[Team LiB]

Active
Directory

. Table of Contents
. Index

. Reviews

. Reader Reviews

. Errata

Active Directory, 2nd Edition
By Robbie Allen, Alistair G. Lowe-Norris

Start Reading » |
Publisher: O'Reilly
Pub Date: April 2003
ISBN: 0-596-00466-4
Pages: 686

Active Directory, 2nd Edition, provides system and network administrators, IT professionals, technical project
managers, and programmers with a clear, detailed look at Active Directory for both Windows 2000 and Windows
Server 2003. Active Directory, 2nd Edition will guide you through the maze of concepts, design issues and scripting
options enabling you to get the most out of your deployment.

[Team LiB]

http://www.oreilly.com/catalog/actdir2/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=actdir2
http://www.oreilly.com/catalog/actdir2/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/1046@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/743@x-t=book.view

[TeamLiB] [rrevious | nexr]

Active
Directory

. Table of Contents
. Index

. Reviews

. Reader Reviews

. Errata

Active Directory, 2nd Edition
By Robbie Allen, Alistair G. Lowe-Norris

Start Reading » |
Publisher: O'Reilly
Pub Date: April 2003
ISBN: 0-596-00466-4
Pages: 686

Copyright

Preface
Intended Audience
Contents of the Book
Conventions in This Book
How to Contact Us

Acknowledgments

Part I: Active Directory Basics
Chapter 1. A Brief Introduction

Section 1.1. Evolution of the Microsoft NOS
Section 1.2. Windows NT Versus Active Directory
Section 1.3. Windows 2000 Versus Windows Server 2003

Section 1.4. Summary

Chapter 2. Active Directory Fundamentals
Section 2.1. How Obijects Are Stored and Identified
Section 2.2. Building Blocks
Section 2.3. Summary

Chapter 3. Naming Contexts and Application Partitions
Section 3.1. Domain Naming Context
Section 3.2. Configuration Naming Context
Section 3.3. Schema Naming Context
Section 3.4. Application Partitions

Section 3.5. Summary

Chapter 4. Active Directory Schema

http://www.oreilly.com/catalog/actdir2/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=actdir2
http://www.oreilly.com/catalog/actdir2/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/1046@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/743@x-t=book.view

Section 4.1. Structure of'the Schema

Section 4.2. Attributes (attributeSchema Objects)

Section 4.3. Attribute Syntax
Section 4.4. Classes (classSchema Obijects)

Section4.5. Summary

Chapter 5. Site Topology and Replication

Section 5.1. Site Topology
Section 5.2. Data Replication
Section 5.3. Summary

Chapter 6. Active Directory and DNS
Section 6.1. DNS Fundamentals

Section 6.2. DC Locator

Section 6.3. Resource Records Used by Active Directory
Section 6.4. Delegation Options

Section 6.5. Active Directory Integrated DNS

Section 6.6. Using Application Partitions for DNS
Section 6.7. Summary

Chapter 7. Profiles and Group Policy Primer
Section 7.1. A Profile Primer

Section 7.2. Capabilities of GPOs
Section 7.3. Summa

Part II: Designing an Active Directory Infrastructure
Chapter 8. Designing the Namespace

Section 8.1. The Complexities of a Design
Section 8.2. Where to Start
Section 8.3. Overview of the Design Process
Section 8.4. Domain Namespace Design
Section 8.5. Design of the Internal Domain Structure
Section 8.6. Other Design Considerations
Section 8.7. Design Examples
Section 8.8. Designing for the Real World
Section 8.9. Summary

Chapter 9. Creating a Site Topology
Section 9.1. Intrasite and Intersite Topologies
Section 9.2. Designing Sites and Links for Replication
Section 9.3. Examples
Section 9.4. Summary

Chapter 10. Designing Organization- Wide Group Policies
Section 10.1. How GPOs Work

Section 10.2. Managing Group Policies
Section 10.3. Using GPOs to Help Design the Organizational Unit Structure

Section 10.4. Debugging Group Policies
Section 10.5. Summary

Chapter 11. Active Directory Security: Permissions and Auditing

Section 11.1. Using the GUI to Examine Permissions
Section 11.2. Using the GUI to Examine Auditing

Section 11.3. Designing Permission Schemes
Section 11.4. Designing Auditing Schemes

Section 11.5. Real-World Examples
Section 11.6. Summary

Chapter 12. Designing and Implementing Schema Extensions
Section 12.1. Nominating Responsible People in Your Organization

Section 12.2. Thinking of Changing the Schema
Section 12.3. Creating Schema Extensions
Section 12.4. Wreaking Havoc with Your Schema
Section 12.5. Summary

Chapter 13. Backup, Recovery, and Mamtenance
Section 13.1. Backing Up Active Directory
Section 13.2. Restoring a Domain Controller
Section 13.3. Restoring Active Directory

Section 13.4. FSMO Recovery
Section 13.5. DIT Maintenance

Section 13.6. Summary

Chapter 14. Upgrading to Windows Server 2003
Section 14.1. New Features in Windows Server 2003

Section 14.2. Differences With Windows 2000
Section 14.3. Functional Levels Explained
Section 14.4. Preparing for ADPrep

Section 14.5. Upgrade Process

Section 14.6. Post-Upgrade Tasks

Section 14.7. Summary

Chapter 15. Migrating from Windows NT
Section 15.1. The Principles of Upgrading Windows N'T Domains
Section 15.2. Summary

Chapter 16. Integrating Microsoft Exchange
Section 16.1. Quick Word about Exchange Server 2003
Section 16.2. Preparing Active Directory for Exchange 2000
Section 16.3. Exchange 5.5 and the Active Directory Connector
Section 16.4. Summary

Chapter 17. Interoperability, Integration, and Future Direction
Section 17.1. Microsoft's Directory Strategy
Section 17.2. Interoperating with Other Directories
Section 17.3. Integrating Applications and Services
Section 17.4. Summary

Part I1I: Scripting Active Directory with ADSI, ADO, and WMI
Chapter 18. Scripting with ADSI

Section 18.1. What Are All These Buzzwords?

Section 18.2. Writing and Running Scripts
Section 18.3. ADSI

Section 18.4. Simple Manipulation of ADSI Objects
Section 18.5. Further Information

Section 18.6. Summary

Chapter 19. 1ADs and the Property Cache
Section 19.1. The IADs Properties

Section 19.2. Manipulating the Property Cache

Section 19.3. Checking for Errors in VBScript
Section 19.4. Summary

Chapter 20. Using ADO for Searching
Section 20.1. The First Search
Section 20.2. Other Ways of Connecting and Retrieving Results
Section 20.3. Understanding Search Filters
Section 20.4. Optimizing Searches
Section 20.5. Advanced Search Function—SearchAD

Section 20.6. Summary

Chapter 21. Users and Groups
Section 21.1. Creating a Simple User Account
Section 21.2. Creating a Full-Featured User Account

Section 21.3. Creating Many User Accounts
Section 21.4. Modifying Many User Accounts
Section 21.5. Account Unlocker Utility
Section 21.6. Creating a Group

Section 21.7. Adding Members to a Group
Section 21.8. Evaluating Group Membership
Section 21.9. Summary

Chapter 22. Manipulating Persistent and Dynamic Objects
Section 22.1. The Interface Methods and Properties
Section 22.2. Creating and Manipulating Shares with ADSI
Section 22.3. Enumerating Sessions and Resources
Section 22.4. Manipulating Print Queues and Print Jobs
Section 22.5. Summary

Chapter 23. Permissions and Auditing
Section 23.1. How to Create an ACE Using ADSI
Section 23.2. A Simple ADSI Example
Section 23.3. A Complex ACE Example
Section 23.4. Creating Security Descriptors
Section 23.5. Listing ACEs to a File for All Objects in an OU and Below
Section 23.6. Summary

Chapter 24. Extending the Schema and the Active Directory Snap-Ins
Section 24.1. Modifying the Schema with ADSI
Section 24.2. Customizing the Active Directory Administrative Snap-ins
Section 24.3. Summary

Chapter 25. Using ADSI and ADO from ASP or VB
Section 25.1. VBScript Limitations and Solutions
Section 25.2. How to Avoid Problems When Using ADST and ASP
Section 25.3. Combining VBScript and HTML
Section 25.4. Binding to Objects Via Authentication
Section 25.5. Incorporating Searches into ASP
Section 25.6. Migrating Your ADSI Scriptsfrom VBScript to VB
Section 25.7. Summary

Chapter 26. Scripting with WMI
Section 26.1. Origins of WMI
Section 26.2. WMI Architecture

Section 26.3. Getting Started with WMI Scripting
Section 26.4. WMI Tools

Section 26.5. Manipulating Services
Section 26.6. Querying the Event Logs
Section 26.7. Querying AD with WMI
Section 26.8. Monitoring Trusts
Section 26.9. Monitoring Replication
Section 26.10. Summary

Chapter 27. Manipulating DNS
Section 27.1. DNS Provider Overview
Section 27.2. Manipulating DNS Server Configuration
Section 27.3. Creating and Manipulating Zones
Section 27.4. Creating and Manipulating Resource Records
Section 27.5. Summary

Chapter 28. Getting Started with VB.NET and System.Directory Services
Section 28.1. The NET Framework
Section 28.2. Using VB.NET
Section 28.3. Overview of System.DirectoryServices
Section 28.4. DirectoryEntry Basics
Section 28.5. Searching with DirectorySearcher
Section 28.6. Manipulating Objects
Section 28.7. Summary

Colophon
Index

[Team LiB] [rrcvious [esr

[Team LiB] plE

Copyright

Copyright © 2003, 2000 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http:/safari.oreilly.com). For more information, contact our corporate/institutional

sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. The association between the image of domestic cats and the topic of Active Directory is a trademark
of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB] 6

http://safari.oreilly.com/default.htm
mailto:corporate@oreilly.com
http://safari.oreilly.com

[Team LiB]

Preface

Active Directoy is a common repository for information about objects that reside on the network, such as users and
groups, computers and printers, and applications and files. The default Active Directory schema supports numerous
attributes for each object class that can be used to store a variety of information. Access Control Lists (ACLs) are
also stored with objects, which allow you to maintain permissions for who can access and manage them. Having a
single source for this information makes it more accessible and easier to manage. However, to accomplish this with
Active Directory requires a significant amount of knowledge of such topics as LDAP, Kerberos, DNS, multi-master
replication, group policies, and data partitioning, to name a few. This book will be your guide through this maze of
technologies, showing you how to deploy a scalable and reliable Active Directory infrastructure.

Windows 2000 Active Directory has proven itself to be very solid in terms of features and reliability, but after several
years of real-world deployments, there was much room for improvement. With Windows Server 2003, Microsoft
focused on security, manageability, and scalability enhancements that are sure to make even the most recent Windows
2000 deployers consider upgrading. Fortunately, Microsoft has made the upgrade process to Windows Server 2003
Active Directory seamless. You can proceed at your own pace based on how quickly you need to upgrade.

This book is a significant update to the very successful first edition. All of the existing chapters have been brought up
to date with Windows Server 2003, and eight additional chapters have been included to explain new features or
concepts not covered in the first edition. This second edition describes Active Directory in depth, but not in the
traditional way of going through the graphical user interface screen by screen. Instead, the book sets out to tell
administrators exactly how to design, manage, and maintain a small, medium, or enterprise Active Directory
mnfrastructure. To this end, the book is split up into three parts.

Part I introduces in general terms much of how Active Directory works, giving you a thorough grounding in its
concepts. Some of the topics include Active Directory replication, the schema, application partitions, group policies,
and interaction with DN'S.

In Part IT we describe in copious detail the issues around properly designing the directory infrastructure. Topics
include in-depth looks at designing the namespace, creating a site topology, designing group policies for locking down
client settings, auditing, permissions, backup and recovery, and a look at Microsoft's future direction with Directory
Services.

Part I is all about managing Active Directory via automation with Active Directory Service Interfaces (ADSI),
ActiveX Data Objects (ADO), and Windows Management Instrumentation (WMI). This section covers how to
create and manipulate users, groups, printers, and other objects that you may need in your everyday management of
Active Directory. It also describes in depth how you can utilize the strengths of WMI and the .NET
System.DirectoryServices namespace to manage Active Directory programmatically via those interfaces.

If'you're looking for in-depth coverage of how to use the MMC snap-ins or Resource Kit tools, look elsewhere.
However, if you want a book that lays bare the design and management of an enterprise or departmental Active
Directory, you need look no further.

[Team LiB]

[Team LiB] plE

Intended Audience

This book is intended for all Active Directory administrators, whether you manage a single server or a global
multinational with a farm of thousands of servers. Even if you have the first edition, you'll find a considerable amount of
new material in this book, which covers many of the new features in Windows Server 2003. To get the most out of
the book, you will probably find it useful to have a server running Windows Server 2003 and the Resource Kit tools
available so that you can check out various items as we point them out.

If you have no experience with VBScript, the scripting language we use n Part 111, don't worry. The syntax is
straightforward, and you should have no difficulty grasping the principles of scripting with ADSI, ADO, and WMI.
For those who want to learn more about VBScript, we provide links to various Internet sites and other books as
appropriate.

[Team LiB]

[TeamLiB] [rrevious | nexr]

Contents of the Book
This book is split mto three parts:

Part I, Active Directory Basics

[
Chapter 1 reviews the evolution of the Microsoft NOS and some of the major features and benefits of Active
Directory.

Chapter 2 provides a high-level look at how objects are stored in Active Directory and explains some of the
internal structures and concepts that it relies on.

Chapter 3 reviews the predefined Naming Contexts within Active Directory, what is contained within each,
and the purpose of Application Partitions.

Chapter 4 gives you information on how the blueprint for each object and each object's attributes are stored
in Active Directory.

Chapter 5 details how the actual replication process for data takes place between domain controllers.

Chapter 6 describes the importance of the Domain Name System (DNS) and what it is used for within
Active Directory.

Chapter 7 gives you a detailed introduction to the capabilities of both user profiles and Group Policy
Objects.

Part I, Designing an Active Directory Infrastructure

[
Chapter 8 introduces the steps and techniques involved in properly preparing a design that reduces the

number of domains and increases admmnistrative control through the use of Organizational Units.

Chapter 9 shows you how to design a representation of your physical infrastructure within Active Directory
to gain very fine-grained control over intrasite and intersite replication.

Chapter 10 explains how Group Policy Objects function in Active Directory and how you can properly
design an Active Directory structure to make the most effective use of these functions.

Chapter 11 describes how you can design effective security for all areas of your Active Directory, in terms of
both access to objects and their properties; it includes nformation on how to design effective security access
logging in any areas you choose.

Chapter 12 covers procedures for extending the classes and attributes in the Active Directory schema.

[TeamLiB] [rrevious | nexr]

[Team LiB]

Conventions in This Book

The following typographical conventions are used in this book:
Constant width

Indicates command-line elements, computer output, and code examples.
Constant width italic

Indicates variables in examples and registry keys.
Constant width bold

Indicates user input.
Italic

Introduces new terms and indicates URLs, commands, file extensions, filenames, directory or folder names, and
UNC pathnames.

as Indicates a tip, suggestion, or general note. For example, we'll tell you if you need to use a
particular version or if an operation requires certain privileges.

— Indicates a warning or caution. For example, we'll tell you if Active Directory does not
behave as you'd expect or if a particular operation has a negative impact on performance.

[Team LiB]

[Team LiB]

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you might find that features
have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Associates, Inc. 1005 Gravenstein Highway North Sebastopol, CA 95472 (800) 998-9938 (in the
United States or Canada) (707) 829-0515 (international/local) (707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web page for this book where we list examples and any plans for future editions. You can access this
mnformation at:
http//www.oreilly.com/catalog/actdir2

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web
site at:
http//www.oreilly.com

[Team LiB]

mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/actdir2
http://www.oreilly.com/default.htm
http://www.oreilly.com/catalog/actdir2
http://www.oreilly.com

[TeamLiB] [rrevious | nexr]

Acknowledgments
For the First Edition (Alistair)

Many people have encouraged me in the writing of this book, principally Vicky Launders, my partner, friend, and
fountain of useful information, who has been a pinnacle of understanding during all the late nights and early mornings.
Without you my life would not be complete.

My parents Pauline and Peter Norris also have encouraged me at every step of the way; many thanks to you both.

For keeping me sane, my thanks go to my good friend Keith Cooper, a natural polymath, superb scientist, and
original skeptic; to Steve Jomt, for keeping my enthusiasm for Microsoft in check; to Dave and Sue Peace for
"Tuesdays," and the ability to look interested in what I was saying and how the book was going no matter how
uninterested they must have felt; and to Mike Felmeri for his interest in this book and his eagerness to read an early
draft.

I had a lot of help from my colleagues at Leicester University. To Lee Flight, a true networking guru without peer,
many thanks for all the discussions, arguments, suggestions, and solutions. I'll remember forever how one morning
very early you took the first draft of my 11-chapter book and spread it all over the floor to produce the 21 chapters
that now constitute the book. It's so much better for it. Chris Heaton gave many years of dedicated and enjoyable
teamwork; you have my thanks. Brian Kerr, who came onto the fast-moving train at high speed, managed to hold on
tight through all the twists and turns along the way, and then finally took over the helm. Thanks to Paul Crow for his
remarkable work on the Windows 2000 client rollout and GPOs at Leicester. And thanks to Phil Beesley, Carl
Nelson, Paul Youngman, and Peter Burnham for all the discussions and arguments along the way. A special thank you
goes to Wendy Ferguson for our chats over the past few years.

To the Cormyr crew: Paul Burke, for his in-depth knowledge across all aspects of technology and databases in
particular, who really is without peer, and thanks for being so eager to read the book that you were daft enough to
take it on your honeymoon; Simon Williams for discussions on enterprise infrastructure consulting and practices, how
you can't get the staff these days, and everything else under the sun that came up; Richard Lang for acting as a
sounding board for the most complex parts of replication internals, as I struggled to make sense of what was going on;
Jason Norton for his constant ability to cheer me up; Mark Newell for his gadgets and lan Harcombe for his wit, two
of'the best analyst programmers that I've ever met; and finally, Paul "Vaguely" Buxton for simply being himself. Many
thanks to you all.

To Allan Kelly, another analyst programmer par excellence, for various discussions that he probably doesn't
remember but that helped in a number of ways.

At Microsoft: Walter Dickson for his insightful ability to get right to the root of any problem, constant accessibility via
email and phone, and his desire to make sure that any job is done to the best of its ability; Bob Wells for his personal
enthusiasm and interest in what [was doing; Daniel Turner for his help, enthusiasm, and key role in getting Leicester
University involved in the Windows 2000 RDP; Oliver Bell for actually getting Leicester University accepted on the
Windows 2000 RDP and taking a chance by allocating free consultancy time to the project; Brad Tipp whose
enthusiasm and ability galvanized me into action at the U.K. Professional Developers Conference in 1997; Julius
Davies for various discussions but among other things telling me how the auditing and permissions aspects of Active
Directory had all changed just after I finished the chapter; Karl Noakes, Steve Douglas, Jonathan Phillips, Stuart
Hudman, Stuart Okin, Nick McGrath, and Alan Bennett for various discussions.

To Tony Lees, director of Avantek Computer Ltd., for being attentive, thoughtful, and the best all-round salesman I
have ever met, many thanks for taking the time to get Leicester University onto the Windows 2000 RDP.

Thanks to Amit D. Chaudhary and Cricket Liu for reviewing parts of the book.

I also would like to thank everyone at O'Reilly but especially my editor Robert Denn for his encouragement,
patience, and keen desire to get this book crafted properly.

[TeamLiB] [rrevious | nexr]

[Team LiB] e

Part I: Active Directory Basics

This section of the book discusses the basics of Active Directory in order to provide a good grounding in the building
blocks and how they function together.

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5
Chapter 6

Chapter 7
[Team LiB]

[Team LiB]

Chapter 1. A Brief Introduction

Active Directory (AD) is Microsoft's network operating system (NOS) directory, built on top of Windows 2000 and
Windows Server 2003. It enables administrators to manage enterprise-wide information efficiently from a central
repository that can be globally distributed. Once information about users and groups, computers and printers, and
applications and services has been added to Active Directory, it can be made available for use throughout the entire
network to as many or as few people as you like. The structure of the information can match the structure of your
organization, and your users can query Active Directory to find the location of a printer or the email address ofa
colleague. With Organizational Units, you can delegate control and management of the data however you see fit. If
you are like most organizations, you may have a significant amount of data (e.g., thousands of employees or
computers). This may seem daunting to enter in Active Directory, but fortunately Microsoft has some very robust yet
easy-to-use Application Programming Interfaces (APIs) to help facilitate data management programmatically.

This book is an mtroduction to Active Directory, but an introduction with a broad scope. In Part I, we cover many of
the basic concepts within Active Directory to give you a good grounding in some of the fundamentals that every
administrator should understand. In Part II, we focus on various design issues and methodologies, to enable you to
map your organization's business requirements into your Active Directory infrastructure. Getting the design right the
first time around is critical to a successful implementation, but it can be extremely difficult if you have no experience
deploying Active Directory. In Part III, we cover in detail management of Active Directory programmatically through
scripts based on Active Directory Service Interfaces (ADSI), ActiveX Data Objects (ADO), and Windows
Management Instrumentation (WMI). No matter how good your design is, unless you can automate your
environment, problems will creep in, causing decreased uniformity and reliability.

Before moving on to some of the basic components within Active Directory, we will now review how Microsoft
came to the point of implementing an LDAP-based directory service to support their NOS environment.
[Team LiB] S

[TeamLiB] [rrevious | nexr]

1.1 Evolution of the Microsoft NOS

"NOS" is the term used to describe a networked environment in which various types of resources, such as user,
group, and computer accounts, are stored in a central repository that is controlled and accessible to end users.
Typically a NOS environment is comprised of one or more servers that provide NOS services, such as authentication
and account manipulation, and multiple end users that access those services.

Microsoft's first imtegrated NOS environment became available in 1990 with the release of Windows NT 3.0, which
combined many features of the LAN Manager protocols and OS/2 operating system. The NT NOS slowly evolved
over the next eight years until Active Directory was first released in beta in 1997.

Under Windows NT, the "domain" concept was introduced, providing a way to group resources based on
administrative and security boundaries. NT domains are flat structures limited to about 40,000 objects (users, groups,
and computers). For large organizations, this limitation imposed superficial boundaries on the design of the domain
structure. Often, domains were geographically limited as well because the replication of data between domain
controllers (i.e., servers providing the NOS services to end users) performed poorly over high-latency or
low-bandwidth links. Another significant problem with the NT NOS was delegation of admnistration, which typically
tended to be an all-or-nothing matter at the domain level.

Microsoft was well aware of these limitations and needed to rearchitect their NOS model into something that would
be much more scalable and flexible. For that reason, they looked to LDAP-based directory services as a possible
solution.

1.1.1 Brief History of Directories

In generic terms, a directory service is a repository of network, application, or NOS information that is useful to
multiple applications or users. Under this definition, the Windows NT NOS is a type of directory service. In fact,
there are many different types of directories, including Internet white pages, email systems, and even the Domain
Name System (DNS). While each of these systems have characteristics of a directory service, X.500 and the
Lightweight Directory Access Protocol (LDAP) define the standards for how a true directory service is implemented
and accessed.

In 1988, the International Telecommunication Union (ITU) and International Organization of Standardization (ISO)
teamed up to develop a series of standards around directory services, which has come to be known as X.500. While
X.500 proved to be a good model for structuring a directory and provided a lot of functionality around advanced
operations and security, it was difficult to implement clients to utilize it. One reason is that X.500 is based on the OSI
(Open System Interconnection) protocol stack nstead of TCP/IP, which had become the standard for the Internet.
The X.500 directory access protocol (DAP) was very complex and implemented a lot of features most clients never
needed. This prevented large-scale adoption. It is for this reason that a group headed by the University of Michigan
started work on a "lightweight" X.500 access protocol that would make X.500 easier to utilize.

The first version of the Lightweight Directory Access Protocol (LDAP) was released in 1993 as RFC 1487, but due
to the absence of many features provided by X.500, it never really took off. It wasn't until LDAPv2 was released in
1995 as RFC 1777 that LDAP started to gain popularity. Prior to LDAPV2, the primary use of LDAP was as a
gateway between X.500 servers. Simplified clients would interface with the LDAP gateway, which would translate
the requests and submit it to the X.500 server. The University of Michigan team thought that if LDAP could provide
most of the functionality necessary to most clients, they could remove the middleman (the gateway) and develop an
LDAP-enabled directory server. This directory server could use many of the concepts from X.500, including the data
model, but would leave out all the overheard provided by the numerous features it implemented. Thus the first LDAP
directory server was released i late 1995 by the University of Michigan team, and it turned into the basis for many
future directory servers.

In 1997, the last major update to the LDAP specification was described in RFC 2251. It provided several new
features and made LDAP robust enough and extensible enough to be suitable for most vendors to implement. Since

then, companies such as Netscape, Sun, Novell, and Microsoft have developed LDAP-based directory servers.
NMAct varanth: RPREC 2277 xyrac +alaacad vvhicrh car1imvvivarirac all Af+hae mra1in+r T IDODAD REC o

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

1.2 Windows NT Versus Active Directory

As we mentioned earlier, Windows N'T and Active Directory both provide directory services to clients (Windows
NT in a more generic sense). And while both share some common concepts, such as Security Identifiers (SIDs) to
identify security principals, they are very different from a feature, scalability, and functionality point of view. Table 1-1
contains a comparison of features between Windows N'T and Active Directory.

Table 1-1. A comparison between Windows NT and Active Directory

Windows NT

Active Directory

Single-master replication is used, from the PDC master
to the BDC subordinates.

Multimaster replication is used between all domain
controllers.

Domain is the smallest unit of partitioning,

Naming Contexts and Application Partitions are the
smallest unit of partitioning.

System policies can be used locally on machines or set at
the domain level.

Group policies can be managed centrally and used by
clients throughout the forest based on domain, site or
OU criteria.

Data cannot be stored hierarchically within a domain.

Data can be stored in a hierarchical manner using OUs.

Domain is the smallest unit of security delegation and
administration.

A property of an object is the smallest unit of security
delegation/administration.

NetBIOS and WINS used for name resolution.

DN is used for name resolution.

Object is the smallest unit of replication.

Attribute is the smallest unit of replication.

In Windows Server 2003 Active Directory, some
attributes replicate on a per-value basis (such as the
member attribute of group objects).

Maximum recommended database size for SAM is 40
MB.

Recommended maximum database size for Active
Directory is 70 TB.

Maximum effective number of users is 40,000 (if you
accept the recommended 40 MB maximum).

The maximum number of objects is in the tens of millions.

Four domain models (single, single-master, multimaster,
complete-trust) required to solve per-domain
admin-boundary and user-limit problems.

No domain models required as the complete-trust model
is implemented. One-way trusts can be implemented
manually.

Schema is not extensible.

Schema is fully extensible.

Data can only be accessed through a Microsoft API.

Supports LDAP, which is the standard protocol used by
directories, applications, and clients that want to access
directory data. Allows for cross-platform data access

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

1.3 Windows 2000 Versus Windows Server 2003

While the first version of Active Directory available with Windows 2000 was very stable and feature-rich, it still had
room for improvement, primarily around usability and performance. With Windows Server 2003, Microsoft has
addressed many of these issues. To utilize these features you have to upgrade your domain controllers to Windows
Server 2003 and raise the domain and forest functional levels as necessary.

The difference between Windows 2000 Active Directory and Windows Server 2003 Active Directory is more
evolutionary than revolutionary. The decision to upgrade to Windows Server 2003 is a subjective one, based on your
needs. For example, if you have a lot of domain controllers and Active Directory sites, you may want to take
advantage of the improvements with replication as soon as possible. Or perhaps you've been dying to rename a
domain, a capability available n Windows Server 2003 Active Directory. On the whole, Microsoft added or updated
more than 100 features within Active Directory, and we will now discuss some of the more significant ones.

a5 For more information on migrating to Windows Server 2003 from Windows 2000 check
: out Chapter 14.

= e

-
4

Some of the new features are available as soon as you promote the first Windows Server 2003 domain controller
mto an existing Windows 2000 Active Directory domam. In Table 1-2, the features available when you do so are
listed along with descriptions. Note that these features will apply only to the Windows Server 2003 domain
controllers in the domain.

Table 1-2. Windows 2000 domain functional level feature list

Feature Description

You can create your own partitions to store data
Application Partitions separately from the default partitions, and you can
configure which DCs in the forest replicate fit.

Under Windows 2000, a DC had to contact a GC to
determine universal group membership and subsequently
GC not required for logon (i.e., universal group caching) | to allow users to logon. This feature allows DCs to cache
universal group membership so that it is not necessary to
contact a GC for logins.

The new Active Directory Users and Computers allows
you to save queries, drag and drop, and edit multiple
users at once, and it is much more efficient about
scrolling through a large number of objects. In addition,
several new command-line tools (dsadd, dsmod, dsrm,
dsquery, dsget, and dsmove) come mstalled with the
server, allowing for greater flexibility in managing Active
Directory.

MMC enhancements and new command-line tools

Administrators can create new DCs for an existing
Install from media domain by installing from a backup of an existing DC that
resides on media such as a CD or DVD.

You can apply a WMI filter, which is a query that can
utilize any WMI information on a client, to a GPO, and

http://www.microsoft.com/windowsserver2003/techinfo/overview/adam.mspx
http://www.microsoft.com/windowsserver2003/techinfo/overview/adam.mspx

[TeamLiB] [rrevious | nexr]

[Team LiB]

1.4 Summary

This chapter has been a brief introduction to the origins of Active Directory and some of the new features available in
Windows Server 2003. The rest of the chapters in Part I will cover the conceptual mtroduction to Active Directory
and equip you to get the most out of Part Il and Part III.

[Team LiB]

[Team LiB]

Chapter 2. Active Directory Fundamentals

This chapter aims to bring you up to speed on the basic concepts and terminology used with Active Directory. It is
important to understand each component of Active Directory before embarking on a design, or your design may leave
out a critical element.

[Team LiB]

[TeamLiB] [rrevious | nexr]

2.1 How Objects Are Stored and Identified

Data is stored within Active Directory in a hierarchical fashion similar to the way data is stored in a filesystem. Each
entry is referred to as an object. At the structural level, there are two types of objects: containers and non-containers,
also known as leaf nodes. One or more containers branch off in a hierarchical fashion from a root container. Each
container may contain leaf nodes or other containers. A leaf node, however, as the name implies, may not contain any
other objects.

Consider the parent-child relationships of the containers and leaves in Figure 2-1. The root of this tree has two
children, Finance and Sales. Both of these are containers of other objects. Sales has two children of its own,
Pre-Sales and Post-Sales. Only the Pre-Sales container is shown as containing additional child objects. The
Pre-Sales container holds user, group, and computer objects as an example.[1] Each of these child nodes is said to
have the Pre-Sales container as its parent. Figure 2-1 represents what is known in Active Directory as a domain.

[1] User, group, and computer objects are actually containers, as they can contain other objects such as printers.
However, they are not normally drawn as containers in domain diagrams such as this.

Figure 2-1. A hierarchy of objects

Coed
& GO

>, resaes D) le
@ <____/ o

9

0

The most common type of container you will create in Active Directory is an Organizational Unit, but there are others
as well, such as the one called Container. Each ofthese has its place, as we'll show later, but the one that we will be
using most frequently is the Organizational Unit (OU).

2.1.1 Uniquely Identifying Objects

When you are potentially storing millions of objects in Active Directory, each object has to be uniquely locatable and
identifiable. To that end, objects have a Globally Unique Identifier (GUID) assigned to them by the system at creation.
This 128-bit number is guaranteed to be unique by Microsoft. The object GUID stays with the object until it is
deleted, regardless of whether it is renamed or moved within the Directory Information Tree (DIT).

While an object GUID is unique and resilient, it is not very easy to remember, nor is it based on the directory
hierarchy. For that reason, another way to reference objects, called an ADsPath, is more commonly used.

2.1.1.1 ADsPaths

Hierarchical paths in Active Directory are known as ADsPaths and can be used to uniquely reference an object. In
fact, ADsPath is a slightly more general term and is used by Microsoft to apply to any path to any of the major
directories: Active Directory, Windows NT, Novell's NDS, and many others.

ADsPaths for Active Directory objects are normally represented using the syntax and rules defined in the LDAP

Aeamndavdas T A 4alba a 1AAL a4 ThAaxer a metlh 44 1A vt AL w9~ D) 1T AR~

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

2.2 Building Blocks

Now that we've shown how objects are structured and referenced, let's look at the core concepts behind Active
Directory.

2.2.1 Domains and Domain Trees

Active Directory's logical structure is built around the concept of domains introduced in Windows N'T 3.x and 4.0.
However, in Active Directory, domains have been updated significantly from the flat and inflexible structure imposed
by Windows NT. An Active Directory domain is made up of the following components:

An X.500-based hierarchical structure of containers and objects
A DNS domain name as a unique identifier

A security service, which authenticates any access to resources via accounts in the domain or trusts with
other domains

One or more policies that dictate how functionality is restricted for users or machines within that domain

A domain controller (DC) can be authoritative for one and only one domain. Currently it is not possible to host
multiple domains on a single DC. For example, Mycorp Company has already been allocated a DNS domain name
for their company called mycorp.com, so they decide that the first Active Directory domain that they are going to
build is to be named mycorp.com. However, this is only the first domain in a series that needs to be created, and
mycorp.com is in fact the root of a domain tree.

The mycorp.com domain itself, ignoring its contents, is automatically created as the root node of a hierarchical
structure called a domain tree. This is literally a series of domains connected together in a hierarchical fashion, all using
a contiguous naming scheme. So, when Finance, Marketing, and Sales each wants its own domain, the names
become finance.mycorp.com, mktg.mycorp.com, and sales.mycorp.com. Each domain tree is called by the name
given to the root of the tree; hence, this domain tree is known as the mycorp.com tree, as illustrated in Figure 2-2.
You can also see that we have added further domains below sales, for pre-sales and post-sales.

Figure 2-2. The mycorp.com domain tree

rycorpCo™
n
3.co0m I
ﬁ“anl;!.-l'ﬂ'ﬁm mmm?f-“"m ﬂmmﬁww
4
Lom o™
(ﬂe-ﬁ"“‘wm qost.eales Y

You can see that in Mycorp's setup, we now have a contiguous set of domains that all fit into a neat tree. Even if we
had only one domain, it would still be a domain tree, albeit with only one domain.

[TeamLiB] [rrevious | nexr]

[Team LiB]

2.3 Summary

In this chapter, we've gone over the groundwork for some of the main internals of Active Directory. We covered
such concepts as domains, trees, forests, Organizational Units, the Global Catalog, FSMOs, Windows 2000 domain
modes, and Windows Server 2003 functional levels. We then delved into how groups work in Active Directory and
what features are available under the various domain modes and functional levels.

With this information under our belts, let's now take a look at how data is organized in Active Directory with Naming
Contexts and Application Partitions.

[Team LiB]

[TeamLiB] [rrevious | nexr]

Chapter 3. Naming Contexts and Application
Partitions

Due to the distributed nature of Active Directory, it is necessary to segregate data into partitions. If data partitioning
were not used, every domain controller would have to replicate all the data within a forest. Often it is advantageous to
group data based on geographical or political requirements. Think of a domain as a big data partition, which is also
referred to as a naming context (NC). Only domain controllers that are authoritative for a domain need to replicate the
mformation within it. On the other hand, there is some Active Directory data that must be replicated to all domain
controllers. There are three predefined naming contexts within Active Directory:

A Domain Naming Context for each domain
The Configuration Naming Context for the forest

The Schema Naming Context for the forest

Each of these naming contexts represents a different aspect of Active Directory data. The Configuration NC holds
data pertaining to the configuration of the forest, for example, the objects representing naming contexts, LDAP
policies, sites, subnets, and so on. The Schema NC contains the set of object class and attribute definitions for the
types of data that can be stored in Active Directory. Each domain in a forest also has a Domain NC, which contains
data specific to the domain, for example, users, groups, computers, etc.

In Windows Server 2003 Active Directory, Microsoft extended the naming context concept by allowing user-defined
partitions called application partitions. Application partitions can contain any type of object except security principals,
such as user objects. The major benefit of application partitions is that administrators can define which domain
controllers replicate the data contained within them. Application partitions are not restricted by domain boundaries, as
is the case with Domain NCs.

You can retrieve a list of the naming contexts and application partitions a specific domain controller maintains by
querying its Root DSE entry. You can view the Root DSE by opening the LDP utility, which is available from the
Windows Support Tools. Select Connection ==# Connect from the menu, enter the name of a domain controller, and
click OK. The following attributes pertain to naming contexts and application partitions:

namingContexts

List of DN's of all the naming contexts and application partitions maintained by the DC.
defaultNamingContext

DN of'the Domain NC the DC is authoritative for.
configurationNamingContext

DN of'the Configuration NC.
schemaN amingContext

DN of'the Schema NC.
rootNamingContext

DN ofthe Domain NC for the forest root domain.

In this chapter, we will review each of the three predefined naming contexts and describe the data contained within
each, and then cover application partitions and example uses.

[TeamLiB] [rrevious | nexr]

[Team LiB]

3.1 Domain Naming Context

Each Active Directory domain is represented by a Domain NC, which holds the domain-specific data. The root of
this NC is represented by a domain's distinguished name (DN). For example, the mycorp.com domamn's DN would
be dc=mycorp,dc=com. Each domain controller in the domain replicates a copy of the Domain NC.

Table 3-1 contains a list of the default top-level containers found in a Domain NC. Note that to see all of these
containers with the Active Directory Users and Computers (ADUC) snap-in, you must select View ==+ Advanced
Features from the menu. Alternatively, you can browse all of these containers with the ADSI Edit tool available in the
Windows Support Tools on any Windows Server 2003 or Windows 2000 CD.

Table 3-1. Default top-level containers of a Domamn NC

Relative distinguished name

Description

cn=Builtin

Container for predefined built-in local security groups.
Examples include Administrators, Users and Account
Operators.

cn=Computers

Default container for computer objects representing
member servers and workstations.

ou=Domain Controllers

Default organizational unit for computer objects
representing domain controllers.

cn=ForeignSecurityPrincipals

Container for placeholder objects representing members
of groups in the domain that are from a domain external
to the forest.

cn=LostandFound

Container for orphaned objects.

cn=NTDS Quotas

Container to store quota objects, which are used to
restrict the number of objects a security principal can
create in a partition or container. This container is new in
Windows Server 2003.

cn=Program Data

Contamer for applications to store data nstead of using a
custom top-level container. This container is new in
Windows Server 2003.

Container for miscellaneous domain configuration

cn=System objects. Examples include trust objects, DNS objects,
and group policy objects.
cn=Users Default container for user and group objects.

[Team LiB]

[TeamLiB] [rrevious | nexr]

3.2 Configuration Naming Context

The Configuration NC is the primary repository for configuration information for a forest. Every domain controller in
the forest replicates the Configuration NC, which is why it is considered forest-wide. The root of the Configuration
NC is found in the Configuration container, which is a subcontainer of the forest root domain. For example, the
mycorp.com forest would have a Configuration NC located at cn=configuration,dc=mycorp,dc=com.

Table 3-2 contains a list of the default top-level containers found in the Configuration NC.

Table 3-2. Default top-level containers of the Configuration NC

Relative Distinguished Name Description

Contamer that holds display specifier objects, which
cn=DisplaySpecifiers define various properties and functions of the Active
Directory MMC Snap-ins.

Container for extended rights (controlAccessRight)

cn=Extended-Rights objects.

Contains objects that are used to represent the state of
cn=ForestUpdates forest and domain functional level changes. This
container is new n Windows Server 2003.

cn=LostandFoundConfig Contaimner for orphaned objects.

Container to store quota objects, which are used to
restrict the number of objects that security principals can
create in a partition or container. This container is new in
Windows Server 2003.

cn=NTDS Quotas

Contains objects for each naming context, application

cn=Partitions .
partition, and external reference.

Contains location objects (physicalLocation), which can
cn=Physical Locations be associated with other objects to denote location of
the object.

Store of configuration information about services such as

cn=Setvices FRS, Exchange, and even Active Directory itself.

Contains all of the site topology and replication objects.
cn=Sites This ncludes site, subnet, siteLink, server and
nTDSCconnection objects, to name a few.

Holds objects representing commonly used foreign
cn=WellKnown Security Principals security principals, such as Everyone, Interactive, and
Authenticated Users.

[TeamLiB] [rrevious | nexr]

[Team LiB]

3.3 Schema Naming Context

The Schema NC contains objects representing the classes and attributes that Active Directory supports. The schema
is defined on a forest-wide basis, so the Schema NC is replicated to every domain controller in the forest. The root of
the Schema NC can be found in the Schema container, which is a subcontainer of the Configuration container. For
example, in the mycorp.com forest, the Schema NC would be located at
cn=schema,cn=configuration,dc=mycorp,dc=com.

«s 4. Although the Schema container appears to be a child of the Configuration container, it is
& actually a separate naming context in its own right. Figure 3-1 shows how the Schema and
Configuration NCs are segregated in the ADSI Edit tool.

Figure 3-1. ADSI Edit view of the Configuration and Schema Naming Contexts

i B fchon Mew Mwdow el =18 =
A= =E =
B ans e Meme [Class

%[Domain [dei myeom.com] I ch=Schema, Ch=Corbiguration CC=myrom, DC=com i
= Configuratian [de1 mycarp. com]
= 1 Chi=conkipuration,E:C=mrpror, 25 =com

£] CH=CisplaySpaciias

£] CH=ExtandecRights

&1 _ CH=Firsst pdabns

5 1 CH=LostandFoundConti
CH=NTDS chaitas
=Pt
CH=Plossical Lodations
Ch=Gardons
Ch=Ghas
NNl s Sy Prirciguals

LOOLOLL

1 ChimSichai , CNe=Cionifigurabinn, DO saiyconp, [=i nm

You may be wondering why the schema isn't just contained within the Configuration NC. As we covered in Chapter
2, there is a Schema FSMO role that is the single master for updates to schema objects. The Schema FSMO role is
necessary due to the highly sensitive nature of the schema and the fact that two conflicting schema updates could spell
disaster for a forest. Since there is only a single domain controller that schema changes can be made on, the schema
must replicate differently from the Configuration NC, which can be updated by any domain controller in the forest.

Unlike the Domain and Configuration NCs, the Schema NC does not contain a hierarchy of containers or
organizational units. Instead it is a single container that has classSchema, attributeSchema, and subSchema objects.
The classSchema objects define the different types of classes and their associated attributes. The attributeSchema
objects define all the attributes that are used as part of classSchema definitions. There is also a single subSchema
object that represents the abstract schema as defined in the LDAPv3 RFC (http//www.ietf. org/rfc/rfc2254.txt).

5 . Chapter 4 and Chapter 12 deal with the schema in more depth.

-
o

[Team LiB]

http://www.ietf.org/rfc/rfc2254.txt
http://www.ietf.org/rfc/rfc2254.txt

[TeamLiB] [rrevious | nexr]

3.4 Application Partitions

Application partitions are a new feature m Windows Server 2003. They enable administrators to create areas in
Active Directory to store data on DCs they choose rather than on every DC in a domain or forest. You can define
which domain controllers hold a copy of the partition, known as a replica. There is no limitation based on domain or
site membership, which means you can configure any domain controller in a forest to hold any application partition
replica. The existing site topology will be used to automatically create the necessary connection objects to replicate
among the servers that hold replicas of an application partition. Domain controllers will also register the necessary
SRV records (explained in more detail in Chapter 6), so that clients can use the DC locator process to find the
optimal domain controller for an application partition, just as they would for a domain.

There are a few limitations to be aware of with application partitions:

Application partitions cannot contain security principals, which most notably includes user, group, and
computer objects. Any other type of object can be created in an application partition.

None of the objects contained in an application partition are replicated to the global catalog. Even if a domain
controller that holds a replica of an application partition is also a global catalog server, the domain controller
will not return any objects from the application partition during a global catalog search.

Objects in an application partition cannot be moved outside the partition. This is different than objects
contained in domains, which can be moved between domains.

The Domain Naming FSMO must be on a Windows Server 2003 domain controller to create an application
partition. After the application partition has been created, you can move the Domain Naming FSMO back to
a Windows 2000 domain controller if necessary.

Application partitions are named similarly to domains. For example, if you created an application partition called
"apps" directly under the mycorp.com domain, the DN'S name would be apps.mycorp.com and the distinguished
name would be dc=apps,dc=mycorp,dc=com. Application partitions can be rooted under domains, as shown in the
previous example, nested under other application partitions (for example, dc=sales,dc=apps,dc=mycorp,dc=com) or
as part of a new domain tree (for example, dc=apps,dc=local). For more information on creating and managing
application partitions, check out the NTDSUTIL utility.

Application partitions tend to store dynamic data—data with a limited lifespan. See the next section for more on this.
Dynamic data from network services such as DNS, Dynamic Host Configuration Protocol (DHCP), Common Open
Policy Service (COPS), Remote Access Service (RAS), and RADIUS can all reside in a partition in AD. This allows
uniformity of access from applications via a single methodology. This enables developers to write to a special area
only available to specific servers rather than into a domain partition that is replicated to every DC. In fact, application
partitions will allow multiple versions of COM+ applications to be installed and configured on the same computer,
resulting in more cost-effective management of server applications.

3.4.1 Storing Dynamic Data

While application partitions give administrators more control over how to replicate application data, the problem of
data cleanup still exists. That is, applications that add data to Active Directory are not always good about cleaning it
up after it is no longer needed. That's why the ability to create dynamic data was also added as a feature in Windows
Server 2003 Active Directory. Dynamic objects are objects that have a time-to-live (TTL) value that determines how
long the object will exist before being automatically deleted by Active Directory. Dynamic objects typically have a
fairly short life span (i.e., days). An example use of dynamic objects is an e-commerce website that needs to store
user session information temporarily. Since a directory is likely going to be where the user profile information resides,

~ranr hhae adxarntocoanitic 4 11c0a e cara cfnara e cacctnn lhoacad mfarafinn sxhicrth 16 aoraralks chart lvad Thae Aafhi

[TeamLiB] [rrevious | nexr]

[Team LiB]

3.5 Summary

In this chapter, we covered how objects are grouped at a high level into naming contexts and application partitions,
which are used as replication boundaries. The Domain NC contains domain-specific data such as users, groups, and
computers. The Configuration NC contains forest-wide configuration data such as the site topology objects and
objects that represent naming contexts and application partitions. The Schema NC contains all the schema objects
that define how data is structured and represented in Active Directory. Application partitions were mtroduced in
Windows Server 2003 Active Directory as a way for administrators to define their own grouping of objects and,
subsequently, replication boundaries. Storage of DNS data for AD-Integrated DN'S zones is the classic example of
when it makes sense to use application partitions, due to the increased control they give you over which domain
controllers replicate the data. Dynamic objects are also new to Windows Server 2003 Active Directory; they allow
you to create objects that have a time-to-live (TTL) value. After the TTL expires, Active Directory automatically
deletes the object.

[Team LiB]

[Team LiB]

Chapter 4. Active Directory Schema

The schema is the blueprint for data storage in Active Directory. Each object in Active Directory is an instance ofa
class in the schema. A user object, for example, exists as an instance of the user class. Attributes define the pieces of
information that a class, and thus an instance of that class, can hold. Syntaxes define the type of data that can be
placed into an attribute. As an example, if an attribute is defined with a syntax of Boolean, it can store True or False
as its value.

Active Directory contains many attributes and classes in the default schema, some of which are based on standards
and some of which Microsoft needed for its own use. However, the Active Directory schema was designed to be
extensible, so that administrators could add any classes or attributes they deem necessary. In fact, extending the
schema is not a difficult task; it is often more difficult to design the changes that you would like to incorporate. Schema
design issues are covered in Chapter 12, and in Chapter 24 we cover how to extend the schema programmatically. In
this chapter, we're concerned only with the fundamentals of the schema.

[Team LiB]

[TeamLiB] [rrevious | nexr]

4.1 Structure of the Schema

The Schema Container is located in Active Directory under the Configuration Contamner. For example, the
distinguished name of the Schema Container in the mycorp.com forest would be
cn=schema,cn=Configuration,dc=mycorp,dc=com. You can view the contents of the container directly by pointing an
Active Directory viewer such as ADSI Edit or LDP at it. You can also use the Active Directory Schema MMC
snap-in, which splits the classes and attributes in separate containers for easy viewing, even though in reality all the
schema objects are stored directly in the Schema Container.

The schema itself is made up of two types of Active Directory objects: classes and attributes. In Active Directory,
these are known respectively as classSchema (Class-Schema) and attributeSchema (Attribute-Schema) objects. The
two distinct forms of the same names result from the fact that the cn (Common-Name) attribute of a class contains the
hyphenated easy-to-read name of'the class, and the IDAPDisplayName (LDAP-Display-Name) attribute of a class
contains the concatenated string format that is used when querying Active Directory with LDAP or ADSI. In the
schema, the IDAPDisplayName attribute of each object is normally made by capitalizing the first letter of each word
of'the Common-Name, then removing the hyphens and concatenating all the words together. Finally, the first letter is
made lowercase.[1] This creates simple names like user, as well as the more unusual SAMAccountName and
IDAPDisplayName. We'll specify the more commonly used LDAP display name format from now on.

[1] Names defined by the X.500 standard don't tend to follow this method. For example, the Common-Name
attribute has an LDAP-Display-Name of cn, and the Surname attribute has an LDAP-Display-Name of sn.

Whenever you need to create new types of objects in Active Directory, you must first create a classSchema object
defining the class ofthe object and the attributes it contains. Once the class is properly designed and added to the
schema, you can then create objects in Active Directory that use the class. Alternatively, if you want to add a new
attribute to an object, you must first create the attributeSchema object and associate the attribute with whatever
classes you want to use it with.

Before we delve into what makes up an Active Directory class or attribute, we need to explain how each class that
you create is unique not just within your Active Directory but also throughout the world.

4.1.1 X.500 and the OID Namespace

Active Directory is based on LDAP, which was originally based on the X.500 standard created by the ISO
(International Organization for Standardization) and ITU (International Telecommunications Union) organizations in
1988. To properly understand how the Active Directory schema works, you really need to understand the basics of
X.500; we'll run through them next.

The X.500 standard specifies that individual object classes in an organization can be uniquely defined using a special
identifying process. The process has to be able to take nto account the fact that classes can inherit from one another,
as well as the potential need for any organization in the world to define and export a class of their own design.

To that end, the X.500 standard defined an Object Identifier (OID) to uniquely identify every schema object. This
OID is composed of two parts:

One to indicate the unique path to the branch holding the object in the X.500 treelike structure

Another to indicate the object uniquely in that branch

OID notation uses integers for each branch and object, as in the following example OID for an object:
1.3.6.1.4.1.3385.12.497

This uniquely references object 497 in branch 1.3.6.1.4.1.3385.12. The 1.3.6.1.4.1.3385.12 branch is contained in
a branch who<se OITDic 13614 1 3RS and <0 on

http://www.iana.org/default.htm
http://www.iana.org/assignments/enterprise-numbers
http://www.isi.edu/cgi-bin/iana/enterprise.pl
http://www.iana.org
http://www.iana.org/assignments/enterprise-numbers
http://www.isi.edu/cgi-bin/iana/enterprise.pl

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

4.2 Attributes (attributeSchema Objects)

Just as class information is stored in Active Directory as instances of the class called classSchema, attributes are
represented by instances of the class called attributeSchema. As with all objects, the attributeSchema class has a
number of attributes that can be set when specifying a new instance. The attributeSchema class nherits attributes from
the class called Top. However, most of the Top attributes are not really relevant here. Table 4-1 shows the defining
attributes of an instance of the attributeSchema class (i.e., an attribute) that can be set.

Table 4-1. The defining attributes of an attributeSchema object instance

Attribute Syntax Mandatory Multivalued Description

The OID that
attributeld OID Yes No uniquely identifies this
attribute.

The Relative
cn Unicode string Yes No Distinguished Name
(RDN).

Whether this attribute

isSingleValued Boolean Yes No s multivalued.

The name by which
IDAPDisplayName | Unicode string Yes No LDAP clients identify
this attribute.

Half of a pair of
properties that define
attributeSyntax OID Yes No the syntax of an
attribute. This one is
an OID.

Half of a pair of
properties that define
oMSyntax Integer Yes No the syntax of an
attribute. This one 1s
an integer.

Globally Unique
Identifier (GUID) to
uniquely identify this
attribute.

schemalDGUID Octet string Yes No

This will hold the
values
"attributeSchema"
objectClass OID Yes Yes and "Top" to indicate
that the value is an
instance of those
classes.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

4.3 Attribute Syntax

The syntax of an attribute represents the kind of data it can hold; people with a programming background are
probably more familiar with the term "data type." Unlike attributes and classes, the supported syntaxes are not
represented as objects in Active Directory. Instead, Microsoft has coded these syntaxes internally into Active
Directory itself. Consequently, any new attributes you create in the schema must use one of the predefined syntaxes.

Whenever you create a new attribute, you must specify its syntax. To uniquely identify the syntax among the total set
of 21 syntaxes, you must specify 2 pieces of information: the OID of the syntax and a so-called OM syntax. This pair
of'values must be set together and correctly correlate with Table 4-3. More than one syntax has the same OID, which
may seem strange; and to distinguish between different syntaxes uniquely, you thus need a second identifier. This is the
result of Microsoft requiring some syntaxes that X.500 did not provide. Table 4-3 shows the 21 expanded syntaxes,
including the name of the syntax with alternate names followed in parentheses.

Table 4-3. Syntax definitions

Syntax OID OM syntax Description
Undefined 2.5.5.0 N/A Not a valid syntax
The Fully Qualified Domain
Distinguished Name 2.5.5.1 127 Name (FQDN) of an
object in Active Directory
Object ID 2552 6 OID
A string that differentiates
Case-sensitive string 2553 20 between uppercase and
lowercase
A string that does not
Case-insensitive string 2554 20 differentiate between

uppercase and lowercase

Print case string

(Printable- String) 2555 19 A normal printable string
Pript case string (IA3- 2.5.5.5 22 A normal printable string
String)

Numeric string 2.5.5.6 18 A string of digits

OR name 2.5.5.7 127 An X.400 email address
Boolean 2.5.5.8 1 True or false

Integer (integer) 2.5.5.9 2 A 32-bit number

Integer (enumeration) 2.5.5.9 10 A 32-bit number

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

4.4 Classes (classSchema Objects)

Schema classes are defined as instances of the classSchema class. Table 4-4 shows the most important attributes that
you may wish to set.

Table 4-4. The defining attributes of a classSchema object instance

Attribute Syntax Mandatory Multi-valued Description

The Relative
cn Unicode Yes No Distinguished Name
(RDN).

The OID that
governsID OID Yes No uniquely identifies
objects of this class.

The name by which
IDAPDisplayName | Unicode No No LDAP clients identify
this class.

Globally Unique
Identifier (GUID) to
uniquely identify this
class.

schemalDGUID Octet string Yes No

The attribute that
indicates what
two-letter-prefix
(cn=, ou=, dc=) is
used to reference the
class. You should use
only cn here unless
you have a very solid
idea of what you are
doing and why.

rDNAttID OID No No

A description of the

ot . trin N N
description Unicode string Y 0 attribute.

The class that this
subClassOf OID Yes No one inherits from; the
default is Top.[3]

The list of attributes
mustContain OID No Yes that are mandatory
for this class.

System version of the

systemMustContain | OID No Yes .
previous attribute.

[TeamLiB] [rrevious | nexr]

[Team LiB]

4.5 Summary

In this chapter we've shown you how the internal blueprint for all objects in Active Directory, known as the schema,
was derived from the X.500 directory service. We explained the purpose of the OID numbering system and how it
can be used. We then detailed how an attribute and its syntax is structured in the schema as attributeSchema objects,
using the userPrincipalName attribute as an example. We showed how attributes are added to classes by detailing
how classes are stored in the schema as instances of classSchema objects. To make this clearer, we dug into the
details of the user class to see how it was constructed. Finally, we covered how auxiliary classes can be dynamically
lnked in Windows Server 2003 and why it is significant.

Chapter 12 builds on what you've learned here to demonstrate how you can design and implement schema
extensions.

[Team LiB] Gl

[Team LiB]

Chapter 5. Site Topology and Replication

This chapter introduces a major feature of Active Directory: multi-master replication. Active Directory was one of the
first LDAP-based directories to offer multi-master replication. Most directories replicate data from a single master
server to subordinate servers. This is how replication worked in Windows NT 4.0 as an example. Obviously, there
are several problems with a single-master replication scheme, including single point of failure for updates, geographic
distance from master to clients performing the updates, and less efficient replication due to single originating location of
updates. Active Directory replication addresses these issues, but with a price. To get the benefit of a multi-master
replication, you must first create a site topology that defines how domain controllers should replicate with each other.
Especially in large environments, maintaining a site topology can be a significant amount of overhead.

This chapter looks at the basics of how sites and replication work i Active Directory. In Chapter 9, we'll describe
the physical infrastructure of a network layout using sites. We'll also discuss in that chapter how the Knowledge
Consistency Checker (KCC) sets up and manages the replication connections and details on how to effectively design
and tailor sites, site links, and replication in Active Directory.

[Team LiB]

[TeamLiB] [rrevious | nexr]

5.1 Site Topology

Active Directory uses the term site to mean a collection of subnets that coexist on a local area network (LAN) or
metropolitan area network (MAN), i.e., a physical network in a particular location with good connectivity between all
sections of that network. Active Directory uses sites to define boundaries of replication around the physical network.

Active Directory replication is very efficient. Only changed attributes are replicated, rather than entire objects, as was
the case in Windows NT. And with Windows Server 2003, link-value replication is available for some attributes, so
only changed values for a multi-valued attribute are replicated nstead of all values. Link-value replication is a much
needed feature which was not available n Windows 2000 Active Directory; it is intended to address issues such as
the 5,000 member limitation for group objects. Replication also can take place over multiple TCP/IP transports, so
that you can find a replication protocol to suit the environment a particular site requires.

s The recommended minimum speed for a well-connected network is 1.5 Mbps (i.e., a T1

4% link). You will see this actual value vary from article to article and book to book, as
different people find that their network runs fine over a slower connection speed. We'll
cover this later, but the absolute true minimum is around 128 Kbps of available replication
bandwidth out of a 256 Kbps total available bandwidth. Your mileage may vary; the only
way to determine the best solution in your environment is by testing,

Admnistrators must create the site topology in Active Directory, as the process is not automatic. The main
site-topology objects of interest include the site objects, subnet objects, and site link objects. One of the major uses
of'the site topology is for clients to find their closest DC. That is why subnet information must be associated with sites.
Clients use their IP address to determine which Active Directory subnet they belong to and subsequently which site.
The site information can then be used to determine the closest DC.

Once you've set up a site, an Active Directory process called the Knowledge Consistency Checker (KCC)
automatically creates and dynamically manages a replication schedule and a set of intrasite (i.e., within a site)
replication links among DCs in the site. As you add more DCs, more intrasite links are added automatically. If you
were to do nothing more, data would be effectively replicated by Active Directory around your site. When you add
your second site, the same automatic intrasite creation mechanisms spring into action, creating links and a replication
schedule among the various DCs in this second site. The algorithm that is used adapts as more sites and DCs are
added, so that certain built-in criteria are never breached; this assures that the network is always properly replicated.
Note, however, that creating a second site does not trigger the system to also automatically create intersite (i.e.,
between sites) replication links and a replication schedule. Instead, site links that connect two sites have to be created
manually. We'll cover the KCC in greater depth later in Chapter 9.

5.1.1 Site and Replication Management Tools

Obviously, as more sites and connections are created, the topology can get very large. Microsoft provides the Active
Directory Sites and Services snap-in to help manage the topology. It actually allows you to get right into the guts of
the Sites Container, which holds all the site topology objects and connection objects. The Sites Container is located
directly under the Configuration Container in the Configuration NC. It would be located in
cn=sites,cn=configuration,dc=mycorp,dc=com in the mycorp.com forest. You can create new sites, subnets, and
links, set replication schedules for each link, and so on.

Other replication-related tools are available in the Windows Support Tools:
RepAdmin

A command-line tool for admmistering replication.
ReplMon

A graphical utility for managing and monitoring replication.

http://www.3com.com/other/pdfs/infra/corpinfo/en_US/501302.pdf
http://www.3com.com/other/pdfs/infra/corpinfo/en_US/501302.pdf

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

5.2 Data Replication

Microsoft has introduced a number of new terms for Active Directory replication, and most of them will be
completely unfamiliar to anyone new to Active Directory. To properly design replication, you need to understand how
replication works, but more to the pomnt, you need to understand how replication works using these new terms, which
are used throughout both Microsoft's documentation and its management tools. Here is the list of the terms you'll
encounter as we explain replication. These definitions will make more sense later.

Update Sequence Number (USN)

This 64-bit value, which is assigned to each object, increments every time a change takes place.
Origmating write/update and replicated write/update

A change made to an object on a specific DC is an originating write; replication of that change to all other DCs is a
replicated write.
High- Watermark Vector

This USN represents the maximum number of changes ever to occur on a particular NC.
Up-To-Date Vector

This is the USN on a specific server that represents the last originating write for an NC on that server.
Tombstone

Because of the complex replication available in Active Directory, simply deleting an object could result in it being
re-created at the next replication interval, so deleted objects are tombstoned instead. This basically marks them as
deleted. Objects marked as tombstoned are actually deleted 60 days after their original tombstone status setting;
however, this time can be changed by modifying the tombstoneLifetime attribute of
cn=DrrectoryServices,cn=WindowsN T, cn=Services,cn=Configuration,dc=mycorp,dc=com for the mycorp.com
forest.

Property version number

This number indicates how often this particular property has been updated.
Timestamp

This time and date are stored on an object for comparison checking,
Globally Unique Identifier (GUID)

This system-generated alphanumeric string represents a unique identifier for an object within an enterprise.
Flexible Single Master Operations (FSMO)

This term designates a server that performs one of the following roles: PDC Emulator, Infrastructure Master, RID
Master, Schema Master, or Domain Naming Master.

5.2.1 A Background to Metadata—Data That Governs the Replication Process

Active Directory replication enables data transfer between NCs on different servers without ending up in a
continuous replication loop or missing any data. To make this process work, each NC holds a number of pieces of
information that specifically relate to replication within that particular NC. So the replication data for the Schema NC
is held in the Schema NC and is separate from the replication data for the Configuration NC, which is held in the
Configuration NC.

o To minimize the use of abbreviations, we will refer to DCs from now on simply as servers.
4" The terms property and attribute are also used mterchangeably.

5.2.1.1 The Hich-Watermark Vector and orsinating/replicated updates

[TeamLiB] [rrevious | nexr]

[Team LiB]

5.3 Summary

We've now looked at the importance of the site topology in Active Directory and how that relates to your physical
network. We've also considered the metadata that governs the replication process, how the system keeps track of
changes to objects and properties automatically, how data is replicated among servers including propagation
dampening, and how contflicts are reconciled.

Later on, in Chapter 9, we take this knowledge further and show you how Active Directory manages and
automatically generates the replication connections that exist both within and between sites. With that knowledge, we
can move on to the design principles for sites and links in Active Directory.

[Team LiB]

[Team LiB]

Chapter 6. Active Directory and DNS

One of the big advantages of Active Directory over its predecessor, Windows NT, is the reliance on the Domain
Name System (DNS) as opposed to the Windows Internet Naming Service (WINS) for name resolution. DNS is the
ubiquitous, standards-based naming service used on the Internet. WINS, on the other hand, never garnered industry
support and, because it is a proprietary Microsoft offering, was typically used only to support Windows NT NOS
environments.

The good news is that with Active Directory the dependencies on WINS have been elimmated, but the potentially
bad news is that Active Directory has a lot of dependencies on the DNS infrastructure. It is only potentially bad based
on the flexibility of your DNS environment. Often, the groups that manage DNS and Active Directory within an
organization are different, and getting the two teams to agree on implementation can be difficult due to political turf
battles or technology clashes.

The intent of this chapter is to provide you with a good understanding of how Active Directory uses DNS and a
description of some of the options for setting it up within your organization. We will briefly touch on some DNS basics
but will not go into much depth on how to configure and administer the Windows DNS server. For more information
on those topics, we highly recommend DNS on Windows 2000 by Matt Larson and Cricket Liu (O'Reilly &
Associates).

[Team LiB] Gl

[TeamLiB] [rrevious | nexr]

6.1 DNS Fundamentals

DNS is a hierarchical name resolution system. It is also the largest public directory service deployed. Virtually every
company uses DNS for name resolution services, including hostname to IP address, IP address to hostname, and
hostname to alternate hostname (aliases). DNS is a well-documented standard that has been around since the early
days of'the Internet. The RFCs in the following list cover some of the basics of DNS:

RFC 1034, "Domain Names - Concepts and Facilities"

RFC 1035, "Domain Names - Implementation and Specification"

RFC 1912, "Common DNS Operational and Configuration Errors"

RFC 1995, "Incremental Zone Transfer n DNS"

RFC 1996, "A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)"

RFC 2181, "Clarifications to the DNS Specification"

There are three important DNS concepts that every Active Directory administrator must understand. Zones are
delegated portions of the DN'S namespace, resource records contain name resolution information, and dynamic DNS
allows clients to add and delete resource records dynamically.

6.1.1 Zones

A zone is a collection of hierarchical domain names, the root of which has been delegated to one or more name
servers. For example, let's say that the mycorp.com DNS namespace was delegated to ns1.mycorp.com. All domain
names contained under mycorp.com that ns1.mycorp.com was authoritative for would be considered part of the
mycorp.com zone. A subset of the mycorp.com zone could be delegated to another server, for example,
subdomainl.mycorp.com, could be delegated to ns2.mycorp.com. At that point, subdomainl.mycorp.com becomes
its own zone for which ns2.mycorp.com is authoritative.

s The terms zone and domain are often confused in DNS parlance. A domain or domain

4% pame can actually be any type of name contained within a zone. The term zone has
significance in relation to a portion of the namespace that has been delegated. A subdomain
on one server may be a zone on another. The difference is determined by identifying the
root of the contiguous namespace that was delegated.

6.1.2 Resource Records
A resource record is the unit of information in DN'S. A zone is essentially a collection of resource records. There are
various resource record types that define different types of name lookups. Table 6-1 lists some of the more common

resource record types.

Table 6-1. Commonly used resource record types

Record type Name Description

http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2535.txt
http://www.ietf.org/rfc/rfc3007.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2535.txt
http://www.ietf.org/rfc/rfc3007.txt

[TeamLiB] [rrevious | nexr]

[Team LiB]

6.2 DC Locator

One of the fundamental issues for clients in any NOS environment is finding the most optimal domain controller (DC)
to authenticate against. The process under Windows N'T was not very efficient and could cause clients to authenticate
to domain controllers in the least optimal location. With Active Directory, clients use DNS to locate domain
controllers via the DC locator process. To illustrate at a high level how the DC locator process works, we will

describe an example where a client has moved from one location to another and needs to find a DC:
1.

A client previously located in Site A logs in from Site B.
2.

When the client boots up, it thinks it is still in Site A, so it proceeds to contact a DC i Site A using DNS
unless the server name was previously cached.

The DC in Site A receives the request and realizes that the client should now be talking to a DC in Site B due
to its IP address changing. If the server does not cover Site B, it will return the clients new site in the reply.

The client will then perform a DNS lookup to find a DC m Site B.

The client then contacts the DC in Site B. Three things can happen: the DC responds and authenticates the
client; the DC fails to respond (it could be down), and the client attempts to use a different DC in Site B; or
the DC fails to respond, and the client searches and fails to find another DC in Site B, instead turning back to
the DC in Site A and authenticating with the original server.

The two main things that are needed to support the DC locator process are proper definition of the site topology in
Active Directory and containment of all the necessary Active Directory related resource records in DNS. In the next
section, we will describe the purpose of the resource records used in Active Directory. For a more detailed
description of how the DC locator process works, including the specific resource records that are queried during the
process, check out Microsoft Knowlede Base (KB) article 247811 "How Domain Controllers Are Located in
Windows" and Microsoft KB article 314861 "How Domain Controllers Are Located in Windows XP" at
http://support.microsoft.com.

[Team LiB] NE

http://support.microsoft.com/default.htm
http://support.microsoft.com

[TeamLiB] [rrevious | nexr]

6.3 Resource Records Used by Active Directory

When you promote a domain controller into a domain, a file containing the necessary resource records for it to
function correctly within Active Directory is generated in %SystemRoot%\System32\Config\netlogon.dns.

The contents of the file will look something like the following for a DC named moose.mycorp.com in the mycorp.com
domain with IP address 10.1.1.1. We've reordered the file a bit to group records of similar purpose together. Note

that some lines may wrap due to their length.

mycorp.com. 600 IN A 10.1.1.1

ecd4caf62-31b2-4773-bcce-7ble31c04d25. msdcs.mycorp.com. 600 IN CNAME moose.mycorp.
com.

gc. msdcs.mycorp.com. 600 IN A 10.1.1.1
_gc. _tcp.mycorp.com. 600 IN SRV 0 100 3268 moose.mycorp.com.
_gc. _tcp.Default-First-Site-Name. sites.mycorp.com. 600 IN SRV 0 100 3268 moose.
mycorp.com.
_ldap. tcp.gc. msdcs.mycorp.com. 600 IN SRV 0 100 3268 moose.mycorp.com.
_ldap. tcp.Default-First-Site-Name. sites.gc. msdcs.mycorp.com. 600 IN SRV 0 100 3268
moose.mycorp.com.
_kerberos. tcp.dc. msdcs.mycorp.com. 600 IN SRV 0 100 88 moose.mycorp.com.
_kerberos. tcp.Default-First-Site-Name. sites.dc. msdcs.mycorp.com. 600 IN SRV 0 100
88 moose.mycorp.com.
_kerberos. tcp.mycorp.com. 600 IN SRV 0 100 88 moose.mycorp.com.

_kerberos. tcp.Default-First-Site-Name. sites.mycorp.com. 600 IN SRV 0 100 88 moose.
mycorp.com.

_kerberos. udp.mycorp.com. 600 IN SRV 0 100 88 moose.mycorp.com.

_kpasswd. tcp.mycorp.com. 600 IN SRV 0 100 464 moose.mycorp.com.

_kpasswd. udp.mycorp.com. 600 IN SRV 0 100 464 moose.mycorp.com.

_ldap. tcp.mycorp.com. 600 IN SRV 0 100 389 moose.mycorp.com.

_ldap. tcp.Default-First-Site-Name. sites.mycorp.com. 600 IN SRV 0 100 389 moose.
mycorp.com.

_ldap. tcp.pdc. msdcs.mycorp.com. 600 IN SRV 0 100 389 moose.mycorp.com.

_ldap. tcp.97526bcY9-adf7-4ec8-a096-0dbb34al17052.domains. msdcs.mycorp.com. 600 IN SRV
0 100 389 moose.mycorp.com.

_ldap. tcp.dc. msdcs.mycorp.com. 600 IN SRV 0 100 389 moose.mycorp.com.

_ldap. tcp.Default-First-Site-Name. sites.dc. msdcs.mycorp.com. 600 IN SRV 0 100 389
moose.mycorp.com.

While it may look complicated, it isn't. Let's go through what these records actually mean, splitting the records up into

sections for ease of understanding. To start with, the first record is for the domain itself:
mycorp.com. 600 IN A 10.1.1.1

Each DC attempts to register an A record for its [P address for the domain it is in. A quick and easy way to get a list
of all the domain controllers in a domain is to simply look up the A record for the domain name. We will now walk
through that query to show the domain controllers that have registered an A record for the mycorp.com domain:

> nslookup mycorp.com

Server: moose.mycorp.com
Address: 10.1.1.1

Name: mycorp.com
Addresses: 10.1.1.1, 10.1.1.2, 10.1.1.3

> nslookup 10.1.1.1
Server: moose.mycorp.com
Address: 10.1.1.1

Name : moose.mycorp.com
Addresses: 10.1.1.1

> nslookup 10.1.1.2
Server: moose.mycorp.com
Address: 10.1.1.1

Name: deer.mycorp.com

- 1T 9 a AN A - ~

http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

6.4 Delegation Options

Now that we've covered what Active Directory uses DNS for, we will review some of the options for setting up who
is authoritative for the Active Directory-related zones. Ultimately, the decision boils down to whether you want to use
your existing DN'S servers or different servers, such as the domain controllers, to be authoritative for the zones. There
are many factors that can affect this decision, including;

Political turf battles between the AD and DNS teams
Initial setup and configuration of the zones
Support and maintenance of the zones

Integration issues with existing administration software and practices

We will look at each ofthese factors as they apply to delegating the AD zones. Other slight variations of these
options do exist, but we will discuss only the basic cases.

6.4.1 Not Delegating the AD DNS Zones

The first impulse of any cost-conscious organization should be to determine whether the existing DN'S servers can be
authoritative for the AD zones. That would entail populating all the necessary resource records required by each DC.
While this sounds fairly trivial, there are several issues to be aware of.

6.4.1.1 Political factors

By utilizing the existing DNS servers for the AD DNS zones, the AD administrators will likely not have the same level
of control as they would if the zones were delegated and managed by them. While it does limit the scope of control
for a crucial service used by Active Directory, some AD administrators may find it a blessing!

6.4.1.2 Initial setup and configuration

The mitial population of the AD resource records can be burdensome depending on how you manage your resource
records and how easy it will be for you to inject new ones. The domain controllers try to register their resource
records via DDNS on a periodic basis. Most organizations do not allow just any client to make DDNS updates due
to the potential security risks. For that reason, you'll need to configure your existing DNS servers to allow the domain
controllers to perform DDNS updates. And unless you restrict which zones the domain controllers can send DDNS
updates for, it opens a potential security hole. If a domain controller can update any zone, an AD admmistrator could
conceivably perform individual updates for any record in any zone while logged onto that DC. This should not
typically be a problem, but depending on how paranoid the DNS administrators are, it could be a point of contention.

6.4.1.3 Support and maintenance

Assuming the existing DNS servers are stable and well supported (as they tend to be in most organizations), name
resolution issues should not be a problem for AD DCs or other clients that are attempting to locate a DC via DNS.
Ongoing maintenance of the DC resource records can be an issue, as pointed out previously. Each time you promote
a new DC i the forest, you'll need to make sure it is allowed to register all of its records via DDNS. The registration
of'these records could be done manually, but due to the dynamic nature of the AD resource records, they would have
to be updated on a very frequent basis (potentially multiple times a day). Yet another option is to programmatically
retrieve the netlogon.dns file from each domain controller on a periodic basis and perform the DDNS updates from a
script. In large environments, the manual solution will probably not scale, and either DDNS or a programmatic

Cf\]'lIH{\I’\ ‘X"‘]] ﬂpﬁf‘ 4+~ 1‘\#! QVI’\](\I"Q{‘]

[TeamLiB] [rrevious | nexr]

[Team LiB]

6.5 Active Directory Integrated DNS

Ifyou've decided to host the AD DNS zones on your domain controllers, you should strongly consider using AD
mtegrated zones. This section will explain some of the benefits of using AD integrated DN'S versus standard primary
Zones.

In the normal world of DNS, you have two types of name servers: primary and secondary (a.k.a. slaves). The
primary name server for a zone holds the data for the zone in a file on the host and reads the entries from there. Each
zone typically has only one primary. A secondary gets the contents of its zone from the primary that is authoritative for
the zone. Each primary name server can have multiple secondary name servers. When a secondary starts up, it
contacts its primary and requests a copy of the relevant zone via zone transfer. The contents of the secondary file are
then dynamically updated over time according to a set scheme. This is normally a periodic update or triggered
automatically by a message from the primary stating that it has received an update. This is a very simplified picture, as
each name server can host multiple zones, allowing each server to have a primary role for some zones and a
secondary for others.

Each type of server can resolve name queries that come in. However, if a change must be made to the underlying
contents of the DNS file, it has to be made on the primary name server for that zone. Secondary name servers cannot
accept updates.[1]

[1] This isn't strictly true. While slaves cannot process updates, they can and do forward updates that they receive to
the primary name server.

Another option available with Active Directory and Windows DNS server is to integrate your DNS data into Active
Directory. Effectively, this means that you can store the contents of the zone file in Active Directory as a hierarchical
structure. Integrating DN'S into Active Directory means that the DNS structure is replicated among all DCs ofa
domain. Each DC holds a writeable copy of the DNS data. The DNS objects stored in Active Directory could be
updated on any DC via LDAP operations or through DDNS against DCs that are acting as DNS servers. This
effectively makes the entire set of DCs act like primary name servers, where each DC can write to the zone and issue
authoritative answers for the zone. This is a far cry from the standard model of one primary name server and one or
more secondary name servers, which has the obvious downside of a single pomnt of failure for updates to DNS.

6.5.1 Replication Impact

While AD Integrated DNS has many advantages, the one potential drawback is how DNS data gets replicated in
Active Directory. Under Windows 2000, AD Integrated zones are stored in the System container for a domain. That
means that every domain controller in that domain will replicate that zone data regardless of whether the domain
controller is a DNS server. For domain controllers that are not DNS servers, there is no benefit to replicating the
data. Fortunately, there is a better alternative n Windows Server 2003, using application partitions as described in the
next section.

[Team LiB]

[Team LiB]

6.6 Using Application Partitions for DNS

Application partitions, as described in Chapter 3, are user-defined partitions that have customized replication scope.
Domain controllers that are configured to contain replicas of an application partition will be the only servers that
replicate the data contained within the partition. One of the benefits of application partitions is that they are not limited
by domain boundaries. You can configure domain controllers in completely different domains to replicate an
application partition. It is for these reasons that application partitions make a lot of sense for storing AD Integrated
DNS zones. No longer do you have to store DNS data within the domain context and replicate to every domain
controller in the domain, even if only a handful are DNS servers. With application partitions you can configure Active
Directory to replicate only the DNS data between the domain controllers running the DNS service within a domain or
forest.

When installing a new Windows Server 2003 Active Directory forest, the default DNS application partitions are
created automatically. If you are upgrading from Windows 2000, you can manually create them by using the DNS
MMC snap-in or the dnscmd.exe utility. There is one default application partition for each domain and forest. When
configuring an AD Integrated zone in a Windows Server 2003 forest, you have several options for storing the DN'S
data. These options are listed in Table 6-2.

Table 6-2. Active Directory Integrated DNS zone storage options

Distinguished name Replication scope

cn=System,DomainDN

To all domain controllers in the domain. This is the only

Example: storage method available under Windows 2000.

cn=System,dc=amer,dc=mycorp,dc=com

dc=domaindnszones,DomainDN

To domain controllers in the domain that are also DNS

Example:
mp servers.

dc=domaindnszones,dc=amer, dc=mycorp,dc=com

dc=forestdnszones,ForestDN

To domain controllers in the forest that are also DNS

Example: servers.

dc=forestdnszones,dc=mycorp,dc=com

AppPartitionDN

To domain controllers that have been configured to

Example: replicate the application partition.

dc=dnsdata,dc=mycorp,dc=com
[Team LiB]

[Team LiB] plE

6.7 Summary

Active Directory relies heavily on DNS. In fact, Microsoft has shifted completely away from WINS for name
resolution within the NOS in favor of standards-based DNS. The DC locator process is a core DNS-based function
used within Active Directory to help domain controllers and clients locate domain controllers that have certain
properties, such as residing in a particular site or being a Global Catalog server or PDC emulator. Deciding how to
manage the AD DNS zones can be a difficult decision, with each option having its own advantages and
disadvantages. If you delegate the zones to domain controllers, AD Integrated zones can save a lot of time in
maintenance and upkeep. In Windows Server 2003, you can use application partitions to replicate AD Integrated
zones to only the domain controllers that are acting as DNS servers. This can greatly reduce replication traffic in some
situations compared to Windows 2000 Active Directory, which replicated DNS data to every domain controller in a
domain regardless of whether it was a DNS server.

[Team LiB]

[TeamLiB] [rrevious | nexr]

Chapter 7. Profiles and Group Policy Primer

Profiles and group policies are large topics, and they are worth treating properly so that you get the most from them
in your environment. The goal of policy-based administration is for an administrator to define the environment for
users and computers once, then rely on the system to enforce that state. Under Windows N'T, this could be very
challenging, but with Active Directory group policies, this capability is much more readily available. This chapter is the
introduction to the subject, and Chapter 10 builds on it to show how policies work in Active Directory, how to design
an OU structure to incorporate them effectively, and how to manage them with the Group Policy Management
Console, a new MMC snap-in available for Windows Server 2003 Active Directory.

In Windows NT, system policies had a number of limitations. System policies:

Were set at the domain level

Were not secure

Could only apply to users, groups of users, or computers
Tended to set values until another policy specifically unset them

Were limited to desktop lockdown

The scope and functionality of Active Directory group policies is much greater than system policies. Group policies:

Can be applied to individual clients, sites, domains, and Organizational Units
Are highly secure

Can apply to users, computers, or groups of either

Can set values and automatically unset them in specified situations

Can do far more than just a desktop lockdown

With group policies, an administrator can define a large number of detailed settings to be enforced on users
throughout the organization, and he can be confident that the system will take care of things. Let's take a simple
example from Leicester University. Administrators wanted the Systems Administrator toolset, which normally is
mstalled only on servers, to be available on workstations also. While they could mstall these tools on their own PCs,
they actually wanted the tools to follow them around the network and be available from any PC that they chose to log
on from. However, they didn't want to leave these tools installed on that PC when they logged off. Prior to Active
Directory, the admins would have had to arrive at a client, log on, install the toolset, do whatever was required at a
client, uninstall the toolset, and finally log off. This would be a considerable chore for a large number of machines.
Active Directory group policies can be used to specify that the toolset is to be automatically installed on any client that
an administrator logs on to. That way, an admmistrator could go straight to the Start menu and find the tools available.
After logging off, the same group policy would uninstall the toolset from the machine.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

7.1 A Profile Primer

Profiles and group policies are tightly related, but they serve completely different functions. To make things clear,
we'll cover the essentials of profiles so that you can understand how to manipulate them using group policies.

Let's consider a Windows XP workstation with a newly created account for a user named Richard Lang with the
username RLang. When Richard logs on to the client, the system creates a profile directory for him, corresponding to
his username, in the Documents and Settings directory. If Richard were to log on to a Windows N'T workstation or to
a Windows 2000 workstation that was upgraded from a previous version of Windows NT, the profile would be
created under the %asystemroot%\Profiles[2] directory. On a fresh Windows 2000 install or Windows XP, the
profiles are stored under %osystemdrive%\Documentand Settings.

[2] %systemroot% is the system environment variable that refers to the location of the Windows operating system
files. I[f Windows N'T were installed on drive C: in the normal way, %systemroot% would be CA\WINNT. The
%systemdrive% variable contains the drive letter of the drive the operating system was installed on.

Inside this directory, the system places a file called NTUSER. DAT, along with various other data files. Let's
concentrate on the NTUSER.DAT file for a moment. This file contains what is known generally as the user portion of
the registry. All Windows-based operating systems have a registry that consists of two parts: the so-called user
portion represented by the file NTUSER.DAT (or USER.DAT on Windows 9x systems) and the system or computer
portion of the registry, which is stored in %asystemroot%\system32\config. The user part of the registry holds
mformation indicating what screensaver should be used for that user; what colors, background, and event sounds are
set; where the user's My Documents folder points to; and so on. The system portion of the registry holds hardware
device settings, installed software information, and so on. When a user logs on to a client, the combined effects of the
settings for the machine held in the system portion of the registry and the settings for the user held in the user portion
of the registry take effect.

When you use a tool such as REGEDIT.EXE or REGEDT32.EXE to examine the registry on a machine, both
portions of the registry are opened and displayed together for you to look at within one tool.

©w 4. The two registry tools were developed with different requirements in mind, but with

% Windows Server 2003 they have been merged. The REGEDIT tool was developed initially
for Windows 9x clients and thus allows for management of the datatypes as well as for
rapid searching for any key or value that contains a given word or phrase. REGEDT32, on
the other hand, was designed to support the extra datatypes present n Windows NT and
Windows 2000. However, REGEDT32 had an awful search mechanism that allowed
searches only through keys. In Windows Server 2003, REGEDIT was updated to support
many of the features present in REGDT32. Now if you run REGEDT32, you will bring up

the REGEDIT nterface.

Figure 7-1 shows a view of the registry on a Windows 2000 client when viewed from REGEDIT. The screenshot
also shows the five registry hives (as they are known) available to Windows 2000. The two important hives are
HKEY LOCAL MACHINE, also known as HKLLM, which corresponds to the system part of the registry, and
HKEY CURRENT USER, also known as HKCU, which corresponds to the user portion of the registry.

Figure 7-1. A REGEDIT view of the registry on a Windows 2000 Professional client
|0 x

Registry Edit View Favorites Help

= 2} My Computer | Ham= Type Diata
% () HKEV_CLASSES_ROOT abl(Defadt) | REG ST (vakuenot set)
=] HEEY_CURRENT_LISER
4 ADCSebup
+ 7] AppEvents
+] Console
+ __] Control Panel
| Environment
+ | Eunc

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

7.2 Capabilities of GPOs

GPOs can be edited using the Group Policy Object Editor (GPOE), formerly theGroup Policy Editor (GPE), which
is an MMC snap-in. The GPOE is limited to managing a single GPO at a time and cannot be used to link a GPO. For
this reason, Microsoft developed the Group Policy Management Console (GPMC) MMC snap-in, which was
released around the same time as Windows Server 2003, as a web download from http//download.microsoft.com.
The GPMC provides a single interface to manage all aspects of GPOs, including editing (through the GPOE), viewing
the resultant set of policies (RSOP), and linking to domains, sites, and OUs. We will cover these tools in much more
detail n Chapter 10.

Most settings in a GPO have three states: enabled, disabled, and unconfigured. By default, all settings n a GPO are
unconfigured. Any unconfigured settings are ignored during application, so the GPO comes into play only when
settings have actually been configured. Each setting needs to be configured as enabled or disabled before it can be
used, and in some cases the option needs no other parameters. In other cases, a host of mformation must be entered
to configure the option; it all depends on what the option itself does.

= Enabling and disabling most options is fairly straightforward. However, due to Microsoft's
choice for the names of certain settings for GPOs, you actually can have the choice of
enabling or disabling options with names like "Disable Access to This Option". By defaul,
this setting isn't in use, but you can disable the disable option (i.e., enable the option) or
enable the disable option (i.e., disable the option). Be careful and make sure you know
which way the setting is applied before you actually go through with the change.

GPOs can apply a very large number of changes to computers and users that are in Active Directory. These changes
are grouped together within the GPOE under the three headings of Software Settings, Windows Settings, and
Administrative Templates. There are two sets of these headings, one under Computer Configuration and one under
User Configuration. The items under the three headings differ, as the settings that apply to users and to computers are
not the same.

Some of the settings under Administrative Templates would look more sensible under the other two sections.
However, the Administrative Templates section holds data that is entirely generated from the Administrative Template
(ADM) files in the system volume; so it makes more sense to include all the ADM data together. ADM files contain
the entire set of options available for each setting, including explanations that are shown on the various property pages
in the GPOE.

“ 4. ADM files can be added and removed by right-clicking either Administrative Template

4! location in the GPOE and choosing Add/Remove Templates. Very comprehensive
information on customizing GPOs and adding in your own templates can be found in
Microsoft's Windows 2000 Group Policy technical white paper. Check out the following

URL for more information:

http//www.microsoft.comywindows2000/techinfo/howitworks/management/grouppolwp.as
p

In Windows Server 2003 Active Directory, Microsoft extended the capabilities of GPOs significantly. Over 160 new
settings have been added, some of which cover new areas, such as the netlogon process, DNS configuration,
networking QOS and wireless, and termmal services. We'll now give an overview of the main categories of settings
available with GPOs and provide a brief explanation for some of the main capabilities of each.

7.2.1 Software Installation Settings (Computer and User)

http://download.microsoft.com/default.htm
http://www.microsoft.com/windows2000/techinfo/howitworks/management/grouppolwp.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/management/grouppolwp.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/management/grouppolwp.asp
http://www.installshield.com/default.htm
http://search.microsoft.com/us/dev/default.asp
http://download.microsoft.com
http://www.microsoft.com/windows2000/techinfo/howitworks/management/grouppolwp.as
http://www.installshield.com
http://search.microsoft.com/us/dev/default.asp

[TeamLiB] [rrevious | nexr]

[Team LiB]

7.3 Summary

Whew! That's a lot of settings. Hopefully we've given you a good idea of just how powerful GPOs are in Active
Directory. We've now covered the basics of what profiles can do and how modifications to a centralized profile make
a lot of sense and are easy to manage. We've also taken a very in-depth look at the diverse sort of registry, user
mterface, file permission, and system changes that can be made using GPOs. In Chapter 10, we'll cover how to
design and manage your GPOs.

This concludes our mitial mtroduction to Active Directory. In Part 11, we will dive into some of the important issues
around designing and maintaining an Active Directory environment.

[Team LiB]

[Team LiB]

Part 11: Designing an Active
Directory Infrastructure

You should start your Active Directory design with the namespace. However, you will not be able to complete the
logical namespace design until you have the physical design sketched out. It's very much a chicken-and-egg situation.
You should plan to go through and complete a rough draft of the namespace design, then make a rough draft of the
physical design, then consider modifications to both.

Next you can consider the Group Policy Object (GPO) design. Group Policy Objects control such things as
user-environment lockdown, forced registry changes, application availability, and so on, to sets of machines or users.
Because these relate to sites, domains, Organizational Units, users, computers, and groups in your Active Directory, it
makes sense in my experience to incorporate these changes into a namespace and site design that already exist.

You can then take a look at security and at tailoring Active Directory to your own requirements by modifications to

the Schema. Finally, this section takes a brieflook at the present and the future of integrating and interoperating Active
Directory with other directories and operating systems and of migrating to Active Directory.

Chapter 8

Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

Chapter 17
[Team LiB]

[Team LiB]

Chapter 8. Designing the Namespace

The basic emphasis of this chapter is on reducing the number of domains that you require for Active Directory while
gaining administrative control over sections of the namespace using Organizational Units. This chapter aims to help
you create a domain namespace design. That includes all the domains you will need, the forest and domain-tree
hierarchies, and the contents of those domains in terms of Organizational Units and even groups.

There are a number of restrictions that you have to be aware of when beginning your Active Directory design. We
will introduce you to them in context as we go along, but here are some important ones:

Too many Group Policy Objects (GPOs) means a long logon time as the group policies are applied to sites,
domains, and Organizational Units. This obviously has a bearing on your Organizational Unit structure, as a
10-deep Organizational Unit tree with GPOs applying at each branch will incur more GPO processing than a
5-deep Organizational Unit tree with GPOs at each branch.

Under Windows 2000, you cannot rename a domain once it has been created. Fortunately, with Windows
Server 2003, this imitation has been removed, although the rename process is tedious. You can even rename
forest root domains once you've reached the Windows Server 2003 forest functional level

You can never remove the forest root domain without destroying the whole forest in the process. The forest
root domain is the cornerstone of your forest.

The Schema Admins and Enterprise Admins groups exist in the forest root domain only. So if you are
migrating from a previous version of NT, be cognizant of the fact that the administrators of the first domain
you migrate can have control over these groups and over Active Directory.

Lack of a regional catalog is problematic. Imagine that you have 20 printers in your office in Sweden and 12
printers in your office in Brazil. The users in Sweden will never need to print to the printers in Brazil, and the
users in Brazil will never need to print to the printers in Sweden. However, by default, details of all printers
are published in the GC. Thus, whenever changes are made to printers in Sweden, all the changes get
replicated to the GCs on the Brazil servers because the GC replicates all of its data everywhere. You have
three options. You can decide not to replicate any printer data and force printer seraches to hit Active
Directory each time, you can replicate all printer data everywhere, or you can create an application partition
to host printer data and replicate it to designated domain controllers.

Multiple domains cannot be hosted on a single DC. Imagine 3 domains off a root located in the United
States, which correspond to 3 business units. Now imagine a small office of 15 people in Eastern Europe or
Latin America with a slow link to the main site. The 15 users are made up of 3 sets of 5; each set of 5 users
uses one of the 3 business units/domains. If you as an administrator decide that the slow link is too slow and
you would like to put ina DC for the 3 domains at the local server and to ease replication, the small office will
have to install 3 DCs.

[Team LiB]

[TeamLiB] [rrevious | nexr]

8.1 The Complexities of a Design

Active Directory is a complex beast, and designing for it isn't easy. Take a look at a fictitious global company called
PetroCorp, depicted in Figure 8-1.

Figure 8-1. The sites and servers of a company called PetroCorp

& ‘ 50) ([Frewrope petrocarpcom
(i) EURDPE

BUrDpE pelracorp.com

[australasia petrcorpcom |

pefracorpLcom

USA-CANADA
| usacanada_petrocorp.com |

pEtmCOrp.om

&
5"
[235)

fi68y

i3l

DENVER

ASIA-PACIFIC

2525

() -
38k . AusTRALASIA < * . :
SOUTH AMERICA {+0) —— {0 {52 A
BUFpE PELOCOTR.Com -
[sneriagemconan) e
[pemeorpeom |/ petracor.com

PetroCorp

75
‘.ﬁ%ﬁ”ﬂﬁh'.' L o w0
C <) O

Here you can see a huge network of sites linked with various network connections across wide area networks. A
variety of domains seems to exist for othercorp.com and petrocorp.com, and as each one of those square boxes
represents a single domain controller (the servers that host Active Directory in an organization), you can see that some
of'the servers will need to replicate data across those WAN links. petrocorp.com, for example, seems to need to
replicate to all the major sites, since it has domain controllers (DCs) in each of those sites.

Take a look at Figure 8-2, which shows a much more complex hierarchy.

Figure 8-2. A complex domain tree showing GPOs

= mycorp.com
Gealogy Engineering Gemetics Business. ::rau Toalogy
center e

QOO QQOQ QOQ QOQ QOO QOQ
Q00 Q00 QOO 000 000 000

A }

-
-

Clients

\ I\ A I

" Lab
D machines
UD Lab 1 Lab2 Lab 19
i ¥

) - : et Q00 Q00 QOO0
GPOsandtheirioksto | o chines 000 Q00 Q0

.. J &] [
Geplogy Engineering Genetic lm:i! S‘I:I)aue! Toalogy

QQO QOQQ QOQQ QOQQ QOQQ QQQ
QOO QQOQ QOO Q0 QL0 QOO

4 4

It's possible to see the users and computers in all the Organizational Units in this view, and the structure seems to be

I T i o T LY S Y 7al o T e U, I T . T e . I Y o h Y s n T

[TeamLiB] [rrevious | nexr]

[Team LiB]

8.2 Where to Start

Before you sit down to make your design, you will need to obtain some important pieces of information. You will
need a copy of your organizational structure. This is effectively the document that explains how your organization's
business units fit together in the hierarchy. Next you will need a copy of the geographical layout of your company. This
includes the large-scale picture in continents and countries and also the individual states, counties, or areas in which
you have business units. Third, you will need a copy of the network diagram, indicating the speeds of connection
between the various sites. Finally, you need a copy of any diagrams and information on any systems that will need to
mterface to Active Directory, such as existing X.500 directories, so that you can take them mto account. Once you've
gathered the mformation, you can sit down and plan your design.

[Team LiB]

[Team LiB]

8.3 Overview of the Design Process

The namespace design process takes place in three stages:
Design of the domain namespace

During the first stage, you deal with the namespace design itself. That means calculating the number of domains you
need, designing the forest and tree structure, and defining the naming scheme for workstations, servers, and the
network as a whole.

Design of the internal domain structure

During the second stage, you need to concentrate on the internal structure of each domain that you have previously
noted. Here you also need to use your business model as a template for the internal structure and then move on to
consider how administration and other rights will be delegated. The mternal structure can also be modified depending
on how you intend to use Group Policy Objects; this will be covered in Chapter 10.

Global catalog design

During the third stage, you work out your designs for the global catalog (GC).

“r When you are finished with your design, you can implement the design by setting up a test

4% forest ina lab environment. This will enable you to get a better feel for how the design
actually works and whether there is anything you have failed to consider. We can't stress
enough the use of a test environment.

[Team LiB]

[TeamLiB] [rrevious | nexr]

8.4 Domain Namespace Design

The first stage in your design is to work out the domain, domain-tree, and forest configuration of your network. The
best way to do this is to make a first pass at designing the domains and then structure them together into a series of
trees. Before we start, however, let's take a look at our objectives for this part of the design.

8.4.1 Objectives

There are two objectives for the design of the domain namespace:

Designing Active Directory to represent the structure of your business

Minimizing the number of domains by making much more use of the more flexible Organizational Units
8.4.1.1 Represent the structure of your business

You need to make Active Directory look as much like your business structure, geographical or organizational, as
possible. With geographical structure, your business runs itself as self-contained units within each geographical site. In
this model, people at those sites handle administration for each site. Under the organizational or political model, the
business is based on a series of departments that have members from a number of different geographical sites.
Normally, with this structure, the organization has a head office for all departments at one location, but that is not
always the case.

In the former model, finance units based in France and Australia would be separate finance departments. In the latter

model, France and Australia would have geographical finance branches of a larger finance department controlled from
a head office.

It doesn't matter to Active Directory which model you choose, except that the intention is to mirror the structure of
your business in the Active Directory design. If your business crosses both of these boundaries, it becomes less
clear-cut. To make your design simpler to understand, you should choose to go with one model or the other. We
would not suggest a mix-and-match approach unless you can definitely rationalize it, adequately represent it on paper,
and delegate administration effectively.

If you already have a large investment in a TCP/IP infrastructure with organization or geographic-centered DNS
zones, or you if have a large existing Exchange organization, you can use this as the basis of your design. Simply
stated, if your DN'S or Exchange setup is based on one model, go with that model for your Active Directory design. It
should be obvious that it will be easier for an administrator to think about both areas if the designs are based on the
same model.

8.4.1.2 Minimize the number of domains

Remember that implementing Active Directory presents an opportunity to reduce the number of domains you
support. Each forest can store tens of millions of objects, which is more than enough for all the users, groups, and
computers in most organizations. So size isn't a consideration. Each domain can also be partitioned using
Organizational Units, allowing you to delegate different administrators for each Organizational Unit in a domain if you
so desire. You do not have to create a new domain if you wish to delegate administration over a part of the system.
These two aspects of Active Directory tend to eliminate a number of sizing and permission problems associated with
traditional NT installations.

«s 4. Ifyou're anexperienced NT domain designer, start trying to push from your mind the
¢! tendency to create multiple domains. Think in terms of multiple Organizational Units instead.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

8.5 Design of the Internal Domain Structure

Having designed the domain namespace, you can now concentrate on the mternals of each domain. The design
process itself is the same for each domain, but the order is mostly up to you. The first domain that you should design is
the forest root domain. After that, iterate through the tree, designing subdomains within that first tree. Once the tree is
finished, go on to the next tree and start at the root as before.

In a tree with three subdomains called Finance, Sales, and Marketing under the root, you could either design the
entire tree below Finance, then the entire tree below Sales, and so on, or you could design the three tier-two domains
first, then do all the subdomains immediately below these three, and so on.

When designing the internals of a domain, you need to consider both the hierarchical structure of Organizational Units
and the users and groups that will sit in those Organizational Units. Let's look at each of those in turn.

L

< When we refer to a hierarchy, a tree, or the directory tree, we mean the hierarchical

4% Organizational Unit structure within a domain. We are not referring to the hierarchy of
domain trees in a forest.

8.5.1 Step 4—Design the Hierarchy of Organizational Units

Earlier, when we discussed how to design domains, we spoke of how to minimize the number of domains you have.
The idea is to represent most of your requirements for a hierarchical set of administrative permissions using
Organizational Units instead.

Organizational Units are the best way to structure your data because of their flexibility. They can be renamed and
easily moved around within and between domains and placed at any point in the hierarchy without affecting their
contents. These two facts make them very easy for administrators to manage.

There are four main reasons to structure your data in an effective hierarchy:
To represent your business model to ease management

Partitioning your data into an Organizational Unit structure that you will instantly recognize makes managing it much
more comfortable than with every user and computer in one Organizational Unit.
To delegate administration

Active Directory allows you to set up a hierarchical administration structure that wasn't possible with Windows NT. If
you have three branches, and the main administrator wants to make one branch completely autonomous with its own
administrator but wants to continue to maintain control over the other two branches, it's easy to set up. In a way, most
of the limitations that you come up against when structuring Active Directory are limits that you set: political
necessities, organizational models, and so on. Active Directory really won't care how you structure your data.

To replace Windows NT resource domains

If you have a previous Windows NT installation with a master or multimaster domain model, you can replace your
resource domains with Organizational Units in a single domain. This allows you to retain all the benefits of having
resource domains (i.e., resource administration by local administrators who do not have account administration rights)
without forcing you to have multiple domains that you don't really want or need.

To apply policies to subsets of your users and computers

As policies can be applied to each individual Organizational Unit in the hierarchy, you can specify that different
computers and users get different policies depending on where you place them in the tree. For example, let's say that
you want to place an interactive touch-screen client in the lobby of your headquarters and allow people to interact
with whatever applications you specify, such as company reports, maps of the building, and so on. Locking this down
n Windows NT (so that the client could not compromise your network in any way) required time and may have
required that the client be in a separate domain or even standalone. With Active Directory. if vou lock down a certain

[TeamLiB] [rrevious | nexr]

[Team LiB]

8.6 Other Design Considerations

In many cases you may need to revise your namespace designs a number of times. Certainly GPOs will make a
difference as to how you structure your users and computer objects, so we do not assume that one pass through a
design process will be enough.

Once you have a basic design, there is nothing stopping you from putting that design to one side and working on
identifying a perfect design for your Active Directory network, one that you would like to implement in your
organization, ignoring all Active Directory-imposed design constraints. You then can work out how difficult it will be
to move to that perfect design from the practical one that you worked out using the preceding steps. You can look at
the feasibility of the move from one to the other and then rationalize and adjust your final design to take into account
the factors you have listed. You can then use this as an iteration tool so that your final design is much closer to the
perfection you are aiming for.

Apart from GPOs, which we cover in Chapter 7 and Chapter 10, there are other aspects of Active Directory design
that we have not and will not be covering. For example, you are quite likely to want printers advertised in Active
Directory so that they can be accessed easily using a simple search of Active Directory (which the Add Printer wizard
now uses as the default option). You may want shares advertised in Active Directory, so that users can easily locate
data partitions on a site nearest to them. The Distributed Filing System (DFS) that allows you to organize disjointed
and distributed shares into a single contiguous hierarchy is a fine example of this in action. When you reference a share
held by the DFS, the DFS uses Active Directory to automatically redirect your request to the closest share replica.
There is also the matter of designing your own objects and attributes that you want to include. However, there are
two points that you should consider:

As a general rule, Active Directory should hold only static or relatively static data. At the very least, the
lifetime of'the data has to be greater than the time to replicate to all DCs throughout the organization. When
considering which objects to add, don't consider adding objects with very short life spans.

Any object that you include will have attributes that are held in the GC. For every type of object that you
seek to store in Active Directory, check the schema class entry for that object to find out what attributes will
be stored in the GC. Consider whether you need to add or remove items from that list by referring back to
the design principles.

[Team LiB]

[TeamLiB] [rrevious | nexr]

8.7 Design Examples

Having covered the design of the namespace, some real-world example designs are in order. We have created three
fictitious companies that will serve as good models for demonstrations of the design process. We will also use these
three companies in the following chapters. The companies themselves are not fully detailed here, although there is
enough information to enable you to make a reasonable attempt at a namespace design. In the chapters that follow,
we will expand the relevant mformation on each company as required for that part of the design.

We used a number of criteria to create these companies:

The companies were set up to represent various organizations and structures.

While each corporation has a large number of users and machines, the design principles will scale down to
smaller organizations well.

In these example corporations, we are not interested in how many servers each company has or where those
servers are. These facts come into play in the next chapter on sites. We are mterested in users, groups,
machines, domains, and the business and administration models that are used.

8.7.1 TwoSiteCorp

TwoSiteCorp is an organization that employs 50,000 people using 50,000 machines. The organization spans 2 sites
connected with a 128 Kb dedicated link. The London site has 40,000 clients and 40,000 employees, while the new
expansion at the Leicester site has 10,000 clients and 10,000 employees. TwoSiteCorp's business model is based on
a structure in which users are members of one of three divisions: U.K. Private Sector, U.K. Public Sector, and
Foreign. No division is based entirely at one site. Various other minor divisions exist beneath these as required for the
management structure. Administration is handled centrally from the major London site by a team of dedicated systems
administrators.

8.7.1.1 Step 1—Set the number of domains

While TwoSiteCorp's 128 Kb link between its two physical locations is slow for site purposes, there is no need to
split the two sites into two domains. No particular part of the organization has a unique policy requirement, because
the administrators decided that they will implement one set of policies for all users. Finally, the sites already have two
Windows NT domains installed. However, management has no desire to maintain either, so both will be rationalized
into one domain. Thus, TwoSiteCorp will end up with one domain.

8.7.1.2 Step 2—Design and name the tree structure

TwoSiteCorp's single domain will be the forest root domain. The designers decide to name the domain
twositecorp.com after their DNS domain name. With only one domain, they do not have to worry about any other
trees or forests or the domain hierarchy.

8.7.1.3 Step 3—Design the workstation and server naming scheme

TwoSiteCorp decides that each machine name will be made up of four strings concatenated together. The first string
is three characters representing the location of the machine (e.g., LEI or LON). The next three characters are used to
indicate the operating system (e.g., WXP, W2K, NT4, or W98). The next string holds two or three letters indicating
the type of machine (e.g., DC, SRV, or WKS). Finally, the last string is a six-digit numeric string that starts with
000001 and continues to 999999. The following are example machine names:

TEITWWVOYKXDCOONNNT

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

8.8 Designing for the Real World

It's very easy to get bogged down in the early stages of the namespace design without actually progressing much
further. The stumbling block seems to be that it feels conceptually wrong to have only one domain, yet administrators
can't put their finger on what the problem is. Experienced Windows NT administrators who manage multiple domains
seem to find this much more of a problem than those coming from another operating system.

If you follow the guidelines in the initial steps of the namespace design, you quite probably will end up with one
domain to start with. That's the whole point of the design process: to reduce the number of domains you need. Yet
NT admnistrators tend to feel that they have conceptually lost something very important; with only one domain,
somehow this design doesn't "feel right."

This is partly a conceptual problem: a set of domains with individual objects managed by different teams can feel
more secure and complete than a set of Organizational Units in a single domain containing individual objects managed
by different teams. It's also partly an organizational problem and, possibly, a political problem. Putting in an Active
Directory environment is a significant undertaking for an organization and shouldn't be taken lightly. This change is
likely to impact everyone across the company, assuming you're deploying across the enterprise. Changes at that level
are likely to require ratification by a person or group who may not be directly involved on a day-to-day basis with the
team proposing the change. So you have to present a business case that explains the benefits of moving to Active
Directory.

8.8.1 Identify the Number of Domains

Following our advice i this chapter and Microsoft's official guidelines from the white papers or Resource Kit will
lead most companies to a single domain for their namespace design. It is your network, and you can do what you
want. More domains give you better control over replication traffic but may mean more expense in terms of hardware.
If you do decide to have multiple domains but have users in certain locations that need to log on to more than one
domain, you need DCs for each domain that the users need in that location. This can be expensive. We'll come back
to this again later, but let's start by considering the number of domains you need.

Ifthe algorithm we use to help you determine the number of domains gives you too small a figure in your opinion,
here's how you can raise it:

Have one domain for every single-master and multimaster Windows N'T domain that you have. If you are
using the Windows NT multimaster domain model, consider the entire set of multimasters as one domain
under Active Directory (use Organizational Units for your resource domains).

Have one domain per geographical region, such as Asia-Pacific, Africa, Europe, and so on.

Have extra domains whenever putting data into one domain would deny you the control over replication that
you would like if you used Organizational Units instead. It's all very well for us to say that Organizational Units
are better, but that isn't true in all situations. If you work through the algorithm and come up with a single
domain holding five Organizational Units, but you don't want any of the replication traffic from any of those
Organizational Units to go around to certain parts of your network, you need to consider separate domains.

Even Microsoft didn't end up with one domain. They did manage to collapse a lot of Windows NT domains, though,
and that's what you should be aiming for if you have multiple Windows NT domains.

8.8.2 Design to Help Business Plans and Budget Proposals

There are two parts to this: how you construct a business case itself for such a wide-reaching change and how you
can show that you're aiming to save money with this new plan.

[TeamLiB] [rrevious | nexr]

[Team LiB]

8.9 Summary

In this chapter, we presented a series of seven steps toward effective namespace design:

1.
Decide on the number of domains.
2.
Design and name the tree structure.
3.
Design the workstation and server naming scheme.
4.
Design the hierarchy of Organizational Units.
5.
Design the users and groups.
6.
Design the Global Catalog.
7.

Design the application partition structure.

Following these seven steps allows you to solve the two main objectives of'this chapter:

Come up with an Active Directory namespace design to represent the structure of your business.

Minimize the number of domains by making much more use of the more flexible Organizational Units.

While we've shown you how to start to design your Active Directory, there is still a long way to go. Designing the
namespace of domains, trees, and forests and the internal Organizational Unit hierarchy according to the guidelines
given here means that you should have a structural template that represents your business model within the preceding
restrictions. Hopefully this design makes sense in terms of your organization and will be simpler to manage.

The rest of the design still needs to be completed. You need to look at the low-level network links between sites and
how they will affect your replication decisions. You then need to tackle the subject of how to revise the initial
namespace design based on Group Policy Objects, security delegation and auditing, schema changes, and so on.
Next we'llmove on to designing the physical site topology that the DCs use when communicating with one another

[Team LiB]

[Team LiB]

Chapter 9. Creating a Site Topology

As we mentioned in Chapter 5, there are two aspects to replication:

How data gets replicated around an existing network of links between DCs

How the Knowledge Consistency Checker generates and maintains the replication links between servers,
both intrasite and intersite

We covered the former in Chapter 5, and we'll cover the latter here, leading to an explanation of how to properly
design a representation of your organization's network infrastructure within Active Directory.

[Team LiB]

[TeamLiB] [rrevious | nexr]

9.1 Intrasite and Intersite Topologies

Two distinct types of replication links exist with Active Directory sites: mntrasite (within sites) and intersite (between
sites). An Active Directory service known as the Knowledge Consistency Checker (KCC) is responsible for
automatically generating the replication links between intrasite DCs. The KCC will create intersite links automatically
for you but only when an administrator has specified that two sites should be connected. Every aspect of the KCC
and the links that are created is configurable, so you can manipulate what has been automatically created and what
will be automatically created via manipulation of the various options. You can even disable the KCC if you wish and
manually create all links.

Note that there is a large distinction between the KCC (the process that runs every 15 minutes and creates the
replication topology) and the replication process itself. The KCC is not involved in the regular work of replicating the
actual data in any way. Intrasite replication along the links created by the KCC uses a notification process to
announce that changes have occurred. So each domain controller is responsible for notifying its replication partners of
changes. If no changes occur at all within a 6-hour period, the replication process is kicked off automatically anyway
just to make sure. Intersite replication, on the other hand, does not use a notification process. Instead it uses a
replication schedule to transfer updates, using compression to reduce the total traffic size.

The KCC and the topologies it generates have been dramatically improved in Windows Server 2003 Active
Directory. With Windows 2000 Active Directory, when there were more than 200 sites with domain controllers, it
could take the KCC longer than 15 minutes to complete and also drive up CPU utilization. Since the KCC runs every
15 minutes, it could get backlogged or not finish. Typically when faced with this situation, administrators had to
disable the KCC and manually create connection objects. With Windows Server 2003, Microsoft has stated that the
new limit is closer to 5,000 sites when running a forest at the Windows Server 2003 forest functional level, which is a
vast improvement. In fact, the KCC was largely rewritten in Windows Server 2003 and is much more scalable and
efficient.

However, we don't think as an Active Directory administrator you should just accept the topologies it creates without
examining them in detail. You should nvestigate and understand what has been done by the KCC. If you then look
over the topology and are happy with it, you have actively, rather than passively, accepted what has been done. While
letting the KCC do its own thing is fine, every organization is different, and you may have requirements for the site and
link design that it is not aware of and cannot build automatically.

Other admnistrators will want to delve into the internals of Active Directory and turn off the KCC entirely, doing
everything by hand. This approach is valid, as long as you know what you're doing, but we prefer to let the KCC do
its work, helping it along with a guiding hand every now and then. We cover all these options in the design section
later.

9.1.1 The KCC

DC's within sites have links created between them by the KCC. These links use the DC's GUID as the unique
identifier. These links exist in Active Directory as connection objects and use only the Directory Service Remote
Procedure Call (DS-RPC) transport to replicate with one another. No other replication transport mechanism is
available. However, when you need to connect two sites, you manually create a site link via the Active Directory Sites
and Services MMC snap-in and specify a replication transport to use. When you do this, the Intersite Topology
Generator (ISTG) automatically creates connection objects in Active Directory between domain controllers in the two
sites. Within each site, an ISTG is designated to generate the intersite topology for that particular site via the KCC
process. There are two replication transports to choose from when creating a site link: standard DS-RPC or
Inter-Site Mechanism Simple Mail Transport Protocol (ISM-SMTP). The latter means sending updates via the mail
system using certificates and encryption for security.

There are two reasons that the ISTG cannot automatically create links between two sites. First, the ISTG has no idea
which sites you will want to connect. Second, the ISTG does not know which replication transport protocol you will
want to use.

Thae W O v17c larcralks avormr 1R mmmviifac v oaarhh DY The Aot +19e taorind ~an e ~Ahonoaad and % ~an e cfartad

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

9.2 Designing Sites and Links for Replication

There is only one really important point, which is the overriding factor when designing a replication strategy for your
network: how much traffic and over what period will you be replicating across the network? However, replication isn't
the only reason for creating sites. Sites also need to exist to group sets of machines together for ease of locating data,
finding the nearest DC to authenticate with, or finding the nearest DFS share mount point.

9.2.1 Step 1—Gather Background Data for Your Network

Before you sit down to design your site and WAN topology, you need to obtain the map of your existing network
mfrastructure. This map should contain all physical locations where your company has computers, along with every
link between those locations. The speed and reliability of each link should be noted.

If you have an existing IP infrastructure, write down all the subnets that correspond to the sites you have noted.
9.2.2 Step 2—Design the Sites

From the network diagram, you need to draw your site structure and name each site, using a one-to-one mapping
from the network diagram as your starting point. If you have 50 physical WAN locations, you have 50 sites. If only
30 of these will be used for Active Directory, you may not see a need to include the entire set of sites in Active
Directory. If you do include the entire set, however, it is much easier to visualize your entire network and add clients
or servers to those locations later.

- When drawing Active Directory networks, sites normally are represented by ovals.

Remember that a site is a well-connected set of subnets (well-connected tends to mean about 10 Mbps LAN
speed). A site does not have to have a server in it; it can be composed entirely of clients. If you have two
buildings—or an entire campus—that is connected over 10/100 Mbps links, your entire location is a single site.

This is not a hard and fast rule. By the normal rules, two locations connected over a 2 Mbps link represent two
distinct sites. You can, however, group networks together into single sites if you want to. You have to appreciate that
there will be more replication than if you had created two sites and a site link, because DCs in both physical locations
will maintain the intrasite replication ring topology. If you had created two sites and a site link, only two bridgehead
servers would replicate with each other.

We've also successfully used a single site to represent two networks, one with clients and one with servers, separated
by a 2 Mbps link. The clients at the end of the 2 Mbps link successfully authenticated quickly and downloaded
profiles from a server at the other end of the other link. If we'd used two sites, we would have had to create a site link
between them, but the clients still would have had to authenticate across the link anyway.

To summarize, we would suggest that, by default, you create one site per 10 Mbps or higher location, unless you
have an overriding reason not to do so.

9.2.3 Step 3—Design the Domain Controller Locations

Placing of DCs is fairly easy, but the number of DCs to use is a different matter entirely.

9.2.3.1 Where to put DCs

Each workstation in a domain exists in a single site that it knows about. When a user tries to log on to the domain at
that workstation, the workstation authenticates to a DC from the local site, which it originally locates via a DNS

query. Ifno DC is available in the local site, the workstation finds a remote site, and by a process of negotiation with a
DC 1 that cite etther a1ithenticatece with that DC' or 1< redirected to a more local DCY

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

9.3 Examples

Having considered the 10 steps, let's take another brief look at the 3 examples from the previous chapter and see
what they will need in terms of sites.

9.3.1 TwoSiteCorp

TwoSiteCorp has two locations split by a 128 Kbps link. This means creation of two sites separated by a single site
link, with DCs for domain authentication in each site. The site link cost is not an issue, as only one route exists
between the two sites. Here the only issue is scheduling the replication, which depends on the existing traffic levels of
the link. Schedule replication during the least busy times for a slow link like this. If replication has to take place all the
time, as changes need to be propagated rapidly, it is time to consider increasing the capacity of the link.

9.3.2 RetailCorp

RetailCorp has a large centralized retail organization with 600 shops connected via 64 Kbps links to a large
centralized 10/100 Mbps interconnected headquarters in London. In this situation, you have one site for HQ and 600
sites for the stores. RetailCorp also uses a DC in each store. They then have to create 600 high-cost site links, each
with the same cost. RetailCorp decides this is one very good reason to use ADSI (discussed in Part IIT) and writes a
script to automate the creation of the site link objects in the configuration. The only aspect of the site links that is
important here is the schedule. Can central HQ cope with all of the servers replicating intersite at the same time? Does
the replication have to be staggered? The decision is made that all data has to be replicated during the times that the
stores are closed; for stores that do not close, data is replicated during the least busy times. There is no need to worry
about site link bridges or site link transitiveness as all links go through the central hub, and no stores need to
mtercommunicate. The administrators decide to let the KCC pick the bridgehead servers automatically.

9.3.3 PetroCorp

PetroCorp has 94 outlying branch offices. These branch offices are connected via 64 Kbps links to 5 central hub
sites. These 5 hubs are connected to the central organization's HQ in Denver via T2, T1, 256 Kbps, and 128 Kbps
links. Some of the hubs also are interconnected. To make it easier to understand, look at PetroCorp's network again (

Figure 9-8).
Figure 9-8. PetroCorp's network connections
D D, D

USA-CAMADA

I58kh DENVER AS1A-PACIFIC

SOUTH AMERICA)

O) . O C ® PetroCorp

Initially, you need to create 100 sites representing HQ, the hubs, and the branch offices. How many servers do you
need per site? From the design we made in Chapter 8, we decided on 9 domains in the forest. Each of those distinct
domains must obviously have a server within it that forms part of the single forest. However, although the description
doesn't say so, there is very little cross-pollination of clients from one hub needing to log on to servers from another
hub. As this is the case, there is no need to put a server for every domain in every hub. Ifa user from Denver travels

4~ 4hA A ctetne A 1m vt res vttt vtvmr A A ten A 11t e AT TA A A~m F vt e ittt vt emrtmr A A A Danits i lh AT A

[TeamLiB] [rrevious | nexr]

[Team LiB]

9.4 Summary

After this chapter, you should have more of an insight into creating the site and replication infrastructure for your own
Active Directory network. Having a basic understanding of the replication process (from Chapter 5) and how the
KCC operates should allow you to make much more informed judgments on how much control you want to exert
over the KCC in your designs. We feel that it is always better to give fiee reign to the KCC if possible, while
maintaining a firm grip over what it has authority to do. While this can seem contradictory, we hope that our
explanations on using site link bridges and restricting transitiveness when appropriate show how this is possible in
practice.

The next chapter deals with how to update your designs to reflect your requirements for Group Policy Objects in
your organization.

[Team LiB]

[Team LiB]

Chapter 10. Designing Organization-Wide Group
Policies

This chapter takes an in-depth look at Group Policy Objects (GPOs), focusing on three areas:

How GPOs work in Active Directory
How to manage GPOs with the Group Policy Object Editor and Group Policy Management Console

How to structure your Active Directory effectively using Organizational Units and groups so that you can
make the best use of the GPOs required in your organization.

[Team LiB]

[TeamLiB] [rrevious | nexr]

10.1 How GPOs Work

Group policies are very simple to understand, but their uses can be quite complex. Each GPO can consist of two
parts: one that applies to a computer (such as a startup script or a change to the system portion of the registry) and
one that applies to a user (such as a logoff script or a change to the user portion of the registry). You can use GPOs
that contain only computer policies, only user policies, or a mixture of the two.

10.1.1 How GPOs Are Stored in Active Directory

GPOs themselves are stored in two places: Group Policy Configuration (GPC) data is stored in Active Directory,
and certain key Group Policy Template (GPT) data is stored as files and directories in the system volume. They are
split because while there is definitely a need to store GPOs in Active Directory if the system is to associate them with
locations in the tree, you do not want to store all the registry changes, logon scripts, and so on in Active Directory
itself. To do so could greatly increase the size of your DIT file. To that end, each GPO consists of the object holding
GPC data, which itself is linked to a companion directory in the system volume that may or may not have GPTs
stored within. The GPT data is essentially a folder structure that stores Administrative Template-based policies,
security settings, applications available for software installation, and script files. GPT data is stored in the System
Volume folder of DCs in the Policies subfolder.

5 . Third-party developers can extend GPOs by incorporating options that do not reside in the
normal GPT location.

The GPO objects themselves are held as instances of the groupPolicyContainer class within a single container in

Active Directory at this location:
CN=Policies,CN=System, dc=mycorp, dc=com

Through a process known as linking, the GPOs are associated with the locations in the tree that are to receive the
group policy.[1] In other words, one object can be linked to multiple locations in the tree, which explains how one
GPO can be applied to many Organizational Units, sites, or domains as required.

[1] The GPC data part ofa GPO is an object in Active Directory. This object, like all others, has attributes. One of

the attributes of a GPO is a multivalued attribute called gPLink that stores the DN of the contamers that the GPO is
linked to.

Let's consider the groupPolicyContainer class objects themselves. Take a look at Figure 10-1; we are using one of
the Windows Support Tools utilities, ADSI Edit, to show the view of the Policies container and its children.

Figure 10-1. GPOs in the Policies container

oo a0 %)
aton ded || @ baE < F AR &
¥ Olimigmid Aczoaris « || Hare | Clams Distinguistad Hame
= (h=Sesten W] i s B0 e, pakapRRgeiration (Hec2eBos st L Ld2-boer-(0e: AhH, Tumbaca;

= |l Ohimbsirainlmokd W] Crpmatd e e ndi ke pachegeliegmiration CHmridhod bodsie | 1S bl 0 M, Crim acky

& |l Chim{uaf sk Dorains Policy | Chmidal A HOT- L5 b0 pachageRsgination CHeslBdul OIS 142-boue 00 NIH000, Ti=Sacks

= | I T Configunsbon,
B T e P o it Sy

Ll Rl 5
= 1l CM=Festrgs
- T S
= [S=Frice
01 |l T 1 21 10 R R |
] W N E D L (v e o
] THe [RTETCSRE W | D= T ey
+] TH= AT |1 DI0PS- | | D30 | (T D0 |
4+] TH= TR I |1 D OO R
v TH= 0 D0 408 1700 DS D-00002 TI00)
i1 | = LADS-OCHE: 1000 ST 00 Faturieed
= CHer [EUTETE #2571 D23 20D Tl
. i
= o] Te=tllewr
=] Ol e Rara

— Wy

D30 1000 | DA DAY |
D200 | DoAY |
r

) ClisTest -|[4] k|

http://www.microsoft.com/windows2000/techinfo/howitworks/management/grouppolwp.asp
http://support.microsoft.com/default.htm
http://www.microsoft.com/windows2000/techinfo/howitworks/management/grouppolwp.asp
http://support.microsoft.com

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

10.2 Managing Group Policies

The Microsoft tools available to manage GPOs under Windows 2000 were pretty limited, consisting of the Group
Policy Object Editor (formerly Group Policy Editor) and built-in support in the Active Directory Users and
Computers and Active Directory Sites and Services snap-ins. While these tools could get the job done, they did not
provide any support for viewing the Resultant Set of Policy (RSoP), viewing how GPOs had been applied throughout
a domain, or backing up or restoring GPOs. Luckily these tools weren't the only option: third-party vendor Full
Armor produced Fazam 2000, which has comprehensive group policy management functionality.

Directly after the release of Windows Server 2003, Microsoft released the Group Policy Management Console
(GPMC) as a separate web download. The GPMC is a much-needed addition to Microsoft's GPO management
tools and provides nearly every GPO management function that an organization might need, including scripting
support.

The other new feature available in the Windows Server 2003 Active Directory administrative tools and n GPMC is
support for viewing the RSoP for a given domain, site or Organizational Unit based on certain criteria. RSoP allows
administrators to determine what settings will be applied to a user and can aid in troubleshooting GPO problems.
RSoP will be described in more detail in the section on debugging group policies.

10.2.1 Using the Group Policy Object Editor

When you add a GPOE snap-in to a console, you can only focus on a particular GPO/LGPO. Each GPO/LGPO
that you wish to change has to be loaded in as a separate GPOE snap-in to the MMC; unfortunately, you can't tell the
GPOE to show you all policies in the tree, but you can use the GPMC for that.

Managing LGPOs is done using the same GPOE tool that you would use to manage GPOs. If you use the GPOE
from a workstation or server in a domain, you can focus the snap-in to look at an LGPO on a local client. If you use
the GPOE on a standalone server or a workstation, the GPOE will automatically focus on the LGPO for that
machine. No matter how the focus is shifted to look at an LGPO, the GPOE will load only the extensions that are
appropriate to the templates in use locally on that client. Domain-specific extensions are not loaded for LGPOs.

GPOs and the PDC FSMO Role Owner

When you are editing GPOs, the GPOE connects to and uses the FSMO PDC role owner. This ensures
that multiple copies of the GPOE on different machines are all focused on the same DC. This behavior
may be overridden in two cases.

Ifthe PDC is unavailable for whatever reason, an error dialog will be displayed, and the administrator
may select an alternate DC to use.

Microsoft is also currently considering a GPOE View menu option and/or a policy to allow the GPOE
to inherit from the DC that the Active Directory Users and Computers MMC is focused on. This is likely
to be most useful when there is a slow link to the PDC.

If GPOs are edited on multiple DCs, this could lead to inconsistencies because the last person to write
to the GPO wins. For this reason, you should use caution when multiple admnistrators regularly
administer policies.

Starting an MMC and adding the GPOE snap-in is not the normal method of accessing GPOs. In fact, there is a
whole extended interface available from the Active Directory Sites and Services snap-in, Active Directory Users and
Computers (ADUC) tool, or the group Policy Management Console. If you open up the Sites and Services snap-in,
you can right-click any site and from the drop-down list select Properties, finally clicking the Group Policy tab on the
resulting property page. If you open the ADUC, right-click any domain or Organizational Unit container and follow

1 11 .

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

10.3 Using GPOs to Help Design the Organizational Unit Structure

In Chapter 8, we described the design of the Active Directory Organizational Unit hierarchy. We also explained that
other items have a bearing on that design. You see, there are two key design issues that affect the structure of your
Organizational Units: permissions delegation and GPO placement. If you decide that your Active Directory is to be
managed centrally rather than in a distributed fashion and that you will employ only a few GPOs that will be
implemented mostly domamnwide (rather than many GPOs on many Organizational Units), your Organizational Unit
structure can be almost any way that you want it to be. It shouldn't make much difference whether you have 400
branches coming off the root or one container with every item inside it. However, if permissions over specific objects
do need to be delegated to specific sets of administrators, it will make more sense to structure your domain
Organizational Units in a manner that facilitates that administration. This doesn't have to be the case, but it makes it
much easier to use Organizational Units.

For example, if we have 1,000 users and 10 managers who each manage 100 users, we could put the 1,000 users in
one Organizational Unit and give the 10 admins permission to modify only their 100 users. This is a slow and daft way
to run systems administration. It would be better to create 10 Organizational Units and put 100 users in each, giving
each admmistrator permission over his particular Organizational Unit. This makes much more sense, as the
administrator can be changed very easily, it is easier to report on access, and so on. Sense and reducing management
overhead are the overriding keys here. Either solution is feasible; one is just easier to implement and maintain.

“r Permissions delegation is covered in more detail m Chapter 11.

The same fundamental facts apply to GPOs. If you are going to need to apply multiple policies to multiple sets of
users, it makes more sense and will be easier to manage if you set up multiple Organizational Units. However, this isn't
always possible, for example, if the Organizational Untit structure that you have as an ideal conflicts with the one that
you will need for permissions delegation, which again conflicts with the one you would like for GPO structuring.

10.3.1 Identifying Areas of Policy

We will assume that within your organization, you will be writing a document that describes your plan for the security
features you wish to use in your Active Directory environment and exactly how those features will be implemented.
Part of this document will relate to other security features of AD, such as Kerberos, firewalls, permissions, and so on,
but here we're concerned with GPOs.

First you need to identify the general policy goals that you wish to achieve with GPOs. There's no need to go into the
exact details of each GPO setting and its value at this moment. Instead, you're looking at items like "Deploy financial
applications" and "Restrict desktop settings." As you identify each general policy area, you need to note whether it is
to apply to all computers or users in a site, to all computers or users in a single domain, or to a subsection of the user
and computer accounts. If you aren't sure for some items, put the items in more than one category. You end up with
items like "Deploy financial applications to accountants in France" and "Restrict desktop settings in southern Europe."

Once you have the general policy areas constructed, you need to construct an Organizational Unit structure that
facilitates implementation of this policy design. At this point, you start placing computers and users in various
Organizational Units, deciding if all objects in each container are to receive the policy or whether you will restrict
application to the policy via ACLs. There are a number of questions you can ask yourself during this stage. To help
with this, a loose set of guidelines follows the example in the next section.

Ultimately the document will need to specify exactly which GPO settings are to be applied, which groups you will set
up for ACL permission restrictions, and what the Organizational Unit structure is going to be. It helps to explain
justifications for any decisions you make.

To make the guidelines more meaningful, we'll show how you can structure a tree in different ways using a real-world
example.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

10.4 Debugging Group Policies

If at any point you need to debug group policies, there are couple of options you can use. The first is new to
Windows Server 2003 and is called the Resultant Set of Policy, which some people may be familiar with if you've
used tools like Full Armor's Fazam 2000. The Resultant Set of Policy (RSoP) allows you to specify certain user,
computer, group, and GPO criteria to determine what will be applied. Another option is to enable some extra logging
that can help point out GPO processing problems.

10.4.1 Using the RSoP

The RSoP is a very powerful tool to help identify what GPO settings will be applied to a user or computer. Before
RSoP, administrators were left to do their own estimates as to what GPOs took precedence and what settings were
actually applied to users and computers. RSoP removes much of the guesswork with an easy-to-use wizard mterface.

To start the RSoP wizard, open Active Directory Users and Computers and browse to the domain or Organizational
Unit that contains the users you want to simulate. Right click on the container and select All Tasks == Resultant Set
Of Policy (Planning). Figure 10-17 shows the nitial screen.

Figure 10-17. User and Computer Selection Options
Resultant Set of Policy Wizard [x]

Uzer and Computer 5 election
‘fown can views smulated palicy seflings for & selecled uzer [or & corfarer wilk usen
nhormabon] and compager [or a contaner vath compuber nformabion).

Example corlainet nanme: CM=Usets DC=emea DC=mycoip DC=com
Example user of computer. EMEAMYCORPY administrator

Simulste policy settngs tor the folowing:

U zer infamation

i+ [Comaner| |DC=emes, DC=mycoip, 0 C=com

Browse..
" Uses: |
_Browse.. |
LN

Computer infoimakion

& Contginer |D Ceamea [Cemycop 0 Cecom Browse...

" Computer |

I Skip o the inal page of thes wizard without colecting additional data

You must first select a specific object DN of a user or computer, an Organizational Unit that contains users or
computers, or a domain. After clicking Next, you will come to the Advanced Simulation Options screen where you
can select whether to pretend you are over a slow network, whether to use loopback mode, and whether a specific
site should be used. Figure 10-18 shows what this screen looks like with the MySitel site selected.

Figure 10-18. Advanced Simulation Options

Resultant Set of Policy Wizard E

Advanced Simulation Oplions
‘fiows can select additional options for your samulation

Simulate pobcy implementation for the following:

¥ Elow retwalk, connection [for example. & disl-up connection|
[Loopback processing

http://support.microsoft.com/default.aspx@scid=kb;en-us;186454
http://support.microsoft.com/default.aspx@scid=kb;en-us;221833
http://support.microsoft.com/default.aspx?scid=kb;en-us;186454
http://support.microsoft.com/default.aspx?scid=kb;en-us;221833

[TeamLiB] [rrevious | nexr]

[Team LiB]

10.5 Summary

One of the big selling points of Active Directory has always been group policy and in Windows Server 2003 Active
Directory, Microsoft extended the functionality and management of GPOs greatly. In this chapter we expanded on the
mformation presented in Chapter 7, to cover the details of how group policies are stored in Active Directory, how
GPOs are processed by clients, the GPO precedence order, the effect of inheritance, and the role ACLs play.

With Windows Server 2003, Microsoft provided several new tools to help manage and troubleshoot GPOs. Perhaps
the most important is the Group Policy Management Console (GPMC), which is a one-stop shop for all your GPO
needs. With the GPMC you can perform virtually any function you need to do from a single interface, as opposed to
using three or four as wa necessary with the Windows 2000 tools. Another benefit of the GPMC is that is installs
several COM objects that allow you to script 90% of your GPO management functions. Another long-awaited
feature that is available now is the Resultant Set of Policy (RSoP) that allows for modeling and testing of GPOs. With
RSoP you can configure several different settings including the container to process, any security groups to include,
whether to use a specific site, whether to use loopback mode, whether to use a specific WMI filter, and more. The
end result is a GPOE view of'the settings that would be applied.

[Team LiB]

[TeamLiB] [rrevious | nexr]

Chapter 11. Active Directory Security: Permissions
and Auditing

Permissions can be set in Active Directory in the same way they are set for files. While you may not care that
everyone in the tree can read all your users' phone numbers, you may want to store more sensitive information and
restrict that access. Reading is not the only problem, of course. You also have create, modify, and delete privileges to
worry about, and the last thing you need is a disgruntled or clever employee finding a way to delete all the users in an
Organizational Unit. And inheritance increases the complexity in the typical way.

None of this should be new to system managers who already deal with Windows NT Access Control Lists and
Access Masks, IntraNetWare's Trustee Lists and Inherited Rights Masks, and Unix's access permissions in file
masks. In fact, Microsoft has carried the NT terminology from file permissions forward to Active Directory, so if you
already know these terms, you're well ahead. If you are not familiar with them, don't worry. Microsoft has a great
tradition of calling a shovel a ground- insertion-earth-management device. Terminology in permissions can seem
confusing at first, so we'll go through it all in detail.

Managing the permissions in Active Directory doesn't have to be a headache. You can design sensible permissions
schemes using guidelines on mheritance and complexity that will allow you to have a much easier time as a systems
admnistrator. The GUI that Microsoft provides is fairly good for simple tasks but more cumbersome for complex
multiple permissions. In Windows Server 2003, the GUI has been enhanced to provide an "effective permissions"
option that lets you determine the effective permissions a user group has on the container or object. Also, Active
Directory permissions are supported by ADSI, which opens up a whole raft of opportunities for you to use scripts to
track problems and manipulate access simply and effectively. Finally, the DSACLS utility allows administrators to
manage permissions from a command line if you prefer an alternative to the GUI

Yet permissions are only half the story. If you allow a user to modify details of every user in a specific branch below
a certain Organizational Unit, you can monitor the creations, deletions, and changes to objects and properties within
that branch using auditing entries. In fact, you can monitor any aspect of modification to Active Directory using
auditing. The system keeps track of logging the auditing events and you can then periodically check them or use a
script or third-party tool to alert you quickly to any problems.

Figure 11-1 shows the basics. Each object stores a value called a Security Descriptor, or SD, that holds all the
mformation describing the security for that object. Included with the information are two important collections called
Access Control Lists, or ACLs, which hold the relevant permissions. The first ACL, called the System- Audit ACL or
SACL, defines the permission events that will trigger both success and failure audit messages. The second, called the
Discretionary ACL or DACL, defines the permissions that users have to the object, its properties, and its children.
Each of'the two ACLs holds a collection of Access Control Entries, or ACEs, that correspond to individual audit or
permission entries.

Figure 11-1. Active Directory security architecture
Security Architecture

[ADe ouiriTyDescriplar

Serwity Descriptor

IADsAccesslontroilisr

1ADsAccessCantrofntry

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

11.1 Using the GUI to Examine Permissions

To access the default permissions for any object, select the Active Directory Users and Computers MMC and
right-click on it. Choose Properties from the drop-down menu and select the Security tab of the properties window
that is displayed.

#3 4. Tomake the Security tab visible, you need to right-click in the display pane of the Active
— 4% Directory Users and Computers MMC, choosing View Advanced Features from the
pop-up menu. If you reopen the properties window of the object to which you wish to

assign permissions, you should see a Security tab.

The window in Figure 11-2 is your first point of contact for permissions. The top area contains a complete list of all
groups and users who have permissions to the object whose properties we are looking at. The Permissions section
below this list displays which general permissions are allowed and denied for the highlighted user or group. The
general permissions listed are only those deemed to be the most likely to be set on a regular basis. Each general
permission is only an umbrella term representing a complex set of actual implemented permissions hidden underneath
the item. Consequently, the general permission called Read translates to specific permissions like Read All Properties
and List Contents, as we will show later. Below the Permissions section are three important parts of this window:

Advanced button

The Advanced button allows you to delve further into the object, so that permissions can be set using a more
fine-grained approach.
Text display area

The second part of this area of the window is used to display a message, such as that shown in Figure 11-2. The text
shows that the permissions for the current object are more complex than can be displayed here. Consequently, we
would have to press the Advanced button to see them.

Figure 11-2. Security properties of an object
Computers Properties [7] x|
General | Object Secuily |
Group or user names:
ﬂfﬁdhemka&j Users ;l

4 Doman Admins [EMEAMYCORPADomain Adming)
m ENTERFRISE DOMAIN COMTROLLERS J
|

EE Predfindowiz: 2000 Compalible Access [EMEA-MYCORPPre-

m Piint 0 pesatars [EMEA-MYCORP\Phint O petatars)
[PP

Add... | Eemove

Peamizzions hor Doman &dring Allow
Fudl Conbial
Fead
Wike
Creste Al Chid Obgcts
Dielete Al Chid Otgects
Special Pemisions

OEREEERDO
0ooooo|g

For special pesmiz sions o for advanced sefings, Achranced
chck Advarced, i

ok, | Cancel |

Inheritance checkbox (Windows 2000 only; not shown in Figure 11-2)

The "Allow mheritable permissions from parent to propagate to this object" checkbox allows you to orphan (my
term) this object from the tree. When you clear the checkbox on the security properties or Access Control Settings
windows mentioned later, the system pops up a Yes/No/Cancel dialog box that asks if you want to convert your
mherited entries to normal entries. If you click Cancel, the operation aborts. Clicking No removes all inherited entries

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

11.2 Using the GUI to Examine Auditing

Exammning auditing entries is almost identical to viewing permissions entries. If you go back to the screen shown in
Figure 11-3 and click on the Auditing tab, a screen similar to that in Figure 11-11 is displayed.

Figure 11-11. Advanced Settings window showing auditing entries

Advanced Security Settings for Users [7] =]
Permizsions Auditing | Dwm] Effective Permissions |
To wiew more infomation about special audbing eninies, select an audiing entry, and then chck Edk.
Auditing enfries
Type | Mame | Aeeess | Inkeited From | Applu To |
Al Evesyone Special DC=emeaDC=. This chiect and all .,
fgd. | Ed | |

v il inhestable audiing enties from the panent to propagate to thes obyect and all child obescts. Irdud:
flhese with entiies exphclly definedbese. ek

This window shows the list of Auditing Entries (AEs) that have been defined on the object. This object has one AE,
and it's not very helpful viewing it from here since the detail is too limited. So just as you would do with permissions,
you can click the Edit button (or View/Edit with Windows 2000), drill down, view the individual AE itself.

Figure 11-12 shows the successful and failed items that are being awaited. The items are grayed out because this
entry is inherited from further up the tree, i.e., it is not defined directly on this object but instead further up the

hierarchy.

Figure 11-12. Auditing entry for an object
[7] x]

Auditing Entry for Users
Obgect | Fropeties |

Thitz awdiling antry iz inkernibed irom the parent object

Hame
Apply onter | |
Accags: Successhl Failed
Fudl Ciontiol -
List Contentz

Read Al Propeites
Wirite Al Properties
Delete

Delete Subtras

Fead Pemissions
Wodfy Permizsions
Madify Dwne

Al ahidabed Wiites
Creste A1 Chid Obgcts

doooooooooo
Oooooooooooo

Figure 11-13 shows an example AE window for successful and failed auditing of properties. Here you are auditing

only property writes.

Figure 11-13. Auditing entry for an object's properties

Dhject Propemes]

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

11.3 Designing Permission Schemes
Having worked through many designs for different domain structures, we have come up with a series of rules or

guidelines you can follow to structure the design process effectively. The idea is that if you design your permissions
schemes using these rules, you will be more likely to create a design with global scope and minimum effort.

11.3.1 The Five Golden Rules of Permissions Design

This list is not exhaustive. We are sure you will be able to think of others beyond these. If, however, these rules spark
your creative juices and help you design more effectively, they will have done their job.

The rules are:
1.
Whenever possible, assign object permissions to groups of users rather than individual users.
2.
Design group permissions so that you have a minimum of duplication.
3.
Manage permissions globally from the ACL window.
4.
Allow inheritance: do not orphan sections of the tree.
5.

Keep a log of every unusual change that you have made to the tree, especially when you have orphaned
sections of'it or applied special rights to certain users.

Let's look at these rules in more detail.
11.3.1.1 Rule 1—Apply permissions to groups whenever possible

By default, you should use groups to manage your user permissions. At its simplest, this rule makes sense whenever
you have more than one user for whom you wish to set certain permissions.

Global Group and Local Group Permissions
Under Windows NT 4.0

Under Windows NT 4.0, Microsoft's preferred method of applying file and directory permissions was
to create two sets of groups: Local Groups, which had permissions, and Domain Global Groups, which
contained users.

The Local Group would exist on the server that had the resource, and the relevant permissions were
assigned to that. Local groups were allowed to contain both users and groups. Domain Users were then
placed in Domain Global Groups, which themselves were placed in the Local Groups on each server.
Domain Global Groups were allowed to contain only users and not other groups. This may sound
complicated, but it worked well in practice. A good way of demonstrating this is through an example.

Consider an NT 4.0 domain called Mycorp containing a Global Domain Group called Marketing. This
group has four members. Within Mycorp are two servers, called Serverl and Server2, each of which
has published a share. Each server also has a Local Group SH USERS, which contains the Global

i Marl-etfinog ac a9 memmher Facrh S TIRERKQ oranimn hac read arceace +a the relevant chare Aan the

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

11.4 Designing Auditing Schemes

Designing auditing schemes, in contrast to permissions, is a relatively easy process. Imagine the circumstances in
which you may need to check what is happening in Active Directory, and then set things up accordingly.

= You must remember that every Active Directory event that is audited causes the system to
incur extra processing. Having auditing turned on all the time at the root for every
modification by anyone is a great way to get all DCs to really slow down if a lot of Active
Directory access occurs on those DCs.

That point bears repeating. Auditing changes to anywhere in the domain Naming Context
(NC) will propagate domainwide and cause logging to the security event log on every DC
that services the Domain NC. Auditing changes to the Configuration NC or Schema NC
will cause all DCs in a forest to begin auditing to their security event logs. You must have
tools in place to retrieve logs from multiple DCs if you wish to see every security event that
occurs. After all, if you have 100 DCs and are logging Configuration NC changes, then
because changes can occur on any DC, you need to amalgamate 100 security event logs to
gather a complete picture.[1]

[1] Applications for consolidation of event logs are SeNTry by Mission Critical, Event
Admn by Aelita, and AppManager by NetlQ. Also, note that Microsoft's WMI
technology has excellent event logging, reporting, and notification capabilities if you wish to
script such items yourself.

Here are a few examples where designing auditing schemes could come in handy:

Someone complains that user details are being set to silly values by someone else as a joke.

You notice that new objects you weren't expecting have been created or deleted in a container.

The Active Directory hierarchy has changed and you weren't informed.

You suspect a security problem.

In all these scenarios, you will need to set auditing options on a container or a leaf object. These auditing entries do
not have to exist all the time, so you could write them up and then code them into a script that you run at the first sign
of trouble. That way, the system is immediately updated and ready to monitor the situation. This can happen only if
you are prepared.

You need to analyze the scenarios that you envisage cropping up and then translate them into exact sets of auditing
entry specifications. After you have written up each scenario and an emergency occurs, you will be able to follow the
exact instructions that you previously laid down and set up a proper rapid response, which is what auditing is all
about.

Step one in a real emergency may be to turn all auditing on at the root to make sure that you capture everything to the
security log. Step two may be to turn on auditing for the specific items that you need to audit, so that with step three
you can finally remove the Audit- All at the root that normally would cause a severe slowdown. That way, you slow
Active Directory briefly while setting up the auditing you actually require, but you don't lose any audit entries during
that time. The point is that having a properly prepared set of scripts will save you trouble in the long run as you can
quickly use your "Audit all object creations and deletions below a container” or "Audit this object only for any

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

11.5 Real-World Examples

It now seems appropriate to put what we have laid out earlier into practice. We will use a series of tasks that could
crop up during your everyday work as an administrator. The solutions we propose probably are not the only solutions
to the problems. That is often the case with Active Directory; there are many ways of solving the same problem.

11.5.1 Hiding Specific Personal Details for All Users in an Organizational Unit from a
Group

In this example, an Organizational Unit called Hardware Support Staff contains the user accounts of an in-house team
of people whose job is to repair and fix broken computers within your organization. Whenever a user has a fault, he
rings the central faults hotline to request a support engineer. An engineer is assigned the job, which is added to the end
of her existing list of faults to deal with. The user is informed about which engineer will be calling and approximately
when she will arrive. As with all jobs of this sort, some take longer than others, and users have discovered how to find
the mobile or pager number of the engineer they have been assigned and have taken to calling her to get an arrival
time update rather than ringing the central desk. Management has decided that they want to restrict who can ring the
pager or mobile, but they do not want to stop giving out the engineer's name as they feel it is part of the friendly
service. Consequently, they have asked you to find a way of hiding the pager and mobile numbers in Active Directory
from all users who should not have access.

The solution that we will use is to remove the default ability of every user to see the property of the Engineer objects
by default. We can do this either from the parent OU or manually for each engineer. This ensures that only users or
groups that we allow to see the properties will do so. Since this is a simple problem with a simple solution, it is easier
to use the GUI than to write a script.

We start by creating a group for users who are allowed to see these properties, calling it Support Phone or
something similar. Now we have to make the decision: do we select the parent Organizational Untt itself and assign
permissions to hide the property for objects within the container and down the tree, or do we manually apply
permissions to every support engineer's account? The latter is likely to take much longer with any reasonable number
of support staff, and it comes with the added problem that we will have to do the same tasks every time a new
support staff member joins the team. In this instance, we will choose the former; however, it should be noted that this
will hide all the mobile and pager numbers of all users under the Hardware Support Staff Organizational Unit, even if
some of them are not engineers. This is covered in the next example.

We open the ACS window for the Hardware Support Staff Organizational Unit and click Add. We then locate the
Support Phone group and click OK. This opens the PE window for Support Phone relating to the Organizational
Unit. Now we click the Properties tab, specify to apply to this object and all subobjects, and then click Allow for
both the properties Read Phone-Pager-Primary and Read Phone-Mobile- Primary. These two items may already be
allowed by default. If we now click OK, the permissions are applied down the tree, so that everyone in the Support
Phone group can now read the mobile and pager properties of all user objects below that Organizational Unit.

We need to restrict the rest of the tree from viewing these two properties. From the ACS window for the
Organizational Unit, we add a group in the same manner as before, this time specifying Everyone as the group. We
select the Properties tab, find the Read Phone-Pager-Primary and Read Phone-Mobile- Primary properties, and
remove the check marks which occur in the two allow fields. We click OK, and all members of the group Everyone
have no rights to the two properties below this Organizational Unit. This differs from specifically denying all members
access.

- If we had denied the Everyone group from reading the two properties as our first step, then

4% when we opened up the PE window for the Support Phone group, it would not have had
the existing check marks mside it for the two fields. This is because Active Directory would
already have realized that the members of Support Phone were obviously members of
Everyone, the group containing every user on the system, and consequently would have
removed the two settings.

[TeamLiB] [rrevious | nexr]

[Team LiB]

11.6 Summary

Security is always important, and when access to your organization's network is concerned, it's paramount. We hope
this chapter has given you an understanding of how permission to access can be allowed or denied to entire domains
or individual properties of a single object. Auditing is also part of security, and having mechanisms already
designed—so that they can be constantly working or dropped in when required—is the best way to keep track of
such a system.

Assigning permission and auditing entries to an object appears to be a simple subject on the surface. However, once
you start delving nto the art of setting permissions and auditing entries, it quickly becomes obvious how much there is
to consider. Global design is the necessary first step.

While expanding your tree later by adding extra containers is rarely a problem, in a large tree it makes sense to have
some overall guidelines or rules that allow you to impose a sense of structure on the whole process of design and
redesign. Ideally, the golden rules and tables that we created should allow you to plan and implement sensible
permissions schemes, which was the goal of the chapter.

[Team LiB] plES

[Team LiB]

Chapter 12. Designing and Implementing Schema
Extensions

For Active Directory to hold any object, such as a user, it needs to know what the attributes and characteristics of
that object are. In other words, it needs a blueprint for that object. The Active Directory schema is the blueprint for all
classes, attributes, and syntaxes that potentially can be stored in Active Directory.

The default schema definition is defined in the %asystemroot%\ntds\schemad.ini file that also contains the initial
structure for the ntds.dit (Active Directory database). This file contains plain ASCII file and can be viewed using
Notepad or any text editor.

The following considerations should be kept in mind when you contemplate extending your schema:

Microsoft designed Active Directory to hold the most common objects and attributes you would require.
Because they could never anticipate every class of object or every specific attribute (languages spoken,
professional qualifications) that a company would need, Active Directory was designed to be extensible. After
all, if these objects and properties are going to be in everyday use, the design shouldn't be taken lightly.
Admistrators need to be aware of the importance of the schema and how to extend it. Extending the schema
is a useful and simple solution to a variety of problems. Not being aware of the potential means that you will
have a hard time identifying it as a solution to problems you might encounter.

Designing schema extensions is very important, in part because any new class or attribute that you create in
the schema is a permanent addition. While unused objects can be disabled if you no longer require them, they
cannot be removed. In Windows 2003 Active Directory, you can redefine schema extensions, but you cannot
totally remove them.

While it is easy to extend Active Directory, it's surprising how many companies are reluctant to implement
schema extensions due to concerns over the impact to Active Directory. One of the biggest impediments in
Windows 2000 was that anytime the partial attribute set was extended (i.e., an attribute added to the Global
Catalog) a full resync had to be done for all Global Catalog servers. Fortunately, Microsoft resolved this in
Windows 2003, and a full resync is no longer performed.

This chapter takes you through the process of extending the schema, from the mitial design of the changes through the
implementation, and discusses how to avoid the pitfalls that can crop up. We then talk about analyzing the choices
available and seeing if you can obtain the required design result some other way, because schema changes are not to
be undertaken lightly. We obviously cover how to implement schema changes from first principles, but before that we
identify the steps in designing or modifying a class or attribute. Fially, we cover some pitfalls to be aware of when
administering the schema.

We don't spend much time introducing a large number of specific examples. This is mainly because there's no way we
can conceive of every sort of class that you will require. Consequently, for examples we use only one new generic
class as well as a few attribute extensions to the default user object. When giving examples of modifying a class, we
extend the user object class.

Let's look at how you would design the changes you may wish to make in an enterprise environment.

[Team LiB] Gl

[Team LiB] plE

12.1 Nominating Responsible People in Your Organization

If you don't already have a central person or group of people responsible for the OID namespace for your
organization, you need to form such a group. This OID Managers group is responsible for obtaining an OID
namespace, designing a structure for the namespace that makes sense to your organization, managing that namespace
by maintaining a diagram of'the structure and a list of the allocated OIDs, and issuing appropriate OIDs for new
classes from that structure as required. Whenever a new class of attribute or object is to be created in your
organization's forest, the OID Managers provide a unique OID for that new class, which is then logged by the OID
Managers with a set of details about the reason for the request and the type of class that it is to be used for. All these
details need to be defined by the OID Managers group.

The Schema Managers, by comparison, are responsible for designing and creating proper classes in the schema for a
forest. They are responsible for actually making changes to the schema via requests from within the organization, for
ensuring that redundant objects doing the same thing are not created, that inheritance is used to best effect, that the
appropriate objects are indexed, and that the GC contains the right attributes.

The Schema Managers need to decide on the membership of the Schema Admins universal group that resides in the
Forest Root Domain of a particular forest. One possibility is that the Schema Managers wish to keep a set of user
accounts as members of Schema Admins by default all the time. Instead, they may decide to remove every member of
the Schema Admins group so that no unintentional changes can be made to the schema. In this case, the Schema
Managers need to be given permissions to add and remove members of the Schema Admins group to enable any of
the Schema Managers to add themselves to the Schema Admins group whenever changes are to be made to the
schema.

- If you are designing code that will modify some other organization's schema, the

4% documentation accompanying that code should make it explicitly clear exactly what classes
are being created and why. The documentation also should explain that the code needs to
be run with the privilege of a member of the Schema Admins group, since some
organizations may have an Active Directory in which the Schema Admins group is empty
most of the time, as mentioned earlier.

Note that the membership of OID Managers does not necessarily coincide with that of Schema Managers, although it
is a possibility.
[Team LiB]

[TeamLiB] [rrevious | nexr]

12.2 Thinking of Changing the Schema

Before you start thinking of changing the schema, you need to consider not just the namespace, but also the data your
Active Directory will hold. After all, if you know your data, you can decide what changes you want to make and
whom those changes might impact.

12.2.1 Designing the Data

No matter how you migrated to Active Directory, at some pomnt you'll need to determine exactly what data you will
add or migrate for the objects you create. Will you use the physicalDeliveryO fliceName attribute of the user object?
What about the telephonePager attribute? Do you want to merge the internal staff office location list and telephone
database during the migration? What if you really need also to know what languages each of your staff speaks or
qualifications they hold? What about their shoe size, their shirt size, number of children, and whether they like animals?
The point is that some of these already exist in the Active Directory schema and some don't. At some point you need
to design the actual data that you want to include.

Let's consider MyUnixCorp, a large fictional organization that for many years has run perfectly well on a large
mainframe system. The system is unusual in that the login process has been completely replaced n-house with a
two-tier password system. A file called additional-passwd mamtains a list of usernames and their second Unix
password in an encrypted format. Your design for the migration for MyUnixCorp's system has to take account of the
extra login check. In this scenario, either MyUnixCorp accepts that the new Active Directory Kerberos security
mechanism is secure enough for its site, or it has to add entries to the schema for the second password attribute and
write a new Active Directory logon interface that incorporates both checks.

This example serves to outline that the data that is to be stored in Active Directory has a bearing on the schema
structure and consequently has to be incorporated mnto the design phase.

12.2.2 To Change or Not to Change

When you identify a deficiency in the schema for your own Active Directory, you have to look hard into whether
modifying the schema is the correct way forward. Finding that the schema lacks a complete series of objects along
with multiple attributes is a far cry from identifying that the Person-who-needs-to-refill-the-printer-with-toner attribute
of the printer object is missing from the schema. There's no rule, either, that says that once you wish to create three
extra attributes on an existing object, you should modify the schema. It all comes down to choice.

o | There is one useful guideline: you should identify all the data you wish to hold in Active
4 Directory prior to considering your design. If you consider how to implement each change
mn Active Directory one at a time, you may simply lose sight of the overall picture.

To help you make that choice, you should ask yourself whether there are any other objects or attributes that you
could use to solve your problem.

Let's say you were looking for an attribute of a user object that would hold a staff identification number for your
users. You need to ask whether there is an existing attribute of the user object that could hold the staff ID number and
that you are not going to use. This saves you from modifying the schema if you don't have to. Take Leicester
University as an example. We had a large user base that we were going to register, and we needed to hold a special
ID number for our students. In Great Britain, every university student has a so-called University and Colleges
Administration System number, more commonly known as the UCAS number, a unique alphanumeric string that
UCAS assigns independent of a student's particular university affiliation. Students receive ther UCAS numbers when
they first begin looking into universities. The numbers identify students to their prospective universities, stay with
students throughout their undergraduate careers, and are good identifiers for checking the validity of students' details.
By default, there is no schema attribute called UCAS-Number, so we had two choices. We could find an
appropriately named attribute that we were not going to use and make use of that, or we could modify the schema.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

12.3 Creating Schema Extensions

There are three ways to modify the schema: through the Schema Manager MMC, using LDIF files, or
programmatically using ADSI. We will not cover the use of the Schema Manager MMC very heavily here since it is
fairly straightforward to use, although we will cover its use in managing the Schema FSMO role. Typically you should
not use the Schema Manager MMC to extend the schema and instead use LDIF files or ADSI. Most vendors
provide LDIF files, which contain the schema extensions that you can run at your leisure. We cover extending the
schema with ADSI in Chapter 24.

12.3.1 Running the Schema Manager MMC for the First Time

The Schema Manager MMC is not available from the Administrative Tools menu like the other Active Directory
snap-ins. To use it, you need to first register the Dynamic Link Library (DLL) file for the MMC snap-in by typing the

following command at the command prompt:
regsvr32.exe schmmgmt.dll

You can then start the Schema Manager console by creating a custom MMC and adding the Active Directory
Schema snap-in to it. To create a console, go to the Run menu from the Start button, type mme.exe, and click OK.
Then in the empty MMC, choose the Console menu and select Add/Remove Snap-mn. From here, you can click the
Add button and select Active Directory Schema as the item. If you then click the Add button, followed by Close, and
then the OK button, that will give you an MMC hosting the Schema Manager snap-in for you to use and later save as
required.

Allowing the Schema to be modified on
Windows 2000

Under Windows 2000, there was a safeguard you had to bypass for the Schema FSMO to allow you to
modify the schema. With Windows 2003 Active Directory, this is no longer required. First, the user who
is to make the changes has to be a member of the Schema Admins group, which exists in the forest root
domain. Second, you need to make a change to the registry on the DC that you wish to make the
changes on.

The fastest and probably best solution is to use the checkbox from the Schema Master MMC, shown
later in the chapter.

Alternatively, on the DC itself, open up the registry using regedit32.exe or regedit.exe and locate the
following key:
HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\N TDS\Parameters

Now, create a new REG_ DWORD value called "Schema Update Allowed" (no quotes) and set the
value to 1. That's all you need to do. You now can edit the Schema on that DC.

Another alternative method for making the change is to copy the following three lines to a text file with a
REG extension and open it (i.e., execute it) on the DC where you wish to enable schema updates. This

will automatically modify the registry for you without the need to open the registry by hand:
REGEDIT4

[HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\NTDS\Parameters]
"Schema Update Allowed"=dword:00000001

Once you've modified the registry on a particular DC and placed the user account that is to make the
changes into the Schema Admins group, any changes you make to the schema on that DC will be
accepted. If you wish changes to be accepted on any DC, you need to modify the registry
correspondingly on every DC.

http://www.ietf.org/rfc/rfc2849.txt
http://www.ietf.org/rfc/rfc2849.txt

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

12.4 Wreaking Havoc with Your Schema

There are a number of ways to cause problems in your Active Directory schema. We include a few examples here so
that you can be fully aware of the problems.

Let's start by considering the main base classes of attributeSchema, classSchema, and top. Imagine we decide to add
a new mandatory attribute to top. As all classes derive from top, the mandatory attribute requirement is suddenly
added to every class and attribute throughout the schema in one go. Since none of the existing classes and attributes
have this value, they all suddenly become marked as invalid. They still exist and can be used, but they cannot be
modified at all. New timestamps cannot be added, USNs cannot be changed, replication stops, and effectively your
Active Directory grinds to a halt. The reason that the objects cannot be modified is that Active Directory does a
special check when existing instances of objects are modified to make sure that all mandatory attributes have been
set. If they have not all been set, which they won't have been in this case, Active Directory will not allow any attribute
changes from now on. The only solution is to remove the new mandatory attribute or set a value for the attribute on
every single object in every NC in the entire forest.

There are also concurrency problems. Having a Schema FSMO is perfectly fine, but that doesn't necessarily stop
members of Schema Admins from attempting to run two schema-modifying applications at the same time. Every time
an application or piece of code attempts to write to the schema, it automatically writes a special system attribute at the
same time. Two system-attribute writes anywhere in Active Directory cannot occur simultaneously, so one will fail if
this is the case. In the scenario of simultaneous applications executing, the changes to the schema may all be handled
sequentially and the requests from both applications may be interleaved, but the two applications at some point may
attempt to write together. At that point, one of them will fail. If the failed application is rerun, it must be coded to
detect the existence of each object (i.e., the previous creation succeeded) prior to creating the object, or else the
object-creation process will continually fail.

You can also make instances of objects invalid quite easily. For example, let's say that we define that new class we
mentioned earlier called Finance-User, and create an instance of it called cn=SimonWilliams. If we then remove
Languages-Spoken from Finance-User's mandatory attributes, the SimonWilliams user becomes invalid because the
SimonWilliams instance has an attribute that is not now allowed in the schema definition for Finance-User. Again, it is
up to the person or code that makes the Languages-Spoken attribute defunct to go through Active Directory and find
all instances of Finance-User and modify them to remove the value in this now-defunct attribute. If this isn't done, any
mstances of Finance-User with the Languages-Spoken attribute defined (all, in this case, as it was mandatory) remain
mnvalid.

You cannot cause nvalid nstances by modifying existing attributeSchema objects, as all the key attributes are defined
in system attributes. However, you can cause havoc with existing classSchema objects. Ways of doing this are:

Removing classes as possible superiors; this can leave instances under invalid parent containers.
Adding classes to the list of auxiliary classes; this can change what attributes are now considered mandatory.

Removing classes from the list of auxiliary classes; this can change what attributes are now considered
mandatory and optional and can thus leave instances with now nonexistent attributes.

Directly removing mandatory or optional attributes; this can leave instances with now nonexistent attributes.

Ifthe DC holding the Schema FSMO role unexpectedly disappears, you can force another server to assume the role.
But if the original DC ever comes back, you have two Schema FSMOs, and you will need to rectify that by making
sure only one server has the role. However, if the original server had some updates applied prior to its crash, and you
allow updates to be made on the new Schema Master, the updates from the old DC will eventually propagate around
the network Your nroblems to be aware of n thic scenario are twofold:

[TeamLiB] [rrevious | nexr]

[Team LiB]

12.5 Summary

Carefully designing the changes that you make to the Active Directory schema cannot be stressed highly enough for
large corporations or application developers. Selecting a team of Schema Managers and OID Managers and creating
documentation to accompany and justify changes will smooth that process. Whether you are a small company or a
large multinational, creating sensible structures should mean that you rarely make mistakes and almost never have to
make objects defunct.

Hopefully we have shown you not only the perils and pitfalls of modifying the schema but also why the schema is
necessary and how it underpins the entire Active Directory. While you should be cautious when modifying Active
Directory, a sensible administrator should have as little to fear from the Active Directory schema as he does from the
Windows Registry.

[Team LiB]

[Team LiB]

Chapter 13. Backup, Recovery, and Maintenance

A very important though often overlooked aspect of maintaining Active Directory is having a solid disaster recovery
plan in place. While the reported incidents of corruption of Active Directory have been minimal, it has happened and
is something you should be prepared for regardless of how unlikely it is to occur. Restoring accidentally deleted
objects is much more likely to happen than complete corruption, and thus you should be equally prepared. Do you
have a plan in place for what to do if a domain controller that has a FSMO role suddenly goes offline, and you are
unable to bring it back? All the scenarios we've just described typically happen under times of duress. That is, clients
are complaining or an application is no longer working correctly and people aren't happy. It is during times like this
that you don't want to have to scramble to find a solution. Having well-documented procedures to handle these issues
is critical.

In this chapter, we will look at how to prepare for failures by backing up Active Directory. We will then describe
how you can recover all or portions of your Active Directory from backup. We will then cover how to recover from
FSMO failures. Finally, we will look at other preventive maintenance operations you can do to ensure the health of
Active Directory.

[Team LiB]

[TeamLiB] [rrevious | nexr]

13.1 Backing Up Active Directory

Backing up Active Directory is a straightforward operation. It can be done using the NT Backup utility provided with
the Windows operating system or with a third-party backup package such as Veritas NetBackup. Fortunately, you
can backup Active Directory while it is online, so you do not have to worry about taking outages just to perform
backups like you do with other systems, such as Exchange 2000.

To back up Active Directory, you have to back up the System State of one or more domain controllers within each
domain in the forest. If you want to be able to restore any domain controller in the forest, you'll need to back up every
domain controller. On a domain controller, the System State contains the following:

Active Directory

This includes the files in the NTDS folder that contains the Active Directory database (ntds.dit), the checkpoint file (
edb.chk), transaction log files (edb*.log), and reserved transaction logs (res!.log and res2.log).
Boot Files

The files necessary for the machine to boot up.
COM+ Class Registration Database

The database for registered COM components.
Registry

The contents of the registry.
SYSVOL

This includes the files contained in the NETLOGON share, which typically contain user logon and logoff scripts and
system startup and shutdown scripts. It also includes the file-based portion of GPOs, which are stored in SYSVOL.
Certificate Services

This applies only to DCs that are running Certificate Services.

«r 4. While most backup packages allow you to perform incremental backups, with Active
4% Directory you can only perform full backups of the system state.

The user that performs the backup must be a member of the Backup Operators group or have Domain Admins
equivalent privileges.

Due to the way Active Directory handles deleted objects, your backups are only good for a certain period of time.
When objects are deleted in Active Directory, initially they are not removed completely. A copy of the object still
resides in Active Directory for the duration of the tombstone lifetime. The tombstone lifetime value dictates how long
Active Directory keeps deleted objects before completely removing them. The tombstone lifetime is configurable and
is defined in the tombStoneLifetime attribute on the following object:

cn=Directory Services, cnr=WindowsNT, cn=Services, cn=Configuration, <ForestDN>

The default value for tombStoneLifetime is 60 days. That means deleted objects are purged from Active Directory 2
months after they are initially deleted. As far as backups go, you should not restore a backup that is older than the
tombstone lifetime because deleted objects will be reintroduced. If for whatever reason you are not able to get
successful backups at least every 60 days, consider increasing the value of tombStoneLifetime.

Another issue to be mindful of in regard to how long you keep copies of your backup has to do with passwords.
Computer accounts change their passwords every 30 days. They keep their previous passwords and attempt to use
them if their current passwords do not work. So if you restore computer objects from a backup that is older than 60
days, those computers will more than likely not be able to participate in the domain and will have to be reset. Trust
relationships can also be affected. Like computer accounts, the current and previous passwords are stored with the

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

13.2 Restoring a Domain Controller

One of the benefits of Active Directory is built-in redundancy. When you lose a single domain controller, the impact
can be nsignificant. With many services, such as DHCP, the architecture dictates a dependency on a specific server.
When that server becomes unavailable, clients are impacted. Over the years, failover or redundancy has been built
mto most of these services, including DHCP. With Active Directory, the architecture is built around redundancy.
Clients are not dependent on a single DC; they can failover to another DC seamlessly if a failure occurs.

When a failure does occur, you should ask yourself several questions to assess the impact:
Is the domain controller the only one for the domain?

This is the worst-case scenario. The redundancy in Active Directory applies only if you have more than one domain
controller in a domain. If there is only one, you have a single pont of failure. You could irrevocably lose the domain
unless you can get that domain controller back online or restore it from backup.

Does the domain controller have a FSMO role?

The five FSMO roles outlined in Chapter 2 play an important part in Active Directory. FSMO roles are not
redundant, so ifa FSMO role owner becomes unavailable, you'll need to seize the FSMO role on another domain
controller. Check out the FSMO recovery section later in this chapter for more information.

Is the domain controller a Global Catalog server?

The Global Catalog is a function that any domain controller can perform if enabled. But if you have only one Global
Catalog server in a site and it becomes unavailable, it can impact user's ability to login. As long as clients can access a
Global Catalog, even if it isn't in the most optimal location, they will be able to logn. Ifa site without a Global Catalog
for some reason loses connectivity with the rest of the network, it would impact user's ability to login. With Windows
Server 2003, you can enable universal group caching on a per-site basis to limit this potential issue.

Is the domain controller necessary from a capacity perspective?

If your domain controllers are running near capacity and one fails, it could overwhelm the remaining servers. At this
point, clients could start to experience login failures or extreme slowness when authenticating.
Are any other services, such as Exchange 2000, relyng on that specific domain controller?

Early versions of Exchange 2000 did not handle domain controller failures well. In fact, once an Exchange 2000
server targeted a specific domain controller, you would have to manually force it to use another one if that domain
controller became unavailable. During the outage period, mail delivery could be mpacted along with client lookups.
Exchange is just one example, but it illustrates that you have to be careful of this when introducing Active
Directory-enabled services into your environment.

These questions can help you assess the urgency of restoring the domain controller. If you answered "no" to all of the
questions, the domain controller can stay down for a short period without significant impact.

When you've identified that you need to restore a domain controller, there are two options to choose from: restoring
from replication or restoring from a backup.

13.2.1 Restore from Replication

One option for restoring a domain controller is to bring up a freshly installed or repaired machine and promote it into
Active Directory. You would use this option if you had a single domain controller failure due to hardware and did not
have a recent backup of the machine. This method allows you to replace the server in AD by promoting a newly
mstalled machine and allowing replication to copy all of the data to the DC. Here are the steps to perform this type of
restore:

1.

Rebuild OS. Reinstall the operating system and any other applications you support on your domain
controllers.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

13.3 Restoring Active Directory

No one ever wants to be in a position where you have to restore Active Directory, but nevertheless you should
prepare for it. Restoring Active Directory comes in a few different flavors, which we'll cover now.

13.3.1 Nonauthoritative Restore

A nonauthoritative restore is a restore where you simply bring a domain controller back to a known good state using
a backup. You then let replication resync the contents of the latest changes in Active Directory since the backup. The
restore from backup method we described earlier to handle DC failures is an example of a nonauthoritative restore.
The only difference between that scenario and the one we'll describe here is that previously we assumed that the failed
server you rebuilt or replaced was not a domain controller yet. There may be some circumstances when you want to
perform a similar restore, but the server is a domain controller. One example might be if some changes were made on
a particular domain controller that you wanted to take back. If you were able to disconnect the domain controller
from the network in time before it replicated, you could perform a nonauthoritative restore to get it back to a known
state before the changes were made. This would effectively nullify the changes as long as they didn't replicate to
another server.

A nonauthoritative restore simply restores Active Directory without marking any of the data as authoritative. Since
the data will be "nonauthoritative," any changes that have happened since the backup will replicate to the restored
server. Also, any changes that were made on the server that had not replicated will be lost.

To perform a non-authoritative restore of a domain controller, you need to boot the DC mto "Directory Services
Restore Mode." The reason you have to do this is that when a domain controller is live, it locks the Active Directory
database (ntds.dit) in exclusive mode. That means that no other processes can modify its contents. To restore over
the DIT file, you must boot into DS Restore Mode, which is a version of Safe Mode for domain controllers. If you try
to restore a live domain controller, you'll get an error like the one shown in Figure 13-4.

Figure 13-4. Restore error on a live domain controller
Ed

Completing the Backup or
Restore Wizard

‘ou have creabed the following ieslhors selings

Warning
W

The system state cannot be restored whils the Acthe Directory ssrace IS running.,

ows st First re-boot and select the adwanosd startup option *Directory Services
Restore Mode” before restaring the svstem stabe on this computer,

To cloze this wizard and start the restore, cick Frizh,
To specify addiional restone ophons, »
click Advanced 2t

< Back Finigh | Cancel

You can get into DS Restore Mode by hitting the F8 key during the initial system startup. After doing so you'll see
the screen shown in Figure 13-5.

Figure 13-5. Directory Services Restore Mode

Advanced Optionz Henu
ect an option:

7 With Hetworking

Safe Mode with Command Prosapt

Enable Boot Logging

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

13.4 FSMO Recovery

The FSMO roles were described m Chapter 2. These roles are considered special n Active Directory because they
are hosted on a single domain controller within a forest or domain. The architecture of Active Directory is highly
redundant, except for FSMO roles. It is for this reason that you need to have a plan on how to handle FSMO
failures.

It would be a really nice feature if domain controllers could detect that they are being shut down and gracefully
transfer any FSMO roles to other domain controllers. In fact, the Active Directory development team is considering
this feature for the next major release of Active Directory after Windows Server 2003, but that is a ways out.

Without having the graceful FSMO role transfer, you have to do manual transfers. Manually transferring a role is
pretty straightforward. You bring up the appropriate Active Directory snap-in, bring up the FSMO property page,
select a new role owner, and perform the transfer. Here is a list of the FSMO roles and the corresponding snap-in
that can be used to transfer it to another domain controller:

Schema Master: Active Directory Schema

Domain Naming Master: Active Directory Domains and Trusts
RID Master: Active Directory Users and Computers

PDC Emulator: Active Directory Users and Computers

Infrastructure Master: Active Directory Users and Computers
Figure 13-9 shows the Active Directory Domains and Trusts screen for changing the Domain Naming FSMO.

Figure 13-9. Changing the Domain Naming FSMO role owner
2 = O] x|
[le 4rton Yew Help
BFRE ®
% Active Darectory Domains and Trusts | Acthe Drectory Domairs and Trusts

' -"II MR com Change Operations Master il s

T chornan naming opedahions: masle? enmees thal domai name: 2%
unigue. Oniy one domain conoller in the enterprise perfoms this ol

L omesin naming opsiatons: masber

dol.mpcoipocom

To tranafer thee domein raming mastsr iobs bo b
Lodbowang compube, chck Changs

jdo em=a mycoip.com

Changa..

’ 1+1]

When a FSMO role owner goes down and cannot be brought back online, you no longer can transfer the role; you
mstead have to "seize" it. And unfortunately you cannot seize FSMO roles using the Active Directory snap-ins as you
can to transfer them. To seize a FSMO role you need to use the ntdsutil utility that we used earlier to do restores.
We will now walk through the n¢dsutil commands that are used to seize a FSMO role. Note that due to the width of
the output, some of the text wraps to the following line.

We first start off by getting into the ntdsutil interactive mode and looking at the options for the roles command.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

13.5 DIT Maintenance

On a periodic basis, such as a couple of times a year, you should check the health of the DIT file (n¢ds.dit) on your
domain controllers. Using the ntdsutil utility, you can check the mtegrity and semantics of the Active Directory
database and reclaim whitespace, which can dramatically reduce the size of the DIT. Also, just as you should rotate
the password for the Administrator accounts in the forest, you should also change the DS Restore Mode
Administrator password as well. You may even need to do this more frequently depending on whether you have
people leave your team that should no longer know the password.

Unfortunately, to accomplish all these tasks—except changing the DS Restore Mode Administrator password—you
have to boot the domain controller into DS Restore Mode. That means you will have to have schedule downtime for
the machine. Also, to use DS Restore Mode, you need console access either through being physically at the machine
or with out-of-band access, such as with Compaq's Remote Insight Lights Out Board (RILOE). There is one other
option using Terminal Services. You can modify the boot.ini file on the domain controller to automatically start up in
DS Restore Mode. You can then use a Terminal Services connection to log in to the machine. For more information,
check out MS Knowledge Base article 256588 from http//support.microsoft.com.

13.5.1 Checking the Integrity of the DIT

There are several checks you can perform against the DIT file to determine whether it is healthy. The first we'll show
checks the mtegrity of the DIT file. The integrity check mspects the database at a low level to determine whether there
is any binary corruption. It scans the entire file, so depending on the size of your DIT file, it can take a while to
complete. We've seen some estimates that state it can check around 2 gigabytes per hour, so allocate your change
notification accordingly.

= Before running any mntegrity checks, be sure you have at least two successful backups of the
system.

To start the integrity check, run the ntdsutil command from within DS Restore Mode. The integrity subcommand can

be found within the files menu.

C:\> ntdsutil
ntdsutil: files
file maintenance: integrity
Opening database [Current].
Executing Command: C:\WINDOWS\system32\esentutl.exe /g"C:\WINDOWS\NTDS\ntds.dit" /o
Initiating INTEGRITY mode...

Database: C:\WINDOWS\NTDS\ntds.dit

Temp. Database: TEMPINTEG1752.EDB

Checking database integrity.
Scanning Status (% complete)
0 10 20 30 40 50 60 70 80 90 100

Integrity check successful.
Operation completed successfully in 11.766 seconds.
Spawned Process Exit code 0x0(0)
If integrity was successful, it is recommended
you run semantic database analysis to ensure
semantic database consistency as well.
file maintenance: quit

The mtegrity check looks at the database headers to make sure they are correct and also checks all database tables
to make sure they are working correctly. If the database integrity check fails or encounters errors, you may then want
to run a repair command to try to fix the problem. Running an integrity check won't damage your Active Directory,
but running a repair can, and that's why it is imperative you have a good backup before proceeding.

If the integrity check succeeds, you should then run a semantics check. Whereas the integrity check examines the

http://support.microsoft.com/default.htm
http://support.microsoft.com

[TeamLiB] [rrevious | nexr]

[Team LiB]

13.6 Summary

In this chapter we reviewed all the elements necessary to develop a disaster recovery plan. We covered how to back
up Active Directory and some of the gotchas related to the tombstone lifetime and password change cycles. We then
discussed the various options for restoring Active Directory, including restore by replication, authoritative restores,
and nonauthoritative restores. We discussed the FSMO transfer process and what is needed to seize FSMO roles.
Finally, we delved into some of the maintenance tasks that can be done with the Active Directory DIT files.

[Team LiB] e

[Team LiB] plE

Chapter 14. Upgrading to Windows Server 2003

The first version of Active Directory with Windows 2000 was surprisingly stable and robust. Microsoft does not
have the best track record for initial releases of products, but they must be commended for Windows 2000 Active
Directory in terms of'its feature rich-ness and reliability. That said, since Active Directory is such a complex and
broad technology, there was still much room for improvement. There were some issues with scalability, such as the
mfamous 5,000-member limit with groups or the 300-site limit, which may have imposed artificial limitations on how
you implemented Active Directory. Both of these issues have been resolved in Windows Server 2003. The default
security setup with Windows 2000 Active Directory out-of-the-box was not as secure as it should have been. Signed
LDAP traffic and other security enhancements have since been added into service packs, but they are provided by
default with Windows Server 2003. Finally, manageability was another area that needed work in Active Directory,
and n Windows Server 2003 numerous command-line utilities have been added along with some significant
improvements to the AD Administrative snap-ins.

We have highlighted a few key areas where Active Directory has been improved in Windows Server 2003, and we'll
describe more new features in the next section. If you already have a Windows 2000 Active Directory infrastructure
deployed, your next big decision will be whether and when to upgrade to Windows Server 2003. Fortunately, the
transition to Windows Server 2003 is evolutionary, not revolutionary, as with the migration from Windows NT to
Active Directory. In fact, Microsoft's goal was to make the move to Windows Server 2003 as seamless as possible,
and for the most part they have accomplished this. You can ntroduce Windows Server 2003 domain controllers at
any rate you wish into your existing Active Directory environment; they are fully compatible with Windows 2000
domain controllers.

Before you can introduce Windows Server 2003 domain controllers, you must prepare the forest and domains with
the ADPrep utility, which primes the forest for new features that will be available once you raise the functional level of
the domain or forest. Functional levels are similar in nature to domain modes in Windows 2000 Active Directory.
They allow you to configure different levels of functionality that will be available in the domain or forest based on
which operating systems are running on the domain controllers.

Before we cover the upgrade process to Windows Server 2003, we'll first discuss some of the major new features in
Windows Server 2003 and some of the functionality differences with Windows 2000. Based on this information, you
should be able to prioritize the importance of how quickly you should start migrating,

[Team LiB]

[TeamLiB] [rrevious | nexr]

14.1 New Features in Windows Server 2003

While the release of Windows Server 2003 is viewed as evolutionary, there are quite a few new features that make
the upgrade attractive.

o | By "feature" we mean new functionality that is not just a modification of the way it worked
¢ in Windows 2000. In this sense, a feature is something you have to use or implement
explicitly. Functionality differences with Windows 2000 are covered in the next section.

We suggest you carefully review each of these features and rate them according to the following categories:
1.

You would use the feature immediately.
2.

You would use the feature eventually.
3.

You would never use the feature or it is not important.

Rating each feature will help you determine how much you could benefit from the upgrade. The following is the list of
new features, in no particular order:
Application partitions

You can create partitions that can replicate to any domain controller in the forest.
Concurrent LDAP binds

Concurrent LDAP binds do not generate a Kerberos ticket and security token and are therefore much faster than a
simple LDAP bind.
Cross-forest trust

This is a transitive trust that allows all the domains in two different forests to trust each other via a single trust defined
between two forest root domains.
Domain controller rename

The rename procedure for domain controllers requires a single reboot.
Domain rename

Domains can now be renamed, but not without significant impact to the user base (e.g. all member computers must be
rebooted twice). For more information, check out the following whitepaper:

http//www.microsoft.com/windowsserver2003/downloads/domainrename. mspx.
Dynamic auxiliary classes

There is now support for the standards-based implementation of dynamic auxiliary classes. Under Windows 2000,
auxiliary classes are considered "static" because they are statically defined in the schema. With dynamic auxiliary
classes, you can link one when creating an object without it being defined in the schema as an auxiliary class for the
object's objectClass.

Dynamic objects

Traditionally, objects are stored in Active Directory until they are explicitly deleted. With dynamic objects, you can
create objects that have a time to live (TTL) value that dictates when they will be automatically deleted unless

refreshed.
Install from media

http://www.microsoft.com/windowsserver2003/downloads/domainrename.mspx
http://www.microsoft.com/windowsserver2003/downloads/domainrename.mspx

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

14.2 Differences With Windows 2000

Even though Active Directory was scalable enough to meet the needs of most organizations, there were some
improvements to be made after several years of real-world deployment experience. Many of the functionality
differences with Windows 2000 are the direct result of feedback from AD administrators.

As with the new features, we suggest you carefully review each of the differences and rate them according to the

following categories:
1.
It would positively affect my environment to a large degree.
2.
It would positively affect my environment to a small degree.
3.

It would negatively affect my environment.

The vast majority of differences are actually improvements that translate into something positive for you, but in some
situations, such as with the security-related changes, the impact may cause you additional work mitially.
Single instance store

Unique security descriptors are stored once no matter how many times they are used as opposed to being stored
separately for each instance. This alone can save upwards of 20%-40% of'the space in your DIT after upgrading,
Note that an offline defragmentation will have to be performed to reclaim the disk space.

Account Lockout enhancements

Several bugs have been fixed which erroneously caused user lockouts in Windows 2000. A new Active Directory
Users and Computers property page called Additional Account Info and the lockoutstatus.exe utility are great
troubleshooting tools for diagnosing lockout problems.

Improved event log messages

There are several new event log messages that will aid in troubleshooting replication, DN'S, FRS, etc.
Link value replication (LVR)

Replication in Active Directory is done at the attribute level. That is, when an attribute is modified, the whole attribute
is replicated. This was problematic for some attributes, such as the member attribute on group objects, which could
only store roughly 5,000 members. LVR replication means that certain attributes, such as member, will only replicate
the changes within the attribute and not the contents of the whole attribute whenever it is updated.

Intrasite replication frequency changed to 15 seconds

The previous default was 5 minutes, which has now been changed to 15 seconds.
No global catalog sync for PAS addition

With Windows Server 2003, whenever an attribute is added to the Partial Attribute Set (PAS), a global catalog sync
is no longer performed as it was with Windows 2000. This was especially painful to administrators of large, globally

dispersed Windows 2000 domains.
Signed LDAP traffic

Instead of sending LDAP traffic, including usernames and passwords, over the wire in plain text with tools such as
ADUC and ADSI Edit, the traffic is signed and therefore encrypted.
ISTG and KCC scalability improvements

The algorithms used to generate the intersite connections have been greatly improved to the point where the previous
limit 0f 300 to 400 sites has been raised to support roughly 3,000-5,000 sites.

Facter olobal cataloo removal

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

14.3 Functional Levels Explained

Now that you are sufficiently excited about the new features with Active Directory and improvements since Windows
2000, we will now cover how you can actually enable these features in Windows Server 2003. If you've already
deployed Windows 2000 Active Directory, you are most certainly familiar with the domain mode concept. With
Windows 2000 Active Directory, you had mixed- and native-mode domains. Domain mode simply dictated what
operating systems were allowed to run on the domain controllers and nothing more. New features were enabled with
the move to native mode, including universal groups and group nesting to name a couple. Think of functional levels like
domain modes, but taken a step further.

Windows Server 2003 functional levels are very similar to Windows 2000 domain modes from the standpoint that
they dictate what operating systems can run on domain controllers, and they can only be increased or raised and
never reversed. One common misunderstanding with domain modes, which hopefully will not be carried over to
functional levels, is that they have virtually no impact on clients and what operating systems your clients run. For
example, you can have Windows 9x clients in mixed- or native-mode Windows 2000 domains and also in domains
that are at the Windows 2000 or Windows Server 2003 domain functional level.

. For information about which operating systems are allowed at the various functional levels,
8" check out Section 2.2.7 in Chapter 2.

An important difference with functional levels is that they apply both to domains and at the forest level. The reason for
this is that some features of Windows Server 2003 Active Directory require either that all the domain controllers in a
domain are running Windows Server 2003 or that all the domain controllers in the entire forest are running Windows
Server 2003.

To illustrate why this is necessary, let's look at two examples. First, let's look at the new "Last logon timestamp
attribute" feature. With this feature, a new attribute called lastLogonTimestamp is populated when a user or computer
logs on to a domain, and it is replicated to all the domain controllers in a domain. This attribute provides an easier way
to identify whether a user or computer has logged on recently than using the lastLogon attribute, which is not
replicated and therefore must be queried on every domain controller in the domain. For lastLogonTimestamp to be of
use, all domain controllers in the domain need to know to update it when they receive a logon request from a user or
computer. Domain controllers from other domains only need to worry about the objects within their domain, so for
this reason this feature has a domain scope. Windows 2000 domain controllers do not know about
lastLogonTimestamp and do not update it. Therefore, for that attribute to be truly useful, all domain controllers in the
domain should be running Windows Server 2003. All the domain controllers must know that all the other domain
controllers are running Windows Server 2003, and they can do this by querying the functional level for the domain.
Once they discover the domain is at a certain functional level, they start utilizing features specific to that function level

Likewise, there are times when all domain controllers in the forest must be running Windows Server 2003 before a
certain feature can be used. A good example is with the replication improvements. If some of the ISTGs were using
the old site topology algorithms and others were using the new ones, you could have replication chaos. All domain
controllers in the forest need to be running Windows Server 2003 before the new algorithms are enabled. Until then,
they will revert to the Windows 2000 algorithms.

14.3.1 How to Raise the Functional Level

To raise the functional level of a domain or forest, you can use the Active Directory Domains and Trusts MMC
snap-in. To raise the functional level of a domain, open the snap-in, browse to the domain you want to raise,
right-click on it in the left pane, and select "Raise Domain Functional Level...". You will then see a screen similar to

that in Figure 14-1.

Figure 14-1. Raising the domain functional level
=i =10 x|
Bl Attion Wew Helo

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

14.4 Preparing for ADPrep

Before you can start enabling functional levels, you have to go through the process of upgrading your existing
infrastructure to Windows Server 2003. The first step before you can promote your first Windows Server 2003
domain controller is to prepare the forest with the ADPrep utility.

If you've installed Exchange 2000 into your Active Directory forest, you are undoubtedly familiar with the Exchange
setup.exe /forestprep and /domainprep switches. These switches are run independently from the Exchange server
mstall to allow Active Directory administrators to take care of the AD-related tasks necessary to support Exchange.
The Exchange /forestprep command extends the schema and adds some objects in the Configuration Naming
Context. The Exchange /domainprep command adds objects within the Domain Naming Context of the domain it is
being run on and sets some ACLs. The ADPrep command follows the same logic and performs similar tasks to
prepare for the upgrade to Windows Server 2003.

= Microsoft recommends that you have at least Service Pack (SP) 2 installed on your domain
controllers before running ADPrep. SP 2 fixed a critical internal AD bug, which can
manifest itself when extending the schema. There were also some fixes to improve the
replication delay that can be seen when indexing attributes. If you plan on supporting a
mixed Windows 2000 and Windows Server 2003 environment for an extended period of
time, Microsoft recommends that you have SP 3 on your Windows 2000 domain
controllers.

For more information on the Microsoft recommendations, check out Microsoft Knowledge
Base Article 331161 from http://support.microsoft.com.

The ADPrep command can be found in the 1386 directory on the Windows Server 2003 CD. The ADPrep
command depends on several files in that directory so it cannot simply be copied out and put on a floppy or CD by

itself. To run the ForestPrep, you would execute the following:
X:\1386\adprep /forestprep

where X: is a CD drive or mapped drive to a network share containing the Windows Server 2003 CD. Similarly, to

run DomainPrep you would execute the following;
X:\1386\adprep /domainprep

You can view detailed output of the ADPrep command by looking at the log files in the

%SystemRoot %\system32\debug\adprep\logs directory. Each time ADPrep is executed, a new log file is generated
that contains the actions taken during that particular invocation. The log files are named based on the time and date
ADPrep was run.

Now we will review what ForestPrep and DomainPrep do.
14.4.1 ForestPrep

The ADPrep /forestprep command extends the schema with quite a few new classes and attributes. These new
schema objects are necessary for the new features supported by Windows Server 2003. You can view the schema
extensions by looking at the . /df files in the 1i386 directory on the Windows Server 2003 CD. These files contain
LDIF entries for adding and modifying new and existing classes and attributes.

= Microsoft warns against manually extending the schema with the ADPrep LDIF files. You
should instead let ADPrep do it for you.

ForestPrep hardens some default security descriptors and modifies some of the ACLs on the containers in the

N (4 NT/YONT 1 1. Yt Y 4T YT e e ey S

http://support.microsoft.com/default.htm
http://support.microsoft.com

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

14.5 Upgrade Process

The upgrade process to Windows Server 2003 should be straightforward for most deployments. No forest
restructuring is required, no user profile or workstation changes are necessary assuming you are running the latest
service pack and hotfixes, and there should be no need for political turf battles over namespace usage and ownership
like there might have been with Windows 2000.

We are going to outline five high-level steps that you should follow to upgrade to Windows Server 2003. They
include performing an inventory of your domain controllers and clients to determine if there will be any compatibility
showstoppers. You are then ready to do a trial run and perform extensive testing to see what impact the upgrade may
have on functionality. Next, you have to prepare your forest and domains with ADPrep, which we've already
discussed in some depth. Finally, you'll upgrade your domain controllers to Windows Server 2003. In Section 14.6,
we will describe what to do after you've upgraded your domain controllers as far as monitoring, raising functional
levels, and taking advantage of new features goes.

14.5.1 Inventory Domain Controllers

A good first step before you start the upgrade process is to do a complete mventory of all of the hardware and
software that is on your domain controllers. You'll then want to contact your vendors to determine whether they've
already done compatibility testing and can verify support for Windows Server 2003. The last thing you want to do is
start the upgrade process and find out halfivay through that a critical monitoring application or backup software that
runs on your domain controllers does not work correctly. Much of this testing can be done in your own labs, but it is
always good to check with the vendors and get their seal of approval. After all, ifa problem does arise, you'll want to
make sure they are supporting the new platform and won't push back on you.

Next you'll want to ensure you have all the necessary hotfixes and service packs installed. A good overview of
Microsoft's recommendations is documented in Microsoft Knowledge Base Article 331161. What you need to install
depends on how long you plan on having your Windows 2000 domain controllers around. If you plan on a quick
upgrade, you'll only need to do the minimal amount of patching required. But if you are going to have a prolonged
migration, you should consider applying all the current fixes and service packs.

After you are sure that your hardware and software is fully up to date and will work under Windows Server 2003,
you'll then want to do a very thorough check of your current domain controllers and make sure they are running
without error. Go through the event logs and resolve any errors and warnings that may be occurring. The dcdiag and
netdiag commands are useful for identifying potential issues. Also, if you don't already trend CPU and memory
statistics, you'll need to start. The reason for collecting all this data is that if problems occur after the upgrade to
Windows Server 2003, you'll want to narrow it down to whether it was previously a problem or if it is new, most
likely as a result of the upgrade. If you don't collect this data, you are setting yourself up for trouble.

A good compatibility test is to run the /checkupgradeonly switch with the Windows Server 2003 mstaller (

winnt32.exe).
X:\> 1386\winnt32.exe /checkupgradeonly

This command will go through the steps as if you were upgrading, but it will check only the applications you have
installed and the status of the forest. If you have not run ADPrep yet, it will return an error about that.

At this point you'll also want to check the status of your backups. Before you run ADPrep you should have
successful backups for at least two domain controllers in every forest and every FSMO role owner. You should also
ensure that your disasterrecovery procedures are well documented and have been tested.

14.5.2 Inventory Clients

The good news as far as clients go is that there aren't a lot of requirements for them to work n a Windows Server
2003 forest. In fact, there are no changes required for Windows XP and Windows 2000 machines. For NT 4.0

clients, you should have at least Service Pack 3, and Microsoft recommends Service Pack 6a. For Windows 98 and
AN i Avvre O AlAaste 4hhmacrs s vl sanand 414 TN Ml Aasnt vt AT ac Aacraret i Ad A MMt rB Y v AT Al DacAa A sdirlAs IIMANELL

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

14.6 Post-Upgrade Tasks

After you've upgraded one or more of your domain controllers to Windows Server 2003, you need to do some
additional tasks to fully complete the migration. First and foremost, you need to monitor the domain controllers every
step of the way and especially after they have been upgraded. You are setting yourself up for failure if you are not
adequately monitoring Active Directory.

14.6.1 Monitor

The criticality of monitoring cannot be overstated. If you are not monitoring, how can you determine whether
something broke during the upgrade? Here are several things you should check after you upgrade your first domain
controller in a domain, any FSMO role owner, and after all DCs have been upgraded:

Responds to all services

Query LDAP, Kerberos, GC (if applicable), and DNS (if applicable) and be sure authentication and login requests
are being processed. The dcdiag command can run many of these tests.
Processor and Memory utilization

Trend processor and memory utilization for some period before you do the upgrade so you can compare to the
numbers after the upgrade.
DIT growth

The growth of the DIT should not be significant. You may in fact want to do an offline defrag after the upgrade to
reclaim any space due to single- instance store of ACLs.
Event logs

This is a no-brainer, but you should always check the event logs to see whether any errors are being logged.
DC resource records registered

Ensure that all of the SRV, CNAME, and A records for the domain controllers are registered. The dcdiag command
can perform these checks.
Replication is working

Run repadmin /showreps and repadmin /replsum and watch for anything out of the ordmnary.
Group Policies are being applied

You may want to add a new setting to an existing GPO or create a new GPO and see if the settings apply on a client
that should be receiving it.
NETLOGON and SYSVOL shares exist

This can consist of opening an Explorer window and browsing the available shares on the domain controller.
FRS is replicating correctly

You can test this out by placing a test file in the SYSVOL share on a domain controller and waiting for it to replicate
to the other domain controllers.

This is not a comprehensive list of everything you should possibly monitor, but it is a good start. If everything checks
out over a period of a week, you can feel pretty comfortable that the upgrade was successful. If nothing else, as long
as you keep a close eye on the event logs, you should be able to catch the majority of problems.

14.6.2 Raise Functional Levels

After you feel comfortable that the upgrades have completed successfully, your next step should be to start raising
the functional levels. If you've only upgraded the domain controllers in a single domain, you can raise the functional
level for only that domain to Windows Server 2003. If you've upgraded all the domain controllers in the forest, you

I T B D T T L T I & A D o N = Y2 Yo e)

[TeamLiB] [rrevious | nexr]

[Team LiB]

14.7 Summary

In this chapter, we covered the new features in Windows Server 2003 and some of the differences with Windows
2000, most of which were instigated by real-world deployment issues. We then went over how you can enable new
features with the use of functional levels and why they are necessary. Next we discussed the ADPrep process and
how that must be done before the first Windows Server 2003 domain controller can be promoted. Once you have
your forest and domains prepared, you can start the upgrade process. We described some of the important issues to
be aware of when upgrading, and finally what to do after you've completed the upgrade.

While this chapter focused mainly on upgrading from an existing Windows 2000 Active Directory infrastructure, in
the next chapter we discuss some of the key issues with migrating from Windows NT straight to Windows Server
2003 Active Directory.

[Team LiB]

[Team LiB]

Chapter 15. Migrating from Windows NT

Knowing how to design Active Directory is very useful, but it's not the end of the story. You may already have an
existing NetWare or Windows NT infrastructure and want to consider migrating to Active Directory. Alternatively,
you may have existing directories and networks that you would like Active Directory to complement rather than
replace. One of the most important features of Active Directory is its ability to integrate with other directory services.

In this chapter we will cover some of the issues to consider when migrating from a Windows N'T environment to
Active Directory. Migrating to Active Directory from an existing NOS infrastructure is analogous to jumping from one
moving car to another. This is due to the fact that organizations rarely get the opportunity to take extended downtime
from both the client and server perspective to move everyone to Active Directory. In fact, limiting downtime for users
is typically one of'the top prioritie, so having a well-thought-out migration and fallback plan is critical to reduce the
impact to your user base.

[Team LiB]

[TeamLiB] [rrevious | nexr]

15.1 The Principles of Upgrading Windows N'T Domains

There are many reasons that you will want to upgrade your Windows N'T domains to Active Directory, not least of
which is to make use of Active Directory and other features. It's possible to have significantly fewer domains in Active
Directory because each domain can now store millions of objects. While fewer domains means less administration, the
added benefit of using organizational units to segregate objects makes the Active Directory represent a business more
accurately, both geographically and organizationally, and is a significant step forward. Couple this with the ability to
set ACLs on objects and their properties in Active Directory, and you get much more fine-grained control for
administrative delegation than before. You also can start phasing out old services, such as Windows Internet Naming
Service (WINS) and extraneous Windows NT Backup Domain Controller (BDC) servers, since the clients now
make more efficient use of DCs via TCP/IP and DN'S. With all these improvements, the goals of upgrading a domain
are easy to state:

Reduce the number of domains in use since it is easier to administer fewer domains.

Gain an extensible schema that allows much more corporate information to be stored than was previously
possible.

Create a hierarchical namespace that as closely as possible mirrors the organizational structure of the
business.

Gain much more fine-grained control over delegation of administration without needing to resort to the use of
multiple domains.

Reduce network bandwidth use by DCs through both multimaster replication and a significantly more efficient
set of replication algorithms.

Reduce the number of PDCs/BDCs to a smaller number of DCs through a more efficient use of DCs by
clients.

Eliminate the need for reliance on WINS servers and move to the Internet-standard DNS for name

resolution.
o L
N Tg get the maximum benefit from the new technologies, you really need to upgrade both
4% clients and servers.

15.1.1 Preparing for a Domain Upgrade

There are three important steps in preparing for a domain upgrade:
1.

Test the upgrade on an isolated network segment set aside for testing.
2.

Do a full backup ofthe SAM and all core data prior to the actual upgrade.
3.

[TeamLiB] [rrevious | nexr]

[Team LiB]

15.2 Summary

This chapter focused on the principles behind the migration of existing Windows NT domains to Active Directory.
Microsoft has taken the time to properly think through a very scalable and stable directory service in its Active
Directory implementation. It has, in its own words, "bet the barn on Active Directory."

The next chapter takes a look at the potential for integrating Microsoft Exchange nto Active Directory.
[Team LiB] e

[Team LiB] plE

Chapter 16. Integrating Microsoft Exchange

Exchange 2000 has been the driving reason behind many companies' move to Active Directory. Exchange 2000
requires an Active Directory infrastructure, and the dependencies it places on AD are not small. In fact, the Exchange
2000 schema extensions roughly double the size of the default Active Directory schema. There are also restrictions on
the location of your domain controllers relative to the Exchange servers. For these reasons and the critical nature of
email, calendar, and collaboration services, all of which Exchange can provide, it is clear that Exchange 2000 can be
the most significant application you integrate into Active Directory.

In this chapter, we will briefly touch on some of the important issues regarding the integration of Exchange with
Active Directory. We'll cover how to prepare the forest for Exchange and describe some of the changes this causes.
Finally, we will review the Active Directory Connector (ADC), which aids in the transition from Exchange 5.5 to
Exchange 2000.

[Team LiB]

[Team LiB]

16.1 Quick Word about Exchange Server 2003

Exchange Server 2003, the next major release of Exchange, is currently due out in the summer of 2003. While there
are many new features planned for that release, the way it mtegrates with Active Directory largely remains the same.
This chapter focuses on Exchange 2000, but the concepts and procedures we describe map very closely to Exchange
Server 2003 as well

Here are a few key points to note about Exchange Server 2003 and Windows Server 2003:
o
Exchange 2000 can only run on Windows 2000.
Exchange Server 2003 can run on Windows 2000 and Windows Server 2003.
Exchange 2000 can run in a Windows Server 2003 or Windows 2000 Active Directory forest.

Exchange Server 2003 can run in a Windows Server 2003 or Windows 2000 Active Directory forest.

Exchange 5.5 can interoperate with Exchange Server 2003 and Windows Server 2003 just as it could with
Exchange 2000 and Windows 2000.

The Outlook 2003 mail client allows cross-forest authentication with Windows Server 2003 forests.

[Team LiB] plEE:

[TeamLiB] [rrevious | nexr]

16.2 Preparing Active Directory for Exchange 2000

Before you can mstall the first Exchange 2000 server in Active Directory, you have to prepare your forest. The
Exchange setup program provides two options called /forestprep and /domainprep, which perform various tasks such
as extending the schema, creating groups, creating containers for Exchange, and setting permissions on those
containers. Due to the extent of changes caused by running these commands and the elevated privileges required to
do so, it is imperative that AD admmistrators have a thorough understanding of what they do.

16.2.1 Forestprep

The Forestprep option of the Exchange 2000 setup extends the schema and makes some changes to the
Configuration container. Forestprep must be run before Domainprep can be executed and subsequently before you
can install your first Exchange 2000 server. The user that runs Forestprep must be a member of both the Enterprise
Admins and Schema Admins groups. Here is a list of some of the tasks Forestprep takes care of:

Extends the schema with close to 2000 schema additions and modifications. Forestprep effectively doubles
the number of classes and attributes in the default Active Directory schema. Several attributes are also added
to the Global Catalog, which will cause a GC resync with Windows 2000 Active Directory.

Creates the Exchange organization with the following distinguished name:
cn=<ExchangeOrgName>, cn=MicrosoftExchange, cn=Services, cn=Configuration,<ForestDN>.

This container is where Exchange stores most of'its data in Active Directory, including the address lists,
administrative groups, recipient policies, and other global settings.

Grants full control rights to the designated user or group over the Exchange organization. The rights granted
are equivalent to the Exchange Full Administrator rights when using the Exchange Delegation of Control
wizard.

Due to the massive number of schema extensions, you should consider running Forestprep on the Schema FSMO
role owner. This can speed up the time it takes for complete Forestprep. Before moving forward to Domamprep, you
must ensure that the schema extensions and objects injected by Forestprep have replicated across the forest.

16.2.2 Domainprep

After you've successfully run Forestprep, you need to run Domainprep in any domain in which you plan to install an
Exchange 2000 server or have mail-enabled users. The user that runs Domainprep must be a member of the Domain
Admins group for the target domain. Some of the tasks performed during Domamprep include the following:

Creates a container for the System mailboxes under cnr=Microsoft Exchange System Objects,
<DomainDN>

Creates the Exchange Domain Servers global group, which is the default location for new Exchange 2000
servers in the domain.

Creates the Exchange Enterprise Servers domain local group. The Recipient Update Service eventually adds
all the Exchange Domain Servers groups from each domain to this group.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

16.3 Exchange 5.5 and the Active Directory Connector

A lot of companies that are migrating to Exchange 2000 had Exchange 5.5 deployed previously. To help with the
transition process, Microsoft created the Active Directory Connector (ADC), which allows you to migrate at your
own pace while maintaining both environments.

The ADC is comprised of a service that does the work and an MMC console to manage the service. While the
console can be installed on any client or server, the ADC service has to be installed on a DC for it to work.

«3 4. To support connection to the ADC, you will need Microsoft Exchange 5.5 Service Pack 1
4" or above.

When you install the ADC for the first time in a forest, it extends the schema to include new Exchange objects and
attributes, as well as modifying existing Active Directory objects to include new Exchange-relevant attributes. The
Exchange Schema is also modified if you intend to replicate Active Directory data to Exchange. For example, the
User class object in the Active Directory Schema is directly modified to include three Exchange-relevant auxiliary
classes in the auxiliary class attribute: msExchMailStorage, msExchCustomAttributes, and
msExchCertificateInformation. Auxiliary classes and schema are discussed more fully in Chapter 4.

Once the Active Directory schema is extended, Active Directory then can hold mail attributes for groups, users, and
contacts just as the Exchange directory can. This means that the ADC now can replicate data bidirectionally, knowing
that either end can store the same data. This allows you to run the ADC in one of three ways:

From Active Directory to Exchange

Every new creation of a user, distribution group, security group, or contact object that is mail-enabled in a designated
Organizational Unit will be copied over to a designated Recipients container on Exchange. Every change to the
attributes of an existing mail-enabled object will also be passed. Deletions also can be synchronized.

From Exchange to Active Directory

Every new creation of a user, mailing list, or contact object in Exchange automatically creates a corresponding user
account in a specified Organizational Unit in Active Directory. Attribute changes also get passed, as do deletions.
Bidirectional replication

Changes at either end get replicated over to the other system.

If you choose to manage one-way replication, you must appreciate that you can update the details only for those
objects on the one-way source directory from that time on. If you were to update the target directory, the changes
you made could potentially be erased during the next update as the system realizes that the target is no longer in
synchronization with the source. To fully appreciate this and see why bidirectional replication does not necessarily help
you here, see the later Section 16.3.2 and Section 16.3.3.

There are other implications that need to be understood for these scenarios. When passing information from Active
Directory to Exchange, for example, you must designate a set of specific Organizational Units that will contain the
objects to be replicated. Any Organizational Units that you do not list will never have objects replicated, even if they
are mail-enabled objects.

Once the ADC is installed, the Active Directory Users and Computers MMC has three extra property pages
available to it. Two of these pages are visible only if you choose the Advanced option from the View menu. One
word of warning: to see the extra pages in the Active Directory Users and Computers MMC on any server or
workstation, you must have the ADC MMC installed onto that client first. Installing the MMC part of the ADC onto a
client configures the Active Directory User and Computers MMC with the extra snap-in options for these pages.

We'll now take a look at how to configure the ADC for your use and follow on with how to mail-enable a user using
the GUI and ADSL

[TeamLiB] [rrevious | nexr]

[Team LiB] plE

16.4 Summary

The importance of Exchange 2000 in the enterprise is ever increasing. Exchange has steadily eaten away at the
messaging market to the point where it is currently the market leader. In fact, the initial driving force behind the move
to Active Directory for many organizations is the need to deploy Exchange 2000. Integrating Exchange into Active
Directory is no small feat due to its heavy reliance on AD. For companies migrating from Exchange 5.5, the Active
Directory Connector (ADC) can help in the transition, but it introduces additional support overhead.

While Exchange 2000 can be the most significant application you'll integrate with Active Directory, it is by no means
the only one you can or should integrate. In the next chapter, we will dive into more details around the future of

Microsoft's Directory Services strategy and how that impacts integration of applications with Active Directory.
[Team LiB] =

[Team LiB] e

Chapter 17. Interoperability, Integration, and
Future Direction

Microsoft's Directory Services strategy has come a long way in the past few years. Even before Active Directory,
several Microsoft products utilized a directory, although most used one that was built in. Some examples include the
NetMeeting ILS server and Exchange 5.5, which was the precursor to Active Directory. With the ntroduction of
Active Directory in 1999, Microsoft finally had the first signs of a coherent Directory Services strategy. With the
release of Windows Server 2003, plus a major overhaul of Microsoft Metadirectory Server and the mtroduction of
Active Directory Application Mode, Microsoft has one of the most diverse and robust directory offerings of any of
the major directory vendors in the market today. In this chapter, we will discuss Microsoft's future plans for Directory
Services and cover how that plan fits in with interoperating with other directories and integrating with applications and
services.

[Team LiB]

[TeamLiB] [rrevious | nexr]

17.1 Microsoft's Directory Strategy

After the mitial release of Active Directory, Microsoft thought, like many in the industry, that the direction most
companies were headed was deployment of a single enterprise directory that would be all things to all clients.
Microsoft's intent was for Active Directory to serve the NOS directory role, replacing NT 4.0, and also the
application directory role, which had typically been dominated by SunOne (formerly iPlanet) and OpenLDAP. But
after three years of implementations, it became evident that although most companies would like to implement a single
directory, in practice it did not work out that way. A lot of applications are developed with a particular directory in
mind and in some cases, like Exchange 2000, an application can work only with a specific directory. After Microsoft
realized that multiple directories would be a reality in most organizations of any size, they decided to rework their
strategy. This happened to coincide with their plans to release a major update of the Windows Server operating
system, Windows Server 2003.

There are three main components to Microsoft's current Directory Services roadmap: Active Directory Application

Mode (AD/AM) as the application directory, Microsoft Metadirectory Services (MMS) as the central provisioning
source, and Active Directory as the NOS or Infrastructure directory. We'll now examine each of these products.

17.1.1 Active Directory Application Mode

When Microsoft announced plans in July 2002 to release a "lightweight" version of Active Directory sometime after
the release of Windows Server 2003, many AD administrators breathed a sigh of relief. The reason for the relief'is
that when Active Directory serves as a NOS directory, as it does in the vast majority of implementations, it does not
lend itself well to being a flexible application directory. We describe some of the challenges of using Active Directory
in both roles in Section 17.3, later in the chapter.

Active Directory Application Mode, or AD/AM for short, will help reduce the need for Active Directory to serve
dual purposes. AD/AM is closer to what most consider a traditional LDAP directory, such as that offered by
SunONE and OpenLLDAP. It has many AD-specific features stripped out, such as KDC support and DNS SRV
requirements, which are necessary for the DC Locator process. AD/AM actually uses the same code base as Active

Directory, but the unwanted features are disabled. Some of the similarities with Active Directory include:

[]
Support for many ofthe same tools (e.g., ADSI Edit and LDP)
Support for ADSI and LDAP
Support for multimaster replication
Support for a fully extensible schema, although a very minimal schema is provided out of the box
Inclusion of Configuration, Schema, and Application Partitions (but no Domain Partitions)

Some of'the differences from Active Directory include:
[]

Easy setup process (not dcpromo) with no reboot required

Support for mnstalling multiple instances on a single computer

Canohhilitxr £4 1117 aarnrh vcfanra ac a corytna ard £ cfarm a1 cfart coryrmeaa sx1thatit a ralhA A4

http://www.microsoft.com/mms/default.htm
http://www.microsoft.com/mms/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

17.2 Interoperating with Other Directories

Now that we've covered what Microsoft is doing with their directory products, let's review some of the issues around
mtegrating a mixed directory environment. As we mentioned earlier, supporting multiple directories within a large
organization is a necessary practice. You may already have several directories deployed, some of which are not
Microsoft-based. A common question in this scenario is how to get your directories to work together.

17.2.1 Getting Data from One Directory to Another

Perhaps the most common use of'a directory is to access employee, customer, or student information. One of the
problems of supporting multiple directories is that for each directory to be useful, it needs to store similar data. It
would be very helpful if there were a standard RFC that defined a replication scheme for LDAP directories, but
unfortunately there is not. As a result, each directory vendor has implemented their own way to replicate data
between servers. This is where metadirectories come into play. The primary purpose of a metadirectory is to facilitate
data flow and provisioning across systems. If you have several directories, and writing your own scripts to replicate
data is not a possibility, implementing a metadirectory is a valid option.

17.2.2 Using Common Tools Across Directories

One of the biggest reasons for not wanting to implement multiple directories is that they have to be managed
differently. Fortunately, both Active Directory and AD/AM are based on LDAP, so any of the standard LDAP SDK
tools such as Idapsearch and Idapadd will work. Also, the Microsoft LDP tool, a graphical user interface for querying
and managing content in Active Directory, has become very popular. LDP is an LDAP-based tool and works against
any LDAP directory. The same cannot be said for tools such as ADSI Edit and the Active Directory administrative
snap-ins, which works only with Active Directory.

One popular approach for managing content in SunONE and OpenLDAP directories is to use the LDAP Data
Interchange Format (LDIF). LDIF has a strict format that is both human- and machme-readable, but it is easy to
work with. Microsoft provides the LDIFDE program on the Windows Server platforms, which allows for importing
and exporting LDIF files. You can also use an LDIF-based tool on a non-Windows platform to manage content in
Active Directory.

17.2.3 Porting Scripts to Work Across Directories

The story for porting scripts is much the same as the one for using similar tools for managing different directories.
Most directories today are LDAP-based, so if your scripts are using an LDAP API, they should work regardless of
what directory is being used. That said, there are some fairly significant differences with how Active Directory was
mplemented that may cause problems in your scripts. Most LDAP directories, including AD/AM, have a flat
namespace. That means you can make a single query to a server and retrieve all objects the server knows about.
With Active Directory, it is a little different m multidomain environments. When you implement multiple domains, you
are essentially segregating your LDAP namespace. A domain controller knows about only the objects in its domain.
For this reason, Microsoft designed the Global Catalog so that you can perform a single query to search against all
objects in a forest, but the GC contains only a subset of information for all objects. The impact to scripts may be less
than obvious, but to perform a query such as retrieving all attributes for any user in the forest that has a department
equal to "Sales", you first must query the GC. To then retrieve all defined attributes for each user, you have to run
separate queries against the domains the users are in. The other option is to skip the GC and query the domains
individually, but regardless this simple task can require several queries.

17.2.4 Making Searches Across Directories Seamless

If you foresee supporting multiple directories, you might have the notion of trying to unify the namespace used by
each. So perhaps your Active Directory root is dc=mycorp,dc=com and you have an OpenLDAP server that has a
root at dc=apps,dc=mycorp,dc=com. You can create referral objects using the crossRef objectclass so that a query
for dc=apps,dc=mycorp,dc=com against an Active Directory domain controller will refer the client to an OpenLDAP
server. The LDIF representation of the referral object looks like the following, where nCName is the name of the

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

17.3 Integrating Applications and Services

Many applications rely on a directory to access user information and store application data. Since Active Directory
was Microsoft's first true directory offering, many application vendors attempted to mntegrate their products into i,
only to find there were a lot of issues from both technology and political perspectives. We'll now discuss some of
these challenges.

17.3.1 The Application Integration Challenge

While trying to use Active Directory as both a NOS and application directory can initially reap significant rewards
from reduced total cost of ownership, it also presents several challenges as well. In fact, many of the features that
make Active Directory a great NOS directory (a repository of user, group, and computer accounts) also make
mtegrating applications much more difficult.

17.3.1.1 Challenges for application vendors

Many of the challenges for application vendors are related more to incompatibilities with integrating with the NOS
than directly to msufficiencies with Active Directory. In fact, Active Directory could be used as a pure application
directory with few differences from what you would see using a SunONE or OpenLDAP directory server. But that is
not how Active Directory is typically being used in the enterprise. In fact, most organizations are still trying to balance
the effects of maintaining a stable NOS environment that has consistent reliability and response times with an
application directory that could impact the end-user experience with increased server load and directory bloat.

We have seen numerous vendors struggle with trying to integrate products with Active Directory, especially on their
first attempt. Most companies do not have a lot of Active Directory or even LDAP expertise, so they make do with
what they have, which often results in poorly integrated applications. In fact, it is not sufficient for vendors to have just
LDAP expertise, because Active Directory has many features, such as the Global Catalog, never seen in any other
directory server product. Often vendors gain the expertise they need only after they have struggled through the painful
experiences of several customers that have deployed their product. Some of the major issues application vendors face
are described in the following list.

Hierarchical structure

One of the biggest roadblocks for applications using Active Directory is accessing data in a multidomain model. Most
medium- to largescale Active Directory implementations use multiple domains to segregate data, regulate
administrative access, limit exposure during disaster recovery situations, and reduce the amount of data that replicates
between domain controllers. Typically, the domains are spread across geographic and sometimes organizational
boundaries. Figure 17-1 illustrates an example of a simple geographic domain structure that is commonly used.

Figure 17-1. Typical geographic domain model
tid.com

amer.tld.com emea.tld.com apac.tid.com

http://www.padl.com/default.htm
http://www.padl.com

[TeamLiB] [rrevious | nexr]

[Team LiB]

17.4 Summary

Integrating applications into Active Directory is not an easy task. There are several potential pitfalls not only for
Active Directory administrators but for application developers as well. Active Directory Application Mode (AD/AM),
which is a lightweight version of Active Directory, should help relieve some of the burden from Active Directory as an
application directory. Integrating Unix with Active Directory also has its challenges, but it is possible.

While integrating applications can be a challenge, getting competing directory services to interoperate is downright
difficult. Even though most directory servers are based on standards-based RFCs, such as LDAP, there are no
standards that define how they can replicate or authorize seamlessly with each other. The two best options for
ntegrating multiple directories is either through a metadirectory, such as MMS, or a programming interface, such as
ADSI or LDAP.

This concludes Part 1. In Part 11, we will cover many of the programmatic concepts and interfaces that can be used
to automate and manage your Active Directory environment.

[Team LiB]

[Team LiB] plE

Part 111: Scripting Active
Directory with ADSI, ADQO, and
WMI

In the networks of today, companies can have tens of thousands of users on hundreds of servers in an organization
that spans many sites. Managing complex systems can take a lot of time, and setting up the mechanisms to effect
sensible management can be cumbersome.

Windows Server 2003 and Windows 2000 provide the administrator with a variety of tools to manage Active
Directory. Unfortunately, these tools are no help for a variety of tasks that you may need to do en masse. No one in
his right mind creates thousands of user accounts using the Active Directory Users and Computers snap-in. You can
also manage and manipulate the Active Directory objects using scripts—and very powerful scripts at that. You can
write scripts to manipulate any object and its properties, and you can port these scripts to the web, allowing
administration through a browser mterface.

Before we start, we want to state categorically that scripting Active Directory is easy. You don't have to know
complex code algorithms, pointer structures, object class nheritance, or any of the weird world of complex program
languages. Here we use Microsoft's VBScript language, a very simple language both to use and to understand. You

should have no problem coming to this section with zero knowledge and being able to understand and implement the
concepts behind the chapters in the section.

Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26
Chapter 27

Chapter 28
[Team LiB]

[Team LiB] e

Chapter 18. Scripting with ADSI

This chapter covers the basics of ADSI and VBScript so that even inexperienced programmers and system
administrators can understand how to write useful scripts. If you're used to another language, such as VB, you'll find
that it is very easy to convert the ADSI examples from VBScript, which is covered in detail in Chapter 25. In Chapter
25 we also cover how to add VBScript code to HTML web pages so that you can write web applications that utilize
ADSI. In Chapter 20, we show you how to use ADO to search Active Directory and retrieve sets of records
according to the powerful search conditions that you impose. Other chapters take this knowledge and extend it so
that you can manipulate other aspects of Active Directory, such as permissions and auditing (Chapter 23) and
modifying the schema (Chapter 24). Several additional references to web pages containing further information and
documentation are included at the end of this chapter, so that you can find more information.

[Team LiB]

[TeamLiB] [rrevious | nexr]

18.1 What Are All These Buzzwords?

First, let's take a look at some of the underlyng technologies that you'll use when developing scripts.
18.1.1 ActiveX

ActiveX, the base component of a number of these technologies, enables software components to interact with one
another in a networked environment, regardless of the language in which they were created. Think of ActiveX as the
method developers use to specify objects that the rest of us then create and access with our scripts in whatever
language we choose. Microsoft currently provides three hosts that run scripts to manipulate ActiveX objects: the
Internet Information Server (IIS) web server, the Internet Explorer (IE) web browser, and the Windows Scripting
Host (WSH). IIS allows scripts called from HTML pages to run on the host server, and IE runs scripts called from
HTML pages on the client. WSH allows scripts to run directly or remotely on a host from a command-line or GUI
mterface. WSH is an integral part of the Windows operating system.

18.1.2 Windows Scripting Host (WSH)

WSH is an important technology for a number of reasons:

You need no other software to start scripting.

The development environment for WSH has no special requirements to build or compile programs; your
favorite text editor will do.

You can execute any WSH script with a VBS, JS, or WSF extension just by double-clicking it.

You can actually execute scripts from the command line, directing window output to that command line. This
is possible because WSH has two mterpreters, one called wscript.exe, which interprets scripts in the GUI
Windows environment, and one called cscript.exe, which interprets scripts in the command-line environment
of'a cmd.exe session. By default, if you double-click a script called myscript.vbs, the system passes that
script to wscript.exe, just as if you had manually typed wscript.exe myscript.vbs. The default interpreter can
be changed generally or on a per-script basis along with other settings.

WSH comes with a series of procedures that allow you to script interactions with the target machine. There
are procedures for running programs, reading from and writing to the registry, creating and deleting files and
shortcuts, manipulating the contents of files, reading and writing environment variables, mapping and removing
drives, and adding, removing, and setting default printers. These procedures are native to WSH, meaning that
only scripts executing under WSH can access them. Being able to access these settings is very useful when
configuring users' environments, since you can now write logon scripts using VBScript or JScript if you wish.

s WSH comes bundled with Windows Server 2003, Windows XP, Windows 2000, and

55 Windows 98, and it can be downloaded from
http//www.microsoft.comymsdownload/vbscript/scripting.asp and installed on Windows 95
and Windows NT 4.0 servers and workstations.

18.1.3 Active Server Pages (ASPs)

When a VBScript is wrapped inside an HTML page, it is called an Active Server Page (ASP) because it can contain

Axrrncrtvin L ~ve vt) Attt Thein vvvmnmtace 4ot 414 xvralh 2 v ArcmTaxriad £+4 414 11 mge A v v mntrd i~ ~11 4 A vemncri A AL A

http://www.microsoft.com/msdownload/vbscript/scripting.asp
http://www.microsoft.com/msdownload/vbscript/scripting.asp

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

18.2 Writing and Running Scripts

The third part of this book is dedicated to showing you techniques to access and manipulate Active Directory
programmatically. It not only contains a plethora of useful scripts that you will be able to adapt for use in your
organization, but it also contains a lot of information on how you can write your own scripts to access Active
Directory to do whatever you need. Let's take a quick look at how to get started writing and running scripts.

18.2.1 A Brief Primer on COM and WSH

Since the release of Windows 2000, each operating system Microsoft has produced comes with a technology called
the Windows Scripting Host, more commonly known as WSH, which allows scripts to execute directly on the client.
WSH-based scripts can open and read files, attach to network resources, automate Word and Excel to create
reports and graphs, automate Outlook to manipulate email and news, change values in the registry, and so on. The
reason these scripts can be so versatile is that WSH supports scripting access to all Component Object Model
(COM) objects installed on the client.

COM is a Microsoft technology that allows programmers to automate and manipulate virtually anything you require
on a host by defining each host component as a set of objects. When someone needs to create or manage a new
component on a Windows-based host, she creates a COM interface, which can be thought of as the definition of the
object and the entire set of operations that can be performed on that object. Interfaces normally are stored in DLL

files.[1]

[1] There are other file types, such as OCX controls that define graphical forms and windows you can use in your
scripts, but they are beyond the scope of this book.

For example, if you want to manipulate a file, you actually need to manipulate a file COM object. The file COM
object definition is stored in an interface held n a DLL. The nterface also holds all of the operations, such as creating
the file, deleting the file, writing to the file, and so on. The interface also defines a series of properties of the object,
such as the filename and owner, which can be accessed and modified. Procedures that operate on an object are
known as methods, whereas the properties of an object are known simply as properties.

In addition to methods and properties provided by interfaces, each scripting language that you use has a series of
defined functions, such as writing to the screen or adding two numbers together.

You can write scripts that execute using WSH and access any COM objects available to you using the methods and
properties defined in the interface for that object and any functions in your chosen scripting language. By default, you
can use Microsoft VBScript or Microsoft JScript (Microsoft's version of JavaScript). WSH is fully extensible, so
other language vendors can provide installation routines that update WSH on a client to allow support for other
languages. A good example is PerlScript, the WSH scripting language that provides support for the Perl language.

18.2.2 How to Write Scripts

WSH scripts are simple to write. The following example is a very simple script written in VBScript and called

simple.vbs:
MsgBox "Hi World!"

All you have to do is open up your favorite text editor type in the command, then save the file with a specific filename
extension (VBS for VBScript or JS for JScript). Then you can double-click the script and it will run using WSH.
Figure 18-1 shows the output of the script, which is a simple dialog box with a text string in it. The script uses the
VBScript MsgBox function.

Figure 18-1. Output from a very simple script
vBScipt B

Hivwfaildl

http://www.win32scripting.com/default.htm
http://msdn.microsoft.com/scripting/default.htm
http://www.win32scripting.com
http://msdn.microsoft.com/scripting/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

18.3 ADSI

Before you can start writing scripts that use ADSI, you first need to understand the basic COM concept of interfaces
and ADSI's concepts of namespaces, programmatic identifiers (ProgIDs), and ADsPaths.

18.3.1 Objects and Interfaces

A COM mterface defines the properties associated with an item, how to access those properties, and how to access
specific functionality of the item, more commonly referred to as an object. For example, WSH has a number of
objects that represent files, shortcuts, network access, and so on. ADSI provides a specification for interfaces that
each directory service provider must implement to maintain uniformity. Each ADSI interface normally supports
methods that can be called to perform a specific action, and properties (or property methods) to retrieve information
about the object.

A method is a procedure or function that is defined on an object and interacts with the object. So an interface to
access Active Directory group objects would have Add and Remove methods, so that members could be added or
removed from a group. Methods are normally represented as Interface:MethodName when referenced, and this is
the form we adopt in this book. Objects also have properties that are retrieved using the IADs::Get or IADs::GetEx
methods and set or replaced using the IADs::Put or IADs::PutEx methods.

Each ADSI object supports an IADs mnterface that provides six basic pieces of information about that object:
Name

Relative name for the object (RDN in the case of Active Directory)
ADsPath

Unique identifier for object
GUID

128-bit Globally Unique Identifier of object
Class

Objectclass of the object
Schema

ADsPath to the objectclass of the object
Parent

ADsPath to the parent object

If you wanted to retrieve the GUID property of an object, you would use the following:
strGUID = objX.Get ("GUID")

You can see that we are calling the [ADs::Get method on the object called objX; the dot (.) indicates the invocation
of'a property or method. The IADs::Get method takes as its one parameter the property to retrieve, which in this case
is the GUID, and passes it out to a variable that we have called strGUID. So that you do not have to use the
IADs::Get method for the most common properties, certain interfaces define these common properties with property
methods. In these specific cases, you use the dotted method notation to retrieve the property by using the property
method of the same name. In the previous GUID example, the GUID property has a property method of the same

name (i.e., [ADs:GUID). We could therefore retrieve the GUID with:
strGUID = objX.GUID

We won't go into the interfaces in any more depth here; we just want to give you a feel for the fact that methods and
properties can be accessed on an object via ADSI interfaces. Although an object can support more than one interface
without a problem, each object supports only the nterfaces that are relevant to it. For example, the user object does
not support the mterface that works for groups. The other mterfaces, of which there are around 40, begin with the

http://msdn.microsoft.com/library/default.htm
http://www.wrox.com/default.htm
http://msdn.microsoft.com/library/
http://www.wrox.com

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

18.4 Simple Manipulation of ADSI Objects

Let's now take a look at simple manipulation of Active Directory objects using ADSI. We are using Active Directory
as the primary target for these scripts, but the underlying concepts are the same for any supported ADSI namespace
and automation language. All the scripts use GetObject to instantiate objects, assuming you are logged in already with
an account that has administrator privileges; if you aren't, you need to use [ADsOpenDSObject::OpenDSObject as
shown earlier in the chapter.

The easiest way to show how to manipulate objects with ADSI is through a series of real-world examples, the sort of
simple tasks that form the building blocks of everyday scripting. To that end, imagine that you want to perform the
following tasks on the mycorp.com Active Directory forest:

1.
Create an Organizational Unit called Sales.
2.
Create two users in the Sales OU.
3.
Iterate through the Sales OU and delete each user.
4.

Delete the Organizational Unit.

This list of tasks is a great introduction to how ADSI works because we will reference some of the major interfaces
using these examples.

18.4.1 Creating the OU

The creation process for the Sales Organizational Unit is the same as for any object. First you need to get a pointer

to the container in which you want to create the object. You do that using the following code:
Set objContainer = GetObject ("LDAP://dc=mycorp,dc=com")

«3 4. While VBScript and VB have the GetObject function, VC++ has no such built-in finction.
& ADSI provides the ADsGetObject function for use by those languages that need it.

Since we are creating a container of other objects, rather than a leaf object, you can use the IADsContainer interface
methods and properties. The IADsContainer::Create method is used to create a container object, as shown in the

following code:
Set objSalesOU = objContainer.Create ("organizationalUnit", "ou=Sales")

Here we pass two arguments to IADsContainer::Create: the objectclass of the class of object you wish to create and
the Relative Distinguished Name (RDN) of the object itself. We use the ou= prefix because the type of object is an
Organizational Unit. Most other objects use the cn= prefix for the RDN.

The TADsContainer interface enables you to create, delete, and manage other Active Directory objects directly from
a container. Think of it as the interface that allows you to manage the directory hierarchy. A second mterface called
IADs goes hand in hand with [ADsContainer, but while IADsContainer works only on containers, IADs will work on
any object.

To commit the object creation to Active Directory, we now have to call IADs::SetInfo:
objSalesOU.SetInfo

ADSI implements a caching mechanism in which object creation and modification are first written to an area of

[TeamLiB] [rrevious | nexr]

[Team LiB]

18.5 Further Information

This is by no means an in-depth discussion on ADSI. For more information, you should look at the Microsoft
Developer Network (MSDN) library documentation, which contains all of the documentation on the specifics of
VBScript, JScript, ADO, ADSI, and WSH. There are a few ways to get hold of the MSDN library: you can
purchase an MSDN library subscription from Microsoft and get quarterty CDs with all of the documentation, or you
can access the documentation directly via the Internet. MSDN online can be found at
http//msdn.microsoft.convlibrary/. Once you enter the MSDN library from the CD-ROM or the Web, you will see a
list of contents on the left-hand menu, which you can browse.

Table 18-1 lists some useful Internet sites to find additional information on the topics covered in this chapter.

Table 18-1. Useful Internet sites

Description

URL

Microsoft's main scripting web site

http://msdn.microsoft.convscripting/

MSDN Library root

http//msdn.microsoft.convlibrary/

WSH docs

http//msdn.microsoft.convlibrary/default.asp ?url=/nhp/D
efault.asp?contentid=28001169

Microsoft's universal data access components site
(including the official pages for ADO)

http//www.microsoft.com/data/

A fantastic site for developers of ASP, ADSI, and ADO
pages and scripts (including a superb ADSI mailing list)

http//www.15seconds.com

O'Reilly's Windows and VB sites detailing its resources
and books

http://windows.oreilly.com

https//vb.oreilly.com

Clarence Washington's repository for scripting solutions
on the Internet

http//cwashington.netreach.net

Wrox publishes books on ADSI, ADO, VB, and WSH

http//www.wrox.com

Windows and .NET Magazine (formerty Windows 2000
Magazine) is published monthly, as is the Windows
Scripting Solutions (formerly Win32 Scripting Journal),
both of which provide a lot of good nformation on
Active Directory and scripting

http//www.winnetmag.com
http//www.win32scripting.com

[Team LiB]

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/scripting/default.htm
http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/default.asp@url=_2Fnhp_2FDefault.asp@contentid=28001169
http://msdn.microsoft.com/library/default.asp@url=_2Fnhp_2FDefault.asp@contentid=28001169
http://www.microsoft.com/data/default.htm
http://www.15seconds.com/default.htm
http://windows.oreilly.com/default.htm
http://vb.oreilly.com/default.htm
http://cwashington.netreach.net/default.htm
http://www.wrox.com/default.htm
http://www.winnetmag.com/default.htm
http://www.win32scripting.com/default.htm
http://msdn.microsoft.com/library/
http://msdn.microsoft.com/scripting/
http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/default.asp?url=/nhp/D
http://www.microsoft.com/data/
http://www.15seconds.com
http://windows.oreilly.com
http://vb.oreilly.com
http://cwashington.netreach.net
http://www.wrox.com
http://www.winnetmag.com
http://www.win32scripting.com

[Team LiB]

18.6 Summary

Hopefully you now understand the basics of ADSI enough to be useful. It's a very robust API that allows you to
mterface to all aspects of both Active Directory and Windows NT, Windows 2000, and Windows Server 2003
servers. Even though the majority of this chapter covers Microsoft operating systems, the code does use the LDAP
namespace and is portable to many other directory services. One of ADSI's biggest strengths is its ability to
communicate with a variety of directory services using either LDAP or a provider-specific namespace.

In the next chapter, we will cover the IADs interface in more depth along with a discussion of the Property Cache. A
chapter covering ADO will follow that, which should give you all the necessary tools to query and manipulate Active
Directory.

[Team LiB]

[Team LiB]

Chapter 19. IADs and the Property Cache

Each object in a directory has a series of attributes, or properties, that uniquely define it. Although properties can
vary from object to object, ADSI supports the manipulation of a core set of six properties common to all objects
using the IADs interface. These properties are common to all objects because IADs is the most basic interface in
ADSI.

[Team LiB]

[TeamLiB] [rrevious | nexr]

19.1 The IADs Properties

The IADs properties are as follows:
Class

The object's schema class
GUID

The object's Globally Unique ID (GUID)
Name

The object's name
ADsPath

The ADsPath to the object in the current namespace
Parent

The ADsPath to the object's parent
Schema

The ADsPath to the object's schema class

Each of these properties has a corresponding property method in the IADs mnterface. You can use the property
method, which has the same name as the property, to access that property's value. Example 19-1 contains code to
display the six IADs properties for a user object.

Example 19-1. Using the explicit property methods to display the six IADs properties

Dim objUser

Dim str

'An ADSI User object
'A text string

User object using the WinNT namespace

Set
str
str
str
str
str
str
Set

objUser=

= "Name:
= str
= str
= str
= str
= str
objUser

2 22 & &2

GetObject ("WinNT://MYCORP/Administrator,User")
" & objUser.Name & vbCrLf

"GUID: " & objUser.GUID & vbCrLf

"Class: " & objUser.Class & vbCrLf

"ADsPath: " & objUser.ADsPath & vbCrLf
"Parent: " & objUser.Parent & vbCrLf

"Schema: " & objUser.Schema & vbCrLf & vbCrLf

= Nothing

User object using the LDAP namespace

Set

Str
Str
Str
Str
Str

objUser=
Str =

str
= str
= str
= str
= str
= str

R 22 &2 &2 2 2

GetObject ("LDAP://cn=Administrator, cn=Users,dc=mycorp,dc=com")
"Name: " & objUser.Name & vbCrLf

"GUID: " & objUser.GUID & vbCrLf

"Class: " & objUser.Class & vbCrLf

"ADsPath: " & objUser.ADsPath & vbCrLf

"Parent: " & objUser.Parent & vbCrLf

"Schema: " & objUser.Schema & vbCrLf & vbCrLf

WScript.Echo str

Set

objUser

= Nothing

To begin, we declare two variables (i.e., str and objUser), invoke the GetObject method to create a reference to the
user object, and assign it to objUser. We then set the str variable to the string "Name:" and apply the IADs:Name

property method (i.e., objUser.Name) to retrieve the Name property's value (i.e., Administrator). The carriage-return

line-feed constant (vbCrLf) specifies to move to the start of'a new line. At this point, str represents the string "Name:
Administrator."

Tn the next ne we 11ce the TAD<(ITTTD nronertv tmethod (ohil Teer (AT TTD) to retrieve the (TTTD nronertyv'e vahie

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

19.2 Manipulating the Property Cache

There will be times when you need to write a script that queries all the values that have been set in the underlying
directory for a particular object. For example, suppose you're one of several systems administrators who work with
your company's Active Directory implementation. You need to write a script that queries all the property values that
the administrators have set for a particular user.

Discovering the set property values for an object can be a long, tedious job. Fortunately, ADSI provides a quick
method. If someone has set a value for a property, it must be in that object's property cache. So all you need to do is
walk through the property cache, displaying and optionally modifying each item as you go.

In this section, we'll describe the property cache mechanics and show you how to write scripts that use several ADSI
methods and properties to add individual values, add a set of values, walk through the property cache, and write
modifications to the cache and to the directory. Although these examples access the Lightweight Directory Access
Protocol (LDAP) namespace, you can just as easily substitute the WinN'T namespace in any of the scripts and run
them against Windows NT servers.

Details of the property cache interfaces can be found at the MSDN Library (http://msdn.microsoft.com/library/) by
clicking through the following links: Networking and Directory Services == Active Directory, ADSI, Directory
Services == SDK Documentation == Directory Services == Active Directory Service Interfaces ==+ Active
Directory Service Interfaces Reference == ADSI Interfaces == Property Cache Interfaces.

19.2.1 Property Cache Mechanics

Every object has properties. When you perform an explicit IADs::GetInfo call (or an implicit [ADs::GetInfo call using
IADs::Get) on an object that you previously bound to, the OS loads all the properties for that specific object mto that
object's property cache. Consider the property cache a simple list of properties. The PropertyList object represents
this list. You can use several IADsPropertyList methods to navigate through the list and access items. For example,
you can navigate the list and access each item, every nth item, or one particular item based on its name.

Each item in the property list is a property entry represented by the PropertyEntry object. You use the
IADsPropertyEntry interface to access property entries. A property entry can have one or more property values. To
access values in a property entry, you use the [ADsPropertyValue interface.

To summarize, use IADsPropertyList to navigate through and access property entries in the property list. When you
want to manipulate a property, use IADsPropertyEntry. To access the values of that property entry, use
IADsPropertyValue.

19.2.2 Adding Individual Values

To show you how to add an individual value, we'll expand on one of the examples from the previous section: the
pager property of the User object. The pager property is an array of text strings representing multiple pager numbers.

Consider that any property represents data. Data can take several forms, including a string, an integer, or a Boolean
value. In the cache, each property has two attributes: one attribute specifies the type of data the property represents,
and the other attribute specifies the value of that data type. For example, each pager property has two attributes: a
Unicode string (the type of data) and the pager number (the value of that Unicode string). The User object's
lastLogon property, which specifies the time the user last logged on, has the two attributes, a Largelnteger (type of
data) and a date/time stamp (the value of that LargeInteger).

The pager and lastLogon properties are instances of the PropertyValue object, so you manipulate them with the
method and property methods of the [ADsPropertyValue interface. For example, you use the
IADsPropertyValue:ADsType property method to set the PropertyValue's type of data. Table 19-3 shows some of
the corresponding constant names and values that you can set for the [ADsPropertyValue:ADsType property.

™ 11 1N N N 4 4 £~ 41 T AN DY 49 YT 1T AYNT g

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

19.3 Checking for Errors in VBScript

It is worthwhile to look at error handling in a little more detail now. Normally errors that occur in a script are termed
fatal errors. This means that execution of the script terminates whenever an error occurs. When this happens, a dialog
box opens and gives you the unique number and description of the error. While this is useful, sometimes you may like
to set errors to be nonfatal, so that execution continues after the error. To do this, you include the following line in

your code:
On Error Resume Next

Once you have done this, any line with an error is ignored. This can cause confusion, as can be seen from the
following code. Note the missing P in LDAP:

On Error Resume Next
Set objGroup = GetObject ("LDA://cn=Managers,ou=Sales,dc=mycorp,dc=com")

objGroup.GetInfo

WScript.Echo objGroup.Description

objGroup.Description = "My new group description goes here"
objGroup.GetInfo

WScript.Echo objGroup.Description

This script fails to execute any of the lines after the On Error Resume Next statement, as the first LDAP call into the
objGroup variable failed. However, it will not terminate as usual with an error after the GetObject line, due to the On
Error statement. To get around this, you should add a couple lines to do error checking. Example 19-9 is a good
example of error checking in a different script.

Example 19-9. Error checking in VBScript

On Error Resume Next

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

'Clear errors
L B B e I I I b S e b I b b b b b b b e b b b b b b b b b I b b b I b b e e b b b b b I b b b b b b b I b b b b b b b b b b b b S

Err.Clear

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

'Get a pointer to the Administrator account
Vhkhkhkhkkhhhhhhhhhhhdhhdkhhhkhhdkhhhkhhhhhhhhhhhhhdhhdhhdhkhkdhhkhrkhkhkhrhkhkhrhkhkhrhhrkhrhrkxkxk

Set objUser = GetObject ("LDAP://cn=Administrator,cn=Users,dc=mycorp,dc=com")
If Hex (Err.Number)="&H80005000" Then
WScript.Echo "Bad ADSI path!" & vbCrLf & "Err. Number: "
& vbTab & CStr (Hex (Err.Number)) & vbCrLf & "Err. Descr.: "
& vbTab & Err.Description
WScript.Quit
End If

Vhkhkkhkhkkhkhkhhkhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhhkhhkhkhkhhkhkhhrkkkkkx*x

'Explicitly call GetInfo for completeness

Vhkhkkhhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhkhhhhhhhhhhkhkhkhkhkhhkhhhhrhkkkkx*x

objUser.GetInfo

Vhkhkkhhkkhkhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhkhhhhhkhkhkhkhkhkhkhkhkhhkkkkkx*x

'Clear any previous errors
Vhkhkhkhkkhhhkhhhhhhhhdhhdkhhhkhhkdhhhkhhhkhhrhhhhhhhhdhhdhhdhkhkdhkhkrkhkhkrkhkhkrhkhkrkhrhrkhrkxkxx

Err.Clear

Vhkhkkhkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhkhhhhkhkhkhkhhhkhhhrrkhhkkkx*x

'Try and get a pointer to the "moose" attribute of the user (which

'doesn't exist)
L B B e I I I b I e b I b b b b b b b e b b b b b b b b b b b b b I b b e b b b b b b I I b b b I b b I b b b b b b b b a3

X = 0bjUser.Get ("moose™")

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

'Check for property does not exist error

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

[Team LiB]

19.4 Summary

Over the last two chapters, we've covered the interfaces, methods, and property methods that allow you to use
access and manipulate generic objects in Active Directory. These interfaces include:

[ADs

IADsContainer (covered more fully later)
IADsPropertyList

IADsPropertyEntry

IADsPropertyValue

We've also looked at how to supply credentials to authenticate with alternate credentials using the
ADsOpenDSObject interface.

In the next chapter, we cover how to search Active Directory using a database query interface called ADO.
[Team LiB]

[Team LiB]

Chapter 20. Using ADO for Searching

Microsoft's ADO technology lets you conduct database searches and retrieve the results through a flexible mterface
called resultsets. ADO also lets you update information in a database directly or with stored procedures. Because
Microsoft created an ADO database provider for ADSI (the ADSI OLE DB provider), you can also use ADO's
database query technology to query Active Directory. However, the ADSI OLE DB provider is currently read-only,
so many of the useful ADO methods for updating data aren't available yet. You can use ADO only for searching and
retrieving objects. Despite the read-only limitation, using ADO s still a boon. It is significantly faster to search Active
Directory using ADO than it is to use ADSI to bind to each object recursively down a branch. Even using
IADsContainer:Filter is slow in comparison. So if you need to search Active Directory rapidly for attributes matching
criteria, ADO is exactly what you should use. The ADO object model consists of nine objects (Command,
Connection, Error, Field, Parameter, Property, Record, Recordset, and Streams) and four collection objects (Errors,
Fields, Parameters, and Properties). However, some of these objects aren't useful if you're using the ADST OLE DB
provider, as they are more often used for accessing full-fledged database services. For example, the Parameter object
lets you pass parameters to stored procedures, but this object is of little use because the ADSI provider doesn't
support stored procedures.

The objects that are appropriate to ADSI in a read-only environment are the Command, Connection, Error, Field,
Property, and Recordset objects. We use them to show you how to perform complex searches. For a full description
of'the ADO object model and the available functions, check out the following on the MSDN Library (
http//msdn.microsoft.convlibrary/): Data Access ==* Microsoft Data Access Components (MDAC) ==+ SDK
Documentation == Microsoft ActiveX Data Objects (ADO).

«s 4. Ifyouwish to make use of the tools in this chapter in a VB project rather than a VBScript
& script, you need to include the Microsoft ActiveX Data Objects 2.x library from the
Reference item on the Project menu of the Visual Basic Environment.

One point to note: ADO is written to work with all types of databases, so there are a numerous ways of doing
exactly the same thing. We will attempt to cover examples of each different way as they crop up so that you will be
able to choose the method that suits you best or that you are familiar with.

[Team LiB]

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

20.1 The First Search

The easiest way to explain basic searching usmg ADO is with an example. Here we'll build an ADO query to search
and display the ADsPaths of all users in Active Directory. You can create a simple script to do this search in six steps.

20.1.1 Step 1—Define the Constants and Variables

For this script, you need to define one constant and three variables. The constant is adStateOpen, which we set to 1.
If you're using VBScript, you use this constant later to determine whether you made a successful connection to the
database. If you're using Visual Basic (VB), you don't have to include this constant because VB has already defined
it. The two main variables are objConn (an ADO Connection object that lets you connect to the AD database) and
objRS (an ADO Recordset object that holds the retrieved resultset). The third variable holds the output of the

resultset, as shown i the following example:
Option Explicit

Const adStateOpen = 1

Dim objConn 'ADO Connection object
Dim objRS 'ADO Recordset object
Dim strOutput 'The output of the search

The Option Explicit statement at the beginning of the script is optional, but we recommend that you include it. This
statement forces the script to declare variables, so you can quickly spot errors.

20.1.2 Step 2—Establish an ADO Database Connection

To perform an ADO query, you need to establish an ADO connection, which is completely separate from any ADSI
connections you may have opened with IADsOpenDSObject:OpenDSObject. Before you can establish this
connection, you must create an ADO Connection object to use. This object can be created the same way you create
a file system object: use the CreateObject method, with "ADODB.Connection" as a parameter. You use the ADODB

prefix to create all ADO objects, and Connection is the top-level object in the ADO object model:
Set objConn = CreateObject ("ADODB.Connection")

Just as you use different programmatic identifiers (ProgIDs) (e.g., WinNT:, LDAP:) to tell ADSI which directory to
access, you use different OLE DB providers to tell ADO which query syntax to use. An OLE DB provider
mplements OLE DB mterfaces so that different applications can use the same uniform process to access data. The
ADSI OLE DB connector supports two forms of syntax: the SQL dialect and the LDAP dialect. Although you can
use the SQL dialect to query the ADSI namespace, most scriptwriters use the LDAP dialect because Microsoft
defined it specifically for ADO queries to directory services. However, the default for the Connection object's
read/write property, objConn.Provider, is MSDASQL, which specifies the use of SQL syntax. Because you want to
use the ADSI provider, you need to set objConn.Provider to "ADsDSOObject", which specifies the use of the
LDAP syntax. By setting this specific provider, you force the script to use not only a specific syntax but also a specific

set of arguments in the calls to the Connection object's methods.
objConn.Provider = "ADSDSOObject"

20.1.3 Step 3—Open the ADO Connection

You can open a connection to the directory by calling the Connection::Open method. When describing the methods
and property methods of COM iterfaces in text, the established notation is to use a double colon (::) separator. For

example, Connection::Open specifies the Open method of the Connection object, as shown in the following example:
objConn.Open
""", "CN=Administrator,CN=Users,dc=mycorp,dc=com", ""

As the code shows, the Open method takes three parameters. The first parameter is the
Connection::ConnectionString parameter, which contains information that the script needs to establish a connection to
the data source. In this case, it is blank. The second parameter contains the user DN to bind with, and the third is the
user's password.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

20.2 Other Ways of Connecting and Retrieving Results

As mentioned earlier, there are a number of ways of authenticating an ADO connection to Active Directory. The
simplest is the way outlined earlier using the Connection::Provider set with the username and password as second and

third arguments:
Set objConn = CreateObject ("ADODB.Connection")
objConn.Provider = "ADSDSOObject"

objConn.Open "",
"CN=Administrator,CN=Users,dc=mycorp,dc=com",
"mypass "

Because ADO is designed for databases, it is often necessary to specify a number of other requirements when
opening a connection. These include a different provider, a different server, or a specific database. All of these items
can be set prior to opening the connection. However, none of these make a difference to the AD provider. If you
wish to open a connection by setting these values in the ConnectionString property, then do so as shown in the

following code:
Set objConn = CreateObject ("ADODB.Connection")
objConn.Provider = "ADSDSOObject"objConn.ConnectionString = _

"DSN=; UID=CN=Administrator, CN=Users, dc=mycorp, dc=com; PWD=mypass"
objConn.Open

Semicolons separate the arguments, with the expected DataSourceName (DSN) specified as empty at the start of
the string.

One important point: do not authenticate using both methods with the same connection—use one or the other. The
following code uses both methods to illustrate what not to do:
Set objConn = CreateObject ("ADODB.Connection™)
objConn.Provider = "ADSDSOObject"
objConn.Open
"DSN=;UID=CN=Administrator,CN=Users,dc=mycorp, dc=com; PWD=mypass",
"CN=Administrator,CN=Users,dc=mycorp,dc=com", "mypass"

This is a slightly different version, but still wrong:

Set objConn = CreateObject ("ADODB.Connection")
objConn.Provider = "ADSDSOObject"
objConn.ConnectionString =

"DSN=; UID=CN=Administrator, CN=Users, dc=mycorp,dc=com; PWD=mypass"
objConn.Open "", "CN=Administrator,CN=Users,dc=mycorp,dc=com",
"mypass "

20.2.1 Searching With SQL

You can retrieve resultsets in a variety of ways and get exactly the same values. We will now discuss how to use the
Command object and the Recordset::Open method, using SQL-formatted queries to retrieve resultsets. SQL is a
powerful query language that is the de facto standard to query database tables. We do not propose to go through the
details of SQL here, but we will cover some examples for those who may already be familiar with SQL and would
find using it to be a more comfortable way of querying Active Directory than using LDAP search filters.

20.2.1.1 Using the Connection::Execute method

You can pass a SQL select statement to a connection using the Execute method as we've done previously with

LDAP-based queries:
Set objConn = CreateObject ("ADODB.Connection™)
objConn.Provider = "ADSDSOObject"
objConn.Open "", "CN=Administrator,CN=Users,dc=mycorp,dc=com", ""

Set objRS = objConn.Execute "Select Name, ADsPath"
& " FROM 'LDAP://dc=mycorp,dc=com' where objectclass = 'user'"

M2 12 TTeino the Recordeet:Onen method

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

20.3 Understanding Search Filters

When you use the LDAP dialect with the ADSI OLE DB provider to conduct a search, you must use an LDAP
search filter to specify your search criteria. In a simple case, (objectclass=user) would be used to select every object
with the user objectclass under the search base. You can in fact use a filter to match the presence of'a value (or not)
for any attribute of an object. This enables you to create powerful searches with complex criteria. For example, you
can search for any group object that has a certain user as a member and that has a description matching a certain
substring.

«3). Filters must follow the format specified in RFC 2254. You can download RFC 2254 from
& http//www.ietf org/rfc/rfc2254. txt.

Although filters let you conduct powerful searches, working with them can seem complex because of the format used,
known as prefix notation. To make it easier to understand, we have divided the discussion of filters into two parts:
items within a filter and items connecting filters.

20.3.1 Items Within a Filter

Within a filter, you can have three types of items:
Operators

A filter can include one of three operators. The equal-to (=) operator checks for exact equivalence. An example is
(name=janet). The greater-than-or-equal-to (>=) and less-than-or-equal-to (<=) operators check for compliance
with a range. Examples are (size>=5) and (size<=20).

Attributes

You can include attributes in filters when you want to determine whether an attribute exists. You simply specify the
attribute, followed by the = operator and an asterisk (*). For example, the (mooseHerderProperty=*) filter searches
for objects that have the mooseHerderProperty attribute populated.

Substrings

You can include substrings in filters when you want to search for objects with specific strings. Test for substrings by
placing the attribute type (e.g., cn for common name, sn for surname) to the left of the = operator and the substring
you're searching for to the right. Use the * character to specify where that substring occurs in the string. The
(cn=Keith*) filter searches for common name (CN) attributes that begin with the substring "Keith"; the (cn=*Cooper)
filter searches for CN strings that end with the substring "Cooper". Depending on the search, the latter form of
substring searches can take a long time to return. Under Windows Server 2003, the substring searches perform much
better than previously.

You can place several substrings together by using an asterisk character several times. For example, the
(cn=Kei*Coo*) filter searches for two substrings in the string: the first substring begins with "Kei", followed by the
second substring that begins with "Coo". Similarly, the (cn=*ith*per) filter searches for strings that have two
substrings: the first substring ends in "ith" followed by the second substring that ends in "per".

The resultset of a substring search might contain objects that you don't want. For example, if you use the filter
(cn=Kei*Coo*) to search for the object representing "Keith Cooper", your resultset might contain two objects: one
representing "Keith Cooper" and another representing "Keith Coolidge". To address that issue, you can connect
multiple filter strings together to refine your search even more.

20.3.2 Connecting Filters

Compound filters can be created by using the ampersand (&), the vertical bar (|), and the exclamation mark (!). Let's
start by creating a filter to find all groups whose common name begins with the letter a. The following is the filter for

thic cearch:

http://www.ietf.org/rfc/rfc2254.txt
http://www.ietf.org/rfc/rfc2254.txt

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

20.4 Optimizing Searches

Whether you are searching Active Directory using filters or with SQL, there are some important guidelines to follow
that can help reduce load on the domain controllers, increase performance of your scripts and applications, and
reduce the amount of traffic generated on the network. It is also important to socialize these concepts with others as
much as possible. It takes only a couple of badly written search filters in a heavily used application to severely impact
the performance of your domain controllers!

20.4.1 Efficient Searching

Understanding how to write efficient search criteria is the first important step to optimizing searches. By
understanding a few key points, you can greatly improve the performance of your searches. It is also important to
reuse data retrieved from searches or connections to Active Directory as much as possible. The following list
describes several key points to remember about searching:

Use at least one indexed attribute per search. Certain attributes are marked as "indexed" in Active Directory,
which allows for fast pattern matching. They are typically single-valued and unique, which means searches
using indexed attributes can determine which objects match them very quickly. If you don't use indexed
attributes, the database equivalent of a full table scan must be done to determine the matches.

Use a combination of objectclass and objectcategory in every search. While most of the queries used so far
n this chapter have used only objectclass, you should make it a practice always to use a combination of
objectclass and objectcategory. The problem with using only objectclass is that it is not indexed because it is
multivalued and not unique, while objectcategory is single-valued and indexed. See the next section Section
20.4.2 for more information.

Try to limit the use of trailing (name=*Ilen) or middle match (name=*1le*) searches. Unlike other directories,
Active Directory is not optimized to handle these types of searches, and they should be avoided if possible. In
some cases these types of searches can take upwards of 10-15 seconds to complete under Windows 2000!

Use the appropriate search scope. Avoid using subtree searches unless you truly want to search more than
one level down. If you only want to search directly below the search base, use the OneLevel scope.

Use paged searching for queries that can potentially return thousands of entries. Most subtree searches
should have paging enabled unless you are positive the search will not return more than 1,000 entries or do
not want it to return more than 1,000 entries.

Reuse ADO Connection and Command objects as much as possible. ADO Connection and Command
objects can be used for multiple searches so there is no need to create additional ones.

20.4.2 Objectclass Versus Objectcategory

It is very important to understand the differences between objectclass and objectcategory and how they should be
used during searches. Objectclass is a multi-valued attribute that contains the objectclass hierarchy for an instantiated
object. For example, a user object has the following values as part of its objectclass attribute:

top

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

20.5 Advanced Search Function—SearchAD

We will now take many of the concepts from this chapter and apply them in a useful example called SearchAD.
SearchAD can be included in any VBScript and used immediately as is.

SearchAD takes five parameters and returns a Boolean indicating whether it succeeded or failed i the search. You
should recognize most of these parameters.

The base ADsPath to start the search from

A valid ADO criteria string

The depth that you wish to search, represented by one of the exact strings Base, OneLevel, or SubTree

The comma-separated list of attributes that is to be returned

A variable that will hold the returned results of the search in an array

The last parameter does not have any values when passed in, but if SearchAD is successful, the array contains the
resultset.

Here is an example use of SearchAD:
bolIsSuccess = SearchAD ("LDAP://ou=Finance,dc=mycorp,dc=com",
"(cn=a*)", "Base", "cn,description", arrSearchResults)

You can also use it as part of an If... Then condition:
If SearchAD("LDAP://dc=mycorp,dc=com", " (description=moose)", "SubTree",
"ADsPath, cn,description", arrSearchResults) Then
'success code using arrSearchResults
Else
'failure code
End If

The array that is returned is a two-dimensional array of attributes that match the criteria. If there were 12 results
returned for the preceding query, this is how you access the results:

arrSearchResults (0,0) 'ADsPath of first result
arrSearchResults (0,1) 'CN of first result

arrSearchResults (0,2) 'Description of first result
arrSearchResults (1,0) 'ADsPath of second result
arrSearchResults(1,1) 'CN of second result
arrSearchResults (1,2) 'Description of second result
arrSearchResults (2,0) 'ADsPath of third result
arrSearchResults (2,1) 'CN of third result
arrSearchResults (2,2) 'Description of third result
arrSearchResults (3,0) 'ADsPath of fourth result
arrSearchResults (3,1) 'CN of fourth result
arrSearchResults (3,2) 'Description of fourth result

arrSearchResults (11,0) 'ADsPath of 1lth result
arrSearchResults (11,1) 'CN of 11th result
arrSearchResults (11,2) 'Description of 11th result

You can loop through these values in vour own code using VBScript's built-in function UBound to find the maximum

[TeamLiB] [rrevious | nexr]

[Team LiB]

20.6 Summary

In this chapter, we reviewed the basics of ADO, which provides a robust search interface for Active Directory.
While origmally ntended for databases, ADO was adapted to Active Directory to allow queries based on LDAP
search filters or SQL. Several techniques for optimizing searches in Active Directory were reviewed, including a
discussion of using objectclass versus objectcategory. We ended the chapter by covering a fully functional SearchAD
procedure that can be used as is in any VBScript to easily search Active Directory based on specified criteria.
SearchAD hides all the underlying ADO logic, including connection setup, query execution, and recordset
manipulation.

After providing a good background for ADSI and ADO in Chapter 18 through Chapter 20, we are now ready to
move to more practical applications. The next several chapters show some of the capabilities these interfaces provide
and a lot of sample code to get you started.

[Team LiB]

[Team LiB] plE

Chapter 21. Users and Groups

In this chapter, we will show you how to automate the creation and manipulation of user and group accounts.
Although tools to create user and group accounts already exist (e.g., the Resource Kit's Addusers utility), ADSI's
versatility lets you quickly write a script that creates 1,000 fully featured user or group accounts based on whatever
business logic you require. You can also create command-line utilities or web-based mterfaces using the techniques
shown in this chapter to perform such functions as unlocking locked-out user accounts or adding users to groups.

[Team LiB]

[Team LiB]

21.1 Creating a Simple User Account

You can quickly create a user account with minimal attributes with ADSI. The following code shows how to create a
user in an N'T domain, a local computer, and an Active Directory domain.
Option Explicit
Dim objDomain, objUser
'Creating a user in a Windows NT domain

Set objDomain = GetObject ("WinNT://MYDOMAIN")
Set objUser = objDomain.Create("user","vlaunders")
objUser.SetInfo

'Creating a local user on a computer or member server
'Valid for Windows NT/2000/2003

Set objComputer = GetObject ("WinNT://MYCOMPUTER, Computer")
Set objUser = objComputer.Create ("user","vlaunders")
objUser.SetInfo

'Creating a user in Active Directory

Set objDomain = GetObject ("LDAP://cn=Users,dc=mycorp,dc=com")
Set objUser = objDomain.Create("user","cn=vlaunders")
objUser.Put "sAMAccountName", "vlaunders"

objUser.Put "userPrincipalName", "vlaunders@mycorp.com"
objUser.SetInfo

The code is composed of three sections. The first two sections use the WinNT provider to create a user account in
an NT 4.0 domain, and in a computer that could be a member server or part of a workgroup. The third section uses
the LDAP provider to create a user account in an Active Directory domain.

When you create users in an Active Directory domain, you need to be aware of two important User object attributes:
sAMAccountName and userPrincipalName. The User object has several mandatory attributes. The system sets many
of these mandatory attributes, except for one, SAMAccountName, which allows Active Directory-based clients to
mteract with older clients and NT domains. You must set the sSAMAccountName attribute before you call
[ADs:SetInfo or the creation will fail. The userPrincipalName attribute isn't mandatory, but it is recommend so users
can log on using an email-style address as defined in RFC 822 (https//www.ietf.org/rfc/rfc822.txt).

[Team LiB]

http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc822.txt

[TeamLiB] [rrevious | nexr]

21.2 Creating a Full-Featured User Account

Creating user accounts as we've done previously is fine for an ntroduction, but typically you'll need to set many more
attributes to make them usable in your environment. The approaches you use to create fully featured users in the NT
and Active Directory environments differ slightly; Active Directory offers considerably more properties than N'T, such
as the office and home addresses of users, as well as lists of email addresses and pager, fax, and phone numbers.

You can manipulate User objects with a special interface called IADsUser. [ADsUser's methods and property
methods let you directly set many of the User object's property values. Table 21-1 through Table 21-3 contain the
methods, read-write property methods, and read-only property methods, respectively, for the IADsUser interface.
The corresponding Active Directory attribute is included in parentheses for the property methods that can be set with
the LDAP provider.

Table 21-1. IADsUser methods

Method Description
IADsUser::ChangePassword Changes the existing password.
IADsUser::SetPassword Sets a new password without needing the old one.

Gets a list of groups of which the user is a member. You
[ADsUser:Groups can use the [ADsMembers interface to iterate through
the list.

Table 21-2. IADsUser read-write property methods

Property method Available with WinNT or LDAP?
[ADsUser::AccountDisabled WinNT, LDAP (userAccountControl mask)
[ADsUser::AccountExpirationDate WinNT, LDAP (accountExpires)
[ADsUser::Department LDAP (department)

[ADsUser::Description WinNT, LDAP (description)
[ADsUser::Division LDAP (division)

[ADsUser:EmailAddress LDAP (mail)

[IADsUser:EmployeelD LDAP (employeelD)
[ADsUser:FaxNumber LDAP (facsimileTelephoneNumber)
IADsUser:FirstName LDAP (givenName)

[IADsUser::FullName WinNT, LDAP (displayName)

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

21.3 Creating Many User Accounts

User-specific scripts work well if you have to create only a few user accounts. If you need to create many user
accounts at one time, or if you create new accounts often, using a script with an input file is more efficient. The input
file includes the user data so that you can use the script to create any user account. For example, the output shown
below represents the users-to-create.txt mput file that provides the user data for the universal script in Example 21-3.
Although this nput file includes only four data sets, you can include as many data sets as you want. You include a data
set for each user account that you want to create.

vlaunders:12/09/01:The description:Victoria Launders:onebanana
aglowenorris:08/07/00:Another user:Alistair Lowe-Norris:twobanana

kbemowski:03/03/03:A third user:Karen Bemowski:threebanana
Jkellett:08/09/99:A fourth user:Jenneth Kellett:four

As the output shows, each data set goes on a separate line. A data set can contain as many values as you want. The
data sets in the users-to-create.txt file have five values: username, expiration date, description, full name, and
password. You use colons to separate the values.[1]

[1] While comma-separate-value (CSV) files are the norm for this sort of thing, the comma is more often used in
properties that will be added for users, so I use the colon here instead.

Example 21-3. Creating many user accounts using a script with an input file
Option Explicit

Const ForReading =1

Dim objDomain, objUser, fso, tsInputFile, strLine, arrInput
Dim fldUserHomedir, wshShell

Set objDomain = GetObject ("LDAP://cn=Users,dc=mycorp,dc=com")
Set fso = CreateObject ("Scripting.FileSystemObject")

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

'Open the text file as a text stream for reading.
'Don't create a file if users-to-create.txt doesn't exist

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

Set tsInputFile = fso.OpenTextFile ("c:\users-to-create.txt", ForReading, False)

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

'Execute the lines inside the loop, even though you're not at the end
'of the file

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

While Not tsInputFile.AtEndOfStream

Vhkhkkhkhkhkhkhkhkhkhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhhhhhhkhhkhhkhhkhkhhhhkkkkx*k

'Read a line, and use the Split function to split the data set into
'its separate parts
Vhkhkhkhkhhhkhhhhhhhhdhhdkhhdhhhhhkhkhhrhhhhhhhhhhhdhhdhkhdhkhkhhkhrkkhhkhrkhhkrkhkhkrhhkhrkhrkxkxx
strline = tsInputFile.ReadLine

arrInput = Split(strLine, ":")

Set objUser = objDomain.Create ("user","cn=" & arrInput (0))
objUser.Put "sAMAccountName", & arrInput (0)
objUser.Put "userPrincipalName", arrInput(0) & "@mycorp.com"

Vhkhkkhkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhkhhhhkhkhkhkhhhkhhhrrkhhkkkx*x

'Write the newly created object out from the property cache

'Read all the properties for the object, including

'the ones set by the system on creation
Vhkhkhkhkkhhhhhhhhhhhdhhdkhhhkhkhdkhhkhkhhrhhhhhhhhhhhdhhdhkhdhkhdhhkhrkkhhkhrhhkhrkhkhkhrhhrkhrkhrkxkxx
objUser.SetInfo

objUser.GetInfo

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

http://msdn.microsoft.com/library/default.asp@url=_2Fnhp_2FDefault.asp@contentid=28001169
http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28001169

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

21.4 Modifying Many User Accounts

Once you have created the user accounts n a domain, you will more than likely need to modify them at some point.
The modifications may consist only of changing individual properties of a user, such as the description or name fields.
In these cases, you can perform the change manually or write a command-line script as shown in the next section. In
some situations, you will need to make a large number of changes to your user accounts, as would be the case if you
changed the name of your login script and wanted to point all users at the new script.

For Windows NT and even Active Directory domains, you can use the IADsContainer::Filter method to iterate

through all the objects of a particular type. Thus, changing all users' login script is a pretty easy to do:
Option Explicit

On Error Resume Next

Dim objDomain, objUser

Set objDomain = GetObject ("WinNT://MYCORP")

objDomain.Filter = Array ("User")
ThhkhkhkhhkhhkhhkhkhkhkkhkhkhkhkhhA kA bk hkhkkhhkhkhkhhAhhk kA bk hk bk hk bk bk hk bk kb hk bk kA hk ko hkhkhk bk hkhkkhkhkhkx*k

A}

Iterate over each user and set the LoginScript

Print an error if one occurs
ThhkhkhkhhkhhkhhkhkhkhkkhkhkhkhkhhA kA bk hkhkkhhkhkhkhhAhhk kA bk hk bk hk bk bk hk bk kb hk bk kA hk ko hkhkhk bk hkhkkhkhkhkx*k

A}

for each objUser in objDomain
objUser.LoginScript = "login-new.vbs"
objUser.SetInfo

if Err.Number <> 0 Then

Wscript.Echo objUser.Name & " error occurred"
Err.Clear

Else
Wscript.Echo objUser.Name & " modified"

End if

next

While the previous code is straightforward, it is also limiting. The only filter option you have is object type, such as all
users, and no additional criteria are allowed. That is why in most cases with Active Directory domains, you will want
to use ADO to find objects, as explained n Chapter 20. So for our next example, let's say that we want to change the
login script for all users in the domain that have a department attribute equal to "Sales". Example 21-4 shows how this
can be done using ADO.

Example 21-4. Modifying the login script for all users in Sales
Option Explicit

On Error Resume Next

Dim objConn, objComm, objRS, objUser

Dim strBase, strFilter, strAttrs, strScope

LR b b b b S b e S b e S S S b S b S b I dh b b S b I S b S S S S I S I S b e S b S b I S b I A b S S b S b S S b S S b S 4 4

'Set the ADO search criteria
ThhkhkhkhhkhhkhhkhkhkhkkhkhkhkhkhhA kA bk hkhkkhhkhkhkhhAhhk kA bk hk bk hk bk bk hk bk kb hk bk kA hk ko hkhkhk bk hkhkkhkhkhkx*k

strBase = "<LDAP://dc=mycorp,dc=com>;"

strFilter = " (& (objectclass=user) (objectcategory=Person) (department=Sales)) ;"
strAttrs = "ADsPath;"

strScope = "Subtree"

set objConn = CreateObject ("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open

LR b b b b S b e S b e S S S b S b S b I dh b b S b I S b S S S S I S I S b e S b S b I S b I A b S S b S b S S b S S b S 4 4

'Need to enable Paging in case there are more than 1000 objects returned
LI b e e b b b b b S i i b b b b b b db b b I b b b b ab S S d b b b b b b db d 2 2 b b b b db db dE e b b b b b ab db d b b b b b b b db a4
Set objComm = CreateObject ("ADODB.Command")
Set objComm.ActiveConnection = objConn
objComm.CommandText = strBase & strFilter & strAttrs & strScope
objComm.Properties ("Page Size") = 1000
Set objRS = objComm.Execute()
While not objRS.EOF

Set obijUser = GetObiject (obiJRS.Fields.Item("ADsPath") .Value)

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

21.5 Account Unlocker Utility

Imagine that you need a utility that quickly enables and unlocks an NT or Active Directory user account. The account
was locked because the password was entered incorrectly too many times in succession or because the account
exceeded its expiration date. Writing a user-specific script is inefficient if you have many users. Using an input file to
pass in the needed user data to a script also is inefficient. You'd have to create the nput file just before running the
script, because you can't predict whose account you need to unlock. The best approach is to use command-line
arguments to pass in the user data as you need it.

Example 21-5 and Example 21-6 use this approach to enable and unlock NT and Active Directory user accounts,
respectively. If you have a mixed NT and Active Directory network, you can even combine these two utilities into one

script.
Example 21-5 implements the unlocker with the WinNT provider.

Example 21-5. Account unlocker utility for Windows NT

LI S b I b I b I b b I S e S b S S S S b S S b I S db I S b b b b I db S b S b S SR b S 2b I S Sh I S b I S b I Sb b I 2b I db b S 2 4

'How to unlock and enable a Windows NT user via arguments to this script

A}

'Parameters should be <domain> <username>
L b B S i I b b b b i b e I b b b b b I b I b b b b b b b I b b b b b b b I e 2 b b b b b b b b I b b b b b b S S 2 b b b b b b b b g 4

Option Explicit
Dim wshArgs, objUser, strOutput

On Error Resume Next

LI S b I b I b I b b I S e S b S I S b S S b b S b I S b I b b I db S b S b S S S 2b S b I S b I S b I Sb b I Sb b b db b S 2 4

'Get the arguments
ThhkhhkkhhkhkhkAhhdAhrhhkAhhdkhrhhkAhhdAhrhh Ak hdArhhkdAhhdhrhhdhhkdhhkhdhkhkdrhkkhkhhrhkkhrhkhkxhkhkkx*x

Set wshArgs = Wscript.Arguments

LI S b I b I b I b b I S e S b S I S b S S b b S b I S b I b b I db S b S b S S S 2b S b I S b I S b I Sb b I Sb b b db b S 2 4

'Tf no arguments passed in, then quit
ThhkhhkkhhkhkhkAhhdAhrhhkAhhdkhrhhkAhhdAhrhh Ak hdArhhkdAhhdhrhhdhhkdhhkhdhkhkdrhkkhkhhrhkkhrhkhkxhkhkkx*x
If wshArgs.Count = 0 Then
WScript.Echo "ERROR: No arguments passed in." & vbCrLf & vbCrLf
& "Please use NTUNLOCK <domain> <username>" & vbCrLf & vbCrLf
WScript.Quit
End If

LI S b I b I b I b b I S e S b S I S b S S b b S b I S b I b b I db S b S b S S S 2b S b I S b I S b I Sb b I Sb b b db b S 2 4

'Error checking of the arguments could go here if we were bothered
ThhkhhkkhhkhkhkAhhdAhrhhkAhhdkhrhhkAhhdAhrhh Ak hdArhhkdAhhdhrhhdhhkdhhkhdhkhkdrhkkhkhhrhkkhrhkhkxhkhkkx*x

LI S b I b I b I b b I S e S b S I S b S S b b S b I S b I b b I db S b S b S S S 2b S b I S b I S b I Sb b I Sb b b db b S 2 4

'Attempt to bind to the user
L b B S i I b b b b i b e I b b b b b I b I b b b b b b b I b b b b b b b I e 2 b b b b b b b b I b b b b b b S S 2 b b b b b b b b g 4
Set objUser = GetObject ("WinNT://" & wshArgs(0) & "/" & wshArgs(l) & ",user")
If Err Then
Wscript.Echo "Error: Could not bind to the following user: " & vbCrLf
& vbCrLf & "WinNT://" & wshArgs(0) & "/" & wshArgs(l) & vbCrLf & vbCrLf
WScript.Quit
Else
strOutput = "Connected to user WinNT://" & wshArgs(0) & "/" & wshArgs(1l)
& vbCrLf
End If

LI S b I b I b I b b I S e S b S I S b S S b b S b I S b I b b I db S b S b S S S 2b S b I S b I S b I Sb b I Sb b b db b S 2 4

'Attempt to enable the user (but don't quit if you fail)

LI S b I b I b I b b I S e S b S I S b S S b b S b I S b I b b I db S b S b S S S 2b S b I S b I S b I Sb b I Sb b b db b S 2 4

Err.Clear
objUser.AccountDisabled = False

[TeamLiB] [rrevious | nexr]

[Team LiB] plE

21.6 Creating a Group

Now we will move on to creating groups. Creating a group is very similar to creating a user. You use the same

IADsContainer::Create method:

Set objGroup = objSalesOU.Create ("group", "cn=Managers")
objGroup.Put "sAMAccountName", "Managers"
objGroup.SetInfo

This code assumes we already have a pointer to an OU in the objSalesOU variable. The IADs::Put method is used to
set the SAMAccountName, a mandatory attribute with no default value, just like with users.

The IADsGroup mterface that operates on group objects supports four methods and one property that is specific to
the group object, as listed in Table 21-4.

Table 21-4. The IADsGroup interface

IADsGroup methods and properties Action

Add Adds users to the group as members
Remove Removes user members from the group
IsMember Tests to see if a user is a member of a group
Members Returns a list of all the members of the group
Description Returns the text describing the group

In Example 21-7, we show how to create a group with both the WinNT and LDAP providers.

Example 21-7. Creating a group with both the WinNT and LDAP providers
Option Explicit

Dim objDomain, objGroup

'Creating a group in a Windows NT domain

Set objDomain = GetObject ("WinNT://MYDOMAIN")

Set objGroup = objDomain.Create ("group", "My Group")
ObjGroup.SetInfo

'Creating a local group on a computer or member server

'Valid for Windows NT, Windows 2000 and Windows Server 2003
Set objComputer = GetObject ("WinNT://MYCOMPUTER, Computer")
Set objGroup = objComputer.Create ("group", "My Group")
ObjGroup.SetInfo

'Creating a group in Active Directory

Set objDomain = GetObject ("LDAP://cn=Users,dc=mycorp,dc=com")
Set objGroup = objDomain.Create ("user","cn=My Group")
ObjGroup.Put "sAMAccountName", "MyGroup"

ObjGroup.SetInfo

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

21.7 Adding Members to a Group

Adding objects as members of'a group can be done with IADsGroup::Add, a simple method that takes the DN of

the object to be added:
objGroup.Add ("LDAP://cn=Sue Peace,cn=Users,dc=mycorp,dc=com")
objGroup.Add ("LDAP://cn=Keith Cooper,cn=Users,dc=mycorp,dc=com")

Groups can contain virtually any other type of object as a member, including users, computers, and other groups.

21.7.1 Adding Many USER Groups to DRUP Groups

In Section 11.5.5, we described the need to add many user groups as members of several permission groups.
Example 21-8 contains the code necessary to implement this functionality. It scans for all groups prefixed with
USER _and DRUP . It then adds all the USER groups to each DRUP group, except for the group where the suffix
matches. In other words, all USER groups except USER Finance are added to DRUP_Finance. This was why the
names were set up this way.

o These searches make use of the ADO search function called SearchAD from Chapter 20.

Example 21-8. Adding many user groups as members of several permission groups
Thhkhhkhkhrhkhkhkhhhkrhkhkhhhhkhdhhkhk bk kA bk hk bk hkhk Ak hkhk bk hkhkdhkhkhk bk hkhkdhhkhkhkhkhkrhhkhkhhkkhkrhkhkhkhhkkdxhkkxxk
'Search the entire AD for all groups starting USER_ and return the cn

'and AdsPath variables in the following structure
\J

' arrUSERGroup (0, index) cn attributes
' arrUSERGroup (1, index) = ADsPath attribute

'where index goes from 0 to (the maximum number of results returned -1)
LI e b b b b b b b b b b I b I b b b b b b b b g
If SearchAD(_
"LDAP://dc=mycorp,dc=com", " (& (objectClass=group) (cn=USER *))",
"SubTree", "cn,ADsPath", arrUSERGroup) Then

Thhkhhkhkhrhkhkhkhhhkrhkhkhhhhkhdhhkhk bk kA bk hk bk hkhk Ak hkhk bk hkhkdhkhkhk bk hkhkdhhkhkhkhkhkrhhkhkhhkkhkrhkhkhkhhkkdxhkkxxk

'As above but for DRUP_ groups
LI e b b b b b b b b b b I b I b b b b b b b b g
If SearchAD(_
"LDAP://dc=mycorp,dc=com", " (& (objectClass=group) (cn=DRUP *))",
"SubTree", "cn,ADsPath", arrDRUPGroup) Then

ThkhkhhkkhkhrhkhkhkhhkhkhrhkhkhkhrhkhkdhhkhkhrhhkhAhhkhkhh kA hkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkrhkhkhkhhkkhkrhkkhkhkhhkkkhkkxxk

'Set up an index to allow us to iterate through the USER_ groups. The
'Ubound function here counts the maximum number of elements in the
'array's second dimension of values (the first dimension has only two
'values, "cn" and "ADsPath")

ThkhkhhkkhkhrhkhkhkhhkhkhrhkhkhkhrhkhkdhhkhkhrhhkhAhhkhkhh kA hkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkrhkhkhkhhkkhkrhkkhkhkhhkkkhkkxxk

For intUSERGroupIndex = 0 To Ubound(arrUSERGroups, 2)

ThkhkhhkkhkhrhkhkhkhhkhkhrhkhkhkhrhkhkdhhkhkhrhhkhAhhkhkhh kA hkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkrhkhkhkhhkkhkrhkkhkhkhhkkkhkkxxk

'As above but for DRUP_ groups

ThkhkhhkkhkhrhkhkhkhhkhkhrhkhkhkhrhkhkdhhkhkhrhhkhAhhkhkhh kA hkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkrhkhkhkhhkkhkrhkkhkhkhhkkkhkkxxk

For intDRUPGroupIndex = 0 To Ubound (arrDRUPGroups, 2)
ThkhkhhkkhkhrhkhkhkhhkhkhrhkhkhkhrhkhkdhhkhkhrhhkhAhhkhkhh kA hkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkrhkhkhkhhkkhkrhkkhkhkhhkkkhkkxxk
'Extract the portion of the name that corresponds to all letters after
'the "cn=USER " or "cn=DRUP " parts (i.e., eight letters)
ThkhkhhkkhkhrhkhkhkhhkhkhrhkhkhkhrhkhkdhhkhkhrhhkhAhhkhkhh kA hkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkrhkhkhkhhkkhkrhkkhkhkhhkkkhkkxxk
txtUSERGroupSuffixName = Right (arrUSERGroup (0, intUSERGroupIndex),

Len (arrUSERGroup (0, intUSERGroupIndex)) -8)
txtDRUPGroupSuffixName = Right (arrDRUPGroup (0, intDRUPGroupIndex),
Len (arrDRUPGroup (0, intDRUPGroupIndex)) -8)

LI O b g i g gl < b < i S i S S S S T S S T I S S I Y D Y b S S i i DY i O DY S Y D S S S S DY I I S i I S i S S I S S S S S i S < i b i S S S S

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

21.8 Evaluating Group Membership

The IADsGroup::IsMember method takes one argument, the DN of the object to check, just as Add and Remove

do. It returns a Boolean, i.e., true or false. That allows you to use it in an If. . . Then statement like this:
Set objGroup = GetObject ("LDAP://cn=Managers,ou=Sales," _
& "dc=mycorp,dc=com")
If objGroup.IsMember ("LDAP://cn=Vicky Launders,ou=Sales," _
& "dc=mycorp,dc=com") Then
WScript.Echo "Is a Member!"
Else
WScript.Echo "Is NOT a Member!"
End If

This should seem fairly straightforward after the examples we've already gone through. Two of the lines in the
previous code snippet are too long to fit on the page, so the VBScript underscore (_) character was used again to tell
VBScript that it should treat the current line as continuous with the next line. However, when you use the underscore
to separate long strings, you must enclose both strings in quotation marks and then use the ampersand character (&)
to concatenate two strings together.

To get a list of members in a group, the IADsGroup::Members method can be used. The IADsGroup:Members
function is different from the other [ADsGroup methods we have shown so far, since it returns a pointer to an

IADsMembers object. Table 21-5 shows the two methods I[ADsMembers support.

Table 21-5. The IADsMembers interface

TADsMembers methods Action

The number of items in the container. If there is a filter
Count set, only the number of items that match the filter are
returned.

A filter, consisting of an array of object class strings,
Filter which can restrict the number of objects returned during
enumeration of the container.

There are a number of ways of enumerating the members of a group. The For Each. . . In. .. Next loop is the most
common. This is how it works:

Set objGroup = GetObject ("LDAP://cn=Managers,ou=Sales," _

& "dc=mycorp,dc=com")

WScript.Echo "Number of members of the group: " & objGroup.Members.Count
For Each objMember In objGroup.Members

WScript.Echo objMember.Name
Next

This script displays the number of members and then prints each member's name. As the For loop executes,
objMember ends up holding an IADs object representing each member of the group.

Another useful feature of [ADsMembers is the Filter method. It can be used to filter certain object classes during
enumeration just like you can with containers. To view only the members of a group that are users, you would modify

the previous example to do the following:
objMembers = objGroup.Members
objMembers.Filter = Array("User")
For Each objMember In objMembers
WScript.Echo objMember.Name
Next

[TeamLiB] [rrevious | nexr]

[Team LiB]

21.9 Summary

In this chapter, we looked at how to create and manipulate properties of user and group objects in Active Directory
and the Windows NT SAM. We used this knowledge to show how to write a script to create thousands of users
easily from a set of data in a file or from a database. We then showed how to create simple tools, such as an account
unlocker, that you can use in your day-to-day management of Active Directory. Next we showed how to create
groups and modify group members. Finally, we reviewed how to determine group membership and iterate through all
the members of a group.

[Team LiB]

[Team LiB]

Chapter 22. Manipulating Persistent and Dynamic
Objects

ADSI can be used for much more than just user, group, or generic directory manipulation. ADSI provides many
interfaces that you can use to manipulate persistent and dynamic objects for a computer. Persistent objects are
permanent parts of a directory or computer, such as shares, services, users, and groups. Dynamic objects aren't
permanent but instead are things such as sessions (i.e., connections to a machine) and print jobs that a user initiates. In
other words, ADSI lets you do the following;

Dynamically start, stop, and manage services and manipulate the permanent attributes of those services
Dynamically manipulate shares, creating and deleting them as required

Dynamically manipulate computers' open resources and users' active sessions and manipulate the permanent
objects representing those computers and users

Dynamically manipulate print jobs and manipulate the permanent queues

Many of you may already be familiar with the Windows Management Instrumentation (WMI) interface, which
overlaps with several of these functions. Depending on your preference, you can use ADSI or WMI for many of these
tasks. We describe WMI in more detail n Chapter 26.

[Team LiB]

[Team LiB]

22.1 The Interface Methods and Properties

Rather than describe the various methods and properties as we've done with the earlier interfaces, we'll concentrate
on how to use those methods and properties in scripts. You can find complete descriptions of the interface methods
and properties we cover in the MSDN Library or Platform SDK. To access the descriptions on the MSDN web site
(http//msdn.microsoft.com/library/), navigate to Networking and Directory Services = Active Directory, ADSI and
Directory Services ==+ SDK Documentation == Directory Services == Active Directory Service Interfaces =
Active Directory Service Interfaces Reference = ADSI Interfaces. From this point, you can navigate to:

Core Interfaces

IADs, IADsContainer, [ADsNamespaces, and [ADsOpenDSObject
Persistent Object Interfaces

IADsCollection, IADsFileShare, IADsService, IADsPrintJob, and IADsPrintQueue
Dynamic Object Interfaces

[ADsServiceOperations, IADsComputerOperations, [ADsFileServiceOperations, [ADsResource, IADsSession,
IADsPrintJobOperations, and IADsPrintQueueOperations
Utility Interfaces

IADsADSystemlnfo, IADsDeleteOps, [ADsNameTranslate, [ADsObjectOptions, IADsPathname, and
IADsWinNTSystemInfo

- The ADSI documentation, however, leaves out three important quirks of the IADsSession

4% and IADsResource interfaces. First, the WinN'T provider doesn't currently support the
IADsSession::UserPath, IADsSession::ComputerPath, and IADsResource::UserPath
property methods. Second, although the documentation states that the
IADsSession::ConnectTime and IADsSession::IdleTime property methods return results in
minutes, they actually return results in seconds. Finally, the IADsSession:Computer
property method returns NetBIOS names for Windows NT and Windows 9x clients but
returns TCP/IP addresses for Windows 2000 and later clients.

[Team LiB |

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

22.2 Creating and Manipulating Shares with ADSI

The following code shows how easily you can create shares with ADSI:
Dim objComputer, objFileShare

Set objComputer = GetObject ("WinNT://mydomainorworkgroup/mycomputer/LanmanServer")

Set objFileShare = objComputer.Create ("FileShare", "MyNewShare")
objFileShare.Path = "c:\mydirectory"

objFileShare.Description = "My new Share"
objFileShare.MaxUserCount = 8

objFileShare.SetInfo

After we declare the objComputer and objFileShare variables, we bind to the LanmanServer object on the computer
on which we want to create the shares. LanmanServer is the object name of the server service that runs on all
Windows NT and later computers. We bind to this object because NT's predecessor was LAN Manager and is still
present to a large extent in the Windows OS.

Next, we use the IADsContainer::Create method to create an object of class FileShare and apply the IADsFileShare
property methods to set the path, description, and maximum number of users. On an NT, Windows 2000, or
Windows Server 2003 server, you can grant all users access to a share or limit access to as many users as you want.
On a workstation, you can grant all users access to a share or limit access to between 1 and 10 users at a time. The
latter restriction is due to the 10-connection limit that the OS imposes. The values that the
[ADsFileShare:MaxUserCount method accepts are -1 (which grants all users access), any numerical value between 1
and 10 on workstations, and, within reason, any numerical value on the server family of OSs.

Finally, we end the script with [ADs::SetInfo, which writes the information from the property cache to the directory.

Enumerating existing shares is just as easy as creating them. The next piece of code shows how to enumerate normal

shares.[1]

[1] Hidden shares aren't shown due to their very nature.
Dim objService, objFileShare, strOutput

strOutput = ""
Set objService = GetObject ("WinNT://workgroup/vicky/LanmanServer")

For Each objFileShare In objService

strOutput = strOutput & "Name of share : " & objFileShare.Name & vbCrLf
strOutput = strOutput & "Path to share : " & objFileShare.Path & vbCrLf
strOutput = strOutput & "Description : " & objFileShare.Description & vbCrLf
If objFileShare.MaxUserCount = -1 Then

strOutput = strOutput & "Max users : No limit" & vbCrLf
Else

strOutput = strOutput & "Max users : " & objFileShare.MaxUserCount & vbCrLf
End If

strOutput = strOutput & "Host Computer : "
& objFileShare.HostComputer & vbCrLf & vbCrLf
Next

WScript.Echo strOutput

This code is similar to that in the previous script for creating a share. This is a sample of the output:
Name of share : NETLOGON

Path to share : C:\WINNT35\system32\Repl\Import\Scripts

Description : Logon server share

Max users : No limit

Host Computer : WinNT://WORKGROUP/VICKY

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

22.3 Enumerating Sessions and Resources

We now want to show you how to use ADSI to do the following:

Enumerate a client's sessions and resources

Show which users are currently logged on to a server and count all the logged-on users across a domain's
PDCs, BDCs, and other servers

Windows NT, Windows 2000, and Windows Server 2003 machines host two kinds of dynamic objects that you can
access with ADSI: sessions (i.e., instances of users connected to a computer) and resources (i.e., instances of file or
queue access on a computer). When users connect to a file or a share on a computer, that creates both a session and
a resource object. When the user disconnects, these dynamic objects cease to exist.

You can access dynamic objects by connecting directly to the Server service on the machine. Although each Server
service has a user-friendly display name that appears in the Computer Management console in Windows 2000 and
Windows Server 2003 or the Services applet in Control Panel in NT, each Server service also has an ordinary name
that you use when connecting to it with ADSI. For example, Server is the display name of the service that has the
short name LanManServer. If you enumerate all the services on a machine, you can use IADsService:DisplayName
to print the display name and IADs:Name to print the short name.

LanManServer is an object of type FileService. FileService objects are responsible for maintaining the sessions and
resources in their jurisdictions. You can use the IADsFileServiceOperations interface to access information about
these sessions and resources. This simple interface has two methods: IADsFileServiceOperations::Sessions and
[ADsFileServiceOperations::Resources. Both methods return collections of objects that you can iterate through with a
For Each...Next loop. When you're iterating through a collection in this manner, the system is using
IADsCollection:GetObject to retrieve each item from the collection. As a result, you can use the same
IADsCollection::GetObject method to retrieve a specific session or resource object. You then can use the
IADsSession or IADsResource interface to manipulate that session or resource object's properties to access
nformation. For example, if you retrieve a session object, you can access such information as the username of the
user who is logged on and how long that user has been logged on.

22.3.1 Identifying a Machine's Sessions

The following script uses IADsSession to iterate through all the sessions on a particular machine:
On Error Resume Next

Dim objComputer, objSession, strOutput
strOutput = ""
Set objComputer = GetObject ("WinNT://mydomainorworkgroup/mycomputer/LanManServer")
For Each objSession In objComputer.Sessions
strOutput = strOutput & "Session Object Name : " & objSession.Name & vbCrLf
strOutput = strOutput & "Client Computer Name: " & objSession.Computer & vbCrLf

strOutput = strOutput & "Seconds connected A
& objSession.ConnectTime & vbCrLf

strOutput = strOutput & "Seconds idle : " & objSession.IdleTime & vbCrLf
strOutput = strOutput & "Connected User : " & objSession.User & vbCrLf
strOutput = strOutput & vbCrLf

Next

WScript.Echo strOutput

This is straightforward. It uses the IADs::Name property method and IADsSession property methods to retrieve data

ahnit thae cacaintt Thae TA Da N ara vrninordyr 1rothad dicinlaye the AThiarnrt romve vvhinh 160 the amvae that vt vvratild 1iea

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

22.4 Manipulating Print Queues and Print Jobs

So far we've shown you how to use ADSI to manipulate persistent and dynamic objects, such as shares, sessions,
and resources. Now we're going to examine printer queues and jobs. In this section, we're going to lead you through
creating scripts to do the following:

o
Identify print queues in Active Directory
o
Bind to a print queue[4] and access its properties
[4] Print queues are logical ADSI names for printers installed on a computer.
o

List the print jobs in a print queue and manipulate them

-:;. 4. Allthe code in these scripts for managing printers is done using the WinNT provider, so it
— & will work on Windows NT as well as Active Directory. The LDAP searches will not work
on Windows NT.

One point before we go on: at the end of Chapter 20, we detail a function called SearchAD. We need to use it now
to search Active Directory for the printer's ADsPath and store it in arrSearchResults(0,0).

22.4.1 Identifying Print Queues in Active Directory
List-Print-Queue.vbs in Example 22-2 is a heavily commented script, so it should be easy to follow.

Example 22-2. List-Print-Queue.vbs identifies print queues in Active Directory
Option Explicit
On Error Resume Next

Vhkhkkhhkhkhkhhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhhhkhhhhhhkhhhhkhhkhkhhkhkhkhkhhhhhrhkkkkx*x

'Active Directory path to start the search from
Vhhkhkhkkhhhhhhhhhhhdhhhkhhhkhhhkhhhkhhrhhhrhhhhhhhhdhhdhhdhkhkdhhkhrkkhhkhrhkhkrhkhkrhrhrhrkxkxx

Const strDomainToSearch = "LDAP://dc=mycorp,dc=com"

Vhkhkkhkhkkhkhkhhhkhhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhhhkhhhhhhhhhkhhkhkhkhhkhhkhhkhkhhhkhkkxkxx

'Maximizes the Notepad screen when started
Vhhkhkhkkhhhhhhhhhhhdhhhkhhhkhhkdhhhkhhhhhbhhhhhhhhdhhdhhdkhkhdhhkhrkkhhkhrhkhkrkhkhkhrhhrkhrkhrtxkx%

Const vbMaximizedFocus =3

Vhkhkkhhkkhkhkhhkhhhhhhhhhhkhhkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhhkhkhhrrkkkkx*x

'Sets the location of the temporary file

Vhkhkkhkhkhkhkhkhkhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhkhhhhhhhhkhhkhkhhhhkhhkhkhkhkhkhhrrrkkhxkx*x

Const TEMPFILE = "C:\PRINTERLIST-TEMP.TXT"

Vhkhkkhhkkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhkhhkhkhhhkhkhhkhkhkhhkhkhhhhkkkkx*x

'Opens a file and lets you start writing from the beginning of the file
Vhkhkhkhkkhhhhhhhhhhhdhhdkhhhkhhdhhhkhhrhhhhhhhhhhhdhhdhkhdhkhkdkhkhkkhkhkhrhhkrhkhkhrhhrkhrkhrkxkxx

Const ForWriting = 2
Dim arrPaths(), fso, ts, strItem, intRC, objShell, intIndex

If Not SearchAD(strDomainToSearch, " (objectClass=printQueue)","SubTree",arrPaths) Then
MsgBox "Printer listing failed!"

Else
ThkhkhhkhkhhkhkhAhhkhkhrhkhkhhhkhkhrhhkhdhhkhkhhhkhd ok hkhhhkdhhkhkhkhkhkhkhhkhkhhkhkdkhhkhkhkhkkhkdkhhkhkhhkhkxhkkx*xk

TN~ o~ TN - o~vrrv~ om o mmrr o~y £2 7 AN o rram a2 T £ +T A~ 4+ ~<r+ L2 7~ A7 v~ A

[TeamLiB] [rrevious | nexr]

[Team LiB]

22.5 Summary

While the future of automating systems management-related tasks lies with WMI, you can still use ADSI very
effectively to accomplish a number of key tasks. In this chapter, we took a look at how you can use ADSI to
manipulate persistent objects (like a computer's shares and services) and dynamic objects (computers' open
resources, users' active sessions, and print jobs that users initiate) in Active Directory or Windows NT SAM.

[Team LiB]

[Team LiB]

Chapter 23. Permissions and Auditing

Security descriptors (SDs), access control lists (ACLs), and access control entries (ACEs) have been used for files
and directories on NTFS filesystems for years. The same concepts apply to securing Active Directory objects as well
While the information in this chapter is focused on Active Directory, the principles of creating an SD that contains a
discretionary access control list (DACL) and system access control list (SACL) can map exactly over to NTFS files
and directories.

ADSI provides four main interfaces we can use:
IADsAccessControlEntry

Manipulates individual ACEs that represent access or audit permissions for specific users or groups to objects and
properties in Active Directory.
IADsAccessControlList

Manages collections of ACEs for an object.
[ADsSecurityDescriptor

Manages the different sets of ACLs to an object.
IADsSecurityUtility

Gets, sets, and retrieves security descriptors for an object.

All of the ADSI security interfaces can be found in the MSDN Library (http://msdn.microsoft.convlibrary/) under
Networking and Directory Services ==+ Active Directory, ADSI and Directory Services == SDK Documentation
—3 Directory Services == Active Directory Service Interfaces == Active Directory Service Interfaces Reference
—3 ADSI Interfaces = Security Interfaces.

“r Microsoft provides a DLL (ADsSecurity.dll) with the Platform SDK that contains several

4% interfaces that you can use to manage security descriptors, ACLs, and ACEs. It isn't
covered in this chapter because it doesn't come installed with Windows 2000 or Windows
Server 2003, but we encourage you to check it out and take a look at the example source
code that comes with it for more information. Remember that the DLL will need to be
installed and registered using REGSVR32.EXE ADSecurity.dll on every client that would
use it.

[Team LiB]

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

23.1 How to Create an ACE Using ADSI

Microsoft has a habit of calling a shovel a ground msertion earth management device, that is, they like to give names
that are not always intuitive to the average person. The contents of the five properties of the ACE object are not all
immediately obvious from the names. In addition, as Microsoft uses the ACE for system-audit and permissions
entries, a number of values that can go into the properties make sense only in a particular context. To complicate
matters further, one property (AceFlags) is a catchall area that currently is the location for two completely different
sets of information.

Creating an ACE is a simple matter. To set up an ACE, you need the following basic pieces of information:
AccessMask

What permissions you want to set
AceType

Whether you are setting allow/deny permissions or auditing for an object or property
Trustee

Who to apply the permissions to
AceFlags

What inheritance options you want and, if it is an audit entry, whether you are monitoring successes or failures
Flags, ObjectType, InheritedObjectType

What the ACE applies to if not just the entire object

We will now go through several examples to show you what the five properties of an ACE will contain based on
certain security settings. Let's start with the simple example: giving a user full control permissions to an Organizational
Unit. That means the information in Table 23-1 gets stored as an ACE on the SD of the Organizational Unit itself.

Table 23-1. Contents of the ACE properties when giving a user full control permissions to an Organizational Unit

Name of the property Value to be stored

Trustee Names the user who is to have the permission.
AccessMask Gives full control (i.e. give every permission).
AceType This is an allow permission.

AceFlags The permission applies to this object. Child objects

inherit this ACE.
Flags Neither ObjectType nor InheritedObjectType is set.
ObjectType Null
InheritedObjectType Null

The user (Trustee) is allowed (AceType) full control (AccessMask) to the current object and all objects down the
tree (AceFlags). The last three are not used here, as the permission is a simple one to an entire object.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

23.2 A Simple ADSI Example

All of the seven ACE properties are set using property methods of the same names as those in an ADSI mterface
called IADsAccessControlEntry. The ACEs that are created using this are then modified using
IADsAccessControlList and IADsSecurityDescriptor.

Let's go through an example now so you can see how it all fits together. Example 23-1 shows a section of VBScript
code that creates an ACE that allows ANewGroup full access to the myOU organizational unit and all its children.

Example 23-1. A simple ADSI example

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Declare constants

LIRS S e e b b b b S b I b b b b b b ab S d b b b b b b b S A b b b b b b ab S S b b b b b b b db I b b b b A ab db S d db b b b b b b db db d b b b (ab (S 4
Const FULL CONTROL = -1

Const ADS ACETYPE ACCESS ALLOWED = 0

Const ADS FLAG INHERITED OBJECT TYPE PRESENT = 2

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Declare variables
LI b b i b b i b i b db b b b b b b b b g

Dim objObject 'Any object

Dim objSecDesc 'SecurityDescriptor
Dim objDACL 'AccessControlList
Dim objNewACE 'AccessControlEntry

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Create the new ACE and populate it

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

Set objNewACE = CreateObject ("AccessControlEntry")
objNewACE.Trustee = "AMER\ANewGroup"

OobjNewACE.AccessMask = FULL CONTROL

objNewACE.AceType = ADS ACETYPE ACCESS ALLOWED
objNewACE.AceFlags = ADS FLAG INHERITED OBJECT TYPE PRESENT

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Add the new ACE to the object and write it to the AD

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

Set objObject = GetObject ("LDAP://ou=myOU,dc=amer,dc=mycorp,dc=com")

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Use IADs::Get to retrieve the SD for the object

LI S i b e S b S b e S I S b S b I S b I dh b I S SR B S b B S b S b S S S b S b S b S b I S b I S b S b S dh b S S b S S b S i 2 4

Set objSecDesc = objObject.Get ("ntSecurityDescriptor")

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Use IADsSecurityDescriptor:: DiscretionaryAcl to retrieve the existing DACL
LR R S b e I S b SR Sh b I dh Ib b SR db b S dh b b S Sb b S db b b S S b db b b S Sh b db b b SR Sb b db b b SR Sh b dh b b SR Ib b S db b b SR A Sh b b db b db Sb

Set objDACL = objSecDesc.DiscretionaryAcl

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Use IADsAccessControlList::AddACE to add an ACE to an existing DACL

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

objDACL.AddAce objNewACE

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Use IADsSecurityDescriptor:: DiscretionaryAcl to put back the modified DACL

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

objSecDesc.DiscretionaryAcl = objDACL

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

'Use IADs::Put to replace the SD for the object

LI i B b S A e S b e S I S b S b I S b I d b I S IR S S b B S b S S S S S S b R S b S b S b I S b I S b S b B i b A S b S S b S b 2 4

objObject.Put "ntSecurityDescriptor", Array (objSecDesc)

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

23.3 A Complex ACE Example

Example 23-2 shows two further ACEs being created. This time we have included all the constants. This example
sets the following ACEs on myOU:

No permissions even to see the object for members of DenyGroup.

Ability to create, delete, and examine all children of the object for AllowChildGroup.

Ability for user Vicky Launders to assume ownership of the Organizational Unit only and not any children.
Permission for the user Lee Flight to read and write this OU's description.

Permission for the Chris Heaton account to read and write all users' passwords

Generation of audit messages for failed access by Everyone to delete the object itself.

Generation of audit messages for all modifications to Active Directory by Brian Kerr below this
Organizational Untit, but not including this Organizational Unit.

Example 23-2. A complex ACE example

VA AR A AR A AR A AR A A A A I AR A AR A A IR A A A A A I A A I AR A AR I AR AR A Ak Ak Ak A A A A A A A Ak Ak kK

'AccessMask constants

LIRS S S e b b b b b Sb Sh dh b g b b b b (ab db db db 2 b b b b (Sh Sb (db 2 db b b b b (b (db (dh g g b b b b ab Sb db g 4 b b b b (ah (Sb db g g b b b b Sb Sb (dh g g b b b i (S 4
Const ADS RIGHT GENERIC READ = &H80000000
Const ADS RIGHT GENERIC WRITE = &H40000000
Const ADS RIGHT GENERIC EXECUTE = &H20000000
Const ADS RIGHT GENERIC ALL = &H10000000
Const ADS RIGHT SYSTEM SECURITY = &H1000000
Const ADS RIGHT SYNCHRONIZE = &H100000
Const ADS RIGHT WRITE OWNER = &H80000

Const ADS RIGHT WRITE DAC = &H40000

Const ADS RIGHT READ CONTROL = &H20000
Const ADS RIGHT DELETE = &H10000

Const ADS RIGHT DS CONTROL ACCESS = &H100
Const ADS RIGHT DS LIST OBJECT &H80

Const ADS RIGHT DS DELETE TREE = &HA40

Const ADS RIGHT DS WRITE PROP = &H20

Const ADS RIGHT DS READ PROP = &H10

Const ADS RIGHT DS SELF = &HS8

Const ADS RIGHT ACTRL DS LIST = &H4

Const ADS RIGHT DS DELETE CHILD = &H2

Const ADS RIGHT DS CREATE CHILD = &HI

Const FULL CONTROL = -1

VA AR A AR A AR A A I A A A AR A AR A AR A A I A AR A A I A AT A A I AR I AR I AR AR A Ak hA Ak Ak A A A A A A Ak Ak kK

'AceType constants

LR R S b 2 dh b b AR Sb b I db b b S db b b Sb b b S Ib b db b b S S b S I b b S Sb b b db b b S Ib b db b b db Sb b e db b b S Ib b S db b b S Sb b b g b b db Sb i
Const ADS ACETYPE SYSTEM AUDIT OBJECT = &H7

Const ADS ACETYPE ACCESS DENIED OBJECT = &H6

Const ADS ACETYPE ACCESS ALLOWED OBJECT = &HS5

Const ADS ACETYPE SYSTEM AUDIT = &H2

Const ADS ACETYPE ACCESS DENIED = &HI

Const ADS ACETYPE ACCESS ALLOWED = &HO

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

23.4 Creating Security Descriptors

If you are creating an object from scratch, and you don't want it to get the default DACL and SACL that due to
mheritance would normally be applied to objects created at that location in the tree, you can write your own DACL
and SACL for an object. As you would expect, there are a number of properties associated with security descriptors
and ACLs that you need to set. SDs and ACLs can be manipulated with the IADsAccessControlList (see Table
23-10) and IADsSecurityDescriptor (see Table 23-11) mterfaces. We'll go through these briefly now and then move
on to some more examples.

Table 23-10. IADsAccessControlList methods and properties

IADsAccessControlList methods and properties Action

AddAce method Adds an ACE to an ACL

RemoveAce method Removes an ACE froman ACL

CopyAccessList method Copies the current ACL

AclRevision property tSeI)l:s)ws the revision of the ACL (always set to 4; see later
AceCount property Indicates the number of ACEs in the ACL

The revision level is a static version number for every ACE, ACL, and SD in Active Directory. It is defined in the

ADS SD REVISION ENUM enumerated type, which contains a single constant definition as follows:
Const ADS_SD REVISION DS = 4.

Having a revision allows Active Directory to know which elements of an ACE could exist. Later, if new properties
and concepts are added to the ACE so that it has a more extended definition, the revision would increment. Active
Directory would then know that old revision-4 ACEs could not support the new extensions and could upgrade them
or support them with lesser functionality.

Table 23-11. IADsSecurityDescriptor methods and properties

IADsSecurityDescriptor methods and properties Action

CopySecurityDescriptor method A copy of an existing SD.

Revision property The revision of the SD (always set to 4, as noted earlier).

A set of flags indicating various aspects of the SD (see

Control property later text).

Owner property The SID of'the owner. If'this field is null, no owner is set.

A Boolean value indicating whether the owner is derived
by the default mechanism when created (i.e., assembled
OwnerDefaulted property out of all the nherited ACEs passed down by its parents)

rather than exnhciths cet hv the nereon or annhcation that

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

23.5 Listing ACEs to a File for All Objects in an OU and Below

A good example of a useful real-world task is when you are curious to see what ACEs have been set on all objects
below a container, such as a domain or Organizational Unit. Example 23-4 is a piece of code that can be used as the
basis for checking through an Active Directory forest looking for irregularities.

This code also could be used on the root of Active Directory when dealing with the problem outlined in Section
11.3.3 in Chapter 11. The code is fairly simple but very long, due to the fact that it has to check every constant for
both the SACL and DACL of each object.

Example 23-4. Examining the ACEs on all objects below a container
On Error Resume Next

LR S b i b b S b S Sb b S S b S b S b e S S e S b b S b S Sh b b S b b S b b Sb b I Sb b S Sb b S b S S S S S b b S b b Sb db b S b b db b b S b S S

'Tf the GUID corresponds to a schema object or attribute, then print the
'schema attribute/object name and the GUID. Otherwise just print the GUID.

LR S b b b b b b 2b b S S b S b S b e S S e S b b S b S b S S b b Sb b S Sb b b Sb b S Sb b S S S S S S S Sb b S b b Sb db b S b b db b b S b S 2

Sub PrintGUID (ByVal objType)

Dim strACEGUID, bolFound, intIndex

LR S b b b b b b b S Sb b S S b S b S S e S SR R S b b S b S S b S b b db b b Sb b I Sb b S Sb b S Sb b S S S Sb S b b S b b S db b Sb b b db db b Sb b S S

'Convert a GUID that starts and ends with { } and has dashes within to a

'simple string of text
ThhkhhkhkhrhkhkhAhhhkhrhkhkhAhhhkhrhkhkdAhhhkhhhkhdhhdkhrhhkhdhhkdkhhkhkhkhhkdkhhkhkhdhhkhk o hkkhkdhhkhkhrhkkhhrhkhkhkrohkkhdxxkkxx

strACEGUID = Replace (Mid(objType, 2,Len (objType)-2),"-","")

LR S b b b b b R S 2b b S S b S b S b b S b e S b S b S b S b b db b b Sb b b Sb b S Sb b S Sb S b S Sb S Sb b S b b S db b Sb b b db b b Sb b S 2

'Scan the array of schema values for a matching GUID (after converting both

'GUIDs to uppercase first). If a GUID is found, the name is printed.
L S B B I b b i e I I I b b b b b e b b b b b b b b I b b b b I I I I 2 b b b S b b b b I b b b b b I b i b b b b b b b b I I b b b b b b 2

ts.WritelLine vbTab & vbTab & "GUID: " & objType
For intIndex=0 To UBound (arrSchema, 2)
If (UCase(strACEGUID) = UCase (arrSchema (0, intIndex))) Then
ts.WritelLine vbTab & vbTab & "Name: " & arrSchema (l,intIndex)
End If
Next
End Sub

LR S b b b b b S 2b b S S b S b S b e S SR e S b S b S b S S b b db b b Sb b b 2b b S Sb b S Sb b S S e S S S Sb b S b b S db b S 2b b db b b S b S S

'This function checks to see if the first integer value contains the constant
'passed in as the second integer value. If it does, then the third parameter
'is written out to the file, and the first value is decremented by the amount
'of the constant.
L S B B I b b I I I b b b b b e b b b b I b I b I b b b b I I I I 2 b b b S b b b b I b b b b b I b i b b b b b b b b I S b b b b b db db
Sub CheckValue (ByRef 1lngValueToCheck, ByVal lngConstant, ByVal strConstantName)
If ((lngValueToCheck And lngConstant) = lngConstant) Then
ts.WriteLine vbTab & strConstantName
lngValueToCheck = lngValueToCheck Xor lngConstant
Else
lngValueToCheck = 1lngValueToCheck
End If
End Sub

LI S b S b I S db b S b b I S S S e S b S b e S b S b b Sb b b S b b Sb b S Sb b b 2b b S Sb S b S SE e S b S IE I Sb b b S db b db b b 2b b b S 2b 3

'AccessMask constants

L S B I I I I b b I I I I b b b e e I b I b b b b I b e I b b b b b b b e I b b b b b b b I I b b b b I S e b I b b b b b I S S 2 b b b b g
Const ADS RIGHT GENERIC READ = &HB80000000

Const ADS RIGHT GENERIC WRITE = &H40000000

Const ADS RIGHT GENERIC EXECUTE = &H20000000

Const ADS RIGHT GENERIC ALL = &H10000000

Const ADS RIGHT SYSTEM SECURITY = &H1000000

Const ADS RIGHT SYNCHRONIZE = &H100000

Const ADS RIGHT WRITE OWNER = &H80000

[TeamLiB] [rrevious | nexr]

[Team LiB]

23.6 Summary
This chapter took a very detailed look at the four main interfaces that you can use to manipulate and iterate over

permissions and auditing entries for objects and attributes in your organization:

IADsAccessControlEntry
IADsAccessControlList
IADsSecurityDescriptor
IADsSecurityUtility

You should now have the tools in your programming belt necessary to modify the permissions in Active Directory as
needed.

[Team LiB]

[Team LiB]

Chapter 24. Extending the Schema and the Active
Directory Snap-Ins

This chapter takes a look at two different areas: programmatically extending the schema and customizing the
functionality of the Active Directory administrative MMC snap-ins. While these topics may seem very different, they
share the common thread of storing and presenting information beyond what Active Directory is configured to do by
default. They are also related because you will often want to include new schema extensions in the Active Directory

snap-ins.

In the first half of the chapter, we take a look at how you can manipulate the schema to include new attributes and
classes. In the second half, we describe how to modify the various components of the Active Directory Users and

Computers (ADUC) snap-in to include customized display names and menus. While we will focus on ADUC, the

techniques presented in this chapter can be used to modify any of the Active Directory administrative snap-ins.

[Team LiB] NE

[TeamLiB] [rrevious | nexr]

24.1 Modifying the Schema with ADSI

We've shown you how the schema works in Chapter 4, and how to design extensions in Chapter 12. Now let's take
a look at how to query and manipulate the schema using ADSI.

24.1.1 TADsClass and IADsProperty

In addition to being able to query and update schema objects as you can any other type of object with the IADs
mterface, there are two main schema-specific interfaces available: IADsClass and IADsProperty. Each of these
mterfaces has a variety of useful methods and property methods to allow you to set mandatory properties for classes,
optional properties for classes, maximum values for attributes, and so on. If you look at these interfaces, you will see
that they are very simple to understand.

First, let's compare accessing and modifying the schema by using the attributes we are interested directly in versus

using the IADsClass and TADsProperty methods. This first code section uses attributes directly:
objAttribute.Put "isSingleValued", False
objAttribute.Put "attributeId", "1.3.6.1.4.1.999999.1.1.28"

arrMustContain = objSchemaClass.Get ("mustContain")
arrMayContain = objSchemaClass.Get ("mayContain")

Now we will use the ADSI schema interfaces to do the same thing:
objAttribute.MultiValued = True
objAttribute.OID = "1.3.6.1.4.1.999999.1.1.28"

arrMustContain = objSchemaClass.MandatoryProperties
arrMayContain = objSchemaClass.OptionalProperties

This makes use of [ADsProperty:MultiValued, IADsProperty::OID, IADsClass:MandatoryProperties, and
[ADsClass::OptionalProperties. As you can see, it's not hard to convert the code. However, we feel that including
code that directly modifies the properties themselves gives you some idea of what you are actually changing and helps
you to refer back to the definitions presented in Chapter 4.

More details on these three mterfaces can be found in the MSDN Library (http:/msdn.microsoft.comv/library/) under
Networking and Directory Services = Active Directory, ADSI and Directory Services =3 SDK Documentation
— Directory Services = Active Directory Service Interfaces = ADSI Reference =— ADSI Interfaces —
Schema Interfaces.

24.1.2 Creating the Mycorp-LanguagesSpoken attribute

We will create an example attribute called Mycorp-LanguagesSpoken. It is to be a multivalued, indexed attribute that
can hold an array of case-sensitive strings of between 1 and 50 characters. The name is prefixed with Mycorp so it is
obvious that Mycorp created the attribute.

Mycorp's Schema Manager has decided that the OID for this attribute is to be 1.3.6.1.4.1.999999.1.1.28. This is
worked out as follows:

[]
Mycorp's root OID namespace is 1.3.6.1.4.1.999999.

Mycorp's new attributes use 1.3.6.1.4.1.999999.1.1.xxxx (where xxxx increments from 1).

Mycorp's new classes use 1.3.6.1.4.1.999999.1.2.xxxx (where xxxx increments from 1).

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

24.2 Customizing the Active Directory Administrative Snap-ins

For those who have worked with Windows N'T domains, you are undoubtedly familiar with two GUI tools: User
Manager (usrmgr.exe) and Server Manager (srvmgr.exe). User Manager allows administrators to manipulate the
properties of users and groups, while Server Manager can manipulate computer accounts. In Active Directory, a
Microsoft Management Console (MMC) snap-in called Active Directory Users and Computers (ADUC) has taken
the place of both these tools.

While ADUC is built primarily to manage users, groups, and computers as the previous User Manager and Server
Manager did, you can actually use it to manage any type of object within a Domain Naming Context. You can create
an entire hierarchy of Organizational Units, user accounts, computer accounts, groups, printers, and so on and
manage them with ADUC. The tool, however, is limited in what it provides "out of the box." While ADUC can
display a lot of attributes for objects, you cannot view every attribute, as you can with ADSI Edit. Figure 24-3 shows
the various groupings of attributes (e.g., Organization) that can be viewed by clicking the appropriate tab. Each tab
represents a property page, which contains a logical grouping of attributes to display.

Figure 24-3. Numerous property pages for a user object

Administrator Properties 2 x|
Published Certificates | MemberOF | Dishin | Object | Secuity |
Enwitorment Sessions | Femota cortiel | Teminal Services Profils |
Exchange General E-mail Addrezzes Ewchange Adhvanced |

Genesal | Addiess | Accounl | Profle | Telephones | Drganizalion |
g Adeiniztrator

Fust name: Inkialz:

Lazt name:

Display name:

Descrphan: Bult-r account for admnistenng the computern/dom:

Oifice:

Telephone number: Oitieer... |

E-mal

Wb page: Other... |

Now compare Figure 24-3 with Figure 24-4, which shows the property pages for a computer object.

Figure 24-4. Significantly fewer property pages for a computer obj

CC-NT250 Properties] 2| x|
Geresl | Dperating System | Member OF | Location | Managed By |
= CCNT250
Computer name [peesdindoss 20001 [B RO

DNG name: [CENTZS0chslescuk S
Ade: T
Descripton: |Ni;|.:'.'s FL

™ Trust computer for dalegation

o, This secunity-sensilive oplion means that serdces unning as
localspstem on this computer can request services om other
sEvvEls,

[TeamLiB] [rrevious | nexr]

[Team LiB]

24.3 Summary

In this chapter, we covered how to query and manipulate the Active Directory Schema, including how to locate and
transfer the Schema FSMO. The schema cache and its importance was also briefly touched on, along with
mformation on how to determine which attributes of an object are in the GC and how to add an attribute to the GC if
necessary.

The second part of the chapter focused on how to customize the Active Directory administrative MMC snap-ins by
modifying displaySpecifier objects. We described how to manipulate each of the major snap-in components, including
property pages, context menus, icons, display names and the object creation wizard. For more information about
customizing snap-ins, check out the following locations in the MSDN Library (http2//msdn.microsoft.convlibrary/):

Networking and Directory Services = Active Directory, ADSI, and Directory Services =+ SDK
Documentation == Directory Services == Active Directory = Using Active Directory = Extending the
User Interface for Directory Objects

Networking and Directory Services == Active Directory, ADSI, and Directory Services ==+ SDK
Documentation == Directory Services = Active Directory = Active Directory Reference =+ Active
Directory Interfaces ==+ Active Directory Admin Interfaces

User Interface Design and Development = Windows Shell = Shell Programmers Guide
[Team LiB]

http://msdn.microsoft.com/library/default.htm
http://msdn.microsoft.com/library/

[Team LiB]

Chapter 25. Using ADSI and ADO from ASP or VB

Two important features of Active Directory require administrators to create their own tools:

The ability to extend the Active Directory schema with your own classes and attributes, which allows you to
store additional data with objects

The ability to delegate control of administration of Active Directory in a very detailed manner

If you take advantage of these, there is a large chance that you will want to provide customized tools for
administration.

For example, you might decide that a group of users is to manage only certain properties of certain objects, say
which users can go into a group. There is no point in giving them Active Directory Users and Computers snap-in;
that's like using a sledgehammer to crack a nut. Why not create a tool of your own that only allows them to
manipulate the values that they have permission to? If you then incorporate logging into a file or database within this
application, you have a customized audit trail as well.

Tools of this nature do not lend themselves to VBScript since they tend to require a much more enhanced GUI
mterface. Consequently, you are left with three choices:

Write code in a compiled language like Visual Basic or VB.NET that supports complex GUI routines.
Write code for a web-based interface using HTML and Active Server Pages (ASPs) or using ASP.NET.
Write code in another scripting language such as Perl that supports complex graphical controls.

We will concentrate on the first two in this chapter.
[Team LiB] e

[Team LiB]

25.1 VBScript Limitations and Solutions

Using ADSI from within WSH is very useful, but it does have certain limitations. For one thing, you cannot display
output on screen in anything other than a MsgBox or request information from users without using the InputBox. It is
easy to show how these are lacking. Consider that we wish to write a general script that adds a user to a single group
selected from a list. If we wrote this under WSH, we would have to list all the groups to the screen in a large MsgBox
(or via a file using Notepad) with incremental numbers so that each group could be identified. Then the person running
the script would have to remember the number and type it into an InputBox later so that the request could be
serviced. If there were more than a few dozen groups in Active Directory, the person running the script would have to
go through a number of screens of groups before being able to see them all. It would be much simpler just to display a
drop-down list box of all groups and have the user select one. This is not possible under WSH using VBScript, but it
is possible under VB and Active Server Pages (ASP).

VB provides a full programming environment for your ADSI applications. ASP provides VBScript with the
user-interface facilities that HTML allows, effectively making your scripts more user friendly. ASPs are useful for two
important reasons. First, there is a single copy maintained in the organization. Hence, if the single copy is updated,
everyone gets the latest copy on the next use. This also saves you from version hell—having multiple versions of a
program floating around. Second, no runtime or design-time licenses are required in the development of such pages,
as is the case when you develop VB applications.

Also, if we publish the web pages on an Internet server rather than an intranet server, we can make the scripts
available to anyone who has the correct privilege to the script whether he is on our local network or not. At present
you may find it hard to see a need for being able to manipulate Active Directory from outside the organization. As
Active Directory becomes a larger store for complex objects, you may find yourself writing pages to interrogate
company databases as well as Active Directory, bringing both sets of information forward to the user. Web pages
also allow you to prototype or identify a need for a future application. If you find that your users are making heavy use
of'the web interface, perhaps it is time to consider rolling out a proper application. It all depends on what sort of
mechanism you prefer to develop and maintain to let your users access your Active Directory.

This chapter will describe in detail how to create ASPs using HTML and ADSI and how to migrate VBScript scripts
to simple VB applications.

While incorporating ADSI scripts mto ASPs via HTML is fairly easy, anyone who is considering using VBScript with
HTML pages needs to do some background reading. This chapter alone barely scratches the surface and in no way
covers HTML in any real depth.

[Team LiB]

[Team LiB]

25.2 How to Avoid Problems When Using ADSI and ASP

There is one very large pitfall with ADSI scripts under ASP that is very easy to fall into. ADSI scripts running under
ASP work only when served from IIS. This is because IIS understands ADSI, and IE on its own does not. So
whenever you want to test-run an ASP incorporating an ADSI script, make sure that you are obtaining it from the
server. This problem tends to occur in two main ways:

When developing scripts on the machine that IIS is running on

When developing scripts on a machine that has a drive mapped to the directory on IIS where you are storing
the scripts

In both of these cases, it is just as easy to open a file called C:\INETPUB\WWWROOT\MYTEST.ASP as it is to
open http//www.mycorp.com/mytest.asp from within IE. Both files will open correctly, but only the IIS-served page
will correctly work with ADSI. If you start getting unexplained errors with code that you know should be working,
just check the URL of the ASP that you are opening.

The second annoying pitfall occurs when you are constantly updating pages, testing them with a browser, and then
updating them again. If you are developing in this cycle, remember to keep refreshing the page. It becomes really
annoying to find that the bug you have been trying to solve is due to the fact that your browser thoughtfully cached a
page 15 minutes ago, and you have been forgetting to press the Shift key when clicking the Refresh button.[1]

[1] Another option if you are using Internet Explorer is to open up the Internet Options from the Tools menu and set
the Temporary Internet Files to check for newer versions of stored pages on every visit to the page.

[Team LiB]

http://www.mycorp.com/mytest.asp
http://www.mycorp.com/mytest.asp

[TeamLiB] [rrevious | nexr]

25.3 Combining VBScript and HTML

HTML pages are written as text files in the same way as VBScripts. HTML pages display information according to a
series of tags, which you use to turn certain formatting on and off. The tags you normally use to construct a basic page

look like this:
<HTML>

<HEAD>
<TITLE>Hello World Page</TITLE>
</HEAD>

<BODY>

Hello World
<P>Hello again
</BODY>

</HTML>

The <HTML> tag denotes it as an HTML document. The <HEAD> and </HEAD> pair denote everything within
those tags as belonging to the header description part of the document. The <TITLE> tag denotes the start of the
page title and </TITLE> turns it off again. The <BODY> tag denotes the main part of the page, which contains a
simple text string, a newline or paragraph marker <P>, and then another line of text. This is the bare bones of writing
HTML documents. You can create lists, set colors, make and populate tables, display images, and so on. However,
you do not need to go into all of that to demonstrate incorporating ADSI VBScripts into HTML pages. You only
need to be aware of the following major sets of tags: <FORM> . . . </[FORM>, <OBJECT> . .. </OBJECT>, <% .
.. %>, and <SCRIPT> ... </SCRIPT>.

25.3.1 Incorporating Scripts into Active Server Pages

Two sorts of scripts can be created within ASPs: client-side scripts and server-side scripts. Client-side scripting is
used to access all the objects in a web page (e.g., text, images, tags), browser objects (e.g., frames, windows), and
local ActiveX components. Server-side scripting is used to create a web page dynamically via parameters, forms, and
code that is then passed to a browser.

Because the two types of scripts are executed at different locations, each has a separate set of interfaces. You place
your ADSI scripts in server-side scripting, not client-side scripting. We'll go through the major differences now so that
you will be less likely to make annoying mistakes.

25.3.1.1 Client-side scripting

You can use the <SCRIPT> tags to add client-side VBScript code to an HTML page. Whenever the browser
encounters the tags, the enclosed script is executed as if it were being issued from the client. You can use blocks of
scripting in both the BODY and HEAD sections of an ASP if you want to. If you put your code in the HEAD section,
it will be read and executed before any item in the BODY section is accessed. As an example, here is a procedure to

display a line of text:
<SCRIPT LANGUAGE="VBScript">

Document.Write "This is a line of text<p>"

</SCRIPT>

The LANGUAGE attribute indicates that this is VBScript rather than one of the other languages. As this is not
running under the WSH, you do not have a VBS or JS extension to denote the language. The Document::Write
method writes the line to the web page. It is only one of a number of properties and methods from interfaces available
to you as an ASP developer. You also can use MsgBox and InputBox within client-side scripts.

The important thing about client-side scripts from this chapter's point of view is that ADSI functions and methods
cannot be included in these scripts. This is an important limitation, one that we will show you how to get around later.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

25.4 Binding to Objects Via Authentication

Whenever we need to access the properties of an object in Active Directory, we bind to it using VBScript's
GetObject function or the ADSI method IADsOpenDSObject:OpenDSObject. The circumstances in which each
method should be used to access Active Directory is very clear-cut but deserves to be outlined here, as it will be
important whenever you construct ASPs.

25.4.1 When to Use VBScript's GetObject Function

By default, many of the objects and properties within Active Directory can be read by any authenticated user of the
forest. As an example, here is some code to connect to an Organizational Unit called Sales under the root of the

domain. This code works under the WSH:
Set objSalesOU = GetObject ("LDAP://ou=Sales,dc=mycorp,dc=com")
Wscript.Echo objSalesOU.Description

Here is the same script incorporated into an ASP:
<HTML>
<HEAD>
<TITLE>Binding to an existing Organizational Unit</TITLE>
</HEAD>

<BODY>
<%
Set objSalesOU = GetObject ("LDAP://ou=Sales,dc=mycorp,dc=com")
Response.Write "The Sales OU description is: " & objSalesOU.Description
%>
</BODY>
</HTML>

This mechanism works perfectly when you wish to have read-only access to properties of objects that can be read
without special privileges. Using GetObject is not appropriate in the following cases:

You want to write properties of an object.

The object you are attempting to bind to requires elevated privileges to access.

While it may make little sense, it is perfectly feasible to restrict read access to the description of the Sales
Organizational Unit, or more commonly the Sales Organizational Untt itself. If the Sales Organizational Unit is
restricted, a GetObject will fail to bind to it. If only the description is restricted, a GetObject will successfully bind to
the Sales Organizational Unit, but access to the description property will be denied.

To gain access to a restricted object or impersonate another user, you must authenticate using
IADsOpenDSObject::OpenDSObject.

25.4.2 When to Use IADsOpenDSObject::OpenDSObject

Here is a simple Organizational Unit creation script that works under the WSH when an administrator is logged in:
Set objRoot=GetObject ("LDAP://dc=mycorp,dc=com")

Set objSalesOU = objRoot.Create ("organizationalUnit","ou=Sales")
objSalesOU.Description = "My new description!"
objSalesOU.SetInfo

We cannot transfer the script to an ASP as it stands. To make the script work, we must use the
IADsOpenDSObject::OpenDSObject method, which does allow authentication. Here is the same example using
authentication within an ASP:

ITIMNT ~

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

25.5 Incorporating Searches into ASP

ADO searches can be easily incorporated into ASPs using the mformation in this chapter and Chapter 20. In this first
example, we will navigate through a resultset using server-side scripts in order to populate a table that gets created
dynamically. To make it easier to understand, Figure 25-1 is what the final result should look like for a new server
with very few users.

Figure 25-1. A navigable table on a web page populated by ADO

'3 retordect Naripaion usng ADSE, ADG and AGP ~i01 x
Fie FEdt "W Favorites Tooks Hep
J | %] \ﬁ ﬂ%\-rl‘ _wj|Fwvndtes ¢ MHitory _ll' =ﬁ _‘J - J P Links **

Thes 15 user mamber 1. Thers are 634 users in the recordses

Mame: CM=Administrator

Al:Path LDAPYCN=Adranistrator, C=1sers, DC=windows, DC=mycorp, DC=com
Dlescrpion

Clags: LDAFP:Vschemauser

Aeshar R owe First iore Lest

Mame LIKE 'a* Set Filkerd Erazs Filer

& | Dore (E Local rtranst

This ASP includes all its code in the body of the web page. To begin with, we must retrieve the resultset:
<%
Set objConn = CreateObject ("ADODB.Connection")
objConn.Provider = "ADSDSOObject"
objConn.Open "",
"CN=Administrator,CN=Users, dc=mycorp,dc=com", ""

Set objRS = objConn.Execute _
("<LDAP://dc=mycorp,dc=com>;"
& " (objectClass=User) ;Name, ADsPath; SubTree")

o\
\

Having done this, we can now begin to create the table. The table definition must include the number of columns.
Even though we know that we are retrieving two columns, we will include the value returned from the query rather
than hardcoding a value of 2 mto the table so that we can extend the page later. The table definition then looks like

this:
<TABLE BORDER=1 COLS=<% = 0bjRS.Fields.Count%>>

Now we need to include column headings. Agamn, if we take these directly from the query, then we can expand the

query much more easily later:
<TR>
<% For Each adoField In objRS.Fields %>
<TH> <% = adoField.Name %> </TH>
<% Next %>
</TR>

Now we can navigate through the actual resultset and populate the table. Each row is created via the <TR>...</TR>
parir of tags by navigating through the resultset using a Do While...LLoop construct. As soon as we go past the end of

the loop, the table closing tag is sent. Each individual row is populated using a For...Each loop:

<% Do While Not obJjRS.EOQOF %>

<TR>
<% For Each adoField In objRS.Fields %>

' Populate the cells here
<% Next
objRS.MoveNext %>
</TR>

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

25.6 Migrating Your ADSI Scriptsfrom VBScript to VB

If you decide you need a GUI-based application instead of a web-based application, it is time to start thinking about
coding in a different language. VB is an easy language with the capabilities of great complexity. The VB language itself
is very similar to VBScript, so you can port code quickly from your existing scripts. However, there is so much that
you can do with VB that the bewildering array of interfaces and methods can easily get confusing. The simplest
solution to this is to get a book on VB. There are many dozens of books that already exist on the complexities of
writing in VB, and we do not intend to provide an introduction here. If you are seriously considering writing in VB,
your best option is to pick up a book on it.

This section covers what you need to do to write ADSI code with VB after having written ADSI code in VBScript.
This includes a brief look at the major differences between VBScript and VB, the options that need to be set, and the
Platform SDK, which you will need to compile your code. We also briefly cover a series of examples that are
available from the O'Reilly web site. The notes that we present in this section are with respect to Microsoft Visual
Basic Professional Version 6.0. However, these examples should also work with future versions of VB as well.

25.6.1 Platform Software Development Kit

To access the ADSI interfaces and libraries, you need to be able to reference the appropriate component of the
Microsoft Platform Software Development Kit (SDK) in your code. You can either download the appropriate
component or obtain the full SDK, which includes all components.

The full SDK provides developers with a single, easy-to-use location from which to download current and emerging
Microsoft technologies; it includes tools, headers, libraries, and sample code. The Platform SDK is the successor to
the individual SDKs, such as the Win32, BackOffice, ActiveX/Internet Client, WMI, ADSI, and DirectX SDKs.

You can get the full SDK build environment or just the ADSI component in a number of ways:

[]
If you purchase an MSDN Professional-level subscription, you will be shipped all of the SDK's that you

require.

If you purchase an MSDN Enterprise-level subscription, you will be shipped all of the SDKs and all of the
Visual Studio products, which includes Microsoft Visual Basic Enterprise Edition as well.

If you purchase Visual Basic 6.0 Enterprise Edition, you receive the full MSDN set of CDs and the SDK
build environment.

You can download the parts of the platform SDK by following going to
http//www.microsoft.com/msdownload/platformsdk/sdkupdate/.

“s 4. Ifyouwish to make use of ADO from the next chapter, you need Microsoft Data Access
4t Components (MDAC) as well. You can download these from the Downloads section of

the Universal Data Access site: http//www.microsoft.comv/data/download.htm.

Once the SDK has been downloaded and installed, start VB and in any new project that you write make sure that
you go to Project = References and check items according to Table 25-1.

Table 25-1. When to use relevant references in VB

Reference To use

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/default.htm
http://www.microsoft.com/data/download.htm
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/
http://www.microsoft.com/data/download.htm

[TeamLiB] [rrevious | nexr]

[Team LiB]

25.7 Summary

Being able to customize the Active Directory schema means that you may end up using a number of new classes and
attributes that you create. As these classes and attributes can be manipulated using the same ADSI mterfaces that you
have seen in the previous chapters, you can easily create your own customized tools to operate on these new objects.
This allows you free rein in developing solutions that are perfectly tailored for your requirements, whether from a
web-based or GUI-based mterface.

[Team LiB]

[Team LiB]

Chapter 26. Scripting with WMI

The Windows Management Instrumentation (WMI) API was developed by Microsoft in 1998 in response to the
ever-growing need for developers and system administrators to have a common, scriptable API to manage the
components of the Windows operating systems. Before WML, if you wanted to manage some component of the
operating system, you had to resort to using one of the component specific Win32 API's, such as the Registry API or
Event Log API. Each API typically had its own implementation quirks and required way too much work to do simple
tasks. The other big problem with the Win32 APIs is that scripting languages such as VBScript could not use them.
This really limited how much an inexperienced programmer or system administrator could do to programmatically
manage systems. WMI changes all this by providing a single API that can be used to query and manage the Event
Log, the Registry, processes, the filesystem, or any other operating system component.

So you may be wondering at this point: this is a book on Active Directory, so why do I need to care about a system
management API1? Even if your sole job i life is to manage Active Directory, WMI can benefit you in at least two
ways. First, Active Directory runs on top of Windows 2000 or Windows Server 2003. These servers need to be
managed (i.e., Event Log settings configured, Registry modified, applications installed, etc.) and monitored (i.e.,
filesystem space, services running, etc.). You can choose to do all of those tasks manually, or you can use WMI to
automate them. For each task you automate, the total cost of ownership to support Active Directory is reduced, and
you help ensure your servers stay consistent. The other reason why WMI is important to Active Directory is the
direction Microsoft is taking WMI with respect to monitoring and managing any system or application under the
Microsoft umbrella. That's right, not only does Microsoft want WMI to be the primary interface to manage and
monitor Windows systems, but also any Windows application, including Active Directory. Currently, ADSI provides
the primary management interface into Active Directory, but in the Windows Server 2003 release, there are several
new WMI hooks into Active Directory to monitor things such as trusts and replication.

In this chapter, we will give a brief introduction to the concepts and termmology behind WMI and then delve into
several sample scripts showing how to make use of it. We will cover some system-specific tasks, such as managing
services, the Event Log, and the Registry, which should give you a good grounding in some of the fundamentals of
WML In the second half of the chapter, we will review how WMI can be used to access and monitor Active
Directory.

In a single chapter we can only go into so much detail about the internals of WMI. We won't be covering some of the
more advanced topics. If you are interested in more information than what this chapter provides, we recommend
checking out the MSDN Library or one of the WMI books available on the market. At the time this book was
published, you could access the WMI SDK documentation by going to the MSDN Library (
http://msdn.microsoft.convlibrary) and visiting Setup and System Administration = Windows Management
Instrumentation (WMI) == SDK Documentation or by going to the following web page:
http//msdn.microsoft.convlibrary/en-us/wmisdk/wmi/wmi_start page.asp.

[Team LiB] Gl

http://msdn.microsoft.com/library
http://msdn.microsoft.com/library/en-us/wmisdk/wmi/wmi_start_page.asp
http://msdn.microsoft.com/library
http://msdn.microsoft.com/library/en-us/wmisdk/wmi/wmi_start_page.asp

[Team LiB]

26.1 Origins of WMI

There have been several industry initiatives over the years to develop a model for managing systems and devices that
would be robust enough to meet the needs of most vendors. Several protocols and frameworks have been developed
to address the problem. The Simple Network Management Protocol (SNMP) is probably the most notable, but is
pretty simple in its implementation and does not provide many features most vendors need for a single management
framework.

The Distributed Management Task Force (DTMF) was created in the early 1990s to address the management
framework problem. They developed the Web Based Enterprise Management (WBEM) standard, which attempts to
unify the management frameworks utilizing web technologies. As part of the WBEM standard, they also created the
Common Information Model (CIM), which is the language used for describing management data in an object-oriented
way. The WBEM/CIM standards have garnered a lot of industry support in recent years and provide the basis for
WML

For more information on WBEM/CIM, check out the DMTF website: http/www.dmtf.org.
[Team LiB]

http://www.dmtf.org/default.htm
http://www.dmtf.org

[TeamLiB] [rrevious | nexr]

26.2 WMI Architecture

The WMI architecture is composed of two primary layers: the CIM mfrastructure, which includes the CIMOM and
CIM Repository, and the WMI providers. While the concepts Microsoft uses are very similar to the WBEM/CIM
standards, they did not implement one very important component: the use of web technologies for the transport
mechanism. Instead of usmg HTTP to transport messages between the WMI infrastructure and clients, Microsoft uses
COM and DCOM, two Microsoft-specific technologies. This limits the use of WMI to only Microsoft platforms.

That being said, the capabilities to manage Microsoft-based platforms with WMI are nearly unlimited. More and
more vendors are utilizing WMI not only to manage components of the Microsoft OS but also to manage their own
applications. NMicrosoft has also become heavily invested mn WMI by providing WMI providers for nearly all of its
major applications, including Active Directory, Exchange 2000, DNSS, and even Microsoft Office.

26.2.1 CIMOM and CIM Repository

The CIM Repository is the primary warehouse for management data. It contains the static data that does not change
very frequently, such as memory or disk size. The CIMOM or CIM Object Manager handles requests from clients,
retrieves data from the CIM Repository, and returns it to the client. The CIMOM also provides an event service, so
that clients can register for events and be notified dynamically when they occur. For dynamic data, such as
performance monitor counters, the CIMOM will interact directly with a WMI provider instead of retrieving the data
directly from the CIM Repository. The CIM Repository cannot store all possible data that is needed by the various
WMI providers. The storage requirements would be significant, not to mention that a lot of the data would become
out-of-date almost immediately after it was stored.

26.2.2 WMI Providers

The WMI providers contain much of the intelligence behind WMI. Typically a provider will be implemented for each
individual managed component, such as the Event Log or Active Directory Trusts. Each provider is responsible for
mnteracting with its managed component and can perform certain functions implemented by methods on classes
representing that component. Also, as described earlier, some providers interact with the CIMOM to provide
dynamic data that cannot be held in the CIM Repository.

Each WMI provider is also associated with a namespace. The namespace is used to segregate where WMI
providers store their data and class definitions. Think of it as a file system. You could store all of your files in a single
directory, but it would be hard to manage. By storing data and class definitions for providers under different
namespaces, you don't have to worry about confusing the EventLog provider with the Active Directory Trust
provider. Table 26-1 contains the more commonly used and AD-related WMI providers and the associated
namespace.

Table 26-1. Some of the commonly used and AD-related WMI providers

Provider Namespace

Win32 provider root\cimv2

EventLog provider root\cimv2

Registry provider root\default

Active Directory provider root\directory\LDAP
Replication provider root\MicrosoftActiveDirectory

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

26.3 Getting Started with WMI Scripting

Once you have a basic understanding of the WMI architecture, scripting with WMI is easy. In fact, once you
understand how to reference, enumerate and query objects ofa particular class with WML, it is straightforward to
adapt the code to work with any managed component.

26.3.1 Referencing an Object

To reference objects in WMI, you use a UNC-style path name. An example of how to reference the C: drive on a

computer looks like the following:
\\dcI\root\CIMv2:Win32 LogicalDisk.DeviceID="C:"

The format should be easy to follow. The first part of the path (\\dc1)) is a reference to the computer on which the
object resides. To reference the computer on which the script is running, you can use a "." for the computer name.
The second part (root\CIMv2) is the namespace the object resides in. The third part (Win32_LogicalDisk) is the
class ofthe object to reference. The fourth part is the key/value pairs representing the object. Generically, the path

can be shown as follows:
\\ ComputerName\NameSpace: ClassName,KeyName="KeyValue" [, KeyNameZ="KeyValuel2",. . .]

Now that we know how to reference WMI objects, let's go ahead and mstantiate an object using VBScript's
GetObject function. For GetObject to understand that we are referencing WMI objects, we have to include one
additional piece of information: the moniker. Just as we've been using the LDAP: and WinNT: progIDs to reference
Active Directory and SAM-based objects in ADSI, we need to use the winmgmts: moniker when we are dealing with

WMI objects:
Set objDisk = GetObject ("winmgmts:\\dcl\root\CIMv2:Win32 LogicalDisk.DeviceID='C:"'")

Note that if you want to reference the C: logical drive on the local computer, you can leave off the computer name

and namespace path. The GetObject call would then look like this:
Set objDisk = GetObject ("winmgmts:Win32 LogicalDisk.DeviceID='C:'")

L

< You can leave out the namespace path because root\CIMV2 is the default namespace.
— &% When accessing a provider that uses any other namespace, you need to include the
namespace path. Also, if you are referencing a remote object, you need to include the

namespace path even if it is root\CIMVv2.

26.3.2 Enumerating Objects of a Particular Class

Now let's look at an example. We want to view all logical disks on a machine, not just a particular disk. To do so,
we need to use the InstancesOf method on a WMI object pointing to the namespace of the provider that contains the
class. Perhaps an example will make this clear:

strComputer = "."
Set objWMI = GetObject ("winmgmts:\\" & strComputer & "\root\cimv2")
Set objDisks = objWMI.InstancesOf ("Win32 LogicalDisk")

for each objDisk in objDisks

Wscript.Echo "DeviceID: " & objDisk.DevicelID
Wscript.Echo "FileSystem: " & objDisk.FileSystem
Wscript.Echo "FreeSpace: " & objDisk.FreeSpace
Wscript.Echo "Name: " & objDisk.Name
Wscript.Echo "Size: " & objDisk.Size
WScript.Echo ""

next

Here we get a WMI object pomting to the root\CIMv2 namespace, after which we call the InstancesOf method and
pass the Win32 LogicalDisk class. That method returns a collection of Win32 LogicalDisk objects which we then
iterate over with a For Each loop.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

26.4 WMI Tools

There are several tools available to query and browse WMI information. These tools can be very useful in situations
in which you want to access WMI information but do not want to write a script to do fit.

26.4.1 WMI from a Command line

The WMI command-line tool (WMIC) is a powerful tool that can expose virtually any WMI information you want to
access. It is available in Windows XP and Windows Server 2003. Unfortunately, WMIC does not run on Windows
2000, but it can still be used to query WMI on a Windows 2000 machine.

WMIC maps certain WMI classes to "aliases." Aliases are used as shorthand so that you only need to type
"logicaldisk" mstead of "Win32 LogicalDisk". An easy way to get started with WMIC is to type the alias name of the
class you are interested in. A list of all the objects that match that alias/class will be listed.

wmic:root\cli>logicaldisk list brief

DeviceID DriveType FreeSpace ProviderName Size VolumeName
A: 2

C: 3 1540900864 4296498688 W2K

D: 3 15499956224 15568003072

Z: 5 0 576038912 NRIEFRE EN

Most aliases have a list brief subcommand that will display a subset of the properties for each object. You can run
similar queries for services, CPUs, processes, and so on. For a complete list of the aliases, type alias at the WMIC

prompt.

The creators of WMIC didn't stop with simple lists. You can also utilize WQL to do more complex queries. This
next example displays all logical disks with a drivetype of 3 (local hard drive):

wmic:root\cli>logicaldisk where (drivetype = '3') list brief

DeviceID DriveType FreeSpace ProviderName Size VolumeName
C: 3 1540806144 4296498688 W2K

D: 3 15499956224 15568003072

We have just touched the surface of the capabilities of WMIC. You can invoke actions, such as creating or killing a
process or service, and modify WMI data through WMIC as well. For more information, check out the Support
WebCast "WMIC: A New Approach to Managing Windows Infrastructure from a Command Line," available at
http://support.microsoft.com/default.aspx?scid=/webcasts/. Help nformation is also available on Windows XP and
Windows Server 2003 computers by going to Start = Help, and search on WMIC.

26.4.2 WMI from the Web

Included as sample applications with the original WMI SDK, the WMI CIM Studio and WMI Object browser are
web-based applications that provide much more benefit than just being example applications provided in the SDK.
The following is a list of the tools and their purpose:

[]
The WMI CIM Studio is a generic WMI management tool that allows you to browse namespaces,

instantiate objects, view the instances of a class, run methods, edit properties, and even perform WQL
queries.

The WMI Object Browser allows you to view the properties for a specific object, look at the class
hierarchy, view any associations, run methods, and edit properties for an object.

The WMI Event Registration allows you to create, view, and configure event consumers.

http://support.microsoft.com/default.aspx@scid=_2Fwebcasts_2F
http://www.microsoft.com/downloads/details.aspx@displaylang=en&FamilyID=6430F853-1120-48DB-8CC5-F2ABDC3ED314
http://www.microsoft.com/downloads/details.aspx@displaylang=en&FamilyID=6430F853-1120-48DB-8CC5-F2ABDC3ED314
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/default.htm
http://support.microsoft.com/default.aspx?scid=/webcasts/
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=6430F853-1120-48DB-8CC5-F2A
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/default.htm

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

26.5 Manipulating Services

Querying services is simple to do with WMI. The Win32_ Service class is the WMI representation of a service. The
Win32_Service class contains a lot of property methods that provide information about the service; the most useful

ones have been listed in Table 26-2.

Table 26-2. Useful Win32 Service properties

Property Description
Returns a Boolean indicating whether the service can be
AcceptPause
paused.
Returns a Boolean indicating whether the service can be
AcceptStop
stopped.
Description Description of the service.
DisplayName Display name of the service.
Name Unique string identifier for the service.
PathName Fully qualified path to the service executable.
Started Boolean indicating whether the service has been started.
String specifying the start mode of'the service. Will be
StartMode one of Automatic, Manual, or Disabled.
StartName Account under which the service runs.
Current state of the service. Will be one of Stopped,
State Start Pending, Stop Pending, Running, Continue
Pending, Pause Pending, Paused, or Unknown.

The following script retrieves all the running services on a machine. All we need to do is use a WQL query that finds

all Win32_Service objects that have a state of "Running":

strComputer = "."

Set objWMI =

Set objServices = objWMI.ExecQuery

GetObject ("winmgmts:\\" & strComputer & "\root\cimv2")

("SELECT * FROM Win32 Service WHERE State = 'Running'")

For Each objService in objServices

Wscript.Echo objService.DisplayName

Wscript.Echo " Name: " & objService.Name
Wscript.Echo " PathName: " & objService.PathName
Wscript.Echo " Started: " & objService.Started
Wscript.Echo " StartMode: " & objService.StartMode
Wscript.Echo " StartName: " & objService.StartName
Wscript.Echo " State: " & objService.State
Wscript.Echo ""

next

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

26.6 Querying the Event Logs

The Event Logs are typically a system administrator's first line of inquiry when trying to troubleshoot problems. Since
they are so important, it is also important to see how we can make use of them with WMI. The two major
components that we need to be concerned with are the Event Logs themselves and the events contained within each
Event Log. We will first focus on properties of Event Logs.

The Win32 NTEventLogFile class represents an Event Log. Table 26-4 contains several Win32 NTEventLogFile
properties that can be used to query or modify properties of a Event Log.

Table 26-4. Useful Win32 NTEventLogFile properties

Property Description

FileSize Size of the Event Log file in bytes.

LogFileName Standar@ name used for describing the Event Log (e.g.,
Application).

MaxFileSize Max size in bytes that the Event Log file can reach. This
is a writeable property.

Name Fully qualified path to the Event Log file.

NumberOfRecords Total number of records in the Event Log.

Number of days after which events can be overwritten.
This is a writeable property with 0 indicating to overwrite
OverwriteOutDated events as needed, 1-365 being the number of days to
wait before overwriting, and 4294967295 indicating that
events should never be overwritten.

Text description of the overwrite policy (as specified by
OverwritePolicy the OverwriteOutDated property). Can be one of
WhenNeeded, OutDated, or Never.

Array of registered sources that may write entries to the

Sources Event Log.

Let's look at an example that displays all of the properties listed in Table 26-4 for each Event Log and sets the
MaxFileSize and OverwriteOutDated properties if they have not already been set to the correct values. Since we
want to iterate over all Event Logs, we will pass Win32 NTEventLogFile to the InstancesOf method. Example 26-2
shows how to accomplish this.

Example 26-2. Displaying properties of the Event Log using Win32 NTEventLogFile

strComputer = "."
intMaxFileSize = 10 * 1024 * 1024 ' << 10MB
intOverwriteOutDated = 180 ' << 6 months

Set objWMI = GetObject ("winmgmts:\\" & strComputer & "\root\cimv2")
Set ObJELF = objWMI.InstancesOf ("Win32 NTEventLogFile")
' Iterate over each Event Log

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

26.7 Querying AD with WMI

Up to now, we've shown how WMI can be a powerful resource to aid in managing components of mdividual
computers. You may be wondering what impact WMI will have on Active Directory? It can, in fact, play as big a role
in automating the management of Active Directory as you want. Also, over time, WMI's importance with respect to
monitoring Active Directory will continue to grow as Microsoft develops new providers.

First we are going to review how you can use WMI and the Active Directory provider to access and query objects
in Active Directory. We will then cover some specific WMI providers that Microsoft has made available mn Windows
Server 2003; these providers help you monitor certain aspects of Active Directory, such as trusts and replication. In
the next chapter, we will cover the WMI DNS provider and how you can manage Microsoft DNS servers with it. To
start with, let's look at the Active Directory provider.

The Active Directory provider uses the root\directory\ldap namespace. Within that namespace, every Active
Directory schema class and attribute is mapped to corresponding WMI classes or properties. Each abstract class
(e.g., top) is mapped to a WMI class with "ds_" prefixed on the name. Each nonabstract class (e.g., structural and
auxiliary) is mapped to two classes. One has "ads " prefixed, and the other has "ds " prefixed. The "ads " classes
conform to the class hierarchy defined by the subClassOf attribute for each class. The "ds_" classes for nonabstract
(e.g., structural) classes are descendants of theirr cooresponding "ads " class. Perhaps an example would help

illustrate this hierarchy:
ds_ top
ads person
ads_organizationalperson
ads _user
ads computer
ds_computer

In this example, we showed the class hierarchy for the Active Directory "computer" object class as it is mapped to
WMLI. The attribute mappings are more straightforward. Each Active Directory attribute has a corresponding
property in WMI with "ds_" prefixed. So the description attribute would map to the ds_description property in WML
An additional property was added called ADSIPath, which is the ADsPath, and is the key for each Active Directory
object n WMI. We highly recommend installing and using the WMI CIM Studio to browse the root\directory\ldap
namespace. The organization of classes and objects will become apparent.

We can use the techniques shown so far to query and manipulate Active Directory objects. We can retrieve all the
mstances of a particular Active Directory class (via InstancesOf) or perform WQL query based on certain criteria. In

the following example, we search for all user objects that have a last name equal to "Allen".
strComputer = "."

Set objWMI = GetObject ("winmgmts:\\" & strComputer & "\root\directory\LDAP")
Set objUsers = objWMI.ExecQuery ("SELECT * FROM ds user where ds sn = 'Allen' ")

if objUsers.Count = 0 then
Wscript.Echo "No matching objects found"

else
for each objUser in objUsers
WScript.Echo "First Name: " & objUser.ds_givenName
WScript.Echo "Last Name: " & objUser.ds sn
WScript.Echo ""
next
end if

Since WMI is typically used to manage computers, we can leverage Active Directory as a repository of computer
objects and perform certain functions on a set of computers that match our criteria. In the next code sample, we do a
WQL query for all computers that are running "Windows Server 2003", connect to each one, and print the date each

machine was last rebooted.
on error resume next

strComputer = "."

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

26.8 Monitoring Trusts

New to Windows Server 2003 is the Trustmon WMI provider. The Trustmon provider allows you to query the list
of'trusts supported on a domain controller and determine if they are working correctly. The Trustmon provider
consists of three classes, but the primary one is the Microsoft DomainTrustStatus class, which represents each trust
the domain controller knows about. The Trustmon provider is contained under the root\MicrosoftActiveDirectory
namespace. Note that this namespace is different than for the Active Directory provider, which is contained under
root\directory\ldap.

Table 26-6 provides a list of the property methods available to this class.

Table 26-6. Microsoft DomanTrustStatus properties

Property Description
Flatname NetBIOS name for the domain.
SID SID for the domain.

Flag indicating special properties of the trust. Can be any
combination of the following:

[]
0x1 (Nontransitive)
TrustAttributes 0x2 (Uplevel clients only)

0x40000 (Tree parent)

0x80000 (Tree root)

TrustDCName Name of the domain controller the trust is set up with.

Integer representing direction of the trust. Valid values include:

1 (Inbound)

TrustDirection

2 (Outbound)

3 (Bidirectional)

TrustedDomain Naming of trusted domain.

TrustlsOK Boolean indicating whether the trust is functioning properly.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

26.9 Monitoring Replication

The WMI Replication provider is another good example of how Microsoft is leveraging WMI to help with monitoring
Active Directory. Like the Trustmon provider, the Replication provider is only available with Windows Server 2003
and is contained under the root\MicrosoftActiveDirectory namespace. It provides classes to list the replication
partners for a domain controller, view the supported Naming Contexts for a domain controller, and also see the
pending replication operations.

o As of the time of'this writing, Microsoft had not published any documentation on the
Replication provider. Most of the information contained in this section was observed by one
of the authors and is likely not to be the complete story!

Table 26-8 contains some of the more useful properties for the MSAD RepINeighbor class, which represents a
replication partner (or neighbor) for a given domain controller.

Table 26-8. Useful MSAD RepINeighbor properties

Property Description
IsDeletedSourceDsa Boolean indicating whether the source DC has been
deleted.
Number representing the result of the last sync operation
LastSyncResul with this neighbor. A value of 0 indicates success.
NamingContextDN DN‘of the Naming Context for which the partners
replicate.
NumConsecutiveSyncFailures Nmber of consecutive sync failures between the two
neighbors.
SourceDsaCN CN of the replication neighbor.
SourceDsaSite Site the replication neighbor is .
TimeOfLastSyncAttempt Time of the last sync attempt.
TimeOfLastSyncSuccess Time of last successful sync attempt.

There are actually several property methods available other than what is shown in Table 26-8, so in the following
example, we will enumerate all the replication neighbors and print out every property available to the
MSAD RepINeighbor class.

strComputer = "."
Set obJjWMI = GetObject ("winmgmts:\\" & strComputer & _
"\root\MicrosoftActiveDirectory")

Set objReplNeighbors = objWMI.ExecQuery ("Select * from MSAD ReplNeighbor")

for each objReplNeighbor in objReplNeighbors

T~ am et ot T~~~ ~I DA~ T NI~ ~T 1l ~amr O mvmmma TV~ ~NT ¢ W /WM

[TeamLiB] [rrevious | nexr]

[Team LiB]

26.10 Summary

In this chapter we gave a quick introduction into the WMI architecture and the concepts behind it. We then covered
some of the tools available for querying and modifying WMI data. Next we went through several examples for
querying and manipulating services and the Event Logs. The last part of the chapter covered the WMI hooks into
Active Directory, including the WMI providers for Trustmon and Replication monitoring,

In the next chapter we will put our WMI knowledge to use as we work with the WMI DNS Provider. We will use
WMI to configure Microsoft DNS server settings programmatically and manipulate zones and resource records.

[Team LiB]

[Team LiB]

Chapter 27. Manipulating DNS

DNS is a core technology of Active Directory that cannot be overlooked. While features such as Active Directory
Integrated DN'S can take a lot of the hassle of managing DNS servers and zones out of your hands, you still have to
set up the initial zone configurations. Unfortunately, lack ofa good DNS API has always been a big gap for managing
a Microsoft DNS server environment. The only way to automate mamntenance and management of Microsoft DNS
has been by executing Dnscmd commands from within a batch, VBScript, or Perl script. Over time, Microsoft has
continued to improve Dnscmd, and as of Windows 2000, it provides just about every option you need to manage
DNS server configuration, zones, and resource records using a command line. In Windows Server 2003, it even
allows you to manage Application Partitions! Microsoft also provides the DNS MMC snap-in for those that want to
manage DNS via a GUI, although it is not very suitable for managing large environments.

Microsoft's answer to the DN'S API issue is WMI. As explained in Chapter 26, WMI is Microsoft's API of choice
for managing and monitoring systems and services. With the WMI DNS provider, you have complete programmatic
control over a Microsoft DNS environment, much as you do with Dnscmd from a command line.

In this chapter, we will cover the WMI DNS provider at length, including the properties and methods available for
the primary WMI DNS classes. Several sample scripts will be shown, which will give you a head start on developing
scripts to manage your own DNS environment.

[Team LiB]

[TeamLiB] [rrevious | nexr]

27.1 DNS Provider Overview

The WMI DNS provider was first released as part of the Windows 2000 Resource Kit Supplement 1, but
unfortunately it was not ready for prime time. That version was buggy, did not include all the documented features,
and in several cases behaved differently than what the documentation described. Also, since the DNS provider was
included as part of a Resource Kit, it was not fully supported by Microsoft, which means that if you encountered
problems, you were largely on your own. That said, much of the functionality you probably need is present in the
Windows 2000 version, so it may be suitable. You can download the Windows 2000 DNS provider separately from
the Resource Kit via FTP from the following location: ftp/fip.microsoft.com/reskit/win2000/dnsprov.zip

With Windows Server 2003, the DNS provider is fully functional and supported. It is installed automatically
whenever you install the DNS Server service. You can also install it separately as described in the next section. This
may be necessary when doing development with the provider on a machine that does not have the DNS Server
mstalled.

«s 4. Forour purposes, all sample code has been tested using the Windows Server 2003 DNS
& provider.

27.1.1 Installing the DNS Provider

You do not need to manually mstall the provider if you are installing the DNS Server service on a Windows Server
2003 server because it gets installed with the service.

If you downloaded the DNS provider files for Windows 2000 (dnsschema.mof and dnsprov.dll), you will first need
to copy them to the %SystemRoot%\System32\wbem directory. Next, you'll need to compile the DNS managed
object format (MOF) file by executing mofcomp filename from a command line. With Windows 2000, the DNS
MOF file is named dnsschema.mof, and with Windows Server 2003 it is called dnsprov.mof. The output of the

command should look like the following:
C:\WINDOWS\system32\wbem>mofcomp dnsprov.mof

Microsoft (R) 32-bit MOF Compiler Version 5.2.3628.0
Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.
Parsing MOF file: dnsprov.mof

MOF file has been successfully parsed

Storing data in the repository...

Done!

The last step is to register the DNS provider DLL by executing regsvr32 dnsprov.dll from a command line. You
should see a dialog box with the following:

Dl11RegisterServer in dnsprov.dll succeeded.
At this point you will be able to use the DNS provider from your scripts.
27.1.2 Managing DNS with the DNS Provider

The three main areas of interest when it comes to managing DNS include server configuration, zone management, and
creation and deletion of resource records. The DNS provider has several classes to manipulate each of these
components. With the MicrosoftDNS_Server class, you can manipulate server configuration settings, start and stop
the DN service, and initiate scavenging. The MicrosoftDNS Zone class allows you to create, delete, and modify
zone configuration. The MicrosoftDNS ResourceRecord class and child classes provide methods for manipulating
the various resource record types. Each of these will be explained in more detail in the next few sections.

Several additional classes are also supported by the DNS provider to manage other aspects of DNS, including the
root hints (MicrosotDNS RootHints), DNS cache (MicrosofDNS_Cache), and server statistics

(MicrosoftDNS _Statistics). For more information on these classes, including sample scripts in VBScript and Perl,
check out the following section in the MSDN Library (http//msdn.microsoft.convlibrary/): Networking and Directory

ftp://ftp.microsoft.com/reskit/win2000/dnsprov.zip
http://msdn.microsoft.com/library/default.htm
ftp://ftp.microsoft.com/reskit/win2000/dnsprov.zip
http://msdn.microsoft.com/library/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

27.2 Manipulating DNS Server Configuration

There are close to 50 different settings that can be configured on a Microsoft DNS server. They range from default
scavenging and logging settings to settings that customize the DNS server behavior, such as how zone transfers will be
sent to secondaries and whether to round-robin multiple A record responses.

The DNS provider is mapped to the root\Microsoff DN'S namespace. A DNS server is represented by an instance of
a Microsoft DNS_Server class, which is derived from the CIM_ Service class. Table 27-1 contains all the property

methods available in the MicrosofilDNS_ Server class.

Table 27-1. MicrosoftDNS _Server class properties

Property name Property description

AddressAnswerLimit Max number of records to return for address requests
(e.g., A records).

AllowUpdate Determines whether DDNS updates are allowed.
Indicates which standard primary zones that are

AutoConfigFileZones authoritative for the name of the DNS server must be
updated when the name server changes.
Indicates whether the DNS server will dynamically

AutoCacheUpdate attempt to update its root hints (also known as cache)
file.

BindSecondaries Determines the format zone transfers (AXFR) will be
sent as to non-Microsoft DNS servers.

BootMethod Detemes where the server will read its zone
mformation.

DefaultAgingState for AD-mtegrated zones, the default scavenging interval
in hours.

DefaultNoRefreshinterval For AD-tegrated zones, the default no-refresh interval
in hours.

DefuulRefreshInterval For AD-integrated zones, the default refresh interval in
hours.

Disable AutoReverseZones Determines whether the server automatically creates
reverse zones.
Indicates whether the default port binding for a socket

DisjontsNets used to send queries to remote DNS servers can be
overridden.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

27.3 Creating and Manipulating Zones

The MicrosoftDNS_Zone class provides a plethora of properties and methods to aid in managing your zones. Even if
you are using AD-integrated zones, which help reduce the amount of work it takes to maintain DNS, you will
inevitably need to configure settings on a zone or create additional zones. In Table 27-3 and Table 27-4, the list of
available properties and methods for the MicrosofDNS Zone class are presented.

Table 27-3. MicrosoftDNS Zone class properties

Property name Property description

AllowUpdate Flag indicating whether dynamic updates are allowed.
AutoCreated Flag indicating whether the zone was auto-created.
DataFile Name of zone file.

DisableWINSRecordReplication

If TRUE, WINS record replication is disabled.

MastersIP AddressesArray

If zone is a secondary, this contains the list of master
servers to receive updates from.

If'set to 1, the master server will notify secondaries of

Notify zone updates.

NotifyIP AddressesArray Servers that will be notified when there are updates to
the zone.

Paused Flag indicating whether the zone is paused and therefore
not responding to requests.

Reverse If TRUE, zone is a reverse (in-addr.arpa) zone. If

FALSE, zone is a forward zone.

SecondariesIP AddressesArray

Servers allowed to receive zone transfers.

Flag indicating whether zone transfers are allowed only

SecureSecondaries to servers specified in SecondariesIP AddressesArray.
Shutdown If TRUE, zone has expired (or shutdown).

UseWins Flag indicating whether zone uses WIN'S lookups.
ZoneType Type of zone. It will be either DS Integrated, Primary, or

Secondary.

Table 27-4. MicrosoffDNS_Zone class methods

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

27.4 Creating and Manipulating Resource Records

Resource records are the basic unit of mformation in DNS. A DNS server's primary job is to respond to queries for
resource records. Most people don't realize they are generating resource record queries with nearly every
network-based operation they do, including accessing a website, pinging a host, or logging into Active Directory.

Resource records come in many different flavors or types. Each type corresponds to a certain type of name or
address lookup. Each record type also has additional information encoded with the record that represents things such

as the time to live of the record. The following is a textual example of what a CNAME record looks like:
www.mycorp.com. 1800 1IN CNAME wwwl.mycorp.com.

Or more generically:
Owner TTL Class Type RR-Data

Now let's break the record down into its individual parts:
Owner

The owner of'the resource record. This field is typically what is specified during a query for the particular type.
TTL

The time to live, or length of time a nonauthoritative DNS server should cache the record. After the TTL expires, a

nonauthoritative server should re-query for a authoritative answer.
Class

Resource record classification. In nearly all cases, this will be "IN" for Internet.
Type

Name of'the resource record type. Each type has a standard name that is used in zones (e.g., CNAME, A, PTR,

SRV).
RR-Data

Resource record specific data. When you perform a query, you are typically looking for the information returned as
part of the RR-Data.

The WMI DNS provider fully supports querying and manipulating resource records. In Table 27-5 and Table 27-6,
the supported properties and methods are listed for the MicrosofDNS ResourceRecord class, which implements a
generic interface for resource records.

Table 27-5. MicrosoftDNS ResourceRecord class properties

Property name Property description

ContainerName Name of container (e.g., zone name) that holds the RR
DomainName FQDN ofthe domain that contains the RR
DnsServerName FQDN of'the server that contains the RR
OwnerName Owner ofthe RR

RecordClass Class of the RR; 1 represents IN

Do ATV e D acmarrna vommmged Aeto

[TeamLiB] [rrevious | nexr]

[Team LiB]

27.5 Summary

The WMI DNS provider fills a much-needed gap for programmatic management of a Microsoft DNS environment.
In this chapter, we reviewed how to install the DNS provider, including some of the caveats for using it on Windows
2000. We then covered the classes used for managing server configuration along with each of the available server
settings. Next, we showed how to create and manipulate zones with the DNS provider. Finally, we covered the
various resource record types and their associated WMI classes.

[Team LiB]

[Team LiB] plE

Chapter 28. Getting Started with VB.NET and
System.Directory Services

Unless you've been hiding in a cave in recent years, you've undoubtedly heard of Microsoft's latest mitiative, called
NET. At a low level, .NET is the basis for a new programming platform, including a completely new set of APIs to
manage Microsoft-based products and develop Windows applications. Microsoft even released a new programming
language in conjunction with .NET called C# (C-sharp). At a higher level, Microsoft has morphed the concept of
.NET to the point where it is hard to define its true boundaries. Here is the definition provided on Microsoft's website:

"Microsoft .NET is a set of software technologies designed to connect your world of information, people, systems,
and devices."

As far as Active Directory goes, the impact of .NET has been pretty minimal so far. Windows Server 2003 Active
Directory was an evolutionary step, not revolutionary. Perhaps the biggest .NET-influenced change is with the new
APIs called System.DirectoryServices that were developed for Active Directory. In this chapter, we will discuss the
System.DirectoryServices interfaces and cover numerous examples for how they can be used to query and manipulate
data in Active Directory. Before getting into that, we first need to talk a bit about the .NET Framework.

[Team LiB] HE

[Team LiB]

28.1 The .NET Framework

The .NET Framework is a new set of interfaces intended to replace the old Win32 and COM APIs. A couple ofthe
major design goals for the .NET Framework were to make programming in a Windows environment much simpler
and more consistent. The .NET Framework has two major components: the common language runtime (CLR) and
the .NET Framework class library.

The CLR is the sandbox from which all NET-based code, called managed code, is executed. The CLR is in charge
of things such as memory management, security management, thread management, and other code management
functions. One of the great benefits of the CLR is that different programming languages can develop code that runs in
the CLR and can be used by other programming languages. That means you can develop managed Perl code that can
be easily used by a C# application.

The other major component of the .NET Framework is the class library, which is a comprehensive set of
object-oriented interfaces that replace the traditional Win32 API. The class library is divided up into namespaces.
You can think of a namespace as a grouping of classes, properties, and methods that are targeted for a specific
function. For example, the System. Text namespace contains classes for representing strings m ASCII, Unicode, and
other character encoding systems. The namespace that is of the most interest to us is the System.DirectoryServices
namespace, which contains all the classes necessary to query and manipulate a directory, such as Active Directory,
using the .NET Framework.

[Team LiB]

[TeamLiB] [rrevious | nexr]

28.2 Using VB.NET

Since the majority of the code we've demonstrated so far in this book has been written in VBScript, you may be
wondering why we are going to talk about Visual Basic. NET (VB.NET). Unfortunately, one of the drawbacks with
the .NET Framework is that it currently does not provide native support for VBScript. It does support JScript, but
since Visual Basic is a much more powerful language than JScript, we will use VB.NET in our examples. It is still
unclear what Microsoft's future direction is in regard to providing native support for scripting languages like VBScript
in .NET. Until that happens, you should get more familiar with the .NET class library and gain some experience with
Visual Basic, which will ultimately increase your capabilities as a programmer. As we mentioned earlier, one of the
design goals for the .NET Framework was simplicity. With the .NET Framework class library, Microsoft has made
developing Windows-based applications significantly easier. As far as Active Directory goes, it will not take long at all
to map your ADSI knowledge to the classes, properties, and methods in the System.DirectoryServices namespace.

To get started using VB.NET, you'll need to get an integrated development environment (IDE) such as Visual
Studio.NET (VS.NET), which is available from http2//msdn.microsoft.com/vstudio/. Once you have VS.NET, you
should download the latest .NET Framework SDK, which is available from http://msdn.microsoft.comvnetframework/
. Once you have both of those mstalled, you are ready to start programming with the .NET Framework.

To start a new project in VS.NET, select File =*New = Project from the menu. At that point you'll see a screen
similar to the one in Figure 28-1.

Figure 28-1. Creating a new VB.NET project
Newproject S x

Project Types: Templates: EEI

W [visusl Basic Projects ASP.MET Web ASPMET Web Weh Control -
] ¥isual C#f Projects Application Service Library
] visual C44 Projects

] Setup and Deployment Projects ﬁ =R I
+ |__] Other Projects el = J

] Wisual Shudio Solutions Console ‘Windows Empty Projact
Application Service

< 5 g
& project For creating a command-ine application
lairra: | Cueryil
|ocation: | c:\Wisual Shudio Projecks j Browese... |
™ fydd ko Solution * Clase Salution
Neve Solution Mame: | QueryaD W iCreste directory Far Solution

Projed: will be created at c:\Wisual Shudio Projacts) QuaryhD\QueryaD.

#lpss oK | Cancel | Help |

Click on Visual Basic Projects and select Console Application from the Templates window. Now you have started a
new project and are ready to start writing code in a file called Modulel.vb, which contains the following code by

default:

Module Modulel
Sub Main()
End Sub

End Module

If you are mexperienced with VB, you can create usable programs simply by adding code to the Main() subroutine.
Once you become more experienced, you can start creating your own classes, subroutines and functions, and
reference them within Main().

To start using the System.DirectoryServices classes to query and manipulate Active Directory, you must add a
reference to it in your project. From the menu, select Project =+ Add Reference, then under Component Name click
on System.DirectoryServices. Click the Select button and click OK. Figure 28-2 shows what this window looks like
n VS.NET.

http://msdn.microsoft.com/vstudio/default.htm
http://msdn.microsoft.com/netframework/default.htm
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/netframework/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

28.3 Overview of System.DirectoryServices

The System.DirectoryServices namespace contains several classes, many of which were built on top of ADSI. If you
are already familiar with ADSI, the learning curve for the System.DirectoryServices classes should be pretty mmnimal.
Table 28-1 contains the base classes contained within the System. DirectoryServices namespace.

Table 28-1. System.DirectoryServices classes

Class name Description
DirectoryEntries Cpntams the children (child entries) of an entry in Active
Drrectory.
. Encapsulates a node or object in the Active Directory
DrrectoryEntry hierarchy.
DirectorySearcher Performs queries against Active Directory.

DirectoryServicesPermission

Allows control of code access security permissions for
System.DirectoryServices.

DirectoryServicesPermissionAttribute

Allows declarative System.DirectoryServices permission
checks.

DirectoryServicesPermissionEntry

Defines the smallest unit of' a code access security
permission set for System. DirectoryServices.

DirectoryServicesPermissionEntryCollection

Contains a strongly typed collection of
DirectoryServicesPermissionEntry objects.

PropertyCollection Contains the properties of a DirectoryEntry.
PropertyValueCollection Contains the values of a DirectoryEntry property.
ResultPropertyCollection Contains the properties of a SearchResult instance.

ResultPropertyValueCollection

Contains the values of a SearchResult property.

SchemaNameCollection

Contains a list of the schema names that the
SchemaFilter property of a DirectoryEntries object can
use.

SearchResult

Encapsulates a node in the Active Directory hierarchy
that is returned during a search through
DirectorySearcher.

SearchResultCollection

Contains the SearchResult instances that the Active
Directory hierarchy returned during a DirectorySearcher

http://msdn.microsoft.com/default.htm
http://msdn.microsoft.com/netframework/default.htm
http://msdn.microsoft.com
http://msdn.microsoft.com/netframework/

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

28.4 DirectoryEntry Basics

The DirectoryEntry class contains several properties to access the attributes of Active Directory objects. The

following code shows how to display the currentTime attribute of the RootDSE:
Dim objRootDSE As New DirectoryEntry ("LDAP://RootDSE")
Console.WriteLine (0bjRootDSE.Properties ("currentTime") (0))

In the code, once we mstantiated the DirectoryEntry object, we can access the currentTime attribute by passing it to
the Properties property. The Properties property actually returns a collection of values for the attribute in the form of a
PropertyCollection class, which is why we needed to specify an index of 0 to get at a specific value. If the
currentTime attribute was multivalued, we could get at the other values by incrementing the index to 1 and so on.

«s 4. Inobject-oriented parlance, a property allows you to get or set an attribute of an object. A
& method typically results in some kind of action being taken on the object.

Now let's look at how to display all of the values for all of the attributes of an object n Active Directory. Again we

will use RootDSE as the object we want to display:
Dim objRootDSE As New DirectoryEntry ("LDAP://RootDSE")

Dim strAttrName As String

Dim objValue As Object

For Each strAttrName In objRootDSE.Properties.PropertyNames
For Each objValue In objRootDSE.Properties (strAttrName)

Console.WriteLine (strAttrName & " : " & objValue.ToString)

Next objValue

Next strAttrName

As you can see, the Properties property, which returns a PropertyCollection, has a PropertyNames property that
returns a collection of attribute names for the Active Directory object. We loop over each attribute name and then
loop over each value for that attribute to ensure we print out values for all single- and multivalued attributes. The
ToString property converts whatever value is stored in the attribute to a printable string.

There are several properties available in the DirectoryEntry class. Table 28-2 contains a list of them.

Table 28-2. DirectoryEntry properties

Property name Description

AuthenticationType Gets or sets thq type of authentication to use when
accessing the directory.

Children Ge‘ts a Dlrecj[oryEntrles class that contains the child
objects of this object.

Guid Gets the GUID for the object (e.g., in Active Directory
the objectGUID attribute).

Name Gets the relative distinguished name of the object.

NativeGuid Gets the GUID of the object as returned by the provider.

NativeObject Gets the native ADSI object.

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

28.5 Searching with DirectorySearcher

We've shown how easy it is to read individual objects from Active Directory with the DirectoryEntry class, so let's
now look at how to search Active Directory with the DirectorySearcher class. The DirectorySearcher class works
like many other LDAP-based search APIs. Table 28-4 contains all of the DirectorySearcher properties.

Table 28-4. DirectorySearcher properties

Property name Description
CacheResulis Gets or sets the ﬂag that determines whether results are
cached on the client.
ClientTimeout Gets or sets the time period the client is willing to wait for
the server to answer the search.
Filter Gets or sets the search filter string.
PageSize Gets or sets the page size for paged searching.
PropertiesToLoad Gets or sets the attributes to return from a search.
Gets or sets the flag indicating to only return attribute
PropertyNamesO
perty nly names from a search.
ReferralChasing Gets or sets whether referrals are chased.
SearchRoot Gets or sets the base from which the search should start.
SearchScope Gets or sets the scope of the search.
ServerPage TimeLimit Gets or sets the time the server will wait for an individual
page to return from a search.
D Gets or sets the time the server will wait for a search to
ServerTimeLimit
complete.
N Gets or sets the maximum number of objects that can be
SizeLimit
returned by a search.
Gets or sets the attribute that is used when returning
Sort
sorted search results.

Many of'the properties, such as SearchScope, should look familiar. The following code shows how to search for all

user objects in the mycorp.com domain.

Dim objSearch As New DirectorySearcher (
New DirectoryEntry ("LDAP://dc=mycorp,dc=com")

objSearch.SearchRoot

objSearch.Filter = " (& (objectclass=user) (objectcategory=person))"

objSearch.SearchScope = SearchScope.Subtree

[TeamLiB] [rrevious | nexr]

[TeamLiB] [rrevious | nexr]

28.6 Manipulating Objects

Modifying objects with System. DirectoryServices can be done a couple of different ways. To modify an attribute that
currently has a value, you can set it using the Properties property. For example, the following code would modify the

givenName attribute:
objADObject.Properties ("givenName") (0) = "Robert"

If you want to set an attribute that was previously unset, you must use the Properties. Add method. The following

code would set the previously unset sn attribute:
objADObject.Properties ("sn") .Add ("Robert")

To determine whether an attribute has been set, you can use Properties("attributename").Count, which will return
the number of values that have been set for the attribute. Just like with ADSI, all modifications are made initially to the
local property cache and must committed to the server. With ADSI you would use the IADs::Setlnfo() method, and

with System.DirectoryServices it is called CommitChanges(), which is available from the DirectoryEntry class.
objADObject.CommitChanges ()

Now that we covered how to set an attribute, we can modify the earlier code that printed all the values of an attribute
to instead set an attribute. The code in Example 28-2 expects three command line parameters: the first is the ADsPath
of the object to modify, the second is the attribute name, and the third is the value to set the attribute to.

Example 28-2. Setting an attribute
Dim strADsPath As String
Dim strAttrName As String
Dim strAttrValue As String
Try
Dim intArgs As Integer = Environment.GetCommandLineArgs().Length()
If intArgs <> 4 Then
Throw (New Exception("All parameters are required"))

Else
strADsPath = Environment.GetCommandLineArgs() (1)
strAttrName = Environment.GetCommandLineArgs() (2)
strAttrValue = Environment.GetCommandLineArgs() (3)
End If
Catch objExp As Exception
Console.WriteLine ("Error: " & objExp.Message)
Console.WritelLine ("Usage: " & Environment.GetCommandLineArgs() (0) &

" ADsPath AttributeName Attribute Value")
Console.WriteLine()

Return

End Try

Dim objADObject As New DirectoryEntry()

Try
If objADObject.Exists (strADsPath) = False Then

Throw (New Exception ("Object does not exist"))

End If

Catch objExp As Exception
Console.WritelLine ("Error retrieving object: " & strADsPath)
Console.WriteLine ("Error: " + objExp.Message)
Return

End Try

Dim strOldvalue As String

Try

objADObject.Path = strADsPath
If objADObject.Properties (strAttrName) .Count > 0 Then
strOldvalue = objADObject.Properties (strAttrName) (0)

objADObject.Properties (strAttrName) (0) = strAttrValue
Else

objADObject.Properties (strAttrName) .Add (strAttrValue)
End If

objADObject.CommitChanges ()
Catch objExp As Exception

CAanacenle Wrai+aTlTine ("F+vrA1r caot++-1n1ny AR~ M ¢ a+4+ADNaePa+h)

[TeamLiB] [rrevious | nexr]

[Team LiB]

28.7 Summary

The .NET initiative is one of the biggest technology shifts at Microsoft since they embraced the Internet in the latter
half of the 1990s. Microsoft is using .NET to refocus the company on new technologies such as XML web services
and the NET Framework. The .NET Framework is a completely new way to program in the Windows environment.
The Common Language Runtime (CLR) helps applications share code more efficiently and securely. In addition, the
NET Framework class library is a new set of APIs that make the older Win32 APIs look antiquated. The
object-oriented approach and better organization of classes make for a much more simplified programming
environment.

The impact of .NET on Active Directory is pretty minimal so far. The biggest impact has been with the introduction of
the System.DirectoryServices API, which builds on top of ADSI and is straightforward to use. In its current release,
VBScript cannot be used natively with the .NET Framework, but due to the simplicity of .NET, using Visual
Basic.NET is not much of a leap for experienced VBScript programmers. In this chapter, we covered the two main
classes of System.DirectoryServices, the DirectoryEntry class and the DirectorySearcher class. By having a good
understanding of these two classes, you'll be well on your way to writing robust Active Directory applications with the
NET Framework.

[Team LiB]

[Team LiB]
Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animals on the cover of Active Directory, Second Edition, are a domestic cat (felis silvetris) and her kitten. The
domestic cat is a descendant of the African wild cat, which first inhabited the planet almost one million years ago.
Other early forerunners of'the cat existed as many as 12 million years ago.

The domestic cat is one of the most popular house pets in the world. There are hundreds of breeds of domestic cats,
which weigh anywhere from five to thirty pounds, with an average of twelve pounds. The cat is slightly longer than it is
tall, with its body typically being longer than its tail. Domestic cats can be any of eighty different colors and patterns.
They often live to be fifteen to twenty years old; ten years for a human life is about equal to sixty years for a cat.

The cat's gestation period is approximately two months, and each litter may contain three to seven kittens. Mother
cats teach their kittens to eat and to use litter boxes. Kittens ideally should not leave their mother's side until the age of
twelve weeks and are considered full-grown at the age of about three years.

Darren Kelly was the production editor and Leanne Soylemez was the copyeditor for Active Directory, Second
Edition. Mary Brady, Tatiana Apandi Diaz, Mary Anne Weeks Mayo, and Claire Cloutier provided quality control.
Derek Di Matteo and Jamie Peppard provided production support. Reg Aubry wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress
4.1 using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. This book was converted by Joe
Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and
Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon was written by Nicole Arigo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using a set of Frame-to- XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

NET Framework
defined
SDK website
4L.SDOU process [See also LSDOU process]2nd
blocking policy inheritance

GPOs, prioritizing application of
8&8-Class

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

Abstract class
access

Delegation of Control wizard, selection of
setting for users (Organizational Units)
Access Control Entries (ACEs) 2nd

complex example
listing for objects (OU or below)
properties
Access Control Lists (ACLs) 2nd
GPOs, modifying
log entries (Active Directory)
managing permissions globally from ACL window
modifying with SIDWALK
Access Control Settings (ACSs)
AccessMask property 2nd

constants

Account Lockout Policy settings
account lockouts

Account Unlocker utility
accounts
database, PDC for domain holding
policies
AceFlags property 2nd
auditing successes or failures
inheritance and auditing information
AceType property
ACS window, Auditing Entries (AEs)
Active Desktop, configuring or disabling
Active Directory (AD)
accessing with digital certificate
application mode [See AD/AM]
backing up
complete authoritative restore

data lifespan, considering when adding
database transactions, aborted

design restrictions

design, complexities of

DNS server, integrating into

export restrictions

FSMO role owners, storage locations
Global Catalog (GC)

GPOs

configuration data, storing
how they are used
groups
IP security policies
nonauthoritative restore
objects, storing in
Organizational Units [See Organizational Units]
partial authoritative restore
prefixes
querying with WMI
restoring

___searching
with ADO

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

backu
restoring from

Backup Domain Controllers (BDCs)

Windows 2000 groups, replicating
Base string
binding to objects via authentication
Block Policy inheritance option
blocking (GPOs), restricting use of
bookmarks (resultsets)
branches

adding to OID namespace
__OID numbers

bridgehead servers 2nd

bridging routes, deciding whether to use

built-in user groups (Windows NT)

business model, recreating with Organizational Units 2nd
business plans, designing to help

business structure, representing in Active Directory design
business units, creating separate forests for

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

cached profile deletion

canonical name (CNAME)

certificates, using to encrypt data

Class-Display-Name attribute

Class-Schema/classSchema objects 2nd
class-schema objects, problems with modifying
schema changes, problems with

classes

Active Directory, creating new

schema, creating instances of new

clients

enumerating sessions and resources

placement of
CNAME (canonical name)
collection objects (ADQ)
Comma-Separated- Value (CSV) file
Command object, controlling searches with
command, executing specific (open connection)
common names (cn)

cn attribute
Common Open File Dialog box, customizing
complete authoritative restore
complete trust domains, upgrading
complexity of Active Directory design
Component Object Model (COM)

mterfaces
computers

connections, authenticating with digital certificates

display specifiers for computer class
GPOs

applying during boot
settings, applying in
Organizational Unit structure holding
resources, identifying on
sessions, identifying
Windows settings
Computers MMC
extra property pages with ADC installed
conditional forwarding
configuration
Computer and User Configuration (GPE)
GPC data (for GPOs)
server, for multiple sites
Configuration Container
Configuration Naming Context 2nd
display specifiers
conflict resolution, replicating
connection agreement

primary and secondary
Connection\\:‘Close method

Connection\:\:Execute method
connections
ntersite links
creating without using KCC
mtrasite, KCC generation of

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

data [See also metadata]
displaying in temporary files
sessions, manipulating
storing dynamic
structuring in hierarchy (Organizational Units)
data partitioning
database connection (ADO), establishing
database connector (ADSI)
database search
filtering 2nd
optimizing
SearchAD
database servers, working with ADO
DataSourceName (DSN)
datatypes

date, storing in timestamps
_DC locator

website

DCPROMO process, promoting servers to DCs
debug logging website
debugging GPOs
Default User profile
server-based
defunct schema objects
Delegation of Control wizard 2nd
delegation options

deleting GPOs

deletion, replicating through

Deny table, creating (permissions)

desktop, customizing for users 2nd

dial-up connections, controlling

dialog boxes, customizing display

digital certificate, accessing Active Directory through

Dim statements (VBScript)
directories
history
porting scripts to work across
seamless searches across
using common tools across
Directory Information Tree (DIT) 2nd
Directory Service Remote Procedure Call (DS-RPC) 2nd

directory services

ADSI namespaces, distinguishing among
LDAP network protocol for accessing
modifications, writing
Windows 2000 Active Directory

Directory Services Environment (DSE)
directory strategy
DirectoryEntry class

DirectorySearcher class
disabled option (GPO application)
disaster recovery plan

Discretionary ACL (DACL)
Disk Quotas administrative template

Display control panel, disabling tabs on

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

editing GPOs
email, updates, sending between sites
empty usernames

encryption, importance of using (ADSI connections
Enterprise Numbers
IANA assignment of
website
Err nterface

Error Reporting settings
errors, checking for in VBScript
event logs
logging level (connection agreement)
querying
settings for

___verbose logging to
Exchange [See Microsoft Exchange]

Exchange 2000 [See Microsoft Exchange]
Exchange 5.5 [See Microsoft Exchange]
Exchange Server 2003

explicit one-way trust

Extensible Storage Engine (ESE)

extension snap-ins, enabling or disabling for users

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

fatal errors
fields (recordsets)

files and folders (offline), availability of

files, data, displaying in temporary
FileSystemObject (FSO), manipulating user data
filter argument

Flags property

constants

flags, AceFlags property vs.
Flexible Single Master Operation [See FSMO roles]

folder redirection policy
forest functional level features
Windows Server 2003
forest functional levels
_forest trust
defined
ForestPrep 2nd
Forestprep option
forests
creating additional
defined
determmning the functional levels of

raising a functional level of
roles, forest-wide

root domain 2nd 3rd 4th
trust relationships (linking two)

user accounts, uniqueness of
users, identifying across

FSMO recovery
FSMO roles

fSMOROoleOwner attribute 2nd

PDC role owner

role owner

Schema Master, role transfers, problems
full- featured user account, creating
functional levels

defined

determming levels of domains and forests
examples
raising after upgrades

raising, how to
Windows Server 2003 similar to Windows 2000

functional levels, group availability
[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

GC replication tuning
general permissions 2nd

GetObject function
GetObject function (VBScript) 2nd
Global Catalog (GC)
designing
PetroCorp example 2nd
RetailCorp example
TwoSiteCorp example 2nd
namespaces, effect on design
queries, referring to GC server
regional catalog, lacking
replication topology

___servers for
stale references and
obal securi oups 2nd

Global Tree Permission

Globally Unique Identifiers [See GUIDs]
GPOE GUI shortcuts

group accounts

adding members
___creating
evaluating memberships
group membership
restrictions based on domain
restrictions based on group type 2nd
group policies, scripting
Group Policy
administrative template
Admins group
Group Policy Configuration (GPC) data
mheritance of security permissions from parents
storage
Group Policy Management Console (GPMC) 2nd

___Delegation tab
Details tab
Scope tab

___ Settings tab
Group Policy Object (GPO)

Group Policy Object Editor (GPOE), creating customized for administrators

Group Policy Objects (GPOs)
blocking inheritance
capabilities of
complex domain tree showing
customizing for users
customizing website
default permissions
design guidelines
designing

debugging
disabling parts to speed up application
options, summary of
policy areas, identifying
prioritizing application of
RAS and slow links 2nd

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]
Help and Support Center setting

hexadecimal numbers
ACE scripts and ADSI documentation
ampersand H (&H) prefix
constants, using for passwords
hiding personal details, examples
hierarchy, containers and objects (in domains)
High Watermark Vector table
servers, NC replication
updates, identifying for sending
high-cost links, creating site links for

high-watermark vector 2nd
high-watermark vector table
hives (registry)
hosts
hostnames, naming scheme
running scripts for ActiveX objects (Microsoft)
HTML
scripts, running on host server and client
VBScript, combining with

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

[ADs
mterface

ADSI objects, information provided
properties from WinNT and LDAP namespaces

Property Cache and
IADs\\:Get method 2nd

TADs\\:GetEx method
IADs\\:GetEx property method
IADs\\:GetInfo method
IADs\\:GUID property method
TIADs\:\:\Name method
IADs\:\:\Name property method 2nd
IADs\:\'Parent property method
IADs\:\:PutEx method
IADs\:\:Schema property method
TADs\\:SetInfo command
IADs\\:SetInfo method 2nd 3rd
IADsAccessControlEntryinterface
IADsAccessControlListinterface
IADsClass
IADsClass interface
IADsCollection interface

Add and Remove methods
IADsContainer interface
IADsContainer\:\:GetObject method
IADsFileServiceOperations mterface, methods
[ADsFileShare interface
IADsMembers Interface
IADsOpenDSObject\:\:OpenDSObject method
IADsPrintJob interface
IADsPrintJobOperations mterface 2nd

IADsProperty
[ADsPropertyEntry interface
IADsPropertyList interface

accessing properties in property list
IADsPropertyValue interface

IADsSecurityDescriptorinterface 2nd
IADsUser interface
methods for Windows NT and Windows 2000
IADsUser website
IANA 2nd
icons, ADUC tool
IDsAdminWizExt interface
indexing objects

InetOrgPerson class for users
Infrastructure Master (Infrastructure Daemon)

mheritance
ACE
AceFlags property

user passwords
Auxiliary, Structural and Abstract classes
GPC data in Active Directory
GPOs

___blocking
Organizational Units

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JScript

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kerberos authentication

distributing public ticket

Kerberos Policy setting

key codes from RFC 2253

Knowledge Consistency Checker (KCC)
advantageous use over intersite links
disabling intrasite or intersite topology generation
ntersite connections

replication links, generating
site link costing errors

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

language settings, using different
Last-Object-USN-Changed value

latency, default (replication between DCs)
LDAP

ADSI, native support of

AdsPaths, syntax and rules
namespace
path to objects, setting permissions on properties

provider, accessing Active Directory via
root path to start search

user accounts

LDAP-Display-Name attribute
LDIF

extending schema
website
leaf

display as (vs. container) in ADUC
Lightweight Directory Access Protocol [See LDAP]
LIKE keyword
links
Active Directory to GPO, finding
GPOs to domain or Organizational Unit
GPOs, identifying on

replication, intrasite and intersite

List-Print-Queue.vbs script

Local Group Policy Objects (LGPOs) 2nd
management overhead, individual client applications
managing with GPE tool

local policies

local security groups
locked files

logeing changes to tree (permissions

logging levels, selecting for connection agreement
logging on
locally to workstation

__to the domain

logging unusual changes (permissions

Logon administrative template

Logon settings

logon/logoff scripts

logons, account lockout due to faulty attempts
Loopback Merge Mode

loopback mode
GPOs, design example
slowdowns (client processing), causing
using caution with

Loopback Replace Mode

LSDOU process

prioritizing GPOs

system policies (Windows NT 4.0), including

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

mail-enabling objects via the GUI
Mail-Recipient class

mailbox, replicating without user

mailing lists, types
maintenance

offline defragmentation
reclaiming space

mandatory attributes

manual transfer of roles between servers

manual trust relationships between forests

manually removing a Domain Controller from Active Directory
master domains, upgrading

May-Contain attribute, effects on inheritance
medium-cost links

merge mode (loopback) 2nd
metadata

during replication
types within NCs

metadirectory services
methods 2nd

COM interfaces, conventions
IADsUser inferface
properties, displaying six core
Microsoft Certificate Server
Microsoft Developer Network (MSDN) Library
ADS_ AUTHENTICATION ENUM, values for
ADSI errors, full listing of
Library root
schema modification and Windows GUI customization
scripting
FSO and TS objects, online information

sec interfaces, online information
Microsoft Exchange
Distribution Lists
Exchange 5.5, integrates with Windows Server 2003
mtegrating AD with
O prefix, using
Server 2000, preparing Active Directory for
Server 2003
Microsoft hosts, providing for ActiveX objects
Microsoft Installer (MST)
configuration settings for users
customizing (creating a transform)
Writing your own
Microsoft Management Console (MMC)
ADC, managing
customizing for users
GPOs, viewing properties of
Microsoft Metadirectory Services (MMS)

Microsoft scripting website, main
Microsoft Systems Management Server (SMS), inventorying system devices with

Microsoft Visual C++, accessing property cache with
migrating from Windows NT

minimum-cost-spanning tree
mixed-mode

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

name servers, primary and secondary masters
names
branches (OID numbers)
groups

hostnames, syntax for
Server services

site links 2nd

usernames

variable prefix, conventions for

namespaces
ADSI
design examples
PetroCorp

RetailCorp
TwoSiteCorp

designing
naming scheme
requirements

steps in design process
LDAP
OID, requesting
properties, enumerating in different
servers, controlling changes to
Naming Contexts (NCs)
Active Directory Schema
data, transferring between (different servers)
KCC, creating replication topologies for
types on server
USNs
native mode, differs from mixed mode
native-mode domains

groups available in
groups, converting to different type
nesting
groups, mixed- and native-mode
sets of filters
NetBIOS names

Windows 2000 legacy support for
NETDOM commands, moving computers between domains

NetlLogon settings
NETLOGON share [See also system volume]2nd

Default User profile, placing in
NetMeeting settings 2nd
network of site links
networks

background data for site and WAN topology design

connections, RAS and LAN, configuring for user
dial-up connections, controlling
grouping together into single site
offline files, governing access
physical networks
well-connected, recommended speed

new GPOs, creating and linking to container

No Overrides (GPO option)

nonauthoritative restore of Active Directory

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

Object Identifier [See OID]
Object-Class attribute
Object-Class-Category
Objectclass versus Objectcategory
objects
ACEs, controlling user access to
Active Directory, storing in
ADO object model
Auditing Entries (AEs)
classes and attributes, separating
classes, prefixes indicating
Component Object Model (COM)
nterfaces
creating dynamic
creating in target directory service
creation wizard

icons (ADUC tool)

indexing

mvalid instances, creating

lifespan considerations when adding to Active Directory
mail-enabling

marking for deletion (tombstoned)

permissions, managing from Security Permissions window
persistent and dynamic

property cache

references to, maintaining in other domains

sec roperties
security-enabled
stale references

storing and identifying

unique identifiers

unique identifiers (GUID)
ObjectType property
offline defragmentation
offline files and folders, availability of
offline files, governing access to

_OID

Active Directory classes
attribute syntax, specifying for
attribute, determining for
OID Managers group, forming
schema class, setting
OLE DB Provider (database servers)
OM-Syntax
On Error Resume Next statement

Onelevel string

operators in filters

Option Explicit statement
VBScript

OR keyword

Organizational Unit (OU) 2nd

Organizational Units 2nd 3rd
creating (ADSI)

creating for specific functions
creating, factors to consider

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]
pages (property), adding

pages, placing updates in (ADC)

parallel groups, setting up
parameters (SearchAD function)
partial attribute set (PAS)
partial authoritative restore of Active Directory
Password Policy settings
passwords
never expiring, creating in WinNT namespace
policies, effects on domain design
retrieval, directory service authentication

users, changing during replication
paths [See also ADsPaths]

users, DN and RDN
PDC Emulator
per-value replication
performance
auditing, effects on
increasing by limiting GPOs

permissions
AccessMask property (ACE)
atomic

Delegation of Control Wizard

delegation, effects of Organizational Units design
designing schemes for
design principles
__Global Group
GPO administration
groups, collective assignment to
Local Group
lann;

removing inappropriate
reverting to default
setting for users (Organizational Units)
setting with ADST SDK
user or group, viewing

persistent objects
nterfaces 2nd

PetroCorp

design example
topology example
phantoms, defined

physical networks
placement

clients

groups

users
Platform Software Development Kit
Policies container, viewing GPOs in
Poss-Superiors attribute, effects on nheritance
Primary Connection Agreement

checkbox
Primary Domain Controller (PDC) 2nd

primary master name server
printing

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]
QOS Packet Scheduler settings

queries, SQL., using

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]
raw viewer tools (Active Directory)

GC contents, accessing with

reactivation of defunct schema objects
records (recordsets)

Recordset\:\:Open method
recordsets, structure

recovery
FSMO

ReDim, preserving array contents with
references (VB), Microsoft ActiveX Data Objects 2.x library
refreshing GPOs
Regional and Language options
registry
key, cached profile deletion, setting for
schema changes, setting up
setting
settings, users changing
tattooing (Windows N'T 4.0)

user portion and system portion

view of (Windows 2000 client)
relationship settings, User class
Relative Distinguished Name (RDN) [See also Distinguished Name]2nd
Relative-1dentifier Master [See RID Master]

Remote Assistant setting

Remote Insight Lights Out Board (RILOE)
remote offices, creating separate domain for
Remote Procedure Call settings
RemoveDuplicates subprocedure
removing GPOs

RepAdmin and RepMon tools
replace mode (loopback) 2nd

use for

replicated updates
replicated writes

originating vs.

user object to another server
replication

Active Directory to Exchange, property page
AD Integrated DNS and
bi-directional

Exchange/ADC
one-way vs. AD/Exchange
___conflicts, reconciling

connection agreement, controlling

design, GC design and

disabling (connection agreement
from Active Directory to Exchange
from Exchange to Active Directory
from Exchange to AD, property page
mproved

mtrasite, planning

isolated, effect on domain design
mailbox without user

management tools

naming context between two servers

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

SACL flags (AceFlags)
SAM database

Account Name 2nd
full backup for domain upgrades
maximum size
replicating
sAMAccountName
attribute, setting

property 2nd
schedules

replication
connection agreement
designing for

intrasite, setting for
schema

cache

forcing reload of
changes, designing
deciding whether to change

managing and modifying
defunct objects

FSMO

modification, ADC connecting Exchange

Schema Managers group, forming
Windows NT, not extensible

Schema Admins group

forest root domain, locating in
migrations from previous NT version
schema attributes, deciding on inclusion in GC
Schema Container
Schema Manager MMC
User class, viewing with
Schema Master MMC, running for first time
Schema Master role

transferring
Schema NC
scope argument (LDAP query)
scopes (groups), distribution and security
scripting group policies
scripts
account unlocker utility (Windows 2000), creating
ADSI, writing with
auditing for emergency preparation
client-side
context menus, adding to
errors
GetObject vs. OpenDSObiject

GUI interface, customizing
incorporating into ASPs
List-Print-Queue.vbs

logon and logoff, specifying

Microsoft scripting web page

Organizational Unit, creating
property list, walkthrough based on schema class definition

SD, creating

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

task scheduler

configuring usersO ability to use
controlling (Windows components)
taskbar, customizing appearance for users

tattooing the registry
TCP/IP

LDAP network protocol for accessing directories

site link replication, using for
temporary files, displaying data in
Terminal Services settings 2nd
testing, domain upgrades
textdisplay area (properties window)
TextStream (TS) object, manipulating user data
three-hop rule

eight connected servers, maintaining with
ticketing policies
timestamps

identical property change conflicts, reconciling
token explosion
tombstone
Top class
topology examples

PetroCorp

RetailCorp

TwoSiteCorp
trailing dollar si usernames
transform (customizing MSI file)
transitive trusts

site links
deciding to turn on/off
leaving on by default

transports

low-cost links (DS-RPC)

mechanisms for
trees [See also Directory Information Tree]

containers, moving to different
creating additional
designing and naming
PetroCorp example
RetailCorp example
TwoSiteCorp example

domain trees, GPO application and
forests

trust relationships
domain trees

domain upgrades, preserving in
setting up
Trustee property
__ types of
TwoSiteCorp
design example
topology example

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]
UBound function (VBScript)

unique identifiers
DNS domain names
GUID (objects)

Securityldentifiers (SIDs)
User-Principal-Name (UPN)
universal data access components web site (Microsoft)
universal groups
consolidating groups into
universal script, creating many user accounts with
universal security groups
native mode and
University of Southern California (USC), IANA operation
Up-To-Date Vector 2nd
Up-To-Date Vector table 2nd
iitiating server (replication), updating
___matching entry
Origmating-DC-GUID, matching
propagation dampening, use in
replication of NC between servers
Up/Down arrows (GPO display options)
updates
mitiating server (replication)
determining if complete
processing
on GPOs, limiting
pages, placing on (ADC)
replication partner
sending to initiating server
upgrading
BDCs to Windows 2000
domains
preparing for
Windows NT
single- and multimaster domains
trust relationships, preserving
URLs
Enterprise Number, obtaining
user accounts
LDAP
___many accounts
Windows NT
user and group accounts
user attribute example
User class

attribute settings

example

viewing with Schema Manager MMC
User Manager
user navigation ASP, enhancing
user portion (registry)
User Profiles settings 2nd
usernames, empty or trailing dollar sign
userPrincipalName attribute 2nd

setting

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

values, adding sets of (to properties)

variable prefix, naming conventions
variables, ADO search using VB
VB.NET 2nd

error handling
VBScript

ADSI constants and

Array function

Dim statements

errors, checking for
GetObject function 2nd
GetObject method
HTML pages, wrapping inside (ASPs)
HTML, combining with
limitations and solutions (ADSI enhancement)
migrating ADSI scripts to VB
__ MsgBox function
Nothing keyword
Option Explicit statement
Right function
scripting object
Set statement
__UBound function
UBound function (VBScript)
VB vs.

verbose logging to event log
viewers (raw), Active Directory
accessing GC contents
Visual Basic (VB)
ADSI, enhancing with

migrating ADSI scripts from VBScript
ModifyUserDetails program

VBScript vs.
VS.NET website

[Team LiB]

[Team LiB]

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K][L] [M] [N] [O] [P] [Q] [R][S] [T] [U] [V] [W] [X] [Z]

WAN management tools
well-connected subnets website
well-known security principals
Win32 Scripting Journal
Windows

servers opening for site link replication
settings
computer
user

Time Service settings
Update settings 2nd
Windows 2000

client placement vs. Windows NT
differences with Windows Server 2003
domain functional level feature list
domains
Forest Root Domain
mixed mode versus native mode
mixed-mode domains

network setup, DNS names, methods for choosing
registry, view on client
replication
___ changes n
new terminology
resource domains (NT), replacing with Organizational Units
servers, supporting older NT
system policies, applying to downlevel clients
versus Windows Server 2003
Windows 2000 Resource Kit
ADSIEDIT tool
MOVETREE and SIDWAILK utilities

NTDSUTIL utility
sites and replication management tools
Windows 9x, client naming issues in Windows 2000 network
Windows Explorer, customizing for user
Windows File Protection setting
Windows Installer, configuration settings for users
Windows Integrated Authentication and AD/AM

Windows Management Instrumentation (WMI)
API

architecture

authenticating with

CIM Object Manager (CIMOM)
CIM Repository

command-line tool (WMIC)
enumerating objects

event logs
filters 2nd

ori
providers
Active Directory provider
DNS provider
Eventlog provider
Registry provider

Replication provider

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

X.500 standard
Active Directory, based upon

directory access protocol (DAP)
[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [I] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zones [See also DNS Zones]
defined

mformation, dictating in DNS
___versus domains

[Team LiB]

	Main Page
	Table of content
	Copyright
	Preface
	Intended Audience
	Contents of the Book
	Conventions in This Book
	How to Contact Us
	Acknowledgments

	Part I: Active Directory Basics
	Chapter 1. A Brief Introduction
	1.1 Evolution of the Microsoft NOS
	1.2 Windows NT Versus Active Directory
	1.3 Windows 2000 Versus Windows Server 2003
	1.4 Summary

	Chapter 2. Active Directory Fundamentals
	2.1 How Objects Are Stored and Identified
	2.2 Building Blocks
	2.3 Summary

	Chapter 3. Naming Contexts and Application Partitions
	3.1 Domain Naming Context
	3.2 Configuration Naming Context
	3.3 Schema Naming Context
	3.4 Application Partitions
	3.5 Summary

	Chapter 4. Active Directory Schema
	4.1 Structure of the Schema
	4.2 Attributes (attributeSchema Objects)
	4.3 Attribute Syntax
	4.4 Classes (classSchema Objects)
	4.5 Summary

	Chapter 5. Site Topology and Replication
	5.1 Site Topology
	5.2 Data Replication
	5.3 Summary

	Chapter 6. Active Directory and DNS
	6.1 DNS Fundamentals
	6.2 DC Locator
	6.3 Resource Records Used by Active Directory
	6.4 Delegation Options
	6.5 Active Directory Integrated DNS
	6.6 Using Application Partitions for DNS
	6.7 Summary

	Chapter 7. Profiles and Group Policy Primer
	7.1 A Profile Primer
	7.2 Capabilities of GPOs
	7.3 Summary

	Part II: Designing an Active Directory Infrastructure
	Part II: Designing an Active Directory Infrastructure
	8.1 The Complexities of a Design
	8.2 Where to Start
	8.3 Overview of the Design Process
	8.3 Overview of the Design Process
	8.5 Design of the Internal Domain Structure
	8.6 Other Design Considerations
	8.7 Design Examples
	8.8 Designing for the Real World
	8.9 Summary

	Chapter 9. Creating a Site Topology
	9.1 Intrasite and Intersite Topologies
	9.2 Designing Sites and Links for Replication
	9.3 Examples
	9.4 Summary

	Chapter 10. Designing Organization-Wide Group Policies
	10.1 How GPOs Work
	10.2 Managing Group Policies
	10.3 Using GPOs to Help Design the Organizational Unit Structure
	10.4 Debugging Group Policies
	10.5 Summary

	Chapter 11. Active Directory Security: Permissions and Auditing
	11.1 Using the GUI to Examine Permissions
	11.2 Using the GUI to Examine Auditing
	11.3 Designing Permission Schemes
	11.4 Designing Auditing Schemes
	11.5 Real-World Examples
	11.6 Summary

	Chapter 12. Designing and Implementing Schema Extensions
	12.1 Nominating Responsible People in Your Organization
	12.2 Thinking of Changing the Schema
	12.3 Creating Schema Extensions
	12.4 Wreaking Havoc with Your Schema
	12.5 Summary

	Chapter 13. Backup, Recovery, and Maintenance
	13.1 Backing Up Active Directory
	13.2 Restoring a Domain Controller
	13.3 Restoring Active Directory
	13.4 FSMO Recovery
	13.5 DIT Maintenance
	13.6 Summary

	Chapter 14. Upgrading to Windows Server 2003
	14.1 New Features in Windows Server 2003
	14.2 Differences With Windows 2000
	14.3 Functional Levels Explained
	14.4 Preparing for ADPrep
	14.5 Upgrade Process
	14.6 Post-Upgrade Tasks
	14.7 Summary

	Chapter 15. Migrating from Windows NT
	15.1 The Principles of Upgrading Windows NT Domains
	15.2 Summary

	Chapter 16. Integrating Microsoft Exchange
	16.1 Quick Word about Exchange Server 2003
	16.2 Preparing Active Directory for Exchange 2000
	16.3 Exchange 5.5 and the Active Directory Connector
	16.4 Summary

	Chapter 17. Interoperability, Integration, and Future Direction
	17.1 Microsoft's Directory Strategy
	17.2 Interoperating with Other Directories
	17.3 Integrating Applications and Services
	17.4 Summary

	Part III: Scripting Active Directory with ADSI, ADO, and WMI
	Chapter 18. Scripting with ADSI
	18.1 What Are All These Buzzwords?
	18.2 Writing and Running Scripts
	18.3 ADSI
	18.4 Simple Manipulation of ADSI Objects
	18.5 Further Information
	18.6 Summary

	Chapter 19. IADs and the Property Cache
	19.1 The IADs Properties
	19.2 Manipulating the Property Cache
	19.3 Checking for Errors in VBScript
	19.4 Summary

	Chapter 20. Using ADO for Searching
	20.1 The First Search
	20.2 Other Ways of Connecting and Retrieving Results
	20.3 Understanding Search Filters
	20.4 Optimizing Searches
	20.5 Advanced Search Function—SearchAD
	20.6 Summary

	Chapter 21. Users and Groups
	21.1 Creating a Simple User Account
	21.2 Creating a Full-Featured User Account
	21.3 Creating Many User Accounts
	21.4 Modifying Many User Accounts
	21.5 Account Unlocker Utility
	21.6 Creating a Group
	21.7 Adding Members to a Group
	21.8 Evaluating Group Membership
	21.9 Summary

	Chapter 22. Manipulating Persistent and Dynamic Objects
	22.1 The Interface Methods and Properties
	22.2 Creating and Manipulating Shares with ADSI
	22.3 Enumerating Sessions and Resources
	22.4 Manipulating Print Queues and Print Jobs
	22.5 Summary

	Chapter 23. Permissions and Auditing
	23.1 How to Create an ACE Using ADSI
	23.2 A Simple ADSI Example
	23.3 A Complex ACE Example
	23.4 Creating Security Descriptors
	23.5 Listing ACEs to a File for All Objects in an OU and Below
	23.6 Summary

	Chapter 24. Extending the Schema and the Active Directory Snap-Ins
	24.1 Modifying the Schema with ADSI
	24.2 Customizing the Active Directory Administrative Snap-ins
	24.3 Summary

	Chapter 25. Using ADSI and ADO from ASP or VB
	25.1 VBScript Limitations and Solutions
	25.2 How to Avoid Problems When Using ADSI and ASP
	25.3 Combining VBScript and HTML
	25.4 Binding to Objects Via Authentication
	25.5 Incorporating Searches into ASP
	25.6 Migrating Your ADSI Scriptsfrom VBScript to VB
	25.7 Summary

	Chapter 26. Scripting with WMI
	26.1 Origins of WMI
	26.2 WMI Architecture
	26.3 Getting Started with WMI Scripting
	26.4 WMI Tools
	26.5 Manipulating Services
	26.6 Querying the Event Logs
	26.7 Querying AD with WMI
	26.8 Monitoring Trusts
	26.9 Monitoring Replication
	26.10 Summary

	Chapter 27. Manipulating DNS
	27.1 DNS Provider Overview
	27.2 Manipulating DNS Server Configuration
	27.3 Creating and Manipulating Zones
	27.4 Creating and Manipulating Resource Records
	27.5 Summary

	Chapter 28. Getting Started with VB.NET and System.Directory Services
	28.1 The .NET Framework
	28.2 Using VB.NET
	28.3 Overview of System.DirectoryServices
	28.4 DirectoryEntry Basics
	28.5 Searching with DirectorySearcher
	28.6 Manipulating Objects
	28.7 Summary

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Z

