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I would like to thank all the anonymous researchers in the Cheat Engine forum; all of you taught me 
the reverse engineering skills of analyzing online games since my childhood. Now it is time for me to 
share this wonderful knowledge with others.

– Sheng-Hao Ma



Forewords

I was both happy and touched when I heard that Sheng-Hao is going to write a new book, Windows 
APT Warfare. He has shared his unique insights on x86, vulnerability techniques, compiler practices, 
and operating system principles at Black Hat USA, DEFCON, CODE BLUE, HITB, HITCON, and 
other conferences for many years. It’s great to see he’s willing to share his years of learning and 
experience in this book.

Lots of beginners might find themselves in the world of reverse engineering or cyber-attack and 
defense due to the research on online game cheats in the early days. Even though there are a lot of 
learning resources on the internet, there are more reasons to get stuck. Therefore, through this book, 
Sheng-Hao shares the results of his research and experiments for years so that you can enjoy learning 
the secrets of Windows PE design, which I think is a significant contribution to the community.

When I got the first draft of this book, I couldn’t wait to read it, but I also followed all the practical 
examples in the book following the chapter schedule, so that you can effectively gain Windows knowledge. 
But it is also a book that is difficult enough to demand repetitive practice. I would suggest to beginners 
that you should try to do the examples in the book, not only to deepen your impression but also to 
discover the author’s thoughts on the design of the examples.

This book will not only help you to build a strong foundation but also to learn how real-world cyber 
warriors use this knowledge to break through the defenses of the security vendors. You can use this 
book as a basis for malware-related analysis, software protection, or for finding exploits in applications. 
With the basic knowledge of this book, it can serve as a guide for your future learning path. Don’t 
forget to come back to the book when you’re stuck for ideas. Maybe you’ll be surprised with new 
inspiration when you do IDA-Pro F7, F8, or F5 numerous times late at night.

In the world of offense and defense, there is no secure system, and there is no absolute winner; both 
the offense and defense rely on the knowledge and practice of the basics. This book provides you with 
basic knowledge, the research methods of new techniques, and the way people use this basic knowledge 
to attack and defend. This is a good book to lay the groundwork. I recommend it to everyone.

Ziv Chang

Vice President of Automotive CyberThreat Research Lab, VicOne Inc. and Senior Director of CoreTech, 
TrendMicro Inc.



I had the pleasure of meeting Sheng-Hao in the summer of 2022, right after he delivered a talk at 
Black Hat US, which is one of the most selective industry conferences in the field of cybersecurity. 
As a member of the European Black Hat Review Board, I can say that only very few submissions are 
accepted among the many that we receive every year. I was impressed by how Sheng-Hao and his 
colleagues went beyond pure reverse-engineering tasks, and created tools based on symbolic execution 
to extract evasive behaviors from malware. Sheng-Hao and his colleagues made concrete steps toward 
making symbolic execution practical for the specific reversing task, which is quite challenging because 
symbolic execution can quickly become resource-demanding.

Back in the summer of 2022, I could already foresee that something more based on that research would 
come up, so I was not too surprised when I saw that he open-sourced a tool based on the research. I 
was pleased when I was contacted to review this book. Sheng-Hao was able to explain his findings to 
the audience using clear technical language, so he certainly has the required skills needed to produce 
educational material. I’ve been an instructor for graduate-level cybersecurity courses at Politecnico di 
Milano, teaching cybersecurity to thousands of students, so I know exactly what it takes not only to 
produce teaching material but also to convey messages in a clear way. This is what I see when reading 
this book: a curated selection of deep technical topics, explained at the right level, with spot-on 
examples, practical snippets, and references to extra resources for the avid reverser.

Reverse engineering is a blend of technical knowledge, dedication, and art. The Web is riddled with 
an immense amount of free learning resources and little orientation, which creates the risk that 
newcomers may feel overwhelmed and just walk away. Books like this one are much needed, because 
they select, consolidate, and create new content, infused with practical experience and real-world 
examples, giving a new life to fundamental techniques and resources that would otherwise remain 
only in the brain of the seasoned reverser.

Sheng-Hao works with TX One, a spin-off of Trend Micro, where I worked between 2016 and 2022 as a 
senior threat researcher. I’ve had the opportunity to collaborate with Sheng-Hao’s colleagues at TX One 
on various projects, some of them involving a good deal of reverse engineering of proprietary, closed-
source binaries. Whoever joins TX One is either an experienced, hands-on cybersecurity researcher 
or will become one very quickly, because such research activities require being able to dig deep.

I can see this book in the bags of new hires, to quickly build skills, as well as on the bookshelf of 
experienced researchers, to review fundamentals as needed by the most challenging projects.

Federico Maggi, Ph.D., Cybersecurity Researcher, Review Board Member of Black Hat Europe
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Preface

This is a basic book that enables you to read a single line of C code and then be able to calculate the 
distribution of dynamic and static memory in your head and write the executable hexadecimal content 
by hand on a whiteboard.

This book distills three aspects of reverse engineering, compilers, and system practice principles 
into a practical study of Windows cyberattacks, and explains the attack techniques from a red team 
perspective, which have been used by national cyber armies in recent years on the solid foundation 
of PE attack techniques.

This book covers practical examples of malware and online game hacking, such as EXE infection, shellcode 
development, software packer, UAC bypass, path parser vulnerabilities, and digital signature forgery.

Who this book is for
This book is targeted at Windows engineers, malware researchers, network administrators, and ethical 
hackers who want to apply their skills to Windows Exploit, kernel practice, and reversing engineering. 
You need to have hands-on experience with reversing engineering and basic C/C++ knowledge. The 
book will have self-contained bite-size recipes for you to pick and choose the right one to solve your 
business problems.

What this book covers
Chapter 1, From Source to Binaries – The Journey of a C Program, includes the basics of how compilers 
package EXE binaries from C code and techniques for system processes to run dynamically as processes.

Chapter 2, Process Memory – File Mapping, PE Parser, tinyLinker, and Hollowing, explains the file mapping 
process, builds a compact compiler, attaches malware into system services, and infects game programs.

Chapter 3, Dynamic API Calling – Thread, Process, and Environment Information, elaborates on the 
basics of Windows API calls in x86 assembly.

Chapter 4, Shellcode Technique – Exported Function Parsing, explains how to get the desired API 
address from loaded DLL modules.

Chapter 5, Application Loader Design, explains how a simple application loader can execute EXE files 
in memory without creating any child process.
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Chapter 6, PE Module Relocation, discusses the relocation design of PE modules. We will learn to 
manually analyze PE binary and implement dynamic PE module relocation, allowing any program 
to be loaded into memory.

Chapter 7, PE to Shellcode – Transforming PE Files into Shellcode, explains how to write a lightweight 
loader in x86 assembly that can be used to convert any EXE file to shellcode.

Chapter 8, Software Packer Design, develops a minimalist software packer.

Chapter 9, Digital Signature – Authenticode Verification, explores Windows Authenticode specification, 
reverse-engineering the signature verification function, WinVerifyTrust, and how to hijack well-known 
digital signatures.

Chapter 10, Reversing User Account Control and Bypassing Tricks, reverse-engineers UAC design to 
understand the internal workflow of UAC protection and learn the techniques used by threat actors 
to bypass UAC design for privilege elevation.

The Appendix – NTFS, Paths, and Symbols, explores the file path resolve principle of Windows and 
the use of special paths to attack in the wild.

To get the most out of this book
You will need a Windows environment to analyze the PE structure and practice the book’s multiple 
labs and install TDM-GCC and Visual Studio C++ to test the book’s examples. For simplicity in 
explanation, most of the examples in this book are shown in 32bit, but the approaches are generic 
and can be modified to run in 64bit.

Software/hardware covered in the book Operating system requirements

TDM-GCC Windows

Visual Studio Community (C++)

PE-bear

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Windows-APT-Warfare. If there’s an update to the code, it will be updated 
in the GitHub repository.

https://github.com/PacktPublishing/Windows-APT-Warfare
https://github.com/PacktPublishing/Windows-APT-Warfare
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We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/LG0j1

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We can 
get the first IMAGE_BASE_RELOCATION structure at the address of the relocation table.”

A block of code is set as follows:

#include <Windows.h>

Int main(void) {

MessageBoxA(0, "hi there.", "info", 0);

return 0;

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

#include <Windows.h>

Int main(void) {

MessageBoxA(0, "hi there.", "info", 0);

return 0;

}

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “Its function is to pop up a window 
with the info title and the hi there content.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://https://packt.link/LG0j1
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Windows APT Warfare, we’d love to hear your thoughts! Please click here 
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/180461811X
https://packt.link/r/180461811X
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Part 1 –  
Modern Windows Compiler

In this section, you will learn the principles of C++ program execution on Windows systems from a 
binary perspective and gain the necessary knowledge to analyze Windows programs by hand. This 
section will cover topics such as how Windows analyzes program files and mounts program files to 
memory, tampering the mounted program of the benign process, and the basics of API function calling.

This section has the following chapters:

•	 Chapter 1, From Source to Binaries – The Journey of a C Program

•	 Chapter 2, Process Memory – File Mapping, PE Parser, tinyLinker, and Hollowing

•	 Chapter 3, Dynamic API Calling – Thread, Process, and Environment Information





1
From Source to Binaries –  

The Journey of a C Program

In this chapter, we will learn the basics of how compilers package EXE binaries from C code and 
techniques for system processes to execute. These basic concepts will build your understanding of how 
Windows compiles C into programs and links them across system components. You will also understand 
the program structure and workflow that malware analysis and evasion detection should follow.

In this chapter, we’re going to cover the following main topics:

•	 The simplest Windows program in C

•	 C compiler – assembly code generation

•	 Assembler – transforming assembly code into machine code

•	 Compiling code

•	 Windows linker – packing binary data into Portable Executable (PE) format

•	 Running compiled PE executable files as dynamic processes

The simplest Windows program in C
Any software is designed with some functionality in mind. This functionality could include tasks such 
as reading external inputs, processing them in the way the engineer expects them to be processed, or 
accomplishing a specific function or task. All of these actions require interaction with the underlying 
operating system (OS). A program, in order to interact with the underlying OS, must call system 
functions. It might be nearly impossible to design a meaningful program that does not use any 
system calls.
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In addition to that, in Windows, the programmer, when compiling a C program, needs to specify a 
subsystem (you can read more about it at https://docs.microsoft.com/en-us/cpp/
build/reference/subsystem-specify-subsystem); windows and console are 
probably the two of the most common ones.

Let’s look at a simple example of a C program for Windows:

#include <Windows.h>

Int main(void) {

MessageBoxA(0, "hi there.", "info", 0);

return 0;

}

Presented here is the most simplified C program for Windows. Its purpose is to call the 
USER32!MessageBox() function at the entry point of the main() function to pop up a window 
with the info title and the hi there content.

C compiler – assembly code generation
What is intriguing to understand in the previous section is the reason the compiler understands this 
C code. First, the main task for the compiler is to convert the C code into assembly code according 
to the C/C++ calling convention, as shown in Figure 1.1:

Figure 1.1 – x86 calling convention

https://docs.microsoft.com/en-us/cpp/build/reference/subsystem-specify-subsystem
https://docs.microsoft.com/en-us/cpp/build/reference/subsystem-specify-subsystem
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Important note
For convenience and practicability, the following examples will be presented with x86 instructions. 
However, the methods and principles described in this book are common to all Windows 
systems, and the compiler examples are based on GNU Compiler Collection (GCC) for 
Windows (MinGW).

As different system functions (and even third-party modules) have the expected in-memory access to 
the memory level of the assembly code, there are several mainstream application binary interface 
(ABI) calling conventions for ease of management. Interested readers can refer to Argument Passing 
and Naming Conventions by Microsoft (https://docs.microsoft.com/en-us/cpp/cpp/
argument-passing-and-naming-conventions).

These calling conventions mainly deal with several issues:

•	 The position where the parameters are placed in order (e.g., on a stack, in a register such as 
ECX, or mixed to speed up performance)

•	 The memory space occupied by parameters if parameters are need to be stored

•	 The occupied memory to be released by the caller or callee

When the compiler generates the assembly code, it will recognize the calling conventions of the system, 
arrange the parameters in memory according to its preference, and then call the memory address of 
the function with the call command. Therefore, when the thread jumps into the system instruction, 
it can correctly obtain the function parameter at its expected memory address.

Take Figure 1.1 as an example: we know that the USER32!MessageBoxA function prefers WINAPI 
calling conventions. In this calling convention, the parameter content is pushed into the stack from 
right to left, and the memory released for this calling convention is chosen by the callee. So after 
pushing 4 parameters into the stack to occupy 16 bytes in the stack (sizeof(uint32_t) x 4), it will be 
executed in USER32!MessageBoxA. After executing the function request, return to the next line 
of the Call MessageBoxA instruction with ret 0x10 and release 16 bytes of memory space 
from the stack (i.e., xor eax, eax).

Important note
The book here only focuses on the process of how the compiler generates single-chip instructions 
and encapsulates the program into an executable file. It does not include the important parts of 
advanced compiler theory, such as semantic tree generation and compiler optimization. These 
parts are reserved for readers to explore for further learning.

In this section, we learned about the C/C++ calling convention, how parameters are placed in memory 
in order, and how memory space is released when the program is finished.

https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
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Assembler – transforming assembly code into machine 
code
At this moment, you may notice that something is not quite right. The processor chips we use every 
day are not capable of executing text-based assembly code but are instead parsed into the machine 
code of the corresponding instruction set to perform the corresponding memory operations. Thus, 
during the compiling process, the previously mentioned assembly code is converted by the assembler 
into the machine code that can be understood by the chip.

Figure 1.2 shows the dynamic memory distribution of the 32-bit PE:

Figure 1.2 – 32-bit PE memory layout

Since the chip cannot directly parse strings such as hi there or info, data (such as global variables, 
static strings, global arrays, etc.) is first stored in a separate structure called a section. Each section 
is created with an offset address where it is expected to be placed. If the code later needs to extract 
resources identified during these compilation periods, the corresponding data can be obtained from 
the corresponding offset addresses. Here is an example:

•	 The aforementioned info string can be expressed as \x69\x6E\x66\x6F\x00 in ASCII 
code (5 bytes in total with null at the end of the string). The binary data of this string can be 
stored at the beginning of the .rdata section. Similarly, the hi there string can be stored 
closely after the previous string at the address of the .rdata section at offset +5.

•	 In fact, the aforementioned call MessageBoxA API is not understood by the chip. Therefore, 
the compiler will generate an Import Address Table struct, which is the .idata section, 
to hold the address of the system function that the current program wants to call. When needed 
by the program, the corresponding function address can be extracted from this table, enabling 
the thread to jump to the function address and continue executing the system function.
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•	 Generally speaking, it is the compiler’s practice to store the code content in the .text section.

•	 Each individual running process does not have just one PE module. Either *.EXE or *.DLL 
mounted in the process memory is packaged in PE format.

•	 In practice, each module loaded into the memory must be assigned an image base address to 
hold all contents of the module. In the case of a 32-bit *.EXE, the image base address would 
normally be 0x400000.

•	 The absolute address of each piece of data in the dynamic memory will be the image base address 
of this module + the section offset + the offset of the data on the section. Take the 0x400000 
image base address as an example. If we want to get the info string, the expected content will 
be placed at 0x402000 (0x400000 + 0x2000 + 0x00). Similarly, hi there would 
be at 0x402005, and the MessageBoxA pointer would be stored at 0x403018.

Important note
There is no guarantee that the compiler will generate .text, .rdata, and .idata sections 
in practice, or that their respective uses will be for these functions. Most compilers follow the 
previously mentioned principles to allocate memory. Visual Studio compilers, for example, do 
not produce executable programs with .idata sections to hold function pointer tables, but 
rather, in readable and writable .rdata sections.

What is here is only a rough understanding of the properties of block and absolute addressing 
in the dynamic memory; it is not necessary to be obsessed with understanding the content, 
attributes, and how to fill them correctly in practice. The following chapters will explain the 
meaning of each structure in detail and how to design it by yourself.

In this section, we learned about the transformation to machine code operations during program 
execution, as well as the various sections and offsets of data stored in memory that can be accessed 
later in the compiling process.

Compiling code
As mentioned earlier, if the code contains chip-incomprehensible strings or text-based functions, the 
compiler must first convert them to absolute addresses that the chip can understand and then store 
them in separate sections. It is also necessary to translate the textual script into native code or machine 
code that the chip can recognize. How does this work in practice?

In the case of Windows x86, the instructions executed on the assembly code are translated according 
to the x86 instruction set. The textual instructions are translated and encoded into machine code that 
the chip understands. Interested readers can search for x86 Instruction Set on Google to find 
the full instruction table or even encode it manually without relying on a compiler.
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Once the compiler has completed the aforementioned block packaging, the next stage is to extract 
and encode the textual instructions from the script, one by one, according to the x86 instruction set, 
and write them into the .text section that is used to store the machine code.

As shown in Figure 1.3, the dashed box is the assembly code in the text type obtained from compiling 
the C/C++ code:

Figure 1.3 – Native code generation

You can see the first instruction is push 0, which pushes 1 byte of data onto the stack (saved as 4 
bytes), and 6A 00 is used to represent this instruction. The push 0x402005 instruction pushes 4 
bytes onto the stack at once, so push 68 50 20 40 00 is used to achieve a longer push. call 
ds:[0x403018] is the address of the 4 bytes, and the long call of machine code, FF 15 18 30 
40 00, is used to represent this instruction.

Although Figure 1.3 shows the memory distribution of the dynamic msgbox.exe file, the file 
produced by the compiler is not yet an executable PE file. Rather, it is a file called a Common Object 
File Format (COFF) or an object file, as some people call it, which is a wrapper file specifically 
designed to record the various sections produced by the compiler. The following figure shows the 
COFF file obtained by compiling and assembling the source code with the gcc -c command, and 
viewing its structure with a well-known tool, PEview.
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As shown in Figure 1.4, there is an IMAGE_FILE_HEADER structure at the beginning of the COFF 
file to record how many sections are included:

Figure 1.4 – COFF

At the end of this structure is a whole array of IMAGE_SECTION_HEADER to record the current 
location and size of the content of each section in the file. Closely attached at the end of this array is 
the substantive content of each section. In practice, the first section will usually be the content of the 
.text section.

In the next stage, the Linker is responsible for adding an extra piece of the COFF file to the application 
loader, which will become our common EXE program.

Important note
In the case of x86 chip systems, it is customary to reverse the pointer and digit per bit into the 
memory when encoding. This practice is called little-endian, as opposed to a string or array 
that should be arranged from lowest to highest address. The data arrangement of multiple 
bytes varies according to the chip architecture. Interested readers can refer to the article How 
to write endian-independent code in C (https://developer.ibm.com/articles/
au-endianc/).

In this section, we learned about the COFF, which is used to record the contents in the memory of 
the various sections recorded by the compiler.

https://developer.ibm.com/articles/au-endianc/
https://developer.ibm.com/articles/au-endianc/
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Windows linker – packing binary data into PE format
In the previous section, we assumed some memory distribution during the program's compilation. 
For example, the default EXE module image base should be at 0x400000 so that executable content 
should be placed. The .text section should be placed at 0x401000 above its image base. As we 
said, the .idata section is used to store the import address table, so the question is who or what is 
responsible for filling the import address table?

The answer is that every OS has an application loader, which is designed to fill all these tasks correctly 
when creating a process from a static program. However, there is a lot of information that will only 
be known at the compiling time and not by the system developer, such as the following:

•	 Does the program want to enable Address Space Layout Randomization (ASLR) or Data 
Execution Prevention (DEP)?

•	 Where is the main(int, char) function in the .text section written by the developer?

•	 How much of the total memory is used by the execution module during the dynamic phase?

Microsoft has therefore introduced the PE format, which is essentially an extension to the COFF 
file, with an additional optional header structure to record the information required by the Windows 
program loader to correct the process. The following chapters will focus on playing with the various 
structures of the PE format so that you can write an executable file by hand on a whiteboard.

All you need to know now is that a PE executable has some key features:

•	 Code content: Usually stored as machine code in the .text section

•	 Import address tables: To allow the loader to fill in the function addresses and enable the 
program to get them correctly

•	 Optional header: This structure allows the loader to read and know how to correct the current 
dynamic module

Here is an example in Figure 1.5:
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Figure 1.5 – Minimalist architecture of the program

msgbox.exe is a minimalist Windows program with only three sections: .text, .rdata, and 
.idata. After dynamic execution, the system application loader sequentially extracts the content 
of the three sections and writes them each to the offset of 0x1000, 0x2000, and 0x3000 relative 
to the current PE module (msgbox.exe).

In this section, we learned that the application loader is responsible for correcting and filling the 
program content to create a static program file into a process.

Running static PE files as dynamic processes
At this point, you have a general idea of how a minimal program is generated, compiled, and packaged 
into an executable file by the compiler in the static phase. So, the next question is, What does the OS 
do to get a static program running?

Figure 1.6 shows the process structure of how an EXE program is transformed from a static to a 
dynamic process under the Windows system:
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Figure 1.6 – Dynamic operation of the process hatching flow

Note that this is different from the process hatching process in the latest version of Windows. For the sake 
of explanation, we'll ignore the processes of privilege escalation, the patching mechanism, and kernel 
generation, and only talk about how a static program is correctly parsed and run from a single execution.

On Windows systems, all processes must be hatched by the parent process by interrupting the system 
function to jump to the kernel level. For example, a parent process is currently trying to run the cmd.
exe /c whoami command, which is an attempt to hatch the cmd.exe static file into a dynamic 
process and assign its parameters to /c whoami.

So, what happens in the whole process? As shown in Figure 1.6, these are the steps:

1.	 The parent process makes a request to the kernel with CreateProcess, specifying to generate 
a new process (child process).

2.	 Next, the kernel will produce a new process container and fill the execution code into the 
container with file mapping. The kernel will create a thread to assign to this child process, 
which is commonly known as the main thread or GUI thread. At the same time, the kernel 
will also arrange a block of memory in Userland’s dynamic memory to store two structural 
blocks: a process environment block (PEB) for recording the current process environment 
information and a thread environment block (TEB) for recording the first thread environment 
information. The details of these two structures will be fully introduced in Chapter 2, Process 
Memory – File Mapping, PE Parser, tinyLinker, and Hollowing, and in Chapter 3, Dynamic API 
Calling – Thread, Process, and Environment Information.
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3.	 The NtDLL export function, RtlUserThreadStart, is the main routing function for 
all threads and is responsible for the necessary initialization of each new thread, such as the 
generation of structured exception handling (SEH). The first thread of each process, that 
is, the main thread, will execute NtDLL!LdrInitializeThunk at the user level and 
enter the NtDLL!LdrpInitializeProcess function after the first execution. It is the 
executable program loader, responsible for the necessary correction of the PE module loaded 
into the memory.

4.	 After the execution loader completes its correction, it jumps back to the current execution 
entry (AddressOfEntryPoint), which is the developer’s main function.

Important note
From a code perspective, a thread can be thought of as a person responsible for executing code, 
and a process can be thought of as a container for loading code.

The kernel layer is responsible for file mapping, which is the process of placing the program 
content based on the preferred address during the compiling period. For example, if the image 
base address is 0x400000 and the .text offset is 0x1000, then the file mapping process is 
essentially a simple matter of requesting a block of memory at the 0x400000 address in the 
dynamic memory and writing the actual contents of .text to 0x401000.

In fact, the loader function (NtDLL! LdrpInitializeProcess) does not directly call 
AddressOfEntryPoint after execution; instead, the tasks corrected by the loader and the 
entry point are treated as two separate threads (in practice, two thread contexts will be opened). 
NtDLL!NtContinue will be called after the correction and will hand over the task to the 
entry to continue execution as a thread task schedule.

The entry point of the execution is recorded in NtHeaders→OptionalHeader.
AddressOfEntryPoint of the PE structure, but it is not directly equivalent to the 
main function of the developer. This is for your understanding only. Generally speaking, 
AddressOfEntryPoint points to the CRTStartup function (C++ Runtime Startup), 
which is responsible for a series of C/C++ necessity initialization preparations (e.g., cutting 
arguments into developer-friendly argc and argv inputs, etc.) before calling the developer’s 
main function.

In this section, we learned how EXE files are incubated from static to dynamically running processes 
on the Windows system. With the process and thread, and the necessary initialization actions, the 
program is ready to run.
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Summary
In this chapter, we explained how the OS converts C code into assembly code via a compiler and into 
executable programs via a linker.

The next chapter will be based on this framework and will take you through a hands-on experience of 
the entire flowchart in several C/C++ labs. Through the following chapters, you will learn the subtleties 
of PE format design by building a compact program loader and writing an executable program yourself.



2
Process Memory – File 

Mapping, PE Parser, tinyLinker, 
and Hollowing

In Chapter 1, From Source to Binaries – The Journey of a C Program, we learned how C/C++ can be 
packaged as an executable in the operating system. In this chapter, we will explain the file mapping 
process, build a compact compiler, attach malware to system services, and infect game programs.

In this chapter, we’re going to cover the following main topics:

•	 The memory of the static contents of PE files

•	 PE Parser example

•	 Dynamic file mapping

•	 PE infection (PE Patcher) example

•	 tinyLinker example

•	 Examples of process hollowing

•	 PE files to HTML

Sample programs
The sample programs mentioned in this chapter are available on GitHub, where you can download 
the exercises: https://github.com/PacktPublishing/Windows-APT-Warfare/
tree/main/chapter%2302.

https://github.com/PacktPublishing/Windows-APT-Warfare/tree/main/chapter%2302
https://github.com/PacktPublishing/Windows-APT-Warfare/tree/main/chapter%2302
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The memory of the static contents of PE files
In Chapter 1, From Source to Binaries – The Journey of a C Program, we mentioned the process by 
which the compiler produces a complete executable program. It is clear that the C/C++ source code, 
after being compiled, is mainly split into blocks and saved. These blocks must be placed on the correct 
address during dynamic execution. Then, we can start figuring out what the linker would produce 
as an executable file. Figure 2.1 shows a simplified PE static structure that you need to understand:

Figure 2.1 – Simplified PE static structure

The author has listed some of the key fields to which the application loader will refer. First, the entire 
memory arrangement starts with the DOS Header area (IMAGE_DOS_HEADER), where.e_magic 
must always be equal to the MZ string (that is, IMAGE_DOS_SIGNATURE), which is a valid DOS 
Header. Most of the fields in the DOS structure are no longer used in the current Windows NT 
architecture. Therefore, you only need to remember that the .e_lfanew field points to the RVA, 
the starting point of the NT Headers structure.

NT Headers

The NT Headers structure also has a field to check for validity, which is the .Signature field. The 
.Signature field must always be equal to the PE\x00\x00 string (that is, IMAGE_NT_SIGNATURE). 
NT Headers mainly contains two important structures, File Header and Optional Header, which 
are described in Figure 2.2:
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Figure 2.2 – The NT Headers structure

Let’s look at these two structures:

•	 File Header (IMAGE_FILE_HEADER): This structure is the file header of the COFF produced 
by the assembler and records information such as the current message of the compilation; take 
the following example:

1.	 Machine records the current program’s machine code as x86, x64, or ARM.

2.	 NumberOfSections records how many sections are in the file.

3.	 TimDataStamp records the exact compiling time of this program.

4.	 SizeOfOptionalHeader is the actual size of the Optional Header structure 
immediately after the IMAGE_FILE_HEADER structure. In practice, since the size of 
the whole NT Header is fixed, the fixed value of this field is usually 0xE0 (32-bit) or 
0xF0 (64-bit).

5.	 Characteristics records the current properties of the entire PE module, such 
as whether it is 32-bit, a DLL module, executable or not, and whether it contains 
redirection information.

•	 Optional Header: This structure is the record information added by the linker in the last 
stage of the compilation, which is used to provide the application loader with the necessary 
information that is used to repair the program file to a state ready for normal process execution:

1.	 ImageBase records the memory address where the PE module should be sprayed at 
compile time (0x400000 or 0x800000 by default).

2.	 SizeOfImage records how much memory space should be used on top of the image 
base to fully store all the section contents during dynamic execution.

3.	 SizeOfHeaders records how much space is occupied by DOS Header + NT Headers 
+ Section Headers (Array).
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4.	 AddressOfEntryPoint records the first entry point of the program after the 
program is compiled. This entry point usually points to the beginning of the function 
in the .text section.

5.	 FileAlignment performs static section alignment, which is 0x200 by default in 
32-bit. We have already mentioned that sections are blocky. Then, when a section is 
saved to a static file, if the static section is not full, it has to be filled until it is full, making 
it a block structure. Take, for example, a static section alignment of 0x200. If .data is 
currently only 3 bytes, then a 0x200 bytes block will be requested to hold these 3 bytes. 
If .data happens to have 0x201 bytes at the moment, then it will be padded to a section 
of 0x400 bytes.

6.	 SectionAlignment aligns the sections dynamically, and the default is 0x1000 in 
a 32-bit system.

7.	 DataDirectory is a table that records the starting point and size of 15 fields, in which 
every element is used to record different program details:

	� #00 – Export Directory

	� #01 – Import Directory

	� #02 – Resource Directory

	� #03 – Exception Directory

	� #04 – Security Directory Authenticode

	� #05 – Base Relocation Table

	� #06 – Debug Directory

	� #07 – x86 Architecture Specific Data (currently discarded)

	� #08 – Global Pointer Offset Table (currently discarded)

	� #09 – Thread Local Storage (TLS)

	� #10 – Load Configuration Directory

	� #11 – Bound Import Directory in Headers

	� #12 – Import Address Table

	� #13 – Delay Load Import Descriptors

	� #14 – COM Runtime Descriptor

These are the 15 fields of tables for all PE structures. Highlighted are some of the tables that will 
be covered in more detail in Chapter 5, Application Loader Design, including implementation and 
attack techniques.
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Those of you who are eagle-eyed may have noticed that #01 and #12 refer to similar things. The export 
function of the DLL module referenced by each column in #12 is recorded in the IMAGE_IMPORT_
DESCRIPTOR arrays in the table in #1. The differences will be explained in more detail in Chapter 5, 
Application Loader Design.

Important note
Complete information on the Optional Header is available everywhere on the internet; however, 
most of the fields are not that important. Therefore, this book only lists the most important 
items for the application loaders.

Section Headers

In the previous subsection, we mentioned that the compilation process converts the source code into 
multiple blocky sections. Each block has a different starting address, content size, and address in the 
sprayed memory, so it is necessary to use a common description method to record this information. In 
the case of a PE structure, IMAGE_SECTION_HEADER of COFF is used to record all the details. The end 
of the NT Headers structure is the starting point of the Section Headers array (as shown in Figure 2.3):

Figure 2.3 – The Section Headers structure

Since the NT Headers structure is always fixed in size, given any PE content, it is conceivably easy to 
manually crawl from the DOS Header (at the MZ string) to the Sections Headers array.
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The reason for calling it a section header array is that it contains a set of section headers (IMAGE_
SECTION_HEADER). For example, if you crawl NT Header→FIle Header→NumberOfSections and 
find that the current module has three sections, then the total memory usage of this section header 
array will be as large as sizeof(IMAGE_SECTION_HEADER) * 3.

Each section header (IMAGE_SECTION_HEADER) is a record that allows the system to understand 
where to take sections from a static PE structure, how large to make them, where to write them to 
dynamic memory, and how large to write them. As shown in Figure 2.3, the important attributes of 
the section headers are recorded:

•	 PointerToRawData: This is the offset of the current section content saved in the static file 
so that we can extract the content of this section from this starting point.

•	 SizeOfRawData: This is the size of the file saved on PointerToRawData so that we can 
locate the start and end points of the section content correctly.

•	 VirtualAddress: This is the relative offset (paging address) of the sprayed image base 
address. The previous two attributes will give us the full content of the current section; then, 
it’s time to write in the virtual address that VirtualAddress refers to.

•	 VirtualSize: This records how much space should be allocated in the dynamic space to 
hold the contents of the section.

•	 Characteristics: This records whether the section is readable, writable, or executable, which 
is determined at compilation time. These three attributes can be stacked in any combination 
and are not mutually exclusive. For example, .text will usually be readable and executable 
(non-writable), while .rdata (read-only data) will be read-only.

In Figure 2.3, the author has marked offset = 0 (the start of the program) on DOS Header, and EoF 
(End of File) is deliberately aligned with the last section of content. This means that all sections of 
content are aligned with File Alignment and then taped tightly together without any gaps.

In modern compilers, the theoretical size of PointerToRawData + SizeOfRawData will be the size of 
the file you calculated with WinAPI’s GetFileSize or ftell function, and the size of the whole 
program on the disk will be the sum of (a) and (b):

•	 (a) The size of DOS Header + NT Headers + Section Headers (Array) after the total size of File 
Alignment has been aligned

•	 (b) The sum of each section size after File Alignment
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Knowing this is very important for malware analysis, regardless of whether you want to write a worm 
or design a standalone linker. In addition, you may have noticed that the section header recorded 
two fields: SizeOfRawData for static storage and Misc.VirtualSize for dynamic storage. From a 
programming viewpoint, if all global variables are not assigned initial values but are run dynamically, 
and values are written to the global variables after they have been operated, then the following situation 
may occur for the .data or .bss section: there is no reference to the initial values in the static 
content, but dynamic memory space is allocated. This results in a situation where SizeOfRawData 
is 0, but VirtualSize has a value.

In this section, we learned about the details of the PE static structure, including the NT Header and 
section header arrays, and the functionality of their respective detail fields. This will help us understand 
malware analysis.

PE Parser example
This example is from the PE Parser project. It can be found in the Chapter#2 folder of this book’s 
GitHub project, which is publicly available. To save space, we only extracted the highlighted code; 
you should refer to the complete source code of the project for more details.

This is a simple tool written in C/C++ that can read any EXE content into memory with fopen and 
fread and save it in the ptrToBinary pointer, as shown in Figure 2.4:

Figure 2.4 – Example of PE Parser code
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Let’s take a look at the preceding code in more detail:

•	 Lines 2-7: DOS Header must be present at the beginning of the program. We can get the NT 
Header offset from its e_lfanew field, and then add this offset to the base address of the 
entire binary. Therefore, we have successfully obtained the DOS and NT Headers.

•	 Line 4: We check whether the magic number of the DOS Header is MZ and the magic number 
of the NT Headers is PE\x00\x00.

•	 Lines 10-14: The Optional Header property can be obtained after we get valid NT Headers. 
This prints the image base address, the number of bytes, and its dynamic entry in the current 
dynamic phase of the parsed program.

•	 Lines 18-21: Since the NT Headers will be followed by a section header array, we can get the 
address of the first section header by simply adding the starting point of NT Headers to a 
fixed size of the entire NT Header. Then, we can iterate through the for loop to print out the 
information for each section header.

Figure 2.5 shows the section’s contents displayed by the well-known analysis tool PE-bear, which is 
consistent with the results printed by our PE Parser developed by C. This result confirms that our 
understanding of the PE structure is correct:

Figure 2.5 — Comparison of PE Parser and PE-bear execution results

In this section, we used the PE Parser program to list the addresses of the various sections of the 
program. The results are consistent with well-known analysis tools, confirming our understanding.



Dynamic file mapping 23

Dynamic file mapping
In this section, we will discuss how the PE static file is created as a new process and how the program 
file is mapped and mounted into its dynamic memory. Figure 2.6 shows a simplified process for 
mapping a static PE program into memory:

Figure 2.6 – File mapping process

The left-hand side of Figure 2.6 shows a container for memory contents, while the right-hand side shows 
a static PE file that has not been executed yet and is located in a disk. The following is a systematic 
explanation of the process by which the operating system mounts its static files into dynamic ones:

1.	 First, the system checks the ImageBase address of the Optional Header entry in NT Headers 
(currently 0x400000), which is the address expected to be sprayed in the dynamic during 
compiling a program. Note that if ASLR protection and the relocation function are enabled at 
the same time, it may be a random ImageBase.

2.	 Next, the system checks SizeOfImage of the Optional Header in NT Headers and finds that 
a total of 0xDEAD bytes is required on the ImageBase address to store the complete module. 
The system will then request a 0xDEAD space on 0x400000.
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3.	 Then, the system needs to copy the DOS, NT, and all section headers to the ImageBase 
address. The total size of these three sections can be found in the SizeOfHeaders area of 
the Optional Header, which is 0x400. All the data on the static file (offset = 0 ~ 0x400) will 
then be copied to ImageBase +0 ~ +0x400 addresses.

4.	 We can crawl FileHeader→NumberOfSections from the PE static file to get the number of 
sections, and from the section header array, we can enumerate the contents of each section 
(PointerToRawData) and the Relative Virtual Address (RVA) that the section expects 
to be sprayed into the dynamic memory. The next step is to spray each block in a loop to its 
dynamic corresponding address. This is the complete file mapping process.

5.	 When finished, the code and data are placed in the dynamic space in the way the compiler expects. 
The main thread then executes the application loader from NtDLL!LdrpInitializeProcess 
to correct the program, and jumps back to the execution entry (0x401234). Therefore, the 
whole program can be successfully executed.

In this section, we learned how to map a PE static file to each section of the NT Header. In the next 
section, we will illustrate this with a practical example.

PE infection (PE Patcher) example
This example looks at the PE_Patcher project. It can be found under the Chapter#2 folder of this 
book’s GitHub project, which is publicly available. To save space, we only extracted the highlighted 
code; please refer to the full project to view the full source code.

Given any executable (for example, a game installer) and specific malicious code (shellcode), we can 
use what we have learned so far to infect the game’s installer so that the gamer thinks they are running 
the game installer but executes our backdoor instead.

In this section, we will learn how to infect a normal program with shellcode in the form of a worm. 
The core idea is to put a malicious section in the normal program to hold the malicious code and 
point the program entry to the malicious code so that the infected program will trigger our malicious 
code directly after execution.

Figure 2.7 shows  common shellcode on the internet, whose function is to pop up a BrokenByte 
window when it is triggered:
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Figure 2.7 – Common shellcode

Other shellcode, such as downloading malware, reverse shells, memory injection modules, and so on, 
can be easily searched for on the internet.

You might be wondering what to do if you want to write special shellcode that is not available on 
the internet. Do not worry; Chapter 3, Dynamic API Calling – Thread, Process, and Environment 
Information, and Chapter 4, Shellcode Technique – Export Function Parsing, will help you to learn the 
different ways you can write your own Windows shellcode!

Figure 2.8 shows the code of PE Patcher. It reads a user input argument, argv[1], at the main entry 
to point to the path of the normal program to be infected, and readBinFile (which internally 
reads the entire binary content with fread) to retrieve and save the contents of the infected program 
into the buff variable:

Figure 2.8 – PE Patcher
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Next, in lines 49-51, MACRO defines three functions:

1.	 getNtHdr(buf): This defines the starting point of the PE binary and the pointer to return 
the NT Headers.

2.	 getSectionArr(buf): This is the same as getNtHdr(buf) but is used to get the starting 
point of the section headers array.

3.	 P2ALIGNUP(num, align): This is used to pad the num value to the corresponding 
align in block form. For example, P2ALIGNUP(0x30, 0x200) will get 0x200, while 
P2ALIGNUP(0x201, 0x200) will get 0x400.

Continuing with lines 53-56, SectionAlignment tells us how many alignments should be used to 
align the code into a block page, while FileAlignment determines how many bytes should be used 
to align the size of a section. As we mentioned earlier, the size of the contents of each section saved at 
the end of the PE binary will be the same as the size of the whole PE binary calculated using WinAPI 
GetFileSize. So, if we want to insert an extra section on this PE binary to store shellcode, it means 
we have to append a P2ALIGNUP (malicious code size, FileAlignment) space at 
the end of the PE binary to have enough space to store the shellcode. Then, we must use malloc to 
allocate a space to record the memory of the infected program and memcpy to copy the contents of the 
normal program.

Next, let’s look at lines 60-64 of the code:

Figure 2.9 – New section header

We need to create a new section header to record where the shellcode section should be sprayed into 
the dynamic memory. Otherwise, the application loader will fail to spray the shellcode into the memory 
during the execution phase. We can create a new section header by retrieving the last section header 
used by the normal program. We will use the next section header space from this section header to 
write the section data, and it will be added successfully. Here, it is assumed that the program itself 
still has enough section header space for us to write in.
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In lines 67-68 of the code, we filled in the new section name as 30cm.tw and filled in the VirtualSize 
field with the P2ALIGNUP (malicious code size, SectionAlignment) bytes required 
for the shellcode to spray into the dynamic space.

Next, we need to fill in a new section for the dynamic relative PE module offset’s RVA – that is, 
VirtualAddress. The calculation is clear: if the previous 0x1000, 0x2000, and 0x3000 are 
already occupied by .text, .data, and .idata, then our VirtualAddress should be 0x4000. 
So, look at line 69 of the code: the RVA sprayed on the new section will be equal to the RVA of the 
previous section + the number of dynamic memory bytes occupied by the previous section.

In line 72 of the code, we write to the PointerToRawData field. We said that the static PE binary 
would be tightly tiled together in sections, so the last section at the end of the original program would 
be the best place to put the shellcode.

In lines 73-74 of the code, the new section holds the “executable” shellcode, so it is necessary to give 
this section attributes of readable, writable, and executable. The executable attribute is to prevent some 
shellcode from engaging in self-modifying behavior, such as dynamic decompression or encoding to keep 
the shellcode fully displayable, commonly used as MSFencode (the encoding tool in Metasploit). Finally, 
we create a new section header, and we need to increase the NumberOfSections + 1 in FileHeader 
for the application loader to be aware of the new section.

Next, let’s see lines 76-99 of the code:

Figure 2.10 – PE Patcher save



Process Memory – File Mapping, PE Parser, tinyLinker, and Hollowing28

In line 77 of the code, we added the section headers, so we have to memcpy the shellcode to 
PointerToRawData, the end of the last section of the current program.

In line 84 of the code, since we added a new piece of shellcode sprayed into the dynamic memory, we 
should remember to fix SizeOfImage.

As we mentioned earlier in the Dynamic file mapping section, SizeOfImage is the size of the space 
occupied by the program from ImageBase to the last section. Therefore, the maximum limit of 
dynamic memory space occupied by the memory distribution will be the VirtualAddress + VirtualSize 
of the last section (that is, the section we have just created).

In line 89 of the code, after all the previous additions and modifications, we can already assume that 
once the program runs (that is, it runs by the correct file mapping), it should be able to touch our 
shellcode at the new section address. Then, we can simply point the current AddressOfEntryPoint 
to the RVA of the new section and hijack the program flow to run our shellcode.

We will use an old game, Pikachu Volleyball, as a demonstration:

Figure 2.11 – PE Patcher demo

Figure 2.11 shows the Pikachu Volleyball game on the left after the execution of picaball.exe. 
However, the picaball_infected.exe file generated by the PE Patcher tool will show a pop-up 
window directly after the shellcode trigger. This confirms that we have indeed inserted shellcode into 
the game.

In this section, we used a PE Patcher program to illustrate how to add a new section header, insert 
shellcode, and point the program entry to malicious code to trigger it.
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tinyLinker example
This example is from the tinyLinker project. It can be found under the Chapter#2 folder of this book’s 
GitHub project, which is publicly available. To save space, we only extracted the highlighted code; the 
complete source code should be referred to if you wish to look at the full project for detailed reading.

Now that you have learned how to generate a linker for an executable, next, you need to learn how 
to generate a PE program linker from scratch. We’ll take a hands-on approach to this in this section:

Figure 2.12 – The main function of tinyLinker

We assume that a simple executable should have at least three structure headers – that is, a DOS Header, 
NT Headers, and Section Headers, respectively. (Note that the File Header and Optional Header are 
part of the NT Headers). The contents of this section are appended to the ends of these headers.

In lines 26-31 of the code, the size of the entire program is calculated. In line 26, the size of the three 
headers is aligned as a block based on FileAlignment. In line 30, we calculate the bytes needed 
to save the shellcode as a section. Then, in line 31, we request a block of memory with calloc for 
the complete binary of the full PE file. The full size will be the sum of the section header size (aligned) 
+ the sum of the section contents (aligned).

In line 34, we know that the starting point of the PE binary will be DOS Header, so we can force the 
currently prepared memory to be DOS Header, and then fill in the MZ string (e_magic) that a 
valid DOS Header should have. We assume that NT Headers will follow the end of the DOS Header, 
so the NT Headers offset (starting point) pointed to by e_lfanew will be equal to the end of the 
DOS Header.
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Next, let’s look at lines 38-45:

Figure 2.13 – NT Headers of tinyLinker

Now, we need to generate the NT Headers. In lines 39-40 of the code, the first thing we must do is 
make it a legitimate NT Header, so the magic string (PE\x00\x00) must be set. Then, we configure File 
Header with the correct information, including the code compiled into i386 (32-bit) machine code, 
executable files with 32-bit structures, and so on. Next, we fill in one section (NumberOfSections) 
that we currently have only for saving the code.

Now, let’s look at lines 41-52 of the code:

Figure 2.14 – Section Headers of tinyLinker

In lines 44-51 of the code, we have a section created to hold shellcode content, the details of which 
were mentioned in the previous section when introducing PE infection.

The only difference is that this time, there is only one section in the whole program for saving shellcode. 
So, our new section RVA can directly fill in the section alignment with 0x1000 (no space is occupied 
by any previous section). The address of the static file that holds the contents of the sections will be 
at the end of the memory occupied by the three types of section headers, which is the starting point 
of our only section content.

To trigger the shellcode directly when the program is run, we simply need to control Address Of 
EntryPoint.
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Next, let’s look at lines 53-69 of the code:

Figure 2.15 – The GenExe function of tinyLinker

Finally, we need to fill in the Optional Header information to help the application loader know how 
to load the program correctly.

Firstly, the Magic field needs to be filled in with the 32-bit or 64-bit Optional Header structure. Our 
new section, VirtualAddress, is the RVA starting point for the “code section” in the BaseOfCode 
field, so fill in the VirtualAddress property of the new section.

The Subsystem field is the GUI or Console field that’s set in the Project Linker option in Visual 
Studio C++. If you want to have a console interface, you can use IMAGE_SUBSYSTEM_WINDOWS_
CUI (3); otherwise, use IMAGE_SUBSYSTEM_WINDOWS_GUI (2) for No Console Interface.

Once we’ve finished filling this in, we use fwrite to generate the whole PE binary in poc.exe 
and run it.

As shown in Figure 2.16, we can write a linker in C/C++ to generate a new PE file from scratch with 
no difficulty:
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Figure 2.16 – The output of tinyLinker

This proves that our solid PE foundation is feasible in practice. The PE-bear tool on the right shows 
that the generated poc.exe file only has one 30cm.tw section and that the shellcode itself is stored 
inside it.

In this section, we used the practical tinyLinker program to illustrate how to manually compose the 
various headers and sections in the program.

Examples of process hollowing
This example is from the RunPE project. It can be found under the Chapter#2 folder of this book’s 
GitHub project, which is publicly available. To save space, we only extracted the highlighted code; 
please refer to the complete source code to see all the details of the project.

This section illustrates how file mapping techniques can be maliciously exploited by hackers on the front 
line. This technique has been used by Ocean Lotus, a Vietnamese national cyber-army organization. 
This example has been adapted from the open source project RunPE (github.com/Zer0Mem0ry/
RunPE) for demonstration purposes.

After understanding the whole process from static mapping to file mapping, you may have thought 
of the following question: if we run a program signed with digital signatures from known and valid 
companies (for example, a Microsoft update package, an installer in a large company, and so on), and 
replace the mounted PE module in the process with a malware module, can we run the malware as a 
trusted program? Yes – this is the core of the famous process hollowing (RunPE) attack technique:

https://github.com/Zer0Mem0ry/RunPE
https://github.com/Zer0Mem0ry/RunPE
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Figure 2.17 – Process hollowing (RunPE) process

Figure 2.17 shows the entire attack process in terms of memory distribution. We know that a process 
is essentially a PE file mapped into memory, whether it mounts an EXE module or a DLL module. 
Thus, if there are multiple PE modules in memory, which module is the current process?

The answer lies in the Process Environment Block (PEB). When a new process is generated at the 
kernel level, in addition to file mapping the static files, a PEB is also generated. The ImageBaseAddress 
field of the PEB will store the image base address of the main execution.

Then, when the main thread executes the NtDLL!LdrpInitializeProcess function, it identifies the main 
execution module as the PE module above PEB -> ImageBaseAddress. Based on this PE module, the 
details of the import address table, export address table, redirection, and more will be correct. The 
execution privilege will jump back to the entry of the main module after the execution is completed.
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If we can map a malware module to memory before the executable loader starts to modify the executable 
and replace the PEB->ImageBaseAddress primary module address from the original module with 
the image base address currently being ejected by the malware, then we can successfully hijack the 
normal program execution process.

As shown in Figure 2.17, the original module is file mapped at 0x400000, and we mount a malware 
module at 0xA00000. Now, we just need to replace the ImageBaseAddress field with the malware 
image base address before the executable loader runs.

Now, let’s look at some code:

Figure 2.18 – The main function of RunPE

In lines 92-104, the malware entry point checks whether the current executable name is GoogleUpdate.
exe (Google background update service). If it is, a pop-up window will appear as the result of our 
successful hijacking; otherwise, the RunProtableExecutable function is run on line 102. This 
function will try to insert its own PE file from MapFileToMemory via process hollowing and forge 
it as a GoogleUpdate process.

Next, let’s look at lines 30-50:
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Figure 2.19 – RunPE process

Line 40 shows a Windows-specific trick. When creating a new process, WinAPI’s CreateProcess 
allows us to set the CREATE_SUSPENDED flag and mount any program as a process. However, at 
this time, Main Thread is suspended and not yet executed into the application loader.

If you are interested, you can extract the contents of the registers in the Thread Context area. You 
will find that the EIP (program counter) of Main Thread in the currently suspended process points 
to the common thread routing function, NtDLL!RtlUserThreadStart. The first parameter of 
this function is fixed in the EAX register and holds the address where the thread should jump back 
to after completing the necessary initialization. The second parameter is fixed in the EBX register and 
holds the address of the PEB generated by the kernel in the process.

In lines 46-50 of the code, we use GetThreadContext to fetch the Main Thread register information 
of the currently suspended GoogleUpdate process. Then, we try to use VirtualAllocEx to 
request a SizeofImage memory on ImageBase so that we can file map to the malicious program 
in this memory space.
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Let’s look at lines 51-69 of the code:

Figure 2.20 – End of RunPE

Lines 52-61 of the code imitate the kernel’s behavior in terms of file mapping. DOS Headers, NT 
Headers, and Section Headers are copied first; then, each section is sprayed into the correct process 
address in a for loop to complete the file mapping process.

Next, since the EBX register of the Main Thread area is currently holding the PEB structure, we can 
use WriteProcessMemory to write PEB + 8 (the PEB→ImageBaseAddress offset at 32-bit is offset + 
8) to change the current main PE module from the GoogleUpdate module to a malicious module. 
The EAX register will hold information about where Main Thread will jump to after the necessary 
corrections (that is, after the error has been corrected by the application loader). We modified this 
register so that it’s the entry address of our malicious module.

At this point, you may still be new to the PEB structure and feel nervous. Don’t be afraid. There is 
a separate section, Process Environment Block (PEB), in Chapter 3, Dynamic API Calling – Thread, 
Process, and Environment Information, that introduces the entire PEB structure.

Finally, we write all the corrections we just made to the registers with SetThreadContext and 
resume Main Thread with ResumeThread.
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Figure 2.21 shows the results:

Figure 2.21 – RunPE execution

In the lower-left corner of the preceding figure, the well-known forensic tool Process Explorer shows 
that after the RunPE malware runs, a process named GoogleUpdate is created. Instead of running 
the GoogleUpdate binary, a pop-up window is displayed that contains our malware. We have also 
confirmed that the digital signature is undamaged and is valid for verification purposes. It proved 
that the attack technique did not modify any static code at all and was achieved by simply replacing 
the main module in the dynamic phase to trick the application loader.

This technique is often used to attack the whitelists of antivirus software or corporate protection. These 
whitelists are often configured with specific system services or have digital signatures that provide 
a degree of immunity from being considered malware. This is why it is a popular technique used by 
major cyber forces.
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In this section, we used the RunPE program to show how the mounted PE module has been replaced 
with a malicious module that can be used to spoof the application loader without modifying any of 
the static code. The results show that the digital signature is not damaged for verification purposes 
but has been replaced as a result of the malware.

PE files to HTML
So far, you should understand that the PE file is simply a package specification that indicates system 
and application loaders to spray the contents of each expected section during compilation.

However, tinyLinker is a linker that we implemented manually. Those of you who are experienced in this 
area will know that we don’t need to use all the fields in the PE structure to generate an executable file. 
This means that an actual executable only takes a few fields in the PE structure to create an executable 
EXE file, and the system is fully capable of correctly spraying the content of individual sections into 
the correct dynamic space.

Researcher Osanda Malith (https://osandamalith.com/2020/07/19/hacking-the-
world-with-html/) considered a question: since PE files can be only loaded and executed correctly 
with a few fields, what about the remaining unused space in the PE structure? In Figure 2.22, we can 
see that the important and indestructible fields in the PE header and the remaining unchecked fields 
are now free to be filled in:

Figure 2.22 – PE files to HTML – retrieved from the researcher

Source: Osanda Malith’s blog: https://osandamalith.
com/2020/07/19/hacking-the-world-with-html/

https://osandamalith.com/2020/07/19/hacking-the-world-with-html/
https://osandamalith.com/2020/07/19/hacking-the-world-with-html/
https://osandamalith.com/2020/07/19/hacking-the-world-with-html/
https://osandamalith.com/2020/07/19/hacking-the-world-with-html/
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Those of you who are interested can refer to Osanda Malith’s open source project, PE2HTML: Injects 
HTML/PHP/ASP to the PE (https://github.com/OsandaMalith/PE2HTML). This tool 
automatically fills the PE file’s unused space with the contents of displayable text scripts (for example, 
HTML/PHP/ASP). This will not disrupt the execution of the PE program itself, nor the normal 
operation of the displayable text script.

In this section, we explained that there are still many unused fields in the PE structure that can be 
used to fill in scripts and that the open source tool PE2HTML, developed by Osanda Malith, can do 
this automatically and without affecting how the program runs.

Summary
In this chapter, we learned about the simplified PE static structure, including DOS Headers, NT 
Headers, and Section Headers, and replaced these headers with practical programs to execute 
malicious programs. This is the first step toward generating malware on your own. In the next chapter, 
dynamic API calls will be explained in more detail so that you understand how to perform parameter 
modification and forge dynamic modules.

https://github.com/OsandaMalith/PE2HTML




3
Dynamic API Calling – Thread, 

Process, and Environment 
Information

In this chapter, we will learn the basics of Windows API calls in x86 assembly. We will first learn 
about the Thread Environment Block (TEB) and the Process Environment Block (PEB), and how 
attackers use these features in malicious software. By the end of this chapter, you should have a better 
understanding of how the compiler makes dynamic calls through calling conventions so that the 
program will run as we expect. With these foundations in place, you can move step by step toward 
the goal of writing your own Windows shellcode. For example, calling a Windows API that does not 
exist in our source code allows evading antivirus detection of blacklisted API names.

In this chapter, we’re going to cover the following main topics:

•	 Function calling convention

•	 Thread Environment Block (TEB)

•	 Process Environment Block (PEB)

•	 Examples of process parameter forgery

•	 Examples of enumerating loaded modules without an API

•	 Examples of disguising and hiding loaded DLLs

Sample programs
The sample programs mentioned in this chapter are available on the GitHub website, where you can 
download the exercises, at the following URL: https://github.com/PacktPublishing/
Windows-APT-Warfare/tree/main/chapter%2303

https://github.com/PacktPublishing/Windows-APT-Warfare/tree/main/chapter%2303

https://github.com/PacktPublishing/Windows-APT-Warfare/tree/main/chapter%2303
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Function calling convention
In the previous chapters, we learned that the compiler saves chunks of code in different sections 
depending on the function of the source code. For example, the code is converted to machine code 
and stored in the .text section, the data is stored in the .data or .rdata section, and the import 
address table (IAT) is stored in the .idata section, as shown in Figure 3.1:

Figure 3.1 – Native code of msgbox.exe

Shellcode is a concise machine code script. When we can hijack a thread’s program counter, such as 
the EIP or RIP registers or the return address, we can control it in shellcode to perform specific and 
precise tasks (calling a specific set of system APIs). Common behaviors (such as downloading and 
executing malware, reverse shell connections, pop-up windows, etc.) are all achieved by calling the 
system API.

However, unlike PE programs, shellcode does not run with the help of the kernel to do file mapping 
or application loader corrections, so it is much more difficult for beginners to write shellcode than C/
C++ development. The main difficulty lies in how to call system functions without relying on the IAT.

That is okay. Let us start with simple concepts step by step, and once we have firmly established the 
concept of how the operating system works, we will find that it is a piece of cake to write shellcode.
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Calling convention

In Figure 3.2, we again present the calling behavior of MessageBoxA on the C/C++ source code:

Figure 3.2 – x86-32 calling convention

This calling behavior is converted to an assembly call based on the C++ calling convention, as shown 
at the bottom of Figure 3.2 (corresponding to the one call and four push instructions). The system 
function call parameters show that there are four parameters, which, under the WINAPI calling 
convention (32-bit), are pressed into the stack in order from right to left. After the function completes 
its behavior, it is responsible for retrieving the parameter space occupied by the top of the stack, and 
then jumps back to the next instruction line, xor eax, eax, to execute.

The example given here is MessageBoxA, whose calling convention is to use the WINAPI rule. 
However, not only this function but also most of the Windows APIs packaged by Microsoft for 
developers follow the WINAPI rules.

The WINAPI calling convention in a 32-bit system is the stdcall rule: the parameter is put into 
the stack, the callee clears the stack after the function is completed, and the return value is put into 
the EAX register. While in the x64 calling convention (64-bit), the parameters occupy RCX → RDX 
→ R8 → R9 → stack in order. Therefore, before calling a function, you must check what the calling 
convention is. Otherwise, there is a high risk of unintended behavior, such as a crash, not getting the 
parameter when the stack is not released and jumping to an empty pointer, or the parameter is not 
taken. In practice, these issues are automatically scheduled by the compiler in C/C++ at the time of 
compilation according to the calling convention of the function you want to call.
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This is explained in Argument Passing and Naming Conventions by Microsoft (https://docs.
microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions), 
which explains the historical origin and more complete details of these rules. For the sake of brevity, 
interested readers can explore this on their own, as it is not too difficult. The calling convention is 
mainly about deciding three things: (a) where to put the parameters, (b) who is responsible for the 
memory recycling of parameters, and (c) where to store the return value.

As shown in Figure 3.3, the msgbox_new.c source here is adapted from the msgbox.c source in 
Chapter 1, From Source to Binaries – The Journey of a C Program, and compiled by MinGW:

Figure 3.3 – New msgbox code

You can clearly see that two lines of the current MessageBoxA address are printed out after execution, 
and MessageBoxA is successfully called to pop up the hi there string in the message window.

At lines 13-15 of the code, WinAPI GetProcAddress is used to get the address of the MessageBoxA 
function in the memory (which holds the actual machine code of this function) and save it in the 
get_MessageBoxA variable. As a comparison, the MessageBoxA function (the function stored 
in the IAT when compiling) is printed out directly by printf. If you look closely, you will find that 
MessageBoxA extracted from the IAT is the same as the result we printed out with GetProcAddress. 
It means that each line of function we write in the source code is understood by the compiler (in 
dynamic execution) as corresponding to the beginning of a function’s machine code address.

Then, we go back to line 9 of the code, in which the typedef keyword defines a function type. There is 
a calling convention function, WINAPI, with four parameters of HWND → char → char → UINT types, 
and the return value of this function call is an int, and names this function type, def_MessageBoxA.

https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
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In lines 17-18 of the code, we get the address of MessageBox with GetProcAddress, and then 
convert it to the function pointer type we just defined, def_MessageBoxA, and saved as the 
msgbox_a variable. You can then use msgbox_a directly as a MessageBoxA call.

This is a classic example of a function pointer call. Interested readers can Google Function Pointer 
as a keyword to find all kinds of interesting variations, so we will not introduce them all here.

In this section, we illustrated the C++ calling convention again, and also demonstrated, with a new 
program, that the code we wrote can be understood by the compiler. This is a classic example of a 
function pointer call.

After going throughout this example of the function pointer call, you must have discovered that if we 
can find the system function address, save the parameters according to the calling convention, and 
call the function without relying on the IAT generated by the compiler (that is, GetProcAddress, 
LoadLibrary, GetModuleHandle, and other Win32 APIs), then we have successfully written the 
shellcode, haven’t we? That’s right! So, let’s talk about how to find the function image address without the 
Win32 API, and then find the correct function address from the image address without the Win32 API.

Thread Environment Block (TEB)
TEB is one of Microsoft’s unpublished structures. The contents listed in Figure 3.4 here are extracted 
from Undocumented 32-bit PEB and TEB Structures (bytepointer.com/resources/
tebpeb32.htm):

Figure 3.4 – TEB structure

https://bytepointer.com/resources/tebpeb32.htm
https://bytepointer.com/resources/tebpeb32.htm
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These are the partial contents of the TEB after 32-bit reverse engineering. The total size of TEB is as 
large as 0xFF8. However, for the sake of explanation, we will only mention the 0x30 bytes at the 
beginning, and the other parts are for Windows internal implementation.

As we mentioned in Chapter 2, Process Memory – File Mapping, PE Parser, tinyLinker, and Hollowing, 
when each process is generated, there must be a PEB stored in the process memory to record the details 
of the process being generated. And what about threads? Yes. Let’s take the multithread concept that 
you have studied in your operating system class. If there are multiple threads running in parallel in the 
same process, the stack space used to store the parameters cannot be shared at the same time. That is, 
each thread can only use the corresponding stack for storing parameters. For reasons such as this, it 
is necessary for each thread to have its own TEB to allow threads to remember the information they 
have. So, there is only one PEB in a process but several TEBs at the same time.

Figure 3.4 shows an example of the TEB structure and its offsets for a 32-bit system. ExceptionList 
at +0x00 stores the structured exception handling (SEH) chain, which is a special exception 
handling mechanism for only 32-bit Windows, and allows developers to try and catch in C/C++ to 
get the exception.

StackBase and StackLimit at +0x04 and +0x08 respectively record the range of stacks that 
the current thread can use, and ClientId at +0x20 directly caches the numerical identifier of the 
current process and thread. In fact, this is the field from which the developer gets the Windows API.

The focus is on Self at +0x18 and ProcessEnvironmentBlock at +0x30. First, the Self 
field at +0x18 points to the address of the current TEB, while ProcessEnvironmentBlock at 
+0x30 points to the address of the PEB of the process to which the thread belongs. This allows us 
to get the current process status.

Figure 3.5 shows the current TEB memory contents (dynamic address 0x01004000) by the TEB() 
command of the x64dbg debug tool:

Figure 3.5 – Dynamic memory content of TEB

The current thread available stack range is 0x012FC000 ~ 0x01300000 at +0x04 and +0x08, while 
the Self field at +0x18 (highlighted in the figure) will always point to the starting point of the 
current TEB and is, therefore, 0x01004000. Meanwhile, +0x30 shows that the current TEB is 
stored at 0x01001000.
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In 32-bit systems, all the prior TEB fields can be retrieved directly by adding the offset of the 
corresponding field to the FS segment (one of the registers, not the section mentioned earlier). For 
example, if you want to get StackBase, you can get it from fs:[0x04], and the current TEB 
structure starting point can be obtained from fs:[0x18]. In 64-bit systems, you can get the content 
of the desired field through the GS segment. For more details, please refer to the public information 
at geoffchappell.com (https://www.geoffchappell.com/studies/windows/
km/ntoskrnl/inc/api/pebteb/teb/index.htm).

In this section, we have described, in detail, some structures of the TEB and explained the contents 
of each structure in terms of dynamic execution addresses.

Process Environment Block
One of the main topics of this book is the PEB structure. Figure 3.6 shows some contents of the PEB 
structure, but for the sake of brevity, only the main points are included. The complete structure can 
be found in the unpublished Process-Environment-Block (https://www.aldeid.com/wiki/
PEB-Process-Environment-Block) listed on the ALDEID website:

Figure 3.6 – PEB structure

Figure 3.6 lists the only status information block for the current process. It holds information such as 
BeingDebugged at +0x02, which is the value returned internally by the developer when using 
WINAPI IsDebuggerPresent to check whether it is being debugged. ImageBaseAddress 
at +0x08, which appeared earlier in the process hollowing technique, is used to record which EXE 
file is the main PE module of the current process.

https://geoffchappell.com
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/pebteb/teb/index.htm
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/pebteb/teb/index.htm
https://www.aldeid.com/wiki/PEB-Process-Environment-Block
https://www.aldeid.com/wiki/PEB-Process-Environment-Block
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ProcessParameters at +0x10 in the 32-bit PEB structure records information about the 
parameters inherited by the current process when it is woken up by the parent process. More detailed 
information is shown in Figure 3.7:

Figure 3.7 – Process parameters

Figure 3.7 shows the process parameters. ConsoleHandle inherits from the parent process console 
so that we can refresh the black window of the parent process when printing out text with printf. 
The StdIn, StdOut, and StdErr redirection functions are also popular with developers and allow 
them to call third-party executables to get their output.

The following three key fields are represented by the UNICODE_STRING string structure:

•	 CurrentDirectoryPath records the current working directory specified by the parent 
process. If not specified, the current working directory is specified as the parent process.

•	 ImagePathName records the full path of the current EXE file.

•	 CommandLine records the parameters given by the parent process to wake up the current process.

The LDR structure at +0x0c in Figure 3.6 is the main character we are going to introduce, which 
records all the modules loaded in the current process as a data structure. Let’s proceed to analyze the 
LDR data structure:
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Figure 3.8 – PEB LDR data structure

We mentioned in the previous chapter that NtDLL!LdrpInitializeProcess is the application 
loader function, which is responsible for correcting the function pointer that PE modules refer to 
and loading the system modules we need to use into memory. The structure in PEB→LDR is the 
PEB_LDR_DATA structure, as shown in Figure 3.8.

Length at +0x00 is the current size of the PEB_LDR_DATA structure; if the structure has been filled 
and initialized, then the Initialized field at +0x04 will be set to true to indicate that it is ready 
for the query. At the end of PEB_LDR_DATA, you can see three consecutive sets of two-way chained 
series with the LIST_ENTRY structure. Since these are chained, the nodes in the middle are strung 
together as LDR_DATA_TABLE_ENTRY, used to record information about each loaded module.

These three sets are InLoadOrderModuleList, InMemoryOrderModuleList, and 
InInitializationOrderModuleList, all of which are chained lists of loaded module 
information usage, but the difference is in the order in which the module information is 
traversed. InLoadOrderModuleList lists modules in the order in which they were loaded, 
InMemoryOrderModuleList lists modules in the order of their image base address from lowest 
to highest, and InInitializationOrderModuleList lists modules in the order in which 
they were initialized.

In practice, in terms of finding the image address, there is little variation in which one you would like 
to use to traverse it, and you can go with your own preferences.
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Let’s take a look at the PEB_LDR_DATA structure in Figure 3.9:

Figure 3.9 – Dynamic memory content of PEB LDR

Firstly, Length at +0x00 says 0x30, which means that the 32-bit PEB_LDR_Data struct of the 
author’s current Windows 10 Enterprise version has expanded to the size of 0x30. This is because the 
structure is infinitely scalable for Windows. Initialized at +0x04 is set to True, which means 
that it can be used for querying. Next, you can see the following:

•	 InLoadOrderModuleList at +0x0c records the Flink value 0x02FD3728 and the 
Blink value is 0x02FD4EA0

•	 InMemoryOrderModuleList at +0x14 records Flink as 0x02FD3730 and Blink 
as 0x02FD4EA8

•	 InInitializationOrderModuleList at +0x1c records Flink as 0x02FD3630 and 
Blink as 0x02FD4EB0

Flink and Blink point to a structure called LDR_DATA_TABLE_ENTRY:

Figure 3.10 – PEB LDR table entry structure
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In the Dynamic file mapping section in Chapter 2, we understood that mapping a static module to a 
dynamic is important in relation to the image base address to which it is sprayed, how much memory 
space is sprayed, and the entry point address (addressOfEntryPoint) of the module.

Therefore, Figure 3.10 shows the LDR_DATA_TABLE_ENTRY structure, which is used to hold detailed 
information about a static module sprayed into dynamic memory. We have listed only the important 
parts for the sake of cleanliness:

•	 DllBase at +0x18 is the address of the image base for the current module to be sprayed.

•	 EntryPoint at +0x1c is the address of AddressOfEntry of the PE module.

•	 SizeOfImage at +0x20 is the number of bytes occupied by the module in dynamic space.

•	 Flags at +0x30 records the status of the currently t loading module. This field is used to allow 
the system to execute the application loader to identify the loading progress and mounting 
status of the current module:

	� When it is LDRP_STATIC_LINK, it means that it is a module that is mounted when the 
process is generated. This could be a module that is recorded in the IAT as needing to be 
mounted, or it could be a system module that is automatically mounted by KnownDlls.

	� When it is LDRP_IMAGE_DLL, it means that it is a DLL module that is mounted into 
the process.

	� When it is LDRP_ENTRY_PROCESSED, it means that the DLL module is not only mounted 
but also that its entry function has been called (initialization completed).

•	 LoadCount at +0x34 records the number of times the current module has been imported. 
Whether it is a reference to a DLL in the IAT or a dynamic call to load a module with the 
LoadLibrary function, the value of each additional reference will be +1. When the number 
goes to 0, it means that no one needs to refer to the module and it will be released from memory 
and reclaimed.

FullDllName at +0x24 is the full path of this module, which is also the full PE module path obtained 
by the developer using the Win32 GetModuleFileName API, and BaseDllName at +0x2c is the 
filename of this module. Take C:\Windows\System32\Kernel32.dll as an example. The text 
saved by FullDllName is the complete string of C:\Windows\System32\Kernel32.dll, 
while the one saved by BaseDllName is only a pure filename such as Kernel32.dll.

We are mentioning that each bit of loaded information is stored in the LDR_DATA_TABLE_ENTRY 
structure and is strung together as a chain of nodes in a traversable string.

Referring to Figure 3.8, the first three items of the structure are InLoadOrderLinks, 
InInitializationOrderLinks, and InInitializationOrderLinks, which allow 
us to retrieve the previous or next LDR_DATA_TABLE_ENTRY structure for traversing the current 
dynamic module information.
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Will the prior information be a bit too much? Let’s draw a diagram to understand it quickly:

Figure 3.11 – Dynamic memory distribution of loaded module

Figure 3.11 shows the memory distribution visited by PEB→LDR in the dynamic execution stage. It 
can be seen that LDR on the PEB points to PEB_LDR_DATA, whose structure is treated as a chain 
header, and the three PE files, a.exe, ntdll.dll, and Kernel32.dll, are mounted in the 
dynamic execution stage.

InLoadOrderModuleList and InMemoryOrderModuleList can both list all the mounted PE 
modules in the current process, except that the former is listed according to the order of mounting, while 
the latter is listed according to the memory address. InInitializationOrderModuleList is 
used to record the information of the imported modules, so there is no record of the current EXE file.

We mentioned earlier that the PEB is used to record information about the EXE files executed 
with the current process. Normally, the first module loaded into the process will be an EXE file, 
and the first module loaded into the dynamic will also be an EXE file. Therefore, the first node of 
InLoadOrderModuleList will get the EXE module. Under normal circumstances, PEB→ImageBase 
will usually be the image base of the first node module in the InLoadOrderModuleList chain.

In this section, we have described in detail the partial structure of the PEB, the associated parameters, 
and the detailed LDR data structure, as well as the contents of each structure in terms of dynamic 
execution addresses.

So far, you should have a basic understanding of TEB and PEB, so let’s get some experience in how 
to use them!
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Examples of process parameter forgery
The following example is the masqueradeCmdline, which can be found in the Chapter#3 folder 
of the GitHub project, which is publicly available in this book's repository. In order to save space, this 
book only extracts the highlights code; please refer to the complete source code to see the full project.

Many Red Teams or attackers who conduct attacks on local machines often encounter antivirus 
software, endpoint defense products, or event logging monitoring, and expect their attack commands 
to be undetected or untraceable. The process hollowing (RunPE) technique we looked at in Chapter 2 
proposed an idea: If we create a child process with bogus parameters and the actual execution reads the 
attack parameters that we have placed, can this bypass local monitoring by antivirus?

For example, ransomware often uses the vssadmin delete shadows /all /quiet command 
to delete a user’s backup data. Each antivirus software will strictly check whether the process parameter 
of the vssadmin program contains the preceding command to avoid this kind of attack:

Figure 3.12 — The partial code of the masqueradeCmdline project

We mentioned earlier that PEB→ProcessParameters points to RTL_USER_PROCESS_PARAMETERS, 
which contains information about the parameters of the child process at the time it is hatched. We 
also know that when a CreateProcess API is called with CREATE_SUSPENDED, the thread of 
the child process is suspended before entering the application loader function and the EBX register 
points to the PEB that is generated by the kernel.
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The EXE entry will be called after the loader function has corrected the EXE module. This means that 
we can replace the current parameters of the child process with the correct parameters to be executed 
while the thread is suspended, and then resume its thread execution to achieve parameter forgery.

At line 21 of the code, we generate a large number of A strings with 260 bytes of unused parameters. The 
reason for this length is to prepare enough memory space to write the actual content we want to execute later.

At lines 24-25 of the code, we use CreateProcess to create the 32-bit cmd.exe command that 
comes with Windows as a thread suspend state. The rubbish parameter just generated will be used as 
the parameter passed to the current cmd.exe, and GetThreadContext will be used to get the 
temporary contents of the currently suspended thread.

At lines 28-32 of the code, after extracting the PEB contents of the child process with ReadProcessMemory, 
we can obtain the address of the RTL_USER_PROCESS_PARAMETERS structure of the current child 
process in the ProcessParameters field of the PEB structure. After retrieving the address, the 
RTL_USER_PROCESS_PARAMETERS structure is read back again with ReadProcessMemory. The 
buffer of the CommandLine (the UNICODE_STRING structure) holds the 260 bytes of text parameter 
address mentioned previously. Therefore, we can simply overwrite the text parameter we want to execute 
with WriteProcessMemory and resume the thread operation to achieve the effect of parameter forgery.

We use Process Monitor, a popular event logging tool used by researchers, as an example to monitor 
the results of this example, as shown in Figure 3.13:

Figure 3.13 – masqueradeCmdline demonstration

Here, we take Process Monitor, the event logging monitoring tool favored by researchers, as an example, 
and monitor the results of this example after execution (see Figure 3.5). The results show that in the 
event logs, Process Monitor only leaves the action of the creation of cmd.exe AAAAAAAAAAAAAAA 
and does not record the whoami command that we actually passed to cmd.exe, and the actual 
parameters read and executed do not match those recorded by the monitoring tool.
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This example is for educational purposes only, and there are many more improvements needed for 
practical attacks. The project is currently maintained independently on the author’s public GitHub 
project (github.com/aaaddress1/masqueradeCmdline), and interested readers can check 
it out for more details.

In this section, we verified parameter forgery with an actual masqueradeCmdline project, which 
showed that the parameters actually read and executed did not match those recorded by the monitoring 
tool, proving that we could indeed achieve parameter forgery. It is a case study for you to realize 
how antivirus works. If you are interested in this series of attacks, there is a book, Antivirus Bypass 
Techniques: Learn practical techniques and tactics to combat, bypass, and evade antivirus software by 
Nir Yehoshua, that focuses on this.

Examples of enumerating loaded modules without an API
Antivirus nowadays always checks whether a program is using an API that can be easily abused to 
determine whether it is malicious, for example, using LoadLibraryA to mount Kernel32.dll to 
get its ImageBase. So, if we can get the address of Kernel32.dll by not using LoadLibraryA, 
we can escape antivirus detection and make it think that we are not trying to use the Kernel32 DLL.

The following example is the source code of ldrParser.c, which is publicly available in the 
Chapter#3 folder of the GitHub project. In order to save space, this book only extracts the highlighted 
code; please refer to the complete source code to see the full project.

As mentioned earlier, the distribution of records in the PEB→LDR dynamic execution phase allows 
us to enumerate the loaded module information, so the first step is to get the current PEB address.

Figure 3.14 shows the source code of ldrParser.c:

Figure 3.14 – Partial code of ldrParser

https://github.com/aaaddress1/masqueradeCmdline
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Since we have mentioned that the dynamic address of the PEB structure can be obtained from 
fs:[0x30] at 32-bit (or gs:[0x60] at 64-bit), in line 88 of the code, __readfsdword (which 
can be used by including <intrin.h>) can directly retrieve the contents of fs:[+n], so we can 
read the PEB structure address at 0x30.

In lines 89-90 of the code, the &PEB→Ldr→InMemoryOrderModuleList variable can get the 
address of InMemoryOrderModuleList in the LIST_ENTRY structure in PEB_LDR_DATA and 
record this as the header variable. When we go through each LDR_DATA_TABLE_ENTRY node to the 
last one, the next to the last one will be back to the origin (i.e., where the header variable points to). So, 
the record can be used to help us know that each node has been visited once. The Flink in the header 
then points to the first LDR_DATA_TABLE_ENTRY structure, which is the first node we enumerate.

The for loop continues with lines 92-99 of the code:

1.	 First, if the node currently being enumerated is not the header variable, it means that we have 
not yet returned to the PEB_LDR_DATA structure (the origin). Therefore, we can continue 
the enumeration along the string. .

2.	 As shown in Figure 3.10, when you select the Flink of InMemoryOrderLinks at +0x08 to 
pick up the next node, you will get the address of the LDR_DATA_TABLE_ENTRY structure at 
+0x08. This means that when InInitializationOrderLinks at +0x10 is selected for 
enumeration, the node structure +0x10 address will be obtained as well. So, in line 93 of the code, 
we can use the CONTAINING_RECORD function to subtract the offset of InMemoryOrderLinks 
and get the correct address of the LDR_DATA_TABLE_ENTRY structure at +0x00.

3.	 We use StrIStrW to check whether the currently listed module is the one we want. If so, the 
image base address recorded in its DllBase structure is returned.

At the entry of the main function, we can search for the image base of the Kernel32.dll library 
installed in memory with the GetModHandle function we just created, as shown in Figure 3.15:

Figure 3.15 – ldrParser main function
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This image base address is used to replace LoadLibrary or GetModuleHandle in the Win32 
API and is passed to the GetProcAddress function to find the address of the export function, 
WinExec, on its module, which can then be used to call the calculator (calc.exe) with the correct 
calling convention:

Figure 3.16 – ldrParser demonstration

We can then see that after ldrParser has been successfully compiled and run by MinGW, it 
enumerates the currently installed Kernel32.dll module and obtains the address of its export 
function, WinExec, which can then pop up the calculator successfully, as shown in Figure 3.16.

In this section, we use an actual program to parse and enumerate the modules loaded by the LDR, 
without relying on the API. The results show that we can successfully obtain the current node name 
and run the program we specify.

Examples of disguising and hiding loaded DLLs
The following example is the module_disguise.c code under the Chapter#3 folder of the 
GitHub project, which is publicly available in this book's repository. In order to save space, this book only 
extracts the highlighted code; please refer to the complete source code to see all the details of the project.

In the previous section, you have seen that we can crawl the PEB→LDR structure in dynamic memory 
to get the desired function module image base address. The next question is whether the information 
recorded in these dynamic modules can be forged for malicious use. The answer is yes. In this section, 
we design two functions: renameDynModule and HideModule. The former is used to disguise 
dynamic module information with confusing paths and names, while the latter is used to hide the 
specified dynamically loaded module from the record.
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Figure 3.17 shows the renameDynModule function, which has only one input parameter for the 
name of the dynamic module that we want to forge:

Figure 3.17 – Partial code of renameDynModule

At lines 91-94, we import the ntdll export function, RtlInitUnicodeString, to replace the 
text saved in our incoming UNICODE_STRING struct.

At lines 99-106, this is the for loop used to enumerate the dynamic LDR_DATA_TABLE_ENTRY 
structure introduced in the previous section. The difference is that this time, after we find the specified 
module information block, the RtlInitUnicodeString function forges BaseDllName and 
FullDllName recorded in the module information into the confusing exploit.dll and C:\
Windows\System32\exploit.dll.

The HideModule function is used to completely hide the specified dynamic module by removing 
the module record from the list of PEB->LDR, as shown in Figure 3.18:
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Figure 3.18 – Partial code of hideModule

At lines 120-136 of the code, each LDR_DATA_TABLE_ENTRY structure is a two-way chain of nodes that 
are linked back and forth. So, when we want to hide the current node, we just need to connect the Blink 
of the next node to the previous node, and the Flink of the previous node to the next node. This has the 
same effect as omitting the current node. The function of hiding any given module then can be achieved.

Figure 3.19 shows the two aforementioned self-designed functions called for entry of the main function:

Figure 3.19 – Disguise the main function

The KERNEL32.DLL module is spoofed to look like exploit.dll with renameDynModule. 
USER32.dll, the necessary module for calling the MessageBox function, is hidden from the 
record by HideModule. MessageBoxA is used to prove that USER32.dll does indeed still exist 
in the current process.
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We used the well-known Chinese digital forensic tool, Huorong Sword, to analyze the details of the 
module information after the disguise program is run:

Figure 3.20 – Disguise demonstration

You can see that the original KERNEL32.DLL library is located at 0x77150000, and at this point, it 
is recognized as the exploit.dll by Huorong Sword. Meanwhile, USER32.dll should be located 
at 0x775C0000, but Huorong Sword is not aware of the existence of this module. This confirms the 
success of our disguise program.

In this section, we disguised and hid the loaded DLLs with the disguise program and modified 
the information in the LDR_DATA_TABLE_ENTRY structure using renameDynModule and 
HideModule. The results show that this can indeed cause misjudgments by forensic tools, confirming 
the feasibility of our thinking.

Summary
Many of today’s antivirus software, endpoint monitoring and protection, and event log monitoring 
solutions are designed to increase performance by analyzing memory information only, without verifying 
that the content has been forged. In this chapter, we learned the basics of Windows API calls in x86 
assembly, including TEBs and PEBs, as well as forged parameters, forged and hidden loaded DLLs, 
and more. With a proper understanding of the basics and the tactics used by malicious attackers, we 
can gain a better insight into the popular stalking techniques favored by a first-line cyber army. In 
the next chapter, we are going to further study how to analyze individual DLL modules in memory 
and get the desired API address without calling Windows APIs. We will also learn how hackers write 
Windows shellcode in x86 to execute specific attacks.



Part 2 –  
Windows Process  

Internals

In this section, you will learn techniques such as static DLL export function analysis, dynamic PE 
climbing, writing shellcode in Python, manual analysis of the Import Address Table (IAT), replacing 
API behavior with malicious behavior, and complete loader design.

This section has the following chapters:

•	 Chapter 4, Shellcode Technique – Exported Function Parsing

•	 Chapter 5, Application Loader Design

•	 Chapter 6, PE Module Relocation





4
Shellcode Technique –  

Exported Function Parsing

In this chapter, we will learn how to get the desired API address from loaded dynamic link library 
(DLL) modules so that we can master the knowledge necessary to write shellcode to execute in 
Windows memory. To do so, we will first learn about the export address table (EAT) structure in 
PE, build our own DLL parser, and write new Windows shellcode from scratch in x86. Once we have 
finished this chapter, we will be able to develop a Windows shellcode generator in Python, which we 
can later call to use to achieve the desired functionality.

In this chapter, we’re going to cover the following main topics:

•	 EATs in PE

•	 Examples of a DLL file analyzer

•	 Examples of writing shellcode in x86

•	 A shellcode generator in Python

Sample programs
The sample programs mentioned in this chapter are available on the GitHub website. Readers can 
download the exercises at the following URL: https://github.com/PacktPublishing/
Windows-APT-Warfare/tree/main/chapter%2304.

EATs in PE
In Chapter 3, Dynamic API Calling – Thread, Process, and Environment Information, we successfully 
explored dynamic memory to get to the image base of the desired system module. These loaded PE 
modules are also loaded into dynamic memory through file mapping. Once we get the address of a DLL, 
then we can use the API’s GetProcAddress to get the address of the specific function it exports.

https://github.com/PacktPublishing/Windows-APT-Warfare/tree/main/chapter%2304
https://github.com/PacktPublishing/Windows-APT-Warfare/tree/main/chapter%2304
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So, here a new question comes to mind: is there any difference in the binary structure between PE 
programs with export functions (DLL) and PE programs without export functions?

Figure 4.1 is dllToTest.c, an example of streamlined DLL module source code under the 
Chapter#4 folder of the GitHub project:

Figure 4.1 – Sample of simple DLL code

On line 16 of the code is a standard DLL entry function. When this DLL module is first mounted to 
the process, the global string variable, sz_Message, is modified to Hello Hackers!.

Back to lines 10 to 14 of the code: we have designed five non-functional exported functions, func01, 
func02, func03, and so on. All of these functions will bring up a message window with the 
MessageBoxA function to display the contents of the modified sz_Message string.

Next, we can compile the source code, dllToTest.c, of this DLL module into demo.dll with 
five exported functions using MinGW. We can then mount this module with the built-in Windows 
rundll32.exe command and call the module’s export function, func01, to see the window as 
shown in Figure 4.2:
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Figure 4.2 – Results of func01 in demo.dll

At this point, there must be a question in readers’ minds: shouldn’t there be at least one table in the 
compiler that tells us which functions are exported from the current DLL module?

Let’s see Figure 4.3:

Figure 4.3 – A DataDirectory table
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We use the PE-bear tool to view a table called DataDirectory in the Optional Hdr section of 
NT Headers in the PE structure. DataDirectory is a table that holds a lot of the information 
that PE runs dynamically and can refer to in dynamic memory, storing its relative virtual address 
(RVA) in a tabular format.

In Figure 4.3, the DataDirectory table holds different types of information records. For example, 
0x7000 points to Export Directory, 0x8000 points to Import Directory, and the 
Authenticode signature information signed by the digital signature is then stored in a data structure, 
to which Security Directory points. If this is a .NET program with managed code, there will 
be a .NET-specific structure header stored in the place to which .NET Header points.

Let’s first understand what external functions are available for the current DLL module. We will start 
with the information stored on 0x7000, pointing to Export Directory.

Figure 4.4 shows the results of PE-bear:

Figure 4.4 – The EAT in Section Hdrs

The results show that the entire EAT structure is stored as a separate block in the .edata section 
after compilation. This content is available in the static PE file at an offset of 0x2800 and is loaded in 
the dynamic phase at the 0x7000 RVA. Let’s take a closer look at the content of the EAT structure:
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Figure 4.5 – Detailed information on the export function

Figure 4.5 lists the information obtained after parsing the EAT structure in PE-bear:

•	 The TimeDataStamp field details the time when this DLL module was compiled.

•	 The Name field records the name of the module when it is compiled and generated.

•	 The NumberOfFunctions field records how many exported functions are available for use in 
this source code at the time of compilation.

•	 The NumberOfNames field records how many exported functions are available to display names.

•	 The AddressOfFunctions field holds a set of RVAs pointing to a DWORD array (32-bit). This 
array holds all the RVA offsets of the export function.

•	 The AddressOfNames field holds a set of RVAs pointing to a DWORD array (32-bit). This array 
holds the RVA offsets for the names of the exported functions that can display names.

•	 The AddressOfNameOrdinals field holds a WORD array (16-bit). This array holds the order of 
functions corresponding to the export function for displayable names at the time of compilation.
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Take this module as an example. Although the source code is dllToTest.c, the source code is 
compiled and exported as demo.dll, so this EAT records the module name at the compilation time 
as demo.dll (not dllToTest.dll). Many antivirus and Windows services use this feature to 
detect whether a DLL module has been hijacked or replaced – that is, if the current static DLL filename 
does not match the filename at compilation time.

Take the source code in Figure 4.1 as an example. Five exported functions, func01 to func05, have 
been specially designed. When compiling, the compiler arranges the exported functions in the order 
declared and assigns a function ordinal to each function. This number can be used as an identifier 
for the exported functions. The internal functions of the DLL module are not assigned a function 
ordinal. Therefore, the unexported function, tryToSleep, does not affect the func04 and func05 
functions as shown in Figure 4.5.

There are two variables, NumberOfFunctions and NumberOfNames, to store the information 
related to the number of exported functions. Why do we need to construct two different variables to 
store the number?

The reason for this is that in C/C++, exporting a function does not necessarily require a function name 
and can be done by exporting an anonymous function. If you need to make a function call, you can 
look up the address of the function without looking up the function name by looking up the function 
ordinals instead. Interested readers can refer to the public document from Microsoft, Exporting from 
a DLL Using DEF Files (docs.microsoft.com/en-us/cpp/build/exporting-from-
a-dll-using-def-files).

Figure 4.6 shows a simple experiment:

Figure 4.6 – The experiment of a call by ordinals

https://docs.microsoft.com/en-us/cpp/build/exporting-from-a-dll-using-def- files
https://docs.microsoft.com/en-us/cpp/build/exporting-from-a-dll-using-def- files
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We already know that the func01 export function has a function ordinal of 1, and the second 
parameter of GetProcAddress can not only pass the function name in text form but also directly 
pass the function ordinal to query the export address. Therefore, we can use GetProcAddress to 
get the address of func01 with the ordinal number of 1 and use it as a function pointer to execute, 
which successfully pops up the execution result of func01.

This particular usage is often used by hackers to evade the static scanning engine of antivirus software. 
Take mimikatz, a popular hacking tool, as an example:

Figure 4.7 – The contents of the imported functions

Figure 4.7 shows the contents of the imported functions displayed by the mimikatz tool and parsed by 
PE-bear. The figure shows that mimikatz imports the Cabinet.dll system module. However, when 
you look at the bottom of this figure, you don’t know which export function names are referenced 
in this DLL module. All that is known is that the exported functions with ordinals of B, E, A, and D 
have been imported, respectively.

The EAT in Cabinet.dll is shown in Figure 4.8:
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Figure 4.8 – The EAT in Cabinet.dll

The B, E, A, and D ordinals correspond to the FCIAddFile, FCIDestroy, FCICreate, and 
FCIFlushCabinet functions. This approach of only recording the usage of the function ordinals 
in the import address table, rather than having to save the preceding literal function names in the PE 
file itself, can be used to evade certain common static feature scanning engines. However, our goal is 
to be able to transcribe GetProcAddress on our own, so we need to understand the mechanism 
between AddressOfFunctions, AddressOfNames, and AddressOfNameOrdinals.

Let’s use a diagram to clarify the relationship in memory:

Figure 4.9 – The dynamic EAT of the DLL module

Figure 4.9 shows the dynamic memory distribution of the DLL module, demo.dll, when it is 
mounted on a.exe’s process.
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The .text section is used to store the code content, so the machine code contents of func01 to func05 
are stored in 0x1010 to 0x1050, which means that the current addresses of these five functions in 
dynamic memory will be 0xA01010, 0xA01020, 0xA01030, 0xA01040, and 0xA01050, and 
the # numbers in front of fun01 to func05 represent the current function ordinals.

The .rdata section holds the read-only data. In Figure 4.9, the func01\x00 to func05\x00 
textual function names are stored in RVA 0x2000, 0x2007, 0x200E, 0x2015, and 0x201C 
(corresponding to addresses of 0xA02000, 0xA02007, 0xA0200E, 0xA02015, and 0xA0201C 
in dynamic memory, respectively).

We mentioned that the first item in the DataDirectory table in the NT Headers → OptionalHeader 
section of the DLL module allows you to obtain the RVA offset in the IMAGE_EXPORT_DIRECTORY 
structure. As shown in Figure 4.9, this structure is stored in the .edata section at 0x3000. We can 
therefore access the contents of this structure in dynamic memory at 0xA03000.

There are three important arrays on the EAT, which are described individually:

•	 AddressOfNames holds a total NumberOfNames of exported named functions as a DWORD 
array, which is the RVA offset of each function name (text type). Refer to Figure 4.9 – the RVA 
saved on this array is the address of the function name saved in the .rdata section. For example, 
the third item, 0E 20 00 00 (index = 2), is stored in little-endian form as 0x200E, which 
points to the func03\x00 string array in the .rdata section.

•	 AddressOfNameOrdinals holds a total NumberOfNames of function ordinals as a WORD 
array, which is arranged according to the function ordinal corresponding to the function name 
stored in AddressOfNames to facilitate cross-referencing function names in the same index. 
Take func03\x00 as an example. It is located at index = 2 in the AddressOfNames array, 
so we can continue to get the function number corresponding to this function name at index 
= 2 in the AddressOfNameOrdinals array, which is currently 4.

•	 AddressOfFunctions holds the RVA offsets of a total NumberOfFunctions of named 
and anonymously exported functions as a DWORD array, and the array is sorted in numerical 
order of the functions. Therefore, with the func03\x00 function with an order of 4 mentioned 
earlier, we can then get the func03 RVA of 0x1030 (30 10 00 00) at index = 4 in the 
AddressOfFunctions array.

Sharp readers will notice that the function ordinal is clearly saved from 1 to n, but the one saved in 
the AddressOfNameOrdinals array becomes 0 to (n-1). Since the first item in a C/C++ array 
usually starts from 0 instead of 1, the correct term for what AddressOfNameOrdinals saves is 
an index array of AddressOfFunctions. However, readers only need to remember that if they want 
to pass the index from AddressOfNameOrdinals to GetProcAddress as a function ordinal, 
the conversion is simply +1 to the function ordinals.
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Important note
In Figure 4.9, a DLL produced by MinGW is used as an example. The compilation convention 
is to store the entire structure of the EAT in a separate .edata section, whereas other compilers 
may not produce results with a .edata section. For example, the EAT generated by the Visual 
Studio C++ compilation toolset is placed at the end of .text (used to store code content). 
However, as long as a DLL module has an exported function, it must have an EAT structure to 
allow the third program to retrieve the exported function.

In this section, we explained EATs in PE in detail and the RVA held in the DataDirectory table. 
We use the PE-bear tool to parse the information in the EAT and explain the meaning of each function. 
This information is useful for analyzing and modifying DLL modules.

Examples of a DLL file analyzer
The following examples are from the peExportParser project in the Chapter#4 folder of the GitHub 
project. In order to save space, this book only extracts the highlighted code; please refer to the full 
source code to see the full project, which is publicly available in this book's repository.

Let’s put what we have learned in practice and try to scan the entire DLL module for named functions 
in a purely static situation. As the analysis will be done in a purely static state, the first challenge will 
be that the entire EAT contains all its data as RVAs (i.e., dynamic file-mapped offsets). Therefore, we 
need to construct a function to help us automate the conversion of RVAs back into offsets relative 
to the current static file contents to capture the data correctly. Figure 4.10 shows a simple function, 
rvaToOffset, that helps us with this process:

Figure 4.10 – The code of the rvaToOffset function

In Chapter 2, Process Memory – File Mapping, PE Parser, tinyLinker, and Hollowing, we mentioned 
that the method of placing the content of each section in dynamic memory as expected is called the 
file mapping process. For example, the .text section is located at an offset of 0x200 for the current 
static program content and is placed at 0x1000 after file mapping. If we observe a function on the 
dynamic runtime of the 0x1234 RVA (in .text), then we can deduce that this function is stored in 
the static program content at 0x434 (0x200 + 0x234).
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Therefore, the function in Figure 4.10 is designed with the idea that once we have the RVA, we iterate 
through a for loop to enumerate each section header and which section the RVA is within after file 
mapping. The RVA is then subtracted from the section’s dynamically mapped base address to obtain 
the offset relative to the section. Adding the starting point of the offset of the section in the static 
content gives us the correct position of the RVA.

Figure 4.11 shows the entry of the main function:

Figure 4.11 – The main function of the peExportParser project

At lines 47 to 49 of the code, after reading the entire DLL file, we first extract OptionalHeader 
from the NT Headers part of this PE structure, query the DataDirectory table for the RVA of 
the exported IMAGE_DIRECTORY_ENTRY_EXPORT function, and convert it into a static program 
content offset using the rvaToOffset function we just designed.

At lines 52-53 of the code, now that we have the offset of the EAT, we can read the IMAGE_EXPORT_
DIRECTORY EAT structure correctly by adding the base address of the static content. Next, the name 
of the compilation period recorded in the EAT is converted from the RVA into an offset, and the static 
content base address is added to correctly print the name of the compilation period of the DLL file.

At lines 56-59 of the code, following the same method, we can derive the address of the static content 
from the AddressOfNames array and print out the name of each exported function name in a 
for loop.
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Next, let’s see the power of this tool in practice:

Figure 4.12 – Results of the peEatParse project

To verify the correctness and robustness of our calculation method, we have changed the project to 
64-bit and produced peExportParser.exe. We used this tool to try to parse C:\Windows\
System32\kernel32.dll to analyze the exported functions. The results shown in Figure 4.12 are as 
successful as we expected, with all the exported function names being parsed and enumerated correctly.

Dynamic crawling function in PE

In this subsection, we will string together all the solid tips from the previous chapters. Following on 
from the PEB → LDR crawling technique to find system module addresses without the Windows API 
introduced in Chapter 3, we will be able to find system function addresses without GetProcAddress 
in a similar way. This technique relies on a pure dynamic PE structure analysis, called the PE crawling 
technique. This is a well-known method used in shellcode to find API addresses.

The following example is the dynEatCall.c source code in the Chapter#4 folder of the GitHub 
project. In order to save space, this book only extracts the highlighted code; please refer to the complete 
source code to see all the details of the project.

Figure 4.13 shows the entry of the main function:



Examples of a DLL file analyzer 75

Figure 4.13 – The main function of dynEatCall.c

This entry point is exactly the same as the main function of ldrParser.c in Chapter 3, as shown 
in Figure 3.15. The only difference is that instead of using GetProcAddress, we now use our own 
GetFuncAddr function to find the function address.

Figure 4.14 shows the complete design of the GetFuncAddr function:

Figure 4.14 – The code for the GetFuncAddr function

At lines 104-107 of the code, the incoming dynamic DLL module address is parsed in PE format to 
find the EAT RVA recorded in the Optional Header → DataDirectory section.
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At lines 110-115 of the code, we identify three important sets of the array pointer, AddressOfFunctions, 
AddressOfNames, and AddressOfNameOrdinals, in the EAT to locate the correct address 
in dynamic memory and then use them to crawl to the desired function address.

At lines 118-125 of the code, use the for loop to retrieve each of the exported function names in 
order and use stricmp to check that the current function name happens to be the one we are 
looking for. If it is, the ordinal number of the function corresponding to the function name is taken 
from AddressOfNameOrdinals and used as an index to query AddressOfFunctions for 
the correct RVA of the function. Then, add the current DLL module base address to get the correct 
dynamic address of the function.

Figure 4.15 shows the results of dynEatCall compiled and executed with MinGW (32-bit):

Figure 4.15 – Results of dynEatCall

As you can see, dynEatCall runs and analyzes kernel32.dll to export the WinExec function 
with a function ordinal of 0x0601, and successfully calls WinExec to pop up the Calculator tool. 
The PE-bear tool is also used to analyze the kernel32.dll exported function, WinExec (see 
the interface behind the console window), and confirms that the ordinal sequence is 0x601, which 
proves that our calculation process is correct and robust.
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Important notes
dynEatCall.c is compiled and executed in 32-bit MinGW. Therefore, if readers use a 
64-bit Windows environment, the full path of kernel32.dll should be C:\Windows\
SysWoW64\kernel32.dll instead of C:\Windows\System32\kernel32.dll. 
This should be noted in particular.

Common DLL modules for Windows at 32-bit are stored in C:\Windows\System32. 
However, 64-bit programs must be backward-compatible with 32-bit programs, so there are 
two directories, System32 and SysWoW64. System32 is used to save 64-bit DLL modules, 
while SysWoW64 is used to save 32-bit DLL modules.

Windows 32 on Windows 64 (WoW64) is a Windows-specific architecture. It is designed to 
be a translator emulation that is backward-compatible with 32-bit executable formats and can 
also run in 64-bit Windows environments. It is also responsible for translating 32-bit system 
interrupts into 64-bit system interrupts in order to send them to the 64-bit kernel for 
normal parsing and execution.

In this section, we introduced two self-designed programs, peExportParser and dynEatCall.c, to 
verify the information in the exported function table from the previous section. The peExportParser 
project uses the rvaToOffset function to calculate the RVA as the actual offset and parse the PE 
structure for the EAT information. dynEatCall.c uses our own GetFuncAddr function to find 
the function address, rather than using the system’s GetProcAddress function. The results verify 
that our knowledge and calculation about the EAT are correct.

Examples of writing shellcode in x86
Now that we have covered the Windows PE implementation for static memory distribution and 
dynamic memory arrangement, and how to successfully call the system function pointer, we will begin 
this section with a further discussion on using what we have learned to develop 32-bit shellcode with 
x86 commands on our own.

The following example is the 32b_shellcode.asm source code in the Chapter#4 folder of the 
GitHub project. In order to save space, this book only extracts the highlighted code; please refer to 
the full project for the complete source code.

As this is a demonstration of 32-bit shellcode development, we need to use a compiler to help us 
translate the x86 script into machine code that the chip can read. It is recommended that readers 
practice this section by downloading the open source x86 assembler Moska (github.com/
aaaddress1/moska) written by the author of this book, which can compile any x86 script based 
on the Keystone engine and spit out a 32-bit *.EXE file for the reader to double-click on and test 
the shellcode execution.

.

https://github.com/aaaddress1/moska
https://github.com/aaaddress1/moska
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Important note
Many x86 writing tutorials are only intended to get students started with the assembly language 
and therefore only teach you how to use system interrupts. For example, nasm teaches you how 
to write MS-DOS 16-bit assembly language programs where the memory state is not distributed 
as mentioned in this book. Our goal, however, is to write shellcode that can be applied in the 
real world. Therefore, it is recommended to use the Moska tool developed by the author, or 
Visual Studio C++ with inline _asm embedded into the assembly language to practice writing 
shellcode while for regular use of the assembly tool, the author recommends the open source 
yasm tool with support for Intel syntax.

We can see the 32b_shellcode.asm assembly language code. It is run as shellcode and tries to 
find the image base address of the kernel32 DLL module in the current memory and crawls the 
PE structure to find the address of the FatalExit function within it.

The entire script is divided into three parts for individual interpretation. In the first part, we see 
the following:

Figure 4.16 – First part of 32b_shellcode.asm

In the Thread Environment Block section of Chapter 3, we have explained that under 32-bit Windows, 
the fs[+n] section register can query the data at a TEB offset of +n directly. We know that the correct 
address for the 32-bit PEB structure can be obtained at TEB +0x30 on 32-bit Windows, and we can 
then get the LDR field at PEB +0x0C. We also explained that the LDR_DATA_TABLE_ENTRY 
two-way chain can be obtained from InLoadOrderModuleList(+0x0c), where each node is 
an LDR_DATA_TABLE_ENTRY structure to record information about the mounted module. The 
32-bit LDR_DATA_TABLE_ENTRY structure can get the DLL image base address (DllBase) and 
the DLL module name (BaseDllName) stored in the UNICODE_STRING form at offsets of +0x18 
and +0x2C, respectively.
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At lines 8-13 of the code, we see a loop that crawls through the aforementioned chain, finds the LDR_
DATA_TABLE_ENTRY node of the kernel32 module, and records its DllBase field in the eax 
register. We extract DllBase to the eax register, then we get the module name from the BaseDllName 
→ Buffer field in the form of a wide character array (wchar_t*), and check whether the current 
string array is Kernel32 (comparing whether the 0x0C byte is ASCII 0x33 for the number 3). If 
not, continue to extract InLoadOrderLinks->Flink from the LDR_DATA_TABLE_ENTRY 
structure with +0 as the current analysis node until found.

In the second part, once we have the DLL image base address, it’s time to start crawling through the 
EAT. Figure 4.17 shows the process of crawling through the export function table:

Figure 4.17 – Second part of 32b_shellcode.asm

At lines 15-19 of the code, the DLL image base address must hold the IMAGE_DOS_HEADER 
structure and we can get the e_lfanew field at +0x3C, which holds the current PE structure, the 
IMAGE_NT_HEADERS offset. The RVA of DataDirectory item 0 (i.e., the EAT) can then be 
obtained from IMAGE_NT_HEADERS +0x78, and together with the DLL image base address, 
three important fields, AddressOfNames (+0x20), AddressOfNameOrdinals (+0x24), 
and AddressOfFunctions (+0x1C) of the IMAGE_EXPORT_DIRECTORY structure in the 
current memory can be traced.

At lines 23-29 of the code, next, we need to know what index is the name of the exported function we 
are looking for. We use ebp as a counter to keep track of the number of items we have enumerated so 
far. We know that the offset of each name is stored as a 4-byte DWORD array, so we can enumerate all the 
exported function names from the AddressOfNames array base address + 4 * index until we find a 
FatalExit API with an ASCII match (0x74697845 is the ASCII value of Exit) and then stop.
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In the third part, we see the following:

Figure 4.18 – Third part of 32b_shellcode.asm

At lines 31-38 of the code, now, we have already saved the name of the exported function we want in 
the ebp counter (index). We can then retrieve the ordinal number of the function corresponding to 
this textual function name from the AddressOfNameOrdinals array (WORD) and use this ordinal 
number as index to query the AddressOfFunctions array to obtain the correct function RVA. 
After adding the RVA to DllBase, we can get the correct export address. Next, we place the 30cm.
tw string (0x0077742e, 0x6d633033) on top of the stack with push and call the FatalExit 
function pointer to get a successful pop-up message.

Figure 4.19 shows the result of translating 32b_shellcode.asm into machine code sequences 
using the author’s open source tool Moska and imitating the linker to load the shellcode as a.exe. 
The result of running a.exe is a successful popup of the text message, 30cm.tw:

Figure 4.19 – Results of 32b_shellcode.asm
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Important note
For the sake of consistency in terms of the memory offset and layout, the entire book is illustrated 
using a 32-bit PE structure, but the concepts and algorithms are similar. Therefore, by replacing 
the offset with a 64-bit PE offset and changing the PEB to gs[0x60], readers can easily write 
64-bit shellcode themselves.

In this section, we used an actual 32b_shellcode.asm source to illustrate how to map the DLL 
image base address step by step and to find the EAT for the export function, FatalExit. We used the 
author’s open source tool, Moska, to compile and load the shellcode to verify its feasibility. We proved 
that we could develop 32-bit shellcode manually, using what we had learned in previous chapters.

A shellcode generator in Python
We have now attempted to write minimalist 32-bit shellcode ourselves, and readers will recognize 
the large number of structural offsets that need to be remembered in the process. In practice, this 
can make the development process difficult if there are complex task requirements. For this reason, 
many free community tools have been designed to automate shellcode generation – for example, 
Metasploit. In this section, we will try to develop a more convenient tool that can generate shellcode 
directly from C/C++ code.

The following example is the shellDev.py source code from the Chapter#4 folder of the GitHub 
project. In order to save space, this book only extracts the highlighted code; please refer to the full 
source code to see all the details of the project:

Figure 4.20 – Usage of shellDev.py
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We mentioned in Chapter 1, From Source to Binaries – The Journey of a C Program, that there are at 
least three processes in the compilation process: compiling, assembling, and linking. First, the C/
C++ source code is compiled into an assembly language script. This is followed by compilation into 
blocks of machine code and resources (encapsulated in COFF). Finally, it is loaded into an executable 
file using a linker. In practice, however, our shellcode is the machine code itself, so we do not need a 
linker to participate in the loading process. We simply package the contents of the machine code to 
create the executable shellcode in plaintext.

Interested readers can refer to the author’s open source tool, shellDev.py (github.com/
aaaddress1/shellDev.py), to do this. Just write a C/C++ sample to automatically generate 
32- and 64-bit shellcode without having to manually arrange any memory structures and offsets.

Figure 4.21 shows the source code of the C/C++ sample on the left, and the shellDev.py tool written 
in Python on the right, which automatically calls the MinGW compiler and generates the shellcode:

Figure 4.21 – The demonstration

All the basics of developing this tool have been fully explained in the first four chapters of this book, 
so we will not take up space by explaining them. Interested readers can read the source code for this 
open source tool directly.

In this chapter, we have introduced an open source tool written in Python, shellDev.py, which 
automates the generation of shellcode. It essentially takes the concepts from Chapters 1 to 3 and ties 
them together in Python, reducing the need for programmers to manually arrange any memory 
structures or offsets.

Summary
In this chapter, we learned about the details of export functions and how to build our own DLL parser 
without relying on the Windows GetProcAddress function, crawl through dynamic memory for 
export functions, and write our own Windows shellcode. Finally, we can even develop a shellcode 
generator via Python. With this knowledge and these skills, we will be able to develop our own testing 
tools for penetration testing in the future, rather than being limited to the tools already developed.

https://github.com/aaaddress1/shellDev.py
https://github.com/aaaddress1/shellDev.py


5
Application Loader Design

In this chapter, we will learn how a simple application loader can execute EXE files in memory without 
creating a child process. We will learn how to import an address table in a PE structure and write C 
programs to analyze them. We will then learn how to hijack Windows API calls, replace API behaviors 
with malicious code, and do DLL side-loading using examples.

In this chapter, we’re going to cover the following main topics:

•	 Import Address Table in PE

•	 Import API analyzer example

•	 Examples of IAT hijack

•	 DLL side-loading example

Import Address Table in PE
As we mentioned in Chapter 1, From Source to Binaries – The Journey of a C Program, when a program 
is executed, the following procedure is performed. First, a new process is created and the static contents 
are loaded into it as a file map; the first thread of this process then calls the loader function located in 
ntdll.dll. After the necessary corrections have been made to the PE module mounted in memory, 
the entry function of the EXE module can be executed and the program will run normally as a process.

In this chapter, we will look more closely at the application loader that comes by default with the 
operating system. This variation can be used to develop a program packer, fileless attacks, staged 
payloads (such as staged payloads in Metasploit), and so on.

Let’s go back to the basics first. Figure 5.1 is identical to Figure 1.3 and illustrates a program that will 
pop up a message with MessageBoxA:
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Figure 5.1 – NativeCode generation

The compiled program will have at least three blocks of content:

•	 The .text section is used to store the machine code after the original code has been compiled.

•	 The .rdata section is used to store static text or data. For example, +0x05 holds the text hi 
there as an ASCII string array.

•	 The .idata section is used to store a set of function pointer arrays. For example, +0x18 is for 
storing the correct address of the current system function, MessageBoxA.

After the static content is mapped to image base 0x400000, the .text section is placed at 0x401000, 
the .rdata section is placed at 0x402000, and the .idata section is placed at 0x403000. Therefore, 
after the file mapping, the call ds:[0x403018] function call behavior gets the correct function 
address of MessageBoxA from 0x403018 and calls it.

As you can imagine from reading here, once we mount a program file into memory via File Mapping 
(discussed in Chapter 2) as a loaded module, and write the correct API pointers to the function pointer 
arrays on .idata, this allows the program to get the desired API to call in execution. This allows us to 
run any PE program directly in memory without creating another process entity. So, let’s explain how 
to parse the import function pointer table. First of all, where is the global table of import function 
pointers (the array of import function addresses)?
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Figure 5.2 shows the symbol page when debugging msgbox.exe with x64dbg. The left side shows all 
the PE modules currently mounted in memory with their current image base address (i.e., msgbox.
exe is currently mounted at 0x400000), and the right side lists all the import addresses or export 
addresses for the current PE module:

Figure 5.2 – IAT in PE structure

We can see here that the addresses of the import functions, fprintf, free, fwrite, getchar, and so 
on, have been increased from 0x4071BC to 0x4071E8 in increments of 4 bytes (DWORD) each time.

The result of the hex dump shows that 0x4071BC holds the fprintf function address 0x768A4C90 
in little-endian form, while 0x4071C0 holds the free function address 0x76878570. Also, by 
extension, the current MessageBoxA address is 0x76CD2270. You should be able to notice that this 
array is the same global import function pointer table produced by the compiler as mentioned earlier.

But how do we crawl through all the import function fields on a symbolic page of a PE structure? Figure 5.3 
shows the dynamic memory distribution of the Import Address Table (IAT) for msgbox.exe:

Figure 5.3 – The dynamic memory distribution of the IAT for msgbox.exe
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The second item (IMAGE_DIRECTORY_ENTRY_IMPORT) in the DataDirectory struct of NT 
Headers points to the Relative Virtual Address (RVA) of the entire import table. At the beginning 
of the import table is a set of IMAGE_IMPORT_DESCRIPTOR arrays, and each IMAGE_IMPORT_
DESCRIPTOR structure is used to record the import DLL information. Take Figure 5.3 as an 
example: the current msgbox.exe imports to three modules: USER32.dll, KERNEL32.dll, 
and MSVCRT.dll.

During compilation, a table called the Import Name Table (INT) is generated, each element of which 
records an import function name in the IMAGE_IMPORT_BY_NAME structure.

The IAT is the global import function pointer table we mentioned earlier. It is responsible for recording 
all functions imported by the current program, and each field records the current address of a system 
function in IMAGE_THUNK_DATA (a 4-byte structure used as a pointer variable) for subsequent 
execution phases. The code in the .text section can be retrieved from these fields. For example, the 
field at offset +0 in the function table is used to store the address of the MessageBoxA function, 
so the program can use the call ds:[0x403600] instruction to retrieve the address of the 
function and call it.

You will immediately notice that there are two tables in Figure 5.3 that look exactly the same. Indeed, 
the Hint Name Table (HNT) holds exactly the same contents as the IAT under static analysis.

However, during the dynamic runtime, we said that each field on the IAT will be corrected by the 
application loader with the correct system function address (instead of the RVA of the import function 
name), whereas the HNT is not corrected by the loader. This feature allows us to dump the dynamic 
memory of any process and still know which system functions are imported by that program. We 
often make use of this feature in the Fix IAT Table function in the packing tool.

In this section, we learned about the contents of the IAT in the PE structure and the characteristics 
of the various IAT fields in dynamic memory.

Import API analyzer example
The following example is the iat_parser.cpp source code under the Chapter#5 folder of the 
GitHub project. In order to save space, this book only extracts the highlighted code. Please refer to 
the complete source code to read the full project.

Let’s try writing tools to analyze which system functions are imported into EXE programs. Figure 5.4 
shows the entry function of iat_parser.cpp:
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Figure 5.4 – The main function of iat_parser.cpp

At lines 44-50 of the code, we first read the entire program into memory by fopen, and get the size 
of the global IAT and its RVA from the 13th item (i.e., IMAGE_DIRECTORY_ENTRY_IAT) in 
DataDirectory. Since each field in the global IAT is the correct system function address that is 
referenced in the .text section, and will point to the RVA of the system function name storage structure 
(IMAGE_IMPORT_BY_NAME) on the INT, each field is therefore an IMAGE_THUNK_DATA variable. 
We simply divide the size of the IAT by the size of IMAGE_THUNK_DATA to find out how many APIs 
in total will be imported into this program.

At lines 53-59 of the code, we can extract the RVA of the IMAGE_IMPORT_BY_NAME structure pointed 
to in each of the preceding fields using a for loop, and convert the RVA to an offset corresponding 
to the static content to find out which system function name the field corresponds to.

The results of iat_parser.cpp are shown in Figure 5.5:
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Figure 5.5 – The results of iat_parser.cpp

iat_parser.cpp is compiled and executed to list the system functions imported in the IAT of 
the static contents of msgbox.exe.

In this section, we listed the system function API names imported in msgbox.exe’s IAT as an actual 
program. However, the IAT alone does not allow us to know which DLL module these function names 
were imported from. In the following subsection, we will be looking at how to parse a complete IAT 
and utilize the techniques.

Calling programs directly in memory

In this subsection, we link up everything we’ve previously learned to show you how to run an EXE 
program in pure memory without having to create another process entity, which is a rather stealthy way 
of doing it. This technique is widely used in new types of malware. It is a very sophisticated technique 
that bypasses the static antivirus scanning of file-based systems by reading malware content into 
memory, decrypting it, and executing it in memory over the network. This could bypass some static 
scanning techniques as there are no processes created at all that antivirus software can actively keep 
an eye on. This technique has been used by the Athena spyware project, Metasploit’s staged payloads, 
and even the cyber-army groups MustangPanda and APT41 in their attacks.
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The following example is the source code of invoke_memExe.cpp in the Chapter#5 folder of the 
GitHub project. Figure 5.6 shows the fixIat function used to correct the import table for the file-
mapped PE modules in memory:

Figure 5.6 – The fixIat function

At lines 29-30 of the code, we first obtain the address of the current IAT from the IMAGE_DIRECTORY_
ENTRY_IMPORT field in the second item of DataDirectory and convert it into the IMAGE_
IMPORT_DESCRIPTOR array. We can then walk through all the import modules and their 
corresponding import function fields.

At lines 31-34 of the code, we can get the name of the module currently imported by the program from 
the Name field on IMAGE_IMPORT_DESCRIPTOR, load it into memory with LoadLibraryA, 
and get the return value as the image base address of the module.

At lines 36-43 of the code, we mentioned that the FirstThunk of IMAGE_IMPORT_DESCRIPTOR 
points to a set of IMAGE_THUNK_DATA arrays, where each IMAGE_THUNK_DATA field is a separate 
function address holding a variable, and its original content points to the textual IMAGE_IMPORT_
BY_NAME structure in the INT. So, here, we will extract the function name, use GetProcAddress 
to find the address of the current module, and write back the IMAGE_THUNK_DATA structure to 
successfully fix the IAT.

Figure 5.7 shows the invokeMemExe function in invoke_memExe.cpp used to invoke the static 
EXE content directly in memory:
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Figure 5.7 – The invokeMemExe function

At lines 48-50 of the code, we verify the current ImageBase to know the expected sprayed image base 
of the executable and use the VirtualAlloc function to request enough memory at the expected 
address for subsequent allocation of the EXE file.

At lines 53-61 of the code, this is the standard file mapping process in Chapter 1. All PE header 
structures (i.e., DOS Header, NT Headers, and Section Headers) are first moved from static contents 
to memory, and then each block of section contents is placed on the corresponding expected address 
to complete the file mapping.

At lines 62-69 of the code, we use the fixIat function we just designed to fix the file-mapped PE 
module, and then call the entry point of the program to successfully execute it from memory.

Next, Figure 5.8 shows the main function of the current program entry, which tries to read the 
program content from the specified path into memory by fopen, and executes the static content 
from memory by the invoke_memExe function:
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Figure 5.8 – The main function of invoke_memExe.cpp

Figure 5.9 shows invoke_memExe.cpp compiled by MinGW and executed to run an msgbox.
exe program with a default image base address of 0xFF00000:

Figure 5.9 – The results of invoke_memExe.cpp

The results show that this lab successfully executed the behavior of msgbox@0FF00000.exe, 
popped up a message dialog, but did not execute the program as a subprocess. This indicates that it was 
successfully executed from memory and not as a separate process created by the CreateProcess API.
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Important note
Eagle-eyed readers should have noticed that msgbox@0FF00000.exe is a specially 
designed program whose image base address is preset at 0xFF00000 (instead of the common 
0x400000) during compilation. As the current invoke_memExe.exe dynamic module 
is already occupying memory at 0x400000, we cannot request new space at 0x400000 for 
the EXE file mapping.

But what if we want to run an EXE program with the same 0x400000 ImageBase (module 
address) in memory even though 0x400000 is already occupied? We will explain this in 
Chapter 6, PE Module Relocation.

In this section, we explained how a static program is loaded and executed, and used the actual 
invoke_memExe.cpp to illustrate and explain how an EXE program can be executed in memory 
without generating a separate process to execute.

Examples of IAT hijack
Since each IMAGE_THUNK_DATA in an IAT holds the system function address, wouldn’t it be 
possible to monitor and hijack a program’s active behavior if we could overwrite the contents of 
IMAGE_THUNK_DATA with a function for monitoring purposes? The answer is yes. Let’s try it out 
with a sample program.

The following example is the source code of iatHook.cpp in the Chapter#5 folder of the GitHub 
project. In order to save space, this book only extracts the highlighted code; please refer to the full 
source code to read the full project:

Figure 5.10 – The iathook function
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Figure 5.10 shows the source code of the iatHook function, which reads in four parameters:

•	 module: Points to the loaded module to be monitored

•	 szHook_ApiName: The name of the function to be hijacked

•	 callback: The function for monitoring purposes

•	 apiAddr: The original correct address of the hijacked function

At lines 15-17 of the code, the import table of the module is read from the memory address of the 
loaded PE module and then converted to the IMAGE_IMPORT_DESCRIPTOR array to enumerate 
each of the referenced modules.

We have mentioned that the IAT and the HNT will be identical in memory. The difference is that the 
former will be corrected to fill in the current system function address during execution; the latter will 
not, and the latter will remain pointing to the IMAGE_IMPORT_BY_NAME structure.

This means that if we can confirm that field i happens to be the function we want to hijack by crawling 
through the HNT, then we can go back to the IAT and replace the system function address stored 
in field i with the one we are monitoring. Thus, we have completed the IAT hijacking technique.

At lines 20-30 of the code, we use the for loop to retrieve the IMAGE_THUNK_DATA structure from 
each HNT, extract the corresponding IMAGE_IMPORT_BY_NAME structure to find out the ith 
function name, and use strcmp to confirm this. Then, we can fill in the ith field on the IAT with 
our monitor function address.

Figure 5.11 shows the main entry function:

Figure 5.11 – The main function

At lines 37-40 of the code, we have written a lambda function called ptr for monitoring MessageBoxA. 
When the monitoring function is called, it prints out the parameters received by MessageBoxA and 
forges the msgbox got hooked string as the new parameter to be passed to the original system 
MessageBoxA function.
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At lines 42-43 of the code, we use GetModuleHandle(NULL) to get the current EXE module 
address (i.e., the image base of the PEB). Next, we can call the iatHook function we just designed to 
hijack the MessageBoxA API in the IAT of the current EXE module, and then run MessageBoxA 
to pop up the Iat Hook Test string to see whether the hijacking is successful. Figure 5.12 shows 
the result of iatHook.cpp after compilation and execution:

Figure 5.12 – The result of iatHook.cpp

We can see that the Iat Hook Test string that should be displayed in the pop-up window has 
been hijacked and printed out by the monitor function, and the original MessageBoxA execution 
has been forged into msgbox got hooked string content.

In this section, we learned about the IAT hijacking technique. By overwriting the contents of 
IMAGE_THUNK_DATA with our function, we can successfully hijack and forge the contents of 
MessageBoxA. This monitoring and hijacking technique may sound basic, but it is widely used in 
game plugin designs, in sandbox tools such as the malware analysis sandbox Cuckoo, and even in 
many lightweight antivirus active defenses.

DLL side-loading example
DLL side-loading or DLL hijacking is a classic hacking technique that is documented in MITRE ATT&CK® 
as the attack technique Hijack Execution Flow: DLL Side-Loading, Sub-technique T1574.002 (attack.
mitre.org/techniques/T1574/002/).

The core principle is to replace the loaded system DLL with one designed by the hacker to take control 
of the execution of a process. This means that by precisely placing the right malicious DLL module, 
the hacker can run it as any EXE process, for example, by pretending to be a system service process 
with a digital signature.

http://attack.mitre.org/techniques/T1574/002/
http://attack.mitre.org/techniques/T1574/002/
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Many antivirus software rules treat programs with digital signatures as benignware in their detection 
engines. This is why APT groups use this technique extensively to avoid static antivirus scanning, active 
defensive monitoring, or UAC prompting for privilege escalation. For more details on this, you can refer 
to the arms vendor FireEye’s public disclosure report, DLL Side-Loading: Another Blind-Spot for Anti-Virus 
(https://www.mandiant.com/resources/blog/dll-side-loading-another-
blind-spot-for-anti-virus), which points out that this technique was widely used by APT 
groups as early as 2014. You can also refer to the article Duplicate Paths Attack: Get Elevated Privilege 
from Forged Identities presented by the author at Hackers In Taiwan Conference (HITCON) 2019 for a 
complete reverse engineering of Windows and the privilege escalation of the Windows UAC protection 
by DLL side-loading.

Figure 5.13 shows the results of the Chrome 88.0.4324.146 browser after analyzing its IAT with the 
PE-bear tool:

Figure 5.13 – The IAT analysis of Chrome

Once we have knowledge of IAT, we can understand that when Chrome is running, the process must 
have loaded chrome_elf.dll, KERNEL32.dll, and VERSION.dll into dynamic memory. The 
Chrome program imports three export functions on VERSION.dll: GetFileVersionInfoSizeW, 
GetFileVersionInfoW, and VerQueryValueW.

Before an application calls the entry function, the application loader will need to locate and load the 
module and fill in the IAT. If it is only looking for the module by the VERSION.dll string, how does 
the application loader identify where VERSION.dll is located in the filesystem? Figure 5.14 shows the 
behavior of the Chrome program when it is running, recorded using the well-known tool Process Monitor:

https://www.mandiant.com/resources/blog/dll-side-loading-another-blind-spot-for-anti-virus
https://www.mandiant.com/resources/blog/dll-side-loading-another-blind-spot-for-anti-virus
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Figure 5.14 – The motoring by Process Monitor

We can observe the CreateFile API request in Figure 5.14 with the highlighted color. We all know 
that VERSION.dll is a system module, so it should be located in either C:\Windows\System32\
VERSION.dll or C:\WIndows\SysWOW64\VERSION.dll, depending on whether it is a 32-bit 
or 64-bit system. Chrome, however, will try to prioritize loading VERSION.dll in the same directory. 
We can double-click on the event and see which program is trying to load the DLL module on this path.

Figure 5.15 shows the call stack when Process Monitor is monitoring the loaded system DLL module:

Figure 5.15 – The stack log
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The bottom entry (Frame 20) shows that the DLL loading from the path is initiated by 
NtDLL!LdrInitializeThunk; that is, the DLL path is being validated when the application 
loader is trying to correct the IAT.

Due to uncertainty about the correct path of the DLL module, the application loader will first check 
whether there is a DLL with the same name in the current working directory. If there is, the DLL 
will be loaded directly from the same directory; if not, then the C:\Windows\System32\, C:\
Windows\SysWOW64, and C:\Windows system folders will be checked to see whether there is one. 
If there is still none, then the listed paths in the PATH environment variable will be checked iteratively.

This behavior is officially documented by Microsoft as Dynamic-Link Library Search Order (docs.
microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-
order). It is used to blindly search for the absolute path of a DLL when the absolute path of the DLL 
module is not certain.

As smart readers will no doubt understand, you can successfully hijack Chrome by dropping your 
own malicious VERSION.dll into the same directory as Chrome.

The following example is the source DLLHijack project in the Chapter#5 folder of the GitHub 
project. Figure 5.16 shows the entry function of the malicious DLL code:

Figure 5.16 – The entry function of malicious DLL

At lines 17-21 of the code, when the DLL module is first mounted in the process, a MessageBoxA 
pop-up message will be displayed to verify our successful hijacking.

http://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
http://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
http://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
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However, the application loader mounts VERSION.dll into memory in order to obtain the addresses 
of the GetFileVersionInfoSizeW, GetFileVersionInfoW, and VerQueryValueW 
functions, so our DLL module also needs to export these three functions for the loader to query.

At lines 8-14 of the code, we use the Function Forwarders feature provided by the Microsoft Visual 
C++ (MSVC) linker to enable our DLL to export these three export functions, but in practice, it calls 
the three specified functions in C:\Windows\System32\VERSION.dll.

This function-forwarding technique for attacks is known as DLL proxying. Interested readers can also 
refer to DLL Proxying for Persistence - Red Teaming Experiments (www.ired.team/offensive-
security/persistence/dll-proxying-for-persistence).

The DLL is then compiled and renamed VERSION.dll and dropped into the same directory as 
Chrome. Every time the user tries to use Chrome to access the internet, the malicious code placed in 
the DLL will be triggered, as shown in Figure 5.17:

Figure 5.17 – The result of the DLLHijack project

In this section, we learned about the principles of DLL side-loading and how it is actually used in 
attacks. DLL side-loading is a technique that is often abused by APT groups for either exploiting, 
bypassing antivirus software, or backdoor persistence. As long as the DLL file can be written to the 
filesystem, the execution process can be controlled. You should bear in mind that this technique can 
often be used in a variety of variations for exploit or protection purposes.

www.ired.team/offensive-security/persistence/dll-proxying-for-persistence
www.ired.team/offensive-security/persistence/dll-proxying-for-persistence
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Summary
In this chapter, we explained how the application loader is executed through the IAT in the PE structure 
and explained in detail the various fields in the IAT. We also learned about attacks such as directly 
calling programs in memory, IAT hijacking, and DLL side-loading. These techniques are often used 
by attackers to develop deshells, fileless attacks, and staged payloads to escalate privileges, bypass 
antivirus software, or hide backdoors. By understanding how these techniques work, you will be able 
to develop techniques for red team testing or blue team defending in the future.

In the next chapter, we will look at a more in-depth question: what if the PE binary cannot be placed in 
the memory location (image base) desired by the compiler? The redirection design of the PE module 
can help! Simply apply the redirection correction, which will allow us to place the PE module on any 
image base that is not assumed by the compiler. Therefore, in the next chapter, we will be able to design 
the most compact and complete system loader to execute any program in memory.





6
PE Module Relocation

In the previous chapters, we have built a solid foundation in programming, starting with compiling 
C/C++ source code, generating static program files, verifying dynamic memory distribution, and 
executing programs directly in memory. In this chapter, we will learn about the relocation design of 
PE modules. We will learn how to manually analyze a PE binary and implement dynamic PE module 
relocation, allowing any program to be loaded into memory.

In this chapter, we’re going to cover the following main topics:

•	 Relocation table of PE

•	 tinyLoader example

Relocation table of PE
In the previous chapters, we assumed that executable files must be mounted on the image base expected 
by the compiler. However, in the following cases, we may need to mount the PE module on an image 
base that is not expected at the time of compilation:

•	 There must be multiple mounted PE modules in a single process (regardless of EXE or DLL) 
and it is obvious that the common 0x400000 image address cannot be chosen for each DLL 
module during compilation.

Therefore, Microsoft designed relocation for PE, which is used to solve the challenge of mapping 
a PE module to an unexpected image base.

•	 In the Calling programs directly in memory section of Chapter 5, we encountered a similar 
problem with the application loader that we tried to replicate. Since the application loader is 
already mapped to 0x400000, it is no longer possible to mount the EXE file on the occupied 
0x400000 memory.

•	 With the Service Pack 2 (SP2) patch, Windows XP provides Address Space Layout Randomization 
(ASLR) protection at the system level, allowing you to mount any EXE or DLL in any memory 
space as long as the compiler provides a relocation table. As a result, PE modules may not be 
mounted on an unintended image base.
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How was this problem solved in the early days, for example, before Windows XP (SP1 patch)? Clever 
readers will immediately think, If the default image base address is a random address from a dice roll 
during compilation, it is very unlikely that the address the module wants to use will be taken up. Let us 
look at the situation in Figure 6.1:

Figure 6.1 – The image base address in OptionalHeader

Figure 6.1 shows the contents of the OptionalHeader section of the DLL file generated by MinGW 
after compiling the same C/C++ DLL source code twice and opening it with the PE-bear tool. We can 
see that the first generated DLL defaulted to 0x69740000 at compilation time, while the second 
generated DLL defaulted to 0x66280000.

Is this the perfect solution? No. At present, the decoding engine of an audio/video player, the JavaScript 
engine of a browser, or the resource management module of an online game (containing a large number 
of images and audio/video files) can all take up more than 2 MB in a single PE module, resulting 
in a collision in the memory address selection. It is therefore necessary to have a solution that can 
perfectly handle mapping PE modules to unintended addresses. This is called relocation. Let’s use a 
quick diagram to explain the concept of relocation:

Figure 6.2 – Relocation in dynamic memory
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Figure 6.2 shows that the current .text section is mapped to address 0x401000, and there is a call 
dword ptr : [0x403018] instruction at 0x40100C. This works with the current image base 
address of 0x400000 and calls the function address stored in the .idata section on 0x403000.

But what if msgbox.exe is mapped to 0xA00000? This line should be corrected to call dword 
ptr : [0xA03018] in order to execute properly. So, the relocation task is to correct all such 
records from 0x403018 (18 30 40 00) to 0xA03018 (18 30 A0 00), which is the address 
of the 4 bytes saved at 0x40100E, to the correct new address.

The sixth item in the DataDirectory table of OptionalHeader (IMAGE_DIRECTORY_
ENTRY_BASERELOC) points to a structure called the relocation table, which holds an array of 
relocation records of variable length. The image contents of the entire PE module during dynamic 
execution are cut into a block structure at 4 KB (0x1000, which is the minimum alignment of a block) 
and a relocHdr structure (IMAGE_BASE_RELOCATION) to record which VirtualAddress 
struct needs to be corrected. However, a VirtualAddress struct with 4 KB of content will not 
have just one place to be fixed (i.e., there may be multiple places to be relocated). Therefore, a set of 
ENTRY (BASE_RELOCATION_ENTRY) arrays is padded at the end of relocHdr. Each ENTRY 
structure is fixed in size and is used to record which offset on the current VirtualAddress struct 
needs to be relocated.

Take Figure 6.2 as an example. The relocation table recorded in the current DataDirectory[IMAGE_
BASE_RELOCATION] points to the address of the .reloc section. In the beginning, we can parse 
the IMAGE_BASE_RELOCATION structure to find out that relocHdr#1 currently has a VA 
is 0x1000 that needs to be corrected, and that the entire relocHdr#1 structure, including the 
ENTRY array, occupies a total of 0x0E bytes. Therefore, we can calculate relocHdr#1 address 
+ 0x0E = 0x40400E to find the record of relocHdr#2: the contents of VA = 0x2000 need 
to be corrected, and the whole structure occupies 0x10 bytes. So, we then calculate the address of 
relocHdr#2 + 0x10 = 0x40401E to find the record of relocHdr#3.

Each ENTRY structure has a Type field in the upper 4 bits: the value may be RELOC_32BIT_FIELD 
(0x03) for a 32-bit numeric address or RELOC_64BIT_FIELD (0x0A) for a 64-bit numeric address 
that needs to be corrected. The lower 12-bit offset field holds the type of 32- or 64-bit addresses on 
the known VirtualAddress offset that need to be corrected.

Let’s use the relocHdr#1 record as an illustration. The first 8 bytes of this record hold the IMAGE_
BASE_RELOCATION structure (VirtualAddress of 0x1000) followed by the ENTRY array 
in the form of the BASE_RELOCATION_ENTRY structure, which holds 0x3003, 0x3007, and 
0x300E in order, representing that a total of 3 values of offset +3, +7, and +0x0E in the form of 
RELOC_32BIT_FIELD at 0x1000 need to be corrected. So, we know that we need to correct 
the three records of the data address (the calculation of the image base expected by the compiler), 
0x401003, 0x401007, and 0x40100E, to the new address in the .text section.
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For example, in Figure 6.2, there is a push 0x402005 instruction with machine code of 68 05 
20 40 00 at address 0x401006 in the .text section. It can be seen that the 4 bytes of machine 
code at address 0x401007 in the .text section hold the value of 0x402005. If the current image 
base address is moved from 0x400000 to 0xA00000, then the current push 0x402005 (68 
05 20 40 00) has to be updated to push 0xA02005 (68 05 20 A0 00).

In this section, we learned about the concept of relocation and explained and calculated how to relocate 
in a PE structure through dynamic memory distribution.

tinyLoader example
The following example is the peLoader.cpp source code under the Chapter#6 folder of the 
GitHub project. In order to save space, this book only extracts the highlighted code; please refer to 
the complete source code see all the details of the project.

We first compile our msgbox.c source code as we did in Chapter 1 with MinGW and use  the -Wl,--
dynamicbase,--export-all-symbols arguments to generate an EXE file with a relocation 
table, msgbox_reloc.exe, as shown in Figure 6.3:

Figure 6.3 – The generation of msgbox_reloc.exe

Figure 6.4 shows the fixReloc function responsible for correcting the relocation task for the entire 
PE module:
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Figure 6.4 – The fixReloc function

At lines 56-57 of the code, we can retrieve the starting point of the relocation table held in the current 
.reloc section from DataDirectory[IMAGE_BASE_RELOCATION] and later use it to 
analyze the relocation fields.

At lines 60-62 of the code, first, we can get the first IMAGE_BASE_RELOCATION structure at the 
address of the relocation table, which allows us to identify the RVA that needs to be corrected from the 
VirtualAddress. The end of the IMAGE_BASE_RELOCATION structure is then the starting point 
of the ENTRY array. From this array, we can retrieve the number of offsets that need to be relocated 
relative to the RVA. Since we have said that SizeOfBlock in IMAGE_BASE_RELOCATION contains 
the total size of the IMAGE_BASE_RELOCATION and ENTRY arrays, we can find out how many 
offsets are in it by subtracting the size of IMAGE_BASE_RELOCATION from SizeOfBlock and 
dividing it by the size of the ENTRY structure.

At lines 64-74 of the code, since the Type field of each ENTRY structure records the value as 32-bit or 
64-bit, we then correct the value of RVA+Offset in the corresponding way (UINT32/UINT64). The 
RVA is obtained by subtracting the original expected value (i.e., the VirtualAddress calculated 
from the expected image base address) from the image base address expected by the compiler. This RVA 
is then added to the new image base address to correct the data address to the VirtualAddress 
at the new image base address. The peLoader function is shown in Figure 6.5:
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Figure 6.5 – The peLoader function

Its function is exactly the same as invoke_memExe in the Calling programs directly in memory 
section of Chapter 5: file mapping the static content, correcting the import address table, and then 
trying to call its entry function.

The difference is that the peLoader function in Figure 6.5 prioritizes whether the current static 
content has a relocation table. If it does, it means that the program allows file mapping to any address 
that was not expected at compilation time, so we can use VirtualAlloc(NULL, imgSize, 
MEM_COMMIT | MEM_RESERVE, PAGE_EXECRESERVE, PAGE_EXECUTE_READWRITE) 
to request memory at any address without any restrictions. If not, it means that the program is only 
allowed to be mapped to the expected image base address. Figure 6.6 shows the entry function (i.e., 
the main function):
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Figure 6.6 – The main function

It is used to read a binary file from a user-specified path into memory and then attempt to run its 
static contents in memory using the peLoader function.

Figure 6.7 shows the result of compiling peLoader.cpp to generate peLoader and using it to 
run msgbox_reloc.exe in memory:

Figure 6.7 – The result of peLoader.cpp

It can be noted that PE-bear shows that in msgbox_reloc.exe, the compiler expects the file 
mapping to be at 0x400000, but because of its relocation table, it should be mapped at 0x20000 
after the relocation task is executed and can run normally.
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In this section, we have explained how to design the most compact version of the application loader 
with an actual program. With the relocation table, we can relocate the program to run normally. 
However, the application loader is responsible for more than these actions. Interested readers can 
refer to the author’s open source project RunPE-In-Memory (github.com/aaaddress1/
RunPE-In-Memory) to learn more about how to design a more complete application loader.

Summary
In this chapter, we learned about the relocation design of PE modules. By way of example, we learned 
how to analyze and use the relocation table of the PE structure and implement the relocation design 
for dynamic PE modules. This relocation technique allows us to mount an EXE or DLL In any memory  
space we want with our own application loader.

In the next chapter, we will use all the knowledge we have learned so far to introduce how to write a 
lightweight application loader in x86 that can be used to convert any DLL module into shellcode. This 
classic technique has been widely used in the wild and in commercial attack suites, such as Metasploit 
and Cobalt Strike.

https://github.com/aaaddress1/RunPE-In-Memory
https://github.com/aaaddress1/RunPE-In-Memory
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and Red Team Tips

In this section, you will learn multiple techniques commonly used by APT malware in the wild. We 
will cover techniques to convert EXE directly to Shellcode (PE To Shellcode), Executable Compression, 
get malware signatures, and tips on bypassing UAC protection and elevating privileges.

This section has the following chapters:

•	 Chapter 7, PE to Shellcode – Transforming PE Files into Shellcode

•	 Chapter 8, Software Packer Design

•	 Chapter 9, Digital Signature – Authenticode Verification

•	 Chapter 10, Reversing User Account Control and Bypassing Tricks





7
PE to Shellcode – Transforming 

PE Files into Shellcode

You now have a solid foundation of knowledge on how to design a minimalist application loader. 
We can move on to how to convert any executable directly into shellcode without having to write the 
shellcode. In this chapter, we will introduce how to write a lightweight loader in x86 assembly that 
can be used to convert any EXE file to shellcode.

In this chapter, we’re going to cover the following main topics:

•	 Parsing Kernel32’s export table in x86 assembly

•	 Getting API addresses in x86 assembly

•	 File mapping and repairing the import table in x86

•	 Handling relocation in x86

•	 An example of PE to shellcode

The open source project pe_to_shellcode analysis
Polish researcher Aleksandra Doniec (@hasherezade on Twitter) at Malwarebytes has released the 
open source pe_to_shellcode project (github.com/hasherezade/pe_to_shellcode), 
which is a set of stubs written in x86 assembly language. A stub is actually shellcode, except that 
the payload usually used for loading is referred to as a stub. This open source project is a complete 
implementation of the lightweight application loader.

In this chapter, we will use the 32-bit version of this project.

https://github.com/hasherezade/pe_to_shellcode
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In the previous chapter, we detailed that a lightweight application loader would require at least three tasks:

1.	 Allocate new memory to mount the target EXE file by file mapping.

2.	 Fix the IAT.

3.	 Relocate addresses according to the relocation table.

The first task uses VirtualAlloc to request a block of memory; the second task uses LoadLibraryA 
to mount the DLL into dynamic memory and GetProcAddress to search for the correct address 
of the export function.

So, if we split the stub into two parts, we see the following:

•	 The first part is responsible for finding Kernel32’s image base by enumerating the Ldr struct 
(loader) in the Process Environment Block (PEB) (used to record the necessary external 
information to make the current process run properly) structure and finding the three preceding 
necessary functions by in-memory PE parsing and recording them on the stack.

•	 The second part implements the three tasks of a complete application loader and calls the 
Original Entry Point (OEP).

Figure 7.1 shows the code at the beginning of the stub:

Figure 7.1 – The beginning of the stub
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After obtaining the Ldr address from the PEB structure, the first LDR_DATA_TABLE_ENTRY structure 
address is obtained from the esi register with lodsd and stored in the eax register (in order, the 
first one will be the image base of ntdll.dll). Then, use xchg eax, esi, so that lodsd can 
load the next LDR_DATA_TABLE_ENTRY pointer from the first LDR_DATA_TABLE_ENTRY-> 
InLoadOrderLinks. The next LDR_DATA_TABLE_ENTRY structure address will be exactly that 
of the Kernel32.dll module. The current Kernel32.dll image base address is then extracted 
from the structure and stored in the ebp register.

Lastly, the call instruction jumps to parse_exports to continue execution, pushing the return 
address (which is the base address of the API CRC table) to the top of the stack according to the 
nature of the call instruction.

Parsing Kernel32’s export table in x86 assembly

Figure 7.2 shows the parse_exports code. In the beginning, the API CRC table base address just 
saved on the stack is written to the esi register:

Figure 7.2 – Parse export table
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At lines 37-39 of the code, we started trying to crawl PE on top of the Kernel32.dll image base 
to save the base address of the export address table in the ebx register.

We then started to enumerate the function names above the table in order. Here, the edx register is used 
to record the current index variable (i.e., to count the number of function names currently enumerated).

At line 40 of the code, the edx register is cleared with the cdq instruction.

At lines 42-46 of the code, we retrieve the current Kernel32.dll saved name array from the 
AddressOfNames field in the export address table, extract the address of the edx export function 
name, and save it to the edi register.

At lines 50-67 of the code, we export the first 8 bytes of the function name for standard CRC hashing. 
Here, you can see the magic number 0xEDB88320.

The result of the CRC hash of the current function name is saved in the eax register and compared 
with the CRC hash of the system function name being searched for. If the result is yes, then the 
current edx function name is the one we are looking for; if no, then return to walk_names at line 
42 to continue listing the remaining function names.

Getting API addresses in x86 assembly

The next task is to retrieve the function address from the edx function name, as shown in Figure 7.3:

Figure 7.3 – Get function address

In lines 74-77 of the code, we start by taking a WORD-sized value from the edx column of 
AddressOfNameOrdinals, which is the function ordinal.
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In line 78 of the code, the relative virtual address (RVA) of the current function is obtained from the 
AddressOfFunctions array by using the function ordinal as the index and adding the Kernel32.
dll image base address to the eax register to obtain the current system function address.

In lines 81-84, first, we use the push eax instruction to push the current system function address 
obtained by eax onto the stack for backup. Then, move current esi (API CRC Table) 
base address +4 to the next CRC hash of the function name with lodsd and compare it with 
sub cl, byte ptr [esi] to see whether it is 0 (the current ecx register value is 0). If it is not 
0, jump back to walk_names and continue crawling through the table to get the function address 
and push it onto the stack; if it is 0, it means that the function address corresponding to each CRC 
hash on the API CRC table has been saved on the stack.

Then there is the standard loader process:

Figure 7.4 – Allocate memory

First, we use VirtualAlloc to request a block of memory large enough to handle the file mapping 
later, as shown in lines 90-100 in Figure 7.4. Then, we copy all the DOS headers, NT headers, and 
section headers to that memory with rep movsb in lines 106-109.

File mapping and repairing an import table in x86

The file mapping is implemented in lines 116-121. We move each section’s content in blocks with rep 
movsb to the address of the expected RVA for each section:
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Figure 7.5 – The file mapping

After these steps are completed, we have successfully mounted a PE file into memory (as a process 
module). Then, we need to fix the IAT of this program, so that it can get the desired API address 
when running:

Figure 7.6 – import DLL
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In lines 140-150, we retrieve the executable’s current IAT address (the ebx register currently points 
to the memory address just requested) to enumerate IMAGE_IMPORT_DESCRIPTOR, which 
records all the module names used by the program. Then, use LoadLibraryA to mount those DLL 
modules into memory from the disk.

Next, Figure 7.7 shows the IMAGE_IMPORT_BY_NAME array extracted from the IMAGE_IMPORT_
DESCRIPTOR of this program, which uses GetProcAddress to retrieve the API address 
corresponding to the API name:

Figure 7.7 – import_thunks

Finally, we write back to the IMAGE_THUNK_DATA field with stosd to correct the IAT, which 
allows a program to get any API it needs.

Handling relocation in x86

As we saw in Chapter 6, PE Module Relocation, any program has a default preferred load address 
(ImageBase) in processes. However, shellcode does not always have the ability to allocate memory 
at the address the program wants. Therefore, we need to solve the relocation problem to help programs 
that are mounted on an unexpected ImageBase to run properly:



PE to Shellcode – Transforming PE Files into Shellcode118

Figure 7.8 – Find the relocation table RVA

In lines 181-191, first, we find the RVA of the relocation table from DataDirectory, then add the 
image base address to get the correct address of the relocation table in the current memory and save 
it in the edi register. Later, we have to enumerate each IMAGE_BASE_RELOCATION address in 
the relocation table one by one, so we need a variable to record the offset of the last IMAGE_BASE_
RELOCATION we solved. Here, the edx register is chosen, so in line 191, we clear the edx register 
with cdq:

Figure 7.9 – Fix the relocation table

We mention that each IMAGE_BASE_RELOCATION structure ends with a BASE_RELOCATION_
ENTRY array to describe why the offset needs to be corrected.

In line 194, we read the contents of BASE_RELOCATION_ENTRY (exactly one WORD size) into the 
eax register.
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In lines 196-199, we compare the Type field in BASE_RELOCATION_ENTRY to see whether it is 
0x03 (RELOC_32BIT_FIELD): if so, it means that the current value needs to be relocated.

In lines 201-202, we take the VirtualAddress recorded in IMAGE_BASE_RELOCATION, add 
the offset in BASE_RELOCATION_ENTRY, and add the new file mapping address to infer the 
current address at the eax register that needs to be relocated.

In lines 203-206, the current value, dword ptr [eax], is subtracted from the compiler’s expected 
image base address to derive the RVA, and the new image base address is written back to dword ptr 
[eax] to complete the relocation task.

Figure 7.10 shows the offset of the last analyzed IMAGE_BASE_RELOCATION saved by our edx 
register, checking whether the offset has exceeded the size of the entire relocation table:

Figure 7.10 – Relocation base address checking

If not, it means that there are fields that need to be relocated, and then refreshing the next IMAGE_
BASE_RELOCATION address (adding the edi register address to SizeOfBlock of the current 
IMAGE_BASE_RELOCATION) and returning reloc_block to continue the relocation task.

As shown in Figure 7.11, we then try to call the entry function that AddressOfEntryPoint points to:
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Figure 7.11 – callMain

The EXE program will then be successfully executed in memory.

An example of PE to shellcode

After explaining the principles, it’s time to see the power of the open source project pe_to_shellcode 
(github.com/hasherezade/pe_to_shellcode) in action.

Figure 7.12 shows the msgbox.shc.exe shellcode file generated by using the pe2shc tool to read 
msgbox.exe, which has a .shc.exe suffix to indicate that the beginning of the PE file (i.e., the 
DOS header) has been changed to a stub that jumps to the application loader (assembly language 
version) explained earlier. The entire msgbox.shc.exe file can therefore be run directly as shellcode, 
or as a normal executable:

http://github.com/hasherezade/pe_to_shellcode
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Figure 7.12 – The result of pe2shc

Figure 7.13 shows a simple C/C++ program that reads the full contents of msgbox.shc.exe into 
memory, changes the memory attribute to executable, and uses it as a function pointer to run. 
The msgbox.shc.exe file is successfully run in memory (without hatching into a new process) 
and the shellcode generated by the pe2shc tool comes with its own application loader, so we don’t 
have to bother implementing a new application loader:

Figure 7.13 – C/C++ example with the pe2shc tool
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Nowadays, this technique is one of the most popular techniques used by hackers in the world, in 
addition to the attack tools (such as Cobalt Strike and Metasploit’s Stager Payload). Take the example 
of meterpreter_reverse_tcp from the well-known toolkit Metasploit. In just 350 bytes, a 
stub can perform complex backdoor functions such as screen captures, uploading and downloading 
files from the victim’s computer, escalating privileges, and even backdoor persistence. The principle 
behind this is that the network connection function in winnet.dll is called to receive the large 
shellcode from the Metasploit server into memory and call the large shellcode. Interested readers 
can try to analyze this large shellcode with dynamic debugging. It will be a DLL file starting with 
MZ, which contains a complex backdoor design and is converted from DLL to shellcode with a lite 
application loader.

Summary
Writing shellcode by hand is too costly for complex attack action. Modern attackers prefer to develop 
their malware in C/C++ and convert the EXE files to shellcode for use. There are two main reasons 
for this: one is that handwritten shellcode is costly and time-consuming and it is difficult to develop 
complex backdoor designs, elevated privileges, or lateral movement features; the second is that shellcode 
is often used as code to hijack the execution in only a first-stage exploit.

In practice, due to both buffer overflow and heap exploits, there is often not enough space under the 
attacker’s control to store the whole shellcode, so it is usually split into two pieces of shellcode: the 
small shellcode (called the stub) is responsible for the first stage of the exploit; when successful, the 
larger shellcode is loaded into memory for execution, whether by network connection, file reading, 
or egg-hunting techniques.

In this chapter, we introduced the principle and implementation of direct EXE to shellcode transformation, 
so that we can convert any executable directly to shellcode without having to write the x86 assembly 
language by hand.

Next, if we want to avoid antivirus detection of such programs, we need to bypass them by means of 
shelling and digital signatures. We will discuss this in the next two chapters.



8
Software Packer Design

A software packer is often used by cyber forces to compress the size of executables, to avoid antivirus 
static signature checks, or even to counter researchers’ reverse engineering analysis. As this technique 
is particularly important and is often used in attack operations, in this chapter, we will integrate what 
we have learned and develop a minimalist software packer.

In this chapter, we’re going to cover the following main topics:

•	 The concept of a packer

•	 Packer builder

•	 Stub – the main program of an unpacker

•	 Examples of software packers

What is a software packer?
You can imagine a program packed by a software packer will be protected or compressed and wrapped 
in a shell so that its internal contents are not directly visible to analysts. As usual, we’ll use a memory 
distribution figure to give you a quick overview of how packing technology has been implemented. 
Figure 8.1 shows the distribution of msgbox.exe in the dynamic phase before (left side) and after 
(right side) the software was packed:
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Figure 8.1 – Difference in memory before and after packing

The left-hand side of the figure shows the memory distribution of the msgbox.exe executable 
after file mapping, which we mentioned in Chapter 7. We can see that the current image base of the 
executable is mounted at 0x400000, and the entire PE module is allocated a total of 0x307A bytes in 
memory. The .text section, which holds the code, is currently placed at 0x401000 to 0x401FFF; the 
.data section, which holds the data, is placed at 0x402000 to 0x402FFF. The .idata section, which 
holds the import table, is placed at 0x403000 to 0x40307A. The entry point of this program is at 
0x401234. A simple mathematical calculation gives the following results: after subtracting 0x307A 
from the RVA 0x1000 of the first section (.text), the result is 0x207A, which is the total number 
of bytes occupied by the .text, .data, and .idata sections during the dynamic phase.

As a comparison, at the right of the figure is the memory distribution after a software packer is used, 
which usually consists of three parts:

•	 The text_rwx section: A large block of memory that is readable, writable, and executable 
(PAGE_EXECUTE_READWRITE) and is used to reserve enough memory space to later fill 
in the file-mapping contents

•	 The payload section: A block of raw program contents that is stored in a special way and may be 
compressed, encoded, and encrypted (depending on the main purpose of the software packer)

•	 The stub section: A compact software unpacker inserted additionally into the executable, 
responsible for restoring the memory state to the state expected at the original compilation
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The entire packed program is accompanied by an additional stub program that decodes, decrypts, or 
decompresses the contents of the payload section according to the correct algorithm, and writes it 
back to the text_rwx section to infer the original file-mapping memory distribution.

Since the system’s application loader does not know that there is a compressed PE program embedded 
in the packed program, it will only correct the packed program to the executable stage and will not 
correct the original program that we have restored.

Therefore, the stub’s job is to play the role of an application loader: fixing the import table, relocating 
the program, and so on to finish fixing the program image to an executable state, then jumping back 
to the original entry point (OEP) to finish the unpacking work and make the original program 
run properly.

Take Figure 8.1 as an example: the text_rwx section occupies the space from 0x401000 to 0x40307A 
(0x207A in total), in order to reserve this space for the original .text, .data, and .idata sections. When 
the packed program is clicked, the stub is responsible for decompressing the compressed contents in 
the payload section back to the text_rwx section according to the expected calculation flow, performing 
the application loader task and jumping back to the original program entry, 0x401234.

However, up to this point, we have been talking about how the packed program works. You must have 
realized at this point: compilers do not directly compile programs with shells! That’s right, so there 
are usually two parts to the software packing technique:

1.	 The Packer is responsible for processing any executable into a Packed Application.

2.	 A Packed Application is filled with a compact packed program and the original program 
content is compressed.

Different packers are designed for different tasks. In practice, they are usually divided into two categories:

•	 Compression packers: Often with special designs or chosen algorithms to compress the 
executable to a smaller size. Well-known examples are UPX and MPRESS.

•	 Protective packers: In addition to compression, they can also provide protection against reverse 
engineering, or provide special protection for commercial needs. Examples are VMProtect, 
Themida, and Enigma Protector.

In practice, regardless of whether a compression packer or a protective one is used, the original 
program content will inevitably be encoded, encrypted, or compressed. Therefore, antivirus software 
based on static signature scanning cannot understand or recognize the code wrapped inside. As a 
result, a common saying in Chinese forums is when you can’t beat an antivirus, use an unpopular 
packer to get rid of it.
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The protective packer provides protection against reverse engineering analysis (or cracking), usually 
by means of various tests to avoid researchers’ analysis, or to provide functionality for commercial 
needs, usually of the following types:

•	 Obfuscation: By replacing the machine code generated by the compiler with equivalent 
combinations of machine instructions, it makes the researcher’s task of analysis difficult. 
For example, 1 + 1 (code) = 2 (execution result) may be replaced by the 
equivalent (exp(3) + 44) / 33 = 2, which increases the time, cost, and complexity 
for the researcher to understand the same behavior during the analysis.

•	 Anti-virtual machine: Because of the uncertainty of program behavior, it is common for 
researchers to reverse engineer packed programs on a snapshot-ready virtual machine. This 
protection is usually done by scanning the process list, registry entries, instruction cycle, and 
so on to check whether the program is running on a virtual machine. If so, the packed program 
will not be unpacked and will not initialize.

•	 Anti-debugger/attach: Using a debugger for dynamic debugging to determine execution 
behavior is an important part of reverse engineering. Therefore, an unpacker might not run if 
it detects itself being attached by a debugger. For example, it is common to check whether the 
PEB’s BeingDebugged Boolean is set to indicate that it is being mounted by the debugger 
or to use the ntdll exported NtSetInformationThread function to set the current 
thread attribute to ThreadHideFromDebugger so that the debugger cannot attach to the 
packer process.

•	 Anti-tamper protection: Anti-tamper protection is used to protect the integrity of the code. 
For example, the CheckSum field of OptionalHeader in the PE structure holds the hash 
value of the program content at compilation time, or the design of Authenticode in the Windows 
digital signature (mentioned in Chapter 9). A similar function is provided by packers: the 
cyclic redundancy check (CRC) hash of dynamic or static content is periodically calculated 
to ensure the program itself behaves as expected by the compiler. This technique is favored by 
many Korean online game makers to prevent modifications to the game itself and is also used 
by famous players such as nProtect and HackShield.

•	 Virtual machine: This is the behavior of replacing machine code with the specific instruction set 
developed by the packer manufacturer and having the packer’s own simulation engine parse the 
specific instructions during the execution phase. In the case of the commercial packer VMProtect, 
for example, it simplifies the integration of RISC instructions into the VMProtect-specific 
instruction set, converts the executable machine code into the equivalent VMProtect instructions, 
and the VMProtect stub has a corresponding engine to translate and execute these instructions.

•	 Commercial special features: Commercial applications are provided with additional features 
such as serial number verification, usage or day limitations, network validation and registration, 
activation of screen icon display, and so on. Companies using the protective packer solution 
can therefore focus on developing the commercially valuable features of their products, rather 
than spending time on anti-circumvention.
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You may now think that all malware must have a commercial packer. This is not true. The main reason 
is that these packers are usually purchased under real names, and the packed malware usually has a 
commercial packer watermark on it that can be traced back to the person who purchased the packer. 
In addition, most of the techniques used to protect commercial products against analysis overlap 
with those used in malware, making them easy to be misidentified by anti-virus software, which is 
something most hackers do not like.

As a result, national-level cyber-armies or hackers with considerable technical skills will often modify 
a special unpopular packer based on a compressing packer to evade both antivirus scanning and 
reverse engineering analysis.

In this section, we learned about the basic packer concepts, including the three components (reserved 
text memory, payload, and the stub program), and various applications of a packer in practice. With 
these concepts, it is easier to understand how to write a simple packer ourselves.

Packer builder
In this section, we will take you through a practical process of developing a special unpopular packer 
from scratch. The following samples are packer.cpp source code from the Chapter#8 folder of the 
GitHub project. To save space, this book only contains highlights of the code; please refer to the full 
project for the complete source code.

Figure 8.2 shows the dumpMappedImgBin function, which is used to back up the file-mapping 
contents of the original program:

Figure 8.2 – The dumpMappedImgBin function
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The procedure is quite simple:

1.	 First, the SizeImage of the OptionalHeader can tell us how many bytes the whole 
program is expected to occupy after file mapping. After subtracting the VirtualAddress 
of the first section (i.e., DOS Headers, NT Headers, and Section Headers), it is the amount of 
memory space that should be reserved to allow original program data to be unpacked and filled.

2.	 Then, request enough memory space to save the contents of the file mapping.

3.	 Follow the file-mapping process to simulate the dynamic memory distribution of the static 
program, saving it in the memory space just requested by the mappedImg variable.

Figure 8.3 shows the design of the compressData function:

Figure 8.3 – The compressData function
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Since the focus of this book is not to teach you how to design algorithms for high compression rates, 
and it is too much to explain how to refer to open source compression libraries, we have chosen to 
use the RtlCompressBuffer API, which comes natively with Windows, for this purpose:

Figure 8.4 – The first part of the main function

Let’s go back to the packer entry point, that is, the main function. First, read the PE static contents 
of the path pointed to by the input parameter into the buf variable, and record the actual size of the 
program in the filesize variable:
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Figure 8.5 – The second part of the main function

In lines 174-177 of the code, the program data just read in is simulated by dumpMappedImgBin 
to create a dynamic memory distribution of pure sections after subtracting the PE structure headers 
from the file mapping and is stored in the memory that mappedImg points to.

Lines 181-188: The dynamic memory content of the simulated file mapping is compressed, and the 
smaller compressed file-mapping content is obtained as the payload.

Lines 194-198: The external stub.bin file is read into the x86_Stub variable as a binary. We can 
then write and generate the machine code for the stub in shellcode form using the Yasm compiler along 
with GCC, and the packer is responsible for populating this content as a linker into the packed program.

Figure 8.6 shows the call to the specially designed linkBin function responsible for processing the 
compressed payload into a new executable (packed program):
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Figure 8.6 – The third part of the main function

In lines 200-203 of the code, first allocate enough memory to temporarily store the packed static 
contents, then back up the PE headers (i.e., DOS Header, NT Headers, and Section Headers) that 
are not backed up by the payload into the new empty memory newOutBuf points to. Then call the 
linkBin function as a linker to build the packed program in this memory.

Then, in lines 208-213, take PointerToRawData of the last section in the assembled packed PE 
file and add the size of this section to infer the output size of the entire program. Then it is easy to 
export the packed file with the fwrite function.

Figure 8.7 and Figure 8.8 show the details of the linkBin function:

Figure 8.7 – The first part of the linkBin function
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In lines 100-107 of the code, we have designated a section, text_rwx, which is dynamically mapped to 
retain all the space needed for the complete content of the original program and to give readable, writable, 
and executable attributes to the section to facilitate the filling of the content. This section is only calculated 
and decompressed dynamically by the stub during the dynamic phase, so there is no corresponding content 
in the static file. PointerToRawData and SizeOfRawData can therefore be zeroed directly.

Lines 110-116: Save the stub.bin machine code as a new section called stub.

Let us check some more details of the linkBin function:

Figure 8.8 – The second part of the linkBin function

At lines 119-125, save the compressed payload as data in the new section as a reference for the stub 
to decompress later.

Since the packed program modifies the EntryPoint so that the stub is executed first (as a restoration 
of the original program), and the stub acts as an application loader, it requires DataDirectory 
information for correction purposes. For these reasons, it is necessary to make a full backup of the 
original NT Headers information, which is then used by the stub to correct and resume execution.

At lines 128-137, create a separate section, ntHdr, which holds the contents of the original NT 
headers, and the stub will not be corrected by the system’s own loader. So, we can empty the entire 
DataDirectory table and change the program entry to the stub function.

In this section, we illustrated the minimum packer design principles with an actual program, step by 
step. First, the original mapping is backed up, the stub.bin file is read, and the stub is generated, 
and then the linkBin function is called to assemble the shelled program as a linker. In this way, we 
have completed a simplified packer.
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Stub – the main program of an unpacker
So far, we have learned how to develop packer programs. In the previous section, we used an external 
stub.bin file to generate the master program of the packer stub. In this section, we will describe 
how to develop the stub in x86.

The following samples are stub.asm source code from the Chapter#8 folder of the GitHub project. 
To save space, this book only contains highlights of the code. Please refer to the full project for the 
complete source code.

Figure 8.9 shows the entry point of the hand-written x86 main point of the stub:

Figure 8.9 – The main part of the stub

The main task is split into three parts:

•	 call decompress_image: This is used to decompress the compressed file-mapping 
contents of the payload, to fill the text_rwx section to complete the task of restoring the 
original file-mapping contents, and to act as an application loader to help correct the import table.

•	 call recover_ntHdr: This is used by the packer to extract the backed-up NT headers 
to overwrite the current NT headers. Since the contents of the NT headers have been changed 
after packing, if the OEP is run immediately without restoring the NT headers (to the original 
expected state), this could lead to serious consequences such as the original program not being 
able to locate its own resource files (such as game graphics, sounds, icons etc.).

•	 call lookup_oep: After completing the first two steps, we are able to extract 
AddressOfEntryPoint from our backed-up NT headers to find out the original offset of 
the OEP and push it into the stack to record it. Then we can jump to the OEP and successfully 
resume the original program.
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Important note
Use pushad at the stub entry to make an initial thread context (the contents of each register) 
backup to the stack, and popad to restore the backup from the stack after the stub has finished 
its work.

As some older programs may be used to retrieve information from the initial thread context 
given by the system (e.g., the PEB address), it is important to keep the thread context of the 
shell master running consistently with that of the original unpacked program. The information 
required by modern compilers is obediently extracted from the Win32 API calls on the IAT, so 
there is less need to worry about this, or even to do thread context restoration.

Since popad will restore all the registers to the original thread context, we cannot save the 
OEP in the registers to jump to later. The alternative is to push the queried OEP pointer value 
into the stack and then use popad to restore the contents of the eight different registers in a 
32-bit system. So, the original OEP record on the stack is moved to [esp - (8+1) * 4] 
(i.e., 0x24).

Figure 8.10 shows the beginning of the decompress_image function:

Figure 8.10 – The decompress_image function

In lines 61-62 of the code, look up the current PEB address from the fs segment register and push 
the current image base address of the main EXE module onto the stack for backup.

In lines 65-69, the first node enumerated from the PEB→Ldr InLoadOrderModuleList field 
will be the ntdll.dll record (as LDR_DATA_TABLE_ENTRY structure), so push its image base 
into the stack for backup.
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Lines 71-74 use lodsd to read the Flink of the ntdll.dll record to get the second node, which will 
be a fixed kernel32.dll record, then push its image base address into the stack again for backup.

Line 75: Next, set the ebp register as the address at the top of the current stack and obtain the image 
base addresses of kernel32.dll, ntdll.dll, and the current main EXE module on ds:[ebp], 
ds:[ebp + 4], and ds:[ebp + 8], in that order.

Figure 8.11 shows the code snippet for searching the Win32 API pointer:

Figure 8.11 – The lookup and decompress API

Three APIs – the ntdll!RtlDecompressBuffer API required for stub decompression, the 
kernel32!LoadLibraryA API, and kernel32!GetProcAddress, required for fixing the 
import table – are all searched with the find_addr subroutine and pushed into the stack for backup.
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Then, set ebp to the address at the top of the stack again and get the RtlDecompressBuffer 
address, LoadLibraryA address, GetProcAddress address, kernel32.dll, ntdll.dll, 
and the image base of the current main EXE module on ds:[ebp], ds:[ebp + 8], ds:[ebp 
+ 12], ds:[ebp + 16], and ds:[ebp + 20], in that order:

Figure 8.12 – The spraying of file mapping

With the ntdll!RtlDecompressBuffer function for decompression, we can then decompress 
the payload in the data section and write it back to the text_rwx section.

The RtlDecompressBuffer function has six parameters, called in the following order:

1.	 The compression algorithm type, for example, LZNT1

2.	 The destination address of the decompressed content

3.	 The memory size of the current decompressed content

4.	 The source address of the uncompressed content

5.	 The size of the uncompressed content

6.	 The ULONG variable pointer: used to store how many bytes are actually decompressed to 
the destination

In lines 115-116 of the code, first, we request 4 bytes of space on the stack for the ULONG variable, 
initially storing the 0xdeadbeef value. Then the highest point of the current stack, esp, will be 
the address of the variable, which we then push into the stack as the sixth parameter.
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Next, we need to decompress the payload from the data section and populate it in the text_rwx section.

In lines 118-130, the lookupSectionInfo subroutine is called to see whether the first 4 bytes of 
each section name in the mounted main EXE module match the string data stored in the edx register. 
If it finds the corresponding section, it saves the section’s current absolute address in eax and the 
section size in the ebx register.

With the lookupSectionInfo subroutine, we can get the source of the payload, the size of the 
payload, the size of the memory used to save the decompressed file mapping, and the size of the original 
file mapping (which corresponds to parameters 2 to 5) and specify the decompression algorithm as 
LZNT1. We then call the RtlDecompressBuffer function on ds:[ebp + 0] to decompress 
and restore the original file-mapping contents.

Figure 8.13 shows the complete subroutine to fix the IAT:

Figure 8.13 – The design of the fix_Iat program

In lines 141-143 of the code, first, we extract the absolute address of the import table (stored in the 
ecx register) from the ntHdr section of the packer backup. Next, in the import table is a set of 
IMAGE_IMPORT_DESCRIPTOR structure arrays that record the information about each imported 
module and function.
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In lines 146-149 of the code, take the name of the current DLL module from the Name field in the current 
IMAGE_IMPORT_DESCRIPTOR struct (ecx register), mount it in memory with LoadLibraryA, 
and save the base address of this DLL image in ebx.

As the FirstThunk in the IMAGE_IMPORT_DESCRIPTOR structure points to a set of IMAGE_
THUNK_DATA arrays, each field in this array is used to allow the code in the .text section to extract 
the variable address of the Win32 API. These fields point to the IMAGE_IMPORT_BY_NAME structure 
before they are fixed by the loader, with the Name field pointing to an IMAGE_THUNK_DATA field 
that should be populated with the name of the system function.

In lines 149-152 of the code, set both the edi destination and the esi source to the FirstThunk array 
corresponding to the IMAGE_IMPORT_DESCRIPTOR struct that the ecx register currently points to.

In lines 154-166, use lodsd from the source to extract an IMAGE_THUNK_DATA struct corresponding 
to the system function name in IMAGE_IMPORT_BY_NAME, use GetProcAddress to query the 
corresponding function address, then use stosd to write back to the esi register (i.e., the same 
IMAGE_THUNK_DATA field) and keep correcting until the IMAGE_THUNK_DATA value is empty, 
meaning it has been corrected to the end.

In lines 168-169, the ecx register points to the next IMAGE_IMPORT_DESCRIPTOR structure and 
continues to iterate until all imported modules have been corrected.

After restoring the contents of the dynamic file mapping and fixing the IAT, it is time to restore the 
NT headers of the current EXE module, as shown in Figure 8.14:

Figure 8.14 – The design of the recover_ntHdr program
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In lines 20-37 of the code, we locate the VirtualProtect function address and find the NT Headers 
record in the packer backup (located in the ntHdr section) and the size of the entire backup.

However, the existing program contents that have been mounted to memory cannot be modified at 
will according to Windows policy. Therefore, next, we have to use the Windows API to switch the 
memory status of the program content so that it can be in the written state. In this way, we can change 
the contents of the mounted program to what we want, as depicted in Figure 8.15:

Figure 8.15 – The end of recover_ntHdr

In lines 43-58 of the code, we can locate the NT headers of the current EXE module, set it to the 
writable state with VirtualProtect, and then use rep movsb to overwrite the NT headers of 
the current EXE module with the backup in the ntHdr section to complete the correction. Then we 
are ready to jump back to the OEP to finish the original program.

Figure 8.16 shows two subroutines:
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Figure 8.16 – The fetch_ntHdr and lookup_oep subroutines

fetch_ntHdr mainly calls the lookupSectInfo subroutine to get the absolute address of the 
ntHdr section, while the lookup_oep subroutine extracts the absolute address of the pre-packed 
EntryPoint from the NT Headers backup in the ntHdr section.

Figure 8.17 shows the lookupSectInfo subroutine:

Figure 8.17 – The lookupSectInfo subroutine
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It locates the image base of the current main EXE module from PEB→ImageBase and enumerates 
whether the first 4 bytes of each section name match the ASCII value of the queried section name. 
If found, the absolute address and size of the section are placed in two registers, eax and ebx, and 
the function is returned.

In this section, we explained the purpose of each function call in the stub and traced the machine 
code operation step by step through the actual stub program.

Examples of software packers
We use the well-known open source compiler Yasm to compile our written stub.asm source into 
COFF format, sub.bin, which contains the stub mechanical code, as shown in Figure 8.18:

Figure 8.18 – Using Yasm to compile stub.asm

Then we can compile our C/C++ packer into a utility program using MinGW, as shown in Figure 8.19:
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Figure 8.19 – Compiling our packer

Using our compiled packer to pack for an old game, NS-Shaft, our compiled packer will compress 
the contents of the program and inject stub.bin as the initialization engine to output the packed 
program, down_protected.exe. Then we double-click to open down_protected.exe.

As shown in Figure 8.20, the game program still runs normally but the static size is successfully 
compressed from 565 KB to 280 KB, which confirms the feasibility of our compressed packer design:

Figure 8.20 – The result of the packed program
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Figure 8.21 shows the results of the static reverse engineering analysis of the packed program using 
the IDA Pro tool:

Figure 8.21 – The IDA Pro analysis

It can be seen that the original game content is no longer displayed in this static analysis tool. We can 
also see that the packed program cannot be directly analyzed by IDA Pro because the main program does 
not use the import table and the original program has been compressed and protected. It is necessary 
for researchers to understand the operation of the packer and to run the unpacking procedure before 
they can see the code of the protected game program.

Note
The example presented in this chapter is actually adapted from the author’s pure C/C++ 
compressed shell theArk: Windows x86 PE Packer In C++ (github.com/aaaddress1/
theArk). Interested readers can check it out themselves. The principle of implementation 
is exactly the same as in this book; the only difference is that it is developed in pure C/C++.

In this section, we actually compiled our packer and packed it against an old game. The result shows 
that the program still works, but its file is compressed and its content cannot be analyzed by IDA Pro. 
This proves the usefulness of a packer. In practice, due to the features of packers, they are also often 
used to avoid analysis by researchers and detection by antivirus software.

Summary
In this chapter, we introduced in detail how to develop the simplest compression packers. We learned 
about the design concepts of modern software packers and writing the packer builder and its entry 
program (stub) by ourselves. In practice, this software packing technology is commonly used by cyber 
forces. Many unpopular packers are also extended on this basis, adding new features such as anti-
debugging and anti-sandboxing against researchers, or being equipped with vulnerabilities against 
antivirus software to enhance the firepower of malware attacks in the wild. The technology in this 
chapter is important for you to master in the future, whether you are writing packers or conducting 
research into decrypting malware.

https://github.com/aaaddress1/theArk
https://github.com/aaaddress1/theArk
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In the next chapter, we will introduce the digital signature design of Windows. The fact that the 
presence of digital signatures in program files is often used by antivirus vendors to determine whether 
a program is trustworthy makes attackers in the wild highly interested in any opportunity to abuse 
signature verification. We will go over the standard signature specification of Windows, Authenticode, 
and use several examples to explain how attackers can get any trusted signatures for malware at will.



9
Digital Signature – 

Authenticode Verification

For Windows users, it is common practice to install anti-virus software, update systems regularly, 
choose the source of downloads carefully, and double-check that applications are digitally signed by 
reputable technology companies. However, are these security practices really enough to keep hackers 
at bay? This chapter may give readers a very different perspective. In this chapter, we will learn about 
Windows Authenticode specification, reverse-engineering the signature verification function, 
WinVerifyTrust, and how to hijack well-known digital signatures.

This chapter is based on the public presentation Subverting Trust in Windows given by Matt Graeber, 
a security researcher at Specter Ops, at the TROOPERS18 conference in 2018. It introduced how to 
manage trusted certificate authorities (trust providers), the calculation process for signing certificates, 
the corresponding authentication API, and malicious exploits in the Windows Trust Model. The author 
of this book presented a public session at CYBERSEC 2020 on Digital Signature? Nah, You Don't Care 
About That Actually. Interested readers can search for it and watch it online. This attack technique is 
also listed by MITRE ATT&CK® as Subvert Trust Controls: SIP and Trust Provider Hijacking (attack.
mitre.org/techniques/T1553).

https://attack.mitre.org/techniques/T1553
https://attack.mitre.org/techniques/T1553
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In this chapter, we’re going to cover the following main topics:

•	 Authenticode digital signatures

•	 Signature verification

•	 Examples of mock signatures

•	 Examples of bypassing hash verification

•	 Examples of signature steganography

•	 Getting signed by abusing path normalization

Authenticode digital signatures
Authenticode is a code-signing technology developed by Microsoft that helps users to check the 
publisher who signed the program. It also ensures that the signed program has not been tampered 
with by attackers during transport. Additionally, the signature used to sign must be verified by trusted 
certificate authorities (CAs) to ensure that the file being signed actually comes from the publisher.

For more information, please refer to Microsoft’s public document Authenticode Digital Signatures 
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/
authenticode. This introduction states that Microsoft has designed the Authenticode specification 
to provide a digital signature mechanism that allows users to verify the code’s integrity. This integrity 
proves that the program has not been tampered with by hackers or backdoors, but rather that the 
original program content has been obtained from a trusted company without forgery.

The document also states the Authenticode signature specification for executables (such as *.exe 
programs or *.dll function modules) and *.sys drivers. These are two general types of signatures.

The first method (and the one used in mainstream commercial products) is the embedded digital 
signature, which binds the signature information for verification directly at the end of the PE structure 
so that the signature information (as with fingerprint records) can be transferred to other computers 
for verification while the program file is being carried, copied, or published. The second way is to 
detach the digital signature by storing the program’s fingerprint record (hash information) in the 
operating system, C:\Windows\System32\CatRoot, as shown in Figure 9.1, which presents 
all the detached signature records in the author’s system:

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/authenticode
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/authenticode
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Figure 9.1 – The fingerprint record in CatRoot

Each file with the .cat extension is an ASN.1 encapsulated record—it holds the file name and its 
corresponding content hash. This folder is located under C:\Windows\System32\, so only a 
privileged system service or an Elevated Process with User Access Control (UAC) privilege can write 
a .cat fingerprint file into it, rather than a hacker being able to place their malware fingerprints there 
at will to fool users and security products.

In this section, we have introduced the Authenticode digital signature specification and the two types 
of digital signatures – the embedded digital signature and the detached signature – using the Windows 
public documentation. The next section describes the use of each of the two types of digital signatures 
and the details of the corresponding attacks.

Signature verification
You can find how to call Windows APIs to verify that a program is signed in Microsoft’s public 
document, Example C Program: Verifying the Signature of a PE File (docs.microsoft.com/
en-us/windows/win32/seccrypto/example-c-program--verifying-the-
signature-of-a-pe-file). This document provides the complete C/C++ source code, showing 
how to call the Windows API to verify the validity of a digital signature.

The following example is the winTrust project in the Chapter#9 folder of the GitHub project. 
In order to save space, this book only extracts the highlighted code; the complete source code should 
be referred to in the complete project for detailed reading.

https://docs.microsoft.com/en-us/windows/win32/seccrypto/example-c-program--verifying-the-signature-of-a-pe-file
https://docs.microsoft.com/en-us/windows/win32/seccrypto/example-c-program--verifying-the-signature-of-a-pe-file
https://docs.microsoft.com/en-us/windows/win32/seccrypto/example-c-program--verifying-the-signature-of-a-pe-file
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Figure 9.2 shows the main entry section. In Figure 9.2, the main entry is quite compact, with a 
VerifyEmbeddedSignature function that is designed to read in a specified program to verify 
the validity of the digital signature and prints out the result on the screen:

Figure 9.2 – The main function

Figure 9.3 shows the VerifyEmbeddedSignature function:

Figure 9.3 – The VerifyEmbeddedSignature function

At the beginning of the VerifyEmbeddedSignature function, a WINTRUST_FILE_INFO 
structure is declared to name the path of the program to be verified on the disk driver.

Lines 27-32 of the code point the structure’s pcwszFilePath field to the path of the validated file.
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Figure 9.4 shows the process of initializing the WINTRUST_DATA structure:

Figure 9.4 – The process of initializing the WINTRUST_DATA structure

It contains many details, such as saving the parameters for the subsequent verification WinVerifyTrust 
calls, specifying whether a pop-up UI should prompt the user during verification, confirming the validity 
of the signature signer’s certificate for online verification, and verifying whether the type of document 
being verified is a detached signature, an embedded signature, or a certificate with a full digital signature.

Interested readers can refer to the official Microsoft Win32 API file, WinVerifyTrust function (wintrust.h) 
(https://learn.microsoft.com/en-us/windows/win32/api/wintrust/
nf-wintrust-winverifytrust) for more details.

https://learn.microsoft.com/en-us/windows/win32/api/wintrust/nf-wintrust-winverifytrust
https://learn.microsoft.com/en-us/windows/win32/api/wintrust/nf-wintrust-winverifytrust


Digital Signature – Authenticode Verification150

At line 49 of the code in Figure 9.4, the WVTPolicyGUID variable (which is a GUID-type variable) 
is declared as an argument to the WinVerifyTrust function and set to WINTRUST_ACTION_
GENERIC_VERIFY_V2, which means that the document we are currently verifying is a digital signature 
signed by the Authenticode specification. This value represents a series of Windows COM interface 
codes that allows WinVerifyTrust to verify the export function of the DLL modules in different 
COM interfaces by selecting different GUID numbers. There are two other more common options:

•	 HTTPSPROV_ACTION: This is used in Internet Explorer (IE) browsers to validate the digital 
signature of the current SSL/TLS HTTPS network connection to another party.

•	 DRIVER_ACTION_VERIFY: This is the Windows Hardware Quality Labs (WHQL) driver 
used to verify that the file is valid.

At line 66, we can point the pFile field of the WINTRUST_DATA structure to our just-prepared 
WINTRUST_FILE_INFO (which records information about the path of the test file) so that we can 
correctly capture the path of the test file when calling WinVerifyTrust.

Figure 9.5 shows the WinVerifyTrust function:

Figure 9.5 – The WinVerifyTrust function



Signature verification 151

When the WinVerifyTrust function is called, the COM interface (the WVTPolicyGUID variable) 
and the WINTRUST_DATA structure are passed in as parameters and called, and the return value is 
stored in the lStatus variable. The return value is the result of the signature validation, and there 
are several possible outcomes:

•	 ERROR_SUCCESS: The incoming file has been authenticated by the signature and there is no 
doubt that it has been damaged or tampered with

•	 TRUST_E_NOSIGNATURE: The signature on the incoming file does not exist (there is not 
any signature information) or it has a digital signature but is not valid

•	 TRUST_E_EXPLICIT_DISTRUST: The incoming file is validly signed and authenticated, 
but the signature has been disabled by the signer or current user and is therefore invalid

•	 TRUST_E_SUBJECT_NOT_TRUSTED: The signature is not trusted because it was manually 
blocked by the user when the certificate with the signature was installed on the local system

•	 CRYPT_E_SECURITY_SETTINGS: The signature certificate has been disabled by a group 
policy set by the network administrator, the result of the fingerprint calculation does not match 
the current incoming file, or the time stamp is abnormal

Refer to Figure 9.6; this tool was compiled and tested on the Windows system on Calculator and Notepad:

Figure 9.6 – The demonstration of the winTrust project
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As both have been signed with a detached signature (Catalog Sign) and do not have the embedded 
signature information encapsulated in the Authenticode specification, the result is an invalid signature.

The GoogleUpdate.exe file for Google Chrome was tested to confirm that it had a Google 
digital signature and that the signature was still valid and had not expired when the file properties 
popped up in File Explorer by right-clicking and selecting Content. This confirms that we have used 
WinVerifyTrust to correctly identify whether any program has an Authenticode digital signature 
and to verify that it is still valid.

WinVerifyTrust under the hood

Figure 9.7 shows a figure from researcher Matt Graeber’s public presentation Subverting Trust in 
Windows, which explains the complete verification process after a WinVerifyTrust function call:

Figure 9.7 – The verification process after a WinVerifyTrust function call
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Interested readers can refer to his white paper for full details on how the Windows trust system verifies 
digital signatures and malicious exploitation attacks: pecterops.io/assets/resources/
SpecterOps_Subverting_Trust_in_Windows.pdf.

As different file types have different ways of saving their digital signatures, a separate COM interface 
(a global shared DLL module) has been designed for each type of file validation under the Microsoft 
system as a Subject Interface Package (SIP) interface for the current file type, with a set of GUIDs 
that can be traced back to the SIP module. The next question is, how is the internal implementation 
of WinVerifyTrust designed to reference the use of the SIP interface?

The flowchart in Figure 9.7 shows that when the WinVerifyTrust function is called, it first performs 
the necessary initialization and then calls the three export functions on the three Crypt32.dlls 
in order:

1.	 CryptSIPDllIsMyFileType: The CryptSIPDllIsMyFileType function will identify 
in order which types of PE, Catalog, CTL, and Cabinet correspond to the current incoming file 
and return the GUID number of the corresponding SIP interface. If it is not one of these four 
types, then it will then confirm from the registry whether it is a PowerShell script, Windows 
MSI installation package, or .Appx program in Windows Marketplace, and so on, and return 
the corresponding GUID number to the SIP interface.

2.	 CryptSIPGetSignedDataMsg: After CryptSIPDllIsMyFileType has 
successfully extracted the GUID of the corresponding SIP interface, we can use 
CryptSIPGetSignedDataMsg to extract the signature information (signed data) from 
the file that corresponds to the SIP interface.

3.	 CryptSIPVerifyIndirectData: The hash result of the current file is then 
calculated as a fingerprint and compared with the signature information extracted from 
CryptSIPGetSignedDataMsg. If the hash result is the same, that means that the current 
file is identical to the file being signed; if not, this means that the file was corrupted during 
transmission or copying, or that a hacker has planted a backdoor and tampered with the file.

Figure 9.8 shows a reverse engineering analysis of the PsIsMyFileType function called internally 
by CryptSIPDllIsMyFileType to compare the file extension with that of PowerShell scripts:

https://pecterops.io/assets/resources/SpecterOps_Subverting_Trust_in_Windows.pdf
https://pecterops.io/assets/resources/SpecterOps_Subverting_Trust_in_Windows.pdf
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Figure 9.8 – Reverse-engineering of CryptSIPDllIsMyFileType

If it is, the GUID of the SIP interface for PowerShell signature verification is returned.

Signature data in PE files

Next, we will take a closer look at signed PE files. We will explain how the signature information is 
embedded into the PE structure when the PE file is signed by Authenticode, as opposed to a normal 
unsigned program.

Figure 9.9 shows the Data Directory table resulting from PE-bear’s analysis of PE files with 
digital signatures:
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Figure 9.9 – The Data Directory table from PE-bear’s analysis

In Figure 9.9, we can see that the address of the Security Directory field is not zero but an Offset 
address (0x18C00), pointing to the embedded Authenticode signature message, which is 0x1948 
bytes in size.

We can then move on to the Security page to find out more. Figure 9.10 shows the embedded signature 
information after the useful tool, PE-bear, has analyzed it:

Figure 9.10 – WIN_CERTIFICATE with an offset of 0x18C00

We have just mentioned that the Security Directory field points to a signature message structure, 
WIN_CERTIFICATE, at an Offset address of 0x18C00, which holds the signature message for the 
current program validation.
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Figure 9.11 shows the fields of the WIN_CERTIFICATE structure:

Figure 9.11 – The structure of WIN_CERTIFICATE

The WIN_CERTIFICATE structure contains the following fields:

•	 The dwLength field records the bytes of signature data following the starting point of the 
signature information (i.e., 0x18C00)

•	 The bCertificate field is used as the starting point for all data in the certificate record 
for validation

•	 The wCertificateType field records the certificate type of bCertificate:

	� WIN_CERT_TYPE_X509 (0x0001): X.509 certificate

	� WIN_CERT_TYPE_PKCS_SIGNED_DATA (0x0002): The structure of the SignedData 
struct padded by the PKCS#7 method

	� WIN_CERT_TYPE_RESERVED_1 (0x0003): Reserved

The example in Figure 9.10 is the document currently signed by PKCS#7 (0x0002).

The wRevision field may be WIN_CERT_REVISION_1_0 (0x100) for an older version of 
Win_Certificate or WIN_CERT_REVISION_2_0 (0x200) for a current version.

Note
1. Each field in Data Directory is an IMAGE_DATA_DIRECTORY structure and the address 
recorded in the structure (VirtualAddress) should be an RVA offset relative to the image base.

2. Here, we highlighted that the Security Directory address is an offset address because the 
special address stored in IMAGE_DATA_DIRECTORY is an offset of the static file (not a 
VirtualAddress of the process image).

3. Digital signature verification is designed to verify that a static file that has not yet been executed 
can be trusted, rather than to verify that a process can be trusted in the dynamic execution 
phase. In fact, digital signatures cannot be verified in the dynamic phase; if a program file has 
already been executed and there is a high probability that it will have already listed itself as 
trusted through a vulnerability or by installing a self-signed certificate, then there is no point 
in verifying the signature of a running process.
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PKCS#7 information

The Microsoft white paper for developers in 2008, Windows Authenticode Portable Executable Signature 
Format, clearly explains the details of the certificate information stored in bCertificate and the 
details of the fingerprint calculation.

Figure 9.12 shows the structure of the PE-embedded signature information referenced in this white paper:

Figure 9.12 – PKCS#7
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From the figure, we can clearly see the following information:

•	 In the Typical Windows PE File Format structure on the left, the signature message is appended 
to the end of the entire PE static file (i.e., the end of the last segment) and the append starts at 
the offset address recorded by Security Directory.

•	 The Authenticode Signature Format structure on the right is the certificate information 
populated following PKCS#7. It contains three parts:

	� contentInfo: This records the hash value of the document as a fingerprint at the time 
of signature

	� certificates: This records the X.509 public certificate information of the signer

	� signerInfos: This is used to store the hash value in contentInfo and the information 
displayed to the user to view the signer, such as the name of the signer, the reference URL, 
the time of the signature, and so on

As mentioned at the beginning of this chapter, the Authenticode specification is designed to match 
document fingerprints by verifying the document hash results to confirm that the contents of the 
document at the time of signing are the same as those on the user’s computer and have not been 
forged, tampered with, or corrupted during transmission. Details of the calculation process are 
also given in the final chapter of the white paper, Calculating the PE Image Hash. The following is a 
step-by-step explanation:

1.	 Read the PE file into memory and do the necessary initialization of the hashing algorithm.

2.	 Hash the data from the beginning of the PE file up to the Checksum field (in the Optional 
Header structure of NT Headers) and update the hash result.

3.	 Skip the Checksum field and do not perform hash calculations.

4.	 Hash the data from the end of the Checksum field up to Security Directory and update the 
hash result.

5.	 Skip the Security Directory field (i.e., an IMAGE_DATA_DIRECTORY structure with a total 
size of 8 bytes) and do not do hashing.

6.	 Hash the data from the end of the Security Directory field to the end of the block header array 
and update the hash result.

7.	 The first six steps so far have completed the fingerprinting of all PE structure headers – that is, 
all contents of the SizeOfHeaders size in an OptionalHeader (i.e., containing DOS, 
NT Headers, and all section header information).

8.	 Declare a numeric variable, SUM_OF_BYTES_HASHED, to hold the number of bytes for which 
hashing has been done and then set the default value of this variable as the SizeOfHeaders value.
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9.	 Create a section header list to hold all the section headers in the PE structure, and sort the 
section headers in the list in ascending order according to PointerToRawData – that is, 
the section headers in the list will be sorted by section offset.

10.	 Enumerate each section header in the sorted list in order, perform a block hashing calculation 
on the contents of the section header, and update the hashing result. The SUM_OF_BYTES_
HASHED variable is added to the block size for each block of content hashed.

11.	 In theory, the Authenticode signature information should be stored at the end of the PE 
structure – that is, the hashing of the PE file fingerprint is completed by step 10. However, 
in practice, there may be additional data padding at the end of the signature. If so, the hash 
calculation should be performed again for all the excess data at the End of File (EOF) of the 
signature, and the hash result updated.

12.	 The fingerprint hashing of PE files is complete.

Note
On closer reading, readers can see that the Checksum and Security Directory fields in 
Optional Header and the digital signature block itself have been deliberately excluded from 
the preceding hash calculation process (as can be seen in step 11 of the calculation process). 
This is deliberate, as digital signatures are inserted as additional data after the program has 
been compiled in order to avoid the signature data being inserted into the PE file afterward, 
which would destroy the original fingerprint hash.

In this section, we explained the steps of signature verification and learned about WinVerifyTrust, 
signature data in PE files, and PKCS#7 information, as well as the step-by-step process for calculating 
document fingerprints. Readers may then wonder whether a hacker can forge an Authenticode signature 
on Security Directory for malware and trick its hash verification function so that the malware will 
look like it has been digitally signed. In the next section, we will try out a practical example.

Examples of mock signatures
The following example is the signatureThief project in the Chapter#9 folder of the GitHub 
project. In order to save space, this book only extracts the highlighted code, and the complete source 
code should be referred to the complete project for detailed reading.

At this point, the first exploit readers may think of, since signed programs must have an Authenticode 
signature message at the end of their files, is stealing someone else’s Authenticode signature message 
directly within our malware, which should bypass the authentication process. Let’s put that to the test.

Figure 9.13 shows the functional design for stealing static Authenticode signature information in the 
signatureThief project:
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Figure 9.13 – The rippedCert function

At lines 26-37 of the code is the design of the rippedCert function. It reads the incoming PE file 
with fopen and fread, parses the Authenticode signature block pointed to by Security Directory, 
and copies it to the certData variable.

Figure 9.14 shows the entry function for the signature-stealing widget:
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Figure 9.14 – The main function

It requires three path parameters pointing to the following:

•	 A PE file with a digital signature to be stolen

•	 A PE program to be signed

•	 An output PE program

At lines 48-56 of the code, we first copy the Authenticode signature from the digitally signed PE file, 
then read the PE file to be signed as the payload, and prepare a space large enough for finalPeData 
to hold the payload and signature.

At lines 58-64 of the code, next, all we have to do is paste the stolen copy of the signature at the end of 
the original program and make Security Directory point to our maliciously forged signature block, 
and, finally, use fwrite to drop the forged PE file to the disk driver.

Figure 9.15 demonstrates processing the Pikachu Volleyball game using the signThief.exe 
program in the signThief project:
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Figure 9.15 – The demonstration of the signThief project

It can be seen that it generates sign_pika.exe with a digital signature by stealing and pasting the 
signature from GoogleUpdate.exe to the Pikachu Volleyball game.

As we can see, sign_pika.exe has been identified as having a Google signature on the menu screen 
under Properties. However, because this signature does not match the fingerprint hash calculated by 
the pick-up game, the This digital signature is not valid message is displayed.

Figure 9.16 is a post of the ransomware Petya attack in the wild, which was observed by Kaspersky 
researcher Costin Raiu, @craiu:
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Figure 9.16 – A case study of the wild ransomware family Petya

It is characterized by the use of major national leaks (such as EternalBlue, SMB vulnerabilities, and 
MS Office-related vulnerabilities for phishing) as a standard infection route, and has wreaked global 
havoc on large government and private sector organizations, such as airports, subways, and banks. 
In 2017, it was discovered by @craiu that the Petya ransomware used the signature theft technique 
described in this section to make the backdoor less visible to users, disguising it as a Microsoft release 
to confuse them. Even an invalid signature can be an effective way of gaining the trust of users.

In this section, we replaced the digital signature in a game as a practical example. This shows us that 
after downloading any program from an unknown source, it is important not only to check whether 
it has a digital signature but also to check more closely that the signature is still valid in order to avoid 
the execution of a digital signature specially created by hackers.
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Examples of bypassing hash verification
For hackers, is the program unforgeable as long as it is digitally signed and validated? In this section, 
we will discuss how to bypass digital signature verification.

The following example is the signVerifyBypass project in the Chapter#9 folder of the GitHub 
project. In order to save space, this book only extracts the highlighted code – readers can refer to the 
complete project for detailed reading.

Figure 9.17 shows a description of the Windows API CryptSIPVerifyIndirectData 
function from researcher Matt Graeber’s public presentation, Subverting Trust in Windows:

Figure 9.17 – A description of the Windows API CryptSIPVerifyIndirectData function

In this figure, Matt Graeber describes how after a digitally signed executable has extracted the signature 
information (i.e., the full WIN_CERTIFICATE structure that Security Directory points to) through 
CryptSIPGetSignedDataMsg, the signature information can be verified using Windows API 
CryptSIPVerifyIndirectData. If the signature is valid, it will return True; otherwise, it will 
return False.

If we can forge this function, that is, anyone who calls the CryptSIPVerifyIndirectData 
function for signature validation can respond with True, we can achieve the goal of bypassing 
signature verification.
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Figure 9.18 shows the complete code of the signVerifyBypass project. We assume that users 
usually use the Explorer.exe right-click menu to verify that a program is digitally signed and 
valid, so we can find a way to spoof the CryptSIPVerifyIndirectData function in all Explorer 
Process memory:

Figure 9.18 – The complete code of the signVerifyBypass project

The process to show whether it has a digital signature or not must have a displayable window interface 
to interact with the user. The EnumWindows function is used to enumerate all the displayable 
windows, and the GetModuleFileNameExA function is used to confirm whether the full path of 
the window owner is C:\Windows\explorer.exe. If it is, it means that the window owner is File 
Explorer. Then, we write the machine code in the CryptSIPVerifyIndirectData function in 
its memory with WriteProcessMemory so that the function must return True when it is called.

After compiling and executing it, we can see the result in Figure 9.19, where the digital signature that 
could not be verified in the previous section has now become a legitimate signature:
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Figure 9.19 – The demonstration of the signVerifyBypass project

This shows that our signVerifyBypass project has completed the forgery of the File Explorer 
verification letter and has successfully turned the fake digital signature into a legitimate digital signature!

This attack technique was first introduced in the white paper, Subverting Trust in Windows, a public 
presentation by security researcher Matt Graeber.

The original white paper has a more complete system implementation of the Windows digital signature 
trust system and various attack techniques, such as intercepting CryptSIPGetSignedDataMsg to 
redirect the system to extract legitimate signatures, forging a legitimate signature information verifier 
locally on the system, and so on. This will ultimately allow us to achieve our goal of bypassing the 
verification process by forging false signatures.

Note
If the reader’s computer is a Windows 64-bit environment, then the Explorer located in C:\
Windows\explorer.exe must be a 64-bit process; on the contrary, the Explorer in a 
Windows 32-bit environment must be a 32-bit process in the same path. Therefore, according 
to the reader’s computer environment, this project must be compiled as 64- or 32-bit in order 
to run WriteProcessMemory properly.
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In this section, we implemented the attack technique from Matt Graeber’s talk. By spoofing the 
CryptSIPVerifyIndirectData function in memory so that it always returns True, it is 
possible to bypass the verification process and turn a fake digital signature into a legitimate digital 
signature. Readers are encouraged to read the white paper presented by Matt Graeber to learn more 
about the Windows trust system and attacks.

Examples of signature steganography
In the previous section, we achieved signature verification spoofing by falsifying the system functions 
in memory. However, up to this point, the spoofing was only done by patching the function from 
memory. Now that we understand the details of the hash calculation in the Microsoft white paper, we 
will try to find flaws in the calculation process and bypass the signature verification perfectly.

As we mentioned earlier, in the final section of the Microsoft white paper, Calculating the PE Image 
Hash, three items are deliberately avoided in the hashing process: Checksum, which can be altered by 
implanting a signature message, the Security Directory field, which is used for post-filling, and the 
structure of the signature message block itself. Since the signature message itself cannot be used as 
part of a fingerprint hash process, and the signed and valid program is considered safe by the Windows 
trust system (e.g., anti-virus vendors or the system’s whitelist protection), it is possible to hide any 
malicious files or data in the signature message block without breaking the validity of the signature. 
This makes it a great place to hide from anti-virus product scans.

The following example is the signStego project in the Chapter#9 folder of the GitHub project. 
In order to save space, this book only extracts the highlighted code; the complete source code should 
be referred to for detailed reading.

Figure 9.20 shows the entry function for the signStego project, which requires that three path 
parameters point to a digitally signed program, the data to be hidden, and an output program:
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Figure 9.20 – The main function

At lines 34-42 of the code, it reads the entire contents of the digital signature into the signedPeDataLen 
variable, then reads the entire contents of the data to be hidden into the payloadData variable, 
and finally requests a large enough space for outputPeData to temporarily store the contents of 
the output program.

According to the Authenticode specification, we can expect the Security Directory field to point to 
a digital signature structure that is appended at the very end of the entire program.

At lines 45-47 of the code, therefore, without destroying the contents of the program and the signature, 
we should place the data we want to hide at the end of the complete signature message block and 
increase the size of the signature message by one payloadSize variable so that the contents of the 
payload that we hide are recognized as part of the signature message.
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Note
1. If we simply paste the hidden data at the end of the signature structure without increasing 
the size, the hidden data we paste into the program will be counted as additional data at the end 
of the program in step 11 of the hash calculation, which will cause the hash calculation to fail.

2. The emphasis that the signature message structure should be appended to the end of the entire 
program file is based on the Microsoft signature white paper, which states that most of the 
program files currently in distribution have a single signature and do not take into account 
double or multiple signatures on certificates.

Figure 9.21 shows the signStego project compiled into the signStego.exe program and its use:

Figure 9.21 – The demonstration of the signStego project

First, we saved a text message, Windows APT Warfare by adr@30cm.tw, in the payload, then 
used this widget to hide it in the signature message block of GoogleUpdate.exe, and generated 
the infected.exe file.

It can be seen that the infected.exe file hides the payload in the program, which is validated perfectly 
even without forging the system verification function, and we can observe the hex view with CFF 
Explorer and see that the end of the program is indeed appended with the aforementioned text message.

Figure 9.22 shows the use of signStego.exe to hide the infamous hacking tool mimikatz in the 
GoogleUpdate.exe signature message and generate the mimikatzUpdate.exe file:
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Figure 9.22 – A demonstration of mimikatz

We know that Windows Defender and other anti-virus products will always delete and prevent the 
execution of programs containing any pattern of Mimikatz, Metasploit, or Cobalt Strike using pattern 
scanning. However, when we scan the recently created mimikatzUpdate.exe with Windows 
Defender, we can find that the anti-virus software treats mimikatz as part of the signature message 
and thus it is not deleted.

The technique was first revealed to the world in a presentation by Deep Instinct Research Team 
researcher Tom Nipravsky at BlackHat Europe 2016, titled Certificate Bypass: Hiding and Executing 
Malware from a Digitally Signed Executable. In his presentation, he used the technique of hiding the 
infamous HydraCrypt ransomware in a signature message, along with the Reflective EXE Loader 
technique, to successfully bypass the active defenses of ESET anti-virus software and execute the 
ransomware. This technique is still a very good method for hiding malicious content in a static analysis.

In this section, we showed another way to forge a digital signature as legitimate. In addition to the 
previous section, where we bypassed validation by falsifying the results of the validation function, 
in this section, we followed the description of the Authenticode specification to hide any malicious 
documents or data in the signature message block without destroying the validity of the signature. 
In this way, it is possible to evade the scanning and detection of anti-virus software so that malware 
can be distributed.
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Getting signed by abusing path normalization
This technique is based on the author’s presentation Digital Signature? Nah, You Don’t Care About 
That Actually ;) at the iThome Information Security Conference CYBERSEC 2020 in Taiwan. It is 
mainly based on Matt’s research and extension of the security flaws of Windows path normalization 
to achieve digital signature forgery.

As we mentioned earlier, the system functions for verifying the digital signature, WinVerifyTrust, 
will internally call the three export functions in Crypt32.dll – CryptSIPDllIsMyFileType, 
CryptSIPGetSignedDataMsg, and CryptSIPVerifyIndirectData – and verify that a 
file on the path has a valid digital signature.

In the previous section, we attacked CryptSIPGetSignedDataMsg by forging a digital signature 
on any program, and we attacked CryptSIPVerifyIndirectData by hiding a backdoor in a 
signed program file from a fingerprint hash calculation process. In this section, we will present a more 
elegant approach to signature forgery based on abusive techniques of Windows path normalization 
to attack CryptSIPDllIsMyFileType.

Figure 9.23 shows the use of Skipping Normalization:

Figure 9.23 – Skipping Normalization

Skipping Normalization is a feature of the Windows NT path normalization protocol used to support 
long paths, which allows us to bypass path normalization by creating the contents of the Pikachu 
Volleyball game program as a GoogleUpdate.exe\x20 file with a blank filename.
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Note
In normal circumstances, it is impossible to have a blank at the end of a folder or a file; it must be 
removed by the system. This is due to the Trimming Characters step in the path normalization 
logic of the Windows implementation, which erases characters such as blank or multi-layer 
folders from the path. This technique and malicious attacks will be explained in detail in the 
Win32 to NT path conversion specification in the Appendix.

Figure 9.24 shows the system’s wmic command calling the Windows CreateProcess API to create 
a new process with a GoogleUpdate.exe\x20 file (with a blank filename) that follows the 8.3 
short filename format and displays the Pikachu Volleyball game screen:

Figure 9.24 – Pikaball process

Meanwhile, we place a non-blank GoogleUpdate.exe in the same directory as the program with 
a legal and valid signature.

Here, we use the famous forensic tool, Process Explorer, to check the results of the digital signature of 
the current Pikachu Volleyball game. As you can see in Figure 9.24, the tool tried to verify the signature 
using WinVerifyTrust on C:\WinAPT\chapter#9\GoogleUpdate.exe\x20, but due 
to path normalization, the file actually checked was C:\WinAPT\chapter#9\GoogleUpdate.
exe instead. This successfully tricked Process Explorer into identifying it as a valid signature with 
a result of (Verified) Google Inc.
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Figure 9.25 shows the results of a more detailed check of the validity of the digital signature:

Figure 9.25 – More detailed check of the validity of the digital signature

On the left is Explorer.exe showing that the Pikachu Volleyball game program has a valid 
signature and is signed by Google Inc. On the right is the result of a successful forgery after checking 
the digital signature in Process Monitor.

Figure 9.26 shows that we have written the notorious hacking tool Mimikatz to GoogleUpdate.
exe\x20 with an abusive path normalization technique, and it successfully escaped Windows 
Defender’s detection:
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Figure 9.26 – Defender scan result

This shows that even Microsoft’s own Windows Defender is vulnerable to path normalization.

In this section, we used Skipping Normalization to bypass the signature validation process more 
elegantly, by inserting a blank filename and using a legitimate signature program in the same directory.

Summary
Applications with digital signatures are often trusted by anti-virus products. In this chapter, we learned 
about Microsoft’s Authenticode specification and how to hijack well-known digital signatures. We 
have found ways to bypass the digital signature verification process on Windows systems, including 
attacking CryptSIPGetSignedDataMsg by forging a digital signature in any program, attacking 
CryptSIPVerifyIndirectData by hiding a backdoor in the signature structure from the 
fingerprint calculation process, and attacking CryptSIPVerifyIndirectData by Skipping 
Normalization. We hope that after reading this chapter, readers will have a very different understanding 
of digital signatures.



10
Reversing User Account Control 

and Bypassing Tricks

User Account Control (UAC) protection is a security defense designed to prevent malware from 
gaining administrator privileges. In this chapter, we will reverse-engineer UAC design to understand 
the internal workflow of UAC protection and learn the techniques used by threat actors to bypass 
UAC design for privilege elevation.

This chapter is based on the author’s Duplicate Paths Attack: Get Elevated Privilege from Forged 
Identities presented at Hackers In Taiwan Conference (HITCON) 2019 and Playing Win32 Like a 
K!NG ;) at Students’ Information Technology Conference (SITCON) 2020. These presentations 
describe the complete reverse engineering of the UAC protection for Windows 10 Enterprise 17763, 
and present UAC privilege elevation techniques for all versions of Windows from 7 to 10, based on 
the path normalization exploit. Interested readers can search for the presentations and full videos of 
the two sessions.

In this chapter, we’re going to cover the following main topics:

•	 UAC overview

•	 RAiLaunchAdminProcess callback

•	 Two-level authentication mechanism

•	 Elevated privilege conditions

•	 Examples of bypassing UAC

UAC overview
The Windows XP operating system was not properly controlled for privileges, which led to the rise of 
malware. Microsoft forced a set of privilege separation protection designs called UAC into the system 
after Vista and later versions. It was designed to give unfamiliar or untrusted programs lower privileges 
during execution; only specific services built into the system can have the privilege elevation process 
to disregard the UAC protection.
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Note
The author’s research on UAC reverse engineering is based on Windows 10 Enterprise LTSC 
(10.0.17763 N/A Build 17763), only for you to understand the design of UAC protection from 
a reverse engineering perspective. In the future, Microsoft may still make significant structural 
adjustments or corrections to the UAC protection, and the results of your experiments on your 
own computers may differ from those discussed by the author.

In Windows, you can right-click on a program and select Run as System Administrator, or use 
Start-Process [path/to/exe] -Verb RunAs in PowerShell to create a new process 
with Elevated Privilege mode. Both of these are familiar operations to many users. No matter which 
of these methods is used, a UAC alert will pop up, as shown in Figure 10.1, asking whether the user is 
authorized to delegate privileges and displaying details of the program to be elevated, such as publisher, 
program path, whether it has a digital signature, and so on, to help users decide whether to provide 
this process privilege or not with enough information:

Figure 10.1 – The UAC alert window

So, where in Windows is the UAC service placed? Figure 10.2 shows a local system privilege service 
called Application Information in Windows Control Panel under Services Manager, which is the 
UAC protection service itself:

Figure 10.2 – The Application Information service (UAC protection service)
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Double-click on it to see more details, as shown in Figure 10.3. It can be seen that the Appinfo/
Application Information names on its interface are responsible for waking up the high-privilege 
services.exe service manager with the C:\Windows\system32\svchost.exe -k 
netsvcs -p -s Appinfo command and hosting the UAC C:\Windows\system32\
appinfo.dll service core module as a separate process.

See the Description field in Figure 10.3 for details:

Figure 10.3 – The details of the UAC service

“Facilitates the running of interactive applications with additional administrative 
privileges. If this service is stopped, users will be unable to launch applications with 
the additional administrative privileges they may require to perform desired user 

tasks.”

This means that this service is the core service responsible for delegating privileges to other low-privilege 
programs requesting privileges, and if this service is closed, users will not be able to obtain privileges 
for any programs with UAC privileges.
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Figure 10.4 shows the process tree in Process Explorer under the UAC authorization when running 
calc.exe as the system administrator:

Figure 10.4 – The UAC authorization GUI

It can be seen that its UAC privilege service, svchost.exe (PID 5968), has received our request 
for privilege elevation from PowerShell and has popped up a UAC authorization GUI, consent.
exe, with a Yes/No screen, waiting for the user to make further decisions.

Note
For writing and remembering purposes, the UAC privilege service we mention later means 
that any svchost.exe has AppInfo.dll loaded in its process, the UAC interface program 
as consent.exe, and the child process as the subprogram to be privileged.

At this point, you might be wondering about the following:

•	 The UAC privilege service pops up the authorization window by waking up the UAC interface 
program. How does the UAC privilege service interact with the UAC interface program?

•	 As mentioned earlier, some of the services built into the system can obtain privileged states 
without popping up the user-authorized UAC interface. How is this validation done?

•	 If we can understand the validation process, is there any logical flaw in the validation process 
that allows malicious exploitation?
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With these three concerns in mind, we will now take a reverse engineering perspective to analyze how 
the Windows 10 Enterprise UAC privilege works and try to understand the UAC bypass techniques 
that have been used in wild attacks.

In this section, we took a brief look at what the UAC service is used for and how it is woken up. In 
the next section, we will look at the internal workflow of the service.

RAiLaunchAdminProcess callback
In the previous section, we mentioned a very important point: when anyone tries to create a privilege 
elevation process from a low-privilege program, the UAC privilege service will be notified and will 
confirm whether to delegate privileges or not. If the elevation request is granted, the UAC privilege 
service will then proceed to hatch the low-privilege program with high privileges.

At this point, the UAC privilege service must have a callback function that is responsible for receiving 
requests, validating them, and delegating the privileges while generating the process. This callback 
function is the RAiLaunchAdminProcess function located in appinfo.dll.

Figure 10.5 shows a screenshot of the dynamic analysis of the UAC privilege service by the well-known 
binary decompiler IDA and the dynamic debugging of its RAiLaunchAdminProcess callback 
function breakpoints. We will now explain this entirely in terms of IDA-generated pseudocode and 
dynamic debugging screens:

Figure 10.5 – The RAiLaunchAdminProcess callback function debugging

Figure 10.6 shows the definition of the RAiLaunchAdminProcess function in a blog post by 
Google's top vulnerability research team, Project Zero, Calling Local Windows RPC Servers from 
.NET (googleprojectzero.blogspot.com/2019/12/calling-local -windows-
rpc-servers-from.html): 

https://googleprojectzero.blogspot.com/2019/12/calling-local -windows-rpc-servers-from.html
https://googleprojectzero.blogspot.com/2019/12/calling-local -windows-rpc-servers-from.html
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Figure 10.6 – The definition of the RAiLaunchAdminProcess function by Google

It can be seen that there are 13 parameters in the callback function, and the key parameters are 
presented and explained in the following:

•	 RPC_ASYNC_STATE: When a privilege RPC request is sent to the UAC privilege service, an 
asynchronous channel is created, and the RPC_ASYNC_STATE structure is responsible for 
remembering the current state of the channel when it is waiting, querying, replying, or canceling.

•	 hBinding: This stores the handle of the current RPC channel for the preceding operation.

•	 ExecutablePath: This is a low-privilege program path from the user-sent creation process.

•	 CommandLine: The command parameters obtained by the user after sending the execution process.

•	 CreateFlags : This records the dwCreateFlags  parameter from the 
CreateProcessAsUser request, which records the request generated from the user-
specified child process. For example, CREATE_NEW_CONSOLE creates a process with a console 
interface, CREATE_SUSPENDED creates a thread-suspended process, DEBUG_PROCESS 
creates a child process for dynamic debugging, and so on.
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•	 CurrentDirectory: This is the default working directory for user-specified execution processes.

•	 WindowsStation: This specifies which workstation should be configured if the program 
has a Windows interface. The default is a WinSta0 workstation that can interact with the user.

•	 StartupInfo: This points to some of the requirements from the user for the window display 
of the execution process, such as the starting coordinates, size, maximum and minimum, or 
hidden screens, and so on.

•	 ProcessInformation: This structure is used to send back information about the parent 
process and its child process after the low privilege process has been successfully generated. The 
structure contains the process/thread identifier and the process/thread control code (handle).

Figure 10.7 shows a series of RPC communications after the RAiLaunchAdminProcess function:

Figure 10.7 – A series of RPC communications after the RAiLaunchAdminProcess function

After the RPC communication is complete, call I_RpcBindingInqLocalClientPID() to 
get the Process ID of the parent process that initiated the RPC request for the incoming hBinding 
variable. Next, try to access the parent process with NtOpenProcess to confirm that the parent 
process is still alive before proceeding with the subsequent actions. If the parent process is dead, there 
is no need to continue the authentication process and child process generation.

Readers who have used the CreateProcess series of Windows API functions will know that they 
have two parameters: the first specifying the absolute path to the program and the second, the string 
command. Both of these can be passed in as one or the other. Therefore, Figure 10.8 shows how UAC 
determines the correct program path from the first and second parameters:
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Figure 10.8 – Check whether the path of the executed program exists

If the parent process does not pass in the path of the child process (i.e., the first parameter is empty), 
then the command string is used as the target. Then, use the CreateFileW API to request a file 
handle from the kernel and save it to the exeHandle variable:

Figure 10.9 – The UAC elevation check

The Windows API is then invoked to retrieve the notification timing configured by the user in the 
Windows system settings as a numerical value, as shown in Figure 10.10:
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Figure 10.10 – The UAC elevation control panel

This starts at the bottom with 1 (no notifications), notifies when the application tries to change but 
doesn’t dim the desktop (this value is 2), notifies when the application tries to change (this value is 3, 
the default), and Always notify (this value is 4, maximum strictness).

In this section, we learned about the RAiLaunchAdminProcess callback function in the UAC 
privilege service, which is responsible for receiving requests, validating them, and delegating permissions 
while generating the process. Using IDA’s dynamic analysis of the UAC privilege service, we understood 
how the entire RAiLaunchAdminProcess process works.
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Two-level authentication mechanism
When UAC protection was first introduced in Windows Vista, all privilege elevation requests that 
were initiated and processed by RAiLaunchAdminProcess needed to pop up the consent.
exe screen to indicate whether to elevate or not and then create the privilege elevation child process.

However, this mechanism was too annoying. As a result, the UAC protection in Windows 7 onward has 
been designed with two levels of trust privilege elevation authentication. This means that there are two 
levels of authentication—if a privilege request is passed with both levels of authentication, then the UAC 
interface will not pop up when consent.exe is called to ask whether the user is authorized and will 
automatically agree to the privilege elevation process creation request. This means that when a trusted 
process is called, consent.exe will still wake up, but the user approval request window will not pop up.

In this section, we will introduce the authentication mechanism in two separate levels, Authentication 
A and Authentication B.

Note
Since there is no official document from Microsoft explaining how the UAC underlying layer is 
implemented, all the following descriptions are based on the author’s own reverse engineering 
experience and are based on the structure and code. If there are any gaps or errors, please feel 
free to write to us.

Authentication A

Figure 10.11 shows the code at the beginning of Authentication A. The main task of Authentication 
A is to verify that the child process path originates from a trusted path:

Figure 10.11 – The beginning code of Authentication A
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At lines 851-859 of the code, the child process path is first saved in the v47 variable with the length of 
the path string calculated by GetLongPathNameW, then the wchar_t string space corresponding to 
this length is requested by LocalAlloc and saved in the v49 variable, and the child process path is 
saved in the string space just requested in the v49 variable with a second GetLongPathNameW call.

Note
This process converts Microsoft’s unique 8.3 short filename specification path back to a long 
filename absolute path. Interested readers can see Wikipedia’s 8.3 filename (en.wikipedia.
org/wiki/8.3_filename). An example of a short 8.3 filename is C:\WinAPT\
chapter#9\GOOGLE~2.EXE, mentioned in the Get signed by abusing path normalization 
section in Chapter 9; the result of its conversion to a long filename path is C:\WinAPT\
chapter#9\GoogleUpdate.exe\ x20.

Then, use the RtlDosPathNameToRelativeNtPathName_U_WithStatus function to 
convert the absolute path just obtained by GetLongPathNameW to the typical NT path. For example, 
a child process path entered as L "C:\a.exe" will be converted to L "\? \C:\a.exe".

Then, RtlPrefixUnicodeString will be used to compare the NT path that has just been converted 
with the beginning path to the system path in the whitelist, for example, \? \C:\Windows\, \? 
\C:\Program Files\, or \? \C:\Program Files(x86)\, and that is not in the blacklist 
directory (which is usually the directory for additional system gadgets such as calculator, Windows 
Edge, etc.), as shown in Figure 10.12:

Figure 10.12 – The comparison of the beginning path

https://en.wikipedia.org/wiki/8.3_filename
https://en.wikipedia.org/wiki/8.3_filename
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If the child process has an absolute path starting with C:\Windows\, then trustedFlag will 
be set to 0x2000, which is the first level of trust: the value that can be trusted for reference but not 
yet fully trusted.

If the program path starts in the Program Files directory, further call AipCheckSecurePFDirectory 
to check whether the directory is in Windows Defender, Journal, Media Player, or Multipoint Server. 
If so, set trustedFlag to 0x2000 | 0x4000, which refers to the external application service that 
is part of Windows (the custom installation under C:\Program Files), as shown in Figure 10.13:

Figure 10.13 – Check whether the path starts in the Program Files directory

Figure 10.14 shows the code that follows Figure 10.13:

Figure 10.14 – Check whether the path starts at C:\Windows



Two-level authentication mechanism 187

Next, we must check that the child process path is confirmed as beginning with C:\Windows, and 
that its directory is one of the following:

•	 C:\Windows\System32

•	 C:\Windows\SysWOW64

•	 C:\Windows\ehome

•	 C:\Windows\Adam

•	 C:\Windows\ImmersiveControlPanel

If the child process path starts with one of these, it means that the current child process program 
originated from the most sensitive and native system-privileged service path, so set trustedFlag 
to 0x6000.

Next, make sure the child process starts with C:\Windows\System32\, then if it happens to be \? 
\C:\Windows\System32\Sysprep\sysprep.exe or \? \C:\Windows\System32\
inetsrv\InetMgr.exe, it must have specifically higher privileges, as shown in Figure 10.15:

Figure 10.15 – Check for Sysprep\ or inetsrv\

The AipMatchesOriginalFileName function is used to map the program to memory and 
verify that the compiled filename recorded in version.txt (refer to Figure 10.16 for more details) 
in the PE resource file matches the current child process filename. This avoids the hijacking of file 
substitution by verifying that the filename at compilation matches the filename at execution:
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Figure 10.16 – The content of version.txt

If the preceding validation is passed, an additional trustedFlag setting of 0x400000 or 0x800000 
will be given by the bitwise OR operation, which is an important marker to pass the second level of 
auto-boost validation later on.

However, C:\Windows\System32 and C:\Windows\SysWow64 are both system-sensitive 
and critical directories, and sysprep.exe and InetMgr.exe mentioned previously are not 
the only two system programs that need to be privileged. There are still many system programs 
that need to be privileged under these two native system directories. As shown in Figure 10.17, it is 
then checked whether the child process path is in one of these two directories; if so, it is calculated 
with OR to 0x200000, which is the last important flag that can be verified by the second level of 
automatic boosting:
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Figure 10.17 – Check whether the path is in C:\Windows\System32 or C:\Windows\SysWow64

This is the complete authentication process for Authentication A. The main body is matched against 
the path to verify trustworthiness, and the result is written to trustedFlag for recording.

Authentication B

As shown in Figure 10.18, the next step is to enter the AiIsEXESafeToAutoApprove function, which 
is the key verification of the overall UAC auto-approve privilege (no pop-up authorization window):

Figure 10.18 – The AiIsEXESafeToAutoApprove function

As shown in Figure 10.19, the first task when entering the AiIsEXESafeToAutoApprove function is 
to verify that the child process for the current privilege elevation request has passed the aforementioned 
Authentication A for path validation. If trustedFlag is not greater than 0x200000 (i.e., the bt 
eax, 15h condition fails), the subsequent checks are dropped and the function is skipped:
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Figure 10.19 – The check of trustedFlag

Next, as shown in Figure 10.20, take the child process path and save the current program’s name to 
the clrExeName variable using wcsrchr. Continue to map the static contents of the child process 
program from the file on the disk into the exeRawData variable using the file control code obtained 
from CreateFile as described earlier (i.e., the exeHandle variable in Figure 10.8), supplemented 
by MapViewOfFile:

Figure 10.20 – Code snippet of the AiIsEXESafeToAutoApprove function

Figure 10.21 shows whether the autoElevate key is set to true in the manifest.xml file of the 
child process static content to confirm that the program itself wants to claim the Auto Elevation privilege. 
If it does, it will continue with the validation; otherwise, it will leave the subsequent authentication:



Two-level authentication mechanism 191

Figure 10.21 – The Auto Elevation check of the AiIsEXESafeToAutoApprove function

If a child process does not have an Auto Elevation request in the information list of the content, but 
the clrExeName filename extracted earlier is one of the 10 items in the whitelist, then it is also 
considered to be a program that requires automatic privilege elevation, as shown in Figure 10.22:

Figure 10.22 – The whitelist of auto-elevated processes

AipIsValidAutoApprovalEXE, shown in Figure 10.23, will then be used to verify that the program 
has a Microsoft digital signature and that the signature is still valid before it is fully authenticated:

Figure 10.23 – The AipIsValidAutoApprovalEXE check
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The WTGetSignatureInfo function is used to verify that the digital signature of the child process 
is valid, and similarly, the AipMatchesOriginalFileName function is used to verify that the 
current child filename has not been modified as in the compilation phase. If both of these tests are 
passed, the program file is verified as a trusted file.

UAC interface program, ConsentUI

The next thing to do is to call AiLaunchConsentUI to try to raise the consent.exe popup to 
ask the user whether they agree to this child process privilege elevation request.

Note
Whether the previous Authentication A and B pass or fail does not affect whether the 
AiLaunchConsentUI function will be called or not. Authentication A and B will refresh 
the verified result in trustedFlag and pass trustedFlag to consent.exe when 
AiLaunchConsentUI is called to wake up the UAC consent.exe interface program 
and let it know the status of Authentication A and B.

Figure 10.24 and Figure 10.25 show parts of the AiLaunchConsentUI code:

Figure 10.24 – The part of the AiLaunchConsentUI code
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It wakes up in a suspended state, then uses the AipVerifyConsent function to confirm consent.
exe has not been hijacked (see Figure 10.25), and then uses ResumeThread to wake up the process 
of the UAC consent.exe interface program and waits for the process to finish and return. The 
reason for the exit is stored in the ExitCode variable:

Figure 10.25 – The launch process of AiLaunchConsentUI

Figure 10.26 shows the key code of the AipVerifyConsent verification function for the UAC 
interface program. It can be seen that it uses NtReadVirtualMemory to extract the contents of the 
currently suspended consent.exe program. It also verifies that the process has a consent field 
and that the field happens to be marked with Microsoft Windows (c) 2009 Microsoft Corporation. 
If so, it is authenticated and the current UAC interface program is not hijacked and can be trusted:
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Figure 10.26 – The key code of AipVerifyConsent

Figure 10.27 shows an authorization window after ResumeThread has resumed the operation of the 
UAC consent.exe interface program, asking the user whether they want to authorize this privilege 
elevation. If the user presses Yes, ExitCode of the process will return a 0 value for this authorization. 
Conversely, if the user clicks No or closes the window, ExitCode of the process will return 0x4C7:
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Figure 10.27 – The UAC pop-up window interface

The code that follows Figure 10.25 (i.e., the end of the AiLaunchConsentUI function) is 
shown in Figure 10.28. If the ExitCode of consent.exe is just 0x102 or 0x42B, then the 
AiLaunchConsentUI function will return the 0x4C7 value. If ExitCode is not the preceding two 
values, AiLaunchConsentUI will return ExitCode as the return value. By repeating debugging 
tests, the AiLaunchConsentUI function should only return two possible values in practice; if 
it returns a value of 0, the user agrees to the authorization, and if it returns a value of 0x4C7, the 
privilege elevation is denied:



Reversing User Account Control and Bypassing Tricks196

Figure 10.28 – The AiLaunchConsentUI return value

Note
You may be concerned here: the two-level authentication result does not seem to be working. 
In fact, if both levels of Authentication A and B are passed, the parameters will be passed to 
consent.exe. This will wake up without popping up an authorization window to disturb 
the user and will simply set ExitCode to 0 and exit the program.

Figure 10.29 shows that after passing ExitCode to 0, the UAC privilege service can confirm that 
the privilege elevation request has been granted and will pass the path of the child process into the 
AiLaunchProcess function:
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Figure 10.29 – The privilege elevation request has been granted

Figure 10.30 shows that the AiLaunchProcess function internally calls the CreateProcessAsUserW 
function to create the child process path as a privileged service, and the child process will then run 
as a privileged elevated process:

Figure 10.30 – The child process path as a privileged service



Reversing User Account Control and Bypassing Tricks198

In this section, we learned about the design of a two-level trust privilege authentication in UAC 
protection, that is, Authentication A, Authentication B, and the UAC interface program. If both levels 
of authentication are approved for a privilege request, then the UAC interface program will not pop up 
to ask whether the user is authorized and will automatically agree to the privilege elevation request 
when consent.exe is called. This will reduce disruption to the user.

Elevated privilege conditions
We summarize the preceding reverse engineering results for Windows 10 Enterprise LTSC (10.0.17763 
N/A Build 17763) and can derive the following conditions for automatic privilege elevation for 
UAC design:

•	 The program must configure itself as Auto Elevation

•	 The program should have a valid digital signature

•	 The program is run from a trusted system directory

In fact, you will soon understand that there are many services and tools in the system that are directly 
privileged on wakeup in order to allow users to use them smoothly without having to agree to frequent 
authorizations. So, if we can hijack these privileged processes, wouldn’t we be able to elevate our 
malware as well? A few common examples are as follows:

•	 The DLL module paths or commands used by a high-privileged system program are improperly 
stored in the registry, *.xml, or *.ini files on disk

•	 The privileged service has exported a public COM interface to allow anyone to call it (without 
careful authentication of the caller’s trustworthiness) and the interface has the potential to be 
maliciously exploited

•	 The UAC privilege service verification process is not sufficiently robust to allow direct attacks 
on the UAC trust authentication process itself

Therefore, in this section, we will present our findings based on reverse engineering to understand 
the different streams of UAC exploitation that have been used by cyber forces and hackers in massive 
in-field attacks.

Improper registry configuration triggered by privilege hijacking 
privileges

Take Specter Ops’ information security researcher Matt Nelson’s (@enigma0x3) blog post Bypassing 
UAC Using App Paths (enigma0x3.net/2017/03/14/bypassing-uac-using-app-
paths) as an example.

https://enigma0x3.net/2017/03/14/bypassing-uac-using-app-paths
https://enigma0x3.net/2017/03/14/bypassing-uac-using-app-paths
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Figure 10.31 shows the logs recorded by Process Monitor when the sdclt.exe system restore 
tool is started on Windows 10. It can be seen that the sdclt.exe privileged system tool wakes up 
and tries to blindly search the registry, eventually reading the HKCU:\Software\Microsoft\
Windows\CurrentVersion\App Paths\control.exe low privilege registry key value 
with the "C:\Windows\System32\control.exe" Windows\System32\control.
exe" /name Microsoft.BackupAndRestoreCenter command string:

Figure 10.31 – The path query in the registry

The system control panel (control.exe) is then woken up with a privilege elevation and switched 
to the system restore configuration screen for the user to view, as shown in Figure 10.32:

Figure 10.32 – The system control panel with a privilege elevation

Since its registry key, HKCU (HKEY_CURRENT_USER), is a registry entry that can be written to by 
any low-privilege program, we change its command to C:\Windows\System32\cmd.exe, as 
shown in Figure 10.33:
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Figure 10.33 – The registry value modification

After forging the low-privilege registry keys, simply restart sdclt.exe and see that it wakes up 
C:\Windows\System32\cmd.exe with elevated privileges, giving us a privileged cmd.exe 
command, as shown in Figure 10.34:

Figure 10.34 – The privilege elevation

Researcher Matt Nelson has pioneered this type of misconfiguration leading to malicious exploitation 
for UAC extraction and bypassing whitelist detection. Other related examples can be found in 
his blog Userland Persistence with Scheduled Tasks and COM Handler Hijacking (enigma0x3.
net/2016/05/25/userland-persistence-with- scheduled-tasks-and-com-
handler-hijacking) or Bypassing UAC on Windows 10 using Disk Cleanup (enigma0x3.
net/2016/07/22/bypassing-uac-on- windows-10-using-disk-cleanup/). These 
articles have generated a lot of interest in finding similar UAC privilege elevation issues.

In this section, we learned about the UAC trust authentication requirements and illustrated how to 
achieve UAC extraction and bypass whitelist detection with the skills in the article Bypassing UAC 
Using App Paths by Matt Nelson.

https://enigma0x3.net/2016/05/25/userland-persistence-with- scheduled-tasks-and-com-handler-hijacking
https://enigma0x3.net/2016/05/25/userland-persistence-with- scheduled-tasks-and-com-handler-hijacking
https://enigma0x3.net/2016/05/25/userland-persistence-with- scheduled-tasks-and-com-handler-hijacking
https://enigma0x3.net/2016/07/22/bypassing-uac-on- windows-10-using-disk-cleanup/
https://enigma0x3.net/2016/07/22/bypassing-uac-on- windows-10-using-disk-cleanup/
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Examples of bypassing UAC
In the DLL side-loading example section in Chapter 5, we briefly introduced the DLL side-loading 
technique, which allows us to hijack the execution process by simply dropping a DLL module into 
the same directory as the program. You must have guessed, if we could find a vulnerable high-privilege 
system program that could drop a malicious DLL module into the same directory, wouldn’t that allow 
the privilege-elevated program to automatically mount our DLL file, allowing us to act maliciously as a 
privilege-elevated process?

In practice, it is not that easy. As mentioned earlier, basically, the system programs that can be 
automatically privileged in the complete UAC authentication process must be located in C:\Windows\
System32 or C:\Windows\SysWOW64. These two system directories are the directories where 
files cannot be written without privileging. However, if we don’t have high-privilege write access, is it 
possible to borrow from a high-privilege service? The answer is yes, there is a chance.

Figure 10.35 shows the two different UAC authorization windows on Windows 7 systems. The 
authorization window on the left is the screen displayed when the standard UAC privilege service 
wakes up consent.exe after right-clicking on a program with administrator privileges; on the 
right is the UAC authorization screen that pops up when a file is manually dragged to the System32 
privileged directory in File Explorer:

Figure 10.35 – Two different UAC authorization windows

You should quickly notice that the UAC authorization screen on the right is actually a pop-up alert from 
the low-privilege explorer.exe program, which determines whether authorization is required. 
In effect, the low-privilege File Explorer has the ability to write to any privileged directory without 
going through the UAC privilege trust authentication process.
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Refer to the WikiLeaks article titled Vault 7: CIA Hacking Tools Revealed (wikileaks.org/
ciav7p1/), which includes a description of a flaw in the Elevated COM Object UAC Bypass 
(wikileaks.org/ciav7p1/cms/page_3375231.html). This flaw is maliciously exploited 
for UAC privilege and is described as follows:

Windows 7 includes a feature that enables approved applications running with 
Admin privileges to perform system operations without the UAC prompt. One 

method an application can use to do this is to create an Elevated COM 
Object and use it to perform the operation. For example, a DLL loaded into 
explorer.exe can create an elevated IFileOperation object and use it 
to delete a file from the Windows directory. This technique can be combined with 

process injection to produce a more direct UAC bypass.

The description states that any privileged process or file manager can use IFileOperation COM 
Interface to read, write, move, and delete privileged files as Administrator. This is exactly what 
we are trying to do by hijacking the privileged elevation service with DLL side-loading!

Figure 10.36 shows the sample code given in the article to imitate the file deletion operation performed 
by explorer.exe. All that is required is to design a malicious DLL to inject into the low-privilege 
File Explorer and call the ElevatedDelete function as a File Explorer to call IFileOperation 
COM Interface to delete the C:\Windows\test.dll file as Administrator:

Figure 10.36 – The sample code to imitate the file deletion

https://wikileaks.org/ciav7p1/
https://wikileaks.org/ciav7p1/
http://wikileaks.org/ciav7p1/cms/page_3375231.html
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Elevated COM Object (IFileOperation)

Let’s experiment with the UAC privilege elevation on Windows 7 using the weaknesses 
mentioned previously.

The following example is the iFileOperWrite project, which is publicly available in the GitHub 
project under the Chapter#10 folder. In order to save space, this book only extracts the highlighted 
code; please refer to the complete source code to read the full project.

First, the path to the current program in the Process Environment Block (PEB) is forged as explorer.
exe in the entry function in the iFileOperWrite project to trick theIFileOperation 
COM interface into allowing us to operate as Administrator to perform file operations, as shown in 
Figure 10.37:

Figure 10.37 – The main function

Note
This project is a 32-bit environment, so line 110 of the code extracts the 32-bit environment 
block from fs:[0x30]. For a 64-bit environment, you are advised to correct this to extract 
the 64-bit environment block from gs:[0x60].

The IFileOperation COM Interface can then be used to move the file to the target directory 
using the CopyItem function under the IFileOperation component, as shown in Figure 10.38:
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Figure 10.38 – The CopyItem function moves the file

The iFileOperWrite project is compiled and generates iFileOperWrite.exe, which reads 
in two parameters: the malicious DLL file to be delivered and the directory to which the target is 
written. As shown in Figure 10.39, there is no ntwdblib.dll file under the original C:\Windows\
System32 confirmed by the where command; however, iFileOperWrite.exe is able to 
maliciously drop our maliciously constructed hijacking DLL ntwdblib.dll module to the high-
privilege C: \Windows\System32 directory:

Figure 10.39 – Drop malicious DLL to the high-privilege system directory
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As shown in Figure 10.40, we then call C:\Windows\System32\cliconfig.exe. Since our 
malicious ntwdblib.dll file is now present in the same directory, it will automatically mount 
our malicious ntwdblib.dll module when the privilege elevation cliconfig.exe system 
program is awakened. Our malicious module can then pop up a high-privilege cmd.exe command 
with cliconfig.exe to allow hackers to do malicious actions:

Figure 10.40 – The malicious privilege elevation

After the revelation of this UAC exploit on Windows 7, hackers and the cyber forces had a lot of 
in-field operations on Windows 7 and 8, and a lot of these DLL side-loading techniques based on 
IFileOperation used malicious DLLs as backdoor loaders to hijack high-privileged system 
services, thus achieving the triple effect of backdoor persistence, stealth, and exploit.

In contrast, after the revelation of this attack, Microsoft’s approach to UAC protection on Windows 7 
and 8 was to fix the system’s high-privilege programs that were vulnerable to DLL side-loading, making 
it possible to reduce the number of vulnerable system programs but delaying fixing the weakness of 
the IFileOperation COM Interface.

As a result, during Windows 7 and 8, there were numerous claims in the forums that the new UAC 
exploit was based on the weakness of IFileOperation, and that the exploit was based on finding 
other programs that could be hijacked. It was not until Windows 10 1607 that File Explorer officially 
removed the arbitrary file-writing privileges, making this technique truly retired from the wild. 
However, it was still a fairly stable and popular technique in earlier versions of Windows 10.

Does this change to Windows 10 make the UAC even more indestructible? No, IFileOperation 
is not the only COM interface with this privilege-elevation abuse, and there are still many privilege-
elevation COM interfaces worth exploring for malicious use.
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CMSTP arbitrary privilege elevation execution

Oddvar Moe (@Oddvarmoe), a Norwegian penetration researcher, published a blog post titled Research 
on CMSTP.exe (msitpros.com/?p=3960), pointing out that the Connection Manager Profile 
Installer, cmstp.exe, which has existed since Windows XP, calls the COM interface to execute 
a text command string during the installation of a connection profile, and as long as it can call this 
interface, it is privileged to run the ShellExecute function.

The following example is the masqueradePEB_CMSTP_UACBypass.cpp source code in the 
Chapter#10 folder of the GitHub project. In order to save space, this book only extracts the 
highlighted code; please refer to the complete source code to read the full project.

Figure 10.41 shows a process similar to the previous project, where the privileged program itself is 
disguised as the trusted program, explorer.exe, and then calls the CMSTP COM interface:

Figure 10.41 – The main function

Figure 10.42 shows the key code for calling the CMSTP COM interface:

https://msitpros.com/?p=3960
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Figure 10.42 – The ShellExecute function executes commands

At lines 141-146 of its code: the COM interface has a ShellExec function within the ICMLuaUtil 
component that can input the cmd.exe /k "echo exploit done. > C:\Windows\
System32\misc && type misc command string. When this function is run with a trusted 
system program (e.g., File Explorer), the ShellExecute function can be run with a privileged 
system service and execute our commands:

Figure 10.43 – The result of masqueradePEB_CMSTP_UACBypass.cpp
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Figure 10.43 shows the result of compiling and running masqueradePEB_CMSTP_UACBypass.
cpp on Windows 10 Enterprise LTSC 17763. It can be seen that it has successfully done the following: 
disguised itself as a File Explorer shell and called the CMSTP COM interface, woke up cmd.exe 
in a privileged elevated state, wrote a string to the misc file in the high-privilege C:\Windows\
System32 directory, and printed it out. This shows that we have successfully elevated cmd.exe 
for subsequent malicious exploitation.

Achieving elevated privileges through trusted path collisions

We have mentioned so many ways to attack a privileged system program with UAC trust. Next, we 
will look at the direct attack on the UAC authentication process.

David Wells (@CE2Wells), a zero-day vulnerability researcher at Tenable Security, has made a public 
technical article, UAC Bypass by Mocking Trusted Directories (medium.com/tenable-techblog/
uac- bypass-by-mocking-trusted-directories-24a96675f6e), which identifies 
an issue in Windows 10 Build 17134 where the UAC service does not take into account Windows NT 
path normalization in the trust authentication process, leading to arbitrary privileges.

Based on this research, we fully reverse-engineered the UAC protection for Windows 10 Enterprise 
17763 and presented it at the HITCON 2019, in the presentation titled Duplicate Paths Attack: Get 
Elevated Privilege from Forged Identities, which shares insights on the complete reverse engineering 
of the authentication process and reintroduces this attack technique.

After reverse-engineering the entire UAC trust authentication process, we know that in order to 
automatically elevate privilege without popping up the user authorization screen, the following 
conditions must be met:

•	 The program must be configured as Auto Elevation

•	 The program must have a valid digital signature

•	 The program must be executed from a trusted system directory

The first two are easily satisfied by finding a valid digital signature from the current Windows system, 
marking itself as a system program to be automatically privilege-elevated, and hijacking its execution 
process with DLL side-loading. We will explain how to achieve the first two by the following actions.

Figure 10.44 shows the Windows built-in disk encryption tool, BitLockerWizardElev.exe, 
whose manifest list marks itself as requireAdministrator and also marks autoElevate as 
true to be automatically privilege elevated:

https://medium.com/tenable-techblog/uac- bypass-by-mocking-trusted-directories-24a96675f6e
https://medium.com/tenable-techblog/uac- bypass-by-mocking-trusted-directories-24a96675f6e
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Figure 10.44 – autoElevate is set as true in the manifest of BitLockerWizardElev.exe

Figure 10.45 shows the analysis of the disk encryption tool with PE-bear. It can be seen that the import table 
shows that it needs to import two functions, FveuiWizard and FveuipClearFveWizOnStartup, 
in the FVEWIZ.dll system module. Therefore, a malicious DLL module is written to export these 
two functions and wake up cmd.exe with a MessageBoxA popup when the execution process is 
successfully hijacked:
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Figure 10.45 – The analysis with PE-bear

How do we satisfy the third trust condition? Execute the privilege elevation program from a trusted 
system directory (i.e., System32 or SysWOW64).

Refer to the Microsoft public document, DACLs and ACEs (docs.microsoft.com/en-us/
windows/win32/secauthz/dacls-and-aces), which gives the following description of 
the Discretionary Access Control List (DACL).

If a Windows object does not have a DACL, the system allows everyone full access 
to it. If an object has a DACL, the system allows only the access that is explicitly 

allowed by the access control entries (ACEs) in the DACL. If there are no ACEs 
in the DACL, the system does not allow access to anyone. Similarly, if a DACL has 

ACEs that allow access to a limited set of users or groups, the system implicitly 
denies access to all trustees not included in the ACEs.

This means that the reason why C:\Windows\System32 and C:\Windows\SysWOW64 
cannot be written to or create folders is that the system directory is configured with DACL, and only 
processes with elevated privileges are allowed to write to or create folders in the system directory. 
But what about C:\?

This brings us to an interesting feature of Windows. In Figure 10.46, we can see that the low-privileged 
cmd.exe command cannot create or write to any files under C:\, but is allowed to create new folders. 
So, what does this mean? Let’s go back and look at how Authentication A in the UAC protection 
is verified:

https://docs.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces
https://docs.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces
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Figure 10.46 – The test of cmd.exe under C:\

When any parent process initiates a privilege elevation of a program on the child process path with 
administrator privileges, the UAC privilege service first extracts the NT long path from the child 
process path with GetLongPathNameW (converting the 8.3 short filename specification path to 
a long path). This long path is then compared with RtlPrefixUnicodeString to see whether 
the path starts with C:\Windows\System32 or C:\Windows\SysWOW64, and is then passed 
for Authentication A.

The internal implementation of calling GetLongPathNameW to extract an NT long path will result 
in Windows path normalization, causing the UAC privilege service to match the path in Authentication 
A with a long path that has been normalized. This makes it possible to attack the authentication 
process, as shown in Figure 10.47:

Figure 10.47 – The NT long path extraction from the child process path
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After passing both the Authentication A and B processes, waking up consent.exe without any 
pop-up window, and agreeing to the privilege elevation request, the child process with privilege 
elevation is then hatched. In Figure 10.48, it can be seen that CreateProcessAsUserW is used 
to create the child process, but not from the long path just after authentication; instead, the process 
is created from the original child process path given by the parent process:

Figure 10.48 – The child process creation

This allows us to exploit malicious situations where the path at authentication is inconsistent with the 
path created as a new process due to Windows path normalization.

Then, we can run mkdir \??\C:\Windows \ and mkdir \??\C:\Windows \System32\ 
with a low privilege process. The \\?\ prefix bypasses the Windows path normalization and produces 
a low-privilege C:\Windows \ folder with a blank character at the end and a System32 folder 
inside. The Pikachu Volleyball program is then copied into this folder and run, showing that the game 
program is currently running correctly, as shown in Figure 10.49:
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Figure 10.49 – The Pikachu Volleyball program runs in C:\Windows \System32\

In Figure 10.50, we use Process Explorer to observe the process named changepk.exe (which is 
actually running the Pikachu Volleyball program internally) and check its digital signature. We can 
find that when checking the digital signature, the currently running Pikachu Volleyball program is C:\
Windows  \system32\changepk.exe (with a blank space), which is mistakenly identified 
as C:\Windows\system32\changepk.exe (without a blank space), and is thus verified to 
have a digital signature:

Figure 10.50 – The digital signature check of the Pikachu Volleyball program

What if we put in BitLockerWizardElev.exe instead, which can be hijacked by the DLL 
mentioned earlier?
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We drop BitLockerWizardElev.exe with the malicious DLL into the low-privilege C:\
Windows \System32\ folder and run BitLockerWizardElev.exe, as shown in Figure 10.51:

Figure 10.51 – Run BitLockerWizardElev.exe in C:\Windows \System32\

Since GetLongPathNameW removes blanks from the path during the Windows path normalization 
process, BitLockerWizardElev.exe (which we maliciously placed in the low-privilege C:\
Windows \System32\ folder) is able to pass UAC privilege service Authentication A and has a 
valid Microsoft digital signature. Therefore, no UAC authorization message pops up when running, 
and the privilege elevation is granted directly.

In addition, the execution process is hijacked because a malicious DLL has been placed in the same 
directory, that is, cmd.exe is created as a privilege elevation, and a message pops up in MessageBoxA 
to alert of the successful hijacking:

Figure 10.52 – The result of a successful hijacking



Summary 215

Refer to Figure 10.52; this exploit method can be used on Windows 7 too. This vulnerability does not 
only occur in Windows 10. Since the core path validation of the UAC protection after Windows 7 is 
done with GetLongPathNameW for Windows path normalization, the same vulnerability can be 
exploited all the way from Windows 7 to the latest Enterprise version of Windows 10, which shows 
how powerful it is.

Note
If you are interested in UAC privilege elevation attacks, it is recommended to subscribe to the 
open source project hfiref0x/UACME: Defeating Windows User Account Control (github.
com/hfiref0x/UACME), which is a hacker-friendly UAC privilege elevation tool. The 
project contains a comprehensive list of known exploit methods and source code of attacks in 
the wild for research.

Summary
UAC protection plays an important role in modern Windows. Many Windows security measures are 
based on UAC protection as a security perimeter to work properly – for example, Windows firewall 
protection. In this chapter, we presented a complete analysis of Windows 10 UAC protection, the 
authentication process, and several known attacks in a reverse-engineered way. However, as the battle 
for Windows security continues, it is possible that these problems will be fixed in the future and that 
other new attack scenarios will emerge.

https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME




Appendix – NTFS, Paths,  
and Symbols

There are many security designs on Windows, including security protection, antivirus software, and 
whitelisting mechanisms, which are based on the path comparison of disk files. If we want to find 
a breakthrough in heavy path-based protection design, it is essential to build a solid foundation of 
understanding the various path specifications and conversion processes on Windows.

Win32 and NT path specification
The content presented in this chapter is inspired by the following four publicly available documents 
and highlights extracts that can be maliciously exploited:

•	 A blog post by Google’s top vulnerability research team, Project Zero, The Definitive Guide 
on Win32 to NT Path Conversion (googleprojectzero.blogspot.com/2016/02/
the-definitive-guide-on-win32-to-nt.html)

•	 Three public documents from Microsoft:

	� Path Format Overview https://learn.microsoft.com/en-us/archive/
blogs/jeremykuhne/path-format-overview

	� Path Normalization https://learn.microsoft.com/en-us/archive/blogs/
jeremykuhne/path-normalization

	� DOS to NT: A Path’s Journey https://learn.microsoft.com/en-us/archive/
blogs/jeremykuhne/dos-to-nt-a-paths-journey

These three documents are all seemingly uninteresting path specifications but are, in fact, an important 
foundation for path specification. If you can master the rules of path specification and the various 
path analyses, together with the other chapters of this book, you will be able to create a wide variety 
of combinations. It is, therefore, strongly recommended that you read the three documents carefully, 
as they are very helpful in understanding path specifications.

https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-format-overview
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-format-overview
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/dos-to-nt-a-paths-journey
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/dos-to-nt-a-paths-journey
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DOS Path 1.0

The following is an example of a classic DOS Path 1.0:

C:\foo\bar

A standard DOS 1.0 path is composed of the following:

1.	 The first part is the necessary disk name, which consists of two parts: the A to Z disk characters 
and a colon as a partition character.

2.	 The middle is an optional use of non-essential folder names.

3.	 The last is the name of the file.

The three sections of the path are cut from each other with a path split (backslash) and DOS Path 1.0 does 
not support multiple folders in the path, meaning that DOS Path 1.0 can only have single-layer folders.

DOS Path 2.0

Since DOS Path 1.0 did not allow for multiple layers of folders, which was inconvenient, the next 
version of DOS Path 2.0 supports multiple layers of folders.

In addition, a new process called path normalization has been added to DOS Path 2.0 to decompose 
multi-layer directory paths into the correct absolute path. The details can be found in the Microsoft public 
document Path Normalization https://learn.microsoft.com/en-us/archive/blogs/
jeremykuhne/path-normalization. The following is a sequential list of the normalization process:

1.	 Confirm which of the seven types of incoming paths is currently in use, as depicted in Figure A.1:

Figure 11.1 – The path types in DOS Path 2.0

https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization
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2.	 Replace the / slash (U+002F) in all paths with the path split \ backslash symbol (U+005C).

3.	 If the path has multiple \ path separators, fold them into one – for example, C:\Windows\\\\\
explorer.exe to C:\Windows\explorer.exe.

4.	 Reconstruct the directory composition. The path may be mixed with the current directory (.\) 
or upper-level directories (..\), and so on. The path is cut up with the path split symbol (\) 
and reconstructed in the following two ways:

	� Remove all dots (.) representing the current directory layer from the incoming path

	� If the current directory name is double dots (..), then the previous directory name will be 
removed from the incoming path

5.	 If the last character of the incoming path is the path splitter (\) after the prior steps, then the 
incoming path is a directory path and not a file. Keep this last character (\) for the record.

6.	 After the first five steps, if the end of the incoming path is not \, as described in step 5, and there 
are blank characters or dot characters (.) at the end, remove them from the end of the path.

Note
The Skipping Normalization section of this Microsoft public document https://learn.
microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization 
mentions something interesting: any path obtained via the Windows GetFullPathName API 
must go through the six path normalization steps just described. If the incoming path uses the 
path prefix \\?\, then all the steps will be skipped. There are two reasons.

Filenames or directory names such as foo. are allowed in the filesystems, such as NTFS, FAT, 
and so on, but are not legal for standard Windows paths. This function is therefore provided 
for accessing or writing directly to such files on the filesystem.

Traditional paths on Windows (i.e., XP, Vista, 7, and 8) only allow path lengths up to MAX_
PATH (260 characters), whereas in Windows 10, extra-long paths of up to 32,767 characters 
are supported.

The reason for this is that the path normalization process also checks that the path length is 
less than MAX_PATH to represent a normal Windows path.

Windows 10 offers an extra-long path feature with the \\?\ prefix to bypass the path length check.

https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization
https://learn.microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization
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Figure 11.1 shows that the Windows API will internally call ntdll!RtlDetermineDosPathName-
Type_U to classify the incoming paths into one of seven categories, as shown in the Project Zero 
article, The Definitive Guide on Win32 to NT Path Conversion (googleprojectzero.blogspot.
com/2016/02/the-definitive-guide-on-win32-to-nt.html):

•	 RtlPathTypeRooted: The root path (the path starting with \). It is the relative path to the 
disk drive, not to the working directory. Example: \Windows.

•	 RtlPathTypeDriveRelative: The relative disk path. Example: C:Windows.

•	 RtlPathTypeRootLocalDevice: Local root device paths (the path starting with \\?\). 
The path at the beginning. Example: \\? \C:\Windows\explorer.exe.

•	 RtlPathTypeLocalDevice: Local device path (the path starting with \\.\). This 
represents a device path that is an absolute path. Therefore, it is not parsed as a relative path and is 
prepended to the current working directory. Example: \\.\C:\Windows\explorer.exe.

•	 RtlPathTypeUncAbsolute. Paths that start with \\ and do not end with ? or ., which 
means it is a Universal Naming Convention (UNC) relative path. Example: \\127.0.0.1\
C$\Windows\explorer.exe.

•	 RtlPathTypeDriveAbsolute: Typical absolute path. Example: C:\Windows\
explorer.exe.

•	 RtlPathTypeRelative: Typical relative paths. After parsing, the current working directory 
is appended to the front of the path to make it an absolute path. For example, if the current 
working directory is C:\tmp, then bin\ will be resolved to C:\tmp\bin.

Example 1

Figure 11.2 shows that the current working directory is C:\tmp. We try to create the \dir_a and 
dir_b\ folders with mkdir in the current directory:

Figure 11.2 – The directory creation with mkdir

http://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
http://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
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The following findings can be seen in Figure 11.2:

•	 mkdir \dir_a is interpreted as creating a dir_a directory under the current C drive (since 
the drive in the current working directory is C:), so the absolute path to the created folder 
will be C:\dir_a\.

•	 mkdir dir_b\ is considered to create a folder under the current working directory, so the 
absolute path of the created folder will be C:\tmp\dir_b\.

Example 2

Figure 11.3 shows that we then create two directories: one is the C:\tmp\ folder and the other is the 
C:\tmp..\ folder, which was successfully created by bypassing the path normalization with the 
\\?\ prefix. Then, create subfolders in two folders, C:\tmp\kami and C:\tmp..\malicous:

Figure 11.3 – The misleading of Explorer

Use the explorer.exe C:\tmp..\ command to try to display the contents of C:\tmp..\, 
then we can find that because the Explorer parses paths with path normalization, it will browse to the 
wrong folder, C:\tmp, instead of the desired C:\tmp..\ folder, which can be used for a variant 
of malicious exploitation.
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Example 3

Figure 11.4 shows the abuse of the \\?\ technique to create the C:\tmp\hell and C:\tmp\hell.. 
directories. We write the contents with Google’s digital signature to C:\tmp\hell\kitty.exe, 
and write the Pikachu Volleyball game to C:\tmp\hell..\kitty.exe. Finally, the Windows 
API CreateProcess function is used to wake up the Pikachu Volleyball game:

Figure 11.4 – The signature bypass

In Task Manager, right-click on the Pikachu Volleyball process | Contents, and we see that the current 
Pikachu Volleyball program has a digital signature. This is due to the fact that the digital signature 
verification process should have verified C:\tmp\hell..\kitty.exe, but the path was normalized 
to C:\tmp\hell\kitty.exe, thus leading to a misjudgment. This may lead users to believe that 
this game actually has a legitimate Google digital signature.

Example 4

Figure 11.5 shows the cd "...." command. Since it is path normalized, it is actually equivalent to 
cd . and cd "\. .. ...". After path normalization, the end of . and blank characters will be 
removed, so the equivalent of cd \ will be returned to C:\:
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Figure 11.5 – The path conversion with cd

There is currently a hello folder under C:\tmp\. When we use cd C:hello, C:hello is 
determined to be the RtlPathTypeDriveRelative path type. Therefore, the C: string will 
be replaced with the current working directory, so C:hello will be resolved as C:\tmp\hello\ 
instead of the intuitive C:\hello\ path.

Example 5

Figure 11.6 shows the various ways to call cmd.exe by the UNC path. The UNC path format is 
prefixed with a double backslash (\\) and the domain name or IP, and the path split character (\) 
separates the directory name and filename:

Figure 11.6 – UNC path
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Since we can call cmd.exe in localhost in the C:\Windows\System32\ system directory by 
UNC, we can also use the \\?\, \\.\, or \??\ prefixes from the symbolic link to search for UNC 
devices and call cmd.exe in the localhost system directory.

As shown in Figure 11.7, WinObj in the Sysinternals toolkit lists the symbolic links recognized by 
the current Windows system:

Figure 11.7 – The symbolic link list with WinObj

As mentioned earlier, the UNC with the double backslash (\\) prefix is pointed to the \Device\
Mup device. The commonly heard Named Pipes are pointed to the \Device\NamedPipe device 
or to the C:\ disk drive, which actually points to \Device\HarddiskVolume4 on the physical 
hard disk.

Example 6

Many Linux users will be familiar with /dev/null as a special device. Any file command or program 
output can be directed or written to this device and is simply discarded without taking up space on 
the disk.

The WinObj screen in Figure 11.8 shows that Windows also has a corresponding device at \Device\
Null:
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Figure 11.8 – The symbolic link, NUL

We can manipulate it by using the NUL symbolic link. For example, we use echo 30cm.tw > 
\\.\NUL but no file with the name NUL has been generated.

Example 7

The left side of Figure 11.9 shows WinObj’s hierarchical listing of all the symbolic links in the system:

Figure 11.9 – The symbolic links in the system
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The top-level directory is \ and below it are several subdirectories; a few of the more important ones 
are as follows:

•	 Driver: Mounted drivers.

•	 Device: All global devices are listed in this directory, for example, Transmission Control 
Protocol (TCP) and User Datagram Protocol (UDP) devices for network packets, NULL 
devices for dropping all input, and Mup devices for the UNC path mentioned earlier.

•	 GLOBAL??: This directory lists the global symbolic links that are used. When the system 
encounters a local device path type prefixed with \\.\, all symbols in the path will be searched 
from this directory for the correct symbolic link.

•	 KnownDlls: This directory lists all the DLL modules known to the system. When any process 
attempts to load a DLL module listed in this directory, the absolute path of the DLL will not be 
searched following the Dynamic-Link Library Search Order principles https://learn.
microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-
search-order, thus effectively avoiding the threat of DLL hijacking.

The numbered commands in Figure 11.9 are described as follows:

1.	 In the GLOBAL?? directory, there is a GLOBAL symbolic link that points to the \GLOBAL?? 
directory. We can search for UNC devices under it and wake up cmd.exe with the UNC path.

2.	 In the GLOBAL?? directory, there is a symbolic link, GLOBALROOT, which points to the top 
directory, \. So, we can find the Device directory under it. As mentioned in Figure 11.7, 
GLOBAL??\UNC will point to \Device\Mup, so we can change the UNC symbol in the 
command number 1 to \Device\Mup and wake up cmd.exe with the UNC path.

3.	 Since we can jump to the Device directory through GLOBALROOT, we can certainly replace 
\\.\NUL for the equivalent \\.\GLOBALROOT\Device\NULL.

4.	 Since we can jump from GLOBALROOT to the top directory, \, we can also jump back to the 
GLOBAL?? directory where the global symbols are stored, and then jump to the UNC device 
to wake up cmd.exe with the UNC path.

Example 8

An interesting issue mentioned in the Local Device section of an article from Google’s top 
vulnerability research team, Project Zero: The Definitive Guide on Win32 to NT Path Conversion 
(googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-
to-nt.html) is that something can be maliciously exploited. The issue is that paths prefixed with 
\\.\ are treated as local device paths and are path normalized during parsing. Unlike other path 
types, however, when parsing local device paths, there is no restriction on the .. symbol (back to 
the upper directory). It is always possible to change it back or even replace the disk name, and each 
directory or filename in between is not parsed to confirm its existence. So, we can insert any rubbish 
string without affecting the parsing result:

https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
http://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
http://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
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Figure 11.10 – The local device path change

The commands in Figure 11.10 are described as follows.

1.	 The path prefixed with \\.\  is considered the local device path, followed by 
$data<>\<space>\..\..\C:\ will be parsed as only C:\. So the result of the whole 
command will be \\.\C:\Windows\System32\cmd /c whoami.

2.	 It is also the local device path. The first four layers of directories cut by \ path-splitting characters 
are C:, msgbox.exe, A, and B, which happen to be closed by the last four .. characters. 
So the result of the whole command will also be \\.\C:\Windows\System32\cmd /c 
whoami.

3.	 It is also the local device path. The former \\.\Z:\X:\Y:\../../../\UNC\ becomes 
\\.\Z:\X:\Y:\..\..\..\\UNC\ after path normalization. Then, it closes and becomes 
\\.\UNC\. The latter \:\:1/////\\\\C$\Windows\System32\cmd becomes \:\:1\
C$\Windows\System32\cmd after normalization, so the whole path is still \\.\C:\
Windows\System32\cmd /c whoami.
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