
RUST

 i

RUST

 i

About the Tutorial

Rust is a modern systems programming language developed by the Mozilla Corporation.

It is intended to be a language for highly concurrent and highly secure systems. It compiles

to native code; hence, it is blazingly fast like C and C++.

This tutorial adopts a simple and practical approach to describe the concepts of Rust

programming.

Audience

This tutorial has been prepared for beginners to help them understand the basic and

advanced concepts of Rust.

Prerequisites

We assume that the reader has an understanding of basic programming concepts is

necessary for this course.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

RUST

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. RUST — Introduction .. 1

Application v/s Systems Programming Languages .. 1

Why Rust? ... 1

2. RUST — Environment Setup .. 3

Installation on Windows .. 3

Installation on Linux / Mac ... 5

Using Tutorials Point Coding Ground for RUST ... 5

3. RUST — HelloWorld Example .. 6

What is a macro? ... 7

4. RUST — Data Types ... 9

Declare a Variable.. 9

Scalar Types... 10

Integer .. 10

Float .. 12

Boolean ... 13

Character .. 14

5. RUST — Variables ... 15

Rules for Naming a Variable ... 15

Syntax ... 15

Immutable ... 15

Mutable .. 16

RUST

 iii

6. RUST — Constant .. 18

Rust Constant Naming Convention ... 18

Constants v/s Variables.. 18

Shadowing of Variables and Constants ... 19

7. RUST — String ... 21

String Literal .. 21

String Object ... 22

Illustration: new() .. 24

Illustration: to_string() ... 24

Illustration: replace() ... 24

Illustration: as_str() ... 25

Illustration: push() ... 25

Illustration: push_str() ... 26

Illustration: len() .. 26

Illustration: trim() .. 26

Illustration:split_whitespace() .. 27

Illustration: split() string... 28

Illustration: chars() .. 28

Concatenation of Strings with + operator ... 29

Illustration: Type Casting ... 30

Illustration: Format! Macro .. 30

8. RUST — Operators .. 31

Arithmetic Operators ... 31

Relational Operators.. 32

Logical Operators .. 34

Bitwise Operators .. 35

9. RUST — Decision Making .. 38

If Statement .. 39

RUST

 iv

if else statement .. 39

Nested If.. 41

Match Statement... 42

10. RUST — Loop .. 44

Definite Loop ... 45

Indefinite Loop .. 46

Continue Statement .. 48

11. RUST — Functions ... 49

Defining a Function .. 49

Invoking a Function ... 50

Returning Value from a Function ... 51

Function with Parameters .. 52

12. RUST — Tuple ... 54

Destructing .. 56

13. RUST — Array ... 57

Features of an Array .. 57

Declaring and Initializing Arrays ... 57

Passing Arrays as Parameters to Functions ... 60

Array Declaration and Constants .. 62

14. RUST — Ownership ... 63

Stack ... 63

What is Ownership? .. 63

Transferring Ownership ... 63

Ownership and Primitive Types .. 65

15. RUST — Borrowing.. 66

What is Borrowing? ... 66

Mutable References .. 67

16. RUST — Slices ... 69

RUST

 v

Mutable Slices ... 70

17. RUST — Structure ... 72

Syntax: Declaring a structure ... 72

Syntax: Initializing a structure .. 72

Modifying a struct instance .. 73

Passing a struct to a function ... 74

Returning struct from a function .. 75

Method in Structure .. 77

Static Method in Structure ... 78

18. RUST — Enums.. 80

Illustration: Using an Enumeration ... 80

Struct and Enum .. 81

Option Enum ... 82

Match Statement and Enum .. 83

Match with Option .. 84

Match & Enum with Data Type .. 85

19. RUST — Modules .. 87

Illustration: Defining a Module... 88

Use Keyword ... 89

Nested Modules .. 89

Illustration: Create a Library Crate and Consume in a Binary Crate ... 90

20. RUST — Collections ... 94

Vector ... 94

HashMap ... 99

HashSet ... 103

21. RUST — Error Handling ... 109

Panic Macro and Unrecoverable Errors .. 109

Result Enum and Recoverable Errors.. 111

RUST

 vi

unwrap() and expect() ... 113

22. RUST — Generic Types .. 116

Traits ... 117

Generic Functions .. 119

23. RUST — Input Output ... 120

Reader and Writer Types ... 120

Read Trait .. 120

Write Trait ... 121

CommandLine Arguments ... 123

24. RUST — File Input/ Output ... 125

Write to a File .. 126

Read from a File .. 126

Delete a file ... 127

Append data to a file ... 127

Copy a file ... 128

25. RUST — Package Manager .. 129

Illustration: Create a Binary Cargo project .. 130

26. RUST — Iterator and Closure .. 134

Iterators .. 134

Closure .. 137

27. RUST — Smart Pointers ... 139

Box .. 139

28. RUST — Concurrency .. 143

Threads ... 143

Join Handles .. 144

RUST

 1

Rust is a systems level programming language, developed by Graydon Hoare. Mozilla Labs

later acquired the programme.

Application v/s Systems Programming Languages

Application programming languages like Java/C# are used to build software, which provide

services to the user directly. They help us build business applications like spreadsheets,

word processors, web applications or mobile applications.

Systems programming languages like C/C++ are used to build software and software

platforms. They can be used to build operating systems, game engines, compilers, etc.

These programming languages require a great degree of hardware interaction.

Systems and application programming languages face two major problems:

 It is difficult to write secure code.

 It is difficult to write multi-threaded code.

Why Rust?

Rust focuses on three goals:

 Safety

 Speed

 Concurrency

The language was designed for developing highly reliable and fast software in a simple

way. Rust can be used to write high-level programs down to hardware-specific programs.

Performance

Rust programming language does not have a Garbage Collector (GC) by design. This

improves the performance at runtime.

Memory safety at compile time

Software built using Rust is safe from memory issues like dangling pointers, buffer

overruns and memory leaks.

Multi-threaded applications

Rust’s ownership and memory safety rules provide concurrency without data races.

1. RUST — Introduction

RUST

 2

Support for Web Assembly (WASM)

Web Assembly helps to execute high computation intensive algorithms in the browser, on

embedded devices, or anywhere else. It runs at the speed of native code. Rust can be

compiled to Web Assembly for fast, reliable execution.

RUST

 3

Installation of Rust is made easy through rustup, a console-based tool for managing Rust

versions and associated tools.

Installation on Windows

Let us learn how to install RUST on Windows.

 Installation of Visual Studio 2013 or higher with C++ tools is mandatory to run the

Rust program on windows. First, download Visual Studio from here VS 2013

Express.

 Download and install rustup tool for windows. rustup-init.exe is available for

download here -

Rust Lang

 Double-click rustup-init.exe file. Upon clicking, the following screen will appear.

 Press enter for default installation. Once installation is completed, the following

screen appears.

2. RUST — Environment Setup

http://download.microsoft.com/download/2/5/5/255DCCB6-F364-4ED8-9758-EF0734CA86B8/vs2013.3_dskexp_ENU.iso
http://download.microsoft.com/download/2/5/5/255DCCB6-F364-4ED8-9758-EF0734CA86B8/vs2013.3_dskexp_ENU.iso
https://www.rust-lang.org/en-US/install.html

RUST

 4

 From the installation screen, it is clear that Rust related files are stored in the folder

–

C:\Users\{PC}\.cargo\bin

The contents of the folder are:

cargo-fmt.exe

cargo.exe

rls.exe

rust-gdb.exe

rust-lldb.exe

rustc.exe // this is the compiler for rust

rustdoc.exe

rustfmt.exe

rustup.exe

 cargo is the package manager for Rust. To verify if cargo is installed, execute the

following command:

C:\Users\Admin>cargo -V

cargo 1.29.0 (524a578d7 2018-08-05)

 The compiler for Rust is rustc. To verify the compiler version, execute the following

command:

C:\Users\Admin>rustc --version

rustc 1.29.0 (aa3ca1994 2018-09-11)

RUST

 5

Installation on Linux / Mac

To install rustup on Linux or macOS, open a terminal and enter the following command.

$ curl https://sh.rustup.rs -sSf | sh

The command downloads a script and starts the installation of the rustup tool, which

installs the latest stable version of Rust. You might be prompted for your password. If the

installation is successful, the following line will appear:

Rust is installed now. Great!

The installation script automatically adds Rust to your system PATH after your next login.

To start using Rust right away instead of restarting your terminal, run the following

command in your shell to add Rust to your system PATH manually:

$ source $HOME/.cargo/env

Alternatively, you can add the following line to your ~/.bash_profile:

$ export PATH="$HOME/.cargo/bin:$PATH"

NOTE: When you try to compile a Rust program and get errors indicating that a linker

could not execute, that means a linker is not installed on your system and you will need

to install one manually.

Using Tutorials Point Coding Ground for RUST

A Read-Evaluate-Print Loop (REPL) is an easy to use interactive shell to compile and

execute computer programs. If you want to compile and execute Rust programs online

within the browser, use Tutorialspoint Coding Ground.

https://www.tutorialspoint.com/compile_rust_online.php

RUST

 6

This chapter explains the basic syntax of Rust language through a HelloWorld example.

 Create a HelloWorld-App folder and navigate to that folder on terminal

C:\Users\Admin>mkdir HelloWorld-App

C:\Users\Admin>cd HelloWorld-App

C:\Users\Admin\HelloWorld-App>

 To create a Rust file, execute the following command:

C:\Users\Admin\HelloWorld-App>notepad Hello.rs

Rust program files have an extension .rs. The above command creates an empty file

Hello.rs and opens it in NOTEpad. Add the code given below to this file -

fn

main(){

println!("Rust says Hello to TutorialsPoint !!");

}

The above program defines a function main fn main(). The fn keyword is used to define a

function. The main() is a predefined function that acts as an entry point to the program.

println! is a predefined macro in Rust. It is used to print a string (here Hello) to the console.

Macro calls are always marked with an exclamation mark – !.

 Compile the Hello.rs file using rustc.

C:\Users\Admin\HelloWorld-App>rustc Hello.rs

Upon successful compilation of the program, an executable file (file_name.exe) is

generated. To verify if the .exe file is generated, execute the following command.

C:\Users\Admin\HelloWorld-App>dir

//lists the files in folder

Hello.exe

Hello.pdb

Hello.rs

3. RUST — HelloWorld Example

RUST

 7

 Execute the Hello.exe file and verify the output.

What is a macro?

Rust provides a powerful macro system that allows meta-programming. As you have seen

in the previous example, macros look like functions, except that their name ends with a

bang(!), but instead of generating a function call, macros are expanded into source code

that gets compiled with the rest of the program. Therefore, they provide more runtime

features to a program unlike functions. Macros are an extended version of functions.

Using the println! Macro - Syntax

println!(); // prints just a newline

println!("hello ");//prints hello

println!("format {} arguments", "some"); //prints format some arguments

Comments in Rust

Comments are a way to improve the readability of a program. Comments can be used to

include additional information about a program like author of the code, hints about a

function/ construct, etc. The compiler ignores comments.

Rust supports the following types of comments −

 Single-line comments (//) − Any text between a // and the end of a line is treated

as a comment

 Multi-line comments (/* */) − These comments may span multiple lines.

Example

//this is single line comment

/* This is a

 Multi-line comment

*/

RUST

 8

Execute online

Rust programs can be executed online through Tutorialspoint Coding Ground. Write

the HelloWorld program in the Editor tab and click Execute to view result.

https://www.tutorialspoint.com/compile_rust_online.php

RUST

 9

The Type System represents the different types of values supported by the language. The

Type System checks validity of the supplied values, before they are stored or manipulated

by the program. This ensures that the code behaves as expected. The Type System further

allows for richer code hinting and automated documentation too.

Rust is a statically typed language. Every value in Rust is of a certain data type. The

compiler can automatically infer data type of the variable based on the value assigned to

it.

Declare a Variable

Use the let keyword to declare a variable.

fn main() {

 let company_string = "TutorialsPoint"; // string type

 let rating_float=4.5; // float type

 let is_growing_boolean=true; // boolean type

 let icon_char='♥'; //unicode character type

 println!("company name is:{}",company_string);

 println!("company rating on 5 is:{}",rating_float);

 println!("company is growing :{}",is_growing_boolean);

 println!("company icon is:{}",icon_char);

}

In the above example, data type of the variables will be inferred from the values assigned

to them. For example, Rust will assign string data type to the variable company_string,

float data type to rating_float, etc.

The println! macro takes two arguments:

 A special syntax {}, which is the placeholder

 The variable name or a constant

The placeholder will be replaced by the variable’s value

The output of the above code snippet will be -

company name is: TutorialsPoint

company rating on 5 is:4.5

company is growing: true

4. RUST — Data Types

RUST

 10

company icon is: ♥

Scalar Types

A scalar type represents a single value. For example, 10,3.14,'c'. Rust has four primary

scalar types.

 Integer

 Floating-point

 Booleans

 Characters

We will learn about each type in our subsequent sections.

Integer

An integer is a number without a fractional component. Simply put, the integer data type

is used to represent whole numbers.

Integers can be further classified as Signed and Unsigned. Signed integers can store both

negative and positive values. Unsigned integers can only store positive values. A detailed

description if integer types is given below:

S. No. Size Signed Unsigned

1 8 bit i8 u8

2 16 bit i16 u16

3 32 bit i32 u32

4 64 bit i64 u64

5 128 bit i128 u128

6 Arch isize usize

The size of an integer can be arch. This means the size of the data type will be derived

from the architecture of the machine. An integer the size of which is arch will be 32 bits

on an x86 machine and 64 bits on an x64 machine. An arch integer is primarily used when

indexing some sort of collection.

Illustration

 fn main() {

 let result=10;// i32 by default

RUST

 11

 let age:u32= 20;

 let sum:i32 = 5-15;

 let mark:isize=10;

 let count:usize=30;

 println!("result value is {}",result);

 println!("sum is {} and age is {}",sum,age);

 println!("mark is {} and count is {}",mark,count);

 }

The output will be as given below:

 result value is 10

 sum is -10 and age is 20

 mark is 10 and count is 30

The above code will return a compilation error if you replace the value of age with a

floating-point value.

Integer Range

Each signed variant can store numbers from -(2^(n-1) to 2^(n-1) -1, where n is the

number of bits that variant uses. For example, i8 can store numbers from -(2^7) to 2^7

-1; here we replaced n with 8.

Each unsigned variant can store numbers from 0 to 2^(n-1). For example, u8 can store

numbers from 0 to 2^7, which is equal to 0 to 255.

Integer Overflow

An integer overflow occurs when the value assigned to an integer variable exceeds the

Rust defined range for the data type. Let us understand this with an example:

 fn main() {

 let age:u8= 255;

 // 0 to 255 only allowed for u8

 let weight:u8=256;//overflow value is 0

 let height:u8=257;//overflow value is 1

 let score:u8=258;//overflow value is 2

 println!("age is {} ",age);

 println!("weight is {}",weight);

 println!("height is {}",height);

RUST

 12

 println!("score is {}",score);

 }

The valid range of unsigned u8 variable is 0 to 255. In the above example, the variables

are assigned values greater than 255 (upper limit for an integer variable in Rust). On

execution, the above code will return a warning - warning: literal out of range for

u8 for weight, height and score variables. The overflow values after 255 will start from 0,

1, 2, etc. The final output without warning is as shown below:

age is 255

weight is 0

height is 1

score is 2

Float

Float data type in Rust can be classified as f32 and f64. The f32 type is a single-precision

float, and f64 has double precision. The default type is f64. Consider the following example

to understand more about the float data type.

 fn main() {

 let result=10.00;//f64 by default

 let interest:f32=8.35;

 let cost:f64=15000.600; //double precision

 println!("result value is {}",result);

 println!("interest is {}",interest);

 println!("cost is {}",cost);

 }

The output will be as shown below-

 interest is 8.35

 cost is 15000.6

Automatic Type Casting

Automatic type casting is not allowed in Rust. Consider the following code snippet. An

integer value is assigned to the float variable interest.

 fn main() {

 let interest:f32=8;// integer assigned to float variable

 println!("interest is {}",interest);

 }

RUST

 13

The compiler throws a mismatched types error as given below.

 error[E0308]: mismatched types

 --> main.rs:2:22

 |

2 | let interest:f32=8;

 | ^ expected f32, found integral variable

 |

 = note: expected type `f32`

 found type `{integer}`

error: aborting due to previous error(s)

Number Separator

For easy readability of large numbers, we can use a visual separator _ underscore to

separate digits. That is 50,000 can be written as 50_000 . This is shown in the below

example.

 fn main() {

 let float_with_separator=11_000.555_001;

 println!("float value {}",float_with_separator);

 let int_with_separator = 50_000;

 println!("int value {}",int_with_separator);

 }

The output is given below:

float value 11000.555001

int value 50000

Boolean

Boolean types have two possible values – true or false. Use the bool keyword to declare

a boolean variable.

RUST

 14

Illustration

fn main() {

 let isfun:bool = true;

 println!("Is Rust Programming Fun ? {}",isfun);

 }

The output of the above code will be -

Is Rust Programming Fun ? true

Character

The character data type in Rust supports numbers, alphabets, Unicode and special

characters. Use the char keyword to declare a variable of character data type.

Rust’s char type represents a Unicode Scalar Value, which means it can represent a lot

more than just ASCII. Unicode Scalar Values range from U+0000 to U+D7FF and

U+E000 to U+10FFFF inclusive.

Let us consider an example to understand more about the Character data type.

 fn main() {

 let special_character = '@'; //default

 let alphabet:char = 'A';

 let emoji:char = '😁';

 println!("special character is {}",special_character);

 println!("alphabet is {}",alphabet);

 println!("emoji is {}",emoji);

}

The output of the above code will be -

special character is @

alphabet is A

emoji is 😁

RUST

 15

A variable is a named storage that programs can manipulate. Simply put, a variable helps

programs to store values. Variables in Rust are associated with a specific data type. The

data type determines the size and layout of the variable's memory, the range of values

that can be stored within that memory and the set of operations that can be performed on

the variable.

Rules for Naming a Variable

In this section, we will learn about the different rules for naming a variable.

 The name of a variable can be composed of letters, digits, and the underscore

character.

 It must begin with either a letter or an underscore.

 Upper and lowercase letters are distinct because Rust is case-sensitive.

Syntax

The data type is optional while declaring a variable in Rust. The data type is inferred from

the value assigned to the variable.

The syntax for declaring a variable is given below.

 let variable_name=value;// no type specified

 let variable_name:dataType = value; //type specified

Illustration

 fn main() {

 let fees = 25_000;

 let salary:f64=35_000.00;

 println!("fees is {} and salary is {}",fees,salary);

}

The output of the above code will be fees is 25000 and salary is 35000.

Immutable

By default, variables are immutable – read only in Rust. In other words, the variable's

value cannot be changed once a value is bound to a variable name.

Let us understand this with an example.

5. RUST — Variables

RUST

 16

 fn main() {

 let fees = 25_000;

 println!("fees is {} ",fees);

 fees=35_000;

 println!("fees changed is {}",fees);

}

The output will be as shown below -

 error[E0384]: re-assignment of immutable variable `fees`

 --> main.rs:6:3

 |

3 | let fees = 25_000;

 | ---- first assignment to `fees`

...

6 | fees=35_000;

 | ^^^^^^^^^^^ re-assignment of immutable variable

error: aborting due to previous error(s)

The error message indicates the cause of the error – you cannot assign values twice to

immutable variable fees. This is one of the many ways Rust allows programmers to write

code and takes advantage of the safety and easy concurrency.

Mutable

Variables are immutable by default. Prefix the variable name with mut keyword to make

it mutable. The value of a mutable variable can be changed.

The syntax for declaring a mutable variable is as shown below-

 let mut variable_name=value;

 let mut variable_name:dataType=value;

Let us understand this with an example

 fn main() {

 let mut fees:i32 = 25_000;

 println!("fees is {} ",fees);

 fees=35_000;

 println!("fees changed is {}",fees);

}

The output of the snippet is given below-

RUST

 17

 fees is 25000

 fees changed is 35000

RUST

 18

Constants represent values that cannot be changed. If you declare a constant then there

is no way its value changes. The keyword for using constants is const. Constants must be

explicitly typed. Following is the syntax to declare a constant.

 const VARIABLE_NAME:dataType=value;

Rust Constant Naming Convention

The naming convention for Constants are similar to that of variables. All characters in a

constant name are usually in uppercase. Unlike declaring variables, the let keyword is not

used to declare a constant.

We have used constants in Rust in the example below:

 fn main() {

 const USER_LIMIT:i32=100; // Declare a integer constant

 const PI:f32 = 3.14;//Declare a float constant

 println!("user limit is {}",USER_LIMIT); //Display value of the constant

 println!("pi value is {}",PI); //Display value of the constant

}

Constants v/s Variables

In this section, we will learn about the differentiating factors between constants and

variables.

 Constants are declared using the const keyword while variables are declared using

the let keyword.

 A variable declaration can optionally have a data type whereas a constant

declaration must specify the data type. This means const USER_LIMIT=100 will

result in an error.

 A variable declared using the let keyword is by default immutable. However, you

have an option to mutate it using the mut keyword. Constants are immutable.

 Constants can be set only to a constant expression and not to the result of a function

call or any other value that will be computed at runtime.

 Constants can be declared in any scope, including the global scope, which makes

them useful for values that many parts of the code need to know about.

6. RUST — Constant

RUST

 19

Shadowing of Variables and Constants

Rust allows programmers to declare variables with the same name. In such a case, the

new variable overrides the previous variable.

Let us understand this with an example.

fn main() {

let salary = 100.00;

let salary = 1.50 ; // reads first salary

println!("The value of salary is :{}",salary);

}

The above code declares two variables by the name salary. The first declaration is assigned

a 100.00 while the second declaration is assigned value 1.50. The second variable shadows

or hides the first variable while displaying output.

Output

The value of salary is :1.50

Rust supports variables with different data types while shadowing.

Consider the following example.

The code declares two variables by the name uname. The first declaration is assigned a

string value, whereas the second declaration is assigned an integer. The len function

returns the total number of characters in a string value.

fn main() {

 let uname="Mohtashim";

 let uname= uname.len();

 println!("name changed to integer : {}",uname);

}

Output

name changed to integer: 9

RUST

 20

Unlike variables, constants cannot be shadowed. If variables in the above program are

replaced with constants, the compiler will throw an error.

 fn main() {

 const NAME:&str="Mohtashim";

 const NAME:usize= NAME.len(); //Error : `NAME` already defined

 println!("name changed to integer : {}",NAME);

}

RUST

 21

The String data type in Rust can be classified into the following -

 String Literal (&str)

 String Object (String)

String Literal

String literals (&str) are used when the value of a string is known at compile time. String

literals are a set of characters, which are hardcoded into a variable. For example, let

company="Tutorials Point". String literals are found in module std::str. String literals are

also known as string slices.

The following example declares two string literals – company and location.

 fn main() {

 let company:&str="TutorialsPoint";

 let location:&str = "Hyderabad";

 println!("company is : {} location :{}",company,location);

}

String literals are static by default. This means that string literals are guaranteed to be

valid for the duration of the entire program. We can also explicitly specify the variable as

static as shown below -

 fn main() {

 let company:&'static str="TutorialsPoint";

 let location:&'static str = "Hyderabad";

 println!("company is : {} location :{}",company,location);

}

The above program will generate the following output:

company is : TutorialsPoint location :Hyderabad

7. RUST — String

RUST

 22

String Object

The String object type is provided in Standard Library. Unlike string literal, the string

object type is not a part of the core language. It is defined as public structure in standard

library pub struct String. String is a growable collection. It is mutable and UTF-8 encoded

type. The String object type can be used to represent string values that are provided at

runtime. String object is allocated in the heap.

Syntax

To create a String object, we can use any of the following syntax:

String::new()

The above syntax creates an empty string

String::from()

This creates a string with some default value passed as parameter to the from() method.

The following example illustrates the use of a String object.

fn main(){

 let empty_string = String::new();

 println!("length is {}",empty_string.len());

 let content_string = String::from("TutorialsPoint");

 println!("length is {}",content_string.len());

}

The above example creates two strings – an empty string object using the new method

and a string object from string literal using the from method.

The output is as shown below:

length is 0

length is 14

Common Methods – String Object

S. No. Method Signature Description

1 new() pub const fn new() -> String
Creates a new

empty String.

2 to_string() fn to_string(&self) -> String
Converts the given

value to a String.

RUST

 23

S. No. Method Signature Description

3 replace()
pub fn replace<'a, P>(&'a self,

from: P, to: &str) -> String

Replaces all matches

of a pattern with

another string.

4 as_str() pub fn as_str(&self) -> &str

Extracts a string

slice containing the

entire string.

5 push()
pub fn push(&mut self, ch:

char)

Appends the given

char to the end of

this String.

6 push_str()
pub fn push_str(&mut self,

string: &str)

Appends a given

string slice onto the

end of this String.

7 len() pub fn len(&self) -> usize

Returns the length

of this String, in

bytes.

8 trim() pub fn trim(&self) -> &str

Returns a string slice

with leading and

trailing whitespace

removed.

9
split_whitespa

ce()

pub fn split_whitespace(&self) -

> SplitWhitespace

Splits a string slice

by whitespace and

returns an iterator.

10 split()

pub fn split<'a, P>(&'a self, pat:

P) -> Split<'a, P> , where P is

pattern can be &str, char, or a

closure that determines the

split.

Returns an iterator

over substrings of

this string slice,

separated by

characters matched

by a pattern.

11 chars() pub fn chars(&self) -> Chars

Returns an iterator

over the chars of a

string slice.

1.

RUST

 24

Illustration: new()

An empty string object is created using the new() method and its value is set to hello.

 fn main(){

 let mut z = String::new();

 z.push_str("hello");

 println!("{}",z);

 }

Output

The above program generates the following output:

hello

Illustration: to_string()

To access all methods of String object, convert a string literal to object type using

the to_string() function.

fn main(){

 let name1 = "Hello TutorialsPoint , Hello!".to_string();

 println!("{}",name1);

}

Output

The above program generates the following output:

Hello TutorialsPoint , Hello!

Illustration: replace()

The replace() function takes two parameters – the first parameter is a string pattern to

search for and the second parameter is the new value to be replaced. In the above

example, Hello appears two times in the name1 string.

The replace function replaces all occurrences of the string Hello with Howdy.

fn main(){

 let name1 = "Hello TutorialsPoint , Hello!".to_string(); //String object

 let name2 = name1.replace("Hello","Howdy");//find and replace

RUST

 25

 println!("{}",name2);

}

Output

The above program generates the following output:

Howdy TutorialsPoint , Howdy!

Illustration: as_str()

The as_str() function extracts a string slice containing the entire string.

 fn main() {

 let example_string = String::from("example_string");

 print_literal(example_string.as_str());

}

fn print_literal(data:&str){

 println!("displaying string literal {}",data);

}

Output

The above program generates the following output:

displaying string literal example_string

Illustration: push()

The push() function appends the given char to the end of this String.

 fn main(){

 let mut company = "Tutorial".to_string();

 company.push('s');

 println!("{}",company);

}

RUST

 26

Output

The above program generates the following output:

Tutorials

Illustration: push_str()

The push_str() function appends a given string slice onto the end of a String.

 fn main(){

let mut company = "Tutorials".to_string();

company.push_str(" Point");

println!("{}",company);

Output

The above program generates the following output:

Tutorials Point

Illustration: len()

The len() function returns the total number of characters in a string (including spaces).

 fn main() {

 let fullname = " Tutorials Point";

 println!("length is {}",fullname.len());

}

Output

The above program generates the following output:

length is 20

Illustration: trim()

The trim() function removes leading and trailing spaces in a string. NOTE that this function

will not remove the inline spaces.

fn main() {

 let fullname = " Tutorials Point \r\n";

RUST

 27

 println!("Before trim ");

 println!("length is {}",fullname.len());

 println!();

 println!("After trim ");

 println!("length is {}",fullname.trim().len());

}

Output

The above program generates the following output:

Before trim

length is 24

After trim

length is 15

Illustration:split_whitespace()

The split_whitespace() splits the input string into different strings. It returns an iterator

so we are iterating through the tokens as shown below:

 fn main(){

 let msg = "Tutorials Point has good tutorials".to_string();

 let mut i =1;

 for token in msg.split_whitespace(){

 println!("token {} {}",i,token);

 i+=1;

 }

}

Output

token 1 Tutorials

token 2 Point

token 3 has

token 4 good

token 5 tutorials

RUST

 28

Illustration: split() string

The split() string method returns an iterator over substrings of a string slice, separated

by characters matched by a pattern. The limitation of the split() method is that the result

cannot be stored for later use. The collect method can be used to store the result returned

by split() as a vector.

fn main() {

 let fullname = "Kannan,Sudhakaran,Tutorialspoint";

 for token in fullname.split(","){

 println!("token is {}",token);

 }

 //store in a Vector

 println!("\n");

 let tokens:Vec<&str>= fullname.split(",").collect();

 println!("firstName is {}",tokens[0]);

 println!("lastname is {}",tokens[1]);

 println!("company is {}",tokens[2]);

}

The above example splits the string fullname, whenever it encounters a comma (,).

Output

token is Kannan

token is Sudhakaran

token is Tutorialspoint

firstName is Kannan

lastname is Sudhakaran

company is Tutorialspoint

2.

Illustration: chars()

Individual characters in a string can be accessed using the chars method. Let us consider

an example to understand this.

 fn main(){

RUST

 29

 let n1 = "Tutorials".to_string();

 for n in n1.chars(){

 println!("{}",n);

 }

 }

Output

T

u

t

o

r

i

a

l

s

Concatenation of Strings with + operator

A string value can be appended to another string. This is called concatenation or

interpolation. The result of string concatenation is a new string object. The + operator

internally uses an add method. The syntax of the add function takes two parameters. The

first parameter is self – the string object itself and the second parameter is a reference of

the second string object. This is shown below:

//add function

 add(self,&str)->String{ // returns a String object

 }

Illustration: String Concatenation

 fn main(){

 let n1 = "Tutorials".to_string();

 let n2 = "Point".to_string();

 let n3 = n1 + &n2; // n2 reference is passed

RUST

 30

 println!("{}",n3);

 }

The Output will be as given below:

TutorialsPoint

Illustration: Type Casting

The following example illustrates converting a number to a string object:

fn main(){

 let number = 2020;

 let number_as_string= number.to_string(); // convert number to string

 println!("{}",number_as_string);

 println!("{}",number_as_string=="2020");

}

The output will be:

2020

true

Illustration: Format! Macro

Another way to add to String objects together is using a macro function called format. The

use of Format! is as shown below.

 fn main(){

 let n1 = "Tutorials".to_string();

 let n2 = "Point".to_string();

 let n3 = format!("{} {}",n1,n2);

 println!("{}",n3);

 }

Output

Tutorials Point

RUST

 31

An operator defines some function that will be performed on the data. The data on which

operators work are called operands. Consider the following expression −

7 + 5 = 12

Here, the values 7, 5, and 12 are operands, while + and = are operators.

The major operators in Rust can be classified as:

 Arithmetic

 Bitwise

 Comparison

 Logical

 Bitwise

 Conditional

Arithmetic Operators

Assume the values in variables a and b are 10 and 5 respectively.

S. No. Operator Description Example

1 +(Addition) returns the sum of the operands a+b is 15

2 -(Subtraction) returns the difference of the values a-b is 5

3
*

(Multiplication)
returns the product of the values a*b is 50

4 / (Division)
performs division operation and returns

the quotient
a / b is 2

5 % (Modulus)
performs division operation and returns

the remainder
a % b is 0

NOTE: The ++ and -- operators are not supported in Rust.

Illustration

fn main() {

8. RUST — Operators

RUST

 32

let num1 = 10 ;

let num2 = 2;

let mut res:i32;

res = num1 + num2;

println!("Sum: {} ",res);

res = num1 - num2;

println!("Difference: {} ",res) ;

res = num1*num2 ;

println!("Product: {} ",res) ;

res = num1/num2 ;

println!("Quotient: {} ",res);

res = num1%num2 ;

println!("Remainder: {} ",res);

}

Output

Sum: 12

Difference: 8

Product: 20

Quotient: 5

Remainder: 0

Relational Operators

Relational Operators test or define the kind of relationship between two entities. Relational

operators are used to compare two or more values. Relational operators return a Boolean

value – true or false.

Assume the value of A is 10 and B is 20.

RUST

 33

S. No. Operator Description Example

1 > Greater than (A > B) is False

2 < Lesser than (A < B) is True

3 >= Greater than or equal to (A >= B) is False

4 <= Lesser than or equal to (A <= B) is True

5 == Equality (A == B) is false

6 != Not equal (A != B) is True

3.

Illustration

fn main() {

let A:i32 = 10;

let B:i32 = 20;

println!("Value of A:{} ",A);

println!("Value of B : {} ",B);

let mut res = A>B ;

println!("A greater than B: {} ",res);

res = A<B ;

println!("A lesser than B: {} ",res) ;

res = A>=B ;

println!("A greater than or equal to B: {} ",res);

res = A<=B;

println!("A lesser than or equal to B: {}",res) ;

res = A==B ;

println!("A is equal to B: {}",res) ;

RUST

 34

res = A!=B ;

println!("A is not equal to B: {} ",res);

}

Output

Value of A:10

Value of B : 20

A greater than B: false

A lesser than B: true

A greater than or equal to B: false

A lesser than or equal to B: true

A is equal to B: false

A is not equal to B: true

Logical Operators

Logical Operators are used to combine two or more conditions. Logical operators too,

return a Boolean value. Assume the value of variable A is 10 and B is 20.

S. No. Operator Description Example

1 && (And)
The operator returns true only if all the

expressions specified return true

(A > 10 && B >

10) is False

2 ||(OR)

The operator returns true if at least

one of the expressions specified return

true

(A > 10 || B

>10) is True

3 ! (NOT)

The operator returns the inverse of the

expression’s result. For E.g.: !(>5)

returns false

!(A >10) is True

RUST

 35

Illustration

fn main() {

let a=20;

 let b=30;

 if (a > 10) && (b > 10) {

 println!("true");

 }

 let c=0;

 let d=30;

 if (c>10) || (d>10){

 println!("true");

 }

 let is_elder=false;

 if !is_elder {

 println!("Not Elder");

 }

}

Output

true

true

Not Elder

Bitwise Operators

Assume variable A = 2 and B = 3.

S. No. Operator Description Example

1
& (Bitwise

AND)

It performs a Boolean AND operation on each

bit of its integer arguments.

(A & B) is

2

2
| (BitWise

OR)

It performs a Boolean OR operation on each bit

of its integer arguments.

(A | B) is

3

RUST

 36

S. No. Operator Description Example

3

^

(Bitwise

XOR)

It performs a Boolean exclusive OR operation

on each bit of its integer arguments. Exclusive

OR means that either operand one is true or

operand two is true, but not both.

(A ^ B) is

1

4
! (Bitwise

Not)

It is a unary operator and operates by reversing

all the bits in the operand.
(!B) is -4

5
<< (Left

Shift)

It moves all the bits in its first operand to the

left by the number of places specified in the

second operand. New bits are filled with zeros.

Shifting a value left by one position is

equivalent to multiplying it by 2, shifting two

positions is equivalent to multiplying by 4, and

so on.

(A << 1)

is 4

6
>> (Right

Shift)

Binary Right Shift Operator. The left operand’s

value is moved right by the number of bits

specified by the right operand.

(A >> 1)

is 1

7

>>>

(Right

shift with

Zero)

This operator is just like the >> operator,

except that the bits shifted to the left are

always zero.

(A >>>

1) is 1

Illustration

fn main() {

let a:i32 = 2; // Bit presentation 10

let b:i32 = 3; // Bit presentation 11

let mut result:i32;

result = a & b;

println!("(a & b) => {} ",result);

result = a | b;

println!("(a | b) => {} ",result) ;

result = a ^ b;

println!("(a ^ b) => {} ",result);

RUST

 37

result = !b;

println!("(!b) => {} ",result);

result = a << b;

println!("(a << b) => {}",result);

result = a >> b;

println!("(a >> b) => {}",result);

}

Output

(a & b) => 2

(a | b) => 3

(a ^ b) => 1

(!b) => -4

(a << b) => 16

(a >> b) => 0

RUST

 38

Decision-making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be

executed if the condition is determined to be true, and optionally, other statements to be

executed if the condition is determined to be false.

Shown below is the general form of a typical decision-making structure found in most of

the programming languages −

S. No. Statement Description

1 if statement
An if statement consists of a Boolean expression followed by

one or more statements.

2 if...else statement

An if statement can be followed by an

optional else statement, which executes when the Boolean

expression is false.

3
else...if and

nested ifstatement

You can use one if or else if statement inside

another if or else if statement(s).

4 match statement
A match statement allows a variable to be tested against a list

of values.

9. RUST — Decision Making

https://user-images.githubusercontent.com/9062443/46945104-95641680-d091-11e8-81ca-8d4ab406442e.jpg

RUST

 39

If Statement

The if…else construct evaluates a condition before a block of code is executed.

Syntax

 if boolean_expression {

 // statement(s) will execute if the boolean expression is true

}

If the Boolean expression evaluates to true, then the block of code inside the if statement

will be executed. If the Boolean expression evaluates to false, then the first set of code

after the end of the if statement (after the closing curly brace) will be executed.

 fn main(){

 let num:i32 = 5;

if num > 0 {

 println!("number is positive") ;

}

}

The above example will print number is positive as the condition specified by the if block

is true.

if else statement

An if can be followed by an optional else block. The else block will execute if the Boolean

expression tested by the if statement evaluates to false.

Syntax

if boolean_expression {

 // statement(s) will execute if the boolean expression is true

} else {

 // statement(s) will execute if the boolean expression is false

}

RUST

 40

FlowChart

The if block guards the conditional expression. The block associated with the if statement

is executed if the Boolean expression evaluates to true.

The if block may be followed by an optional else statement. The instruction block

associated with the else block is executed if the expression evaluates to false.

Illustration: Simple if…else

fn main() {

let num = 12;

if num % 2==0 {

 println!("Even");

 } else {

 println!("Odd");

 }

}

The above example prints whether the value in a variable is even or odd. The if block

checks the divisibility of the value by 2 to determine the same. Here is the output of the

above code −

Even

https://camo.githubusercontent.com/ee8bfaf0e7044e93fef9321da4a70d59a16d469b/68747470733a2f2f7777772e7475746f7269616c73706f696e742e636f6d2f747970657363726970742f696d616765732f69665f656c73655f73746174656d656e742e6a7067

RUST

 41

Nested If

The else…if ladder is useful to test multiple conditions. The syntax is as shown below −

Syntax

 if boolean_expression1 {

 //statements if the expression1 evaluates to true

} else if boolean_expression2 {

 //statements if the expression2 evaluates to true

} else {

 //statements if both expression1 and expression2 result to false

}

When using if…else…if and else statements, there are a few points to keep in mind.

 An if can have zero or one else's and it must come after any else..if.

 An if can have zero to many else..if and they must come before the else.

 Once an else..if succeeds, none of the remaining else..if or else will be tested.

Example: else…if ladder

fn main() {

let num = 2 ;

if num > 0 {

 println!("{} is positive",num);

} else if num < 0 {

 println!("{} is negative",num);

} else {

 println!("{} is neither positive nor negative",num) ;

}

}

The snippet displays whether the value is positive, negative or zero.

Output

2 is positive

RUST

 42

Match Statement

The match statement checks if a current value is matching from a list of values, this is

very much similar to the switch statement in C language. In the first place, notice that the

expression following the match keyword does not have to be enclosed in parentheses.

The syntax is as shown below.

 let expressionResult = match variable_expression {

 constant_expr1 => {

 //statements;

 },

 constant_expr2 => {

 //statements;

 },

 _ => {

 //default

 }

};

In the example given below, state_code is matched with a list of values MH, KL, KA,

GA; if any match is found, a string value is returned to variable state. If no match is found,

the default case _ matches and value Unkown is returned.

fn main(){

 let state_code="MH";

 let state = match state_code {

 "MH" => {

 println!("Found match for MH");

 "Maharashtra"},

 "KL" => "Kerala",

 "KA" => "Karnadaka",

 "GA" => "Goa",

 _ => "Unknown"

 };

 println!("State name is {}",state);

}

RUST

 43

Output

Found match for MH

State name is Maharashtra

RUST

 44

There may be instances, where a block of code needs to be executed repeatedly. In

general, programming instructions are executed sequentially: The first statement in a

function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times.

Given below is the general form of a loop statement in most of the programming

languages.

Rust provides different types of loops to handle looping requirements:

 while

 loop

 for

10. RUST — Loop

https://camo.githubusercontent.com/ef8676cf57bfdd1c4dec3f6f40fcf4f0cea21085/68747470733a2f2f7777772e7475746f7269616c73706f696e742e636f6d2f747970657363726970742f696d616765732f6c6f6f702e6a7067

RUST

 45

Definite Loop

A loop the number of iterations of which is definite/fixed is termed as a definite loop. The

for loop is an implementation of a definite loop.

For Loop

The for loop executes the code block for a specified number of times. It can be used to

iterate over a fixed set of values, such as an array. The syntax of the for loop is as given

below −

Syntax

 for temp_variable in lower_bound..upper_bound {

 //statements

}

An example of a for loop is as shown below

fn main(){

 for x in 1..11{ // 11 is not inclusive

 if x==5 {

 continue;

 }

 println!("x is {}",x);

 }

}

NOTE that the variable x is only accessible within the for block.

Output

x is 1

x is 2

x is 3

x is 4

x is 6

x is 7

x is 8

x is 9

x is 10

RUST

 46

Indefinite Loop

An indefinite loop is used when the number of iterations in a loop is indeterminate or

unknown.

Indefinite loops can be implemented using -

S.No. Name Description

1 While
The while loop executes the instructions each time the condition

specified evaluates to true

2 Loop The loop is a while(true) indefinite loop

Illustration: for while

fn main(){

 let mut x = 0;

 while x < 10{

 x+=1;

 println!("inside loop x value is {}",x);

 }

 println!("outside loop x value is {}",x);

}

The output is as shown below -

inside loop x value is 1

inside loop x value is 2

inside loop x value is 3

inside loop x value is 4

inside loop x value is 5

inside loop x value is 6

inside loop x value is 7

inside loop x value is 8

inside loop x value is 9

inside loop x value is 10

outside loop x value is 10

RUST

 47

Illustration: loop

 fn main(){

 //while true

 let mut x =0;

 loop {

 x+=1;

 println!("x={}",x);

 if x==15 {

 break;

 }

 }

}

The break statement is used to take the control out of a construct. Using break in a loop

causes the program to exit the loop.

Output

x=1

x=2

x=3

x=4

x=5

x=6

x=7

x=8

x=9

x=10

x=11

x=12

x=13

x=14

x=15

RUST

 48

Continue Statement

The continue statement skips the subsequent statements in the current iteration and takes

the control back to the beginning of the loop. Unlike the break statement, the continue

does not exit the loop. It terminates the current iteration and starts the subsequent

iteration.

An example of the continue statement is given below.

fn main() {

let mut count = 0;

for num in 0..21 {

 if num % 2==0 {

 continue;

 }

 count+=1;

}

println! (" The count of odd values between 0 and 20 is: {} ",count);

 //outputs 10

}

The above example displays the number of even values between 0 and 20. The loop exits

the current iteration if the number is even. This is achieved using the continue statement.

The count of odd values between 0 and 20 is 10

RUST

 49

Functions are the building blocks of readable, maintainable, and reusable code. A function

is a set of statements to perform a specific task. Functions organize the program into

logical blocks of code. Once defined, functions may be called to access code. This makes

the code reusable. Moreover, functions make it easy to read and maintain the program’s

code.

A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

S. No. Name Description

1 Defining a function
TA function definition specifies what and how a

specific task would be done.

2
Calling or invoking a

Function
A function must be called so as to execute it.

3 Returning Functions
Functions may also return value along with

control, back to the caller.

4
Parameterized

Function

Parameters are a mechanism to pass values to

functions.

Defining a Function

A function definition specifies what and how a specific task would be done. Before using a

function, it must be defined. The function body contains code that should be executed by

the function. The rules for naming a function are similar to that of a variable. Functions

are defined using the fn keyword. The syntax for defining a standard function is given

below:

Syntax

 fn function_name(param1,param2..paramN)

{ // function body

}

A function declaration can optionally contain parameters/arguments. Parameters are used

to pass values to functions.

Example: Simple function definition

//Defining a function

11. RUST — Functions

RUST

 50

fn fn_hello(){

 println!("hello from function fn_hello ");

}

Invoking a Function

A function must be called so as to execute it. This process is termed as function

invocation. Values for parameters should be passed when a function is invoked. The

function that invokes another function is called the caller function.

Syntax

function_name(val1,val2,valN)

Example: Invoking a Function

fn main(){

 //calling a function

 fn_hello();

}

Here, the main() is the caller function.

Illustration

The following example defines a function fn_hello(). The function prints a message to

the console. The main() function invokes the fn_hello() function.

 fn main(){

 //calling a function

 fn_hello();

}

//Defining a function

fn fn_hello(){

 println!("hello from function fn_hello ");

}

RUST

 51

Output

hello from function fn_hello

Returning Value from a Function

Functions may also return a value along with control, back to the caller. Such functions

are called returning functions.

Syntax

Either of the following syntax can be used to define a function with return type.

With return statement

// Syntax1

function function_name() -> return_type {

 //statements

 return value;

}

Shorthand syntax without return statement

//Syntax2

function function_name() -> return_type {

 value //no semicolon means this value is returned

}

Illustration

fn main(){

 println!("pi value is {}",get_pi());

}

fn get_pi()->f64{

 22.0/7.0

}

Output

 pi value is 3.142857142857143

RUST

 52

Function with Parameters

Parameters are a mechanism to pass values to functions. Parameters form a part of the

function’s signature. The parameter values are passed to the function during its invocation.

Unless explicitly specified, the number of values passed to a function must match the

number of parameters defined.

Parameters can be passed to a function using one of the following techniques -

Pass by Value

When a method is invoked, a new storage location is created for each value parameter.

The values of the actual parameters are copied into them. Hence, the changes made to

the parameter inside the invoked method have no effect on the argument.

The following example declares a variable no, which is initially 5. The variable is passed

as parameter (by value) to the mutate_no_to_zero() function, which changes the value

to zero. After the function call when control returns back to main method the value will be

the same.

fn main(){

 let no:i32 = 5;

 mutate_no_to_zero(no);

 println!("The value of no is:{}",no);

}

fn mutate_no_to_zero(mut param_no: i32){

 param_no =param_no*0;

 println!("param_no value is :{}",param_no);

}

Output

param_no value is :0

The value of no is:5

Pass by Reference

When you pass parameters by reference, unlike value parameters, a new storage location

is not created for these parameters. The reference parameters represent the same

memory location as the actual parameters that are supplied to the method. Parameter

values can be passed by reference by prefixing the variable name with an &.

In the example given below, we have a variable no, which is initially 5. A reference to the

variable no is passed to the mutate_no_to_zero() function. The function operates on

the original variable. After the function call, when control returns back to main method,

the value of the original variable will be the zero.

RUST

 53

fn main(){

 let mut no:i32 = 5;

 mutate_no_to_zero(&mut no);

 println!("The value of no is:{}",no);

}

fn mutate_no_to_zero(param_no:&mut i32){

 *param_no =0; //de reference

}

The * operator is used to access value stored in the memory location that the variable

param_no points to. This is also known as dereferencing.

The output will be -

The value of no is 0.

Passing string to a function

The main() function passes a string object to the display() function.

 fn main(){

 let name:String = String::from("TutorialsPoint");

 display(name); //cannot access name after display

 }

fn display(param_name:String){

 println!("param_name value is :{}",param_name);

}

Output

param_name value is :TutorialsPoint

RUST

 54

Tuple is a compound data type. A scalar type can store only one type of data. For example,

an i32 variable can store only a single integer value. In compound types, we can store

more than one value at a time and it can be of different types.

Tuples have a fixed length – once declared they cannot grow or shrink in size. The tuple

index starts from 0.

Syntax

//Syntax1

let tuple_name:(data_type1,data_type2,data_type3) = (value1,value2,value3);

//Syntax2

 let tuple_name = (value1,value2,value3);

Illustration

The following example displays the values in a tuple.

fn main() {

 let tuple:(i32,f64,u8) = (-325,4.9,22);

 println!("{:?}",tuple);

}

The println!("{}",tuple) syntax cannot be used to display values in a tuple. This is because

a tuple is a compound type. Use the println!("{:?}", tuple_name) syntax to print values in

a tuple.

Output

(-325, 4.9, 22)

Illustration

The following example prints individual values in a tuple.

fn main() {

 let tuple:(i32,f64,u8) = (-325,4.9,22);

 println!("integer is :{:?}",tuple.0);

 println!("float is :{:?}",tuple.1);

12. RUST — Tuple

RUST

 55

 println!("unsigned integer is :{:?}",tuple.2);

}

Output

integer is :-325

float is :4.9

unsigned integer is :2

Illustration

The following example passes a tuple as parameter to a function. Tuples are passed by

value to functions.

fn main(){

 let b:(i32,bool,f64) = (110,true,10.9);

 print(b);

}

//pass the tuple as a parameter

fn print(x:(i32,bool,f64)){

 println!("Inside print method");

 println!("{:?}",x);

}

Output

Inside print method

(110, true, 10.9)

RUST

 56

Destructing

Destructing assignment is a feature of rust wherein we unpack the values of a tuple. This

is achieved by assigning a tuple to distinct variables.

Consider the following example -

fn main(){

 let b:(i32,bool,f64) = (30,true,7.9);

 print(b);

}

fn print(x:(i32,bool,f64)){

 println!("Inside print method");

 let (age,is_male,cgpa) = x; //assigns a tuple to distinct variables

 println!("Age is {} , isMale? {},cgpa is {}",age,is_male,cgpa);

}

Variable x is a tuple which is assigned to the let statement. Each variable – age, is_male

and cgpa will contain the corresponding values in a tuple.

Output

Inside print method

Age is 30 , isMale? true,cgpa is 7.9

RUST

 57

In this chapter, we will learn about an array and the various features associated with it.

Before we learn about arrays, let us see how an array is different from a variable.

Variables have the following limitations −

 Variables are scalar in nature. In other words, a variable declaration can only

contain a single value at a time. This means that to store n values in a program n

variable declaration will be needed. Hence, the use of variables is not feasible when

one needs to store a larger collection of values.

 Variables in a program are allocated memory in random order, thereby making it

difficult to retrieve/read the values in the order of their declaration.

An array is a homogenous collection of values. Simply put, an array is a collection of values

of the same data type.

Features of an Array

The features of an array are as listed below:

 An array declaration allocates sequential memory blocks.

 Arrays are static. This means that an array once initialized cannot be resized.

 Each memory block represents an array element.

 Array elements are identified by a unique integer called the subscript/ index of the

element.

 Populating the array elements is known as array initialization.

 Array element values can be updated or modified but cannot be deleted.

Declaring and Initializing Arrays

Use the syntax given below to declare and initialize an array in Rust.

Syntax

 //Syntax1

 let variable_name = [value1,value2,value3];

//Syntax2

let variable_name:[dataType;size] = [value1,value2,value3];

 //Syntax3

13. RUST — Array

RUST

 58

let variable_name:[dataType;size] = [default_value_for_elements,size];

In the first syntax, type of the array is inferred from the data type of the array’s first

element during initialization.

Illustration: Simple Array

The following example explicitly specifies the size and the data type of the array.

The {:?} syntax of the println!() function is used to print all values in the array.

The len() function is used to compute the size of the array.

fn main(){

 let arr:[i32;4] = [10,20,30,40];

 println!("array is {:?}",arr);

 println!("array size is :{}",arr.len());

}

Output

 array is [10, 20, 30, 40]

 array size is :4

Illustration: Array without data type

The following program declares an array of 4 elements. The datatype is not explicitly

specified during the variable declaration. In this case, the array will be of type integer.

The len() function is used to compute the size of the array.

fn main(){

 let arr = [10,20,30,40];

 println!("array is {:?}",arr);

 println!("array size is :{}",arr.len());

}

Output

 array is [10, 20, 30, 40]

 array size is :4

Illustration: Default values

The following example creates an array and initializes all its elements with a default value

of -1.

fn main(){

RUST

 59

 let arr:[i32;4] = [-1;4];

 println!("array is {:?}",arr);

 println!("array size is :{}",arr.len());

}

Output

 array is [-1, -1, -1, -1]

 array size is :4

Illustration: Array with for loop

The following example iterates through an array and prints the indexes and their

corresponding values. The loop retrieves values from index 0 to 4 (index of the last array

element).

fn main(){

 let arr:[i32;4] = [10,20,30,40];

 println!("array is {:?}",arr);

 println!("array size is :{}",arr.len());

 for index in 0..4 {

 println!("index is: {} & value is : {}",index,arr[index]);

 }

}

Output

array is [10, 20, 30, 40]

array size is :4

index is: 0 & value is : 10

index is: 1 & value is : 20

index is: 2 & value is : 30

index is: 3 & value is : 40

RUST

 60

Illustration: Using the iter() function

The iter() function fetches values of all elements in an array.

 fn main(){

 let arr:[i32;4] = [10,20,30,40];

 println!("array is {:?}",arr);

 println!("array size is :{}",arr.len());

 for val in arr.iter(){

 println!("value is :{}",val);

 }

 }

Output

array is [10, 20, 30, 40]

array size is :4

value is :10

value is :20

value is :30

value is :40

Illustration: Mutable array

The mut keyword can be used to declare a mutable array. The following example declares

a mutable array and modifies value of the second array element.

fn main(){

 let mut arr:[i32;4] = [10,20,30,40];

 arr[1]=0;

 println!("{:?}",arr);

}

Output

[10, 0, 30, 40]

Passing Arrays as Parameters to Functions

An array can be passed by value or by reference to functions.

RUST

 61

Illustration: Pass by value

fn main() {

 let arr = [10,20,30];

 update(arr);

 print!("Inside main {:?}",arr);

}

fn update(mut arr:[i32;3]){

 for i in 0..3{

 arr[i]=0;

 }

 println!("Inside update {:?}",arr);

}

Output

Inside update [0, 0, 0]

Inside main [10, 20, 30]

Illustration: Pass by reference

 fn main() {

 let mut arr = [10,20,30];

 update(&mut arr);

 print!("Inside main {:?}",arr);

}

fn update(arr:&mut [i32;3]){

 for i in 0..3{

 arr[i]=0;

 }

 println!("Inside update {:?}",arr);

}

RUST

 62

Output

Inside update [0, 0, 0]

Inside main [0, 0, 0]

Array Declaration and Constants

Let us consider an example given below to understand array declaration and constants.

fn main() {

let N: usize = 20;

let arr = [0; N]; //Error: non-constant used with constant

print!("{}",arr[10])

}

The compiler will result in an exception. This is because an array's length must be known

at compile time. Here, the value of the variable "N" will be determined at runtime. In other

words, variables cannot be used to define the size of an array.

However, the following program is valid:

 fn main() {

const N: usize = 20; // pointer sized

let arr = [0; N];

print!("{}",arr[10])

}

The value of an identifier prefixed with the const keyword is defined at compile time and

cannot be changed at runtime. usize is pointer-sized, thus its actual size depends on the

architecture you are compiling your program for.

RUST

 63

The memory for a program can be allocated in the following:

 Stack

 Heap

Stack

A stack follows a last in first out order. Stack stores data values for which the size is known

at compile time. For example, a variable of fixed size i32 is a candidate for stack

allocation. Its size is known at compile time. All scalar types can be stored in stack as the

size is fixed.

Consider an example of a string, which is assigned a value at runtime. The exact size of

such a string cannot be determined at compile time. So it is not a candidate for stack

allocation but for heap allocation.

Heap

The heap memory stores data values the size of which is unknown at compile time. It is

used to store dynamic data. Simply put, a heap memory is allocated to data values that

may change throughout the life cycle of the program. The heap is an area in the memory

which is less organized when compared to stack.

What is Ownership?

Each value in Rust has a variable that is called owner of the value. Every data stored in

Rust will have an owner associated with it. For example, in the syntax – let age=30, age is

the owner of the value 30.

 Each data can have only one owner at a time.

 Two variables cannot point to the same memory location. The variables will always

be pointing to different memory locations.

Transferring Ownership

The ownership of value can be transferred by -

 Assigning value of one variable to another variable.

 Passing value to a function.

 Returning value from a function.

Assigning value of one variable to another variable

The key selling point of Rust as a language is its memory safety. Memory safety is achieved

by tight control on who can use what and when restrictions.

14. RUST — Ownership

RUST

 64

Consider the following snippet -

fn main(){

 let v = vec![1,2,3]; // vector v owns the object in heap

 //only a single variable owns the heap memory at any given time

 let v2 = v; // here two variables owns heap value,

 //two pointers to the same content is not allowed in rust

 //Rust is very smart in terms of memory access ,so it detects a race condition

//as two variables point to same heap

 println!("{:?}",v);

}

The above example declares a vector v. The idea of ownership is that only one variable

binds to a resource, either v binds to resource or v2 binds to the resource. The above

example throws an error - use of moved value: `v`. This is because the ownership of the

resource is transferred to v2 .It means the ownership is moved from v to v2 (v2=v) and

v is invalidated after the move.

Passing value to a function

The ownership of a value also changes when we pass an object in the heap to a closure or

function.

fn main(){

 let v = vec![1,2,3]; // vector v owns the object in heap

 let v2 = v; // moves ownership to v2

 display(v2); // v2 is moved to display and v2 is invalidated

 println!("In main {:?}",v2); //v2 is No longer usable here

}

fn display(v:Vec<i32>){

 println!("inside display {:?}",v);

}

Returning value from a function

Ownership passed to the function will be invalidated as function execution completes. One

work around for this is let the function return the owned object back to the caller.

RUST

 65

 fn main(){

 let v = vec![1,2,3]; // vector v owns the object in heap

 let v2 = v; // moves ownership to v2

let v2_return =display(v2);

 println!("In main {:?}",v2_return);

}

fn display(v:Vec<i32>)->Vec<i32>{ // returning same vector

 println!("inside display {:?}",v);

 v

}

Ownership and Primitive Types

In case of primitive types, contents from one variable is copied to another. So, there is no

ownership move happening. This is because a primitive variable needs less resources than

an object. Consider the following example -

fn main(){

 let u1 = 10;

 let u2=u1; // u1 value copied(not moved) to u2

 println!("u1 = {}",u1);

}

The output will be – 10.

RUST

 66

It is very inconvenient to pass the ownership of a variable to another function and then

return the ownership. Rust supports a concept, borrowing, where the ownership of a value

is transferred temporarily to an entity and then returned to the original owner entity.

Consider the following -

fn main(){

 // a list of nos

 let v = vec![10,20,30];

 print_vector(v);

 println!("{}",v[0]); // this line gives error

}

fn print_vector(x:Vec<i32>){

 println!("Inside print_vector function {:?}",x);

}

The main function invokes a function print_vector(). A vector is passed as parameter to

this function. The ownership of the vector is also passed to the print_vector() function

from the main(). The above code will result in an error as shown below when

the main() function tries to access the vector v.

| print_vector(v);

| - value moved here

| println!("{}",v[0]);

| ^ value used here after move

This is because a variable or value can no longer be used by the function that originally

owned it once the ownership is transferred to another function.

What is Borrowing?

When a function transfers its control over a variable/value to another function temporarily,

for a while, it is called borrowing. This is achieved by passing a reference to the variable

(& var_name) rather than passing the variable/value itself to the function. The ownership

of the variable/ value is transferred to the original owner of the variable after the function

to which the control was passed completes execution.

fn main(){

 // a list of nos

15. RUST — Borrowing

RUST

 67

 let v = vec![10,20,30];

 print_vector(&v); // passing reference

 println!("Printing the value from main() v[0]={}",v[0]);

}

fn print_vector(x:&Vec<i32>){

 println!("Inside print_vector function {:?}",x);

}

Output

Inside print_vector function [10, 20, 30]

Printing the value from main() v[0]=10

Mutable References

A function can modify a borrowed resource by using a mutable reference to such resource.

A mutable reference is prefixed with &mut. Mutable references can operate only on

mutable variables.

Illustration: Mutating an integer reference

 fn add_one(e: &mut i32) {

 *e+= 1;

}

fn main() {

 let mut i = 3;

 add_one(&mut i);

 println!("{}", i);

}

The main() function declares a mutable integer variable i and passes a mutable reference

of i to the add_one(). The add_one() increments the value of the variable i by one.

RUST

 68

Illustration: Mutating a string reference

 fn main(){

 let mut name:String = String::from("TutorialsPoint");

 display(&mut name); //pass a mutable reference of name

 println!("The value of name after modification is:{}",name);

}

fn display(param_name:&mut String){

 println!("param_name value is :{}",param_name);

 param_name.push_str(" Rocks"); //Modify the actual string,name

}

The main() function passes a mutable reference of the variable name to the display()

function. The display function appends an additional string to the original name variable.

Output

param_name value is :TutorialsPoint

The value of name after modification is:TutorialsPoint Rocks

RUST

 69

A slice is a pointer to a block of memory. Slices can be used to access portions of data

stored in contiguous memory blocks. It can be used with data structures like arrays,

vectors and strings. Slices use index numbers to access portions of data. The size of a

slice is determined at runtime.

Slices are pointers to the actual data. They are passed by reference to functions, which is

also known as borrowing.

For example, slices can be used to fetch a portion of a string value. A sliced string is a

pointer to the actual string object. Therefore, we need to specify the starting and ending

index of a String. Index starts from 0 just like arrays.

Syntax

 let sliced_value = &data_structure[start_index..end_index]

The minimum index value is 0 and the maximum index value is the size of the data

structure. NOTE that the end_index will not be included in final string.

The diagram below shows a sample string Tutorials, that has 9 characters. The index of

the first character is 0 and that of the last character is 8.

The following code fetches 5 characters from the string (starting from index 4).

fn main(){

 let n1 = "Tutorials".to_string();

 println!("length of string is {}",n1.len());

 let c1 = &n1[4..9]; // fetches characters at 4,5,6,7, and 8 indexes

 println!("{}",c1);

 }

Output

length of string is 9

16. RUST — Slices

https://raw.githubusercontent.com/kannans89/RustRepo/master/Images/string_slice.png

RUST

 70

rials

Illustration: Slicing an integer array

The main() function declares an array with 5 elements. It invokes the use_slice() function

and passes to it a slice of three elements (points to the data array). The slices are passed

by reference. The use_slice() function prints the value of the slice and its length.

fn main(){

 let data = [10,20,30,40,50];

 use_slice(&data[1..4]);//this is effectively borrowing elements for a while

}

fn use_slice(slice:&[i32]){ // is taking a slice or borrowing a part of an

array of i32s

 println!("length of slice is {:?}",slice.len());

 println!("{:?}",slice);

}

Output

length of slice is 3

[20, 30, 40]

Mutable Slices

The &mut keyword can be used to mark a slice as mutable.

fn main(){

 let mut data = [10,20,30,40,50];

 use_slice(&mut data[1..4]);// passes references of 20, 30 and 40

 println!("{:?}",data);

}

fn use_slice(slice:&mut [i32]){

 println!("length of slice is {:?}",slice.len());

 println!("{:?}",slice);

 slice[0]=1010; // replaces 20 with 1010

}

RUST

 71

Output

length of slice is 3

[20, 30, 40]

[10, 1010, 30, 40, 50]

The above code passes a mutable slice to the use_slice() function. The function modifies

the second element of the original array.

RUST

 72

Arrays are used to represent a homogeneous collection of values. Similarly, a structure is

another user defined data type available in Rust that allows us to combine data items of

different types, including another structure. A structure defines data as a key-value pair.

Syntax: Declaring a structure

The struct keyword is used to declare a structure. Since structures are statically typed,

every field in the structure must be associated with a data type. The naming rules and

conventions for a structure is like that of a variable. The structure block must end with a

semicolon.

 struct Name_of_structure {

 field1:data_type,

 field2:data_type,

 field3:data_type

 }

Syntax: Initializing a structure

After declaring a struct, each field should be assigned a value. This is known as

initialization.

let instance_name =Name_of_structure {

 field1:value1,

 field2:value2,

 field3:value3

}; //NOTE the semicolon

Syntax: Accessing values in a structure

Use the dot notation to access value of a specific field.

instance_name.field1

17. RUST — Structure

RUST

 73

Illustration

struct Employee{

 name:String,

 company:String,

 age:u32

}

fn main() {

 let emp1 = Employee{

 company:String::from("TutorialsPoint"),

 name:String::from("Mohtashim"),

 age:50

 };

 println!("Name is :{} company is {} age is
{}",emp1.name,emp1.company,emp1.age);

}

The above example declares a struct Employee with three fields – name, company and

age of types. The main() initializes the structure. It uses the println! macro to print values

of the fields defined in the structure.

Output

Name is :Mohtashim company is TutorialsPoint age is 50

Modifying a struct instance

To modify an instance, the instance variable should be marked mutable. The below

example declares and initializes a structure named Employee and later modifies value of

the age field to 40 from 50.

 let mut emp1 = Employee{

 company:String::from("TutorialsPoint"),

 name:String::from("Mohtashim"),

 age:50

 };

 emp1.age=40;

RUST

 74

 println!("Name is :{} company is {} age is

{}",emp1.name,emp1.company,emp1.age);

Output

Name is :Mohtashim company is TutorialsPoint age is 40

Passing a struct to a function

The following example shows how to pass instance of struct as a parameter. The display

method takes an Employee instance as parameter and prints the details.

fn display(emp:Employee){

 println!("Name is :{} company is {} age is {}",emp.name,emp.company,emp.age);

}

Here is the complete program:

//declare a structure

 struct Employee{

 name:String,

 company:String,

 age:u32

}

 fn main() {

 //initialize a structure

 let emp1 = Employee{

 company:String::from("TutorialsPoint"),

 name:String::from("Mohtashim"),

 age:50

 };

 let emp2 = Employee{

 company:String::from("TutorialsPoint"),

 name:String::from("Kannan"),

 age:32

 };

 //pass emp1 and emp2 to display()

 display(emp1);

 display(emp2);

RUST

 75

}

//fetch values of specific structure fields using the . operator and print it

to the console

fn display(emp:Employee){

 println!("Name is :{} company is {} age is {}",emp.name,emp.company,emp.age);

}

Output

Name is :Mohtashim company is TutorialsPoint age is 50

Name is :Kannan company is TutorialsPoint age is 32

Returning struct from a function

Let us consider a function who_is_elder(), which compares two employees age and returns

the elder one.

fn who_is_elder (emp1:Employee,emp2:Employee)->Employee{

 if emp1.age>emp2.age {

 return emp1;

 }

 else {

 return emp2;

 }

}

Here is the complete program:

fn main() {

 //initialize structure

 let emp1 = Employee{

 company:String::from("TutorialsPoint"),

 name:String::from("Mohtashim"),

 age:50

 };

 let emp2 = Employee{

RUST

 76

 company:String::from("TutorialsPoint"),

 name:String::from("Kannan"),

 age:32

 };

 let elder = who_is_elder(emp1,emp2);

 println!("elder is:");

 //prints details of the elder employee

 display(elder);

}

//accepts instances of employee structure and compares their age

fn who_is_elder (emp1:Employee,emp2:Employee)->Employee{

 if emp1.age>emp2.age {

 return emp1;

 }

 else {

 return emp2;

 }

}

//display name, comapny and age of the employee

fn display(emp:Employee){

 println!("Name is :{} company is {} age is {}",emp.name,emp.company,emp.age);

}

//declare a structure

struct Employee{

 name:String,

 company:String,

 age:u32

}

Output

RUST

 77

elder is:

Name is :Mohtashim company is TutorialsPoint age is 50

Method in Structure

Methods are like functions. They are a logical group of programming instructions. Methods

are declared with the fn keyword. The scope of a method is within the structure block.

Methods are declared outside the structure block. The impl keyword is used to define a

method within the context of a structure. The first parameter of a method will be

always self, which represents the calling instance of the structure. Methods operate on the

data members of a structure.

To invoke a method, we need to first instantiate the structure. The method can be called

using the structure's instance.

Syntax

 struct My_struct {}

 impl My_struct{ //set the method's context

 fn method_name(){ //define a method

 }

 }

Illustration

The following example defines a structure Rectangle with fields – width and height. A

method area is defined within the structure's context. The area method accesses the

structure's fields via the self keyword and calculates the area of a rectangle.

//define dimensions of a rectangle

struct Rectangle{

 width:u32,

 height:u32

}

//logic to calculate area of a rectangle

impl Rectangle{

 fn area(&self)->u32 { //use the . operator to fetch the value of a field

via the self keyword

 self.width * self.height

 }

}

RUST

 78

fn main(){

//instanatiate the structure

 let small = Rectangle{

 width:10,

 height:20

 };

//print the rectangle's area

 println!("width is {} height is {} area of Rectangle is
{}",small.width,small.height,small.area());

}

Output

width is 10 height is 20 area of Rectangle is 200

Static Method in Structure

Static methods can be used as utility methods. These methods exist even before the

structure is instantiated. Static methods are invoked using the structure's name and can

be accessed without an instance. Unlike normal methods, a static method will not take the

&self parameter.

Syntax: Declaring a static method

A static method like functions and other methods can optionally contain parameters.

impl Structure_Name {

//static method that creates objects of the Point structure

 fn method_name(param1: datatype, param2: datatype) -> return_type {

 // logic goes here

}

Syntax: Invoking a static method

The structure_name :: syntax is used to access a static method.

structure_name::method_name(v1,v2)

RUST

 79

Illustration

The following example uses the getInstance method as a factory class that creates and

returns instances of the structure Point.

//declare a structure

struct Point {

 x: i32,

 y: i32,

}

impl Point {

//static method that creates objects of the Point structure

 fn getInstance(x: i32, y: i32) -> Point {

 Point { x: x, y: y }

 }

//display values of the structure's field

 fn display(&self){

 println!("x ={} y={}",self.x,self.y);

 }

}

fn main(){

// Invoke the static method

 let p1 = Point::getInstance(10,20);

 p1.display();

}

Output

x =10 y=20

RUST

 80

In Rust programming, when we have to select a value from a list of possible variants we

use enumeration data types. An enumerated type is declared using the enum keyword.

Following is the syntax of enum:

enum enum_name{

 variant1,

 variant2,

 variant3

}

Illustration: Using an Enumeration

The example declares an enum – GenderCategory, which has variants as Male and Female.

The print! macro displays value of the enum. The compiler will throw an error the

trait std::fmt::Debug is not implemented for GenderCategory. The

attribute #[derive(Debug)] is used to suppress this error.

// The `derive` attribute automatically creates the implementation

// required to make this `enum` printable with `fmt::Debug`.

#[derive(Debug)]

enum GenderCategory {

 Male,Female

 }

fn main() {

let male = GenderCategory::Male;

let female = GenderCategory::Female;

println!("{:?}",male);

println!("{:?}",female);

}

18. RUST — Enums

RUST

 81

Output

Male

Female

Struct and Enum

The following example defines a structure Person. The field gender is of the

type GenderCategory (which is an enum) and can be assigned either Male or Female as

value.

// The `derive` attribute automatically creates the implementation

// required to make this `enum` printable with `fmt::Debug`.

#[derive(Debug)]

enum GenderCategory {

 Male,Female

 }

// The `derive` attribute automatically creates the implementation

// required to make this `struct` printable with `fmt::Debug`.

#[derive(Debug)]

struct Person {

 name:String,

 gender:GenderCategory

}

fn main() {

 let p1 = Person{

 name:String::from("Mohtashim"),

 gender:GenderCategory::Male

 };

 let p2 = Person{

 name:String::from("Amy"),

 gender:GenderCategory::Female

 };

RUST

 82

 println!("{:?}",p1);

 println!("{:?}",p2);

}

The example creates objects p1 and p2 of type Person and initializes the attributes, name

and gender for each of these objects.

Output

Person { name: "Mohtashim", gender: Male }

Person { name: "Amy", gender: Female }

Option Enum

Option is a predefined enum in the Rust standard library. This enum has two values –

Some(data) and None.

Syntax

 enum Option<T> {

 Some(T), //used to return a value

 None // used to return null, as Rust doesn't support the
null keyword

 }

Here, the type T represents value of any type.

Rust does not support the null keyword. The value None, in the enumOption, can be used

by a function to return a null value. If there is data to return, the function can

return Some(data).

Let us understand this with an example -

The program defines a function is_even(), with a return type Option. The function verifies

if the value passed is an even number. If the input is even, then a value true is returned,

else the function returns None.

fn main() {

 let result = is_even(3);

 println!("{:?}",result);

 println!("{:?}",is_even(30));

}

RUST

 83

fn is_even(no:i32)->Option<bool>{

 if no%2 == 0 {

 Some(true)

 }

 else{

 None

 }

}

Output

None

Some(true)

Match Statement and Enum

The match statement can be used to compare values stored in an enum. The following

example defines a function, print_size, which takes CarType enum as parameter. The

function compares the parameter values with a pre-defined set of constants and displays

the appropriate message.

 enum CarType {

 Hatch,

 Sedan,

 SUV

}

fn print_size(car:CarType){

 match car {

 CarType::Hatch => {

 println!("Small sized car");

 },

 CarType::Sedan => {

 println!("medium sized car");

 },

 CarType::SUV =>{

 println!("Large sized Sports Utility car");

 }

 }

RUST

 84

}

fn main(){

 print_size(CarType::SUV);

 print_size(CarType::Hatch);

 print_size(CarType::Sedan);

}

Output

Large sized Sports Utility car

Small sized car

medium sized car

Match with Option

The example of is_even function, which returns Option type, can also be implemented with

match statement as shown below-

fn main() {

 match is_even(5){

 Some(data) => {

 if data==true{

 println!("Even no");

 }

 },

 None => {

 println!("not even");

 }

 }

}

fn is_even(no:i32)->Option<bool>{

 if no%2 == 0 {

 Some(true)

 }

 else{

 None

 }

RUST

 85

}

Output

not even

Match & Enum with Data Type

It is possible to add data type to each variant of an enum. In the following example, Name

and Usr_ID variants of the enum are of String and integer types respectively. The following

example shows the use of match statement with an enum having a data type.

// The `derive` attribute automatically creates the implementation

// required to make this `enum` printable with `fmt::Debug`.

#[derive(Debug)]

enum GenderCategory {

 Name(String),Usr_ID(i32)

 }

fn main() {

 let p1 = GenderCategory::Name(String::from("Mohtashim"));

 let p2 = GenderCategory::Usr_ID(100);

 println!("{:?}",p1);

 println!("{:?}",p2);

 match p1 {

 GenderCategory::Name(val)=>{

 println!("{}",val);

 }

 GenderCategory::Usr_ID(val)=>{

 println!("{}",val);

 }

 }

}

Output

Name("Mohtashim")

Usr_ID(100)

RUST

 86

Mohtashim

RUST

 87

A logical group of code is called a Module. Multiple modules are compiled into a unit

called crate. Rust programs may contain a binary crate or a library crate. A binary crate

is an executable project that has a main() method. A library crate is a group of components

that can be reused in other projects. Unlike a binary crate, a library crate does not have

an entry point (main() method). The Cargo tool is used to manage crates in Rust. For

example, the network module contains networking related functions and the

graphics module contains drawing-related functions. Modules are similar to namespaces

in other programming languages. Third-party crates can be downloaded using cargo

from crates.io.

S. No. Term Description

1 crate
Is a compilation unit in Rust; Crate is compiled to binary or

library.

2 cargo The official Rust package management tool for crates.

3 module Logically groups code within a crate.

4 crates.io The official Rust package registry.

Syntax

 //public module

 pub mod a_public_module{

 pub fn a_public_function(){

 //public function

 }

 fn a_private_function(){

 //private function

 }

 }

 //private module

 mod a_private_module{

 fn a_private_function(){

19. RUST — Modules

https://crates.io/
https://crates.io/

RUST

 88

 }

 }

Modules can be public or private. Components in a private module cannot be accessed by

other modules. Modules in Rust are private by default. On the contrary, functions in a

public module can be accessed by other modules. Modules should be prefixed

with pub keyword to make it public. Functions within a public module must also be made

public.

Illustration: Defining a Module

The example defines a public module – movies. The module contains a function play() that

accepts a parameter and prints its value.

pub mod movies {

 pub fn play(name:String){

 println!("Playing movie {}",name);

 }

}

fn main(){

 movies::play("Herold and Kumar".to_string());

}

Output

Playing movie Herold and Kumar

RUST

 89

Use Keyword

The use keyword helps to import a public module.

Syntax

use public_module_name::function_name;

Illustration

pub mod movies {

 pub fn play(name:String){

 println!("Playing movie {}",name);

 }

}

use movies::play;

fn main(){

 play("Herold and Kumar ".to_string());

}

Output

 Playing movie Herold and Kumar

Nested Modules

Modules can also be nested. The comedy module is nested within the english module,

which is further nested in the movies module. The example given below defines a

function play inside the movies/english/comedy module.

pub mod movies {

 pub mod english {

 pub mod comedy{

 pub fn play(name:String){

 println!("Playing comedy movie {}",name);

 }

 }

 }

}

RUST

 90

use movies::english::comedy::play; // importing a public module

fn main(){

 // short path syntax

 play("Herold and Kumar".to_string());

 play("The Hangover".to_string());

 //full path syntax

 movies::english::comedy::play("Airplane!".to_string());

}

Output

Playing comedy movie Herold and Kumar

Playing comedy movie The Hangover

Playing comedy movie Airplane!

Illustration: Create a Library Crate and Consume in a Binary Crate

Let us create a library crate named movie_lib, which contains a module movies. To build

the movie_lib library crate, we will use the tool cargo.

Step 1: Create Project folder

Create a folder movie-app followed by a sub-folder movie-lib. After the folder and sub-

folder are created, create an src folder and a Cargo.toml file in this directory. The source

code should go in the src folder. Create the files lib.rs and movies.rs in the src folder.

The Cargo.toml file will contain the metadata of the project like version number, author

name, etc.

The project directory structure will be as shown below:

movie-app

 movie-lib/

 -->Cargo.toml

 -->src/

 lib.rs

 movies.rs

Step 2: Edit the Cargo.toml file to add project metadata

[package]

name="movies_lib"

RUST

 91

version="0.1.0"

authors = ["Mohtashim"]

Step 3: Edit the lib.rs file.

Add the following module definition to this file.

 pub mod movies;

The above line creates a public module – movies.

Step 4: Edit the movies.rs file

This file will define all functions for the movies module.

pub fn play(name:String){

 println!("Playing movie {} :movies-app",name);

 }

The above code defines a function play() that accepts a parameter and prints it to the

console.

Step 5: Build the library crate

Build app using the cargo build command to verify if the library crate is structured

properly. Make sure you are at root of project – the movie-app folder. The following

message will be displayed in the terminal if the build succeeds.

D:\Rust\movie-lib> cargo build

 Compiling movies_lib v0.1.0 (file:///D:/Rust/movie-lib)

 Finished dev [unoptimized + debuginfo] target(s) in 0.67s

Step 6: Create a test application

Create another folder movie-lib-test in the movie-app folder followed by a Cargo.toml

file and the src folder. This project should have main method as this is a binary crate,

which will consume the library crate created previously. Create a main.rs file in the src

folder. The folder structre will be as shown.

movie-app

 movie-lib // already completed

 movie-lib-test/

 -->Cargo.toml

 -->src/

 main.rs

RUST

 92

Step 7: Add the following in the Cargo.toml file

 [package]

name = "test_for_movie_lib"

version = "0.1.0"

authors = ["Mohtashim"]

[dependencies]

movies_lib = { path = "../movie-lib" }

NOTE: The path to the library folder is set as dependencies. The following diagram shows

the contents of both the projects.

https://raw.githubusercontent.com/kannans89/RustRepo/master/Images/movie_lib.jpg

RUST

 93

Step 8: Add the following to main.rs file

extern crate movies_lib;

use movies_lib::movies::play;

fn main(){

 println!("inside main of test ");

 play("Tutorialspoint".to_string())

}

The above code imports an external package called movies_lib. Check the Cargo.toml of

current project to verify the crate name.

Step 9: Use of cargo build and cargo run

We will use the cargo build and cargo run to build the binary project and execute it as

shown below:

https://raw.githubusercontent.com/kannans89/RustRepo/master/Images/20_modules.PNG

RUST

 94

Rust's standard collection library provides efficient implementations of the most common

general-purpose programming data structures. This chapter discusses the implementation

of the commonly used collections – Vector, HashMap and HashSet.

Vector

A Vector is a resizable array. It stores values in contiguous memory blocks. The predefined

structure Vec can be used to create vectors. Some important features of a Vector are:

 A Vector can grow or shrink at runtime.

 A Vector is a homogeneous collection.

 A Vector stores data as sequence of elements in a particular order. Every element

in a Vector is assigned a unique index number. The index starts from 0 and goes

up to n-1 where, n is the size of the collection. For example, in a collection of 5

elements, the first element will be at index 0 and the last element will be at index

4.

 A Vector will only append values to (or near) the end. In other words, a Vector can

be used to implement a stack.

 Memory for a Vector is allocated in the heap.

Syntax: Creating a Vector

let mut instance_name = Vec::new();

The static method new() of the Vec structure is used to create a vector instance.

Alternatively, a vector can also be created using the vec! macro. The syntax is as given

below -

let vector_name = vec![val1,val2,val3]

The following table lists some commonly used functions of the Vec structure.

S. No. Method Signature Description

1 new() pub fn new()->Vect

Constructs a new, empty Vec.

The vector will not allocate

until elements are pushed

onto it.

2 push()
pub fn push(&mut

self, value: T)

Appends an element to the

back of a collection.

20. RUST — Collections

RUST

 95

S. No. Method Signature Description

3 remove()

pub fn remove(&mut

self, index: usize) ->

T

Removes and returns the

element at position index

within the vector, shifting all

elements after it to the left.

4 contains()

pub fn

contains(&self, x:

&T) -> bool

Returns true if the slice

contains an element with the

given value.

5 len()
pub fn len(&self) ->

usize

Returns the number of

elements in the vector, also

referred to as its 'length'.

Illustration: Creating a Vector - new()

To create a vector, we use the static method new:

fn main() {

 let mut v = Vec::new();

 v.push(20);

 v.push(30);

 v.push(40);

 println!("size of vector is :{}",v.len());

 println!("{:?}",v);

}

The above example creates a Vector using the static method new() that is defined in

structure Vec. The push(val) function appends the value passed as parameter to the

collection. The len() function returns the length of the vector.

Output

size of vector is :3

[20, 30, 40]

RUST

 96

Illustration: Creating a Vector - vec! Macro

The following code creates a vector using the vec! macro. The data type of the vector is

inferred the first value that is assigned to it.

fn main() {

 let v = vec![1,2,3];

 println!("{:?}",v);

}

Output

[1, 2, 3]

As mentioned earlier, a vector can only contain values of the same data type. The following

snippet will throw a error[E0308]: mismatched types error.

fn main() {

 let v = vec![1,2,3,"hello"];

 println!("{:?}",v);

}

Illustration: push()

Appends an element to the end of a collection.

fn main() {

 let mut v = Vec::new();

 v.push(20);

 v.push(30);

 v.push(40);

 println!("{:?}",v);

}

Output

[20, 30, 40]

RUST

 97

Illustration: remove()

Removes and returns the element at position index within the vector, shifting all elements

after it to the left.

fn main() {

 let mut v = vec![10,20,30];

 v.remove(1);

 println!("{:?}",v);

}

Output

[10, 30]

Illustration: contains()

Returns true if the slice contains an element with the given value:

fn main() {

 let v = vec![10,20,30];

 if v.contains(&10){

 println!("found 10");

 }

 println!("{:?}",v);

}

Output

found 10

[10, 20, 30]

Illustration: len()

Returns the number of elements in the vector, also referred to as its 'length'.

fn main() {

 let v = vec![1,2,3];

 println!("size of vector is :{}",v.len());

 }

RUST

 98

Output

size of vector is :3

Accessing values from a Vector

Individual elements in a vector can be accessed using their corresponding index numbers.

The following example creates a vector ad prints the value of the first element.

fn main() {

 let mut v = Vec::new();

 v.push(20);

 v.push(30);

 println!("{:?}",v[0]);

}

Output: `20`

Values in a vector can also be fetched using reference to the collection.

 fn main() {

 let mut v = Vec::new();

 v.push(20);

 v.push(30);

 v.push(40);

 v.push(500);

 for i in &v {

 println!("{}",i);

 }

 println!("{:?}",v);

}

RUST

 99

Output

20

30

40

500

[20, 30, 40, 500]

HashMap

A map is a collection of key-value pairs (called entries). No two entries in a map can have

the same key. In short, a map is a lookup table. A HashMap stores the keys and values in

a hash table. The entries are stored in an arbitrary order. The key is used to search for

values in the HashMap. The HashMap structure is defined in the std::collections module.

This module should be explicitly imported to access the HashMap structure.

Syntax: Creating a HashMap

let mut instance_name = HashMap::new();

The static method new() of the HashMap structure is used to create a HashMap object.

This method creates an empty HashMap.

The commonly used functions of HashMap are discussed below:

S. No. Method Signature Description

1 insert()
pub fn insert(&mut self, k:

K, v: V) -> Option

Inserts a key/value pair, if

no key then None is

returned. After update,

old value is returned.

2 len() pub fn len(&self) -> usize
Returns the number of

elements in the map.

3 get()

pub fn get<Q:

?Sized>(&self, k: &Q) ->

Option<&V> where

K:Borrow Q:Hash+ Eq

Returns a reference to the

value corresponding to

the key.

4 iter()
pub fn iter(&self) ->

Iter<K, V>

An iterator visiting all

key-value pairs in

arbitrary order. The

iterator element type is

(&'a K, &'a V).

RUST

 100

S. No. Method Signature Description

5 contains_key

pub fn contains_key<Q:

?Sized>(&self, k: &Q) ->

bool

Returns true if the map

contains a value for the

specified key.

6 remove()

pub fn remove_entry<Q:

?Sized>(&mut self, k: &Q)

-> Option<(K, V)>

Removes a key from the

map, returning the stored

key and value if the key

was previously in the

map.

Illustration:insert()

Inserts a key/value pair into the HashMap.

 use std::collections::HashMap;

 fn main(){

 let mut stateCodes = HashMap::new();

 stateCodes.insert("KL","Kerala");

 stateCodes.insert("MH","Maharashtra");

 println!("{:?}",stateCodes);

}

The above program creates a HashMap and initializes it with 2 key-value pairs.

Output

{"KL": "Kerala", "MH": "Maharashtra"}

RUST

 101

Illustration:len()

Returns the number of elements in the map

use std::collections::HashMap;

 fn main(){

 let mut stateCodes = HashMap::new();

 stateCodes.insert("KL","Kerala");

 stateCodes.insert("MH","Maharashtra");

 println!("size of map is {}",stateCodes.len());

 }

The above example creates a HashMap and prints the total number of elements in it.

Output

size of map is 2

Illustration: get()

Returns a reference to the value corresponding to the key. The following example retrieves

the value for key KL in the HashMap.

use std::collections::HashMap;

fn main(){

 let mut stateCodes = HashMap::new();

 stateCodes.insert("KL","Kerala");

 stateCodes.insert("MH","Maharashtra");

 println!("size of map is {}",stateCodes.len());

 println!("{:?}",stateCodes);

 match stateCodes.get(&"KL") {

 Some(value)=>{

 println!("Value for key KL is {}",value);

 }

 None =>{

 println!("nothing found");

 }

 }

}

RUST

 102

Output

size of map is 2

{"KL": "Kerala", "MH": "Maharashtra"}

Value for key KL is Kerala

Illustration: iter()

Returns an iterator containing reference to all key-value pairs in an arbitrary order.

 use std::collections::HashMap;

 fn main(){

 let mut stateCodes = HashMap::new();

 stateCodes.insert("KL","Kerala");

 stateCodes.insert("MH","Maharashtra");

 for (key, val) in stateCodes.iter() {

 println!("key: {} val: {}", key, val);

 }

}

Output

key: MH val: Maharashtra

key: KL val: Kerala

Illustration: contains_key()

Returns true if the map contains a value for the specified key.

 use std::collections::HashMap;

fn main(){

 let mut stateCodes = HashMap::new();

 stateCodes.insert("KL","Kerala");

 stateCodes.insert("MH","Maharashtra");

 stateCodes.insert("GJ","Gujarat");

 if stateCodes.contains_key(&"GJ"){

 println!("found key");

 }

RUST

 103

 }

Output

found key

Illustration: remove()

Removes a key from the map.

use std::collections::HashMap;

fn main(){

 let mut stateCodes = HashMap::new();

 stateCodes.insert("KL","Kerala");

 stateCodes.insert("MH","Maharashtra");

 stateCodes.insert("GJ","Gujarat");

 println!("length of the hashmap {}",stateCodes.len());

 stateCodes.remove(&"GJ");

 println!("length of the hashmap after remove() {}",stateCodes.len());

}

Output

length of the hashmap 3

length of the hashmap after remove() 2

HashSet

HashSet is a set of unique values of type T. Adding and removing values is fast, and it is

fast to ask whether a given value is in the set or not. The HashSet structure is defined in

the std::collections module. This module should be explicitly imported to access the

HashSet structure.

Syntax: Creating a HashSet

let mut hash_set_name = HashSet::new();

The static method, new, of HashSet structure is used to create a HashSet. This method

creates an empty HashSet.

The following table lists some of the commonly used methods of the HashSet structure.

RUST

 104

S. No. Method signature Description

1 insert()
pub fn insert(&mut self, value:

T) -> bool

Adds a value to the

set. If the set did not

have this value

present, true is

returned else false.

2 len() pub fn len(&self) -> usize
Returns the number of

elements in the set.

3 get()

pub fn get<Q:?Sized>(&self,

value: &Q) -> Option<&T>

where T: Borrow,Q: Hash + Eq,

Returns a reference to

the value in the set, if

any that is equal to the

given value.

4 iter() pub fn iter(&self) -> Iter

Returns an iterator

visiting all elements in

arbitrary order. The

iterator element type

is &'a T.

5 contains()

pub fn contains<Q:

?Sized>(&self, value: &Q) ->

bool

Returns true if the set

contains a value.

6 remove()

pub fn remove<Q:

?Sized>(&mut self, value: &Q) -

> bool

Removes a value from

the set. Returns true if

the value was present

in the set.

Illustration: insert()

Adds a value to the set. A HashSet does not add duplicate values to the collection.

use std::collections::HashSet;

fn main() {

let mut names = HashSet::new();

names.insert("Mohtashim");

names.insert("Kannan");

names.insert("TutorialsPoint");

RUST

 105

names.insert("Mohtashim");//duplicates not added

println!("{:?}",names);}

Output

{"TutorialsPoint", "Kannan", "Mohtashim"}

Illustration: len()

Returns the number of elements in the set.

use std::collections::HashSet;

fn main() {

let mut names = HashSet::new();

names.insert("Mohtashim");

names.insert("Kannan");

names.insert("TutorialsPoint");

println!("size of the set is {}",names.len());

}

Output

size of the set is 3

Illustration: iter()

Retruns an iterator visiting all elements in arbitrary order.

use std::collections::HashSet;

fn main() {

let mut names = HashSet::new();

names.insert("Mohtashim");

names.insert("Kannan");

names.insert("TutorialsPoint");

names.insert("Mohtashim");

for name in names.iter(){

 println!("{}",name);

}

RUST

 106

}

Output

TutorialsPoint

Mohtashim

Kannan

Illustration: get()

Returns a reference to the value in the set, if any, which is equal to the given value.

use std::collections::HashSet;

fn main() {

let mut names = HashSet::new();

names.insert("Mohtashim");

names.insert("Kannan");

names.insert("TutorialsPoint");

names.insert("Mohtashim");

match names.get(&"Mohtashim"){

 Some(value)=>{

 println!("found {}",value);

 }

 None =>{

 println!("not found");

 }

}

println!("{:?}",names);

}

Output

found Mohtashim

{"Kannan", "Mohtashim", "TutorialsPoint"}

Illustration: contains()

Returns true if the set contains a value.

RUST

 107

use std::collections::HashSet;

fn main() {

let mut names = HashSet::new();

names.insert("Mohtashim");

names.insert("Kannan");

names.insert("TutorialsPoint");

if names.contains(&"Kannan"){

 println!("found name");

} }

Output

found name

Illustration: remove()

Removes a value from the set.

use std::collections::HashSet;

fn main() {

let mut names = HashSet::new();

names.insert("Mohtashim");

names.insert("Kannan");

names.insert("TutorialsPoint");

println!("length of the Hashset: {}",names.len());

names.remove(&"Kannan");

println!("length of the Hashset after remove() : {}",names.len());

}

RUST

 108

Output

length of the Hashset: 3

length of the Hashset after remove() : 2

RUST

 109

In Rust, errors can be classified into two major categories as shown in the table below.

S. No. Name Description Usage

1 Recoverable Errors which can be handled
Result

enum

2 UnRecoverable Errors which cannot be handled
panic

macro

A recoverable error is an error that can be corrected. A program can retry the failed

operation or specify an alternate course of action when it encounters a recoverable error.

Recoverable errors do not cause a program to fail abruptly. An example of a recoverable

error is File Not Found error.

Unrecoverable errors cause a program to fail abruptly. A program cannot revert to its

normal state if an unrecoverable error occurs. It cannot retry the failed operation or undo

the error. An example of an unrecoverable error is trying to access a location beyond the

end of an array.

Unlike other programming languages, Rust does not have exceptions. It returns an enum

Result<T, E> for recoverable errors, while it calls the panic macro if the program

encounters an unrecoverable error. The panic macro causes the program to exit abruptly.

Panic Macro and Unrecoverable Errors

panic! macro allows a program to terminate immediately and provide feedback to the

caller of the program. It should be used when a program reaches an unrecoverable state.

fn main() {

 panic!("Hello");

 println!("End of main"); //unreachable statement

}

In the above example, the program will terminate immediately when it encounters

the panic! macro.

Output

thread 'main' panicked at 'Hello', main.rs:3

21. RUST — Error Handling

RUST

 110

Illustration: panic! macro

fn main() {

 let a = [10,20,30];

 a[10]; //invokes a panic since index 10 cannot be reached

}

Output is as shown below:

warning: this expression will panic at run-time

 --> main.rs:4:4

 |

4 | a[10];

 | ^^^^^ index out of bounds: the len is 3 but the index is 10

$main

thread 'main' panicked at 'index out of bounds: the len is 3 but the index is

10', main.rs:4

note: Run with `RUST_BACKTRACE=1` for a backtrace.

A program can invoke the panic! macro if business rules are violated as shown in the

example below:

 fn main() {

 let no = 13; //try with odd and even

 if no%2 == 0 {

 println!("Thank you , number is even");

 }

 else {

 panic!("NOT_AN_EVEN"); }

 println!("End of main");

}

The above example returns an error if the value assigned to the variable is odd.

Output

thread 'main' panicked at 'NOT_AN_EVEN', main.rs:9

note: Run with `RUST_BACKTRACE=1` for a backtrace.

RUST

 111

Result Enum and Recoverable Errors

Enum Result – <T,E> can be used to handle recoverable errors. It has two variants –

OK and Err. T and E are generic type parameters. T represents the type of the value that

will be returned in a success case within the OK variant, and E represents the type of the

error that will be returned in a failure case within the Err variant.

 enum Result<T,E> {

 OK(T),

 Err(E)

 }

Let us understand this with the help of an example:

use std::fs::File;

fn main() {

 let f = File::open("main.jpg"); //this file does not exist

 println!("{:?}",f);

}

The program returns OK(File) if the file already exists and Err(Error) if the file is not found.

Err(Error { repr: Os { code: 2, message: "No such file or directory" } })

Let us now see how to handle the Err variant.

The following example handles an error returned while opening file using the

match statement -

 use std::fs::File;

fn main() {

let f = File::open("main.jpg"); // main.jpg doesn't exist

match f {

 Ok(f)=>{

 println!("file found {:?}",f);

 },

 Err(e)=>{

 println!("file not found \n{:?}",e); //handled error

 }

RUST

 112

}

println!("end of main");

}

NOTE: The program prints end of the main event though file was not found. This means

the program has handled error gracefully.

Output

file not found

Os { code: 2, kind: NotFound, message: "The system cannot find the file

specified." }

end of main

Illustration

The is_even function returns an error if the number is not an even number. The main()

function handles this error.

fn main(){

 let result = is_even(13);

 match result {

 Ok(d)=>{

 println!("no is even {}",d);

 },

 Err(msg)=>{

 println!("Error msg is {}",msg);

 }

 }

 println!("end of main");

}

fn is_even(no:i32)->Result<bool,String>{

 if no%2==0 {

RUST

 113

 return Ok(true);

 }

 else {

 return Err("NOT_AN_EVEN".to_string());

 }

}

NOTE: Since the main function handles error gracefully, the end of main statement is

printed.

Output

Error msg is NOT_AN_EVEN

end of main

unwrap() and expect()

The standard library contains a couple of helper methods that both enums –

Result<T,E> and Option<T> implement. You can use them to simplify error cases where

you really do not expect things to fail. In case of success from a method, the "unwrap"

function is used to extract the actual result.

S. No. Method Signature Description

1 unwrap unwrap(self): T

Expects self to be Ok/Some and

returns the value contained within. If

it is Err or None instead, it raises a

panic with the contents of the error

displayed.

2 expect
expect(self,

msg: &str): T

Behaves like unwrap, except that it

outputs a custom message before

panicking in addition to the contents

of the error.

unwrap()

The unwrap() function returns the actual result an operation succeeds. It returns a panic

with a default error message if an operation fails. This function is a shorthand for match

statement. This is shown in the example below:

fn main(){

 let result = is_even(10).unwrap();

RUST

 114

 println!("result is {}",result);

 println!("end of main");

}

fn is_even(no:i32)->Result<bool,String>{

 if no%2==0 {

 return Ok(true);

 }

 else {

 return Err("NOT_AN_EVEN".to_string());

 }

}

result is true

end of main

Modify the above code to pass an odd number to the is_even() function.

The unwrap() function will panic and return a default error message as shown below:

thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value:

"NOT_AN_EVEN"', libcore\result.rs:945:5

note: Run with `RUST_BACKTRACE=1` for a backtrace

RUST

 115

expect()

The program can return a custom error message in case of a panic. This is shown in the

following example:

use std::fs::File;

fn main(){

 let f = File::open("pqr.txt").expect("File not able to open");//file does

not exist

 println!("end of main");

}

The function expect() is similar to unwrap(). The only difference is that a custom error

message can be displayed using expect.

Output

thread 'main' panicked at 'File not able to open: Error { repr: Os { code: 2,

message: "No such file or directory" } }', src/libcore/result.rs:860

note: Run with `RUST_BACKTRACE=1` for a backtrace.

RUST

 116

Generics are a facility to write code for multiple contexts with different types. In Rust,

generics refer to the parameterization of datatypes and traits. Generics allows to write

more concise and clean code by reducing code duplication and providing type-safety. The

concept of Generics can be applied to methods, functions, structures, enumerations,

collections and traits.

The <T> syntax known as the type parameter, is used to declare a generic

construct. T represents any data-type.

Illustration: Generic Collection

The following example declares a vector that can store only integers.

 fn main(){

 let mut vector_integer: Vec<i32> = vec![20,30];

 vector_integer.push(40);

 println!("{:?}",vector_integer);

}

Output

[20, 30, 40]

Consider the following snippet:

fn main(){

 let mut vector_integer: Vec<i32> = vec![20,30];

 vector_integer.push(40);

 vector_integer.push("hello"); //error[E0308]: mismatched types

 println!("{:?}",vector_integer);

}

The above example shows that a vector of integer type can only store integer values. So,

if we try to push a string value into the collection, the compiler will return an error.

Generics make collections more type safe.

22. RUST — Generic Types

RUST

 117

Illustration: Generic Structure

The type parameter represents a type, which the compiler will fill in later.

 struct Data<T> {

 value:T,

 }

fn main(){

 //generic type of i32

 let t:Data<i32> = Data{value:350};

 println!("value is :{} ",t.value);

 //generic type of String

 let t2:Data<String> = Data{value:"Tom".to_string()};

 println!("value is :{} ",t2.value);

}

The above example declares a generic structure named Data. The <T> type indicates

some data type. The main() function creates two instances – an integer instance and a

string instance, of the structure.

Output

value is :350

value is :Tom

Traits

Traits can be used to implement a standard set of behaviors (methods) across multiple

structures. Traits are like interfaces in Object-oriented Programming. The syntax of trait

is as shown below:

Declare a Trait

 trait some_trait {

 //abstract or method which is empty

 fn method1(&self);

 // this is already implemented , this is free

 fn method2(&self){

 //some contents of method2

 }

 }

RUST

 118

Traits can contain concrete methods (methods with body) or abstract methods (methods

without a body). Use a concrete method if the method definition will be shared by all

structures implementing the Trait. However, a structure can choose to override a function

defined by the trait.

Use abstract methods if the method definition varies for the implementing structures.

Syntax: Implement a Trait

 impl some_trait for structure_name {

 // implement method1() there..

 fn method1(&self){

 }

 }

The following examples defines a trait Printable with a method print(), which is

implemented by the structure book.

fn main(){

//create an instance of the structure

 let b1 = Book {

 id:1001,

 name:"Rust in Action"

 };

 b1.print();

}

//declare a structure

struct Book {

 name:&'static str,

 id:u32

}

//declare a trait

trait Printable {

 fn print(&self);

}

RUST

 119

//implement the trait

impl Printable for Book {

 fn print(&self){

 println!("Printing book with id:{} and name {}",self.id,self.name)

 }

}

Output

Printing book with id:1001 and name Rust in Action

Generic Functions

The example defines a generic function that displays a parameter passed to it. The

parameter can be of any type. The parameter’s type should implement the Display trait

so that its value can be printed by the println! macro.

use std::fmt::Display;

fn main(){

print_pro(10 as u8);

print_pro(20 as u16);

print_pro("Hello TutorialsPoint");

}

fn print_pro<T:Display>(t:T){

println!("Inside print_pro generic function:");

println!("{}",t);

}

Output

Inside print_pro generic function:

10

Inside print_pro generic function:

20

Inside print_pro generic function:

Hello TutorialsPoint

RUST

 120

This chapter discusses how to accept values from the standard input (keyboard) and

display values to the standard output (console). In this chapter, we will also discuss

passing command line arguments.

Reader and Writer Types

Rust’s standard library features for input and output are organized around two traits -

 Read

 Write

S. No. Trait Description Example

1 Read
Types that implement Read have methods for

byte-oriented input. They’re called readers
Stdin,File

2 Write

Types that implement Write support both byte-

oriented and UTF-8 text output. They’re called

writers.

Stdout,File

Read Trait

Readers are components that your program can read bytes from. Examples include

reading input from the keyboard, files, etc. The read_line() method of this trait can be

used to read data, one line at a time, from a file or standard input stream.

S. No. Trait Method Description

1 Read
read_line(&mut

line)->Result

Reads a line of text and appends it to line,

which is a String. The return value is an

io::Result, the number of bytes read.

23. RUST — Input Output

RUST

 121

Illustration: Reading from the Console- stdin()

Rust programs might have to accept values from the user at runtime. The following

example reads values from the standard input (Keyboard) and prints it to the console.

fn main(){

 let mut line = String::new();

 println!("Enter your name :");

 let b1 =std::io::stdin().read_line(&mut line).unwrap();

 println!("Hello , {}", line);

 println!("no of bytes read , {}", b1);

}

The stdin() function returns a handle to the standard input stream of the current process,

to which the read_line function can be applied. This function tries to read all the characters

present in the input buffer when it encounters an end-of-line character.

Output

Enter your name :

Mohtashim

Hello , Mohtashim

no of bytes read , 10

Write Trait

Writers are components that your program can write bytes to. Examples include printing

values to the console, writing to files, etc. The write() method of this trait can be used to

write data to a file or standard output stream.

S. No. Trait Method Description

1 Write
write(&buf)-

>Result

Writes some of the bytes in the slice buf to

the underlying stream. It returns an

io::Result, the number of bytes written.

RUST

 122

Illustration: Writing to the Console-stdout()

The print! or println! macros can be used to display text on the console. However, you can

also use the write() standard library function to display some text to the standard output.

Let us consider an example to understand this.

use std::io::Write;

fn main(){

 let b1= std::io::stdout().write("Tutorials ".as_bytes()).unwrap();

 let b2=
std::io::stdout().write(String::from("Point").as_bytes()).unwrap();

 std::io::stdout().write(format!("\nbytes written

{}",(b1+b2)).as_bytes()).unwrap();

}

Output

Tutorials Point

bytes written 15

The stdout() standard library function returns a handle to the standard output stream of

the current process, to which the write function can be applied. The write() method

returns an enum, Result. The unwrap() is a helper method to extract the actual result from

the enumeration. The unwrap method will send panic if an error occurs.

NOTE: File IO is discussed in the next chapter.

RUST

 123

CommandLine Arguments

CommandLine arguments are passed to a program before executing it. They are like

parameters passed to functions. CommandLine parameters can be used to pass values to

the main() function. The std::env::args() returns the commandline arguments.

Illustration

The following example passes values as commandLine arguments to the main() function.

The program is created in a file name main.rs.

//main.rs

fn main(){

 let cmd_line = std::env::args();

 println!("No of elements in arguments is :{}",cmd_line.len()); //print
total number of values passed

 for arg in cmd_line {

 println!("[{}]",arg); //print all values passed as commandline

arguments

 }

}

The program will generate a file main.exe once compiled. Multiple command line

parameters should be separated by space. Execute main.exe from the terminal

as main.exe hello tutorialspoint .

NOTE: hello and tutorialspoint are commandline arguments.

Output

No of elements in arguments is :3

[main.exe]

[hello]

[tutorialspoint]

The output shows 3 arguments as the main.exe is the first argument.

RUST

 124

Illustration

The following program calculates the sum of values passed as commandline arguments. A

list integer values separated by space is passed to program.

fn main(){

 let cmd_line = std::env::args();

 println!("No of elements in arguments is :{}",cmd_line.len()); // total

number of elements passed

 let mut sum =0;

 let mut has_read_first_arg = false;

 //iterate through all the arguments and calculate their sum

 for arg in cmd_line {

 if has_read_first_arg { //skip the first argument since it is the exe

file name

 sum += arg.parse::<i32>().unwrap();

 }

 has_read_first_arg = true; // set the flag to true to calculate sum for

the subsequent arguments.

 }

 println!("sum is {}",sum);

}

On executing the program as main.exe 1 2 3 4, the output will be -

No of elements in arguments is :5

sum is 10

RUST

 125

In addition to reading and writing to console, Rust allows reading and writing to files.

The File struct represents a file. It allows a program to perform read-write operations on

a file. All methods in the File struct return a variant of the io::Result enumeration.

The commonly used methods of the File struct are listed in the table below:

S. No. Module Method Signature Description

1
std::fs::

File
open()

pub fn open<P:

AsRef>(path: P) ->

Result

The open static method

can be used to open a file

in read-only mode.

2
std::fs::

File
create()

pub fn create<P:

AsRef>(path: P) ->

Result

Static method opens a

file in write-only mode. If

the file already existed,

the old content is

destroyed. Otherwise, a

new file is created.

3

std::fs::

remove

_file

remove

_file()

pub fn

remove_file<P:

AsRef>(path: P) ->

Result<()>

Removes a file from the

filesystem. There is no

guarantee that the file is

immediately deleted.

4

std::fs::

OpenOp

tions

append(

)

pub fn append(&mut

self, append: bool) -

> &mut OpenOptions

Sets the option for the

append mode of file.

5
std::io::

Write

write_al

l()

fn write_all(&mut

self, buf: &[u8]) ->

Result<()>

Attempts to write an

entire buffer into this

write.

6
std::io::

Read

read_to

_string(

)

fn

read_to_string(&mut

self, buf: &mut

String) -> Result

Reads all bytes until EOF

in this source, appending

them to buf.

24. RUST — File Input/ Output

RUST

 126

Write to a File

Let us see an example to understand how to write a file.

The following program creates a file 'data.txt'. The create() method is used to create a

file. The method returns a file handle if the file is created successfully. The last

line write_all function will write bytes in newly created file. If any of the operations fail,

the expect() function returns an error message.

use std::io::Write;

fn main(){

 let mut file = std::fs::File::create("data.txt").expect("create failed");

 file.write_all("Hello World".as_bytes()).expect("write failed");

 file.write_all("\nTutorialsPoint".as_bytes()).expect("write failed");

 println!("data written to file");

}

Output

data written to file

Read from a File

The following program reads the contents in a file data.txt and prints it to the console. The

"open" function is used to open an existing file. An absolute or relative path to the file is

passed to the open() function as a parameter. The open() function throws an exception if

the file does not exist, or if it is not accessible for whatever reason. If it succeeds, a file

handle to such file is assigned to the "file" variable.

The "read_to_string" function of the "file" handle is used to read contents of that file into

a string variable.

use std::io::Read;

fn main(){

 let mut file = std::fs::File::open("data.txt").unwrap();

 let mut contents = String::new();

 file.read_to_string(&mut contents).unwrap();

 print!("{}", contents);

}

RUST

 127

Output

Hello World

TutorialsPoint

Delete a file

The following example uses the remove_file() function to delete a file. The expect()

function returns a custom message in case an error occurs.

use std::fs;

fn main(){

 fs::remove_file("data.txt").expect("could not remove file");

 println!("file is removed");

}

Output

file is removed

Append data to a file

The append() function writes data to the end of the file. This is shown in the example given

below:

use std::fs::OpenOptions;

use std::io::Write;

fn main(){

 let mut file =
OpenOptions::new().append(true).open("data.txt").expect("cannot open file");

 file.write_all("Hello World".as_bytes()).expect("write failed");

 file.write_all("\nTutorialsPoint".as_bytes()).expect("write failed");

 println!("file append success");

}

Output

file append success

RUST

 128

Copy a file

The following example copies the contents in a file to a new file.

use std::io::Read;

use std::io::Write;

fn main(){

 let mut command_line: std::env::Args = std::env::args();

 command_line.next().unwrap();// skip the executable file name

 // accept the source file

 let source = command_line.next().unwrap();

 // accept the destination file

 let destination = command_line.next().unwrap();

 let mut file_in = std::fs::File::open(source).unwrap();

 let mut file_out = std::fs::File::create(destination).unwrap();

 let mut buffer = [0u8; 4096];

 loop {

 let nbytes = file_in.read(&mut buffer).unwrap();

 file_out.write(&buffer[..nbytes]).unwrap();

 if nbytes < buffer.len() { break; }

 }

}

Execute the above program as main.exe data.txt datacopy.txt. Two command line

arguments are passed while executing the file:

 the path to the source file

 the destination file

RUST

 129

Cargo is the package manager for RUST. This acts like a tool and manages Rust projects.

Some commonly used cargo commands are listed in the table below:

S. No. Command Description

1 cargo build Compiles the current project.

2
cargo

check

Analyzes the current project and report errors, but don't

build object files.

3 cargo run Builds and executes src/main.rs.

4
cargo

clean
Removes the target directory.

5
cargo

update
Updates dependencies listed in Cargo.lock.

6 cargo new Creates a new cargo project.

Cargo helps to download third party libraries. Therefore, it acts like a package manager.

You can also build your own libraries. Cargo is installed by default when you install Rust.

To create a new cargo project, we can use the commands given below.

Create a binary crate

cargo new project_name --bin

Create a library crate

cargo new project_name --lib

To check the current version of cargo, execute the following command:

cargo --version

25. RUST — Package Manager

RUST

 130

Illustration: Create a Binary Cargo project

The game generates a random number and prompts the user to guess the number.

Step 1: Create a project folder

Open the terminal and type the following command cargo new guess-game-app --bin.

This will create the following folder structure.

 guess-game-app/

 -->Cargo.toml

 -->src/

 main.rs

The cargo new command is used to create a crate. The --bin flag indicates that the crate

being created is a binary crate. Public crates are stored in a central repository called

crates.io (https://crates.io/).

Step 2: Include references to external libraries

This example needs to generate a random number. Since the internal standard library

does not provide random number generation logic, we need to look at external libraries or

crates. Let us use rand crate which is available at crates.io website crates.io.

The rand crate is a rust library for random number generation. Rand provides utilities to

generate random numbers, to convert them to useful types and distributions, and some

randomness-related algorithms.

The following diagram shows crate.io website and search result for rand crate.

Copy the version of rand crate to the Cargo.toml file rand = "0.5.5".

[package]

name = "guess-game-app"

https://crates.io/
https://crates.io/crates/rand
https://user-images.githubusercontent.com/9062443/47617238-2f44ae00-daeb-11e8-876b-70a4f1248bb6.png

RUST

 131

version = "0.1.0"

authors = ["Mohtashim"]

[dependencies]

rand = "0.5.5"

Step 3: Compile the Project

Navigate to the project folder. Execute the command cargo build on the terminal window:

 Updating registry `https://github.com/rust-lang/crates.io-index`

 Downloading rand v0.5.5

 Downloading rand_core v0.2.2

 Downloading winapi v0.3.6

 Downloading rand_core v0.3.0

 Compiling winapi v0.3.6

 Compiling rand_core v0.3.0

 Compiling rand_core v0.2.2

 Compiling rand v0.5.5

 Compiling guess-game-app v0.1.0

(file:///E:/RustWorks/RustRepo/Code_Snippets/cargo-projects/guess-game-app)

 Finished dev [unoptimized + debuginfo] target(s) in 1m 07s

The rand crate and all transitive dependencies (inner dependencies of rand) will be

automatically downloaded.

Step 4: Understanding the Business Logic

Let us now see how the business logic works for the number guessing game:

 Game initially generates a random number.

 A user is asked to enter input and guess the number.

 If number is less than the generated number, a message “Too low” is printed.

 If number is greater than the generated number, a message “Too high” is printed.

 If the user enters the number generated by the program, the game exits.

Step 5: Edit the main.rs file

Add the business logic to main.rs file.

use std::io;

extern crate rand; //importing external crate

use rand::random;

RUST

 132

fn get_guess() -> u8 {

 loop{

 println!("Input guess") ;

 let mut guess = String::new();

 io::stdin().read_line(&mut guess)

 .expect("could not read from stdin");

 match guess.trim().parse::<u8>(){ //remember to trim input to avoid
enter spaces

 Ok(v) => return v,

 Err(e) => println!("could not understand input {}",e)

 }

 }

}

fn handle_guess(guess:u8,correct:u8)-> bool {

 if guess < correct {

 println!("Too low");

 false

 }else if guess> correct{

 println!("Too high");

 false

 }

 else {

 println!("You go it ..");

 true

 }

}

fn main() {

 println!("Welcome to no guessing game");

 let correct:u8 = random();

 println!("correct value is {}",correct);

RUST

 133

 loop {

 let guess = get_guess();

 if handle_guess(guess,correct){

 break;

 }

 }

}

Step 6: Compile and Execute the Project

Execute the command cargo run on the terminal. Make sure that the terminal points to

the Project directory.

Welcome to no guessing game

correct value is 97

Input guess

20

Too low

Input guess

100

Too high

Input guess

97

You got it ..

RUST

 134

In this chapter, we will learn how iterators and closures work in RUST.

Iterators

An iterator helps to iterate over a collection of values such as arrays, vectors, maps, etc.

Iterators implement the Iterator trait that is defined in the Rust standard library.

The iter() method returns an iterator object of the collection. Values in an iterator object

are called items. The next() method of the iterator can be used to traverse through the

items. The next() method returns a value None when it reaches the end of the collection.

The following example uses an iterator to read values from an array.

 fn main() {

 //declare an array

 let a = [10,20,30];

 let mut iter = a.iter(); // fetch an iterator object for the array

 println!("{:?}",iter);

 //fetch individual values from the iterator object

 println!("{:?}",iter.next());

 println!("{:?}",iter.next());

 println!("{:?}",iter.next());

 println!("{:?}",iter.next());

}

Output

Iter([10, 20, 30])

Some(10)

Some(20)

Some(30)

None

If a collection like array or Vector implements Iterator trait then it can be
traversed using the for...in syntax as shown below-

fn main() {

 let a = [10,20,30];

26. RUST — Iterator and Closure

RUST

 135

 let iter = a.iter();

 for data in iter{

 print!("{}\t",data);

 }

}

Output

 10 20 30

The following 3 methods return an iterator object from a collection, where T represents

the elements in a collection.

S. No. Methods Ddescription

1 iter() gives an iterator over &T(reference to T)

2 into_iter() gives an iterator over T

3 iter_mut() gives an iterator over &mut T

Illustration:iter()

The iter() function uses the concept of borrowing. It returns a reference to each element

of the collection, leaving the collection untouched and available for reuse after the loop.

fn main() {

 let names = vec!["Kannan", "Mohtashim", "Kiran"];

 for name in names.iter() {

 match name {

 &"Mohtashim" => println!("There is a rustacean among us!"),

 _ => println!("Hello {}", name),

 }

 }

 println!("{:?}",names); // reusing the collection after iteration

}

Output

Hello Kannan

There is a rustacean among us!

Hello Kiran

RUST

 136

["Kannan", "Mohtashim", "Kiran"]

Illustration:into_iter()

This function uses the concept of ownership. It moves values in the collection into an iter

object, i.e., the collection is consumed and it is no longer available for reuse.

fn main(){

 let names = vec!["Kannan", "Mohtashim", "Kiran"];

 for name in names.into_iter() {

 match name {

 "Mohtashim" => println!("There is a rustacean among us!"),

 _ => println!("Hello {}", name),

 }

 }

 // cannot reuse the collection after iteration

 //println!("{:?}",names); //Error:Cannot access after ownership move

}

Output

Hello Kannan

There is a rustacean among us!

Hello Kiran

Illustration: for and iter_mut()

This function is like the iter() function. However, this function can modify elements within

the collection.

fn main() {

 let mut names = vec!["Kannan", "Mohtashim", "Kiran"];

 for name in names.iter_mut() {

 match name {

 &mut "Mohtashim" => println!("There is a rustacean among us!"),

 _ => println!("Hello {}", name),

 }

RUST

 137

 }

 println!("{:?}",names);//// reusing the collection after iteration

}

Output

Hello Kannan

There is a rustacean among us!

Hello Kiran

["Kannan", "Mohtashim", "Kiran"]

Closure

Closure refers to a function within another function. These are anonymous functions –

functions without a name. Closure can be used to assign a function to a variable. This

allows a program to pass a function as a parameter to other functions. Closure is also

known as an inline function. Variables in the outer function can be accessed by inline

functions.

Syntax: Defining a Closure

A closure definition may optionally have parameters. Parameters are enclosed within two

vertical bars.

 let closure_function = |parameter| {

 //logic

 }

The syntax invoking a Closure implements Fn traits. So, it can be invoked with () syntax.

 closure_function(parameter);//invoking

Illustration

The following example defines a closure is_even within the function main(). The closure

returns true if a number is even and returns false if the number is odd.

 fn main(){

 let is_even = |x| {

 x%2==0

RUST

 138

 };

 let no = 13;

 println!("{} is even ? {}",no,is_even(no));

}

Output

13 is even ? false

Illustration

fn main(){

 let val = 10; // declared outside

 let closure2 = |x| {

 x + val //inner function accessing outer fn variable

 };

 println!("{}",closure2(2));

}

The main() function declares a variable val and a closure. The closure accesses the

variable declared in the outer function main().

Output

12

RUST

 139

Rust allocates everything on the stack by default. You can store things on the heap by

wrapping them in smart pointers like Box. Types like Vec and String implicitly help heap

allocation. Smart pointers implement traits listed in the table below. These traits of the

smart pointers differentiate them from an ordinary struct:

S.No.
Trait

name
Package Description

1 Deref std::ops::Deref
Used for immutable dereferencing

operations, like *v.

2 Drop std::ops::Drop

Used to run some code when a value goes

out of scope. This is sometimes called

a destructor

In this chapter, we will learn about the Box smart pointer. We will also learn how to create

a custom smart pointer like Box.

Box

The Box smart pointer also called a box allows you to store data on the heap rather than

the stack. The stack contains the pointer to the heap data. A Box does not have

performance overhead, other than storing their data on the heap.

Let us see how to use a box to store an i32 value on the heap.

 fn main() {

 let var_i32 = 5; //stack

 let b = Box::new(var_i32); //heap

 println!("b = {}", b);

 }

Output

b = 5

In order to access a value pointed by a variable, use dereferencing. The * is used as a

dereference operator. Let us see how to use dereference with Box.

 fn main() {

 let x = 5; //value type variable

27. RUST — Smart Pointers

RUST

 140

 let y = Box::new(x); //y points to a new value 5 in the heap

 println!("{}",5==x);

 println!("{}",5==*y); //dereferencing y

 }

The variable x is a value-type with the value 5. So, the expression 5==x will return true.

Variable y points to the heap. To access the value in heap, we need to dereference

using *y. *y returns value 5. So, the expression 5==*y returns true.

Output

true

true

Illustration: Deref Trait

The Deref trait, provided by the standard library, requires us to implement one method

named deref, that borrows self and returns a reference to the inner data. The following

example creates a structure MyBox, which is a generic type. It implements the trait Deref.

This trait helps us access heap values wrapped by y using *y.

use std::ops::Deref;

struct MyBox<T>(T);

impl<T> MyBox<T> { // Generic structure with static method new

 fn new(x:T)->MyBox<T>{

 MyBox(x)

 }

}

impl<T> Deref for MyBox<T> {

 type Target = T;

 fn deref(&self) -> &T {

 &self.0 //returns data

 }

}

fn main() {

RUST

 141

 let x = 5;

 let y = MyBox::new(x); // calling static method

 println!("5==x is {}",5==x);

 println!("5==*y is {}",5==*y); // dereferencing y

 println!("x==*y is {}",x==*y);//dereferencing y

}

Output

5==x is true

5==*y is true

x==*y is true

Illustration: Drop Trait

The Drop trait contains the drop() method. This method is called when a structure that

implemented this trait goes out of scope. In some languages, the programmer must call

code to free memory or resources every time they finish using an instance of a smart

pointer. In Rust, you can achieve automatic memory deallocation using Drop trait.

use std::ops::Deref;

struct MyBox<T>(T);

impl<T> MyBox<T> {

 fn new(x:T)->MyBox<T>{

 MyBox(x)

 }

}

impl<T> Deref for MyBox<T> {

 type Target = T;

 fn deref(&self) -> &T {

 &self.0

 }

}

impl<T> Drop for MyBox<T>{

 fn drop(&mut self){

RUST

 142

 println!("dropping MyBox object from memory ");

 }

}

fn main() {

 let x = 50;

 MyBox::new(x);

 MyBox::new("Hello");

}

In the above example, the drop method will be called twice as we are creating two objects

in the heap.

Output

dropping MyBox object from memory

dropping MyBox object from memory

RUST

 143

In Concurrent programming, different parts of a program execute independently. On the

other hand, in parallel programming, different parts of a program execute at the same

time. Both the models are equally important as more computers take advantage of their

multiple processors.

Threads

We can use threads to run codes simultaneously. In current operating systems, an

executed program’s code is run in a process, and the operating system manages multiple

processes at once. Within your program, you can also have independent parts that run

simultaneously. The features that run these independent parts are called threads.

Creating a Thread

The thread::spawn function is used to create a new thread. The spawn function takes a

closure as parameter. The closure defines code that should be executed by the thread.

The following example prints some text from a main thread and other text from a new

thread.

//import the necessary modules

use std::thread;

use std::time::Duration;

fn main() {

//create a new thread

 thread::spawn(|| {

 for i in 1..10 {

 println!("hi number {} from the spawned thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

 });

//code executed by the main thread

 for i in 1..5 {

 println!("hi number {} from the main thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

28. RUST — Concurrency

RUST

 144

}

Output

hi number 1 from the main thread!

hi number 1 from the spawned thread!

hi number 2 from the main thread!

hi number 2 from the spawned thread!

hi number 3 from the main thread!

hi number 3 from the spawned thread!

hi number 4 from the spawned thread!

hi number 4 from the main thread!

The main thread prints values from 1 to 4.

NOTE: The new thread will be stopped when the main thread ends. The output from this

program might be a little different every time.

The thread::sleep function forces a thread to stop its execution for a short duration,

allowing a different thread to run. The threads will probably take turns, but that is not

guaranteed – it depends on how the operating system schedules the threads. In this run,

the main thread is printed first, even though the print statement from the spawned thread

appears first in the code. Moreover, even if the spawned thread is programmed to print

values till 9, it only got to 5 before the main thread shut down.

Join Handles

A spawned thread may not get a chance to run or run completely. This is because the

main thread completes quickly. The function spawn<F, T>(f: F) -> JoinHandle<T> returns

a JoinHandle. The join() method on JoinHandle waits for the associated thread to finish.

use std::thread;

use std::time::Duration;

fn main() {

 let handle= thread::spawn(|| {

 for i in 1..10 {

 println!("hi number {} from the spawned thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

 });

 for i in 1..5 {

RUST

 145

 println!("hi number {} from the main thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

 handle.join().unwrap();

}

Output

hi number 1 from the main thread!

hi number 1 from the spawned thread!

hi number 2 from the spawned thread!

hi number 2 from the main thread!

hi number 3 from the spawned thread!

hi number 3 from the main thread!

hi number 4 from the main thread!

hi number 4 from the spawned thread!

hi number 5 from the spawned thread!

hi number 6 from the spawned thread!

hi number 7 from the spawned thread!

hi number 8 from the spawned thread!

hi number 9 from the spawned thread!

The main thread and spawned thread continue switching.

NOTE: The main thread waits for spawned thread to complete because of the call to the

join() method.

