

The Majesty of Vue.js 2

Alex Kyriakidis, Kostas Maniatis and Evan You

This book is for sale at http://leanpub.com/vuejs2

This version was published on 2017-06-29

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2017 Alex Kyriakidis, Kostas Maniatis and Evan You

Tweet This Book!
Please help Alex Kyriakidis, Kostas Maniatis and Evan You by spreading the word about this book
on Twitter!

The suggested tweet for this book is:

I’m learning @vuejs with @tmvuejs. Get it at https://leanpub.com/vuejs2 #vuejs

The suggested hashtag for this book is #vuejs2.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#vuejs2

Contents

Introduction . i

About Vue.js . ii
Vue.js Overview . ii
What people say about Vue.js . ii
Comparison with Other Frameworks . iv

Angular 1 . iv
Angular 2 . v
React . vi
Ember . viii
Polymer . ix
Riot . x

Welcome . xi
About the Book . xi
Who is this Book for . xi
Get In Touch . xi
Homework . xii
Sample Code . xii
Errata . xii
Conventions . xii

I Vue.js Fundamentals . 1

1. Install Vue.js . 2
1.1 Standalone Version . 2

1.1.1 Download from vuejs.org . 2
1.1.2 Include from CDN . 2

1.2 Download using NPM . 3
1.3 Download using Bower . 3

2. Getting Started . 4
2.1 Hello World . 4

CONTENTS

2.2 Two-way Binding . 6
2.3 Comparison with jQuery. 7
2.4 Homework . 9

3. A Flavor of Directives. 10
3.1 v-show . 10
3.2 v-if . 13

3.2.1 Template v-if . 14
3.3 v-else . 15
3.4 v-if vs. v-show . 18
3.5 Homework . 19

4. List Rendering . 20
4.1 Install & Use Bootstrap . 20
4.2 v-for . 22

4.2.1 Range v-for . 22
4.3 Array Rendering . 24

4.3.1 Loop Through an Array . 24
4.3.2 Loop Through an Array of Objects . 26

4.4 Object v-for . 29
4.5 Homework . 31

5. Interactivity . 32
5.1 Event Handling . 32

5.1.1 Handling Events Inline . 32
5.1.2 Handling Events using Methods . 34
5.1.3 Shorthand for v-on . 35

5.2 Event Modifiers . 36
5.3 Key Modifiers . 40
5.4 Computed Properties . 41
5.5 Homework . 47

6. Filters . 49
6.1 Filtered Results . 49

6.1.1 Using Computed Properties . 52
6.2 Ordered Results . 59
6.3 Custom Filters . 63
6.4 Utility Libraries . 64
6.5 Homework . 68

7. Components . 69
7.1 What are Components? . 69
7.2 Using Components . 69

CONTENTS

7.3 Templates . 71
7.4 Properties . 72
7.5 Reusability . 75
7.6 Altogether . 79
7.7 Homework . 86

8. Custom Events . 87
8.1 Emit and Listen . 87

8.1.1 Lifecycle Hooks . 89
8.2 Parent-Child Communication . 90
8.3 Passing Arguments . 92
8.4 Non Parent-Child Communication . 97
8.5 Removing Event Listeners . 100
8.6 Back to stories . 101
8.7 Homework . 104

9. Class and Style Bindings . 106
9.1 Class binding . 106

9.1.1 Object Syntax . 106
9.1.2 Array Syntax . 109

9.2 Style binding . 111
9.2.1 Object Syntax . 111
9.2.2 Array Syntax . 112

9.3 Bindings in Action . 113
9.4 Homework . 116

II Consuming an API . 117

10. Preface . 118
10.1 CRUD . 118
10.2 API . 118

10.2.1 Download Book’s Code . 119
10.2.2 API Endpoints . 121

11. Working with real data . 123
11.1 Get Data Asynchronous . 123
11.2 Refactoring . 127
11.3 Update Data . 129
11.4 Delete Data . 131

12. HTTP Clients . 134
12.1 Introduction . 134

CONTENTS

12.2 Vue-resource . 134
12.3 Axios . 135
12.4 Integrating axios . 136
12.5 Enhancing Functionality . 138

12.5.1 Edit Stories . 138
12.5.2 Create New Stories . 141
12.5.3 Store & Update Unit . 147

12.6 JavaScript File . 148
12.7 Source Code . 149
12.8 Homework . 154

12.8.1 Preface . 154
12.8.2 API Endpoints . 155
12.8.3 Your Code . 155

13. Pagination . 157
13.1 Implementation . 158
13.2 Pagination Links . 161
13.3 Homework . 164

III Building Large-Scale Applications 165

14. ECMAScript 6 . 166
14.1 Introduction . 166

14.1.1 Compatibility . 167
14.2 Variable Declarations . 167

14.2.1 Let Declarations . 167
14.2.2 Constant Declarations . 168

14.3 Arrow Functions . 168
14.4 Modules . 169
14.5 Classes . 170
14.6 Default Parameter Values . 171
14.7 Template literals . 172

15. Advanced Workflow . 174
15.1 Compiling ES6 with Babel . 174

15.1.1 Installation . 176
15.1.2 Configuration . 178
15.1.3 Build alias . 179
15.1.4 Usage . 179
15.1.5 Homework . 181

15.2 Workflow Automation with Gulp . 183
15.2.1 Task Runners . 183

CONTENTS

15.2.2 Installation . 184
15.2.3 Usage . 184
15.2.4 Watch . 185
15.2.5 Homework . 186

15.3 Module Bundling with Webpack . 187
15.3.1 Module Bundlers . 187
15.3.2 Webpack . 190
15.3.3 Installation . 191
15.3.4 Usage . 191
15.3.5 Automation . 192

15.4 Summary . 194

16. Working with Single File Components . 196
16.1 The vue-cli . 196

16.1.1 Vue’s Templates . 196
16.1.2 Installation . 197
16.1.3 Usage . 197

16.2 Webpack Template . 200
16.2.1 Project Structure . 202
16.2.2 index.html . 203
16.2.3 Hello.vue . 204
16.2.4 App.vue . 205
16.2.5 main.js . 207

16.3 Forming .vue Files . 208
16.3.1 Nested Components . 217

17. Eliminating Duplicate State . 222
17.1 Sharing with Properties . 222
17.2 Global Store . 227

18. Swapping Components . 231
18.1 Dynamic Components . 231

18.1.1 The is special attribute . 231
18.1.2 Navigation . 234

19. Vue Router . 239
19.1 Installation . 239
19.2 Usage . 240
19.3 Named Routes . 242
19.4 History mode . 243
19.5 Nested routes . 245
19.6 Auto-CSS active class . 247

19.6.1 Custom Active Class . 249

CONTENTS

19.7 Route Object . 250
19.8 Dynamic Segments . 251
19.9 Route Alias . 258
19.10 Programmatic Navigation . 260
19.11 Transitions . 261

19.11.1 Introduction . 261
19.11.2 Usage . 263
19.11.3 3rd-party CSS animations . 264

19.12 Navigation Guards . 265
19.13 Homework . 267

20. Closing Thoughts . 270

21. Further Learning . 271
21.1 Tutorials . 271
21.2 Videos . 271
21.3 Books . 272
21.4 Open source projects . 272
21.5 Awesome Vue . 273

Introduction

About Vue.js
Vue.js Overview

Vue (pronounced /vjuː/, like view) is a progressive framework for building user interfaces. Unlike
other monolithic frameworks, Vue is designed from the ground up to be incrementally adoptable.
The core library is focused on the view layer only, and is very easy to pick up and integrate
with other libraries or existing projects. On the other hand, Vue is also perfectly capable of
powering sophisticated Single-Page Applications when used in combination with modern tooling
and supporting libraries.1

If you are an experienced frontend developer and you want to know how Vue.js compares to other
libraries/frameworks, check out the Comparison with Other Frameworks chapter.

If you are interested to learn more information about Vue.js’ core take a look at Vue.js official guide2.

What people say about Vue.js

“Vue.js is what made me love JavaScript. It’s extremely easy and enjoyable to use. It has a great
ecosystem of plugins and tools that extend its basic services. You can quickly include it in any project,
small or big, write a few lines of code and you are set. Vue.js is fast, lightweight and is the future of
Front end development!”

—Alex Kyriakidis

“When I started picking up Javascript I got excited learning a ton of possibilities, but when my friend
suggested to learn Vue.js and I followed his advice, things went wild. While reading and watching
tutorials I kept thinking all the stuff I’ve done so far and how much easier it would be if I had invest
time to learn Vue earlier. My opinion is that if you want to do your work fast, nice and easy Vue is
the JS Framework you need. “

—Kostas Maniatis

1https://github.com/vuejs/awesome-vue#libraries--plugins
2http://vuejs.org/guide/overview.html

About Vue.js iii

“Mark my words: Vue.js will sky-rocket in popularity in 2016. It’s that good.”

— Jeffrey Way

“Vue is what I always wanted in a JavaScript framework. It’s a framework that scales with you as a
developer. You can sprinkle it onto one page, or build an advanced single page application with Vuex
and Vue Router. It’s truly the most polished JavaScript framework I’ve ever seen.”

— Taylor Otwell

“Vue.js is the first framework I’ve found that feels just as natural to use in a server-rendered app as
it does in a full-blown SPA. Whether I just need a small widget on a single page or I’m building a
complex Javascript client, it never feels like not enough or like overkill.”

— AdamWathan

“Vue.js has been able to make a framework that is both simple to use and easy to understand. It’s
a breath of fresh air in a world where others are fighting to see who can make the most complex
framework.”

— Eric Barnes

“The reason I like Vue.js is because I’m a hybrid designer/developer. I’ve looked at React, Angular
and a few others but the learning curve and terminology has always put me off. Vue.js is the first
JS framework I understand. Also, not only is it easy to pick up for the less confidence JS’ers, such as
myself, but I’ve noticed experienced Angular and React developers take note, and liking, Vue.js. This
is pretty unprecedented in JS world and it’s that reason I started London Vue.js Meetup.”

—Jack Barham

About Vue.js iv

Comparison with Other Frameworks

Angular 1

Some of Vue’s syntax will look very similar to Angular (e.g. v-if vs ng-if). This is because there
were a lot of things that Angular got right and these were an inspiration for Vue very early in its
development. There are also many pains that come with Angular however, where Vue has attempted
to offer a significant improvement.

Complexity

Vue is much simpler than Angular 1, both in terms of API and design. Learning enough to build
non-trivial applications typically takes less than a day, which is not true for Angular 1.

Flexibility and Modularity

Angular 1 has strong opinions about how your applications should be structured, while Vue is a
more flexible, modular solution. That’s why a Webpack template3 is provided, that can set you up
within minutes, while also granting you access to advanced features such as hot module reloading,
linting, CSS extraction, and much more.

Data binding

Angular 1 uses two-way binding between scopes, while Vue enforces a one-way data flow between
components. This makes the flow of data easier to reason about in non-trivial applications.

Directives vs Components

Vue has a clearer separation between directives and components. Directives aremeant to encapsulate
DOM manipulations only, while components are self-contained units that have their own view and
data logic. In Angular, there’s a lot of confusion between the two.

Performance

Vue has better performance and is much, much easier to optimize because it doesn’t use dirty
checking. Angular 1 becomes slow when there are a lot of watchers, because every time anything in
the scope changes, all these watchers need to be re-evaluated again. Also, the digest cycle may have
to run multiple times to “stabilize” if some watcher triggers another update. Angular users often
have to resort to esoteric techniques to get around the digest cycle, and in some situations, there’s
simply no way to optimize a scope with many watchers.

3https://github.com/vuejs-templates/webpack

About Vue.js v

Vue doesn’t suffer from this at all because it uses a transparent dependency-tracking observation
system with async queueing - all changes trigger independently unless they have explicit depen-
dency relationships.

Interestingly, there are quite a few similarities in how Angular 2 and Vue are addressing these
Angular 1 issues.

Angular 2

There is a separate section for Angular 2 because it really is a completely new framework.
For example, it features a first-class component system, many implementation details have been
completely rewritten, and the API has also changed quite drastically.

Size and Performance

In terms of performance, both frameworks are exceptionally fast and there isn’t enough data from
real world use cases to make a verdict. However if you are determined to see some numbers, Vue
2.0 seems to be ahead of Angular 2 according to this 3rd party benchmark4.

Size wise, although Angular 2 with offline compilation and tree-shaking is able to get its size down
considerably, a full-featured Vue 2.0 with compiler included (23kb) is still lighter than a tree-shaken
bare-bone example of Angular 2 (50kb).

Flexibility

Vue is much less opinionated than Angular 2, offering official support for a variety of build systems,
with no restrictions on how you structure your application. Many developers enjoy this freedom,
while some prefer having only one Right Way to build any application.

Learning Curve

To get started with Vue, all you need is familiarity with HTML and ES5 JavaScript (i.e. plain
JavaScript). With these basic skills, you can start building non-trivial applications within less than
a day of reading the guide.

Angular 2’s learning curve is much steeper. Even without TypeScript, their Quickstart guide5 starts
out with an app that uses ES2015 JavaScript, NPM with 18 dependencies, 4 files, and over 3,000
words to explain it all - just to say Hello World.

4http://stefankrause.net/js-frameworks-benchmark4/webdriver-ts/table.html
5https://angular.io/docs/js/latest/quickstart.html

About Vue.js vi

React

React and Vue share many similarities. They both:

• utilize a virtual DOM
• provide reactive and composable view components
• maintain focus in the core library, with concerns such as routing and global state management
handled by companion libraries

Performance Profiles

In every real-world scenario that has been tested so far, Vue outperforms React by a fair margin.

Render Performance

When rendering UI, manipulating the DOM is typically the most expensive operation and unfortu-
nately, no library can make those raw operations faster. The best it can be done is:

1. Minimize the number of necessary DOM mutations. Both React and Vue use virtual DOM
abstractions to accomplish this and both implementations work about equally well.

2. Add as little overhead as possible on top of those DOM manipulations. This is an area where
Vue and React differ. In React, let’s say the additional overhead of rendering an element is 1
and the overhead of an average component is 2. In Vue, the overhead of an element would be
more like 0.1, but the overhead of an average component would be 4, due to the setup required
for the reactivity system.

This means that in typical applications, where there are many more elements than components
being rendered, Vue will outperform React by a significant margin. In extreme cases however, such
as using 1 normal component to render each element, Vue will usually be slower.

Both Vue and React also offer functional components, which are stateless and instanceless - and
therefore, require less overhead. When these are used in performance-critical situations, Vue is once
again faster.

Update Performance

In React, you need to implement shouldComponentUpdate everywhere and use immutable data
structures to achieve fully optimized re-renders. In Vue, a component’s dependencies are automat-
ically tracked so that it only updates when one of those dependencies change. The only further
optimization that sometimes can be helpful in Vue is adding a key attribute to items in long lists.

This means updates in unoptimized Vue will be much faster than unoptimized React and actually,
due to the improved render performance in Vue, even fully-optimized React will usually be slower
than Vue is out-of-the-box.

In Development

About Vue.js vii

Obviously, performance in production is the most important and that’s what we’ve been discussing
so far. Performance in development still matters though. The good news is that both Vue and React
remain fast enough in development for most normal applications.

However, if you’re prototyping any high-performance data visualizations or animations, you may
find it useful to know that in scenarios where Vue can’t handle more than 10 frames per second in
development, we’ve seen React slow down to about 1 frame per second.

This is due to React’s many heavy invariant checks, which help it to provide many excellent
warnings and error messages.

About Vue.js viii

Ember

Ember is a full-featured framework that is designed to be highly opinionated. It provides a lot
of established conventions and once you are familiar enough with them, it can make you very
productive. However, it also means the learning curve is high and flexibility suffers. It’s a trade-off
when you try to pick between an opinionated framework and a library with a loosely coupled set
of tools that work together. The latter gives you more freedom but also requires you to make more
architectural decisions.

That said, it would probably make a better comparison between Vue core and Ember’s templating
and object model layers:

• Vue provides unobtrusive reactivity on plain JavaScript objects and fully automatic computed
properties. In Ember, you need to wrap everything in Ember Objects and manually declare
dependencies for computed properties.

• Vue’s template syntax harnesses the full power of JavaScript expressions, while Handlebars’
expression and helper syntax is intentionally quite limited in comparison.

• Performance-wise, Vue outperforms Ember by a fair margin, even after the latest Glimmer
engine update in Ember 2.0. Vue automatically batches updates, while in Ember you need to
manually manage run loops in performance-critical situations.

About Vue.js ix

Polymer

Polymer is yet another Google-sponsored project and in fact was a source of inspiration for Vue as
well. Vue’s components can be loosely compared to Polymer’s custom elements and both provide
a very similar development style. The biggest difference is that Polymer is built upon the latest
Web Components features and requires non-trivial polyfills to work (with degraded performance) in
browsers that don’t support those features natively. In contrast, Vueworkswithout any dependencies
or polyfills down to IE9.

In Polymer 1.0, the team has also made its data-binding system very limited in order to compensate
for the performance. For example, the only expressions supported in Polymer templates are boolean
negation and single method calls. Its computed property implementation is also not very flexible.

Polymer custom elements are authored in HTML files, which limits you to plain JavaScript/CSS
(and language features supported by today’s browsers). In comparison, Vue’s single file components
allows you to easily use ES2015+ and any CSS preprocessors you want.

When deploying to production, Polymer recommends loading everything on-the-fly with HTML
Imports, which assumes browsers implementing the spec, and HTTP/2 support on both server
and client. This may or may not be feasible depending on your target audience and deployment
environment. In cases where this is not desirable, you will have to use a special tool called Vulcanizer
to bundle your Polymer elements. On this front, Vue can combine its async component feature with
Webpack’s code-splitting feature to easily split out parts of the application bundle to be lazy-loaded.
This ensures compatibility with older browsers while retaining great app loading performance.

About Vue.js x

Riot

Riot 2.0 provides a similar component-based development model (which is called a “tag” in
Riot), with a minimal and beautifully designed API. Riot and Vue probably share a lot in design
philosophies. However, despite being a bit heavier than Riot, Vue does offer some significant
advantages:

• True conditional rendering. Riot renders all if branches and simply shows/hides them.
• A far more powerful router. Riot’s routing API is extremely minimal.
• More mature tooling support. Vue provides official support for Webpack, Browserify, and
SystemJS, while Riot relies on community support for build system integration.

• Transition effect system. Riot has none.
• Better performance. Despite advertising use of a virtual DOM, Riot in fact uses dirty checking
and thus suffers from the same performance issues as Angular 1.

For updated comparisons feel free to check Vue.js guide.

Welcome
About the Book

This book will guide you through the path of the rapidly spreading Javascript Framework called
Vue.js!

Some time ago, we started a new project based on Laravel and Vue.js. After thoroughly reading Vue.js
guide and a few tutorials, we discovered lack of resources about Vue.js around the web. During the
development of our project, we gained a lot of experience, so we came up with the idea to write this
book in order to share our acquired knowledge with the world. Now that Vue.js 2 is out we decided
it was time to update our book by publishing a second version where all examples and their relative
contents are rewritten.

This book is written in an informal, intuitive, and easy-to-follow format, wherein all examples are
appropriately detailed enough to provide adequate guidance to everyone.

We’ll start from the very basics and throughmany examples we’ll cover the most significant features
of Vue.js. By the end of this book, you will be able to create fast front end applications and increase
the performance of your existing projects with Vue.js 2 integration.

Who is this Book for

Everyone who has spent time to learn modern web development has seen Bootstrap, Javascript, and
many Javascript frameworks. This book is for anyone interested in learning a lightweight and simple
Javascript framework. No excessive knowledge is required, though it would be good to be familiar
with HTML and Javascript. If you dont’t knowwhat the difference is between a string and an object,
maybe you need to do some digging first.

This book is useful for developers who are new to Vue.js, as well as those who already use Vue.js
and want to expand their knowledge. It is also helpful for developers who are looking to migrate to
Vue.js 2.

Get In Touch

In case you would like to contact us about the book, send us feedback, or other matters you would
like to bring to our attention, don’t hesitate to contact us.

Welcome xii

Name Email Twitter

The Majesty of Vue.js hello@tmvuejs.com @tmvuejs
Alex Kyriakidis alex@tmvuejs.com @hootlex
Kostas Maniatis kostas@tmvuejs.com @kostaskafcas

Homework

The best way to learn code is to write code, so we have prepared one exercise at the end
of most chapters for you to solve and actually test yourself on what you have learned. We
strongly recommend you to try as much as possible to solve them and through them gain a better
understanding of Vue.js. Don’t be afraid to test your ideas, a little effort goes a long way! Maybe a
few different examples or ways will give you the right idea. Of course we are not merciless, hints
and potential solutions will be provided!

You may begin your journey!

Sample Code

You can find most of the code examples used in the book on GitHub. You can browse around the
code here6.

If you prefer to download it, you will find a .zip file here7.

This will save you from copying and pasting things out of the book, which would probably be
terrible.

Errata

Although every care have been taken to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in the book we would be grateful if you could report it to us. By doing so, you
can protect other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please submit an issue on our GitHub repository8.

Conventions

The following notational conventions are used throughout the book.

A block of code is set as follows:

JavaScript
6https://github.com/hootlex/the-majesty-of-vuejs-2
7https://github.com/hootlex/the-majesty-of-vuejs-2/archive/master.zip
8https://github.com/hootlex/the-majesty-of-vuejs-2

Welcome xiii

1 function(x, y){

2 // this is a comment

3 }

Code words in text, data are shown as follows: “Use .container for a responsive fixed width
container.”

New terms and important words are shown in bold.

Tips, notes, and warnings are shown as follows:

This is a Warning
This element indicates a warning or caution.

This is a Tip
This element signifies a tip or suggestion.

This is an Information box
Some special information here.

This is a Note
A note about the subject.

This is a Hint
A hint about the subject.

This is a Terminal Command
Commands to run in terminal.

This is a Comparison text
A small text comparing things relative to the subject.

Welcome xiv

This is a link to Github.
Links lead to the repository of this book, where you can find the code samples and potential
homework solutions of each chapter.

I Vue.js Fundamentals

1. Install Vue.js
When it comes to download Vue.js you have a few options to choose from.

1.1 Standalone Version

1.1.1 Download from vuejs.org

To install Vue you can simply download and include it with a script tag. Vue will be registered as a
global variable.

You can download two versions of Vue.js:

1. Development Version from http://vuejs.org/js/vue.js1

2. Production Version from http://vuejs.org/js/vue.min.js2.

Tip: Don’t use the minified version during development. You will miss out all the nice
warnings for common mistakes.

1.1.2 Include from CDN

Vue.js.org3 recommends unpkg4, which will reflect the latest version as soon as it is published to
npm.

You can find Vue.js also on jsdelivr5 or cdnjs6

It takes some time to sync with the latest version so you have to check frequently for
updates.

1http://vuejs.org/js/vue.js
2http://vuejs.org/js/vue.min.js
3https://vuejs.org/v2/guide/installation.html#CDN
4https://unpkg.com/vue/dist/vue.js
5https://cdn.jsdelivr.net/vue/2.3.2/vue.min.js
6https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.min.js

Install Vue.js 3

1.2 Download using NPM

NPM is the recommended installation method when building large scale apps with Vue.js. It pairs
nicely with a CommonJS module bundler such as Webpack7 or Browserify8.

1 # latest stable

2 $ npm install vue

3 # latest stable + CSP-compliant

4 $ npm install vue@csp

5 # dev build (directly from GitHub):

6 $ npm install vuejs/vue#dev

1.3 Download using Bower

1 # latest stable

2 $ bower install vue

For more installation instructions and updates take a look at the Vue.js Installation Guide9

In most book examples we are including Vue.js from the cdn, although you are free to install it using
any method you like.

7http://webpack.github.io/
8http://browserify.org/
9http://vuejs.org/guide/installation.html

2. Getting Started
Let’s start with a quick tour of Vue’s data binding features. We’re going to make a simple application
that will allow us to enter a message and have it displayed on the page in real time. It’s going to
demonstrate the power of Vue’s two-way data binding. In order to create our Vue application, we
need to do a little bit of setting up, which just involves creating an HTML page.

In the process you will get the idea of the amount of time and effort we save using a javascript
Framework like Vue.js instead of a javascript tool (library) like jQuery.

2.1 Hello World

We will create a new file and we will drop some boilerplate code in. You can name it anything you
like, this one is called hello.html.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <h1>Greetings your Majesty!</h1>

7 </body>

8 </html>

This is a simple HTML file with a greeting message.

Now we will carry on and do the same job using Vue.js. First of all we will include Vue.js and create
a new Instance.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1>Greetings your majesty!</h1>

8 </div>

9 </body>

Getting Started 5

10 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.min.js"></scri\

11 pt>

12 <script>

13 new Vue({

14 el: '#app',

15 })

16 </script>

17 </html>

For starters, we have included Vue.js from cdnjs1 and inside a script tag we have our Vue instance.
We use a div with an id of #app which is the element we refer to, so Vue knows where to ‘look’.
Try to think of this as a container that Vue works at. Vue won’t recognize anything outside of the
targeted element. Use the el option to target the element you want.

Now we will assign the message we want to display, to a variable inside an object named data. Then
we’ll pass the data object as an option to Vue constructor.

1 var data = {

2 message: 'Greetings your majesty!'

3 };

4 new Vue({

5 el: '#app',

6 data: data

7 })

To display our message on the page, we just need to wrap the message in double curly brackets . So
whatever is inside our message it will appear automatically in the h1 tag.

1 <div id="app">

2 <h1>{{ message }}</h1>

3 </div>

It is as simple as that. Another way to define the message variable is to do it directly inside Vue
constructor in data object.

1https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js

Getting Started 6

1 new Vue({

2 el: '#app',

3 data: {

4 message: 'Greetings your Majesty!'

5 }

6 });

Both ways have the exact same result, so you are again free to pick whatever syntax you like.

Info
The double curly brackets are not HTML but scripting code, anything inside mustache tags
is called binding expression. Javascript will evaluate these expressions. The {{ message }}

brings up the value of the Javascript variable. This piece of code {{1+2}} will display the
number 3.

2.2 Two-way Binding

What is cool about Vue is that it makes our lives easier. Assume we want to change the message
on user input, how can we easily accomplish it? In the example below we use v-model, a directive
of Vue (we will cover more on directives in the next chapter). Then we use two-way data binding
to dynamically change the message value when the user changes the message text inside an input.
Data is synced on every input event by default.

1 <div id="app">

2 <h1>{{ message }}</h1>

3 <input v-model="message">

4 </div>

1 new Vue({

2 el: '#app',

3 data: {

4 message: 'Greetings your Majesty!'

5 }

6 })

That’s it. Now our heading message and user input are bound! By using v-model inside the input
tag we tell Vue which variable should bind with that input, in this case message .

Getting Started 7

Two-way data binding

Two-way data binding means that if you change the value of a model in your view, everything will
be kept up to date.

2.3 Comparison with jQuery.

Probably, all of you have some experience with jQuery. If you don’t, it’s okay, the use of jQuery in
this book is minimal. When we use it, its only to demonstrate how things can be done with Vue
instead of jQuery and we will make sure everybody gets it.

Anyway, in order to better understand how data-binding is helping us to build apps, take a moment
and think how you could do the previous example using jQuery. You would probably create an input
element and give it an id or a class, so you could target it and modify it accordingly. After this,
you would call a function that changes the desired element to match the input value, whenever the
keyup event happens. It’s a real bother.

More or less, your snippet of code would look like this.

Getting Started 8

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1>Greetings your Majesty!</h1>

8 <input id="message">

9 </div>

10 </body>

11 <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

12 <script type="text/javascript">

13 $('#message').on('keyup', function(){

14 var message = $('#message').val();

15 $('h1').text(message);

16 })

17 </script>

18 </html>

This is a simple example of comparison and, as you can see, Vue appears to be much more beautiful,
less time consuming, and easier to grasp. Of course, jQuery is a powerful JavaScript library for
Document Object Model (DOM) manipulation, but everything comes with its ups and downs!

Code Examples
You can find the code examples of this chapter on GitHub2.

2https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/codes/chapter2.html

Getting Started 9

2.4 Homework

A nice and super simple introductory exercise is to create an HTML file with a Hello, {{name}}
heading. Add an input and bind it to name variable. As you can imagine, the heading must change
instantly whenever the user types or changes his name. Good luck and have fun!

Example Output

Note
The example’s output makes use of Bootstrap. If you are not familiar with bootstrap you
can ignore it for now, it is covered in a later chapter.

Potential Solution
You can find a potential solution to this exercise here3.

3https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter2.html

3. A Flavor of Directives.
In this chapter we are going through some basic examples of Vue’s directives. Well, if you have not
used any Framework like Vue.js or Angular.js before, you probably don’t know what a directive is.
Essentially, a directive is a special token in the markup that tells the library to do something to a
DOM element. In Vue.js, the concept of directive is drastically simpler than that in Angular. Some
of the directives are:

• v-show which is used to conditionally display an element
• v-if which can be used instead of v-show
• v-else which displays an element when v-if evaluates to false.

Also, there is v-for, which requires a special syntax and its use is for rendering (e.g. render a list of
items based on an array). We will elaborate about the use of each, later in this book.

Let us begin and take a look at the directives we mentioned.

3.1 v-show

To demonstrate the first directive, we are going to build something simple. We will give you some
tips that will make your understanding and work much easier! Suppose you find yourself in need to
toggle the display of an element, based upon some set of criteria. Maybe a submit button shouldn’t
display unless you’ve first typed in a message. How can we accomplish that with Vue?

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <textarea></textarea>

8 </div>

9 </body>

10 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

11 <script>

12 new Vue({

13 el: '#app',

A Flavor of Directives. 11

14 data: {

15 message: 'Our king is dead!'

16 }

17 })

18 </script>

19 </html>

Here we have an HTML file with our known div id="app" and a textarea. Inside the textarea

we are going to display our message. Of course, it is not yet bound and by this point you may have
already figured it out. Also you may have noticed that in this example we are no longer using the
minified version of Vue.js. As we have mentioned before, the minified version shouldn’t be used
during development because you will miss out warnings for common mistakes. From now on, we
are going to use this version in the book but of course you are free to do as you like.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <textarea v-model="message"></textarea>

8 <pre>

9 {{ $data }}

10 </pre>

11 </div>

12 </body>

13 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

14 <script>

15 new Vue({

16 el: '#app',

17 data: {

18 message: 'Our king is dead!'

19 }

20 })

21 </script>

22 </html>

It is time to bind the value of textarea with our message variable using v-model so it displays our
message. Anything we type in is going to change in real time, just as we saw in the example from
the previous chapter, where we were using an input. Additionally, here we are using a pre tag to spit
out the data. What this is going to do, is to take the data from our Vue instance, filter it through json,
and finally display the data in our browser. Vue will nicely format the output for us automatically

A Flavor of Directives. 12

whether it’s a string, number, array, or a plain object. We believe, that this gives a much better way
to build and manipulate our data, since having everything right in front of you is better than looking
constantly at your console.

Info
JSON (JavaScript Object Notation) is a lightweight data-interchange format. You can find
more info on JSON here1. The output of {{ $data }} is bound with Vue data and will get
updated on every change.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1>You must send a message for help!</h1>

8 <textarea v-model="message"></textarea>

9 <button v-show="message">

10 Send word to allies for help!

11 </button>

12 <pre>

13 {{ $data }}

14 </pre>

15 </div>

16 </body>

17 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

18 <script>

19 new Vue({

20 el: '#app',

21 data: {

22 message: 'Our king is dead! Send help!'

23 }

24 })

25 </script>

26 </html>

Carrying on, we now have a simple warning in the h1 tag that will toggle later based on some
criteria. Next to it, there is the button which is going to display conditionally. Ιt appears only if there

1http://www.json.org/

A Flavor of Directives. 13

is a message present. If the textarea is empty and therefore our data, the button’s display attribute
is automatically set to ‘none’ and the button disappears.

Info
An element with v-show will always be rendered and remain in the DOM. v-show simply
toggles the display CSS property of the element.

1 <h1 v-show="!message">You must send a message for help!</h1>

2 <textarea v-model="message"></textarea>

3 <button v-show="message">

4 Send word to allies for help!

5 </button>

What we want to accomplish in this example, is to toggle different elements. In this step, we need
to hide the warning inside the h1 tag, if a message is present. Οtherwise hide the message by setting
its style to display: none.

3.2 v-if

At this point you might ask ‘What about the v-if directive we mentioned earlier?’. So, we will build
the previous example again, only this time we’ll use v-if!

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1 v-if="!message">You must send a message for help!</h1>

8 <textarea v-model="message"></textarea>

9 <button v-if="message">

10 Send word to allies for help!

11 </button>

12 <pre>

13 {{ $data }}

14 </pre>

15 </div>

16 </body>

17 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

A Flavor of Directives. 14

18 <script>

19 new Vue({

20 el: '#app',

21 data: {

22 message: 'Our king is dead! Send help!'

23 }

24 })

25 </script>

26 </html>

As shown, the replacement of v-show with v-if works just as good as we thought. Go ahead and
try to make your own experiments to see how this works! The only difference is that an element
with v-if will not remain in the DOM.

3.2.1 Template v-if

If sometime we find ourselves in a position where we want to toggle the existence of multiple
elements at once, we can use v-if on a <template> element. In occasions where the use of div

or span doesn’t seem appropriate, the <template> element can also serve as an invisible wrapper.
The <template> won’t be rendered in the final result.

1 <div id="app">

2 <template v-if="!message">

3 <h1>You must send a message for help!</h1>

4 <p>Dispatch a messenger immediately!</p>

5 <p>To nearby kingdom of Hearts!</p>

6 </template>

7 <textarea v-model="message"></textarea>

8 <button v-show="message">

9 Send word to allies for help!

10 </button>

11 <pre>

12 {{ $data }}

13 </pre>

14 </div>

A Flavor of Directives. 15

Template v-if

Using the setup from the previous example we have attached the v-if directive to the template

element, toggling the existence of all nested elements.

Warning
The v-show directive does not support the <template> syntax.

3.3 v-else

When using v-if you can use the v-else directive to indicate an “else block” as you might have
already imagined. Be aware that the v-else directive must follow immediately the v-if directive -
otherwise it will not be recognized.

A Flavor of Directives. 16

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1 v-if="!message">You must send a message for help!</h1>

8 <h2 v-else>You have sent a message!</h2>

9 <textarea v-model="message"></textarea>

10 <button v-show="message">

11 Send word to allies for help!

12 </button>

13 <pre>

14 {{ $data }}

15 </pre>

16 </div>

17 </body>

18 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

19 <script>

20 new Vue({

21 el: '#app',

22 data: {

23 message: 'Our king is dead! Send help!'

24 }

25 })

26 </script>

27 </html>

A Flavor of Directives. 17

v-if in action

v-else in action

Just for the sake of the example we have used an h2 tag with a different warning than before, which
is displayed conditionally. If no message is presented, we see the h1 tag. If there is a message, we see
the h2 using this very simple syntax of Vue v-if and v-else. Simple as a pimple!

A Flavor of Directives. 18

Warning
The v-show directive doesn’t work anymore with v-else, in Vue 2.0.

3.4 v-if vs. v-show

Even though we have alreadymentioned a difference between v-if and v-show , we can deepen a bit
more. Some questions may arise out of their use. Is there a big difference between using v-show and
v-if? Is there a situation where performance is affected? Are there problems where you’re better
off using one or the other? You might experience that the use of v-show on a lot of situations causes
bigger time of load during page rendering. In comparison, v-if is truly conditional according to the
guide of Vue.js.

When using v-if, if the condition is false on initial render, it will not do anything - - the
conditional block won’t be rendered until the condition becomes true for the first time.
Generally speaking, v-if has higher toggle costs while v-show has higher initial render
costs. So prefer v-show if you need to toggle something very often, and prefer v-if if the
condition is unlikely to change at runtime.

So, when to use which really depends on your needs.

Code Examples
You can find the code examples of this chapter on GitHub2.

2https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter3

A Flavor of Directives. 19

3.5 Homework

Following the previous homework exercise, you should try to expand it a bit. The user now types in
his gender along with his name. If user is a male, then the heading will greet the user with “Hello
Mister {{name}}”. If user is a female, then “Hello Miss {{name}}” should appear instead.

When gender is neither male or female then the user should see the warning heading “So you can’t
decide. Fine!”.

Hint
A logical operator would come handy to determine user title.

Example Output

Potential Solution
You can find a potential solution to this exercise here3.

3https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter3.html

4. List Rendering
In the fourth chapter of this book, we are going to learn about list rendering. Using Vue’s directives
we are going to demonstrate how to:

1. Render a list of items based on an array.
2. Repeat a template.
3. Iterate through the properties of an object.

4.1 Install & Use Bootstrap

To make our work easier on the eye, we are going to import Bootstrap.

Info
Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive,
mobile first projects on the web.

Head to http://getbootstrap.com/1 and click the download button. For the time being, we’ll just use
Bootstrap from the CDN link2 but you can install it in any way that suits your particular needs. For
our example we need only one file, for now: css/bootstrap.min.css. When we use this .css file
in our app, we have access to all the pretty structures and styles. Just include it within the head tag
of your page and you are good to go.

Bootstrap requires a containing element to wrap site contents and house our grid system. You may
choose one of two containers to use in your projects. Note that, due to padding and more, neither
container is nestable.

• Use .container for a responsive fixed width container.

1 <div class="container">

2 ...

3 </div>

• Use .container-fluid for a full width container, spanning the entire width of your viewport.

1http://getbootstrap.com/
2https://www.bootstrapcdn.com/

List Rendering 21

1 <div class="container-fluid">

2 ...

3 </div>

At this point, we would like to make an example of Vue.js with Bootstrap classes. Of course, not
much study or experimentation is required in order to make use of combined Vue and Bootstrap.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Bootstrap</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Hello Bootstrap, sit next to Vue.</h1>

10 </div>

11 </body>

12 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

13 <script type="text/javascript">

14 new Vue({

15 el: '.container'

16 })

17 </script>

18 </html>

Notice this time, instead of targeting app id, we have targeted the container class within the el

option inside the Vue instance.

Tip
In the above example we target the element with class of .container. Be careful when
you are targeting an element by class, when the class is present more than 1 time, Vue.js
will mount on the first element only.

The el: property can be a CSS selector or an actual HTML Element. It is not recommended
to mount the root instance to <html> or <body>.

List Rendering 22

4.2 v-for

In order to loop through each item in an array, we will use the v-for directive.

This directive requires a special syntax in the form of item in arraywhere array is the source data
Array and item is an alias for the Array element being iterated on.

Warning
If you are coming from the php world youmay notice that v-for is similar to php’s foreach
function. But be careful if you are used to foreach($array as $value).

Vue’s v-for is exactly the opposite, value in array.

The singular first, the plural next.

4.2.1 Range v-for

Directive v-for can also take an integer. Whenever a number is passed instead of an array/object,
the template will be repeated as many times as the number given.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>The multiplication table of 4.</h1>

10 <ul class="list-group">

11 <li v-for="i in 11" class="list-group-item">

12 {{ i-1 }} times 4 equals {{ (i-1) * 4 }}.

13

14

15 </div>

16 </body>

17 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

18 <script type="text/javascript">

19 new Vue({

20 el: '.container'

21 })

List Rendering 23

22 </script>

23 </html>

The above code displays the multiplication table of 4.

Multiplication Table of 4

Note
Because wewant to display all the multiplication table of 4 (until 40) we repeat the template
11 times since the first value i takes is 1.

List Rendering 24

4.3 Array Rendering

4.3.1 Loop Through an Array

In the next example we will set up the following array of Stories inside our data object and we will
display them all, one by one.

stories: [

"I crashed my car today!",

"Yesterday, someone stole my bag!",

"Someone ate my chocolate...",

]

What we need to do here, is to render a list. Specifically, an array of strings.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <div>

11 <ul class="list-group">

12 <li v-for="story in stories" class="list-group-item">

13 Someone said "{{ story }}"

14

15

16 </div>

17 <pre>

18 {{ $data }}

19 </pre>

20 </div>

21 </body>

22 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

23 <script type="text/javascript">

24 new Vue({

25 el: '.container',

26 data: {

List Rendering 25

27 stories: [

28 "I crashed my car today!",

29 "Yesterday, someone stole my bag!",

30 "Someone ate my chocolate...",

31]

32 }

33 })

34 </script>

35 </html>

Info
Both list-group and list-group-item classes are Bootstrap classes. Here you can find
more information about Bootstrap list styling.3

Rendering an array using v-for.

3http://getbootstrap.com/css/#type-lists

List Rendering 26

Using v-for we have managed to display our stories in a simple unordered list. It is really that
easy!

4.3.2 Loop Through an Array of Objects

Now, we alter the Stories array to contain story objects. A story object has 2 properties: plot and
writer. We will do the same thing we did before but this time instead of echoing story immediately,
we will echo story.plot and story.writer respectively.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <div>

11 <ul class="list-group">

12 <li v-for="story in stories"

13 class="list-group-item"

14 >

15 {{ story.writer }} said "{{ story.plot }}"

16

17

18 </div>

19 <pre>

20 {{ $data }}

21 </pre>

22 </div>

23 </body>

24 <script src="hhttps://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

25 <script type="text/javascript">

26 new Vue({

27 el: '.container',

28 data: {

29 stories: [

30 {

31 plot: "I crashed my car today!",

32 writer: "Alex"

33 },

List Rendering 27

34 {

35 plot: "Yesterday, someone stole my bag!",

36 writer: "John"

37 },

38 {

39 plot: "Someone ate my chocolate...",

40 writer: "John"

41 },

42 {

43 plot: "I ate someone's chocolate!",

44 writer: "Alex"

45 },

46]

47 }

48 })

49 </script>

50 </html>

Additionally, when you need to display the index of the current item, you can use the index special
variable. It works like this:

<ul class="list-group">

<li v-for="(story, index) in stories"

class="list-group-item" >

{{index}} {{ story.writer }} said "{{ story.plot }}"

The index inside the curly braces, clearly represents the index of the iterated item in the given
example.

List Rendering 28

Rendered array with index

List Rendering 29

4.4 Object v-for

You can use v-for to iterate through the properties of an Object. We mentioned before that you can
bring to display the index of the array, but you can also do the same when iterating an object. In
addition to index, each scope will have access to another special property, the key.

Info
When iterating an object, index is in range of 0 … n-1 where n is the number of object
properties.

We have restructured our data to be a single object with 3 attributes this time: plot, writer and
upvotes.

<div class="container">

<h1>Let's hear some stories!</h1>

<ul class="list-group">

<li v-for="value in story" class="list-group-item">

{{ value }}

</div>

new Vue({

el: '.container',

data: {

story: {

plot: "Someone ate my chocolate...",

writer: 'John',

upvotes: 47

}

}

})

We can provide a second and third argument, for the key and index respectively.

List Rendering 30

1 <div class="container">

2 <h1>Let's hear some stories!</h1>

3 <ul class="list-group">

4 <li v-for="(value, key, index) in story"

5 class="list-group-item"

6 >

7 {{index}} : {{key}} : {{value}}

8

9

10 </div>

As you can see in the example code above, we use key and index to bring inside the list, the key-value
pairs, as well as the index of each pair.

The result will be:

Iterate though object’s properties.

Code Examples
You can find the code examples of this chapter on GitHub4.

4https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter4

List Rendering 31

4.5 Homework

Keeping in mind what we reviewed in this chapter, for this homework, create an object with your
personal attributes. By personal attributes, I mean your name, weight, height, eyeColor, and your
favoriteFood.

Using v-for, iterate through each property and bring it into display in the format of: index: key =

value.

Example Output

Potential Solution
You can find a potential solution to this exercise here5.

5https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter4.html

5. Interactivity
In this chapter, we are going to create and expand previous examples, learn new things concerning
‘methods’, ‘event handling’ and ‘computed properties’. We will develop a few examples using
different approaches. It’s time to see how we can implement Vue’s interactivity to get a small app,
like a Calculator, running nice and easy.

5.1 Event Handling

HTML events are things that happen to DOM elements. When Vue.js is used in HTML pages, it can
react to these events.

Events can represent everything from basic user interactions, to things happening in the rendering
model.

These are some examples of HTML events:

• A web page has finished loading
• An input field was changed
• A button was clicked
• A form was submitted

The point of event handling is that you can do something whenever an event takes place.

In Vue.js, to listen to DOM events you can use the v-on directive.

The v-on directive attaches an event listener to an element. The type of the event is denoted by the
argument, for example v-on:keyup listens to the keyup event.

Info
The keyup event occurs when the user releases a key. You can find a full list of HTML events
here1.

5.1.1 Handling Events Inline

Enough with the talking, let’s move on and see event handling in action. Below, there is an ‘Upvote’
button which increases the number of upvotes every time it gets clicked.

1http://www.w3schools.com/tags/ref_eventattributes.asp

Interactivity 33

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Upvote</title>

6 </head>

7 <body>

8 <div class="container">

9 <button v-on:click="upvotes++">

10 Upvote! {{upvotes}}

11 </button>

12 </div>

13 </body>

14 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/vue/2\

15 .3.4/vue.js"></script>

16 <script type="text/javascript">

17 new Vue({

18 el: '.container',

19 data: {

20 upvotes: 0

21 }

22 })

23 </script>

24 </html>

Interactivity 34

Upvotes counter

There is an upvotes variable within our data. In this case, we bind an event listener for click, with
the statement that is right next to it. Inside the quotes, each time the button is pressed we’re simply
increasing the count of upvotes by one, using the increment operator (upvotes++).

5.1.2 Handling Events using Methods

Now we are going to do the exact same thing as before, using a method instead. A method in Vue.js
is a block of code designed to perform a particular task. To execute a method, you have to define it
and then invoke it.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Upvote</title>

6 </head>

7 <body>

8 <div class="container">

9 <button v-on:click="upvote">

Interactivity 35

10 Upvote! {{upvotes}}

11 </button>

12 </div>

13 </body>

14 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/vue/2\

15 .3.4/vue.js"></script>

16 <script type="text/javascript">

17 new Vue({

18 el: '.container',

19 data: {

20 upvotes: 0

21 },

22 // define methods under the **`methods`** object

23 methods: {

24 upvote: function(){

25 // **`this`** inside methods points to the Vue instance

26 this.upvotes++;

27 }

28 }

29 })

30 </script>

31 </html>

We are binding a click event listener to a method named ‘upvote’. It works just as before, but cleaner
and easier to understand when reading your code.

Warning
Event handlers are restricted to execute one statement only.

5.1.3 Shorthand for v-on

When you find yourself using v-on all the time in a project, you will find out that your HTML will
quickly become dirty. Thankfully, there is a shorthand for v-on, the @ symbol. The @ replaces the
entire v-on: and when using it, the code looks a lot cleaner. Using the shorthand is totally optional.

With the use of @ the button of our previous example will be:

Interactivity 36

Listening to ‘click’ using v-on:

<button v-on:click="upvote">

Upvote! {{upvotes}}

</button>

Listening to ‘click’ using @ shorthand

<button @click="upvote">

Upvote! {{upvotes}}

</button>

5.2 Event Modifiers

Now we will move on and create a Calculator app. To do so, we’ll use a form with two inputs and
one dropdown, to select the desired operation.

Even though the following code seems fine, our calculator does not work as expected.

1 <html>

2 <head>

3 <title>Calculator</title>

4 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.\

5 css" rel="stylesheet">

6 </head>

7 <body>

8 <div class="container">

9 <h1>Type 2 numbers and choose operation.</h1>

10 <form class="form-inline">

11 <!-- Notice here the special modifier 'number'

12 is passed in order to parse inputs as numbers.-->

13 <input v-model.number="a" class="form-control">

14 <select v-model="operator" class="form-control">

15 <option>+</option>

16 <option>-</option>

17 <option>*</option>

18 <option>/</option>

19 </select>

20 <!-- Notice here the special modifier 'number'

21 is passed in order to parse inputs as numbers.-->

22 <input v-model.number="b" class="form-control">

Interactivity 37

23 <button type="submit" @click="calculate"

24 class="btn btn-primary">

25 Calculate

26 </button>

27 </form>

28 <h2>Result: {{a}} {{operator}} {{b}} = {{c}}</h2>

29 <pre>

30 {{ $data }}

31 </pre>

32 </div>

33 </body>

34 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

35 <script type="text/javascript">

36 new Vue({

37 el: '.container',

38 data: {

39 a: 1,

40 b: 2,

41 c: null,

42 operator: "+",

43 },

44 methods:{

45 calculate: function(){

46 switch (this.operator) {

47 case "+":

48 this.c = this.a + this.b

49 break;

50 case "-":

51 this.c = this.a - this.b

52 break;

53 case "*":

54 this.c = this.a * this.b

55 break;

56 case "/":

57 this.c = this.a / this.b

58 break;

59 }

60 }

61 },

62 });

63 </script>

64 </html>

Interactivity 38

If you try to run this code yourself, you will find out that when the “calculate” button is clicked,
instead of calculating, it reloads the page.

This makes sense, because when you click “calculate”, in the background, you are submitting the
form and thus the page reloads.

To prevent the submission of the form, we have to cancel the default action of the onsubmit event. It
is a very common need to call event.preventDefault() inside our event handling method. In our
case the event handling method is called calculate.

So, our method will become:

calculate: function(event){

event.preventDefault();

switch (this.operator) {

case "+":

this.c = this.a + this.b

break;

case "-":

this.c = this.a - this.b

break;

case "*":

this.c = this.a * this.b

break;

case "/":

this.c = this.a / this.b

break;

}

}

Interactivity 39

Using Event Modifiers to build a calculator.

Although we can do this easily inside methods, it would be better if the methods can be purely
ignorant about data logic rather than having to deal with DOM event details.

Vue.js provides four event modifiers for v-on to prevent the event default behavior:

1. .prevent

2. .stop

3. .capture

4. .self

So, using .prevent, our submit button will change from:

1 <button type="submit" @click="calculate">Calculate</button>

to:

1 <!-- the submit event will no longer reload the page -->

2 <button type="submit" @click.prevent="calculate">Calculate</button>

And we can now safely remove event.preventDefault() from our calculate method.

Note
.capture and .self are rarely used so we won’t bother elaborating any further. If you are
interested in learning more about Event Order have a look at this tutorial2.

2http://www.quirksmode.org/js/events_order.html

Interactivity 40

5.3 Key Modifiers

When you focus on one of the inputs and you hit enter, you will notice that the calculate method
is getting invoked. If the button wasn’t inside the form, or if there was no button at all, you could
listen for a keyboard event instead.

When listening for keyboard events, we often need to check for key codes. The key code for Enter
button is 13. So we could use it like this:

1 <input v-model="a" @keyup.13="calculate">

Remembering all the keyCodes is a hassle, so Vue provides aliases for the most commonly used keys:

• enter
• tab
• delete
• esc
• space
• up
• down
• left
• right

So, to execute calculate method when Enter is pressed in our example, the inputs will be like this:

1 <input v-model="a" @keyup.enter="calculate">

2 <input v-model="b" @keyup.enter="calculate">

Tip
When you have a form with a lot of inputs/buttons/etc and you need to prevent their
default submit behavior, you can modify the submit event of the form.

For example: <form @submit.prevent="calculate">

Finally, the calculator is up and running.

Interactivity 41

5.4 Computed Properties

Vue.js inline expressions are very convenient, but for more complicated logic, you should use
computed properties. Practically, computed properties are variables which their value depends on
other factors.

Computed properties work like functions that you can use as properties. But there is a significant
difference. Every time a dependency of a computed property changes, the value of the computed
property re-evaluates.

In Vue.js, you define computed properties within the computed object inside your Vue instance.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 a={{ a }}, b={{ b }}

10 <pre>

11 {{ $data }}

12 </pre>

13 </div>

14 </body>

15 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

16 <script type="text/javascript">

17 new Vue({

18 el: '.container',

19 data: {

20 a: 1,

21 },

22 computed: {

23 // a computed getter

24 b: function () {

25 // **`this`** points to the Vue instance

26 return this.a + 1

27 }

28 }

29 });

30 </script>

31 </html>

Interactivity 42

We’ve set two variables, the first, a, is set to 1 and the second, b, will be set by the returned result of
the function inside the computed object. In this example the value of b will be set to 2.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 a={{ a }}, b={{ b }}

10 <input v-model="a">

11 <pre>

12 {{ $data }}

13 </pre>

14 </div>

15 </body>

16 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

17 <script type="text/javascript">

18 new Vue({

19 el: '.container',

20 data: {

21 a: 1,

22 },

23 computed: {

24 // a computed getter

25 b: function () {

26 // **`this`** points to the vm instance

27 return this.a + 1

28 }

29 }

30 });

31 </script>

32 </html>

The above example is the same as the previous one, but with one difference. An input is bound
to the a variable. The desired outcome would be to change the value of the binded attribute and
immediately update the result of b. But notice here, that it does not work as we would expect.

If you run this code and set variable a to 5, you expect that b will be equal to 6. Sure, but it doesn’t,
b is set to 51.

Interactivity 43

Why is this happening? Well, as you might have already thought, b takes the given value from the
input a as a string, and appends the number 1 at the end of it.

One possible solution is to use the parseFloat() function that parses a string and returns a
floating point number.

new Vue({

el: '.container',

data: {

a: 1,

},

computed: {

b: function () {

return parseFloat(this.a) + 1

}

}

});

Another option that comes to mind, is to use the <input type="number"> which is used for input
fields that should contain a numeric value.

But there is a more neat way. With Vue.js, whenever you want user’s input to be automatically
persisted as number, you can append the special modifier .number.

<body>

<div class="container">

a={{ a }}, b={{ b }}

<input v-model.number="a">

<pre>

{{ $data }}

</pre>

</div>

</body>

The number modifier is going to give us the desired result without any further effort.

To demonstrate a wider picture of computed properties, we are going to make use of them and build
the calculator we have already shown, but this time using computed properties instead of methods.

Lets start with a simple example, where a computed property c contains the sum of a plus b.

Interactivity 44

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Enter 2 numbers to calculate their sum.</h1>

10 <form class="form-inline">

11 <input v-model.number="a" class="form-control">

12 +

13 <input v-model.number="b" class="form-control">

14 </form>

15 <h2>Result: {{a}} + {{b}} = {{c}}</h2>

16 <pre> {{ $data }} </pre>

17 </div>

18 </body>

19 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

20 <script type="text/javascript">

21 new Vue({

22 el: '.container',

23 data: {

24 a: 1,

25 b: 2

26 },

27 computed: {

28 c: function () {

29 return this.a + this.b

30 }

31 }

32 });

33 </script>

34 </html>

The initial code is ready, and at this point the user can type in 2 numbers and get their sum. A
calculator that can do the four basic operations is the goal, so let’s continue building!

Since the HTML code will be the same with the calculator we build in the previous section of this
chapter (except now we don’t need a button), I am am going to show only the Javascript codeblock.

Interactivity 45

1 new Vue({

2 el: '.container',

3 data: {

4 a: 1,

5 b: 2,

6 operator: "+",

7 },

8 computed: {

9 c: function () {

10 switch (this.operator) {

11 case "+":

12 return this.a + this.b

13 break;

14 case "-":

15 return this.a - this.b

16 break;

17 case "*":

18 return this.a * this.b

19 break;

20 case "/":

21 return this.a / this.b

22 break;

23 }

24 }

25 },

26 });

The calculator is ready for use. The only thing we had to do, was to move whatever was inside
calculate method to the computed property c! Whenever you change the value of a or b the result
updates in real time! We don’t need any buttons, events, or anything. How awesome is that??

Note
Note here that a normal approach would be to have an if statement to avoid error of
division. But, there is already a prediction for this kind of flaws. If the user types 1/0 the
result automatically becomes infinity! If the user types a text the displayed result is “not a
number”.

Interactivity 46

Calculator built with computed properties.

Code Examples
You can find the code examples of this chapter on GitHub3.

3https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter5

Interactivity 47

5.5 Homework

Now that you have a basic understanding of Vue’s event handling, methods, computed properties etc,
you should try something a bit more challenging. Start by creating an array of “Mayor” candidates.
Each candidate has a “name” and a number of “votes”. Use a button to increase the count of votes
for each candidate. Use a computed property to determine who is the current “Mayor”, and display
his name.

Finally, add an input. When this input is focused, and key ‘delete’ is pressed, the elections start from
the beginning. This means that all votes become 0.

Hint
Javascript’s sort() and map()methods could prove very useful and Key modifiers will get
you there.

Example Output

Interactivity 48

Potential Solution
You can find a potential solution to this exercise here4.

4https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter5.html

6. Filters
In the two previous chapters we reviewed list rendering, methods, and computed properties. Now
it is a good time to make some examples using all the information above. In this chapter, we will
cover how to:

1. Filter an array of items.
2. Order an array of items.
3. Apply a custom filter.
4. Use utility libraries.

The plan is to go through similar examples as before, combining some or all of the techniques we
saw.

6.1 Filtered Results

Sometimes we need to display a filtered version of an array without actually mutating or resetting
the original data. Continuing the previous example, Loop Through an Array of Objects, we would
like to display one list with the stories written by Alex and one list with the stories written by John.
We can achieve this, by creating a method which filters our array and returns the results to be
rendered.

Info
As of Vue 2.0, Vue filters cannot be used within v-for. Filters can now only be used inside
text interpolations ({{ }}). Vue’s team suggests to move filters’ logic into JavaScript, so
that it can be reused throughout your component.

Filters 50

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>User Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <div>

11 <h3>Alex's stories</h3>

12 <ul class="list-group">

13 <li v-for="story in storiesBy('Alex')"

14 class="list-group-item"

15 >

16 {{ story.writer }} said "{{ story.plot }}"

17

18

19 <h3>John's stories</h3>

20 <ul class="list-group">

21 <li v-for="story in storiesBy('John')"

22 class="list-group-item"

23 >

24 {{ story.writer }} said "{{ story.plot }}"

25

26

27 </div>

28 <pre>

29 {{ $data }}

30 </pre>

31 </div>

32 </body>

33 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

34 <script type="text/javascript">

35 new Vue({

36 el: '.container',

37 data: {

38 stories: [

39 {

40 plot: "I crashed my car today!",

41 writer: "Alex"

42 },

Filters 51

43 {

44 plot: "Yesterday, someone stole my bag!",

45 writer: "John"

46 },

47 {

48 plot: "Someone ate my chocolate...",

49 writer: "John"

50 },

51 {

52 plot: "I ate someone's chocolate!",

53 writer: "Alex"

54 },

55]

56 },

57 methods:

58 {

59 // a method which filters the stories depending on the writter

60 storiesBy: function (writer) {

61 return this.stories.filter(function (story) {

62 return story.writer === writer

63 })

64 },

65 }

66 })

67 </script>

68 </html>

Info
Within storiesBy method, we use javascript’s built-in filter function.1 The filter()

function creates a new array with all elements that pass the test, implemented by the
provided function.

As it appears we have created a method named storiesBy which takes in a writer, as argument,
and returns a filtered array with the writer’s stories. We can then use this, to display each writer’s
stories using the v-for directive in the format of story in storiesBy('Alex'), as you can see in
the example above.

1https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Filters 52

Stories filtered by writer.

Note
As you may noticed, our li tag is getting really big, so we have splitted it in more lines.
The actual result remains the same as with the use of filters, introduced in Vue 1.x.

Simple enough, right?

6.1.1 Using Computed Properties

A computed property can also be used to filter an array. Using a computed property to perform array
filtering gives you in-depth control and more flexibility, since it’s full JavaScript, and allows you to
access the filtered result elsewhere. For example you can get the length of a filtered array anywhere
in your code.

First we will enhance our Stories with a new property, called upvotes. Then, we will filter the famous
stories. As famous, we define the stories that have more than 25 upvotes. This time, we will create
a computed property that returns the filtered Array.

Filters 53

new Vue({

el: '.container',

data: {

stories: [

{

plot: "I crashed my car today!",

writer: "Alex",

upvotes: 28

},

{

plot: "Yesterday, someone stole my bag!",

writer: "John",

upvotes: 8

},

{

plot: "Someone ate my chocolate...",

writer: "John",

upvotes: 51

},

{

plot: "I ate someone's chocolate!",

writer: "Alex",

upvotes: 74

},

]

},

computed: {

famous: function() {

return this.stories.filter(function(item){

return item.upvotes > 25;

});

}

}

})

In our HTML code, instead of stories array, we will render the famous computed property.

Filters 54

<body>

<div class="container">

<h1>Let's hear some famous stories! ({{famous.length}})</h1>

<ul class="list-group">

<li v-for="story in famous"

class="list-group-item"

>

{{ story.writer }} said "{{ story.plot }}"

and upvoted {{ story.upvotes }} times.

</div>

</body>

Filter array using a computed property

That’s it.We have filtered our array using a computed property. Did you notice how easily we man-
aged to display the number of famous stories next to our headingmessage using {{famous.length}}?

Next we will implement a very basic (but awesome) search. When the user types a part of a story,
we can guess which story it is and who wrote it, in real time. We’ll add a text input, bound to an
empty variable query, so we can dynamically filter our Stories array.

Filters 55

1 <div class="container">

2 <h1>Lets hear some stories!</h1>

3 <div>

4 ...

5 <div class="form-group">

6 <label for="query">

7 What are you looking for?

8 </label>

9 <input v-model="query" class="form-control">

10 </div>

11 <h3>Search results:</h3>

12 <ul class="list-group">

13 <li v-for="story in search"

14 class="list-group-item"

15 >

16 {{ story.writer }} said "{{ story.plot }}"

17

18

19 </div>

20 </div>

Then we will create a computed property named search. Along with the built-in filter function,
we are going to use the includes2 Javascript’s function, which determines whether one string may
be found within another string.

1 new Vue({

2 el: '.container',

3 data: {

4 stories: [...],

5 query: ' '

6 },

7 methods:{

8 storiesBy: function (writer) {

9 return this.stories.filter(function (story) {

10 return story.writer === writer

11 })

12 }

13 },

14 computed: {

15 search: function () {

16 var query = this.query

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes

Filters 56

17 return this.stories.filter(function (story) {

18 return story.plot.includes(query)

19 })

20 }

21 }

22 })

Filters 57

Search Stories.

Filters 58

Searching for ‘choco’.

Isn’t that awesome??

Filters 59

6.2 Ordered Results

Sometimes, we may want to display the items of an Array ordered by some criteria. We can use a
computed property to display our array, ordered by the count of each story’s upvotes. To sort the
array we are going to use JavaScript’s sort3 function, which sorts the elements of an array in place
and returns the array.

The more famous a story is, the higher it should appear.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Famous Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <ul class="list-group">

11 <li v-for="story in orderedStories"

12 class="list-group-item"

13 >

14 {{ story.writer }} said "{{ story.plot }}"

15 and upvoted {{ story.upvotes }} times.

16

17

18 <pre>

19 {{ $data }}

20 </pre>

21 </div>

22 </body>

23 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

24 <script type="text/javascript">

25 new Vue({

26 el: '.container',

27 data: {

28 stories: [...]

29 },

30 computed: {

31 orderedStories: function () {

32 return this.stories.sort(function(a, b){

3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Filters 60

33 return a.upvotes - b.upvotes;

34 })

35 }

36 }

37 })

38 </script>

39 </html>

Stories array ordered by upvotes.

Hmmm, the array is ordered but this is not what we expected. We wanted the famous stories first.

To change the order of the sorted array we have to take a look at the sort function. In JavaScript’s
sort(compareFunction), if compareFunction is supplied, the array elements are sorted according
to the return value of compareFunction. If a and b are two elements being compared, then:

• If compareFunction(a, b) is less than 0, sort a to a lower index than b.
• If compareFunction(a, b) is 0, leave a and b unchanged.
• If compareFunction(a, b) is greater than 0, sort b to a lower index than a.

In our use case, the compareFunction will be:

Filters 61

compareFunction

function(a, b){

return a.upvotes - b.upvotes;

}

So, to change the order from ascending to descending, we can multiple the returned value by -1.
(return (a.upvotes - b.upvotes) * -1)

We can change the order dynamically, by using a variable, order. A buttonwill be used, which will
toggle the value of the new variable, between -1 and 1.

1 <div class="container">

2 <h1>Let's hear some stories!</h1>

3 <ul class="list-group">

4 <li v-for="story in orderedStories"

5 class="list-group-item"

6 >

7 {{ story.writer }} said "{{ story.plot }}"

8 and upvoted {{ story.upvotes }} times.

9

10

11 <button @click="order = order * -1">Reverse Order</button>

12 <pre>

13 {{ $data }}

14 </pre>

15 </div>

1 new Vue({

2 el: '.container',

3 data: {

4 stories: [...],

5 order : -1

6 },

7 computed: {

8 orderedStories: function () {

9 var order = this.order;

10 return this.stories.sort(function(a, b) {

11 return (a.upvotes - b.upvotes) * order;

12 })

13 }

14 }

15 })

Filters 62

We initialize order variable with the value of -1 and then we pass it to our computed property, so
every time the button is clicked, the variable changes value and the array changes order.

Array in descending order

Filters 63

6.3 Custom Filters

To demonstrate custom filters, we will make a new simple example. Assume we are now in charge
of the Gotham’s city news paper the “The Gotham Gazette”. Our first job is to spread the news of
the secret identities of heroes. We know the first and last names of them, and we want to make a
nice list where each secret identity will be exposed. This is where the global Vue.filter() method
comes in, to create a filter which can take a hero and return all his information for display, without
polluting our HTML code. To register a filter we can pass in a filterID and a filterFunction, which
returns a processed value. Then we will use the filter inside text interpolations like so:

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>The Gotham Gazette</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Real identities of Super Heroes!</h1>

10 <ul class="list-group">

11 <li v-for="hero in heroes"

12 class="list-group-item"

13 >

14 {{ hero | snitch }}

15

16

17 </div>

18 </body>

19 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js">

20 </script>

21 <script>

22 Vue.filter('snitch', function (hero) {

23 return hero.secretId + ' is '

24 + hero.firstname + ' '

25 + hero.lastname + ' in real life!'

26 })

27

28 new Vue({

29 el: '.container',

30 data: {

31 heroes: [

32 { firstname: 'Bruce', lastname: 'Wayne', secretId: 'Batman'},

Filters 64

33 { firstname: 'Clark', lastname: 'Kent', secretId: 'Superman'},

34 { firstname: 'Jay', lastname: 'Garrick', secretId: 'Flash'},

35 { firstname: 'Peter', lastname: 'Parker', secretId: 'Spider-Man'}

36]

37 }

38 })

39 </script>

40 </html>

Custom filter ‘famous’ in action.

6.4 Utility Libraries

At this point, we would like to point out that when you need to sort/filter/index data in more
advanced ways, you should consider using a JavaScript utility library. There are some great utility
libraries out there, such as Lodash4, Underscore5, Sugar6, etc.

To get a better understanding, we are going to include Lodash and update the previous example.

If you follow along, make sure you include Lodash from a cdn in your HTML file.

4https://lodash.com
5http://underscorejs.org/
6https://sugarjs.com/

Filters 65

Lodash’s orderBymethod returns a new sorted array. So, we’ll use it within our computed property
to sort the Stories array.

Syntax
Lodash’s orderBy syntax is:

.orderBy(collection, [iteratees=[.identity]], [orders])

Don’t let the second argument confuse you. It is really simple. The first argument represents the
array you want to sort. The second argument expects an array of keys, that the sorting will be
based on. The third argument, expects an array of orders for each key.

For example if we had an array:

var kids = [

{ name: 'Stan', strength: 70, intelligence: 70},

{ name: 'Kyle', strength: 40, intelligence: 80},

{ name: 'Eric', strength: 45, intelligence: 80},

{ name: 'Kenny', strength: 100, intelligence: 70}

]

And we run:

_.orderBy(kids, ['intelligence', 'strength'], ['desc', 'asc'])

Our array will have this order:

var kids = [

{ name: 'Kyle', strength: 40, intelligence: 80},

{ name: 'Eric', strength: 45, intelligence: 80},

{ name: 'Stan', strength: 70, intelligence: 70},

{ name: 'Kenny', strength: 100, intelligence: 70}

]

Because the array is primarily sorted by kid’s intelligence in descending order and secondary,
by kid’s strength in ascending order.

We will use _.orderBy within our computed property like this:

Filters 66

computed: {

orderedStories: function () {

var order = this.order

return _.orderBy(this.stories, 'upvotes')

}

}

This works, but if no orders argument is passed, the array will be sorted in ascending order.
Additionally, it should be possible to change the order of the array with a button, just like before.
To do it dynamically, we can set a data property order : 'desc' and create a method to change its
value:

methods: {

reverseOrder: function () {

this.order = (this.order === 'desc') ? 'asc' : 'desc'

}

},

computed: {

orderedStories: function () {

var order = this.order

return _.orderBy(this.stories, 'upvotes', [order])

}

}

And the button will be almost the same, but not quite.

<button v-on:click="reverseOrder">

That’s enough. We have achieved the self-same functionality using Lodash.

Filters 67

Tip
When using a utility library to filter/order data, you can iterate the resulted array without
using any computed properties.

We can update this example to get the idea. Our HTML which renders the sorted array
would be:

<div class="container">

<h1>Let's hear some stories!</h1>

<ul class="list-group">

<li v-for="story in _.orderBy(stories, ['upvotes'], ['desc'])">

{{ story.writer }} said "{{ story.plot }}"

and upvoted {{ story.upvotes }} times.

</div>

That’s it. No need to write any JavaScript.

Code Examples
You can find the code examples of this chapter on GitHub7.

7https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter6

Filters 68

6.5 Homework

For this chapter’s exercise you should do the following. Start by creating an array of people. Each
person has a name and an age. Using what you’ve learned so far, try to render the array in a list and
sort it by “age”. After that, create a second list below and create a computed properly named “old”,
which will return all people older than 65 years old.

Feel free to fill the array with your own data. Be careful to add people with age older and younger
than 65 to ensure your filter is working properly. Go ahead!

Hint
Built in .filter is necessary here.

Example Output

Potential Solution
You can find a potential solution to this exercise here8.

8https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter6.html

7. Components
7.1 What are Components?

Components are one of the most powerful features of Vue.js. They help you extend basic HTML
elements to encapsulate reusable code. At a high level, Components are custom elements that Vue.js’
compiler would attach specified behavior to. In some cases, they may also appear as a native HTML
element extended with the special is attribute.

It is a really clever and powerful way to extend HTML in order to do new things. In this chapter we
are going to start with an extremely simple example. Next, we are going to see how Components
can help us improve the code that we have created, in previous chapters.

7.2 Using Components

We are going to start with a simple Component. In order to use a component we have to register it
first.

One way to register a component is to use the Vue.component method and pass in the tag and the
constructor. Think of the tag as the name of the Component and the constructor as the options.
In our occasion, we’ll name the Component story and we’ll define the property story (again). The
option template (how we would like our story to be displayed), is inside the constructor, where
other options will be added as well.

Our story component will be registered like this

1 Vue.component('story', {

2 template: '<h1>My horse is amazing!</h1>'

3 });

Now that we have registered the component, we will make use of it. We will add the custom element
<story> inside the HTML, to display the story.

Components 70

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 <story></story>

10 </div>

11 </body>

12 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

13 <script type="text/javascript">

14 Vue.component('story', {

15 template: '<h1>My horse is amazing!</h1>'

16 });

17

18 new Vue({

19 el: '.container'

20 })

21 </script>

22 </html>

Note
Note here that you can give your custom component any name you want, but it is generally
recommended that you should use a unique name to avoid having collisions with actual
tags that might get introduced at some point in the future.

As we mentioned in the beginning of the chapter, components are reusable. Meaning that you can
append as many <story> elements as you want. The following HTML snippet will display our story
3 times.

<body>

<div class="container">

<story></story>

<story></story>

<story></story>

</div>

</body>

Components 71

Displaying story component

7.3 Templates

There is more than one way to declare a template for a component. The inline template we’ve used
before can get “dirty” very fast.

Another way, is to create a script tagwith type set to text/templatewith an id of story-template.
To use this template we need to reference a selector in the template option of our component to this
script.

<script type="text/template" id="story-template">

<h1>My horse is amazing!</h1>

</script>

<script type="text/javascript">

Vue.component('story', {

template: "#story-template"

});

</script>

Components 72

Info
The "text/template" is not a script that the browser can understand and so the browser
will simply ignore it. This allows you to put anything in there, which can then be extracted
and generate HTML snippets.

My favorite way to define a template (and the one I am going to use in the examples of this book) is
to create a template HTML tag and give it an id. Then we can reference a selector as we did before.
Using this technique the above component will look like this:

<template id="story-template">

<h1>My horse is amazing!</h1>

</template>

<script type="text/javascript">

Vue.component('story', {

template: "#story-template"

});

</script>

7.4 Properties

Lets see now how we can use multiple instances of our story component to display a list of stories.
We have to update the template to not display always the same story, but the plot of any story we
want.

<template id="story-template">

<h1>{{ plot }}</h1>

</template>

We also have to update our component to use this property. To do so, we will add the new property,
‘plot’, to props attribute of the component.

Vue.component('story', {

props: ['plot'],

template: "#story-template"

});

Now we can pass a plot every time we use the <story> element.

Components 73

<div class="container">

<story plot="My horse is amazing."></story>

<story plot="Narwhals invented Shish Kebab."></story>

<story plot="The dark side of the Force is stronger."></story>

</div>

Display different ‘stories’.

Warning
HTML attributes are case-insensitive. When using camelCased prop names as attributes,
you need to use their kebab-case (hyphen-delimited) equivalents.

So, camelCase in JavaScript, kebab-case in HTML. For example, for props: ['isUser'],
the HTML attribute would be <story is-user="true"></story>.

As you have probably imagined, a component can have more than one property. For example, if we
want to display the writer along with the plot for every story, we have to pass the writer too.

<story plot="My horse is amazing." writer="Mr. Weebl"></story>

If you have a lot of properties and your elements are becoming dirty you can pass an object and
display its properties.

We will refactor our example one more time to wrap it up.

Components 74

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Awesome Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <story v-bind:story="{plot: 'My horse is amazing.', writer: 'Mr. Weebl'}\

10 ">

11 </story>

12 <story v-bind:story="{plot: 'Narwhals invented Shish Kebab.', writer: 'M\

13 r. Weebl'}"

14 >

15 </story>

16 <story v-bind:story="{plot: 'The dark side of the Force is stronger.', w\

17 riter: 'Darth Vader'}"

18 >

19 </story>

20 </div>

21 <template id="story-template">

22 <h1>{{ story.writer }} said "{{ story.plot }}"</h1>

23 </template>

24 </body>

25 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

26 <script type="text/javascript">

27 Vue.component('story', {

28 props: ['story'],

29 template: "#story-template"

30 });

31

32 new Vue({

33 el: '.container'

34 })

35 </script>

36 </html>

Components 75

Info
v-bind is used to dynamically bind one or more attributes, or a component prop, to an
expression.

Since story property is not a string but a javascript object instead of story="..." we use
v-bind:story="..." to bind story property with the passed object.

The shorthand for v-bind is :, so from now onwe are going to use it like this: :story="...".

7.5 Reusability

Let’s take a look again at our Filtered Results example. Assume this time, we take the stories

variable data from an external API, through an http call. The API developers, decided to rename
story’s plot property to body. So now, we have to go through our code and make the necessary
changes.

Info
Later in this book we will cover how we can use Vue to make web requests.

1 <div class="container">

2 <h1>Lets hear some stories!</h1>

3 <div>

4 <h3>Alex's stories</h3>

5 <ul class="list-group">

6 <li v-for="story in storiesBy('Alex')"

7 class="list-group-item"

8 >

9 {{ story.writer }} said "{{ story.plot }}"

10 {{ story.writer }} said "{{ story.body }}"

11

12

13 <h3>John's stories</h3>

14 <ul class="list-group">

15 <li v-for="story in storiesBy('John')"

16 class="list-group-item"

17 >

18 {{ story.writer }} said "{{ story.plot }}"

19 {{ story.writer }} said "{{ story.body }}"

20

Components 76

21

22 <div class="form-group">

23 <label for="query">

24 What are you looking for?

25 </label>

26 <input v-model="query" class="form-control">

27 </div>

28 <h3>Search results:</h3>

29 <ul class="list-group">

30 <li vv-for="story in search"

31 class="list-group-item"

32 >

33 {{ story.writer }} said "{{ story.plot }}"

34 {{ story.writer }} said "{{ story.body }}"

35

36

37 </div>

38 </div>

Note
In this particular example syntax highlighting is turned off.

As you may have noticed, we had to do the exact same change 3 times and I don’t know about you,
but I hate repeating myself. If it doesn’t seem like a big deal for you, imagine that you may use the
above code block in 100 places, what would you do then? Fortunately, Vue provides a solution for
that kind of situations, and this solution has a name, Component.

Tip
Whenever you find yourself repeating a piece of functionality, the most efficient way to
deal with it is to create a dedicated Component.

Luckily, we have created a story Component in the previous example, which displays the writer
and the body for a specified story. We can use the custom element <story> inside our HTML and pass
each story, as we did before, with the :story tag. This time we will use it inside a v-for directive.

So our code will be:

Components 77

<div class="container">

<h1>Lets hear some stories!</h1>

<div>

<h3>Alex's stories</h3>

<ul class="list-group">

<story v-for="story in storiesBy('Alex')"

:story="story"></story>

<h3>John's stories</h3>

<ul class="list-group">

<story v-for="story in storiesBy('John')"

:story="story"></story>

<div class="form-group">

<label for="query">What are you looking for?</label>

<input v-model="query" class="form-control">

</div>

<h3>Search results:</h3>

<ul class="list-group">

<story v-for="story in search"

:story="story"></story>

</div>

</div>

If you try to run this code you will get the following warning:

Vue warn: Unknown custom element: <story> - did you register the component correctly?
For recursive components, make sure to provide the “name” option.

Components 78

Vue warning

To fix this, we need to register the Component again. This time we have to make some changes to
the component’s template. We will change plot attribute to body and <h1> tag to to suit our
needs.

So, the story’s template will be:

<template id="story-template">

<li class="list-group-item">

{{ story.writer }} said "{{ story.body }}"

</template>

The component will remain the same.

1 Vue.component('story', {

2 props: ['story'],

3 template: '#story-template'

4 });

If you run the above code, you will see for yourself that everything works the same as before, but
this time with the use of a custom component.

Pretty neat huh?

Warning
Please be responsible. Don’t drink and drive.

Components 79

7.6 Altogether

Using our newly acquired knowledge, we should be able to build something a bit more complex.
Based on the structure of the example above, we are going to create a voting system for our stories,
and add a mark as favorite feature. The way to accomplish this, is through methods, directives, and
of course, components.

Lets start with the stories setup.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div id="app">

9 <div class="container">

10 <h1>Let's hear some stories!</h1>

11 <ul class="list-group">

12 <story v-for="story in stories" :story="story"></story>

13

14 <pre>{{ $data }}</pre>

15 </div>

16 </div>

17 <template id="story-template">

18 <li class="list-group-item">

19 {{ story.writer }} said "{{ story.plot }}"

20

21 </template>

22 </body>

23 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

24 <script type="text/javascript">

25 Vue.component('story', {

26 template: "#story-template",

27 props: ['story'],

28 });

29

30 new Vue({

31 el: '#app',

32 data: {

33 stories: [

Components 80

34 {

35 plot: 'My horse is amazing.',

36 writer: 'Mr. Weebl',

37 },

38 {

39 plot: 'Narwhals invented Shish Kebab.',

40 writer: 'Mr. Weebl',

41 },

42 {

43 plot: 'The dark side of the Force is stronger.',

44 writer: 'Darth Vader',

45 },

46 {

47 plot: 'One does not simply walk into Mordor',

48 writer: 'Boromir',

49 },

50]

51 }

52 })

53 </script>

54 </html>

The next step allows the user to give a vote to the story he prefers. To apply this limit (1 vote per
story) we will display the ‘Upvote’ button only if the user has not already voted. So, every story
must have a voted property, that becomes true when upvote function executes.

<template id="story-template">

<li class="list-group-item">

{{ story.writer }} said "{{ story.plot }}".

Story upvotes {{ story.upvotes }}.

<button v-show="!story.voted" @click="upvote"

class="btn btn-default"

>

Upvote

</button>

</template>

Components 81

Vue.component('story', {

template: "#story-template",

props: ['story'],

methods:{

upvote: function(){

this.story.upvotes += 1;

this.story.voted = true;

},

}

});

new Vue({

el: '#app',

data: {

stories: [

{

plot: 'My horse is amazing.',

writer: 'Mr. Weebl',

upvotes: 28,

voted: false,

},

{

plot: 'Narwhals invented Shish Kebab.',

writer: 'Mr. Weebl',

upvotes: 8,

voted: false,

},

{

plot: 'The dark side of the Force is stronger.',

writer: 'Darth Vader',

upvotes: 49,

voted: false,

},

{

plot: 'One does not simply walk into Mordor',

writer: 'Boromir',

upvotes: 74,

voted: false,

},

]

}

})

Components 82

Ready to vote!

We have implemented, with the use of methods, the voting system. I think it looks good, so we can
continue with the ‘favorite story’ part. We want the user to be able to choose only one story to be
his favorite. The first thing that comes to my mind is to add one new empty object (favorite) and
whenever the user chooses one story to be his favorite, update favorite variable. This way we will
be able to check if a story is equal to the user’s favorite story. Let’s do this.

<template id="story-template">

<li class="list-group-item">

{{ story.writer }} said "{{ story.plot }}".

Story upvotes {{ story.upvotes }}.

<button v-show="!story.voted" @click="upvote"

class="btn btn-default">

Upvote

</button>

<button v-show="!isFavorite" @click="setFavorite"

class="btn btn-primary">

Favorite

</button>

<span v-show="isFavorite"

class="glyphicon glyphicon-star pull-right" aria-hidden="true">

Components 83

</template>

Vue.component('story', {

template: "#story-template",

props: ['story'],

methods:{

upvote: function(){

this.story.upvotes += 1;

this.story.voted = true;

},

setFavorite: function(){

this.favorite = this.story;

},

},

computed:{

isFavorite: function(){

return this.story == this.favorite;

},

}

});

new Vue({

el: '#app',

data: {

stories: [

...

],

favorite: {}

}

})

If you try to run the above code, you will notice that it does not work as it should be. Whenever you
try to favorite a story, the variable favorite inside $data remains null.

It seems that our story component is unable to update favorite object, so we are going to pass it
on each story and add favorite to component’s properties.

Components 84

<ul class="list-group">

<story v-for="story in stories"

:story="story"

:favorite="favorite">

</story>

Vue.component('story', {

...

props: ['story', 'favorite'],

...

});

setFavorite method malfunctioning

Hmmm, favorite still doesn’t get updated when setFavorite is executed. The button disappears
as expected and a star icon appears, but variable favorite is still null. This results in the user being
able to favorite all stories.

The problemwith this approach is that we don’t keep things synced. By default, all props form a one-
way-down binding between the child property and the parent. When the parent property updates,
it will flow down to the child, but not the other way around.

We can’t synchronize child’s data with parent’s, with what we know so far. So, we’ll take a break
and study Vue’s Custom Events, before we go any further.

Components 85

Code Examples
You can find the code examples of this chapter on GitHub1.

1https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter7

Components 86

7.7 Homework

Create an array of planets. Each planet must have a name and a number of visits.

You can choose to travel to any planet, but you are limited to 3 visits per planet due to shortage of
fuel.

You should have a Planet component with the appropriate methods/computed properties.

When rendered, each planet should display:

• its name
• the number of visits
• a Visit button (if max number of visits has not been reached)
• an icon to indicate if planet has been visited at least once

Example Output

Potential Solution
You can find a potential solution to this exercise here2.

2https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter7.html

8. Custom Events
Some times it is needed to fire a custom event. To do so, we can use Vue Instance methods. Every
Vue instance implements the Events interface1.

This means that it can:

• Listen to an event using $on(event).
• Trigger an event using $emit(event).

It can also:

• Listen to an event, but only once, using $once(event).
• Remove event listeners using $off().

8.1 Emit and Listen

Let’s start with a dead simple example.

The following codeblock represents a page with a counter and a Vote button. When the button
is clicked, it emits an event, named ‘voted’. There is also an Event Listener for the event, which
increases the number of votes when the event is triggered.

1 <html>

2 <head>

3 <title>Emit and Listen</title>

4 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.\

5 css" rel="stylesheet">

6 </head>

7 <body>

8 <div class="container text-center">

9 <p style="font-size: 140px;">

10 {{ votes }}

11 </p>

12 <button class="btn btn-primary" @click="vote">Vote</button>

13 </div>

1http://vuejs.org/api/#Instance-Methods-Events

Custom Events 88

14 </body>

15 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

16 <script type="text/javascript">

17 new Vue({

18 el: '.container',

19 data: {

20 votes: 0

21 },

22 methods:

23 {

24 vote: function (writer) {

25 this.$emit('voted')

26 },

27 },

28 created () {

29 this.$on('voted', function(button) {

30 this.votes++

31 })

32 }

33 })

34 </script>

35 </html>

Custom Events 89

Example Output

We register the event listener within the created Lifecycle Hook. this is bound to the Vue Instance
within vote method and created hook. So, we can access $on and $emit functions using this.$on

and this.$emit.

8.1.1 Lifecycle Hooks

Lifecycle Hooks are functions who execute when Vue related events happen.

In Vue 2, these hooks are:

Custom Events 90

Hook Called

beforeCreate After the instance has just been initialized, before data
observation and event/watcher setup.

created After the instance is created.
beforeMount Right before the mounting begins.
mounted After the instance has just been mounted to the DOM.
beforeUpdate When the data changes, before the virtual DOM is re-rendered

and patched.
updated After a data change causes the virtual DOM to be re-rendered

and patched.
activated When a kept-alive component is activated.
deactivated When a kept-alive component is deactivated.
beforeDestroy Right before a Vue instance is destroyed.
destroyed After a Vue instance has been destroyed.

You don’t have to know all these, but it is good to be aware of their existence. If you want to learn
more about Lifecycle Hooks check Vue’s API2.

8.2 Parent-Child Communication

Things are getting a bit different when a parent component needs to listen to an event of a child
component. We can’t use this.$on/this.$emit since this will be bound to different instances.

Remember the v-on (@) event listener? A parent component can listen to the events emitted from a
child component using v-on directly in the template, where the child component is used.

Following the previous example, I’ll create a food component which will have a name property. In
its template, it will show a button displaying its name. When the button is clicked, we want to emit
the vote event.

Food Component

Vue.component('food', {

template: '#food',

props: ['name'],

methods: {

vote: function () {

this.$emit('voted')

}

},

})

2http://vuejs.org/api/#Options-Lifecycle-Hooks

Custom Events 91

Food Component’s Template

<template id="food">

<button class="btn btn-default" @click="vote">{{ name }}</button>

</template>

In the parent instance, the <button> will be replaced by <food @voted="countVote"></food>.

@voted="countVote"means that when child’s voted event is emitted, the countVote method will be
executed. We can also get rid of the this.$on listener, since we don’t need it any more.

Parent Component

new Vue({

el: '.container',

data: {

votes: 0

},

methods:

{

countVote: function () {

this.votes++

},

}

})

Parent Component’s template

<div class="container text-center">

<p style="font-size: 140px;">

{{ votes }}

</p>

<food @voted="countVote" name="Cheeseburger"></food>

</div>

If you run this in your browser, you will see that the output is the same.

Custom Events 92

Parent-Child Communication

8.3 Passing Arguments

Let’s create 3 instances of the food component. Each instance will have its own number of votes.
When any of the foods gets voted, it will increase its own votes and it will emit an event to update
the total votes, located in the parent component, as well.

1 <html>

2 <head>

3 <title>Food Battle</title>

4 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.\

5 css" rel="stylesheet">

6 </head>

7 <body>

8 <div class="container text-center">

9 <p style="font-size: 140px;">

10 {{ votes }}

11 </p>

12

13 <div class="row">

14 <food @voted="countVote" name="Cheeseburger"></food>

Custom Events 93

15 <food @voted="countVote" name="Double Bacon Burger"></food>

16 <food @voted="countVote" name="Rodeo Burger"></food>

17 </div>

18 </div>

19

20 </body>

21 <template id="food">

22 <div class="text-center col-lg-4">

23 <p style="font-size: 40px;">

24 {{ votes }}

25 </p>

26 <button class="btn btn-default" @click="vote">{{ name }}</button>

27 </div>

28 </template>

29 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

30 <script type="text/javascript">

31 var bus = new Vue()

32

33 Vue.component('food', {

34 template: '#food',

35 props: ['name'],

36 data: function () {

37 return {

38 votes: 0

39 }

40 },

41 methods: {

42 vote: function () {

43 this.votes++

44 this.$emit('voted')

45 }

46 }

47 })

48 new Vue({

49 el: '.container',

50 data: {

51 votes: 0

52 },

53 methods:

54 {

55 countVote: function () {

56 this.votes++

Custom Events 94

57 }

58 }

59 })

60 </script>

61 </html>

Multiple Component Instances

Nothing new so far. To make the App more fancy, we can add a Vote Log. The log will get updated
every time a food is voted. We have to update the child component, to pass the food’s name when
emitting the voted event.

Info
The $emit function, along with the event name argument, it passes any additional
arguments to listener’s callback function. For example: vm.$emit('voted', 'Alex',

'Sunday', 'Bob Ross')

We have two options to access food’s name. One is obviously from component’s name property.
The second one, is to access the element which triggered the event and find its text content. We’ll
go with the second one.

We can log the event variable to the console, within Food’s vote method, to find out how we can
access the clicked element.

Custom Events 95

Food Component

Vue.component('food', {

...

methods: {

vote: function (event) {

console.log(event)

this.votes++

this.$emit('voted')

}

}

})

event.srcElement

If you are following along, you will see that we have access to the clicked element within
event.srcElement attribute. The name can be found in both event.srcElement.outerText and
event.srcElement.textContent.

So, lets pass one of these to the $emit function.

Custom Events 96

Food Component

Vue.component('food', {

...

methods: {

vote: function () {

this.votes++

this.$emit('voted', event.srcElement.textContent)

}

}

})

Within the parent, we will push the incoming vote to a log array.

new Vue({

el: '.container',

data: {

votes: 0,

log: []

},

methods:

{

countVote: function (food) {

this.votes++

this.log.push(food + ' received a vote.')

}

}

})

To display the log, we can add a list to the HTML template.

<h1>Log:</h1>

<ul class="list-group">

<li class="list-group-item" v-for="vote in log"> {{ vote }}

Custom Events 97

Votes Log

Pretty easy, huh?

8.4 Non Parent-Child Communication

We’ll take the previous example a step further, by adding a Reset button. When it’s clicked, it will
reset all vote counters. As you can imagine, the reset buttonwill emit an event that should be handled
by all components. But how can we catch this event within the child components?

If we go with the <food @voted="countVote"> way, we can listen for the voted event, but we don’t
have a way to emit events to the child components.

Tomake all components able to communicate with each other, wewill use an empty Vue instance as
a central event bus. Then, within the components created hook, we will register the event listeners
using bus.$on instead of this.$on. Accordingly, we will use bus.$emit to fire all events.

Custom Events 98

HTML

1 <body>

2 <div class="container text-center">

3 <h1>Food Battle</h1>

4 <p style="font-size: 140px;">

5 {{ votes.count }}

6 </p>

7 <button class="btn btn-danger" @click="reset">Reset votes</button>

8 <hr>

9

10 <div class="row">

11 <food name="Cheeseburger"></food>

12 <food name="Double Bacon Burger"></food>

13 <food name="Whooper"></food>

14 </div>

15 <hr>

16

17 <h1>Log:</h1>

18 <ul class="list-group">

19 <li class="list-group-item" v-for="vote in votes.log"> {{ vote }}

20

21 </div>

22 </body>

JavaScript

1 var bus = new Vue()

2

3 Vue.component('food', {

4 template: '#food',

5 props: ['name'],

6 data: function () {

7 return {

8 votes: 0

9 }

10 },

11 methods: {

12 vote: function (event) {

13 // instead of using this.name

14 // we can access event's element's text

15 var food = event.srcElement.textContent;

Custom Events 99

16 this.votes++

17 bus.$emit('voted', food)

18 },

19 reset: function () {

20 this.votes = 0

21 }

22 },

23 created () {

24 bus.$on('reset', this.reset)

25 }

26 })

27 new Vue({

28 el: '.container',

29 data: {

30 votes: {

31 count: 0,

32 log: []

33 }

34 },

35 methods:

36 {

37 countVote: function (food) {

38 this.votes.count++

39 this.votes.log.push(food + ' received a vote.')

40 },

41 reset: function () {

42 this.votes = {

43 count: 0,

44 log: []

45 }

46 bus.$emit('reset')

47 }

48 },

49 created () {

50 bus.$on('voted', this.countVote)

51 }

52 })

Custom Events 100

Non Parent-Child Communication

Warning
Notice here that we are using:

bus.$on('voted', this.countVote)

If instead we were trying to use it like:

bus.$on('voted', function(){

this.vote(food)

})

it would have thrown an error, since this would be bounded to the bus instance instead
of the current component’s instance.

8.5 Removing Event Listeners

To remove one or more event listeners, we can use $off. The $off([event, callback]) method
can be used in several ways.

Custom Events 101

1. $off(), with no arguments, removes all event listeners.
2. $off([event]), removes all event listeners for the specified event.
3. $off([event, callback]) removes event’s listener for the specific callback.

To see it in action, we’ll add a Stop button to stop the votes from being counted/logged. We’ll place
a stop method in the Vue instance.

new Vue({

...

methods:

{

...

stop: function () {

bus.$off(['voted'])

}

}

})

If we go with bus.$off(['voted']), you see that after Stop button is clicked, the upcoming votes
are not added to the total count. Also, they don’t show up in the log. Though, if you hit the Reset
Votes button, the Food components’ votes are being reseted to 0.

To disable the reset listener too, we can remove all event listeners using bus.$off().

8.6 Back to stories

Remember the Stories example of the previous chapters?Wewere about to synchronize component’s
data with parent’s data. The solution seems obvious now.

We’ll use Story component like this:

<story v-for="story in stories"

:story="story"

:favorite="favorite"

@update="updateFavorite"></story>

Within Story component, we’ll emit the update event when a story is marked as favorite. The story
being favorite, should be passed as an argument on emit.

Custom Events 102

Story Component

Vue.component('story', {

...

methods:{

...

updateFavorite: function(){

// 'update' is just the name of the custom event

// it could be anything. ex: fav-update

this.$emit('update', this.story)

}

}

...

});

In the parent instance, we’ll add a favorite variable to the data. Also, we’ll create a new method,
which will update favorite variable when called.

Parent Instance

new Vue({

...

data: {

...

favorite: {}

},

methods: {

updateFavorite: function(story) {

this.favorite = story;

}

},

})

Custom Events 103

Favorite only one story

Now, the desired result is achieved and the user is able to choose only one story to be his favorite,
while he can vote as many stories as he wants.

Info
In Vue 2, bindings are always one-way. To keep data in sync between Parent-Child you
have to use Events.

Code Examples
You can find the code examples of this chapter on GitHub3.

3https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter8

Custom Events 104

8.7 Homework

This is the most difficult exercise so far, so make sure to put in use everything you have learned in
this book. Create an array of 4 horse-drawn chariots. Each chariot has a “name” and a number of
“horses” (from 1 to 4). Create a component named “chariot”. The “chariot” component should display
the name of the chariot and the number of the horses it has. It must also have an action button. The
button’s text depends on the currently selected chariot.

More specifically, button’s text should be:

• ‘Pick Chariot’, before the user has chosen any chariot
• ‘Dismiss Horses’, when the chariot has less horses than the selected chariot
• ‘Hire Horses’, when the chariot has more horses than the selected chariot
• ‘Riding!’, when the chariot is the selected chariot (this button has to be disabled)

The user should be able to pick a chariot and then choose between any chariot he wants to.

Example Scenario: User has chosen a chariot with 2 horses and its button says ‘Riding!’. A chariot
with 3 horses has one more horse, so its button says ‘Hire Horses’. A chariot with 1 horse has one
less horse than user’s chariot, so its button says ‘Dismiss Horses’. I think you got the idea..

Hint
You need to keep in sync child’s and parent’s currentChariot property.

Hint
To disable a button use disabled="true" attribute. You have to figure out how to apply it
conditionally.

Custom Events 105

Example Output

Potential Solution
You can find a potential solution to this exercise here4.

4https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter8.html

9. Class and Style Bindings
9.1 Class binding

9.1.1 Object Syntax

A common need for data binding is to manipulate an element’s class and its styles. For such cases,
you can use v-bind:class. This can be used to apply classes conditionally, toggle them and/or apply
many of them using one binded object et al.

The v-bind:class directive takes an object with the following format as an argument

{

'classA': true,

'classB': false,

'classC': true

}

and applies all classes with true value to the element. For example, the classes of the following
element, will be classA and classC.

<div v-bind:class="elClasses"></div>

data: {

elClasses:

{

'classA': true,

'classB': false,

'classC': true

}

}

To demonstrate how v-bind is used with class attributes, we are going to make an example of
class toggling. Using v-bind:class directive, we are going to dynamically toggle the class of div
elements.

Class and Style Bindings 107

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.\

4 css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container text-center">

9 <div class="box" v-bind:class="{ 'red' : color, 'blue' : !color }"></div>

10 <div class="box" v-bind:class="{ 'purple' : color, 'green' : !color }"></div>

11 <div class="box" v-bind:class="{ 'red' : color, 'blue' : !color }"></div>

12 <div class="box" v-bind:class="{ 'purple' : color, 'green' : !color }"></div>

13 <button v-on:click="flipColor" class="btn btn-block btn-success">

14 Flip color!

15 </button>

16 </div>

17 </body>

18 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.js"></script>

19 <script type="text/javascript">

20 new Vue({

21 el: '.container',

22 data: {

23 color: true

24 },

25 methods: {

26 flipColor: function() {

27 this.color = !this.color;

28 }

29 }

30 });

31 </script>

32 <style type="text/css">

33 .red {

34 background: #ff0000;

35 }

36 .blue {

37 background: #0000ff;

38 }

39 .purple {

40 background: #7B1FA2;

41 }

42 .green {

Class and Style Bindings 108

43 background: #4CAF50;

44 }

45 .box {

46 float: left;

47 width: 200px;

48 height: 200px;

49 margin: 40px;

50 border: 1px solid rgba(0, 0, 0, .2);

51 }

52 </style>

53 </html>

Toggle boxes’ color

Class and Style Bindings 109

Toggle boxes’ color

We have applied a class of box to each div, for our convenience. What this code actually does, is
“flipping” the color of the boxes with a hit of the button. When pressing it, it invokes the flipColor
function, that reverses the value of color originally set to true. Then the v-bind:class is going to
toggle the class name from ‘red’ to ‘blue’ or from ‘purple’ to ‘green’ conditionally, depending on
the truthfulness of color value. That given, the style is going to apply on each class and give us the
desired output.

Info
The v-bind:class directive can co-exist with the plain class attribute.

So, in our example, divs always have the box class and conditionally one of red, blue,
purple or green.

9.1.2 Array Syntax

We can also apply a list of classes to an element, using an array of classnames.

<div v-bind:class="['classA', 'classsB', anotherClass]"></div>

Applying conditionally a class, can also be achieved with the use of inline if inside the array.

<div v-bind:class="['classA', condition ? 'classsB' : '']"></div>

Class and Style Bindings 110

Info
Inline if is commonly referred to as the ternary operator, conditional operator, or
ternary if.

The conditional (ternary) operator is the only JavaScript operator that takes three operands.

The syntax of ternary operator is condition ? expression1 : expression2. If condi-
tion is true, the operator returns the value of expression1, otherwise, it returns the value of
expression2.

Using inline if, the flipping colors example will look like:

1 <div class="container text-center">

2 <div class="box" v-bind:class="[color ? 'red' : 'blue']"></div>

3 <div class="box" v-bind:class="[color ? 'purple' : 'green']"></div>

4 <div class="box" v-bind:class="[color ? 'red' : 'blue']"></div>

5 <div class="box" v-bind:class="[color ? 'purple' : 'green']"></div>

6 <button v-on:click="flipColor" class="btn btn-block btn-success">

7 Flip color!

8 </button>

9 </div>

1 new Vue({

2 el: '.container',

3 data: {

4 color: true

5 },

6 methods: {

7 flipColor: function() {

8 this.color = !this.color;

9 }

10 }

11 });

Tip
To actually use a class name instead of a variable inside classes array, use single quotes.
v-bind:class="[variable, 'classname']"

Class and Style Bindings 111

9.2 Style binding

9.2.1 Object Syntax

The Object syntax for v-bind:style is pretty straightforward; it looks almost like CSS, except it’s
a JavaScript object. We are going to use the shorthand that Vue.js provides for the previously used
directive, v-bind(:).

1 <!-- shorthand -->

2 <div :style="niceStyle"></div>

1 data: {

2 niceStyle:

3 {

4 color: 'blue',

5 fontSize: '20px'

6 }

7 }

We can also declare the style properties inside an object :style=”…“ inline.

<div :style="{'color': 'blue', fontSize: '20px'}">...</div>

We can even reference variables inside style object:

<!-- Variable 'niceStyle' is the same we used in the previous example -->

<div :style="{'color': niceStyle.color, fontSize: niceStyle.fontSize}">

</div>

Class and Style Bindings 112

Style object binding

It is often a good idea to use a style object and bind it, so the template is cleaner.

9.2.2 Array Syntax

Using inline array syntax for v-bind:style, we are able to apply multiple style objects to the same
element, meaning here that every list item is going to have the color and font-size of niceStyle
and the font style of badStyle.

1 <!-- shorthand -->

2 <div :style="[niceStyle, badStyle]"></div>

1 data: {

2 niceStyle:

3 {

4 color: 'blue',

5 fontSize: '20px'

6 }

7 badStyle:

8 {

9 fontStyle: 'italic'

10 }

11 }

Class and Style Bindings 113

Info for Intermediates
When you use a CSS property that requires vendor prefixes in v-bind:style, for example
transform, Vue.js will automatically detect and add the appropriate prefixes to the applied
styles.

You can find more information about vendor prefixes here1.

9.3 Bindings in Action

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body class="container-fluid">

8 <div id="app">

9

10 <li :class="{'completed' : task.done}"

11 :style="styleObject"

12 v-for="task in tasks">

13 {{task.body}}

14 <button @click="completeTask(task)" class="btn">

15 Just do it!

16 </button>

17

18

19 </div>

20 </body>

21 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/vue/2\

22 .3.4/vue.js"></script>

23 <script type="text/javascript">

24 new Vue({

25 el: '#app',

26 data: {

27 tasks: [

28 {body: "Feed the horses", done: true},

29 {body: "Wash armor", done: true},

30 {body: "Sharp sword", done: false},

1https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix

Class and Style Bindings 114

31],

32 styleObject: {

33 fontSize: '25px'

34 }

35 },

36 methods: {

37 completeTask: function(task) {

38 task.done = !task.done;

39 }

40 },

41 });

42 </script>

43 <style type="text/css">

44 .completed {

45 text-decoration: line-through;

46 }

47 </style>

48 </html>

The above example has an array of objects called tasks and a styleObject which contains only one
property. With the use of v-for, a list of tasks is rendered and each task has a done property with a
boolean value. Depending on the value of done, a class is applied conditionally as before. If a task has
been completed, then css style applies, and the task gains a text-decoration of line-through. Each
task is accompanied by a button, listening for the click event, which triggers a method, altering the
completion status of the task. The style attribute is bound to styleObject, resulting in the change
of font-size of all tasks. As you can see, the completeTasks method takes in the parameter task.

Class and Style Bindings 115

Styling completed tasks

Code Examples
You can find the code examples of this chapter on GitHub2.

2https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter9

Class and Style Bindings 116

9.4 Homework

A fun and maybe tricky exercise for this chapter. Create an input where the user can choose a color.
When a color is chosen, apply it to an element of your choice. Thats it, let’s paint!! :)

Hint
You could use input type="color" for your ease (supported in most browsers).

Example Output

Potential Solution
You can find a potential solution to this exercise here3.

3https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/chapter9.html

II Consuming an API

10. Preface
In this chapter, we are going a little deeper and demonstrate how we can use Vue.js to consume an
API.

Following the story examples of previous chapters, we are now going to use some real data, coming
from an external source.

In order to use real data, we need to make use of a database. Assuming that you already know how
to create a database, it won’t be covered in this book. To work along with the book’s examples, we
got you covered, we have already created one to be put to use.

10.1 CRUD

Presume we have a database, we need to perform CRUD operations (Create, Read, Update, Delete).
More particularly, we want to

• Create new stories in the database
• Read existing stories
• Update existing story’s details (such as ‘upvotes’)
• Delete stories that we don’t like

Since Vue.js is a Front-end JavaScript framework, it cannot connect to a database directly. To access
a database we need a layer between Vue.js and the database. This layer is the API (Application
Program Interface).

10.2 API

Because this book is about Vue.js and not about designing APIs, we will provide you a demo API
built with Laravel1. Laravel is one of most powerful PHP frameworks along with Symfony2, Nette,
CodeIgniter, and Yii2. You are free to create your API using any language or framework you like. I
use Laravel because it is simple, it has a great community, and it is awesome! :)

Therefore, we strongly recommend you to use the demo API that we have built exclusively for the
examples of this book.

1https://laravel.com/

Preface 119

10.2.1 Download Book’s Code

To use our API, you have to download the book’s code and start a server. To do so, follow the
instructions below.

1. Open your terminal and create a directory (we will create ‘∼/themajestyofvuejs2’)

mkdir ∼/themajestyofvuejs2

1. Download the source code from github

cd ∼/themajestyofvuejs2

git clone https://github.com/hootlex/the-majesty-of-vuejs-2 .

Alternatively, you can visit the repository on github2 and download the zip file. Then, extract its
contents under the created directory.

1. Navigate to the current chapter under ‘apis’ of the newly created directory.

cd ∼/themajestyofvuejs2/apis/stories

1. Run the installation script

sh setup.sh

1. You now have a database filled with dummy data as well as a fully functional server running
on http://localhost:3000!

If you want to customize the server (host, port, etc), you can make the setup manually. Below
is the source code of our script.

2https://github.com/hootlex/the-majesty-of-vuejs-2

Preface 120

Installation Script: setup.sh

navigate to chapter directory

$ cd ~/themajestyofvuejs2/apis/stories

install dependencies

$ composer install

Create the database

$ touch database/database.sqlite;

Migrate & Seed

$ php artisan migrate;

$ php artisan db:seed;

Start server

$ php artisan serve --port=3000 --host localhost;

Great! You now have a fully functional API and a database filled with nice stories.

Note
If you are using Vagrant, you have to run the server on host ‘0.0.0.0’. Then, you will be
able to access your server on Vagrant’s box ip.

If, for example, Vagrant’s box ip is 192.168.10.10 and you run

$ php artisan serve --port=3000 --host 0.0.0.0;

you can browse your website on 192.168.10.10:3000.

If you have downloaded our demo API, you can continue to the next section.

If you chose to create you own API, you have to create a database table to store the stories. The
following columns must be present.

Column Name Type

id Integer, Auto Increment
plot String
writer String
upvotes Integer, Unsigned

Don’t forget to seed some fake data to follow up with the next examples.

Preface 121

10.2.2 API Endpoints

An endpoint is simply a URL. When you go to http://example.com/foo/bar it is an endpoint and you
simply need to call it /foo/bar because the domain will be the same for all the endpoints.

To manage the Story resource we need 5 endpoints. Each endpoint corresponds to a specific action.

HTTP Method URI Action

GET/HEAD api/stories Fetches all stories
GET/HEAD api/stories/{id} Fetches specified story
POST api/stories Creates a new story
PUT/PATCH api/stories/{id} Updates an existing story
DELETE api/stories/{id} Deletes specified story

As indicated in the above table, to get a listing with all the ‘stories’ we have to make an HTTP GET
or HEAD request to api/stories. To update an existing story we have to make an HTTP PUT or
PATCH request to api/stories/{storyID} providing the data we want to update, and replacing
{storyID} with the id of the story we want to update. The same logic applies to all endpoints. I
think you get the idea.

Assuming your server is running on http://localhost:3000, you can view a listing of all stories
in JSON format by visiting http://localhost:3000/api/stories on your web browser.

Preface 122

JSON response

Tip
Reading raw JSON data on browser can be painful. It is always easier to read a well
formatted JSON. Chrome has some great extensions that could format raw JSON data
into tree view format that can be easily read.

I use JSONFormatter3 because it supports syntax highlighting and displays JSON in tree
view, where the nodes on the tree can be collapsed or expanded by clicking the triangle
icon on the left of each node. It also provides a button for switching to original (raw) data.

You can choose whichever extension you like but you should definitely use one!

3https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa

11. Working with real data
It is time to actually put in use our database and perform the operations we have mentioned (CRUD).
We will utilize the last example from the Components chapter, but this time, of course, our data will
come from an external source. To exchange data with the server we need to perform asynchronous
HTTP (Ajax) requests.

Info
AJAX is a technique that allows web pages to be updated asynchronously by exchanging
small amounts of data with the server behind the scenes.

11.1 Get Data Asynchronous

Take a moment to have a look at the last example from the Components chapter. As you can see we
hardcode stories array, inside the data object of Vue instance.

Stories array hardcoded

new Vue({

data: {

stories: [

{

plot: 'My horse is amazing.',

writer: 'Mr. Weebl',

},

{

plot: 'Narwhals invented Shish Kebab.',

writer: 'Mr. Weebl',

},

...

]

}

})

This time, we want to fetch the existing stories from the server.

Working with real data 124

To do so , we’ll perform a HTTP GET request, using jQuery at first. Later on this chapter, we will
migrate to vue-resource1 to see the differences between the two of them.

To make the AJAX call we are going to use $.get(), a jQuery function that loads data from the
server using a HTTP GET request. Full documentation for $.get() can be found here2.

Info
vue-resource is a plugin for Vue.js that provides services for making web requests and
handling responses.

The $.get() method’s syntax is

$.get(

url,

success

);

which is actually a shorthand for

$.ajax({

url: url,

success: success

});

So, what we do now? We want to get the stories from the server, using $.get('/api/stories'),
and store the response data into stories array.

There is a common catch here, we have to make the call after the Instance is ready. Do you
remember Vue’s Lifecycle Hooks?

There is a hook, called mounted, which is called just after the instance has been mounted.

Warning
The mounted hook is not equivalent to jQuery’s $(document).ready(). When using
mounted, there’s no guarantee to be in-document. If you need to execute something once
the page Document Object Model (DOM) is ready, you can use:

mounted: function () {

this.$nextTick(function () {

// code that assumes this.$el is in-document

})

}

1https://github.com/vuejs/vue-resource
2https://api.jquery.com/jquery.get/

Working with real data 125

Lets see this in action.

1 <div id="app">

2 <div class="container">

3 <h1>Let's hear some stories!</h1>

4 <ul class="list-group">

5 <story v-for="story in stories" :story="story">

6 </story>

7

8 <pre>{{ $data }}</pre>

9 </div>

10 </div>

11 <template id="template-story-raw">

12 <li class="list-group-item">

13 {{ story.writer }} said "{{ story.plot }}"

14 {{story.upvotes}}

15

16 </template>

1 <script src="https://unpkg.com/vue@2.3.2/dist/vue.js"></script>

2 <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

3 <script type="text/javascript">

4 Vue.component('story', {

5 template: "#template-story-raw",

6 props: ['story'],

7 });

8

9 var vm = new Vue({

10 el: '#app',

11 data: {

12 stories: []

13 },

14 mounted: function(){

15 $.get('/api/stories', function(data){

16 vm.stories = data;

17 })

18 }

19 })

20 </script>

We start by pulling in the jQuery from the cdnjs3. Then, within mounted hook, we perform the GET

3https://cdnjs.com/libraries/jquery/

Working with real data 126

request. After the request is successfully finished, we store the response data (inside the callback)
into stories array.

Get stories

Notice here, that inside the callback we are referring to stories variable using vm.stories
instead of this.stories. We do so because variable this is not bound to the Vue instance
inside the callback. So, we save the whole Vue instance to a variable called vm, in order to
have access to it from anywhere within our code. To learn more about this, have a look
at: documentation4.

Warning
In order to be able to fetch the data from an API, you have to open the file on the browser
behind the server that provides the API. If you are using the provided API you should open
the file on http://localhost:3000/stories.html. In case you’ve made your own, make
sure you host the stories.html under a route of your app. If you open the stories.html
file directly on the browser it won’t work.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Working with real data 127

11.2 Refactoring

Having large amounts of code in our text editor can be confusing if not displayed properly, as well
as in the browser. For that reason, we are going to refactor our example code, to render the list of
stories using a <table> element instead of the .

1 <div id="app">

2 <table class="table table-striped">

3 <tr>

4 <th>#</th>

5 <th>Plot</th>

6 <th>Writer</th>

7 <th>Upvotes</th>

8 <th>Actions</th>

9 </tr>

10 <tr v-for="story in stories" is="story" :story="story"></tr>

11 </table>

12 </div>

13 <template id="template-story-raw">

14 <tr>

15 <td>

16 {{story.id}}

17 </td>

18 <td>

19

20 {{story.plot}}

21

22 </td>

23 <td>

24

25 {{story.writer}}

26

27 </td>

28 <td>

29 {{story.upvotes}}

30 </td>

31 </tr>

32 </template>

33 <p class="lead">Here's a list of all your stories.

34 </p>

35 <pre>{{ $data }}</pre>

Working with real data 128

But there is an issue.

Rendering issues

Our table does not render properly, but why?5

Some HTML elements, for example <table>, have restrictions on what elements can
appear inside them. Custom elements that are not in the whitelist will be hoisted out
and thus not render properly. In such cases you should use the is special attribute to
indicate a custom element.

Therefore, to solve this issue we have to use Vue’s special attribute is.

<table>

<tr is="my-component"></tr>

</table>

So our example will become

<tr v-for="story in stories" is="story" :story="story"></tr>

5http://goo.gl/Xr9RoQ

Working with real data 129

Table renders properly

Well, this looks better!

11.3 Update Data

We used to have a function that allowed the user to vote any story he wanted to. But now we want
something more.Wewant the server to be informed every time a story is voted, ensuring that story’s
votes are updated in the database as well.

To update an existing story, we have to make an HTTP PATCH or PUT request to api/sto-

ries/{storyID}.

Inside the upvoteStory function, which is to be created, we are going to make an HTTP call after
we have increased story's upvotes. We will pass the newly updated story variable in the Request
Payload, in order to update the data in our server.

Working with real data 130

1 <td>

2 <div class="btn-group">

3 <button @click="upvoteStory(story)" class="btn btn-primary">

4 Upvote

5 </button>

6 </div>

7 </td>

1 Vue.component('story',{

2 template: '#template-story-raw',

3 props: ['story'],

4 methods: {

5 upvoteStory: function(story){

6 story.upvotes++;

7 $.ajax({

8 url: '/api/stories/'+story.id,

9 type: 'PATCH',

10 data: story,

11 });

12 }

13 },

14 })

We brought back the upvote method and placed it inside our story component. Making a PATCH
request now, providing the new data, the server updates the upvotes count.

Working with real data 131

Upvote stories

11.4 Delete Data

Let us proceed to another piece of functionality, our stories list should have: Deleting a story we
don’t like. To remove a story from the array and the DOM, we have to search for it and remove it
from stories array.

1 <td>

2 <div class="btn-group">

3 <button @click="upvoteStory(story)" class="btn btn-primary">

4 Upvote

5 </button>

6 <button @click="deleteStory(story)" class="btn btn-danger">

7 Delete

8 </button>

9 </div>

10 </td>

We append a Delete button to the actions column, bound to a method to delete the story. The
deleteStory method will be:

Working with real data 132

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 deleteStory: function(story){

6 // find story

7 var index = vm.stories.indexOf(story);

8

9 // delete it

10 vm.stories.splice(index, 1)

11 }

12 }

13 ...

14 })

But of course, this way, we will only remove the story temporary. In order to delete the story from
the database, we have to perform an AJAX DELETE request.

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 deleteStory: function(story){

6 // find story

7 var index = vm.stories.indexOf(story);

8

9 // delete it

10 vm.stories.splice(index, 1)

11

12 // make DELETE request

13 $.ajax({

14 url: '/api/stories/'+story.id,

15 type: 'DELETE'

16 });

17 },

18 }

19 ...

20 })

We are passing in the URL, as we did before. The type here should be equal to DELETE. Our method
is now ready and we can delete the story from our database as well as the DOM.

Working with real data 133

Upvote and Delete stories

That’s it for now.Wewill continue our example in the next chapter, by enhancing the functionality
with Creating new stories, Editing current stories, and more. But first of all, we will replace
jQuery with vue-resource.

12. HTTP Clients
12.1 Introduction

As you may know, Vue used to have its own HTTP client. Though, the Vue.js team decided to
retire it from official recommendation status. You can read Evan You’s announcement, Retiring
vue-resource1, which explains the reasons behind this decision.

We are going to implement, again, all the web requests wemade in the previous chapter, using axios2

this time.

Before diving into axios, we’d like to show you one example of the vue-resourse plugin. This way
you can see the differences and decide which one works better for you. jQuery is also fine, but if
you are using it only to perform AJAX calls you should consider removing it.

12.2 Vue-resource

Vue-resourse provides services for making web requests and handles responses using an XML-
HttpRequest or JSONP.

You can find the installation instructions and the documentation on GitHub3. As usual, we are going
to “pull it in” from a cdn4.

To fetch data from a server, we can use vue-resource’s $http method with the following syntax:

// GET request

this.$http({url: '/someUrl', method: 'GET'})

.then(function (response) {

// success callback

}, function (response) {

// error callback

});

Info
When using vue-resource, a Vue instance will provide the this.$http(options) function,
which takes an options object for generating an HTTP request and returns a promise. Also
the Vue instance will be automatically bound to this in all function callbacks.

1https://medium.com/the-vue-point/retiring-vue-resource-871a82880af4#.lew43e17f
2https://github.com/mzabriskie/axios
3https://github.com/vuejs/vue-resource
4https://cdnjs.com/libraries/vue-resource

HTTP Clients 135

Instead of passing the method option, there are shorthand methods available for all the requested
types.

Request shorthands

1 this.$http.get(url, [data], [options]).then(successCallback, errorCallback);

2 this.$http.post(url, [data], [options]).then(successCallback, errorCallback);

3 this.$http.put(url, [data], [options]).then(successCallback, errorCallback);

4 this.$http.patch(url, [data], [options]).then(successCallback, errorCallback);

5 this.$http.delete(url, [data], [options]).then(successCallback, errorCallback);

According to Evan’s post, it’s totally fine to keep using it if you are happy with it. We will use axios
from now on, since it is the recommended one.

12.3 Axios

Axios is a promise based HTTP client for the browser and Node.js. In addition, it covers almost
everything vue-resource provides with a very similar API, it is universal, supports cancellation, and
has TypeScript5 definitions.

Here is how one can perform a GET request using axios:

// Make a request for a user with a given ID

axios({

method: 'get',

url: '/user/kostas'

})

.then(function (response) {

console.log(response);

})

.catch(function (error) {

console.log(error);

});

For convenience aliases have been provided for all supported request methods.

5http://www.typescriptlang.org/

HTTP Clients 136

Request method aliases

1 axios.request(config)

2 axios.get(url[, config])

3 axios.delete(url[, config])

4 axios.head(url[, config])

5 axios.post(url[, data[, config]])

6 axios.put(url[, data[, config]])

7 axios.patch(url[, data[, config]])

When using the alias methods, you don’t need to specify the url, method, and data

properties in the config.

Tip
If you’d like to use axios under this.$http, like in vue-resource, you can set
Vue.prototype.$http = axios. This will be really handy if you want to replace vue-
resource with axios.

12.4 Integrating axios

It is time to use axios in our example. First of all, we have to include it. We will add this line to our
HTML file.

stories.html

<script src="https://unpkg.com/axios/dist/axios.min.js"></script>

To fetch the stories, we will make a GET request in the corresponding form:

HTTP Clients 137

app.js

mounted: function() {

// GET request

axios.get('/api/stories')

.then(function (response) {

Vue.set(vm, 'stories', response.data)

// Or we as we did before

// vm.stories = response.data

})

}

Our list of stories comes without any issue.

Let’s move on now, with the PATCH and DELETE requests, using the alias methods.

app.js

....

upvoteStory: function(story){

story.upvotes++;

axios.patch('/api/stories/' + story.id, story)

}

app.js

deleteStory: function(story){

var index = this.$parent.stories.indexOf(story);

this.$parent.stories.splice(index, 1)

axios.delete('/api/stories/' + story.id)

}

We have replaced the AJAX methods with these ones, in no time!

Info
Since, the story component doesn’t have access to the stories array, we access the array
using this.$parent.stories. We could also use vm.stories or emit an event to update
the array within the parent Vue instance.

HTTP Clients 138

12.5 Enhancing Functionality

We should add a couple more features, to make our list of stories neat. We can give the user the
ability to change the plot of a story, its writer, and also create new stories.

12.5.1 Edit Stories

Let’s start with the first task and give the user some inputs to manipulate the story’s attributes. Two
bound inputs should do the job, but we should display them only when the user is editing a story.
It seems like the kind of work we did in previous chapters.

To define if a story is in editing state we will use a property, editing, which will become true
when the user hits the Edit button.

1 <td>

2 <!--if editing story, display the input for plot-->

3 <input v-if="story.editing" v-model="story.plot" class="form-control">

4 </input>

5 <!--in other occasions, show the story's plot-->

6

7 {{story.plot}}

8

9 </td>

10 <td>

11 <!-- if editing story, display the input for writer -->

12 <input v-if="story.editing" v-model="story.writer" class="form-control">

13 </input>

14 <!--in other occasions, show the story's writer-->

15

16 {{story.writer}}

17

18 </td>

19 <td>

20 {{story.upvotes}}

21 </td>

22 <td>

23 <div v-if="!story.editing" class="btn-group">

24 <button @click="upvoteStory(story)" class="btn btn-primary">

25 Upvote

26 </button>

27 <button @click="editStory(story)" class="btn btn-default">

28 Edit

HTTP Clients 139

29 </button>

30 <button @click="deleteStory(story)" class="btn btn-danger">

31 Delete

32 </button>

33 </div>

34 </td>

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 editStory: function(story){

6 story.editing=true;

7 },

8 }

9 ...

10 })

This is our updated table, with two new inputs and a button. We use the editStory function, to
set story.editing to true , so v-if will bring up the inputs to edit the story and hide the Upvote
and Delete buttons. Though, this approach won’t work. It seems that the DOM isn’t updating after
setting story.editing to true. But why does this happen?

It turns out, according to this post from Vue.js blog6, that when you are adding a new property
that wasn’t present when the data was observed, the DOM won’t update. The best practice is to
always declare properties that need to be reactive upfront. In cases where you absolutely need to
add or delete properties at runtime, use the global Vue.set or Vue.delete methods.

For this reason, we have to initialize the story.editing attribute to false on each story, right after
receiving the stories from the server.

To do this, we are going to use Javascript’s .map() method, within the success callback of the GET
request.

6http://vuejs.org/2016/02/06/common-gotchas/

HTTP Clients 140

mounted: function() {

var vm = this;

// GET request

axios.get('/api/stories')

.then(function (response) {

// set data on vm

var storiesReady = response.data.map(function (story) {

story.editing = false;

return story

})

vm.stories = storiesReady

//Vue.set(vm, 'stories', storiesReady)

});

}

Info
The .map() method calls a defined callback function on each element of an array and
returns an array that contains the results. You can find more information about the .map()
method and its syntax here7.

This function adds the editing attribute to each story object and then returns the updated story.
The new variable, storiesReady, is an array that contains our updated array with the new attribute
on.

When the story is under editing, we will give the user two options: to update the story with new
values or to cancel the edit.

Form inputs for story editing

So, lets move on and add two buttons, that should be displayed only when the user is editing a story.
Additionally, a new method called updateStory will be created. It is going to update the current
editing story, after the Update Story button is pressed.

7https://msdn.microsoft.com/en-us/library/ff679976(v=vs.94).aspx

HTTP Clients 141

<!-- If story is under edit, display this group of buttons -->

<div class="btn-group" v-else>

<button @click="updateStory(story)" class="btn btn-primary">

Update Story

</button>

<button @click="story.editing=false" class="btn btn-default">

Cancel

</button>

</div>

Vue.component('story',{

...

methods: {

...

updateStory: function (story) {

axios.patch('/api/stories/' + story.id, story)

//Set editing to false to show actions again and hide the inputs

story.editing = false;

},

}

...

})

Updating story actions

Here it is, up and running. After the PATCH request is finished successfully, we have to set
story.editing back to false, in order to hide the inputs and bring back the action buttons.

12.5.2 Create New Stories

Now for a bit trickier task, we are going to give the user the ability to create a new story and save it
to our server. First, we must provide inputs, so the new story can be typed in. To make this happen,
we will create an empty story and we’ll append it to the stories array using the push() javascript
method. We will initialize all the story’s attributes to null, except from editing. Since, we want to
immediately manipulate the new story, the editing property will be set to true.

HTTP Clients 142

1 var vm = new Vue({

2 ...

3 methods: {

4 createStory: function(){

5 var newStory={

6 "plot": "",

7 "upvotes": 0,

8 "editing": true

9 };

10 this.stories.push(newStory);

11 },

12 }

13 })

1 <p class="lead">Here's a list of all your stories.

2 <button @click="createStory()" class="btn btn-primary">

3 Add a new one?

4 </button>

5 </p>

Info
The push()method adds new items to the end of an array, and returns the new length. You
can find more information about the push() method and its syntax here8.

We named the new function createStory and we placed it in our Vue instance.

Right bellow our list, we have added a button. When the button is clicked, createStorymethod gets
invoked. Since the newStory.editing is set to true, the binded inputs for plot and writer along with
the Edit action buttons, are being rendered instantly.

Also, the new story object must be sent to the server in order to be stored in the database. We are
going to perform a POST request inside a method called storeStory.

8https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push

HTTP Clients 143

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 storeStory: function(story){

6 axios.post('/api/stories/', story).then(function () {

7 story.editing = false;

8 });

9 },

10 }

11 ...

12 })

In the success callback function, we have set editing to false in order to show the action buttons
again and hide the form’s inputs and editing buttons. Below, we are going to update the button
groups, in accordance to the new method.

1 <td>

2 <div class="btn-group" v-if="!story.editing">

3 <button @click="upvoteStory(story)" class="btn btn-primary">

4 Upvote

5 </button>

6 <button @click="editStory(story)" class="btn btn-default">

7 Edit

8 </button>

9 <button @click="deleteStory(story)" class="btn btn-danger">

10 Delete

11 </button>

12 </div>

13 <div class="btn-group" v-else>

14 <button class="btn btn-primary" @click="updateStory(story)">

15 Update Story

16 </button>

17 <button class="btn btn-success" @click="storeStory(story)">

18 Save New Story

19 </button>

20 <button @click="story.editing=false" class="btn btn-default">

21 Cancel

22 </button>

23 </div>

24 </td>

HTTP Clients 144

We observe a small mistake in this block of code. When we are in editing mode (v-else block) we
see that the buttons for update and store are being shown together, but we only need one for each
story, since each story will be Stored or Updated. It can’t do both. So, if the story is an old one and
the user is about to edit it, we need the update button. On the other hand, if the story is new, we
need the store button.

A small mistake

To bypass this issue, we are going to restructure our buttons. The Update button will only be
displayed when the story is old. Accordingly the Save new Story button will be displayed when
the story is a new one.

You may have noticed that all stories fetched from the server have an id attribute. We are going to
use this observation to define if a story is new or not.

1 <div class="btn-group" v-else>

2 <!--If the story is an old one then we want to update it

3 TIP: if the story is taken from the db then it will have an id-->

4 <button v-if="story.id" class="btn btn-primary" @click="updateStory(story)">

5 Update Story

6 </button>

7 <!--If the story is new we want to store it-->

8 <button v-else class="btn btn-success" @click="storeStory(story)">

9 Save New Story

HTTP Clients 145

10 </button>

11 <!--always show cancel-->

12 <button @click="story.editing=false" class="btn btn-default">

13 Cancel

14 </button>

15 </div>

Tip
If the story is taken from the database, it will have an id.

Adding new story

There we have it. It wasn’t that hard, right?

After finishing this part, testing our app brings up another error. After creating, saving, and trying
to edit a new story, we see that the button says “Save new Story” instead of “Update Story”! Thats
because we are not fetching the newly created story from the server, after we send it, and it does
not have an id yet. To solve this problem, we can again fetch the stories from the server, just after
we store a new one into the database.

Since I don’t like to repeat my code, I will extract the fetching procedure to a method called
fetchStories(). After that, I can use this method to fetch the stories anytime.

HTTP Clients 146

The fetchStories method

1 var vm = new Vue({

2 el: '#v-app',

3 data : {

4 stories: [],

5 },

6 mounted: function(){

7 this.fetchStories()

8 },

9 methods: {

10 createStory: function(){

11 var newStory={

12 "plot": "",

13 "upvotes": 0,

14 "editing": true

15

16 };

17 this.stories.push(newStory);

18 },

19 fetchStories: function () {

20 var vm = this;

21 axios.get('/api/stories')

22 .then(function (response) {

23 var storiesReady = response.data.map(function (story) {

24 story.editing = false;

25 return story

26 })

27 // vm.stories = storiesReady

28 Vue.set(vm, 'stories', storiesReady)

29 // or: vm.stories = storiesReady

30 });

31 },

32 }

33 });

In our situation, we’ll call fetchStories() inside the success callback of the POST request.

HTTP Clients 147

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 storeStory: function(story){

6 axios.post('/api/stories/', story).then(function () {

7 story.editing = false;

8 vm.fetchStories();

9 });

10 },

11 }

12 ...

13 })

That’s it!We can now create and edit any story we want.

12.5.3 Store & Update Unit

A better way to fix the previous issue, is to fetch only the newly created story from the database,
instead of fetching and overwriting all the stories. If you check the server response, for the POST
request, you will see that it returns the created story along with its id.

Server response after creating new story

The only thing we have to do, is to update our story to match the server’s one. So, we will set the
id of the response data, to story’s id attribute. We will do this inside the POST’s success callback.

HTTP Clients 148

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 storeStory: function(story){

6 axios.post('/api/stories/', story).then(function (response) {

7 Vue.set(story, 'id', response.data.id);

8 story.editing = false

9 });

10 },

11 }

12 ...

13 })

I use Vue.set(story, 'id', response.data.id) instead of story.id = response.data.id be-
cause inside our table we display the id of each story. Since the new story had no id, when it is
pushed to the stories array, the DOM won’t be updated when the id changes, so we will not be
able to see the new id.

Tip
When you are adding a new property that wasn’t present when the data was observed,
Vue.js cannot detect the property’s addition. So, if you need to add or remove properties at
runtime, use the global Vue.set or Vue.delete methods.

12.6 JavaScript File

As you may have noticed, our code is starting to become big. As our project grows, it is getting
harder to maintain. For starters, we’ll separate the JavaScript code from the HTML. I’ll create a file
called app.js and I’ll save it under js directory.

All the JavaScript code should live inside that file from now on. To include the newly created script
to any HTML page you simply have to add this tag

<script src='/js/app.js' type="text/javascript"></script>

and you are ready to go!

HTTP Clients 149

12.7 Source Code

Below is the whole source code of the previousManaging Stories example. If you have downloaded
our repo, I suggest you to open your local files with your favorite text editor, because the code is
quite big. The files are located at ∼/themajestyofvuejs2/apis/stories/public.

If you haven’t downloaded the repository you can still view the stories.html9 and app.js10 files on
github.

stories.html

1 <html lang="en">

2 <head>

3 <title>Stories</title>

4 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2\

5 /css/bootstrap.min.css">

6 </head>

7

8 <body>

9 <main>

10 <div class="container">

11 <h1>Stories</h1>

12 <div id="v-app">

13 <table class="table table-striped">

14 <tr>

15 <th>#</th>

16 <th>Plot</th>

17 <th>Writer</th>

18 <th>Upvotes</th>

19 <th>Actions</th>

20 </tr>

21 <tr v-for="story in stories" is="story" :story="story"></tr>

22 </table>

23 <p class="lead">Here's a list of all your stories.

24 <button @click="createStory()" class="btn btn-primary">

25 Add a new one?

26 </button>

27 </p>

28 <pre>{{ $data }}</pre>

29 </div>

30 </div>

9https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/apis/stories/public/stories.html
10https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/apis/stories/public/js/app.js

HTTP Clients 150

31 </main>

32 <template id="template-story-raw">

33 <tr>

34 <td>

35 {{story.id}}

36 </td>

37 <td class="col-md-6">

38 <input v-if="story.editing"

39 v-model="story.plot"

40 class="form-control">

41 </input>

42 <!--in other occasions show the story plot-->

43

44 {{story.plot}}

45

46 </td>

47 <td>

48 <input v-if="story.editing"

49 v-model="story.writer" class="form-control">

50 </input>

51 <!--in other occasions show the story writer-->

52

53 {{story.writer}}

54

55 </td>

56 <td>

57 {{story.upvotes}}

58 </td>

59 <td>

60 <div class="btn-group" v-if="!story.editing">

61 <button @click="upvoteStory(story)"

62 class="btn btn-primary">

63 Upvote

64 </button>

65 <button @click="editStory(story)" class="btn btn-default">

66 Edit

67 </button>

68 <button @click="deleteStory(story)"

69 class="btn btn-danger">

70 Delete

71 </button>

72 </div>

HTTP Clients 151

73 <div class="btn-group" v-else>

74 <!--If the story is taken from the db then it will have an id-->

75 <button v-if="story.id"

76 class="btn btn-primary"

77 @click="updateStory(story)">

78 Update Story

79 </button>

80

81 <!--If the story is new we want to store it-->

82 <button v-else class="btn btn-success"

83 @click="storeStory(story)">

84 Save New Story

85 </button>

86

87 <!--Always show cancel-->

88 <button @click="story.editing=false"

89 class="btn btn-default">

90 Cancel

91 </button>

92 </div>

93 </td>

94 </tr>

95 </template>

96 <script src="https://unpkg.com/vue@2.3.2/dist/vue.js"></script>

97 <script src="https://unpkg.com/axios/dist/axios.min.js"></script>

98 <script src='/js/app.js' type="text/javascript"></script>

99 </body>

100 </html>

app.js

1 Vue.component('story', {

2 template: '#template-story-raw',

3 props: ['story'],

4 methods: {

5 deleteStory: function (story) {

6 var index = this.$parent.stories.indexOf(story);

7 this.$parent.stories.splice(index, 1)

8 axios.delete('/api/stories/' + story.id)

9 },

10 upvoteStory: function (story) {

11 story.upvotes++;

HTTP Clients 152

12 axios.patch('/api/stories/' + story.id, story)

13 },

14 editStory: function (story) {

15 story.editing = true;

16 },

17 updateStory: function (story) {

18 axios.patch('/api/stories/' + story.id, story)

19 //Set editing to false to show actions again and hide the inputs

20 story.editing = false;

21 },

22 storeStory: function (story) {

23 axios.post('/api/stories/', story).then(function (response) {

24 //After the the new story is stored in the database fetch again \

25 all stories with

26 vm.fetchStories();

27 Or Better, update the id of the created story

28 //Vue.set(story, 'id', response.data.id);

29 //Set editing to false to show actions again and hide the inputs

30 story.editing = false;

31 });

32 },

33 }

34 })

35

36 // Vue.prototype.$http = axios

37

38 new Vue({

39 el: '#v-app',

40 data: {

41 stories: [],

42 story: {}

43 },

44 mounted: function () {

45 this.fetchStories()

46 },

47 methods: {

48 createStory: function () {

49 var newStory = {

50 plot: "",

51 upvotes: 0,

52 editing: true

53 };

HTTP Clients 153

54 this.stories.push(newStory);

55 },

56 fetchStories: function () {

57 var vm = this;

58 axios.get('/api/stories')

59 .then(function (response) {

60 // set data on vm

61 var storiesReady = response.data.map(function (story) {

62 story.editing = false;

63 return story

64 })

65 // vm.stories = storiesReady

66 Vue.set(vm, 'stories', storiesReady)

67 });

68 },

69 }

70 });

HTTP Clients 154

Code Examples
You can find the code examples of this chapter on GitHub11

12.8 Homework

To get comfortable with making web requests and handling responses, you should replicate what
we did in this chapter.

What you have to do is to consume an API in order to:

• create a table and display existing movies
• modify existing movies
• store new movies in the database
• delete movies from the database

I have prepared the database and the API for you. You only have to write HTML and JavaScript.

12.8.1 Preface

If you have followed the instructions from Chapter 10, open your terminal and run:

cd ∼/themajestyofvuejs/apis/movies

sh setup.sh

If you haven’t, you should run this:

mkdir ∼/themajestyofvuejs

cd ∼/themajestyofvuejs

git clone https://github.com/hootlex/the-majesty-of-vuejs .

cd ∼/themajestyofvuejs/apis/movies

sh setup.sh

You now have a database filled with great movies along with a fully functional server running
on http://localhost:3000!

To ensure that everything is working fine, browse to http://localhost:3000/api/movies and you should
see an array of movies in JSON format.

11https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter12

HTTP Clients 155

12.8.2 API Endpoints

The API Endpoints you are going to need are:

HTTP Method URI Action

GET/HEAD api/movies Fetches all movies
GET/HEAD api/movies/{id} Fetches specified movie
POST api/movies Creates a new movie
PUT/PATCH api/movies/{id} Updates an existing movie
DELETE api/movies/{id} Deletes specified movie

12.8.3 Your Code

Put your HTML code inside ∼/themajestyofvuejs2/apis/movies/public/movies.html file we
have created. You can place your JavaScript code there too, or inside js/app.js.

To check your work visit http://localhost:3000/movies.html on your browser.

I hope you will enjoy this one. Good luck!

Example Output

HTTP Clients 156

Potential Solution
You can find a potential solution to this exercise here12.

12https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/homework/Chapter12

13. Pagination
In the previous chapter we managed to fetch all the records from the database and display them
inside a table. That implementation is fine for a bunch of records, but in the real world, when you
have to work with thousands or millions of records, you cannot simply fetch them and place them
inside an array. If you do so, your browser will not be happy to load such an amount of data, but
even if it manages to do that, then I assure you that no user likes dealing with a table containing
100,000 rows.

Info
Pagination is used in some form in almost everyweb application to divide returned data and
display it on multiple pages. Pagination also includes the logic of preparing and displaying
the links to the various pages, and it can be handled client-side or server-side. Server-side
pagination is more common.

In situations like this, the developers who designed the API will (hopefully) divide the returned data
in pages.

The HTTP response will contain some simple meta-data next to the main data, to inform you about
total items, per page items, etc. To help you traverse through the pages, it will provide information
such as the current page, the next page, and the previous page.

Example Response with Paginated data

{

"total": 10000,

"per_page": 50,

"current_page": 15,

"last_page": 200,

"next_page_url": "/api/stories?page=16",

"prev_page_url": "/api/stories?page=14",

"from": 751,

"to": 800,

"data": [...]

}

The pagination’s meta-data could also be inside an object next to data, or anywhere the API
developers have decided.

Pagination 158

Example Response with Paginated data

{

"data": [...],

"pagination": {

"total": 10000,

"per_page": 50,

"current_page": 15,

"last_page": 200,

"next_page_url": "/api/stories?page=16",

"prev_page_url": "/api/stories?page=14",

"from": 751,

"to": 800,

}

}

13.1 Implementation

We are going to continue working with the story examples from the previous chapter, using the
slightly improved paginated API. So, we are going to modify the code, to be able to access and use
these data.

If you take a look at the code from the previous example, you will see that our fetchStoriesmethod
is similar to this:

new Vue({

...

methods: {

...

fetchStories: function () {

var vm = this;

this.$http.get('/api/stories')

.then(function (response) {

var storiesReady = response.data.map(function (story) {

story.editing = false;

return story

})

Vue.set(vm, 'stories', storiesReady)

});

},

...

}

});

Pagination 159

If we open our HTML file on the browser, as you may have already guessed, our table doesn’t render
properly.

Stories’ aren’t displaying

This happens because the stories are now returned inside an array named data. To fix this, we
have to change response.data to response.data.data (I know this is kinda weird, but…).

Except from the stories array, we also want to save the pagination’s data inside an object in order
to easily implement the pagination functionality.

To find out how we can access those data, let’s have a look at the server’s response.

Pagination 160

Server’s response

For starters, we don’t need all those data. So, we will stick with current_page, last_page, next_-
page_url, and prev_page_url.

Our pagination object will be something like this:

pagination: {

"current_page": 15,

"last_page": 200,

"next_page_url": "/api/stories?page=16",

"prev_page_url": "/api/stories?page=14"

}

Let’s modify our fetchStories method to update pagination object, each time it fetches stories
from the database.

Pagination 161

new Vue({

...

methods: {

...

fetchStories: function () {

var vm = this;

this.$http.get('/api/stories')

.then(function (response) {

var storiesReady = response.data.data.map(function (story) {

story.editing = false;

return story

})

//here we use response.data

var pagination = {

current_page: response.data.current_page,

last_page: response.data.last_page,

next_page_url: response.data.next_page_url,

prev_page_url: response.data.prev_page_url

}

Vue.set(vm, 'stories', storiesReady)

Vue.set(vm, 'pagination', pagination)

});

},

...

}

});

13.2 Pagination Links

By now, we have our pagination object but we always fetch the first page of stories since we are
making a GET HTTP request to api/stories. We have to change the requested page, based on user
interaction (next page, previous page).

First we’ll update the fetchStories method to accept an argument with the desired page. If no
argument is passed, it will fetch the first page. I’ll also create a new method, makePagination, to
make the code cleaner.

Pagination 162

new Vue({

...

methods: {

...

fetchStories: function (page_url) {

var vm = this;

page_url = page_url || '/api/stories'

this.$http.get(page_url)

.then(function (response) {

var storiesReady = response.data.data.map(function (story) {

story.editing = false;

return story

})

vm.makePagination(response.data)

Vue.set(vm, 'stories', storiesReady)

});

},

makePagination: function (data){

//here we use response.data

var pagination = {

current_page: data.current_page,

last_page: data.last_page,

next_page_url: data.next_page_url,

prev_page_url: data.prev_page_url

}

Vue.set(vm, 'pagination', pagination)

}

...

}

}

Now that our method is ready, we need a way to call it properly. We will add 2 buttons, one for next
and one for previous page, on the top of our #app div. Each button will call fetchStories method
when clicked, passing the corresponding page url.

Pagination 163

1 <div class="pagination">

2 <button @click="fetchStories(pagination.prev_page_url)">

3 Previous

4 </button>

5 <button @click="fetchStories(pagination.next_page_url)">

6 Next

7 </button>

8 </div>

Pomp! If you try to click the buttons you’ll see that they work as expected. We’ve got our pagination
in the blink of an eye. It will be useful though to inform the user about which page he is currently
looking at, and the total number of pages. Also, we can disable the previous button when the user
is on the first page, and the next on the last, accordingly.

1 <div class="pagination">

2 <button @click="fetchStories(pagination.prev_page_url)"

3 :disabled="!pagination.prev_page_url"

4 >

5 Previous

6 </button>

7 Page {{pagination.current_page}} of {{pagination.last_page}}

8 <button @click="fetchStories(pagination.next_page_url)"

9 :disabled="!pagination.next_page_url"

10 >

11 Next

12 </button>

13 </div>

Pagination 164

Disabled previous button

Code Examples
You can find the code examples of this chapter on GitHub1.

13.3 Homework

There is nothing particular to do for homework in this chapter. If you actually want to work on this
example, I will provide you the paginated API.

If you have solved the previous chapter’s homework (downloaded the code and started a server),
you are just a few clicks away. If you haven’t, just follow these instructions.

The paginated API lives inside ’∼/themajestyofvuejs2/apis/pagination/stories’ directory.

The HTML file is in ’∼/themajestyofvuejs2/apis/pagination/stories/public’ directory.

If you just want to view the final code, you can take a look at the files on GitHub2.

1https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter13
2https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/apis/pagination/stories/public

III Building Large-Scale Applications

14. ECMAScript 6
Before we take things a step further and see how we can build Large-Scale Applications, I would
like to familiarize you with ECMAScript 6.

Info
ECMAScript is a client-side scripting language’s specification, that is the basis of several
programming languages including JavaScript, ActionScript, and JScript.

ECMAScript 6 (ES6), also known as ES2015, is the latest version of the ECMAScript standard. The
ES6 specification was finalized in June 2015. It is a significant update to the language, and the first
major update since ES5was standardized in 2009. Implementation of ES6 features inmajor JavaScript
engines is underway now1.

14.1 Introduction

ES6 has a lot of new features. We are going to review those that we will use in the next chapters.
If you are interested in learning more about what is new in ES6, I highly recommend you the book
“Understanding ECMAScript 6” by Nicholas C. Zakas which is available on leanpub2. There is also
an online version3 of the book, which you can read for free.

Also, there are other useful resources and tutorials, like the one on Babel4, an article on tutsplus5, a
blog post6 by Nicholas C. Zakas, and a ton of stuff around the web!

1http://kangax.github.io/compat-table/es6/
2https://leanpub.com/understandinges6/
3https://leanpub.com/understandinges6/read
4https://babeljs.io/docs/learn-es2015/
5http://code.tutsplus.com/articles/use-ecmascript-6-today--net-31582
6https://www.nczonline.net/blog/2013/09/10/understanding-ecmascript-6-arrow-functions/

ECMAScript 6 167

14.1.1 Compatibility

Unsurprisingly, support varies wildly from engine to engine, with Mozilla tending to lead the way.
ES6 compatibility table7 is a useful start for establishing what ECMAScript 6 features your browser
does and doesn’t support.

Note
If you’re using Chromemost of the ES6 features are hidden behind a feature toggle. Browse
to chrome://flags, find the section titled “Enable Experimental JavaScript” and enable it to
turn on support

From now on we will develop our examples using ES6 features.

14.2 Variable Declarations

14.2.1 Let Declarations

let is the new var. You can basically replace var with let to declare a variable, but limit the variable’s
scope only to the current code block. Since let declarations are not hoisted to the top of the enclosing
block, you better always place let declarations first in the block, so that they are available to the entire
block. For example:

Let inside if

1 let age = 22

2 if (age >= 18) {

3 let adult = true;

4 console.log(adult); //outputs true

5 }

6 //adult isn't accessible here

7 console.log(adult);

8 //ERROR: Uncaught ReferenceError: adult is not defined

7https://kangax.github.io/compat-table/es6/

ECMAScript 6 168

Let on top

1 let age = 22

2 let adult

3 if (age >= 18) {

4 adult = true;

5 console.log(adult); //outputs true

6 }

7 //now adult is accessible here

8 console.log(adult); //outputs true

14.2.2 Constant Declarations

Constants, like let declarations, are block-level declarations. There is one big difference between
let and const. Once you declare a variable using const, it is defined as a constant, which means
that you can’t change its value.

1 const name = "Alex"

2

3 name = "Kostas" //throws error

Info
Much like constants in other languages, their value cannot change later on. However, unlike
constants in other languages, the value a constant holdsmay be modified if it is an object.

14.3 Arrow Functions

One of the most interesting new parts of ECMAScript 6 is the arrow functions. Arrow functions are
functions defined with a new syntax that uses an “arrow” (⇒). They support both expression and
statement bodies. Unlike functions, arrows share the same lexical this as their surrounding code.

For example, the following arrow function takes a single argument and returns its value increased
by 1:

ECMAScript 6 169

var increment = value => value + 1;

increment(5) //returns 6

// equivalent to:

var increment = function(value) {

return value + 1;

};

Another example with an arrow function which takes 2 arguments and returns their sum:

var sum = (a, b) => a + b;

sum(5, 10) //returns 15

// equivalent to:

var sum = function(a, b) {

return a + b;

};

An example arrow function which takes no arguments and uses a statement.

var sayHiAndBye = () => {

console.log('Hi!');

console.log('Bye!');

};

sayHiAndBye()

// equivalent to:

var sayHiAndBye = function() {

console.log('Hi!');

console.log('Bye!');

};

14.4 Modules

This is, to me, the biggest improvement of the language. ES6 now supports exporting and importing
modules across different files.

The simplest example is to create a .js file with a variable, and use it inside another file like this:

ECMAScript 6 170

module.js
1 export name = 'Alex'

main.js
1 import {name} from './module'

2 console.log('Hello', name)

3 //outputs "Hello Alex"

You can also export variables along with functions one by one

module.js
1 export var name = 'Alex'

2 export function getAge(){

3 return 22;

4 }

main.js
1 import {name, getAge} from './module'

2 console.log(name, 'is', getAge())

Or inside an object:

module.js
1 var name = 'Alex'

2 function getAge(){

3 return 22;

4 }

5 export default {name, getAge}

main.js
1 import person from './module'

2 console.log(person.name, 'is', person.getAge())

3 //outputs "Alex is 22"

14.5 Classes

JavaScript classes are introduced in ECMAScript 6 and are syntactical sugar over JavaScript’s
existing prototype-based inheritance. The class syntax is not introducing a new object-oriented
inheritance model to JavaScript. JavaScript classes provide a much simpler and clearer syntax to
create objects and deal with inheritance.

ECMAScript 6 171

Class Example

//parent class

class Rectangle {

constructor(height, width) {

this.height = height;

this.width = width;

}

calcArea() {

return this.height * this.width;

}

//To create a getter, use the keyword get.

get area() {

return this.calcArea();

}

//To create a setter, you do the same, using the keyword set.

}

//child class

class Square extends Rectangle{

constructor(side) {

//call parent's constructor

super(side, side)

}

}

var square = new Square(5);

console.log(square.area); //outputs 25

14.6 Default Parameter Values

With ES6 you can define default parameter values.

ECMAScript 6 172

function divide(x, y = 2){

return x/y;

}

// equivalent to:

function divide(x, y){

y = y == undefined ? 2 : y;

return x/y;

}

14.7 Template literals

Template literals are string literals allowing embedded expressions. You can use multi-line strings
and string interpolation features with them. They were called “template strings” in prior editions of
the ES2015/ES6 specification.

Template literals are enclosed by the back-tick (`) character instead of double or single quotes.
Within the back-ticks you can use ${expression}, where expression can be a function, variable or
an actual expression.

Template literals - Using Variables

let name = 'Alex'

console.log(`Hello ${name}`)

// equivalent to:

console.log('Hello '+ name)

Template literals - Using Functions

add = (a, b) => a + b

let [a, b] = [10, 2]

console.log(`If you have ${a} eggs and you buy ${b}

more you'll have ${add(a,b)} eggs!`)

// equivalent to:

console.log('If you have ' + a +' eggs and you buy ' + b +

'\nmore you\'ll have '+ add(a,b) + ' eggs!')

ECMAScript 6 173

Template literals - Using Expressions

let [a, b] = [10, 2]

console.log(`If you have ${a} eggs and you buy ${b}

more you'll have ${a + b} eggs!`)

// equivalent to:

console.log('If you have ' + a +' eggs and you buy ' + b +

'\nmore you\'ll have '+ (a + b)*1 + ' eggs!')

It is also possible to split the message in multiple lines using '\n'.

15. Advanced Workflow
All these ES6 features (and many more) may get you excited, but there is a catch here. As we
mentioned before, not all browsers fully support ES6/ES2015 features.

In order to be able to write this new JavaScript syntax today, we need to have a middleman which
will take our code and transpile it into Vanilla JS1, which every browser understands. This procedure
is really important in production, even though you might not think so.

Let me tell you a story. A few years ago, a co-worker of mine began using some cool JS features that
weren’t fully supported by all browsers. A few days later our users started complaining about some
pages of our website not showing properly, but we couldn’t figure out why. We tested it on different
PCs, Android phones, iPhones, etc, and it was 100% functional in all our browsers. Later, he found
out that older versions of mobile Safari didn’t support his code. Don’t be that guy!

Some times it’s really hard to know if the code you write is going to work well on all browsers,
including Facebook’s mobile browser, which is my worst fear.

15.1 Compiling ES6 with Babel

Babel will be ourmiddleman. Babel is a source-to-source JavaScript compiler, which lets us use next
generation JavaScript, today.

Info
A source-to-source compiler, transcompiler or transpiler, is a type of compiler that takes the
source code of a program written in one programming language, as its input, and produces
the equivalent source code in another programming language.

1http://vanilla-js.com/

Advanced Workflow 175

Babel

Before installing Babel, you have to install Node.js. To do so, head to Node’s website2 and hit the
download button for the the Latest Stable Version. It is going to give you a .pkg file (or .msi if you
are on Windows). When the download is finished, open the file and follow the instructions. Then,
do the required restart, and you are done!

2https://nodejs.org/en/

Advanced Workflow 176

Node.js

15.1.1 Installation

Create a new directory and place a file named package.json inside, containing an empty JSON
object ({}). You can do it manually, or by running the following commands in your terminal.

mkdir babel-example

echo {} > package.json

Then run this to install Babel:

npm install babel-cli --save-dev

Advanced Workflow 177

Terminal output

When it’s done, your package.json file should be something like this:

package.js

{

"devDependencies": {

"babel-cli": "^6.18.0"

}

}

What is package.json?
A package.json file contains meta data about your app or module. Most importantly, it
includes the list of dependencies to install from npm when running npm install. If you’re
familiar with Composer, it’s similar to the composer.json file.

To learn more about package.json have a look at npm docs3.

Your project’s directory should look like this:

3https://docs.npmjs.com/files/package.json

Advanced Workflow 178

Project directory

15.1.2 Configuration

Now that we have babel installed, we need to explicitly tell it what transformations to run on build.
Since we want to transform ES2015 code, we will install the ES2015-Preset4.

We’ll also create a config file (.babelrc) to enable our preset.

npm install babel-preset-es2015 --save-dev

echo { "presets": [["es2015"]]} > .babelrc

Tip
If the second command fails, enclose file contents inside quotes like this:

echo '{ "presets": [["es2015"]]}' > .babelrc

4https://babeljs.io/docs/plugins/preset-es2015/

Advanced Workflow 179

15.1.3 Build alias

Instead of running Babel directly from the command line, we’re going to put our commands within
npm scripts.

We’ll add a scripts field to our package.json file, and register the babel command there, as build.

Our package.json will look like this:

package.js

{

"scripts": {

"build": "babel src -d assets/js"

},

"devDependencies": {

"babel-cli": "^6.8.0",

"babel-preset-es2015": "^6.18.0"

}

}

This works like an alias. Meaning that when we run npm run build we are actually running
babel src -d assets/js. This command tells Babel to transpile the code from the src directory to
assets/js directory.

Before we run the build command we have to do a few more things. For starters, go on and create
the above-mentioned dirs (src and assets/js).

15.1.4 Usage

Lets move on and put some files inside src folder. I will create a file with a simple sum function and
call it sum.js.

src/sum.js

const sum = (a, b) => a + b;

console.log(sum(5,3));

Thats was it.We can now run:

npm run build

When you run it, you can see in your terminal that the src\sum.js file has been compiled to
assets\js\sum.js and looks like this:

Advanced Workflow 180

assets/js/sum.js

"use strict";

var sum = function sum(a, b) {

return a + b;

};

console.log(sum(5, 3));

From now on, whenever you want to compile your ES6 code you can do it by running the build

command. Pretty neat, huh?

It’s time to see the resulted sum.js file in the browser. I will create sum.html and include our js.

sum.html

<!DOCTYPE html>

<html>

<head>

<title>Babel Example</title>

</head>

<body>

<h1>Babel Example</h1>

<script src="assets/js/sum.js"></script>

</body>

</html>

Advanced Workflow 181

Browser output

As you can see, the result of the sum function is successfully printed to the console.

Info
When you want to test a .js file, but you don’t want to get in the process of serving it to
the browser, you can run it with Node.js.

In the sum.js example there is a console.log(sum(5,3)) line, so if you type in your
terminal node sum.js you’ll see the result (8) pop right up!

15.1.5 Homework

This homework exercise aims to help you remember what you’ve learned by reproducing the
example we’ve built. Instead of the sum.js go on and use ES6 Classes to create a Ninja.js file
which will contain a Ninja class.

A Ninja should have a property name and a method announce, which will alert the presence of a
Ninja.

Advanced Workflow 182

For example

new Ninja('Leonardo').announce()

//alerts "Ninja Leonardo is here!"

Don’t forget to compile your js using Babel before including it in your HTML.

Hint
You can find an example for building classes on the previous chapter.

Hint 2
Don’t forget to run npm run build each time you make a change in your js file, otherwise
it won’t update!

Potential Solution
You can find a potential solution to this exercise here5.

5https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/homework/Chapter15/chapter15.1

Advanced Workflow 183

15.2 Workflow Automation with Gulp

15.2.1 Task Runners

If you devoted some time to develop the app from the previous Homework section, you have
probably found out that it is kinda annoying having to run npm run build every time you make
a change in your code.

This is where Task Runners like Gulp6 or Grunt7 come in handy. Task runners let you automate
and enhance your workflow.

Gulp

Why use a task runner?
In one word: Automation. The less work you have to do when performing repetitive tasks
like minification, compilation, unit testing, linting, etc, the easier your job becomes.

6http://gulpjs.com/
7http://gruntjs.com/

Advanced Workflow 184

Gulp vs Grunt
Grunt, like Gulp, is a tool for defining and running tasks. The major difference between
Grunt and Gulp is that Grunt defines tasks using configuration objectswhile Gulp defines
tasks as JavaScript functions. Since Gulp runs Javascript, it provides more flexibility in
writing your tasks.

Both have a massive plugin library, where you may find one which implements a task you need.

15.2.2 Installation

I will show you an example of how you can use Gulp to watch for changes in your js files and
automatically run the build command.

First we have to install Gulp globally:

npm install gulp-cli --global

Then we’ll install Gulp in our project’s devDependencies:

npm install gulp --save-dev

Now that we have gulp installed we will create a gulpfile.js at the root of our project:

gulpfile.js

const gulp = require('gulp');

gulp.task('default', function() {

// place the code for your default task here

});

15.2.3 Usage

When we now run gulp in our console, it starts, but does nothing yet. We have to setup a default
task.

In order to run babel directly, I’ll install an npm plugin called gulp-babel8.

8https://www.npmjs.com/package/gulp-babel

Advanced Workflow 185

npm install gulp-babel --save-dev

I’ll add a new gulp task named babel and set it as the default task. My gulpfile will look like this:

gulpfile.js

const gulp = require('gulp');

const babel = require('gulp-babel');

gulp.task('default', ['babel']);

//basic babel task

gulp.task('babel', function() {

return gulp.src('src/*.js')

.pipe(babel({

presets: ['es2015']

}))

.pipe(gulp.dest('assets/js/'))

})

This task basically tells babel to transform all js files under src directory using the es2015 preset
and put them inside assets/js directory.

15.2.4 Watch

Currently running gulp on your console has the same effect with npm run build. What we want to
achieve here is to run this task every time a js file has changed. To do so, we will set up a watcher
inside our gulpfile like this:

gulpfile.js

const gulp = require('gulp');

const babel = require('gulp-babel');

gulp.task('default', ['watch']);

//basic babel task

gulp.task('babel', function() {

return gulp.src('src/*.js')

.pipe(babel({

presets: ['es2015']

Advanced Workflow 186

}))

.pipe(gulp.dest('assets/js/'))

})

//the watch task

gulp.task('watch', function() {

gulp.watch('src/*.js', ['babel']);

})

When we run gulp watch on our console, gulp is watching for changes in all our .js files under
the specified directory. Every time we make a change, gulp runs our babel task and the files under
assets/js are being updated. How awesome is that?

15.2.5 Homework

This homework exercise is following the previous one. If you haven’t done the previous one, it’s
never too late to begin!

Since this part of the chapter is dedicated to Task Runners, you have to to setup a watcher with Gulp
and compile your code with Babel, when a change is detected.

Note
You may already have noticed that when running Gulp it prints messages in terminal
(“Starting” - “Finished”), so don’t be so hasty and wait for the changes to be applied.

Potential Solution
You can find a potential solution to this exercise here9.

9https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/homework/Chapter15/chapter15.2

Advanced Workflow 187

Gulp is watching!

15.3 Module Bundling with Webpack

15.3.1 Module Bundlers

Our workflow is fine with the current code of sum.js. We will extend its features, to calculate the
cost of a pizza and a beer and let the client know.

src/sum.js

const pizza = 10

const beer = 5

const sum = (a, b) => a + b + '$';

console.log(`Alex, you have to pay ${sum(pizza, beer)}`)

This code looks good, but assuming that not everyone is called Alex we’ll create a new file,
client.js, which will provide the client’s name.

Advanced Workflow 188

src/client.js

export const name = 'Alex'

We’ll import the name from there.

src/sum.js

import { name } from './client'

const pizza = 10

const beer = 5

const sum = (a, b) => a + b + '$';

console.log(`${name} you have to pay ${sum(pizza, beer)}`)

Great! If we run node assets/js/sum.js we get the expected output.

Output of sum.js

You would expect here that the same behavior will apply when we open the html file in the browser,
but it doesn’t! We get an error instead.

Advanced Workflow 189

Require is not defined

Check the node assets/js/sum.js and notice the var _client = require('./client'); on top.
The reason we get the error in the browser is because require() does not exist in the browser/-
client-side JavaScript. What we have to do is to bundle the modules in one file so it can be included
within a <script> tag.

Advanced Workflow 190

assets/js/sum.js

This is where we needModule Bundlers like Webpack10 or Browserify11.

15.3.2 Webpack

Webpack is aModule Bundler. It takes JavaScript modules, understands their dependencies, and then
concatenates them and produces static assets representing those modules.

I’ll use Webpack in the next examples. That is because I believe it’ll come handy in the future for
other uses, since it can do more than bundling modules. Using loaders, we can teach Webpack to
transform all type of files in any way we want, before outputting the final bundle.

10https://webpack.github.io/
11http://browserify.org/

Advanced Workflow 191

What Webpack does

15.3.3 Installation

I am going to install Webpack globally first, and then add it as dependency in our project.

npm install webpack -g

npm install webpack --save-dev

Tip
At the time of writing, there is a known bug when you are using Vagrant12 on Windows,
running npm install may fail. To solve this issue, exit Vagrant, cd your project on your
Windows terminal and run npm install from there.

15.3.4 Usage

In order to compile our Javascript we have to give Webpack a source point and an output. In our
case the source is the babelified assets/js/sum.js and as output I’ll set assets/webpacked/app.js.

12https://www.vagrantup.com/

Advanced Workflow 192

webpack assets/js/sum.js assets/webpacked/app.js

Webpack Output

After the build is completed, we can use the outputed js, assets/webpacked/app.js, inside
sum.html. We can also run it in the terminal using node assets/webpacked/app.js.

15.3.5 Automation

If you are lazy, like me, and you don’t like having to run webpack every time you make a change,
you can automate its process. You can configure Webpack to watch your source and rebuild your
bundle, when any of your files change. I won’t do it here. Instead, I’m going to integrate it into Gulp,
in order to demonstrate how you can combine multiple tools.

Further Learning
If you want to learn more about how Webpack works and how you can configure it, go on
and read “Beginner’s guide to Webpack”13 by Nader Dabit14.

To integrate Webpack into Gulp I’ll use a plugin called webpack-stream15.

13https://medium.com/@dabit3/beginner-s-guide-to-webpack-b1f1a3638460
14https://twitter.com/dabit3
15https://www.npmjs.com/package/webpack-stream

Advanced Workflow 193

npm install webpack-stream --save-dev

After installing, I’ll create a new task with the name of ‘webpack’ and tell Gulp to run it every time
it detects a change, immediately after running the ‘babel’ task.

gulpfile.js

const gulp = require('gulp');

const babel = require('gulp-babel');

const webpack = require('webpack-stream');

gulp.task('default', ['watch']);

//basic babel task

gulp.task('babel', function() {

return gulp.src('src/*.js')

.pipe(babel({

presets: ['es2015']

}))

.pipe(gulp.dest('assets/js/'))

})

//basic webpack task

gulp.task('webpack', ['babel'], function() {

return gulp.src('assets/js/sum.js')

.pipe(webpack({

output: {

path: "/assets/webpacked",

filename: "app.js"

}

}))

.pipe(gulp.dest('assets/webpacked'));

})

//the watch task

gulp.task('watch', function() {

gulp.watch('src/*.js', ['babel', 'webpack']);

})

This solution is not ideal. It is just a demonstration of how you can bind whatever you’ve learned
together. When in production, there are a lot better ways to automate your webpack tasks.

Advanced Workflow 194

Webpack in Gulp

15.4 Summary

When you want to compile ES6 you can use Babel16.

To automate operations like this and many others (such as minifying, compiling SASS/LESS, etc)
you need task runners like Gulp17 or Grunt18.

To bundle things up you can useWebpack19 or Browserify20.
16http://babeljs.io/
17http://gulpjs.com/
18http://gruntjs.com/
19https://webpack.github.io/
20http://browserify.org/

Advanced Workflow 195

In the next chapter we will dive into Vue’s Single File Components and use several tools that Vue
provides you with, along with the tools we have learned.

Note
If you found this chapter hard to understand, don’t worry. You don’t need to remember all
these things. This was just a demonstration in order to give you a better understanding
of how things work. In the next chapter we will use project-templates. There, things
like module bundling, automation, build on change and much more, are already
implemented and we’ll take advantage of them.

16. Working with Single File
Components

As we promised, in this chapter we are going to review Single File Components. To use these single-
file Vue components we need tools likeWebpackwith vue-loader, or Browserifywith vueify. For
our examples, we are going to use Webpack, which we’ve already seen how it works. If you prefer
Browserify or something else, feel free to use it.

Single File Components or Vue Components encapsulate their CSS styles, template and JavaScript
code, all in one file using the .vue extension. And that’s where webpack steps in, to bundle this new
file type with the other files.

Webpack uses vue-loader1 to transform Vue components into plain JavaScript modules. vue-loader
also provides a very nice set of features such as ES2015 enabled by default, scoped CSS for each
component, and more.

16.1 The vue-cli

To avoid configuring Webpack and creating a new workflow from nothing, we will use vue-cli.

Info
vue-cli2 is a simple Command-line interface for scaffolding Vue.js projects.

This awesome tool is the fastest way to get up a pre-configured build. It offers templates with hot-
reload, lint-on-save, unit testing, and much more. Currently, it offers scaffold templates for webpack
and browserify, but if needed, you can create you own3.

16.1.1 Vue’s Templates

What CLI does, is pulling down templates from Vue.js official templates repository4 where there are
5 templates available now. I believe this number will grow in the near future. You can check what
they include on GitHub.

1https://github.com/vuejs/vue-loader
2https://github.com/vuejs/vue-cli
3https://github.com/vuejs/vue-cli#custom-templates
4https://github.com/vuejs-templates

Working with Single File Components 197

All templates contain a package.json file, which handles the project’s dependencies and comes with
a preset of NPM scripts.

Using Vue’s project templates, you get a lot of features together. For example, the “webpack”
template’s description says that it is “A full-featured Webpack + vue-loader setup with hot reload,
linting, testing & css extraction.”

16.1.2 Installation

We’re going to stick with the Webpack setup approach and install vue-cli globally using the
following command.

npm install vue-cli -g

16.1.3 Usage

Using the CLI you can run vue init <template-name> <project-name> where the <template-

name> is the name of the template (either official or custom) and the <project-name> is the name of
the directory/project you are going to create.

So, if you run

vue init webpack-simple simple-project

you are going to have a directory named simple-project with the following structure:

Working with Single File Components 198

webpack-simple structure

For our example we will use the full featured webpack template, so our command will be like this:

vue init webpack stories-classic-project

Tip
Use vue list to see all available official templates.

Working with Single File Components 199

Info
When you are initializing a new project you will be prompt to fill in some details, like
the name, the version, the author, build, etc. Every time we will use the cli to create a
new project we will choose the Runtime + Compiler build, because we need to compile
templates on the fly (e.g. passing a string to the template option, or mounting to an element
using its in-DOM HTML as the template). You can find detailed explanations of different
builds at the guide5.

At some point you will be asked to Pick an ESlint preset. The available options are feross/standard6

and airbnb/javascript7.

I created a table to compare the two styles, in order for you to get a better understanding of what
rules each style applies.

Rules feross/standard airbnb/javascript

Indentation 2 spaces 2 spaces
Semicolons No! Yes
Unused Variables Not allowed Not allowed
String’s quotes Single Single
Use === instead of == Yes Yes
Number of empty lines allowed 1 2
Space after function name Yes No
Start a line with [No Yes
End files w/ a newline character Yes Yes
Trailing commas allowed No No

Standard vs Airbnb
The rules of the table are some of many applied in each style. To consider and decide what
fits you the best, check their Github repositories.

After you’ve selected a style, you’ll get some prompts about installing several tools like Karma-
Mocha8 and Nightwatch9. We are not going to need these tools right now, so answer the questions
negative and continue.

5https://vuejs.org/v2/guide/installation.html#Explanation-of-Different-Builds
6https://github.com/feross/standard
7https://github.com/airbnb/javascript
8https://github.com/karma-runner/karma-mocha
9http://nightwatchjs.org/

Working with Single File Components 200

Vue’s Template Installation

Info
Karma is a plugin, adapter for the Mocha10 testing framework.

Nightwatch enables writing browser automated testing, that run against a Selenium11

server.

16.2 Webpack Template

To complete the setup of our project we need to install its dependencies. Let’s move on and run:

10https://mochajs.org/
11http://www.seleniumhq.org/

Working with Single File Components 201

cd stories-classic-project

npm install

npm run dev

The terminal outputs Listening at http://localhost:8080. You should wait until the webpack:

bundle is now VALID message is posted. Then you are lit!

Server Running…

Warning
Be careful, you have to be explicit in your code. Otherwise you will get errors for extra
empty lines between blocks, trailing spaces, indentation other than 2 spaces and other stuff
that don’t follow the selected style’s rules.

Working with Single File Components 202

Error overlay

Note
If you use webpack-simple you will still have the basic features, but the error overlay won’t
display in the browser, so check the terminal for any errors.

16.2.1 Project Structure

After completing the above steps you should have a project directory filled with all the necessary
files.

Working with Single File Components 203

Webpack structure

The files that you are usually going to play with, are:

1. index.html

2. main.js

3. files under src and src/components directories

16.2.2 index.html

Lets start with the index.html. It should look like this

Working with Single File Components 204

index.html

<html>

<head>

<meta charset="utf-8">

<title>stories-classic-project</title>

</head>

<body>

<app></app>

<!-- built files will be auto injected -->

</body>

</html>

As you can see, it is a pretty basic setup with a component already included. The comment refers
to the script, app.js, which is the output of Webpack. It basically means that after Webpack has
bundled the scripts, it will automatically inject the outputted script here, so that you don’t have to
include it manually.

16.2.3 Hello.vue

If you are following along, navigate to src/components and open Hello.vue file to see how a .vue
file looks like.

src/components/Hello.vue

<template>

<div class="hello">

<h1>{{ msg }}</h1>

<h2>Essential Links</h2>

...

</div>

</template>

<script>

export default {

name: 'hello',

data () {

return {

msg: 'Welcome to Your Vue.js App'

}

}

}

Working with Single File Components 205

</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->

<style scoped>

h1, h2 {

font-weight: normal;

}

...

</style>

Inside the <script> tag, the component contains only its *data. There is no need to define a template.
It will be automatically bound if <template> block exists. The <template> block defines the template
of the component, of course. Think of <template> like a <template-hello> tag in your HTML.

We could have only the <script> block, but this way, we wouldn’t take advantage of Single File
Component’s benefits.

Remember that export, ES6 feature, is handled by those nice tools (transpilers + module bundlers)
we have installed.

Warning
Each .vue file mustn’t contain more than one <script> block. Every template must contain
exactly one root element, like <div id=hello>...</div>which encapsulates all the other
elements.

The script must export a Vue.js component options object. Exporting an extended constructor created
by Vue.extend() is also supported, but a plain object is preferred.

ES6 allows us to have any numbers of exports, but in single file components that’s not the case.

If you try to do additional exports you will get a warning similar to this: [vue-loader] src/com-

ponents/Hello.vue: named exports in /*.vue files are ignored.

The <style> block, defines the CSS styles as expected.

16.2.4 App.vue

The App.vue file is located in the src directory and is the one which contains the main template of
the application. This component is usually responsible to include the other components.

App.vue has a few more lines with texts and styles, but since we are focusing on the structure, we
have shortened it a little.

Working with Single File Components 206

src/App.vue

<template>

<div id="app">

<hello></hello>

</div>

</template>

<script>

import Hello from './components/Hello'

export default {

name: 'app',

components: {

Hello

}

}

</script>

<style>

...

</style>

It has the same structure as the Hello.vue file we saw above. By default, there is a components object
which contains the Hello component. Inside this object, we will import any new components. In
the template, there is the <hello></hello> tag, and therefore the template of the Hello component
will be displayed.

Working with Single File Components 207

Project’s Homepage

16.2.5 main.js

The main.js file within src, as you imagine, is our main script.

src/main.js

import Vue from 'vue'

import App from './App'

/* eslint-disable no-new */

new Vue({

el: '#app',

template: '<App/>',

components: { App }

})

It imports Vue as a module from node_modules and App component from the src directory as well.
Below is our Vue instance and in the components object, there is the App one.

Whenever you need to import a script or a component globally, you can put it within main.js.

Working with Single File Components 208

Note
The template: '<App/>' option represents the template output of the component, which
is to be injected to the index.hmtl we’ve mentioned earlier.

<App/> has the same output with <App></App> and <app></app>.

Info
You can find more information about the Project Structure of Webpack template on its
documentation12

16.3 Forming .vue Files

We have seen how a single file component looks like and how it is used in a project. It is time to
create a few, in a real-life scenario. Assume we want to create some kind of social network or forum,
where users post their stories and experiences. To create our startup, we are going to need 2 forms,
one for registration and login, and one page to display users’ stories.

Before we begin, we’ll include Bootstrap globally in order to be able to use its styles within all our
components. To do so, we have to update our index.html.

index.html

<html>

<head>

<meta charset="utf-8">

<title>stories-classic-project</title>

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6\

/css/bootstrap.min.css">

</head>

<body>

<div id="app"></div>

<!-- built files will be auto injected -->

</body>

</html>

Let’s create the login form, in a new, Login.vue file.

12http://vuejs-templates.github.io/webpack/structure.html

Working with Single File Components 209

src/components/Login.vue

<template>

<div id="login">

<h2>Sign in</h2>

<input type="email" placeholder="Email address">

<input type="password" placeholder="Password">

<button class="btn">Sign in</button>

</div>

</template>

<script>

export default {

created () {

console.log('login')

}

}

</script>

And there it is. In order to view the file in the browser we have to include our Login component
somewhere. So, we’ll import it into the mainApp component and append it to its components object.

src/App.vue

<template>

<div id="app">

<hello></hello>

</div>

</template>

<script>

import Login from './components/Login.vue'

import Hello from './components/Hello'

export default {

name: 'app',

components: {

Hello,

Login

}

}

</script>

Working with Single File Components 210

<style>

...

</style>

If you hit reload in your browser you won’t see the Login component yet, because we need to
reference it. Place it under the <hello></hello> and you will have a nice login form!

src/App.vue

<template>

<div id="app">

<hello></hello>

<login></login>

</div>

</template>

...

...

Working with Single File Components 211

Login Component

If you open the browser’s console, you should see the login message we are logging when the
component is created. If you are using vue-devtools, which is highly recommended, you should also
see it in the components tree view.

Working with Single File Components 212

Tree View

Let’s create another component, this time for registration.

src/components/Register.vue

<template>

<div id="register">

<h2>Register Form</h2>

<input placeholder="First Name" class="form-control">

<input placeholder="Last Name" class="form-control">

<input placeholder="Email address" class="form-control">

<input placeholder="Pick a password" class="form-control">

<input placeholder="Confirm password" class="form-control">

<button class="btn">Sign up</button>

</div>

</template>

<script>

export default {

Working with Single File Components 213

created () {

console.log('register')

}

}

</script>

Then we can import it in the App.vue file.

src/App.vue

<template>

<div id="app">

...

<!-- <hello></hello> -->

<!-- <login></login> -->

<register></register>

...

</div>

</template>

<script>

// import Hello from './components/Hello'

// import Login from './components/Login'

import Register from './components/Register'

export default {

name: 'app',

components: {

// Hello,

// Login,

Register,

}

}

</script>

...

...

The Register component’s template appears, when we check the browser.

Working with Single File Components 214

Register Component

Note
The other components are commented out because we don’t want to display them one
under the other. The Hello component is there by default, but we are not going to use it in
any further examples, so we will remove it.

We said that we are working on a social network (or something relevant), so we want a place to
display the stories. Thus, we are going to create a Stories component which when is rendered, it
will bring all the stories told by the users.

Working with Single File Components 215

src/components/Stories.vue

<template>

<ul class="list-group">

<li v-for="story in stories" class="list-group-item">

{{ story.writer }} said "{{ story.plot }}"

Story upvotes {{ story.upvotes }}.

</template>

<script>

export default {

data () {

return {

stories: [

{

plot: 'My horse is amazing.',

writer: 'Mr. Weebl',

upvotes: 28,

voted: false

},

{

plot: 'Narwhals invented Shish Kebab.',

writer: 'Mr. Weebl',

upvotes: 8,

voted: false

},

{

plot: 'The dark side of the Force is stronger.',

writer: 'Darth Vader',

upvotes: 52,

voted: false

},

{

plot: 'One does not simply walk into Mordor',

writer: 'Boromir',

upvotes: 74,

voted: false

}

]

}

}

Working with Single File Components 216

}

</script>

This is the Stories.vue file. We can use it in our main App.vue file. At this point the stories are
hard-coded for simplicity. Time to import it just like the other components.

src/App.vue

<template>

<div id="app">

<!-- <login></login> -->

<!-- <register></register> -->

<stories></stories>

</div>

</template>

<script>

// import Login from './components/Login.vue'

// import Register from './components/Register.vue'

import Stories from './components/Stories.vue'

export default {

components: {

Login,

Register,

Stories

}

}

</script>

<style>

...

</style>

Working with Single File Components 217

Stories Component

Great! Now we have a page to display all the listings.

16.3.1 Nested Components

We would like to be able to display the most “famous” stories, at any place we want to. So after the
creation of the Famous component, we should be able to use it anywhere.

src/components/Famous.vue

<template>

<div id="famous">

<h2>Trending stories({{famous.length}})</h2>

<ul class="list-group">

<li v-for="story in famous" class="list-group-item">

{{ story.writer }} said "{{ story.plot }}".

Story upvotes {{ story.upvotes }}.

Working with Single File Components 218

</div>

</template>

<script>

export default {

computed: {

famous () {

return this.stories.filter(function (item) {

return item.upvotes > 50

})

}

},

data () {

return {

stories: [

{

plot: 'My horse is amazing.',

writer: 'Mr. Weebl',

upvotes: 28,

voted: false

},

{

plot: 'Narwhals invented Shish Kebab.',

writer: 'Mr. Weebl',

upvotes: 8,

voted: false

},

{

plot: 'The dark side of the Force is stronger.',

writer: 'Darth Vader',

upvotes: 52,

voted: false

},

{

plot: 'One does not simply walk into Mordor',

writer: 'Boromir',

upvotes: 74,

voted: false

}

]

}

Working with Single File Components 219

}

}

</script>

This is the whole Famous.vue file. We have filtered the stories array using computed properties,
as we saw in previous chapters, and created a template to display them.

Note
stories array is hard coded again here and data are the same as before. This is a bad
practice, we will find a way later to define stories array once and share it between all
components.

But where could we use this component? An idea is to have it within the registration page, so the
user could read the most trending stories and be intrigued. This means - in the current project - that
we need to have the Famous component within the Register one. Well, this can be done the same
way we did it inside App.vue.

So, open Register.vue, import it there, and reference it within the template.

src/components/Register.vue

<template>

<div id="register">

<h2>Register Form</h2>

...

<famous></famous>

</div>

</template>

<script>

import Famous from './Famous.vue'

export default {

components: {

Famous

},

created () {

console.log('register')

}

}

</script>

Working with Single File Components 220

Registration page with top stories

Pay attention to the import file path. Now that the two files are in the same directory, you have
to use ./Famous instead of the full path. This is an easy mistake to make, especially if you’re not
familiar with it!

Working with Single File Components 221

Code Examples
You can find the code examples of this chapter on GitHub13.

13https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter16/16.3

17. Eliminating Duplicate State
In the previous examples we hardcoded the data -the array of stories- within each component. This
is not a proper way to work with data.

When more than one component uses the same data, it’s a good practice to create/fetch the array
once, and then find a way to share it between application’s components.

Stories.vue and Famous.vue are using the same stories array. We will review two ways of sharing
the data:

1. Using component properties.
2. Using a global store.

17.1 Sharing with Properties

The first thing we are going to do is to move the stories array to App component.

src/App.vue

1 <script>

2 ...

3

4 export default {

5 components: {

6 ...

7 },

8 data () {

9 // here we place the stories array

10 return {

11 stories: [

12 {

13 plot: 'My horse is amazing.',

14 writer: 'Mr. Weebl',

15 upvotes: 28,

16 voted: false

17 },

18 {

19 plot: 'Narwhals invented Shish Kebab.',

Eliminating Duplicate State 223

20 writer: 'Mr. Weebl',

21 upvotes: 8,

22 voted: false

23 },

24 {

25 plot: 'The dark side of the Force is stronger.',

26 writer: 'Darth Vader',

27 upvotes: 52,

28 voted: false

29 },

30 {

31 plot: 'One does not simply walk into Mordor',

32 writer: 'Boromir',

33 upvotes: 74,

34 voted: false

35 }

36]

37 }

38 }

39 }

40 </script>

The next step is to remove the data() from Stories and Famous components, and declare stories
property.

Let’s do it for the first component.

src/components/Stories.vue

1 <script>

2 export default {

3 props: ['stories']

4 }

5 </script>

We have to update the way we reference our component within App.vue.

Eliminating Duplicate State 224

src/App.vue

1 <template>

2 <div id="app">

3 ...

4 <stories :stories="stories"></stories>

5 ...

6 <p>

7 Welcome to your Vue.js app!

8 </p>

9 </div>

10 </template>

Here we bind stories prop to stories array.

Eliminating Duplicate State 225

Same output, using props

Success, we got our stories again, fetched from the parent component!

We can’t do the same for Famous component because it is not referenced inside App.vue. We will
have to pass our array to Register component in order to pass it to Famous.

Eliminating Duplicate State 226

src/App.vue

1 <template>

2 <div id="app">

3 ...

4 <register :stories="stories"></register>

5 ...

6 </div>

7 </template>

src/components/Register.vue

1 <template>

2 <h2>Register Form</h2>

3 ...

4 <famous :stories="stories"></famous>

5 </template>

6

7 <script>

8 import Famous from './Famous'

9

10 export default {

11 components: {

12 Famous

13 },

14 props: ['stories']

15 }

16 </script>

src/components/Famous.vue

1 <script>

2 export default {

3 props: ['stories'],

4

5 computed: {

6 famous () {

7 return this.stories.filter(function (item) {

8 return item.upvotes > 50

9 })

10 }

11 }

Eliminating Duplicate State 227

12 }

13 </script>

This implementationworks, but is not efficient, because Famous component is not independent. This
means that we cannot use it wherever we want, unless we pass down the data from root component,
App.vue.

In a scenario where a not independent component is deeply nested, you will have to pass a useless
property, from component to component, just to be able to use it. In our case, if we wanted to use
Famous inside Register’s sidebar’s widgets, we would have to carry the stories array all the way
long.

App -> Register -> Sidebar -> WidgetX -> Famous

17.2 Global Store

The “props way” seemed nice at first, but as seen in the Famous component, as a project gets bigger
and components get nested into others, data management and sharing between them gets really
hard to track.

So, let’s make the data of our examples a bit easier to handle. We can extract the stories data to a
.js file, store them to a constant and later import them at the desirable locations.

I’ll name our js file store.js and put it under the /src directory.

src/store.js

1 export const store = {

2 stories: [

3 {

4 plot: 'My horse is amazing.',

5 writer: 'Mr. Weebl',

6 upvotes: 28,

7 voted: false

8 },

9 {

10 plot: 'Narwhals invented Shish Kebab.',

11 writer: 'Mr. Weebl',

12 upvotes: 8,

13 voted: false

14 },

15 {

16 plot: 'The dark side of the Force is stronger.',

17 writer: 'Darth Vader',

Eliminating Duplicate State 228

18 upvotes: 52,

19 voted: false

20 },

21 {

22 plot: 'One does not simply walk into Mordor',

23 writer: 'Boromir',

24 upvotes: 74,

25 voted: false

26 }

27]

28 }

Warning
The stories prop must be removed from all files, because we have changed the way of
data storage and there can be conflicts, which can break our build.

After we have stored all data within store.js we can import it within Stories.vue using the ES6
modules syntax.

src/components/Stories.vue

1 <script>

2 import {store} from '../store.js'

3

4 export default {

5 data () {

6 return {

7 //will give us access to store.stories

8 store

9 }

10 },

11 created () {

12 console.log('stories')

13 }

14 }

15 </script>

Because we are importing the store object we have to change the component’s template as well.

Eliminating Duplicate State 229

src/components/Stories.vue

1 <template>

2 <ul class="list-group">

3 <li v-for="story in store.stories" class="list-group-item">

4 {{ story.writer }} said "{{ story.plot }}"

5 Story upvotes {{ story.upvotes }}.

6

7

8 </template>

We are using v-for to render the items of the array (store.stories). Our list of stories is displaying
as before.

We could do the same thingwithout having to change the template, by binding component’s stories
attribute to store.stories directly.

src/components/Stories.vue

1 <script>

2 data () {

3 return {

4 // Bind directly to stories

5 stories: store.stories,

6 }

7 }

8 </script>

The same thing applies for Famous.vue.

src/components/Famous.vue

1 <script>

2 import {store} from '../store.js'

3

4 export default {

5 data () {

6 return {

7 stories: store.stories

8 }

9 },

10 computed: {

11 famous () {

Eliminating Duplicate State 230

12 return this.stories.filter(function (item) {

13 return item.upvotes > 50

14 })

15 }

16 }

17 }

18 </script>

If we hadn’t bind to stories, famous() computed property would have to be updated to filter
this.store.stories.

Once you get used to work with global objects I believe you are going to love it! :)

Code Examples
You can find the code examples of this chapter on GitHub1.

1https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter17

18. Swapping Components
Using Single File Components is the simplest way to build a Single Page Application with Vue.We’ve
seen so far how to setup a fresh project, create .vue files and manage duplicate state. Now it’s time
to review a way to swap view-specific components.

For reference, in the previous examples, we had 3 components inside App.vue and some others nested
within. We need to find a way to swap components dynamically, so they won’t be rendered on the
page simultaneously.

18.1 Dynamic Components

18.1.1 The is special attribute

We can use the reserved <component> element and use the same mount point to dynamically switch
between multiple components, using the is special attribute.

src/App.vue

<template>

<div id="app">

<component is="hello"></component>

<p>

This is very useful...

</p>

</div>

</template>

<script>

import Hello from './components/Hello'

// Component Hello returns a template containing a "msg" property of data

export default {

components: {

Hello

}

}

</script>

Swapping Components 232

We’ve created a fresh project and modified the Hello.vue file. We have the exact same result as
before, but here we are using the <component is="hello"> element. The Hello component is bound
to the is attribute. To see how this would work dynamically, check the next example where we are
changing between 2 different components by clicking on their links.

Firstly, create a similar component with a different message, named Greet.vue.

src/Greet.vue

<template>

<div class="greet">

<h1>{{ msg }}</h1>

</div>

</template>

<script>

export default {

data () {

return {

msg: 'No! I want to use the <component> element!'

}

}

}

</script>

We made Greet to display a message to manifest its presence! Let’s import it into App and give the
user the ability to swap between the 2 components.

src/App.vue

<template>

<div id="app">

<component :is="currentComponent">

<!-- component changes when this.currentComponent changes! -->

</component>

<p>

This is very useful...

</p>

Show Hello

Show Greet

</div>

</template>

Swapping Components 233

<script>

import Hello from './components/Hello'

import Greet from './components/Greet'

export default {

components: {

Hello,

Greet

},

data () {

return {

currentComponent: 'hello'

}

}

}

</script>

Swapping Components 234

Greet.vue

Well, as you can see, we are binding the special attribute is to currentComponent, so when its value
changes, the displaying component will also change. To swap the view, the user just have to click
on either link to change the value of currentComponent.

This dynamic way of switching between multiple components can prove handy.

18.1.2 Navigation

In the previous examples , we used .vue files to simulate a social network, where we had components
like Login, Registration, etc. Now we can use a tab system to navigate between these components
with style.

We are going to have Stories.vue in one tab, Register.vue in another, and Login.vue in a third.
Don’t forget that Register contains the Famous component, which returns the most trending stories.

Read thoroughly the next example.

Swapping Components 235

src/App.vue

1 <template>

2 <div id="app">

3

4 <h1>Welcome to dynamic Components!</h1>

5 <ul class="nav nav-tabs">

6 <!-- set 'active' class conditionally -->

7 <li v-for="page in pages" :class="isActivePage(page) ? 'active' : ''">

8 <!-- use links to change between tabs -->

9 <a @click="setPage(page)">{{page | capitalize}}

10

11

12 <component :is="activePage"></component>

13 </div>

14 </template>

15

16 <script>

17 import Vue from 'vue'

18 import Login from './components/Login.vue'

19 import Register from './components/Register.vue'

20 import Stories from './components/Stories.vue'

21

22 Vue.filter('capitalize', function (value) {

23 return value.charAt(0).toUpperCase() + value.substr(1)

24 })

25

26 export default {

27 components: {

28 Login,

29 Register,

30 Stories

31 },

32 data () {

33 return {

34 // the pages we want to render each time

35 pages: [

36 'stories',

37 'register',

38 'login'

39],

40 activePage: 'stories'

41 }

Swapping Components 236

42 },

43 methods: {

44 setPage (newPage) {

45 this.activePage = newPage

46 },

47 isActivePage (page) {

48 return this.activePage === page

49 }

50 }

51 }

52

53 </script>

Swapping Components 237

A page for each component

Let’s break it down.

The array named pages contains the components which we would like to render. We are using the
v-for directive to create a tab for each one.

Swapping Components 238

To navigate between the tabs, we’ve created a method called setPage.

The activePage property is initially set to 'stories'. When a tab is clicked, activePage changes
in order to reflect the name of the component we wish to display.

To determine which tab must be active, an in-line if is applied, which sets the class activewhether
the current activePage property matches the current component’s name.

To make the first letter of each tab capitalize, we’ve created a Vue.filter(), named capitalize,
which is used within text interpolations.

With these few and simple lines of code, we have accomplished a simple navigation system,
swapping between our components.

Code Examples
You can find the code examples of this chapter on GitHub1.

1https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter18

19. Vue Router
Routing, in general, refers to determining how your application responds to a client request. A web
browser request wouldn’t be directed to your application without some form of routing. Router helps
a web server to fetch an appropriate and exact information for the user. It is like a station master at
a railway station, who informs the train operator when to change tracks.

Theway of swapping viewswe just studied, paves theway for routing. The official router for Vue.js is
called vue-router. It is deeply integrated with Vue.js core to make building Single Page Applications
a breeze. This plugin is relatively easy to understand, install, and use.

The main features are:

• Nested route/view mapping
• Modular, component-based router configuration
• Route params, query, wildcards
• View transition effects powered by Vue.js’ transition system
• Fine-grained navigation control
• Links with automatic active CSS classes
• HTML5 history mode or hash mode, with auto-fallback in IE9
• Restore scroll position when going back in history mode

Info
These are just some of the provided features, you can see more on Github1. Also, here is
the official documentation2.

19.1 Installation

There are the usual ways to install the plugin; using cdn, NPM, and Bower. We are going to use the
terminal to install it via NPM.

npm install vue-router

Type this command in your terminal to have it installed in your node_modules folder inside your
project’s directory. After it is complete, go to your main.js file and add the following lines.

1https://github.com/vuejs/vue-router
2http://router.vuejs.org/en/index.html

Vue Router 240

src/main.js

import Vue from 'vue'

import VueRouter from 'vue-router'

Vue.use(VueRouter)

You can install a Vue.js plugin using Vue.use() as shown. For more information about Vue.use
check the guide3.

19.2 Usage

The first step is to create a router instance, where we will pass extra options later on, but let’s keep
it simple for now.

src/main.js

...

const router = new VueRouter({

routes // short for routes: routes

})

Now, we have to define some routes. Each route should map to a component, which means that we
are going to create routes for the *.vue files we’ve been using all along in our examples.

The main method to define route mappings for the router, is to create a routes array where we can
pass route objects.

src/main.js

import Vue from 'vue'

import VueRouter from 'vue-router'

import Hello from '../src/components/Hello.vue'

import Login from '../src/components/Login.vue'

Vue.use(VueRouter)

const routes = [

{ path: '/', component: Hello },

{ path: '/login', component: Login }

]

3http://vuejs.org/api/#Vue-use

Vue Router 241

Inside the array we define 2 routes.

1. When http://localhost:3000/ is met (or any port you might use), the default Hello.vue
will be rendered

2. When http://localhost:3000/login is met, the Login.vue component will be rendered.

Info
We are using { path: '/login', component: Login } because the Login component is
imported on top of the code. Alternatively you could use require() function like this: {
path: '/login', component: require('Login') }

The next step is to create an outlet for the router. The guide states that the router needs a root
component to render. In our case, we will use the App.vue component as root.

Let’s create and mount the root instance. Keep in mind that we have to inject the router with the
router option to make the whole app router-aware.

src/main.js

...

/* eslint-disable no-new */

new Vue({

el: '#app',

router,

template: '<app></app>',

components: {

App

}

})

We set the template to <app></app> so Vue will replace the div with the id of app with App.vue

component’s template. Since we are already importing App in our main.js file, we are set here.

If you neglect to include the comment /* eslint-disable no-new */ you will get an error from
eslint stating:

http://eslint.org/docs/rules/no-new Do not use ‘new’ for side effects

What we have to do here is to disable that rule.

Tip
Every time you find yourself struggling with an eslint rule, you can disable it by adding
a comment like the above. For example /* eslint-disable eqeqeq */. You can find a
complete list with the rules here4.

4http://eslint.org/docs/rules/

Vue Router 242

Now, we need to define some links for the navigation. Head to App.vue, to make the changes
required.

src/App.vue

<template>

<div id="app">

<h1>Welcome to Routing!</h1>

<router-link to="/">Home</router-link>

<router-link to="/login">Login</router-link>

<!-- route outlet -->

<router-view></router-view>

</div>

</template>

The <router-view></router-view> is the place where all the magic happens while components are
being rendered for us.

router-link is the component that lets users navigate in a router-enabled app. The to property
defines the target location, matching a route defined in main.js. By default, router-linkwill render
an <a> tag with the href attribute set to the desired URI. It can take more arguments for more
complex navigations, which we will review soon.

Note
If you are using the vue-cli template with router included, you have to define your routes
array within router/index.js.

19.3 Named Routes

While the options we reviewed for routing serve our needs in a small project, like our example,
presumably you will need more options as your project grows. For instance, if we decide later to
change /login url to /signin, we will have to update all the links directing to the login page. To
prevent this from happening, we can give each route a name.

To name a route we have to alter the route configuration.

Vue Router 243

src/main.js

...

const routes = [

{

path: '/',

name: 'home',

component: Hello

},

{

path: '/login',

name: 'login',

component: Login

}

]

We can give a name to a route by adding a name property and use it as identifier to link it afterwards.

src/App.vue

<template>

<div id="app">

...

<router-link :to="{ name: 'home'}">Home</router-link>

<router-link :to="{ name: 'login'}">Login</router-link>

<!-- route outlet -->

<router-view></router-view>

</div>

</template>

Notice here that instead of using a string to define the destination of the link (to="/home"), we are
using an object (:to="{ name: 'home'}"). We will elaborate on that later.

19.4 History mode

Before moving on, I would like to point out something regarding the browser URL, when using vue-
router. As you have seen, when a route changes, a ‘#’ symbol is appended to the URL. For instance,
the URL is /#/login, when we navigate to the login page.

This is caused by the default mode for vue-router, hash mode, which uses the URL hash to simulate
a full URL so that the page won’t be reloaded when the URL changes. To get rid of the hash, we can
change to history mode. Also we will set another option, base, which defines a root path for all

Vue Router 244

router navigations. Changing this to anything from its initial value, that equals default, will result
in paths which will always include the new value in the actual browser URL.

For example if we set base to /vuejs the login page will be /vuejs/login.

You can set anything to be the base, here let’s just put /.

src/main.js

const router = new VueRouter({

mode: 'history',

base: '/',

routes

})

This relieves us from ‘#’ in the URLs.

Vue Router 245

Neat URLs

Info
Check the detailed list of available options on vue-router’s documentation5

19.5 Nested routes

Nested routes, are routes that live within other routes. Mapping nested routes to components is a
common need, and it’s also very simple with vue-router.

To demonstrate it, we are going to add a page to display the stories with 2 sub-pages.

5https://router.vuejs.org/en/api/options.html

Vue Router 246

• One to display all stories (StoriesAll.vue)
• One to display famous stories (StoriesFamous.vue)

We will create the above-mentioned components, plus one, which will be the wrapper, similar to
App.vue.

Let’s start by registering the new routes. All we have to do is to use the children option in the
routes array and add a nested <router-view> within our wrapper view, StoriesPage.vue.

src/main.js

import Vue from 'vue'

import App from './App'

import Hello from './components/Hello.vue'

import Login from './components/Login.vue'

import StoriesPage from './components/StoriesPage.vue'

import StoriesAll from './components/StoriesAll.vue'

import StoriesFamous from './components/StoriesFamous.vue'

import VueRouter from 'vue-router'

Vue.use(VueRouter)

const routes = [

{

path: '/',

component: Hello

},

{

path: '/login',

component: Login

},

{

path: '/stories',

component: StoriesPage,

children: [

{

path: '',

name: 'stories.all',

component: StoriesAll

},

{

path: 'famous',

Vue Router 247

name: 'stories.famous',

component: StoriesFamous

}

]

}

]

Notice here that the path for StoriesAll is set to ''. This means that it is the default child route
and will be rendered when /stories is matched. You can also use '/' to define a default route.

The contents of StoriesFamous will be rendered when /stories/famous is matched.

At this point, there is no need to show what’s inside these components. They both just display an
array of stories.

Our wrapper component, StoriesPage, contains 2 links and the <router-view> tag, to render its
child components’ contents.

src/StoriesPage.vue

<template>

<div>

<h2>Stories</h2>

<!-- navigation -->

<router-link :to="{name: 'stories.all'}">All</router-link>

<router-link :to="{name: 'stories.famous'}">Trending</router-link>

<!-- route outlet -->

<router-view></router-view>

</div>

</template>

19.6 Auto-CSS active class

Wouldn’t be nice if we highlighted the link that directs to the active page? Vue Router is smart
enough to append a css class to the active link. This class is vue-router-active.

All we have to do is to add a rule to style it in our css. I will add it to App.vue component.

Vue Router 248

src/App.vue

...

<style type="text/css">

.router-link-active {

color: green;

}

</style>

So, now, every time we visit a page, the corresponding link turns green..

If you try this out in the browser, you will notice that the Home link is always green. This happens
because Home’s path is /, so when you visit for example /login, Home remains active. To get rid of
this behavior we can add the exact prop to this specific link.

Our navigation links will look like this:

src/App.vue

<template>

<div>

...

<router-link :to="{ name: 'hello'}" exact>Home</router-link>

<router-link :to="{ name: 'login'}">Login</router-link>

<router-link :to="{ name: 'stories.all'}">Stories</router-link>

<router-view></router-view>

</div>

</template>

We have append exact to the first link within StoriesPage.vue too.

The nice part is that the active link is highlighted in the secondary navigation as well.

Vue Router 249

Active Class

19.6.1 Custom Active Class

You can change the name of the active class (router-link-active) for a specific link, using the
active-class property or globally by using the linkActiveClass router constructor option.

Vue Router 250

Local custom active class

<router-link :to="{ name: 'hello'}" active-class="my-active-class" exact>

Home

</router-link>

Global custom active class

const router = new VueRouter({

mode: 'history',

base: '/',

linkActiveClass: 'my-active-class',

routes

})

19.7 Route Object

All information of a parsed route will be accessible on the exposed Route Context Object, also
called route object.

The route object will be injected into every component in a router-enabled app and will be
accessible as this.$route. It will be updated whenever a route transition is performed.

Below is a list with $route object’s properties.

Property Description

path A string that equals the path of the current route, always resolved as an
absolute path. e.g. /foo/bar.

params An object that contains key/value pairs of dynamic segments and star
segments. More details below.

query An object that contains key/value pairs of the query string. For
example, for a path /foo?user=1, we get $route.query.user == 1.

hash The hash of the current route (without #), if it has one. If no hash is
present the value will be an empty string.

fullPath The full resolved URL including query and hash.
matched An Array containing route records for all nested path segments of the

current route. Route records are the copies of the objects in the routes
configuration Array (and in children Arrays).

name The name of the current route, if it has one.

Vue Router 251

19.8 Dynamic Segments

Vue Router provides the ability to form paths using dynamic segments. Dynamic segments are
segments with a leading colon. They are called dynamic because their value is changeable.

Info
URL segments are the parts of a URL or path delimited by slashes. If you had the path
/user/:id/posts, then user, :id, and posts would each be a segment.

In this path, the :id is the dynamic segment andwill match any provided value, for instance
/user/11/posts, /user/37/posts, etc.

When a path containing a dynamic segment is matched, the dynamic segments will be available
inside $route.params.

In our example, we can use a dynamic segment to access a certain story by its id, in order to create
a view where we can edit it.

src/main.js

1 const routes = [

2 // other routes

3 {

4 path: ':id/edit',

5 name: 'stories.edit',

6 component: StoriesEdit

7 }

8 ...

9]

Now, we need a way to link StoriesAll.vue with StoriesEdit.vue. Let’s manipulate the file.

Note
I have created the StoriesEdit.vue file in the background. You will see it soon, after the
routing for it is complete.

Vue Router 252

src/component/StoriesAll.vue

1 <template>

2 <div class="">

3 <h3>All Stories ({{stories.length}})</h3>

4 <ul class="list-group">

5 <li v-for="story in stories" class="list-group-item">

6 <div class="row">

7 <h4>{{ story.writer }} said "{{ story.plot }}"

8 {{ story.upvotes }}

9 </h4>

10 <router-link

11 :to="{ name: 'stories.edit'}" tag="button"

12 class="btn btn-default" exact

13 >

14 Edit

15 </router-link>

16 </div>

17

18

19 </div>

20 </template>

21

22 <script>

23 import {store} from '../store.js'

24

25 export default {

26 data () {

27 return {

28 stories: store.stories

29 }

30 },

31 mounted () {

32 console.log('stories')

33 }

34 }

35 </script>

Note
Our example files are almost the same as before, with minor alterations, mostly styles,
which do not affect their functionality. A noteworthy change is the addition of an id to
each story within store.js.

Vue Router 253

We’ve added a button to link the stories.edit route. Well, this is not enough, because we also need
to pass story’s id to the route.

To do so, we are going to edit the to prop and make the :id turn into the corresponding id of each
story.

src/component/StoriesAll.vue

1 <template>

2 <div>

3 <h3>All Stories ({{stories.length}})</h3>

4 <ul class="list-group">

5 <li v-for="story in stories" class="list-group-item">

6 <h4>{{ story.writer }} said "{{ story.plot }}"

7 {{ story.upvotes }}

8 </h4>

9 <router-link

10 :to="{ name: 'stories.edit', params: { id: story.id }}"

11 tag="button" class="btn btn-default" exact>

12 Edit

13 </router-link>

14

15

16 </div>

17 </template>

Here we want <router-link> to render a <button> tag instead of <a>. We can use the tag property
to specify which tag to render. The rendered tag will listen to click events for navigation.

Within $route.params, the id of the chosen story is available when we reach our destination. With
this at hand, we can pick out the story that the user wants to edit, and bring it to him.

It’s time to show the StoriesEdit.vue file, where the editing will take place.

src/components/StoriesEdit.vue

1 <template>

2 <div class="row">

3 <h3>Editing</h3>

4 <form>

5 <div class="form-group col-md-offset-2 col-md-8">

6 <input class="form-control" v-model="story.plot">

7 </div>

8 <div class="form-group col-md-12">

9 <button @click="saveChanges(story)" class="btn btn-success">

Vue Router 254

10 Save changes

11 </button>

12 </div>

13 </form>

14 </div>

15 </template>

16

17 <script>

18 import {store} from '../store.js'

19

20 export default {

21 data () {

22 return {

23 story: {}

24 }

25 },

26 methods: {

27 isTheOne (story) {

28 return story.id === this.id

29 },

30 saveChanges (story) {

31 // we will use that later

32 }

33 },

34 mounted () {

35 this.story = store.stories.find(this.isTheOne)

36 }

37 }

38 </script>

We are using story’s id, to pick the desired story out of stories array with JavaScript’s find
method6.

The chosen story is ready for editing. Notice that the id of the story is shown in the URL.

6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find

Vue Router 255

Editing selected story

This works fine if you visit the StoriesEdit page using the button but if you try to type the URL
directly into the browser’s address bar, e.g. /stories/2/edit, you’ll get an error and the component
won’t render.

The reason behind this is that we used strict equality7 (===) to find the right active story. When
visiting the page directly, id is passed as string (not number). So, isTheOne always returns false.

7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators#Identity

Vue Router 256

src/components/StoriesEdit.vue

isTheOne (story) {

// returns false when this.id is not a number

return story.id === this.id

}

The easy-fix is to convert the id to number, using the Number JavaScript object wrapper.

src/components/StoriesEdit.vue

export default {

...

mounted () {

this.id = Number(this.$route.params.id)

}

}

If you check this in the browser you will find out that the story comes up as if we clicked the edit
button.

Though, there is a much better solution which helps us decouple the StoriesEdit component from
$route. We can cast the id parameter to number within route’s configuration and use it as a prop

in the StoriesEdit component.

src/main.js

const routes = [

...

{

path: ':id/edit',

props: (route) => ({ id: Number(route.params.id) }),

name: 'stories.edit',

component: StoriesEdit

},

...

]

Now, when stories/:id/edit is met, router will pass the numeric value of :id as a prop-
erty to the StoriesEdit component. What’s missing is to define that property and remove
this.$route.params.id. So, our component will look like

Vue Router 257

src/components/StoriesEdit.vue

<script>

import {store} from '../store.js'

export default {

props: ['id'],

data () {

return {

story: {}

}

},

methods: {

isTheOne (story) {

return story.id === this.id

}

},

mounted () {

this.story = store.stories.find(this.isTheOne)

}

}

</script>

That’s it. Now the StoriesEdit component is decoupled from the route and we can use it anywhere
like this: <stories-edit :id="story.id"></stories-edit>.

You can have a look at the attributes of the $route object, using Vue Devtools.

Vue Router 258

Inside $route

19.9 Route Alias

When we define new routes, we usually try to make them clear and representative. Sometimes
though, we might end up with long paths or complex ones, which can be difficult to handle later.

When we want to view the famous routes through the browser, we have to visit '/stories/famous'.
We can make this shorter by defining a global alias for this route, where a shorter URL would lead
us to the same place.

Vue Router 259

src/main.js

{

path: 'famous',

name: 'stories.famous',

// match '/famous' as if it is '/stories/famous'

alias: '/famous',

component: StoriesFamous

}

Using this configuration, we can just use the alias instead of the path.

Using route alias

Vue Router 260

19.10 Programmatic Navigation

At some point, we want to navigate to a route not through links, but programmatically.

To navigate to a route, we can use router.push(path). The path can be either a string or an object.

If it is a string, the path must be in the form of plain path, meaning that it can not contain dynamic
segments. For example router.push('/stories/11/edit').

If it is an object, you can pass any needed arguments.

Programmatic navigation

router.push({ path: '/stories/11/edit' })

router.push({ name: 'stories.edit', params: {id: '11'} })

We can use router.push to navigate to the stories’ listing page after editing is complete.

src/components/StoriesEdit.vue

1 <script>

2 import {store} from '../store.js'

3

4 export default {

5 props: ['id'],

6 data () {

7 return {

8 story: {}

9 }

10 },

11 methods: {

12 saveChanges (story) {

13 console.log('Saved!')

14 this.$router.push('/stories')

15 },

16 isTheOne (story) {

17 return story.id === this.id

18 }

19 },

20 mounted () {

21 this.story = store.stories.find(this.isTheOne)

22 }

23 }

24 </script>

Vue Router 261

We have updated the saveChangesmethod. When called, it logs a message to the console and using
this.$router.push(), navigates back to /stories.

If you want to direct the user to the URL he visited previously, instead of a specific URL, you can
use router.back().

In our case we can add button and call the router.back function, instead of router.push, and
this time the user will be able to navigate to the previous page (whichever this is, for example
https://google.com).

src/components/StoriesEdit.vue

1 ...

2 <button @click="goBack">Go back</button>

3

4 methods: {

5 ...

6 goBack () {

7 this.$router.back()

8 },

9 ...

10 }

Another way to do this is to use the router.go(n)method, which takes a single integer as parameter
that indicates by how many steps to go forwards or go backwards in the history stack8.

goBack () {

this.$router.go(-1)

}

Warning
By using $router.back(), or any other router’s method, we are coupling the component
to the router. If you want to keep it uncoupled, you can use window.history.back().

19.11 Transitions

19.11.1 Introduction

Each time we navigate to another page of our application nothing fancy happens. We can change
that by using a transition to animate the component that enters the page and also the one that leaves.

8http://router.vuejs.org/en/essentials/history-mode.html

Vue Router 262

Vue provides a variety of ways to apply transition effects when items are inserted, updated, or
removed from the DOM. This includes tools to:

• automatically apply classes for CSS transitions and animations
• integrate 3rd-party CSS or JavaScript animation libraries, such as Animate.css9, Velocity.js10,
etc

• use JavaScript to directly manipulate the DOM during transition hooks

At this point, we’ll only cover entering and leaving using CSS classes. If you are interested in learning
more about transitions check the guide11.

To use a transition, we have to wrap the corresponding element within the transition component.
In our case, router-view component.

Vue will append v-enter CSS class to the element before it’s inserted and v-enter-active during
the entering phase. v-enter-to is the last class to be appended before the transition is complete.
This is actually the ending state for enter.

Accordingly, when the element is being removed from the DOM, v-leave, v-leave-active, and
v-leave-to will be applied.

Transition Classes

If a name for the transition is defined, all the above mentioned classes will contain the name
instead of ‘v’. For example fade-enter, fade-leave-to, etc.

9https://daneden.github.io/animate.css/
10http://velocityjs.org/
11https://vuejs.org/v2/guide/transitions.html

Vue Router 263

19.11.2 Usage

Lets use a transition, named fade, for our route outlet.

src/App.vue

<template>

<div>

...

<transition name="fade">

<router-view></router-view>

</transition>

</div>

</template>

<style type="text/css">

.fade-enter{

opacity: 0

}

.fade-enter-active {

transition: opacity 1s

}

.fade-enter-to {

opacity: 0.8

}

</style>

Take a look at the CSS classes. The transition will start with opacity 0 which will be gradually
increasing for 1 second. .fade-enter-to is not necessary, defining it like this will create a blunt
pop, from 0.8 to 1, just before the transition is finished.

To create the reverse animation when a component leaves, we have to alter our CSS like this:

<style type="text/css">

.fade-enter, .fade-leave-to{

opacity: 0

}

.fade-enter-active, .fade-leave-active {

transition: opacity 1s

}

.fade-enter-to, .fade-leave {

opacity: 0.8

}

</style>

Vue Router 264

19.11.3 3rd-party CSS animations

Creating animations from scratch, and designing in general, is a hard task for me. I always prefer to
rely on 3rd party libraries. Fortunately for me (and you maybe), using Vue transitions is pretty easy
to integrate 3rd-party CSS and JS animation libraries.

In this example I will use Animate.css12.

Animate.css

According to the documentation, to use Animate.css you have to:

1. Include the stylesheet on your document’s <head>.

12https://daneden.github.io/animate.css/

Vue Router 265

2. Add the class animated to the element you want to animate. You may also want to include
the class infinite for an infinite loop.

3. Finally you need to add one of the available classes, such as bounce, rollIn, fadeIn, etc. You
can find a list with all available classes here13.

Lets start by importing it from CDNJS, in the header of our index.html file.

Instead of relying on the name prop of the transition component, this time we will use a custom
class for v-enter-active.

src/App.vue

<template>

<div>

...

<transition enter-active-class="animated rollIn">

<router-view></router-view>

</transition>

</div>

</template>

We can also apply an animation when the component leaves the DOM by appending a custom
leave-active-class, like this: leave-active-class="animated rollOut".

19.12 Navigation Guards

Vue Router provides a convenient mechanism for filtering transitions. To filter a transition you
can use router.beforeEach() which is triggered before each transition, and router.afterEach(),
which is triggered after, however afterEach() cannot affect the navigation.

router.beforeEach() can be handy in a scenario regarding authorization. For example if a user
does not have permission to access a page of your app, he should be directed to the login page.

Let’s see how we can accomplish that in a short example.

13https://github.com/daneden/animate.css

Vue Router 266

src/main.js

1 // create a dummy user object

2 let User = {

3 isAdmin: false

4 }

5

6 router.beforeEach((to, from, next) => {

7 if (to.path !== '/login' && !User.isAdmin) {

8 // if not going to login and not an admin redirect to login

9 next('/login')

10 } else {

11 // if authorized, proceed

12 next()

13 }

14 })

Here we apply a rule so router won’t let users proceed to any page except login. Make sure to always
call the next() function, otherwise the hook will never be resolved.

Code Examples
You can find the code examples of this chapter on GitHub14.

14https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/codes/chapter19

Vue Router 267

19.13 Homework

Throughout this chapter we analyzed a lot of things and it’s been a while since we’ve assigned you
some homework!

The app you have to build is a mini Pokédex.

The home page will show a list of Pokémon categories, such as Fire, Water, etc. From there, the user
will be able to browse a category, view its Pokémon, and add new ones.

Your routes could be something like these:

Route Description

/ List categories.
/category/:name Show category’s Pokémons.
/category/:name/pokemons/new Add new Pokémon to category.

Each transitionmust be logged to the console. For example, when the user decides to browse category
Fire, a message has to be logged, informing the user that he is going to visit /category/Fire.

We have created the Pokédex object to help you get started. You can find it here15.

Info
The /category/:name/pokemons/new route is a subroute of /category/:name.

When the user visits /category/:name/pokemons/new s/he should see a form to add a new
Pokémon along with the listing of the category’s Pokémons.

Hint 1
To access Pokémon of a specific category, consider using JavaScript’s find method16.

Hint 2
To log messages to the console before each transition use router.beforeEach().

15https://github.com/hootlex/the-majesty-of-vuejs-2/blob/master/homework/Chapter19/pokedex.js
16https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find

Vue Router 268

Example output

Vue Router 269

Example output

You can find a potential solution to this exercise here17

17https://github.com/hootlex/the-majesty-of-vuejs-2/tree/master/homework/Chapter19

20. Closing Thoughts
Well, it seems that our journey has come to an end. We hope that you have enjoyed reading the
book as much we enjoyed writing it. We also hope that you liked (at least a bit) our sense of humor.

We want to thank each one of you, for reading the entire book and of course for supporting our
efforts to make this book a reality. Huge thanks to all the contributors1, who spared some of their
time to report several grammatical, syntax, and coding flows.

In case you missed it, we have launched Vue.js Feed2, where news, tutorials, code, and plugins,
related to Vue.js, are published daily. We’d love it if you would like to be part of this, since we love
you all. All and every single one of vue. :)

Don’t be a stranger!
If you want to ask anything, or just say hi, don’t hesitate to reach us on Twitter3. We’ll also
keep you informed about book updates.

1https://github.com/hootlex/the-majesty-of-vuejs-2/graphs/contributors
2https://vuejsfeed.com/
3http://twitter.com/tmvuejs

21. Further Learning
We have curated some tutorials and books that you should consider reading. We’ve also gathered
a few open source projects for you to see Vue in real action. Some of the resources are not directly
related to Vue.js but they refer to related subjects.

If you’d like to learn more advanced Vue topics and how to build real-world applications, you should
check out Vue School1 - by Alex Kyriakidis.

21.1 Tutorials

• Intro to Vue.js (series)2 - This series covers a lot of Vue stuff, like Rendering, Directives, Events,
Components, Vuex, and Animations.

• Authenticating a Vue JS Application With Firebase UI3 - Setting up Firebase UI for a regular
web application is incredibly simple. It’s easy in Vue.js too, but there are a couple of steps to
figure out.

• Introducing Vue and Weex for Native Mobile Apps4 - This tutorial shows how to use the Vue
framework, in particular how to understand its concepts of data binding and templates. Then,
it goes on to introduce the Weex platform, for coding native mobile apps using Vue!

• How to build a reactive engine in JavaScript.5 - This tutorial goes the getters/setters way of
observing and reacting to changes in real time.

• Simple guide to authoring open-source Vue.js components6 - Here are some bits of advice, for
those that own or think about starting their own open source solutions for Vue.js.

21.2 Videos

• Demystifying Frontend Framework Performance7 - In this talk, Evan You will walk you
through the techniques used in major front-end frameworks - namely dirty checking, virtual-
dom diffing and dependency-tracking.

1https://vueschool.io
2https://css-tricks.com/intro-to-vue-1-rendering-directives-events/
3https://medium.com/dailyjs/authenticating-a-vue-js-application-with-firebase-ui-8870a3a5cff8
4https://code.tutsplus.com/tutorials/introducing-vue-and-weex-for-native-mobile-apps--cms-28782
5http://monterail.com/blog/2016/how-to-build-a-reactive-engine-in-javascript-part-1-observable-objects/
6http://monterail.com/blog/2016/simple-guide-to-authoring-open-source-vue-js-components/
7https://vuejsfeed.com/blog/demystifying-frontend-framework-performance-video

Further Learning 272

• Reactivity in Frontend JavaScript Frameworks8 - How do the frameworks detect state changes,
and how do they efficiently propagate the changes through the system? Evan answers these
questions based on his experience building Vue.js.

• Learning Vue 2: Step By Step (series)9 - A series of lessons demonstrating the building blocks
of Vue.

21.3 Books

• Understanding ECMAScript 610 - There’s a lot of new concepts to learn and understand in
ES6. Get a headstart with this book!

• Build APIs You Won’t Hate11 - These days it’s pretty standard to build your application with
a separation of the frontend and backend logic. Frontend is done pretty well in JavaScript in
the browser using awesome frameworks like Vue.js, and the backends will usually be some
server-side language knocking out JSON.

• SVGAnimations12 - SVG is extremely powerful, with its reduced HTTP requests and crispness
on any display. In this book you will learn all about SVG, including how to make SVG cross-
browser compatible, backwards compatible, optimized, and responsive.

21.4 Open source projects

• Vuedo13 - A blog platform, built with Laravel and Vue.js.
• Airflix14 - An AirPlay friendly web interface to stream your movies and TV shows from a
home server.

• Koel15 - A personal music streaming server that works.
• Mini e-shop16 - Mini online e-shop built with Vue.js. It has enough features to start building
yours!

• The Movie Database App17 - A pretty application similar to imdb.
• Vue Wordpress PWA18 - An offline-first SPA using Vue.js, the WordPress REST API and
Progressive Web Apps.

8https://vuejsfeed.com/blog/demystifying-frontend-framework-performance-video
9https://laracasts.com/series/learn-vue-2-step-by-step
10https://leanpub.com/understandinges6
11https://leanpub.com/build-apis-you-wont-hate
12http://shop.oreilly.com/product/0636920045335.do
13https://github.com/Vuedo/vuedo
14https://github.com/wells/airflix
15https://github.com/phanan/koel
16https://github.com/BosNaufal/vue-mini-shop
17https://github.com/dmtrbrl/tmdb-app
18https://github.com/bstavroulakis/vue-wordpress-pwa

Further Learning 273

• Hypersurface19 - Hypersurface is a space for people to ask, answer, talk, and take notes on
questions that invoke personal opinions. The data from these questions is displayed in real
time, allowing anyone to impact and discover the current point of view.

21.5 Awesome Vue

Awesome Vue.js20 is a curated list of awesome things related to Vue.js. You can find a ton of Vue
stuff here. Currently the Vue team is working on a new project, Curated Vue21, which will contain
only approved resources and will provide the ability to search for specific resources.

The End…

19https://github.com/aswdesign/hypersurface
20https://github.com/vuejs/awesome-vue
21https://curated.vuejs.org/

