autoload Orderable so that Ruby can find it",
 :position => 2, :todo_list => og
=> #<TodoListItem:0x33ce1c0 @validation_errors={}, @todo_list_oid=1,
 @name="Autoload Orderable so that Ruby can find it", @position=2,
 @oid=2>

Replacing Rails Components | 281

Og has finder methods reminiscent of ActiveRecord’s, but with slightly different
syntax:

>> TodoList[1]
=> #<TodoList:0x3562b1c @name="Og", @oid=1, @position=1>

>> TodoList.find_by_name 'Og'
=> #<TodoList:0x356b078 @name="Og", @oid=1, @position=1>

The find_with_attributes method (an alias for query_by_example) has some nice syn-
tactic sugar to provide a “pattern” to match the searched-for attributes. We can view
the SQL queries being generated by setting the $DBG global variable to true. For
example:

>> $DBG = true
=> true

>> TodoList.find_with_attributes :name => 'Og'
DEBUG: SELECT * FROM ogtodolist WHERE name = 'Og'
=> [#<TodoList:0x3558784 @name="Og", @oid=1, @position=1>]

>> TodoList.find_with_attributes :name => 'O%'
DEBUG: SELECT * FROM ogtodolist WHERE name LIKE 'O%'
=> [#<TodoList:0x3553874 @name="Og", @oid=1, @position=1>]

Associations work very much like in ActiveRecord. The association contents are
lazily loaded; the collection is not loaded until something is done with the data.

>> list = TodoList[1]
DEBUG: SELECT * FROM ogtodolist WHERE oid=1
=> #<TodoList:0x33e6608 @name="Og", @oid=1, @position=1>

Note that this statement issues no query.
>> list.todo_list_items
=> #<Og::HasManyCollection:0x33e23c8 @loaded=false (...)>, oid1, position1

Sending the collection a message such as #to_a or #map forces it to load.
>> list.todo_list_items.to_a
DEBUG: SELECT * FROM ogtodolistitem WHERE todo_list_oid = 1
=> [#<TodoListItem:0x35033d8
 @name="Make Og work with ActiveSupport's Dependencies",
 @todo_list_oid=1, @oid=1, @position=1>,
 #<TodoListItem:0x3501c7c
 @name="Autoload Orderable so that Ruby can find it",
 @todo_list_oid=1, @oid=2, @position=2>]

>> list.todo_list_items.map(&:name)
DEBUG: SELECT * FROM ogtodolistitem WHERE todo_list_oid = 1
=> ["Make Og work with ActiveSupport's Dependencies",
 "Autoload Orderable so that Ruby can find it"]

282 | Chapter 9: Incorporating and Extending Rails

Alternative Template Engines
The standard Rails template engine uses Ruby’s ERb (embedded Ruby), which is a
very powerful template system. However, it may be too powerful for some applica-
tions. The PHP-like free embedding of code within views can encourage placing too
much logic in a view, which the MVC architecture frowns upon. Writing HTML
code through ERb can be a painful process, as the developer must switch back and
forth between thinking in HTML and thinking in Ruby.

There are some other options on the continua of power and uniformity, and Rails
has a flexible extension system that allows different handlers to be simply registered
for different view file types. We will look at three markup languages, available as
Rails plugins: Markaby, Liquid, and Haml.

Markaby

Markaby (http://redhanded.hobix.com/inspect/markabyForRails.html) is a markup
language for HTML, by why the lucky stiff (Rails plugin due to Tim Fletcher). Its
advantage is that it is pure Ruby. All tags have a corresponding Ruby method, simi-
lar to Ruby’s Builder library. The markup looks like this:

h1 'Users'

ul do
 @users.each do |user|
 li do
 user.name
 link_to 'edit', user.edit_url
 end
 end
end

Markaby can be installed as a Rails plugin from http://code.whytheluckystiff.net/svn/
markaby/trunk. Once installed, you can create templates that use Markaby by giving
them a .mab extension.

Liquid

Liquid (http://www.liquidmarkup.org/), by Tobias Lütke, is another alternative Rails
template engine. Its main advantage is that it is secure. It does not eval any of its
input; it only substitutes provided values into a template with some optional filters.
This division of labor has several advantages:

Simplicity
There are only a few basic constructs in Liquid: the simple ones are literal
HTML code, variable interpolation, filters, conditionals, and loops. This makes
the templates clean and easy to understand, which is an advantage when the
designer is not a developer.

http://redhanded.hobix.com/inspect/markabyForRails.html
http://code.whytheluckystiff.net/svn/markaby/trunk
http://code.whytheluckystiff.net/svn/markaby/trunk
http://www.liquidmarkup.org/

Replacing Rails Components | 283

Logical separation
The inability to execute code in the views forces model- and controller-related
code into the models and the controllers. This helps encourage good boundaries
and separation of concerns appropriate for a web application.

Security
Because the Ruby environment is protected against dangerous or malicious code
in the templates, you can use Liquid to give customers or users access to tem-
plates without security concerns.

To get started with Liquid and Rails, install the Liquid plugin from http://liquid-
markup.googlecode.com/svn/trunk. The plugin registers a template handler for all
view files with an extension of .liquid. You can mix and match your Liquid views
with standard Rails views, and the Liquid views get all of the assigned instance vari-
ables from the controller. The following is an example of Liquid code:

<h1>Users</h1>

 {% for user in users %}
 {{ user.name }} ({{ 'edit' | link_to: user.edit_url }})
 {% endfor %}

Haml

Haml is a very terse markup language designed to concisely represent HTML. Haml
was created by Hampton Catlin and is available from http://haml.hamptoncatlin.com/.
The Haml philosophy is summarized on the tutorial page: “Every character means
something.” We see this in several ways in Haml:

• There are no closing tags; indentation denotes nesting.

• The verbose id and class attributes are shortened to their CSS equivalents # and .,
respectively.

• The commonly used div tag can be omitted altogether.

• Rails HTML output is expressed by a single = sign instead of ERb’s <%= %> tags.

Haml’s terseness can make it a bit difficult to understand at first, but many people
find it useful and less intrusive than ERb markup. Our example can be coded in
Haml as follows:

%h1 Users

%ul
 - @users.each do |user|
 %li
 = user.name
 = link_to('edit', user.edit_url)

http://liquid-markup.googlecode.com/svn/trunk
http://liquid-markup.googlecode.com/svn/trunk
http://haml.hamptoncatlin.com/

284 | Chapter 9: Incorporating and Extending Rails

Notice that we do not need to close anything. The HTML tags are all closed for us,
but so is the each iterator we opened. This style of code has a learning curve, but it
has less duplication overall than comparable template systems such as ERb.

The stable version of Haml can be installed as a Rails plugin from http://svn.
hamptoncatlin.com/haml/tags/stable. As with the other template language plugins, it
registers a template handler, so all you need to do is install the plugin and start writ-
ing views with an extension of .haml.

Incorporating Rails Components
As Rails is built up of many modular components, these components can be used
individually just as they can be used as a framework. Here we will see how the pieces
that make up Rails can be used in other Ruby code. We will walk through two mod-
ular components of Rails, ActiveRecord and ActionMailer, and see how to use them
in standalone applications.

ActiveRecord
ActiveRecord is perhaps the easiest component to decouple from the rest of Rails, as
it fulfills a purpose (object-relational mapping) that can be used in many different
places. The basic procedure for loading ActiveRecord is simple; just define the con-
nection, and then create the classes that inherit from ActiveRecord::Base:

require 'rubygems'
require 'active_record'

ActiveRecord::Base.establish_connection(
 # connection hash
)

class Something < ActiveRecord::Base # DB table: somethings
end

The establish_connection function takes a hash of parameters needed to set up the
connection. This hash is the same one that is loaded from database.yml when using
Rails, so you could just pick up that file and load it:

require 'yaml' # Ruby standard library
ActiveRecord::Base.establish_connection(YAML.load_file('database.yml'))

If you are used to the features of edge Rails, you may not want to stick with the lat-
est gem version of ActiveRecord. To use the latest edge, first check out
ActiveRecord’s trunk from Subversion:

$ svn co http://svn.rubyonrails.org/rails/trunk/activerecord \
 vendor/activerecord

Then, just require the active_record.rb file from that directory:

require 'vendor/activerecord/lib/active_record'

http://svn.hamptoncatlin.com/haml/tags/stable
http://svn.hamptoncatlin.com/haml/tags/stable

Incorporating Rails Components | 285

ETL operations

ActiveRecord can be a useful tool to load data into and extract data from databases.
It can be used for anything from one-off migration scripts to hourly data transforma-
tion jobs. The following is a representative example, using James Edward Gray II’s
FasterCSV library:

require 'rubygems'
require 'fastercsv' # gem install fastercsv
require 'active_record'

Set up AR connection and define User class
ActiveRecord::Base.establish_connection(
 # (connection spec)...
)

class User
 # The table we're importing into doesn't use Rails conventions,
 # so we'll override some defaults.
 set_table_name 'user'
 set_primary_key 'userid'
end

FasterCSV.foreach('users.csv', :headers => true) do |row|
 # The CSV header fields correspond to the database column names,
 # so we can do this directly, with no mapping.
 User.create! row.to_hash
end

Schema operations

ActiveRecord’s migration methods can be used as a portable abstraction for SQL
data definition language (DDL). The ActiveRecord::Schema.define function allows
you to use the ActiveRecord schema definition statements within a block to perform
operations on a database. The full set of DDL operations is documented in
ActiveRecord::ConnectionAdapters::SchemaStatements.

require 'rubygems'
require 'active_record'

ActiveRecord::Base.establish_connection(
 # (connection spec)...
)

ActiveRecord::Schema.define do
 create_table :sites do |t|
 t.string :name, :null => false
 t.string :city
 t.string :state
 end

 add_column :users, :site_id, :integer
 add_index :users, :site_id
end

286 | Chapter 9: Incorporating and Extending Rails

Standalone data store

Often, a console or desktop application needs to store persistent data, whether it be
preference data or application data itself. A common solution is to use YAML, which
can marshal and unmarshal most Ruby objects (round trip), while also being human-
readable. However, YAML is verbose compared to binary data formats, which may
be an issue when storing larger amounts of data. SOAP::Marshal from Ruby’s stan-
dard library is similar; it can serialize objects into an (often quite verbose) XML rep-
resentation. This approach has similar benefits and drawbacks to YAML.

Another option is to use Ruby’s Marshal module, which dumps Ruby objects into a
more concise byte stream. This uses less space, but it can be brittle. Though efforts
are made to maintain backward compatibility across major Ruby versions, Ruby 1.9
has a new Marshal format that is not completely interoperable with Ruby 1.8.

For a more structured approach to persistent data storage, SQLite and ActiveRecord
can provide a helpful balance. The data schema must be defined first and acted upon
by a constrained set of operations (those permitted by SQL DML). But these con-
straints pay off; as the data store is completely separated from the application, the
two halves can evolve separately. There is no need to recode data when an applica-
tion is upgraded, save for application-level data changes.

Using ActiveRecord for this purpose is simple; just open a connection to a SQLite file
(which will be created if it does not exist), and define the appropriate ActiveRecord
classes.

require 'rubygems'
require 'active_record'

ActiveRecord::Base.establish_connection(
 :adapter => :sqlite3,
 :database => "db.sqlite3"
)

class Client < ActiveRecord::Base
 has_many :conversations
end

class Conversation < ActiveRecord::Base
 belongs_to :client
end

Sample usage:
def time_log
 Client.find_all_by_active(true).each do |client|
 # this uses ActiveRecord::Calculations to grab the sum
 # in one SQL query
 hours = client.conversations.sum('hours')

 # format string gives us a nice table:
 # First Client 5.00
 # Another Client 12.40

Incorporating Rails Components | 287

 printf "%-20s%5.2f", client.name, hours
 end
end

Other Ruby applications

ActiveRecord can be used as a library in any Ruby application, and it is great for rap-
idly prototyping simple interfaces to a database. The database interface can be self-
contained, which makes it easy to integrate with existing applications; it will coexist
with other libraries such as Ruby-DBI.

The rapid prototyping aspect is key; ActiveRecord provides a consistent interface to
many database management systems, and you can use this interface to abstract away
the database details while building an application. An application can theoretically
be developed on a laptop with SQLite and deployed on a big-iron server running
Oracle (in practice, this is not a perfect transition, but it is somewhat easier than
working with the individual database libraries).

Gregory Brown wrote an article that walks through the process of building a to-do
list console application from the ground up with Ruby and ActiveRecord, without
using code generation. The article is available from http://www.oreillynet.com/pub/a/
ruby/2007/06/21/how-to-build-simple-console-apps-with-ruby-and-activerecord.html.

ActionMailer
Using ActionMailer to send emails from outside of Rails is a simple process as well. It
requires slightly more configuration, but not by much. First, load the framework,
either using RubyGems or a newer Subversion checkout:

gem version
require 'rubygems'
require 'action_mailer'

or edge version
require 'vendor/actionmailer/lib/action_mailer'

Next, set the outgoing mail server settings. All settings are optional.

Default is :smtp; also accepts :sendmail or :test
ActionMailer::Base.delivery_method = :smtp

ActionMailer::Base.server_settings = {
 :address => 'localhost',
 :port => 25,
 :domain => 'example.com', # HELO example.com
 :authentication => :cram_md5,
 :user_name => 'me',
 :password => 'secret'
}

ActionMailer needs a template directory in which to look for email templates:

ActionMailer::Base.template_root = 'views'

http://www.oreillynet.com/pub/a/ruby/2007/06/21/how-to-build-simple-console-apps-with-ruby-and-activerecord.html
http://www.oreillynet.com/pub/a/ruby/2007/06/21/how-to-build-simple-console-apps-with-ruby-and-activerecord.html

288 | Chapter 9: Incorporating and Extending Rails

Mailer classes and their email templates are defined just as they are in Rails:

class Mailer < ActionMailer::Base
 def quota_exceeded_notification(user)
 from "System Administrator <root@example.com>"
 recipients name_and_email(user)
 subject "Your account is over the quota"
 body {:user => user}
 end

 private

 # "John Smith <jsmith@example.com>"
 def name_and_email(user)
 "#{user.full_name} <#{user.email}>"
 end
end

The template follows the usual pattern, and is located under our template root, in
views/mailer/quota_exceeded_notification.erb:

Dear <%= @user.name %>,
Your account is over its storage quota. You are currently using
<%= human_size(user.storage_used) %>, and your limit is
<%= human_size(user.account.quota) %>.

Please reduce your usage within 5 days or we will reduce it for you.

Regards,
The Management

Now, this Mailer class can be used just as if it were inside a Rails application. We’ll
look at one possible application for this next.

Custom Rake tasks

Rake is best known in Rails for its purposes in testing. Rake is used to kick off Rails
tests, but also to perform administrative functionality (database maintenance and
migrations, managing temporary files and sessions, and the like). We can easily
extend Rake to handle any application-specific maintenance we need to do; in this
case, to find users who are over their quota and send them a nasty email. (For sim-
plicity, we will abstract away some of the details of finding those users.)

Here is a custom Rakefile that provides the email functionality:

require 'rake'

Mailer setup commands from above
require 'mailer_config'

ActiveRecord setup, not shown
require 'ar_users'

Contributing to Rails | 289

User administration tasks go in a separate namespace
namespace :users do
 desc "Send a nasty email to over-quota users"
 task :send_quota_warnings do
 users = User.find(:all).select{|u| u.storage_used > u.account.quota }
 users.each do |user|
 Mailer.deliver_quota_exceeded_notification(user)
 end
 end
end

We can now kick off the email with one command from the project’s directory:

rake users:send_quota_warnings

Receiving email

The ActionMailer documentation includes instructions on how to receive incoming
email using Rails and ActionMailer. This method involves having your MTA pipe
incoming mail to a command such as this:

script/runner 'Mailer.receive(STDIN.read)'

Do not do this except in the absolute simplest of cases. Using script/runner is very
computationally expensive, because it loads the entire Rails environment on each
invocation. Loading a Ruby interpreter with all of Rails for each incoming email is
ridiculous.

The standard method for processing incoming mail is to batch email in a mailbox
and have a process retrieve that mail at a regular interval. The mail can be retrieved
using Net::POP3 or Net::IMAP from the Ruby standard library.

If mail really needs to be processed immediately upon receipt, a custom solution,
even using Ruby and ActionMailer, will still be much faster than the preceding exam-
ple that loads all of Rails. But if you need immediate delivery, you should probably
first consider a solution like SMS or Jabber rather than SMTP.

Contributing to Rails
Rails, as an open source framework, benefits greatly from contributions from the
community. Rails incorporates code from hundreds of developers, not just the dozen
or so on the core team. Writing code to expand, extend, or fix Rails is often the best
way to learn about its internals.

Of course, not all functionality belongs in Rails itself. Rails is an opinionated frame-
work, so there are some defaults that may not be useful to everyone. The plugin sys-
tem was designed so that Rails would not have to incorporate every feature that is
useful to someone. Refer to Chapter 3 for information on writing plugins to extend
Rails; it is only minimally more work than patching the Rails codebase.

290 | Chapter 9: Incorporating and Extending Rails

There are several reasons that useful features are rejected from Rails in favor of being
plugins. The primary reason for rejection is that the feature is too specific; it would
not be useful to most Rails developers. Alternatively, it may be contrary to the “opin-
ion” of the framework. However, features may be rejected simply because there are
many valid ways of accomplishing one goal, and it does not make sense to default to
one. Some common areas of functionality that have been repeatedly discussed and
rejected from Rails core are the following:

Engines
David Heinemeier Hansson’s rejection of high-level components in Rails is a
topic that has generated much more heat than light. Rails engines (http://rails-
engines.org) are full-stack (model, view, and controller) components that can be
incorporated into larger applications; in effect, they augment the plugin system
to structure the sharing of model, view, and controller code.

The trouble with engines comes when they are treated as high-level compo-
nents, as if dropping a content-management-system engine into an application
will accomplish 90% of the CMS functionality a particular project needs. In
many cases, the work required to integrate such a high-level component into an
existing application outweighs the benefits of not writing the component from
scratch.

In short, engines are best seen as a way to structure plugins that need control-
ler and view code, rather than a drop-in replacement for high-level features.
In this respect, engines are amazingly powerful; they allow plugins to aug-
ment an application’s models, views, controllers, helpers, and even routes and
migrations.

Internationalization and localization
There are many valid approaches to the problems of internationalization and
localization. We discuss several solutions in Chapter 8. ActiveSupport’s Multi-
Byte standardizes the low-level operations on Unicode text, but there are still
many valid ways to localize an application at the high level.

Authentication and authorization
Again, there are many application-specific ways to authorize users that authori-
zation does not belong in Rails. Authorization can range from a simple “admin”
Boolean flag on a user’s record to a complete role-based access control system,
and there are plenty of plugins available for authorization in Rails.

Similarly, there are many valid ways to authenticate users. The only authentica-
tion method in Rails proper is HTTP Basic authentication, because it is very sim-
ple. However, the most popular authentication solutions descend from the
acts_as_authenticated plugin by Rick Olson (which has its roots in Tobias
Lütke’s original Login Generator). The newer version of acts_as_authenticated
is restful_authentication, which is the same logic molded into Rails 2.0’s REST-
ful paradigm.

http://rails-engines.org
http://rails-engines.org

Contributing to Rails | 291

Complex scaffolding
Scaffolding is another misunderstood issue in Rails. Like high-level compo-
nents, scaffolding can be overapplied. Developers who see scaffolding as a sub-
stitute for writing complex application code will be disappointed.

Still, there are many valid uses for simple CRUD features, especially on an applica-
tion’s administrative interface. Streamlined (http://streamlinedframework.org) is a
way to quickly build CRUD interfaces on top of Rails. Additionally, AjaxScaffold
(http://www.ajaxscaffold.com/) is a scaffolding system with a richer interface than
the built-in Rails scaffolds.

There is another reason for starting a feature as a plugin, though. Plugins are often a
testing ground for experimental or risky features before they are rolled into the main
distribution. As an example, the RESTful features of Rails 2.0 were a plugin, simply_
restful, before they were pulled into Rails trunk.

Contributing Patches
There is a new process for contributing Rails bug reports and patches, to help deal
with the large volume of tickets and contributed patches. The process is as follows:

Write a patch
Bug reports are always welcome, but patches get more attention. Fixing prob-
lems that you experience, even if they are problems with Rails itself, has some
advantages. It gives you greater familiarity with the Rails source, which is very
well written. It also helps you verify and prove that the problems you are experi-
encing are actually problems with Rails.

Most patches should include tests. Especially for bugfixes, test-driven develop-
ment is a good philosophy to use. A test-driven methodology would incorporate
the following basic steps:

1. Before writing any application code, write a test that verifies the correct
functionality. Run the test; it should fail.

2. Write code to fix the bug until the test passes.

3. Verify that all other tests pass, not just the test in question.

Most areas of Rails are well-tested; however, there are some components (such
as the generators and CGI processing code) that are not very easy to test. When
writing nontrivial patches for those areas, the burden of proof is higher to ensure
that there are no regressions of other functionality.

The basic procedure to create a patch against Rails is simple:

1. svn up to grab the latest version of Rails.

2. Make the appropriate changes to the source.

3. Run rake to ensure all of the tests pass.

http://streamlinedframework.org
http://www.ajaxscaffold.com/

292 | Chapter 9: Incorporating and Extending Rails

4. Check the output of svn st as a sanity check for missing files, merge con-
flicts, or other junk.

5. svn diff > my_patch.diff to create a unified diff of the changes.

6. Manually inspect the generated diff to verify that there are no extraneous
changes and that all necessary changes are included.

File a ticket
Rails uses the Trac issue-tracking system, which is set up at http://dev.
rubyonrails.org/. You need an account to use the system, due to excessive spam
in the past. Once you have an account, click “New Ticket” to create a ticket.

If you have a patch for the issue you are reporting, use [PATCH] at the beginning
of the ticket summary, and remember to check the “I have files to attach to this
ticket” button.

There are a few points of basic ticket-creation etiquette. Leave the “Keywords”
field blank unless you know better. The “Assign to” and “Cc” fields should in
most cases be left blank as well; if other developers want to be added to the Cc
list, they will add themselves.

At this point, there may be a good deal of back-and-forth, or there may be no
activity. Be prepared to defend your decisions and your code, and you may be
sent back for rewrites or additions. Make sure to keep the patch current; if the
Rails trunk changes significantly in the meantime, you should rebase your patch
so that it still applies cleanly (with no fuzz). If a patch is well-tested, it can be
rebased and verified simply by repeating the preceding steps (updating, running
tests, and creating a new diff).

Get reviewed
Every month, the Rails Trac system sees thousands of actions (tickets opened,
closed, or commented on). In order to manage this flow, there is a barrier to
entry for contributors so that the core team doesn’t have to deal with patches
that are outdated, untested, or that break obvious functionality.

Generally, to get attention for a patch, you have to find three reviewers to assert
that the patch applies cleanly, passes the automated tests, and “works” for them.
They do this by making an appropriate comment (as simple as “+1 for me”) in
the ticket’s comments. Once you have three reviewers, it is up to you to add the
verified keyword to the ticket to indicate that review is complete.

Be available
At this point, your ticket will show up in the “verified” report (http://dev.
rubyonrails.org/report/12). Patches in this queue are usually acted upon quickly,
whether the action is acceptance, rejection, or sending it back for more discussion.

http://dev.rubyonrails.org/
http://dev.rubyonrails.org/
http://dev.rubyonrails.org/report/12
http://dev.rubyonrails.org/report/12

Contributing to Rails | 293

Rails contributors use ticket status and resolutions as a way to deal with the
large volume of incoming tickets. It is common for a ticket to be opened and
closed a few times before being accepted or rejected. Don’t worry if your ticket is
closed as untested; that just means it needs tests (or, alternatively, a very good
reason why it can’t or shouldn’t be tested). Then it can be sent back.

Also, don’t be discouraged if your patch is ultimately rejected. There are many fea-
tures that used to be in core Rails that have been removed or turned into plugins in
Rails 2.0. The Rails core team is focusing on keeping Rails smaller and more
agile; most frameworks tend to accumulate features without limit unless their
growth is kept in check. The Rails plugin system was designed so that almost
anything in Rails can be changed at runtime. In this way, the core can be kept
simple without hampering the development of new features.

Many Rails contributors spend time in the #rails-contrib IRC channel on irc.
freenode.org, and there is good discussion about Rails internals there. Most contribu-
tors also subscribe to the rubyonrails-core mailing list at Google Groups (http://
groups.google.com/group/rubyonrails-core), which has more visibility and perma-
nence than the IRC channel. Both are good places to look for patch reviewers, and it
is a good idea to ask around on IRC and the mailing list before diving into any major
new feature work; there may be people who have started (or even completed) similar
work, and it is good to find other developers who may have ideas about your plans.

Rails Unit Tests
The Rails framework is built in a modular fashion; Rails 2.0 comprises ActionPack,
ActiveRecord, ActionMailer, Active Resource, ActiveSupport, and RailTies. As such,
each component is tested separately. This causes a few minor issues (as the full func-
tionality of one module may depend partially on another, so they can never be com-
pletely independent), but for the most part it increases flexibility, and the benefits
outweigh the drawbacks.

Unit tests for most components are self-contained. Each component has a Rakefile
defining its testing strategy and any other Rake tasks it requires. With the exception
of ActiveRecord, all Rails components can be tested by changing to their directory
and executing rake. If all is well, you will see a large number of periods (representing
successful tests), and it will end with no failures or errors:

Finished in 1.444231 seconds.

704 tests, 5475 assertions, 0 failures, 0 errors

ActiveRecord is a bit more difficult to test, due to its dependency on many external
databases. The default task, if no task is provided to rake, is to run the tests for
MySQL, PostgreSQL, SQLite (version 2), and SQLite3.

irc.freenode.org
irc.freenode.org
http://groups.google.com/group/rubyonrails-core
http://groups.google.com/group/rubyonrails-core

294 | Chapter 9: Incorporating and Extending Rails

In Rails 2.0, the lesser-used connection adapters have been moved out
of Rails trunk and into gems so that they can be installed if needed.
The connection adapters for Firebird, FrontBase, OpenBase, Oracle,
Microsoft SQL Server, and Sybase now live under /adapters in the
Rails repository.

The gems for these connection adapters are hosted at the Rails gem
server (http://gems.rubyonrails.org) and are named activerecord-
dbname-adapter (for example, activerecord-oracle-adapter or
activerecord-sqlserver-adapter), so they can be installed with a com-
mand such as the following:

$ gem install activerecord-sybase-adapter –source \

 http://gems.rubyonrails.org

Incidentally, IBM maintains its own DB2 adapter for ActiveRecord, so
the old ActiveRecord DB2 connection adapter is gone in Rails 2.0.

In order to run the ActiveRecord unit tests, you will need to create test databases.
Thankfully, there are some Rake tasks that automate this process. For a full test of
the “big four” connection adapters from the ground up, follow these steps:

1. Install and configure the database servers: MySQL, PostgreSQL, SQLite, and
SQLite3. The client libraries also need to be installed; these are installed with the
server binaries but can be installed separately if the server is on a remote
machine.

For MacPorts users, SQLite 2 can be installed with sudo port install sqlite2
(even though its files are named sqlite for historical reasons, the port name is now
sqlite2). If you have previously installed the sqlite port, you should uninstall it
before installing sqlite2 and sqlite3.

2. Install the Ruby database libraries with RubyGems:
$ sudo gem install mysql
$ sudo gem install postgres
$ sudo gem install sqlite-ruby
$ sudo gem install sqlite3-ruby

Installing the mysql library is not strictly necessary; Rails includes a pure-Ruby
MySQL library in activerecord/lib/active_record/vendor/mysql.rb. This implemen-
tation will be used if no native mysql extension is found, which is useful on sys-
tems like Windows, where a Ruby interpreter can be more accessible than a C
compiler. Additionally, the postgres gem can be replaced by the postgres-pr
gem, which is also pure Ruby.

MacPorts users may have some difficulty with these steps; the default configura-
tion scripts look in the /usr and /usr/local trees for the client libraries installed in
step 1, while MacPorts installs into /opt/local. This can be fixed by passing con-
figuration parameters into gem, which are preceded by -- so they are not parsed
as options to gem itself:

$ sudo gem install sqlite3-ruby -- --with-sqlite-dir=/opt/local

Further Reading | 295

3. Verify the database connection information for the unit tests. ActiveRecord tests
require two database connections per adapter, to verify that ActiveRecord is able
to properly manage multiple simultaneous connections. If needed, modify the
connection specifications in activerecord/test/connections/native_adaptername/
connection.rb.

4. Create the unit test databases for MySQL and PostgreSQL. The SQLite and
SQLite3 databases will be automatically created upon first run, as they are
backed by a single file per database. For a default configuration (no modifica-
tions to the above connection specifications), run the following Rake tasks from
the activerecord directory:

$ rake build_mysql_databases
$ rake build_postgresql_databases

For more complicated configurations, create the databases specified in the pre-
ceding connection files, and ensure that the user specified in those files has full
access to those databases, or you will get permission errors.

5. Change to the activerecord directory and run rake. The tests should run on all
four connection adapters with no failures or errors. Tests for individual adapters
can be run with separate Rake tasks such as test_mysql; run rake -T for a list of
all recognized tasks.

Further Reading
Railscasts has produced a screencast detailing the process of contributing to Rails.
It is available at http://railscasts.com/episodes/50.

Notes from Josh Susser’s talk on contributing to Rails are posted at http://edgibbs.com/
2007/04/23/josh-susser-on-contributing-to-rails/.

http://railscasts.com/episodes/50
http://edgibbs.com/2007/04/23/josh-susser-on-contributing-to-rails/
http://edgibbs.com/2007/04/23/josh-susser-on-contributing-to-rails/

296

Chapter 10CHAPTER 10

Large Projects 10

Fools ignore complexity. Pragmatists suffer it.
Some can avoid it. Geniuses remove it.
—Alan Perlis

This chapter introduces several concepts that are related to deploying large applica-
tions in general, and Rails applications in particular. These are valuable concepts for
any project, regardless of the framework being used.

Version Control
For all but the tiniest of projects, version control is non-negotiable. Version control is
like a time machine for a project; it aids in collaboration, troubleshooting, release
management, and even systems administration. Even for a solo developer working
on a small project on one workstation, the ability to go back in time across a code-
base is one of the most valuable things to have.

There are two primary models for version control systems: centralized and decentral-
ized. Though the former is the most widely known, the latter is steadily gaining in
popularity and has some amazing capabilities.

Centralized Version Control
Centralized version control is the most popular model, and perhaps the easiest to
understand. In this model, there is a central repository, operated by the project
administrators. This repository keeps a virtual filesystem and a history of the changes
made to that filesystem over time.

Figure 10-1 illustrates the typical working model used for centralized development.

Version Control | 297

A developer follows this basic procedure to work with a version control system:

1. Create a working copy (a local copy of the code for development) by performing
a checkout. This downloads the latest revision of the code.

2. Work on the code locally. Periodically issue update commands, which will
retrieve any changes that have been made to the repository since the last check-
out or update. These changes can usually be merged automatically, but some-
times manual intervention is required.

3. When the unit of work is complete, perform a commit to send the changes to the
repository. Repeat from step 2, as you already have a working copy.

CVS

The Concurrent Versions System (CVS, http://www.nongnu.org/cvs/) is the oldest ver-
sion control system still in common use. Although Subversion is generally favored as
its replacement, CVS pioneered several features considered essential to centralized
version systems, such as the following:

Concurrent access
Previous version control systems such as RCS required a developer to “check out” a
file, locking it for update, and then check it in to release the lock. CVS introduced
the copy-modify-merge model for text files. Under this model, many developers can
work on different parts of the same file concurrently, merging the changes together
upon commit.

Repository hooks
The ability to run external scripts upon commit—to run tests, notify a team,
start a build, or anything else.

Branches and modules
CVS allows multiple concurrent branches for development. Vendor branches can
pull code from unrelated projects; modules map symbolic names to groups of
files for convenience.

Figure 10-1. Centralized version control

Central repository

Working
copy

Working
copy

Working
copy

svn checkout /
svn update /
svn commit /

http://www.nongnu.org/cvs/

298 | Chapter 10: Large Projects

One often-cited drawback to CVS is that it does not guarantee atomic commits. If
interrupted while in process, commits can leave the working copy and repository in
an inconsistent state. Most other version control systems provide an atomicity guar-
antee: commits are applied to the repository either in full or not at all.

In practice, this is more of an annoyance than a critical flaw. Important repositories
should be backed up regularly, regardless of what version control system they are
backed by. Still, this and other limitations make some developers uncomfortable. In
response, many other version control systems have evolved out of the CVS model,
and CVS is not used very much anymore for new projects.

Subversion

Subversion (http://subversion.tigris.org/) is currently the most popular version con-
trol system among Rails developers. It was designed to be a replacement for CVS,
and it has been very successful. Developers used to CVS will feel at home with Sub-
version’s commands.

As a centralized version control system, Subversion uses one primary server that
keeps a master repository. Developers check out a working copy, make their
changes, and check them back in. By default, Subversion uses the copy-modify-merge
model for concurrent development. Multiple people can check out the same file,
make concurrent changes, and have their work merged. Non-overlapping changes
will be merged automatically; conflicting changes must be merged by hand.

Files that cannot be merged (such as image files) can be locked for serialized access:

$ svn lock images/logo.png -m "Changing header color"
(work with logo.png...)
$ svn ci images/logo.png -m "Changed header to blue"

You can also use the svn:needs-lock property to designate that a file should be
locked before editing. If a file marked with that property is checked out without a
lock, the working copy version will be set as read-only to remind the developer to
lock the file before changing it.

Subversion was designed as a replacement for CVS, and it improves on CVS in many
ways:

• Subversion has truly atomic commits; interrupted commits are guaranteed to
leave the repository in a consistent state (though they may leave outstanding
locks in the working copy).

• Subversion supports constant-time branching using copy-on-write semantics for
copies. Branches and tags are simply directories; they are not separate objects as
in CVS.

• Directories are tracked independently of the files they contain. Directories and
files can be moved while retaining their version history.

• Symbolic links can be stored in the repository and versioned as links.

http://subversion.tigris.org/

Version Control | 299

Subversion provides the best fit for many developers, especially in the open source
world. Many projects have migrated from CVS to Subversion over the past few years.
Subversion is successful in a large part because it strikes a good balance between fea-
tures and ease of use.

One drawback of Subversion is that it can be difficult to build the server from source
because of its dependencies. It is built on top of APR (the Apache Portable Run-
time), a portability layer for network applications. Although the basic dependencies
are included for a svnserve installation, you may run into difficulty if you want to use
Apache as a Subversion server. However, once you have the dependencies in order,
building the server is straightforward.

Decentralized Version Control
Centralized version control has some drawbacks, especially when working in larger
teams. The central server and repository can become a bottleneck, especially when
dealing with many developers, as in large open source projects. A new paradigm,
decentralized version control, is attempting to fix some of these issues. Though it is
not widely used among Rails developers, it is worth knowing about, as it is extremely
useful for certain situations.

In contrast to the hierarchical structure of centralized versioning systems, decentral-
ized systems provide a more egalitarian approach. (It’s the cathedral versus the
bazaar, if you will.) Rather than having many working copies that all must communi-
cate their changes back to the repository, each working copy is in fact a full reposi-
tory. Any of the local repositories can pull and push changes to and from each other,
and changesets destined for production will ultimately be pushed back to the author-
itative repository.

In fact, the only thing that designates a repository as authoritative is community sup-
port: project administrators set up a repository as the master and publish its net-
work address. Developers can pull changes from any repository that decides to
publish them. Interestingly, this parallels the meritocracy inherent in open source
software: your worth is measured by how much you contribute and how many peo-
ple listen to you.

The decentralized development model can be more complicated to learn, but it is
much more flexible, especially with large projects that have many contributors. The
Mercurial wiki gives an example of distributed development best practices based on
the development style of the Linux kernel.*

At first glance, a distributed workflow might look fairly similar to a centralized one.
In fact, a decentralized version control system can be used as a centralized system; its
functionality is a superset of that of centralized systems. Using Mercurial, a developer

* http://www.selenic.com/mercurial/wiki/index.cgi/KernelPractice

http://www.selenic.com/mercurial/wiki/index.cgi/KernelPractice

300 | Chapter 10: Large Projects

can “check out” a codebase (hg clone), make modifications, update from the reposi-
tory (hg pull; hg merge), and check in (hg commit). This process is illustrated in
Figure 10-2.

There is a slight difference here from the centralized paradigm, in that the pull and
merge steps are second. Mercurial gives the developer complete control over the
local repository and working copy, so merges do not take place unless requested.

The real power comes from the ability to synchronize repositories. Changesets can
be pulled from any repository, not just the master. So, if Bob developed a feature that
Alice needs to test, Alice can pull it directly from him, merge it into her repository,
and test it before committing it to the master. This is most commonly done today
with centralized systems using diff and patch, but distributed systems formalize this
method. The process looks something like Figure 10-3.

One of the most compelling features of decentralized version control is its compati-
bility with offline development. With a centralized system, the developer must be

Figure 10-2. Decentralized version control

Figure 10-3. A repository can pull from or push to any other repository

hg clone /
hg pull /
hg merge /
hg commit

Authoritative
repository

Local repository:
Alice

Local repository:
Bob

Local repository:
Carol

Authoritative
repository

hg pull /
hg merge

Local repository:
Alice

Local repository:
Bob

Local repository:
Carol

Version Control | 301

able to contact the server whenever he wants to check code in. Under the decentral-
ized model, a developer can check in code to his local repository on his laptop in the
Bahamas, and then push all of the changesets at once to the authoritative repository
when he has an Internet connection. This keeps the changesets clean and focused,
while not requiring a connection to the main repository on every commit. In effect,
this method creates a hierarchy of repositories (see Figure 10-4).

The primary technical drawback to distributed systems (other than their complex-
ity) is that each working copy is a full repository. Because each repository contains a
full change history, a checkout of a large or often-changing system can be quite large.
As an example, the Linux kernel source code is around 50 MB (bzipped), but a git
clone checkout of the same source (with history) transfers hundreds of megabytes
across the network.

Branching and Merging
In large software development projects, there is usually a need to keep multiple lines
of development separate. This need exists for a few reasons:

• Ongoing feature development will take place almost immediately after a release
is issued. If the release is buggy, the developers need a mechanism to fix the ver-
sion that was released without introducing any of the changes that were intro-
duced since the release.

• A development team will often work on multiple features concurrently. It would
be a nightmare if each developer had to ensure that his half-developed, half-
tested feature worked with another developer’s half-developed, half-tested fea-
ture every time he checked in code.

Figure 10-4. Disconnected or offline development with decentralized version control

Authoritative
repository

hg pull /
 hg push

Working copy:
Bob

Local repository:
Bobhg commit /

 hg update

Bob’s working directory, managed by Mercurial

302 | Chapter 10: Large Projects

• When creating a release for public consumption, there is often a period of test-
ing and evaluation. If the entire development team were frozen during this test
period, it would be very hard to get anything done.

• A team may offer support for multiple versions of the software at the same time,
in effect making public their branching system. Bugfixes and occasionally fea-
tures must be backported to old releases of the software.

Most version control systems offer flexible branching and merging support. A branch
is an independent line of development that can be developed on its own and merged
back into the trunk.

Subversion branching and merging

Subversion does not actually have a built-in branching or tagging mechanism as
such; all branches and tags are simply copies of part of the directory tree. Subversion
creates cheap copies using copy-on-write semantics; data is written to disk only when
the copy is actually changed. The amount of extra information required to maintain
a branch is roughly proportional to the difference between the branch and its parent.

This characteristic has some drawbacks, though. Subversion 1.4 has very primitive
merging support. It does not keep track of when branches were created or merged,
and does not prevent a change from being applied twice. Most developers who do at
least a moderate amount of merging use svnmerge.py,* which keeps track of this
metadata in Subversion properties.

There are many different paradigms for how branches are used. Here are some of the
most common ones for web development:

Production branch
The trunk is used for ongoing development. When a feature is fully developed
and tested, it is merged into the production branch and deployed. This style is
well suited to web applications, which tend to have a single development team
working on one feature package at a time. Urgent production defects can be
fixed in the production branch without disturbing feature work, and later can
be merged into the trunk.

For typical web applications, there is only one release branch, as there is only
one version of the software running at a time. When multiple release versions
must be supported, the production-branch model is strong, as multiple branches
can be created. This can be useful on occasion even in web applications; for
example, a large feature release can be staged as a “beta” to a subset of users.
If the beta is long-lived, it is useful to create a branch so that development can
continue independently.

* http://www.orcaware.com/svn/wiki/Svnmerge.py

http://www.orcaware.com/svn/wiki/Svnmerge.py

Version Control | 303

This model is a slight deviation from the ordinary non-web software develop-
ment model. In that model, features are developed in the trunk, stable work
toward a release is kept in a branch, and finished releases are tagged by copying
them to the tags directory. The Rails framework itself uses that model.

Feature branches
This is essentially the opposite of the production-branch model. One branch is
created for each new feature to be deployed. The trunk is always expected to be
stable and represents the latest stable version of the software.

Some prefer the feature-branch model over the production-branch model for web
applications, as it compartmentalizes features and isolates them from one another
during development and testing. It supports the single-deployment-environment
paradigm, but it is difficult to support multiple releases under this model.

Developer branches
Again, the trunk is a stable codebase. Each developer has his own branch that he
can use as his “sandbox” for developing and testing features. He will either
merge code into the trunk himself or submit the changesets to be integrated by
one person. Often, this is found in large teams, as it integrates well with a for-
mal code review process.*

If you have a large enough team that developer branches are necessary, you may
find yourself passing around and manually applying patches way too often. In
that situation, it may be worthwhile to consider moving to a distributed version
control system such as Mercurial or Bazaar.

Of course, the appropriate model will vary from project to project. Do not feel con-
strained by these models. The trunk, branches, and tags directories are only the tradi-
tional conventions used by Subversion developers. You could just as easily set up
features, production, and snapshots if it suited your fancy.

Mercurial branching and merging

Branching under distributed version control systems such as Mercurial is much more
natural. Any Mercurial repository is automatically a branch, because any repository
can pull changes from and push changes to any other repository, even between two
different directories on the same filesystem. Thus, the standard branching method
under Mercurial is to clone an entire project to a new directory, make the changes,
and then use hg pull to retrieve and merge the changes from a branch when needed.

As an example, suppose we are changing an application’s color scheme and want to
branch to keep the color-related changes together while doing other development.
First, we clone the trunk to a new feature branch:

$ hg clone trunk trunk-newcolors
47 files updated, 0 files merged, 0 files removed, 0 files unresolved

* Google uses a similar method, without explicit developer branches, for its internal development. They use
NFS, Perforce, and a code review tool called Mondrian developed by Guido van Rossum.

304 | Chapter 10: Large Projects

Now trunk-newcolors contains an identical copy of the trunk, including all history.
We are going to make changes to trunk-newcolors, preview them, and then merge
them back into trunk. We now make the appropriate changes to trunk-newcolors and
commit them:

$ cd trunk-newcolors/
$ sed -ie 's/color: red/color: blue/g' public/stylesheets/main.css
$ hg ci -m "Changed red to blue in main stylesheet"
$ hg tip
changeset: 1:18bb8b07ec40
tag: tip
user: Brad Ediger <brad.ediger@madriska.com>
date: Fri Oct 26 13:08:01 2007 -0500
summary: Changed red to blue in main stylesheet

We can preview this line of development for as long as we like, and then merge it
back into trunk. To merge, we first pull the changes from trunk-newcolors into the
trunk repository:

$ cd ../trunk/
$ hg pull ../trunk-newcolors
pulling from ../trunk-newcolors
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

This indicates that there have been changes to the trunk since the branch, so we will
need to merge.

Mercurial requires an explicit merge step, even if the merge turns out
to be trivial. In some cases, when you pull, you do not want to merge.
An extension called FetchExtension provides an hg fetch command to
automate the pull/merge/commit process in the case of trivial merges.

We use the hg heads command to see the two heads (two branches of development),
one from our local repository at trunk and the other from trunk-newcolors. The
merge step using hg merge is simple, and in this case, it is a trivial merge (without any
conflicts). Had there been conflicts, hg merge would have attempted to find a three-
way merge tool such as FileMerge or kdiff3 to help us resolve the changes. When the
merge is complete and we have approved it, we need to commit the merge.

$ hg heads
changeset: 2:18bb8b07ec40
tag: tip
parent: 0:65aca7b5860a
user: Brad Ediger <brad.ediger@madriska.com>
date: Fri Oct 26 13:08:01 2007 -0500
summary: Changed red to blue in main stylesheet

Version Control | 305

changeset: 1:800424c888ed
user: Brad Ediger <brad.ediger@madriska.com>
date: Fri Oct 26 13:08:57 2007 -0500
summary: added another CSS class

$ hg merge
merging public/stylesheets/main.css
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ hg ci -m "Merged"

The newly committed merge shows the two changesets from earlier as its parents:

$ hg tip
changeset: 3:5f98ca15ccbc
tag: tip
parent: 1:800424c888ed
parent: 2:18bb8b07ec40
user: Brad Ediger <brad.ediger@madriska.com>
date: Fri Oct 26 13:10:00 2007 -0500
summary: Merged

Often, cloning a repository in this way can be difficult. Rails applications can accu-
mulate a good deal of configuration files (in particular, database.yml) that are not
version controlled, and so must be recreated on each clone. There are a few ways
around this:

• hg clone is basically an atomic recursive copy when working between two reposito-
ries on the same filesystem. So, if you can be sure that the source repository will not
change during the copy, the following two commands are roughly equivalent:

$ hg clone trunk trunk-newcolors
$ cp -R trunk trunk-newcolors

Mercurial Revision Numbers
Note the changeset identifiers in this example; in particular, the changeset we pulled
from trunk-newcolors into trunk has the same hexadecimal ID in both repositories
(18bb8b07ec40), but a different numeric ID (1 versus 2).

Because changesets can be copied somewhat arbitrarily between repositories, their
numeric IDs (which simply reflect the order in which they were added to the reposi-
tory) will differ. But the hex IDs, which are SHA-1 hashes of the content of the chang-
eset and its history, remain the same.

Mercurial shows both identifiers, and either of them can be used to identify a revision,
as can tags (hg update 2, hg update 18bb8b07ec40, and hg update tip are all the same thing
in the preceding example). But the hex IDs are the only ones that are valid when talking
with another developer, or even when working between repositories on the same
machine, as we see here.

306 | Chapter 10: Large Projects

Of course, the latter has the advantage of preserving files that are not kept under
revision control.

• Mercurial keeps all of its revision control metadata, including the entire reposi-
tory, in a single .hg directory under the project root. You can recursively copy
this .hg directory over the .hg directory of another repository and then perform
an hg update --clean from the target repository to update the working copy
(which may contain extra, non-version-controlled files).

Mercurial also has support for named branches, which are separate branches of devel-
opment within one repository. This support has been mature since version 0.9.4.
However, named branches complicate certain aspects of using Mercurial, and they
are a somewhat advanced feature. Named branches are preferable for long-lived
development branches, while branching by cloning is still preferred for feature
branches. Chapter 8 of Distributed Revision Control with Mercurial goes into detail
about branching and merging (http://hgbook.red-bean.com/hgbookch8.html).

Database Migrations
When working with large Rails projects, especially those with multiple developers or
feature branches, an issue that frequently comes up is synchronizing database migra-
tions. Since Rails migrations are numbered sequentially in the order in which they
are generated (with respect to the current project), the generate script will happily
use a number that may have been in use elsewhere, in other versions of the project.
This causes difficulty upon merging. The typical workflow is this:

1. The current migration version number in the trunk is 123. You branch the
project for a new feature, and in the branch you generate a migration for the
database support:

[branches/feature]$ script/generate migration AddNewFeature
 exists db/migrate
 create db/migrate/124_add_new_feature.rb

2. You need to fix an issue in the trunk, so you create and apply a migration to
trunk. It is created with version number 124, because the other version 124 is
not visible yet:

[trunk]$ script/generate migration BugFix
 exists db/migrate
 create db/migrate/124_bug_fix.rb

3. Upon merging, there are two migrations with version 124. These must be manu-
ally renumbered, which can be difficult if there were many migrations. The data-
base must then be migrated down to the lowest migration common to both
branches, and migrated back up. If the migrations are not fully reversible, the
changes may have to be applied manually.

This situation can also happen when there are multiple developers generating their
own migrations. The solution for that situation is good communication: developers

http://hgbook.red-bean.com/hgbookch8.html

Version Control | 307

should always pull the db/migrate directory from the version control system immedi-
ately before generating a migration. Conversely, these migrations should be checked
in as soon as is practical after generation, so all developers have access.

Unfortunately, when using branches, it is not generally possible to publish every
schema change across all branches. If it were, a simple solution would be to set up a
shared migrations directory in the version control repository, and import it via a svn:
externals (or equivalent) declaration. In most cases, schema changes to separate
branches must be kept separate; at the least, production databases should not be pol-
luted with database changes for new features. So, another solution must be found.
There are several schools of thought on how this should work.

The simplest solution, which is probably the most popular, is Courtenay’s Independent
Migrations plugin (http://blog.caboo.se/articles/2007/3/27/independent-migrations-plugin).
The basic assumption is that migrations which are created in different branches or
working copies are logically independent of each other. (If this assumption doesn’t
hold, you will have problems when merging, no matter how you slice it.)

After installing the plugin, simply tag your independent migrations as such by inherit-
ing from ActiveRecord::IndependentMigration rather than ActiveRecord::Migration.

class AddFeature < ActiveRecord::IndependentMigration
 # ...
end

Multiple independent migrations will then be applied concurrently, so migrations
can be merged without renumbering. However, this does not eliminate the need to
migrate down and back up when several migrations have been applied to a database;
the plugin will not search old version numbers (older than the current version) for
new migrations.

My solution, Subverted Migrations,* is more complicated, but it aims to be as trans-
parent as possible once you understand it. As the name suggests, it only works with
Subversion. The intent is to synchronize version numbers across all branches. That
way, all developers and all branches have the same view of the migrations that have
been applied project-wide. It applies two changes to the Rails version-numbering
mechanism:

• It serializes version numbers across all branches by scanning the Subversion
repository for all branches to find a free version number.

• It changes the semantics of the schema_version table: rather than being the num-
ber of the latest-applied migration, the schema version is a list of migrations that
have been applied to the database. When older changes from other branches are
merged in, a simple rake db:migrate applies them without the need to migrate
down and up.

* http://www.bradediger.com/blog/2006/11/subverted_migrations.html

http://www.bradediger.com/blog/2006/11/subverted_migrations.html
http://blog.caboo.se/articles/2007/3/27/independent-migrations-plugin

308 | Chapter 10: Large Projects

Of course, this only works if all developers promptly check in their new migrations,
and if the migrations are truly independent from each other in the first place. The
multiple-developer scenario always requires good communication. Another draw-
back of Subverted Migrations is that it requires access to the Subversion repository
every time a migration is generated. The other solutions operate only with the work-
ing copy.

The last solution is François Beausoleil’s Timestamped Migrations patch. This
patches Rails to use UTC timestamps rather than simple version numbers. Like Sub-
verted Migrations, this method changes the semantics of the schema_info table to
reflect exactly which migrations have been applied. Timestamped Migrations is not
available as a plugin, but only as a patch against edge Rails (http://blog.teksol.info/
articles/search?q=timestamp).

Issue Tracking
Issue-tracking systems are essential to any large or long-lived project. The term
“issue” is broad enough to encompass things that may not be thought of as bugs or
defects: feature requests, work orders, support requests, or even planning docu-
ments for future changes to an application.

The difference between products called “issue trackers” and those called “bug track-
ers” is largely one of focus; the two typically implement similar sets of features. Issue
trackers tend to be customer-oriented; even if only used by employees, each ticket rep-
resents a customer problem. Bug trackers tend to be focused more on the product; they
collect bugs, feature requests, or other issues regarding the project. One distinguishing
factor is that under a bug tracker, multiple tickets representing the same issue will usu-
ally be folded into one ticket, even if the tickets affect different customers.

One powerful feature that some issue trackers offer is integration with a version con-
trol system. This allows the history of each issue to be correlated with the develop-
ment of the code. Patches intended to fix an issue can reference the issue number
directly. Conversely, issues can reference version control changesets (for example,
“fixed in r1843”), and the issue-tracking system provides the changesets in a friendly
format (such as HTML diff).

Some of the most popular issue-tracking systems are listed here.

Product Platform Description

Bugzilla Perl, Apache or IIS Mozilla project’s bug tracker. Oriented toward open source soft-
ware development. Flexible workflow.

Collaboa Rails Newcomer to the industry; development trunk is still fairly unsta-
ble. Takes the best features from Trac and cleans them up a bit.
Looks very promising.

RT (Request Tracker) Perl, Apache Email-based workflow. More suited to customer support than
issue tracking, but can be used for either or both.

http://blog.teksol.info/articles/search?q=timestamp
http://blog.teksol.info/articles/search?q=timestamp

Project Structure | 309

Project Structure
There are several decisions that must be made about how to structure a large Rails
application. Issues arise with how to manage multiple branches of development, a
team of developers, and external or vendor software. In this section, we cover some
of the most common choices.

Subversion Configuration
Subversion usually needs a little bit of configuration to work with Rails. There are
some “volatile” files that change from development to production or within a
deployment. These files should be kept out of version control. In Subversion, a file is
ignored within a directory by setting a pattern matching the file as the value of the
svn:ignore property on the parent directory. For most Rails applications, the follow-
ing ignores are typically used:

$ svn propset svn:ignore database.yml config/
$ svn propset svn:ignore "*" log/ tmp/{cache,pids,sessions,sockets}

There is a Subversion client configuration that sets up many of these settings, and
will ignore those volatile files without the need for svn:ignore. It also sets up
autoprops, which sets the MIME type on files in the repository automatically. If you
work mainly with Rails projects, this can be a good choice. The config file is avail-
able from http://3spoken.wordpress.com/rails-subversion-tng-config-file/.

As a rule, configuration specific to a particular Rails environment (excluding database
connection specifications, which are more specific to the developer and his environ-
ment) should not be ignored, but rather should be placed in environment-specific
blocks. This allows the configuration to be versioned while still remaining environment-
specific.

Importing existing applications

The svn import command is designed to place a directory (and its subdirectories)
under version control. Unfortunately, it is only an import, not a checkout. It does
not turn the imported directory into a working copy, which is usually the behavior
you want when importing a project that is already under development.

Trac Python, Subversion Great Subversion integration. Very nice workflow. Based on mod-
ular architecture, so many plugins are available. However, it can
be difficult to install. Currently used to manage Rails develop-
ment (http://dev.rubyonrails.org/).

Lighthouse Rails (Hosted) New subscription-based issue-tracking service by Active Reload
(Rick Olson and Justin Palmer). Very slick interface, good extensi-
bility, and integration with email.

Product Platform Description

http://dev.rubyonrails.org/
http://3spoken.wordpress.com/rails-subversion-tng-config-file/

310 | Chapter 10: Large Projects

There is a neat Subversion trick to add an existing directory tree “in place” to an
empty repository. You can use this when putting an existing application under ver-
sion control:

$ svn mkdir svn://repo/my_app/trunk

$ cd my_app
$ svn co svn://repo/my_app/trunk .
$ svn add *
$ svn ci

To add only certain directories without their contents, pass the -N (--non-recursive)
flag to svn add. This is very useful when setting contents of certain directories to be
ignored; for example, these commands will add the public/attachments directory
while ignoring its contents:

$ svn add -N public
$ svn add -N public/attachments
$ svn propset svn:ignore "*" public/attachments

Subversion Externals and Piston
Subversion has an externals facility for pulling in code from other repositories. When a
folder is designated as an external, it is paired with a remote repository. When
updating the working copy, code will be pulled from that repository in addition to
the main project repository.

In Rails, there are two reasons you would want to do this. The first is to lock Rails to a
certain version (or to track edge Rails). The second is for plugins: you may want to
follow updates to a plugin’s Subversion repository, so you can lock vendor/plugins/
plugin_name to the plugin’s development repository. The script/plugin command
even provides a flag that adds the plugin as an external rather than downloading it:

$ script/plugin install -x some_plugin

This works for small-scale applications, but the dependencies can quickly become
a mess. Most of the time, you will not want to follow the bleeding edge of Rails or
a plugin, but instead lock to a known-stable version. Although svn:externals has a
feature to do that, it can get messy. The biggest problem is that any local changes
you make to the external code are not versioned. In addition, updates are slow as
they must query each external server.

The best solution at this point is François Beausoleil’s Piston (http://piston.rubyforge.
org/). Rather than pulling a copy of the code from the remote Subversion server, Pis-
ton stores a copy locally, in your project’s own Subversion repository. It uses proper-
ties on the folder to track the current version at the remote repo. To Subversion, the
directory is just another set of files in your project. This means that updates are fast,
as they only talk to one server. You also only get external updates when you ask for
them (piston update).

http://piston.rubyforge.org/
http://piston.rubyforge.org/

Project Structure | 311

First, install Piston and convert your existing svn:externals to Piston-locked
directories:

$ sudo gem install --include-dependencies piston
$ piston convert

You can now lock to edge Rails:

$ piston import http://svn.rubyonrails.org/rails/trunk vendor/rails

Installing plugins is simple if you know the repository URL:

$ piston import \
 http://activemerchant.googlecode.com/svn/trunk/active_merchant \
 vendor/plugins/active_merchant

Remember to manually execute the commands in install.rb if it does anything spe-
cial; script/plugin would do this for you, but Piston doesn’t know or care that you
are installing a Rails plugin.

Piston-controlled directories can be updated all at once with piston update, or one at
a time with piston update vendor/plugins/active_merchant.

Rails Version
If a Rails distribution is unpacked in vendor/rails under the application root, it will be
used. If vendor/rails is not present, Rails will look for an installed rails gem match-
ing the specified RAILS_GEM_VERSION (usually specified in config/environment.rb). It is
usually best, for the sake of predictability, to have the Rails code unpacked in
vendor/rails. Although it takes up a little more room in the repository and on the
server, it ensures that everyone is on the same page and developing against the exact
same version.

Nothing says that you have to use edge Rails; for the stable branch of Rails 1.2, use
Piston to lock vendor/rails to http://svn.rubyonrails.org/rails/branches/1-2-stable.

Environment Initialization
As Rails has matured, the environment.rb configuration file has been shifting in pur-
pose and style. Originally, it started out as a procedural language where every little
bit of configuration was included, and you would just “throw something at the bot-
tom” to have it run upon Rails initialization. Now, its purpose is more focused, to
the point that it almost seems to be a domain-specific language for configuring Rails.
The mechanics of starting up Rails have been moved to boot.rb, and what is left has
been cleaned up.

However, sometimes we just need a place to put initialization routines. In edge
Rails, these have been given a new place. If you have (or create) a config/initializers
directory, any Ruby files there will be executed after the environment is configured.

http://svn.rubyonrails.org/rails/branches/1-2-stable

312 | Chapter 10: Large Projects

Having a separate place for initializers helps you to separate them by function. Here
is a sample file for custom inflections:

config/initializers/inflections.rb

inflect.uncountable(["data"]) doesn't catch "something_data"
Inflector.inflections do |inflect|
 inflect.plural(/(data)$/i, '\1')
 inflect.singular(/(data)$/i, '\1')
end

The last trick for initialization is the after_initialize block. Included as part of the
configuration, it will be run at the end of initialization (immediately before the ini-
tializers mentioned previously). The block is specified thus:

config.after_initialize do
 # some initialization code...
end

Unfortunately, you only get one after_initialize block per initialization—you can’t
have one in environment.rb and another in production.rb. So, choose wisely where
you need it. My recommendation: use it in your environment-specific configuration
files, and use the initializers directory for your generic initialization.

Including Gems
When deploying to a new machine, it can be frustrating to make sure all of the
dependencies are in order. RubyGems are typically the main culprit here. One way to
ensure you have gem dependencies under your control is to include them in the
project tree. This idea, from Chris Wanstrath,* is the natural extension of keeping
Rails and plugins within the project.

To include gems in the project, we will create a directory to hold them, then unpack
a gem there using the gem unpack command (you may need to update RubyGems for
this command to work):

$ mkdir vendor/gems
$ cd vendor/gems
$ gem unpack hpricot
Unpacked gem: 'hpricot-0.4'

Now we need to ensure that the directory we have created is added to the load path.
In the environment.rb file, inside the Rails::Initializer.run block, add the
following:

config.load_paths += Dir["#{RAILS_ROOT}/vendor/gems/**"].map do |dir|
 File.directory?(lib = "#{dir}/lib") ? lib : dir
end

* http://errtheblog.com/post/2120

http://errtheblog.com/post/2120

Project Structure | 313

There are plenty of nuances to this trick, so be sure to check the aforementioned blog
post and its comments for the full story.

Multi-Application Projects
For large projects, sometimes multiple Rails applications need to be grouped
together. Multiple applications that need to share code can be grouped in the same
version control tree. This is a good use for Subversion externals; externals can point
to other parts of the repository that they live in.

Under this setup, bits of shared code are kept in the repository at the top level of
their branch or trunk (at the same level as the Rails applications). Subversion exter-
nals are used to pull shared folders into each of the Rails projects. A typical directory
structure looks like Figure 10-5.

Under this directory layout, you would issue commands like the following to import
each directory from the shared tree:

$ cd project
$ svn propset svn:externals "models (repo)/trunk/shared_models" \
 trunk/rails_app_{1,2}/app

That command tells Subversion to source trunk/rails_app_1/app/models and trunk/
rails_app_2/app/models from trunk/shared_models. When you update either of the Rails
applications, they will grab code from shared_models. When you commit code into the
applications’ model directories, Subversion will push the code into shared_models.

Figure 10-5. Directory structure of a large Rails project

314 | Chapter 10: Large Projects

There is one caveat to this approach. Subversion will not commit to two repositories
at once, and it sees an external as a separate repository. So, if you make changes to
both the models and some other part of an application at the same time, you must
check those changes in separately. This can take some getting used to, but it quickly
becomes second nature.

Depending on your situation, you may want to keep any or all of these shared
between two or more Rails applications:

Rails codebase
Usually, you want all of the applications within a project to be locked to the
same version of Rails. With a project maintained under Subversion, using Piston
to source the vendor code offers an advantage; you can maintain local changes to
the Rails tree independently of what happens upstream. Using Piston, you can
lock Rails to a certain branch (stable or edge) and update when you feel like it.

You can pull changes from the upstream Rails repository and sync them
throughout trunk with the following commands:

$ cd project/trunk
$ piston update rails
$ svn up

Plugins
Like the Rails source, plugins usually come in from an upstream repository.
Often you will need them synchronized across projects. Here, Piston is a great
help again, as you can update across your project and only pull changes from
upstream when you are ready. You have two options for structuring the source
tree: you can either pull the plugins directory as a whole (into vendor/plugins), or
you can cherry-pick the plugins you need for each application.

RubyGems
Maintaining gem dependencies between development environments, staging,
and production servers can be a hassle. The most consistent solution is to “ven-
dor everything”—create a vendor/gems directory, carry your gem dependencies
around with the project code, and modify Rails to look there before your
installed RubyGems.

Chris Wanstrath came up with this solution (http://errtheblog.com/post/2120),
and Dr. Nic Williams packaged it into a gem itself, gemsonrails (http://
gemsonrails.rubyforge.org/). Kyle Maxwell has a Rails plugin that allows the
“vendor everything” approach to be used for gems that require building native
extensions (http://svn.kylemaxwell.com/rails_plugins/vendor_everything_extensions/).

http://errtheblog.com/post/2120
http://gemsonrails.rubyforge.org/
http://gemsonrails.rubyforge.org/
http://svn.kylemaxwell.com/rails_plugins/vendor_everything_extensions/

Rails Deployment | 315

Ruby and Rails extensions
Any project of reasonable size usually accumulates a series of extensions, anno-
tations, and utility functions that supplement the Ruby and Rails core. Exam-
ples of Ruby extensions:

class String
 # "Frequently - Asked Questions!" => "frequently_asked_questions_"
 def to_slug
 self.downcase.gsub(/[^a-z0-9]+/, "_")
 end

 # 12345678.to_s.with_commas => "12,345,678"
 def with_commas
 self.reverse.gsub(/\d{3}/,"\\&,").reverse.sub(/^,/,"")
 end
end

Because these utility functions are usually widely applicable, it is useful to share
them between projects. I usually keep them under lib/extensions and require
them from an initializer.

ActiveRecord models
Some situations call for two or more separate applications sharing the same data.
While this is usually accomplished with one Rails application and judicious sep-
aration of concerns, occasionally the purposes for the applications will diverge
and it will make sense to split them up. In that case, the models can be placed in
a shared_models directory and shared out among the applications.

Test fixtures
If you share a data model between applications, you will usually want to share
any test fixtures you have between those applications as well.

Rails Deployment
As a full-stack web framework, Rails can require some work to deploy an applica-
tion from the ground up. Rails, unfortunately, has a bad reputation for being hard to
deploy, mainly due to problems with the preferred deployment environments when
Rails was young (2004–2005). But Rails has grown up, and Mongrel came along in
2006 and made things much easier. There are now good sets of best practices for
deploying Rails applications, from the smallest development environments to huge
multi-data-center worldwide clusters.

316 | Chapter 10: Large Projects

Shared-Nothing Scalability
One of the most basic concerns when deploying any web application is scalability:
how well the underlying architecture can respond to increased traffic. The canonical
Rails answer to the scalability question is shared-nothing (which really means shared-
database): design the system so that nearly any bottleneck can be removed by add-
ing hardware. The standard architecture looks like Figure 10-6.

The interface to the application is either a light web server (operating as a reverse
proxy balancer*) or a hardware load balancer. A small web server is usually used to
handle the static files (images, JavaScript, static HTML, stylesheets, and the like)
because a single-purpose static file server is much faster than an application server at
serving static files. This front end box delegates dynamic requests to one of the appli-
cation servers, selected either randomly or based on load.

For redundancy in large setups, two front end servers can be used, on separate
machines, proxying to the same set of application servers (see Figure 10-7).

If high availability is required, the load balancers must use a VIP-/VRRP-based solu-
tion to ensure that the cluster will always respond to all of its IP addresses even
under the failure of one load balancer. If high availability is not a requirement, primi-
tive load balancing will suffice, by giving each load balancer its own IP address and
exposing them all through a DNS RR (round-robin) record.

Figure 10-6. Simple shared-nothing deployment environment

* A forward proxy sits in front of users and accelerates content that those users request. A reverse proxy sits in
front of web servers and accelerates the content requested of that server. A proxy balancer is a reverse proxy
that balances requests among its member servers.

Web server/
load balancer

Application
server

Application
server

Application
server

More application
servers as

needed

DBInternet

Rails Deployment | 317

One drawback of this architecture is that once the database becomes the bottleneck,
things can get difficult. Database scalability is a hard problem, and we examine this
issue in Chapter 4.

Front End Web Server
The front end web server has several purposes. Depending on the application, these
may be mission-critical or not even needed. Consequently, the concrete systems
architecture will look very different from application to application. The most com-
mon functions of the front end server are the following:

Reverse proxying and load balancing
The front end server balances and distributes requests between the application
servers. It also acts as a reverse proxy so that the requests to the application serv-
ers appear to be coming from the client, rather than the balancer.

Static file serving
The front end web server (which may or may not be the same software as the
load balancer) serves static files much faster than the application servers.

Compression
If HTTP compression is to be used, the front end web server can handle this to
reduce CPU load on the application servers.

SSL wrapping
The front end server can handle SSL encryption so that the application server
does not have to do it (SSL encryption and decryption are CPU hogs). The front
end server usually adds a header such as X-Forwarded_Proto: https to indicate
that SSL was used.

Common choices for a front end web server and proxy balancer are as follows.

Figure 10-7. Shared-nothing deployment with redundancy for load balancing or high availability

Web server/
load balancer

Application
server

Application
server

Application
server

More application
servers as

needed

DB
Internet

Web server/
load balancer

Optional
failover

318 | Chapter 10: Large Projects

Apache (http://httpd.apache.org)
Of these servers, Apache is definitely the heaviest. Administrators who have a
choice usually select one of the lighter options. But Apache has some advan-
tages: it is well-known and relatively easy to configure, it is very flexible, and it
integrates well with its environment.

If you have a choice, use Apache 2.1 or higher, as it supports mod_proxy_
balancer. Otherwise, you will need to proxy to a balancer such as pen or pound
in order to load balance between application servers.

Apache can actually directly serve Rails applications over FastCGI, using mod_
fastcgi and the Rails FastCGI dispatcher. However, this approach has mostly
been superseded by the reverse-proxy/Mongrel method for new deployments.

Lighttpd (http://www.lighttpd.net)
Lighttpd (usually just pronounced “lighty”) is a powerful, light web server. It
supports reverse proxying and load balancing with the mod_proxy module. It is
one of the preferred front end servers today.

Like Apache, lighttpd can directly serve Rails with FastCGI. This is still not rec-
ommended, as the Mongrel approach is more robust and scalable.

Pen (http://siag.nu/pen/)
Pen is a standalone proxy balancer. It does not serve static files; it only proxies to
a list of servers and balances between them. Pen has SSL-wrapping support.

If high availability is needed, Pen can be clustered using the VRRP protocol for
failover.

Pound (http://www.apsis.ch/pound/)
Pound is another reverse proxy balancer. Like Pen, it can proxy, balance
between servers, and unwrap SSL. It is also not a web server, so you may have to
set up a static file server.

However, Pound has some X-Forwarded-For problems when being used as a
reverse proxy between Apache and Mongrel,* so you should consider Pen instead
for this configuration.

nginx (http://nginx.net)
One of the newest but most promising contenders is nginx (“engine X”). Like
Apache and lighttpd, nginx is a web server with comprehensive load balancing,
rewrite, and proxy features. While the featureset is comparable to Apache, the per-
formance characteristics and memory footprint are more like lighttpd. At the
moment, nginx seems to be the best front end for Rails applications.

* http://blog.codahale.com/2006/11/07/pound-vs-pen-because-you-need-a-load-balancing-proxy/

http://blog.codahale.com/2006/11/07/pound-vs-pen-because-you-need-a-load-balancing-proxy/
http://httpd.apache.org
http://www.lighttpd.net
http://siag.nu/pen/
http://www.apsis.ch/pound/
http://nginx.net

Rails Deployment | 319

Asset hosts for static files

There is yet another way to serve static files. Rather than intercepting requests for
static files at the proxy, you can define an asset host, or another server from which
static files will be served. The Rails image_path and similar helper methods will then
use that host to reference files in the public directory. Configuration is simple:

config.action_controller.asset_host = "http://assets.example.com"

But this can be inefficient: browsers limit the number of concurrent connections to
one host, so the download speed can actually be limited by the connection rate,
which is often governed by the user’s upload speed.* This can be solved by increas-
ing the number of DNS names from which assets are served, as the restrictions oper-
ate based on names, not IP addresses. In Rails 2.0, the configuration looks like this:

config.action_controller.asset_host = "http://assets-%d.example.com"

This will distribute asset requests across assets-0.example.com, assets-1.example.com,
assets-2.example.com, and assets-3.example.com. Just point all of those DNS names
at your asset server, and you gain the benefit of increased concurrency without
changing any client settings.

Application Server
With the other pieces in place, we now need the biggest piece of the puzzle: the
application server that handles all of the dynamic requests. Right now, the best solu-
tion is Mongrel.†

Prior to Mongrel, Rails applications were best served using the CGI protocol or some
variation thereof (FastCGI or SCGI). The basic idea behind this is that the front end
web server would talk to the application server using a special protocol, with one
connection per request (see Figure 10-8). CGI has the limitation that one new pro-
cess is created for each request, which is extremely slow for interpreted languages
such as Ruby. Therefore, the FastCGI and SCGI protocols were created. They have
the advantage that they can work with persistent interpreters—one interpreter can
serve many requests over the lifetime of the process. This solution can be scaled by
adding more workers.

However, the front end server is still a limiting factor here. The front end server han-
dles every request from start to finish, something we can actually eliminate with a
load-balanced setup. In addition, using two different protocols confuses things: the
application servers speak FastCGI, and the web servers speak HTTP. To top it off,
Apache’s mod_fastcgi has had a reputation for crashing after being up for a while.

* See http://www.die.net/musings/page_load_time/ for a full explanation.

† http://mongrel.rubyforge.org/

http://www.die.net/musings/page_load_time/
http://mongrel.rubyforge.org/

320 | Chapter 10: Large Projects

Enter Mongrel: an HTTP application server. It supports several frameworks, the
most prominent being Rails. Instead of having your application servers speak
FastCGI, they can natively speak HTTP. This means, among other things, that you
can put them behind a hardware or software load balancer, and the dynamic
requests may not even need to hit a web server other than Mongrel. Alternatively,
you can proxy to them from a web server, as described previously.

Mongrel is very easy to install and control:

$ sudo gem install mongrel
$ cd my_rails_app
$ mongrel_rails start -d

(mongrel is running as a daemon)

$ mongrel_rails stop

Mongrel can be run as a service on the Win32 platform, using the mongrel_service
gem.

Remember: as an HTTP server, Mongrel will happily serve static files in its docroot,
but it will be slower than a server optimized for static files. This is fine in develop-
ment mode (script/server defaults to Mongrel, even in development mode), but it
will be slow in production. For situations where performance matters, set up a front
end web server and check the logs to be sure it is serving all of the static assets.

Of course, managing several Mongrels in parallel can get tiring. That’s why Bradley
Taylor created mongrel_cluster. It is a small library that manages parallel Mongrel
application servers. It takes a configuration file, which specifies how many Mongrels
to run, with a range of port numbers to expose to the load balancer. The cluster serv-
ers can then be started and stopped at once with the simple commands:

mongrel_rails cluster::start
mongrel_rails cluster::stop
mongrel_rails cluster::restart

Figure 10-8. Serving a Rails application with FastCGI

Apache/
Lighty +

mod_fastcgi

FastCGI
worker

FastCGI
worker

FastCGI
worker

Internet FastCGI

Rails Deployment | 321

Capistrano
Once you have a server set up and running smoothly, you need a way to deploy your
application from the repository to the server. The naïve process of sshing into the
server, updating the code, and restarting the server process gets old very quickly, and
it is error-prone.

Enter Capistrano (http://capify.org/): a framework for scripting interaction with
remote machines. Capistrano started out as a deployment framework (it was origi-
nally called SwitchTower). As people started using it for wider and more varied pur-
poses, it evolved into a general framework for executing commands in parallel on a
set of remote servers. In version 2.0, deployment is only a subset of the functionality
available through Capistrano, and the deployment tools must be explicitly loaded.

Capistrano, like the rest of Rails, follows the convention over configuration para-
digm. In general, the more “mainstream” your situation, the less configuration you
will have to write. The framework gives you enough power to do most things you
would want to do, but tries to make the simple situations simple.

The Capistrano 2.0 source code is an excellent example of well-structured Ruby
code. It is hosted in the Rails Subversion repository (http://svn.rubyonrails.org/rails/
tools/capistrano/).

Vlad the Deployer
Of course, as Capistrano grows larger and becomes more general, some people just
want a simple deployment tool. The Ruby Hit Squad released Vlad the Deployer
(http://rubyhitsquad.com/Vlad_the_Deployer.html) as a reaction against Capistrano’s
complexity. It does one thing: application deployment. It uses native programs (ssh
and rsync), as opposed to Capistrano, which depends on the Net::SSH library.

Because Vlad is focused on deployment only, the configuration file can be simpler. It
defaults to one server; Capistrano assumes a large setup—the default deployment
tasks assume separate web, app, and db roles. Either solution works well; generally,
Vlad is easier to get started with, and Capistrano will be more flexible for large
projects or those with unusual requirements.

Continuous Integration
Another powerful tool for software development, especially in large teams, is
continuous integration. As a principle, continuous integration comes from the
Extreme Programming discipline. It usually involves a build/test process that hap-
pens either just before or just after each version control commit. If tests fail, an email
is typically sent to the entire team, shaming the offending developer and providing an
incentive to fix the code.

http://capify.org/
http://svn.rubyonrails.org/rails/tools/capistrano/
http://svn.rubyonrails.org/rails/tools/capistrano/
http://rubyhitsquad.com/Vlad_the_Deployer.html

322 | Chapter 10: Large Projects

The most popular continuous integration framework is CruiseControl, which started
as a Java project. It has since been ported to .NET and Ruby. ThoughtWorks main-
tains the Ruby port, CruiseControl.rb (http://cruisecontrolrb.thoughtworks.com/). It
runs in the background and monitors the repository every 30 seconds for commits
(the interval is configurable). When a new version is detected, it checks it out into a
working directory and runs the tests with Rake. If there are failures or errors, a fail-
ure email is sent out. (Likewise, if the build was broken but is now fixed, a “fixed”
email is sent.) CruiseControl.rb also provides a neat web interface to view test
progress and results for the latest and previous builds.

Closely related is the ZenTest suite of tools by Ryan Davis.* ZenTest consists of five
tools that help with test coverage, especially under Rails applications. The documen-
tation tells the full story, but the most compelling part of this suite is autotest. This
allows an even shorter cycle time than continuous integration tools. Although the
method is similar to continuous integration, the AutoTest tools are used more for
development (to shorten the cycles between writing code and testing it) than for con-
tinuous integration (which is more of a safety net to prevent obviously bad code from
being deployed).

AutoTest sits in the background and watches the files in a Rails project. When any
file is changed, AutoTest runs the appropriate tests immediately. It is pretty smart
about which tests need to be run, and even watches test fixtures and other dependen-
cies for changes. If you follow the test-driven development methodology, running
AutoTest is a great way to force yourself to stay green. Get started with the
following:

$ sudo gem install ZenTest
$ cd my_rails_app
$ autotest -rails

Further Reading
There are many resources, both free and paid, for learning the version control sys-
tems mentioned in this chapter. For Subversion, there is Version Control with Sub-
version (http://svnbook.red-bean.com/), which is available both for free online and as
a print book from O’Reilly. Also available is Pragmatic Version Control Using Sub-
version (http://pragmaticprogrammer.com/titles/svn2/index.html), which is more of a
tutorial than a reference.

CVS has similar options available. The book Open Source Development with CVS is
available under a GPL license online at http://cvsbook.red-bean.com/. The print book
is also distributed by O’Reilly. The Pragmatic Programmers’ offering is Pragmatic Ver-
sion Control Using CVS (information available at http://pragmaticprogrammer.com/
starter_kit/vcc/index.html).

* http://www.zenspider.com/ZSS/Products/ZenTest/

http://www.zenspider.com/ZSS/Products/ZenTest/
http://cruisecontrolrb.thoughtworks.com/
http://svnbook.red-bean.com/
http://pragmaticprogrammer.com/titles/svn2/index.html
http://cvsbook.red-bean.com/
http://pragmaticprogrammer.com/starter_kit/vcc/index.html
http://pragmaticprogrammer.com/starter_kit/vcc/index.html

Further Reading | 323

Similarly, the best book about Mercurial is free. It can be downloaded from http://
hgbook.red-bean.com/.

Matt Pelletier and Zed Shaw have written a book on Ruby application deployment
with Mongrel; it can be purchased and downloaded as a PDF from http://www.
awprofessional.com/bookstore/product.asp?isbn=0321483502&rl=1.

Ezra Zygmuntowicz is writing the book on Rails deployment. Information is avail-
able at http://www.pragmaticprogrammer.com/titles/fr_deploy/index.html.

http://hgbook.red-bean.com/
http://hgbook.red-bean.com/
http://www.awprofessional.com/bookstore/product.asp?isbn=0321483502&rl=1
http://www.awprofessional.com/bookstore/product.asp?isbn=0321483502&rl=1
http://www.pragmaticprogrammer.com/titles/fr_deploy/index.html

325

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
$KCODE global variable, 73
%Self column, scanning profiles, 158
_() function, 251

Numbers
1+N problem, 166
8-bit Unicode Transformation Format

(UTF-8), 239
conversion, 248–249
input, filtering, 244
servers, 248
storage, 245–248

A
abstraction

bottom-up programming, 4
client security, 130–135

Accept, 194
Accept-Charset header, 194
Accept-Encoding, 194
Accept-Language header, 194
access

concurrent, 297
files, merging, 298
instance variables, 58

access control lists (ACLs), 232
accessors, attributes, 62
account_location plugin, 85–87
ACID transactions, 100
ACLs (access control lists), 232
Action Profiler, 153
Action Web Service (see AWS)

ActionController, 92
ActionMailer, 183

incorporating, 287–289
actions

benchmarking, 163
caching, 177
profiling, 155–157
RESTful Rails URI conventions, 199

ActionView, RESTful Rails, 216
Active Record pattern versus ActiveRecord

library, 271
ActiveLDAP library, 124
ActiveMerchant module, 35
ActiveRecord

alternatives, 271–281
bottom-up programming and, 4
incorporating, 284–287
migration, 285
models, 315
performance, 165

1+N problem, 166
indexing, 167–171
SQL, 165

ActiveRecordStore, 174
ActiveResource, 223–230
ActiveSupport, 57

Core Extensions, 60–75
dependencies, 57
deprecation, 58
Inflector, 59
JSON, 59
multibyte character support, 242
Whiny Nil, 60

adding functionality to existing methods, 32

326 | Index

address book, Globalize example of, 258–268
advanced database features, 109–116
aggregators, 39
AJAX, secure fallback, 135
alias_method method, 34
aliasing, 70
all? predicate, 37
alternative template engines, 282–284
Amazon S3 (Simple Storage Service) case

study, 231–235
Ambition, 273
American Standard Code for Information

Interchange (see ASCII)
analysis, black-box, 148–151
ANALYZE TABLE command, 171
anonymous functions, 36
any? predicate, 37
AOP (aspect-oriented programming), 32
Apache Portable Runtime (APR), 299
Apache servers, 318
application databases, 109
application_backtrace method, 66
applications

ActionMailer, 183
ActiveRecord, applying in, 287
ActiveSupport, 57

Core Extensions, 60–75
dependencies, 57
deprecation, 58
Inflector, 59
JSON, 59
Whiny Nil, 60

architecture scalability, 173–181
benchmarking, 161–164
Borges, 26
DabbleDB, 27
Heckle, 2
importing, 309
initialization, 75
L10n (localization), 250

Globalize example, 258–268
interface/resource

translation, 250–255
locale-specific settings, 256
model translation, 257

Mongrel, 78, 108
multi-application projects, 313–315
Seaside, 26
security design, 127–137
servers, 319
state, 195

APR (Apache Portable Runtime), 299

architecture
Amazon S3 (Simple Storage Service) case

study, 233
MySQL Cluster, 122
Representational State Transfer (REST)

benefits of, 205–209
overview of, 185–187
representations, 193–195
resources, 190–193
RESTful Rails, 209–231
statelessness, 195–205
verbs, 187–190

scalability, 173–181
security

canonicalization, 143
cross-site request forgery

(CSRF), 141–143
cross-site scripting (XSS), 139–141
sessions, 137–139
web issues, 137–144

shared-nothing, 197
Array methods

*, 46
extract_options!, 61
in_groups_of, 61
pack, 46
rand, 61
split, 61
to_s, 61
to_sentence, 61
to_xml, 61

arrays
core extensions, 61
grouping, 61
methods, 46

ASCII (American Standard Code for
Information Interchange), 237

aspect-oriented programming (AOP), 32
asset hosts, 319
asynchronous replication, 124
atomic commits, 298
attachment handling, 107
attachment_fu library, 107
attacks

cross-site request forgery (CSRF), 141
cross-site scripting (XSS), 139
rainbow, 128
SQL injection, 144
TCP sequence-number prediction, 138
(see also security)

attr_accessible method, 132
attr_accessor method, 276

Index | 327

attr_protected method, 132
attributes

accessors, 62
configuration, 75
inheritance, 62

authenticated function, 131
authentication, 127–130, 290

Amazon S3 (Simple Storage Service) case
study, 232

hash message authentication code
(HMAC), 143

HTTP Authentication plugin, 89
LDAP (Lightweight Directory Access

Protocol), 125
message authentication code (MAC), 134
Representational State Transfer

(REST), 204
authorization, 290
autoprops, Subversion, 309
AutoTest, 322
availability, 292

high, 120–124
average, 148
AWS (Action Web Service), 231

B
backtrace (bt) command, 53
Basic Multilingual Plane (BMP), 240
before_save callback method, 130
Benchmark, code timing, 151–153
benchmarking, 161–164
benefits of Representational State Transfer

(REST), 205–209
bidirectional text, 238
Binding class, 27
bindings, 27
black-box analysis, 148–151
blacklists, 137
blank? method, 62
BLOB (see large/binary objects)
blocks

code procs, 20–23
RESTful Rails, 218

BMP (Basic Multilingual Plane), 240
Borges, 26
bottom-up programming, 3
branches, 297
branching, 301–306
buckets, 231
Bugzilla, 308
business logic constraints, 110
BYTEA data type, 102

C
C, writing inline code, 182
Cache-Control header, 208
caching

action, 177
constraints, 186
custom, 221
databases, 119
fragment, 178
Hypertext Transfer Protocol (HTTP),

RESTful Rails, 219–222
page, 177
performance, 176
Representational State Transfer

(REST), 206
sweepers, 180

calculations
statistical, 65
time, 64

call stacks
continuations, 25–27
reading, 50

call_stack_off function, 51
call_stack_on function, 51
Calls columns, scanning profiles, 158
canonicalization, 143

Unicode, 243
Capistrano, 321
centralized version control, 296–299
chaining, methods, 33
chains, method lookup, 7
character encodings, 237
characters

compatibility, 243
composition, 243
encodings

ASCII, 237
Unicode, 238–249

multibyte support, 242
precomposed, 243

checkout, 297
Chinese language, 238
Class#const_missing method, 57
class_def method, 18
classes

attribute accessors, 62
Binding, 27
DelegateClass, 30
Dispatcher, 77
Hash, 67
inheritable attributes, 62

328 | Index

classes (continued)
inheritance, method lookups, 6
instantiation, method lookups, 7
opening, 31
overview of, 4
proxy, delegation with, 30
singleton, 12–14

of class objects, 14–17
subclassing, 32
variables, 19
virtual, 13

clean_backtrace method, 66
clean_message method, 66
clients

Action Web Service (AWS), 231
Amazon S3 (Simple Storage Service) case

study, 234
security, 130–135

client-server constraint, 185
client-side validation, 133
CLOB (see large/binary objects)
cloning trunks, 303
closures, 22
clusters

MySQL, 121
Oracle Real Application Clusters

(RAC), 124
PostgreSQL, 123

code, 2
ActiveSupport, 57

Core Extensions, 60–75
dependencies, 57
deprecation, 58
Inflector, 59
JSON, 59
Whiny Nil, 60

adding, 31
bindings, 27
C, writing inline, 182
duplication, 2
hash message authentication code

(HMAC), 143
message authentication code (MAC), 134
metaprogramming, 1–4
on-the-fly, writing, 24
passwords, hashing, 128
procs, 20–23
reading, 49–57
revision, downloading, 297
routing, 43
searching, 49
timing, 151–153

code examples, xi
code reviews, contributing to Rails, 292
code-on-demand constraint, 186
Collaboa, 308
collect method (see map method)
commands

ANALYZE TABLE, 171
backtrace (bt), 53
help, 54
hg heads, 304
irg, 54
list, 53
OPTIMIZE TABLE, 171
perf_run, 163
script/plugin tool, 80–83
svn import, 309
update, 297
VACUUM ANALYZE, 171

compatibility characters, 243
components

incorporating, 284
ActionMailer, 287–289
ActiveRecord, 284–287

replacing
ActiveRecord, 271–281
alternative template engines, 282–284

composite keys, 112–114
composition, characters, 243
concurrent access, 297
Concurrent Versions System (CVS), 297
conditional GET, 207
confidence interval, 150
confidentiality, 137
configuration, 75

ActionMailer, 287–289
locale-specific settings, 256
ObjectGraph (Og), 279
security, applications, 127–137
Subversion, 309
X-Sendfile, 106

connections
Magic Multi-Connections gem, 118
multiple databases, 116–118

constants, 4
constraints

caches, 186
client-server, 185
code-on-demand, 186
databases, 110
layered system, 186
stateless, 186
uniform interface, 186

Index | 329

consuming RESTful services, 223–230
content negotiation, 194
content types, 193–195

RESTful Rails, 217–219
continuations, 25–27
continuous integration, 321
contributing to Rails, 289–295
conversion

8-bit Unicode Transformation Format
(UTF-8), 248–249

date and time, 64
numeric, 71

cookies, 131, 134
cookie-based sessions, 138
cross-site request forgery (CSRF), 141

CookieStore, 134, 176
limitations of, 138

copy-modify-merge model, 297
Core Extensions, 60–75

arrays, 61
blank? method, 62
class attribute accessors, 62
class inheritable attributes, 62
date and time formats, 63
files, 66
floating-point numbers, 66
hashes, 67
integers, 69
introspection, 70
kernels, 69
modules, 70
numeric conversions, 71
objects, 71
option processing, 61
ranges, 72
strings, 72
TimeZone, 75

create, read, update, delete (CRUD)
operations, 133

cross-site request forgery (CSRF), 141–143
cross-site scripting (XSS), 139–141
CRUD (create, read, update, delete)

operations, 133
CruiseControl, 322
cryptography, Kerckhoffs’ principle, 135
CSRF (cross-site request forgery), 141–143
customization

caching, 221
Rake tasks, 288
resource routes, 213

CVS (Concurrent Versions System), 297

D
DabbleDB, 27
daemons, 69

memcached, 175
pg_autovacuum, 171

data partitioning, 115
databases

8-bit Unicode Transformation Format
(UTF-8), 245

advanced features, 109–116
application versus integration, 109
caching, 119, 176

action, 177
fragment, 178
page, 177
sweepers, 180

composite keys, 112–114
constraints, 110
database management systems

(DBMSs), 96
MySQL, 98
Oracle, 100
PostgreSQL, 97
SQL Server, 100
SQLite, 100

dependencies, testing plugin, 93
high availability, 120–124
indexing, performance, 167–171
large/binary objects, 101–109
Lightweight Directory Access Protocol

(LDAP), 124
load balancing, 120–124
migration, 306–308
multiple, connecting, 116–118
ObjectGraph (Og), 279
passwords, hashing, 128, 129
performance, 171

query plans, 171–173
rules, 114
SQL injection attacks, 144
storage, 102
stored procedures, 114
triggers, 114

DataMapper library, 272
dates

conversions, 64
formats, 63

DBMSs (database management systems), 96
MySQL, 98
Oracle, 100

330 | Index

DBMSs (continued)
PostgreSQL, 97
SQL Server, 100
SQLite, 100

Deadlock Retry plugin, 93
debugging, 52–56
decentralized version control, 82, 299–301
decoupling ActiveRecord, 284
delegate method, 70
DelegateClass class, 30
delegation with proxy classes, 30
DELETE method, 190
deleting large objects, 115
dependencies, 57

databases, testing plugin, 93
deployment, 315

application server, 319
Capistrano, 321
continuous integration, 321
front end web server, 317–319
shared-nothing scalability, 316–317
Vlad the Deployer, 321

deprecate method, 58
deprecation, 58
design, application security, 127–137
detect method, 37
developer branches, 303
development styles, 49
digest authentication, statelessness, 204
Dir methods, 47
directories

plugins, 83
structure of plugins, 83
test/fixtures, 94
traversal, 144

disabling ActiveRecord, 271
Dispatcher class, 77
Distributed Ruby (DRb), 109
domain-specific languages (DSLs), 25
Don’t Repeat Yourself (DRY principle), 2
double-dot problem, 144
DRb (Distributed Ruby), 109
DRbStore, 179
DRY principle (Don’t Repeat Yourself), 2
DrySQL library, 111
DSLs (domain-specific languages), 25
duplication, 2

E
each_with_index method, 39
East Asian languages, 238
eigenclasses

(see also singleton classes)
email

ActionMailer, 183, 287–289
receiving, 289

emulation, methods, 217
encapsulation, 4
encodings, character, 237

ASCII, 237
Unicode, 238–249

engines, 290
Entity Tags (ETags), 207, 219
entries method, 39
Enumerable methods

all?, 47
grep, 47
sort_by, 47

Enumerable module, 37
Enumerator, 39
environments

initialization, 311
security, 145

equivalence, 244
error messages, security, 136
escape function, 249
establish_connection function, 284
etag method, 221
ETags (see Entity Tags)
evaluation of code bindings, 27
EWKB (extended well-known binary), 159
exceptions

methods, 66
TamperedWithCookie, 134, 138

existing applications, importing, 309
existing methods, adding functionality to, 32
expire_fragment method, 180
EXPLAIN keyword, 171
expressions, S-expressions, 2
extended well-known binary (EWKB), 159
extended-ASCII character sets, 238
extensions, 315

Mercurial Queues (MQ), 161
Multipurpose Internet Mail Extensions

(MIME), 209
Uniform Resource Identifiers (URIs), 193

external programs, leveraging, 182
externals, 310

Index | 331

F
fallback, security, 135
FastCGI handler (RailsFCGIHandler), 78
feature branches, 303
Ferret library, 170
fields, hidden form, 133
File methods

expand_path, 144
join, 47
open, 47

files
access, merging, 298
Core Extensions, 66
dependencies, 57
.mo, 252
plugins, 83
.pot, 251
static, asset hosts for, 319
text, copy-modify-merge model, 297
translation, creating, 253
X-Sendfile, sending data with, 105

FileStore, 174, 179
filesystems, storage, 103
filtering, 37

8-bit Unicode Transformation Format
(UTF-8), 244

find method, 37
find_all method, 37
find_with_attributes method, 281
finding code in the Rails framework, 49
first-class functions, 36
flags, 5
flat profiles, 158
floating-point numbers, 66
foreign key indexes, 168
forms

hidden fields, 133
parameters, 131
processing, 132

Forwardable, 31
fragments

caching, 178
expiration, 180

framework_backtrace method, 66
front end web server, 317–319
full-text indexing, 99, 169
functional programming, 36–41
functionality, adding to existing methods, 32

functions
_(), 251
anonymous, 36
authenticated, 131
call_stack_off, 51
call_stack_on, 51
escape, 249
establish_connection, 284
higher-order, 36
if_modified, 221
lambda, 23
local_request?, 136
method_missing, 17
sendfile, 104

G
garbage collection

Benchmark library, 152
methods, 29

gems (see RubyGems)
generative programming, 24
GeoKit library, 170
GET method, 143, 188
gettext, 250–253
Gibberish, 253–254
global searches, 56
global variables, 19
Globalize, 254, 257

example of, 258–268
glyphs, 239
GNU gettext, 250–253
GOTO construct, 26
graceful degradation, 135
grapheme, 239
grep method, 38
grouping arrays, 61

H
Haml, 283
Han characters, 239
Han unification, 241
Hash class, 67
hash message authentication code

(HMAC), 143
Hash methods

assert_valid_keys, 68
delete, 48
diff, 67
from_xml, 67

332 | Index

Hash methods (continued)
new, 47
slice, 68
stringify_keys, 67
to_xml, 67

hashes
Core Extensions, 67
passwords, 128, 129
salting, 128

HashWithIndifferentAccess, 68
HEAD method, 189
headers

Referer, 131
User-Agent, 131

Heckle, 2
help command, 54
helpers, fragment caching, 180
hg heads command, 304
hidden form fields, 133
high availability, 120–124
higher-order functions, 36
hijacking sessions, 138
HMAC (hash message authentication

code), 143
hosts, asset, 319
HTTP (Hypertext Transfer Protocol)

Authentication plugin, 89
caching, RESTful Rails, 219–222
client security, 130–135
methods, 189
response status codes, 222
state, 196

httperf, black-box performance measurement
with, 151

hypermedia as driver of application state, 193

I
i18n (internationalization), 236, 290

character encodings, 237
ASCII, 237
Unicode, 238–249

locale, 236
ICLASS, 9
idempotent methods, 189
if_modified function, 221
If-No-Match header, 207
image_path method, 319
ImageScience, 107
implementation

continuations, 25–27
ObjectSpace, 276
partitioning, 115

importing applications, 309
include? method, 37
inclusion of modules, method lookups, 8–12
incorporating components, 284

ActionMailer, 287–289
ActiveRecord, 284–287

Independent Migrations plugin, 307
indexing

foreign key indexes, 168
full-text, 99, 169
performance, 167–171
spatial indexes, 170
statistics, updating, 171

Inflector, 59
inheritance

attributes, 62
classes, method lookups, 6
subclassing, 32

init.rb file, 84
initialization

applications, 75
environments, 311
ObjectGraph (Og), 278

inject method, 39
inline C code, writing, 182
install.rb file, 84
installing

plugins, 80–83
ruby-debug, 52–56

instance variables, 19
deprecated, 58

instance_exec method, 71
instance_methods method, 29
instantiation, classes, 7
integers, Core Extensions, 69
integration

continuous, 321
databases, 109

integrity, 137
constraints, 110

interface translation, 250–255
internationalization (see i18n)
interpreting benchmarking, 163
introspection, 28–36

Core Extensions, 70
semantic, 2
syntactic, 2

irb command, 54
issue tracking, 308
iv_tbl, 5

Index | 333

J
Japanese language, 238
JavaScript Object Notation (JSON), 59
JavaScript, URI encoding in UTF-8

environments, 249
JSON (JavaScript Object Notation), 59

K
Kerckhoffs’ principle, 135
Kernel methods

Array, 48
binding, 27
caller, 50
daemonize, 69
system, 145

kernels, Core Extensions, 69
keys, 231

composite, 112–114
keywords

EXPLAIN, 171
super, 5, 7

kicker methods, 274
klass, 5
Korean language, 238

L
L10n (localization), 236, 290

applications, 250
Globalize example, 258–268
interface/resource translation, 250–255
locale-specific settings, 256
model translation, 257

lambda function, 23
large object deletion, 115
large projects

deployment, 315
application server, 319
Capistrano, 321
continuous integration, 321
front end web server, 317–319
shared-nothing scalability, 316–317
Vlad the Deployer, 321

issue tracking, 308
project structure, 309

environment initialization, 311
externals, 310
gems, 312
multi-application, 313–315
Subversion configuration, 309

version control, 296
branching and merging, 301–306
centralized, 296–299
database migrations, 306–308
decentralized, 299–301

large/binary objects, 101–109
Last-Modified response header, 207
layered system constraint, 186
LDAP (Lightweight Directory Access

Protocol), 124
left-to-right (LTR) text, 238
leveraging external programs, 182
lexical variables, continuations, 25–27
lib/ directory, 84
libraries

Action Profiler, 153
Action Web Service (AWS), 231
ActiveLDAP, 124
ActiveSupport (see ActiveSupport)
aspect-oriented programming (AOP), 33
attachment_fu, 107
DataMapper, 272
debugging, 52–56
DrySQL, 111
Ferret, 170
GeoKit, 170
JSON, 59
metaid.rb, 17
ObjectGraph (Og), 275–281
ParseTree, 2

licenses, 84
Lighthouse, 309
Lighttpd servers, 318

X-Sendfile configuration, 106
Lightweight Directory Access Protocol

(LDAP), 124
Liquid, 282
Lisp, metaprogramming, 2
list command, 53
load balancing, 120–124
loading

ActionController, 92
files, dependencies, 57
plugins, 79

LOB (see large/binary objects)
local variables, 19
local_request? function, 136
locale, i18n, 236
localization (see L10n)
localize method, 256
logical separation, Liquid, 283

334 | Index

logs
production Log Analyzer, 153
shipping, 123

lookup
methods, 5–17

delaying until runtime, 23
variables, 19

LTR (left-to-right) text, 238

M
m_tbl, 5
MAC (message authentication code), 134
Magic Multi-Connections gem, 118
maintenance, running automatically, 171
management

database management systems (DBMSs)
MySQL, 98
Oracle, 100
PostgreSQL, 97
SQL Server, 100
SQLite, 100

sessions, 176
uploads, 107

map method, 38
maps

object-relational mapping (ORM), 96
type, 193

Markaby, 282
Marshal module, 286
master-slave replication, 121

Slony-I, 123
mathematics, black-box analysis, 148
max method, 39
mean, 148
measurement tools, 148–155

black-box analysis, 148–151
code timing, 151–153
database performance, 171

query plans, 171–173
Rails, 153–155

member? method, 37
memcached daemon, 119, 175
MemCacheStore, 175, 179
MemoryStore, 174
Mercurial

branching and merging, 303
revision numbers, 305

Mercurial Queues (MQ) extension, 161
merging, 301–306

files, access, 298
message authentication code (MAC), 134

messages
error, security, 136
file control console, 69
hash message authentication code

(HMAC), 143
meta_def method, 18
meta_eval method, 18
metaclass method, 18
metaclasses

(see singleton classes)
metaid.rb library, 17
metaprogramming

(see programming)
metaprogramming techniques, 1–4

bindings, 27
continuations, 25–27
delaying method lookup until

runtime, 23
generative programming, 24
viewing methods at runtime, 28–36

method_missing function, 17, 23
methods, 20–23

alias_method, 34
application_backtrace, 66
Array

*, 46
extract, 61
in_groups_of, 61
pack, 46
rand, 61
split, 61
to_s, 61
to_sentence, 61
to_xml, 61

arrays, 46
attr_accessible, 132
attr_accessor, 276
attr_protected, 132
before_save callback, 130
chaining, 33
Class, const_missing, 57
class_def, 18
clean_backtrace, 66
clean_message, 66
collect, 38
delegate, 70
DELETE, 190
deprecate, 58
detect, 37
Dir, 47
each_with_index, 39
emulation, 217

Index | 335

entries, 39
Enumerable

all?, 47
grep, 47
sort_by, 47

etag, 221
exceptions, 66
expire_fragment, 180
File

expand_path, 144
join, 47
open, 47

find, 37
find_all, 37
find_with_attributes, 281
framework_backtrace, 66
functionality, adding to existing, 32
garbage collection, 29
GET, 188
grep, 38
Hash

asset_valid_keys, 68
delete, 48
diff, 67
from_xml, 67
new, 47
slice, 68
stringify_keys, 67
to_xml, 67

HEAD, 189
idempotent, 189
image_path, 319
inject, 39
instance_exec, 71
instance_methods, 29
Kernel

Array, 48
binding, 27
caller, 50
daemonize, 69
system, 145

kicker, 274
localize, 256
lookup, 5–17

delaying until runtime, 23
map, 38
max, 39
meta_def, 18
meta_eval, 18
metaclass, 18
method_missing, 23

min, 39
Module

const_missing, 57
define, 25
instance_methods, 29
remove_method, 48
undef_method, 48

Object#methods, 29
objects, 20
partition, 38
POST, 190
proc, 48
Proc#binding, 28
PUT, 189
reader, 25
refresh_without_timing, 34
reject, 38
respond_to, 217
runtime, viewing at, 28–36
safe, 188, 189
sanitize, 140
select, 37
session storage, 137
silence_stream, 69
silence_warnings, 69
sort, 38
sort_by, 38, 274
String

%, 48
scan, 48
unpack, 46

suppress, 69
Symbol#to_proc, 74
to_a, 39
to_hash, 275
to_sql, 275
UnboundMethod, 20
zip, 38

Microsoft SQL Server, 100
migration

ActiveRecord, 285
databases, 306–308

MIME (Multipurpose Internet Mail
Extensions), 209

types, 218
min method, 39
MiniMagick, 107
MIT license, 84
mitigation

cross-site request forgery (CSRF), 142
cross-site scripting (XSS), 140

336 | Index

.mo files, 252
models

ActiveRecord, 315
copy-modify-merge, 297
translation, 257
user, 130
version control, 296

branching and merging, 301–306
centralized, 296–299
database migrations, 306–308
decentralized, 299–301

Module methods
const_missing, 57
define_method, 25
instance_methods, 29
remove_method, 48
undef_method, 48

modules, 297
ActiveMerchant, 35
Core Extensions, 70
Enumerable, 37
inclusion, method lookups, 8–12
Marshal, 286
ObjectSpace, 28–36
overview of, 4

modulization, 34
Mongrel, 78, 108
monkeypatching, 31, 34
MQ (Mercurial Queues) extension, 161
mulitmaster replication, 123
multi-application projects, 313–315
multibyte character support, 242
multilingualization, 241
multiple databases, connecting, 116–118
Multipurpose Internet Mail Extensions (see

MIME)
multiversion concurrency control

(MVCC), 97, 98
MVCC (multiversion concurrency

control), 97, 98
MyISAM, 99
MySQL, 98, 121

8-bit Unicode Transformation Format
(UTF-8), 245

clusters, 121
large/binary objects, 103

N
named branches in Mercurial, 306
names

constants, 4
opacity, 191

nested resource routes, 214
nginx servers, 318
normalization, Unicode, 243
notation, JSON, 59
numeric conversions, 71

O
Object#methods, 29
ObjectGraph (Og), 275–281
object-relational mapping (ORM), 96
objects, 231

class, singleton classes of, 14–17
Core Extensions, 71
JSON, 59
large, deleting, 115
large/binary, 101–109
method lookups, 5–17
methods, 20
promise, 274
session, 58
tainting, 146

ObjectSpace module, 28–36
implementation, 276

obscurity, avoiding security through, 135
OG (ObjectGraph), 275–281
opacity, name, 191
opening classes, 31
optimization

source control and, 161
(see also performance)

OPTIMIZE TABLE command, 171
options

Core Extensions, 61
register_globals, 131

Oracle, 100
clustering, 124
large/binary objects, 103

ORDER BY clause, 274
ORM (object-relational mapping), 96

Index | 337

P
page caching, 177
ParseTree library, 2
partition method, 38
partitioning data, 115
passwords

hashing, 128, 129
recovery, 129

patches, contributing, 291
pen, 318
perf_run command, 163
performance

ActiveRecord, 165
1+N problem, 166
indexing, 167–171
SQL, 165

architecture, scalability, 173–181
benchmarking, 161–164
caching, 176

action, 177
fragment, 178
page, 177
sweepers, 180

databases, 171
query plans, 171–173

measurement tools, 148–155
black-box analysis, 148–151
code timing, 151–153
Rails Analyzer Tools, 153–155

profiling, 155–161
sessions

ActiveRecordStore, 174
CookieStore, 176
management, 176
MemCacheStore, 175
scalability, 174

pg_autovacuum daemon, 171
PGCluster, 124
Piston, 81

Subversion externals and, 310
plain text, password recovery, 129
plugins, 79, 314

about.yml file, 83
account_location, 85–87
attachments, 107
Deadlock Retry, 93
examples of, 85–90

Ferret library, 170
Gibberish, 253–254
Globalize, 254, 257

example of, 258–268
HTTP Authentication, 89
Independent Migrations, 307
installing, 80–83
Liquid, 283
loading, 79
restfully_yours, 221
ssl-requirement, 87
testing, 90–95
whitelists, 141
writing, 83–85
(see also applications)

POST method, 190
PostgreSQL, 97

8-bit Unicode Transformation Format
(UTF-8), 247

high availability, 123
large/binary objects, 102

.pot files, 251
pound, 318
precomposed characters, 243
predicates, 37
privileges, DROP TABLE, 144
Proc method, 48
Proc#binding method, 28
processing

forms, 132
upload, 108

procs, 20–23
production branches, 302
Production Log Analyzer, 153
profiling

Action Profiler, 153
actions, 155–157

programming
ActiveSupport, 57

Core Extensions, 60–75
dependencies, 57
deprecation, 58
Inflector, 59
JSON, 59
Whiny Nil, 60

aspect-oriented programming (AOP), 32

338 | Index

programming (continued)
bottom-up, 3
functional, 36–41
metaprogramming, 1–4
reading code, 49–57

progress, upload, 108
progressive enhancement, 135
project structure, 309

environment initialization, 311
externals, 310
gems, 312
multi-application, 313–315
Subversion configuration, 309
(see also large projects)

promises (lazy evaluation), 274
properties, session storage methods, 137
prototyping, 287
proxy classes, delegation with, 30
PStore, 174
PUT method, 189

Q
query plans, 171–173

R
Rails

contributing to, 289–295
unit tests, 293

Rails Analyzer Tools, 153–155
Action Profiler, 153
Production Log Analyzer, 153

RailsBench tool, 161–164
rainbow attacks, 128
Rakefile, 84

customizing, 288
random selection, 61
ranges, Core Extensions, 72
rapid prototyping, 287
RaPT, 80
reader methods, 25
reading

call stacks, 50
code, 49–57
tests, 56

README file (plugins), 85
receiving email, 289
recovery, passwords, 129
redundant code, 3
Referer header, 131
register_globals option, 131

reject method, 38
replacing components

ActiveRecord, 271–281
alternative template engines, 282–284

replication
factor, 121
master-slave, 121
multimaster, 123

reporting, 69
repository hooks, 297
Representational State Transfer (see REST)
representations, 193–195
reprofiling, 158–161
Request Tracker (RT), 308
resource-based URIs, 134
resources

ActiveResource, 223–230
architecture, 233
Representational State Transfer

(REST), 190–193
routing, 211–216
state, 195

sessions, 198
translation, 250–255

respond_to method, 217
response status codes, Hypertext Transfer

Protocol (HTTP), 222
REST (Representational State Transfer)

benefits of, 205–209
overview of, 185–187
representations, 193–195
resources, 190–193
RESTful Rails, 209–231
statelessness, 195–205
verbs, 187–190

RESTful Rails URI conventions, 199
restfully_yours plugin, 221
results, interpreting benchmarking, 163
revision

code, downloading, 297
Mercurial numbers, 305

right-to-left (RTL) text, 238
RMagick, 107, 182
robustness to change, 208
routing

code, 43
resources, 211–216
RESTful, 210

RT (Request Tracker), 308
RTL (right-to-left) text, 238

Index | 339

Ruby-DBI (Ruby database-independent
adapter), 100

ruby-debug, 52–56
RubyGems, 312, 314

Magic Multi-Connections, 118
RubyInline, 182
rules, 114

method lookups, 5
running

benchmarks, 163
maintenance automatically, 171

runtime
Apache Portable Runtime (APR), 299
feature change, 41
methods

delaying lookup until, 23
viewing at, 28–36

S
safe methods, 188, 189
salting passwords, 128
SAN (storage area network), 124
sanitize method, 140
scaffolding, 291
scalability

architecture, 173–181
Representational State Transfer

(REST), 206
shared-nothing, 316–317

Scalable Coherent Interconnect (SCI), 121
scanning profiles, 158–161
schemas

ActiveRecord migration, 285
definition methods, 129

SCI (Scalable Coherent Interconnect), 121
script/plugin tool, 80–83
searching

code, 49
global searches, 56

Seaside, 26
security

application design, 127–137
architecture

canonicalization, 143
cross-site request forgery

(CSRF), 141–143
cross-site scripting (XSS), 139–141
sessions, 137–139
web issues, 137–144

authentication, 127–130
clients, 130–135

environments, 145
error messages, 136
Liquid, 283
obscurity, 135
secure fallback, 135
SQL injection, 144
whitelists, 137

select method, 37
selection

of representations, 193
tools, 182

semantic introspection, 2
sendfile function, 104
sending data with X-Sendfile, 105
separation of concerns, 4
Serializable isolation level, 97
servers

8-bit Unicode Transformation Format
(UTF-8), 248

Amazon S3 (Simple Storage Services) case
study, 234

Apache, 318
applications, 319
black-box analysis, 148
front end web, 317–319
Lighttpd, 318
nginx, 318
pen, 318
pound, 318

services
Action Web Service (AWS), 231
ActiveResource, 223–230
Amazon S3 (Simple Storage Service) case

study, 231–235
serving static files, X-Sendfile, 107
sessions

cookies, 138
cross-site request forgery (CSRF), 141

hijacking, 138
management, 176
objects, 58
scalability, 174
security, 137–139
state, 195

resources, 198
sticky, 138, 197
storage

ActiveRecordStore, 174
CookieStore, 134, 176
fragments, 179
MemCacheStore, 175
methods, 137

340 | Index

Settings constructor, 31
S-expressions, 2
shared-nothing architecture, 197
shared-nothing scalability, 316–317
shells, security, 145
silence_stream method, 69
silence_warnings method, 69
simplicity

Liquid, 282
of Representational State Transfer

(REST), 206
singleton classes, 12–14

of class objects, 14–17
resource routes, 215

Slony-I, 123
Smalltalk web application framework, 26
sort method, 38
sort_by method, 38, 274
source control and optimization, 161
spatial indexes, 170
SQL (Structured Query Language)

ActiveRecord performance, 165
injection, 144
performance, 171

query plans, 171–173
(see also databases)

SQL Server, 100
SQLite, 100
ssl_requirement plugin, 87
stacks

continuations, 25–27
reading, 50

standalone data stores, ActiveRecord, 286
standard deviation, 149
starting ruby-debug, 52–56
state

continuations, 25–27
Hypertext Transfer Protocol (HTTP), 196
resources, 195
session, 195, 198

stateless constraint, 186
statelessness, 195–205
statements, bindings, 27
static files

asset hosts for, 319
X-Sendfile, 107

statistical calculations, 65
statistics, 148

indexes, updating, 171
sticky sessions, 138, 197

storage
8-bit Unicode Transformation Format

(UTF-8), 245–248
databases, 102
filesystems, 103
sessions

CookieStore, 134
methods, 137

storage area network (SAN), 124
stored procedures, 114
stores

ActiveRecord standalone data, 286
session fragments, 179

String methods
%, 48
scan, 48
unpack, 46

strings, Core Extensions, 72
structure, project, 309

environment initialization, 311
externals, 310
gems, 312
multi-application, 313–315
Subversion configuration, 309

Structured Query Language (see SQL)
subclassing, 32
Subversion, 253, 298

branching and merging, 302
configuration, 309

Subverted Migrations, 307
super keyword, 5, 7
suppress method, 69
svn import command, 309
sweepers, cache, 180
Symbol#to_proc method, 74
syntactic introspection, 2
SyslogLogger, 153

T
tables, rainbow, 128
tainting, 146
TamperedWithCookie exception, 134, 138
TCP (Transmission Control Protocol),

sequence-number prediction
attack, 138

templates
alternative engines, 282–284
New Product, 226

test fixtures, 94, 315

Index | 341

test/ directory, 85
Test-Driven Development (test-first) style, 56
testing

components, 293
plugins, 90–95
reading tests, 56

text
bidirectional, 238
copy-modify-merge model, 297
full-text indexing, 169
gettext, 250–253
password recovery, 129

text editors, 50
tickets, filing, 292
time

calculations, 64
conversions, 64
formats, 63

Timestamped Migrations, 308
TimeZone, 75
timing, code, 151–153
to_a method, 39
to_hash method, 275
to_sql method, 275
tokens, hash message authentication code

(HMAC), 143
tools

continuous integration, 321
measurement, 148–155

black-box analysis, 148–151
code timing, 151–153
Rail Analyzer Tools, 153–155

RailsBench, 161–164
ruby-debug, 52–56
RubyInline, 182
script/plugin, 80–83
selecting, 182

Trac, 309
issue-tracking, 292

tracking issues, 308
TRADITIONAL command, 99
traffic, black-box analysis, 148
transformers, 38
translation

adding, 255
files, creating, 253
GNU gettext, 250–253
interface/resource, 250–255
models, 257

transparency, requirement of HTTP
caching, 206

transparent subclasses, 33
triangles, REST, 187
triggers, 114
troubleshooting

ASCII, 238
components, 293
debugging, 52–56
plugins, 90–95
security, 137–144

canonicalization, 143
cross-site request forgery

(CSRF), 141–143
cross-site scripting (XSS), 139–141
sessions, 137–139

trunks, cloning, 303
type maps, 193
types

content, 193–195
RESTful Rails, 217–219

of variables, 19

U
UnboundMethod, 20
Unicode, 238–249
uniform interface constraint, 186
uniformity, Representational State Transfer

(REST), 209
uninstall.rb file, 85
unit tests, 293
update commands, 297
updating index statistics, 171
uploading

management, 107
processing, 108
progress, 108

URIs (Uniform Resource Identifiers)
extensions, 193
resource-based, 134
RESTful Rails conventions, 199

User model, 130
User-Agent header, 131
UTF-8 (8-bit Unicode Transformation

Format), 239
conversion, 248–249
input, filtering, 244
servers, 248
storage, 245–248

342 | Index

V
VACUUM ANALYZE command, 171
validation, client-side, 133
values, functional programming, 36–41
variables

classes, 19
continuations, 25–27
global, 19
instance, deprecated, 58
instances, 19
local, 19
lookup, 19

verbs, 187–190
version control, 296

branching and merging, 301–306
centralized, 296–299
database migrations, 306–308
decentralized, 299–301

versions
Concurrent Versions System (CVS), 297
decentralized control, 82
Subversion, 298

Vietnamese language, 238
VIP (Virtual IP address), 122
virtual classes, 13
Virtual IP address (VIP), 122
Vlad the Deployer, 321
VRRP (Virtual Router Redundancy

Protocol), 316, 318

W
warm standby, 123
Web Accelerator, 188
web applications, security design, 127–137

web servers, front end, 317–319
web services

Action Web Service (AWS), 231
Active Resource, 223–230
Amazon S3 (Simple Storage Service) case

study, 231–235
Western European languages, 238
Whiny Nil, 60
whitelists, 137

plugins, 141
working copy, 297
writing

code on-the-fly, 24
inline C code, 182
patches, 291
plugins, 83–85

WWW-Authenticate header, 89

X
X-Sendfile

configuration, 106
sending data with, 105

XSS (cross-site scripting), 139–141

Z
ZenTest suite of tools, 322
zip method, 38

About the Author
Brad Ediger is the CTO of Tasman Labs, a real-estate technology company. He and
his wife, Kristen, a web designer, own Madriska Media Group, a firm specializing in
custom application development. When not programming, Brad enjoys playing
various musical instruments and watching obscure films.

Colophon
The animal on the cover of Advanced Rails is a common, or Burchell’s, zebra (Equus
burchellii). Members of the horse family (equids), common zebras grow to a height
of 45–55 inches at the shoulder and weigh 485–550 pounds. They have excellent
hearing and eyesight (their night vision is comparable to that of cats or owls), and
can run as fast as 35 miles per hour. Common zebras inhabit East African savannas,
from treeless grasslands to open woodlands; tens of thousands of them can be found
in migratory herds on the Serengeti plains. They are herbivores and feed mostly on
grasses and occasionally leaves or stems. They graze for many hours each day; a
zebra’s teeth grow throughout its lifetime to counteract the wearing that occurs from
this near-constant feeding.

Zebras are social herd animals, and the social system of the common zebra is based
on a “harem” of females led by a stallion. Stallions compete for fillies that have come
into their first estrus, and the filly will stay permanently with the stallion that
succeeds in mating with her. Foals are dark brown and white at birth, and can walk a
mere 20 minutes after birth and run within an hour. This allows them to keep up
with the rest of the herd as it searches for food and water. Family groups stay
together within the larger group. Communication plays a key role in the herd as well;
the zebras communicate with a variety of sounds, such as barking and snorting, and
with facial expressions and ear position. They even greet each other with a “smile”—
a bared-teeth grimace that discourages aggression. Shared grooming further reinforces
the bonds between them; they nibble at one another to remove loose hair or to help
scratch those hard-to-reach spots.

Of course, the most prominent and recognizable feature of a zebra is its black and
white stripes. The pattern of stripes on a zebra is as distinct as a human’s finger-
prints; in fact, scientists can identify individual zebras by comparing patterns, stripe
widths, coloring, and scars. The stripes help serve as protection against predators in
the wild such as leopards and lions; when the herd is grouped together, it is hard for
the cats to discern a specific zebra to pursue. Interestingly, zebras are attracted to
black and white stripes; even if the stripes are painted on a wall, a zebra will tend
to migrate to them.

The cover image is from Wood’s Illustrated Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Advanced Rails
	Table of Contents
	Preface
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Foundational Techniques
	What Is Metaprogramming?
	Don’t Repeat Yourself
	Caveats
	Bottom-Up Programming

	Ruby Foundations
	Classes and Modules
	Method Lookup
	The rules
	Class inheritance
	Class instantiation
	Including modules
	The singleton class
	Singleton classes of class objects
	Method missing

	Metaid
	Variable Lookup
	Blocks, Methods, and Procs
	Blocks to Procs and Procs to blocks
	Closures

	Metaprogramming Techniques
	Delaying Method Lookup Until Runtime
	Generative Programming: Writing Code On-the-Fly
	Continuations
	Bindings
	Introspection and ObjectSpace: Examining Data and Methods at Runtime
	ObjectSpace

	Delegation with Proxy Classes
	DelegateClass and Forwardable

	Monkeypatching
	Disadvantages of monkeypatching

	Adding Functionality to Existing Methods
	Subclassing
	Aspect-oriented programming
	Method chaining

	Modulization

	Functional Programming
	Higher-Order Functions
	Enumerable
	Predicates
	Filters
	Transformers
	Aggregators
	Other

	Enumerator

	Examples
	Runtime Feature Changes
	Rails Routing Code

	Further Reading

	ActiveSupport and RailTies
	Ruby You May Have Missed
	Array
	Dir
	Enumerable
	File
	Hash
	Kernel
	Module
	Proc
	String

	How to Read Code
	How to Locate Code
	Reading the Call Stack
	Debugging Ruby and Rails
	Debugging Rails with ruby-debug

	Where to Start
	Pick something interesting
	Start at the top

	Read the Tests
	Stay Current

	ActiveSupport
	Dependencies
	Deprecation
	Inflector
	JSON
	Whiny Nil

	Core Extensions
	Array
	Blank
	Class Attribute Accessors
	Class Inheritable Attributes
	Date and Time
	Enumerable
	Exception
	File
	Float
	Hash
	Integer
	Kernel
	Module
	Numeric Conversions
	Object
	Range
	String
	Symbol#to_proc
	TimeZone

	RailTies
	Rails Configuration
	Application Initialization in 20 Easy Steps
	Request Dispatch

	Further Reading

	Rails Plugins
	About Plugins
	Plugin Loading
	Installing Rails Plugins
	RaPT
	Piston
	Decentralized version control

	Writing Plugins
	Plugin Examples
	Account Location
	SSL Requirement
	HTTP Authentication

	Testing Plugins
	Testing Plugin Database Dependencies

	Further Reading

	Database
	Database Management Systems
	PostgreSQL
	MySQL
	SQLite
	Microsoft SQL Server
	Oracle

	Large/Binary Objects
	Database Storage
	PostgreSQL
	MySQL
	Oracle

	Filesystem Storage
	Sending Data with X-Sendfile
	Web server configuration

	Serving Static Files
	Managing Uploads in Rails
	Attachment plugins
	Rolling your own
	Upload progress

	Advanced Database Features
	Application Versus Integration Databases
	Constraints
	Composite Keys
	Triggers, Rules, and Stored Procedures
	Examples
	Large object deletion
	Data partitioning

	Connecting to Multiple Databases
	Magic Multi-Connections

	Caching
	Load Balancing and High Availability
	MySQL
	Replication
	MySQL cluster

	PostgreSQL
	High availability: Warm standby
	Master-slave replication: Slony-I
	Multimaster replication: PGCluster

	Oracle
	Microsoft SQL Server

	LDAP
	ActiveLDAP
	Authenticating with LDAP

	Further Reading

	Security
	Application Issues
	Authentication
	Password hashing in Rails

	Don’t Trust the Client
	Form processing
	Hidden form fields
	Client-side validation
	Cookies
	Double-check everything

	Secure Fallback
	Avoid Security Through Obscurity
	Secure Your Error Messages
	Whitelist, Don’t Blacklist

	Web Issues
	Rails Sessions
	Cookie-based sessions

	Cross-Site Scripting
	Mitigation
	Whitelisting

	Cross-Site Request Forgery
	CSRF mitigation

	Canonicalization: What’s in a Name?

	SQL Injection
	Ruby’s Environment
	Using the Shell
	Object Tainting

	Further Reading

	Performance
	Measurement Tools
	Black-Box Analysis
	Statistics: The least you need to know
	Black-box analysis with httperf

	Code Timing
	Rails Analyzer Tools
	Production log analyzer
	Action profiler
	Rails Analyzer Tools

	Rails Optimization Example
	Profiling an Action
	Optimizing and Reprofiling
	Benchmarking
	Running the benchmark
	Interpreting the results

	ActiveRecord Performance
	Diving into SQL
	1+N Problem
	Indexing
	Foreign key indexes
	Other indexes
	Full-text indexing
	Spatial indexes
	Updating index statistics

	Database Performance Measurement
	Examining the query plan

	Architectural Scalability
	Sessions
	ActiveRecordStore
	MemCacheStore
	CookieStore
	Session management

	Caching
	Page caching
	Action caching
	Fragment caching
	Cache sweepers

	Other Systems
	Choosing the Right Tool
	Leveraging external programs
	Writing inline C code

	ActionMailer

	Further Reading

	REST, Resources, and Web Services
	What Is REST?
	Verbs
	GET
	PUT
	DELETE
	POST

	Resources
	Name opacity

	Representations and Content Types
	Selecting a representation

	Statelessness
	HTTP state
	Why statelessness?
	Resourceful session state: An example
	Authentication

	Benefits of a RESTful Architecture
	Conceptual Simplicity
	Caching and Scalability
	Robustness to Change
	Uniformity

	RESTful Rails
	RESTful Routing
	Resource-Based Named Routes
	Custom resource routes
	Nested resource routes
	Singleton resource routes

	ActionView Support
	Method emulation

	Content Types
	HTTP Caching
	Custom caching

	HTTP Response Status Codes
	ActiveResource: Consuming RESTful Services
	Action Web Service

	Case Study: Amazon S3
	Concepts and Terminology
	Authentication
	Alternative authentication options

	Architecture and Operations
	S3 Clients and Servers

	Further Reading

	i18n and L10n
	Locale
	Character Encodings
	ASCII
	Extended ASCII
	Problems with ASCII

	Unicode
	Unicode Transformation Formats

	Rails and Unicode
	Multilingualization in Ruby 1.9
	ActiveSupport::Multibyte
	Unicode Normalization
	Filtering UTF-8 Input
	Storing UTF-8
	MySQL
	PostgreSQL

	Serving UTF-8
	Character Set Conversion
	JavaScript URI encoding and UTF-8

	Rails L10n
	Interface/Resource Translation
	gettext
	Gibberish
	Globalize

	Locale-Specific Settings
	Model Translation
	Globalize Example: An Address Book
	Localizing the address book

	Further Reading

	Incorporating and Extending Rails
	Replacing Rails Components
	Replacing ActiveRecord
	DataMapper
	Ambition
	Og

	Alternative Template Engines
	Markaby
	Liquid
	Haml

	Incorporating Rails Components
	ActiveRecord
	ETL operations
	Schema operations
	Standalone data store
	Other Ruby applications

	ActionMailer
	Custom Rake tasks
	Receiving email

	Contributing to Rails
	Contributing Patches
	Rails Unit Tests

	Further Reading

	Large Projects
	Version Control
	Centralized Version Control
	CVS
	Subversion

	Decentralized Version Control
	Branching and Merging
	Subversion branching and merging
	Mercurial branching and merging

	Database Migrations

	Issue Tracking
	Project Structure
	Subversion Configuration
	Importing existing applications

	Subversion Externals and Piston
	Rails Version
	Environment Initialization
	Including Gems
	Multi-Application Projects

	Rails Deployment
	Shared-Nothing Scalability
	Front End Web Server
	Asset hosts for static files

	Application Server
	Capistrano
	Vlad the Deployer
	Continuous Integration

	Further Reading

	Index

